

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Y.3152
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2019)

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS,
NEXT-GENERATION NETWORKS, INTERNET OF
THINGS AND SMART CITIES

Future networks

 Advanced data plane programmability for
IMT-2020

Recommendation ITU-T Y.3152

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION

NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199

Services, applications and middleware Y.200–Y.299

Network aspects Y.300–Y.399

Interfaces and protocols Y.400–Y.499

Numbering, addressing and naming Y.500–Y.599

Operation, administration and maintenance Y.600–Y.699

Security Y.700–Y.799

Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS

General Y.1000–Y.1099

Services and applications Y.1100–Y.1199

Architecture, access, network capabilities and resource management Y.1200–Y.1299

Transport Y.1300–Y.1399

Interworking Y.1400–Y.1499

Quality of service and network performance Y.1500–Y.1599

Signalling Y.1600–Y.1699

Operation, administration and maintenance Y.1700–Y.1799

Charging Y.1800–Y.1899

IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS

Frameworks and functional architecture models Y.2000–Y.2099

Quality of Service and performance Y.2100–Y.2199

Service aspects: Service capabilities and service architecture Y.2200–Y.2249

Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299

Enhancements to NGN Y.2300–Y.2399

Network management Y.2400–Y.2499

Network control architectures and protocols Y.2500–Y.2599

Packet-based Networks Y.2600–Y.2699

Security Y.2700–Y.2799

Generalized mobility Y.2800–Y.2899

Carrier grade open environment Y.2900–Y.2999

FUTURE NETWORKS Y.3000–Y.3499

CLOUD COMPUTING Y.3500–Y.3999

INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES

General Y.4000–Y.4049

Definitions and terminologies Y.4050–Y.4099

Requirements and use cases Y.4100–Y.4249

Infrastructure, connectivity and networks Y.4250–Y.4399

Frameworks, architectures and protocols Y.4400–Y.4549

Services, applications, computation and data processing Y.4550–Y.4699

Management, control and performance Y.4700–Y.4799

Identification and security Y.4800–Y.4899

Evaluation and assessment Y.4900–Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.3152 (04/2019) i

Recommendation ITU-T Y.3152

Advanced data plane programmability for IMT-2020

Summary

Advanced data plane programmability (ADPP) as an underlying technology for network

softwarization enhances software-defined networking (SDN) with more agility and flexibility to meet

the requirements of IMT-2020 networks specified in Recommendation ITU-T Y.3150.

Recommendation ITU-T Y.3152 defines the advanced data plane programmability technology, which

allows network operators to benefit from a ''top-down'' design process by defining network processing

behaviour in a high-level language. In other words, the advanced data plane programmability enables

network operators to define specific data plane protocol (including packet formats) and to support

extended network functionalities. The advanced data plane programmability leads to flexibility and

automation, which allows network operators to fully exploit data plane resources to enable their

network applications.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Y.3152 2019-04-29 13 11.1002/1000/13893

Keywords

Data plane programmability, IMT-2020, network programmability, protocol independent.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13893
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Y.3152 (04/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.3152 (04/2019) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 Introduction ... 3

7 Requirements of advanced data plane programmability for IMT-2020 networks 4

7.1 Principal requirements .. 4

7.2 Requirements on data plane (i.e., instructions, pipelines) 4

7.3 Requirements on high-level network programming 5

7.4 Requirements on data plane of network slice ... 5

8 High-level architecture of advanced data plane programmability for IMT-2020

networks .. 6

8.1 Overview .. 6

8.2 High level network programming environment ... 6

8.3 Data plane orchestrator ... 7

8.4 SDN controller .. 8

8.5 Programmable data plane ... 8

9 Reference points for advanced data plane programmability .. 8

10 Security considerations ... 9

Appendix I – Potential use cases supported by advanced data plane programmability 10

I.1 Use case of line speed in network storage with ADPP 10

I.2 Use case of data security with ADPP ... 11

I.3 Use case of programming for ICN and IP network slice with ADPP 11

I.4 Use case of multi-network access with ADPP ... 12

Bibliography... 14

 Rec. ITU-T Y.3152 (04/2019) 1

Recommendation ITU-T Y.3152

Advanced data plane programmability for IMT-2020

1 Scope

This Recommendation describes requirements, architecture, functionalities, and reference points of

advanced data plane programmability for IMT-2020 networks, which supports the requirements of

network evolution and accommodates convergent services in IMT-2020 networks.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision; all

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.3150] Recommendation ITU-T Y.3150 (2018), High-level technical characteristics

of network softwarization for IMT-2020.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 control plane [b-ITU-T Y.2011]: The set of functions that controls the operation of entities

in the stratum or layer under consideration, plus the functions required to support this control.

