

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Series X
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Supplement 4
(09/2008)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

 ITU-T X.290-series – Supplement on generic
approach to interoperability testing

ITU-T X-series Recommendations – Supplement 4

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199
OPEN SYSTEMS INTERCONNECTION X.200–X.299
INTERWORKING BETWEEN NETWORKS X.300–X.399
MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699
OSI MANAGEMENT X.700–X.799
SECURITY X.800–X.849
OSI APPLICATIONS X.850–X.899
OPEN DISTRIBUTED PROCESSING X.900–X.999
INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029
Network security X.1030–X.1049
Security management X.1050–X.1069
Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES
Multicast security X.1100–X.1109
Home network security X.1110–X.1119
Mobile security X.1120–X.1139
Web security X.1140–X.1149
Security protocols X.1150–X.1159
Peer-to-peer security X.1160–X.1169
Networked ID security X.1170–X.1179
IPTV security X.1180–X.1199

CYBERSPACE SECURITY
Cybersecurity X.1200–X.1229
Countering spam X.1230–X.1249
Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES
Emergency communications X.1300–X.1309
Ubiquitous sensor network security X.1310–X.1339

For further details, please refer to the list of ITU-T Recommendations.

 X series – Supplement 4 (09/2008) i

Supplement 4 to ITU-T X-series Recommendations

ITU-T X.290-series – Supplement on generic approach
to interoperability testing

Summary
Supplement 4 to ITU-T X.290-series Recommendations defines the relevant principles, methodology
and architectures to serve as a foundation for interoperability testing and the development of
interoperability test suites.

Source
Supplement 4 to ITU-T X-series Recommendations was agreed on 19 September 2008 by ITU-T
Study Group 17 (2005-2008).

ii X series – Supplement 4 (09/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this publication, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this publication is voluntary. However, the publication may contain certain mandatory
provisions (to ensure e.g. interoperability or applicability) and compliance with the publication is achieved
when all of these mandatory provisions are met. The words "shall" or some other obligatory language such
as "must" and the negative equivalents are used to express requirements. The use of such words does not
suggest that compliance with the publication is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this publication may involve the
use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the publication development process.

As of the date of approval of this publication, ITU had not received notice of intellectual property, protected
by patents, which may be required to implement this publication. However, implementers are cautioned that
this may not represent the latest information and are therefore strongly urged to consult the TSB patent
database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 X series – Supplement 4 (09/2008) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

3 Definitions .. 2

4 Abbreviations and acronyms .. 3

5 Types of testing .. 3
5.1 Interoperability testing.. 3
5.2 Conformance testing... 4
5.3 Combining interoperability testing and conformance testing 5

6 Interoperability testing process overview... 6

7 Basic concepts .. 6
7.1 Means of testing ... 7
7.2 Equipment under test (EUT) .. 7
7.3 Qualified equipment (QE) .. 7
7.4 System under test (SUT) .. 8
7.5 Test interface .. 8
7.6 Test driver... 8
7.7 Test coordinator.. 9
7.8 Interoperability test cases ... 9
7.9 Means of communication (MoC) ... 9

8 Generic interoperability test architectures .. 9
8.1 Test architectures with a single QE.. 9
8.2 Test architectures with multiple QEs ... 10

9 Developing interoperability tests.. 12
9.1 Overview .. 12
9.2 Specify abstract architecture... 13
9.3 Prepare draft IFS proforma... 14
9.4 Specify test suite structure.. 15
9.5 Write test purposes ... 15
9.6 Write test cases ... 16
9.7 Validate test cases... 23
9.8 Finalize IFS .. 23

10 Interoperability testing process... 23
10.1 Overview .. 23
10.2 Prepare for testing... 24
10.3 Testing .. 26
10.4 Write test report .. 27

iv X series – Supplement 4 (09/2008)

 Page
Appendix I – Example IFS (Internet Key Exchange protocol, IKEv2) 28

I.1 Introduction .. 28
I.2 Instructions for completing the IFS proforma .. 28
I.4 IKEv2 entities... 29

Appendix II – Example IFS (TIPHON Profile of SIP, Release 3) .. 34
II.1 Introduction .. 34
II.2 Instructions for completing the IFS proforma .. 34
II.3 IFS proforma .. 35
II.4 SIP entities.. 35

Bibliography... 40

 X series – Supplement 4 (09/2008) v

Introduction
This supplement provides a generic framework and methodology for interoperability testing of
interconnected communication systems. The need for interoperability testing arises when it is
required to demonstrate that two or more systems or system components are capable of
communicating with each other. This supplement defines the relevant principles, methodology and
architectures to serve as a foundation for interoperability testing and the development of
interoperability test suites and is applicable to interoperability testing of protocols and also to
interoperability testing of all areas of software.

This supplement is complementary to, and may be used in conjunction with, testing methodologies
and test specification languages defined in related ITU-T Recommendations such as:
• ITU-T X.290 through ITU-T X.296, and
• ITU-T Z.161 through ITU-T Z.163

where the X.290-296 series addresses conformance and provides the methodology and framework
for conformance, and the Z.161-163 series defines a general test scenarios description language for
conformance testing and interoperability testing. A particularly related document in terms of it
technical contents is Supplement 5 to ITU-T X-series Recommendations: ITU-T X.290-series:
Supplement on interoperability testing framework and methodology, which deals with the
foundational principles and issues that underlie specific interoperability testing approaches and on
the basis of which interoperability testing approaches can be carried out and assessed. On the other
hand, this Supplement 4 to the ITU-T X.290-series of Recommendations targets at providing a
general guidance on the specification and execution of interoperability tests for communication
systems in next generation networks (NGN). It is meant to be applied to communication equipment
interoperability testing and in many places it gives specific guidance on how test suites can be
written and interoperability testing can be carried out. In addition, Recommendations concerning
ITU-T formal languages such as ASN.1, MSC, SDL and UML can be used in relation with this
supplement for test data description, system behaviours and test scenarios descriptions,
communication system modelling, and software modelling, respectively.

This supplement is intended to assist ITU-T study groups responsible for developing protocol
specifications, conformance test suites and interoperability test suites. It is also intended as a guide
to the developers of interoperability test suites, test tool developers and test operators with the
objective of achieving a common framework for testing. Specification writers would understand
non-interoperation phenomena and their causes better so that they can be more informed and
prepared to write interoperable specifications. System developers would be helped in developing
interoperable systems and services. Interoperability test suites developers would know how to write
practically complete interoperability test suites (i.e., they would know what needs to be tested and
would also know the gap between what should be tested and what can be tested). Test operators
would get help in understanding the causes of interoperability problems and in finding out how to
fix problems.

 X series – Supplement 4 (09/2008) 1

Supplement 4 to ITU-T X-series Recommendations

ITU-T X.290-series – Supplement on generic approach
to interoperability testing

1 Scope
This supplement gives general guidance on the specification and execution of interoperability tests
for communication systems. It provides a framework within which interoperability test
specifications for a wide range of product types can be developed. The guidelines are expressed as
recommendations rather than strict rules and leave enough freedom to allow test specifiers to adopt
and adapt processes to suit each particular project while still ensuring that test specifications
accurately reflect the requirements of the base standards and can be executed consistently across a
range of configurations.

Interoperability testing is the structured and formal testing of functions supported remotely by two
or more items of equipment communicating by means of standardized protocols. It is not the
detailed verification of protocol requirements specified in a conformance test suite, neither is it the
less formal development testing often associated with "plug-fest" and "interop" events (frequently
referred to as "bake-offs").

Although some consideration is given within the methodology to the operating and reporting
aspects of interoperability testing, the primary focus of this supplement is on the specification of
interoperability testing architectures, test plans and test suites.

2 References
[ITU-T X.290] Recommendation ITU-T X.290 (1995), OSI conformance testing methodology

and framework for protocol Recommendations for ITU-T applications –
General concepts.

[ITU-T X.291] Recommendation ITU-T X.291 (1995), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications –
Abstract test suite specification.

[ITU-T X.292] Recommendation ITU-T X.292 (2002), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications – The
Tree and Tabular Combined Notation (TTCN).

[ITU-T X.293] Recommendation ITU-T X.293 (1995), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications – Test
realization.

[ITU-T X.294] Recommendation ITU-T X.294 (1995), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications –
Requirements on test laboratories and clients for the conformance assessment
process.

[ITU-T X.295] Recommendation ITU-T X.295 (1995), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications –
Protocol profile test specification.

[ITU-T X.296] Recommendation ITU-T X.296 (1995), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications –
Implementation conformance statements.

2 X series – Supplement 4 (09/2008)

[ITU-T Z.161] Recommendation ITU-T Z.161 (2007), Testing and Test Control Notation
version 3: TTCN-3 core language.

[ITU-T Z.163] Recommendation ITU-T Z.163 (2007), Testing and Test Control Notation
version 3: TTCN-3 graphical presentation format (GFT).

[ETSI TS 101 884] ETSI TS 101 884 V1.1.1 (2002), Telecommunications and Internet Protocol
Harmonization Over Networks (TIPHON) Release 3; Technology Mapping;
Implementation of TIPHON architecture using SIP.

[ETSI EG 202 107] ETSI EG 202 107 V1.1.1 (1999), Methods for Testing and Specification
(MTS); Planning for validation and testing in the standards-making process.

[IETF RFC 3261] IETF RFC 3261 (2002), SIP: Session Initiation Protocol.

[IETF RFC 4306] IETF RFC 4306 (2005), Internet Key Exchange (IKEv2) Protocol.

3 Definitions
This supplement defines the following terms:

3.1 conformance: Compliance with requirements specified in applicable ITU-T X.290-series
of Recommendations.

3.2 conformance testing: Testing the extent to which an implementation under test (IUT)
satisfies both static and dynamic conformance requirements.
NOTE – The purpose of conformance testing is to determine to what extent a single implementation of a
particular standard conforms to the individual requirements of that standard.

3.3 device: Item of software or hardware which either alone or in combination with other
devices implements the requirements of a standardized specification.

3.4 equipment under test (EUT): Grouping of one or more devices which has not been
previously shown to interoperate with previously qualified equipment (QE).

3.5 interoperability: Ability of two systems to interoperate using the same communication
protocol.

3.6 interoperability test suite: Collection of test cases designed to prove the ability of two (or
more) systems to interoperate.

3.7 interoperability testing: Activity of proving that end-to-end functionality between (at
least) two communicating systems is as required by the base standard(s) on which those systems are
based.

3.8 Interworking function (IWF): Translation of one protocol into another one so that two
systems using two different communication protocols are able to interoperate.

3.9 qualified equipment (QE): Grouping of one or more devices that has been shown, by
rigorous and well-defined testing, to interoperate with other equipment.
NOTE – Once an EUT has been successfully tested against a QE, it may be considered to be a QE, itself.

3.10 system under test (SUT): One or more QEs and an EUT.

3.11 test case: Specification of the actions required to achieve a specific test purpose, starting in
a stable testing state, ending in a stable testing state and defined in either natural language for
manual operation or in a machine-readable language (such as TTCN-3) for automatic execution.

3.12 test purpose: Description of a well-defined objective of testing, focusing on a single
interoperability requirement or a set of related interoperability requirements.

 X series – Supplement 4 (09/2008) 3

4 Abbreviations and acronyms
This supplement uses the following abbreviations and acronyms:

API Application Programming Interface

EP End Point

EUT Equipment Under Test

GFT Graphical presentation Format for TTCN-3

IFS Interoperable Features Statement

IUT Implementation Under Test

IWF InterWorking Function

MMI Man-Machine Interface

MoC Means of Communication

MoT Means of Testing

PICS Protocol Implementation Conformance Statement

QE Qualified Equipment

SIP Session Initiation Protocol

SUT System Under Test

TIPHON Telecommunications and Internet Protocol Harmonization Over Networks

TP Test Purpose

TPLan Test Purpose notation

TTCN-3 Testing and Test Control Notation version 3

TSS Test Suite Structure

5 Types of testing

Equipment implementing standardized protocols and services can be formally tested in two related
but different ways, each of which has benefits and limitations:
• conformance testing can show that a product correctly implements a particular standardized

protocol:
– establishes whether or not the implementation in question meets the requirements

specified for the protocol itself. For example, it will test protocol message contents and
format as well as the permitted sequences of messages;

• interoperability testing can demonstrate that a product will work with other like products:
– assesses the ability of the implementation to support the required trans-network

functionality between itself and another similar implementation to which it is
connected.

Conformance testing in conjunction with interoperability testing provide both the proof of
conformance and the guarantee of interoperation.

5.1 Interoperability testing
The term "interoperability testing" is often used in relation to the semi-formal testing carried out at
multi-vendor events as part of the product development process. While such events, often referred
to as "plug-fests", "interops" and "bake-offs", are valuable sources of information on the ability of

4 X series – Supplement 4 (09/2008)

similar products to communicate, they generally do not offer the structured and, therefore,
repeatable, testing that is an essential part of a certification scheme. For a certification (or branding
or logo) scheme to be meaningful, it is necessary that interoperability testing is carried out in
accordance with a comprehensive and structured suite of tests. In the context of this Supplement, it
is exactly this type of testing which is referred to as "interoperability testing". For other types of
schemes, such as those arranged between manufacturers for marketing or other purposes, this
approach is still valid.
NOTE – It is possible that other organizations within the global standardization community will have
interpretations of this term which differ to a greater or lesser extent.

The purpose of interoperability testing is to prove that end-to-end functionality between (at least)
two communicating systems is as required by the standard(s) on which those systems are based.

Figure 1 – Illustration of interoperability testing

The important factors which characterize interoperability testing are:
• the equipment under test (EUT) and the qualified equipment (QE) together define the

boundaries for testing (Figure 1);
• the EUT and QE come from different suppliers (or, at least, different product lines);
• interoperability tests are performed at interfaces that offer only normal user control and

observation (i.e., not at specialized interfaces introduced solely for testing purposes);
• interoperability tests are based on functionality as experienced by a user (i.e., they are not

specified at the protocol level). In this context a user may be human or a software
application;

• the tests are performed and observed at functional interfaces such as man-machine
interfaces (MMIs), protocol service interfaces and application programming interfaces
(APIs).

The fact that interoperability tests are performed at the end points and at functional interfaces means
that interoperability test cases can only specify functional behaviour. They cannot explicitly cause
or test protocol error behaviour.

5.2 Conformance testing

The purpose of conformance testing is to determine to what extent a single implementation of a
particular standard conforms to the individual requirements of that standard.

Figure 2 – Illustration of conformance testing

The important factors which characterize conformance testing are as follows:
• the system or implementation under test (SUT or IUT) defines the boundaries for testing

(Figure 2);

 X series – Supplement 4 (09/2008) 5

• the tests are executed by a dedicated test system that has full control of the SUT and the
ability to observe all communications from the SUT;

• the tests are performed at open standardized interfaces that are not (usually) accessible to a
normal user (i.e., they are specified at the protocol level).

Because the conformance tester maintains a high degree of control over the sequence and contents
of the protocol messages sent to the IUT, it is able to explore a wide range of both expected and
unexpected (invalid) behaviour.

It is not within the scope of this supplement to define a conformance testing methodology.
However, because interoperability testing and conformance testing complement one another, the
reader of this supplement would be well-advised to study the established ISO conformance testing
methodology defined in ITU-T X.290-series Recommendations as applied in all ETSI conformance
test specifications.

5.3 Combining interoperability testing and conformance testing
Conformance and interoperability are both important and useful approaches to the testing of
standardized protocol implementations, although it is unlikely that one will ever fully replace the
other. Conformance testing is able to show that a particular implementation complies with the
protocol requirements specified in the associated base standard. However, it is difficult for such
testing to be able to prove that the implementation will interoperate with similar implementations in
other products. On the other hand, interoperability testing can clearly demonstrate that two
implementations will cooperate to provide the specified end-to-end functions but cannot easily
prove that either of them conforms to the detailed requirements of the protocol specification.

The purpose of interoperability testing is not only to show that products from different
manufacturers can work together, but also to show that these products can interoperate using a
specific protocol. Without this additional aspect, interoperability testing could be considered to be
almost meaningless. Within the context of standardization, it is of little interest to know that two
products can interoperate unless there is a guarantee that they are connected together by means of a
standardized protocol. It is, therefore, advisable to test the conformance of an implementation
before testing for interoperability with other (similarly tested) implementations.

Although there are quite distinct differences between conformance testing and interoperability
testing, it is valid to consider using the techniques together to give combined results. Such an
approach will almost certainly involve some compromise and it is unlikely that it would provide the
breadth and depth of testing that conformance and interoperability can offer when applied
individually. However, some limited conformance testing with extensive interoperability testing, for
example, may be useful in certain situations. The test configuration shown in Figure 3 permits
complete interoperability testing to be undertaken while limited protocol conformance monitoring
takes place.

Figure 3 – Interoperability testing with conformance monitoring

6 X series – Supplement 4 (09/2008)

While this arrangement cannot provide a complete proof of conformance, analysis of the protocol
monitor output will be able to show whether protocol signalling between the EUT and the QE
conformed to the appropriate standard(s) throughout the testing.

6 Interoperability testing process overview
This supplement provides users with guidelines on the main steps associated with interoperability
testing. The intention is that the guidelines should be simple and pragmatic so that the document
can be used as a "cook-book" rather than a rigid prescription of how to perform interoperability
testing.

The main components of the guidelines are described in clauses 9 and 10, and are as follows:
• Development of interoperability test specifications, including:

– identification of interoperable functions;
– identification of abstract architectures;
– specification of interoperability test suite structure and test purposes;
– specification of interoperability test cases.

• The testing process, including:
– test planning;
– specification of test configurations;
– execution of the tests;
– logging results and producing test reports.

As their name implies, guidelines are only for guidance and the actual process followed should use
and adapt whichever of these guidelines are most applicable in each particular situation. In some
cases, this may mean the application of all aspects.

7 Basic concepts
Figure 4 illustrates the main concepts specified in this supplement. It shows the two main
components of the methodology, namely, the means of testing (MoT) and the system under test
(SUT). The MoT includes the roles of test drivers and a test coordinator, the interoperability test
cases and mechanisms for logging and reporting. The SUT comprises the equipment under test
(EUT) and the qualified equipment (QE). The means of communication (MoC) between the QE and
the EUT is considered to be neither part of the SUT nor of the MoT.

Figure 4 – Illustration of main concepts

 X series – Supplement 4 (09/2008) 7

7.1 Means of testing
The combination of equipment and procedures that perform the selection and execution of test cases
is known as the means of testing (MoT). Test cases may be executed either by a human operator or
by an automated program (see clause 7.6). The MoT should also be capable of logging test results
and of producing test reports (see clause 10.4). The MoT includes neither the system under test nor
the means by which devices in the system under test communicate.

7.2 Equipment under test (EUT)
In any interoperability testing architecture there will always be one connected item which is the
subject of the test. This item is referred to as the equipment under test or EUT. Any single test
configuration will only have one EUT. An EUT may be end-user equipment (such as a terminal),
network equipment (such as a router) or a software application.

EUTs can be composed of any number of component parts, each of which is referred to as a device.
This may be a physical device, a software package or a combination of the two. The simplest case is
where the EUT is a single device.

The interconnection configuration between devices in an EUT is purely a matter for the supplier
and is not prescribed in the test architectures, nor is it considered to be an explicit part of the
interoperability test for that EUT.

An EUT will not have been previously tested successfully for interoperability in a similar
configuration, although it may have been tested for conformance. While this methodology does not
require previous conformance testing, it is recommended that this activity is performed, for the
reasons mentioned in clause 5.3.

7.3 Qualified equipment (QE)

7.3.1 QEs and devices
When testing an EUT for interoperability, it is essential that the test architecture include equipment
that has already been proven to interoperate with similar equipment from other suppliers. Such
items are referred to as the qualified equipment (QE). Any single test configuration may have one
or more QEs. A QE may be end-user equipment (such as a terminal), network equipment (such as a
router) or a software application.

QEs can also be composed of a number of component parts, each of which is, again, referred to as a
device. This may be a physical device, a software package or a combination of the two. The
simplest case is where the QE is a single device. Thus, a QE is a collection of devices that, in a
given configuration, has undergone and passed interoperability testing.

The interconnection configuration between devices in a QE is purely a matter for the test system
implementer and is not prescribed in the test architectures.

Any given QE will have initially been tested as an EUT but, once the full range of interoperability
tests have been successfully performed, it can be considered to be a QE. This methodology does not
force an EUT to be tested against all possible QEs in the pool of QEs that may be available in a
particular testing scheme. However, the likelihood of multi-vendor interoperability is increased if it
can be demonstrated that a particular EUT interoperates with a large number of different QEs.

7.3.2 Designating the first QE
In cases of new and developing technologies, no qualified equipment is likely to exist. The first
instance of interoperability testing for a particular scheme will involve two (or more) EUTs rather
than a number of QEs and one EUT.

8 X series – Supplement 4 (09/2008)

Once these EUTs are shown to successfully interoperate, they will all be designated as QEs with
none having precedence over any other. The testing scheme can then continue with new EUTs
joining the pool of the existing QEs that have already been tested in a given configuration.

It is strongly recommended that the two initial EUTs have undergone conformance testing prior to
interoperability testing.

7.4 System under test (SUT)
The system under test (SUT) is the combination of one or more QEs and one single EUT. It does
not, however, include the means of communication (MoC) (see clause 7.9).

7.5 Test interface
The interfaces that are made available by the SUT in order to perform testing are known as the test
interfaces. These interfaces are accessed by the test driver. Interfaces internal to the SUT may be
used for logging and/or analysis but they are not considered to be an essential part of the test
configuration.

In the simplest case, a test interface will be the normal user interfaces offered by the product
undergoing testing (EUT) and/or by the QEs that are part of the SUT. Terminal equipment, for
example, may be tested using a keypad, or a point-and-click dialog, or a combination of the two.

Other EUTs, such as protocol stacks, may offer an API over which interoperability testing can be
performed either manually using a terminal application or automatically using programmable test
equipment.

An SUT will offer at least one interface to either the test driver and/or the QEs.

Any interface between the SUT and the means of communication (see clause 7.9) is not considered
to be a test interface.

7.6 Test driver
As interoperability testing involves control and observation at the functional (rather than signalling)
level, interoperability tests should be described in terms of activities by the user of the endpoint
equipment. In many cases, this user can be considered to be a human but in others it will be more
appropriate to think of the user as an application within a software system.

As a means of improving testing efficiency and consistency, the role of the test driver may be
performed by an automatic device programmed to carry out the specified test steps.

The following examples illustrate both of these cases:

EXAMPLE 1: Human user: A test architecture is established with two IP telephony terminals
connected to the same network supporting VoIP. Interoperability tests are specified
at the terminals in terms such as "Take telephone A off-hook; Dial the
E.164 number of telephone B, etc.".

EXAMPLE 2: Application user: A test architecture is established with two SIP servers connected
together but with no user terminals, because at the time of testing there are no
suitable applications available. Interoperability tests are specified in terms such as
"Cause INVITE message to be sent from QE to IP address at EUT; On receipt of
INVITE from QE, cause 100 TRYING message to be sent from EUT to QE, etc.".

In the first case, the human test driver will be performing valid tasks of a normal user of the system,
using only the interfaces (e.g., MMI) offered by a product. In the second case, the test driver will be
manipulating the EUT and the QE by any possible means (for example, over an API) to ensure that
specific messages are sent and observed.

 X series – Supplement 4 (09/2008) 9

7.7 Test coordinator
In any given instance of testing, there will be at least two interfaces over which the tests will be run
(see clause 7.5). The test coordinator is responsible for synchronizing the actions of the two (or
more) test drivers, if needed. The test coordinator is only a conceptual role and, in a practical case
of testing, this role may be taken by, for instance, one of the test drivers.

7.8 Interoperability test cases
An interoperability test case is the detailed set of instructions (or steps) that need to be followed in
order to perform the test. In the case where the test driver is a human operator, these instructions
will be in natural language (see clause 9.6). In the case where the tests are automated, they may be
written in a programming language or test language such as TTCN-3. The combined test cases
should cover all events at each of the available test interfaces.

7.9 Means of communication (MoC)
The QE and EUT are connected by the means of communication (MoC). This, for example, may be
a simple wire or a complex network of interconnected devices. In all cases this underlying transport
mechanism is not considered to be part of the SUT.

It is assumed that the underlying communication layers have been previously tested to establish that
they are conformant.

8 Generic interoperability test architectures
Figure 5 shows a generic architecture for interoperability testing. All interoperability testing
architectures that show the relationship between the EUT, the QEs and the test operators can be
derived from this model. The test driver for the EUT is optional, depending on the kind of
equipment being tested. As an example, an EUT which is an interworking function (see clause 8.2)
would probably not require a test driver function.

X.Suppl.4(08)_F05

QE to QE2 n–1

QE1 EUT

Test driverEUT

Test driver1 Test drivern

Figure 5 – Generalized interoperability test architecture

For simplicity, Figure 5 shows that the QE and the EUT offer only a single interface to a single test
driver. However, it is possible that an EUT or QE could offer more than one interface to one or
more test drivers. This relationship need not necessarily be a one-to-one mapping.

8.1 Test architectures with a single QE
Figure 6 shows the simplest architecture, with only one QE.

10 X series – Supplement 4 (09/2008)

Figure 6 – Basic interoperability test architecture

A typical example of this would be the case of testing terminal equipment such as a SIP phone from
a given manufacturer. The QE is a SIP phone (from a different manufacturer) that has been tested
previously. This is illustrated in Figure 7.

Figure 7 – Example of the basic interoperability test architecture for SIP phones

8.2 Test architectures with multiple QEs
Figure 8 shows the generic architecture for an SUT with two QEs and with no test driver for
the EUT.

Figure 8 – Basic interoperability test architecture with two QEs and no EUT test driver

The generic test architecture in Figure 8 is illustrated by the specific example in Figure 9 which
shows, in abstract form, the interconnection of a SIP server (the EUT) with two SIP-capable
terminals (QE1 and QE2).

Figure 9 – Interoperability test architecture for a SIP server

 X series – Supplement 4 (09/2008) 11

8.2.1 An example using three QEs
Figure 10 shows the generic architecture with three QEs and no test driver for the EUT.

Figure 10 – Basic interoperability architecture with three QEs and no EUT test driver

A concrete example of this architecture is shown in Figure 11 which shows interoperability testing
of the call diversion service using three QEs: one to make a call and two to show that the transfer
has indeed taken place.

Figure 11 – Using three QEs to test the call diversion service

8.2.2 Testing IP hosts with multiple QEs
Figure 12 shows a more complex architecture for testing the interoperability of an Internet host
(Host4) with routers and other hosts. The means of communication in this architecture is the Internet
and the ethernet local network. Since the interplay between the two routers and the host is a key part
of the test, the routers are not included in the MoC.

12 X series – Supplement 4 (09/2008)

Figure 12 – Interoperability testing of an IP host with multiple QEs

9 Developing interoperability tests

9.1 Overview
The development of an interoperability test specification should follow a similar path to that taken
when developing a conformance test specification. A close parallel can also be seen between the
component parts of each type of test specification.

The steps involved in the process of developing an interoperability test specification are as follows:
• specify abstract architecture;
• prepare draft interoperable features statement (IFS);
• specify test suite structure (TSS);
• write test purposes (TP);
• write test cases;
• validate test cases;
• finalize the IFS.

This process is expressed graphically in Figure 13.

 X series – Supplement 4 (09/2008) 13

X.Suppl.4(08)_F13

Write
interoperable

features
statement (IFS)

Start

Specify abstract
test architectureBase standard

Develop test
suite structure

(TSS)
IFS Abstract

architecture

Write test
purposes

TSS

Write test cases Test cases

Validate test
cases

Test specification

End

Finalize IFS
Finalize IFS

Test cases

Activity

Documentation

Control flow
Data flow

Test purposes

Figure 13 – Developing an interoperability test specification

9.2 Specify abstract architecture
An abstract testing architecture provides a general framework within which specific test
arrangements must fit in order to perform the specified suite of tests. Defining this architecture at an
early stage should help provide a structure for the test cases specified later. Abstract architectures
can be expressed in a diagrammatic, tabular or textual form and should clearly identify:
• the EUT;
• the QE(s);
• the communications paths between the EUT and QE(s);
• valid types of equipment for the EUT and QE(s);
• if required, the expected protocol to be used in providing communication between the EUT

and QE(s).

Figure 14 shows in diagrammatic form an example of an abstract architecture for the testing of a
stateful SIP proxy. In this example, one SIP proxy is identified as the EUT, and another proxy and
two SIP end points are identified as QEs. The means of communication is not specified although it
is implied that it must be able to carry SIP.

14 X series – Supplement 4 (09/2008)

Figure 14 – Example abstract architecture diagram

This abstract architecture could equally well be represented in a table, as shown in Table 1.

Table 1 – Example abstract architecture table

Item EUT/QE Equipment type Connected
to item

MoC

1 QE SIP Endpoint 3 SIP ([IETF RFC 3261])
2 QE SIP Endpoint 3 SIP ([IETF RFC 3261])
3 EUT Stateful SIP Proxy 1 SIP ([IETF RFC 3261])
 2 SIP ([IETF RFC 3261])
 4 SIP ([IETF RFC 3261])

4 QE Stateful SIP Proxy +
SIP Endpoint

3 SIP ([IETF RFC 3261])

The abstract architecture should be derived from the requirements of the base protocol standard(s),
and should be specified in a form that makes it simple to map each element of a concrete test
scenario to it.

9.3 Prepare draft IFS proforma
The purpose of an interoperable features statement (IFS) is to identify those standardized functions
that an EUT must support, those that are optional and those that are conditional on the support of
other functions. Although not strictly part of the interoperability test suite, the IFS helps to provide
a structure to the suite of tests which will subsequently be developed.

In addition, the IFS can be used as a proforma by a manufacturer when identifying the functions an
EUT will support when interoperating with similar equipment from other manufacturers.

If it exists, the ideal starting point in the development of an IFS is the protocol implementation
conformance statement (PICS) which should clearly identify the options and conditions which
apply to the protocol to be tested. Like the PICS, the IFS should be considered part of the base
protocol specification and not a testing document.

At this stage of the test suite development, the IFS can only be considered as a complete draft. As
the test suite evolves, it is possible that errors and omissions in the IFS will be identified. These
should be recorded for correction at a later stage (see clause 9.8). Example IFSs (for the IETF
Internet Key Exchange protocol, IKEv2 [IETF RFC 4306] and the TIPHON profile of IETF SIP
[ETSI TS 101 884]) can be found in Appendices I and II, respectively.

 X series – Supplement 4 (09/2008) 15

9.4 Specify test suite structure

9.4.1 Identify test groups
There is no hard and fast rule that can be used to determine how a test suite should be divided up
into test groups other than to say that there should be a logical basis to the choice of groups. In
many cases, the division will be rather arbitrary and based on the preferences of the author(s).
However, the following categorizations should be considered when identifying appropriate test
groups within a test suite structure (TSS):
• Abstract architecture: A test group for each valid configuration specified. For example:

– terminal-to-terminal direct;
– terminal-to-terminal via a gatekeeper;
– terminal-to-terminal via an intervening network.

• Functionality: A test group for each of the major functions supported. For example:
– basic voice call establishment;
– basic voice call clearing;
– supplementary service, call transfer.

• Success or failure: A test group for normal behaviour and another for exceptional
behaviour.

9.4.2 Define test coverage within each test group
Once a logical set of test groups has been defined, the required range of functions to be tested in
each group should be specified. As an example, the coverage for a basic voice call establishment
test group might include:
• successful call from User A to User B;
• successful call from User B to User A;
• unanswered call from User A to User B;
• unanswered call from User B to User A;
• call attempt from User A to a busy User B;
• call attempt from User B to a busy User A.
NOTE – In the examples above, it would be necessary to have specified the meaning of "User A" and
"User B" in the context of the abstract architecture.

There should be enough information in the test coverage to ensure that tests can be specified for all
of the interoperable functions of an implementation.

9.5 Write test purposes

Before writing the individual steps that are required to complete a test case, a full description of the
objective of each test case should be specified in its test purpose (TP). Without this objective, it
may not be clear how the test should be defined. The following example explains the intent of the
associated test case in enough detail so that there should be no ambiguity for the test writer.

Test Purpose: To verify that a call to User B can be successfully established by User A and that
speech communication is possible between User A and User B.

It is worth noting that the above example might be considered too complex as a conformance TP in
that it specifies two test criteria (successful call establishment and speech communication), but as
an interoperability TP, it is perfectly valid.

It is acceptable to write TPs in natural English (as can be seen in the example above). Indeed, [ITU-
T X.290] through [ITU-T X.296] recommend that test specifications include a concise and

16 X series – Supplement 4 (09/2008)

unambiguous description of each test with focus on its purpose. TPs define what is to be tested
rather than how the testing is to be performed and are based on the requirements identified in the
relevant standard (or standards) from which the test specification is derived.

There is considerable benefit to be gained by having all TPs written in a similar and consistent way.
This can be achieved using the structured test purpose notation, TPLan (see [b-ETSI ES 202 553]).

The benefits of using TPLan are:
• a consistency in test purpose descriptions – less room for misinterpretation;
• a clear identification of the TP pre-conditions, test description, and verdict criteria;
• the ability to check syntax automatically and to highlight it in text editors;
• the ability to graphically or textually render TP descriptions for the needs of different users.

TPLan provides a framework for a consistent representation (format, layout, structure and logical
ordering) and a consistent use of words and patterns of words. This is achieved without
unnecessarily restricting the expressive power of pure prose. TPLan allows the use of an extendable
set of keywords in combination with free-text strings (enclosed by single quotes). Thus, the TP
writer has considerable freedom of expression in the use of unstructured text between the keywords.
The following example shows how a TP can be fully specified using TPLan.

TP id : TP_CALL_0347
Summary : 'User A is able to call User B'
RQ ref : RQ_003_0592
Role : PINX
Config : CF_CALL_05
TC Ref : TC_CALL_0347

with { User_B idle
 and User_A configured 'to be able to make calls to User B'
 }
ensure that {
 when { User_A initiates a call to the address of User_B }
 then { User_B indicates an incoming_call }
 when { User_B answers the incoming_call }
 then { User_A and User_B can communicate }
 }

9.6 Write test cases

9.6.1 Pre-test conditions
In some instances, although not necessarily all, it is useful to be able to specify some
pre-test conditions to a test case. This often takes the form of instructions for configuring the EUT
and QE to ensure that the test purpose is fully met. An example of a valid pre-test condition is
"Configure EUT and QE to communicate using SIP with G.711 µ-Law codec".

9.6.2 Test steps and verdicts

9.6.2.1 Test steps
Test cases describe the detailed steps that must be followed in order to achieve the stated purpose of
each test. These steps should be specified in a clear and unambiguous way but without placing
unreasonable restrictions on how the step is performed. Clarity and precision are important to
ensure that the step is followed exactly. The lack of restrictions is necessary if the test could apply
to a range of different types of implementation. As an example, the test step "Pick up User A's
telephone handset and dial the number of User B" is certainly clear and unambiguous but it can
only apply to a classical, physical telephone and not to a soft phone or even a mobile handset.
Expressing this step as "Initiate a new call at User A to the address of User B" is no less clear or
unambiguous but it can be applied to any type of telephone.

 X series – Supplement 4 (09/2008) 17

9.6.2.2 Verdicts
At the end of each test case (and, where necessary, interspersed with the test steps) it is important to
specify the criterion for assigning a verdict to the test case. This is probably best expressed as a
question such as "Can speech from User B be heard and understood?". Verdict criteria need to be
specified as clearly and unambiguously as test steps and without restrictions. If a criterion is
expressed as a question, it should be constructed in such a way that "Yes" and "No" are the only
possible answers and it should be clear which result represents a "Pass" verdict and which
represents a "Fail".

Both intermediate and final verdicts should be constructed in such a way that failure automatically
implies failure of the overall test. Intermediate verdicts should not be included simply to provide
information. As an example, in an interoperability test suite for telephony functions, it would not be
necessary to have an intermediate verdict "Is dial-tone present?" if dial-tone is intended to be
generated locally. If, on the other hand, the dial-tone should (or could) be generated by the remote
end, such a verdict would be perfectly valid.

Although it is clear that a "Pass" verdict will always mean that, for a specific test, the EUT and the
QE(s) interoperate correctly, it may not be the case that a "Fail" verdict implies that they do not.
The MoC plays an essential role in almost all interoperability tests but it is not part of the SUT
(see Figure 4). A "Fail" verdict may be caused by a fault or unexpected behaviour in the MoC.
Thus, each "Fail" verdict should be investigated thoroughly, possibly using monitoring equipment
as shown in Figure 3, to determine its root cause before either validating the verdict as a true failure
(if the root cause is within the SUT) or retesting (if the root cause is determined to be outside
the SUT).

9.6.2.3 Specification of test steps and verdicts
Test steps and verdicts should be specified at the level appropriate to the functions to be tested. For
example, if the purpose of an interoperability test suite is to test a telephony application where SIP
is the underlying protocol, the test steps should specify actions and observations at the user terminal
or agent (e.g., "Answer incoming call" and "Is ringing tone heard?"). If, however, the object is to
establish the interoperability of two SIP protocol stacks, the tests should specify actions and
observations possible at the application interfaces of the stacks (e.g., "Cause SIP INVITE message
to be sent" or "Was 180 Ringing received?").

As interoperability testing most often involves the activation and observation of user functions, it is
reasonable for test cases to be specified as series of steps to be performed by human test drivers.
Such test cases are more often referred to as test descriptions. In situations where automation of
user functions is possible, test cases could also be written in any of the following:
• test specification languages (e.g., TTCN-3);
• programming languages (e.g., C++);
• scripting languages (e.g., PERL).

It should be noted that although test cases written only in machine-readable form offer great
benefits in terms of repeatability and speed of execution, they cannot, generally, be used by human
test drivers as instruction for running the tests manually. Thus, when it is not known how the tests
will be performed, it is advisable to write them in a structured form of a natural language such as
English. However, while an automated test programme or script can easily accommodate alternative
behaviour paths to handle exceptional conditions (such as an unexpected error message), such
multiple paths are very difficult to include in a structured and easy-to-read English test description.

9.6.3 Example
No assumptions should be made about the knowledge of the EUT or QE possessed by the person
(or machine) carrying out the test. The sequence of actions involved in each test case should be

18 X series – Supplement 4 (09/2008)

specified in full. An example of a complete test description (including test purpose and
pre-conditions) is shown in Table 2.

Table 2 – Example test description specification

Identifier TC_SS_0001_01
Summary: Supervised call transfer from User B to User A
Test Purpose: ensure that {

 when { A call is established between User_C and User_B }
 then { User_B can transfer the call from User_B to User_A
 after User_B and User_A communicate }
 }

TP Identifier TP_SS_0001 Configuration: Test Architecture 2
Pre-test
conditions:

• User A, User B and User C configured with Bearer Capability set to "Speech,
64 kbit/s"

• User A configured to support the Call Transfer service

Step Test sequence Verdict
 Pass Fail

1 Initiate new call at User C to the address of User B
2 Accept call at User B
3 Activate the "recall" button (or equivalent) at User B's terminal
4 Is dial tone (or an equivalent indication) present at User B's terminal? Yes No
5 Initiate a new call from User B to the address of User A
6 Is User A's terminal alerting (visual or audible indication)? Yes No
7 Accept call at User A
8 Apply speech at User A
9 Can speech from User A be heard and understood at User B? Yes No

10 Can speech from User A be heard and understood at User C? No Yes
11 Apply speech at User B
12 Can speech from User B be heard and understood at User A? Yes No
13 Can speech from User B be heard and understood at User C? No Yes
14 Clear call at User B
15 Apply speech at User A
16 Can speech from User A be heard and understood at User C? Yes No
17 Apply speech at User C
18 Can speech from User C be heard and understood at User A? Yes No
19 Clear the call at User A
20 Clear the call at User C

Observations:

9.6.4 Pre-amble and post-amble
In the example test description shown in Table 2 it is clear that steps 1 and 2 are essential for
establishing the call and that steps 19 and 20 are equally necessary for clearing the call but none of
these steps play a significant part in the test itself as there are no verdicts associated with them. In
conformance testing terminology, they can be considered to be the pre-amble (steps 1 and 2) and
the post-amble (steps 19 and 20) and it may be useful to segregate these steps from the main testing
sequence as shown by the dotted lines in Table 3. Other methods of segregation (such as shading or
the use of prefixes to the step numbers) are equally valid and may even be combined for greater
effect.

 X series – Supplement 4 (09/2008) 19

Table 3 – Test case example showing segregation of pre-amble and post-amble

Identifier TC_SS_0002_01
Summary: Supervised call transfer from User B to User A
Test Purpose: ensure that {

 when { A call is established between User_C and User_B }
 then { User_B can transfer the call from User_B to User_A
 after User_B and User_A communicate }
 }

TP Identifier TP_SS_0001 Configuration: Test Architecture 2
Pre-test
conditions:

• User A, User B and User C configured with Bearer Capability set to "Speech,
64 kbit/s"

• User A configured to support the Call Transfer service

Step Test sequence Verdict
 Pass Fail

P1 Initiate new call at User C to the address of User B
P2 Accept call at User B
3 Activate the "recall" button (or equivalent) at User B's terminal
4 Is dial tone (or an equivalent indication) present at User B's terminal? Yes No
5 Initiate a new call from User B to the address of User A
6 Is User A's terminal alerting (visual or audible indication)? Yes No
7 Accept call at User A
8 Apply speech at User A
9 Can speech from User A be heard and understood at User B? Yes No

10 Can speech from User A be heard and understood at User C? No Yes
11 Apply speech at User B
12 Can speech from User B be heard and understood at User A? Yes No
13 Can speech from User B be heard and understood at User C? No Yes
14 Clear call at User B
15 Apply speech at User A
16 Can speech from User A be heard and understood at User C? Yes No
17 Apply speech at User C
18 Can speech from User C be heard and understood at User A? Yes No

P19 Clear the call at User A
P20 Clear the call at User C

Observations:

9.6.4.1 Alternative test case presentation forms
Test descriptions written in a structured and tabulated natural language (as in Table 3) are ideal
when the tests themselves are to be performed manually by human test drivers. If, however, tests
are to be performed automatically using computer-based test drivers, test cases should, perhaps, be
written in an appropriate programming or scripting language. The following text shows how the
example test case could be expressed in the TTCN-3 core language described in [ITU-T Z.161].

// Define Supervised Transfer test case
testcase SupervisedTransfer() runs on userTerminalType
{ timer ResponseTimer := 100E-3;

 // Preamble: Establish call between Users B & C
 m3s.send (CallEstablish_1);
 m2s.receive (CallEstablish_1);
 m2s.send (CallAccept_1);
 m3s.receive (CallAccept_1);

 // Register recall test
 m2s.send (Recall);
 ResponseTimer.start;

20 X series – Supplement 4 (09/2008)

 alt
 { [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m2d.receive (DialTone)
 { setverdict(pass);
 ResponseTimer.stop

 // Hold call test
 m2s.send (CallEstablish_2);
 m1s.receive (CallEstablish_2);
 ResponseTimer.start;
 m1s.send (Alerting);
 alt
 { [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m2s.receive (Alerting)
 { setverdict(pass);
 ResponseTimer.stop

 // Speech test 1
 m1s.send (CallAccept_2);
 m2s.receive (CallAccept_2);
 m1d.send (DTMF123456);
 ResponseTimer.start;
 alt
 { [] m3d.receive (DTMF123456)
 { setverdict(fail);
 stop
 }
 [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m2d.receive (DTMF123456)
 { setverdict(pass);
 ResponseTimer.stop

 // Speech test 2
 m2d.send (DTMF123456);
 ResponseTimer.start
 alt
 { [] m3d.receive (DTMF123456)
 { setverdict(fail);
 stop
 }
 [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m1d.receive (DTMF123456)
 { setverdict(pass);
 ResponseTimer.stop

 // Transfer test 1
 m2s.send (CallRelease_1);
 m1d.send (DTMF123456);
 ResponseTimer.start;
 alt
 { [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m3d.receive (DTMF123456)
 { setverdict(pass);
 ResponseTimer.stop

 // Transfer test 2
 m3d.send (DTMF123456);
 ResponseTimer.start;
 alt
 { [] ResponseTimer.timeout
 { setverdict(fail);
 stop
 }
 [] m1d.receive (DTMF123456)
 { setverdict(pass);

 X series – Supplement 4 (09/2008) 21

 ResponseTimer.stop

 // Postamble: Clear down the call
 m3s.send (CallRelease_2);
 m1s.send (CallRelease_2);
 }
 }}}}}}}}}}}}

 // The final block is the module control which initiates the
 // single defined test case.
 control
 {
 execute (SupervisedTransfer());
 }

Although the TTCN-3 core notation can be exactly and repeatedly interpreted by a suitably
equipped test system, it is not so easy for a human, other than somebody skilled in the use of
TTCN-3, to read and understand. If that is necessary, then the graphical presentation format for
TTCN-3 (GFT) described in [ITU-T Z.163] can be used. As an illustration, the test case defined in
Table 3 is shown as part of a GFT specification in Figure 15.

22 X series – Supplement 4 (09/2008)

X.Suppl.4(08)_F15

testcase XferTest ()
runs on UserTerminal system SIP_H323_Interop

P3D P3S mtc
Data Signalling UserTerminal

P1D P1S
SignallingData

P2D
Data

P2S
Signalling

call_Establish

call_Establish

alerting

alerting
Alerting

CallEstablish_1

CallEstablish_2

Alerting

call_Establish

call_Establish

CallEstablish_1

CallEstablish_2

dialTone
DialTone

call_Accept

call_Accept

dtmfStringType

dtmfStringType

dtmfStringType

dtmfStringType

DTMF123456

DTMF123456

DTMF123456

DTMF123456

call_Accept

CallAccept_1

CallAccept_2
CallAccept_2

ActivateRecall (P3)

setverdict (fail)

setverdict (fail)

setverdict (pass)

setverdict (pass)

setverdict (pass)

setverdict (pass)

setverdict (pass)

call_Accept
callAccept_1

alt

alt

alt

alt

alt

alt

setverdict (fail)

setverdict (fail)

dtmfStringType

call_Release
CallRelease_1

CallRelease_2

dtmfStringType

dtmfStringType

dtmfStringType

DTMF123456

DTMF123456

DTMF123456

DTMF123456

setverdict (fail)

setverdict (fail)

setverdict (fail)

dtmfStringType
DTMF123456

dtmfStringType
DTMF123456

setverdict (fail)

setverdict (pass)

call_Release

CallRelease_2
call_Release

ResponseTimer (100)

ResponseTimer

ResponseTimer

ResponseTimer (100)

ResponseTimer (100)

ResponseTimer (100)

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer (100)

ResponseTimer (100)

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer

ResponseTimer

Figure 15 – GFT specification of supervised transfer test case

 X series – Supplement 4 (09/2008) 23

9.7 Validate test cases
The ideal method of validating test cases is to set up a physical test configuration and then perform
each of the tests to ensure that:
• the specified pre-test conditions establish the EUT and QE in the necessary configuration

for the test;
• no unnecessary pre-test conditions are specified;
• the abstract architecture can be realized in a concrete configuration which enables the

specified test to be executed;
• the individual test steps are expressed in an unambiguous way and are easy to follow;
• all necessary steps are covered from the start of the test to its completion;
• each test case fully realizes the objective of its test purpose;
• the combined intermediate and final verdicts do, in fact, lead to a true assessment of the test

purpose.

In many cases, it will not be possible to validate the test cases by execution because there will not
be suitable equipment available. In such situations, the simplest alternative is to carry out a
structured walk-through of each test case (preferably with independent reviewers), checking every
step and verdict in turn, to assess the completeness and validity of the test case. Further information
on walk-through and other validation methods can be found in [ETSI EG 202 107], "Planning for
validation and testing in the standards-making process".

9.8 Finalize IFS
During the development of the test purposes, test description and test cases, it is possible that
inconsistencies, gaps and other inaccuracies will be identified in the draft IFS. Now that the
development is complete, these identified changes should be consolidated into the final IFS ready
for publication.

10 Interoperability testing process

10.1 Overview
Although it is possible to automate interoperability testing, it is likely that test cases will be written
in a structured natural language to be followed by human test drivers. It is, therefore, important to
ensure that the defined steps and verdicts of each test case are carefully followed and recorded.

Interoperability testing involves the following three stages:
• preparing for testing;
• testing;
• writing the test report.

The process is expressed graphically in Figure 16.

24 X series – Supplement 4 (09/2008)

Figure 16 – Interoperability testing

10.2 Prepare for testing

10.2.1 Test arrangement
Before actual testing can take place, there are a number of activities that must be completed. The
first of these is to specify a test arrangement (Figure 18) that maps the abstract architecture in the
test specification (Figure 17), to the concrete configurations that are going to be used for testing.
This mapping should identify the manufacturer, product name and build status of the EUT, and the
QE(s). It should also specify how the various items of equipment are to be physically
interconnected.

Figure 17 – Example of an abstract architecture

 X series – Supplement 4 (09/2008) 25

Figure 18 – Test arrangement based on the example abstract architecture

In addition to the definition of physical test arrangements, it may also be useful to specify other
system configuration requirements which could include items such as the necessary numbering plan
and the choice of codecs to be used in the testing.

10.2.2 Test planning
It is always advisable to take the time to prepare a plan of testing before beginning the work itself.
A test plan should include:
• identification of which test cases are to be included;
• identification of which (optional) test cases are not to be included;
• indication of the order in which the tests are to be performed and the relationships between

tests;
• specification of the test arrangements required for each group of tests;
• identification of equipment and facilities required to establish the necessary test

configurations;
• identification of the human resources required during the testing period.

The information above should be consolidated into a formal plan against which progress can be
monitored. Figure 19 shows an example test plan presented as a Gantt chart, although any form of
planning diagram (e.g., PERT or Timeline) could also be used.

26 X series – Supplement 4 (09/2008)

Figure 19 – Example test plan

10.3 Testing

10.3.1 Manual testing
The sequence of tests specified should be grouped in a logical way that will ensure efficient use of
test configurations and a "bottom-up" flow of tests (testing basic functionality first and then
progressing to more complex functions). It is, therefore, important to carry out the tests in the
sequence specified, following exactly the steps defined in each test case.

Throughout the testing process, it is essential that a record of each verdict (both intermediate and
final) is kept for each test case. If the test cases are specified in a tabular form, this can be used as a
proforma for logging the test results. Alternatively, a simple table listing each of the test cases and
their associated verdicts could be used. An example of how such a table could be constructed is
shown in Table 4.

Table 4 – Example table summarizing test verdicts

Verdict Test
case

Title

1 2 3 4 5 6

Overall
verdict

Observations

BS-1 Voice call establishment from User A to
User B

Pass

BS-2 Voice call establishment from User B to
User A

Pass

BS-3 Call establishment from User A to User B
using en-bloc sending

 Fail User B's terminal
failed to alert
although ringing tone
was heard at User A's
terminal

Table 4 shows a test summary in fairly simple form. If necessary, additional information, such as a
time-stamp or identification of the test driver(s), can be included.

 X series – Supplement 4 (09/2008) 27

10.3.2 Automated testing
If the test cases have been automated (as described in clause 9.6.2.3), the sequencing of tests and
the logging of verdicts will be predetermined by the test programme. It will still be necessary to
take care in establishing and modifying the test arrangements as required to ensure that the expected
configurations are tested.

10.4 Write test report
A test report should summarize the testing activity and provide a clear indication of whether the
tested equipment can be considered to be interoperable or not. It should include the following:
• Organizational information:

– when the testing took place;
– where the testing took place;
– who carried out the testing.

• Equipment information:
– test configurations used;
– hardware and software identities for EUT and all QEs;
– hardware and software revision states for EUT and all QEs;
– identification of the standards (including versions) implemented in each MoC.

• Testing information:
– identification of the specific test specification upon which the testing was based;
– identification of omitted tests (with a reason for omission if appropriate);
– full summary of test verdicts.

28 X series – Supplement 4 (09/2008)

Appendix I

Example IFS (Internet Key Exchange protocol, IKEv2)

I.1 Introduction
The supplier of an Internet Key Exchange version 2 (IKEv2) protocol implementation which is
claimed to conform to [IETF RFC 4306] may complete the following interoperable features
statement (IFS) proforma if the implementation is to be submitted for interoperability testing. The
IFS is a statement specifying which functions supported by the protocol have been implemented.
The IFS can have a number of uses, including:
• a detailed indication of the functional capabilities of the implementation;
• a basis for initially checking the possibility of interoperating with another implementation;
• the basis for selecting appropriate tests against which to assess the ability of the

implementation to interoperate with other implementations.

I.2 Instructions for completing the IFS proforma

I.2.1 General structure of the IFS proforma
The IFS proforma is a fixed format questionnaire divided into clauses and subclauses, each
containing a group of individual items. Each item is identified by an item number, the name of the
item (question to be answered), and the reference(s) to the clause(s) that specifies (specify) the item
in the main body of the standard.

The "Status" column indicates whether an item is applicable and, if so, whether support is
mandatory or optional. The following terms are used:
 M mandatory (the function is required by [IETF RFC 4306]);
 O optional (the function is not required by [IETF RFC 4306], but if the function

is implemented, it is required to conform to the protocol specifications);
 O.<n> optional, but support of at least one of the group of options labelled by the

same numeral <n> is required;
 C:<cond> conditional requirement, depending on support for the item or items listed in

condition <cond> explained below the table of appearance;
 N/A not applicable, this feature is not contained in the profile.

References to the specification are made in the column "Reference".

Answers to the questionnaire items are to be provided either in the "Support" column, by simply
marking an answer to indicate a restricted choice (Yes or No), or in the "Not Applicable" column
(N/A).

I.2.2 Additional information
Items of additional information allow a supplier to provide further information intended to assist the
interpretation of the IFS. It is not intended or expected that a large quantity will be supplied, and an
IFS can be considered complete without any such information. Examples might be an outline of the
ways in which a (single) implementation can be set up to operate in a variety of environments and
configurations.

References to items of additional information may be entered next to any answer in the
questionnaire, and may be included in items of exception information.

 X series – Supplement 4 (09/2008) 29

I.3 IFS proforma

I.3.1 Implementation identification

Supplier
Contact point for queries about the IFS
Implementation name(s) and version(s) (see note)
Other information necessary for full identification –
e.g., name(s) and version(s) for machines and/or
operating systems; system name(s)

NOTE – The terms name and version should be interpreted appropriately to correspond with a supplier's
terminology (e.g., type, series, model).

I.3.2 Protocol summary, [IETF RFC 4306]

Protocol version
Addenda implemented (if applicable)
Amendments implemented
Date of statement

I.4 IKEv2 entities

Table I.1 – IKEv2 entities

Item IKEv2 entities Reference Support

IE_1 IKE Endpoint
Comments:

I.4.1 Roles

Table I.2 – IKE endpoint roles

Item Role Reference Support

EP_1 Initiator [IETF RFC 4306]
EP_2 Responder [IETF RFC 4306]
Comments:

30 X series – Supplement 4 (09/2008)

I.4.2 IKEv2 initiator functions

I.4.2.1 IKE exchange types

Table I.3 – Initiator's IKE exchange types

Item Function Reference Status Support

IX_1 IKE (parent) SA establishment 1.2 M
IX_2 Child SA establishment 1.3 M
IX_3 Informational exchange 1.4 M
Comments:

I.4.2.1.1 IKE SA establishment functions

Table I.4 – Initiator's IKE SA establishment functions

Item Function Reference Status Support

IS_1 Use of retransmission timers 2.1 M
IS_2 Use of sequence numbers for Message ID 2.2, 3.1 M
IS_3 Window size for overlapping requests 2.3, 3.10.1 M
IS_4 State synchronization & connection timeouts 2.4 M
IS_5 Version numbers and forward compatibility 2.5, 3.1 M
IS_6 Cookies 2.6, 3.10.1 M
IS_7 Cryptographic Algorithm Negotiation 2.7, 3.3.2 M
IS_8 Rekeying 2.8, 2.17, 3.10.1 M
IS_9 Authentication of the IKE_SA 2.15, 3.8 M
IS_10 Extensible Authentication Protocol Methods 2.16, 3.16 M
IS_11 Error handling 2.21, 3.10.1 M
IS_12 NAT Traversal 2.23, 3.10.1 M
Comments:

I.4.2.1.2 Child SA establishment functions

Table I.5 – Initiator's child SA establishment functions

Item Function Reference Status Support

IC_1 Use of retransmission timers 2.1 M
IC_2 Use of sequence numbers for Message ID 2.2, 3.1 M
IC_3 Window size for overlapping requests 2.3, 3.10.1 M
IC_4 State synchronization & connection timeouts 2.4 M
IC_5 Version numbers and forward compatibility 2.5, 3.1 M
IC_8 Cookies 2.6, 3.10.1 M
IC_6 Rekeying 2.8, 2.17, 3.10.1 M
IC_7 Traffic Selector Negotiation* 2.9, 3.13 M

 X series – Supplement 4 (09/2008) 31

Table I.5 – Initiator's child SA establishment functions

Item Function Reference Status Support

IC_8 Requesting an internal address on a remote
network*

2.19, 3.15 O

IC_9 Error handling 2.21, 3.10.1 M
IC_10 IP Compression (IPComp)* 2.22, 3.10.1 O
Comments:
* Included in the implicit establishment of a Child SA as part of an IKE SA establishment.

I.4.2.1.3 Informational exchange functions

Table I.6 – Initiator's informational exchange functions

Item Function Reference Status Support

II_1 Notification exchange 1.4, 3.10 M
II_2 Delete exchange 1.4, 3.11 M
II_3 Configuration exchange 1.4, 3.15 M
II_4 Informational messages outside an IKE_SA 1.5 O
II_5 Use of retransmission timers 2.1 M
II_6 Use of sequence numbers for Message ID 2.2, 3.1 M
II_7 Window size for overlapping requests 2.3, 3.10.1 M
II_8 Version numbers and forward compatibility 2.5, 3.1 M
II_9 Requesting the peer's version 2.20, 3.15 O
II_10 Error handling 2.21, 3.10.1 M
Comments:

I.4.3 IKEv2 responder functions

I.4.3.1 IKE exchange types

Table I.7 – Responder's IKE exchange types

Item Function Reference Status Support

RX_4 IKE (parent) SA establishment 1.2 M
RX_5 Child SA establishment 1.3 M
RX_6 Informational exchange 1.4 M
Comments:

32 X series – Supplement 4 (09/2008)

I.4.3.1.1 IKE SA establishment functions

Table I.8 – Responder's IKE SA establishment functions

Item Function Reference Status Support

RS_13 Use of sequence numbers for Message ID 2.2, 3.1 M
RS_14 Window size for overlapping requests 2.3, 3.10.1 M
RS_15 Version numbers and forward compatibility 2.5, 3.1 M
RS_16 Cookies 2.6, 3.10.1 M
RS_17 Cryptographic Algorithm Negotiation 2.7, 3.3.2 M
RS_18 Rekeying 2.8, 2.17, 3.10.1 M
RS_1 Address and port agility 2.11 M
RS_19 Authentication of the IKE_SA 2.15, 3.8 M
RS_20 Extensible Authentication Protocol Method 2.16, 3.16 M
RS_21 Error handling 2.21, 3.10.1 M
RS_22 NAT Traversal 2.23, 3.10.1 M
Comments:

I.4.3.1.2 Child SA establishment functions

Table I.9 – Responder's child SA establishment functions

Item Function Reference Status Support

RC_11 Use of sequence numbers for Message ID 2.2, 3.1 M
RC_12 Window size for overlapping requests 2.3, 3.10.1 M
RC_13 Version numbers and forward compatibility 2.5, 3.1 M
RC_8 Cookies 2.6, 3.10.1 M
RC_14 Rekeying 2.8, 2.17, 3.10.1 M
RC_15 Traffic Selector Negotiation* 2.9, 3.13 M
RC_1 Address and port agility 2.11 M
RC_16 Requesting an internal address on a remote

network*
2.19, 3.15 O

RC_17 Error handling 2.21, 3.10.1 M
RC_18 IP Compression (IPComp)* 2.22, 3.10.1 O
Comments:
* Included in the implicit establishment of a Child SA as part of an IKE SA establishment.

 X series – Supplement 4 (09/2008) 33

I.4.3.1.3 Informational exchange functions

Table I.10 – Responder's informational exchange functions

Item Function Reference Status Support

RI_11 Notification exchange 1.4, 3.10 M
RI_12 Delete exchange 1.4, 3.11 M
RI_13 Configuration exchange 1.4, 3.15 M
RI_14 Informational messages outside an IKE_SA 1.5 O
RI_15 Use of sequence numbers for Message ID 2.2, 3.1 M
RI_16 Window size for overlapping requests 2.3, 3.10.1 M
RI_17 Version numbers and forward compatibility 2.5, 3.1 M
RI_5 Address and port agility 2.11 M
RI_18 Requesting the peer's version 2.20, 3.15 O
RI_19 Error handling 2.21, 3.10.1 M
Comments:

34 X series – Supplement 4 (09/2008)

Appendix II

Example IFS (TIPHON Profile of SIP, Release 3)

II.1 Introduction
The supplier of a protocol implementation which is claimed to conform to [ETSI TS 101 884] may
complete the following interoperable features statement (IFS) proforma if the implementation is to
be submitted for interoperability testing. The IFS is a statement specifying which functions
supported by the protocol have been implemented. The IFS can have a number of uses, including:
• a detailed indication of the functional capabilities of the implementation;
• a basis for initially checking the possibility of interoperating with another implementation;
• the basis for selecting appropriate tests against which to assess the ability of the

implementation to interoperate with other implementations.

II.2 Instructions for completing the IFS proforma

II.2.1 General structure of the IFS proforma
The IFS proforma is a fixed format questionnaire divided into clauses and subclauses, each
containing a group of individual items. Each item is identified by an item number, the name of the
item (question to be answered), and the reference(s) to the clause(s) that specifies (specify) the item
in the main body of the standard.

The "Status" column indicates whether an item is applicable and, if so, whether support is
mandatory or optional. The following terms are used:
 M mandatory (the function is required by [ETSI TS 101 884]);
 O optional (the function is not required by [ETSI TS 101 884], but if the

function is implemented, it is required to conform to the protocol
specifications);

 O.<n> optional, but support of at least one of the group of options labelled by the
same numeral <n> is required;

 C.<cond> conditional requirement, depending on support for the item or items listed in
condition <cond> explained below the table of appearance;

 N/A not applicable, this feature is not contained in the profile.

References to the specification are made in the column "Reference".

Answers to the questionnaire items are to be provided either in the "Support" column, by simply
marking an answer to indicate a restricted choice (Yes or No), or in the "Not Applicable" column
(N/A).

II.2.2 Additional information
Items of additional information allow a supplier to provide further information intended to assist the
interpretation of the IFS. It is not intended or expected that a large quantity will be supplied, and a
IFS can be considered complete without any such information. Examples might be an outline of the
ways in which a (single) implementation can be set up to operate in a variety of environments and
configurations.

References to items of additional information may be entered next to any answer in the
questionnaire, and may be included in items of exception information.

 X series – Supplement 4 (09/2008) 35

II.3 IFS proforma

II.3.1 Implementation identification

Supplier
Contact point for queries about the IFS
Implementation name(s) and version(s) (see note)
Other information necessary for full
identification – e.g., name(s) and version(s) for
machines and/or operating systems; system
name(s)

NOTE – The terms name and version should be interpreted appropriately to correspond with a supplier's
terminology (e.g., type, series, model).

II.3.2 Protocol summary, EN 301 xxx

Protocol version
Addenda implemented (if applicable)
Amendments implemented
Date of statement

II.4 SIP entities

Table II.1 – SIP entities

Item SIP entities Reference Support

SE1 User agent
SE2 Registrar
SE3 Proxy
SE4 Gateway
Comments:

II.4.1 Roles

Table II.2 – User agent roles

Item Role Reference Support

UA1 Originating user agent
UA2 Terminating user agent
Comments: The roles "originating" and "terminating" apply to a user agent's
role regarding a call. Since a user agent is going to take each position during
its usage, the capabilities are not listed separately in the following clauses. If
there are capabilities that apply only for one role, the status field will show a
"condition" that will be explained below the corresponding table.

36 X series – Supplement 4 (09/2008)

Table II.3 – Registrar roles

Item Role Reference Support

RE1 Registrar in the home network
Comments:

Table II.4 – Proxy roles

Item Role Reference Support

PR1 Proxy in serving network
PR2 Proxy in intermediate network
PR3 Proxy in home network
Comments:

Table II.5 – Gateway roles

Item Role Reference Support

GW1 Originating gateway
GW2 Terminating gateway
Comments: The roles "originating" and "terminating" apply to a gateway's
role regarding a call. Since a gateway is going to take each position during
its usage, the capabilities are not listed separately in the corresponding
clauses. If there are capabilities that apply only for one role, the status field
will show a "condition" that will be explained below the corresponding
table.

II.4.2 User agent capabilities

II.4.2.1 Registration

Table II.6 – User agent registration capabilities

Item Function Reference Status Support

U_REG1 Unicast registration [ETSI TS 101 884] 5.1.1 M
U_REG2 Multicast registration [IETF RFC 3261] 10.2.6 O
U_REG3 Authenticated registration [ETSI TS 101 884]] 5.1.1.1 M
U_REG3 Additive registration [ETSI TS 101 884]] 5.1.1.1 M
U_REG4 Refreshing contact addresses [ETSI TS 101 884] 5.2.1 M
U_REG5 Removing contact

addresses/Deregistration
[ETSI TS 101 884] 5.3.1 M

Comments:

 X series – Supplement 4 (09/2008) 37

II.4.2.2 Basic call

Table II.7 – User agent basic call capabilities

Item Function Reference Status Support

U_BC1 Call establishment without
authentication

[ETSI TS 101 884]
5.2.2.1.1

M

U_BC2 Call establishment with
authentication

[ETSI TS 101 884] 6.2.1 O

U_BC3 Call clearing of an active call [ETSI TS 101 884] 6.2.1 M
U_BC4 Call clearing before destination

answers
[ETSI TS 101 884] 6.2.1 M

U_BC5 Rejection of incoming call [ETSI TS 101 884] 6.2.1.1 M
U_BC6 Call clearing authenticated [ETSI TS 101 884] 6.2.1.2 M
Comments:

II.4.3 Registrar capabilities

II.4.3.1 Registration

Table II.8 – Registrar capabilities

Item Function Reference Status Support

U_REG1 Unicast registration [ETSI TS 101 884] 5.1.1 M
U_REG2 Multicast registration [IETF RFC 3261] 10.2.6 O
U_REG3 Authenticated registration [ETSI TS 101 884] 5.1.2.1.1 M
U_REG4 Additive registration [ETSI TS 101 884] 5.1.1.1 M
U_REG5 Refreshing contact

addresses
[ETSI TS 101 884] 5.2.2 M

U_REG6 Removing contact
addresses/Deregistration

[ETSI TS 101 884] 5.3.2 M

Comments:

38 X series – Supplement 4 (09/2008)

II.4.4 Proxy capabilities

II.4.4.1 Proxy in the serving and intermediate network

II.4.4.1.1 Registration

Table II.9 – Serving/Intermediate proxy registration capabilities

Item Function Reference Status Support

S_REG1 Unicast registration [ETSI TS 101 884] 5.1.2 M
S_REG2 Multicast registration [IETF RFC 3261] 10.2.6 C.1
S_REG3 Additive registration [ETSI TS 101 884] 5.1.1.1 M
S_REG4 Refreshing contact addresses [ETSI TS 101 884] 5.2.3 M
S_REG5 Removing contact

addresses/Deregistration
[ETSI TS 101 884] 5.3.3 M

Comments:

C.1: if PR1 then M else N/A.

II.4.4.1.2 Basic call

Table II.10 – Serving/Intermediate proxy basic call capabilities

Item Function Reference Status Support

S_BC1 Call establishment without
authentication

[ETSI TS 101 884] 6.3.1 M

S_BC2 Call clearing of an active call [ETSI TS 101 884] 6.3.1 M
S_BC3 Call clearing before destination

answers
[ETSI TS 101 884] 6.3.1 M

Comments:

II.4.4.2 Proxy in the home network

II.4.4.2.1 Registration

Table II.11 – Home proxy registration capabilities

Item Function Reference Status Support

H_REG1 Unicast registration [ETSI TS 101 884] 5.1.2 M
H_REG3 Additive registration [ETSI TS 101 884] 5.1.1.1 M
H_REG4 Refreshing contact

addresses
[ETSI TS 101 884] 5.2.2 M

H_REG5 Removing contact
addresses/Deregistration

[ETSI TS 101 884] 5.3.3 M

Comments:

 X series – Supplement 4 (09/2008) 39

II.4.4.2.2 Basic call

Table II.12 – Home proxy basic call capabilities

Item Function Reference Status Support

H_BC1 Call establishment with
authentication

[ETSI TS 101 884] 6.4.1 M

H_BC2 Call clearing of an active call [ETSI TS 101 884] 6.4.2 M
H_BC3 Call clearing before

destination answers
[ETSI TS 101 884] 6.4.2 M

H_BC4 Call clearing authenticated [ETSI TS 101 884] 6.4.2 M
Comments:

II.4.5 Gateway capabilities

II.4.5.1 Basic call

Table II.13 – User agent basic call capabilities

Item Function Reference Status Support

G_BC1 Call establishment without
authentication

[ETSI TS 101 884] 5.2.2.1.1 M

G_BC2 Call establishment with
authentication

[ETSI TS 101 884] 6.10.1 C.1

G_BC3 Call clearing of an active
call

[ETSI TS 101 884] 6.9/6.10.2 M

G_BC4 Call clearing before
destination answers

[ETSI TS 101 884] 6.10.2 C.2

Comments:

C.1: if GW1 then O else N/A.
C.2: if GW1 then M else N/A.

40 X series – Supplement 4 (09/2008)

Bibliography

[b-AICTS] "Interconnectability testing method-AICTS", Sawai, K.; Konno, T.;
Hatafuku, M.; Gotoh, K.; Suzuki, S.; Kazama, K., Networks, 1995. Theme:
Electrotechnology 2000: Communications and Networks. [in conjunction
with the] International Conference on Information Engineering, Proceedings
of IEEE Singapore International Conference, Page(s): 289-293.

[b-Interop-Conf] "Relating interoperability testing with conformance testing", Sungwon Kang,
Global Telecommunications Conference, 1998. GLOBECOM 1998. The
Bridge to Global Integration. IEEE, Volume: 6, Page(s): 3768-3773 Vol. 6.

[b-Interop-VoIP] "Interoperability testing of VoIP systems", Griffeth, N.; Hao, R.; Lee, D.
Sinha, R.K.; Global Telecommunications Conference, 2000.
GLOBECOM '00. IEEE, Volume: 3, Page(s): 1565-1570 Vol. 3.

[b-IEEE 100] IEEE 100: The Authoritative Dictionary of IEEE Standards Terms,
Seventh Edition.
<http://standards.ieee.org/catalog/dict.html>

[b-ETSI ES 202 553] ETSI ES 202 553, Methods for testing and Specification (MTS); TPLan:
A notation for expressing test Purposes.
<http://pda.etsi.org/pda/home.asp?wki_id=XH4toKxzAJuxuyyzXa2ft>

http://standards.ieee.org/catalog/dict.html
http://pda.etsi.org/pda/home.asp?wki_id=XH4toKxzAJuxuyyzXa2ft

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Series X Supplement 4 (09/2008) – ITU-T X.290-series - Supplement on generic approach to interoperability testing
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Types of testing
	5.1 Interoperability testing
	5.2 Conformance testing
	5.3 Combining interoperability testing and conformance testing

	6 Interoperability testing process overview
	7 Basic concepts
	7.1 Means of testing
	7.2 Equipment under test (EUT)
	7.3 Qualified equipment (QE)
	7.4 System under test (SUT)
	7.5 Test interface
	7.6 Test driver
	7.7 Test coordinator
	7.8 Interoperability test cases
	7.9 Means of communication (MoC)

	8 Generic interoperability test architectures
	8.1 Test architectures with a single QE
	8.2 Test architectures with multiple QEs

	9 Developing interoperability tests
	9.1 Overview
	9.2 Specify abstract architecture
	9.3 Prepare draft IFS proforma
	9.4 Specify test suite structure
	9.5 Write test purposes
	9.6 Write test cases
	9.7 Validate test cases
	9.8 Finalize IFS

	10 Interoperability testing process
	10.1 Overview
	10.2 Prepare for testing
	10.3 Testing
	10.4 Write test report

	Appendix I – Example IFS (Internet Key Exchange protocol, IKEv2)
	I.1 Introduction
	I.2 Instructions for completing the IFS proforma
	I.3 IFS proforma
	I.4 IKEv2 entities

	Appendix II – Example IFS (TIPHON Profile of SIP, Release 3)
	II.1 Introduction
	II.2 Instructions for completing the IFS proforma
	II.3 IFS proforma
	II.4 SIP entities

	Bibliography

