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Summary 

Recommendation ITU-T Y.3179 provides an architectural framework for machine learning (ML) 

model serving in future networks including IMT-2020, i.e., preparing and deploying ML models in 

different deployment environments to enable the application of ML model inference to ML underlay 

networks. The framework includes high-level requirements, and a high-level architecture description 

covering the definition of architectural components and reference points. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 

these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 
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Recommendation ITU-T Y.3179  

Architectural framework for machine learning model serving in future 

networks including IMT-2020 

1 Scope 

This Recommendation provides an architectural framework for machine learning (ML) models 

serving in future networks including IMT-2020, i.e., preparing and deploying ML models in 

different deployment environments to enable the application of ML model inference to ML 

underlay networks. 

The scope of this Recommendation includes: 

– Background and motivations; 

– High level requirements; 

– High-level architecture description including the definition of architectural components, 

reference points and sequence diagrams. 

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the 

currently valid ITU-T Recommendations is regularly published. The reference to a document within 

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.3172] Recommendation ITU-T Y.3172 (2019), Architectural framework for machine 

learning in future networks including IMT-2020. 

[ITU-T Y.3174] Recommendation ITU-T Y.3174 (2020), Framework for data handling to 

enable machine learning in future networks including IMT-2020. 

[ITU-T Y.3176] Recommendation ITU-T Y.3176 (2020), Machine learning marketplace 

integration in future networks including IMT-2020. 

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

3.1.1 machine learning model [ITU-T Y.3172]: Model created by applying machine learning 

techniques to data to learn from. 

NOTE 1 – A machine learning model is used to generate predictions (e.g., regression, classification, 

clustering) on new (untrained) data. 

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the form of a software 

(e.g., virtual machine, container) or hardware component (e.g., IoT device). 

NOTE 3 – Machine learning techniques include learning algorithms (e.g., learning the function that maps 

input data attributes to output data). 

3.1.2 machine learning function orchestrator (MLFO) [ITU-T Y.3176]: A logical node with 

functionalities that manage and orchestrate the nodes in a machine learning pipeline. 

https://www.itu.int/net4/ITU-T/search/api/redirection?dest=http://handle.itu.int/11.1002/1000/14134-en&position=9&page=1
https://www.itu.int/net4/ITU-T/search/api/redirection?dest=http://handle.itu.int/11.1002/1000/14134-en&position=9&page=1
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3.1.3 machine learning sandbox [ITU-T Y.3172]: An environment in which machine learning 

models can be trained, tested and their effects on the network evaluated. 

3.1.4 machine learning marketplace [ITU-T Y.3176]: A component which provides 

capabilities facilitating the exchange and delivery of machine learning models among multiple 

parties. 

NOTE 1 – Examples of parties include suppliers and users of ML models. Capabilities provided to users of 

ML models include functionalities to find, learn about, deploy (or download) and use ML models. 

Capabilities provided to suppliers of ML models (e.g., data scientist) include functionalities to share (on-

board, upload), describe (learn about) and market their ML models. 

NOTE 2 – A network operator may use a machine learning marketplace deployed internally and/or 

externally to the network operator's administrative domains. Internal and external marketplaces differ only in 

the deployment perspective. A marketplace which is internal to a network operator may act as an external 

marketplace to another network operator and vice versa. 

3.1.5 machine learning pipeline [ITU-T Y.3172]: A set of logical nodes, each with specific 

functionalities, that can be combined to form a machine learning application in a telecommunication 

network. 

NOTE – The nodes of a machine learning pipeline are entities that are managed in a standard manner and 

can be hosted in a variety of network functions [b-ITU-T Y.3100].  

3.1.6 machine learning underlay network [ITU-T Y.3172]: A telecommunication network and 

its related network functions which interfaces with corresponding machine learning overlays.  

NOTE – An IMT-2020 network is an example of a machine learning underlay network. 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1 model inference: Process by which a deployed machine learning model generates a result. 

NOTE – Examples of generated result from machine learning model are prediction or classification. 

3.2.2 inference optimization: Optimization performed on a trained machine learning model for 

better performance during inference. 

NOTE – Examples of better performance are improved latency and computing efficiency. 

3.2.3 inference engine: Functionality that provides runtime environment for a machine learning 

model and exposes corresponding machine learning model inference capability.  

3.2.4 ML model serving: A process of preparing and deploying machine learning models in 

different deployment environments to enable the application of model inference to machine learning 

underlay networks. 

3.2.5 serving ML model: A machine learning model, obtained as a result of a machine learning 

model serving process, which is ready for performing inference in machine learning underlay 

networks.  

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AN Access Network 

API Application Programming Interface 

AUC Area Under Curve 

CN Core Network 

CPU Central Processing Unit 
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FPGA Field Programmable Gate Arrays 

GPU Graphics Processing Unit 

IoT Internet of Things 

MEC Mobile Edge Computing 

ML Machine Learning 

MLDB Machine Learning Database 

MLFO Machine Learning Function Orchestrator 

MSE Mean Squared Error 

NF Network Function 

QoS Quality of Service 

RAN Radio Access Network 

src source (ML pipeline) 

UPF User Plane Function 

VNF Virtual Network Function 

5 Conventions 

In this Recommendation, requirements are classified as follows: 

– The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted if conformance to this document is to be claimed. 

– The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, such requirements need not be present to claim 

conformance. 

– The keywords "can optionally" and "may" indicate an optional requirement which is 

permissible, without implying any sense of being recommended. These terms are not 

intended to imply that the vendor's implementation must provide the option and the feature 

can be optionally enabled by the NOP/service provider. Rather, it means the vendor may 

optionally provide the feature and still claim conformance with the specification. 

ML pipeline – In this Recommendation, in alignment with the conventions of [ITU-T Y.3172] 

when the symbol shown in Figure 1 is used, this denotes a subset (including proper subset) of nodes 

in an ML pipeline. When this symbol is used in a figure, the symbol stands for the subset of an ML 

pipeline's nodes not explicitly shown in that figure. 

 

Figure 1 – Symbol used to denote a subset of nodes in an ML pipeline 

6 Introduction 

This Recommendation aims at addressing challenges for ML models serving in future networks 

including IMT-2020, i.e., application of ML model inference to ML underlay networks. The 

challenges include the following: 

– Enabling efficient ML models optimization mechanisms for heterogeneous deployment 

environments. 
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 The existing ML marketplaces [ITU-T Y.3176], such as the ones available in open-source 

[b-LF Acumos], provide built-in packaging solutions which wrap the trained models using 

packaging mechanisms, like containers, without optimization considerations regarding the 

deployment environment. This may result in lack of efficiency, e.g., due to a high 

computational complexity and redundant parameters, while performing inference. 

Furthermore, diverse inputs and constraints from varied ML underlay networks may require 

specific optimization considerations. 

– Ensuring flexible deployment of ML models for different use case scenarios. 

 Deployment requirements of ML models in network operators' networks may be specific to 

the use case requirements and deployment environment. The existing containerized 

deployment environments may not provide enough flexibility and portability to address the 

considerations of network operators' deployment preferences.  

NOTE 1 – For example, a network operator may prefer deployment of ML models from internal 

ML marketplace implemented using Acumos or external ML marketplaces of third party players. 

Each marketplace supports specific deployment environments, e.g., Kubernetes cluster 

[b-Kubernetes]. However, the network operator may need to deploy ML models optimized for less 

resource consumption or quicker execution in the access network (AN) while ML models optimized 

for higher throughput may be implemented in the core network (CN). Flexible solutions are needed 

to help with deploying ML models into various hardware environments, e.g., into environments 

with limitations in terms of computing power and support of strict latency requirements.  

– Providing effective interfaces in a ML pipeline when a ML model is deployed. 

 For some ML pipelines where the ML model is embedded in a ML application, e.g., a ML 

pipeline for an access network, the interaction between the ML model and other nodes in 

the ML pipeline is implementation-specific. While in other cases, model inference is 

exposed to the network as web services and a standardized mechanism for serving these 

ML models is needed to ensure the workflow of the ML pipeline.  

To address the above listed challenges, this Recommendation specifies an architectural framework 

for ML models serving in future networks including IMT-2020 by considering three fundamental 

stages, which are inference optimization, model deployment and model inference.  

The inference optimization stage is the process by which the trained ML models are modified for 

better performance when executing inference in a certain deployment environment according to the 

requirements of the use case and the current state of the network. This is essential to achieve better 

performances, e.g., improved latency, throughput, power efficiency and memory consumption. 

Inference optimization may be achieved by both model-targeted optimization techniques, e.g., 

pruning, quantization, structural compression, graph conversion and layer fusion, as well as 

hardware specific ones, e.g., compiler acceleration and parallel computing acceleration. 

NOTE 2 – Metadata generated from the training and usage of ML models in the network operators' networks 

may be used for inference optimization of the ML models. 

The model deployment stage is aimed at getting the ML model ready to run in a specific 

deployment environment, which is followed by the inference stage where the model inference 

output result is applied to ML pipelines. 

Based on the high-level requirements in clause 7, clause 8 of this Recommendation provides a high-

level architecture, including reference points and sequence diagrams, aiming to provide 

mechanisms for ML model serving in future networks including IMT-2020. 
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7 High-level requirements 

7.1 Inference optimization  

This clause describes high-level requirements related to inference optimization of ML models 

before the ML models are deployed in ML pipeline subsystem. 

REQ-ML-OPT-001: It is required that inference optimization of a ML model be determined based 

on the deployment environment in the ML underlay network. 

NOTE 1 – Examples of deployment environment include real time deployment environment in the AN and 

cloud computing environment in the CN. 

REQ-ML-OPT-002: It is required that inference optimization of a ML model be determined based 

on the up-to-date characteristics and status of the ML model. 

NOTE 2 – Examples of ML model characteristics are the type of learning and structure of the ML models. 

NOTE 3 – Examples of ML model status are observed performance values and optimization status. 

NOTE 4 – Monitored performance reports of a ML model may be correlated with the type of data that the 

ML model has handled in order to decide what type of optimization to perform (e.g., pruning of decision 

trees). 

REQ-ML-OPT-003: It is required that inference optimization of a ML model be determined based 

on changes in input data patterns.  

NOTE 5 – Example of changes in data patterns are frequency of outliers' appearance, like frequency of call-

drops or packet drops in the network, and change in number of network users in a location.  

REQ-ML-OPT-004: It is recommended to update ML models in the ML model repository along 

with their corresponding optimization information after inference optimization. 

NOTE 6 – Updated ML models can be reused in other ML pipelines deployed on similar hardware 

environment. Optimization information helps in the matching to similar runtime environments. 

NOTE 7 – Examples of optimization information include the target environment, changes to the original 

model and effects of the optimization. 

7.2 Model deployment 

This clause describes high-level requirements for deploying ML models in ML pipeline subsystems. 

REQ-ML-DEP-001: It is required that model testing and evaluation be done in the ML sandbox 

subsystem before model deployment in a ML pipeline to make sure the ML model meets the 

requirements of the ML pipeline. 

NOTE 1 – For example, the ML model may be evaluated with respect to specific performance requirements 

as laid out in the ML pipeline requirements.   

REQ-ML-DEP-002: It is required to select model runtime environments based on the resource 

requirements of the ML models and the resources' status of the ML underlay network. 

NOTE 2 – For example, some ML models may require graphics processing unit (GPU) capabilities to 

achieve the desired performance while some may be optimized for other specific capabilities, e.g., in terms 

of central processing unit (CPU) and field programmable gate arrays (FPGA) characteristics. 

NOTE 3 – An example of ML underlay network resources' status is the size of memory available for use in 

the ML underlay network. The deployment should prepare a ML model with a size less than the memory 

available for use in the ML underlay network.  

REQ-ML-DEP-003: It is required to select a model deployment option based on the use case 

specification as indicated in the ML Intent [ITU-T Y.3172]. 

NOTE 4 – A use case specification may include latency and throughput requirements, performance 

requirements and location requirements. Model performance metrics may include precision, recall, area 

under curve (AUC) [b-AUC in classification] for classification models and mean squared error (MSE) for 



 

6 Rec. ITU-T Y.3179 (04/2021) 

regression models. A use case specification may also include how the prediction service is provided, e.g., in 

the form of web service or real-time streaming analytics, in which case the input data would be a stream of 

events triggering the prediction. 

NOTE 5 – Deployment options are detailed in clause 8.2. 

REQ-ML-DEP-004: It is recommended that model deployment operations be time-synchronized 

with events in the ML underlay network. 

NOTE 6 – Examples of other events in the network are upgrading, scaling and maintenance of network 

functions in the underlying network. Example of time-synchronization is scheduling of model deployment in 

a particular NF after scheduled software upgrade in the NF. 

REQ-ML-DEP-005: It is required to deploy ML models taking into account their performance 

status as evaluated in the ML sandbox subsystem and the capabilities of the ML underlay network 

along with network operator's preferences and policies. 

NOTE 7 – Examples of ML underlay network's capabilities are the capabilities of NFs and computing 

platforms of the ML underlay network. For example, a User Plane Function (UPF) [b-ITU-T Y.3102] may 

need a capability for feature extraction and execution of ML models, while a Multi-access Edge Computing 

(MEC) [b-ETSI GS MEC 003] platform may need a capability for updating ML models based on 

optimizations identified by the Machine Learning Function Orchestrator (MLFO). 

NOTE 8 – An example of network operator preferences and policies is the scheduling of ML model updates 

in the ML pipeline subsystem. 

REQ-ML-DEP-006: It is required to configure the nodes of a ML pipeline during the deployment 

of the corresponding ML models. 

7.3 Model inference 

This clause describes requirements for a model inference stage in a ML pipeline subsystem. 

REQ-ML-INF-001: It is required to perform model inference in coordination with the other nodes 

of the ML pipeline. 

NOTE 1 – Examples of the coordination are that data collector is configured to collect input data according 

to the input features of deployed ML models and pre-processor processes the raw data to align with the 

format of the input specifications of the deployed ML models. (For details of the nodes of a ML pipeline, see 

clause 8.1 in [ITU-T Y.3172]).  

REQ-ML-INF-002: It is required that versions of serving ML models be managed by authorized 

management functions. 

NOTE 2 – A ML model may have different versions; during inference, one of the versions can be selected 

based on criteria like interface compatibility and performance trade-offs. 

REQ-ML-INF-003: It is required that model inference enables the continuous monitoring and 

evaluation of the performance of ML models.  

NOTE 3 – An example of monitoring results is whether the models are experiencing performance 

degradation over time. Inputs, outputs and exceptions of each inference request may be stored and used for 

such analysis. 

REQ-ML-INF-004: It is recommended that authorized management functions be notified when the 

model performance deteriorates during model inference to a certain threshold which depends on 

each use case. 

NOTE 4 – MLFO is an example of authorized management functions.  

REQ-ML-INF-005: It is recommended the serving ML models be managed upon requests from 

authorized management functions  during model inference.  

NOTE 5 – The serving ML models may be stopped, restarted, updated and deleted by the authorized 

management functions. 
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REQ-ML-INF-006: It is required that profiles of serving ML models be exposed to the ML 

underlay network during model inference so that serving ML models can be discovered by model 

consumers to compose a ML pipeline. 

NOTE 6 – Profile of a serving ML model may include its current status as well as metadata as defined in 

[ITU-T Y.3176]. 

REQ-ML-INF-007: It is required that, during inference, changes in data collection requirements of 

a serving ML model be notified to authorized management functions. 

NOTE 7 – For example, changes in data collection requirements of a serving ML model may be caused by 

ML model optimization. 

REQ-ML-INF-08: It is recommended to enable the updating of ML models during their inference 

to continuously improve their performance based on incoming input data. 

NOTE 8 – This applies especially for ML use cases where data characteristics change dramatically over 

time. Online learning [b-Online learning] is an appropriate approach for such use cases. 

REQ-ML-INF-009: It is recommended to support the scaling of the resources allocated to serving 

ML models. 

NOTE 9 – Examples of parameters for scaling are the volume of input data and the performance thresholds 

of the use case. 

NOTE 10 – The scaling decision may be taken by authorized management function (e.g., MLFO). 

REQ-ML-INF-010: It is recommended to support load balancing between multiple instances of a 

given serving ML model.   

REQ-ML-INF-011: It is required to support the selection of the appropriate serving ML model 

among different available models for a given inference request.  

REQ-ML-INF-012: It is required to support multiple serving types satisfying the requirements of 

different use cases. 

NOTE 11 – Examples of serving types are online prediction and batch prediction. Online prediction is useful 

for use cases with high latency requirements. Online prediction refers to real-time prediction where data 

generated from the network is sent to the serving ML model for inference immediately. Batch prediction 

refers to the prediction for a high volume of data per inference request.  

REQ-ML-INF-013: It is required that fault management be supported including detecting whether 

the ML model fails to perform inference or to apply output to ML pipelines, as well as reporting 

and recovering from such failures. 

NOTE 12 – The fault management may be performed with the support of authorized management functions 

(e.g., MLFO). 

REQ-ML-INF-014: It is required to that accounting and licensing management be supported when 

a ML model is deployed on a public cloud environment. 

REQ-ML-INF-015: It is required that model inference be exposed only to authorized entities in the 

network to minimize the risks of attacks. 

NOTE 13 – Examples of attacks are evasion attack (wrong inference output caused by adversarial data) and 

poisoning attack (interference to the update of ML model caused by malicious data during online learning).  

8 High-level architecture  

8.1 Architectural components for ML model serving 

The architectural components for ML model serving are shown in Figure 2. This is a simplified 

view of the main components along with external components (management subsystem and model 

repository) needed for ML model serving in the network. 
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Figure 2 – Functional components for ML model serving 

8.1.1 Model repository 

This component is a repository of machine learning models [ITU-T Y.3174] from where ML 

models can be retrieved for the purpose of ML model serving.  

NOTE – ML marketplace as described in [ITU-T Y.3176] may include a model repository. 

8.1.2 ML model serving subsystem 

The ML model serving subsystem, composed of model optimizer and inference engine builder, is 

used to adapt the model for specific deployment environments.  

8.1.2.1 Model optimizer 

The model optimizer component is responsible for inference optimization of a ML model that is 

ready to serve the ML underlay network. The inference optimization is performed based on the ML 

model and the deployment environment in order to achieve optimization goals, e.g., better 

throughput and latency. The inference optimization results in optimized ML models, the format of 

which may be different from the original ML models. 

8.1.2.2 Inference engine builder 

The inference engine builder component generates inference engines for ML models.  

8.1.3 Inference engine 

This functional component provides the following functionalities in ML pipeline or ML sandbox 

subsystem: 

1) Runtime environment 

Inference engine provides runtime environment for ML models. This enables: 

– loading the ML model artifacts, including the model file and metadata. 

– executing the operations defined in ML models so that ML models can accept input data 

and generate model inference output. 

2) Model scheduling 

Inference engine schedules the ML models based on the respective scheduling policies so that 

multiple serving ML models can perform inference efficiently.  

3) Version management 

– Inference engine manages the versions of the ML models according to the respective ML 

model update policy. 
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4) Model inference 

The inference engine provides ML model inference capability for ML pipeline(s).  

8.1.4 MLFO 

The machine learning function orchestrator (MLFO) manages and orchestrates the model optimizer, 

inference engine builder and inference engine. 

8.2 Deployment options 

There are different kinds of inference hosts where the serving ML model may be hosted and 

inference be executed, e.g., an Internet of things (IoT) device, a server located at the network edge 

or in the cloud, or other NFs.  

There are several options to deploy ML models into inference hosts in different hardware 

environments, as shown in Figure 3.  

 

Figure 3 – Deployment options of ML models 

1) Embedded deployment 

Embedded deployment means ML models are built and packaged inside a ML application, where 

the ML pipeline is integrated within the ML application.   

NOTE 1 – For this option, the integration of ML models within the ML application is out of scope and 

implementation dependent.  

Such deployment reduces the latency to consume the model inference and is mostly used in 

resource constrained IoT scenarios. 

2) Service-based deployment 

Service-based deployment is usually used in cloud or edge computing platforms, where model 

inference is provided as a service via inference engine, which can then be consumed by ML 

pipelines in the networks. Management and orchestration functions, e.g., traffic routing, resource 

scaling and monitoring, and serving model management, may be provided for the inference engines 

in such deployments by the inference hosts. 

NOTE 2 – The inference service may be an online service or batch prediction service. 

– Holistic deployment 

In the holistic deployment approach, a new inference engine integrating the ML model is created, 

and then deployed in the host as a whole. This type of deployment can be chosen, e.g., for cloud 

computing platforms that ML models are deployed at scale. 

NOTE 3 – For this option, the ML model is hosted in the inference engine and the rest of the ML pipeline is 

integrated in the ML application.   

– Model-standalone deployment  

In the model-standalone deployment approach, ML models are loaded at run-time into already 

deployed service engines. The ML models can share the same, pre-deployed inference engine. This 
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type of deployment can be chosen, e.g., for edge computing platforms where ML models are 

transferred over low bandwidth connections or deployed over low memory budget. 

NOTE 4 – For this option, the ML model is hosted separately from the inference engine and the rest of the 

ML pipeline is integrated in the ML application.   

8.3 High level architecture 

The architectural components for the serving of ML models in in future networks including 

IMT-2020 can be integrated in the architecture for ML marketplace specified in [ITU-T Y.3176], as 

shown in Figure 4. The reference points shown in Figure 4 correspond to the ones specified in 

[ITU-T Y.3172] and [ITU-T Y.3176].  

 

Figure 4 – High-level architecture for ML model serving 

As shown in Figure 4, a ML model serving subsystem, which is comprised of model optimizer and 

inference engine builder, is introduced in the high-level architecture.  

Model optimizer allows ML models obtained from a model repository via reference point 16 to be 

optimized.  

Inference engine builder generates an inference engine for a ML model. The model is deployed in a 

ML sandbox subsystem for evaluation via reference point 17 and then is deployed as a serving ML 

model in the ML pipeline subsystem via reference point 3. 

As far as the ML sandbox subsystem, the inference engine serves ML models for ML evaluation 

pipeline in the sandbox subsystem.  

As far as the ML pipeline subsystem, the inference engine serves ML models for ML pipelines in 

the real network. 

In the embedded deployment scenario, the ML application invokes the internal interface to load the 

embedded model and perform inference. In the service-based deployment scenario, instead of being 

tightly coupled with ML models, NFs that need ML capabilities consume the inference service 

exposed by the inference engine in a ML pipeline subsystem via reference point 18.  
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8.4 Reference points 

Reference point 3, 5 and 6, which are used for ML model serving, are described in the following 

clauses. 

8.4.1 Reference point 3 between ML sandbox subsystem and ML pipeline subsystem 

This reference point is specified in [ITU-T Y.3172] and it is used for deployment or update of ML 

models in the ML pipeline subsystem.  

8.4.1.1 Serving_model API 

API description: When the ML pipeline subsystem receives the model deployment request from 

the MLFO, it can pull ML models (for service-based model-standalone deployment) or deploy 

inference engines (for service-based holistic deployment) from the ML sandbox subsystem. 

Serving_model-request: 

Direction: ML pipeline subsystem → ML sandbox 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Deployment option Enum Mandatory It is used to indicate the requested 

deployment option. Applicable values are 

service-based holistic deployment or 

service-based model-standalone 

deployment. 

Model identifier String Conditional 

(See Note) 

The model identifier for service-based 

model-standalone deployment. 

Inference engine 

identifier  

String Conditional 

(See Note) 

The inference engine identifier for service-

based holistic deployment. 

Version identifier String Optional The version identifier specified for the 

serving ML model. 

NOTE – Either the model identifier or inference engine identifier shall be present. 

 

Serving_model-response: 

Direction: ML sandbox → ML pipeline subsystem 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Result  Boolean Mandatory It indicates whether the serving request is 

successful. 

Model identifier String Mandatory The model identifier for service-based 

model-standalone deployment. 

Inference engine 

identifier 

String Conditional Inference engine identifier for service-

based holistic deployment. 

NOTE – Only present in case of service-

based holistic deployment 
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8.4.2 Reference point 5: Interface between management subsystem and ML pipeline 

subsystem 

This reference point enables model management and monitoring functionality. After a ML model is 

pushed to ML pipeline subsystem, the MLFO triggers the monitoring operation in ML pipeline 

subsystem and receives the monitoring result reported from ML pipeline subsystem. The MLFO can 

also manage the registration and lifecycle of serving ML models. 

8.4.2.1 Model_deployment API 

API description: For a ML model that is evaluated in the ML sandbox subsystem, the MLFO can 

trigger the deployment from ML sandbox subsystem to ML pipeline subsystem. 

Model_deployment-request: 

Direction: MLFO → ML pipeline subsystem 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Model identifier String Conditional 

NOTE 

The model identifier for service-based 

model-standalone deployment. 

Inference engine 

identifier 

String Conditional 

NOTE 

The inference engine identifier for 

service-based holistic deployment. 

Deployment 

configuration 

<Attribute, 

value> array 

Mandatory The configuration data according to the 

requirements of the use case, e.g., 

deployment option (as described in 

clause 8.2), memory and CPU 

requirements, model scaling policy, 

batching policy, update policy, etc.  

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

Version identifier String Optional The version identifier specified for the 

serving ML model. 

NOTE – Either the model identifier or inference engine identifier shall be present. 

Model_deployment-response: 

Direction: ML pipeline subsystem → MLFO 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Result  Boolean Mandatory It indicates whether the deployment was 

successful. 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

Version identifier String Optional The version identifier specified for the 

serving ML model. 

8.4.2.2 Model_registration API 

API description: After a ML model is deployed in ML pipeline subsystem, its profile, including 

metadata, configuration, location and other basic information about the serving ML model is 

registered by inference engine so that model consumers can discover it from the registration 

information. This registration can be done in the MLFO via this API, i.e., the MLFO maintains the 
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profile of the model. Furthermore, if the status of the deployed model is updated, its profile in the 

MLFO will change accordingly. Similarly, inference engine can deregister a model from the MLFO 

and the MLFO will remove its profile. 

NOTE 1 – The update of the model profile in the MLFO can be notified to the model consumer by polling or 

pub/sub mechanisms.  

NOTE 2 – The MLFO can deregister a serving ML model when it is not available anymore because the 

MLFO cannot receive the periodic heartbeat sent from the serving ML model.  

Model registration-request: 

Direction: Inference engine in ML pipeline subsystem → MLFO 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

Model metadata <Attribute, 

value> array 

Mandatory The metadata of the serving ML 

model. 

API information String Mandatory It provides information about how the 

inference service is performed so that 

consumers of the inference service can 

discover the model.  

Serving status Boolean Mandatory It indicates whether the inference 

service of the serving ML model is 

available. 

Version identifier String Mandatory The version identifier specified for the 

serving ML model. 

Model registration-response: 

Direction: MLFO → Inference engine in ML pipeline subsystem 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Result  Boolean Mandatory It indicates whether the registration 

was successful. 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

8.4.2.3 Serving_model_management API 

API description: This API is exposed by inference engine in ML pipeline subsystem to manage the 

serving ML models. Examples of model management operations enabled by this API are model 

start, stop, upgrade, scale, modify and delete operations, which may be used by an authorized 

management subsystem, e.g., MLFO. 
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Serving_model_management-request: 

Direction: MLFO → Inference engine in ML pipeline subsystem 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

Operation Enum Mandatory The requested operation on the 

serving ML model. This includes 

model start, stop, upgrade, scale. 

modify, and delete operations. 

Additional information <Attribute, 

value> array 

Mandatory Additional information or 

configuration for the requested 

operation. For example, the "modify" 

operation may have additional 

information such as information on 

memory setting and model version.  

Authentication 

information 

String Mandatory Information for authenticating the 

operation requestor. If the 

authentication fails, the request is 

rejected. 

Serving_model_management-response: 

Direction: Inference engine in ML pipeline subsystem → MLFO 

 

Information element Type Mandatory/Optional/ 

Conditional 

Description 

Result  Boolean Mandatory Indicates whether the model 

management operation was successful. 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

8.4.2.4 Model_monitoring_subscription API 

API description: After the ML model is deployed in ML pipeline subsystem, model monitoring 

can be exposed by this API, e.g., to the MLFO.  

Model_monitoring_subscription-request: 

Direction: MLFO → Inference engine in ML pipeline subsystem 

 

Information element Type Mandatory/Optional/C

onditional 

Description 

Serving model identifier String Mandatory Identifier of the serving ML model whose 

monitoring event is subscribed to. 

Notification Target 

Address 

String Mandatory The address where the monitoring 

notification will be sent. 

Monitoring event 

information 

String list Mandatory Monitoring information the MLFO wants 

to be notified of, including model status; 

model performance (e.g., based on AUC 

and MSE); and exceptions and triggering 

events (e.g., based on periodicity or 

threshold). 
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Model_monitoring_subscription-response: 

Direction: Inference engine in ML pipeline subsystem → MLFO  

 

Information element Type Mandatory/Optional/ 

Conditional 

Description 

Result  Boolean Mandatory Indicates whether the model 

monitoring subscription was 

successful. 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

8.4.2.5 Model_monitoring_event API 

API description: When subscribed monitoring events are triggered, notification will be sent to all 

the subscribers. 

Model_monitoring_event-notification: 

Direction: Inference engine in ML pipeline subsystem → MLFO 

 

Information element Type Mandatory/Optional/ 

Conditional 

Description 

Monitoring event 

information 

String list Mandatory The information corresponding to the 

subscribed monitoring events. 

8.4.2.6 Health_check API 

API description: This API is used to check whether the serving ML model on the inference engine 

is active to process inference requests. 

Health_check-request: 

Direction: MLFO→Inference engine in ML pipeline subsystem 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Serving model 

identifier 

String Mandatory Identifier of a serving ML model. 

Health_check-response: 

 

Information element Type Mandatory/Optional/ 

Conditional 

Description 

Result  Boolean Mandatory Indicates whether the inference 

service is active. 

8.4.3 Reference point 6: Interface between management subsystem and ML sandbox 

subsystem 

This reference point is used for the management subsystem to manage the models pushed from the 

ML model repository to the ML sandbox subsystem. For example, the MLFO may trigger and 

monitor the training, optimization, chaining and deployment process of a ML model in the ML 

sandbox subsystem. 
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8.4.3.1 Model_monitoring_subscription API 

API description: This API is similar to the model monitoring subscription API in clause 8.4.2.4, 

this one is used to monitor the ML model in the ML sandbox subsystem. 

8.4.3.2 Model_monitoring_event_notification API 

API description: This API is similar to the model monitoring event notification API in 

clause 8.4.2.5, this one is used to send monitoring notification of the ML model in the the ML 

sandbox subsystem. 

8.4.3.3 Model_deployment API 

API description: For a ML model that is trained in the ML sandbox subsystem, the MLFO can 

trigger model deployment in the ML sandbox subsystem for validation and evaluation. 

Model_deployment-request: 

Direction: MLFO → ML sandbox subsystem 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Model Identifier String Mandatory Identifier of the ML model. 

Deployment 

configuration 

<Attribute, 

value> array 

Mandatory The configuration data according to the 

requirements of the use case, e.g., 

deployment option (as described in 

clause 8.2), memory and CPU 

requirements, model scaling policy, 

batching policy, update policy, etc.  

Version identifier String Optional The version identifier specified for the 

ML model. 

Model_deployment-response: 

Direction: ML sandbox subsystem → MLFO 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Result  Boolean Mandatory Indicates whether the deployment was 

successful. 

Model identifier String Mandatory Identifier of the ML model. 

Inference engine 

identifier 

String Conditional Identifier of the inference engine. 

NOTE – Present if deployment 

configuration in the model-deployment-

request specifies service-based holistic 

deployment. 

8.4.4 Reference point 16 

This reference point is used for the interaction between ML model serving subsystem and model 

repository. 

8.4.4.1 Model_Push API 

The Model_Push API of reference point 14 in [ITU-T Y.3176] is reused for this API. It pushes 

trained ML models from model repository to model optimizer in ML model serving subsystem for 

optimization. 
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8.4.5 Reference point 17 

This reference point is used for the ML sandbox subsystem to optimize ML models and to generate 
inference engine that can be deployed in the ML pipeline subsystem. 

8.4.5.1 Serving_model API 

This API is used for the ML sandbox subsystem to get the ML model or inference engine for 
evaluation from the ML model serving subsystem, similar to clause 8.4.1.1. 

8.4.5.2 Model_push API 

This API is used for the ML sandbox subsystem to push ML models to ML model serving 
subsystem for optimization, similar to Model_Push API in reference point 16.  

8.4.6 Reference point 18 

This reference point is used by ML pipeline to utilize the inference ability supported by the serving 
ML model. Through this reference point, model inference service is available to ML applications in 
a unified and modular manner, which ensures flexible integration of ML pipelines. 

8.4.6.1 Inference API 

API description: This API is used to get inference service from a specific serving ML model. 

Inference-request: 

Direction: ML inference consumer → Inference engine 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model 

Meta-data <Attribute, 

value> array 

Mandatory The meta-data of the inference request, 

indicating the nature of the input and 

expected output, e.g., name and data 

format of the input data. 

Input data Byte array Mandatory The input data that needs to be passed to 

the serving ML model to get inference. 

Inference-response: 

Direction: Inference engine → ML inference consumer 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Serving model 

identifier 

String Mandatory Identifier of the serving ML model. 

Result Boolean Mandatory It indicates whether the request is 

successful.   

Meta-data <Attribute, 

value> array 

Conditional The meta-data of the response which can 

be used for the interpretation of the 

output data. 

NOTE 1 – Present if the result 

information element indicates the request 

is successful. 

Output data Byte array Conditional The output data of the inference request. 

NOTE 2 – Present if the result 

information element indicates the request 

is successful. 
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8.4.7 Reference point 19 

This reference point is used for the management subsystem to manage the process in which a ML 

model is adapted to different ML pipeline subsystems.  

8.4.7.1 Model_optimization API 

API description: The newly trained model in the ML sandbox subsystem is triggered for 

optimization before it is deployed in the ML pipeline subsystem. 

Model_optimization-request: 

Direction: MLFO → model optimizer 

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Model Identifier String Mandatory Used by the ML sandbox subsystem to 

identify the ML model. 

Optimization info <Attribute, 

value> 

array 

Mandatory Optimization information provided by the 

MLFO based on the ML Intent and the 

inference host capabilities. 

For example, target performance metrics, 

backend that the model will run on, 

operations and parameters of 

optimization, and framework to be 

followed for inference such as Adlik 

[b-Adlik] or TensorRT [b-TensorRT]. 

Model_optimization-response: 

Direction: Model optimizer → MLFO  

 

Information element Type Mandatory/Optional/

Conditional 

Description 

Result  Boolean Mandatory It indicates whether the optimization is 

successful. 

Model Identifier String Mandatory It indicates the identifier of the optimized 

model. 

Result parameters <Attribute, 

value> 

array  

Conditional Information of the changes to the ML 

model as a result of optimization. 

E.g., performance metrics like accuracy, 

latency and throughput 

NOTE - Present if the result information 

element indicates optimization is 

successful. 

8.5 Sequence diagrams of the serving of ML models 

This clause provides sequence diagrams related to the serving of ML models. 

8.5.1 Model optimization in ML model serving subsystem 

The sequence diagram for model optimization is shown in Figure 5. 
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Figure 5 – Model optimization in ML model serving subsystem 

Prerequisite: The ML model to be optimized is a trained ML model. 

NOTE 1 – The ML model to be optimized can be either a ML model that was trained in the ML sandbox 

subsystem in a "model training" procedure and then pushed to serving subsystem via reference point 17, or a 

well-trained model that can be pushed from ML model repository via reference point 16 as indicated in 

"Model selection and push" procedure defined in [ITU-T Y.3176]. 

1. The MLFO acquires the serving capability information of the inference host in the ML 

underlay network through the other management and orchestration functions via reference point 7 

in [ITU-T Y.3174]. The serving capability information includes the following: 

– Network domain for the deployment, e.g., AN or CN. 

– The information of NF properties, if the ML model has to be hosted inside a NF. 

– The information of computing resources that can be used in the inference host, e.g., CPU 

cores, GPU capacity. 

– The information of storage resources that can be used in the inference host. 

– The information of the networking communication capabilities of the inference host, e.g., 

network bandwidth and quality of service (QoS). 

2) The MLFO sends a model_optimization-request to the model optimizer in the ML model 

serving subsystem to indicate which model needs to be optimized. The request also includes some 

other optimization information according to the requirements implied in the ML Intent and the 

information on the serving capabilities. 

3) Model optimizer determines the optimization operations for the ML model, tunes the 

optimization parameters and generates the output model, which is then evaluated in ML model 

serving subsystem to verify if the optimized performance meets the optimization goal. Then the ML 

model serving subsystem sends a model_optimization-response to the MLFO to indicate the result 

of the optimization. 

Steps 4 to 6 happen only when the MLFO decides to update the optimized model as well as the 

optimization information to model repository based on network operators' ML model update policy 

and the result of the optimization. The MLFO triggers the model update procedure as indicated in 

clause 8.4.4 of [ITU-T Y.3176]. 

NOTE 2 – The difference between the model update in model optimization and that in model training lies in 

the content to update. Model parameters are updated in the model training whereas model structure is 
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updated in the model optimization. For example, model optimization may generate an optimized model with 

sparse connections by model pruning and fused layers by combining the processing of multiple layers of the 

model [b-Fused layer].  

8.5.2 Model deployment in ML sandbox subsystem for evaluation 

The sequence diagram for model deployment in the ML sandbox subsystem is shown in Figure 6. 

 

Figure 6 – Model deployment in ML sandbox subsystem for evaluation 

Prerequisites: The model to be deployed is a trained ML model in the ML sandbox subsystem.  

NOTE 1 – The model may be an already optimized model. 

1) According to the criteria provided in the ML Intent, the MLFO decides to evaluate the ML 

model by deploying it in the ML sandbox subsystem. 

2) The MLFO sends a model_deployment-request message to the ML sandbox subsystem 

which contains the model identifier, deployment configuration information and version 

identifier.  

3) The ML sandbox subsystem sends a serving_model-request to the ML model serving 

subsystem via reference point 17. The inference engine builder in the ML model serving 

subsystem prepares an inference engine image for validation according to the inference 

configuration.  

4) ML pipelines for data handling framework [ITU-T Y.3174] and simulated ML underlay 

networks [ITU-T Y.3172] are configured in the ML sandbox subsystem. 

5) The ML sandbox subsystem sends the model_deployment-response to the MLFO to 

indicate the result of the deployment, including the inference engine identifier if it's service-

based holistic deployment. 

6) Data from the ML underlay network is used as input for model inference and evaluation. 

8.5.3 Model deployment from ML sandbox subsystem to ML pipeline subsystem 

The sequence diagram for model deployment from the ML sandbox subsystem to the ML pipeline 

subsystem is shown in Figure 7. 
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Figure 7 – Model deployment from ML sandbox subsystem to ML pipeline subsystem 

Prerequisites: The ML model is evaluated in the ML sandbox subsystem.  

1) Based on performance of ML model in the ML sandbox subsystem, the MLFO decides to 

deploy the ML model in the ML pipeline subsystem. 

2) The MLFO sends a model_deployment-request message to the ML pipeline subsystem, 

including the serving model identifier, version identifier, deployment configuration, 

inference engine identifier (for service-based holistic deployment) or the model identifier 

(for service-based model-standalone deployment). The version identifier can be specified 

explicitly, or the latest version identifier will be chosen by ML sandbox subsystem. 

3) ML pipeline subsystem sends a serving_model-request to the ML sandbox subsystem with 

the information of inference engine identifier (for service-based holistic deployment) or 

model id (for service-based model-standalone deployment), and the retrieved inference 

engine or ML model is deployed.  

4) ML pipeline subsystem sends an asynchronous model_deployment-response to the MLFO 

to indicate whether the deployment is successful. 

5) ML pipeline is configured. See the detailed procedure in clause 8.4.4. 

6) Data from the ML underlay network or the MLDB [ITU-T Y.3174] is used as input data for 

model inference. The model inference consumer prepares the inference-request based on 

the input data, as specified in the profile of the serving ML model, and sends it to inference 

engine via reference point 18.  

7) Inference engine then allocates the request to the serving ML model, and responds the 

inference consumer with the output inference data.  

8.5.4 ML pipeline configuration in ML pipeline subsystem 

The sequence diagram for the ML pipeline configuration in the ML pipeline subsystem is shown in 

Figure 8. 
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Figure 8 – ML pipeline configuration in ML pipeline subsystem with inference engine 

Prerequisite: The ML model is deployed on inference engine in ML pipeline subsystem. 

1) Inference engine in the ML pipeline subsystem registers the ML model using a 

model_registration-request to the MLFO. 

2) The MLFO sends a health_check-request to the inference engine to check whether the 

inference service is running.  

NOTE 1 – Based on the network operator's policy, the MLFO can decide whether to stop an 

inference service when there is no ML pipeline configured to consume this service. 

NOTE 2 – Health check may be done periodically as per the configuration in the MLFO. 

3) If the service is not running, the MLFO sends a serving_model_management-request to 

inference engine to start and get the inference service ready for getting data input and 

perform inference. 

4) The serving model is configured as the model node in the pipeline, along with other nodes. 

5) The data handling framework is instantiated as specified in [ITU-T Y.3174] and ML 

pipeline starts to send the collected data to the inference service and do further operations 

on the inference output. 
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8.5.5 Model monitoring 

The sequence diagram for model monitoring is shown in Figure 9. 

 

Figure 9 – Model monitoring 

Prerequisites: ML pipeline (training or serving) is created in the ML sandbox subsystem (or the ML 

pipeline subsystem).   

1) Based on the ML Intent, the MLFO selects the monitoring events to be subscribed. 

2) The MLFO subscribes to the monitoring events of models in the ML sandbox subsystem 

(or the ML pipeline subsystem) using a model_monitoring_subscription-request.   

3) Based on the subscription information, the MLFO is configured as a subscriber of the 

monitoring event of the ML model in the ML sandbox subsystem (or ML pipeline 

subsystem). 

4) The ML sandbox or pipeline subsystem responds to the MLFO with a 

model_monitoring_event-notification. This may be a periodic event. 

5) The MLFO processes the monitoring notification, e.g., the MLFO may trigger a model 

update, a scaling of serving instances. 



 

24 Rec. ITU-T Y.3179 (04/2021) 

8.5.6 Serving model update 

Figure 10 shows serving model update. The sequence diagram for serving model update is shown in 

Figure 5.  

 

Figure 10 – Serving model update 

Prerequisites: The ML pipeline configuration in ML pipeline subsystem is done. 

1) The inference data during the inference stage is continuously sent to the ML sandbox 

subsystem as new training data according to the model update policy received from the 

MLFO in model_deployment-request in clause 8.5.3.  

2) The model_monitoring_event-notification in ML pipeline subsystem is sent to the MLFO 

via model monitoring mechanism.  

3) If the MLFO decides to update the model in the ML pipeline subsystem according to the 

model update policy and model performance status, the model is retrained in the ML 

sandbox subsystem. 

4) The steps that follow are model optimization as specified in clause 8.5.1, deployment as 

specified in clause 8.5.3 and inference as specified in clause 8.5.4 based on the instruction 

of the MLFO. 

9 Security considerations 

The security considerations provided in [ITU-T Y.3172] are applicable to this Recommendation.  

Additional specific security considerations concern model security evaluation (e.g., analysing the 

characteristics of ML model to evaluate risk of evasion attack). Moreover, to ensure a robust ML 

pipeline, the reliability of the inference results needs to be assessed before applying the output of a 

serving ML model to the network. 
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https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.acumos.org/
http://www.mit.edu/~rakhlin/6.883/
https://developer.nvidia.com/tensorrt
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