Recommendation ITU-T Y.1540 (2019) Amd. 2 (03/2023)

SERIES Y: Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

Internet protocol aspects – Quality of service and network performance

Internet protocol data communication service – IP packet transfer and availability performance parameters

Amendment 2 – Revised Annex B: Additional search algorithms for IP-based capacity parameters and methods of measurement

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS, INTERNET OF THINGS AND SMART CITIES

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200–Y.299
Network aspects	Y.300–Y.399
Interfaces and protocols	Y.400–Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600–Y.699
Security	Y.700–Y.799
Performances	Y.800–Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400–Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600–Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Computing power networks	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3599
BIG DATA	Y.3600-Y.3799
QUANTUM KEY DISTRIBUTION NETWORKS	Y.3800-Y.3999
INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES	
General	Y.4000-Y.4049
Definitions and terminologies	Y.4050-Y.4099
Requirements and use cases	Y.4100-Y.4249
Infrastructure, connectivity and networks	Y.4250-Y.4399
Frameworks, architectures and protocols	Y.4400-Y.4549
Services, applications, computation and data processing	Y.4550-Y.4699
Management, control and performance	Y.4700-Y.4799
Identification and security	Y.4800-Y.4899
Evaluation and assessment	Y.4900-Y.4999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T Y.1540

Internet protocol data communication service – IP packet transfer and availability performance parameters

Amendment 2

Revised Annex B: Additional search algorithms for IP-based capacity parameters and methods of measurement

Summary

Amendment 2 revises Annex B, which provides a second, more capable search algorithm for the IP capacity method of measurement defined in Annex A.

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T I.380	1999-02-26	13	11.1002/1000/4573
1.0	ITU-T Y.1540	1999-02-26	13	11.1002/1000/5302
2.0	ITU-T Y.1540	2002-12-14	13	11.1002/1000/6189
2.1	ITU-T Y.1540 (2002) Amd. 1	2003-08-01	13	11.1002/1000/6975
3.0	ITU-T Y.1540	2007-11-13	12	11.1002/1000/9270
3.1	ITU-T Y.1540 (2007) Amd. 1	2009-03-19	12	11.1002/1000/9727
4.0	ITU-T Y.1540	2011-03-01	12	11.1002/1000/11079
4.1	ITU-T Y.1540 (2011) Amd. 1	2016-01-21	12	11.1002/1000/12761
5.0	ITU-T Y.1540	2016-07-29	12	11.1002/1000/12975
6.0	ITU-T Y.1540	2019-12-05	12	11.1002/1000/13933
6.1	ITU-T Y.1540 (2019) Amd. 1	2020-02-06	12	11.1002/1000/14161
6.2	ITU-T Y.1540 (2019) Amd. 2	2023-03-01	12	11.1002/1000/15491

Keywords

Experiment design, IP capacity, test results.

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents/software copyrights, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2023

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

Page

Amen	dment 2 - paramet	 Revised Annex B: Additional search algorithms for IP-based capacity ers and methods of measurement 	i
1)	Annex B	3	1
Annex	K B – Add of meas	ditional search algorithms for IP-based capacity parameters and methods urement	1
	B.1	Type B search algorithm	1
	B.2	Considerations for testing with parallel UDP streams	7
	B.3	Considerations for testing with bimodal path performance	7
	B.4	Type C search algorithm	7
	B.5	Considerations for testing with cellular mobile and other radio networks	9
2)	Bibliogr	caphy	10

Recommendation ITU-T Y.1540

Internet protocol data communication service – IP packet transfer and availability performance parameters

Amendment 2

Revised Annex B: Additional search algorithms for IP-based capacity parameters and methods of measurement

1) Annex B

Replace Annex B with the following:

Annex B

Additional search algorithms for IP-based capacity parameters and methods of measurement

(This annex forms an integral part of this Recommendation.)

B.1 Type B search algorithm

This measurement system meets requirements of clause A.2.2, and adds the following capabilities to support an alternate, and mandatory-to-implement, search algorithm, referred to as the Annex B search algorithm (which is test protocol agnostic):

- 1) The tester should make a recommendation on maximum test packet size, and allow for some unexpected overhead to avoid fragmentation.
- 2) A table of transmit rates, which are the number of packets sent during each time interval (corresponding to bits per second and a specified protocol layer) and packet sizes. The table has ascending values for offered load rates, between the minimum and maximum supported load rates, inclusive.
- 3) The receiver of the offered load shall measure the following metrics: received rate, loss, reordering, delay variation (as per this Recommendation), and round-trip delay [ITU-T Y.1565].
- 4) The receiver of the offered load shall periodically send a status feedback message to the sender with the results of the measured metrics.
- 5) Based on the results contained in the status feedback message, the sender shall adjust its offered load according to the flowchart in Figure B.1. In the flowchart, one step is a change in rate accomplished by using a new value (of the row above or below the current row for the sending rate and packet sizes) in the table of offered load rates.

