
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.920
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/97)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

Open distributed processing

Information technology – Open distributed
processing – Interface definition language

ITU-T Recommendation X.920
(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEM INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems Management framework and architecture X.700–X.709

Management Communication Service and Protocol X.710–X.719

Structure of Management Information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

ITU-T Rec. X.920 (1997 E) i

INTERNATIONAL STANDARD 14750

ITU-T RECOMMENDATION X.920

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
INTERFACE DEFINITION LANGUAGE

Summary

This Recommendation | International Standard specifies an Interface Definition Language (IDL) for specifications that
comply with the computational language defined in the architecture of the ODP Reference Model (see ITU-T
Rec. X.903 | ISO/IEC 10746-3). The IDL allows the description of object interfaces, together with their operations and
associated parameters. It is completely aligned with the CORBA IDL developed by the Object Management Group
(OMG).

Source

The ITU-T Recommendation X.920 was approved on the 12th of December 1997. The identical text is also published as
ISO/IEC International Standard 14750.

ITU-T Recommendation X.920 results from the adoption of the text of the OMG IDL specifications, for which ownership
of world-wide distribution and derivative work rights remain with the Object Management Group, OMG.

ii ITU-T Rec. X.920 (1997 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T Rec. X.920 (1997 E) iii

CONTENTS

Page

1 Scope... 1

2 Normative references .. 1

2.1 Identical Recommendations | International Standards ... 1

3 Definitions... 1

4 ODP IDL syntax and semantics .. 1

4.1 Lexical conventions ... 2

4.2 Preprocessing... 7

4.3 ODP IDL grammar .. 8

4.4 ODP IDL specification .. 12

4.5 Inheritance ... 13

4.6 Constant declaration .. 15

4.7 Type declaration .. 17

4.8 Typecodes and Principals .. 22

4.9 Exception declaration .. 22

4.10 Operation declaration... 23

4.11 Attribute declaration .. 25

4.12 CORBA module... 25

4.13 Names and scoping .. 25

4.14 Differences from C++.. 27

Annex A – Reserved standard exceptions .. 28

A.1 Object Non-Existence .. 29

A.2 Transaction exceptions .. 29

Annex B – Typecode encoding in the CORBA specification... 30

iv ITU-T Rec. X.920 (1997 E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for the standardization of Open
Distributed Processing (ODP). The Reference Model of Open Distributed Processing (RM-ODP) provides such a
framework. It defines an architecture within which support of distribution, interoperability and portability can be
integrated.

One of the components of the architecture (described in RM-ODP Part 3: Architecture) (see ITU-T Rec. X.903 |
ISO/IEC 10746-3) is a language that is suitable for describing the signature of computational operation interfaces. This
Recommendation | International Standard contains such an Interface Definition Language, called ODP-IDL.

NOTE – This Recommendation | International Standard is technically aligned with the CORBA Interface Definition Language
specification.

Annex A is normative and provides a standard set of exceptions for a particular ODP distribution infrastructure.

Annex B is informative and provides the CORBA encoding of a type called TypeCode representing type descriptions.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 1

INTERNATIONAL STANDARD
ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
INTERFACE DEFINITION LANGUAGE

1 Scope

This Recommendation | International Standard is intended to provide the ODP Reference Model (see ITU-T Rec. X.902 |
ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3) with a language and environment neutral notation to
describe computational operation interface signatures. Use of this notation does not imply use of specific supporting
mechanisms and protocols.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open
distributed processing – Reference Model: Foundations.

– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open
distributed processing – Reference Model: Architecture.

2.2 Additional references

– ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange.

– ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded graphic character sets – Part 1:
Latin alphabet No. 1.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.902 |
ISO/IEC 10746-2:

– object;

– interface;

– interface signature.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.903 |
ISO/IEC 10746-3:

– operation.

ISO/IEC 14750 : 1998 (E)

2 ITU-T Rec. X.920 (1997 E)

4 ODP IDL syntax and semantics

ODP IDL (the Interface Definition Language) is the language used to describe the interface signatures for interfaces that
client objects call and object implementations provide. An interface definition written in ODP IDL completely defines the
interface signature and fully specifies each operation’s parameters.

An ODP IDL specification logically consists of one or more files. A file is conceptually translated in several phases. The
first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of the preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

ODP IDL obeys the same lexical rules as C++1), although new keywords are introduced to support distribution concepts.
It also provides full support for standard C++ preprocessing features. The ODP IDL specification is expected to track
relevant changes to C++ introduced by the ISO/IEC standardization effort.

The description of ODP IDL's lexical conventions is presented in 4.1. A description of ODP IDL preprocessing is
presented in 4.2. The scope rules for identifiers in an ODP IDL specification are described in 4.13 on.

The ODP IDL grammar is a subset of ISO/IEC C++ with additional constructs to support the operation invocation
mechanism. ODP IDL is a descriptive language; it supports C++ syntax for constant, type, and operation declarations; it
does not include any algorithmic structures or variables. The grammar is presented in 4.3.

This clause describes ODP IDL semantics and gives the syntax for ODP IDL grammatical constructs. The description of
ODP IDL grammar uses a syntax notation that is similar to Extended Backus-Naur format (EBNF). Table 1 lists the
symbols used in this format and their meaning.

Table 1 – ODP IDL EBNF format

4.1 Lexical conventions

This subclause2) presents the lexical conventions of ODP IDL. It defines tokens in an ODP IDL specification and
describes comments, identifiers, keywords, and literals – integer, character, and floating point constants and string
literals.

ODP IDL uses the ISO/IEC Latin-1 (ISO/IEC 8859-1) character set. This character set is divided into alphabetic
characters (letters), digits, graphic characters, the space (blank) character and formatting characters. Table 2 shows the
ODP IDL alphabetic characters; upper- and lower-case equivalencies are paired. Table 3 shows the digits and Table 4
shows the graphic characters.

The formatting characters are shown in Table 5.

1) Ellis, Margaret A. and Bjarne Stroustrop, The Annotated C++ Reference Manual, Addison-Wesley Publishing Company, Reading,

Massachusetts, 1990, ISBN 0-201-51459-1.

2) This sublcause is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs in the list of legal keywords and
punctuation.

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Non-terminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times.

+ The preceding syntactic unit can be repeated one or more times.

{} The enclosed syntactic units are grouped as a single synctactic unit.

[] The enclosed syntactic unit is optional – may occur zero or more times.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 3

Table 2 – The 114 alphabetic characters (letters)

Char Description Char Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ðð Upper/Lower-case Icelandic eth

Rr Upper/Lower-case R Ññ Upper/Lower-case N with tilde

Ss Upper/Lower-case S Òò Upper/Lower-case O with grave accent

Tt Upper/Lower-case T Óó Upper/Lower-case O with accute accent

Uu Upper/Lower-case U Ôô Upper/Lower-case O with circumflex accent

Vv Upper/Lower-case V Õõ Upper/Lower-case O with tilde

Ww Upper/Lower-case W Öö Upper/Lower-case O with diaeresis

Xx Upper/Lower-case X Øø Upper/Lower-case O with oblique stroke

Yy Upper/Lower-case Y Ùù Upper/Lower-case U with grave accent

Zz Upper/Lower-case Z Úú Upper/Lower-case U with acute accent

Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

Ýý Upper/Lower-case Y with acute accent

Þþ Upper/Lower-case Icelandic thorn

ß Lower-case German sharp S

ÿ Lower-case Y with diaeresis

ISO/IEC 14750 : 1998 (E)

