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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 
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Recommendation ITU-T Y.3181 

Architectural framework for machine learning sandbox in  

future networks including IMT-2020 

1 Scope 

This Recommendation provides an architectural framework for the machine learning (ML) sandbox 

in the context of integrating machine learning in future networks including IMT-2020. This 

Recommendation provides requirements and high-level architecture of the ML sandbox. 

Architectural components along with corresponding reference points and application programming 

interfaces (APIs) are specified. 

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; users 

of this Recommendation are therefore encouraged to investigate the possibility of applying the most 

recent edition of the Recommendations and other references listed below. A list of the currently valid 

ITU-T Recommendations is regularly published. The reference to a document within this 

Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.2701]  Recommendation ITU-T Y.2701 (2007), Security requirements for NGN 

release 1. 

[ITU-T Y.3101]  Recommendation ITU-T Y.3101 (2018), Requirements of the IMT-2020 

network. 

[ITU-T Y.3172]  Recommendation ITU-T Y.3172 (2019), Architectural framework for 

machine learning in future networks including IMT-2020. 

[ITU-T Y.3173]  Recommendation ITU-T Y.3173 (2020), Framework for evaluating 

intelligence levels of future networks including IMT-2020. 

[ITU-T Y.3174]  Recommendation ITU-T Y.3174 (2020), Framework for data handling to 

enable machine learning in future networks including IMT-2020. 

[ITU-T Y.3176]  Recommendation ITU-T Y.3176 (2020), Machine learning marketplace 

integration in future networks including IMT-2020. 

[ITU-T Y.3179]  Recommendation ITU-T Y.3179 (2021), Architectural framework for 

machine learning model serving in future networks including IMT-2020. 

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

3.1.1 machine learning model [ITU-T Y.3172]: Model created by applying machine learning 

techniques to data to learn from. 

3.1.2 machine learning pipeline [ITU-T Y.3172]: A set of logical nodes, each with specific 

functionalities, that can be combined to form a machine learning application in a telecommunication 

network.  
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3.1.3 machine learning sandbox [ITU-T Y.3172]: An environment in which machine learning 

models can be trained and their effects tested on the network evaluated. 

3.1.4 machine learning function orchestrator [ITU-T Y.3172]: A logical node with 

functionalities that manage and orchestrate the nodes in a machine learning pipeline. 

3.1.5 machine learning marketplace [ITU-T Y.3176]: A component that provides capabilities 

facilitating the exchange and delivery of machine learning models among multiple parties.  

NOTE 1 – Examples of parties include suppliers and users of ML models. Capabilities provided to users of 

ML models include functionalities to find, learn about, deploy (or download), and use ML models. Capabilities 

provided to suppliers of ML models (e.g., data scientists) include functionalities to share (on-board, upload), 

describe (learn about), and market their ML models.  

NOTE 2 – A network operator may use a machine learning marketplace deployed internally and/or externally 

to the network operator's administrative domains. Internal and external marketplaces differ only in the 

deployment perspective. A marketplace that is internal to a network operator may act as an external 

marketplace to another network operator and vice versa. 

3.1.6 machine learning model metadata [ITU-T Y.3176]: Information that describes the 

characteristics of a machine learning model. 

NOTE – Machine learning model metadata includes, but is not limited to, the name of the ML model, ML 

model's author, version of the ML model, license information of the ML model, description of the data inputs 

and outputs of the ML model, and runtime environment of the ML model. 

3.1.7 machine learning model serving [ITU-T Y.3179]: A process of preparing and deploying 

machine learning models in different deployment environments to enable the application of model 

inference to machine learning underlay networks. 

3.1.8 network intelligence level [ITU-T Y.3173]: Level of application of the automation 

capabilities including those enabled by the integration of artificial intelligence techniques in the 

network. 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1 evaluation ML pipeline: Chaining of pipeline nodes and simulated network functions (NFs) 

with served machine learning (ML) models whose goal is to evaluate a particular ML use case. 

3.2.2 simulation component metadata: Data describing the characteristics of a particular 

simulation component. 

NOTE – Examples of simulation component metadata are capabilities of the simulated NFs, configurable 

parameters, performance indicators, monitored parameters and interfaces. 

3.2.3 simulation environment metadata: Data describing the characteristics of a particular 

simulation environment. 

NOTE 1 – Simulation environment metadata can contain information such as installation/execution 

requirements, simulation component metadata, performance indicators, connections and maturity indicators 

(e.g., alpha/beta versions). 

NOTE 2 – Examples of formats for representing simulation environment metadata are JavaScript object 

notation (JSON) [b-IETF RFC 8259], comma-separated values (CSV) [b-IETF RFC 4180], or extensible 

markup language (XML) [b-XML]. 

3.2.4 simulation profile: A list of parameters and their values which describe the machine learning 

(ML) use case to be trained, evaluated, or tested at the ML sandbox. 

NOTE – The list of parameters and their values may be derived from the ML intent [ITU-T Y.3172] and the 

simulation environment metadata. 
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4 Abbreviations and acronyms  

This Recommendation uses the following abbreviations and acronyms:  

AF Application Function 

AI Artificial Intelligence 

AP Access Point 

API  Application Programming Interface 

DBr Data Broker 

DH Data Handling 

DM Data Model 

GAN Generative Adversarial Network 

KPI Key Performance Indicator 

ML Machine Learning 

MLFO Machine Learning Function Orchestrator 

NF Network Function 

RAN Radio Access Network 

RL Reinforcement Learning 

SL Supervised Learning 

UE User Equipment 

UL Unsupervised Learning 

uRLLC Ultra-Reliable Low-Latency Communication 

V2X Vehicle-to-Everything 

WLAN Wireless Local Area Network 

5 Conventions 

In this Recommendation: 

– The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted, if conformance to this Recommendation is to be 

claimed. 

– The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, this requirement need not be present to claim conformance. 

– The keywords "can optionally" indicate an optional requirement which is permissible, 

without implying any sense of being recommended. This term is not intended to imply that 

the vendor's implementation must provide the option, and the feature can be optionally 

enabled by the network operator/service provider. Rather, it means the vendor may optionally 

provide the feature and still claim conformance with this Recommendation. 

– The colour "solid blue" is used in Figure 2 and Figure 3 to indicate components and interfaces 

that are newly defined in this Recommendation. 

– ML pipeline – In this Recommendation, in alignment with the conventions of 

[ITU-T Y.3172] when the symbol shown in Figure 1 is used, this denotes a subset (including 

proper subset) of nodes in an ML pipeline. When this symbol is used in a figure, the symbol 

stands for the subset of an ML pipeline's nodes not explicitly shown in that figure.  
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Figure 1 – Symbol used to denote a subset of nodes in an ML pipeline 

6 Introduction 

The integration of artificial intelligence (AI) and machine learning (ML) has been identified as one 

of the key features of future networks. However, network operators have the challenge of maintaining 

the operational performance and associated key performance indicators during or after this 

integration. In addition, the introduction of ML techniques to IMT-2020 networks may raise concerns 

regarding the transparency, reliability, and availability of the ML methods, techniques and data.  

Studying the trade-offs, advantages, and disadvantages while integrating various ML mechanisms is 

important to understand their impact on the network. For example, reducing the generalization error 

is the main concern in applying any kind of supervised learning (SL) approach, which can be high 

even if the test error is kept low (this phenomenon is commonly known as overfitting). Similarly, 

unsupervised learning (UL) aims to find patterns from data without any guidance (unlabelled data) 

and hence lacks validation. On the other hand, reinforcement learning (RL) is based on the learning-

by-experience paradigm. RL has been shown to be of great utility for single-agent approaches in 

controlled scenarios, however notable adverse effects can appear as a result of the competition raised 

by multiple systems sharing the same resources (e.g., while providing heterogeneous services using 

common network resources). 

Thus, all kinds of learning can lead to unexpected and/or undesired behaviour in live networks. Even 

if the performance of networking systems can be improved by ML techniques in the long term, it is 

safe to assume that the system will unavoidably experience certain performance degradation during 

a transitory regime. In some situations, this degradation of key performance indicators (KPI) may be 

unacceptable for network operators, especially for demanding requirements of certain network-

oriented applications such as ultra-reliable low-latency communication (uRLLC) applications. In 

other cases, the network may change quickly and may not reach a stable, long-term regime that is 

expected to optimize the network's performance. 

NOTE – The transitory regime precedes the stability phase of an ML model when applied to a network. 

Performance degradation can result from potential delays in serving models in the network, or from trying 

suboptimal configurations during exploration periods in online learning. 

Given the instability that ML methods can generate in communications systems, which can be 

particularly exacerbated in online mechanisms including exploration phases, the sandbox subsystem 

[ITU-T Y.3172] emerges as a promising solution for training, testing, and evaluating the performance 

of ML models before being deployed in live networks. The ML sandbox is an isolated environment 

in which machine learning models can be evaluated. The ML sandbox is therefore meant to reproduce 

the behaviour / operation of live networking systems, thereby improving the robustness and resilience 

of future ML-enabled networking systems. ML sandbox includes a managed test network (e.g., a 

testbed) or a software-based environment (e.g., using a simulator or an emulator). Software-based 

network environments can be particularly useful to overcome the limitations of limited training data 

sets and laboratory-based testbeds. For instance, simulators can be used to frame cases that have not 

been noticed before (i.e., anomalies), which would contribute to enabling failure prediction, anomaly 

detection and self-healing. 

Through the management subsystem, network operators can manage the ML sandbox and thereby 

address the challenges posed by ML-driven solutions for networks. The interfaces between the 

machine learning function orchestrator (MLFO) and the ML sandbox allow the manageability of the 

replicated network environment (e.g., simulation), the execution of test cases and the evaluation of 

ML models. 
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7 Requirements 

The requirements for the ML sandbox's architectural framework are divided into the following 

categories: 

• Simulated ML underlay requirements 

• Operational requirements 

• Communication requirements 

• Metadata requirements 

7.1 Simulated ML underlay requirements 

REQ-ML-SANDBOX-001: The ML sandbox is required to simulate heterogeneous sources of data 

(SRCs) and sinks (SINKs) of an ML output. 

NOTE 1 – SRCs and SINKs simulated in the ML sandbox include those within the IMT-2020 network as well 

as application functionalities hosted in the network slices. Examples of application functionalities hosted in 

the network slices are vehicle-to-everything (V2X) applications, Industry 4.0 applications and emergency 

applications. 

REQ-ML-SANDBOX-002: The ML sandbox is required to support the dynamic instantiation of new 

simulated SRCs and/or SINK nodes. 

NOTE 2 – Instantiation of new simulated SRCs and SINK nodes is managed by the MLFO. 

REQ-ML-SANDBOX-003: The ML sandbox is required to consider policy inputs from the operator 

while configuring the simulated ML underlay networks [ITU-T Y.3172]. 

NOTE 3 – Examples of policy inputs are those related to conflict resolution and resource management. 

REQ-ML-SANDBOX-004: The ML sandbox is required to enable coordinated time synchronization 

of operations executed in the ML sandbox as required by the specific use case.  

NOTE 4 – The time synchronization may be coordinated by the MLFO by controlling the sequence of 

operations executed in the ML sandbox. The sequence of operations triggered by the MLFO may be according 

to the synchronisation requirements of the specific use case. An example of a sequence of operations triggered 

by the MLFO is the generation of data by a radio access network (RAN)-specific simulator which is input into 

the corresponding ML model as an SRC, followed by analysis in the ML model, and finally the application of 

an ML inference into specific simulators for the SINK.  

REQ-ML-SANDBOX-005: The ML sandbox is recommended to consider the quality of data needed 

for ML models (training or testing) while generating the simulated data. 

NOTE 5 – The quality of data depends on the use case requirements. The requirements on the quality are input 

in the ML intent. Examples are alignment and similarity with live networks, including user equipment (UE) 

capabilities, the granularity of reported UE measurements, frequency of channel measurements, accuracy of 

measured parameters, etc.  

REQ-ML-SANDBOX-006: The ML sandbox is recommended to support demand mapping 

[ITU-T Y.3173] for configuring and updating the simulated ML underlay networks. 

NOTE 6 – Demand mapping is achieved by continuous, run-time, matching of the ML intent with the 

configuration options provided by the simulated ML underlay network. The configuration of the simulated ML 

underlay networks may be continuously adjusted based on demand mapping. 

NOTE 7 – Demand mapping may be implemented through the analysis of data patterns, ML pipeline output 

and the corresponding optimization of the simulated ML underlay networks. 

REQ-ML-SANDBOX-007: The ML sandbox is required to provide sanity checks to assess the 

correct operation of the simulated ML underlay networks. 



 

6 Rec. ITU-T Y.3181 (09/2022) 

7.2 Operational requirements 

REQ-ML-SANDBOX-008: The ML sandbox is required to support multiple evaluation ML 

pipelines, which may be chained and interfaced with simulators from different levels of the network.  

NOTE 1 – Network levels are defined in [ITU-T Y.3172].  

REQ-ML-SANDBOX-009: The ML sandbox is required to support the monitoring and evaluation 

of ML pipelines and simulation components according to the specifications in the ML intent. 

NOTE 2 – Examples of monitoring and evaluation output may include threshold-based asynchronous 

notifications from the ML sandbox (to the MLFO), post-processing of the ML output, metering, security threat 

analysis, etc. Other outputs may include updated metadata which reflects the results of the evaluations of the 

models in the ML sandbox. 

REQ-ML-SANDBOX-010: The ML sandbox is required to support the testing and evaluation of 

multiple ML pipelines at the same time, including aggregated impacts on the network due to the 

multiple pipelines. 

NOTE 3 – For example, different ML pipelines may use different types of models (e.g., based on the RL and 

the SL). The type of model may be decided by the MLFO based on the use case. Simultaneous evaluation of 

the different ML pipelines may be triggered for addressing an ML use case. The outputs of these ML pipelines 

may be compared to make an optimal decision.  

REQ-ML-SANDBOX-011: The ML sandbox is required to support training and testing ML models 

that combine simulated and real data from the network. 

NOTE 4 – The choice of data to be used is managed by the MLFO [ITU-T Y.3172]. 

NOTE 5 – The combination of simulated and real data may also include augmented data. 

REQ-ML-SANDBOX-012: The ML sandbox is required to support dynamic resource management 

for ML pipeline nodes instantiated in the ML sandbox. 

NOTE 6 –The instances of ML pipeline nodes in the ML sandbox (e.g., simulated SRC node) may need 

resource management mechanisms like the dynamic resource allocation. The ML sandbox may use various 

request handling mechanisms like load balancing towards the ML pipeline nodes (e.g., ML model) in the ML 

sandbox. 

REQ-ML-SANDBOX-013: The ML sandbox is required to enable granular evaluation of the ML 

test cases. 

NOTE 7 – In the case of batch jobs (combined test cases) which are triggered by the ML sandbox, isolation of 

problems found in the evaluation stage require granular information on the specific test case that has failed. 

The ML sandbox is needed to enable such granular evaluation. 

REQ-ML-SANDBOX-014: The ML sandbox is required to support monitoring and evaluating the 

network intelligence level. 

NOTE 8 – See [ITU-T Y.3173] for monitoring and evaluating the network intelligence level.  

REQ-ML-SANDBOX-015: The ML sandbox is required to support testing techniques to enhance 

the robustness of the ML pipelines. 

NOTE 9 – Examples of testing techniques include regression and/or integration of testing techniques for testing 

the ML models, data generation techniques for ensuring quality and augmentation of simulated data, simulation 

of failure scenarios, or rare scenarios for ML model training. 

REQ-ML-SANDBOX-016: The ML sandbox is required to produce the output of simulations, tests 

and evaluations in a machine-readable format. 

NOTE 10 – Metadata corresponding to the model may be updated with the results of the evaluations. Such 

updated metadata may be used by the MLFO in future selections of models. 
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7.3 Communication requirements 

REQ-ML-SANDBOX-017: The ML sandbox is required to support data handling (DH) reference 

points toward technology-specific simulated ML underlay networks. 

NOTE 1 – Data handling reference points are defined in [ITU-T Y.3174]. 

REQ-ML-SANDBOX-018: The ML sandbox is required to support the transfer of trained models 

across the different ML pipelines in the sandbox as well as to other subsystems in the ML overlay. 

NOTE 2 – Application and reuse of trained models from the ML sandbox for many use cases are examples of 

scenarios where the transfer of trained models across different ML pipelines in the ML sandbox is required. 

The transfer and deployment of trained models in live networks to enable specific use cases is an example of 

a scenario that requires the transfer of trained models from the ML sandbox to other ML overlays.  

REQ-ML-SANDBOX-019: The ML sandbox is required to support the transfer of data for training 

or testing models across different ML pipelines in the sandbox as well as to other ML overlays. 

REQ-ML-SANDBOX-020: The ML sandbox is required to support interfaces with the ML 

marketplaces to transfer ML models and the corresponding metadata. 

NOTE 3 – See clause 8.2.2.2 reference point 13 in [ITU-T Y.3176] for the interface between ML marketplaces 

and the ML sandbox. This interface serves both in the downlink (e.g., download models) and the uplink (e.g., 

update models). 

NOTE 4 – An example of metadata is the outcome of applying an ML model in a live or test network, which 

can be used to enhance trust and confidence in an ML model available in the marketplace. 

REQ-ML-SANDBOX-021: The ML sandbox is required to support data handling mechanisms 

including metadata storage, communication interfaces with data models and ML underlay networks, 

and data storage. 

NOTE 5 – See [ITU-T Y.3174] for data handling mechanisms. 

7.4 Metadata requirements 

REQ-ML-SANDBOX-022: The ML sandbox is recommended to reuse the ML metadata store across 

different ML underlay networks to allow the interworking between the evaluation ML pipelines and 

the simulated ML underlay networks.  

NOTE 1 – API-g is stored in the management subsystem to allow the training, testing, and evaluation of ML 

models in the simulated ML pipeline [ITU-T Y.3174]. 

NOTE 2 – Data models (DMs) and the corresponding API-s used in the simulated ML underlay network are 

stored in the management subsystem to allow the interworking between the data broker (DBr) and the 

simulated NFs [ITU-T Y.3174]. 

REQ-ML-SANDBOX-023: The ML sandbox is recommended to derive the simulation profile from 

the ML intent inputs, from the MLFO along with the simulation environment metadata and use it to 

configure and update the simulated ML underlay networks. 

NOTE 3 – The simulation profile may include a list of parameters and their values which describe the ML use 

case to be trained, evaluated, or tested at the ML sandbox. The MLFO can provide the ML intent inputs offline 

or at runtime, based on the triggers.  

NOTE 4 – The simulation environment metadata describes the parameters of each simulator. This is provided 

by the simulation designer. 

REQ-ML-SANDBOX-024: The ML sandbox is recommended to use the ML model metadata from 

the ML marketplace to adjust the simulated ML underlay networks and the evaluation scenarios.  

NOTE 5 – For instance, the limitations of the algorithms in terms of the amount of data (e.g., unsupervised 

learning) should be input as the amount of data to be generated (e.g., the number of access points (AP) to be 

simulated, the total simulation time, the minimum number of events, etc.). 

REQ-ML-SANDBOX-025: The ML sandbox is required to support the simulation environment 

metadata. 
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NOTE 6 – Simulation environment metadata can be provided to the serving framework for considering the 

deployment environment while creating an inference engine (see clause 8.1.3 in [ITU-T Y.3179]). 

NOTE 7 – Simulation environment metadata includes the data models used by the simulated NFs and APIs to 

access these data. 

NOTE 8 – Simulation environment metadata can be used by the data handling to select the type of storage of 

data (see clause 7.1.1, REQ-ML-DH-011 in [ITU-T Y.3174]). 

REQ-ML-SANDBOX-026: The ML sandbox is recommended to support the isolation between 

different instances of the evaluation ML pipelines (instantiated for different ML underlay networks). 

NOTE 9 – Examples of reasons for isolation are security, data privacy reasons and support for slicing. 

8 High-level architecture 

The high-level architecture of the ML sandbox is described here in the context of architecture 

frameworks described in [ITU-T Y.3172], [ITU-T Y.3174], and [ITU-T Y.3179]. Interactions 

between the components of the ML sandbox subsystem and other components of the architecture 

framework are elaborated with a specific focus on modifications to reference points. The components 

of the ML sandbox subsystem and their functionalities are described. 

8.1 ML sandbox within the high-level ML architecture  

To simulate ML underlay networks, the ML sandbox includes the simulated network functions (NFs), 

application functions (AFs), and ML pipeline(s) whose elements are managed by the MLFO 

[ITU-T Y.3172]. The ML sandbox is particularly useful to address the dynamic networking systems 

since it allows validating the effect of the ML-based optimizations before being deployed in the 

production environments. Besides, because of the potential limitations of the data coming from live 

networks (insufficient amount, privacy issues, etc.), the ML sandbox can be used to generate synthetic 

data as a complement to a given training procedure. 

Figure 2 provides the high-level architecture showing the main involved components and the ML 

sandbox, which are intended to fulfil the requirements specified in clause 7.  

NOTE 1 – See clause 8.2 for further details regarding the ML sandbox architectural components shown in 

Figure 2. 
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Figure 2 – ML sandbox within the high-level ML architecture 

Figure 2 showcases the ML sandbox subsystem and its main components in the context of the high-

level architectural framework defined in [ITU-T Y.3172]. It extends the high-level architecture for 

the ML model serving [ITU-T Y.3179] with specific architecture components of the ML sandbox and 

their corresponding interactions.  

The reference points shown in Figure 2 are as follows: 

Reference points 1 and 2 act as internal reference points within the ML sandbox subsystem, between 

the simulated ML underlay networks and the evaluation ML pipeline and are used unmodified, as 

defined in [ITU-T Y.3172], for training and update of ML models at the ML sandbox subsystem. 

Reference point 3 is the reference point between the ML sandbox and ML pipeline subsystems 

[ITU-T Y.3172]. It allows the ML pipelines to interface with the ML sandbox subsystem for training 

and update of ML models. It is used only as a model management interface, as described in 

[ITU-T Y.3179]. 

Reference point 4, as defined in [ITU-T Y.3174], is the interface between the ML pipeline subsystem 

and the ML underlay network. It is used for the transfer of data between the ML underlay network 

and the (evaluation) ML pipeline instantiated in the ML sandbox (see clause 8.2 in [ITU-T Y.3174]). 

Data from the ML underlay networks and/or the simulated ML underlay networks may be used to 

train the ML models in the ML sandbox subsystem.  

Reference point 5, as defined in [ITU-T Y.3172], is the interface between the management subsystem 

and the ML pipeline subsystem. 

Reference point 6 is used for the management subsystem to manage the models applied to the ML 

sandbox [ITU-T Y.3172], including monitoring and evaluating network intelligence levels 

[ITU-T Y.3173]. Reference point 6 has two parts: 

• Reference point 6.1 [ITU-T Y.3174] is the interface between the management subsystem and 

the simulated ML underlay network of the ML sandbox subsystem to orchestrate and manage 

the simulated ML underlay networks.  
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• Reference point 6.2 interfaces the management subsystem with the evaluation ML pipeline 

to orchestrate and manage the evaluation ML pipeline.  

NOTE 2 – Data from the ML underlay networks and/or the simulated ML underlay networks may be used to 

train ML models in the ML sandbox subsystem. 

Reference point 7 is the interface between MLFO and other management and orchestration functions 

of the management subsystem, used unmodified as defined in [ITU-T Y.3172].  

Reference point 11 is the interface between the MLFO and the data handling (DH) components in the 

ML overlay, used unmodified as defined in [ITU-T Y.3174]. 

Reference point 13 is the interface between the ML marketplace and the ML sandbox subsystem, 

used unmodified as defined in [ITU-T Y.3176]. 

Reference point 15 is the interface between the management subsystem and the ML marketplace, 

used unmodified as defined in [ITU-T Y.3176]. 

Reference point 16 is the interface between the ML model serving subsystem and the model 

repository, used unmodified as defined in [ITU-T Y.3179]. 

Reference point 17 is the interface between the ML sandbox subsystem and ML model serving 

subsystem, used unmodified as defined in [ITU-T Y.3179]. 

Reference point 18 is the interface between evaluation ML pipelines and the inference engine, used 

from [ITU-T Y.3179]. 

NOTE 3 – The evaluation ML pipeline referred to here is the same as the ML pipeline in the ML sandbox 

subsystem in [ITU-T Y.3179]. 

Reference point 19 is the interface between the management subsystem and the ML model serving 

subsystem, used unmodified as defined in [ITU-T Y.3179]. 

Reference point 20 is the interface between the simulated ML underlay networks and the simulation 

manager used for managing the simulated ML underlay networks. See clause 7.1 for more details. 

8.2 Components of the ML sandbox 

The ML sandbox contains the components defined in the following subclauses. The detailed 

architecture of the ML sandbox subsystem is illustrated in Figure 3. 

 

Figure 3 – Detailed architecture of the ML sandbox subsystem 

8.2.1 Simulated ML underlay networks 

The simulated ML underlay networks component is reused from [ITU-T Y.3172]. As explained in 

[ITU-T Y.3172], the ML sandbox can use data generated from the simulated ML underlay networks 

(obtained via reference points 1 and 2), and/or live networks (obtained via reference point 3), for 

training or testing of the ML models. 
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In this Recommendation, two subcomponents of the simulated ML underlay networks are introduced, 

simulated NFs and AFs, and model evaluation plug-ins. 

NOTE – An example of a simulated NF is a third-party simulation tool such as an ns-3 [b-Riley-ns3]. 

8.2.1.1 Simulated NFs and AFs 

As explained in [ITU-T Y.3174], simulated NFs and AFs provide the ability to support heterogeneous 

sources (SRC) of data and SINK functionality. In this Recommendation, these SRC and SINK are 

used for training and testing the evaluation ML pipelines. 

8.2.1.2 Model evaluation plug-ins 

Model evaluation plug-ins are responsible for evaluating the performance of the ML models as per 

the requirements defined in the use case. The plug-ins interact with the simulated NFs and AFs using 

technology-agnostic interfaces, which would enable the interaction with heterogeneous third-party 

applications such as network simulators and the collection of ML model evaluation parameters.  

NOTE – Examples of ML model KPIs are model accuracy, recall and precision. Other parameters evaluated 

could be inference latency and memory footprint. These parameters are to be specified in the use case 

description provided in the ML intent [ITU-T Y.3172]. 

8.2.2 Simulation manager 

The simulation manager manages the simulated ML underlay networks, specifically consisting of the 

following subcomponents: simulation designer, simulation composer, monitoring agent, and 

simulation post-processor. 

Based on inputs from the MLFO, the simulator manager takes into account metadata and policy inputs 

from the operator while managing the simulated ML underlay networks. The simulation manager is 

responsible for achieving demand mapping [ITU-T Y.3173] while configuring and updating the 

simulated ML underlay networks. The simulation manager provides the dynamic resource 

management for the ML pipeline nodes instantiated in the ML sandbox. 

8.2.2.1 Simulation designer 

Based on the input from the MLFO regarding the simulation requirements for the use case, the 

simulation designer prepares the set of simulation resources that compose the simulated ML underlay, 

corresponding to the ML use case.  

NOTE 1 – Inputs from the MLFO may include time-synchronization of the operations executed in the ML 

sandbox as required by the specific use case. 

NOTE 2 – The information to design the simulated ML underlays can come from the use case (ML intent) or 

data gathered by the live ML underlay.  

NOTE 3 – As an example, in a traffic steering use case, ML models may be applied to predictively manage 

the resource allocation in the network. The simulation designer arrives at the simulation needs for this use case 

which may include data generation and simulated resource management mechanisms and corresponding 

parameters and configurations. Another example is, as a result of the network dynamics, some path-loss 

parameters used by the ML sandbox subsystem may vary over time. To address this issue, the MLFO keeps 

track of those changes and provides feedback to the simulation designer to update the necessary simulation 

parameters. 

8.2.2.2 Simulation composer 

The simulation composer uses the design from the simulation designer and identifies the specific 

simulation components to use for the use case. It takes as input the configurations and KPIs as 

specified in the use case. The simulation composer then deploys, installs, and instantiates the 

simulated ML underlay components (e.g., NFs, AFs and model evaluation plug-ins) to be used for 

simulating different types of network underlays and evaluating various types of ML models. The 

simulation composer may chain and interface simulators from different levels of the network 

[ITU-T Y.3172] with multiple ML pipelines. 
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NOTE – Based on the specified role and requirements of the simulation (derived from use cases), the 

simulation composer may indicate the best simulation tool (e.g., a specific implementation of a RAN 

simulator). Specific testing techniques like robustness testing may be applied. 

8.2.2.3 Monitoring agent 

The monitoring agent monitors and evaluates the simulations in the ML sandbox, including the 

evaluation ML pipeline and the simulated ML underlay network. The monitoring agent enables the 

granular evaluation of ML test cases by the MLFO. 

In addition to the use-case-specific parameters obtained from the MLFO, the following five 

dimensions are considered [ITU-T Y.3173]: demand mapping, data collection, analysis, decision and 

action implementation.  

The monitoring of data collection, action implementation, and analysis is done by the monitoring 

agent (see clause 8.3 of [ITU-T Y.3173]). This may include monitoring the quality of data needed for 

the ML models (training or testing), while generating the simulated data and sanity checks to assess 

the correct operation of the simulated ML underlay networks. 

8.2.2.4 Simulation post-processor 

The simulation post-processor provides an interface whereby data from the simulated ML underlays 

are post-processed and presented in a standard-compliant manner to the MLFO, which performs 

model evaluations and/or (re)training. This step is critical to handle heterogeneous sources of 

information. 

NOTE – For instance, once the handler gets the raw logs generated by a simulator (e.g., a CSV file), the post-

processor extracts the relevant information to be used by the MLFO. 

8.2.3 Evaluation ML pipeline 

The evaluation ML pipeline is used for model evaluation in the ML sandbox environment as described 

in [ITU-T Y.3172]. This component supports the transfer of evaluated and tested models and supports 

interfaces with the ML marketplaces to transfer the ML models and the corresponding metadata, in 

coordination with the MLFO. 

NOTE – The evaluation ML pipeline is similar to the ML pipeline defined in [ITU-T Y.3172], except that it 

uses simulated ML underlay networks instead of live ML underlay networks. For example, both the evaluation 

ML pipeline and live ML pipeline use reference point 4 and reference point 5.  

8.2.4 Data handling 

Data handling (DH) provides the functionality for the storage of data models and data for simulated 

ML underlay networks, used unmodified as defined in [ITU-T Y.3174]. Components of DH as 

defined in clause 8.2 of [ITU-T Y.3174] are instantiated in the ML sandbox subsystem. Reference 

points 1 and 2 are reused from [ITU-T Y.3172] and [ITU-T Y.3174] between evaluation ML pipelines 

and the simulated ML underlay networks. The ML sandbox utilizes DH to dynamically instantiate 

new simulated SRCs and/or SINK nodes. 

NOTE – DH is shown here for completeness. The role and interactions with DH remain the same as defined 

in [ITU-T Y.3174], with the only difference of addressing evaluation ML pipelines with respect to what is 

covered in [ITU-T Y.3174]. 

8.2.5 Inference engine 

The inference engine provides ML model inference capability for ML pipeline(s), used unmodified 

as defined in [ITU-T Y.3179]. 

8.3 APIs 

Reference points 6.1 and 6.2 are shown in Figure 2 and introduced in clause 8.1. The realization of 

the requirements of the ML sandbox necessitates interaction between the ML sandbox and various 
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other components of the high-level architecture. Reference points 6.1 and 6.2 enable the APIs which 

are used for such interactions.  

The specific APIs that correspond to each reference point are described below.  

NOTE – Interactions between the components using the APIs defined in this clause are depicted in the 

sequence diagrams in clause 8.4.  

8.3.1 Reference point 6.1 

8.3.1.1 Capability discovery request API (Capability_Discovery) 

API description: Using reference point 6.1 and complementary external interfaces with simulation 

capabilities, the Capability_Discovery API discovers the third-party simulation components that can 

be used to perform use-case-specific simulations in the ML sandbox. According to the ML use case, 

the MLFO finds and selects the candidate simulation environments from a list of updated capabilities. 

Capability_Discovery-Request 

Direction: MLFO → ML sandbox subsystem 

Table 8-1 describes the information elements of Capability_Discovery-Request. 

Table 8-1 – Capability_Discovery-Request information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Request identifier Integer Mandatory Identifier of the request, indicating 

"capability discovery"  

ML profile <Attribute, 

value> 

array 

Mandatory Includes metadata defining policies, 

requirements, constraints, etc. 

Capability_Discovery-Response 

Direction: ML sandbox subsystem → MLFO 

Table 8-2 describes the information elements of Capability_Discovery-Response. 

Table 8-2 – Capability_Discovery-Response information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

List of simulation 

components 

<Attribute, 

value> 

array 

Mandatory Updated capability list of the available 

simulation components 

Simulation 

environment 

metadata 

<Attribute, 

value> 

array 

Mandatory Metadata can contain information such as 

installation / execution requirements, 

capabilities of simulated NFs, 

performance indicators, configurable 

parameters, maturity (alpha / beta), etc. 

NOTE 1 – As an example of the third-party NF, ns-3 can be selected to simulate a specific deployment of 

IEEE 802.11ax Wireless Local Area Networks (WLANs) [b-IEEE 802.11].  

NOTE 2 – Based on the use case requirements, the list of potential NFs is narrowed. For instance, NFs can 

have associated information (via simulation environment metadata) such as "running time", "billing aspects", 

"accuracy", etc. 
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8.3.1.2 Status reporting API (Monitor_Reporting) 

API description: Using reference point 6.1, the status reporting API reports the status of the simulation 

components (e.g., health status), so that the MLFO can consider taking healing actions. 

Monitor_Reporting (periodical or responsive) 

Direction: ML sandbox subsystem → MLFO 

Table 8-3 describes the information elements of Monitor_Reporting. 

Table 8-3 – Monitor_Reporting information elements 

Information element Type Mandatory/Optional 

/Conditional 

Description 

Notification identifier Integer Mandatory Identifier of the request, indicating 

"monitoring report"  

Status Integer Mandatory Code indicating the current status of the 

simulation components, e.g., health status 

indicated by green, yellow, orange and red 

Severity Integer Optional Code indicating the severity of the potential 

anomalies identified (Critical, major, minor, 

normal or clear) 

Monitoring logs String list Optional Raw data resulting from monitoring 

Alerts <Attribute, 

value> array 

Optional Threshold-based alerts 

Suggested action points String list Optional List of suggested action points to fix the 

potential reported issues 

NOTE – Monitoring is carried out based on a continuous flow of data generated by the simulation components, 

including simulation data (SRC and SINK nodes), regression tests, reporting from simulation modules, etc. 

8.3.1.3 Input/Output validation reporting API (Report_IO_Validation) 

API description: Using reference point 6.1, the Report_IO_Validation API is used to report the status 

of input/output data used/generated at/by the ML sandbox. This information can be used by the 

MLFO to generate new data sets, re-train ML models with different configurations, update simulation 

components, etc. 

Report_IO_Validation 

Direction: ML sandbox subsystem → MLFO 

Table 8-4 describes the information elements of Report_IO_Validation. 
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Table 8-4 – Report_IO_Validation-Response information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Notification identifier Integer Mandatory Identifier of the request, indicating 

"input/output validation result"  

Validation type Integer Mandatory Indicates the type of validation performed 

(e.g., input data to configure simulation 

parameters or output training data validity) 

Result of validation Integer Mandatory "Success" or "fail" 

Warnings String list Optional Detailed information regarding the 

potential issues or misbehaviours observed 

from the current input/output data 

Error details String list Conditional Detailed information regarding the errors 

thrown during the validation procedure 

NOTE – The data to be validated includes input data (e.g., to check that demand mapping can be fulfilled at 

the simulated ML underlay) and simulation output data (e.g., to assess the feasibility of the trained models, the 

accuracy of generated data, etc.). For instance, testing techniques such as equivalence partitioning or centroid 

positioning [b-Zhang] can be applied to validate the diversity and the quality of the data generated by the 

simulators (e.g., as for validating the synthetic data). 

8.3.1.4 Sandbox asynchronous messages API (Sandbox_Async) 

API description: Using reference point 6.1, the Sandbox_Async API is used for the sandbox 

asynchronous messages defined in clause 8.4.5. 

Sandbox_Async 

Direction: ML sandbox subsystem → MLFO 

Table 8-5 describes the information elements of Sandbox_Async. 

Table 8-5 – Sandbox_Async information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Message identifier Integer Mandatory Identifier of the message, indicating 

"Sandbox asynchronous message" 

Message code Integer Mandatory Code of the asynchronous message type 

Additional 

information 

String list Conditional Additional information related to the 

message type 

8.3.2 Reference point 6.2 

8.3.2.1 MLFO-triggered operations API (MLFO_Trigger) 

API description: Using reference point 6.2, the MLFO_Trigger API is used for the MLFO-triggered 

operations defined in clause 8.4.4. 

MLFO_Trigger-Request  

Direction: MLFO → ML sandbox subsystem 

Table 8-6 describes the information elements of MLFO_Trigger-Request. 
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Table 8-6 – MLFO_Trigger-Request information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Message identifier Integer Mandatory Identifier of the message, indicating "ML-

triggered operation" 

Operation code Integer Mandatory Code of the operation to be performed 

Policies and 

requirements 

<Attribute, 

value> 

array 

Conditional Metadata including policies and 

requirements. 

Simulation 

environment 

metadata 

<Attribute, 

value> 

array 

Conditional Metadata including simulation, 

configuration, available resources, time 

constraints, etc. 

MLFO_Trigger-Response 

Direction: ML sandbox subsystem → MLFO 

Table 8-7 describes the information elements of MLFO_Trigger-Response. 

Table 8-7 – MLFO_Trigger-Response information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Message identifier Integer Mandatory Identifier of the message, indicating "ML-

triggered operation" 

Response code Integer Mandatory Code of the operation response (OK, bad 

request, error, etc.) 

Response data (variable) Conditional Depending on the request type, different 

response data types can be provided (e.g., 

training data set, trained ML model and 

validated ML model) 

8.4 Sequence diagrams 

This clause provides sequence diagrams that result from the ML sandbox operation. The sequence 

diagrams are derived from the requirements in clause 7, the architectural framework defined in 

clause 8.1 and the APIs in clause 8.3. 

8.4.1 Capability discovery 

Simulation components provided by third parties can be used to perform use case-specific simulations 

in the ML sandbox. This procedure enables the discovery of such simulation components stored in 

third-party repositories. The sequence diagram is shown in Figure 4. 
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Figure 4 – Capability discovery for third-party simulation components 

Prerequisite: MLFO knows the list of third-party repositories, and the offline configured, trusted, 

secure channels. Simulation components in the repositories are described using simulation 

environment metadata. 

Two mechanisms (proactive and reactive) are considered according to the nature of the capability 

discovery notification. The steps in Figure 4 are explained below. 

Proactive mechanism 

This includes the following steps, as shown in Figure 4: 

1.1 Third-party simulator repositories update their simulation components to the ML sandbox. 

These are to be evaluated in the ML sandbox in combination with the model evaluation plug-

ins. Further component updates can also be provided to the ML sandbox as and when a third-

party simulation repository (e.g., ns-3) releases specific features (e.g., MIMO support). 

 NOTE 1 – This step is done using an external interface, referred to as Ext-Repository_Update. 

1.2 Information from the update message is processed to prepare an updated list of candidate 

simulated NFs for evaluation in the ML sandbox. 

 NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1). 

1.3 The corresponding updated simulation components are published to the trusted MLFOs.  

Reactive mechanism 

This includes the following steps as shown in Figure 4: 

2.1 MLFO queries the ML sandbox for simulation capabilities based on the simulation 

environment metadata.  

2.2 The ML sandbox sends the query to the trusted third-party simulation component 

repositories.  

 NOTE 3 – This step is done using an external interface, referred to as Ext-Search_Repository. 

2.3 Repositories respond with a list of simulation components matching the query. 
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 NOTE 4 – This step is done using an external interface, referred to as Ext-Repository_Update. 

2.4 Information from the response message is processed to prepare an updated list of candidate 

simulated NFs for evaluation in the ML sandbox. 

 NOTE 5 – This step is done by the simulation designer (see clause 8.2.2.1). 

2.5 The corresponding updated simulation components are published to the trusted MLFOs.  

Based on the use case requirements and the result of the capability discovery mechanism, MLFO 

arrives at the candidate simulation environments (list of NFs, simulation components, corresponding 

configurations, connections and data handling adaptors). From the candidate simulation environments 

provided by the MLFO, an operator selects an optimal configuration and deploys it in the ML 

sandbox.  

In addition, data handling and other underlay changes are also applied based on the selected 

configuration. 

NOTE 6 – Simulation resources in the repositories are described using the simulation environment metadata. 

NOTE 7 – An example of a third-party simulated NF is ns-3, used to simulate a specific deployment of IEEE 

802.11ax WLANs. 

NOTE 8 – Based on the use case requirements, the list of potential NFs is decided. NFs can have the associated 

information (as part of the simulation environment metadata) such as "running time", "billing aspects", 

"accuracy", etc. 

8.4.2 Health monitoring 

Health monitoring is meant to ensure the proper behaviour of the simulation components in the ML 

sandbox. The sequence diagram is shown in Figure 5. 

  

Figure 5 – Health monitoring 

Prerequisite: Simulation components have been set up and the ML intent allows for monitoring 

simulation components. 

1) ML sandbox sets up the resources for monitoring simulation components. 

 NOTE 1 – This step is done by the simulation designer (see clause 8.2.2.1). 
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2) Monitoring is carried out based on a continuous flow of data generated by simulation 

components, including simulation data (SRC and SINK nodes), regression tests, reporting 

from simulation modules, etc. 

 NOTE 2 – This step is done by the monitoring agent (see clause 8.2.2.3). 

3) Data gathered from monitoring is processed and delivered in the form of reports. 

 NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4). 

4) Periodic reports are generated and sent to the MLFO, according to the ML intent 

specification. Alternatively, threshold-based alerts can be activated when undesired events 

occur, which are also reported to the MLFO. MLFO may take action after processing the 

periodic reports or threshold-based alerts (see clause 8.4.4) and optionally send action points 

to the ML sandbox. 

5) The ML sandbox applies action points (if any) suggested by the MLFO and/or self-healing 

actions. 

 NOTE 4 – The simulator composer may take action for redefining the simulation environment (e.g., 

switch to a more computation-intensive but accurate tool) if certain indicators of quality are not met. 

8.4.3 Validate input/output data 

In this scenario, input data and simulated output data are validated. This includes checking the 

feasibility of training models, the accuracy of generated data, etc. For instance, testing techniques 

such as equivalence partitioning or centroid positioning can be applied to validate the diversity and 

the quality of the data generated by simulators.  

NOTE 1 – An example of validation of input data is to validate the synthetic data generated by generative 

adversarial networks (GANs) [b-Castelli-GANs].  

The sequence diagram is shown in Figure 6. 

  

Figure 6 – Validate input/output data 

Prerequisite: Simulation components and evaluation ML pipeline have been set up. 
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For input data: 

1.1) ML sandbox receives the input configuration from the MLFO to configure the input data 

generation from the simulation environment. 

1.2) Input data generation is validated. 

 NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1). 

1.3) A response with the validation result is provided to the MLFO. 

1.4) MLFO may provide updated inputs (if necessary) to configure the simulation environment. 

For simulated output data: 

2.1) ML sandbox receives the output data from the ML use case (training data set, trained ML 

model, evaluation of the ML model). 

2.2) Output data is validated. 

 NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4). 

2.3) The result of the validation is sent to the MLFO. 

2.4) MLFO may provide updated inputs (if necessary) to configure the simulation environment. 

8.4.4 MLFO-triggered operations 

The MLFO-triggered operations are generally defined in Figure 7.  

 

Figure 7 – MLFO-trigger operations 

The MLFO_Trigger API requests and provides a response to the following set of operations: 

Setup environment for the ML use case (SANDBOX-TRIGGER-001) 

Prerequisite: Capability discovery is done (see clause 8.4.1). 

1) The MLFO sends a request to the ML sandbox to set up the environment for the ML use case 

in the sandbox. This request contains the selected candidate simulation environment, as a 

result of the procedure in clause 8.4.1. 

2) ML sandbox prepares the environment via the simulation designer (see clause 8.2.2.1): 

a) This step can optionally include the download and install of the simulation components. 
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b) Data handling for the simulated ML underlay includes the integration with the data 

brokers and data storage units [ITU-T Y.3174]. A plugin to interact with third party 

applications can also be employed for the setup. 

3) A response is provided by the ML sandbox to the MLFO.  

 NOTE 1 – Environment setup may use the policies from the MLFO and demand mapping (e.g., ML 

intent may require isolation of resources). The ML underlay may also be configured based on the use 

case specification and based on the features extracted from the live ML underlay to be simulated. 

 NOTE 2 – Setting up the evaluation ML pipeline may include the download of ML models from the 

marketplaces [ITU-T Y.3176] and the ML model serving [ITU-T Y.3179] to create evaluation ML 

pipelines.  

 NOTE 3 – Environment setup may include the installation of third-party applications or setting up 

interfaces, establishing connections via sockets, etc. 

Validate environment for ML use case (SANDBOX-TRIGGER-002) 

Prerequisite: Setup environment for the ML use case is done (see clause 8.2.2). 

1) MLFO requests to run sanity tests on a specific simulation environment for the ML use case. 

2) The simulation designer selects and executes the test suite (interaction with third-party 

applications can be done through the evaluation plugin). 

3) The output of the test suite is processed and the output to the MLFO. 

 NOTE 4 – For instance, installing a third-party simulation tool may output a set of traces (or logs) 

indicating the result of installing the submodules. This information should be post-processed to assess 

that the final installation procedure is successfully accomplished regarding the use case requirement. 

For example: if the installation of the LTE module fails, but the use case is meant for Wi-Fi (where 

the module was successfully installed), then the result of the installation is satisfactory. 

4) The MLFO decides whether the validation results are acceptable or not (may include some 

basic tests and KPIs). 

Manage simulated ML underlay (SANDBOX-TRIGGER-003) 

1) The MLFO sends a trigger for modifying / updating the simulated ML underlay. Information 

on changes is included in the updated ML profile. 

2) The simulation driver configures the simulated ML underlay accordingly (e.g., adapt 

configuration parameters, specify desired output, etc.). Besides, there is an information 

exchange between the live and the simulated ML underlays (mimic purposes). 

3) The ML sandbox responds to the trigger with the information related to the changes done in 

the simulated ML underlay (OK/NOK, changelog, etc.). 

NOTE 5 – For example, as a result of network dynamics, some path-loss parameters used by the ML sandbox 

subsystem may vary over time. To address this issue, the MLFO keeps track of those changes and provides 

feedback to the simulation designer to update the necessary simulation parameters. 

Evaluate output of ML model (SANDBOX-TRIGGER-004) 

Prerequisite: The environment has been set up in the ML sandbox for the ML use case. 

1) The MLFO sends a request to the simulation composer in the ML sandbox to run the 

simulated ML underlay. 

2) The simulation composer uses the "evaluator plugin" to input the output of the ML model. 

The plugin can also be used to interact with the third-party application (i.e., translate 

commands from the MLFO to the simulator-oriented instructions). 

3) Evaluate the output of an ML model: the evaluation platform provides a report which is 

processed by the post-processor. 
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4) The processed report is sent back to the MLFO. The report can also include synthetic data 

for training. 

NOTE 6 – The information extracted from the simulated ML underlay needs to be post-processed according 

to the desired output specified in the use case and the characteristics of the simulated ML underlay. The 

evaluation result can be an OK/NOK message, a percentage of reliability, a set of KPIs gathered from the 

evaluation procedure, etc. 

NOTE 7 – Post-processing for third-party simulation tools may include the conversion of raw data into 

meaningful information (e.g., average or deviation on the KPIs). 

ML model training (SANDBOX-TRIGGER-005) 

Prerequisite: The ML model is served, and the evaluation blocks are ready. 

1) The MLFO sends a trigger for training an ML model in the sandbox. 

2) Model training is performed at the simulated ML underlay through the simulator composer. 

3) The trained ML model is post-processed (e.g., compressed, pruned) according to the use case 

and the policies and capabilities (time constraints, link capacity for exchanging information, 

storage capabilities, etc.). 

4) The trained model is included in the response sent to the MLFO.  

Table 8-8 describes the operation codes used in the MLFO-triggered operations. 

Table 8-8 – Definition of the MLFO-triggered operation codes (MLFO trigger types) 

MLFO 

trigger type 
Parameters 

Time sync / 

dependencies 
Description 

SANDBOX-

TRIGGER-

001 

Request type, ML 

profile 

Time sync = yes 

(evaluation blocks) 

Request to prepare the simulation 

environment (both simulated ML underlay 

and evaluation ML pipeline) to train, test, 

and evaluate the ML models in the ML 

sandbox. 

SANDBOX-

TRIGGER-

002 

Request type, 

validation type, 

acceptance criteria 

Time sync = yes 

(sanity checklist, test 

suite, etc.) 

Request to validate (sanity check) the 

deployed simulation environment. Used 

by the MLFO to determine whether to take 

action to fix potential deployment issues, 

proceed with the ML model evaluation in 

the sandbox, etc. 

SANDBOX-

TRIGGER-

003 

Request type, 

update type, 

updated ML profile  

Time sync = yes 

(updated simulation 

components) 

Request to modify / update the simulated 

ML underlay according to the updates in 

the policies, changes in the live ML 

underlay, potential failures of previous 

simulated functions, etc. 

SANDBOX-

TRIGGER-

004 

Request type, ML 

profile, ML model 

output 

Time sync = yes 

(evaluation results) 

Request to evaluate the impact of the 

output of an ML model in the simulated 

ML underlay, so that some insights can be 

provided before applying the output to the 

live ML underlay. 

SANDBOX-

TRIGGER-

005 

Request type, ML 

profile 

Time sync = no Request to train an ML model in the ML 

sandbox. 

8.4.5 Sandbox asynchronous messages 

ML sandbox asynchronous messages are generally defined in Figure 8. 
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Figure 8 – ML sandbox asynchronous messages 

Prerequisite: Asynchronous messages are generated upon certain conditions that are met, which are 

specific to the different types of events. 

1) Upon meeting the trigger conditions, the ML sandbox sends an asynchronous message to the 

MLFO. 

2) The message is processed and potential action points are defined. 

3) The MLFO sends a response to the ML sandbox.  

The sandbox asynchronous message codes are defined in Table 8-9. 

Table 8-9 – Definition of the ML sandbox asynchronous message codes 

Code Parameters Conditions Description 

SANDBOX-

ASYNC-001 

Status code / Error code / 

detailed report 

(conditional) 

Threshold-based alert is 

fired / misbehaviour is 

detected / keep-alive 

message 

Report the health status of the 

simulation components 

 

SANDBOX-

ASYNC-002 

Update type / changelog / 

additional information on 

implications of the update 

Update on the simulation 

components is notified 

/discovered to/by the ML 

sandbox 

Report an update on security, 

accounting and licensing 

requirements of simulation 

components 

SANDBOX-

ASYNC-003 

Alert type / forecasted 

results / additional 

information on the 

potential failure points 

Threshold-based alert 

based on trend analysis 

(e.g., service at risk) 

Proactive behavior trend 

identification of simulation 

components and sandbox 

resources 

SANDBOX-

ASYNC-004 

Report type / Updated 

simulation component 

metadata 

Change in simulation 

component is noticed 

Report an update on the 

simulation component metadata 

SANDBOX-

ASYNC-005 

Report type / Updated 

level of intelligence of 

simulation components 

Change in the intelligence 

level of a simulation 

component 

Report the simulation 

environment intelligence level 

9 Security considerations  

This Recommendation describes an architectural framework for the ML sandbox in the context of 

integrating machine learning in future networks including IMT-2020: therefore, general network 

security requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] 

[ITU-T Y.3101].  
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It is required to prevent unauthorized access to, and data leaking from, the ML sandbox, whether or 

not there is a malicious intention with the implementation of appropriate mechanisms, such as those 

for authentication and authorization and external attack protection. 
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