3.1.2 data plane [b-ITU-T Y.2011]: The set of functions used to transfer data in the stratum or

layer under consideration.

3.1.3 network slice [b-ITU-T Y.3100]: A logical network that provides specific network

capabilities and network characteristics.

NOTE 1 – Network slices enable the creation of customized networks to provide flexible solutions for different

market scenarios which have diverse requirements, with respect to functionalities, performance and resource

allocation.

NOTE 2 – A network slice may have the ability to expose its capabilities.

NOTE 3 – The behaviour of a network slice is realized via network slice instance(s).

3.1.4 network slice blueprint [b-ITU-T Y.3100]: A complete description of the structure,

configuration and work flows on how to create and control a network slice instance during its life

cycle.

NOTE – A network slice template can be used synonymously with a network slice blueprint.

3.1.5 network slice instance [b-ITU-T Y.3100]: An instance of network slice, which is created

based on a network slice blueprint.

NOTE 1 – A network slice instance is composed of a set of managed run-time network functions, and

physical/logical/virtual resources to run these network functions, forming a complete instantiated logical

network to meet certain network characteristics required by the service instance(s).

2 Rec. ITU-T Y.3152 (04/2019)

NOTE 2 – A network slice instance may also be shared across multiple service instances provided by the

network operator. A network slice instance may be composed of none, one or more sub-network slice instances

which may be shared with another network slice instance.

3.1.6 network virtualization [b-ITU-T Y.3011]: A technology that enables the creation of

logically isolated network partitions over shared physical networks so that heterogeneous collection

of multiple virtual networks can simultaneously coexist over the shared networks. This includes the

aggregation of multiple resources in a provider and appearing as a single resource.

3.1.7 software-defined networking [b-ITU-T Y.3300]: A set of techniques that enables to directly

program, orchestrate, control and manage network resources, which facilitates the design, delivery

and operation of network services in a dynamic and scalable manner.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 data plane orchestrator: A software-defined networking (SDN) control plane function that

allows multiple data planes of network slices to operate on data plane elements.

3.2.2 programmable data plane: A data plane that provides the ability to support new protocols

and data processing procedures at run time.

3.2.3 protocol independent instruction set: A set of protocol-independent instructions supported

by data plane elements required for implementing a wide range of network functionalities.

NOTE – The instruction means a code in a program, which defines and carries out an operation.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ADPP Advanced Data Plane Programmability

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CP Connection Point

DDoS Distributed Denial of Service

eMBB enhanced Mobile Broadband

ICN Information Centric Networking

I/O Input/Output

IP Internet Protocol

mMTC massive Machine Type Communication

NFV Network Functions Virtualization

PDP Physical Data Plane

uRLLC Ultra-Reliable and Low Latency Communications

SDN Software-Defined Networking

5 Conventions

In this Recommendation:

The keywords "is required to" indicate a requirement which must be strictly followed and from which

no deviation is permitted, if conformance to this Recommendation is to be claimed.

 Rec. ITU-T Y.3152 (04/2019) 3

The keywords "is recommended" indicate a requirement which is recommended but which is not

absolutely required. Thus, this requirement need not be present to claim conformance.

The keywords "can optionally" indicate an optional requirement, which is permissible, without

implying any sense of being recommended. This term is not intended to imply that the vendor's

implementation must provide the option, and the feature can be optionally enabled by the network

operator/service provider. Rather, it means that the vendor may optionally provide the feature and

still claim conformance with this Recommendation.

