

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Series X
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Supplement 21
(01/2014)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

 ITU-T X.1143 – Supplement on security
framework for web mashup services

ITU-T X-series Recommendations – Supplement 21

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199

OPEN SYSTEMS INTERCONNECTION X.200–X.299

INTERWORKING BETWEEN NETWORKS X.300–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699

OSI MANAGEMENT X.700–X.799

SECURITY X.800–X.849

OSI APPLICATIONS X.850–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029

Network security X.1030–X.1049

Security management X.1050–X.1069

Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES

Multicast security X.1100–X.1109

Home network security X.1110–X.1119

Mobile security X.1120–X.1139

Web security X.1140–X.1149

Security protocols X.1150–X.1159

Peer-to-peer security X.1160–X.1169

Networked ID security X.1170–X.1179

IPTV security X.1180–X.1199

CYBERSPACE SECURITY

Cybersecurity X.1200–X.1229

Countering spam X.1230–X.1249

Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES

Emergency communications X.1300–X.1309

Ubiquitous sensor network security X.1310–X.1339

CYBERSECURITY INFORMATION EXCHANGE

Overview of cybersecurity X.1500–X.1519

Vulnerability/state exchange X.1520–X.1539

Event/incident/heuristics exchange X.1540–X.1549

Exchange of policies X.1550–X.1559

Heuristics and information request X.1560–X.1569

Identification and discovery X.1570–X.1579

Assured exchange X.1580–X.1589

CLOUD COMPUTING SECURITY

Overview of cloud computing security X.1600–X.1601

Cloud computing security design X.1602–X.1639

Cloud computing security best practices and guidelines X.1640–X.1659

Cloud computing security implementation X.1660–X.1679

Other cloud computing security X.1680–X.1699

For further details, please refer to the list of ITU-T Recommendations.

 X series – Supplement 21 (01/2014) i

Supplement 21 to ITU-T X-series Recommendations

ITU-T X.1143 – Supplement on security framework for web mashup services

Summary

Supplement 21 to the ITU-T X-series Recommendations describes the security framework for web

mashup services and also describes web mashup types and a reference architecture. Security principles

and measures for secure web mashup services are provided for mitigating security threats and

addressing security challenges for the web mashup services.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X Suppl. 21 2014-01-24 17 11.1002/1000/12155

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/12155
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii X series – Supplement 21 (01/2014)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this publication, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this publication is voluntary. However, the publication may contain certain mandatory

provisions (to ensure, e.g. interoperability or applicability) and compliance with the publication is achieved

when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as

"must" and the negative equivalents are used to express requirements. The use of such words does not suggest

that compliance with the publication is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this publication may involve the

use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the publication development process.

As of the date of approval of this publication, ITU had received notice of intellectual property, protected by

patents, which may be required to implement this publication. However, implementers are cautioned that this

may not represent the latest information and are therefore strongly urged to consult the TSB patent database at

http://www.itu.int/ITU-T/ipr/.

 ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 X series – Supplement 21 (01/2014) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this supplement ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 Overview of web mashup services ... 3

6.1 Web mashup types and style .. 3

6.2 Web mashup reference architecture ... 5

7 Security architecture of web mashup service ... 6

7.1 Web mashup security principles ... 7

7.2 Measures for secure web mashup services ... 8

Bibliography... 12

 X series – Supplement 21 (01/2014) 1

Supplement 21 to ITU-T X-series Recommendations

ITU-T X.1143 – Supplement on security framework for web mashup services

1 Scope

This Supplement addresses the security framework for web mashup services including the following

items:

– Overview of mashup web services;

– security principles and measures for secure web mashup.

2 References

None.

3 Definitions

3.1 Terms defined elsewhere

This Supplement uses the following terms defined elsewhere:

3.1.1 access control [b-ITU-T X.800]: The prevention of unauthorized use of a resource, including

the prevention of use of a resource in an unauthorized manner.

