
ITUPublications International Telecommunication Union

Recommendations Standardization Sector

Recommendation

ITU-T Y.3061 (12/2023)

SERIES Y: Global information infrastructure, Internet
protocol aspects, next-generation networks, Internet of
Things and smart cities

Future networks

Autonomous networks – Architecture
framework

ITU-T Y-SERIES RECOMMENDATIONS

Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

GLOBAL INFORMATION INFRASTRUCTURE Y.100-Y.999
 General Y.100-Y.199
 Services, applications and middleware Y.200-Y.299
 Network aspects Y.300-Y.399
 Interfaces and protocols Y.400-Y.499
 Numbering, addressing and naming Y.500-Y.599
 Operation, administration and maintenance Y.600-Y.699
 Security Y.700-Y.799
 Performances Y.800-Y.899
INTERNET PROTOCOL ASPECTS Y.1000-Y.1999
 General Y.1000-Y.1099
 Services and applications Y.1100-Y.1199
 Architecture, access, network capabilities and resource management Y.1200-Y.1299
 Transport Y.1300-Y.1399
 Interworking Y.1400-Y.1499
 Quality of service and network performance Y.1500-Y.1599
 Signalling Y.1600-Y.1699
 Operation, administration and maintenance Y.1700-Y.1799
 Charging Y.1800-Y.1899
 IPTV over NGN Y.1900-Y.1999
NEXT GENERATION NETWORKS Y.2000-Y.2999
 Frameworks and functional architecture models Y.2000-Y.2099
 Quality of Service and performance Y.2100-Y.2199
 Service aspects: Service capabilities and service architecture Y.2200-Y.2249
 Service aspects: Interoperability of services and networks in NGN Y.2250-Y.2299
 Enhancements to NGN Y.2300-Y.2399
 Network management Y.2400-Y.2499
 Computing power networks Y.2500-Y.2599
 Packet-based Networks Y.2600-Y.2699
 Security Y.2700-Y.2799
 Generalized mobility Y.2800-Y.2899
 Carrier grade open environment Y.2900-Y.2999
FUTURE NETWORKS Y.3000-Y.3499
CLOUD COMPUTING Y.3500-Y.3599
BIG DATA Y.3600-Y.3799
QUANTUM KEY DISTRIBUTION NETWORKS Y.3800-Y.3999
INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES Y.4000-Y.4999
 General Y.4000-Y.4049
 Definitions and terminologies Y.4050-Y.4099
 Requirements and use cases Y.4100-Y.4249
 Infrastructure, connectivity and networks Y.4250-Y.4399
 Frameworks, architectures and protocols Y.4400-Y.4549
 Services, applications, computation and data processing Y.4550-Y.4699
 Management, control and performance Y.4700-Y.4799
 Identification and security Y.4800-Y.4899
 Evaluation and assessment Y.4900-Y.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Y.3061 (12/2023) i

Recommendation ITU-T Y.3061

Autonomous networks – Architecture framework

Summary

Recommendation ITU-T Y.3061 provides requirements, architecture, components and related

sequence diagrams that together comprise an architecture framework for autonomous networks.

This Recommendation includes:

– requirements for the architecture;

– description of the architecture and its components;

– sequence diagrams explaining the interactions between architecture components.

History *

Edition Recommendation Approval Study Group Unique ID

1.0 ITU-T Y.3061 2023-12-14 13 11.1002/1000/15735

Keywords

Architecture framework, autonomous networks, components, dynamic adaptation, experimentation,

exploratory evolution, requirements, sequence diagram.

* To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID.

https://handle.itu.int/

ii Rec. ITU-T Y.3061 (12/2023)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2024

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Y.3061 (12/2023) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 3

5 Conventions .. 4

6 Introduction ... 4

7 Requirements for the architecture ... 6

7.1 Requirements for exploratory evolution ... 6

7.2 Requirements for online experimentation .. 10

7.3 Requirements for dynamic adaptation .. 12

7.4 Requirements for knowledge .. 16

7.5 Requirements for autonomous network orchestration 18

8 Architecture framework description ... 20

8.1 High-level architecture framework ... 20

8.2 Description of controller ... 21

8.3 Description of the sub-systems and their components 22

9 Sequence diagrams ... 31

9.1 Exploratory evolution of controllers .. 31

9.2 Experimentation for controllers .. 32

9.3 Dynamic adaptation of controllers ... 34

10 Security considerations ... 36

Appendix I – An example realization of the architecture framework for autonomous

networks with technology specific underlays ... 37

I.1 Examples of deployment locations of controllers .. 37

I.2 Example realization of exploratory evolution .. 38

I.3 Example realization of online experimentation .. 38

I.4 Example realization of dynamic adaptation ... 38

Appendix II – Self-reflective use of the AN architecture .. 39

Appendix III – External functionalities ... 40

Bibliography... 41

 Rec. ITU-T Y.3061 (12/2023) 1

Recommendation ITU-T Y.3061

Autonomous networks – Architecture framework

1 Scope

This Recommendation provides requirements, architecture components and related sequence

diagrams that together comprise an architecture framework for autonomous networks (ANs).

This Recommendation includes:

– requirements for the architecture;

– description of the architecture and its components;

– sequence diagrams explaining the interactions between the architecture components.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), Security requirements for NGN

release 1.

[ITU-T Y.3101] Recommendation ITU-T Y.3101 (2018), Requirements of the IMT-2020

network.

[ITU-T Y.3115] Recommendation ITU-T Y.3115 (2022), AI enabled cross-domain network

architectural requirements and framework for future networks including

IMT-2020.

[ITU-T Y.3172] Recommendation ITU-T Y.3172 (2019), Architectural framework for machine

learning in future networks including IMT-2020.

[ITU-T Y.3177] Recommendation ITU-T Y.3177 (2021), Architectural framework for artificial

intelligence-based network automation for resource and fault management in

future networks including IMT-2020.

[ITU-T Y.3320] Recommendation ITU-T Y.3320 (2014), Requirements for applying formal

methods to software-defined networking.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 knowledge [b-ETSI GS ENI 005]: Analysis of data and information, resulting in an

understanding of what the data and information mean.

NOTE – Knowledge represents a set of patterns that are used to explain, as well as predict, what has happened,

is happening, or is possible to happen in the future; it is based on acquisition of data, information, and skills

through experience and education.

3.1.2 machine learning (ML) [ITU-T Y.3172]: Processes that enable computational systems to

understand data and gain knowledge from it without necessarily being explicitly programmed.

NOTE 1 – This definition is adapted from [b-ETSI GR ENI 004].

NOTE 2 – Supervised machine learning and unsupervised machine learning are two examples of machine

learning types.

3.1.3 machine learning model [ITU-T Y.3172]: Model created by applying machine learning

techniques to data to learn from.

NOTE 1 – A machine learning model is used to generate predictions (e.g., regression, classification, clustering)

on new (untrained) data.

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the form of a software

(e.g., virtual machine, container) or hardware component (e.g., IoT device).

NOTE 3 – Machine learning techniques include learning algorithms (e.g., learning the function that maps input

data attributes to output data).

3.1.4 closed loop [ITU-T Y.3115]: A type of control mechanism in which the outputs and

behaviour of a system are monitored and analysed, and the behaviour of the system is adjusted so that

improvements may be achieved towards definable goals.

NOTE 1 – Observe, Orient, Decide and Act (OODA) [b-Boyd], MAPE-K [b-MAPE-K] are examples of closed

loop mechanism.

NOTE 2 – Examples of definable goal types are optimization of network resources' utilization and automated

service fulfilment and assurance. Goals may be defined using declarative mechanisms.

NOTE 3 – The system may consist of a set of managed entities, workflows and/or processes in a network.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 adaptation controller: A controller responsible for selecting candidate controllers ready for

integration and for executing their integration in the underlay network.

3.2.2 AN sandbox; autonomous network sandbox: An environment in which controllers can be

deployed, experimentally validated with the help of models of underlay networks and their effects

upon an underlay network evaluated, without affecting the underlay network.

NOTE – Domain-specific models, if available, may be used in experimental validation of controllers.

Examples of domain-specific models are packet flow models for various types of applications such as video

and chat, and radio channel propagation models for various channel conditions.

3.2.3 autonomy engine: An environment in which new controllers are autonomously generated

and validated.

3.2.4 controller: A workflow, open loop or closed loop of a system under control in an autonomous

network, composed of modules, integrated in a specific sequence, using interfaces exposed by the

modules, to solve a specific problem or satisfy a given requirement.

NOTE 1 – Modules composing the controller may be workflows, open loops, or closed loops.

NOTE 2 – Modules can be developed independently of the system under control before being integrated into

it.

NOTE 3 – Examples of system under control are managed entities, workflows or processes in an IMT-2020

network.

NOTE 4 – Exploratory evolution and real-time responsive online experimentation are examples of processes

independent of the development of modules.

3.2.5 controller design: A low-level, non-executable representation of a controller, containing

modules, their configurations and their parameter values, which is used to instantiate a controller.

 Rec. ITU-T Y.3061 (12/2023) 3

3.2.6 controller specification: A high-level, non-executable representation of a controller with the

metadata corresponding to the mandatory functionality of the controller and a utility function to be

achieved.

3.2.7 evolution controller: A controller responsible for the evolution of controllers by

manipulating the module instance used within a controller, the structure or topology of connections

between modules in a controller or the values chosen for the module(s) parameters.

3.2.8 experimentation: The process of executing the generated potential scenarios of

experimentation and trials upon the controllers, within the parameters of the scenarios and trials, and

then collecting the results.

NOTE – An example of experimentation is validating a traffic optimization controller against selected

scenarios in a simulation tool, to find the controller performance with respect to a set of pre-defined service

level agreements.

3.2.9 experimentation controller: A controller that generates potential scenarios of

experimentation based on controller specifications and additional information as provided by the

knowledge base, executes the scenarios in the autonomous network sandbox, collates and validates

the results of the experimentation.

3.2.10 knowledge base: An environment that manages storage, querying, export, import,

optimization and update of knowledge.

3.2.11 managed entity: A resource, service or controller that is managed.

NOTE – An example of a controller as a managed entity is a function tasked with traffic optimization in the

user plane. In this case, the managed entity (controller) exposes interfaces or application programming

interfaces to enable the collection of information, configuration and execution of the controller.

3.2.12 open loop: A type of control mechanism in which the outputs of the system under control

are not used to adjust the behaviour of the system.

3.2.13 workflow: Sequence of activities to describe or realize a given task executed by a system.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AF Application Function

AI Artificial Intelligence

AN Autonomous Network

API Application Programming Interface

AR Augmented Reality

CI/CD Continuous Integration and Continuous Delivery

CL Closed loop

CN Core Network

CP Control Plane

DNN Deep Neural Network

DNS Domain Name Service

E2E End to End

IMT-2020 International Mobile Telecommunications-2020

IoT Internet of Things

KB Knowledge Base

KPI Key Performance Indicator

MANO Management and Orchestration

MEC Multi-access Edge Computing

ML Machine Learning

NF Network Function

OC Operation Controller

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RCA Root Cause Analysis

SDK Software Development Kit

TOSCA Topology and Orchestration Specification for Cloud Applications

UE User Equipment

UPF User Plane Function

VR Virtual Reality

YAML Yet Another Meta Language

ZSM Zero touch Service Management

5 Conventions

In this Recommendation:

The phrase "is required" indicates a requirement that must be strictly followed and from which no

deviation is permitted, if conformance to this Recommendation is to be claimed.

The phrase "is recommended" indicates a requirement that is recommended but which is not

absolutely required. Thus, this requirement need not be present to claim conformance.

The phrase "can optionally" indicates an optional requirement that is permissible, without implying

any sense of being recommended. This term is not intended to imply that the vendor's implementation

must provide the option, and the feature can be optionally enabled by the network operator/service

provider. Rather, it means the vendor may optionally provide the feature and still claim conformance

with this Recommendation.

6 Introduction

ANs are those that possess the capabilities to monitor, operate, recover, heal, protect, optimize and

reconfigure themselves; these are commonly known as the self-* properties, where the asterisk can

be "healing", "operating", "optimization", etc. [b-Kephart].

The application of various ML approaches to a single or a set of targeted use cases aims to automate

the operation or management, reduce cost, optimize resources used, or automatically detect or predict

unusual situations or circumstances [b-ITU-T Y-Suppl. 55].

One common problem in the application of ML to these use cases is the problem of model drift.

Model drift is a phenomenon whereby either the goal of the ML model changes overtime (conceptual

drift) or when the available data no longer enables the model to form the same relationships (data

 Rec. ITU-T Y.3061 (12/2023) 5

drift). This problem can be seen most obviously in financial markets, where market predictions must

be frequently revisited to address the reality that the operating environment (the market) has changed

compared to when the model was made. Several tools and frameworks have been proposed to help

address these issues [b-Bega], [b-Whitley], [b-Maggi], [b-Sutton], [b-AutoML], [b-Real].

The reality is that ML is one consideration required to achieve the autonomous operation of the

network. Other considerations include emergence of new software and hardware technologies;

introduction of new services to the network and new ways of using the networks [b-El Hattachi];

definitions change – what is good today is not necessarily good tomorrow.

As the operational environment and context of our networks change, so too must the processes of

control that we use to operate them.

Closed-loop (CL) software control has become an increasingly popular way to enable the automatic

operation of the network. There is a range of CL approaches in different domains: efficient and

simple, strategic, tactical, centralized, distributed, intelligent, adaptive, hierarchical [b-Rossi],

[b-Blessed]. Irrespective of the approach or purpose, the logical concept of a CL [b-Kephart],

[b-Boyd] is a self-contained entity with the ability to operate or monitor one or more managed entities.

In this context, a CL suffers the same limitation in achieving AN operation since being bound by the

purpose for which it was designed, even in the cases when its design includes the support of some

dynamic adaptive capabilities.

The conclusion of the preceding is that no matter the domain of operation, technology, algorithm,

intelligence or data set used, an AN requires the ability to adapt beyond pre-defined operational

bounds not only in logic deployed to operate and manage the network, but also in the process that it

uses to generate such deployable logic, so called "design-time procedures" [ITU-T Y.3177].

The key purpose and goal of the architecture described in this Recommendation is to support the

continuous evolutionary-driven creation, validation, and application of a set of controllers to a

network and its services such that the network and its services may become autonomous. A controller

is a workflow, closed loop (CL) or open loop of a system under control. It is composed of modules,

integrated in a specific sequence, and using interfaces exposed by the modules, to solve a specific

problem or satisfy a given requirement. Modules composing the controller may be workflows, open

loops, or CLs and can be developed independently of the system under control before being integrated

into the system under control.

The continuous evolutionary-driven creation, validation and application of controllers is used in the

use cases to realize ANs [b-ITU-T Y-Suppl. 71] and the key concepts (see the following) required to

enable them.

In this way, the traditional autonomic self-* principles [b-Kephart] are attributed to the controllers

which are applied to the network and its services. The responsibility for adaptation of controllers

themselves over time is the responsibility of the architecture specified in this Recommendation. The

separation of the adaptation of a controller from the application of a controller to the network and its

services enables the complimentary efforts in standards and research for CL, ML, as well as the

general area of network management in the pursuit of ANs and directly addresses need for automatic

design-time procedures.

The main concepts behind ANs that are elaborated in this Recommendation are exploratory evolution,

real-time responsive online experimentation and dynamic adaptation.

The concept of exploratory evolution introduces the mechanisms and processes of exploration and

evolution to adapt controllers in response to changes in the underlay network. These processes

generate new controllers or update (evolve) existing controllers to respond to such changes and solve

the situation or task at hand more appropriately.

The continuous process, based on monitoring and optimization of deployed controllers in the underlay

network, is called real-time responsive online experimentation.

NOTE – Real-time responsive online experimentation is also called "experimentation" in this

Recommendation.

Dynamic adaptation is the final concept in equipping the network with autonomy and the ability to

handle new and hitherto unseen changes in network scenarios.

With consideration of the above concepts, an AN is one that can generate, adapt and integrate

controllers at run-time using network-specific information and can realize exploratory evolution, real-

time responsive online experimentation and dynamic adaptation.

In addition, the requirements for the architecture in clause 7 also consider the following concepts in

ANs: knowledge and orchestration.

The analysis of data and information from the network, resulting in an understanding of what the data

and information mean, is referred to as knowledge. Knowledge is used in ANs to support continuous

exploratory evolution, real-time online experimental validation and dynamic adaptation.

Orchestration involves managing workflows and processes in the AN, as well as steps in the lifecycle

of controllers. This also requires coordination with various other functions both within and outside

the AN.

7 Requirements for the architecture

This clause describes requirements for AN architecture.

7.1 Requirements for exploratory evolution

The following are requirements with respect to exploratory evolution in ANs.

Requirement Description

AN-arch-evo-req-001
AN architecture is required to have the ability to generate and update controller

designs.

AN-arch-evo-req-002

AN architecture is required to have the ability to generate potential scenarios of

exploratory evolution, taking the controller designs as input.

NOTE – Specific mechanisms or algorithms used for evolution lie outside the

scope of this Recommendation.

AN-arch-evo-req-003

AN architecture is required to have the ability to execute the potential scenarios

of exploratory evolution, taking the controller designs as input and to collate

the output in the form of evolvable controller designs.

NOTE – Several rounds of evolution may be applied on the same set of

controller designs.

AN-arch-evo-req-004

AN architecture is required to support the generation of potential

configurations for the integration of controllers to specific underlay networks.

NOTE 1 – Configurations may include reference points, application

programming interface (API) formats and data models. This generation of

configurations may take the controller designs as input along with the

description or metadata related to the underlay networks.

NOTE 2 – While the specific configurations for the integration of controllers

for specific use cases lie outside the scope of this Recommendation, the

specification of acceptable formats for representing such configurations is for

further study.

NOTE 3 – Examples of underlay networks are edge networks, core networks

(CNs), management plane and continuous integration and continuous delivery

(CI/CD) pipelines.

AN-arch-evo-req-005
AN architecture is required to enable the management of points of metadata

exchange in the AN workflow, with a peer entity.

 Rec. ITU-T Y.3061 (12/2023) 7

Requirement Description

NOTE 1 – Examples of metadata regarding the AN workflow include current

capabilities, status and context of the AN components, including knowledge

base (KB), controllers, orchestrators and simulators. Managing may include

identifying actors and points in the AN workflow, capturing metadata

regarding the workflow that can then be exchanged.

NOTE 2 – Examples of points of metadata exchange in the AN workflow are

the different stages of experimentation and dynamic adaptation.

NOTE 3 – The format used for the metadata exchange lies outside the scope of

this Recommendation.

NOTE 4 – Examples of AN workflow include the generation of scenarios for

potential experimentation and potential evolution.

NOTE 5 – Peers may include humans and machines.

AN-arch-evo-req-006

AN architecture is required to have the ability to integrate the impacts of

metadata exchange with peer entities involved in AN workflows.

NOTE – Examples of impacts of the metadata exchange are updates of KB and

selection of API versions to use for adaptation.

AN-arch-evo-req-007

AN architecture is required to support the optimization of controllers.

NOTE – Examples of optimization of controllers are optimization of

adaptation mechanisms like data collection, data quality and frequency. Other

examples are optimization of CL implementations like root cause analysis

(RCA) mechanisms and recommendations on better algorithms for achieving

the same objective. Other examples are formation or evolution of new

controllers to address new or unforeseen problems in the underlay network.

AN-arch-evo-req-008

AN architecture is required to support the ability to discover characteristics of

controllers that are relevant for enabling evolution.

NOTE – Examples of characteristics of controllers that are relevant for

evolution are: capabilities exposed by and requirements to be satisfied for the

controllers.

AN-arch-evo-req-009
AN architecture is required to support the capability to recommend modules

that can satisfy the characteristics of controllers.

AN-arch-evo-req-010

AN architecture is required to enable the integration of controllers from

different domains to achieve complex use cases.

NOTE – For example, an AN may integrate controllers in different domains of

the network, like radio access network (RAN) and CN domains.

AN-arch-evo-req-011

AN architecture is required to enable the utilization of declarative

specifications of use cases while deciding the design, deployment and

management of controllers.

AN-arch-evo-req-012

AN architecture is required to allow for the utilization of declarative

specifications of use cases to capture both use case requirements from

applications and deployment requirements from underlay networks.

AN-arch-evo-req-013

AN architecture is required to support the capability to choose a compatible set

of interfaces to integrate with underlay network services.

NOTE – Examples of interfaces that may be used include those to monitor the

services and controllers in the underlay networks.

AN-arch-evo-req-014

AN architecture is required to support the creation or recommendation of

candidate designs for potential network services and interfaces in the underlay

networks, which may possibly satisfy new use cases.

NOTE – Design creation may also be triggered in response to an observed fault

in underlay networks.

AN-arch-evo-req-015

AN architecture is required to consider use case specific requirements

(including operator preferences) while determining operator preferences for

design, deployment and management of controllers, including connectivity

options between various domains.

Requirement Description

NOTE – For example, in rural areas, end-users may have usage patterns with

characteristics dependent on applications (e.g., low mobility, high bandwidth).

The choice of last mile connectivity options may be influenced by such

preferences.

AN-arch-evo-req-016

AN architecture is required to support capabilities enabling the evolution of

inter-domain connectivity among controllers deployed in various domains of

the underlay network.

AN-arch-evo-req-017

AN architecture is required to support adaptation to the evolution of

applications at run-time.

NOTE – An example of adapting to the evolution of applications at run-time is

onboarding new applications or changes in existing applications deployed by

service providers in the underlay network.

AN-arch-evo-req-018

AN architecture is required to support adaptation to changes in external

systems that the AN interfaces with.

NOTE – Examples of external systems are various management and

orchestration (MANO) systems, policies and corresponding management

systems, workflow management systems and user management systems.

External systems deployed by the operator may be provided by multiple

vendors.

AN-arch-evo-req-019

AN architecture is required to support the ability to recommend changes in

capabilities to monitor, configure and analyse parameters from underlay

networks.

AN-arch-evo-req-020

AN architecture is required to support learning of metric derivations from

collected parameters and measurements, where such learning may change.

NOTE – Derivation of metrics may use artificial intelligence (AI)/ML

techniques. Derivation mechanisms may change over time or events. In such

cases, mechanisms such as re-training may be applied to update derivation

models.

AN-arch-evo-req-021

AN architecture is required to support the derivation of requirements for

service life cycle management in underlay networks based on analysis of

requirements from different domains in the network.

NOTE 1 – For example, CLs for optimization in a RAN may be configured

based on analysis of requirements from the CN.

NOTE 2 – Service life cycle management includes resource allocation, scaling

and optimization.

AN-arch-evo-req-022

AN architecture is required to support optimization of intent based on

monitoring of the performance of derived controllers deployed in various

domains of the underlay network and their life cycles.

NOTE – For example, derivation of intent in the CN may be optimized based

on the feedback obtained from monitoring the (derived) closed loops deployed

in the RAN.

AN-arch-evo-req-023

AN architecture is required to support application development capabilities to

automate the design and instantiation of underlay network services.

NOTE – For example, platforms such as Kubernetes [b-kubernetes], multi-

access edge computing (MEC) [b-ETSI GS MEC 012] or O-RAN [b-ORAN]

may expose software development kits (SDKs) or APIs for automation of

design and deployment of network services.

AN-arch-evo-req-024

AN architecture is required to support application development capabilities to

automate the design or instantiation of controllers in various levels of the

underlay network.

NOTE – For example, platforms such as Open Networking Foundation [b-

ONF], O-RAN [b-ORAN] and Open Network Automation Platform [b-ONAP]

allow design and deployment of xApps [b-ORAN] and AI/ML models

 Rec. ITU-T Y.3061 (12/2023) 9

Requirement Description

respectively. In some cases, third party repositories may be accessed to select

and deploy xApps or AI/ML models.

AN-arch-evo-req-025

AN architecture is required to enable design, development and deployment

applications by the AN at various levels of the underlay network.

NOTE 1 – For example, in coordination with the edge network orchestrating

function, AN may provide a design for vertical applications to be deployed at a

specific edge location.

NOTE 2 – The design and development of applications may be achieved in

coordination with CI/CD pipelines.

AN-arch-evo-req-026

AN architecture is required to support capabilities to monitor feedback from

controllers deployed at various domains of the underlay network in order to

optimize the design, development and deployment of controllers in general.

NOTE – For example, in coordination with the edge network orchestrating

function, AN may optimize the existing design for vertical applications to be

deployed at a specific edge location.

AN-arch-evo-req-027

AN architecture is required to support the ability to trigger re-design of

network services based on monitoring of network services in underlay

networks.

AN-arch-evo-req-028

AN architecture is required to provide means for the AN to trigger an evolution

of network services based on the monitoring of their lifecycle in underlay

networks.

AN-arch-evo-req-029 AN architecture is required to support usage of various types of controller for

problem discovery in various domains of the underlay network.

NOTE – For example, data collection agents may be designed separately from

the analysis. Data collection agents may be deployed in the edge network,

whereas analysis may be performed in the core cloud.

AN-arch-evo-req-030 AN architecture is required to allow the AN providing evolution of controllers

as a service to underlay networks.

NOTE – Underlay networks may have different types of controller deployed

including those from third parties. The AN discovers the characteristics of

different types of controller and provides evolution as a service that results in

evolved controller candidates for deployment in underlay networks.

AN-arch-evo-req-031

AN architecture is required to support capabilities for the AN to discover and

utilize different evolution services for controllers.

NOTE – Underlay networks may need evolution of controllers deployed

including those from third parties. AN discovers the characteristics of different

types of evolution service for controllers and utilizes them. Utilizing the

services of evolution as a service may include providing intents as inputs,

providing evolution algorithms as inputs, providing module or controller

repositories as input and accepting evolved controller candidates as outputs.

AN-arch-evo-req-032

AN architecture is required to support the ability for the AN to customize

controllers that can be deployed in various types of underlay network, based on

their characteristics.

AN-arch-evo-req-033

AN architecture is required to support decomposition of controller designs into

parts, which can be mapped to various parts of the underlay network based on

capabilities and requirements.

NOTE 1 – An example of decomposition is splitting of user plane programs

into modules that can be hosted in various user plane functions in the underlay

network.

NOTE 2 – An example of considerations on decomposition of controller

designs is resource requirements of the controllers and capabilities of the

underlay network.

Requirement Description

AN-arch-evo-req-034

AN architecture is recommended to support monitoring and optimization of the

decomposition, design, placement or deployment of controllers in various parts

of the underlay network.

AN-arch-evo-req-035
AN architecture is required to support composition of controllers deployed in

various parts of the underlay network to form complex controllers.

AN-arch-evo-req-036

AN architecture is recommended to enable the integration and plugin of

algorithms into controllers.

NOTE – Algorithms may be provided by a third party, ML or AI models

AN-arch-evo-req-037

AN architecture is recommended to enable AN discovery of service level

trade-offs.

NOTE – An example of a service level trade-off is greater accuracy of

inference versus larger resource for training of AI/ML models.

AN-arch-evo-req-038

AN architecture is recommended to support adaptive design of controllers

using hardware adaptation techniques.

NOTE 1 – Examples of hardware adaptation techniques include detection of

hardware capabilities and adaptive design.

NOTE 2 – Examples of hardware adaptation techniques include optimization

of AI/ML models to field programmable gate array architectures. Adaptive

design may involve considerations of design trade-offs such as energy

efficiency and accuracy.

AN-arch-evo-req-039

AN architecture is recommended to provide capabilities for the AN to support

feedback and optimization of hardware adaption process for controllers.

NOTE – For example, the hardware adaptation process for controllers may

involve: 1) translation of high-level description to an intermediate

representation amenable to optimization; 2) optimization considering design

trade-offs; and 3) hardware implementation and integration. Translation and

optimization steps 1) and 2) may themselves be tuned based on monitoring and

feedback from the controllers integrated in the hardware.

AN-arch-evo-req-040

AN architecture can optionally support the capability to recommend new

capabilities and requirements for the network functions (NFs) deployed in

underlay networks.

AN-arch-evo-req-041

AN architecture can optionally support the ability for the AN to monitor,

optimize and create new intercontroller coordination strategies, along with the

design of new controllers.

NOTE – Optimization may use AI/ML mechanisms.

7.2 Requirements for online experimentation

The following are requirements with respect to online experimentation in ANs.

Requirement Description

AN-arch-exp-req-001

AN architecture is required to support the validation and processing of

controller descriptions, so that exploratory evolution can be applied to these

controller designs.

NOTE 1 – Exploratory evolution may result, among others, in interconnection

of descriptions together to form complex controller designs or in a list of

controllers.

NOTE 2 – Exploratory evolution may be a triggered or periodic process

AN-arch-exp-req-002

AN architecture is required to support the ability to generate potential scenarios

for experimentation, taking controller designs as input.

NOTE 1 – Specific configurations and limits of experiments may be specified

in the metadata and constraints related to controller designs.

 Rec. ITU-T Y.3061 (12/2023) 11

Requirement Description

NOTE 2 – Specific mechanisms for arriving at scenarios for experimentation

may use AI/ML analytics or other forms of analytics and lie outside the scope

of this Recommendation.

AN-arch-exp-req-003

AN architecture is required to have the ability to execute experimentation and

to collate and validate its results, considering the metadata and constraints, as

well as corresponding controller designs.

NOTE 1 – Experimentations may have several phases, e.g., simulation driven,

testbed driven or canary test driven. The phases of an experimentation may be

configurable and automated, for example, as per a workflow.

NOTE 2 – The specific success and failure criteria for the experiments lie

outside the scope of this Recommendation. Acceptable formats for

representing metadata and constraints related to potential success and failure as

related to a use case are for further study.

AN-arch-exp-req-004

AN architecture is required to support the ability to verify, before the actual

integration of controllers into the underlay networks, that the proposed

evolution of the controllers is compatible with the underlay networks.

AN-arch-exp-req-005
AN architecture is required to support the automation and abstraction of

experimentation of underlay network services.

AN-arch-exp-req-006

AN architecture is required to provide capabilities for the creation of strategies

regarding the deployment of experimentation scenarios, testing and validation

of controllers in a sandbox environment.

AN-arch-exp-req-007
AN architecture is required to support capabilities allowing the AN to deploy,

test and validate controllers in a sandbox environment.

AN-arch-exp-req-008

AN architecture is required to provide capabilities allowing the AN to analyse

the results from experiments in a sandbox environment and to use those results

to update the KB, optimize deployed controllers in underlay networks as well

as optimize the experimentation strategies in sandbox.

NOTE – An example of controller optimization is the selection of new

controllers or modules. An example of experimentation strategy optimization is

the selection of new test scenarios.

AN-arch-exp-req-009

AN architecture is required to support the ability of the AN to experiment with

the generation of changes to user specific models that may help ease of

experience for users in hitherto unforeseen circumstances.

NOTE – AN experimentation may be done in a sandbox using simulators.

AN-arch-exp-req-010

AN architecture is required to support capabilities for the AN to provide

experimentation of controllers as a service to underlay networks.

NOTE – Underlay networks may have different types of controller deployed

including those from third parties. An AN discovers the characteristics of

different types of controller, providing different experimentation services and

results as output for various types of experimentation scenario.

AN-arch-exp-req-011

AN architecture is required to support means for the AN to import and export

configurations for simulators.

NOTE – Examples of configurations for simulators are simulated network

topologies, simulated number of devices, simulated traffic settings and CL

interfaces.

AN-arch-exp-req-012

AN architecture is required to enable the AN to asynchronously trigger

experimentations.

NOTE – Examples of asynchronous triggering are evolution of new set of

controllers that need to be validated, updated network configurations by

operator, provisioning or update of NFs in the underlay network.

AN-arch-exp-req-013
AN architecture is required to enable the validation of experimentation results

by the AN.

Requirement Description

NOTE – Examples of validation include sanity checks, functional and non-

functional tests.

AN-arch-exp-req-014

AN architecture is required to support the ability of the AN to provide

feedback on the design of controllers based on the results of experimentation.

NOTE – Examples of feedback are experimentation logs, test scenarios along

with detailed results.

AN-arch-exp-req-015

AN architecture is required to support the ability of the AN to design

experimentation scenarios based on use case descriptions.

NOTE – An example of design representation is a topology and orchestration

specification for cloud applications (TOSCA) definition, derived from use case

representations.

AN-arch-exp-req-016

AN architecture is required to provide the ability for the AN to discover and

utilize other experimentation services for controllers.

NOTE – Underlay networks may have experimentation of controllers deployed

including that from third parties. AN discovers the characteristics of different

types of experimentation service for controllers and utilizes them. Utilizing the

services of experimentation as a service may include providing intents as

inputs, providing experimentation algorithms as inputs, providing module or

controller repositories as input and accepting experimentation results as

outputs.

AN-arch-exp-req-017

AN architecture is required to support the AN ability to select experimentation

scenarios, data generation and simulators, based on the selected reference

points in the underlay network where the controllers can be deployed.

AN-arch-exp-req-018

AN architecture is recommended to enable the AN to create a virtual model of

real environment for experimentation.

NOTE – Creating a virtual model may use visualization and perception

mechanisms like augmented reality/virtual reality (AR/VR), simulation engines

and data generation mechanisms.

AN-arch-exp-req-019

AN architecture is recommended to support experimentation and derivation of

intercontroller coordination strategies.

NOTE – Examples of intercontroller interactions are resolution of conflicting

goals for various use cases, like power consumption versus coverage

optimization. An example of a relevant strategy is a game theory-based

cooperative and non-cooperative mechanism.

AN-arch-exp-req-020

AN architecture is recommended to enable the integration of various forms of

testing components including simulators and data generators, including those

provided by third parties.

AN-arch-exp-req-021

AN architecture can optionally support experimentation in a domain-specific

sandbox and optimization of domain-specific intents.

NOTE – An ML sandbox [ITU-T Y.3172] is an example of a domain-specific

sandbox.

7.3 Requirements for dynamic adaptation

The following are requirements with respect to dynamic adaptation in ANs.

Requirement Description

AN-arch-adp-req-001

AN architecture is required to support the ability to select candidates from a set

of controllers ready for integration and to execute their integration to specific

underlay networks, taking as input the generated configurations for integration.

NOTE 1 – The specific criteria for selecting controllers for integration lie

outside the scope of this Recommendation. Formats for representing such

criteria are for further study.

 Rec. ITU-T Y.3061 (12/2023) 13

Requirement Description

NOTE 2 – The specific mechanisms used for the integration of controllers to

underlay networks lie outside the scope of this Recommendation. Examples of

such mechanisms are service-based architectures [b-ETSI TS 129 500] and

continuous integration mechanisms [b-ITU-T Y.3525].

AN-arch-adp-req-002
AN architecture is required to allow AN decisions about new opportunities for

the deployment of controllers in underlay networks.

AN-arch-adp-req-003
AN architecture is required to allow AN decisions about the configuration of

controllers that are to be deployed in underlay networks.

AN-arch-adp-req-004
AN architecture is required to enable the reporting and monitoring of AN

components and procedures by humans or other automation mechanisms.

AN-arch-adp-req-005
AN architecture is required to support the discovery of deployed controllers in

underlay networks, including those deployed by third party providers.

AN-arch-adp-req-006

AN architecture is required to support the discovery and consumption of

services provided by service management frameworks.

NOTE – Examples of service management frameworks are ONAP [b-ONAP]

and Open Source Management and Orchestration [b-OSM].

AN-arch-adp-req-007

AN architecture is required to support the discovery of interfaces with underlay

networks used for integration.

NOTE – Interfaces with underlay networks may use specific APIs, e.g., for

data collection or configuration of NFs. Discovery of interfaces may involve

API metadata including parameters, versions and range of parameters.

AN-arch-adp-req-008

AN architecture is required to enable, on a per use case basis, the discovery of

the underlay networks' specific parameters candidate for optimization, data

points for collection in the underlay network and the relevant key performance

indicators (KPIs) for tracking.

NOTE – For example, in edge deployments, underlay networks may use MEC

APIs [b-ETSI GS MEC 012].

AN-arch-adp-req-009

AN architecture is required to support the ability to customize the integration

of controllers into underlay networks, considering the integration options

exposed by the underlay networks.

NOTE – Examples of integration options are interfaces, parameters and

configurations exposed by underlay networks. Examples of underlay networks

are those for industry vertical applications.

AN-arch-adp-req-010

AN architecture is required to support the automation and abstraction of the

evolution of underlay network services.

NOTE 1 – Examples of evolution of underlay network services include updates

to support new features, migration to new service platforms and technologies.

NOTE 2 – A service provider may monitor the evolution but does not manually

execute the evolution of underlay network services.

AN-arch-adp-req-011

AN architecture is required to support the discovery of service management

frameworks used by underlay networks.

NOTE – This may help in managing and automating the lifecycle of underlay

network services by the AN.

AN-arch-adp-req-012

AN architecture is required to support the E2E integration of controllers, taking

into account the evolution of connectivity options in the underlay networks.

NOTE – For example, access network may be using various different types of

connectivity technology that may evolve over time.

AN-arch-adp-req-013

AN architecture is required to support the monitoring of dynamic changes in

capabilities of monitoring, configuration and analysis of parameters from

underlay networks.

NOTE – Given the independent evolution of controllers, of the underlay

networks and of the applications deployed, mechanisms such as those for

Requirement Description

discovery, publishing and subscription may be used to provide flexibility in

monitoring parameters.

AN-arch-adp-req-014

AN architecture is required to support the utilization of dynamic changes in

capabilities of monitoring, configuring and analysis of parameters from

underlay networks.

AN-arch-adp-req-015
AN architecture is required to support capabilities enabling the deployment of

controllers that utilize both simulated and real networks as those for underlay.

AN-arch-adp-req-016

AN architecture is required to support capabilities for the discovery of

topology and architecture connectivity or split options, as well as capabilities

in the underlay networks, and to consider such options while integrating

controllers in underlay networks.

NOTE – For example, 3GPP networks may have various architecture split

options [b-3GPP TR 38.801].

AN-arch-adp-req-017

AN architecture is required to have capabilities to integrate intelligent

controllers at various levels of the underlay network.

NOTE – Examples of intelligent controllers are controllers integrating AI/ML

models.

AN-arch-adp-req-018

AN architecture is required to enable the integration of controllers to manage

networks and applications at various levels of the underlay network.

NOTE – Examples of functionalities of such controllers are placement of

functions and choice of architecture splits.

AN-arch-adp-req-019
AN architecture is required to enable AN run-time discovery of new use cases

for optimization in underlay networks.

AN-arch-adp-req-020

AN architecture is required to support usage of various types of controller for

problem isolation in various domains of the underlay network.

NOTE – Collaborative communication between controllers may be used to

isolate the problem.

AN-arch-adp-req-021

AN architecture is required to support AN design or selection of controllers

based on problems isolated in the underlay network.

NOTE – For example, third party controllers from repositories may be selected

to address the problem.

AN-arch-adp-req-022
AN architecture is required to support AN deployment of new controllers with

new capabilities to address problems detected in the underlay network.

AN-arch-adp-req-023

AN architecture is required to support AN ability to select reference points in

the underlay network where controllers could be deployed.

NOTE – Examples of considerations for AN while selecting the reference

points are trade-offs in terms of benefits (i.e., spectral efficiency, latency, etc)

as against the computational overheads of training of models or

communication overheads.

AN-arch-adp-req-024

AN architecture is required to support AN ability to select controllers for

integration into the underlay network based on the results of experimentation,

which are in turn based on the reference points in the underlay network where

the controllers could be deployed.

AN-arch-adp-req-025

AN architecture is required to support AN ability to integrate controllers,

selected based on experimentation results, at reference points in the underlay

network where the controllers could be deployed.

NOTE – This may involve control and data flow modifications according to

the integration methods for controllers in the underlay network.

AN-arch-adp-req-026 AN architecture is required to enable AN continuous monitoring of capabilities

at various levels of underlay networks and trigger updates of controllers based

on any changes to the capabilities.

 Rec. ITU-T Y.3061 (12/2023) 15

Requirement Description

NOTE – Examples of changes to capabilities of underlay networks are addition

or deletion of NFs, updates to software versions.

AN-arch-adp-req-027

AN architecture is required to support the placement or deployment of

controllers in various parts of the underlay network.

NOTE – Deployment may consider resource availability and other capabilities

of the underlay network along with the requirements of the controller.

AN-arch-adp-req-028

AN architecture is required to support integration that is coupled tightly and

loosely with underlay networks.

NOTE 1 – The capability and preference of the underlay network to perform a

tightly or loosely coupled AN integration may be discovered at the time of

integration with the underlay network.

NOTE 2 – In tightly coupled integration, the underlay network may utilize the

components provided by an AN. Whereas in loosely coupled integration, the

underlay network may deploy and use the underlay network provider

components for an AN.

AN-arch-adp-req-029

AN architecture is required to enable controllers to use domain-specific

mechanisms to manage resource sharing and service integrations, across

domains in the underlay networks.

NOTE – Examples of domain-specific mechanisms include dynamic service

agreements and distributed ledger technologies.

AN-arch-adp-req-030

AN architecture is required to support the discovery by the AN of the need for

new controllers based on monitoring of the underlay network.

NOTE – The need for new controllers may be discovered based on monitoring

of various parameters or KPIs.

AN-arch-adp-req-031

AN architecture is required to support, based on the discovery of the need for

new controllers, the selection of new controllers from controller repositories, as

candidates to be deployed in the underlay network.

NOTE – Controller repositories may be external or internal to the AN provider.

AN-arch-adp-req-032

AN architecture is required to support the evaluation of new candidate

controllers to be deployed in the underlay network from those selected from

repository candidates.

NOTE – Evaluation may be done based on use case specific metrics.

AN-arch-adp-req-033

AN architecture is required to support the run-time deployment of new

controllers in the underlay network based on the candidates evaluated from

repositories.

AN-arch-adp-req-034
AN architecture is recommended to enable the monitoring of controllers that

are already deployed in underlay networks.

AN-arch-adp-req-035

AN architecture can optionally provide the ability to influence the services

provided by service management frameworks.

NOTE – Examples of AN influence upon services provided by service

management frameworks are passing policies and intents to service

management frameworks. Service management frameworks may use them to

design or deploy new or modified services.

AN-arch-adp-req-036

AN architecture can optionally support capabilities enabling the correlation of

declarative specifications of network services with those of controllers and the

use of that correlation to integrate controllers in the same or different domains

of the network.

NOTE – Examples of correlation of declarative specifications of controllers

with those of network services include mapping of interfaces, capabilities and

requirements. Other examples are identifying opportunities for deriving

specifications, e.g., using substitution mechanisms in TOSCA [b-TOSCA].

Requirement Description

AN-arch-adp-req-037

AN architecture can optionally enable optimal placement of controllers by the

AN based on application requirements and capabilities at various domains of

the underlay network.

AN-arch-adp-req-038

AN architecture can optionally support peer-to-peer interaction between

controllers without the intervention of a centralized coordinating function.

NOTE – Example of peer interaction is exchange of metadata for resource

allocation and load balancing.

7.4 Requirements for knowledge

The following are requirements with respect to knowledge in ANs.

Requirement Description

AN-arch-knw-req-001

AN architecture is required to provide capabilities for the management of

knowledge related to ANs.

NOTE – Managing knowledge includes its storage, querying, export, import

and optimization.

AN-arch-knw-req-002
AN architecture is required to enable the update of knowledge based on the

various processes involved in the AN.

AN-arch-knw-req-003

AN architecture is required to support the utilization of components like stored

controllers and knowledge to deploy and manage controllers in underlay

networks.

NOTE – Examples of components include stored controllers and knowledge.

AN-arch-knw-req-004

AN architecture is required to enable the storage and management of

supporting artefacts for the lifecycle management of controllers.

NOTE 1 – Examples of supporting artefacts are knowledge, AI/ML or other

types of models, workflow representations and policies which need to be

applied while managing the lifecycle of controllers.

NOTE 2 – Examples of management of supporting artefacts are storage in a

KB, creation, modification, deletion, and storage of AI/ML models in an ML

model repository [b-ITU-T Y.3176] and of policies, query and discovery of

various artefacts.

AN-arch-knw-req-005
AN architecture is required to support the production of human and machine-

readable reports of periodic or aperiodic nature.

AN-arch-knw-req-006

AN architecture is required to support capabilities for import and export of

controller specifications at various stages of their management.

NOTE – Examples of various stages of management of controller

specifications are before and after exploratory evolution.

AN-arch-knw-req-007

AN architecture is required to support the integration of derivation mechanisms

provided by a third party for metrics from collected parameters and

measurements.

NOTE – An example of derived metrics is quality of experience (QoE) while

an example of collected measurements is a quality of service (QoS) parameter.

AN-arch-knw-req-008

AN architecture is required to support the capture of both service KPI

requirements, as well as deployment preferences and considerations in the

intent.

AN-arch-knw-req-009

AN architecture is required to provide capabilities for the AN to capture

domain specificities.

NOTE 1 – Examples of domain specificities are latency criteria, location

information and data privacy requirements.

NOTE 2 – Examples of capturing domain specificities are TOSCA service

definitions. The design of controllers may also be represented using TOSCA

declarative definitions.

 Rec. ITU-T Y.3061 (12/2023) 17

Requirement Description

AN-arch-knw-req-010

AN architecture is required to provide the ability for the AN to capture service

specificities.

NOTE – Examples of service specificities include service level requirements

for QoS.

AN-arch-knw-req-011

AN architecture is required to support the AN capability to use inputs from an

external environment and user specific models to design as well as apply

controller outputs to underlay networks.

NOTE – An example of input from external environments is a mobility

prediction model for users with assistive needs or groups of users.

AN-arch-knw-req-012

AN architecture is required to support the AN capability to use user

preferences while designing and applying controller outputs to underlay

networks.

NOTE – Standard representations of user profiles or preferences, or user

models with assistive needs are examples of user preferences.

AN-arch-knw-req-013

AN architecture is required to provide means for the AN to integrate data

collection mechanisms.

NOTE – Data collection mechanisms may include AR/VR glasses or other

types of sensor. Data collection mechanisms may be provided by third parties.

AN-arch-knw-req-014

AN architecture is required to enable discovery by the AN of capabilities

available in the various domains of underlay networks.

NOTE – Capabilities of the underlay networks may differ based on their

resource availability, e.g., compute, memory, already deployed controllers.

AN-arch-knw-req-015

AN architecture is required to support means for the AN to use an

interoperable format for storing controllers.

NOTE – Various components in AN may read and write from the stored

controllers, e.g., an evolution controller may read existing controllers (even

from third parties) and utilize them to compose new ones, which are in turn

written in the storage.

AN-arch-knw-req-016
AN architecture is required to support description of use cases in a declarative

format.

AN-arch-knw-req-017

AN architecture is required to support derivation of domain-specific intents

from the use case description.

NOTE – ML intent [ITU-T Y.3172] is an example of domain-specific intent.

AN-arch-knw-req-018 AN architecture is recommended to enable the analysis and correlation of

domain-specific, unstructured data in natural languages from underlay

networks.

NOTE 1 – Examples of domain-specific unstructured data in natural languages

are logs from NFs.

NOTE 2 – Advances in analysis of natural language text may be exploited

from third party models and repositories.

AN-arch-knw-req-019

AN architecture is recommended to support capabilities to derive knowledge

from the analysis and correlation of domain-specific unstructured data in

natural languages from underlay networks.

AN-arch-knw-req-020

AN architecture is recommended to enable the transfer by the AN of user

specific models between different domains in the underlay network.

NOTE – This may help in updating of models in other domains, updating of

simulators.

AN-arch-knw-req-021

AN architecture is recommended to provide means for the AN to use virtual

models along with real-world input to analyse and optimize the underlay

network and to provide feedback to operators.

Requirement Description

NOTE – Analysis may use AI/ML models. Optimization may involve

configurations in the underlay network. Feedback to operators may be

generated in AR/VR formats.

AN-arch-knw-req-022

AN architecture can optionally support the ability to integrate in the AN third

party modules or applications for collection, analysis, or feedback.

NOTE – For example, an SDK may be exposed to third party developers who

may develop new applications to analyse AR collected data.

AN-arch-knw-req-023

AN architecture can optionally enable the creation of use case descriptions that

can then be decomposed to controllers, which can be deployed at various

domains of the underlay network, based on the capabilities at those levels of

the underlay network.

NOTE – Use case descriptions may be in the form of intents.

AN-arch-knw-req-024
AN architecture can optionally support the ability of the AN to discover the

characteristics of underlay networks at run-time.

7.5 Requirements for autonomous network orchestration

The following are requirements with respect to orchestration in ANs.

Requirement Description

AN-arch-ano-req-001

AN architecture is required to support the ability to parse, validate and translate

abstracted use case descriptions, with high-level objectives of a controller into

controller designs.

NOTE 1 – The abstracted use case descriptions may be hand crafted as

unstructured text or derived from controller specifications.

NOTE 2 – Controller designs may be provided using structured languages

formats (e.g., TOSCA [b-TOSCA]) and may be structured in a way that

facilitates downstream exploration, experimentation, and adaptation.

NOTE 3 – Controller designs may use and enable properties derived from

various domains in the network, e.g., properties allowing description of use

cases of physical layer, network layer and application layer.

NOTE 4 – Examples of use cases are:

a) RCA and diagnosis of network elements based on real-time analysis of data –

see FG-AN-usecase-006 in [b-ITU-T Y-Suppl. 71].

b) Intelligent energy-saving solution based on automatic data acquisition,

AI-based energy consumption modelling and inference, facilities parameters

control policies decision, facilities adjustment actions implementation,

energy-saving result evaluation and control policies continuous optimization

– see FG-AN-usecase-007 in [b-ITU-T Y-Suppl. 71].

c) Optimal adjustment of antenna parameters with AI-enabled multi-

dimensional analysis and prediction – see FG-AN-usecase-008 in [b-ITU-T

Y-Suppl. 71].

d) Management of third party vertical applications and related services in the

network – see FG-AN-usecase-010 in [b-ITU-T Y-Suppl. 71].

AN-arch-ano-req-002

AN architecture is required to have the ability to manage the lifecycle of

controllers.

NOTE 1 – Examples of management tasks of a controller's lifecycle include

creating a configuration for the controller (based on the capabilities of the

underlay network), creating an instance of the controller in the underlay

network, monitoring the execution of the controller in the underlay network

and subsequently optimizing controllers or related parameters.

NOTE 2 – Examples of subsequent optimization are recommendations on new

AI/ML analysis techniques, data collection techniques, evolution of controllers

to move up the intelligence level [b-ITU-T Y.3173].

 Rec. ITU-T Y.3061 (12/2023) 19

Requirement Description

AN-arch-ano-req-003

AN architecture is required to enable the management of lifecycle of

controllers based on their output.

NOTE – Examples are management of lifecycle of controllers in underlay

network (such as RAN), by controllers in underlay network (e.g., CN), creation

and optimal positioning of controllers in the RAN by controllers in a higher

domain, as well as evolution, experimentation and deployment of controllers.

AN-arch-ano-req-004

AN architecture is required to enable the consumption of services exposed by

service management frameworks used by underlay networks.

NOTE 1 – Services exposed by service management frameworks include

configuration, lifecycle management and customization.

NOTE 2 – Examples of service management frameworks include ETSI zero

touch service management (ZSM) framework [b-ETSI GS ZSM 009-1].

AN-arch-ano-req-005

AN architecture is required to support capabilities enabling AN adaptation to

the evolution of underlay network services, which may take place

independently of AN evolution.

NOTE – The modification of underlay network services may be managed by

an entity different to that managing AN evolution.

AN-arch-ano-req-006

AN architecture is required to utilize the available connectivity options

provided by the underlay networks to deploy and integrate controllers in

different levels of underlay networks.

AN-arch-ano-req-007
AN architecture is required to support the monitoring of changes to underlay

network connectivity among controllers deployed in various domains.

AN-arch-ano-req-008
AN architecture is required to support the exposure of a single point to monitor

and manage AN functionalities deployed by the operator.

AN-arch-ano-req-009

AN architecture is required to support the discovery of changes to NFs in

underlay networks and to include the changed functions in the AN while

providing AN functionalities like evolution.

NOTE – This enables plug and play of new NFs in underlay networks.

AN-arch-ano-req-010

AN architecture is required to support the provision of inputs to external

systems regarding potential scenarios and requirements.

NOTE – Examples of inputs are reports generated from AN on new use case

scenarios, such as those for experimentation.

AN-arch-ano-req-011

AN architecture is required to support the ability of the AN to create, store,

customize and export controllers that can be deployed in various types of

underlay network.

AN-arch-ano-req-012

AN architecture is required to support interfaces between the AN and resource

orchestration functions in the underlay network.

NOTE 1 – Examples of resource orchestration mechanisms are not only

network function virtualization MANO but also domain-specific resource

managers like multi-user schedulers in RAN.

NOTE 2 – The AN interfaces may be used to trigger actions or monitoring.

AN-arch-ano-req-013

AN architecture can optionally support the ability of the AN to use third party

toolsets for the development and visualization of controllers.

NOTE – Graphical user interfaces to edit workflows are examples of third

party toolsets.

AN-arch-ano-req-014

AN architecture can optionally support input of use case design within the AN,

whereas design and deployment of controllers in underlay networks may be

done by third parties.

8 Architecture framework description

8.1 High-level architecture framework

This clause describes the high-level architecture framework for ANs. The goal of this architecture is

to support continuous evolution-driven creation, validation and application of a set of controllers to

a network and its services to render them autonomous.

As shown in Figure 1, the high-level architecture framework for ANs consists of the autonomy engine

(clause 8.3.1), the dynamic adaptation subsystem (clause 8.3.2), the KB system (clause 8.3.3), the

AN orchestrator (clause 8.3.4), the underlay network (clause 8.3.5), and the E2E network orchestrator

(clause 8.3.6).

Clause 8.3 describes them in detail; they are briefly introduced here. The autonomy engine embodies

the key concepts of exploratory evolution and online experimentation and is responsible for the

creation and validation of controllers. The dynamic adaptation subsystem embodies the key concept

of dynamic adaptation and is responsible for equipping the underlay network with autonomy via

controllers. The KB system manages the lifecycle and optimization of knowledge. The AN

orchestrator is responsible for managing the workflows and processes in the AN, as well as the steps

in the lifecycle of controllers. The underlay network is a telecommunication network with its NFs.

The E2E network orchestrator is responsible for managing and orchestrating control entities within

the AN, including the underlay.

Figure 1 – High-level architecture framework for autonomous networks

The reference points, as shown in Figure 1, are as follows.

 Rec. ITU-T Y.3061 (12/2023) 21

RP-AN-1, RP-AN-2, RP-AN-3 and RP-AN-6: Reference points between the KB subsystem and

underlay network, dynamic adaptation subsystem, autonomy engine, E2E network orchestrator and

AN orchestrator respectively. As discussed in clause 7.4, these reference points enable access to the

KB from other subsystems in the architecture framework.

RP-AN-4: Reference point between the autonomy engine and dynamic adaptation subsystem. This

reference point is used to provide evolutionary exploration and experimentation functionalities to the

dynamic adaptation subsystem.

RP-AN-5: Reference point between the dynamic adaptation subsystem and underlay network. This

reference point is used to provide selection and integration of controllers to an underlay, as the

underlay undergoes changes at run-time.

RP-AN-7, RP-AN-8 and RP-AN-11: Reference points between the AN orchestrator and KB,

autonomy engine and dynamic adaptation subsystem, respectively. These reference points enable the

AN orchestrator to manage the workflows and processes in the AN, and the lifecycle of controllers.

RP-AN-9, RP-AN-10, RP-AN-12: Reference points between the E2E network orchestrator and AN

orchestrator, autonomy engine and dynamic adaptation subsystem, respectively. These reference

points are used by the E2E network orchestrator to manage and orchestrate control network entities

in the AN framework. These reference points may use existing procedures as specified in

[b-ITU-T Y.3100].

RP-AN-13: Reference point between E2E network orchestrator and underlay network. This reference

point is used by the E2E network orchestrator to manage and orchestrate control network entities in

the underlay network. This reference point may use existing procedures as specified in

[b-ITU-T Y.3100].

NOTE 1 – Detailed description of the reference points shown in Figure 1 is for future study.

An example realization of the architecture framework for ANs can be found in Appendix I (IMT-2020

network underlay).

In addition to the architecture components, there are functionalities external to this architecture

framework, which may enhance the AN architecture. See Appendix III for details.

NOTE 2 – The details of the interaction of these external functionalities with the architecture framework

through the architecture framework reference points lie outside the scope of this Recommendation.

8.2 Description of controller

In this architecture, the term controller is introduced. As introduced in clause 6, a controller is a

workflow, open loop or CL [ITU-T Y.3115] composed of modules, integrated in a specific sequence,

using interfaces exposed by the modules, which can be developed independently of the system under

control before integration within it to solve a specific problem or satisfy a given requirement.

NOTE 1 – Modules may themselves be workflows, open loops, or CLs. Other examples of modules include

aggregation functions, domain name service (DNS) configuration interfaces, functions gathering orchestrator

statistics, an entire deep neural network (DNN) model and a single layer of a DNN model.

Exploratory evolution and experimentation are examples of functionalities in the AN that act upon

controllers. Exploratory evolution hosts evolution controllers, which provide the functionality that

creates and modifies a controller in accordance with the system under control and the real-time

changes therein. The experimentation subsystem hosts an experimentation controller, which provides

the functionality, that validates controllers using inputs from a combination of underlay network,

simulators or testbeds. In addition, the dynamic adaptation subsystem hosts the curation, selection

and operation controllers that provide the functionality of the process of continuous integration of

controllers to an underlay as the underlay undergoes changes at run-time.

NOTE 2 – Examples of a system under control are managed entities, workflows or processes in an IMT-2020

network.

The architecture described here enables the design, creation and adaptation of these controllers.

This architecture inputs modules that are amenable to composition and produces controllers that are

in turn modular.

Figure 2 shows the different forms interaction of controllers with the underlay network.

Figure 2 – Controllers and underlay network interaction

The controller interactions are with:

• hardware components [b-Umuroglu];

• software components;

• an orchestrator or other software control mechanisms;

 NOTE 3 – Other software control mechanisms, such as workflow tools [b-FRINX], may be

considered as orchestrators.

• other controllers.

 NOTE 4 – Building upon this simple representation, hierarchies of controllers may be formed.

8.3 Description of the sub-systems and their components

This clause describes the sub-systems of the high-level architecture framework shown in Figure 1,

and associated components.

8.3.1 Autonomy engine

Autonomy engine refers to the grouping of the evolutionary exploration subsystem and the

experimentation subsystem described in clauses 8.3.1.1 and 8.3.1.2, respectively. Together, these

architectural components enable the more general trial and error process where new candidate

controllers are generated in the former and validated by the latter. This grouping directly addresses

the need for automatic "design-time procedures" [ITU-T Y.3177].

In addition to controllers, Appendix II describes how the AN architecture can be used to achieve

autonomous operation of itself.

8.3.1.1 Exploratory evolution subsystem

Exploratory evolution enables exploration and evolution to adapt controllers in response to changes

in the underlay network. Knowledge stored in the KB subsystem is used in ANs for supporting

continuous exploratory evolution. As explained in clause 8.1, reference point RP-AN-3 allows the

exploratory evolution subsystem to interface with the KB subsystem and RP-AN-4 allows exploratory

evolution subsystem to interface towards the dynamic adaptation subsystem. Figure 3 shows an

overview of the exploratory evolution subsystem and its relation to the KB subsystem as new

controllers are generated or existing controllers are updated (evolved) as part of exploratory

evolution.

 Rec. ITU-T Y.3061 (12/2023) 23

Figure 3 – Exploratory evolution overview

As stated in clause 0, any approach towards an AN requires the ability to adapt its operation. This

adaptation can be motivated by changing operation environments, new technological innovation,

faults, human error, the pursuit of contextual optimality, etc. Additionally, based on the requirements

in clause 0, this architecture requires the ability to alter the logic that is used to operate ANs (i.e.,

controllers). Without such functionality, it is not possible to achieve adaptation that is sufficiently

flexible across the spectrum of use cases, operational environments, technological innovations and

potential human errors.

NOTE 1 – It is important to remember that controllers may themselves possess the ability to adapt their outputs

based on learning or experience – so called cognitive controllers [b-Mwanje]. Even in this case, there is a limit

to their ability to adapt to the unknown (e.g., a never before seen anomaly), to embrace new technologies (i.e.,

a new transport protocol) or to handle error. In all cases, human intervention is required.

Controller specifications are high-level, non-executable representations of a controller with the

metadata corresponding to necessary functionality of the controller and a utility function to be

achieved. Controller designs are low-level, non-executable representations of controller containing

modules, their configurations, and their parameter values that are used to instantiate a controller.

Controller designs are derived from controller specifications by the evolution controller.

Collections of controllers may be formed with each controller tasked with the same purpose but with

different compositions.

Hence, the evolutionary exploration subsystem is responsible for:

1) the automatic generation of controller designs from composable software module

specifications;

2) the automatic modification of controller designs based on existing controller and module

specifications or designs;

3) the automatic generation of controller designs from controller specifications;

4) the automatic modification of controller designs based on existing controller specifications.

Exploratory evolution will enable automated design or modification of controllers and their

hierarchies to explore the range of possible controller logics – and hence how the controller will adapt

to the operational environment.

NOTE 2 – One approach to achieve such automated design for controllers and controller hierarchies is

population-based AI techniques, such as evolutionary computing [b-Whitley].

8.3.1.1.1 Evolution controller

Exploratory evolution is the process that creates and modifies a controller in accordance with the

system under control and the real-time changes therein.

NOTE 1 – An example of a process that creates a controller is the composition of controllers from modules or

other CLs. This may involve the selection of modules that are used for composition.

NOTE 2 – An example of a process that modifies an existing controller is the dynamic change in its structure

by adding new modules, deleting existing modules, replacing existing modules or rearranging the structure of

its modules, in accordance with the real-time changes in the system under control.

An evolution controller is the component responsible for managing the application of exploratory

evolution on controllers. Exploratory evolution is the ability to modify the structure and configuration

of a controller. This assumes that the controllers are composed of modular and configurable elements

or building blocks. Thus, a controller's structure may be modified by:

• the configuration of each software module's parameters;

• the selection of which modules are present within a controller;

• the relationships between the modules within the controller.

The process of exploratory evolution is agnostic about whether the current operational environment

is known ahead of time or is completely new and unseen. The process includes generating options for

exploratory evolution and, based on the characteristics of the controller and the KB, applying such

evolutions to various types of controller. As part of this, controller characteristics may be discovered;

new controllers may be composed from modules or other controllers to provide new capabilities in

the network. Declarative representation of use cases, provided by AN orchestrator, is used as input

by the evolution controller. Controller designs may be updated by the evolution controller based on

the exploratory evolution.

NOTE 3 – Examples of processes to drive the modification of a controller are:

1) biologically inspired artificial evolution, as found in evolutionary computing or genetic programming

[b-Anderson], [b-Whitley];

2) Bayesian optimization [b-Maggi];

3) game theoretic approaches [b-Ahmad].

Specific algorithms, including those provided by third party solution providers, used for exploratory

evolution lie outside the scope of this Recommendation.

NOTE 4 – Examples of application of exploratory evolution in various application contexts follow.

1) A RAN channel scheduling controller is an example of a controller used to allocate radio resources

to users in a multi-user environment. Exploratory evolution is applied to a RAN channel-scheduling

controller in response to the change of radio channel feedback from user equipment (UE). This may

include selecting the most appropriate algorithm from a set of alternatives.

2) An anomaly detection controller is an example of a controller used to detect abnormal states in the

operation of a network service, such as security attacks or peaks in resource usage for NF. In this

context, the new approaches of data fusion algorithms [b-Bleiholder] may be applied. Exploratory

evolution is applied to an anomaly detection controller by optionally using and configuring newly

provided data fusion algorithms as input to it.

3) A time-to-live controller is an example of a controller used to configure the time duration for which

a certain content is cached in a content distribution network server. In a time-to-live controller in a

caching system at the edge, optimization of the timeout parameter(s) is an example of application of

exploratory evolution.

4) A scaling controller is an example of a controller used to increase or decrease the resource allocation

for an NF. In this context, exploratory evolution may be applied by controlling the configuration of

the scaling method of deployed controllers in a specific network domain.

 Rec. ITU-T Y.3061 (12/2023) 25

NOTE 5 – Optimization of exploratory evolution, e.g., reducing the time taken for exploratory evolution in

previously seen operational environments, is possible by using accumulated knowledge. However, such

optimization scenarios lie outside the scope of this Recommendation.

8.3.1.2 Experimentation subsystem

The experimentation subsystem is concerned with the validation of controllersError! Reference

source not found.. It designs, orchestrates and executes experimental scenarios. These are supported

by a KB subsystem, AN orchestrator and E2E network orchestrator.

Figure 4 shows an overview of the experimentation subsystem and its relationship with the KB

subsystem, AN orchestrator and E2E network orchestrator through various reference points described

in clause 8.1.

Reference point RP-AN-3 allows the experimentation subsystem to interface with the KB subsystem

as experimentations are designed and updated as part of experimentation process. Reference point

RP-AN-4 allows the experimentation subsystem to interface with dynamic adaptation subsystem.

Reference points RP-AN-8 and RP-AN-10 allow the experimentation subsystem to orchestrate the

experimentations.

Figure 4 – Experimentation subsystem

Controllers must be validated before being integrated to the underlay to ensure that they are free of

errors and meet both functional and non-functional requirements.

Validation is a spectrum of activities that may encompass one or more tasks, including static testing,

simulation, testbed deployment and canary testing. In addition, validation can also be used to assess

non-functional properties, such as trust, providing confidence in the "handover of work, duties, or

decisions" to the architecture.

To compliment these validation activities, the experimentation controller also requires additional

input from the underlay network and its configuration. As shown in Figure 4Error! Reference source

not found., this information should be stored and made available from the KB. Representative

examples of such data are discussed in clause 8.3.3.

8.3.1.2.1 Experimentation controller

Experimentation is the process that validates controllers using inputs from a combination of underlay

network, simulators or testbeds. The process of experimentation ensures that the controller under

experimentation satisfies the use case requirements and is compatible with deployment in the intended

underlay.

An experimentation controller is a component that generates potential scenarios for experimentation

based on controller designs and representations of the use cases. The experimentation controller uses

additional information, as provided by the KB and AN orchestrator, in the process of generating

scenarios for experimentation.

NOTE 1 – Methods for generating scenarios for experimentation are assisted by additional information

including knowledge captured in the KB or ML. The experimentation controller may exploit the structured

representation (e.g., TOSCA yet another meta language (YAML) [b-TOSCA]) of the controllers to derive

scenarios for experimentation. Experimentation scenarios can also be provided by third parties for use by the

experimentation controller.

In addition to generating scenarios for experimentation, the experimentation controller executes the

scenarios in the AN sandbox, collates and validates the results of the experimentation. Reports may

be generated by the experimentation controller, which captures information from the steps of

generating scenarios, execution and validation of controllers. These reports may be shared with

humans or used for analysis by algorithmic methods. Experimentation scenarios may be optimized

as result of analysis of the experiments.

NOTE 2 – Selection of new validation or test scenarios are examples of optimizations applied to

experimentation scenarios.

NOTE 3 – In the process of experimentation, the experimentation controller can use different types of

component such as simulators, data generators hosted in the AN sandbox, including those provided by third

parties. Experimentation may be triggered by various AN workflows that necessitate validation of controllers,

i.e., their software updates. The process of experimentation may be configurable, e.g., it may be triggered

periodically, asynchronously.

NOTE 4 – Examples of experimentation in various application contexts follow.

• The use of static sanity checking, such as formal methods [ITU-T Y.3320] or model checking to

ensure that provided MANO solutions are well formed against pre-set rules.

• The use of simulators or digital twins in offline validation of controllers. These simulators or digital

twins can support the same interfaces as underlays.

• The use of digital twins [b-Almasan] in online validation of controllers before deployment.

NOTE 5 – Online validation involves use of timescales comparable to real underlays, e.g., validation of

controllers (xApps) [b-ORAN] using digital twins.

• Combinations of the preceding to achieve broader coverage of validation, from the offline validation

to online validations during the operation of the underlay.

8.3.1.2.2 AN sandbox

An AN sandbox is an environment in which controllers can be deployed, experimentally validated

with the help of (domain-specific) models of underlays, and their effects upon an underlay evaluated,

without affecting the underlay.

NOTE 1 – The AN sandbox generates reports regarding the experimental validation of controllers. These

reports are collated by the experimentation controller and the KB is updated.

NOTE 2 – The domain-specific models of underlays are generated using inputs from underlays. These inputs

are used in configuring simulators in AN sandbox. For example, the packets per second to be used to simulate

a real-world scenario. In addition, the AN sandbox simulates scenarios that are rarely or never seen in

underlays. For example, a burst of traffic which rarely occurs in real network.

An AN sandbox hosts different types of components such as simulators, data generators, including

those provided by third parties. Experimentation controller may trigger experiments of various AN

workflows that necessitate validation of controllers, i.e., software update of controllers.

8.3.2 Dynamic adaptation subsystem

Dynamic adaptation equips the underlay network with autonomy and the ability to handle new and

hitherto unseen changes in network scenarios. Knowledge stored in the KB subsystem is used in ANs

to support continuous dynamic adaptation. The AN orchestrator and E2E network orchestrator

support the orchestration needed for dynamic adaptation towards an underlay network.

 Rec. ITU-T Y.3061 (12/2023) 27

As explained in clause 8.1, reference point RP-AN-2 allows the dynamic adaptation subsystem to

interface with the KB subsystem. Reference points RP-AN-11 and RP-AN-12 allow the dynamic

adaptation subsystem to interface with the AN orchestrator and E2E network orchestrator,

respectively. Reference point RP-AN-4 allows the dynamic adaptation subsystem to interface with

experimentation subsystem and exploratory evolution subsystem. RP-AN-5 allows the dynamic

adaptation subsystem to interface with underlay network. RP-AN-13 allows the E2E network

orchestrator to interface with underlay network.

The dynamic adaptation subsystem is responsible for curating a set of controllers that may be

considered as fit for purpose or safe enough to try and selecting a subset of controllers for integration

with the underlay.

NOTE 1 – Here, fitness for purpose is evaluated based on the fitness function or utility score obtained from

the experimentation subsystem (clause 8.3.1.2).

This set of controllers is drawn from the controllers that were validated by the experimentation

subsystem. Additionally, this subsystem is responsible for which of these curated controllers should

be selected for actual deployment in the management of the managed entity. Precisely when, under

what conditions, or with what frequency curation or selection happens are configurable properties of

the curation and selection processes themselves. This is necessary as each managed entity, as well as

the operational and business environments in which they operate, vary from use case to use case. To

accommodate this, the curation process is guided by requirements. Examples of such requirements

may include:

• the size of the curated controller lists;

• the average utility of the curated controller lists;

• the diversity of the controllers within the curated controller lists;

• the utility threshold required to be considered to enter or remain within the curated controller

lists.

NOTE 2 – It is important to remember that metrics such as KPI, QoS and QoE are expected to be represented

within a controller's utility function.

As shown in Figure 5, the controllers are stored within the network information base. As the evolvable

controllers undergo constant evolution, it is the responsibility of the dynamic adaptation to bring

stability to the operation of the managed entity by creating a level of separation between evolvable

controllers managed by the autonomy engine and the operation controller integrated with the managed

entity.

Figure 5 – Dynamic adaptation subsystem

As also shown in Figure 5, the curation and selection processes are realized as controllers. As such,

their internal structure may be composed (and subsequently evolved) from different modules as

required. Controllers for curation and selection are discussed in clause 8.3.2.1.

NOTE 3 – For example, a selection controller may be composed of modules that send the trend of fluctuation

of user populations, network traffic or resource demands. As discussed in clause 8.2, such controllers may be

implemented using ML pipelines.

Selection and integration of controllers to a managed entity require a stable set of functioning

controllers that can respond correctly in subsecond timescales, depending on the use case in question.

Accordingly, the autonomy engine and dynamic adaptation subsystem correspond to the design-time

and run-time concepts, respectively, as described in [ITU-T Y.3177].

8.3.2.1 Adaptation controller

Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the

underlay undergoes changes at run-time. Integration of controllers may involve multiple domains of

the underlay.

NOTE 1 – Examples of underlays are edge networks, CNs, management plane and CI/CD pipelines.

Integration of controllers into the underlay involves usage of underlay specific APIs, customization of

interfaces, configurations and interface elements used for integration. Examples of changes undergone by the

underlay are updates in software or hardware components, failures in software or hardware components,

configuration changes, or other external dependencies (including those provided by third parties). Continuous

integration includes updating the controllers in the underlay to handle the changes undergone by the underlay.

Examples can include:

• scaling via the routing of traffic to different processing nodes in either the use of control

plane (CP) via DNS updates or SDN configurations, see FG-AN-usecase-040 in

[b-ITU-T Y-Suppl. 71];

 Rec. ITU-T Y.3061 (12/2023) 29

• scaling via the number, replication and distribution of bare metal, virtual machine or

container resources attached to network services, see FG-AN-usecase-018 in

[b-ITU-T Y-Suppl. 71];

• scaling via the priority or relative bandwidth allocation of radio spectrum to different user or

use case categories in RAN, see FG-AN-usecase-032 in [b-ITU-T Y-Suppl. 71].

NOTE 2 – Specific configurations for integration of controllers for specific use cases may lie outside the scope

of this Recommendation.

An adaptation controller is the component in an AN responsible for selecting candidate controllers

from a set of generated controller configurations that are ready for integration and executes the

integration to the underlay. An adaptation controller monitors deployed controllers and the underlay,

deciding opportunities for new controller integrations to the underlay. In monitoring a deployed

controller, an adaptation controller discovers underlay specific parameters (including those provided

by third parties) for optimization, data points of collection and KPIs for tracking, and may update

such knowledge to the KB.

An adaptation controller has two parts: a curation controller (responsible for selection and

maintenance of the controllers within the curated controller lists from the evolvable controllers) and

a selection controller (responsible for the selection of an operational controller of services from the

curated controller lists).

Generation of configurations for adaptation may take the controller design as input along with the

description or metadata related to the underlays. In the process of adaptation, the adaptation controller

may utilize the services provided by service management frameworks such as ONAP [b-ONAP].

Reports may be generated by an adaptation controller that captures information from the process of

adaptation. These reports may be shared with humans or used for analysis by algorithmic methods.

An adaptation process may be optimized as a result of analysis of the reports.

NOTE 3 – Examples of adaptation in various application contexts follow.

• The need to use different traffic shaping algorithms for various geographical contexts, such as urban

vs rural.

• Business priorities may change over time, e.g., prioritization of performance KPIs over energy

efficiency or prioritization of internal applications over third party applications. These changes in

business priorities may necessitate the use of different controllers for scheduling virtual machines or

containers.

• There could be a need to deploy new technology in order to improve or optimize operation, including

adding new capabilities that previously did not exist, i.e., new AI/ML algorithms or new data fusion

approaches to blend the increasing number of data sources.

• There could be a need to deploy new technology in order to address errors or faults, i.e., data

acquisition or actuation software for new hardware devices or adaptation software to account for

incompatibilities in deployed technology.

Selection of candidate controllers from a set of generated controller configurations is followed by the

processes used to drive adaptation in the underlay. Examples of processes used to drive adaptation

are:

• simple threshold-based replacement of one deployed controller with another, where threshold

is determined against a controller's performance;

• replacement, based on a PID controller [b-Bennet], of one deployed controller with another;

• the use of an AI/ML model in the prediction of future operation and response to pre-

emptively exchange a deployed controller [b-ITU-T Y-Suppl. 71];

• combinations of the preceding in concert with knowledge stored within the KB.

8.3.2.2 Operation controller

An operation controller is a controller responsible for the operation of a managed entity. Operation

may include analysing the data (e.g., throughput or latency) related to the managed entity and

applying actions (e.g., scale in or out, or migration) to the managed entity. An operation controller is

selected and applied to the managed entity by selection controller. After application of an operation

controller to a managed entity, the controller is continuously monitored by the selection controller to

provide the most effective operation of the managed entity.

While evolution controllers, experimentation controllers, and adaptation controllers are responsible

for activities within the high-level architecture framework, operation controllers are responsible for

activities outside the high-level architecture framework.

8.3.2.3 Service endpoints

As discussed in [b-ITU-T Y.3104], the NFs interact with each other to provide the IMT-2020 network

services specified in [b-ITU-T Y.3102]. The NFs within the CN CP interact with each other using

service interfaces.

The service interfaces used for interaction between the dynamic adaptation subsystem and the

underlay network are referred to as service endpoints.

8.3.3 Knowledge base subsystem

ANs require the collection, description, usage, storage and analysis of data. The analysis of data and

information, resulting in an understanding of what the data and information mean, is often referred to

as knowledge.

Data, information and knowledge are required for the controllers to operate the managed entity in its

goals of supporting the continuous exploratory evolution, real-time online experimental validation

and dynamic adaptation.

A KB is a subsystem that manages storage, querying, export and import, as well as optimization and

update knowledge.

NOTE 1 – Knowledge includes metadata that is derived from the capabilities and status of AN components.

This knowledge is stored and exchanged as part of interactions of AN components with the KB. Knowledge

can be derived from different sources including structured or unstructured data from various actors involved

in a use case or various experiments in the AN sandbox.

Managing knowledge includes its storage, querying, export, import and optimization. AN workflows,

including exchange of knowledge between AN components, may in turn result in update of the KB.

NOTE 2 – Uses of knowledge stored in the KB by other components include facilitation of the deployment

and management of controllers in underlays, and selection and optimization of strategies for the

experimentation stage.

Examples of knowledge stored in a KB follow.

1) Relevant descriptions of modules and controller metadata taxonomies and ontologies.

2) Configurations: an underlay network configuration represents the various arrangement,

relationships, contents, and settings of the elements of an underlay network as may be

required by the online real-time experimentation subsystem to build and configure an

experimental underlay network or other architectural components, e.g., network topology,

host configuration and location related parameters, types of services and application

requirements. The configurations may be represented using OASIS TOSCA YAML

[b-TOSCA]

3) Metrics: metrics are the data related to the status and performance of different components

of the architecture, controllers, operating environment, underlay network and managed

 Rec. ITU-T Y.3061 (12/2023) 31

entities, e.g., resource usage such as central processing unit usage, workload such as packet

rate, performance metrics such as QoS.

8.3.4 AN orchestrator

The AN orchestrator is the component responsible for managing workflows and processes in the AN

and steps in the lifecycle of controllers. To manage the workflows and processes in AN, the AN

orchestrator coordinates with various other functions within and outside the AN.

NOTE 1 – Examples of workflows and processes in the AN are interactions with the E2E network orchestrator,

KB and AN component repositories. Examples of controller instances are:

• a set of Java objects to be executed on the Java virtual machine;

• a workflow of tasks as represented in the FRINX machine [b-FRINX];

• a CL in the ZSM framework [b-ETSI GS ZSM 009-1];

• a controller in the ONAP framework [b-Kumar];

• an ML pipeline [ITU-T Y.3172].

NOTE 2 – Steps in the lifecycle of controllers are their creation or instantiation from controller designs,

storage, validation, update, deletion, discovery, configuration, deployment and monitoring.

NOTE 3 – Some steps in other functions applied to controllers are outside the scope of lifecycle of controllers,

i.e., optimization of controllers may be achieved with the help of functions external to the AN.

Being part of the management plane, the AN orchestrator provides an interface to human operators

in the form of reports regarding the functioning of the AN and human interfaces for configuring the

AN, where applicable.

8.3.5 Underlay network

An underlay network is a telecommunication network with its NFs. An underlay network may provide

interfaces that facilitate application of controllers.

The underlay network may consist of hardware and software components, in addition to management

components such as orchestrators.

NOTE – An IMT-2020 network is an example of an underlay network.

8.3.6 E2E network orchestrator

As defined in [b-ITU-T Y.3100] in the context of IMT-2020, orchestration is the set of processes

aimed at the automated arrangement, coordination, instantiation and use of NFs and resources for

both physical and virtual infrastructures by usage of optimization criteria.

Based on the orchestration, the E2E network orchestrator is a collection of functions, interfacing with

subsystems in the AN architecture framework, to manage and orchestrate control network entities in

the AN including the underlay network.

9 Sequence diagrams

This clause gives the sequence diagrams showing the interactions between architecture framework

components and subsystems. Specific reference points over which the messages are exchanged are

not shown here, but all the reference points are shown in Figure 1.

9.1 Exploratory evolution of controllers

Exploratory evolution of controllers involves creation and modification of controllers in accordance

with the underlay network and the real-time changes therein. An example scenario where controllers

are created is shown in Figure 6. In this example, the AN operator provides a new use case

specification from which new controller specifications are derived. There are additional example

scenarios in which the evolution controller reuses an existing controller specification and applies the

exploratory evolution process.

Figure 6 – Creation of controllers

The steps involved in the scenario described in Figure 6 are as follows.

1) The AN operator provides a use case specification to the AN orchestrator. The use case

specification includes the actors, their relationships and utility functions corresponding to the

use case.

2) The AN orchestrator derives an evolution specification from that of the use case. The

evolution specification has a controller specification with the metadata corresponding to the

necessary functionality of the controller and a utility function to be achieved (after the

exploratory evolution process).

3) The evolution controller queries the KB for modules corresponding to the controller

specification.

4) The KB replies to the evolution controller with the available modules corresponding to the

request.

5) This is an optional step where the evolution controller requests knowledge from the KB

relevant to the use case specification or the exploratory evolution process.

6) Corresponding to the optional step 5, the KB Base responds with the knowledge requested.

7) The evolution controller applies the exploratory evolution process to create new controller(s).

This includes composition of controllers from modules or other CLs as described in

clause 8.2.

8) The evolution controller updates the KB. This includes storing the generated controllers in

the KB.

NOTE – Discussion of the logic used to drive the exploratory evolution process lies outside the scope of this

Recommendation. Examples of such processes can be found in clause 8.3.1.1.

9.2 Experimentation for controllers

Experimentation for controllers involves their validation using inputs from a combination of underlay

network, simulators or testbeds. An example scenario where evolvable controllers are validated is

 Rec. ITU-T Y.3061 (12/2023) 33

given in Figure 7. In this example, a new experiment specification, which has controller specifications

to be validated, is provided by the AN orchestrator. The experimentation controller derives scenarios

for experimentation based on the experiment specification. Based on these scenarios, the

experimentation controller interacts with the KB to gather additional supporting specifications

(experiments or controllers) and relevant knowledge to design an experiment to validate the

controllers included in the experiment specification.

NOTE 1 – There are additional example scenarios where the experimentation controller reuses an existing

experiment specification (stored in the KB) and designs the experiments to validate the controller included in

the experiment specification provided by the AN orchestrator.

Figure 7 – Validation of controllers

Pre-requisites follow:

Experiment specifications and evolvable controllers are populated in the KB. This may be done based

on creation of controllers in Figure 6 or based on offline provisioning by AN operator. In addition,

the AN sandbox is populated with components that are ready for instantiation and execution to

validate the controllers.

The steps involved in the scenario described in Figure 7 are:

1) the AN orchestrator provides experiment specification that has the controller specification

for the controller to be validated;

2) the experimentation controller requests the current list of experiments from the KB;

3) the KB replies with the requested data, if any;

4) the experimentation controller requests the current list of controllers from the KB;

5) the KB replies with the requested data, if any;

6) the experimentation controller requests additional knowledge from the KB, needed to support

the experiment design;

 NOTE 2 – Examples of additional knowledge may include operational data from the underlay, such

as user traffic behaviour, user density in a geographical area, previous security attacks, known bad

configurations of base station tilt angles or mean time between failures for certain hardware models.

7) the KB replies with the requested data, if any;

8) the experimentation controller designs potential experimentation scenarios;

9) for each experimentation scenario, the experimentation controller requests the AN sandbox

to perform the validation;

10) the AN sandbox reports the results to the experimentation controller;

11) the experimentation controller performs any necessary analysis of the results and notifies the

AN orchestrator;

12) the AN orchestrator triggers the experimentation controller to update the KB;

13) the experimentation controller updates the KB – this includes storing the experiment results

for the validated controllers in the KB.

 NOTE 3 – Discussion of the logic used to drive the experiment design lies outside the scope of this

Recommendation. Examples of such processes can be found in clause 8.3.1.2.

9.3 Dynamic adaptation of controllers

Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the

underlay undergoes changes at run-time. An example scenario where validated controllers are

curated, selected and deployed to the underlay is shown in Figure 8.

In this example, the AN orchestrator provides the curation controller with an adaptation specification,

which contains controller specifications, to drive the curation process. The curation controller queries

the KB for validated controllers and relevant knowledge. Then the AN orchestrator provides the

selection controller with an adaptation specification, which contains controller specifications, to drive

the selection process.

NOTE 1 – There are additional example scenarios in which the curation controller reuses existing controller

specifications rather than deriving them from the adaptation specification. Similarly, there are additional

example scenarios where the selection controller reuses existing controller specifications rather than deriving

them from the adaptation specification.

 Rec. ITU-T Y.3061 (12/2023) 35

Figure 8 – Dynamic adaptation of controllers

The steps involved in the scenario described in Figure 8 are:

1) the AN orchestrator provides the curation controller with an adaptation specification, which

contains controller specifications, to drive the curation process;

2) the curation controller derives the controller specifications from the adaptation specification

and requests validated controllers from the KB;

3) the KB replies with the requested data, if any;

4) the curation controller requests the list of curated controllers for the use case from the KB;

5) the KB replies with the requested data, if any;

6) the curation controller requests additional knowledge from the KB needed to support the

curation process;

 NOTE 2 – Examples of additional knowledge may include controller utility scores, current traffic

load, computational resource consumption, common modules used in the composition of controllers

or semantic relationships to currently deployed controllers for other use cases.

7) the KB replies with the requested data, if any;

8) the curation controller performs the curation process that decides the validated controllers

that will be added to the curated list, if any, and which controllers in the curated list should

be removed, if any;

 NOTE 3 – Discussion of the logic used to drive the curation process lies outside the scope of this

Recommendation. Examples of such processes can be found in clause 8.3.2.1.

9) the curation controller notifies the AN orchestrator that it has completed the curation process;

10) the AN orchestrator requests the curation controller to update the KB with the curated list of

controllers;

11) the curation controller updates the KB with the list of curated controllers for the use case;

12) the AN orchestrator provides the adaptation specification to the selection controller:

13) the selection controller derives the controller specifications from the adaptation

specifications and requests the list of curated controllers from the KB;

14) the KB replies with the list of requested data, if any;

15) the curation controller requests additional knowledge from the KB needed to support the

curation process;

 NOTE 4 – Examples of additional knowledge may include controller utility scores, current traffic

load, computational resource consumption, common modules used in the composition of controllers

or semantic relationships to currently deployed controllers for other use cases.

16) the KB replies with the requested data, if any;

17) the selection controller performs the selection process which decides the curated controller

that should be deployed to the underlay – the deployed controllers are known as operational

controllers for the specified use case, if any;

 NOTE 5 – Discussion of the logic used to drive the selection process lies outside the scope of this

Recommendation. Examples of such processes can be found in clause 8.3.2.1.

18) the selection controller notifies the AN orchestrator that it has completed the selection

process;

19) the AN orchestrator requests the selection controller to update the KB with the controller to

be deployed as the operational controller;

20) the selection controller updates the KB;

21) the AN orchestrator performs the necessary lifecycle actions to deploy the operational

controller for the use case.

10 Security considerations

This Recommendation describes the AN architectural framework that is expected to be applied in

future networks including IMT-2020; therefore, general network security requirements and

mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-T Y.3101].

Sensitive information should be protected as a high priority in order to avoid leaking and unauthorized

access.

Additional specific security considerations concern AN security evaluation (e.g., analysing the

characteristics of ANs to evaluate risk of evasion attack). Moreover, to ensure robust ANs, the

reliability of the exploratory evolution, real-time online experimentation and dynamic adaptation, as

well as the generated controllers, needs to be assessed before applying the controllers to the network.

 Rec. ITU-T Y.3061 (12/2023) 37

Appendix I

An example realization of the architecture framework for autonomous networks

with technology specific underlays

(This appendix does not form an integral part of this Recommendation.)

Figure I.1 gives an example of the architecture framework for ANs (AN architecture framework) with

an IMT-2020 network [b-ITU-T Y.3111] [b-ITU-T Y.3104] underlay.

NOTE – A simplified version of Figure 1 is shown in Figure I.1, however, all functionalities described in

clause 8 are applicable.

Figure I.1 – Example of a realization of the AN architecture framework

with an IMT-2020 network underlay

In this example realization, operation controllers (OCs) are instantiated in the IMT-2020 underlay

network. As described in clause 8.3.2.2, OCs are responsible for the operation of a managed entity,

including the analysis of data from the managed entity. Additionally, OCs are continuously monitored

by the dynamic adaptation subsystem to ensure the most effective operation of the managed entity.

OCs are integrated with various IMT-2020 NFs or application functions (AFs). The AN architecture

framework acts as an overlay providing the subsystems such as evolutionary exploration

(clause 8.3.1.1), online experimentation (clause 8.3.1.2), dynamic adaptation (clause 8.3.2) and KB

subsystem (clause 8.3.3).

I.1 Examples of deployment locations of controllers

As shown in Figure I.1, various OCs may be deployed in various parts of the IMT-2020 underlay

network. Examples follow.

• OC1: This controller is deployed in the access network and uses inputs from the access

network to make determinations about capacity coverage optimization and then applies them

to the management functions.

• OC2: This controller is deployed in the CN (user plane function (UPF)) and uses inputs from

the CN to make determinations about packet forwarding and then applies them to the

management functions.

• OC3: This controller is deployed in the CN (AF) and uses inputs from the CN to make

determinations about AR/VR and then reports findings to a vertical application.

• OCn: This controller is deployed in the CN (other NFs) and uses inputs from the CN to make

determinations about traffic load balancing and then applies them to the management

functions.

For all examples, the controller deployment locations may be specified in the controller specification.

The dynamic adaptation subsystem interfaces with the AN orchestrator to deploy the OCs to the

underlay via the E2E orchestrator. This can be realized via reuse of reference points described in

[b-ITU-T Y.3111].

NOTE 1 – The dynamic adaptation subsystem applies the criteria for dynamic adaptation of an OC (e.g.,

instantiation or replacement) as discussed in clause 8.3.2.

NOTE 2 – While the deployment of an operational controller on UE [b-ITU-T Y.3104] may be technically

possible, the associated operational challenges, such as data privacy or security concerns, lie outside the scope

of this Recommendation. Examples of such an operation controller may include one tasked with monitoring

the state of a service in UE as input to E2E decision-making (e.g., QoE measurements for media-streaming

services).

I.2 Example realization of exploratory evolution

An example of a process to apply exploratory evolution to OCs deployed in various parts of the

IMT-2020 underlay network follows.

As shown in steps 5 to 10 of Figure 6 (clause 9.1.1), based on data stored in the KB collected from

the underlay network, deployed controllers or experimentation, the evolution controller

(clause 8.3.1.1) will generate new controller designs for OC1, OC2, OC3 or OCn. These controller

designs are then stored in the KB.

I.3 Example realization of online experimentation

An example of a process to apply online experimentation to OCs deployed in various parts of the

IMT-2020 underlay network follows.

As shown in steps 6 to 9 of Figure 7 (clause 9.1.2), based on data stored in the KB regarding the status

and configuration of the access network in the underlay (steps 6 and 7 of Figure 8), the

experimentation controller (clause 8.3.1.2) generates possible experimental scenarios for OC1 (step 8

of Figure 7).

I.4 Example realization of dynamic adaptation

An example of a process to apply dynamic adaptation to OCs deployed in various parts of the

IMT-2020 underlay network follows.

As shown in steps 15 to 21 of Figure 8 (clause 9.1.3), based on data stored in the KB regarding the

status and configuration of the CN in the underlay, the status and configuration of currently deployed

OC2, and information regarding other relevant curated controllers (steps 15 and 16 of Figure 8), the

adaptation controller (clause 8.3.2.1) decides which curated controller is to be deployed in the

underlay (step 17 of Figure 8) as the new revision of OC2 (step 21 of Figure 8).

 Rec. ITU-T Y.3061 (12/2023) 39

Appendix II

Self-reflective use of the AN architecture

(This appendix does not form an integral part of this Recommendation.)

The AN architecture framework shown in Figure 1 is used for creating or adapting controllers,

validating controllers and applying controllers to a managed entity. Despite having different roles,

from a compositional perspective, the exploratory evolution, experimentation and dynamic adaptation

can be applied to these controllers.

The architecture is self-reflective in its operation, i.e., the architecture has the ability to modify its

own operation to more effectively adapt to the current operational situation without the involvement

of the human using the same processes as managed entities, as shown in Figure II.1. Thus, the

architecture itself becomes a collection of managed entities.

Figure II.1 – Self-reflective use of the AN architecture framework

NOTE 1 – Even though Figure II.1 shows only a general application of the AN architecture framework to

itself, specific instances are possible where an operational controller, an evolution controller, an

experimentation controller, a selection controller or a curation controller are the managed entity.

NOTE 2 – Figure II.1 relates to an AN underlay. This concept relates to an instance of the AN architecture

framework (or a subset of it) used, in turn, as an underlay of another instance of the AN architecture framework.

Appendix III

External functionalities

(This appendix does not form an integral part of this Recommendation.)

In addition to the architecture components, there are functionalities external to this architecture

framework, which may enhance the AN architecture. These external functionalities are provided by

existing implementations.

Examples may include the following.

• AN controller repositories [b-Dagsthul]: These are repositories that contain controllers and

modules. AN components (e.g., evolution controller) may access this repository to implement

extended functionalities, e.g., composing new controllers.

• External knowledge repositories: In addition to KBs implemented within the AN

architecture, there are external knowledge repositories used by AN architecture to access

such knowledge.

• Domain orchestrators: These may be implemented by third parties and may provide specific

functions associated with specific technologies such [b-ETSI GS ZSM 009-1], [b-FRINX],

[b-ONAP].

• Development pipelines (CI/CD pipelines): They provide a continuous development

environment for components, modules and controllers.

• Model repositories [b-ITU-T Y.3176]: They store the specifications of models used in the

AN.

 NOTE – Examples of types of models that are stored in the model repositories include:

 • models used by a controller: these are models either placed within a controller or accessed by the

controller, via an API exposed by a third party;

 • models used by an AN component: these are models either placed within an AN component such

as an AN orchestrator or accessed by the component via an API exposed by a third party.

 Rec. ITU-T Y.3061 (12/2023) 41

Bibliography

[b-ITU-T Y.3100] Recommendation ITU-T Y.3100 (2017), Terms and definitions for

IMT-2020 network.

[b-ITU-T Y.3102] Recommendation ITU-T Y.3102 (2018), Framework of the IMT-2020

network.

[b-ITU-T Y.3104] Recommendation ITU-T Y.3104 (2018), Architecture of the IMT-2020

network.

[b-ITU-T Y.3111] Recommendation ITU-T Y.3111 (2017), IMT-2020 network

management and orchestration framework.

[b-ITU-T Y.3173] Recommendation ITU-T Y.3173 (2020), Framework for evaluating

intelligence levels of future networks including IMT-2020.

[b-ITU-T Y.3176] Recommendation ITU-T Y.3176 (2020), Machine learning

marketplace integration in future networks including IMT-2020.

[b-ITU-T Y.3525] Recommendation ITU-T Y.3525 (2020), Cloud computing –

Requirements for cloud service development and operation

management.

[b-ITU-T Y-Suppl.55] ITU-T Y-series Recommendations – Supplement 55 (2019), ITU-T

Y.3170-series – Machine learning in future networks including

IMT-2020: Use cases.

[b-ITU-T Y-Suppl. 71] ITU-T Y-series Recommendations – Supplement 71 (2022), ITU-T

Y-3000 series – Use cases for autonomous networks.

[b-3GPP TR 38.801] Technical Report 3GPP TR 38.801 V14.0.0 (2017), 3rd Generation

Partnership Project; Group Radio Access Network; Study on new radio

access technology: Radio access architecture and interfaces

(Release 14)

[b-ETSI GR ENI 004] Group Report ETSI GR ENI 004 V3.1.1 (2023), Experiential

networked intelligence (ENI); Terminology.

[b-ETSI GS ENI 005] Group Specification ETSI GS ENI 005 V3.1.1 (2023), Experiential

networked intelligence (ENI); System architecture.

[b-ETSI GS MEC 012] Group Specification ETSI GS MEC 012 V2.2.1 (2022-02), Multi-

access edge computing (MEC); radio network information API.

[b-ETSI GS ZSM 009-1] Group Specification ETSI GS ZSM 009-1 V1.1.1 (2021), Zero-touch

network and service management (ZSM); Closed-loop automation;

Part 1: Enablers.

[b-ETSI TS 129 500] Technical Specification ETSI TS 129 500 V17.13.0 (2024), 5G; 5G

system; Technical realization of service based architecture; Stage 3

(3GPP TS 29.500 version 17.13.0 Release 17).

[b-Ahmad] Ahmad, I., Kaleem, Z., Narmeen, R., Nguyen, L.D., Ha, D.B. (2019).

Quality-of-service aware game theory-based uplink power control for

5G heterogeneous networks. Mobile Netw. Appl., 24(2), pp. 556-563.
DOI: 10.1007/s11036-018-1156-2

[b-Almasan] Almasan, P., Ferriol-Galmés, M., Paillisse, J., Suàrez-Varela, J., Perino,

D., López, D., et al., Network digital twin: Context, enabling

technologies and opportunities. IEEE Commun. Mag., 60(11),

pp. 22-27. DOI: 10.1109/MCOM.001.2200012

[b-Anderson] Anderson, D., Harvey, P., Kaneta, Y., Papadopoulos, P., Rodgers, P.,

Roper, M. (2022). Towards evolution-based autonomy in large-scale

systems. GECCO '22: Proc. Genetic and Evolutionary Computation

Conference, pp. 1924–1925. New York, NY: Association for

Computing Machinery. DOI: 10.1145/3520304.3533975

[b-AutoML] Google Cloud (Internet). AutoML. Available [viewed 2024-02-20]

from: https://cloud.google.com/automl

[b-Bega] Bega, D., Gramaglia, M., Fiore, M., Banchs, A., Costa-Perez, X.

(2020). AZTEC: Anticipatory capacity allocation for zero-touch

network slicing, IEEE INFOCOM 2020 – IEEE Conf. Comput.

Commun., pp. 794-803, DOI: 10.1109/INFOCOM41043.2020.9155299.

[b-Bennett] Bennett, S. (1993). Development of the PID controller. IEEE Control

Syst. Mag., 13(6), pp. 58-62. DOI: 10.1109/37.248006

[b-Bleiholder] Bleiholder, J., Naumann, F. (2009). Data fusion. ACM Comput. Surv.

41(1), Article 1, 41 pp. DOI: 10.1145/1456650.1456651

[b-Blessed] Blessed, G., Aliyu, I., Agajo, J., Sarmento,T.L., Nahum, C.V., Novoa,

L., et al. (2022).Network resource allocation for emergency

management based on closed-loop analysis. ITU J. Future Evolv.

Technol. 3(2), pp. 175-201. DOI: 10.52953/HVPI8935

[b-Boyd] Boyd, J.R., Hammond, G.T. (editor). (2017). A discourse on winning

and losing. Maxwell AFB, AL: Air University Press, 392 pp.

[b-Dagsthul] Demestrescu, C., Seidel, R, editors (Internet). Dagsthul artifacts

series. Wadern: Schloss Dagsthul. Available [viewed 2024-02-22]

from: https://drops.dagstuhl.de/opus/institut_darts.php

[b-El Hattachi] El Hattachi, R., Erfanian, J. (editors) (2015). NGMN 5G white paper.

Reading: Next Generation Mobile Networks Alliance. Available

[viewed 2024-02-20] at: https://ngmn.org/wp-

content/uploads/NGMN_5G_White_Paper_V1_0.pdf

[b-FRINX] GitHub (2024). FRINX machine. San Francisco, CA: GitHub. Available

[viewed 2024-02-21] at: https://github.com/FRINXio/FRINX-machine

[b-Kephart] Kephart, J.O., Chess, D.M. (2003). The vision of autonomic computing.

Computer, 36(1), pp. 41–50. DOI: 10.1109/MC.2003.1160055

[b-Kubernetes] Kubernetes authors (2024). Overview. San Francisco: Linux

Foundation. Available [viewed 2024-02-21] at:
https://kubernetes.io/docs/concepts/overview/

[b-Kumar] Kumar, V.V. (2020). Acumos DCAE integration. Sydney: Atlassian.

Available [viewed 2024-02-22] at:
https://wiki.onap.org/display/DW/Acumos+DCAE+Integration

[b-Maggi] Maggi, L., Valcarce, A., Hoydis, J. (2021). Bayesian optimization for

radio resource management: Open loop power control. IEEE J- Selected

Areas Commun. 39(7), pp. 1858-1871. DOI: 10.1109/JSAC.2021.3078490.

https://cloud.google.com/automl
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.52953/HVPI8935
https://drops.dagstuhl.de/opus/institut_darts.php
https://github.com/FRINXio/FRINX-machine
https://kubernetes.io/docs/concepts/overview/
https://wiki.onap.org/display/~vv770d
https://wiki.onap.org/display/DW/Acumos+DCAE+Integration

 Rec. ITU-T Y.3061 (12/2023) 43

[b-MAPE-K] IBM (2006). An architectural blueprint for autonomic computing,

Academic Computing White Paper, fourth edition. Hawthorne, NY:

IBM 36 pp.

[b-Mwanje] Mwanje, S.S., Mannweiler, C., editors (2020). Towards cognitive

autonomous networks: Network management automation for 5G and

beyond. Chichester:Wiley. 560 pp. DOI:10.1002/9781119586449

[b-ONAP] Open Network Automation Platform (2024). About. San Francisco:

Linux Foundation. Available [viewed 2024-02-21] at:
https://www.onap.org/about

[b-ONF] Technical Steering Team (2024). ONF mobile network projects. Palo

Alto, CA: Open Networking Foundation. Available [viewed 2024-02-

21] at: https://opennetworking.org/onf-mobile-projects/

[b-ORAN] Dryjański, M. (2022). The O-RAN whitepaper 2022 – RAN intelligent

controller. Poznań: Rimedo Labs. Available [viewed 2024-02-21]

from: https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-intelligent-controller/

[b-OSM] Open Source MANO (2020). 1. OSM Quickstart. Sophia Antipolis:

ETSI OSM. Available [viewed 2024-02-21] at: https://osm.etsi.org/docs/user-

guide/latest/01-quickstart.html

[b-Real] Real, E., Liang, C., So, D.R., Le, Q.V. (2020). Automl-zero: Evolving

machine learning algorithms from scratch. Proc. 37thInt. Conf.

Machine Learning, pp. 8007-8019. PMLR.

[b-Rossi] Rossi, F., Cardellini, V., Presti, F. L. (2020). Hierarchical scaling of

microservices in Kubernetes. 2020 IEEE Int. Conf. Auton. Comput.

Self-Organizing Syst., pp. 28–37. DOI: 10.1109/ACSOS49614.2020.00023.

[b-Sutton] Sutton, R.S. Barto, A.G. (2018). Reinforcement learning: An

introduction, 2nd edition. Cambridge, MA: MIT Press. 552 pp.

[b-TOSCA] OASIS (2020). TOSCA simple profile in YAML version 1.3. Open-

source Alliance for Social Innovation & Sustainability. Available

[viewed 2024-02-21] at: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf.

[b-Umuroglu] Umuroglu, Y., Akhauri, Y., Fraser, N.J., Blott, M. (2020), LogicNets:

Co-designed neural networks and circuits for extreme-throughput

applications. 30th Int. Conf. Field-Programmable Logic and

Applications (FPL), Gothenburg, Sweden, 2020, pp. 291-297. DOI:

10.1109/FPL50879.2020.00055

[b-Whitley] Whitley, D. (2001). An overview of evolutionary algorithms: Practical

issues and common pitfalls. Inform. Softw. Technol., 43(14), pp, 817-

831. DOI: 10.1016/S0950-5849(01)00188-4.

https://www.onap.org/about
https://opennetworking.org/onf-mobile-projects/
https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-intelligent-controller/
https://osm.etsi.org/docs/user-guide/latest/01-quickstart.html
https://osm.etsi.org/docs/user-guide/latest/01-quickstart.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf

Published in Switzerland
Geneva, 2024

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L
Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and

protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y
Global information infrastructure, Internet protocol aspects, next-generation networks, Internet

of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T Y.3061 (12/2023) Autonomous networks – Architecture framework
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	7 Requirements for the architecture
	7.1 Requirements for exploratory evolution
	7.2 Requirements for online experimentation
	7.3 Requirements for dynamic adaptation
	7.4 Requirements for knowledge
	7.5 Requirements for autonomous network orchestration

	8 Architecture framework description
	8.1 High-level architecture framework
	8.2 Description of controller
	8.3 Description of the sub-systems and their components
	8.3.1 Autonomy engine
	8.3.1.1 Exploratory evolution subsystem
	8.3.1.1.1 Evolution controller

	8.3.1.2 Experimentation subsystem
	8.3.1.2.1 Experimentation controller
	8.3.1.2.2 AN sandbox

	8.3.2 Dynamic adaptation subsystem
	8.3.2.1 Adaptation controller
	8.3.2.2 Operation controller
	8.3.2.3 Service endpoints

	8.3.3 Knowledge base subsystem
	8.3.4 AN orchestrator
	8.3.5 Underlay network
	8.3.6 E2E network orchestrator

	9 Sequence diagrams
	9.1 Exploratory evolution of controllers
	9.2 Experimentation for controllers
	9.3 Dynamic adaptation of controllers

	10 Security considerations
	Appendix I An example realization of the architecture framework for autonomous networks with technology specific underlays
	I.1 Examples of deployment locations of controllers
	I.2 Example realization of exploratory evolution
	I.3 Example realization of online experimentation
	I.4 Example realization of dynamic adaptation

	Appendix II Self-reflective use of the AN architecture
	Appendix III External functionalities
	Bibliography