4 ITU-T Rec. X.920 (1997 E)

Table 3 – Decimal digits

0 1 2 3 4 5 6 7 8 9

Table 4 – The 65 graphic characters

Char Description Char Description

! Exclamation point ¡ Inverted exclamation mark

" Double quote ¢ Cent sign

Number sign £ Pound sign

$ Dollar sign ¤ Currency sign

% Percent sign ¥ Yen sign

& Ampersand | Broken bar

' Apostrophe § Section/paragraph sign

(Left parenthesis ¨ Diaeresis

) Rigth parenthesis © Copyright sign

* Asterisk a Feminine ordinal indicator

+ Plus sign « Left angle quotation mark

, Comma ¬ Not sign

- Hyphen, minus sign – Soft hyphen

. Period, full stop ® Registered trade mark sign

/ Solidus - Macron

: Colon ° Ring above, degree sign

; Semicolon ± Plus-minus sign

< Less-than sign 2 Superscript two

= Equals sign 3 Superscript three

> Greater-than sign ´ Acute

? Question mark µ Micro

@ Commercial at ¶ Pilcrow

[Left square bracket · Middle dot

\ Reverse solidus ‚ Cedilla

] Right square bracket 1 Superscript one

^ Circumflex º Masculine ordinal indicator

_ Low line, underscore » Right angle quotation mark

` Grave ¼ Vulgar fraction 1/4

{ Left curly bracket ½ Vulgar fraction 1/2

| Vertical line ¾ Vulgar fraction 3/4

} Right curly bracket ¿ Inverted question mark

~ Tilde x Multiplication sign

÷ Division sign

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 5

Table 5 – The Formatting Characters

4.1.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collective, "white space"), as described below, are ignored except as
they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

4.1.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters //
start a comment which terminates at the end of the line on which they occur. The comment characters //, /*, and */ have
no special meaning within a // comment and are treated just like other characters. Similarly, the comment characters // and
/* have no special meaning within a /* comment. Comments may contain alphabetic, digit, graphic, space, horizontal tab,
vertical tab, form feed and newline characters.

4.1.3 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore ("_") characters. The first character must
be an alphabetic character. All characters are significant.

Identifiers that differ only in case collide and yield a compilation error. An identifier for a definition must be spelled
consistently (with respect to case) throughout a specification.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 2 defines the equivalence mapping of
upper- and lower-case letters.

• The comparison does not take into account equivalences between digraphs and pairs of letters (e.g. "æ"
and "ae" are not considered equivalent) or equivalences between accented and non-accented letters
(e.g. "à" and "a" are not considered equivalent).

• All characters are significant.

There is only one name space for ODP IDL identifiers. Using the same identifier for a constant and an interface, for
example, produces a compilation error.

4.1.4 Keywords

The identifiers listed in Table 6 reserved for use as keywords, and may not be used otherwise. The keyword Object in
ODP IDL is used to represent an interface type whereas the keyword interface is used to indicate the start of an
interface declaration in an interface signature template. The keyword "Object" can be used as a type specifier. The
keyword attribute defines a method giving access to a portion of the state of an object. An attribute definition is
logically equivalent to declaring a pair of accessor methods; one to retrieve the value of the attribute and one to set the
value of the attribute.

The keyword Exception is used to represent the ODP concept of unsuccessful named termination, the exception name
being the termination name.

Keywords obey the rules for identifiers (see 1.3) and must be written exactly as shown in the above list. For example,
"boolean" is correct; "Boolean" is not. ODP IDL specifications use the characters shown in Table 7 as punctuation.

In addition, the tokens listed in Table 8 are used by the preprocessor.

Description Abbreviation ISO/IEC 646 octal value

Alert BEL 007

Backspace BS 010

Horizontal tab HT 011

Newline NL, LF 012

Vertical tab VT 013

Form feed FF 014

Carriage return CR 015

ISO/IEC 14750 : 1998 (E)

6 ITU-T Rec. X.920 (1997 E)

Table 6 – Keywords

Table 7 – Punctuation tokens

Table 8 – Preprocessor tokens

! || && include pragma define

4.1.5 Literals

Wide character and wide string literals are specified exactly like character and string literals. All character and string
literals, both wide and non-wide, may only be specified (portably) using the characters found in the ISO/IEC 8859-1
character set. Note that these extensions for international characters only affect the specification of literals in the ODP
IDL and not the rest of ODP IDL source files. That is, the interface names, operation names, type names, etc., will
continue to be limited to the ISO/IEC 8859-1 character set.

Literals of the new integer and floating-point types are specified as described in this subclause (Integer, Literals and
Floating-Point Literals).

4.1.5.1 Integer literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero). A
sequence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits. A
sequence of digits preceeded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen, respectively. For example, the number twelve can
be written 12, 014 or 0XC.

4.1.5.2 Character literals

A character literal is one or more characters enclosed in single quotes, as in ’x’. Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic,
digit or graphic characterliteral is the numerical value of the character as defined in the ISO/IEC Latin-1
(ISO/IEC 8859-1) character set standard (see Tables 2, 3, and 4). The value of a null is 0. The value of a formatting
character literal is the numerical value of the character as defined in the ISO/IEC 646 standard (see Table 5). The
meaning of all other characters is implementation-dependent.

Non-graphic characters must be represented using escape sequences as defined below in Table 9. Note that escape
sequences must be used to represent singlequote and backlash characters in character literals.

If the character following a backlash is not one of those specified, the behaviour is undefined. An escape sequence
specifies a single character.

The escape \000 consists of the backlash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backlash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character. A sequence of octal or hexadecimal digits is terminated by the
first character that is not an octal digit or a hexadecimal digit respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest character.

any default in oneway struc wchar

attribute double inout out switch wstring

boolean enum interface raises TRUE

case exception long readonly typedef

char FALSE module sequence unsigned

const fixed Object short union

context float octet string void

; { } : :: , = + - () < > []

’ " \ | ^ & * / % ~ << >>

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 7

Table 9 – Escape sequences

4.1.5.3 Floating-point literals

A floating-point consists of an integer part; a decimal point, a fraction part, an e or E and an optionally signed integer
exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer part or
the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but not
both) may be missing.

4.1.5.4 Fixed-point literal

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point [but not the letter d (or D)] may be missing.

4.1.5.5 String literals

A string literal is a sequence of characters (as defined in 4.1.5.2) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B" contains the two characters ’\xA’ and ’B’ after concatenation (and not the single hexadecimal character ’\xAB’).

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. The size of the
literal is associated with the literal.

4.2 Preprocessing

A preprocessing notation can be used as a module notation, in order to organize specifications and to be able to refer to
parts of a specification in a given specification. Therefore, the source file inclusion #include must be understood as a
generic way of including a given module of specification and is not linked with any particular filing system.

ODP IDL preprocessing which is specified in the ANSI/ISO C++ Standard provides macrosubstitution, conditional
compilation, and source file inclusion. In addition, directives are provided to control line numbering in diagnostics and
for symbolic debugging, to generate a diagnostic message with a given token sequence, and to perform implementation-
dependent actions (the # pragma directive). Certain predefined names are available. These facilities are conceptually
handled by a preprocessor, which may or may not actually be implemented as a separate process.

Lines beginning with # (also called "directives") communicate with this preprocessor. White space may appear before the
#. These lines have syntax independent of the rest of the ODP IDL; they may appear anywhere and have effects that last
(independent of the ODP IDL scoping rules) until the end of the translation unit. The textual location of ODP
IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash character
("\"), immediately before the newline at the end of the line to be continued. The preprocessor effects the continuation by
deleting the backslash and the newline before the input sequence is divided into tokens. A backslash character may not be
the last character in a source file.

Description Escape sequence

Newline \n
Horizontal tab \t
Vertical tab \v
Backspace \b
Carriage return \r
Form feed \f
Alert \a
Backslash \\
Question mark \?
Single quote \’
Double quote \"
Octal number \ooo
Hexadecimal number \xhh

ISO/IEC 14750 : 1998 (E)

8 ITU-T Rec. X.920 (1997 E)

A preprocessing token is an ODP IDL token (see 4.1.1), a file name as in a #include directive, or any single character,
other than white space, that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other ODP IDL specifications. Text in files
included with a #include directive is treated as if it appeared in the including file. A complete description of the
preprocessing facilities may be found in the ANSI/ISO C++ Standard.

4.3 ODP IDL grammar

(1) <specification> ::= <definition>+

(2) <definition> ::= <type_dcl>";"

| <const_dcl>";"

| <except_dcl>";"

| <interface>";"

| <module>";"

(3) <module> ::= "module" <identifier> "{" <definition>+ "}"

(4) <interface> ::= <interface_dcl>

| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> "{" <interface_body> "}"

(6) <forward_dcl> ::= "interface" <identifier>

(7) <interface_header> ::= "interface" <identifier> [<inheritance_spec>]

(8) <interface_body> ::= <export>*

(9) <export> ::= <type_dcl> ";"

| <const_dcl> ";"

| <except_dcl> ";"

| <attr_dcl> ";"

| <op_dcl> ";"

(10) <inheritance_spec> ::= ":" <scoped_name> { "," <scoped_name> }*

(11) <scoped_name> ::= <identifier>

| "::" <identifier>

| <scoped_name> "::" <identifier>

(12) <const_dcl> ::= "const" <const_type> <identifier> "=" <const_exp>

(13) <const_type> ::= <integer_type>

| <char_type>

| <wide_char_type>

| <boolean_type>

| <floating_pt_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_const_type>

| <scoped_name>

(14) <const_exp> ::= <or_exp>

(15) <or_exp> ::= <xor_expr>

| <or_expr> "|" <xor_expr>

(16) <xor_expr> ::= <and_expr>

| <xor_expr> "^" <and_expr>

(17) <and_expr> ::= <shift_expr>

| <and_expr> "&" <shift_expr>

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 9

(18) <shift_expr> ::= <add_expr>

| <shift_expr> ">>" <add_expr>

| <shift_expr> "<<" <add_expr>

(19) <add_expr> ::= <mult_expr>

| <add_expr> "+" <mult_expr>

| <add_expr> "-" <mult_expr>

(20) <mult_expr> ::= <unary_expr>

| <mult_expr> "*" <unary-expr>

| <mult_expr> "/" <unary_expr>

| <mult_expr> "%" <unary_expr>

(21) <unary_expr> ::= <unary_operator> <primary_expr>

| <primary_expr>

(22) <unary_operator> ::= "-"

| "+"

| "~"

(23) <primary_expr> ::= <scoped_name>

| <literal>

| "(" <const_exp> ")"

(24) <literal> ::= <integer_literal>

| <string_literal>

| <wide_string_literal>

| <character_literal>

| <wide_character_literal>

| <fixed_pt_literal>

| <floating_pt_literal>

| <boolean_literal>

(25) <boolean_literal> ::= "TRUE"

| "FALSE"

(26) <positive_int_const> ::= <const_exp>

(27) <type_dcl> ::= "typedef" <type_declarator>

| <struct_type>

| <union_type>

| <enum_type>

(28) <type_declarator> ::= <type_spec> <declarators>

(29) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>

(30) <simple_type_spec> ::= <base_type_spec>

| <template_type_spec>

| <scoped_name>

(31) <base_type_spec> ::= <floating_pt_type>

| <integer_type>

| <char_type>

| <wide_char_type>

| <boolean_type>

ISO/IEC 14750 : 1998 (E)

10 ITU-T Rec. X.920 (1997 E)

| <octet_type>

| <any_type>

| <object_type>

(31a) <object_type> ::= "Object"

(32) <template_type_spec> ::= <sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_type>

(33) <constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>

(34) <declarators> ::= <declarator> { "," <declarator> } *

(35) <declarator> ::= <simple_declarator>

| <complex_declarator>

(36) <simple_declarator> ::= <identifier>

(37) <complex_declarator> ::= <array_declarator>

(38) <floating_pt_type> ::= "float"

| "double"

| "long" "double"

(39) <integer_type> ::= <signed_int>

| <unsigned_int>

(40) <signed_int> ::= <signed_long_int>

| <signed_short_int>

| <signed_longlong_int>

(40a) <signed_longlong_int> ::= "long" "long"

(41) <signed_long_int> ::= "long"

(42) <signed_short_int> ::= "short"

(43) <unsigned_int> ::= <unsigned_long_int>

| <unsigned_short_int>

| <unsigned_longlong_int>

(43a) <unsigned_longlong_int> ::= "unsigned" "long" "long"

(44) <unsigned_long_int> ::= "unsigned" "long"

(45) <unsigned_short_int> ::= "unsigned" "short"

(46) <char_type> ::= "char"

(46a) <wide_char_type> ::= "wchar"

(47) <boolean_type> ::= "boolean"

(48) <octet_type> ::= "octet"

(49) <any_type> ::= "any"

(50) <struct_type> ::= "struct" <identifier> "{" <member_list> "}"

(51) <member_list> ::= <member>+

(52) <member> ::= <type_spec> <declarators> ";"

(53) <union_type> ::= "union"<identifier> "switch"
"(" <switch_type_spec> ")" "{" <switch_body> "}"

(54) <switch_type_spec> ::= <integer_type>

| <char_type>

| <boolean_type>

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 11

| <enum_type>

| <scoped_name>

(55) <switch_body> ::= <case>+

(56) <case> ::= <case_label>+ <element_spec> ";"

(57) <case_label> ::= "case" <const_exp> ":"

| "default" ":"

(58) <element_spec> ::= <type_spec> <declarator>

(59) <enum_type> ::= "enum" <identifier> "{" <enumerator>
{"," <enumerator> } * "}"

(60 <enumerator> ::= <identifier>

(61) <sequence_type> ::= "sequence" "<" <simple_type_spec> ","
<positive_int_const> ">"

| "sequence" "<" <simple_type_spec> ">"

(62) <string_type> ::= "string" "<" <positive_int_const> ">

| "string"

(62a) <wide_string_type> ::= "wstring" "<" <positive_int_const>
">" | "wstring"

(63) <array_declarator> ::= <identifier> <fixed_array_size>+

(64) <fixed_array_size> ::= "[" <positive_int_const> "]"

(65) <attr_dcl> ::= ["readonly"] "attribute"<param_type_spec>
<simple_declarator>
{ "," <simple_declarator> }*

(66) <except_dcl> ::= "exception" <identifier> "{" <member>*"}"

(67) <op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(68) <op_attribute> ::= "oneway"

(69) <op_type_spec> ::= <param_type_spec>

| "void"

(70) <parameter_dcls> ::= "(" <param_dcl> { "," <param_dcl> }* ")"

| "(" ")"

(71) <param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

(72) <param_attribute> ::= "in"

| "out"

| "inout"

(73) <raises_expr> ::= "raises" "(" <scoped_name> { ","<scoped_name> }* ")"

(74) <context_expr> ::= "context "(" <string_literal>
{ ","<string_literal> } * ")"

(75) <param_type_spec> ::= <base_type_spec>

| <string_type>

| <fixed_pt_type>

| <wide_string_type>

| <scoped_name>

(76) <fixed_pt_type> ::= "fixed" "<" <positive_int_const>
","<integer_literal> ">"

(77) <fixed_pt_const_type> ::= "fixed"

ISO/IEC 14750 : 1998 (E)

12 ITU-T Rec. X.920 (1997 E)

4.4 ODP IDL specification

An ODP IDL specification consists of one or more type definitions, constant definitions, exception definitions, or module
definitions. The syntax is:

<specification>::= <defintion> +

<definition> ::= <type_dcl> ";"

| <const_dcl> ";"

| <except_dcl> ";"

| <interface_dcl> ";"

| <module_dcl> ";"

See 4.6, 4.7 and 4.9, respectively, for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

4.4.1 Module declaration

A module definition satisfies the following syntax:

<module> ::= "module" <identifier> "{ <definition>+"}"

The module construct is used to scope ODP IDL identifiers; see 4.12 for details.

4.4.2 Interface declaration

An interface declaration satisfies the following syntax:

<interface> ::= <interface_dcl>

| <forward_dcl>

<interface_dcl> ::= <interface_header> "{" <interface_body> "}"

<forward_dcl> ::= "interface" <identifier>

<interface_header> ::= "interface: <identifier> [<inheritance_spec>]

<interface_body> ::= <export>*

<export> ::= <type_dcl> ";"

| <const_dcl> ";"

| <except_dcl> ";"

| <attr_dcl>";"

| <op_dcl>";"

4.4.2.1 Interface header

The interface header consists of two elements:

• The interface name – The name must be preceeded by the keyword interface, and consists of an
identifier that names the interface.

• An optional inheritance specification – The inheritance specification is described in 4.4.2.2.

The <identifier> that names an interface defines a legal type name. Such a type name may be used anywhere an
<identifier> is legal in the grammar, subject to semantic constraints as described in the following subclauses. The
Object name is a valid name which allows to pass any interface reference. Since one can only hold references to an
interface , the meaning of a parameter or structure member which is an interface type is as a reference to an instance of
that interface type. Each language binding describes how the programmer must represent such interface references. In
particular, it can be used as parameter in an operation description, which allows to pass interface references as
parameters.

4.4.2.2 Inheritance specification

The syntax for inheritance is as follows:

<inheritance_spec> ::= ":" <scoped_name> { "," <scoped_name> }*

<scoped_name> ::= <identifier>

| "::" <identifier>

| <scoped_name>"::" <identifier>

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 13

Each <scoped_name> in an <inheritance_spec> must denote a previously defined interface. See 4.5 for the
description of inheritance.

4.4.2.3 Interface body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports; constant declaration syntax is
described in 4.6.

• Type declarations, which specify the type definitions that the interface exports; type declaration syntax is
described in 4.7.

• Exception declarations, which specify the exception structures that the interface exports; exception
declaration syntax is described in 4.9.

• Attribute declarations, which specify the associated attributes exported by the interface; attribute
declaration syntax is described in 4.11.

• Operation declarations, which specify the operations that the interface exports and the format of each,
including operation name, the type of data returned, the types of all paramters of an operation, legal
exceptions which may be returned as a result of an invocation, and contextual information which may
affect method dispatch; operation declaration syntax is described in 4.10.

Empty interfaces (i.e. those that contain no declarations) are permitted.

4.4.2.4 Forward declaration

A forward declaration declares the name of an interface without defining it. This permits the defintion of interfaces that
refer to each other. The syntax consists simply of the keyword interface followed by an <identifier> that names
the interface. The actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

4.5 Inheritance

An interface can be derived from another interface which is then called a base interface of the derived interface. A
derived interface, like all interfaces, may declare new elements (constants, types, attributes, exceptions, and operations).
In additon, unless redefined in the derived interface, the elements of a base interface can be referred to as if they were
elements of the derived interface. The name resolution operator ("::") may be used to refer to a base element explicitly;
this permits reference to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names which have been inherited; the scope
rules for such names are described in 4.12.

An interface is called a direct base if it is mentioned in the <inheritance_spec> and an indirect base if it is not a
direct base but is a base interface of one of the interfaces mentioned in the <inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than one direct base interface is often
called multiple inheritance. The order of derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more than once; it may be an indirect
base interface more than once. Consider the following example:

interface A {...}

interface B:A {...}

interface C:A {...}

interface D:B,C {...}

The relationships between these interfaces are shown in Figure 1. This "diamond" shape is legal.

ISO/IEC 14750 : 1998 (E)

14 ITU-T Rec. X.920 (1997 E)

TISO8730-98/d01

B C

A

D

Figure 1 – Legal multiple inheritance example

FIGURE 1/X.920...[D01] = 6 CM

Reference to base interface elements must be unambiguous. Reference to a base interface element is ambiguous if the
expression used refers to a constant type, or exception in more than one base interface. (It is currently illegal to inherit
from two interfaces with the same operation or attribute name, or to redefine an operation or attribute name in the derived
interface.) Ambiguities can be resolved by qualifying a name with its interface name (i.e. using a <scoped name>).

References to constants, types, and exceptions are bound to an interface when it is defined, i.e. replaced with the
equivalent global <scoped name>s. This guarantees that the syntax and semantics of an interface are not changed when
the interface is a base interface for a derived interface. Consider the following example:

const long L=3;

interface A {

 typedef float coord[L]);

 void f (in coord s); // s has three floats };

interface B{

 const long L=4;

};

interface C: B, A {} //what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees that the signature of operation f
in interface C is:

typedef float coord[3];

void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a constant, type, or exception in the derived
interface from affecting the operations and attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be imported into the current naming
scope. A type name, constant name, enumeration value name, or exception name from an enclosing scope can be
redefined in the currentscope.

All operations that might apply to a particular object must have unique names. This requirement prohibits redefining an
operation name in a derived interface, as well as inheriting two operations with the same name.

NOTE – It is anticipated that future revisions of the language may relax this rule in some way, perhaps allowing overloading or
providing some means to distinguish operations with the same name.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 15

4.6 Constant declaration

4.6.1 Syntax

This subclause describes the syntax for constant declarations.

The syntax for a constant declaration is:

<const_dcl> ::= "const" <const_type> <identifier> "=" <const_exp>

<const_type> ::= <integer_type>

| <char_type>

| <wide_char_type>

| <boolean_type>

| <floating_pt_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_const_type>

| <scoped_name>

<const_exp> ::= <or_exp>

<or_exp> ::= <xor_expr>

| <or_expr> "|" <xor_expr>

<xor_expr> ::= <and_expr>

| <xor_expr> "^" <and_expr>

<and_expr> ::= <shift_expr>

| <and_expr> "&" <shift_expr>

<shift_expr> ::= <add_expr>

| <shift_expr> ">>" <add_expr>

| <shift_expr> "<<" <add_expr>

<add_expr> ::= <mult_expr>

| <add_expr> "+" <mult_expr>

| <add_expr> "-" <mult_expr>

<mult_expr> ::= <unary_expr>

| <mult_expr> "*" <unary-expr>

| <mult_expr> "/" <unary_expr>

| <mult_expr> "%" <unrary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>

| <primary_expr>

<unary_operator> ::= "-"

| "+"

| "~"

<primary_expr> ::= <scoped_name>

| <literal>

| "(" <const_exp> ")"

<literal> ::= <integer_literal>

| <string_literal>

| <character_literal>

| <wide_character_literal>

ISO/IEC 14750 : 1998 (E)

16 ITU-T Rec. X.920 (1997 E)

| <fixed_pt_literal>

| <floating_pt_literal>

| <boolean_literal>

<boolean_literal> ::= "TRUE"

| "FALSE"

<positive_int_const>::= <const_exp>

4.6.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined name of an <integer_type>,
<char_type>, <wide_char_type>, <boolean_type>, <floating_pt_type>, <fixed_pt_const_type>,
<string_type>, or <wide_string_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these. Infix operators are applicable only
to integer, float and fixed types.

An integer constant expression is evaluated as unsigned long long unless it contains a negated integer literal or an integer
constant with negative value, or other sub-expression with negative value, in which case it is evaluated as a signed long
long. The computed value is coerced back to the target type in constant initializers. It is an error if the computed value
exceeds the range of the target type, or if any intermediate value exceeds the range of the evaluated-as type (long long or
unsigned long long).

All floating point literals are long double, all floating-point constants are coerced to long double, and all floating-point
expressions are computed as long doubles. The computed long double value is coerced back to the target type in constant
initializers. It is an error if this coercion fails or if any intermediate values (when evaluating the expression) exceed the
range of long double.

Unary (+) and binary (* / + –) operators are applicable in floating-point expressions. Unary (+ – ~) and binary (* / % + –
<< >> & | ^) operators are applicable in integer expressions.

The "~" unary operator indicates that the bit-complement of the expression to which it is applied should be generated. For
the purposes of such expressions, the values are 2’s complement numbers. As such, the complement can be generated as
follows:

long long –(value+1)

unsigned long long (2**64–1) – value

The "%" binary operator yields the remainder from the division of the first expression by the second. If the second
operand of "%" is 0, the result is undefined; otherwise:

(a/b)*b +a%b

is equal to a. If both operands are non-negative, then the remainder is non-negative; if not, the sign of the remainder is
implementation dependent.

The "<<" binary operator indicates that the value of the left operand should be shifted left the number of bits specified by
the right operand, with 0 fill for the vacated bits. The right operand must be in the range 0 ≤ right operand < 32.

The "&" binary operator indicates that the logical, bitwise AND of the left and right operands should be generated.

The "|" binary operator indicates that the logical, bitwise OR of the left and right operands should be generated.

The "^" binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right operands should be
generated.

<positive_int_const> must evaluate to a positive integer constant.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 17

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal has the apparent number of total
and fractional digits, except that leading and trailing zeroes are factored out, including non-significant zeros before the
decimal point. For example, 0123.450d is considered to be fixed<5,2> and 3000.00 is fixed<1,-3>. Prefix
operators do not affect the precision; a prefix + is optional, and does not change the result. The upper bounds on the
number of digits and scale of the result of an infix expression, fixed<d1,s1> op fixed<d2,s2>, are shown in the
following table:

A quotient may have an arbitrary number of decimal places, denoted by a scale of s inf. The computation proceeds
pairwise, with the usual rules for left-to-right association, operator precedence and parentheses. If an individual
computation between a pair of fixed-point literals actually generates more than 31 significant digits, then a 31-digit result
is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeroes are not considered significant. The omitted digits are discarded; rounding is not performed.
The result of the individual computation then proceeds as one literal operand of the next pair of fixed-point literals to be
computed. Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-point expressions.
Unary (+ – ~) and binary (* / % + – << >> & | ^) operators are applicable in integer expressions.

4.7 Type declaration

ODP IDL provides constructs for naming data types; that is, it provides C language-like declarations that associate an
identifier with a type. ODP IDL uses the typedef keyword to associate a name with a data type; a name is also
associated with a data type via the struct, union, and enum declarations; the syntax is:

<type_dcl> ::= "typedef" <type_declarator>

| <struct_type>

| <union_type>

| <enum_type

<type_declarator> ::= <type_spec> <declarators>

For type declarations, ODP IDL defines a set of type specifiers to represent typed values. The syntax is as follows:

<type_spec> ::= <simple_type_spec>

| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>

| <template_type_spec>

| <scoped_name>

<base_type_spec> ::= <floating_pt_type>

| <integer_type>

| <char_type>

| <wide_char_type>

| <boolean_type>

| <octet_type>

| <any_type>

| <object_type>

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + s inf , s inf >

ISO/IEC 14750 : 1998 (E)

18 ITU-T Rec. X.920 (1997 E)

<template_type_spec> ::= <sequence_type>

| <string_type>

<constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>

<declarators> ::= <declarator> { "," <declarator> } *

<declarator> ::= <simple_declarator>

| <complex_declarator>

<simple_declarator> ::= <identifier>

<complex_declarator> ::= <array_declarator>

As seen above, ODP IDL type specifiers consist of scalar data types and type constructors. ODP IDL type specifiers can
be used in operation declarations to assign data types to operation parameters. The next subclauses describe basic and
constructed type specifiers.

4.7.1 Basic types

The syntax for the supported basic types is as follows:

<floating_pt_type> ::= "float"

| "double"

| "long" "double"

<integer_type> ::= <signed_int>

| <unsigned_int>

<signed_int> ::= <signed_long_int>

| <signed_short_int>

| <signed_longlong_int>

<signed_long_int> ::= "long"

<signed_short_int> ::= "short"

<signed_longlong_int> ::= "long" "long"

<unsigned_int> ::= <unsigned_long_int>

| <unsigned_short_int>

| <unsigned_longlong_int>

<unsigned_long_int> ::= "unsigned" "long"

<unsigned_short_int> ::= "unsigned" "short"

<unsigned_longlong_int> ::= "unsigned" "long" "long"

<char_type> ::= "char"

<wide_char_type> ::= "wchar"

<boolean_type> ::= "boolean"

<octet_type> ::= "octet"

<any_type> ::= "any"

<object_type> ::= "Object "

Each ODP IDL data type is mapped to a native data type via the appropriate language mapping. Conversion errors
between ODP IDL data types and the native types to which they are mapped can occur during the performance of an
operation invocation.

4.7.1.1 Integer types

ODP IDL supports both signed and unsigned extended-precision integer data types (long,short, long long and
unsigned integer data types). Type long represents the range –231 .. 231 –1, type unsigned long represents
the range 0 .. 232 –1, type short represents the range –215 .. 215 –1, type unsigned short represents the range
0 .. 216 –1. Type long long represents the range –263 –1, while type unsigned long long represents values in the
range 0 .. 264 –1.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 19

4.7.1.2 Fixed type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The scale factor is normally
a non-negative integer less than or equal to the total number of digits (note that constants with effectively negative scale,
such as 10 000, are always permitted.). However, some languages and environments may be able to accommodate types
that have a negative scale or a scale greater than the number of digits.

4.7.1.3 Floating-point types

ODP IDL floating-point types are float, double and long double. The float type represents IEEE single-precision
floating-point numbers; the double type represents IEEE double-precision floating point numbers. The long double
type represents an IEEE double-extended floating-point number, which supports an exponent of at least 15 bits in length
and a signed fraction of at least 64 bits. The IEEE floating point standard specification (IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Std 754-1985) should be consulted for more information on the precision
afforded by these types.

Implementations that do not fully support the value set of the IEEE 754 floating-point standard must completely specify
their deviance from the standard.

4.7.1.4 Char type

ODP IDL defines a char data type that is an 8-bit quantity which:

1) encodes a single-byte character from any byte-oriented code set; or

2) when used in an array, encodes a multi-byte character from a multi-byte code set.

In other words, an implementation is free to use any code set internally for encoding character data, though conversion to
another form may be required for transmission.

By default, the ISO/IEC Latin-1 (ISO/IEC 8859-1) character set standard defines the meaning and representation of all
possible graphic characters (i.e. the space, alphabetic, digit and graphic characters defined in Tables 2, 3 and 4). The
meaning and representation of the null and formatting characters (see Table 5) is the numerical value of the character as
defined in the ASCII (ISO/IEC 646) standard. The meaning of all other characters is implementation-dependent.

During transmission, characters may be converted to other appropriate forms as required by a particular language
binding. Such conversions may change the representation of a character but maintain the character’s meaning. For
example, a character may be converted to and from the appropriate representation in international character sets.

4.7.1.5 Wide char type

ODP IDL defines a wchar data type which encodes wide characters from any character set. As with character data, an
implementation is free to use any code set internally for representing wide characters, though, again, conversion to
another form may be required for transmission. The size of wchar is implementation-dependent.

4.7.1.6 Boolean type

The boolean type is used to denote a data item that can only take one of the values TRUE and FALSE.

4.7.1.7 Octet type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion when transmitted by the
communication system.

4.7.1.8 Any type

The any type permits the specification of values that can express any ODP IDL type.

4.7.2 Constructed types

The constructed types are:

<constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>

Although the ODP IDL syntax allows the generation of recursive constructed type specifications, the only recursion
permitted for constructed types is through the use of the sequence template type.

ISO/IEC 14750 : 1998 (E)

20 ITU-T Rec. X.920 (1997 E)

For example, the following is legal:

struct foo {

 long value;

 sequence <foo> chain;

}

See 4.7.3.1 for details of the sequence template type.

4.7.2.1 Structures

The structure syntax is:

<struct_type> ::= "struct" <identifier> "{" <member_list> "}"

<member_list> ::= <member>+

<member> ::= <type_spec> <declarators> ";"

The <identifier> in <struct_type> defines a new legal type. Structure types may also be named using a typedef
declaration.

Name scoping rules require that the member declarators in a particular structure be unique. The value of a struct is the
value of all of its members.

4.7.2.2 Discriminated unions

The discriminated union syntax is:

<union_type> ::= "union"<identifier> "switch"
"(" <switch_type_spec>"")" "{" <switch_body> "}"

<switch_type_spec> ::= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_name>

<switch_body> ::= <case>+

<case> ::= <case_label>+ <element_spec> ";"

<case_label> ::= "case" <const_exp> ":"

| "default" ":"

<element_spec> ::= <type_spec> <declarator>

ODP IDL unions are a cross between the C union and switch statements. ODP IDL unions must be discriminated;
that is, the union header must specify a typed tag field that determines which union member to use for the current instance
of a call. The <identifier> following the union keyword defines a new legal type. Union types may also be named
using a typedef declaration. The <const_exp> in a <case_label> must be consistent with the
<switch_type_spec>. A default case can appear at most once. The <scoped_name> in the
<switch_type_spec> production must be a previously defined integer, char, boolean, or enum type.

Case labels must match or be automatically castable to the defined type of the discriminator. The complete set of
matching rules are shown in Table 10.

Name scoping rules require that the element declarators in a particular union be unique. If the <switch_type_spec> is
an <enum_type>, the identifier for the enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the <switch_body>. The value of a
union is the value of the discriminator together with one of the following:

• if the discriminator value was explicitly listed in a case statement, the value of the element associated
with that case statement;

• if a default case label was specified, the value of the element associated with the default case label;

• no additional value.

Access to the discriminator and the related element is language-mapping dependent.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 21

Table 10 – Case label matching

4.7.2.3 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= "enum"<identifier>"{" <enumerator> { ","<enumerator> }*"}"

<enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the enumerated names must be mapped to a
native data type capable of representing a maximally-sized enumeration. The order in which the identifiers are named in
the specification of an enumeration defines the relative order of the identifiers. Any language mapping which permits two
enumerators to be compared or defines successor/predecessor functions on enumerators must conform to this ordering
relation. The <identifer> following the enum keyword defines a new legal type. Enumerated types may also be named
using a typedef declaration.

4.7.3 Template types

The template types are:

<template_type_spec> ::= <sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_type>

4.7.3.1 Sequences

ODP IDL defines the sequence type sequence. A sequence is a one-dimensional array with two characteristics: a
maximum size (which is fixed at compile time) and a length (which is determined at run time).

The syntax is:

<sequence_type> ::= "sequence" "<" <simple_type_spec>
","<positive_int_const> ">"

| "sequence" "<" <simple_type_spec> ">"

The second parameter in a sequence declaration indicates the maximum size of the sequence. If a positive integer
constant is specified for the maximum size, the sequence is termed a bounded sequence. Prior to passing a bounded
sequence as a function argument (or as a field in a structure or union), the length of the sequence must be set in a
language-mapping dependent manner. After receiving a sequence result from an operation invocation, the length of the
returned sequence will have been set; this value may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior to passing such a sequence as a
function argument (or as a field in a structure or union), the length of the sequence, the maximum size of the sequence,
and the address of a buffer to hold the sequence must be set in a language-mapping dependent manner. After receiving
such a sequence result from an operation invocation, the length of the returned sequence will have been set; this value
may be obtained in a language-mapping dependent manner.

Descriminator type Matched by

long Any integer value in the value range of long

long long Any integer value in the range of long long

short Any integer value in the value range of short

unsigned long Any integer value in the value range of unsigned long

unsigned long long Any integer value in the range of unsigned long long

unsigned short Any integer value in the value range of unsigned short

char char

wchar wchar

boolean TRUE or FALSE

enum Any enumerator for the discriminator enumtype

ISO/IEC 14750 : 1998 (E)

22 ITU-T Rec. X.920 (1997 E)

A sequence type may be used as the type parameter for another sequence type. For example, the following:

typedef sequence <sequence <long> > Fred;

declares Fred to be of type "unbounded sequence of unbounded sequence of long". Note that for nested sequence
declarations, white space must be used to separate the two ">" tokens ending the declaration so they are not parsed as a
single ">>" token.

4.7.3.2 Strings

ODP IDL defines the string type string consisting of all possible 8-bit quantities except null. A string is similar to a
sequence of char. As with sequences of any type, prior to passing a string as a function argument (or as a filed in a
structure or union) the length of the string must be set in a language-mapping dependent manner. The syntax is:

<string_type> ::= "string" "<" <positive_int_const> ">"

| "string"

The argument to the string declaration is the maximum size of the string. If a positive integer maximum size is specified,
the string is termed a bounded string; if no maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in functions or standard library
functions for string manipulation. A separate string type may permit substantial optimization in the handling of strings
compared to what can be done with sequences of general types.

4.7.3.3 Wide char strings

The wstring data type represents a null-terminated (note: a wide character null) sequence of wchar. Type wstring is
analogous to string, except that its element type is wchar instead of char.

<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"

| "wstring"

4.7.4 Complex declarator

4.7.4.1 Arrays

ODP IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each dimension.

The syntax for arrays is:

<array_declarator> ::= <identifier> <fixed_array_size>+

<fixed_array_size> ::= "[" <positive_int_const> "]"

The array size (in each dimension) is fixed at compile time. When an array is passed as a parameter in an operation
invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array index as a parameter may yield
incorrect results.

4.8 Typecodes and Principals

Typecode and Principal are particular types which can be used to have types as values, in particular as parameters in
operations. As such they must be defined by a language binding for a particular implementation. Annex B gives a
particular coding for Typecodes in the CORBA specification.

4.9 Exception declaration

Exception declarations permit the declaration of struct-like data structures which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. The syntax is as follows:

<except_dcl> ::="exception" <identifier> "{" <member>* "}"

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 23

Each exception is characterized by its ODP IDL identifier, an exception type identifier, and the type of the associated
return value (as specified by the <member> in its declaration). If an exception is returned as the outcome to a request,
then the value of the exception identifier is accessible to the programmer for determining which particular exception was
raised.

NOTE – This is an architecturally neutral standard, however certain exceptions are reserved and can be found in Annex A.

If an exception is declared with members, a programmer will be able to access the values of those members when an
exception is raised. If no members are specified, no additional information is accessible when an exception is raised.

