

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Y.3181
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(09/2022)

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS,
NEXT-GENERATION NETWORKS, INTERNET OF
THINGS AND SMART CITIES

Future networks

Architectural framework for machine learning
sandbox in future networks including IMT-2020

Recommendation ITU-T Y.3181

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION

NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199

Services, applications and middleware Y.200–Y.299

Network aspects Y.300–Y.399

Interfaces and protocols Y.400–Y.499

Numbering, addressing and naming Y.500–Y.599

Operation, administration and maintenance Y.600–Y.699

Security Y.700–Y.799

Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS

General Y.1000–Y.1099

Services and applications Y.1100–Y.1199

Architecture, access, network capabilities and resource management Y.1200–Y.1299

Transport Y.1300–Y.1399

Interworking Y.1400–Y.1499

Quality of service and network performance Y.1500–Y.1599

Signalling Y.1600–Y.1699

Operation, administration and maintenance Y.1700–Y.1799

Charging Y.1800–Y.1899

IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS

Frameworks and functional architecture models Y.2000–Y.2099

Quality of Service and performance Y.2100–Y.2199

Service aspects: Service capabilities and service architecture Y.2200–Y.2249

Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299

Enhancements to NGN Y.2300–Y.2399

Network management Y.2400–Y.2499

Computing power networks Y.2500–Y.2599

Packet-based Networks Y.2600–Y.2699

Security Y.2700–Y.2799

Generalized mobility Y.2800–Y.2899

Carrier grade open environment Y.2900–Y.2999

FUTURE NETWORKS Y.3000–Y.3499

CLOUD COMPUTING Y.3500–Y.3599

BIG DATA Y.3600–Y.3799

QUANTUM KEY DISTRIBUTION NETWORKS Y.3800–Y.3999

INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES

General Y.4000–Y.4049

Definitions and terminologies Y.4050–Y.4099

Requirements and use cases Y.4100–Y.4249

Infrastructure, connectivity and networks Y.4250–Y.4399

Frameworks, architectures and protocols Y.4400–Y.4549

Services, applications, computation and data processing Y.4550–Y.4699

Management, control and performance Y.4700–Y.4799

Identification and security Y.4800–Y.4899

Evaluation and assessment Y.4900–Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.3181 (09/2022) i

Recommendation ITU-T Y.3181

Architectural framework for machine learning sandbox in

future networks including IMT-2020

Summary

Recommendation ITU-T Y.3181 provides an architectural framework for machine learning (ML)

sandbox in future networks including IMT-2020. More precisely, it describes requirements and

high-level architecture for ML sandbox in future networks including IMT-2020.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Y.3181 2022-09-29 13 11.1002/1000/15058

Keywords

High-level architecture, IMT-2020, machine learning, requirement, sandbox, simulator.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/15058
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Y.3181 (09/2022)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2022

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.3181 (09/2022) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 3

5 Conventions .. 3

6 Introduction .. 4

7 Requirements .. 5

7.1 Simulated ML underlay requirements .. 5

7.2 Operational requirements ... 6

7.3 Communication requirements .. 7

7.4 Metadata requirements ... 7

8 High-level architecture ... 8

8.1 ML sandbox within the high-level ML architecture 8

8.2 Components of the ML sandbox .. 10

8.3 APIs .. 12

8.4 Sequence diagrams ... 16

9 Security considerations ... 23

Bibliography... 25

 Rec. ITU-T Y.3181 (09/2022) 1

Recommendation ITU-T Y.3181

Architectural framework for machine learning sandbox in

future networks including IMT-2020

1 Scope

This Recommendation provides an architectural framework for the machine learning (ML) sandbox

in the context of integrating machine learning in future networks including IMT-2020. This

Recommendation provides requirements and high-level architecture of the ML sandbox.

Architectural components along with corresponding reference points and application programming

interfaces (APIs) are specified.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision; users

of this Recommendation are therefore encouraged to investigate the possibility of applying the most

recent edition of the Recommendations and other references listed below. A list of the currently valid

ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), Security requirements for NGN

release 1.

[ITU-T Y.3101] Recommendation ITU-T Y.3101 (2018), Requirements of the IMT-2020

network.

[ITU-T Y.3172] Recommendation ITU-T Y.3172 (2019), Architectural framework for

machine learning in future networks including IMT-2020.

[ITU-T Y.3173] Recommendation ITU-T Y.3173 (2020), Framework for evaluating

intelligence levels of future networks including IMT-2020.

[ITU-T Y.3174] Recommendation ITU-T Y.3174 (2020), Framework for data handling to

enable machine learning in future networks including IMT-2020.

[ITU-T Y.3176] Recommendation ITU-T Y.3176 (2020), Machine learning marketplace

integration in future networks including IMT-2020.

[ITU-T Y.3179] Recommendation ITU-T Y.3179 (2021), Architectural framework for

machine learning model serving in future networks including IMT-2020.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 machine learning model [ITU-T Y.3172]: Model created by applying machine learning

techniques to data to learn from.

3.1.2 machine learning pipeline [ITU-T Y.3172]: A set of logical nodes, each with specific

functionalities, that can be combined to form a machine learning application in a telecommunication

network.

2 Rec. ITU-T Y.3181 (09/2022)

3.1.3 machine learning sandbox [ITU-T Y.3172]: An environment in which machine learning

models can be trained and their effects tested on the network evaluated.

3.1.4 machine learning function orchestrator [ITU-T Y.3172]: A logical node with

functionalities that manage and orchestrate the nodes in a machine learning pipeline.

3.1.5 machine learning marketplace [ITU-T Y.3176]: A component that provides capabilities

facilitating the exchange and delivery of machine learning models among multiple parties.

NOTE 1 – Examples of parties include suppliers and users of ML models. Capabilities provided to users of

ML models include functionalities to find, learn about, deploy (or download), and use ML models. Capabilities

provided to suppliers of ML models (e.g., data scientists) include functionalities to share (on-board, upload),

describe (learn about), and market their ML models.

NOTE 2 – A network operator may use a machine learning marketplace deployed internally and/or externally

to the network operator's administrative domains. Internal and external marketplaces differ only in the

deployment perspective. A marketplace that is internal to a network operator may act as an external

marketplace to another network operator and vice versa.

3.1.6 machine learning model metadata [ITU-T Y.3176]: Information that describes the

characteristics of a machine learning model.

NOTE – Machine learning model metadata includes, but is not limited to, the name of the ML model, ML

model's author, version of the ML model, license information of the ML model, description of the data inputs

and outputs of the ML model, and runtime environment of the ML model.

3.1.7 machine learning model serving [ITU-T Y.3179]: A process of preparing and deploying

machine learning models in different deployment environments to enable the application of model

inference to machine learning underlay networks.

3.1.8 network intelligence level [ITU-T Y.3173]: Level of application of the automation

capabilities including those enabled by the integration of artificial intelligence techniques in the

network.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 evaluation ML pipeline: Chaining of pipeline nodes and simulated network functions (NFs)

with served machine learning (ML) models whose goal is to evaluate a particular ML use case.

3.2.2 simulation component metadata: Data describing the characteristics of a particular

simulation component.

NOTE – Examples of simulation component metadata are capabilities of the simulated NFs, configurable

parameters, performance indicators, monitored parameters and interfaces.

3.2.3 simulation environment metadata: Data describing the characteristics of a particular

simulation environment.

NOTE 1 – Simulation environment metadata can contain information such as installation/execution

requirements, simulation component metadata, performance indicators, connections and maturity indicators

(e.g., alpha/beta versions).

NOTE 2 – Examples of formats for representing simulation environment metadata are JavaScript object

notation (JSON) [b-IETF RFC 8259], comma-separated values (CSV) [b-IETF RFC 4180], or extensible

markup language (XML) [b-XML].

3.2.4 simulation profile: A list of parameters and their values which describe the machine learning

(ML) use case to be trained, evaluated, or tested at the ML sandbox.

NOTE – The list of parameters and their values may be derived from the ML intent [ITU-T Y.3172] and the

simulation environment metadata.

 Rec. ITU-T Y.3181 (09/2022) 3

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AF Application Function

AI Artificial Intelligence

AP Access Point

API Application Programming Interface

DBr Data Broker

DH Data Handling

DM Data Model

GAN Generative Adversarial Network

KPI Key Performance Indicator

ML Machine Learning

MLFO Machine Learning Function Orchestrator

NF Network Function

RAN Radio Access Network

RL Reinforcement Learning

SL Supervised Learning

UE User Equipment

UL Unsupervised Learning

uRLLC Ultra-Reliable Low-Latency Communication

V2X Vehicle-to-Everything

WLAN Wireless Local Area Network

5 Conventions

In this Recommendation:

– The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted, if conformance to this Recommendation is to be

claimed.

– The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus, this requirement need not be present to claim conformance.

– The keywords "can optionally" indicate an optional requirement which is permissible,

without implying any sense of being recommended. This term is not intended to imply that

the vendor's implementation must provide the option, and the feature can be optionally

enabled by the network operator/service provider. Rather, it means the vendor may optionally

provide the feature and still claim conformance with this Recommendation.

– The colour "solid blue" is used in Figure 2 and Figure 3 to indicate components and interfaces

that are newly defined in this Recommendation.

– ML pipeline – In this Recommendation, in alignment with the conventions of

[ITU-T Y.3172] when the symbol shown in Figure 1 is used, this denotes a subset (including

proper subset) of nodes in an ML pipeline. When this symbol is used in a figure, the symbol

stands for the subset of an ML pipeline's nodes not explicitly shown in that figure.

4 Rec. ITU-T Y.3181 (09/2022)

Figure 1 – Symbol used to denote a subset of nodes in an ML pipeline

6 Introduction

The integration of artificial intelligence (AI) and machine learning (ML) has been identified as one

of the key features of future networks. However, network operators have the challenge of maintaining

the operational performance and associated key performance indicators during or after this

integration. In addition, the introduction of ML techniques to IMT-2020 networks may raise concerns

regarding the transparency, reliability, and availability of the ML methods, techniques and data.

Studying the trade-offs, advantages, and disadvantages while integrating various ML mechanisms is

important to understand their impact on the network. For example, reducing the generalization error

is the main concern in applying any kind of supervised learning (SL) approach, which can be high

even if the test error is kept low (this phenomenon is commonly known as overfitting). Similarly,

unsupervised learning (UL) aims to find patterns from data without any guidance (unlabelled data)

and hence lacks validation. On the other hand, reinforcement learning (RL) is based on the learning-

by-experience paradigm. RL has been shown to be of great utility for single-agent approaches in

controlled scenarios, however notable adverse effects can appear as a result of the competition raised

by multiple systems sharing the same resources (e.g., while providing heterogeneous services using

common network resources).

Thus, all kinds of learning can lead to unexpected and/or undesired behaviour in live networks. Even

if the performance of networking systems can be improved by ML techniques in the long term, it is

safe to assume that the system will unavoidably experience certain performance degradation during

a transitory regime. In some situations, this degradation of key performance indicators (KPI) may be

unacceptable for network operators, especially for demanding requirements of certain network-

oriented applications such as ultra-reliable low-latency communication (uRLLC) applications. In

other cases, the network may change quickly and may not reach a stable, long-term regime that is

expected to optimize the network's performance.

NOTE – The transitory regime precedes the stability phase of an ML model when applied to a network.

Performance degradation can result from potential delays in serving models in the network, or from trying

suboptimal configurations during exploration periods in online learning.

Given the instability that ML methods can generate in communications systems, which can be

particularly exacerbated in online mechanisms including exploration phases, the sandbox subsystem

[ITU-T Y.3172] emerges as a promising solution for training, testing, and evaluating the performance

of ML models before being deployed in live networks. The ML sandbox is an isolated environment

in which machine learning models can be evaluated. The ML sandbox is therefore meant to reproduce

the behaviour / operation of live networking systems, thereby improving the robustness and resilience

of future ML-enabled networking systems. ML sandbox includes a managed test network (e.g., a

testbed) or a software-based environment (e.g., using a simulator or an emulator). Software-based

network environments can be particularly useful to overcome the limitations of limited training data

sets and laboratory-based testbeds. For instance, simulators can be used to frame cases that have not

been noticed before (i.e., anomalies), which would contribute to enabling failure prediction, anomaly

detection and self-healing.

Through the management subsystem, network operators can manage the ML sandbox and thereby

address the challenges posed by ML-driven solutions for networks. The interfaces between the

machine learning function orchestrator (MLFO) and the ML sandbox allow the manageability of the

replicated network environment (e.g., simulation), the execution of test cases and the evaluation of

ML models.

 Rec. ITU-T Y.3181 (09/2022) 5

7 Requirements

The requirements for the ML sandbox's architectural framework are divided into the following

categories:

• Simulated ML underlay requirements

• Operational requirements

• Communication requirements

• Metadata requirements

7.1 Simulated ML underlay requirements

REQ-ML-SANDBOX-001: The ML sandbox is required to simulate heterogeneous sources of data

(SRCs) and sinks (SINKs) of an ML output.

NOTE 1 – SRCs and SINKs simulated in the ML sandbox include those within the IMT-2020 network as well

as application functionalities hosted in the network slices. Examples of application functionalities hosted in

the network slices are vehicle-to-everything (V2X) applications, Industry 4.0 applications and emergency

applications.

REQ-ML-SANDBOX-002: The ML sandbox is required to support the dynamic instantiation of new

simulated SRCs and/or SINK nodes.

NOTE 2 – Instantiation of new simulated SRCs and SINK nodes is managed by the MLFO.

REQ-ML-SANDBOX-003: The ML sandbox is required to consider policy inputs from the operator

while configuring the simulated ML underlay networks [ITU-T Y.3172].

NOTE 3 – Examples of policy inputs are those related to conflict resolution and resource management.

REQ-ML-SANDBOX-004: The ML sandbox is required to enable coordinated time synchronization

of operations executed in the ML sandbox as required by the specific use case.

NOTE 4 – The time synchronization may be coordinated by the MLFO by controlling the sequence of

operations executed in the ML sandbox. The sequence of operations triggered by the MLFO may be according

to the synchronisation requirements of the specific use case. An example of a sequence of operations triggered

by the MLFO is the generation of data by a radio access network (RAN)-specific simulator which is input into

the corresponding ML model as an SRC, followed by analysis in the ML model, and finally the application of

an ML inference into specific simulators for the SINK.

REQ-ML-SANDBOX-005: The ML sandbox is recommended to consider the quality of data needed

for ML models (training or testing) while generating the simulated data.

NOTE 5 – The quality of data depends on the use case requirements. The requirements on the quality are input

in the ML intent. Examples are alignment and similarity with live networks, including user equipment (UE)

capabilities, the granularity of reported UE measurements, frequency of channel measurements, accuracy of

measured parameters, etc.

REQ-ML-SANDBOX-006: The ML sandbox is recommended to support demand mapping

[ITU-T Y.3173] for configuring and updating the simulated ML underlay networks.

NOTE 6 – Demand mapping is achieved by continuous, run-time, matching of the ML intent with the

configuration options provided by the simulated ML underlay network. The configuration of the simulated ML

underlay networks may be continuously adjusted based on demand mapping.

NOTE 7 – Demand mapping may be implemented through the analysis of data patterns, ML pipeline output

and the corresponding optimization of the simulated ML underlay networks.

REQ-ML-SANDBOX-007: The ML sandbox is required to provide sanity checks to assess the

correct operation of the simulated ML underlay networks.

6 Rec. ITU-T Y.3181 (09/2022)

7.2 Operational requirements

REQ-ML-SANDBOX-008: The ML sandbox is required to support multiple evaluation ML

pipelines, which may be chained and interfaced with simulators from different levels of the network.

NOTE 1 – Network levels are defined in [ITU-T Y.3172].

REQ-ML-SANDBOX-009: The ML sandbox is required to support the monitoring and evaluation

of ML pipelines and simulation components according to the specifications in the ML intent.

NOTE 2 – Examples of monitoring and evaluation output may include threshold-based asynchronous

notifications from the ML sandbox (to the MLFO), post-processing of the ML output, metering, security threat

analysis, etc. Other outputs may include updated metadata which reflects the results of the evaluations of the

models in the ML sandbox.

REQ-ML-SANDBOX-010: The ML sandbox is required to support the testing and evaluation of

multiple ML pipelines at the same time, including aggregated impacts on the network due to the

multiple pipelines.

NOTE 3 – For example, different ML pipelines may use different types of models (e.g., based on the RL and

the SL). The type of model may be decided by the MLFO based on the use case. Simultaneous evaluation of

the different ML pipelines may be triggered for addressing an ML use case. The outputs of these ML pipelines

may be compared to make an optimal decision.

REQ-ML-SANDBOX-011: The ML sandbox is required to support training and testing ML models

that combine simulated and real data from the network.

NOTE 4 – The choice of data to be used is managed by the MLFO [ITU-T Y.3172].

NOTE 5 – The combination of simulated and real data may also include augmented data.

REQ-ML-SANDBOX-012: The ML sandbox is required to support dynamic resource management

for ML pipeline nodes instantiated in the ML sandbox.

NOTE 6 –The instances of ML pipeline nodes in the ML sandbox (e.g., simulated SRC node) may need

resource management mechanisms like the dynamic resource allocation. The ML sandbox may use various

request handling mechanisms like load balancing towards the ML pipeline nodes (e.g., ML model) in the ML

sandbox.

REQ-ML-SANDBOX-013: The ML sandbox is required to enable granular evaluation of the ML

test cases.

NOTE 7 – In the case of batch jobs (combined test cases) which are triggered by the ML sandbox, isolation of

problems found in the evaluation stage require granular information on the specific test case that has failed.

The ML sandbox is needed to enable such granular evaluation.

REQ-ML-SANDBOX-014: The ML sandbox is required to support monitoring and evaluating the

network intelligence level.

NOTE 8 – See [ITU-T Y.3173] for monitoring and evaluating the network intelligence level.

REQ-ML-SANDBOX-015: The ML sandbox is required to support testing techniques to enhance

the robustness of the ML pipelines.

NOTE 9 – Examples of testing techniques include regression and/or integration of testing techniques for testing

the ML models, data generation techniques for ensuring quality and augmentation of simulated data, simulation

of failure scenarios, or rare scenarios for ML model training.

REQ-ML-SANDBOX-016: The ML sandbox is required to produce the output of simulations, tests

and evaluations in a machine-readable format.

NOTE 10 – Metadata corresponding to the model may be updated with the results of the evaluations. Such

updated metadata may be used by the MLFO in future selections of models.

 Rec. ITU-T Y.3181 (09/2022) 7

7.3 Communication requirements

REQ-ML-SANDBOX-017: The ML sandbox is required to support data handling (DH) reference

points toward technology-specific simulated ML underlay networks.

NOTE 1 – Data handling reference points are defined in [ITU-T Y.3174].

REQ-ML-SANDBOX-018: The ML sandbox is required to support the transfer of trained models

across the different ML pipelines in the sandbox as well as to other subsystems in the ML overlay.

NOTE 2 – Application and reuse of trained models from the ML sandbox for many use cases are examples of

scenarios where the transfer of trained models across different ML pipelines in the ML sandbox is required.

The transfer and deployment of trained models in live networks to enable specific use cases is an example of

a scenario that requires the transfer of trained models from the ML sandbox to other ML overlays.

REQ-ML-SANDBOX-019: The ML sandbox is required to support the transfer of data for training

or testing models across different ML pipelines in the sandbox as well as to other ML overlays.

REQ-ML-SANDBOX-020: The ML sandbox is required to support interfaces with the ML

marketplaces to transfer ML models and the corresponding metadata.

NOTE 3 – See clause 8.2.2.2 reference point 13 in [ITU-T Y.3176] for the interface between ML marketplaces

and the ML sandbox. This interface serves both in the downlink (e.g., download models) and the uplink (e.g.,

update models).

NOTE 4 – An example of metadata is the outcome of applying an ML model in a live or test network, which

can be used to enhance trust and confidence in an ML model available in the marketplace.

REQ-ML-SANDBOX-021: The ML sandbox is required to support data handling mechanisms

including metadata storage, communication interfaces with data models and ML underlay networks,

and data storage.

NOTE 5 – See [ITU-T Y.3174] for data handling mechanisms.

7.4 Metadata requirements

REQ-ML-SANDBOX-022: The ML sandbox is recommended to reuse the ML metadata store across

different ML underlay networks to allow the interworking between the evaluation ML pipelines and

the simulated ML underlay networks.

NOTE 1 – API-g is stored in the management subsystem to allow the training, testing, and evaluation of ML

models in the simulated ML pipeline [ITU-T Y.3174].

NOTE 2 – Data models (DMs) and the corresponding API-s used in the simulated ML underlay network are

stored in the management subsystem to allow the interworking between the data broker (DBr) and the

simulated NFs [ITU-T Y.3174].

REQ-ML-SANDBOX-023: The ML sandbox is recommended to derive the simulation profile from

the ML intent inputs, from the MLFO along with the simulation environment metadata and use it to

configure and update the simulated ML underlay networks.

NOTE 3 – The simulation profile may include a list of parameters and their values which describe the ML use

case to be trained, evaluated, or tested at the ML sandbox. The MLFO can provide the ML intent inputs offline

or at runtime, based on the triggers.

NOTE 4 – The simulation environment metadata describes the parameters of each simulator. This is provided

by the simulation designer.

REQ-ML-SANDBOX-024: The ML sandbox is recommended to use the ML model metadata from

the ML marketplace to adjust the simulated ML underlay networks and the evaluation scenarios.

NOTE 5 – For instance, the limitations of the algorithms in terms of the amount of data (e.g., unsupervised

learning) should be input as the amount of data to be generated (e.g., the number of access points (AP) to be

simulated, the total simulation time, the minimum number of events, etc.).

REQ-ML-SANDBOX-025: The ML sandbox is required to support the simulation environment

metadata.

8 Rec. ITU-T Y.3181 (09/2022)

NOTE 6 – Simulation environment metadata can be provided to the serving framework for considering the

deployment environment while creating an inference engine (see clause 8.1.3 in [ITU-T Y.3179]).

NOTE 7 – Simulation environment metadata includes the data models used by the simulated NFs and APIs to

access these data.

NOTE 8 – Simulation environment metadata can be used by the data handling to select the type of storage of

data (see clause 7.1.1, REQ-ML-DH-011 in [ITU-T Y.3174]).

REQ-ML-SANDBOX-026: The ML sandbox is recommended to support the isolation between

different instances of the evaluation ML pipelines (instantiated for different ML underlay networks).

NOTE 9 – Examples of reasons for isolation are security, data privacy reasons and support for slicing.

8 High-level architecture

The high-level architecture of the ML sandbox is described here in the context of architecture

frameworks described in [ITU-T Y.3172], [ITU-T Y.3174], and [ITU-T Y.3179]. Interactions

between the components of the ML sandbox subsystem and other components of the architecture

framework are elaborated with a specific focus on modifications to reference points. The components

of the ML sandbox subsystem and their functionalities are described.

8.1 ML sandbox within the high-level ML architecture

To simulate ML underlay networks, the ML sandbox includes the simulated network functions (NFs),

application functions (AFs), and ML pipeline(s) whose elements are managed by the MLFO

[ITU-T Y.3172]. The ML sandbox is particularly useful to address the dynamic networking systems

since it allows validating the effect of the ML-based optimizations before being deployed in the

production environments. Besides, because of the potential limitations of the data coming from live

networks (insufficient amount, privacy issues, etc.), the ML sandbox can be used to generate synthetic

data as a complement to a given training procedure.

Figure 2 provides the high-level architecture showing the main involved components and the ML

sandbox, which are intended to fulfil the requirements specified in clause 7.

NOTE 1 – See clause 8.2 for further details regarding the ML sandbox architectural components shown in

Figure 2.

 Rec. ITU-T Y.3181 (09/2022) 9

Figure 2 – ML sandbox within the high-level ML architecture

Figure 2 showcases the ML sandbox subsystem and its main components in the context of the high-

level architectural framework defined in [ITU-T Y.3172]. It extends the high-level architecture for

the ML model serving [ITU-T Y.3179] with specific architecture components of the ML sandbox and

their corresponding interactions.

The reference points shown in Figure 2 are as follows:

Reference points 1 and 2 act as internal reference points within the ML sandbox subsystem, between

the simulated ML underlay networks and the evaluation ML pipeline and are used unmodified, as

defined in [ITU-T Y.3172], for training and update of ML models at the ML sandbox subsystem.

Reference point 3 is the reference point between the ML sandbox and ML pipeline subsystems

[ITU-T Y.3172]. It allows the ML pipelines to interface with the ML sandbox subsystem for training

and update of ML models. It is used only as a model management interface, as described in

[ITU-T Y.3179].

Reference point 4, as defined in [ITU-T Y.3174], is the interface between the ML pipeline subsystem

and the ML underlay network. It is used for the transfer of data between the ML underlay network

and the (evaluation) ML pipeline instantiated in the ML sandbox (see clause 8.2 in [ITU-T Y.3174]).

Data from the ML underlay networks and/or the simulated ML underlay networks may be used to

train the ML models in the ML sandbox subsystem.

Reference point 5, as defined in [ITU-T Y.3172], is the interface between the management subsystem

and the ML pipeline subsystem.

Reference point 6 is used for the management subsystem to manage the models applied to the ML

sandbox [ITU-T Y.3172], including monitoring and evaluating network intelligence levels

[ITU-T Y.3173]. Reference point 6 has two parts:

• Reference point 6.1 [ITU-T Y.3174] is the interface between the management subsystem and

the simulated ML underlay network of the ML sandbox subsystem to orchestrate and manage

the simulated ML underlay networks.

10 Rec. ITU-T Y.3181 (09/2022)

• Reference point 6.2 interfaces the management subsystem with the evaluation ML pipeline

to orchestrate and manage the evaluation ML pipeline.

NOTE 2 – Data from the ML underlay networks and/or the simulated ML underlay networks may be used to

train ML models in the ML sandbox subsystem.

Reference point 7 is the interface between MLFO and other management and orchestration functions

of the management subsystem, used unmodified as defined in [ITU-T Y.3172].

Reference point 11 is the interface between the MLFO and the data handling (DH) components in the

ML overlay, used unmodified as defined in [ITU-T Y.3174].

Reference point 13 is the interface between the ML marketplace and the ML sandbox subsystem,

used unmodified as defined in [ITU-T Y.3176].

Reference point 15 is the interface between the management subsystem and the ML marketplace,

used unmodified as defined in [ITU-T Y.3176].

Reference point 16 is the interface between the ML model serving subsystem and the model

repository, used unmodified as defined in [ITU-T Y.3179].

Reference point 17 is the interface between the ML sandbox subsystem and ML model serving

subsystem, used unmodified as defined in [ITU-T Y.3179].

Reference point 18 is the interface between evaluation ML pipelines and the inference engine, used

from [ITU-T Y.3179].

NOTE 3 – The evaluation ML pipeline referred to here is the same as the ML pipeline in the ML sandbox

subsystem in [ITU-T Y.3179].

Reference point 19 is the interface between the management subsystem and the ML model serving

subsystem, used unmodified as defined in [ITU-T Y.3179].

Reference point 20 is the interface between the simulated ML underlay networks and the simulation

manager used for managing the simulated ML underlay networks. See clause 7.1 for more details.

8.2 Components of the ML sandbox

The ML sandbox contains the components defined in the following subclauses. The detailed

architecture of the ML sandbox subsystem is illustrated in Figure 3.

Figure 3 – Detailed architecture of the ML sandbox subsystem

8.2.1 Simulated ML underlay networks

The simulated ML underlay networks component is reused from [ITU-T Y.3172]. As explained in

[ITU-T Y.3172], the ML sandbox can use data generated from the simulated ML underlay networks

(obtained via reference points 1 and 2), and/or live networks (obtained via reference point 3), for

training or testing of the ML models.

 Rec. ITU-T Y.3181 (09/2022) 11

In this Recommendation, two subcomponents of the simulated ML underlay networks are introduced,

simulated NFs and AFs, and model evaluation plug-ins.

NOTE – An example of a simulated NF is a third-party simulation tool such as an ns-3 [b-Riley-ns3].

8.2.1.1 Simulated NFs and AFs

As explained in [ITU-T Y.3174], simulated NFs and AFs provide the ability to support heterogeneous

sources (SRC) of data and SINK functionality. In this Recommendation, these SRC and SINK are

used for training and testing the evaluation ML pipelines.

8.2.1.2 Model evaluation plug-ins

Model evaluation plug-ins are responsible for evaluating the performance of the ML models as per

the requirements defined in the use case. The plug-ins interact with the simulated NFs and AFs using

technology-agnostic interfaces, which would enable the interaction with heterogeneous third-party

applications such as network simulators and the collection of ML model evaluation parameters.

NOTE – Examples of ML model KPIs are model accuracy, recall and precision. Other parameters evaluated

could be inference latency and memory footprint. These parameters are to be specified in the use case

description provided in the ML intent [ITU-T Y.3172].

8.2.2 Simulation manager

The simulation manager manages the simulated ML underlay networks, specifically consisting of the

following subcomponents: simulation designer, simulation composer, monitoring agent, and

simulation post-processor.

Based on inputs from the MLFO, the simulator manager takes into account metadata and policy inputs

from the operator while managing the simulated ML underlay networks. The simulation manager is

responsible for achieving demand mapping [ITU-T Y.3173] while configuring and updating the

simulated ML underlay networks. The simulation manager provides the dynamic resource

management for the ML pipeline nodes instantiated in the ML sandbox.

8.2.2.1 Simulation designer

Based on the input from the MLFO regarding the simulation requirements for the use case, the

simulation designer prepares the set of simulation resources that compose the simulated ML underlay,

corresponding to the ML use case.

NOTE 1 – Inputs from the MLFO may include time-synchronization of the operations executed in the ML

sandbox as required by the specific use case.

NOTE 2 – The information to design the simulated ML underlays can come from the use case (ML intent) or

data gathered by the live ML underlay.

NOTE 3 – As an example, in a traffic steering use case, ML models may be applied to predictively manage

the resource allocation in the network. The simulation designer arrives at the simulation needs for this use case

which may include data generation and simulated resource management mechanisms and corresponding

parameters and configurations. Another example is, as a result of the network dynamics, some path-loss

parameters used by the ML sandbox subsystem may vary over time. To address this issue, the MLFO keeps

track of those changes and provides feedback to the simulation designer to update the necessary simulation

parameters.

8.2.2.2 Simulation composer

The simulation composer uses the design from the simulation designer and identifies the specific

simulation components to use for the use case. It takes as input the configurations and KPIs as

specified in the use case. The simulation composer then deploys, installs, and instantiates the

simulated ML underlay components (e.g., NFs, AFs and model evaluation plug-ins) to be used for

simulating different types of network underlays and evaluating various types of ML models. The

simulation composer may chain and interface simulators from different levels of the network

[ITU-T Y.3172] with multiple ML pipelines.

12 Rec. ITU-T Y.3181 (09/2022)

NOTE – Based on the specified role and requirements of the simulation (derived from use cases), the

simulation composer may indicate the best simulation tool (e.g., a specific implementation of a RAN

simulator). Specific testing techniques like robustness testing may be applied.

8.2.2.3 Monitoring agent

The monitoring agent monitors and evaluates the simulations in the ML sandbox, including the

evaluation ML pipeline and the simulated ML underlay network. The monitoring agent enables the

granular evaluation of ML test cases by the MLFO.

In addition to the use-case-specific parameters obtained from the MLFO, the following five

dimensions are considered [ITU-T Y.3173]: demand mapping, data collection, analysis, decision and

action implementation.

The monitoring of data collection, action implementation, and analysis is done by the monitoring

agent (see clause 8.3 of [ITU-T Y.3173]). This may include monitoring the quality of data needed for

the ML models (training or testing), while generating the simulated data and sanity checks to assess

the correct operation of the simulated ML underlay networks.

8.2.2.4 Simulation post-processor

The simulation post-processor provides an interface whereby data from the simulated ML underlays

are post-processed and presented in a standard-compliant manner to the MLFO, which performs

model evaluations and/or (re)training. This step is critical to handle heterogeneous sources of

information.

NOTE – For instance, once the handler gets the raw logs generated by a simulator (e.g., a CSV file), the post-

processor extracts the relevant information to be used by the MLFO.

8.2.3 Evaluation ML pipeline

The evaluation ML pipeline is used for model evaluation in the ML sandbox environment as described

in [ITU-T Y.3172]. This component supports the transfer of evaluated and tested models and supports

interfaces with the ML marketplaces to transfer the ML models and the corresponding metadata, in

coordination with the MLFO.

NOTE – The evaluation ML pipeline is similar to the ML pipeline defined in [ITU-T Y.3172], except that it

uses simulated ML underlay networks instead of live ML underlay networks. For example, both the evaluation

ML pipeline and live ML pipeline use reference point 4 and reference point 5.

8.2.4 Data handling

Data handling (DH) provides the functionality for the storage of data models and data for simulated

ML underlay networks, used unmodified as defined in [ITU-T Y.3174]. Components of DH as

defined in clause 8.2 of [ITU-T Y.3174] are instantiated in the ML sandbox subsystem. Reference

points 1 and 2 are reused from [ITU-T Y.3172] and [ITU-T Y.3174] between evaluation ML pipelines

and the simulated ML underlay networks. The ML sandbox utilizes DH to dynamically instantiate

new simulated SRCs and/or SINK nodes.

NOTE – DH is shown here for completeness. The role and interactions with DH remain the same as defined

in [ITU-T Y.3174], with the only difference of addressing evaluation ML pipelines with respect to what is

covered in [ITU-T Y.3174].

8.2.5 Inference engine

The inference engine provides ML model inference capability for ML pipeline(s), used unmodified

as defined in [ITU-T Y.3179].

8.3 APIs

Reference points 6.1 and 6.2 are shown in Figure 2 and introduced in clause 8.1. The realization of

the requirements of the ML sandbox necessitates interaction between the ML sandbox and various

 Rec. ITU-T Y.3181 (09/2022) 13

other components of the high-level architecture. Reference points 6.1 and 6.2 enable the APIs which

are used for such interactions.

The specific APIs that correspond to each reference point are described below.

NOTE – Interactions between the components using the APIs defined in this clause are depicted in the

sequence diagrams in clause 8.4.

8.3.1 Reference point 6.1

8.3.1.1 Capability discovery request API (Capability_Discovery)

API description: Using reference point 6.1 and complementary external interfaces with simulation

capabilities, the Capability_Discovery API discovers the third-party simulation components that can

be used to perform use-case-specific simulations in the ML sandbox. According to the ML use case,

the MLFO finds and selects the candidate simulation environments from a list of updated capabilities.

Capability_Discovery-Request

Direction: MLFO → ML sandbox subsystem

Table 8-1 describes the information elements of Capability_Discovery-Request.

Table 8-1 – Capability_Discovery-Request information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Request identifier Integer Mandatory Identifier of the request, indicating

"capability discovery"

ML profile <Attribute,

value>

array

Mandatory Includes metadata defining policies,

requirements, constraints, etc.

Capability_Discovery-Response

Direction: ML sandbox subsystem → MLFO

Table 8-2 describes the information elements of Capability_Discovery-Response.

Table 8-2 – Capability_Discovery-Response information elements

Information element Type
Mandatory/Optional

/Conditional
Description

List of simulation

components

<Attribute,

value>

array

Mandatory Updated capability list of the available

simulation components

Simulation

environment

metadata

<Attribute,

value>

array

Mandatory Metadata can contain information such as

installation / execution requirements,

capabilities of simulated NFs,

performance indicators, configurable

parameters, maturity (alpha / beta), etc.

NOTE 1 – As an example of the third-party NF, ns-3 can be selected to simulate a specific deployment of

IEEE 802.11ax Wireless Local Area Networks (WLANs) [b-IEEE 802.11].

NOTE 2 – Based on the use case requirements, the list of potential NFs is narrowed. For instance, NFs can

have associated information (via simulation environment metadata) such as "running time", "billing aspects",

"accuracy", etc.

14 Rec. ITU-T Y.3181 (09/2022)

8.3.1.2 Status reporting API (Monitor_Reporting)

API description: Using reference point 6.1, the status reporting API reports the status of the simulation

components (e.g., health status), so that the MLFO can consider taking healing actions.

Monitor_Reporting (periodical or responsive)

Direction: ML sandbox subsystem → MLFO

Table 8-3 describes the information elements of Monitor_Reporting.

Table 8-3 – Monitor_Reporting information elements

Information element Type Mandatory/Optional

/Conditional

Description

Notification identifier Integer Mandatory Identifier of the request, indicating

"monitoring report"

Status Integer Mandatory Code indicating the current status of the

simulation components, e.g., health status

indicated by green, yellow, orange and red

Severity Integer Optional Code indicating the severity of the potential

anomalies identified (Critical, major, minor,

normal or clear)

Monitoring logs String list Optional Raw data resulting from monitoring

Alerts <Attribute,

value> array

Optional Threshold-based alerts

Suggested action points String list Optional List of suggested action points to fix the

potential reported issues

NOTE – Monitoring is carried out based on a continuous flow of data generated by the simulation components,

including simulation data (SRC and SINK nodes), regression tests, reporting from simulation modules, etc.

8.3.1.3 Input/Output validation reporting API (Report_IO_Validation)

API description: Using reference point 6.1, the Report_IO_Validation API is used to report the status

of input/output data used/generated at/by the ML sandbox. This information can be used by the

MLFO to generate new data sets, re-train ML models with different configurations, update simulation

components, etc.

Report_IO_Validation

Direction: ML sandbox subsystem → MLFO

Table 8-4 describes the information elements of Report_IO_Validation.

 Rec. ITU-T Y.3181 (09/2022) 15

Table 8-4 – Report_IO_Validation-Response information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Notification identifier Integer Mandatory Identifier of the request, indicating

"input/output validation result"

Validation type Integer Mandatory Indicates the type of validation performed

(e.g., input data to configure simulation

parameters or output training data validity)

Result of validation Integer Mandatory "Success" or "fail"

Warnings String list Optional Detailed information regarding the

potential issues or misbehaviours observed

from the current input/output data

Error details String list Conditional Detailed information regarding the errors

thrown during the validation procedure

NOTE – The data to be validated includes input data (e.g., to check that demand mapping can be fulfilled at

the simulated ML underlay) and simulation output data (e.g., to assess the feasibility of the trained models, the

accuracy of generated data, etc.). For instance, testing techniques such as equivalence partitioning or centroid

positioning [b-Zhang] can be applied to validate the diversity and the quality of the data generated by the

simulators (e.g., as for validating the synthetic data).

8.3.1.4 Sandbox asynchronous messages API (Sandbox_Async)

API description: Using reference point 6.1, the Sandbox_Async API is used for the sandbox

asynchronous messages defined in clause 8.4.5.

Sandbox_Async

Direction: ML sandbox subsystem → MLFO

Table 8-5 describes the information elements of Sandbox_Async.

Table 8-5 – Sandbox_Async information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Message identifier Integer Mandatory Identifier of the message, indicating

"Sandbox asynchronous message"

Message code Integer Mandatory Code of the asynchronous message type

Additional

information

String list Conditional Additional information related to the

message type

8.3.2 Reference point 6.2

8.3.2.1 MLFO-triggered operations API (MLFO_Trigger)

API description: Using reference point 6.2, the MLFO_Trigger API is used for the MLFO-triggered

operations defined in clause 8.4.4.

MLFO_Trigger-Request

Direction: MLFO → ML sandbox subsystem

Table 8-6 describes the information elements of MLFO_Trigger-Request.

16 Rec. ITU-T Y.3181 (09/2022)

Table 8-6 – MLFO_Trigger-Request information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Message identifier Integer Mandatory Identifier of the message, indicating "ML-

triggered operation"

Operation code Integer Mandatory Code of the operation to be performed

Policies and

requirements

<Attribute,

value>

array

Conditional Metadata including policies and

requirements.

Simulation

environment

metadata

<Attribute,

value>

array

Conditional Metadata including simulation,

configuration, available resources, time

constraints, etc.

MLFO_Trigger-Response

Direction: ML sandbox subsystem → MLFO

Table 8-7 describes the information elements of MLFO_Trigger-Response.

Table 8-7 – MLFO_Trigger-Response information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Message identifier Integer Mandatory Identifier of the message, indicating "ML-

triggered operation"

Response code Integer Mandatory Code of the operation response (OK, bad

request, error, etc.)

Response data (variable) Conditional Depending on the request type, different

response data types can be provided (e.g.,

training data set, trained ML model and

validated ML model)

8.4 Sequence diagrams

This clause provides sequence diagrams that result from the ML sandbox operation. The sequence

diagrams are derived from the requirements in clause 7, the architectural framework defined in

clause 8.1 and the APIs in clause 8.3.

8.4.1 Capability discovery

Simulation components provided by third parties can be used to perform use case-specific simulations

in the ML sandbox. This procedure enables the discovery of such simulation components stored in

third-party repositories. The sequence diagram is shown in Figure 4.

 Rec. ITU-T Y.3181 (09/2022) 17

Figure 4 – Capability discovery for third-party simulation components

Prerequisite: MLFO knows the list of third-party repositories, and the offline configured, trusted,

secure channels. Simulation components in the repositories are described using simulation

environment metadata.

Two mechanisms (proactive and reactive) are considered according to the nature of the capability

discovery notification. The steps in Figure 4 are explained below.

Proactive mechanism

This includes the following steps, as shown in Figure 4:

1.1 Third-party simulator repositories update their simulation components to the ML sandbox.

These are to be evaluated in the ML sandbox in combination with the model evaluation plug-

ins. Further component updates can also be provided to the ML sandbox as and when a third-

party simulation repository (e.g., ns-3) releases specific features (e.g., MIMO support).

 NOTE 1 – This step is done using an external interface, referred to as Ext-Repository_Update.

1.2 Information from the update message is processed to prepare an updated list of candidate

simulated NFs for evaluation in the ML sandbox.

 NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1).

1.3 The corresponding updated simulation components are published to the trusted MLFOs.

Reactive mechanism

This includes the following steps as shown in Figure 4:

2.1 MLFO queries the ML sandbox for simulation capabilities based on the simulation

environment metadata.

2.2 The ML sandbox sends the query to the trusted third-party simulation component

repositories.

 NOTE 3 – This step is done using an external interface, referred to as Ext-Search_Repository.

2.3 Repositories respond with a list of simulation components matching the query.

18 Rec. ITU-T Y.3181 (09/2022)

 NOTE 4 – This step is done using an external interface, referred to as Ext-Repository_Update.

2.4 Information from the response message is processed to prepare an updated list of candidate

simulated NFs for evaluation in the ML sandbox.

 NOTE 5 – This step is done by the simulation designer (see clause 8.2.2.1).

2.5 The corresponding updated simulation components are published to the trusted MLFOs.

Based on the use case requirements and the result of the capability discovery mechanism, MLFO

arrives at the candidate simulation environments (list of NFs, simulation components, corresponding

configurations, connections and data handling adaptors). From the candidate simulation environments

provided by the MLFO, an operator selects an optimal configuration and deploys it in the ML

sandbox.

In addition, data handling and other underlay changes are also applied based on the selected

configuration.

NOTE 6 – Simulation resources in the repositories are described using the simulation environment metadata.

NOTE 7 – An example of a third-party simulated NF is ns-3, used to simulate a specific deployment of IEEE

802.11ax WLANs.

NOTE 8 – Based on the use case requirements, the list of potential NFs is decided. NFs can have the associated

information (as part of the simulation environment metadata) such as "running time", "billing aspects",

"accuracy", etc.

8.4.2 Health monitoring

Health monitoring is meant to ensure the proper behaviour of the simulation components in the ML

sandbox. The sequence diagram is shown in Figure 5.

Figure 5 – Health monitoring

Prerequisite: Simulation components have been set up and the ML intent allows for monitoring

simulation components.

1) ML sandbox sets up the resources for monitoring simulation components.

 NOTE 1 – This step is done by the simulation designer (see clause 8.2.2.1).

 Rec. ITU-T Y.3181 (09/2022) 19

2) Monitoring is carried out based on a continuous flow of data generated by simulation

components, including simulation data (SRC and SINK nodes), regression tests, reporting

from simulation modules, etc.

 NOTE 2 – This step is done by the monitoring agent (see clause 8.2.2.3).

3) Data gathered from monitoring is processed and delivered in the form of reports.

 NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4).

4) Periodic reports are generated and sent to the MLFO, according to the ML intent

specification. Alternatively, threshold-based alerts can be activated when undesired events

occur, which are also reported to the MLFO. MLFO may take action after processing the

periodic reports or threshold-based alerts (see clause 8.4.4) and optionally send action points

to the ML sandbox.

5) The ML sandbox applies action points (if any) suggested by the MLFO and/or self-healing

actions.

 NOTE 4 – The simulator composer may take action for redefining the simulation environment (e.g.,

switch to a more computation-intensive but accurate tool) if certain indicators of quality are not met.

8.4.3 Validate input/output data

In this scenario, input data and simulated output data are validated. This includes checking the

feasibility of training models, the accuracy of generated data, etc. For instance, testing techniques

such as equivalence partitioning or centroid positioning can be applied to validate the diversity and

the quality of the data generated by simulators.

NOTE 1 – An example of validation of input data is to validate the synthetic data generated by generative

adversarial networks (GANs) [b-Castelli-GANs].

The sequence diagram is shown in Figure 6.

Figure 6 – Validate input/output data

Prerequisite: Simulation components and evaluation ML pipeline have been set up.

20 Rec. ITU-T Y.3181 (09/2022)

For input data:

1.1) ML sandbox receives the input configuration from the MLFO to configure the input data

generation from the simulation environment.

1.2) Input data generation is validated.

 NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1).

1.3) A response with the validation result is provided to the MLFO.

1.4) MLFO may provide updated inputs (if necessary) to configure the simulation environment.

For simulated output data:

2.1) ML sandbox receives the output data from the ML use case (training data set, trained ML

model, evaluation of the ML model).

2.2) Output data is validated.

 NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4).

2.3) The result of the validation is sent to the MLFO.

2.4) MLFO may provide updated inputs (if necessary) to configure the simulation environment.

8.4.4 MLFO-triggered operations

The MLFO-triggered operations are generally defined in Figure 7.

Figure 7 – MLFO-trigger operations

The MLFO_Trigger API requests and provides a response to the following set of operations:

Setup environment for the ML use case (SANDBOX-TRIGGER-001)

Prerequisite: Capability discovery is done (see clause 8.4.1).

1) The MLFO sends a request to the ML sandbox to set up the environment for the ML use case

in the sandbox. This request contains the selected candidate simulation environment, as a

result of the procedure in clause 8.4.1.

2) ML sandbox prepares the environment via the simulation designer (see clause 8.2.2.1):

a) This step can optionally include the download and install of the simulation components.

 Rec. ITU-T Y.3181 (09/2022) 21

b) Data handling for the simulated ML underlay includes the integration with the data

brokers and data storage units [ITU-T Y.3174]. A plugin to interact with third party

applications can also be employed for the setup.

3) A response is provided by the ML sandbox to the MLFO.

 NOTE 1 – Environment setup may use the policies from the MLFO and demand mapping (e.g., ML

intent may require isolation of resources). The ML underlay may also be configured based on the use

case specification and based on the features extracted from the live ML underlay to be simulated.

 NOTE 2 – Setting up the evaluation ML pipeline may include the download of ML models from the

marketplaces [ITU-T Y.3176] and the ML model serving [ITU-T Y.3179] to create evaluation ML

pipelines.

 NOTE 3 – Environment setup may include the installation of third-party applications or setting up

interfaces, establishing connections via sockets, etc.

Validate environment for ML use case (SANDBOX-TRIGGER-002)

Prerequisite: Setup environment for the ML use case is done (see clause 8.2.2).

1) MLFO requests to run sanity tests on a specific simulation environment for the ML use case.

2) The simulation designer selects and executes the test suite (interaction with third-party

applications can be done through the evaluation plugin).

3) The output of the test suite is processed and the output to the MLFO.

 NOTE 4 – For instance, installing a third-party simulation tool may output a set of traces (or logs)

indicating the result of installing the submodules. This information should be post-processed to assess

that the final installation procedure is successfully accomplished regarding the use case requirement.

For example: if the installation of the LTE module fails, but the use case is meant for Wi-Fi (where

the module was successfully installed), then the result of the installation is satisfactory.

4) The MLFO decides whether the validation results are acceptable or not (may include some

basic tests and KPIs).

Manage simulated ML underlay (SANDBOX-TRIGGER-003)

1) The MLFO sends a trigger for modifying / updating the simulated ML underlay. Information

on changes is included in the updated ML profile.

2) The simulation driver configures the simulated ML underlay accordingly (e.g., adapt

configuration parameters, specify desired output, etc.). Besides, there is an information

exchange between the live and the simulated ML underlays (mimic purposes).

3) The ML sandbox responds to the trigger with the information related to the changes done in

the simulated ML underlay (OK/NOK, changelog, etc.).

NOTE 5 – For example, as a result of network dynamics, some path-loss parameters used by the ML sandbox

subsystem may vary over time. To address this issue, the MLFO keeps track of those changes and provides

feedback to the simulation designer to update the necessary simulation parameters.

Evaluate output of ML model (SANDBOX-TRIGGER-004)

Prerequisite: The environment has been set up in the ML sandbox for the ML use case.

1) The MLFO sends a request to the simulation composer in the ML sandbox to run the

simulated ML underlay.

2) The simulation composer uses the "evaluator plugin" to input the output of the ML model.

The plugin can also be used to interact with the third-party application (i.e., translate

commands from the MLFO to the simulator-oriented instructions).

3) Evaluate the output of an ML model: the evaluation platform provides a report which is

processed by the post-processor.

22 Rec. ITU-T Y.3181 (09/2022)

4) The processed report is sent back to the MLFO. The report can also include synthetic data

for training.

NOTE 6 – The information extracted from the simulated ML underlay needs to be post-processed according

to the desired output specified in the use case and the characteristics of the simulated ML underlay. The

evaluation result can be an OK/NOK message, a percentage of reliability, a set of KPIs gathered from the

evaluation procedure, etc.

NOTE 7 – Post-processing for third-party simulation tools may include the conversion of raw data into

meaningful information (e.g., average or deviation on the KPIs).

ML model training (SANDBOX-TRIGGER-005)

Prerequisite: The ML model is served, and the evaluation blocks are ready.

1) The MLFO sends a trigger for training an ML model in the sandbox.

2) Model training is performed at the simulated ML underlay through the simulator composer.

3) The trained ML model is post-processed (e.g., compressed, pruned) according to the use case

and the policies and capabilities (time constraints, link capacity for exchanging information,

storage capabilities, etc.).

4) The trained model is included in the response sent to the MLFO.

Table 8-8 describes the operation codes used in the MLFO-triggered operations.

Table 8-8 – Definition of the MLFO-triggered operation codes (MLFO trigger types)

MLFO

trigger type
Parameters

Time sync /

dependencies
Description

SANDBOX-

TRIGGER-

001

Request type, ML

profile

Time sync = yes

(evaluation blocks)

Request to prepare the simulation

environment (both simulated ML underlay

and evaluation ML pipeline) to train, test,

and evaluate the ML models in the ML

sandbox.

SANDBOX-

TRIGGER-

002

Request type,

validation type,

acceptance criteria

Time sync = yes

(sanity checklist, test

suite, etc.)

Request to validate (sanity check) the

deployed simulation environment. Used

by the MLFO to determine whether to take

action to fix potential deployment issues,

proceed with the ML model evaluation in

the sandbox, etc.

SANDBOX-

TRIGGER-

003

Request type,

update type,

updated ML profile

Time sync = yes

(updated simulation

components)

Request to modify / update the simulated

ML underlay according to the updates in

the policies, changes in the live ML

underlay, potential failures of previous

simulated functions, etc.

SANDBOX-

TRIGGER-

004

Request type, ML

profile, ML model

output

Time sync = yes

(evaluation results)

Request to evaluate the impact of the

output of an ML model in the simulated

ML underlay, so that some insights can be

provided before applying the output to the

live ML underlay.

SANDBOX-

TRIGGER-

005

Request type, ML

profile

Time sync = no Request to train an ML model in the ML

sandbox.

8.4.5 Sandbox asynchronous messages

ML sandbox asynchronous messages are generally defined in Figure 8.

 Rec. ITU-T Y.3181 (09/2022) 23

Figure 8 – ML sandbox asynchronous messages

Prerequisite: Asynchronous messages are generated upon certain conditions that are met, which are

specific to the different types of events.

1) Upon meeting the trigger conditions, the ML sandbox sends an asynchronous message to the

MLFO.

2) The message is processed and potential action points are defined.

3) The MLFO sends a response to the ML sandbox.

The sandbox asynchronous message codes are defined in Table 8-9.

Table 8-9 – Definition of the ML sandbox asynchronous message codes

Code Parameters Conditions Description

SANDBOX-

ASYNC-001

Status code / Error code /

detailed report

(conditional)

Threshold-based alert is

fired / misbehaviour is

detected / keep-alive

message

Report the health status of the

simulation components

SANDBOX-

ASYNC-002

Update type / changelog /

additional information on

implications of the update

Update on the simulation

components is notified

/discovered to/by the ML

sandbox

Report an update on security,

accounting and licensing

requirements of simulation

components

SANDBOX-

ASYNC-003

Alert type / forecasted

results / additional

information on the

potential failure points

Threshold-based alert

based on trend analysis

(e.g., service at risk)

Proactive behavior trend

identification of simulation

components and sandbox

resources

SANDBOX-

ASYNC-004

Report type / Updated

simulation component

metadata

Change in simulation

component is noticed

Report an update on the

simulation component metadata

SANDBOX-

ASYNC-005

Report type / Updated

level of intelligence of

simulation components

Change in the intelligence

level of a simulation

component

Report the simulation

environment intelligence level

9 Security considerations

This Recommendation describes an architectural framework for the ML sandbox in the context of

integrating machine learning in future networks including IMT-2020: therefore, general network

security requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701]

[ITU-T Y.3101].

24 Rec. ITU-T Y.3181 (09/2022)

It is required to prevent unauthorized access to, and data leaking from, the ML sandbox, whether or

not there is a malicious intention with the implementation of appropriate mechanisms, such as those

for authentication and authorization and external attack protection.

 Rec. ITU-T Y.3181 (09/2022) 25

Bibliography

[b-IEEE 802.11] IEEE 802.11 WIRELESS LOCAL AREA NETWORKS (2021), The

Working Group for WLAN Standards.

 <https://grouper.ieee.org/groups/802/11/>

[b-IETF RFC 4180] IETF RFC 4180 (2005), Common Format and MIME Type for Comma-

Separated Values (CSV) Files.

 <https://datatracker.ietf.org/doc/html/rfc4180>

[b-IETF RFC 8259] IETF RFC 8259 (2017), The JavaScript Object Notation (JSON) Data

Interchange Format.

 <https://www.rfc-editor.org/rfc/rfc8259>

[b-Castelli-GANs] Castelli, M., Manzoni, L., Espindola, T., Popovič, A., & De Lorenzo, A.

(2021). Generative adversarial networks for generating synthetic features

for Wi-Fi signal quality. PloS ONE 16(11): e0260308.

<https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260308>

[b-Riley-ns3] Riley, G. F., & Henderson, T. R. (2010). The ns-3 Network Simulator.

Modeling and Tools for Network Simulation pp. 15-34. Springer.

<https://link.springer.com/chapter/10.1007/978-3-642-12331-3_2>

[b-XML] W3C Recommendation (2008), Extensible Markup Language (XML) 1.0

(Fifth Edition).

 <https://www.w3.org/TR/xml/>

[b-Zhang] Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2019). Machine Learning

Testing: Survey, Landscapes and Horizons.

 <https://arxiv.org/pdf/1906.10742.pdf>

https://grouper.ieee.org/groups/802/11/
https://grouper.ieee.org/groups/802/11/
https://datatracker.ietf.org/doc/html/rfc4180
https://www.rfc-editor.org/rfc/rfc8259
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260308
https://link.springer.com/chapter/10.1007/978-3-642-12331-3_2
https://www.w3.org/TR/xml/
https://arxiv.org/pdf/1906.10742.pdf

Printed in Switzerland
Geneva, 2022

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T Y.3181 (09/2022) Architectural framework for machine learning sandbox in future networks including IMT-2020
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	7 Requirements
	7.1 Simulated ML underlay requirements
	7.2 Operational requirements
	7.3 Communication requirements
	7.4 Metadata requirements

	8 High-level architecture
	8.1 ML sandbox within the high-level ML architecture
	8.2 Components of the ML sandbox
	8.2.1 Simulated ML underlay networks
	8.2.1.1 Simulated NFs and AFs
	8.2.1.2 Model evaluation plug-ins

	8.2.2 Simulation manager
	8.2.2.1 Simulation designer
	8.2.2.2 Simulation composer
	8.2.2.3 Monitoring agent
	8.2.2.4 Simulation post-processor

	8.2.3 Evaluation ML pipeline
	8.2.4 Data handling
	8.2.5 Inference engine

	8.3 APIs
	8.3.1 Reference point 6.1
	8.3.1.1 Capability discovery request API (Capability_Discovery)
	8.3.1.2 Status reporting API (Monitor_Reporting)
	8.3.1.3 Input/Output validation reporting API (Report_IO_Validation)
	8.3.1.4 Sandbox asynchronous messages API (Sandbox_Async)

	8.3.2 Reference point 6.2
	8.3.2.1 MLFO-triggered operations API (MLFO_Trigger)

	8.4 Sequence diagrams
	8.4.1 Capability discovery
	8.4.2 Health monitoring
	8.4.3 Validate input/output data
	8.4.4 MLFO-triggered operations
	8.4.5 Sandbox asynchronous messages

	9 Security considerations
	Bibliography