The flow chart in Figure B.1 uses many variable names and, in some cases, configurable thresholds that determine the flowchart decisions. There are three main paths through the flowchart: when feedback indicates measured impairments are absent, or when impairments are first measured and some congestion may be present but sending rate change is deferred, or when measured impairments are confirmed by repeated measurement feedback.

Figure B.1 – Flowchart for offered load adjustment, Type B search Algorithm

NOTE - The algorithmic decisions could be performed by one end of the measurement system's participating hosts, which would make implementation at the other host much less complex and independent of the algorithm version.

The variables and thresholds used in Figure B.1 are explained in Table B.1.

Category/ Variable name	Description	Unit	Range	Default value
Sending Rate	The current sending rate (equivalent to a row of the table), initialized at minimum Sending Rate in the Table of Sending Rates	kbit/s	$500 \le \# \le$ 10 000 000 (10 Gbit/s)	See starting rate
Start sending rate	Initial value of sending rate	kbit/s	NA	500 kbit/s
Seq Errors	Measurement of any of Loss or Reordering or Replication impairments measured (events where received packet sequence number did not increase by one)	Number of errors	NA	NA

Table B.1 – Flowchart variables, descriptions, ranges and default values

Category/ Variable name	Description	Unit	Range	Default value
SeqErrThresh	Threshold for Loss or Reordering or Replication impairments measured (events where received packet sequence number did not increase by one)	Number of errors	0 ≤ # ≤ 100	10
DelayVar	Range of round trip time, RTT (or 1-way packet delay variation, above minimum delay when DelayVar 1-way measurements are reliable)	ms	NA	NA
LowThresh	Low threshold on the range of round trip time variation, RTT (Range is values above minimum RTT)	ms	$5 \le ms \le 250$	30 ms default
UpperThresh	High threshold on the range of round trip time variation, RTT (Range is values above minimum RTT)	ms	$5 \le ms \le 250$	90 ms default
HighSpeedDelta	The number of rows to move in a single adjustment when initially increasing offered load (to ramp-up quickly)	Number of rows	≥2	10 table rows (10 Mbit/s currently)
SlowAdjCount	Number of consecutive status reports indicating loss and/or delay variation above UpperThreshold.	Count of occurrences	NA	See SlowAdjThresh
SlowAdjThresh	Threshold on SlowAdjCount used to infer congestion. Use values > 1 to avoid misinterpreting transient loss	Count of occurrences	> 1	3
HSpeedThresh	Threshold for transition between low and high sending rate step sizes (such as 1 Mbit/s and 100 Mbit/s). MAY result in use of jumbo frames if permitted.	Gbit/s		1 Gbit/s

Table B.1 – Flowchart variables, descriptions, ranges and default values

Category/ Variable name	Description	Unit	Range	Default value
JumboFrames1GPermitted	Configuration for the measurement system permitting use of Jumbo-length Frames	NA	Boolean; [0:1]	1 (True: permitted for sending rates above 1 Gbit/s) Note – The table of sending rates will change, depending on the option chosen.
ReordDupIgnoreEnable	Configuration of SeqErrors counting to ignore Reordering and Duplication impairments measured (only Loss counts toward received packet sequence number errors)	NA	Boolean; [0:1]	1 (True: enabled)

Table B.1 – Flowchart variables, descriptions, ranges and default values

Table B.2 gives the default input factors for Annex A method, for use with Annex B.

Category/ Variable name	Parameter	Unit	Range	Default value
Max IP-layer Capacity				
	Number of parallel connections	#	$1 \le \# \le 10$	1 connection
	Duration of preamble to testing	S	$0 \le s \le 5$	~2 s
Δt	Duration of the test (either downlink or uplink) with search algorithm in use, which serves as the maximum duration of the search process	S	$5 \le s \le 60$	10 s
m (NumberTestSubIntervals)	Number of measurement sub- intervals, dt , in Δt	#	UnsignedInt; $1 \le \# \le 100$	10 (relates to dt)
i (NumberFirstModeTestSubIntervals)	Number of measurement intervals, <i>dt</i> , included in the report of the initial Capacity mode. The remaining sub-intervals of the total m are reported separately.	#	UnsignedInt; $0 \le \# < m$	0 Bimodal analysis disabled. Evaluate all sub-intervals in a single mode (meaning that i > 0 is un-

Table B.2 – Measurement variables, ranges and default values

Category/	Parameter	Unit	Range	Default value
Variable name	"0" is used as the EnableBimodal parameter, and means the Bimodal analysis is NOT enabled.			specified by default)
dt	Duration of reporting sub-intervals	s	$0.1 \le s \le 10$	1 s (relates to <i>m</i>)
TimeoutNoTestTraffic	Timeout value, no test packets at Receiver since previous test packet	ms	UnsignedInt; $500 \le ms \le 1000$	1000 ms, assuming $\Delta t =$ 10 s
TimeoutNoStatusMessage	Timeout value, no Status Messages at Sender since previous Status Message	ms	UnsignedInt; 500 ≤ ms ≤ 1000	1000 ms, assuming $\Delta t =$ 10 s
	Type of Test packet including header and payload lengths, headers and options present and any markings for special treatment in the network	NA	IPv4 or IPv6 UDP DSCP	No default UDP 00 = Best Effort
	Reference size of UDP Payload	KB	Minimum 1 kbyte, Maximum at 1472 bytes (Max 9000 with Jumbo Frames)	No default, recommend largest value that avoids fragmentation.
UDPPayloadContent	UDP Payload Content Type. If there is payload compression in the path and tests intend to characterize a possible advantage due to compression, then payload content SHOULD be supplied by a pseudo-random sequence generator, by using part of a compressed file, or by other means. Payload may also contain the test protocol PDUs. Enumeration of:		String	All zeroes

Table B.2 – Measurement variables, ranges and default values

Category/	Parameter	Unit	Range	Default value
Variable name				
	 zeroes, alternates0and1 random			
StatusFeedbackInterval	Period of status feedback message (Receiver of offered load returns messages to the sender with the results of the measured metrics)	S	$0.005 \le s \le 0.250$	0.050 s
Supporting Metrics	measured on the same stream as IP Capacity			
IPLR	Y.1540, RFC 7680			
Tmax	Maximum Waiting time for packets to arrive	S	$0.05 \le s \le 3$	1 s
Sampled RTT	Y.1545, RFC 2681: RTT uses feedback status messages from receiver.			
Tmax	Maximum Waiting time for packets to arrive	S	$0.05 \le s \le 3$	3 s
	Resolution of Timestamps	ms	$0.001 \le ms \le 1$	Suggested for fixed access: .001 (based on current implementation)
Supporting Metric: IPDV	Y.1540, RFC 3393, RFC 5481 (PDV)			
Tmax	Maximum Waiting time for packets to arrive	s	$0.05 \le s \le 3$	1 s
	Resolution of Timestamps	ms	$0.001 \le ms \le 1$	Suggested for fixed access: .001 (based on current implementation)
Supporting Metric: IPRR	Y.1540, RFC 4737			
Tmax	Maximum Waiting time for packets to arrive	s	$0.05 \le s \le 3$	1 s
	Resolution of Timestamps	ms	$0.001 \le ms \le 1$	Suggested for fixed access: .001 (based on

Table B.2 – Measurement variables, ranges and default values

6

Category/ Variable name	Parameter	Unit	Range	Default value
				current implementation)
Supporting Metric: RIPR	Y.1540, RFC 5560			
Tmax	Maximum Waiting time for packets to arrive	S	$0.05 \le s \le 3$	1 s
	Resolution of Timestamps	ms	$0.001 \le ms \le 1$	Suggested for fixed access: .001 (based on current implementation)

Table B.2 – Measurement variables, ranges and default values

B.2 Considerations for testing with parallel UDP streams

Parallel streams introduce complexity as well as the advantage of reaching higher rates.

Possible benefits include:

- Parallel systems may be used to produce the aggregate rate needed with parallel connections.
- Parallel streams may be used as a way to saturate the path under test with a single pair of test hosts.
- Additional information could be derived for diagnostic purposes, or to validate the testing process. For example, comparing the data rates on each connection could be informative, where very different data rates might reveal abnormal operation.

The current view is that each stream would have its own feedback channel, calculation of measurements and flowchart, and a report of the aggregate results over all connections.

B.3 Considerations for testing with bimodal path performance

Clause 7.1 of [b-ITU-T Y-Suppl.60] gives guidance on measuring Maximum IP-Layer Capacity when the results indicate a bimodal distribution of capacities. The different modes may be intentional design features, or other phenomenon where the tester prefers to separate the measurement in two modes for further processing. For example, the tester might prefer to exclude the measurement time needed to "ramp-up" to sending rates near the Maximum IP-Layer Capacity, and only consider measurements during the second mode (and ignore the initial Capacity mode).

The *i* parameter described in Table B.2 above is the control for enabling and specifying bimodal reporting. The Description of *i* is as follows:

Number of measurement intervals, *dt*, included in the report of the initial Capacity mode. The remaining sub-intervals of the total *m* are reported separately.

B.4 Type C search algorithm

The flow chart in Figure B.2 below uses additional variable names, and in some cases, configurable thresholds that determine the flowchart decisions beyond those in Figure B.1 Type B flow chart. Three main paths through the flowchart remain: when feedback indicates measured impairments are absent, or when impairments are first measured and some congestion may be present but sending rate change is deferred, or when measured impairments are confirmed by repeated measurement feedback. However, the sending rate increases by a multiplicative factor (1.5) when impairments are effectively

absent. Further, the "fast" sending rate increase and decrease configurations are de-coupled, allowing greater control. The Type C algorithm also introduces automatic retry of the "fast" sending rate increase mode, with increasing intervals between retries as the test proceeds.

Figure B.2 – Flowchart for offered load adjustment, Type C search algorithm

The Type C algorithm uses Type B as a starting point to host the new features of multiplicative increases and retry of "fast" sending rate increase mode, thus the distinguishing moniker "Multiply and Retry" applies here.

The new variables and thresholds used in the Figure B.2 flowchart are explained below:

Category/ Variable name	Description	Unit	Range	Default value
RetryCount	Number of status reports since previous "fast" mode activation. The counting takes place whether impairments are present or not.	Count of occurrences	NA	RetryThresh
RetryThresh	Threshold on RetryCount used to delay successive activations of "fast" sending rate increase mode. Use values > 1 to increase the	Count of occurrences	>1	5

Table B.3 – Type C flowchart variables, descriptions, ranges and default values

Table B.3 – Type C flowchart variables, descriptions, ranges and default values

Category/	Description	Unit	Range	Default value
Variable name				
	delay. Note that the algorithm doubles the threshold each time RetryThresh is exceeded.			
Update	The Update variable operates in "fast" sending rate increase mode to temper the effective increase to a fractional value (1.5). The sending rate increases alternate between multiply by 1 and multiply by 2 for an average of 1.5.		Boolean; [0:1]	0 (False) starting value, the value alternates with each pass through the "fast" sending rate increase mode.

B.5 Considerations for testing with cellular mobile and other radio networks

Reordering: There appears to be an increased likelihood of reordered packets during tests on 5G service. Reordered packets are legitimate contributors to IP-Layer Capacity. However, the Type B and Type C algorithms treat reordering as an impairment, the same as packet loss. To measure the maximum capacity when packet reordering is present (and especially when prevalent), the configuration option to ignore reordering (and duplication) in the search algorithms should be used (this is now the default for all testing).

Test Interval: Mobile and other radio networks tend to exhibit variable transmission conditions and received bit rates, in addition to traffic from other users that is competing for the allocated capacity. It is suggested to use:

Category/ Variable name	Description	Unit	Range	Suggested value
Δt	Duration of the fixed rate test (either downlink or uplink)	S	$5 \le s \le 60$	7 s for Mobile/radio
i (NumberFirstModeTestSubIntervals)	Number of measurement intervals, dt, included in the report of the initial Capacity mode. The remaining sub-intervals of the total m are reported separately. "0" is used as the EnableBimodal parameter, and means the Bimodal analysis is NOT enabled.	#	UnsignedInt; 0 ≤ # < m	3
dt	Duration of reporting sub-intervals	S	$0.1 \le s \le 10$	1 s (same as default)

 Table B.4 – Mobile/radio testing variable names, descriptions, ranges and values

Parameter Selection: It is possible to produce a version of the search algorithms which maintains the path bottleneck in a saturated state by simply changing the SlowAdjThresh (or Slow Adjustment Threshold, the threshold on SlowAdjCount used to infer congestion) from its default value (3) to 65535. This parameter setting disables two paths in the flowchart when operating at sending rates < 1 Gbit/s: the single step sending rate increase and the multiple step decrease in response to confirmed congestion. The result is a simplified flow chart having only "fast" sending rate increases and single-step decreases. If using the Type B search algorithm, it is also suggested to increase the HighSpeedDelta parameter (the number of rows to move in a single adjustment when increasing offered load and ramp-up sending rate) from the default 10 to 50. The Type C search algorithm does not require this change, in fact the HighSpeedDelta parameter is only active in the congestion-confirmed aspect of flow chart operation.

2) Bibliography

Add the following entry to the bibliography:

[b-ITU-T Y-Suppl.60] ITU-T Y-series Recommendations – Supplement 60 (2022) – Interpreting ITU-T Y.1540 maximum IP-layer capacity measurements.

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

- Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling, and associated measurements and tests
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems