

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS, INTERNET OF THINGS AND SMART CITIES

Future networks

Requirements and framework for jitter guarantee in large scale networks including IMT-2020 and beyond

Recommendation ITU-T Y.3118

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300–Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600–Y.699
Security	Y.700–Y.799
Performances	Y.800–Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Computing power networks	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3599
BIG DATA	Y.3600-Y.3799
QUANTUM KEY DISTRIBUTION NETWORKS	Y.3800-Y.3999
INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES	
General	Y.4000-Y.4049
Definitions and terminologies	Y.4050-Y.4099
Requirements and use cases	Y.4100-Y.4249
Infrastructure, connectivity and networks	Y.4250-Y.4399
Frameworks, architectures and protocols	Y.4400-Y.4549
Services, applications, computation and data processing	Y.4550-Y.4699
Management, control and performance	Y.4700-Y.4799
Identification and security	Y.4800-Y.4899
Evaluation and assessment	Y.4900-Y.4999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T Y.3118

Requirements and framework for jitter guarantee in large scale networks including IMT-2020 and beyond

Summary

Recommendation ITU-T Y.3118 specifies the requirements and framework for an effective and efficient solution for jitter guarantee for dynamic traffic with arbitrary input patterns in large scale networks including IMT-2020 and beyond. The framework in this Recommendation is composed of the time-stamping and the buffering functions at the network boundary. It is scalable and does not rely on time synchronization or slot scheduling.

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T Y.3118	2022-09-29	13	11.1002/1000/15053

Keywords

Deterministic network, jitter, large scale network, latency, time synchronization.

⁵ To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents/software copyrights, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2022

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

		Page			
1	Scope	1			
2	References	1			
3	Definitions	1			
	3.1 Terms defined elsewhere	1			
	3.2 Terms defined in this Recommendation	1			
4	Abbreviations and acronyms	1			
5	Conventions	2			
6	Introduction				
7	Requirements				
8	Framework	3			
9	Security considerations				
Appen	dix I – The theorems for the latency and jitter bounds and their usage	5			
Biblio	graphy	7			

Recommendation ITU-T Y.3118

Requirements and framework for jitter guarantee in large scale networks including IMT-2020 and beyond

1 Scope

This Recommendation specifies the requirements and framework for jitter bound guarantee in large scale networks including the Internet, IMT-2020 networks and beyond, as follows:

- the requirements for achieving jitter bound guarantee in large scale networks;
- the framework to achieve the jitter bound guarantee effectively and efficiently.

Routing and upper layer functions lie outside the scope of this Recommendation.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.3113]	Recommendation ITU-T Y.3113 (2021), Requirements and framework for latency guarantee in large-scale networks including IMT-2020 network.
[ITU-R M.1645]	Recommendation ITU-R M.1645 (2003), Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following term defined elsewhere:

3.1.1 IMT-2020 [b-ITU-R M.2083]: Systems, system components, and related technologies that provide far more enhanced capabilities than those described in [ITU-R M.1645].

NOTE - [ITU-R M.1645] defines the framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000 for the radio access network.

3.2 Terms defined in this Recommendation

This Recommendation defines the following term:

3.2.1 large scale network: A network or a set of interconnected networks, with diameter of 16 or larger, in which the numbers of flows and nodes are proportional to the diameter of the network.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- E2E End-to-End
- FIFO First In First Out
- QoS Quality of Service

- RTP Real-time Transport Protocol
- TCP Transmission Control Protocol
- UDP User Datagram Protocol

5 Conventions

The keyword "is required to" indicates a requirement which must be strictly followed and from which no deviation is permitted if conformance to this Recommendation is to be claimed.

The keyword "is recommended" indicates a requirement which is recommended but which is not absolutely required. Thus, this requirement need not be present to claim conformance.

The keyword "can optionally" indicates an optional requirement which is permissible, without implying any sense of being recommended. This term is not intended to imply that the vendor's implementation must provide the option and the feature can be optionally enabled by the network operator/service provider. Rather, it means the vendor may optionally provide the feature and still claim conformance with the specification.