3.1.2 authorization [b-ITU-T X.800]: The granting of rights, which includes the granting of access

based on access rights.

3.1.3 availability [b-ITU-T X.800]: The property of being accessible and useable upon demand by

an authorized entity.

3.1.4 confidentiality [b-ITU-T X.800]: The property that information is not made available or

disclosed to unauthorized individuals, entities, or processes.

3.1.5 data integrity [b-ITU-T X.800]: The property that data has not been altered or destroyed in

an unauthorized manner.

3.1.6 data origin authentication [b-ITU-T X.800]: The corroboration that the source of data

received is as claimed.

3.1.7 hyper text markup language (HTML) [b-ITU-T M.3030]: A system of coding information

from a wide range of domains (e.g. text, graphics, database query results) for display by World Wide

Web browsers. Certain special codes, called tags, are embedded in the document so that the browser

can be told how to render the information.

3.1.8 origin [b-IETF RFC 6454]: The origin of a URI is the value computed by the algorithm of

RFC 6454's section 4. Two URIs are part of the same origin if they have the same scheme, host, and

port.

3.1.9 repudiation [b-ITU-T X.800]: Denial by one of the entities involved in a communication of

having participated in all or part of the communication.

3.1.10 privacy [b-ITU-T X.800]: The right of individuals to control or influence what information

related to them may be collected and stored and by whom and to whom that information may be

disclosed.

2 X series – Supplement 21 (01/2014)

3.2 Terms defined in this supplement

This Supplement defines the following terms:

3.2.1 authentication: A process used to achieve sufficient confidence in the binding between the

entity and the presented identity.

NOTE – Use of the term authentication in a web-based service context is taken to mean entity authentication.

3.2.2 javascript object notation (JSON): A lightweight, text-based, language-independent data

interchange format.

3.2.3 mashup: A web application that combines content (data and code) or services from multiple

origins to create a new service.

3.2.4 screen scraping: Screen scraping is the use of manual or automatic means to harvest content

from a website.

NOTE – Under normal circumstances, a legacy application is either replaced by a new program or brought up

to date by rewriting the source code. In some cases, it is desirable to continue using a legacy application but

the lack of availability of source code, programmers or documentation makes it impossible to rewrite or update

the application. In such a case, the only way to continue using the legacy application may be to write screen

scraping software to translate it into a more up-to-date user interface.

3.2.5 web 2.0: Web technology and applications that facilitate participatory information sharing,

interoperability, user-centred design and collaboration on the world wide web (WWW).

4 Abbreviations and acronyms

This Supplement uses the following abbreviations and acronyms:

AJAX/Ajax Asynchronous Javascript and XML

API Application Programming Interface

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

iframe Inline Frame

JSON Javascript Object Notation

JSON-RPC Javascript Object Notation-Remote Procedure Call

KML Keyhole Markup Language

PC Personal Computer

REST Representational State Transfer

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SOP Same-Origin Policy

SQL Structured Query Language

UI User Interface

URI Uniform Resource Identifier

 X series – Supplement 21 (01/2014) 3

WWW World Wide Web

XHR XMLHttpRequest

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

XML-RPC Extensible Markup Language-Remote Procedure Call

XSS Cross-Site Scripting

5 Conventions

None.

6 Overview of web mashup services

6.1 Web mashup types and style

In web 2.0, composite services are called mashups. A mashup is a web application that combines data

or functionality from two or more sources to create new services. Data used in mashups is typically

sourced from a third party via a public interface, an application programming interface (API) and

screen scraping. The main characteristics of a mashup are combination, visualization and aggregation

to make existing data more useful for personal and professional use. This means that mashup

technically provides sharing public data, common user interface (UI) to data and new, interesting and

valuable, data by aggregation.

There are many types of mashups, such as presentation mashup, client-side data mashup, client-side

software mashup, server-side software mashup and server-side data mashup. Figure 1 shows the

mashup types.

• The presentation mashup is where information and layout is retrieved from and either

remixed or just placed next to each other.

• The client-side data mashup takes information from remote web services, feeds or even just

plain Hypertext Markup Language (HTML) and combines it with data from another source.

• The client-side software mashup is where a code is integrated in the browser to result in a

distinct new capability.

• The server-side software mashup is where software is recombined on the server since web

services can use more easily other web services where there are less security restrictions and

cross-domain issues.

• The server-side data mashup uses relatively powerful mechanisms to join or mashup data

from databases on the server side.

4 X series – Supplement 21 (01/2014)

X Suppl.21(14)_F01

Presentation

Data

Functionality

Data

Web services

Client Web

H
T

M
L,

 D
O

M
,

C
SS,

 fl
as

h

X
M

L
, J

SO
N

, t
ex

t

Sc
rip

t,
fla

sh

R
el

at
io

na
l,

X
M

L,

m
ul

tim
ed

ia
, e

tc

SO
A

P,
 R

ES
T,

H
T

TP
, R

SS

V
er

ti
ca

l
in

te
g

ra
ti

on

V
er

ti
ca

l
in

te
g

ra
ti

on

Figure 1 – Web mashup types

The structure of a mashup is divided into three layers:

• Presentation/user interaction: This is the user interface of mashups. The technologies which

are used are HTML/Extensible Hypertext Markup Language (XHTML), cascading style

sheets (CSS), script, asynchronous javascript and XML (Ajax) [b-W3C CSS], [b-AJAX].

• Web services: The products functionality can be accessed using the API services. The

technologies used are XMLHttpRequest (XHR), Extensible Markup Language (XML) –

remote procedure call (RPC), javascript object notation (JSON)-RPC, simple object access

protocol (SOAP) and representational state transfer (REST) [b-W3C SOAP], [b-REST].

• Data: Handling the data such as sending, storing and receiving. The technologies used are

XML, JSON and Keyhole Markup Language (KML) [b-W3C XML], [b-JSON],

[b-OGC KML].

Web mashup security is based on the same-origin policy (SOP). The SOP states that scripts from an

origin should not be able to access content from other origins. This prevents scripts from spoofing

data, cookie credentials from other origins. According to SOP, loading components from different

origins causes them to be separated. Because of these mechanisms, there are two styles of mashups:

web-based and server-based. Whereas web-based mashups typically use the user's web browser to

combine and reformat the data, server-based mashups analyse and reformat the data on a remote

server and transmit the data to the user's browser in its final form.

Figure 2 shows styles of mashup application.

 X series – Supplement 21 (01/2014) 5

X Suppl.21(14)_F02

Data source
(API)

3

AJAX capability
(Scripting, XML processing

CSS, rendering)

Browser

Mashup sites

Data source 1 Data source 2
Data source

(API)
4

Platform API
(Graphic, communication...)

Client: Browser
Service mashup: Web server side

Client: Mashup application
Service mashup: Server/client

Mashup applicaton

XML and Web services
processing API

Figure 2 – Styles of mashup application

6.2 Web mashup reference architecture

X Suppl.21(14)_F03

ConsumerWeb browser Provider

User
interface

Component

Operation

Data
provider

Service
provider

Content
provider

Figure 3 – Mashup reference architecture

Before the emergence of mashup services, a user could access and obtain the result from the only

single service provider. As users' requests have become more complicated, the convergence of

services is needed. However, the same-origin policy (SOP) prevents access to most methods and

properties across the different websites. Web mashup developers have to overcome this SOP policy

to merge the data and the operations from different sites. The mashup service architecture provides

the consumer with the means to handle such requests. The consumer can control and resolve access

to the data of the other sites. In addition, the consumer is supposed to be dealing with other security

services. Figure 3 shows the web mashup reference architecture which is comprised of the web

browser, the consumer and the service provider.

6.2.1 Web browser

End users access the web mashup services through the web browsers in their personal computers

(PCs) or mobile phones.

6 X series – Supplement 21 (01/2014)

6.2.2 Consumer

The mashup services are hosted in the mashup consumer. The mashup consumer can be implemented

according to the style of mashup applications: web-based and server-based. The mashup consumer

usually provides mashup services such as mixing data, managing access control and communication

between consumers and providers. There are three sublayers in a mashup consumer.

6.2.2.1 User interface sublayer

End users may gather different mashup components such as widgets-a software application

comprising portable code intended for one or more different software platforms into the presentation

layer of web mashup browser. Various mashup components could be integrated into a new mashup

web service.

6.2.2.2 Component sublayer

This sublayer mainly classifies and binds related mashup data and functions into a specific

component. The name and composition of components depend on the programming languages and

mashup consumers.

6.2.2.3 Operation sublayer

In the mashup operation sublayer, developers query the data and do some data manipulation such as

data aggregation, data intersection, data cache, etc. Designers may also abstract the mashup APIs

used by the mashup consumer.

6.2.3 Provider

The mashup data and services come from content/API providers. The dynamic mashup data may

come from devices such as PCs, mobile phones, etc.

7 Security architecture of web mashup service

Early development efforts for the web were directed towards presenting static HTML pages to a

browser client. This simplified model limited the types of interactions offered to a user. It was not

long before developers and businesses realized that a more dynamic model of interaction was possible

and desired by users of the websites.

A dynamic interaction with website users started with the introduction of server-side scripting

languages that could create custom pages based on the input from a given user or input resulting from

changes in the business data. At the present time, users could interface with a website in an interactive

manner. This interactive means of interchange between the clients and the servers garnered an

exponentially significant amount of momentum in a very short time. This chaotic development

environment created a breeding ground for security vulnerabilities and holes. The era of mashups has

emerged and is creating another round of sidesteps and hacks that are leading to more security

problems.

A mashup illustrates the manner in which security vulnerabilities can multiply quickly. The wide

open integration possibilities make it imperative to ensure that the data and functionality are not open

to hacker attempts and other forms of intrusion. The intrinsic openness of a mashup environment and

the inability to predict exactly how components of a mashup infrastructure will be used in the future

imply the need to address security at every aspect of the development life cycle. A mashup

environment uses components and UI artefacts developed externally. This means that the external

components should be checked and aggregated with other components of a given mashup.

Mashups involve a man-in-the-middle problem originally. While web services using SOAP as a

transport can provide end-to-end security services, typical web 2.0 applications use the simpler

REST-based communication approach that seems more vulnerable. In particular, web clients

(browsers) do not typically implement web services security. As a result, best practice is to delegate

 X series – Supplement 21 (01/2014) 7

full rights to the mashup server (man-in-the-middle) and hope that the user's rights to data and services

are not abused. This entails the end user providing the mashup server with their security credentials

for the back-end services in a way whereby they can be exploited.

In Figure 4, end-client mixes the contents from different domains involving its own domain. Through

APIs, the end user can aggregate the news feed server and load content from blog that are not ensured.

The end-client just uses those contents but does not know whether the contents from the third-parties

are sanitized or not. Because of this vulnerability, mashup behaviours and operations should be

monitored and ensured.

X Suppl.21(14)_F04

User of mashup.com

Application
resources

Feed proxy

End-client's
browser

Third party
news feeds

BlogCall to Load.
RSS feed
(XHR)

Cross
domain

call

Trusted domain Un-trusted domain

www.mashup.com
Fetching

feed

Figure 4 – Vulnerability structure of web mashup services

7.1 Web mashup security principles

A web mashup is a web application that integrates contents from different providers to create a new

service. Cross-origin interaction within the browser is currently regulated by the so-called same-

origin policy (SOP). SOP classifies documents based on their origins. Documents from the same

origin may freely access each other's content, while such access is disallowed for documents of

different origins.

Unfortunately, the SOP mechanism turns out to be problematic for mashup security. First, origin

tracking in SOP is only partial and allows content from different sources to coexist under the same

origin. For example, an HTML tag with a source attribute can load content from some other origin

and integrate it in the current document. Once integrated, such content is considered to be of the same

origin as the integrating document. This means that the content is accessible to scripts in other

documents from the same origin.

Of particular concern is the document inclusion via script tags. When a script tag is used to load script

code from a different origin, the loaded script is integrated into the document and thereby can freely

interact with it. For the same reasons, interaction between different components loaded in this fashion

is unrestricted.

The problem of script-tag inclusion for mashup applications is that the integrator must trust the third

parties to protect its secrets and not to override the trusted data with the untrusted. The security of the

integrator no longer relies only upon itself, but also on the security of the third parties whose scripts

are included.

So far, these issues have been resolved using the inline frame (iframe) tag. The iframe tag borrows a

part of the integrator's window space to display another document. Since the integrated content is

loaded in a separate document, the SOP applies, and the sensitive information of the integrator is

protected.

8 X series – Supplement 21 (01/2014)

However, this also severely reduces the possibilities for interaction between the documents. A number

of techniques for secure communication between documents have been proposed to bypass the

restrictions, but, due to script's dynamic nature, ensuring confidentiality has proved to be complicated.

Because web mashups mix content and services from several domains into an application, there are

many stakeholders such as users, web developers, mashup programmers and mashup composers.

These stakeholders raise security and technical requirements on mashups. First, content from different

components needs to be separated, but secure and controlled interaction is needed. Further, the

composer wants to integrate a mix of these components easily. The separation, interaction techniques

suffer from restrictions imposed by the same-origin policy. These limitations have driven the

development of new techniques. Cross-domain communication has found its way. Cross-origin

resource sharing allows controlled cross-domain interactions. These kinds of separation and

interactions for mashups have led to four security requirement principles [b-SECMASH]:

– Separation of components: Components need to be separated from each other to ensure the

following security properties:

• DOM: Ensures that the component's part of the document object model (DOM) tree

[b-W3C DOM tree] is separated from the other components.

• Script: Ensures that the component's scripts cannot be influenced by other components.

• Applicable in the same domain: Ensures that the separation techniques can also be

applied to different components belonging to the same domain.

– Interaction: Regardless of their separation, a component requires interaction with other

components and the host page. This interaction is subject to the following requirements:

• Confidentiality: Ensures that sensitive information cannot be stolen from interactions

between components.

• Integrity: Ensures that the contents of an interaction cannot be modified without the

knowledge of the interacting components.

• Mutual authentication: Ensures that the interacting components can establish with whom

they are interacting.

– Communication: Components need to be able to communicate with the mashup provider as

well as with other parties. This requires the following properties:

• Cross-domain: Components should be able to communicate with other origins than the

origin to which they belong.

• Authentication: A service receiving messages should be able to identify the origin of the

message.

– Behavioural control: Control over the specific behaviour of the components is needed to

selectively allow or disallow specific functionality.

7.2 Measures for secure web mashup services

Once organizations have established firm and effective policies and promoted the use of these

standards within their systems, implementation details for securing mashup components and

processes must be addressed [b-MASHUPS]. The following clauses show implementation specifics

for securing the principal parts of a mashup infrastructure.

Filtering input data

Many intrusion vulnerabilities such as structured query language (SQL) injection, cross-site request

forgery (CSRF) and cross-site scripting (XSS) [b-ITU-T X-Supp.17] are recommended to be

prevented with an input filtering technique. Filtering input data is the foundation for securing a

mashup application. A mashup server-side filtering technique and a client-side mashup filtering one

could complement each other in the manner they process input data. Because client-side filtering

 X series – Supplement 21 (01/2014) 9

process can be circumvented quite easily, a comprehensive and complementary server-side filtering

provides another crucial component for protecting data and processes.

For filtering input data effectively, the following items are recommended:

• Define a list of finite values to which input data should be constrained;

• Validate input data types, data lengths, data ranges and data formats;

• Use regular expressions at the client and at the server to facilitate a consistent validation

model;

• Sanitize input data for invalid characters.

Precaution against cross-site request forgery

The same-origin policy does not prevent requests from a third-party but it only prevents requests to a

third-party. Therefore, the same-origin policy does not protect against cross-site request attacks. Most

authentication mechanisms including cookies, username/password and certificates are vulnerable to

CSRF attacks since each mechanism authenticates session not among browsers and servers but

between a browser and the server.

The mashups are recommended to confirm that the mashup page is authenticated and allows each

request to be performed. The mashup assumes a request is a normal authenticated request from the

mashup page and performs the process as usual. The response is then transmitted unknowingly to the

third-party site.

Defending on-demand script

A <script> tag has its accompanying script source that is embedded in an HTML page. One reason

for using on-demand script is to bypass the same-origin policy and retrieve content from multiple

sites. This mechanism is typically exploited by mashups by retrieving <script> snippets from a server

after the page has been loaded.

On-demand script is often employed using AJAX and calls to a server via the XHR object. A response

from the server can be formatted as a script. When the browser receives the response, it evaluates it

and the script is executed. Any actions specified in the script affecting UI components are seen as the

script is executed and the DOM is manipulated.

On-demand script has some obvious security vulnerabilities. Mainly, since the same-origin policy is

bypassed and embedded scripts are executed as they are encountered, malicious code from external

domains have a dangerous degree of access to data and processes available to the page in which the

scripts are embedded. Specifically, scripts from external sites can access cookies associated with the

hosting page, and scripts are executed immediately as they are evaluated and there is no chance to

validate the scripts for potential security threats. Defending against on-demand security

vulnerabilities involves constraining on-demand script to a hidden iframe. The hidden iframe

communicates with the main page to alter UI components on the page. In this manner, scripts can be

parsed and evaluated prior to the execution, thereby allowing a mashup to validate the script before

execution.

Defending iframes

An inline frame places another HTML document in a frame. Unlike an object element, an inline frame

can be the "target" frame for links defined by other elements and it can be selected by the user agent

as the focus for printing, viewing its source, and so on. iframes is a good technique for isolating

potentially untrusted content within a browser page, since content placed inside an iframe cannot

manipulate the DOM or other browser components residing outside the iframe. However, iframes can

be hidden and often are hidden to use as communication channels within a browser document. When

a main document loads and evaluates iframe, the hidden iframe can retrieve the data following the

fragment iframes or between containing documents and child iframes. There is a security

10 X series – Supplement 21 (01/2014)

vulnerability using the "srcURL" data-passing mechanism. If content snippet is embedded in the page

from an external site and the snippet contains malicious code, the iframe can be compromised.

To defend iframe fragment-identifier data passing attack, the following is recommended:

– Verify the domain modifying fragment-identifiers to ensure that data is accepted from the

white-listed domains;

– Filter script embedded in the fragment-identifier data;

– Filter embedded iframes in the fragment-identifier data.

Parsing JSON data

JSON appropriately indicates that JSON data is actually an integral part of the script programming

language. This means that JSON data can be used, as is, in a script function or statement. The eval()

function can be used to evaluate/interpret JSON data.

When the JSON data is interpreted, any valid script instructions embedded in the JSON data are

executed. This mechanism is useful for receiving data responses from a server using the XHR object

and used in a mashup page. However, this mechanism also presents some significant security

vulnerabilities.

When JSON data is dynamically loaded as with an XHR response, it can be easily interpreted and

converted into standard script. Any executable script embedded within the JSON data is executed

immediately as it is interpreted script's eval() function is a common mechanism used to interpret

JSON data dynamically. If the data is retrieved from an attacker site and contains a malicious script,

sensitive data can be stolen and used, and the attacker can execute any code within the mashup page.

Proper parsing of the JSON data on the client is recommended to resolve these embedded holes in

the JSON data.

Authentication and authorization

Authentication and authorization are complex issues in a mashup environment since many requests

can be transmitted to several different services, many of which may require authentication. The basic

communication pattern for mashups has a client authenticating to a mashup server, which in turn

authenticates to one or more data sources. When the mashup server and data sources are in the same

security domain, the mashup server can reuse the authentication credentials to authenticate the data

source. The result is unrestricted delegation.

OAuth provides a method for clients to access server resources on behalf of a resource owner. It also

provides a process for the end-users to authorize third-party access to their server resources without

sharing their credentials (typically, a username and password pair) using user-agent redirections [b-

IETF RFC 5849], [b-IETF RFC 6749]. Although OAuth provides a good start, this relies on many

browser redirects which make it more prone to phishing attack. It is recommended to specify a

framework for rights delegation, identity management, authentication and user interaction.

Security policies

To achieve cross-domain communication, cross-domain resource sharing (CORS) is designed to

extend the SOP to allow safe, controlled cross-domain communication [b-SECMASH]. The CORS

standard works by adding new Hypertext Markup Language (HTTP) headers that allow servers to

serve resources to the permitted origin domains [b-W3C CORS]. CORS allows a remote server to

indicate whether the given origin has access to its resources or not, a decision which is enforced by

the browser. CORS is not an answer for every cross-domain call. For instance, if a user wants to build

a feed reader and access the feeds on different domains and the servers will not implement CORS, so

the user will need to build a proxy to provide this. Also, CORS cannot point out the exact component

within the same origin.

 X series – Supplement 21 (01/2014) 11

A fine-grained control over component behaviour in a mashup is recommended for the

communication and behaviour control among cross origins. The enforcement of fine-grained security

polices for script in a mashup browser is recommended to control the script behaviour [b-SEFGSP],

[b-OVFGS], [b-LBA].

The measures of fine-grained security policies for script are recommended as follows:

• Control behaviour of script to execute a function and access data;

• Prevent unauthorized leaking between origins;

• Mediate access over shared objects in script environment;

• Evaluate an authentication/authorization decision on the contents.

The fine-grained security policies also include the traditional security policy functions (basic access

controls [allow, deny, inapplicable and indeterminate], support distributed policies and domain

independent) and the above measures are additional and focused on controlling the script behaviours

and cross – origin communications. The last measure is recommended to protect the content because

a web mashup browser gets the content by API after getting permission from the policy server to

access the content. At that time there is a problem that the browser simultaneously gets the naive

content and permission data (permitted or not permitted) even in case of negative authorization. And

then the browser takes decision on the content to access it or not. The naive content is still there in

the platform. Web video is presently popular in the World Wide Web (WWW) environment. The

contents like file, code, streaming, and video are delivered to the end-user/browser and anyone can

re-deliver these to others, there is no restriction to handle those in the web mechanisms. The last

measure is a complementary improvement to mitigate unlimited replication and intellectual property

rights (IPR) infringement. It includes user authentication/authorization to the mixed content among

origins and performs the content encryption/decryption [b-W3C EME].

12 X series – Supplement 21 (01/2014)

Bibliography

[b-ITU-T M.3030] Recommendation ITU-T M.3030 (2002), Telecommunications Markup

Language (tML) framework.

[b-ITU-T X.800] Recommendation ITU-T X.800 (1991), Security architecture for Open

Systems Interconnection for CCITT Applications.

[b-ITU-T X-Supp.17] ITU-T X-series Recommendations – Supplement 17 (2012), ITU-T

X.1143 – Supplement on threats and security objectives for enhanced web-

based telecommunication services.

[b-IETF RFC 5849] IETF RFC 5849 (2010), The OAuth 1.0 Protocol
<http://www.ietf.org/rfc/rfc5849.txt>

[b-IETF RFC 6454] IETF RFC 6454 (2011), The Web Origin Concept
<http://www.ietf.org/rfc/rfc6454.txt>

[b-IETF RFC 6749] IETF RFC 6749 (2012), The OAuth 2.0 Authorization Framework
<http://www.ietf.org/rfc/rfc6749.txt>

[b-OGC KML] OGC standard, Keyhole Markup Language (KML)
<http://www.opengeospatial.org/standards/kml>

[b-W3C CORS] W3C Proposed Recommendation (2013), Cross-Origin Resource Sharing
<http://www.w3.org/TR/cors/>

[b-W3C CSS] W3C Cascading Style Sheets (home page)
<http://www.w3.org/Style/CSS/>

[b-W3C DOM tree] Document Object Model (DOM) tree
<http://www.w3schools.com/js/js_htmldom.asp>

[b-W3C EME] W3C Editor's Draft (2013), Encrypted Media Extensions
<https://dvcs.w3.org/hg/html-media/raw-file/tip/encrypted-media/encrypted-media.html>

[b-W3C SOAP] W3C (2007), SOAP Version 1.2 Part 1: Messaging Framework (Second

Edition).

<http://www.w3.org/TR/soap12-part1/>

[b-W3C XML] W3C Recommendation (26 November 2008), Extensible Markup Language

(XML) 1.0 (Fifth Edition).
<http://www.w3.org/TR/2008/REC-xml-20081126/>

[b-AJAX] Open Ajax alliance
<http://www.openajax.org/>

[b-JSON] JSON (JavaScript Object Notation), based on: ECMA (1999), ECMAScript

Language Specification, Standard ECMA-262, 3rd edition.
<http://www.json.org>

[b-LBA] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach to

mashup security. In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, pages 15-23, 2010.
<http://www.cse.chalmers.se/~andrei/asiaccs10.pdf>

[b-MASHUPS] Hanson, Jeffrey J. (2009), MASHUPS Strategies for the Modern Enterprise,

Addison-Wesley.

[b-OVFGS] L.A. Meyerovich, A.P. Felt, and M.S. Miller. Object views: Fine-grained

sharing in browsers. In Proceedings of the 19th international conference on

World wide web, pages 721-730, 2010.
<http://www.cs.berkeley.edu/~afelt/views-www-2010.pdf>

http://www.ietf.org/rfc/rfc5849.txt
http://www.ietf.org/rfc/rfc6454.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.opengeospatial.org/standards/kml
http://www.w3.org/TR/cors/
http://www.w3.org/Style/CSS/
http://www.w3schools.com/js/js_htmldom.asp
https://dvcs.w3.org/hg/html-media/raw-file/tip/encrypted-media/encrypted-media.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.openajax.org/
http://www.json.org/
http://www.cse.chalmers.se/~andrei/asiaccs10.pdf
http://www.cs.berkeley.edu/~afelt/views-www-2010.pdf

 X series – Supplement 21 (01/2014) 13

[b-REST] Fielding, R.T. (2000), Representational State Transfer (REST), In:

Architectural Styles and the Design of Network-based Software Architectures

[Dissertation], Irvine, University of California, Irvine.
<http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm>

[b-SECMASH] Philippe De Ryck, Maarten Decat, Lieven Desmet, Frank Piessens, and

Wouter Joosen, Security of web mashups: a Survey.
<https://lirias.kuleuven.be/bitstream/123456789/317390/1/paper.pdf/>

[b-SEFGSP] B. Livshits and L. Meyerovich. Conscript: Specifying and enforcing Fine-

grained security policies for javascript in the browser. Technical report,

Microsoft Research, 2009.
<http://research.microsoft.com/pubs/120969/paper.pdf>

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://lirias.kuleuven.be/bitstream/123456789/317390/1/paper.pdf
http://research.microsoft.com/pubs/120969/paper.pdf

Printed in Switzerland
Geneva, 2014

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Series X Supplement 21 (01/2014) –
ITU-T X.1143 – Supplement on security framework for web mashup services
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this supplement

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of web mashup services
	6.1 Web mashup types and style
	6.2 Web mashup reference architecture

	7 Security architecture of web mashup service
	7.1 Web mashup security principles
	7.2 Measures for secure web mashup services
	Bibliography