6 Introduction

Network softwarization technologies including SDN, network functions virtualization (NFV),

network slicing and their extensions are expected to support IMT-2020 mobile networks. However,

a gap exists between the current projection of the deployment of SDN, NFV and network slicing

technologies and the requirements for IMT-2020. In particular, the current SDN technologies

primarily focus on the programmability of a control plane, and the existing SDN protocol

specifications reflect a ''bottom-up'' design process in which the capabilities of a data plane (also

known as the forwarding plane) are determined by fixed function chips with built-in network

protocols. In order to support new protocols and architectures driven by use cases in IMT-2020

networks, further work in the data plane is needed.

Advanced data plane programmability (ADPP) as an underlying technology for network

softwarization enhances the SDN with more agility and flexibility to meet the requirements of

IMT-2020 networks [ITU-T Y.3150]. With the use of advanced data plane programmability

technology, network operators benefit from a ''top-down'' design process by defining network

processing behaviour in a high-level language. In other words, the advanced data plane

programmability enables operators to define specific data plane protocol (including packet formats)

and to support extended network functionalities. The ADPP brings the smooth evolution from

existing protocols to future proof protocols, and supports resource slicing and isolation over the

programmable data plane. The ADPP facilitates efficient and automated deployment of new network

services, which permits developers to fully exploit data plane resources to enable their network

applications.

Figure 6-1 shows targets of ADPP in the case of network slicing. Multiple network slice instances

having their own data planes over infrastructure, generally consist of network, computation and

storage resources. Functionalities of data plane elements, which have the capabilities of data

forwarding, routing and/or data processing, are able to be changed by the framework of ADPP.

Figure 6-1 – Targets of advanced data plane programmability

4 Rec. ITU-T Y.3152 (04/2019)

This Recommendation specifies requirements and architecture of advanced data plane

programmability for IMT-2020 networks.

7 Requirements of advanced data plane programmability for IMT-2020 networks

7.1 Principal requirements

The IMT-2020 network is requested to have the capability to provide the ADPP that allows users to

define and realize new protocols and mechanisms with the following principal requirements:

– A high-level programming environment is required to enable programmers to decide the

behaviours of an entire network in a centralized way, rather than per-device programming.

– A set of application programming interfaces (APIs) for ADPP is required to support protocol-

agnostic data forwarding and processing.

7.2 Requirements on data plane (i.e., instructions, pipelines)

The IMT-2020 network is requested to have the capability to provide data plane programmability that

allows programmers to create, modify, or delete the packet forwarding and processing functions via

protocol-agnostic programming APIs.

– It is required to have the ability to maintain an instruction set between an SDN controller and

a data plane.

 NOTE 1 – The instruction set describes the basic packet processing primitives, such as checksum and

encapsulation, which is not designed for any specific protocols, services or applications.

The following are requirements of the instruction set:

– The instruction set is independent of the northbound interface between the SDN controller

and applications.

– No matter what kind of northbound interface is used, the SDN controller is required to be

able to translate a forwarding process into protocol-independent instructions, and install them

to data transport elements.

– Instructions can optionally apply any arbitrary packet field for manipulating the field data

without specifically supporting the particular protocol packet formats for data plane.

 NOTE 2 – Programmers can use the instruction set dynamically to build custom packet processing

functions at any given time and as needed. The instruction set is not bound to any specific protocol.

Therefore, any new protocol can be processed.

– It is recommended that any protocols, policies and services are realized using the combination

of the instructions assembled by the SDN controller, i.e., future-proof operations can be

achieved.

– The data plane is recommended to support a pipeline.

 NOTE 3 – The pipeline contains multiple stages of forwarding tables, and supports the branch

structure in a table in order to support the forwarding of matched packets to different tables for the

next stage processing.

– The pipeline is recommended to be dynamically constructed and modified at run time.

 NOTE 4 – The data plane should provide programming interfaces for the control plane to dynamically

create and modify the pipeline, such as appending tables to the pipeline.

– The data plane is recommended to have the ability to provide differential services to different

pipeline branches.

 NOTE 5 – The data plane should provide programming interfaces to enable the control plane to

specify the service parameters. For example, the maximum packets or bits are allowed to be forwarded

per second, and the queuing priority defines output by rules in the pipeline branch.

 Rec. ITU-T Y.3152 (04/2019) 5

– Instructions for dedicated time-sensitive functionalities are required for realizing the high

performance of the data plane.

 NOTE 6 – An example in this regard, includes time-based scheduling functions for synchronous

transmission and line-speed read/write functions for in-network storage.

7.3 Requirements on high-level network programming

IMT-2020 network is requested to have the capability to support a high-level network programming

that should be independent from a specific network protocol and a network configuration

(e.g., topology). Thus, the following requirements apply:

– The high level programming language is required to facilitate programmers to effectively

program network functions with APIs.

– Programmers can optionally develop network programs to define the network protocol and

describe a network policy with the high-level programming language.

– For the control of a configured switch data path, runtime libraries are recommended to be

auto-generated from the configuration of data plane elements.

– Data transport element, such as a switch, is recommended to support reconfiguration during

operation, and allow reconfiguration without interrupting packet processing.

– A compiler is required to have the capability to translate network programs into pipelines for

individual data transport elements that correctly enforce the policies according to the network

programs.

– The compiler is required to have the capability to maintain and optimize the pipelines by

deploying or revoking forwarding rules that correspond to the status of network traffic in data

transport elements dynamically.

– The compiler is required to be independent of switching platforms.

 NOTE – This means that the compiler works on a wide range of switching platforms including

application specific integrated circuit (ASIC), network processors and software switches.

– The network programming is recommended to enable network operators to manage and

orchestrate softwarized network components.

– It is recommended to deploy new protocols and network functionalities to the data plane

seamlessly without interrupting existing network functionalities.

7.4 Requirements on data plane of network slice

IMT-2020 network is requested to have the capability for network slicing. The following

requirements apply:

– The data plane of a network slice is recommended to preserve the programmability of data

plane elements.

– The data plane of the network slice is recommended to customize logical topology, link and

node capacity.

– The data planes of network slices are recommended to support diversified protocols and data

transport mechanisms.

– Different data planes of network slices are required to be controlled by independent and

isolated control planes for network monitoring and management.

– A data plane orchestrator is recommended to have the capabilities to create, modify, and

remove data planes of network slices with customized logical network topologies, protocol

stacks, links and node capacities.

– The data plane orchestrator is recommended to provide separation among multiple data

planes of network slices.

6 Rec. ITU-T Y.3152 (04/2019)

NOTE – Each isolated data plane of network slices should be realized using an independent network protocol

stack, network functionalities, and a control and management channel.

8 High-level architecture of advanced data plane programmability for IMT-2020

networks

8.1 Overview

The high-level architecture of ADPP in IMT-2020 is introduced as Figure 8-1.

The high-level architecture contains the following three functional layers:

– Application: Requests program and control plane to fulfil its own service requirements.

– Program and control plane: Includes high-level network programming environment, a SDN

controller and a data plane orchestrator. This plane defines programmable data plane

behaviours.

– Programmable data plane: Includes a protocol independent instruction set and data plane

elements designed by the program and control plane.

Figure 8-1 – High-level architecture of advanced data plane programmability

Due to the ADPP, the data plane orchestrator enables multiple data planes of network slices to coexist

over the shared data plane resources, and for each network slice, a high-level programming

environment and APIs are provided to manage device-level resources and per-flow operations. It is

beneficial to support massive flexibility depending on different service scenarios and requirements,

which is a major differentiation from existing networks.

The key components shown in Figure 8-1 are introduced in clauses 8.2 and 9.

8.2 High level network programming environment

The key components of a high-level programming environment are a high level programming

language and a runtime system.

 Rec. ITU-T Y.3152 (04/2019) 7

8.2.1 High level programming language

The high-level programming language should have at least two parts, that is, a packet definition and

network policy description.

a) In the packet definition part, programmers are allowed to define header formats of network

protocols that are supposed to support the protocol independent data plane. Programmers can

define protocol headers with variable lengths and optional fields, and also define the protocol

stack with variable sequences of protocol headers.

b) In the network policy description part, a programmer is allowed to describe a network policy

using a set of protocol-agnostic programming APIs.

At least the following four types of APIs should be supported:

– Packet parsing APIs: A programmer can use the APIs to construct a packet parser from the

packet definition part, and parses incoming packets accordingly. The packet parsing APIs are

protocol agnostic, and they extract the header and field names from packet definition

arguments.

– Packet field manipulation APIs: A programmer can use the APIs to arbitrarily manipulate a

specified packet field, such as read, write, modify, shift, testify, insert, remove, etc.

– Path construction APIs: A programmer can use the APIs to construct a path on the network

topology that packets should be forwarded through.

– Environment APIs: A programmer can use the APIs to query environment information such

as the network topology and throughput.

8.2.2 Runtime system

A runtime system should fill a gap between the high-level programming language and low-level

data-plane forwarding instructions. The runtime system produces and updates pipelines for data plane

elements.

– When a policy is made or changed by a network program, the runtime system should update

the policy in its memory.

– The runtime system generates optimized pipelines, which contain instructions for

implementing policies, on data plane elements.

8.3 Data plane orchestrator

A data plane orchestrator has the following two major functionalities:

a) Management for the data plane of a network slice: The orchestrator manages the mapping

between logical data plane elements of network slices and network resources. The following

isolations should be managed:

– Topology isolation: Adding, removing, or modifying network elements in one data plane

of a network slice should not have any influence on data planes of other network slices.

– Traffic isolation: Network packets belonging to one data plane of a network slice should

not be forwarded to network elements that do not belong to the corresponding data

planes.

– Resource isolation: The network resources allocated to one network slice should not be

used to provide services to other network slices in order to avoid the risk of exceeding

the capacities of the resources.

b) Runtime support for the data plane of a network slice: A runtime system is supported by the

orchestrator to provide instructions or optimized pipelines, which include different protocols

and network functionalities, for a specific data plane of a network slice.

8 Rec. ITU-T Y.3152 (04/2019)

8.4 SDN controller

An SDN controller should have the following capabilities for ADPP:

– Provide the message channel with the data plane elements.

– Handle the outages of resources (e.g., for switch and/or link).

– Other basic control plane functionalities such as topology discovery.

8.5 Programmable data plane

A programmable data plane is able to support new protocols and data processing procedures on data

plane elements at run time. With ADPP, the application requirements are programmed by the program

and control plane, and then deployed to a programmable data plane.

8.5.1 Protocol independent instruction set

A protocol independent instruction set is capable of handling both existing and new protocols.

It allows programmers to program data path processing according to both existing and new packet

formats and behaviours.

The protocol independent instruction set consists of low-level instructions that allow programming

of a wide variety of data path functions, which are not limited to any pre-configured protocol

behaviour in data transport elements. The primitive instruction set should include minimal

instructions such as:

– pipeline manipulation;

– insert/remove header; set/copy field; add/sub/inc/dec field; boolean operations and logical

shifts on fields;

– execution controls (e.g., jump, conditional jump, goto table);

– actions (e.g., forward, drop);

– some notion of function calls (e.g., invoking hardware accelerators).

9 Reference points for advanced data plane programmability

Data plane programmability uses the following reference points:

Connection point 1 (CP1) represents the reference point between an application layer and a program

and control plane. The application layer implicitly or explicitly treats requirements relating to

resource handling, and send it to program and control plane through CP1. The requirements can also

define a new network protocol, and describe a new routing scheme, etc.

CP2 is the reference point between a high-level network programming environment and an SDN

controller. The programming environment sends commands to the controller. The controller can then

report events to the programming environment. For example, on receiving a controller's event

requesting to setup a new network flow, the programming environment plans a path in data plane,

and sends commands to the controller for enabling the path through CP2.

CP3 is the reference point between the programming environment and a data plane orchestrator.

Through CP3, the programming environment makes the configurations for data planes of network

slices, and events from data planes of network slices are reported to the programming environment.

For example, if the data plane orchestrator receives the event that a switch on the data plane of a

network slice is overloaded, the orchestrator reports it to the programming environment through CP3.

The programming environment recalculates the resource allocation for the data plane of this network

slice, and sends the updated configuration to the orchestrator through CP3.

CP4 is the reference point between the SDN controller and the orchestrator. The controller can send

instructions to data plane elements (e.g., switches) of a network slice via CP4, and data plane elements

 Rec. ITU-T Y.3152 (04/2019) 9

of the network slice can also report events to the controller through CP4. For example, if a new

network flow in a network slice should be setup, the controller can directly plan a path on the

corresponding data plane or receive a planned path from the programming environment, and send

instructions to the orchestrator for enabling the path through CP4.

CP5 is the reference point between the programming environment and programmable data plane

elements. Through CP5, the programming environment can send instructions to elements of data

plane, and elements of data plane can also report their events to the programming environment. For

example, if a new network flow should be setup on data plane elements, programming environment

can plan a path on the network, and directly sends instructions to data plane elements for enabling the

path through CP5.

CP6 is the reference point between the orchestrator and data plane elements. Through CP6,

configurations of data planes of network slices are sent to data plane elements. The data plane

elements may report the events to the orchestrator. For example, if a link failure happens in the data

plane of a network slice, the orchestrator receives the failure event through CP6 and reports it to the

other functions. The orchestrator receives the new configurations from programming environment or

the controller, and re-configure the data plane of this network slice through CP6.

10 Security considerations

The introduction of advanced data plane programmability inevitably raises security challenges.

Different kinds of security threats should be considered.

Data plane is vulnerable to attacks. For example, it is possible for a malicious programmer to program

data plane network elements to perform various attacks, such as eavesdropping on other applications'

traffics, or launching a distributed denial of service (DDoS) attack. To provide counter measures,

network applications should be granted appropriate privileges before invoking certain instructions on

the data plane network elements. The programming and control plane should have defense

mechanisms against the DDoS attacks, and in addition, access control to the control and programming

plane is also required.

The programing environment is also subjected to undesirable behaviours. The presence of undesirable

behaviours has caused numerous problems in some programming languages, including bugs and

serious security vulnerabilities. There are a few places where evaluating a ADPP program can result

in undesirable behaviours, such as, out parameters, uninitialized variables, accessing header fields of

invalid headers, and accessing header stacks with an out of bounds index. The undesirable behaviours

in ADPP should be preempted as much as possible, and the validation of programs, which may

include programs' performance, should be conducted before their running. For example, given the

concern for performance, compiler flags and/or programs can be defined to override the safe

behaviour. Generally, it is expected that programmers should be guided toward writing safe

programs, and encouraged to think of a way to allow exceptions.

10 Rec. ITU-T Y.3152 (04/2019)

Appendix I

Potential use cases supported by advanced data plane programmability

(This appendix does not form an integral part of this Recommendation.)

This appendix introduces four typical use cases of advanced data plane programmability outlined in

clauses I.1 to I.4.

I.1 Use case of line speed in network storage with ADPP

In the in-network caching, the switch and storage functions are usually deployed in a single node,

while the throughput of switch is much larger than the storage. If they work together, the unbalance

workload may result in very low storage efficiency. With ADPP, the in-network storage is divided

into two stages, switch and input/output (I/O) operation, which are executed in switch end and storage

end separately (see Figure I.1). Switch end implements packet-switching operations. The request

packet that requires I/O operation is first translated into a new request packet based on the proprietary

protocol by switch end, and forwarded to the storage end. This process can efficiently offload the

switch end, and achieve high in-network caching performance.

Figure I.1 – Use case of wire-speed in-network storage with ADPP

A typical procedure is as follows:

1) The request packet that requires cache operation (i.e., read) is translated into a new request

packet which conforms to proprietary protocol by using protocol independent instruction set.

2) The new request packet is forwarded to storage end.

3) Once storage end accomplishes cache operation, a response packet containing the data of the

I/O operation will be sent back to switch end.

4) The process of data packet that requires cache operation (i.e., write) is similar.

5) Switch end merely implements simple packet-switching operations, not including any block

I/O operations, it is possible to guarantee wire-speed forwarding at switch end.

6) When designing proprietary protocol, there are two basic rules. One is that switch end can

generate such a packet quickly by using protocol independent instruction. The other is that

both switch and storage ends can process this packet quickly. Hence, a proprietary protocol

packet has a forwarding-friendly and easily decoded format.

 Rec. ITU-T Y.3152 (04/2019) 11

I.2 Use case of data security with ADPP

ADPP can provide the security protection mechanism of the data plane which is tailored according to

the relevant security policies to meet differentiated data transmission protection requirements of

different services.