4.10 Operation declaration

Operation declarations in ODP IDL are similar to C-function declarations. The syntax is:

<op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier><parameter_dcls>

[<raises_expr>] [<context_expr>]

<op_type_spec> ::= <param_type_spec>

| "void"

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the communication system
should provide when the operation is invoked. Operation attributes are described in 4.10.1.

• The type of the operation’s return result – The type may be any type which can be defined in ODP IDL.
Operations that do not return a result must specify the void type.

• An identifier that names the operation in the scope of the interface in which it is defined.

• A parameter list that specifies zero or more parameter declarations for the operation. Parameter
declaration is described in 4.10.2.

• An optional raises expression which indicates which exceptions may be raised as a result of an invocation
of this operation. Raises expressions are described in 4.10.3.

• An optional context expression which indicates which elements of the request context may be consulted by
the method that implements the operation. Context expressions are described in 4.10.4.

4.10.1 Operation attribute

The operation attribute specifies which invocation semantics the communication service must provide for invocations of a
particular operation. An operation attribute is optional. The syntax for its specification is as follows:

<op_attribute> ::= "oneway"

When a client invokes an operation with the oneway attribute, the invocation semantics is best-effort, which does not
guarantee delivery of the call; best-effort implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void return type. An operation defined
with the oneway attribute may not include a raises expression; invocation of such an operation, however, may raise a
standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an exception is raised; the semantics
is exactly-once if the operation invocation returns successfully.

4.10.2 Parameter declarations

Parameter declarations in ODP IDL operation declarations have the following syntax:

<parameter_dcls> ::= "(" <param_dcl> { "," <param_dcl> }* ")"

| "(" ")"

<param_dcl> ::= <param_attribute>
<param_type_spec><simple_declarator>

<param_attribute> ::= "in"

| "out"

| "inout"

ISO/IEC 14750 : 1998 (E)

24 ITU-T Rec. X.920 (1997 E)

<param_type_spec> ::= <base_type_spec>

| <string_type>

| <wide_string_type>

| <wide_string_type>

| <scoped_name>

A parameter declaration must have a directional attribute that informs the communication service in both the client and
the server of the direction in which the parameter is to be passed. The directional attributes are:

• in – The parameter is passed from client to server.

• out – The parameter is passed from server to client.

• inout – The parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
language-mapping specific; the effect of such an action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and any outand inout parameters
are undefined.

When an unbounded string, wstring or sequence is passed as an inout parameter, the returned value cannot be
longer than the input value.

4.10.3 Raises expressions

A raises expression specifies which exceptions may be raised as a result of an invocation of the operation. The syntax
for its specification is as follows:

<raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> }* ")"

The <scoped_name> in the raises expression must be previously defined exceptions.

In addition to any operation-specific exceptions specified in the raises expression, there are a standard set of
exceptions that may be signalled

The absence of a raises expression on an operation implies that there are no operation-specific exceptions. Invocations
of such an operation are still liable to receive one of the standard exceptions.

4.10.4 Context expressions

A context expression specifies which elements of the client’s context may affect the performance of a request by the
object. The syntax for its specification is as follows:

<context_expr> ::= "context" "(" <string_literal>
{"," <string_literal> }*")"

The runtime system guarantees to make the value (if any) associated with each <string_literal > in the client's
context available to the object implementation when the request is delivered. The distribution infrastructure and/or object
is free to use information in this request context during request resolution and performance.

The absence of a context expression indicates that there is no request context associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period ("."), underscore("_"), and asterisk
("*") characters. The first character of the string must be an alphabetic character. An asterisk may only be used as the last
character of the string. Some implementations may use the period character to partition the name space.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 25

4.11 Attribute declaration

An interface can have attributes as well as operations; as such, attributes are defined as part of an interface. An attribute
definition is logically equivalent to declaring a pair of accessor functions; one to retrieve the value of the attribute and
one to set the value of the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::= ["readonly"]"attribute"<param_type_spec>
<simple_declarator>

{","<simple_declarator>}*

The optional readonly keyword indicates that there is only a single accessor function – the retrieve value function.
Consider the following example:

interface foo {

 enum material_t {rubber, glass};

 struct position_t {

 float x, y;

 };

 attribute float radius;

 attribute material_t material;

 readonly attribute position_t position;

 ...

};

The attribute declarations are equivalent to the following pseudo-specification fragment:

float _get_radius ();

void _set_radius (in float r);

material_t _get_material();

void _ set_material (in material_t m);

position_t _get_position ();

The attribute name is subject to ODP IDL’s name scoping rules; the access or function names are guaranteed not to
collide with any legal operation names specifiable in ODP IDL.

Attribute operations only return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type. See 4.12 for more information on
redefinition constraints and the handling of ambiguity.

4.12 CORBA module

The naming scope CORBA (called the CORBA module) is reserved in the ODP IDL. The definitions within the CORBA
module should be used only when writing domain specific interface definitions, and not used in general ODP
computational interface descriptions.

4.13 Names and scoping

An entire ODP IDL file forms a naming scope. In addition, the following kinds of definitions form nested scopes:

– module;

– interface;

ISO/IEC 14750 : 1998 (E)

26 ITU-T Rec. X.920 (1997 E)

– structure;

– union;

– operation;

– exception.

Identifiers for the following kinds of definitions are scoped:

– types;

– constants;

– enumeration values;

– exceptions;

– interfaces;

– attributes;

– operations.

An identifier can only be defined once in a scope. However, identifiers can be redefined in nested scopes.

Due to possible restrictions imposed by future language bindings, ODP IDL identifiers are case insensitive, i.e. two
identifiers that differ only in the case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurence. (This allows natural mappings to
case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope. In particular, see 4.7.2 on cycles in type
definitions.

A name can be used in an unqualified form within a particular scope; it will be resolved by successively searching farther
out in enclosing scopes. Once an unqualified name is used in a scope, it cannot be redefined, i.e. if one has used a name
defined in an enclosing scope in the current scope, one cannot then redefine a version of the name in the current scope.
Such redefinitions yield a compilation error.

A qualified name (one of the form <scoped-name>:: <identifier>) is resolved by first resolving the qualifier <scoped-
name> to a scope S, and then locating the definition of <identifier> within S. The identifier must be directly defined in S
or (if S is an interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with "::", the resolution process starts with the smallest enclosing naming scope, and
locates subsequent identifiers in the qualified name by the rule described in the previous paragraph.

Every ODP IDL definition in a file has a global name within that file. The global name for a definition is constructed as
follows.

Prior to starting to scan a file containing an ODP IDL specification, the name of the current root is initially empty ("")
and the name of the current scope is initially empty(""). Whenever a module keyword is encountered, the string "::" and
the associated identifier are appended to the name of the current root; upon detection of the termination of the module,
the trailing "::" and identifer are deleted from the name of the current root. Whenever an interface, struct,
union, or exception keyword is encountered, the string "::" and the associated identifier are appended to the name of
the current scope; upon detection of the termination of the interface, struct, union, or exception, the trailing
"::" and identifier are deleted from the name of the current scope. Additionally, a new, unnamed, scope is entered when
the parameters of an operation declaration are processed; this allows the parameter names to duplicate other identifiers;
when parameter processing has completed, the unnamed scope is exited.

The global name of an ODP IDL definition is the concatenation of the current root, the current scope, a "::", and the
<identifier> which is the local name for that definition.

Inheritance produces shadow copies of the inherited identifiers, i.e. it introduces names into the derived interface, but
these names are considered to be semantically "the same" as the original definition. Two shadow copies of the same
original (as results from the diamond shape of Figure 1) introduce a single name into the derived interface and do not
conflict with each other.

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 27

Inheritance introduces multiple global ODP IDL names for the inherited identifiers. Consider the following example:

interface A{

 exception E {

 long L;

 };

 void f() raises (E);

};

interface B:A {

 void g() raises(E);

};

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A{

 typedef string <128> string_t;

};

interface B{

 typedef string <256> string_t;

};

interface C:A,B {

 attribute string_t Title; /* AMBIGUOUS */

};

The attribute declaration in C is ambiguous, since the compiler does not know which string_t is desired. Ambiguous
declarations yield compilation errors.

4.14 Differences from C++

The ODP IDL grammar, while attempting to conform to the C++ syntax, is somewhat more restrictive. The current
restrictions are as follows:

• A function return type is mandatory.

• A name must be supplied with each formal parameter to an operation declaration.

• A parameter list consisting of the single token void is not permitted as a synonym for an empty parameter
list.

• Tags are required for structures, discriminated unions, and enumerations.

• Integer types cannot be defined as simply int or unsigned; they must be declared explicitly as short or
long.

• char cannot be qualified by signed or unsigned keywords.

ISO/IEC 14750 : 1998 (E)

28 ITU-T Rec. X.920 (1997 E)

Annex A

Reserved standard exceptions
(This annex forms an integral part of this Recommendation | International Standard)

This annex presents a standard set of exceptions defined for an ODP infrastructure. These exception identifiers may be
returned as a result of any operation invocation, regardless of the interface specification. Standard exceptions may not be
listed in raises expressions.

In order to bound the complexity in handling the standard exceptions, the set of standard exceptions should be kept to a
tractable size. This constraint forces the definition of equivalence classes of exceptions rather than enumerating many
similar exceptions. For example, an operation invocation can fail at many different points due to the inability to allocate
dynamic memory. Rather than enumerate several different exceptions corresponding to the different ways that memory
allocation failure causes the exception (during marshalling, unmarshalling, in the client, in the object implementation,
allocating network packets, ...), a single exception corresponding to dynamic memory allocation failure is defined. Each
standard exception includes a minor code to designate the subcategory of the exception; the assignment of values to the
minor codes is left to each ORB implementation.

Each standard exception also includes a completion_status code which takes one of the values {COMPLETED_YES,
COMPLETED_NO, COMPLETED_MAYBE}. These have the following meanings:

COMPLETED_YES The object implementation has completed processing prior to the exception
being raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being
raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.

The standard exceptions are defined below. Client objects must be prepared to handle system exceptions that are not on
this list, both because future versions of this specification may define additional standard exceptions, and because ODP
infrastructure implementations may raise non-standard system exceptions.

#define ex_body {unsigned long minor; completion_status completed}

enum completion_status {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE};

enum exception_type {NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; //the unknown exception

exception BAD_PARAM ex_body; //an invalid parameter was passed

exception NO_MEMORY ex_body; //dynamic memory allocation failure

exception IMP_LIMIT ex_body; //violated implementation limit

exception COMM_FAILURE ex_body; //communication failure

exception INV_OBJREF ex_body; //invalid object reference

exception NO_PERMISSION ex_body; //no permission for attempted op.

exception INTERNAL ex_body; //ORB internal error

exception MARSHAL ex_body; //error marshalling param/result

exception INITIALIZE ex_body; //ORB initialization failure

exception NO_IMPLEMENT ex_body; //operation implementation unavailable

exception BAD_TYPECODE ex_body; //bad typecode

exception BAD_OPERATION ex_body; //invalid operation

exception NO_RESOURCES ex_body; //insufficient resources for req.

exception NO_RESPONSE ex_body; //response to req. not yet available

exception PERSIST_STORE ex_body; //persistent storage failure

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 29

exception BAD_INV_ORDER ex_body; //routine invocations out of order

exception TRANSIENT ex_body; //transient failure – reissue request

exception FREE_MEM ex_body; //cannot free memory

exception INV_IDENT ex_body; //invalid identifier syntax

exception INV_FLAG ex_body; //invalid flag was specified

exception INTF_REPOS ex_body; //error accessing interface repository

exception BAD_CONTEXT ex_body; //error processing context object

exception OBJ_ADAPTER ex_body; //failure detected by object adapter

exception DATA_CONVERSION ex_body; //data conversion error

 exception OBJECT_NOT_EXIST ex_body; // non-existent object, delete reference

exception TRANSACTION_REQUIRED ex_body;

exception TRANSACTION_ROLLEDBACK ex_body;

exception INVALID_TRANSACTION ex_body;

A.1 Object Non-Existence

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object was performed. It is an
authoritative "hard" fault report. Anyone receiving it is allowed (even expected) to delete all copies of this object
reference and to perform other appropriate "final recovery" style procedures.

A.2 Transaction exceptions

The TRANSACTION_REQUIRED exception indicates that the request carried a null transaction context, but an active
transaction is required.The TRANSACTION_ROLLEDBACK exception indicates that the transaction associated with
the request has already been rolled back or marked to roll back. Thus, the requested operation either could not be
performed or was not performed because further computation on behalf of the transaction would be fruitless.

The INVALID_TRANSACTION indicates that the request carried an invalid transaction context. For example, this
exception could be raised if an error occurred when trying to register a resource.

ISO/IEC 14750 : 1998 (E)

30 ITU-T Rec. X.920 (1997 E)

Annex B

Typecode encoding in the CORBA specification
(This annex does not forms an integral part of this Recommendation | International Standard)

The ODP IDL interface for Typecodes in CORBA is:

module CORBA {

enum TCKind {

tk_null, tk_void,

tk_short, tk_long, tk_ushort, tk_ulong,

tk_float, tk_double, tk_boolean, tk_char,

tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,

tk_struct, tk_union, tk_enum, tk_string,

tk_sequence, tk_array, tk_alias, tk_except,

tk_longlong, tk_ulonglong, tk_longdouble,

tk_wchar, tk_wstring, tk_fixed_pt

};

interface TypeCode {

exception Bounds{};

exception BadKind{};

// for all TypeCode kinds

boolean equal (in TypeCode tc);

TCkind kind ();

// for tk_objref, tk_struct, tk_union, tkenum, tk_alias, and tk_except

RepositoryId id () raises (BadKind) ;

// for tk_objref, tk_struct, tk_union, tkenum, tk_alias, and tk_except

Identifier name () raises (BadKind) ;

// for tk_struct, tk_union, tk_enum, and tk_except

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except

TypeCode member_type (in unsigned long index)
raises (BadKinds, Bounds);

//for tk_union

any member_label (in unsigned long index)
raises (BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E) 31

//for tk_string, tk_sequence, and tk_array

unsigned long length () raises (BadKind);

//for tk_sequence, tk_array, and tk_alias

TypeCode content_type () raises (BadKind);

// deprecated interface

long parameter_count ();

any parameter (in long index) raises (Bounds) ;

};

With the above operations, any Type Code can be decomposed into its constituent parts.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Programming languages

	ITU-T Rec. X.920 (12/97) INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING - INTERFACE DEFINITION LANGUAGE
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING - INTERFACE DEFINITION LANGUAGE
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	4 ODP IDL syntax and semantics
	4.1 Lexical conventions
	4.2 Preprocessing
	4.3 ODP IDL grammar
	4.4 ODP IDL specification
	4.5 Inheritance
	4.6 Constant declaration
	4.7 Type declaration
	4.8 Typecodes and Principals
	4.9 Exception declaration
	4.10 Operation declaration
	4.11 Attribute declaration
	4.12 CORBA module
	4.13 Names and scoping
	4.14 Differences from C++

	Annex A - Reserved standard exceptions
	A.1 Object Non-Existence
	A.2 Transaction exceptions
	Annex B - Typecode encoding in the CORBA specification