6 Introduction

There are emerging applications that require latency and jitter bounds in large scale networks. For example, machine-to-machine communications for 'cloudified' industrial and robotic automation involves moderate-to-large scale networks. This type of communications requires very fine-grained timing accuracy for the dispersion of control commands and for the collection of data over a wide area [b-ITU-T Y-Sup.66]. ITU-T SG-13 has defined that such services need to support critical grade reliability and extremely low as well as highly precise latency for the delivery of packets [b-ITU-T Y-Sup.66].

In large scale networks, the input traffic is dynamic and the nodes operate asynchronously with each other. The large number of nodes over a geographically wide area are hard to synchronize. The large number of flows makes a slotted operation undesirable as well. In order to guarantee a jitter upper bound in large scale networks, possibly over multiple administrative domains, a solution must be flexible and simple enough to be scalable.

This Recommendation specifies the requirements and framework for an effective and efficient solution for jitter bound guarantee for dynamic traffic with arbitrary input patterns in large scale networks including IMT-2020 and beyond.

7 Requirements

- Req_1. It is required to specify the source, the destination, and the characteristics (e.g., average data rate, maximum burst size, etc.) of a flow.
- Req_2. It is required to determine the latency upper bound of a flow within the network.
- Req_3. It is recommended to determine the latency lower bound of a flow within the network.
- Req_4. It is recommended to specify the requested end-to-end jitter upper bound of a flow.
- Req_5. It is required to specify the network arrival times of packets belonging to a flow. The clock of the specifying entity is not required to be time-synchronized with the other entities of the network.
- Req_6. It is required to specify the network departure times of packets belonging to a flow. The clock of the specifying entity is not required to be time-synchronized with the other entities of the network.

Req_7. It is required to hold a packet, at a functional entity located between the network boundary and the destination of a flow inclusive, for an interval based on information such as the network arrival times of the packets, the network departure times of the packets, the latency upper bound, and the requested jitter upper bound for a flow.

8 Framework

We consider the framework for guaranteeing the jitter bound in arbitrary sized networks with any type of topology, with random dynamic input traffic. The jitter is defined to be the latency difference of two packets within a flow, not a difference from a clock signal or from an average latency, as it is summarized in [b-IETF RFC 3393].

The framework is composed of:

- a network that guarantees latency upper bounds;
- time-stampers for packets with clocks that are not necessarily synchronized with the other nodes, which reside between source and network ingress interface inclusive;
- and buffers that can hold the packets for predetermined intervals, which reside between destination and network egress interface inclusive.

Figure 1 depicts the overall framework architecture. Only a single flow is depicted between the source and the destination in Figure 1. The arrival (a_n) , departure (b_n) , and buffer-out (c_n) times of nth packet of a flow are denoted. The end-to-end (E2E) latency and the 'E2E buffered latency' are defined to be (b_n-a_n) and (c_n-a_n) , respectively.

Figure 1 – The framework architecture for jitter bound guarantee

The buffer supports as many as the number of the flows destined for the destination. The destination in Figure 1 can be an end station or a deterministic network. The buffer holds packets in a flow according to predefined intervals. The decision of the buffering intervals involves the time-stamp value within each packet.

The network in between the time-stamper and the buffer can be of an arbitrarily sized network, including the Internet, IMT-2020 network, and beyond. The input traffic can be dynamic. It is required, as in Req_2, that the network be able to guarantee and identify the latency upper bounds of the flows. The network is also required to let the buffer be aware of the upper bounds of the flows it has to process. [ITU-T Y.3113] specifies the framework for latency upper bound guarantee in large scale networks. It is recommended that the latency lower bound information is provided by the network as well. The lower bound may be contributed from the transmission and propagation delays within the network.

The time-stamper marks on the packets their arrival times. One may use the time-stamping function in the real-time transport protocol (RTP) over user datagram protocol (UDP), or the transmission

control protocol (TCP). Either the source or the network ingress interface may stamp the packet. In the case that the source stamps, the time-stamp value is the packet departure time from the source, which is only a propagation time away from the packet arrival time to the network. Note that the time-stamper clock and the buffer clock are not required to be time-synchronized. All we need to know at the buffer is the differences between the time-stamps, i.e., the information about the inter-arrival times.

Let the arrival time of nth packet of a flow be a_n . Similarly let b_n be the departure time from the network, of nth packet. Then a_1 and b_1 are the arrival and departure times of the first packet of the flow, respectively. The first packet of a flow is defined to be the first packet generated by the source, among all the packets that belong to the flow. Further let c_n be the buffer-out time of the nth packet of the flow. Let g_n be the processing delay within the buffer of the n^{th} packet of the flow. The g_n includes but not limited to the time interval to look up the timestamp and to store/forward the packet. However, it does not include the intentional buffer-holding interval. By definition, $c_n - b_n \ge g_n$. Let $\max_n g_n = g$, the maximum packet processing delay in the buffer. It is assumed that a buffer can determine the value of g.

Let m be the jitter control parameter, which has a value between W and U, $W \le m \le U$. The rules for the buffer holding interval decision are given as follows:

- The buffer holds the first packet with the interval (m W), for some m, $W \le m \le U$. The buffer-out time of the first packet c_1 is then $(b_1 + m W)$.
 - The buffer holds nth packet until the time max{ $g + b_n$, $c_1 + (a_n a_1)$ }, for any n > 1.

The second rule states that a packet should be held in the buffer to make its inter-buffer-out time $(c_n - c_1)$ equals to the inter-arrival time $(a_n - a_1)$. However, when its departure from the network is too late, thus the inter-buffer-out time should be larger than the inter-arrival time, then just pass the buffer as soon as possible, i.e., $c_n = g + b_n$.

The jitter between packets i and j is defined as $|(c_i - a_i) - (c_j - a_j)|$. By following the above rules, the upper bounds of both the E2E buffered latency and the jitter are guaranteed. The theorems regarding the guaranteed bounds can be found in Appendix I. The proofs for the theorems can be found in [b-Joung-2021] and [b-Joung-2022].

With the framework defined in this Recommendation, any requested jitter bounds, including zero jitter, can be achieved by adjusting the parameter *m*, while still guaranteeing a latency bound.

9 Security considerations

The QoS management of IMT-2020 network includes user equipment, access networks, and a core network that are subject to security and privacy measures. Sensitive information should be protected as a high priority in order to avoid leaking and unauthorized access. Security and privacy concerns should be aligned with the requirements specified in [b-ITU-T Y.2701] and [b-ITU-T Y.3101].

Appendix I

The theorems for the latency and jitter bounds and their usage

(This appendix does not form an integral part of this Recommendation.)

This appendix provides three theorems for the latency and jitter bounds guaranteed by the rules, and an example of usage applying the rules.

Let the arrival time of nth packet of a flow be a_n . Similarly let b_n be the departure time from the network, of nth packet. Then a_1 and b_1 are the arrival and departure times of the first packet of the flow, respectively. The first packet of a flow is defined to be the first packet generated by the source, among all the packets that belong to the flow. Furthermore, let g_n be the processing delay within the buffer of the n^{th} packet of the flow. The g_n includes but is not limited to the time interval to look up the timestamp and to store/forward the packet. However, it does not include the intentional buffer-holding interval. By definition, $c_n - b_n \ge g_n$. Let $\max_n g_n = g$, the maximum packet processing delay in the buffer. It is assumed that a buffer can determine the value of g.

Let m be the jitter control parameter, which has a value between W and U, $W \le m \le U$. The rules for the buffer holding interval decision are given as follows:

- The buffer holds the first packet with the interval (m W), for some m, $W \le m \le U$. The buffer-out time of the first packet c_1 is then $(b_1 + m W)$.
- The buffer holds nth packet until the time max{ $g + b_n, c_1 + (a_n a_1)$ }, for any n > 1.

The second rule states that a packet should be held in the buffer to make its inter-buffer-out time (c_n-c_1) equals to the inter-arrival time (a_n-a_1) . However, when its departure from the network is too late, thus the inter-buffer-out time should be larger than the inter-arrival time, then just pass the buffer as soon as possible $(c_n = g + b_n)$.

The buffer requires information on W, U, b_1 , c_1 , b_n , and $(a_n - a_1)$. W is required to be informed by the network. The knowledge about b_1 and b_n are obtained by the buffer with its own clock. The buffer is required to keep the record of the time c_1 . Finally the time difference $(a_n - a_1)$ can be calculated from the difference of the time-stamps of the packets, which have been added at the source or the network ingress interface. Note that the time-stamper clock does not have to be synchronized with the buffer clock, i.e., the buffer does not need to know the exact values of a_n or a_1 . The implementation of the second rule is also feasible since max{ $g + b_n, c_1 + (a_n - a_1)$ } is greater than or equal to $g + b_n$, the packet departure time of the nth packet from the network plus the maximum processing delay in the buffer, by definition.