The network nodes in the programmable data plane (see Figure I.2) can check identity and

authentication using the instruction set without offloading mechanism. The data security specification

in the application layer, such as data transmission protocol policy and distributed data authentication

policy, will be processed by the high-level network programming environment or directly by the

controller into the instruction set and installed into the nodes in the programmable data plane. One

node in the programmable data plane will check the identity of a data packet to allow it to pass, or

check the authentication to decide triggering an alert event.

Figure I.2 – Use case of data security with ADPP

I.3 Use case of programming for ICN and IP network slice with ADPP

In the scenario of programming for information centric networking (ICN) and Internet protocol (IP)

network slices, two types of network slices with different protocols should be created (see Figure I.3).

With ADPP, developers can submit their requirements to the orchestrator via SDN controller to create

the network slices, and they can program the specific routing policy on different data planes of

network slices through the programming environment. Programs will be processed by the runtime

and then deployed to the physical data plane (PDP).

12 Rec. ITU-T Y.3152 (04/2019)

Figure I.3 – Use case of ICN and IP network slice programming with ADPP

A typical procedure is as follows:

1) The application developer of the IP and ICN applications submit their network slice

requirement to the orchestrator via the SDN controller.

2) The orchestrator creates two data planes of network slices from the data plane elements, and

it also creates virtual machines as the controllers for network slices.

3) The IP application developer composes the IP packet specification and the longest prefix

match-based IP routing policy.

4) The programming environment of the IP network slice takes the programs as input and

produce instructions to the orchestrator, which translate the instructions and deploy them to

the physical data plane.

5) Similarly, the ICN application developer composes the ICN packet specification and the ICN

routing policy, and the programs are compiled and executed in the programming environment

of the ICN controller, and eventually produces instructions for deployment on the physical

data plane.

I.4 Use case of multi-network access with ADPP

A user entity belonging to multiple networks, such as mobile network and Wi-Fi, is a typical scenario

in IMT-2020. In this scenario, the user entity usually has multiple IP addresses.

Figure I.4 shows the architecture of multi-homing networks. The control plane is used to specify the

forwarding rules of the flow and then deliver them to the switches of the data plane. The ADPP

switches in data plane forwarding the packets according to the flow tables. Since the host has multiple

accesses and addresses to the network, the server could use the multiple paths to transmit the content

to the user. With the ADPP, the IMT-2020 network has the ability to operate the IP address, such as

adding, deleting or changing, which may help the network to deliver the packets through the proper

path to one or more specific destinations.

 Rec. ITU-T Y.3152 (04/2019) 13

Figure I.4 – Use case of transmission in multi-homing network with ADPP

14 Rec. ITU-T Y.3152 (04/2019)

Bibliography

[b-ITU-T Y.2011] Recommendation ITU-T Y.2011 (2004), General principles and general

reference model for Next Generation Networks.

[b-ITU-T Y.3011] Recommendation ITU-T Y.3011 (2012), Framework of network

virtualization for future networks.

[b-ITU-T Y.3100] Recommendation ITU-T Y.3100 (2018), Terms and definitions IMT-2020

network.

[b-ITU-T Y.3300] Recommendation ITU-T Y.3300 (2014), Framework of software-defined

networking.

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T Y.3152 (04/2019) - Advanced data plane programmability for IMT-2020
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	7 Requirements of advanced data plane programmability for IMT-2020 networks
	7.1 Principal requirements
	7.2 Requirements on data plane (i.e., instructions, pipelines)
	7.3 Requirements on high-level network programming
	7.4 Requirements on data plane of network slice

	8 High-level architecture of advanced data plane programmability for IMT-2020 networks
	8.1 Overview
	8.2 High level network programming environment
	8.2.1 High level programming language
	8.2.2 Runtime system

	8.3 Data plane orchestrator
	8.4 SDN controller
	8.5 Programmable data plane
	8.5.1 Protocol independent instruction set

	9 Reference points for advanced data plane programmability
	10 Security considerations
	Appendix I Potential use cases supported by advanced data plane programmability
	I.1 Use case of line speed in network storage with ADPP
	I.2 Use case of data security with ADPP
	I.3 Use case of programming for ICN and IP network slice with ADPP
	I.4 Use case of multi-network access with ADPP

	Bibliography