Since the time-stamping and the buffering functions defined in this Recommendation are implemented at the boundary of a network, the complexity does not increase as the network size increases.

The buffer has to be able to identify the first packet of a flow, in order to identify the time b₁ and the relative time-stamp values representing a₁. If a first-in first-out (FIFO) property is guaranteed in the network, then this is trivial. Otherwise, this is achievable by a flag at the header, indicating the packet is the first packet. A sequence number written in the packet header, such as the one in the RTP, would work as well. In networks without the FIFO property guarantee, if some of the earlier packets (e.g., 2nd or 3rd packets of a flow) arrive to the buffer sooner than the first packet, than they will be buffered until the first packet's buffer-out time plus the additional interval, as specified by the rule.

Figure I.1 depicts the relationships between the arrival, departure, and buffer-out times of packets of the flow under observation. The following theorems hold:

Figure I.1 – Relationship of packets' arrival (a_n) , departure (b_n) , and buffer-out (c_n) times

Theorem 1 (Upper bound of the E2E buffered latency). The latency from the packet arrival to the buffer-out times, $(c_n - a_n)$, is upper bound by (m+U-W).

Theorem 2 (Lower bound of the E2E buffered latency). The latency from the packet arrival to the buffer-out times, $(c_n - a_n)$, is lower bounded by m.

Theorem 3 (Upper bound of the jitter). The jitter is upper bounded by $(U + g - m)^+$.

The jitter between packets i and j is defined as $|(c_i - a_i) - (c_j - a_j)|$. x⁺denotes max(0, x). The proofs for the theorems can be found in [b-Joung-2021] and [b-Joung-2022].

For example, assume that we have a flow requesting the E2E buffered latency bound of 10 ms, and the jitter bound 1 ms. Then from Theorem 1, it is required that (m+U-W) = 10 ms, and from Theorem 3, it is also required that (U+g-m) = 1ms. Assume that g is twice the packet transmission time, 1 µs for 1000-bit length packet at 1 Gbps link. Therefore g = 2 µs. Based on these equations we obtain U ≈ 5.5 ms+W/2 and m ≈ 4.5 ms+W/2. As such, during the call setup process, upon the flow's requested specifications, the network and the buffer may assign U = (5.5 ms+W/2) for the E2E network latency upper bound, and m = (4.5 ms+W/2) parameter for the buffering. If W is not known, then one can assume W = 0.

As an extreme case, if one wants to achieve an absolute synchronization, i.e., the inter-departure times of the output packets $(c_n - c_{n-1})$ are exactly the same with the inter-arrival times $(a_n - a_{n-1})$, then one may set the jitter to be equal to zero. In this case we can achieve this synchronization by setting m = U, i.e., by holding the first packet long enough that the E2E buffered latency certainly exceeds the U. Then the E2E buffered latency upper bound becomes 2U-W, which is close to 2U when W is negligible. Note that letting m=U does not always mean the E2E buffered latency becomes 2U. It is just the upper bound in the worst case in which the first packet had already experienced the latency U in the network.

Bibliography

- [b-ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), Security requirements for NGN release 1.
- [b-ITU-T Y.3101] Recommendation ITU-T Y.3101 (2018), *Requirements of the IMT-2020 network*.
- [b-ITU-T Y-Sup.66] ITU-T Y-series Recommendations Supplement 66, (2020), *ITU-T Y.3000*series Network 2030 services: Capabilities, performance and design of new communication services for the Network 2030 applications.
- [b-ITU-R M.2083] Recommendation ITU-R M.2083-0 (2015), *IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond.*
- [b-IETF RFC 3393] IETF RFC 3393 (2002), IP Packet Delay Variation Metric for IP Performance Metrics (IPPM).
- [b-Joung-2021] Joung, J. and Kwon, J. (2021) Zero Jitter for Deterministic Networks without Time-synchronization, IEEE Access, Vol. 9, March.
- [b-Joung-2022] Joung, J., Kwon, J., Ryoo, J., and Cheung, T. (2022) Asynchronous Deterministic Network based on the Diffserv Architecture, IEEE Access, Vol. 10, Jan.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling, and associated measurements and tests
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems