

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.906
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2007)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY
Open distributed processing

 Information technology – Open distributed
processing – Use of UML for ODP system
specifications

ITU-T Recommendation X.906

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.889
Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999
TELECOMMUNICATION SECURITY X.1000–

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. X.906 (11/2007) i

INTERNATIONAL STANDARD ISO/IEC 19793
ITU-T RECOMMENDATION X.906

Information technology – Open distributed processing –
Use of UML for ODP system specifications

Summary

ITU-T Recommendation X.906 | ISO/IEC 19793 defines the use of the Unified Modelling Language (UML 2.1.1) for
expressing the specifications of open distributed systems in terms of the viewpoint specifications defined by the
Reference Model of Open Distributed Processing (RM-ODP). It defines a set of UML profiles for the expression of such
specifications, and an approach for structuring them according to the RM-ODP principles. The purpose of this
Recommendation | International Standard is to allow developers to use the UML profiles to write ODP specifications,
and to allow UML tools to be used to process viewpoint specifications, thus facilitating the software design process.
Annex A provides examples of the use of the UML profiles.

Source

ITU-T Recommendation X.906 was approved on 13 November 2007 by ITU-T Study Group 17 (2005-2008) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as ISO/IEC 19793.

ii ITU-T Rec. X.906 (11/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. X.906 (11/2007) iii

CONTENTS

 Page
1 Scope ... 1
2 Normative references .. 1

2.1 Identical Recommendations | International Standards ... 1
2.2 OMG specifications... 1

3 Definitions .. 2
3.1 Definitions from ODP standards .. 2
3.2 Definitions from the Enterprise Language .. 2
3.3 Definitions from the Unified Modeling Language.. 2
3.4 Definitions from ODP standards refined or extended in this Recommendation | International

Standard.. 3
4 Abbreviations .. 3
5 Conventions .. 3
6 Overview of modelling and system specification approach ... 4

6.1 Introduction ... 4
6.2 Overview of ODP concepts (extracted from RM-ODP Part 1) .. 4
6.3 Overview of UML concepts .. 8
6.4 Universes of discourse, ODP specifications and UML models.. 9
6.5 Modeling concepts and UML profiles for ODP viewpoint languages and correspondences 10
6.6 General principles for expressing and structuring ODP system specifications using UML 10
6.7 Correspondences between viewpoint specifications ... 11

7 Enterprise specification.. 12
7.1 Modelling concepts ... 12
7.2 UML profile... 16
7.3 Enterprise specification structure (in UML terms).. 24
7.4 Viewpoint correspondences for the enterprise language .. 25

8 Information specification ... 26
8.1 Modelling concepts ... 26
8.2 UML profile... 28
8.3 Information specification structure (in UML terms) ... 30
8.4 Viewpoint correspondences for the information language.. 31

9 Computational specification ... 31
9.1 Modelling concepts ... 31
9.2 UML profile... 36
9.3 Computational specification structure (in UML terms) ... 42
9.4 Viewpoint correspondences for the computational language .. 42

10 Engineering specification ... 43
10.1 Modelling concepts ... 43
10.2 UML profile... 52
10.3 Engineering specification structure (in UML terms) ... 56
10.4 Viewpoint correspondences for the engineering language.. 57

11 Technology Specification... 58
11.1 Modelling concepts ... 58
11.2 UML profile... 58
11.3 Technology specification structure (in UML terms) ... 59
11.4 Viewpoint correspondences for the technology language .. 60

12 Correspondences specification .. 60
12.1 Modelling concepts ... 60
12.2 UML profile... 61

13 Modelling conformance in ODP system specifications... 62
13.1 Modelling conformance concepts ... 62
13.2 UML profile... 62

iv ITU-T Rec. X.906 (11/2007)

 Page
14 Conformance and compliance to this document .. 63

14.1 Conformance.. 63
14.2 Compliance.. 63

Annex A – An example of ODP specifications using UML .. 64
A.1 The Templeman Library System .. 64
A.2 Enterprise specification in UML .. 65
A.3 Information specification in UML .. 79
A.4 Computational specification in UML .. 87
A.5 Engineering specification in UML.. 93
A.6 Technology specification in UML .. 102

 ITU-T Rec. X.906 (11/2007) v

0 Introduction
The rapid growth of distributed processing has led to the adoption of the Reference Model of Open Distributed
Processing (RM-ODP), which provides a coordinating framework for the standardization of Open Distributed
Processing (ODP). RM-ODP creates an architecture within which support of distribution, interworking, and portability
can be integrated. This architecture provides a framework for the specification of ODP systems.

RM-ODP is based on precise concepts derived from current distributed processing developments and, as far as possible,
on the use of formal description techniques for specification of the architecture. It does not recommend any notation.

The Unified Modeling Language™ (UML®) was developed by the Object Management Group™ (OMG™). It provides
a notation for modelling in support of information system design and is widely used throughout the IT industry as the
language and notation of choice.

This Recommendation | International Standard refines and extends the definition of how ODP systems are specified by
defining the use of the Unified Modeling Language for the expression of ODP system specification.

0.1 RM-ODP

The RM-ODP consists of:
– Part 1 (ITU-T Rec. X.901 | ISO/IEC 10746-1): Overview, which contains a motivational overview of

ODP, giving scoping, justification and explanation of key concepts, and an outline of the ODP
architecture. It contains explanatory material on how the RM-ODP is to be interpreted and applied by its
users, who may include standards writers and architects of ODP systems. It also contains a categorization
of required areas of standardization expressed in terms of the reference points for conformance identified
in ITU-T Rec. X.903 | ISO/IEC 10746-3. Part 1 is not normative.

– Part 2 (ITU-T Rec. X.902 | ISO/IEC 10746-2): Foundations, which contains the definition of the
concepts and analytical framework for normalized description of (arbitrary) distributed processing
systems. It introduces the principles of conformance to ODP standards and the way in which they are
applied. This is only to a level of detail sufficient to support ITU-T Rec. X.903 | ISO/IEC 10746-3 and to
establish requirements for new specification techniques. Part 2 is normative.

– Part 3 (ITU-T Rec. X.903 | ISO/IEC 10746-3): Architecture, which contains the specification of the
required characteristics that qualify distributed processing as open. These are the constraints to which
ODP standards shall conform. It uses the descriptive techniques from ITU-T Rec. X.902 | ISO/IEC
10746-2. Part 3 is normative.

– Part 4 (ITU-T Rec. X.904 | ISO/IEC 10746-4): Architectural semantics, which contains a formalization
of the ODP modelling concepts defined in clauses 8 and 9 of ITU-T Rec. X.902 | ISO/IEC 10746-2. The
formalization is achieved by interpreting each concept in terms of the constructs of one or more of the
different standardized formal description techniques. Part 4 is normative.

In the same series as the RM-ODP are a number of other Standards and Recommendations, and, of these, the principal
one that concerns this Recommendation | International Standard is:

– The Enterprise Language (ITU-T Rec. X.911 | ISO/IEC 15414), which refines and extends the enterprise
language defined in ITU-T Rec. X.903 | ISO/IEC 10746-3 to enable full enterprise viewpoint
specification of an ODP system.

0.2 UML

The Unified Modeling Language (UML) is a visual language for specifying and documenting the artifacts of systems. It
is a general-purpose modelling language that can be used with all major object and component methods and that can be
applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation platforms (e.g., J2EE,
CORBA®, .NET).

The version of UML currently adopted as an International Standard (ISO/IEC 19501) is UML 1.4, which is basically
the language that was originally adopted by the OMG in the 1990s. UML was substantially extended by the OMG in
2005 to produce version 2, which offers significant enhancements, particularly in the way the language and notation
handle structured classifiers. These enhancements have been found to be essential for expressing many of the more
complex concepts in the RM-ODP computational and engineering language. As a result, this Recommendation |
International Standard takes UML version 2 as its baseline.

UML version 2 has been structured modularly, with the ability to select only those parts of the language that are of
direct interest. It is extensible, so it can be easily tailored to meet the specific user requirements. The UML specification
defines thirteen types of diagram, divided in two categories that represent, respectively: the static structure of the
objects in a system (structure diagrams) and the dynamic behaviour of the objects in a system (behaviour diagrams). In

vi ITU-T Rec. X.906 (11/2007)

addition, UML incorporates extension mechanisms that allow the definition of new dialects of UML (managed using
UML profiles) to customize the language for particular platforms and domains.

The UML specification is defined using a metamodelling approach (i.e., a metamodel is used to specify the model that
comprises UML). That metamodel has been constructed so that the resulting family of UML languages is fully aligned
with the rest of the OMG specifications (e.g., MOF™, OCL, XMI®) and to allow the exchange of models between
tools.

0.3 Overview and motivation

ITU-T Rec. X.903 | ISO/IEC 10746-3 defines a framework for the specification of ODP systems comprising:
a) five viewpoints, called enterprise, information, computational, engineering and technology, which

provide a basis for the specification of ODP systems;
b) a viewpoint language for each viewpoint, defining concepts and rules for specifying ODP systems from

the corresponding viewpoint.

This Recommendation | International Standard defines:
– use of the viewpoints prescribed by the RM-ODP to structure UML system specifications;
– rules for expressing RM-ODP viewpoint languages and specifications with UML and UML extensions

(e.g., UML profiles).

It allows UML tools to be used to process viewpoint specifications, facilitating the software design process.

Currently there is growing interest in the use of UML for system modelling. However, there is no widely agreed
approach to the structuring of such specifications. This adds to the cost of adopting the use of UML for system
specification, hampers communication between system developers and makes it difficult to relate or merge system
specifications where there is a need to integrate IT systems.

The RM-ODP defines essential concepts necessary to specify open distributed processing systems from five prescribed
viewpoints and provides a framework for the structuring of specifications for distributed systems.

However, the RM-ODP prescribes neither a notation, nor a model development method.

This Recommendation | International Standard provides the necessary framework for ODP system specification using
UML. It defines both a UML based notation for the expression of such specifications, and an approach for their
structuring using the notation, thus providing the basis for model development methods.

By defining how UML and UML extensions should be used to express RM-ODP viewpoint specifications, the standard
enables the ODP viewpoints and ODP architecture to provide the needed framework for system specification using
UML.

This Recommendation | International Standard contains the following annexes:
– Annex A: An example of ODP specifications using UML.

This annex is not normative.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – Open distributed processing –
Use of UML for ODP system specifications

1 Scope
This Recommendation | International Standard defines use of the Unified Modeling Language (UML 2.1.1
Superstructure Specification, OMG document formal/07-02-05) for expressing system specifications in terms of the
viewpoint specifications defined by the Reference Model of Open Distributed Processing (RM-ODP, ITU-T Recs
X.901 to X.904 | ISO/IEC 10746 Parts 1 to 4) and the Enterprise Language (ITU-T Rec. X.911 | ISO/IEC 15414). It
covers:

a) the expression of a system specification in terms of RM-ODP viewpoint specifications using defined
UML concepts and extensions (e.g., structuring rules, technology mappings, etc.);

b) relationships between the resultant RM-ODP viewpoint specifications.

This document is intended for the following audiences:
– ODP modellers who want to use the UML notation for expressing their ODP specifications in a graphical

and standard way;
– UML modellers who want to use the RM-ODP concepts and mechanisms to structure their UML system

specifications; and
– modelling tool suppliers, who wish to develop UML-based tools that are capable of expressing RM-ODP

viewpoint specifications.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– ITU-T Recommendation X.725 (1995) | ISO/IEC 10165-7:1996, Information technology – Open Systems

Interconnection – Structure of management information: General Relationship Model.
– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open

Distributed Processing – Reference Model: Foundations.
– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open

Distributed Processing – Reference Model: Architecture.
– ITU-T Recommendation X.904 (1997) | ISO/IEC 10746-4:1998, Information technology – Open

Distributed Processing – Reference Model: Architectural semantics.
– ITU-T Recommendation X.911 (2001) | ISO/IEC 15414:2002, Information technology – Open

Distributed Processing – Reference model – Enterprise language.

2.2 OMG specifications
– OMG Unified Modeling Language: Superstructure, version 2.1.1, formal/07-02-05.

ISO/IEC 19793:2008 (E)

2 ITU-T Rec. X.906 (11/2007)

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Definitions from ODP standards

3.1.1 Modelling concept definitions

This Recommendation | International Standard makes use of the following terms as defined in ITU-T Rec. X.902 |
ISO/IEC 10746-2:

 abstraction; action; activity; architecture; atomicity; behaviour (of an object); binding; class; client
object; communication; composition; component object [2-5.1]; composite object; configuration (of
objects); conformance point; consumer object; contract; creation; data; decomposition; deletion;
distributed processing; distribution transparency; <X> domain; entity; environment; environment
contract; epoch; error; establishing behaviour; failure; fault; <X> group; identifier; information; initiating
object; instance; instantiation (of an <X> template); internal action; interaction; interchange reference
point; interface; interface signature; interworking reference point; introduction; invariant; location in
space; location in time; name; naming context; naming domain; notification; object; obligation; ODP
standards; ODP system; open distributed processing; perceptual reference point; permission; persistence;
producer object; programmatic reference point; prohibition; proposition; quality of service; reference
point; refinement; role; server object; spawn action; stability; state (of an object); subdomain; subtype;
supertype; system; <X> template; term; terminating behaviour; trading; type (of an <X>); viewpoint (on
a system).

3.1.2 Viewpoint language definitions

This Recommendation | International Standard makes use of the following terms as defined in ITU-T Rec. X.903 |
ISO/IEC 10746-3:

 binder; capsule; channel; cluster; community; computational behaviour; computational binding object;
computational object; computational interface; computational viewpoint; dynamic schema; engineering
viewpoint; distributed binding; enterprise object; enterprise viewpoint; <X> federation; information
object; information viewpoint; interceptor; invariant schema; node; nucleus; operation; protocol object;
static schema; stream; stub; technology viewpoint; <viewpoint> language.

3.2 Definitions from the Enterprise Language

This Recommendation | International Standard makes use of the following terms as defined in ITU-T Rec. X.911 |
ISO/IEC 15414:

 actor (with respect to an action); agent; artefact (with respect to an action); authorization; commitment;
community object; declaration; delegation; evaluation; field of application (of a specification); interface
role; objective (of an <X>); party; policy; prescription; principal; process; resource (with respect to an
action); scope (of a system); step; violation.

3.3 Definitions from the Unified Modeling Language

This Recommendation | International Standard makes use of the following terms as defined in OMG document
formal/07-02-05:

 abstract class; action; activity; activity diagram; aggregate; aggregation; association; association class;
association end; attribute; behaviour; behaviour diagram; binary association; binding; call; class;
classifier; classification; class diagram; client; collaboration; collaboration occurrence; communication
diagram; component; component diagram; composite; composite structure diagram; composition;
concrete class; connector; constraint; container; context; delegation; dependency; deployment diagram;
derived element; diagram; distribution unit; dynamic classification; element; entry action; enumeration;
event; exception; execution occurrence; exit action; export; expression; extend; extension; feature; final
state; fire; generalizable element; generalization; guard condition; implementation; implementation class;
implementation inheritance; import; include; inheritance; initial state; instance; interaction; interaction
diagram; interaction overview diagram; interface; internal transition; lifeline; link; link end; message;
metaclass; metamodel; method; multiple classification; multiplicity; n-ary association; name; namespace;
node; note; object; object diagram; object flow state; object lifeline; operation; package; parameter;
parent; part; partition; pattern; persistent object; pin; port; postcondition; precondition; primitive type;
profile; property; pseudo-state; realization; receive [a message]; receiver; reception; refinement;
relationship; role; scenario; send [a message]; sender; sequence diagram; signal; signature; slot; state;

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 3

state machine diagram; state machine; static classification; stereotype; stimulus; structural feature;
structure diagram; subactivity state; subclass; submachine state; substate; subpackage; subsystem;
subtype; superclass; supertype; supplier; tagged value; time event; time expression; timing diagram;
trace; transition; type; usage; use case; use case diagram; value; visibility.

3.4 Definitions from ODP standards refined or extended in this Recommendation | International
Standard

This Recommendation | International Standard refines or extends the following terms from ITU-T Rec. X.902 |
ISO/IEC 10746-2, ITU-T Rec. X.903 | ISO/IEC 10746-3, or ITU-T Rec. X.911 | ISO/IEC 15414:

– Policy (see [7.1.3]).

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply.

MOF Meta Object Facility
OCL Object Constraint Language
ODP Open Distributed Processing
OMG Object Management Group
RM-ODP Reference Model of Open Distributed Processing
UML Unified Modeling Language
XMI XML Metadata Interchange

NOTE – UML, CORBA, XMI, MOF, OMG, Object Management Group, and Unified Modeling Language are either registered
trademarks or trademarks of Object Management Group, Inc. in the United States and/or other countries.

5 Conventions
In the text that follows, the following conventions apply.

This Recommendation | International Standard is referred to as "this document".

ITU-T Rec. X.902 | ISO/IEC 10746-2 (RM-ODP Part 2: Foundations) and ITU-T Rec. X.903 | ISO/IEC 10746-3 (RM-
ODP Part 3: Architecture) are referred to as "Part 2" and "Part 3" of the RM-ODP, respectively.

ITU-T Rec. X.911 | ISO/IEC 15414 (RM-ODP Enterprise Language) is referred to as "the Enterprise Language".

The UML Superstructure Specification (see [2.2]) is referred to as "the UML specification". The UML notation defined
in the UML specification is referred to as "UML".

References to the normative text of this document, to the text of Parts 2 and 3 of the RM-ODP, to the Enterprise
Language and to UML are expressed in one of these forms:

[n.n] – a reference to clause n.n of this document.
[Part 2 – n.n] – a reference to clause n.n of RM-ODP Part 2;
[Part 3 – n.n] – a reference to clause n.n of RM-ODP Part 3;
[E/L – n.n] – a reference to clause n.n of the Enterprise Language;
[UML – n.n] – a reference to clause n.n of the UML specification.

For example, [Part 2 – 9.4] is a reference to subclause 9.4 of Part 2 of the RM-ODP; and [6.5] is a reference to
clause 6.5 of this document. These references are for the convenience of the reader.

NOTE – The clauses correspond to the specific dated versions of the documents referenced in clause 2.

In the clauses that follow, except in the headings, terms in italic face are terms of the RM-ODP viewpoint languages as
defined in Parts 2 and 3 of the RM-ODP, or in the Enterprise Language. UML concepts are shown in sans-serif
typeface. UML stereotype names are shown in normal font, enclosed in guillemets (« and »).

ISO/IEC 19793:2008 (E)

4 ITU-T Rec. X.906 (11/2007)

The following conventions apply to the UML diagrams:
– Association end names are placed at the end of the association that is adjacent to the class playing the

role. Association end names are omitted if they do not add meaning to the diagram. In this case, the
implied association end name is the name of the class at that end of the association.

– Cardinalities of associations are placed adjacent to the class that has the cardinality.
– Where there are no attributes, the attribute part of the class box is suppressed.
– Black diamonds are used to represent whole/part associations, with no cardinality or role name at the

whole end of the association, and no role name at the part end of the association. The meaning is that the
part cannot exist without exactly one instance of the whole.

– Nouns are used in association end names, rather than verbs.
– Class names representing ODP concepts start with upper case.
– Arrowheads accompanying association names are avoided.
– Icons associated with stereotypes are used in some of the UML figures in this document. This is done to

aid understanding, the icons are not normative.

6 Overview of modelling and system specification approach

6.1 Introduction

This clause provides an introduction to this document, covering:
– an overview of ODP system specification concepts;
– an overview of UML concepts;
– an explanation of the relationships between ODP models, the subjects of those models (universes of

discourse), and the UML models that express the ODP models;
– an overview of the structuring principles for system specifications defined in the document;
– an explanation of the concept of correspondences (relationships) between viewpoint specifications.

6.2 Overview of ODP concepts (extracted from RM-ODP Part 1)

An overview of the ODP modelling concepts and the structuring rules for their use is given in RM-ODP Part 1 (ITU-T
Rec. X.901 | ISO/IEC 10746-1: Overview) and the concepts and structuring rules are formally defined in RM-ODP
Parts 2 and 3. The text that follows (i.e., the rest of [6.2]), is abstracted from the text in RM-ODP Part 1. RM-ODP
Parts 2 and 3 are the authoritative standards, and should be followed in case of any conflict between those Parts and this
clause.

The framework for system specification provided by the RM-ODP has four fundamental elements:
– an object modelling approach to system specification;
– the specification of a system in terms of separate but interrelated viewpoint specifications;
– the definition of a system infrastructure providing distribution transparencies for system applications;
– a framework for assessing system conformance.

6.2.1 Object modelling

Object modelling provides a formalization of well-established design practices of abstraction and encapsulation.
– Abstraction allows the description of system functionality to be separated from details of system

implementation.
– Encapsulation allows the hiding of heterogeneity, the localization of failure, the implementation of

security and the hiding of the mechanisms of service provision from the service user.

The object modelling concepts cover:
– basic modelling concepts: providing rigorous definitions of a minimum set of concepts (action, object,

interaction and interface) that form the basis for ODP system descriptions and are applicable in all
viewpoints;

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 5

– specification concepts: addressing notions such as type and class that are necessary for reasoning about
specifications and the relations between specifications, providing general tools for design, and
establishing requirements on specification languages;

– structuring concepts: building on the basic modelling concepts and the specification concepts to address
recurrent structures in distributed systems, and covering such concerns as policy, naming, behaviour,
dependability and communication.

6.2.2 Viewpoint specifications

A viewpoint (on a system) is an abstraction that yields a specification of the whole system related to a particular set of
concerns. Five viewpoints have been chosen to be both simple and complete, covering all the domains of architectural
design. These five viewpoints are:

– the enterprise viewpoint, which is concerned with the purpose, scope and policies governing the
activities of the specified system within the organization of which it is a part;

– the information viewpoint, which is concerned with the kinds of information handled by the system and
constraints on the use and interpretation of that information;

– the computational viewpoint, which is concerned with the functional decomposition of the system into a
set of objects that interact at interfaces – enabling system distribution;

– the engineering viewpoint, which is concerned with the infrastructure required to support system
distribution;

– the technology viewpoint, which is concerned with the choice of technology to support system
distribution.

Computational
Application design aspects
Functional decomposition of the system
into objects suitable for distribution
How does each bit work?

Engineering
andSolution types distribution

How do the bits work together?
Infrastructure required to support distribution

Technology

and
Implementation

With what?

System hardware software
and actual distribution

Information
Information system aspects

What is it about?

Information handled by the system and
constraints on the use and interpretation

of that information
ODP

system

Figure 1 – RM-ODP viewpoints

For each viewpoint there is an associated viewpoint language which can be used to specify a system from that
viewpoint. The object modelling concepts give a common basis for the viewpoint languages and make it possible to
identify relationships between the different viewpoint specifications and to assert correspondences between the models
of the system in different viewpoints (see [6.7]).

NOTE – Although the different viewpoints can be independently defined and there is no explicit order imposed by the RM-ODP
for specifying them, a common practice is to start by developing the enterprise specification of the system, and then prepare the
information and computational specifications. These two specifications may have constraints over each other. An iterative
specification process is quite common too, whereby each viewpoint specification may be revised and refined as the other two are
developed. Correspondences between the elements of these three viewpoints are defined during this process. After that, the
engineering specification of the system is prepared, based on the computational specification. Correspondences between the
elements of these viewpoints are then defined together with the newly specified elements. Finally, the technology specification is
produced based on the engineering specification. Again, some refinements may be performed on the rest of the viewpoint
specifications, due to the new requirements and constraints imposed by the particular selection of technology.

ISO/IEC 19793:2008 (E)

6 ITU-T Rec. X.906 (11/2007)

6.2.3 Distribution transparency

Distribution transparencies enable complexities associated with system distribution to be hidden from applications
where they are irrelevant to their purpose. For example:

– access transparency masks differences of data representation and invocation mechanisms for services
between systems;

– location transparency masks the need for an application to have information about location in order to
invoke a service;

– relocation transparency masks the relocation of a service from applications using it;
– replication transparency masks the fact that multiple copies of a service may be provided in order to

provide reliability and availability.

ODP standards define functions and structures to realize distribution transparencies. However, there are performance
and cost tradeoffs associated with each transparency and only selected transparencies will be relevant in many cases.
Thus, a conforming ODP system shall implement those transparencies that it supports in accordance with the relevant
standards, but it is not required to support all transparencies.

6.2.4 Conformance

The basic characteristics of heterogeneity and evolution imply that different parts of a distributed system can be
purchased separately, from different vendors. It is therefore very important that the behaviours of the different parts of a
system are clearly defined, and that it is possible to assign responsibility for any failure to meet the system's
specifications.

The framework defined to govern the assessment of conformance addresses these issues. RM-ODP Part 2 defines four
classes of reference points: programmatic reference point, perceptual reference point, interworking reference point, and
interchange reference point. The reference points in those classes are the candidate for conformance points. Part 2
covers:

– identification of the reference points within an architecture that provide candidate conformance points
within a specification of testable components;

– identification of the conformance points within the set of viewpoint specifications at which observations
of conformance can be made;

– definition of classes of conformance point;
– specification of the nature of conformance statements to be made in each viewpoint and the relation

between them.

6.2.5 Enterprise language

The enterprise language provides the modelling concepts necessary to model an ODP system in the context of the
business or organization in which it operates. An enterprise specification defines the purpose, scope, and policies of an
ODP system and it provides the basis for checking conformance of system implementations. The purpose of the system
is defined by the specified behaviour of the system while policies capture further restrictions of the behaviour between
the system and its environment, or within the system itself related to the business decisions of the system owners.

NOTE 1 – An enterprise specification of a system may therefore be thought of as a statement of the "requirements" for the
system. However, it must be emphasized that it is not fundamentally different from any other element of the specification for the
system.

In an enterprise specification the system is modelled by one or more enterprise objects within the communities of
enterprise objects that model its environment, and by the roles in which these objects are involved. These roles model,
for example, the users, owners and providers of information processed by the system.

NOTE 2 – There is a question of modelling style to be considered that has particular significance for an enterprise specification,
which is intended to be approachable for a subject matter expert. This is concerned with whether to name model elements in
terms of instances or types. Thus it is common practice to express an enterprise specification in terms of anonymous objects,
named by their type, e.g., including in enterprise specifications phrases such as "a customer enterprise object fulfils the role
applicant", when what is actually meant is "an (anonymous) enterprise object, conforming to the enterprise object type
customer, fulfils the role applicant".

6.2.6 Information language

The individual components of a distributed system should share a common understanding of the information they
communicate when they interact, or the system will not behave as expected. These items of information are handled, in
one way or another, by information objects in the system. To ensure that the interpretation of these items is consistent,
the information language defines concepts for the specification of the meaning of information stored within, and
manipulated by, an ODP system, independently of the way the information processing functions themselves are to be

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 7

implemented.

Information held by the ODP system about entities in the real world, including the ODP system itself is modelled in an
information specification in terms of information objects, and their relationships and behaviour. Basic information
elements are modelled by atomic information objects. More complex information is modelled as composite information
objects each modelling relationships over a set of constituent information objects.

The information specification comprises a set of related schemata, namely, the invariant, static and dynamic schemata:
– An invariant schema models relationships between information objects that must always be true, for all

valid behaviours of the system.
– A static schema models assertions that must be true at a single point in time. A common use of static

schemata is to specify the initial state of an information object.
– A dynamic schema specifies how the information can evolve as the system operates.

6.2.7 Computational language

The computational viewpoint is directly concerned with the distribution of processing but not with the interaction
mechanisms that enable distribution to occur. The computational specification decomposes the system into
computational objects performing individual functions and interacting at interfaces. It thus provides the basis for
decisions on how to distribute the jobs to be done, because objects can be located independently assuming
communications mechanisms can be defined in the engineering specification to support the behaviour at the interfaces
to those objects.

The heart of the computational language is the computational object model, which constrains the computational
specification by defining:

– the form of interface an object can have;
– the way that interfaces can be bound and the forms of interaction that can take place at them;
– the actions an object can perform, in particular the creation of new objects and interfaces, and the

establishment of bindings.

The computational object model provides the basis for ensuring consistency between different engineering and
technology specifications (including programming languages and communication mechanisms) since they must be
consistent with the same computational object model. This consistency allows open interworking and portability of
components in the resulting implementation.

The computational language enables the specifier to model constraints on the distribution of an application (in terms of
environment contracts associated with individual interfaces and interface bindings of computational objects) without
specifying the actual degree of distribution in the computational specification; this latter is specified in the engineering
and technology specifications. This ensures that the computational specification of an application is not based on any
unstated assumptions affecting the distribution of engineering and technology objects. Because of this, the configuration
and degree of distribution of the hardware on which ODP applications are run can easily be altered, subject to the stated
environment constraints, without having a major impact on the application software.

6.2.8 Engineering language

The engineering language focuses on the way object interaction is achieved and on the resources needed for it to take
place. It defines concepts for describing the infrastructure required to support selective, distribution transparent
interactions between objects, and rules for structuring communication channels between objects, and for structuring
systems for the purposes of resource management. These rules can be modelled as engineering templates (for example
engineering channel template).

Thus the computational viewpoint is concerned with when and why objects interact, while the engineering viewpoint is
concerned with how they interact. In the engineering language, the main concern is the support of interactions between
computational objects. As a consequence, there are very direct links between the viewpoint descriptions: computational
objects are visible in the engineering viewpoint as basic engineering objects and computational bindings, whether
implicit or explicit, are visible as either channels or local bindings.

The concepts and rules are sufficient to enable specification of internal interfaces within the infrastructure, enabling the
definition of distinct conformance points for different transparencies, and the possibility of standardization of a generic
infrastructure into which standardized transparency modules can be placed.

The engineering language assumes a virtual machine that corresponds to a platform offering minimal support for
distribution.

NOTE – The functionality of the virtual machine assumed by the engineering language corresponds, for example, to a set of
computing systems with stand-alone OS facilities plus communication facilities. In practice, the functionality available from

ISO/IEC 19793:2008 (E)

8 ITU-T Rec. X.906 (11/2007)

current vendor technology, for example when it offers a CORBA or J2EE environment, already provides significant elements of
the functionality to be covered by the engineering specification.
Thus, the engineering specification is interpreted in this document as defining the mechanisms and functions required to support
distributed interaction between objects in an ODP system, making use of the supporting functionality provided by the specific
vendor technology defined by the technology specification.

6.2.9 Technology language

The technology specification describes the implementation of the ODP system in terms of a configuration of technology
objects modelling the hardware and software components of the implementation. It is constrained by cost and
availability of technology objects (hardware and software products) that would satisfy this specification. These may
conform to implementable standards which are effectively templates for technology objects. Thus, the technology
viewpoint provides a link between the set of viewpoint specifications and the real implementation, by listing the
standards used to provide the necessary basic operations in the other viewpoint specifications, and the aim of the
technology specification is to provide the extra information needed for implementation and testing by selecting standard
solutions for basic components and communication mechanisms.

6.3 Overview of UML concepts

The Unified Modeling Language (UML) is a visual language for specifying, constructing and documenting the artifacts
of systems. It is a general-purpose modelling language that can be used with all major object and component methods
and that can be applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation
platforms (e.g., J2EE, CORBA, .NET). However, not all of UML modelling capabilities are necessarily useful in all
domains or applications. Therefore, the UML specification has been structured modularly, with the ability to select only
those parts of the language that are of direct interest, and extensible, so it can be easily customized.

The UML specification defines thirteen types of diagram, divided in two categories that represent, respectively, the
static structure of the objects in a system (structure diagrams), and the dynamic behaviour of the objects in a system
(behaviour diagrams). In addition, the UML specification incorporates extension mechanisms that allow the definition
of new dialects of UML to customize the language for particular platforms and domains.

6.3.1 Structural models

Structural models specify the structure of objects in a model. They are represented in:
– class diagrams, which show a collection of declarative (static) model elements, such as classes, types,

and their contents;
– object diagrams, which encompass objects and their relationships at a point in time. An object diagram

may be considered a special case of a class diagram or a communication diagram;
– component diagrams, which show the organizations and dependencies among components;
– deployment diagrams, which represent the execution architecture of systems. They represent system

artifacts as nodes, which are connected through communication paths to create network systems of
arbitrary complexity. Nodes are typically defined in a nested manner, and represent either hardware
devices or software execution environments;

– composite structure diagrams, which depict the internal structure of a classifier, including the interaction
points of the classifier to other parts of the system. They show the configuration of parts that jointly
perform the behaviour of the containing classifier;

– package diagrams, which depict how model elements are organized into packages and the dependencies
among them, including package imports and package extensions.

6.3.2 Behavioural models

Behavioural models specify the behaviour of objects in a model. They are represented by:
– use case diagrams, each of which illustrates the relationships among actors and the system, and use

cases;
– state machine diagrams, which specify the sequences of states that an object or an interaction goes

through during its life in response to events, together with its responses and actions;
– activity diagrams, which depict behaviour using a control and data-flow model;
– interaction diagrams, which emphasize object interactions and can be one of the following:

• sequence diagrams, that depict interactions by focusing on the sequence of messages that are
exchanged, along with their corresponding event occurrences on the lifelines. Unlike a
communication diagram, a sequence diagram includes time sequences but does not include object

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 9

relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) and
in an instance form (describes one actual scenario). Sequence diagrams and communication
diagrams express similar information, but show it in different ways;

• communication diagrams, which focus on the interactions between lifelines where the architecture
of the internal structure and how this corresponds with the message passing is central. The
sequencing of messages is given through a sequence numbering scheme. Sequence diagrams and
communication diagrams express similar information, but show it in different ways;

• interaction overview diagrams, which represent interactions through a variant of activity diagrams in
a way that promotes overview of the control flow, and where each node can be an interaction
diagram;

• timing diagrams, which show the change in state or condition of a lifeline (representing a classifier
instance or classifier role) over linear time. The most common usage is to show the change in state
of an object over time in response to accepted events or stimuli.

6.3.3 Model management

Model management concerns the structuring of a model, including any extensions used, in terms of the groupings of
model elements that comprise it. There are three grouping elements:

– Models, which are used to capture different views of a physical system;
– Packages, which are used within a model to group model elements;
– Subsystems, which represent behavioural units in the physical system being modelled.

6.3.4 Extension mechanisms

UML provides a rich set of modelling concepts and notations that have been carefully designed to meet the needs of
typical software modelling projects. However, users may sometimes require additional features beyond those defined in
the UML specification.

UML can be extended in two ways. First, a new dialect of UML can be defined by using Profiles to customize the
language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and domains (e.g., finance, telecommunications,
aerospace). Alternatively, a new language related to UML can be specified by reusing part of the UML
InfrastructureLibrary package and augmenting it with appropriate metaclasses and metarelationships. The former case
defines a new dialect of UML, while the latter case defines a new member of the UML family of languages.

A Profile is a kind of package that extends a reference metamodel. The primary extension construct is the stereotype,
which defines how an existing metaclass may be extended, and enables the use of platform or domain specific
terminology or notation in place of or in addition to the ones used for the base metaclass being extended. Just like a
class, a stereotype may have properties, which are referred to as tag definitions. When a stereotype is applied to a
model element, the values of the properties are referred to as tagged values.

Constraints are frequently defined in a profile, and typically define well-formedness rules that are more constraining
(but consistent with) those specified by the reference metamodel. The constraints that are part of the profile are
evaluated when the profile has been applied to a package, and need to be satisfied in order for the model to be well
formed.

6.4 Universes of discourse, ODP specifications and UML models

In using the techniques described in this document, it is necessary to understand the relationships between the subject of
a model, i.e., its Universe of Discourse (UOD), ODP specifications for that UOD, and how those ODP specifications
are expressed in UML.

The four main sets of notions involved in understanding these relationships are:
– the entities, and the relationships amongst them, in the UOD being modelled;
– the ODP specification(s) that model that UOD;
– the UML model(s) that express the ODP specifications;
– the UML notation (diagramming techniques and other mechanisms) by means of which the UML

model(s) are represented.

There are three important kinds of relationship between these notions.
– First, in the same way that an ODP object models an entity (a concrete or abstract thing of interest), an

ODP specification models a UOD. The modeller uses the concepts and structuring rules of RM-ODP
Part 2, together with those of the relevant ODP viewpoint language(s) (RM-ODP Part 3 and the

ISO/IEC 19793:2008 (E)

10 ITU-T Rec. X.906 (11/2007)

Enterprise Language), to produce a specification that models relevant facts and assertions about the
entities that exist in the UOD. The rules for this kind of relationship are stated in Parts 2 and 3 of the
RM-ODP, and in the Enterprise Language.

– Secondly, each model element (i.e., instance of an ODP viewpoint language concept) in the ODP
specifications is expressed by one or more UML elements (instance of a UML metaclass, specialized as
necessary through the relevant profile) in a UML model, which is thus an expression of the ODP
specification. The rules for this kind of relationship are stated in this document.

– Thirdly, the UML notation is used to represent, graphically or otherwise, the underlying UML model.
The rules for this kind of relationship are stated in the UML standard.

This document addresses the three simple relationships described above, and the terms that are highlighted above are
invariably used to refer to them.

While there are other derived relationships between elements in this chain (e.g., between UOD and UML model), they
are not otherwise referred to in this document. These relationships are illustrated in Figure 2.

Universe of Discourse
(UOD)

models
(see RM-ODP)

ODP
specification

expresses
(described here) UML

model

represents
(see UML spec)

The UML notation

Figure 2 – Relationships between UOD, ODP specifications and UML models

6.5 Modeling concepts and UML profiles for ODP viewpoint languages and correspondences

Clauses 7 to 11 are devoted, in turn, to each of the five ODP Viewpoints (Enterprise, Information, Computational,
Engineering and Technology).

The first subclause of each of these clauses provides an overview of the ODP modelling concepts for that viewpoint.
The ODP viewpoint modelling concepts are described using text as well as a simplified set of UML class diagrams,
which show the major modelling concepts for the ODP viewpoint as classes, and binary associations (including
cardinality constraints) that may exist between these viewpoint concepts. These diagrams together with the text can be
considered as specifying MOF compliant metamodels for the subset of the ODP viewpoint concepts defined in Parts 2
and 3 of the ODP Reference Model that are used in this document.

The second subclause of each of these clauses provides a specification of a UML profile for that ODP viewpoint. UML
based ODP viewpoint models can be expressed using the notation defined for the UML Profile for that viewpoint.

Any ODP viewpoint model expressed using the UML Profile for that ODP viewpoint satisfies the constraints specified
in each of the corresponding ODP viewpoint metamodels defined in this document.

NOTE – It is an implementation issue whether the constraints defined in each ODP viewpoint metamodel are enforced by tools
which construct ODP viewpoint models using that viewpoint's ODP Profile.

Clause 12 deals with correspondences between viewpoints, and is structured in the same way as clauses 7 to 11.

6.6 General principles for expressing and structuring ODP system specifications using UML

This subclause defines the structuring style for ODP system specifications, expressed using the UML profiles defined in
clauses 7 to 12. ODP system specifications that are in compliance with this document will use this structuring style.

The ODP system specification will consist of a single UML model stereotyped as «ODP_SystemSpec» that contains a
set of models, one for each viewpoint specification, each stereotyped as «<X>_Spec», where <X> is the viewpoint
concerned.

Each viewpoint specification (which consists of a coherent set of instances of the concepts described in that viewpoint
language), uses the appropriate UML profile for that language, as described in clauses 7 to 11.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 11

In this document, stereotypes are used to represent domain specific specializations of UML metaclasses in order to
express the semantics of the RM-ODP viewpoint language concerned.

In general, the way in which the UML is used to express a given viewpoint specification (which will consist of a
coherent set of instances of the concepts described in each viewpoint language) is such that:

– each of the viewpoint language concepts is expressed by one or more extended UML metaclasses
(expressed by the use of stereotypes); and that

– the relationships (meta-associations) between the viewpoint language concepts (e.g., "a community has
exactly one objective", in the enterprise language) be similarly expressed, preferably by meta-
associations between the corresponding UML metaclasses (e.g., "Class may be associated with Class")
or, failing that, by use of specific additional UML elements.

This is done in a way that is consistent with the semantics of the UML metamodel.

6.7 Correspondences between viewpoint specifications

6.7.1 ODP correspondences

The correspondences between viewpoint specifications are defined in Part 3 of the RM-ODP and in the Enterprise
Language. The text that follows in this clause is abstracted from these standards, which remain the authoritative
standards, and should be followed in case of conflicts between this document and those standards.

A set of specifications of an ODP system written in different viewpoint languages should not make mutually
contradictory statements i.e., they should be mutually consistent. Thus, a complete specification of a system includes
statements of correspondences between terms and language constructs relating one viewpoint specification to another
viewpoint specification, showing that the consistency requirement is met.

The key to consistency is the idea of correspondences between different viewpoint specifications, i.e., a statement that
some terms or structures in one specification correspond to other terms and specifications in a second specification. The
underlying rationale in identifying correspondences between different viewpoint specifications of the same ODP system
is that there are some entities that are modelled in one viewpoint specification, which are also modelled in another
viewpoint specification. The requirement for consistency between viewpoint specifications is driven by the fact that
what is specified in one viewpoint specification about an entity needs to be consistent with what is said about the same
entity in any other viewpoint specification. This includes the consistency of that entity's properties, structure and
behaviour.

The specifications produced in different ODP viewpoints are each complete statements in their respective languages,
with their own locally significant names, and so cannot be related without additional information in the form of
correspondence statements that make clear how constraints from different viewpoints apply to particular elements of a
single system to determine its overall behaviour. The correspondence statements are statements that relate the various
different viewpoint specifications, but do not form part of any one of them. The correspondences can be established in
two ways:

– by declaring correspondences between terms in two different viewpoint languages, stating how their
meanings relate. This implies that the two languages are defined in such a way that they have a common,
or at least a related, set of foundation concepts and structuring rules. Such correspondences between
languages necessarily imply and entail correspondences relating to all things of interest which the
languages are used to model (e.g., things modelled by objects or actions);

– by considering the extension of terms in each language, and asserting that particular entities being
modelled in the two specifications are in fact the same entity. This relates the specifications by
identifying which observations need to be interpretable in both specifications.

The correspondence statements to be provided in a system specification are specified in Part 3 and in the Enterprise
Language of the RM-ODP, and in clauses 7 to 11. They fall into two categories:

– Some correspondences are required in all ODP specifications; these are called required correspondences.
If the correspondence is not valid in all instances in which the concepts related occur, the specification
simply is not a valid ODP specification.

– In other cases, there is a requirement that the specifier provides a list of items in two specifications that
correspond, but the content of this list is the result of a design choice; these are called required
correspondence statements.

NOTE – In RM-ODP Part 3, the following correspondences are explicitly specified.
– Between computational and information ([Part 3 – 10.1])
– Between engineering and computational ([Part 3 – 10.2])

ISO/IEC 19793:2008 (E)

12 ITU-T Rec. X.906 (11/2007)

In the Enterprise Language standard, the following correspondences are specified.
– Between enterprise and information ([E/L – 11.2])
– Between enterprise and computational ([E/L – 11.3])
– Between enterprise and engineering ([E/L – 11.4])

6.7.2 Expressing ODP correspondences in UML

Correspondences between ODP modelling elements of different viewpoints are expressed using the UML profile
defined in clause 12. This profile mainly introduces the concept of correspondence link. A correspondence link is
established between two viewpoint specifications, and each of its ends refers to a set of terms involved in the
correspondence relationship. A correspondence statement is expressed by a constraint applied to this link, and is used
for checking consistency between viewpoint specifications.

7 Enterprise specification

7.1 Modelling concepts

An enterprise specification uses the RM-ODP enterprise language. The modelling concepts and the structuring rules of
the enterprise language are defined in [Part 3 – 5] and expanded upon in [E/L – 6 and 7]. They are summarized in this
clause. Except where otherwise stated, in case of conflict between the explanations herein and the text in Part 3 or the
Enterprise Language, the latter documents should be followed.

The set of diagrams at the end of this clause (i.e., at [7.1.6]) summarizes a metamodel for the enterprise language.

7.1.1 System concepts

An enterprise specification describes an ODP system and relevant aspects of its environment. An ODP system is a kind
of enterprise object. The enterprise objects that interact with a given enterprise object form part of the environment of
that enterprise object.

The ODP system has a scope, which defines the behaviour that the system is expected to exhibit. An enterprise
specification has a field of application which describes its usability properties.

These system concepts are illustrated in Figure 3.

7.1.2 Community concepts

The fundamental concept of the enterprise language is a community, which is a configuration of enterprise objects,
formed to meet an objective. Any objective may be refined into a set of (sub-)objectives. A community is specified in a
contract, which models the agreement amongst the entities to work together to meet the objective. Thus the contract:

– states the objective for which the community exists;
– governs the structure, the behaviour and the policies of the community;
– constrains the behaviour of the members of the community;
– states the rules for the assignment of enterprise objects to roles.

Each enterprise object models some entity (abstract or concrete thing of interest) in the Universe of Discourse. A
particular kind of enterprise object is a community object, which models, as a single object, an entity that is elsewhere
in the model refined as a community.

The configuration of a community is modelled in terms of the way enterprise objects interact in fulfilling roles, which
identify behaviours intended to meet the objective of the community concerned.

A behaviour is a collection of actions (things that happen), with constraints on when they occur. An enterprise object
may be involved in (play roles in) an action in one or more of the following three ways:

– if it participates in the action it is an actor with respect to that action;
– if it is referenced (i.e., mentioned) in the action, it is an artefact with respect to that action;
– if it is essential to the (performance of) that action, and requires allocation or may become unavailable, it

is a resource with respect to that action.

A role identifies a specific behaviour of an enterprise object in a community. Such behaviour is observable as a set of
interactions in which the object participates, and relationships between them. This implies that the behaviour of an
object has to be viewed in the context of the corresponding behaviour of the objects with which it interacts.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 13

Communities may be open or closed; that is they may or may not interact with their environment. Where a role that is in
(i.e., is part of the configuration of) a community identifies behaviour that takes place with the participation of one or
more objects that are not in that community, it is an interface role.

The modelling of behaviour may be structured into one or more processes, each of which is a graph of steps taking
place in a prescribed manner and which contributes to the fulfilment of an objective. In this approach, a step is an
abstraction of an action in which the enterprise objects that participate in that action may be unspecified. A step may be
refined as a process, itself consisting of a set of steps.

The community concepts are illustrated in Figure 4.

7.1.3 Policy concepts

A policy is a set of rules related to a particular purpose. It identifies the specification of behaviour, or constraints on
behaviour, that can be changed during the lifetime of the ODP system, or that can be changed to tailor a single
specification to apply to a range of different ODP systems.

The specification of a policy includes:
– the name of the policy;
– the rules, modelled as obligations, permissions, prohibitions and authorizations;
– the elements of the enterprise specification affected by the policy;
– any behaviour for changing the policy.

Where there is a requirement to model dynamic policy setting, a policy can be changed by a behaviour.

A policy may also constrain the structure (configuration) of a community, by governing the assignment of roles to
enterprise objects. Such a policy is called an assignment policy.

A violation is a behaviour contrary to a rule, i.e., contrary to some element in a policy.

A policy is defined in Part 2 of RM-ODP as a "set of rules related to a particular purpose", and this concept is refined in
the Enterprise Language to indicate that it is intended to be used where the desired behaviour of the system may be
changed to meet particular circumstances (the "particular purpose" referred to in the definition). However, this fails to
make any distinction between two uses of the concept. On the one hand it is appropriate to use the concept to refer to a
particular set of rules, all of which apply together at some moment in time, and which implement a particular business
or operational decision. On the other hand it may be used to refer to a more general set of rules, relating to some
business or operational concern, about which day to day decisions are made, that determine what policy values are
acceptable.

Since both these concepts are derived from the RM-ODP definition of policy, it is considered better to refer to them
using two new terms, rather than use policy for one and a new term for the other. Thus in this document:

– the term policy value is defined as a set of rules (related to a purpose) in force at some particular time;
and

– the term policy envelope is defined as a set of policy values, and their relation to the purpose.
NOTE – For a given policy envelope, only one policy value is in force at a point in time. This policy value may be selected from
a set of values defined in the policy envelope or it may be a statement in a policy language that is consistent with constraints in
the policy envelope.

In this document, specific UML extensions have been developed for these two concepts and to their relations with other
enterprise language concepts.

The policy concepts are illustrated in Figure 5, and the changes to the enterprise language model that arise from this
refinement of the policy concept are illustrated in Figure 6.

7.1.4 Accountability concepts

Accountability concepts concern the modelled behaviour of parties. A party is an enterprise object modelling a natural
person or any other entity considered to have some of the rights, powers and duties of a natural person, and which can
therefore be considered accountable for its actions. A party may delegate authority to another enterprise object (which
may or may not be a party), in which case it is referred to as the principal in that action of delegation, and the
enterprise object to whom authority is delegated is the agent of that party.

Only parties can take part in accountable actions. Such actions may take the following forms:
– prescription: an action that establishes a rule;
– commitment: an action resulting in an obligation by one or more of the participants in the act to comply

with a rule or perform a contract;

ISO/IEC 19793:2008 (E)

14 ITU-T Rec. X.906 (11/2007)

– declaration: an action that establishes a state of affairs in the environment of the object making the
declaration;

– evaluation: an action that assesses the value of something;
– delegation: an action that assigns authority, responsibility or a function to another object.

The accountability concepts are illustrated in Figure 7.

7.1.5 Structure of an enterprise specification

An enterprise specification is structured in terms of communities and community objects.

Each community is modelled in terms of the following concepts and the relationships between them:
– the objective and sub-objectives (of the community);
– the behaviour of the community, modelled in terms of actions and constraints on the order in which they

may occur. Behaviour can be structured to emphasize:
• roles fulfilled by enterprise objects that interact as members of the community;
• processes that model sequences of actions, carried out by one or more enterprise objects;

– enterprise objects that fulfil the roles in the community;
– policies constraining the behaviour.

Some enterprise objects may be composite objects and are sub-classified as community objects and refined as
communities.

At some level of detail, the ODP system will be present in the model as an enterprise object.

7.1.6 Summary of the enterprise language metamodel

The diagrams below (Figures 3 to 7) illustrate the concepts of the enterprise language and the relationships between
them.

NOTE 1 – These diagrams are not identical to those in Annex A of the Enterprise Language, because they have been developed
according to the conventions agreed for the UML diagrams of this document. The main difference is that these diagrams use
nouns for association end names rather than verbs, and association end names are omitted when the name of the class at the end
of the association is representative enough as role name for the association end. In addition, some of the n-ary associations in the
former document have been replaced by semantically equivalent associations and classes, as this is believed to be clearer. A
technical corrigendum to the Enterprise Language is being prepared.

Figure 3 – System concepts

NOTE 2 – The concept of environment was introduced in Part 2 in order to allow description of the properties of some particular
object by introducing a representation of all the other elements in a model with which it might interact, directly or indirectly. As
such, in particular, it represents some abstraction of the other objects in the model, but this abstraction relationship is not visible
in any model.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 15

Figure 4 – Community concepts

Figure 5 – Policy concepts

Figure 6 – Additional policy concepts

ISO/IEC 19793:2008 (E)

16 ITU-T Rec. X.906 (11/2007)

Figure 7 – Accountability concepts

7.2 UML profile
NOTE – In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an
example, included in the main body of this document or in its Annex A. Where no example has been identified, the concept
concerned is mentioned, but no UML expression is offered.

The following subclauses describe how the ODP enterprise concepts described in the previous clause are expressed in
UML in an enterprise specification. A brief explanation of the UML concepts used in the expression of each concept is
given, together with a justification of the expression used.

7.2.1 ODP system

An ODP system is an enterprise object. It is expressed in UML by an instanceSpecification of a class stereotyped as
«EV_ODPSystem», see [7.2.6]. That class expresses the enterprise object type. Note also that modelling purposes may
require that an ODP system be further detailed as a community, in which case the enterprise object that models it is
classified as a community object and refined as a community, see [7.2.4].

7.2.2 Scope

The scope of an ODP system is the set of behaviours that the system is expected to exhibit, e.g., its roles. It is not,
therefore, expressed by any single UML element, but by the set of elements that express its behaviour.

7.2.3 Field of application

The field of application is a property of the enterprise specification as a whole, and is expressed by a tag definition of
stereotype «Enterprise_Spec». This tag definition is named EV_FieldOfApplication, and is of type string. That string
contains the description of the field of application of the enterprise specification.

7.2.4 Community

A community is modelled in terms of its type, which is expressed by a component stereotyped as «EV_Community».
This is included in a package stereotyped as «EV_CommunityContract» that contains the specification of the
community, i.e., its objective, its behaviour, and any enterprise objects and object types that are specific to the
community concerned (see [7.2.9]). Where a specific entity (e.g., organizational unit) is being modelled, it is expressed
by an instanceSpecification of a component stereotyped as «EV_Community».

Any component expressing a community will have exactly one association, stereotyped as «EV_ObjectiveOf» to a
class stereotyped as «EV_Objective», that expresses the objective of the community, and a set of realizations, each
stereotyped as «EV_CommunityBehaviour», to the UML classifier elements expressing its roles and the associated
behaviour (interactions, actions, steps and processes).

See also [7.2.8] and [7.2.9].

7.2.5 Enterprise object

An enterprise object is generally specified in terms of its type, which is expressed by a class stereotyped as
«EV_Object».

NOTE – The UML concept of class is different to the ODP concept of class. A UML class is a "description" of a set of objects,
while an ODP class is the set of objects itself. Therefore, the UML concept of class is closer to the ODP concept of type, and
there is no UML concept corresponding to the ODP concept of class. Therefore, no UML expression for the ODP concept of
class is provided.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 17

Any class stereotyped as «EV_Object» may have any number of associations, each stereotyped as «EV_FulfilsRole»,
with any number of classes stereotyped as «EV_Role» in one or more community, modelling the fact that the enterprise
objects of that type fulfil the roles.

Where an enterprise object is required to represent a specific entity in the Universe of Discourse, it is expressed by an
instanceSpecification of a class that is stereotyped as «EV_Object».

7.2.6 Object types and templates as enterprise objects

There are cases where there is the need to model the type or template of an enterprise object at the instance level. An
example is the case of a generic factory, which is invoked by passing it a representation of a template (which has type
template), and responds by instantiating the template and returning a reference to the created object. To indicate that an
object is derived from a given template, we need to represent both the template object and the instantiated object in the
model. Likewise for types, to indicate that an object conforms to a given type, we need to represent both the object and
its object type in the model.

Both type objects and template objects are enterprise objects, and therefore are expressed by classes that express their
type or template. To distinguish them from other enterprise objects, such classes are stereotyped «EV_TypeObject» or
«EV_TemplateObject», respectively. Both stereotypes inherit from «EV_Object».

The relationship between an enterprise object and the object that represents its template, or the object(s) that represent
its types can be expressed as an attribute of the class that expresses the enterprise object.

EXAMPLE – In some specifications, such as in the ODP Trading Function specification, there is the need to specify the type of a
service, so the trader can locate objects implementing such a service. The diagram shown in Figure 8 represents the specification
of an enterprise object, PrintService, and of its type, PrintServiceType, expressed so that the object is able to know and access
its type (i.e., the type of the object is accessible as part of its meta-data, by means of an attribute of the class that expresses its
specification).

Figure 8 – An explicit representation of the type of an enterprise object
so that the object can access its type

7.2.7 Community object

A community object is an enterprise object that is refined in the model as a community. It is expressed by an
instanceSpecification of a class stereotyped as «EV_CommunityObject». This class has a dependency, stereotyped as
«EV_RefinesAsCommunity», to the component stereotyped as «EV_Community» which expresses the type of the
community that refines it.

7.2.8 Objective

An objective (of a community) is expressed by a class, stereotyped as «EV_Objective». This class has an association,
stereotyped as «EV_ObjectiveOf» with the component, stereotyped as «EV_Community» that describes the community
being specified.

NOTE – When an objective is refined into sub-objectives, the sub-objective is also expressed by a class stereotyped
«EV_Objective» and the relationship between objective and sub-objectives will be a composition.

7.2.9 Contract

A contract for a community specifies the objective of that community, and how that objective can be met (i.e., its
behaviour and policies). It is the specification of that community as it appears in the enterprise specification. The
expression of contract is by a package stereotyped as «EV_CommunityContract».

In the name space of the package will be the UML elements expressing the community itself, its objective, its roles and
the associated behaviour (actions, interactions, steps and processes), and the policy and accountability concepts specific
to the community. Relationships between all these UML elements may also be included in this package's namespace.
The package may also contain some or all of the elements expressing the enterprise objects that fulfil its roles. (Those
elements expressing enterprise objects that fulfil roles in other communities may be contained in any one of the
packages expressing those communities.)

ISO/IEC 19793:2008 (E)

18 ITU-T Rec. X.906 (11/2007)

7.2.10 Behaviour

7.2.10.1 General
NOTE – In this clause phrases such as "interactions between roles" and "steps performed by roles" should be read as
"interactions between enterprise objects fulfilling roles" and "steps performed by enterprise objects fulfilling roles" respectively.

A behaviour is a set of actions with constraints on when they may occur. It is not expressed by any single UML
element. It is expressed by a set of elements expressing the behaviour as a set of processes of a community in which the
steps are behaviours of roles in the community. Where required, the behaviour of a role can be further detailed in terms
of a set of elements expressing the behaviour in terms of internal actions of the role and interactions between the role
and other roles in the community.

Annex A illustrates the application of the concepts described in the following subclauses (7.2.10.2 and 7.2.10.3).

7.2.10.2 Behaviour as processes and steps

Where the behaviour is modelled in terms of processes of a community, a process is expressed by an activity stereotyped
as «EV_Process» in the namespace of the component, stereotyped as «EV_Community», that expresses the community
that uses this process to achieve its objective. This activity has a realization link, stereotyped as
«EV_CommunityBehaviour» from that component. Within this activity:

– the steps of the process are expressed by callBehaviorActions, stereotyped as «EV_Step»;
– the refinement of a step, as a process, is expressed by associating the relevant callBehaviorAction,

stereotyped as «EV_Step», that expresses the step, with an activity, stereotyped as «EV_Process», that
expresses the refinement;

– activityPartitions (stereotyped as «EV_Role») represent classes (also stereotyped as «EV_Role») that
express the roles of the enterprise objects in the name space of the package (stereotyped as
«EV_CommunityContract») that expresses the community in which the role is specified;

– where a step is not refined as a process, the callBehaviorAction, stereotyped as «EV_Step», that expresses
the step, is associated with an opaqueBehavior specified in the context of the corresponding class
stereotyped as «EV_Role» that expresses the role of the enterprise object that performs the step;

NOTE – An opaqueBehavior can express, in an appropriate language, any level of detail about the step that is
required to meet the modelling objectives.

– the artefacts that are referenced in the steps are expressed by objectNodes, stereotyped as
«EV_Artefact».

In general, the complete behaviour for a role is modelled by the actions for that role in a number of processes.

7.2.10.3 Behaviour as interactions between roles

The detailed behaviour of individual roles may be expressed by the following combination of UML elements:
– One or more classes each having one or more associations with the class stereotyped as «EV_Role» that

expresses the role being specified. Each of these classes is stereotyped as «EV_Interaction».
– Each class stereotyped as «EV_Interaction» will have associations with classes that are stereotyped as

«EV_Role», where there is an interaction between these roles. An «EV_Interaction» is composed of
signals, each also stereotyped as «EV_Interaction». Enterprise objects that are referenced in the
interactions are represented by the values of the properties of the signals.

– One or more stateMachines for which the context is the class stereotyped as «EV_Role», that define the
constraints on the receiving and sending of information by an enterprise object fulfilling the role and any
associated internal actions of the enterprise object. Each of these stateMachines shows the sending and
receiving of the signals, each stereotyped as «EV_Artefact», associated with the interactions of the role,
and thus shows the logical ordering of these interactions, and defines the internal actions of the role in
terms of the behaviours associated with the states.

The internal actions identified in (the states of) the stateMachines for the «EV_Role» correspond to the actions in an
activityPartition expressing the role in the corresponding activityDiagrams, and the properties of the signals correspond
to the objectNodes in the corresponding activityDiagrams.

7.2.10.4 Interface role

An interface role is expressed by a class stereotyped as an «EV_Role». The part of the behaviour identified by the
interface role that takes place with the participation of one or more external objects (objects that do not form part of the
decomposition of the community object that is refined by that community) is modelled by an interaction with a role that
identifies the required behaviour of the external objects. This behaviour is expressed by a class stereotyped as

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 19

«EV_Interaction» that has associations with each of the classes (stereotyped as «EV_Role») that express the interface
role, on the one hand, and the role that identifies the behaviour of the external objects, on the other.

7.2.11 Actor (with respect to an action)

The concept actor is a relationship between an enterprise object and an action. There is no single UML element that
expresses an instance of the RM-ODP enterprise language concept, actor. Actors in a model may be identified from
either or both of:

– an examination of the interaction model where the existence of actors will be indicated by the
associations, stereotyped as «EV_FulfilsRole», between the classes stereotyped as «EV_Role» and
«EV_Object», respectively, taken in combination with the stateMachine that expresses the behaviour of
the relevant role;

– in an examination of the process model, the presence of an «EV_Step» in an «EV_Role» activityPartition
indicates that the enterprise object fulfilling the role is an actor for the step concerned.

7.2.12 Artefact (with respect to an action)

The concept artefact is also a relationship between an enterprise object and an action. In an interaction model, an
artefact referenced in an action is expressed by a signal stereotyped as «EV_Artefact», which has two associations:

– one association, stereotyped as «EV_ArtefactRole», will be with the «EV_Object» class expressing the
enterprise object that is an artefact with respect to the action;

– the other association, stereotyped as «EV_ArtefactReference», will be with the «EV_Interaction» class
that expresses the (inter-)action for which the enterprise object is an artefact.

In a process model, it is possible to express each instance of artefact with a single UML element, namely an objectFlow
stereotyped as «EV_Artefact».

7.2.13 Resource (with respect to an action)

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour requires the
existence of an enterprise object as a resource may be stated in a comment on that behaviour.

7.2.14 Policy
NOTE – In this clause a distinction is made between policy value (the particular set of rules related to some purpose that are
applicable at some moment in time as a result of a business decision to apply them), and policy envelope (a general set of rules
related to a purpose, which constrain any particular set of rules that may be applicable at any particular time). See [7.1.3].

Policies are expressed in UML using a combination of elements, which together are used to express the following:
– the policy itself;
– the objects and the behaviour constrained by the policy; and
– the behaviour by which the policy value may be changed and objects that are allowed to exhibit that

behaviour.

The policy envelope is expressed by a class stereotyped as «EV_PolicyEnvelope», with a note stereotyped as
«description» which explains the policy and its rules in natural language.

Each policy value is expressed by a class stereotyped as «EV_PolicyValue» with two associations (one an aggregation,
the other a regular association in which the policy value has the role "current value") with the «EV_PolicyEnvelope»
class that expresses the policy envelope that provides the context for the policy value.

Where the enterprise specification includes elements modelling the behaviour concerned with setting the policy value,
this is modelled by roles identifying behaviour that may be detailed as processes or interactions, with associations,
stereotyped as «EV_ControllingBehaviour», between the classes expressing the policy envelope and the classes
expressing the behaviour.

The relationships between a policy envelope and the behaviour it constrains are expressed by one or more
dependencies, stereotyped as «EV_AffectedBehaviour», from the classes expressing the behaviour to the class
expressing the policy envelope.

Unless the set of policy values is predetermined, a set of constraints stereotyped as «EV_PolicyEnvelopeRule»
expressing rules governing acceptable policy values is attached to the «EV_PolicyEnvelope» class.

Attached to each «EV_PolicyValue» class are a set of constraints stereotyped as «EV_PolicyValueRule», which
together express behaviour rules related to the policy value. These rules, which may comprise obligations, permissions,
prohibitions, authorizations, or other expressions, may be expressed in OCL or other suitable notation.

ISO/IEC 19793:2008 (E)

20 ITU-T Rec. X.906 (11/2007)

The pattern for expression of policy and its impact on other parts of an enterprise specification is shown in Figure 9.

Figure 9 – Pattern for UML expression of a policy

7.2.15 Obligation

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour places or
fulfils an obligation may be stated in a comment on that behaviour.

7.2.16 Authorization

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour requires or
creates an authorization may be stated in a comment on that behaviour.

7.2.17 Permission

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour requires or
creates a permission may be stated in a comment on that behaviour.

7.2.18 Prohibition

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour requires or
creates a prohibition may be stated in a comment on that behaviour.

7.2.19 Assignment policy

An assignment policy is expressed in the same way as any other policy; see [7.2.14].

7.2.20 Violation

No specific UML metaclass is extended to express this concept. It is difficult to envisage the circumstances in which a
behaviour might be specified which is a violation.

7.2.21 Party

A party is an enterprise object modelling an entity with some of the rights, powers and duties of a natural person. It is
expressed in UML by an instanceSpecification of a class stereotyped as «EV_Party», which must also be stereotyped as
«EV_Object».

7.2.22 Accountable action

An action may be accountable when it is part of the behaviour identified by a role fulfilled by a party. This is expressed
in UML with an association, stereotyped as «EV_Accountable», between the class expressing the role and the class or
activity expressing the interaction or process respectively in which the accountable party participates.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 21

NOTE – Where this construct is used for a process, this only indicates that the role is accountable for those steps that it performs,
and not for those performed by some other role. This is a limitation of the semantics of the UML approach chosen, as it is not
possible to associate a classifier with the element expressing steps.

7.2.23 Delegation

A Delegation is expressed in UML by an association, stereotyped as «EV_Delegation», between two classes
stereotyped as «EV_Role» with association ends showing the party which is the principal and the enterprise object
which is the agent to whom the delegation is made.

7.2.24 Principal

No specific UML metaclass is extended to express this concept. See [7.2.23].

7.2.25 Agent

No specific UML metaclass is extended to express this concept. See [7.2.23].

7.2.26 Prescription

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour is a
prescription may be stated in a comment on that behaviour.

7.2.27 Commitment

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour is a
commitment may be stated in a comment on that behaviour.

7.2.28 Declaration

No specific UML metaclass is extended to express this concept. If required, the fact that some behaviour is a
declaration may be stated in a comment on that behaviour.

7.2.29 Summary of UML extensions for the enterprise language

The enterprise language profile (EV_Profile) specifies how the enterprise viewpoint modelling concepts relate to and are
expressed in standard UML using stereotypes, tag definitions and constraints.

The following diagrams (Figures 10 to 14) show a graphical representation of the UML Profile for the enterprise
language, using the notation provided by UML.

ISO/IEC 19793:2008 (E)

22 ITU-T Rec. X.906 (11/2007)

Figure 10 – Model management

Figure 11 – Classifiers

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 23

Figure 12 – Activities

Figure 13 – Constraints

ISO/IEC 19793:2008 (E)

24 ITU-T Rec. X.906 (11/2007)

Figure 14 – Relationships

7.3 Enterprise specification structure (in UML terms)

An enterprise specification is contained in a model, stereotyped as «Enterprise_Spec». At the top level within this model
there are one or more packages, stereotyped as «EV_CommunityContract», that include, where necessary, classes,
each stereotyped as «EV_CommunityObject», expressing the relevant communities as community objects.

Within each «EV_CommunityContract» package, there is a single component, stereotyped as «EV_Community» and a
single class, stereotyped as «EV_Objective», as well as other elements, packaged as convenient, expressing behaviour
(roles, processes and interactions), and enterprise objects that are local to the community.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 25

7.4 Viewpoint correspondences for the enterprise language

7.4.1 Contents of this clause

This clause describes the correspondence concepts for the enterprise language, but not how they are expressed in UML.
The latter is covered in clause 12.

7.4.2 Enterprise and information viewpoint specification correspondences

In general, not all the elements of the enterprise specification of a system need correspond to elements of its information
specification. However, the information viewpoint shall conform to the policies of the enterprise viewpoint and,
likewise, all enterprise policies shall be consistent with the static, dynamic, and invariant schemata of the information
specification.

Where there is a correspondence between enterprise and information elements (e.g., between an enterprise object and
the information object that stores the relevant information about it), the specifier shall provide:

– for each enterprise object in the enterprise specification, a list of those information objects (if any) that
model information or information processing concerning the entity modelled by that enterprise object;

– for each role in each community in the enterprise specification, a list of those information object types (if
any) that specify information or information processing of an enterprise object fulfilling that role;

– for each policy in the enterprise specification, a list of the invariant, static and dynamic schemata of
information objects (if any) that correspond to the enterprise objects to which that policy applies; an
information object is included if it corresponds to the enterprise community that is subject to that policy;

– for each action in the enterprise specification, the information objects (if any) subject to a dynamic
schema constraining that action;

– for each relationship between enterprise objects, the invariant schema (if any) which constrains objects
in that relationship;

– for each relationship between enterprise roles, the invariant schema (if any) which constrains objects
fulfilling roles in that relationship.

7.4.3 Enterprise and computational viewpoint specification correspondences

Not all the elements of the enterprise specification of a system need correspond to elements of its computational
specification. In particular, not all states, behaviours and policies of an enterprise specification need correspond to
states and behaviours of a computational specification. There may exist transitional computational states within pieces
of computational behaviour which are abstracted as atomic transitions in the enterprise specification.

Where there is a correspondence between enterprise and computational elements, the specifier shall provide:
– for each enterprise object in the enterprise specification, that configuration of computational objects (if

any) that realizes the required behaviour;
– for each interaction in the enterprise specification, a list of those computational interfaces and operations

or streams (if any) that correspond to the enterprise interaction, together with a statement of whether this
correspondence applies to all occurrences of the interaction, or is qualified by a predicate;

– for each role affected by a policy in the enterprise specification, a list of the computational object types
(if any) that exhibit choices in the computational behaviour that are modified by the policy;

– for each interaction between roles in the enterprise specification, a list of computational binding object
types (if any) that are constrained by the enterprise interaction;

– for each enterprise interaction type, a list of computational behaviour types (if any) of computational
behaviours capable of carrying out an interaction of that enterprise interaction type.

7.4.4 Enterprise and engineering viewpoint specification correspondences

Not all the elements of the enterprise specification of a system need correspond to elements of its engineering
specification. Where there is a correspondence between enterprise and engineering elements, the specifier shall provide:

– for each enterprise object in the enterprise specification, the set of those engineering nodes (if any) with
their nuclei, capsules and clusters, all of which support some or all of its behaviour;

– for each interaction between roles in the enterprise specification, a list of engineering channel types and
stubs, binders, protocol objects and interceptors (if any) that are constrained by the enterprise
interaction.

NOTE 1 – The engineering nodes may result from rules about assigning support for the behaviour of enterprise objects to nodes.
These rules may capture policies from the enterprise specification.

ISO/IEC 19793:2008 (E)

26 ITU-T Rec. X.906 (11/2007)

NOTE 2 – The engineering channel types and stubs, binders or protocol objects may be constrained by enterprise policies.

7.4.5 Enterprise and technology viewpoint specification correspondences

In accordance with [Part 2 – 15.5] and [Part 3 – 5.3], an implementer provides, as part of the claim of conformance, the
chain of interpretations that permits observation at conformance points to be interpreted in terms of enterprise concepts.
While there may be specific correspondences between enterprise policies and technology viewpoint specifications that
require the use of particular technologies, there are neither required correspondences nor required correspondence
statements.

NOTE – Although there are no required viewpoint correspondences between enterprise and technology specifications, there may
be cases where part of an enterprise specification has a direct relationship with a technology specification or a choice of
technology. Such examples include enterprise policies covering performance (e.g., response time), reliability, and security.

8 Information specification

8.1 Modelling concepts

An information specification uses the RM-ODP information language. The modelling concepts and the structuring rules
of the information language are defined in [Part 3 – 6]. They are summarized in this clause. Except where otherwise
stated, in case of conflict between the explanations herein and the text in Part 3, the latter document should be followed.

The set of diagrams at the end of this clause (i.e., at [8.1.10]) summarizes a metamodel for the information language.

The information viewpoint is concerned with information modelling. It focuses on the semantics of information and
information processing in the ODP system. The individual components of a distributed system must share a common
understanding of the information they communicate when they interact, or the system will not behave as expected.
These items of information are handled, in one way or another, by one or more objects in the system. To ensure that the
interpretation of these items is consistent, the information language defines concepts for the specification of the
meaning of information stored within, and manipulated by, an ODP system, independently of the way the information
processing functions themselves are to be implemented.

In the ODP Reference Model, the information language uses a basic set of concepts and structuring rules, including
those from Part 2 of RM-ODP, and three concepts specific to the information viewpoint: invariant schema, static
schema and dynamic schema.

8.1.1 Information object

Information held by the ODP system about entities in the real world, including the ODP system itself, is modelled in an
information specification in terms of information objects, and their relationships and behaviour.

Basic information elements are modelled by atomic information objects. More complex information is modelled as
composite information objects modelling relationships over a set of constituent information objects. Information
objects, as any other ODP object, exhibit behaviour, state, identity and encapsulation.

NOTE – Information objects may have operations, although information operations are names for significant stimuli for state
changes, and are not necessarily the same as computational operations.

8.1.2 Information object type

The type of an information object is a predicate characterizing a collection of information objects.

8.1.3 Information object class

A class of information objects is the set of all information objects satisfying a given type.

8.1.4 Information object template

An information object template is the specification of the common features of a collection of information objects in
sufficient detail that an information object can be instantiated using it. Information object templates may reference
static, invariant and dynamic schemata.

8.1.5 Information action and action types

An action is a model of something that happens in the real world. Types of actions are modelled by action types. An
action in the information viewpoint is associated with at least one information object.

Actions can be either internal actions or interactions. An internal action always takes place without the participation of
the environment of the object. An interaction takes place with the participation of the environment of the object. Objects
can only interact at interfaces. ODP interactions are instances of ODP communications.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 27

8.1.6 Invariant schema

An invariant schema is a set of predicates on one or more information objects which must always be true. The
predicates constrain the possible states and state changes of the objects to which they apply.

An invariant schema can also describe the specification of the types of one or more information objects, that will
always be satisfied by whatever behaviour the objects might exhibit.

8.1.7 Static schema

A static schema is a specification of the state of one or more information objects, at some point in time, subject to the
constraints of any invariant schemata.

NOTE – Thus, a static schema is the specification of the types of one or more information objects at some particular point in
time. These types are subtypes of the types specified in the invariant schema.

8.1.8 Dynamic schema

A dynamic schema is a specification of the allowable state changes of one or more information objects, subject to the
constraints of any invariant schemata. A dynamic schema specifies how the information can evolve as the system
operates. In addition to describing state changes, dynamic schemata can also create and delete information objects, and
allow reclassifications of instances from one type to another. Furthermore, in the information language, a state change
involving a set of objects can be regarded as an interaction between those objects. Not all the objects involved in the
interaction need to change state; some of the objects may be involved in a read-only manner.

8.1.9 Structure of an information specification

An information specification defines the semantics of information and the semantics of information processing in an
ODP system in terms of a configuration of information objects, the behaviour of these objects, and environment
contracts for the objects in the system. More precisely, an information specification is structured in terms of:

– a configuration of information objects, described by a set of static schemata;
– the behaviour of those information objects, described by a set of dynamic schemata; and
– the constraints that apply to either of the above (invariant schemata).

The different schemata may apply to the whole system, or they may apply to particular domains within it. Particularly in
large and rapidly evolving systems, the reconciliation and federation of separate information domains will be one of the
major tasks to be undertaken in order to manage information.

There are also some considerations that need to be taken into account when specifying the information viewpoint of an
ODP system:

– Information objects are either atomic or are modelled as a composition of component information
objects. When an information object is a composite object, the schemata are composed as well.

– Allowable state changes specified by a dynamic schema can include the creation of new information
objects and the deletion of information objects involved in the dynamic schema. Allowable state changes
can be subject to ordering and temporal constraints.

– The configuration of information objects is independent from distribution, i.e., there is no sense or focus
on distribution in this viewpoint.

8.1.10 Summary of the information language metamodel

The diagram below (Figure 15) illustrates the concepts of the information language and the relationships between them.
The descriptions of the concepts have been given above. The descriptions of the relationships between the concepts are
included in the description of the concepts.

ISO/IEC 19793:2008 (E)

28 ITU-T Rec. X.906 (11/2007)

Figure 15 – Information language concepts

8.2 UML profile

The following subclauses describe how the ODP information concepts described in the previous clause are expressed in
UML in an information specification. A brief explanation of the UML concepts used in the expression of each concept
is given, together with a justification of the expression used.

NOTE – In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an
example, included in the main body of this document or in its Annex A. Where no example has been identified, the concept
concerned is mentioned, but no UML expression is offered.

8.2.1 Information object

An information object is generally specified in terms of its type, which is expressed by a class stereotyped as
«IV_Object».

Where an information object is required to represent a specific entity in the Universe of Discourse, it is expressed by an
instanceSpecification of a class that is stereotyped as «IV_Object».

8.2.2 Object types and templates as information objects

There are cases where there is the need to model the type or template of an information object at the instance level. An
example is the case of a generic factory, which is invoked by passing it a representation of a template (which has type
template), and responds by instantiating the template and returning a reference to the created object. To indicate that an
object is derived from a given template, we need to represent both the template object and the instantiated object in the
model. Likewise for types, to indicate that an object conforms to a given type, we need to represent both the object and
its object type in the model.

Both type objects and template objects are information objects, and therefore are expressed by classes that express their
type or template. To distinguish them from other information objects, such classes are stereotyped «IV_TypeObject» or
«IV_TemplateObject», respectively. Both stereotypes inherit from «IV_Object».

The relationship between an information object and the object that represents its template, or the object(s) that represent
its type(s) can be expressed as an attribute of the class that specifies the information object.

EXAMPLE – The diagram shown in Figure 16 represents the specification of an information object, Loan, and of its type,
MyLoanType, expressed so that the object is able to know and access its type (i.e., the type of the object is accessible as part of
its meta-data, by means of an attribute of the class that expresses its specification).

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 29

Figure 16 – An explicit representation of the type of an information
object so that the object can access its type

8.2.3 Information action and action types

An interaction is expressed by a signal sent or received by the stateMachines of the information objects concerned. An
action type is expressed by a signal stereotyped as «IV_Action».

In the information viewpoint, actions are mainly used for describing events that cause state changes, or for
implementing communications between objects, i.e., flows of information.

In an information specification, an internal action is expressed by an internal transition of a state of the stateMachine for
the information object concerned.

8.2.4 Relationships between information objects and between information object types

A relationship between information object types, when modelled as part of the state of the objects of those types, can be
expressed by an association between the classes expressing those types. Instances of these associations (i.e., links) will
express the relationships between the information objects.

When associations between information objects are modelled in ODP as invariant schemata, the UML expressions
defined in [8.2.5] apply.

8.2.5 Invariant schema

Invariant schemata may impose different kinds of constraints in an information specification.

First, invariant schemata can provide the specification of the types of one or more information objects, that will always
be satisfied by whatever behaviour the objects might exhibit. This kind of invariant schema may be expressed in a
UML Package stereotyped as «IV_InvariantSchema», which specifies a set of object types (in terms of the set of
classes that express such object types), their possible relationships (expressed by associations), and constraints on those
object types, on their relationships, and possibly on their behaviours (expressed by the specification of the
corresponding stateMachines). The association multiplicities and the constraints on the different modelling elements will
constrain the possible states and state changes of the elements to which they apply.

NOTE 1 – OCL is the recommended notation for expressing the constraints on the modelling elements that form part of the UML
expression of an invariant schema. However, other notations can be used when OCL does not provide enough expressive power,
or is not appropriate due to the kind of expected user of the specification. For example, a temporal logic formula or an English
text can be used for expressing a constraint that imposes some kind of fairness requirement on the behaviour of the system (e.g.,
"Objects of class X will produce requests to objects of class Y, no later than a given time T after condition A on objects of classes
X, Y and Z is satisfied").

There are cases, however, in which an invariant schema in an information viewpoint specification is defined over a set
of concrete information objects. Such a kind of invariant schema may be expressed by a package of objects stereotyped
as «IV_InvariantSchema». The constraints on these objects, together with the specifications of the classifiers of these
objects, constrain the possible states and state changes of the objects.

NOTE 2 – The classifiers of the objects will constrain the possible states and state changes of the objects to which they apply
(through the associations, stateMachines, and constraints of these classifiers).

Finally, individual constraints stereotyped as «IV_InvariantSchema» can also be used to express invariant schemata.

8.2.6 Static schema

A static schema is expressed by a package stereotyped as «IV_StaticSchema» of objects, their attribute links, their link
ends which have an associated target link end which is navigable, and their classifiers.

NOTE – The possible associations of the information objects described in a static schema with other objects not contemplated in
the schema need not be included in the package, since they are not part of the specification provided by the schema. Therefore,
whenever the absence of an association instance (i.e., a link) needs to be expressed, it should be explicitly stated (by, e.g., using
constraints attached to the appropriate objects).

ISO/IEC 19793:2008 (E)

30 ITU-T Rec. X.906 (11/2007)

8.2.7 Dynamic schema

A dynamic schema is expressed in terms of stateMachines for the information objects in the information specification,
stereotyped as «IV_DynamicSchema». The actions that relate to the state changes are expressed by signals that are sent
and received on transitions of the stateMachines.

8.2.8 Summary of the UML extensions for the information language

The information language profile (IV_Profile) specifies how the information viewpoint modelling concepts relate to, and
are expressed in, standard UML using stereotypes, tag definitions and constraints.

Figure 17 shows the graphical representation of the UML Profile for the information language, using the notation
provided by UML.

Figure 17 – Graphical representation of the information language profile

8.3 Information specification structure (in UML terms)

All the elements expressing the information specification are defined within a model, stereotyped «Information_Spec».
Such a model contains the packages that express the invariant, static and dynamic schemata of the system.

These packages may be defined and organized as follows:
– In the first place, a set of «IV_InvariantSchema» packages with class diagrams will define the

information object and object types of the system, their relationships, and the constraints on these
elements.

– Second, a set of «IV_StaticSchema» packages with object diagrams will express the state of the system
or parts of it at specific locations in time, that may be of interest to any of the system stakeholders. The
classifiers of the instanceSpecificaions of these diagrams should have been previously defined in the
«IV_InvariantSchema» packages that define the structure and composition of the system.

– Third, dynamic schemata expressed by individual stateMachines will be associated with the
corresponding elements in the previous packages. Thus, individual stateMachines will be associated
with the corresponding classifiers or instanceSpecifications. Likewise, constraints describing invariants
and pre- and post-conditions of signals will be associated to the states of the stateMachines and with the
corresponding classifier definitions.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 31

– Finally, a set of «IV_InvariantSchema» constraints will impose further constraints on the elements of all
the previous packages. Such constraints can be either directly attached to the corresponding elements,
establishing an implicit context by attachment, or they can form part of a separate piece of specification
in which the context of each constraint is explicitly established by naming.

8.4 Viewpoint correspondences for the information language

8.4.1 Contents of this clause

This clause describes the correspondence concepts for the information language, but not how they are expressed in
UML. The latter is covered in clause 12.

8.4.2 Enterprise and information viewpoint specification correspondences

In general, not all the elements of the enterprise specification of a system need to correspond to elements of its
information specification. However, the information viewpoint shall conform to the policies of the enterprise viewpoint
and, likewise, all enterprise policies shall be consistent with the static, dynamic, invariant schemata of the information
specification.

Where there is a correspondence between information and enterprise elements (e.g., between an enterprise object and
the information object that stores the relevant information about it), the specifier shall provide:

– for each enterprise object and for each artefact role in an enterprise action, the corresponding
configuration of information objects (if any) that model them in the information viewpoint;

– for each enterprise role, action and process in the enterprise viewpoint, the corresponding dynamic and
invariant schema definitions in the information viewpoint that specify that behaviour;

– for each enterprise policy in the enterprise viewpoint, the constraints in the corresponding schemata that
implement it – since enterprise policies may become constraints in any of the schemata.

NOTE – In the case of a notional incremental development process of the ODP viewpoint specifications, whereby the
information specifications are developed taking into account the previously defined enterprise specifications, information objects
may be discovered through examination of an enterprise specification. For example, each artefact referenced in any actions in
which an ODP system participates will correspond in some way with one or more information objects.

8.4.3 Information and computational viewpoint specification correspondences

Not all the elements of the information specification of a system need to correspond to elements of its computational
specification. In particular, not all states of an information specification need to correspond to states of a computational
specification. There may exist transitional computational states within pieces of computational behaviour that are
abstracted as atomic transitions in the information specification.

Where an information object corresponds to a set of computational objects, the static and invariant schemata of the
information object correspond to possible states of the computational objects. Every change in state of an information
object corresponds either to some set of interactions between computational objects, or to an internal action of a
computational object. The invariant and dynamic schemata of the information object correspond to the behaviour and
environment contract of the computational objects.

8.4.4 Information and technology viewpoint specification correspondences

While there may be specific correspondences between information schemata and technology viewpoint specifications
that require the use of particular technologies, there are neither required correspondences nor required correspondence
statements.

NOTE – There may be cases where part of an information viewpoint specification has a direct relationship with a technology
viewpoint specification or a choice of technology. Such examples include invariant schemata covering performance
(e.g., response time) or security.

9 Computational specification

9.1 Modelling concepts

A computational specification uses the RM-ODP computational language. The modelling concepts and the structuring
rules of the computational language are defined in [Part 3 – 7]. Some of the concepts in Part 2 of RM-ODP are also
used when defining the computational language concepts. The concepts and structuring rules are summarized in this
clause. Except where otherwise stated, in case of conflict between the explanations herein and the text in Parts 2 or 3,
the latter document should be followed.

ISO/IEC 19793:2008 (E)

32 ITU-T Rec. X.906 (11/2007)

The set of diagrams at the end of this clause (i.e., at [9.1.22]) summarizes a metamodel for the computational language.
NOTE – Another partial metamodel for the computational language can be found in ITU-T Rec. X.960 | ISO/IEC 14769: Type
Repository Function, which is concerned with the storage and management of computational type systems. That metamodel is
therefore a partial view concentrating on the computational type system, rather than on system design in general. Readers should
be aware that:

a) cardinality constraints on types are not, in general, the same as the cardinality constraints on instances – an
interface must be associated with an object, but an interface type can be defined independently of an object type;

b) the different focus there leads to different choices of primary relations, so that some relations that are explicit in
that metamodel are derived in this representation, and vice versa.

If there is any ambiguity, statements in this document take precedence.

9.1.1 Computational object

An object is a model of an entity. An object is characterized by its behaviour and, dually, by its state. An object is
distinct from any other object. An object is encapsulated, i.e., any change in its state can only occur as a result of an
internal action or as a result of an interaction with its environment.

A computational object is an object as seen in the computational viewpoint. It models functional decomposition and
interacts with other computational objects. Since it is an object, it has state and behaviour, and interactions are achieved
through interfaces.

9.1.2 Interface [Part 2 – 8.4]

An interface is an abstraction of the behaviour of an object that consists of a subset of the interactions of that object
together with a set of constraints on when they can occur.

9.1.3 Interaction [Part 2 – 8.3]

An interaction is one of two defined kinds of actions. Action itself is defined as something that happens, and every
action of interest for modelling purposes is associated with at least one object. The set of actions associated with an
object is partitioned into internal actions and interactions. An internal action always takes place without the
participation of the environment of the object. An interaction takes place with the participation of the environment of
the object.

9.1.4 Environment contract [Part 2 – 11.2.3]

Environment contract is a contract between an object and its environment, including Quality of Service (QoS)
constraints, usage and management constraints.

QoS constraints include:
– temporal constraints (e.g., deadlines);
– volume constraints (e.g., throughput);
– dependency constraints covering aspects of availability, reliability, maintainability, security and safety

(e.g., mean time between failures).

QoS constraints can imply usage and management constraints. For instance, some QoS constraints (e.g., availability)
are satisfied by provision of one or more distribution transparencies (e.g., replication).

An environment contract can describe both:
– requirements placed on an object's environment for the correct behaviour of the object; and
– constraints on the object behaviour in a correct environment.

9.1.5 Behaviour (of an object) [Part 2 – 8.6]

Behaviour of an object is a collection of actions with a set of constraints on when they may occur.

The specification language in use determines the constraints that may be modelled. Constraints may include, for
example, sequentiality, non-determinism, concurrency or real-time constraints.

Behaviour may include internal actions.

The actions that actually take place are restricted by the environment in which the object is placed.

9.1.6 Signal [Part 3 – 7.1.1]

A signal is an atomic shared action resulting in one-way communication from an initiating object to a responding
object.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 33

9.1.7 Operation [Part 3 – 7.1.2]

An operation is an interaction between a client object and a server object which is either an interrogation or an
announcement.

9.1.8 Announcement [Part 3 – 7.1.3]

An announcement is an interaction, the invocation, initiated by a client object resulting in the conveyance of
information from that client object to a server object, requesting a function to be performed by that server object.

9.1.9 Interrogation [Part 3 – 7.1.4]

An interrogation is an interaction consisting of:
– one interaction, the invocation, initiated by a client object, resulting in the conveyance of information

from that client object to a server object, requesting a function to be performed by the server object,
followed by:
– a second interaction, the termination, initiated by the server object, resulting in the conveyance of

information from the server object to the client object in response to the invocation.

9.1.10 Flow [Part 3 – 7.1.5]

A flow is an abstraction of a sequence of interactions, resulting in conveyance of information from a producer object to
a consumer object.

NOTE – A flow may be used to abstract over, for example, the exact structure of a sequence of interactions, or over a continuous
interaction including the special case of an analogue information flow.

9.1.11 Signal interface [Part 3 – 7.1.6]

A signal interface is an interface in which all the interactions are signals.

9.1.12 Operation interface [Part 3 – 7.1.7]

An operation interface is an interface in which all the interactions are operations.

9.1.13 Stream interface [Part 3 – 7.1.8]

A stream interface is an interface in which all the interactions are flows.

9.1.14 Computational object template [Part 3 – 7.1.9]

A computational object template is an object template which comprises a set of computational interface templates that
the object can instantiate, a behaviour specification and an environment contract specification.

9.1.15 Computational interface template [Part 3 – 7.1.10]

A computational interface template is an interface template for either a signal interface, a stream interface or an
operation interface. A computational interface template comprises a signal, a stream or an operation interface
signature as appropriate, a behaviour specification and environment contract specification.

9.1.16 Signal interface signature [Part 3 – 7.1.11]

A signal interface signature is an interface signature for a signal interface. A signal interface signature comprises a
finite set of action templates, one for each signal type in the interface. Each action template comprises the name for the
signal, the number, names and types of its parameters and an indication of causality (initiating or responding, but not
both) with respect to the object that instantiates the template.

9.1.17 Operation interface signature [Part 3 – 7.1.12]

An operation interface signature is an interface signature for an operation interface. An operation interface signature
comprises a set of announcement and interrogation signatures as appropriate, one for each operation type in the
interface, together with an indication of causality (client or server, but not both) for the interface as a whole, with
respect to the object which instantiates the template.

Each announcement signature is an action template containing the name of the invocation and the number, names and
types of its parameters.

Each interrogation signature comprises an action template with the following elements:
– the name of the invocation;

ISO/IEC 19793:2008 (E)

34 ITU-T Rec. X.906 (11/2007)

– the number, names and types of its parameters;
– a finite, non-empty set of action templates, one for each possible termination type of the invocation, each

containing both the name of the termination and the number, names and types of its parameters.

9.1.18 Stream interface signature [Part 3 – 7.1.13]

A stream interface signature is an interface signature for a stream interface. A stream interface comprises a finite set of
action templates, one for each flow type in the stream interface. Each action template for a flow contains the name of
the flow, the information type of the flow, and an indication of causality for the flow (i.e., producer or consumer but not
both) with respect to the object which instantiates the template.

9.1.19 Binding object [Part 3 – 7.1.14]
A binding object is a computational object that supports a binding between a set of other computational objects.

9.1.20 Binding [Part 2 – 13.4, Part 3 – 7.2.3]

A binding behaviour is an establishing behaviour between two or more interfaces (and hence between their supporting
objects). The contractual context, resulting from a given establishing behaviour, is called a binding.

In Part 3, binding is defined with reference to binding actions. Use of such actions is called explicit binding. There are
two kinds of binding actions: primitive binding actions and compound binding actions. A primitive binding action binds
two computational objects directly. A compound binding action can be expressed in terms of primitive binding actions
linking two or more computational objects via a binding object.

In notations which have no terms for expressing binding actions, binding is implicit. Implicit binding for other than
server operation interfaces is not defined in the Reference Model.

9.1.21 Transparency schema [Part 3 – 16]

A transparency schema identifies those transparencies required by a computational specification. These transparencies
are constraints for a mapping from the computational specification to a specification that uses specific ODP functions
and engineering structures. It defines a combination of distribution transparencies assumed by the computational
specification.

NOTE – As described in [Part 3 – 16], the distribution transparencies include access transparency, failure
transparency, location transparency, migration transparency, persistence transparency, relocation transparency,
replication transparency and transaction transparency.

9.1.22 Structure of a computational specification

A computational specification describes the functional decomposition of an ODP system, in distribution transparent
terms, as:

– a configuration of computational objects;
– the internal actions of those objects;
– the interactions that occur among those objects;
– environment contracts for those objects and their interfaces.

The set of computational objects specified by the computational specification constitute a configuration that will change
as the computational objects instantiate further computational objects or computational interfaces, perform binding
actions, effect control functions upon binding objects, delete computational interfaces or delete computational objects.

The computational language defines a set of rules that constrain a computational specification. These comprise:
– interaction rules, binding rules and type rules that provide distribution transparent interworking;
– template rules that apply to all computational objects and computational interfaces;
– failure rules that apply to all computational objects and identify the potential points of failure in

computational activities.

9.1.23 Summary of the concepts of the computational metamodel

Figure 18 illustrates the concepts of the computational language and the relationships between them. The descriptions of
the concepts have been given above. The descriptions of the relationships between the concepts are included in the
description of the concepts.

NOTE – Some of the relationships between computational language concepts are not shown in Figure 18, e.g., the relationship
between interface and signature, since they are related through their super-types.

ISO/IEC 19793:2008 (E)

35 ITU-T Rec. X.906 (11/2007)

Figure 18 – Computational language concepts

ISO/IEC 19793:2008 (E)

36 ITU-T Rec. X.906 (11/2007)

The following restrictions apply to the elements of the diagram shown in Figure 18.
– A binding object is associated with at least two different objects.
– A binding object binds two or more objects through the same type of interface (signal, announcement,

interrogation or flow).
– All interfaces associated with a signal interface signature are signal interfaces [9.2.9], and all its

constituent interaction signatures are signal signatures.
 context Signal inv SignalSignature:

 self.interface->forAll(oclIsTypeOf(SignalInterface))
 context SignalInterface inv SignalSignature:

 self.specifier->forAll(oclIsTypeOf(SignalSignature))
 context SignalInterface inv SignalInterfaceSignature:

 self.specifier->forAll(oclIsTypeOf(SignalInterfaceSignature))
– All interfaces associated with an operation interface signature are operation interfaces [9.2.9], and all its

constituent interaction signatures are announcement, interrogation, invocation or termination signatures.
 context Announcement inv AnnouncementSignature:

 self.interface->forAll(oclIsTypeOf(OperationInterface))
 context Invocation inv InvocatonSignature:

 self.interface->forAll(oclIsTypeOf(OperationInterface))
 context Termination inv TerminationSignature:

 self.interface->forAll(oclIsTypeOf(OperationInterface))
 context OperationInterface inv OperationInterfaceSignature:

 self.specifier->forAll(oclIsTypeOf(OperationInterfaceSignature))
– All interfaces associated with a stream interface signature are stream interfaces [9.2.9].
 context Flow inv StreamSignature:

 self.interface->forAll(oclIsTypeOf(StreamInterface))
 context StreamInterface inv StreamInterfaceSignature:

 self.specifier->forAll(oclIsTypeOf(StreamInterfaceSignature))

9.2 UML profile

The following clauses describe how the ODP computational concepts described in the previous clause are expressed in
UML in a computational specification. A brief explanation of the UML concepts used in the expression of each concept
is given, together with a justification of the expression used.

NOTE 1 – In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an
example, included in the main body of this document or in its Annex A. Where no example has been identified, the concept
concerned is mentioned, but no UML expression is offered.
NOTE 2 – The concepts and rules of the computational language concern the decomposition of the system functionality into
computational objects performing individual functions and interacting at interfaces and thus provides the basis for decisions on
how to distribute the tasks to be done. This level of abstraction deals with aspects related to the software architecture of the
system, and therefore the appropriate UML mechanisms for modelling software architectures are used in this text (components,
ports, interfaces).
NOTE 3 – The computational viewpoint assumes that the specifier selects a certain level of refinement below which the use of
the concept of computational object ceases to be essential; these lower level specification concerns, such as the realization of the
behaviour of computational objects, are outside the scope of the profile described here, and are addressed by other specification
techniques and languages, including the direct use of UML concepts and rules. Thus, this profile covers the specification of
computational objects at the level of UML components that interact through their ports, but leaves open to the specifier the way
in which the internal realization of such components is specified.

9.2.1 Computational object

A computational object is generally specified in terms of its template, which is expressed by a component stereotyped
as «CV_Object».

The attribute isIndirectlyInstantiated of such a component should be set to true. This attribute constrains the kind of
instantiation that applies to a component. If false, the component is instantiated as an addressable instance. If true
(default value), the component is defined at design-time, but at runtime (or execution-time) an instance specified by the
component does not exist, that is, the component is instantiated indirectly, through the instantiation of its realizing
classifiers or parts.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 37

Where a computational object is required to represent a specific entity in the Universe of Discourse, it is expressed by
an instanceSpecification of a component that is stereotyped as «CV_Object».

Where there is the need to express a computational object type, it is also expressed by a UML component, stereotyped as
«CV_Object». The attribute isIndirectlyInstantiated of the component stereotyped «CV_Object» should be set to true.

When a component stereotyped as «CV_Object» expresses a computational object template, the attribute isAbstract of
such a component should be set to false, meaning that the component needs to provide all the information required to
instantiate objects.

9.2.2 Object types and templates as computational objects

There are cases where there is the need to model the type or template of a computational object at the instance level. An
example is the case of a generic factory, which is invoked by passing it a representation of a template (which has type
template), and responds by instantiating the template and returning a reference to the created object. To indicate that an
object is derived from a given template, we need to represent both the template object and the instantiated object in the
model. Likewise for types, to indicate that an object conforms to a given type, we need to represent both the object and
its object type in the model.

Both type objects and template objects are computational objects, and therefore are expressed by components that
express their type or template. To distinguish them from other computational objects, such components are stereotyped
«CV_TypeObject» or «CV_TemplateObject», respectively. Both stereotypes inherit from «CV_Object».

The relationship between a computational object and the object that represents its template, or the object(s) that
represent its type(s) can be expressed as an attribute of the class that specifies the computational object.

EXAMPLE – In some specifications, such as in the ODP Trading Function specification, there is the need to specify the type of a
service, so the trader can locate objects implementing such a service. The diagram shown in Figure 19 represents the
specification of a computational object, PrintService, and of its type, PrintServiceType, expressed so that type can be
manipulated by computational operations.

Figure 19 – An explicit representation of the type of a computational
object so that the object can access its type

9.2.3 Binding object

A binding object is a kind of computational object, and is expressed by a instanceSpecification of a component,
stereotyped as «CV_BindingObject», that represents its type or template.

The following two restrictions apply to binding objects, and therefore to components stereotyped «CV_BindingObject»:
– Any binding object is associated with at least two different objects.
– Any binding object binds two or more objects through the same type of interface (signal, announcement,

interrogation or flow).

9.2.4 Environment contract

An environment contract of a computational object is expressed by a set of constraints (stereotyped
«CV_EnvironmentContract») applied to the component that expresses the computational object.

9.2.5 Signal

A signal is expressed by a message, stereotyped as «CV_Signal», sent by an initiating object and received by a
responding object.

9.2.6 Announcement

An announcement is expressed by a message, stereotyped as «CV_Announcement», sent by a client object and
received by a server object with no response expected.

9.2.7 Invocation

An invocation is a part of interrogation and is expressed by a message, stereotyped as «CV_Invocation», sent by a
client object and received by a server object.

ISO/IEC 19793:2008 (E)

38 ITU-T Rec. X.906 (11/2007)

9.2.8 Termination

A termination is a part of an interrogation and is expressed by a message, stereotyped as «CV_Termination», sent by a
server object and received by a client object.

9.2.9 Computational interface

Computational interface templates are expressed by ports, that can be stereotyped «CV_SignalInterface»,
«CV_OperationInterface» or «CV_StreamInterface» depending on the type of interface (signal, operation or stream).
Thus, an interface of a computational object is expressed by a port of a component instance, instantiated from the
corresponding component that expresses the object's computational interface template.

In order to express the causality of an operation interface, the stereotype «CV_OperationInterface» has a tag definition,
causality, of type OperationCausality (an Enumeration type whose literals are client and server).

In order to express the causality of a signal interface, the stereotype «CV_SignalInterface» has a tag definition,
causality, of type SignalCausality (an Enumeration type whose literals are consumer and producer).

The stereotype «CV_StreamInterface» does not have any tag definition, because stream interfaces do not have
causality.

9.2.10 Computational interface signature

A computational interface signature is expressed by an interface, stereotyped «CV_SignalInterfaceSignature»,
«CV_OperationInterfaceSignature» or «CV_StreamInterfaceSignature» depending on the type of interface signature.
(signal, operation or stream).

9.2.11 Computational signature

A Computational signature can be expressed by a reception, an operation, or an interface, depending on the sort of
signature. Receptions are used to express signatures of computational interactions which are expressed by individual
signals (signals, announcements, invocations and terminations). Operations can be used to express interrogation
signatures that are composed of an invocation signature and a termination signature. Finally, interfaces are used for
expressing flow signatures [9.2.18].

9.2.12 Signal signature

A signal signature is expressed by a reception, stereotyped as «CV_SignalSignature». This stereotyped reception
expresses an action template which includes the name for the signal, the number, names and types of its parameters, and
indication of whether it is initiating or responding.

9.2.13 Announcement signature

An announcement signature is a signature for an announcement. An announcement signature is expressed by a
reception, stereotyped as «CV_AnnouncementSignature». This stereotyped interface expresses an action template
which includes the name for the invocation, the number, names and types of its parameters, and an indication of
whether it is a client or a server.

9.2.14 Invocation signature

An invocation signature is a signature for an invocation in an interrogation. An invocation signature is expressed by a
reception, stereotyped as «CV_InvocationSignature». This stereotyped reception expresses an action template which
includes the name for the invocation, the number, names and types of its parameters, and an indication of whether it is a
client or a server.

9.2.15 Termination signature

A termination signature is a signature for a termination for interrogation. A termination signature is expressed by a
reception, stereotyped as «CV_TerminationSignature». This stereotyped reception expresses an action template which
includes the name for the termination, the number, names and types of its parameters, and indication of whether it is a
client or a server.

The Stereotype «CV_TerminationSignature» has a tag definition, invocation, whose type is Reception, that refers to the
invocation for which this reception is a termination.

9.2.16 Interrogation signature

An interrogation signature is a signature for an interrogation, which comprises signatures for an invocation and a
termination.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 39

In the case of an interrogation signature comprising one invocation signature and one termination signature, the
interrogation signature can be expressed by an operation, stereotyped as «CV_InterrogationSignature». This
stereotyped operation expresses an action template which includes the name for the invocation, the number, names and
types of its parameters, the indication of whether it is a client or a server, and the number, names and types of the
termination's parameters.

Alternatively, an interrogation signature can be modelled in terms of one invocation signature [9.2.14] and separate
termination signatures [9.2.15].

NOTE – This alternative modelling approach may be used, for example, in the case of an interrogation comprising one
invocation and possibly multiple kinds of termination.

9.2.17 Bindings

An explicit primitive binding is expressed by an assembly connector, stereotyped as «CV_PrimitiveBinding». Such a
connector can be defined from a required interface to a provided interface, or from a required port to a provided port.

EXAMPLE 1 – Let us suppose the following representation in UML of operation interface signatures ServiceA and Service, as
shown in Figure 20:

Figure 20 – Two operation interface signatures

Then, the diagram shown in Figure 21 represents an explicit primitive binding between the corresponding interfaces of
computational objects ClientA and Server:

Figure 21 – An explicit primitive binding between two interfaces

EXAMPLE 2 – Assuming the specification of operation interface signatures ServiceA and Service as above, the diagram shown
in Figure 22 represents an explicit primitive binding between the corresponding interfaces of computational objects ClientA and
Server, but showing explicitly the interface signatures of both interfaces (stereotypes and tag values of the ports representing
such interfaces have been omitted for clarity).

Figure 22 – An explicit primitive binding between two interfaces showing their interface signatures

The following restrictions apply to assembly connectors, stereotyped as «CV_PrimitiveBinding»:
– If they connect interfaces, they are both stereotyped «CV_OperationInterfaceSignature» and the

operation interface signature expressed by the client interface is a subtype of the operation interface
signature expressed by the server interface [Part 3 – 7.2.3].

– If they connect ports, then: (a) these ports are stereotyped «CV_SignalInterface»,
«CV_OperationInterface» or «CV_StreamInterface», (b) their stereotypes coincide, and (c) the interface
expressed by the client port is compatible with the interface expressed by the server port, according to the
primitive binding rules defined in [Part 3 – 7.2.3].

ISO/IEC 19793:2008 (E)

40 ITU-T Rec. X.906 (11/2007)

– If they connect ports stereotyped «CV_StreamInterface», the fact that stream interfaces do not have
causality implies that the assignment of direction (that is, the designation of the client element) is
irrelevant.

An implicit primitive binding can only happen between interfaces specifying operation interface signatures, and only
when the required interface coincides with the provided interface; then there is no need to represent the connector.

NOTE – In this case the "ball-and-socket" connection representation can be used, as shown in Figure 23.

Figure 23 – An implicit primitive binding between two interfaces

Compound bindings are expressed by representing the corresponding binding objects and their bindings with the bound
objects.

9.2.18 Flow

A flow is expressed by a property, stereotyped as «CV_Flow». The property belongs to an interface stereotyped as
«CV_StreamInterfaceSignature», which represents the stream interface signature where the flow is defined.

The name of the property expresses the name of the flow. The type of the property expresses the flow signature, which is
expressed by an interface, stereotyped as «CV_FlowSignature». The causality of the flow (consumer or producer) is
expressed by the tag definition, causality, of stereotype «CV_Flow». The type of this tag definition is FlowCausality
(an Enumeration type whose literals are producer and consumer).

EXAMPLE – The diagram shown in Figure 24 represents the software architecture of a teleconference system, composed of two
kinds of computational objects (Presenter and Participant) interacting at their computational interfaces.
The Presenter object provides one operation interface for control (expressed by the port ctrl, stereotyped
«CV_OperationInterface», whose signature is expressed by the interface IControl), and one stream interface (expressed by the
port c, stereotyped «CV_StreamInterface», whose signature is expressed by the interface AVConference). This stream
interface defines four flows, one for producing video frames, two for producing audio frames and one for consuming audio).
The Participant object offers the dual interfaces, one for controlling the Participant, and one for binding to its stream interface.
Control interfaces are bound using an implicit binding, whilst the stream interfaces are bound using a primitive binding, i.e., no
binding object is required.

Figure 24 – An example of the specification of flows

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 41

9.2.19 Transparency schema

A transparency schema is expressed by a set of tag definitions applied to a model that is stereotyped as
«Computational_Spec», one for each of the transparencies defined in [Part 3 – 16], except for access and location
transparencies, which are mandatory for any computational specification.

The type of these tag definitions is boolean, and indicates whether the particular transparency is required for the
computational specification or not.

9.2.20 Summary of the UML extensions for the computational language

The computational language profile (CV_Profile) specifies how the computational viewpoint modelling concepts relate
to, and are expressed in, standard UML using stereotypes, tag definitions and constraints.

The following shows diagrammatic representations of this UML profile.

Figure 25 – Graphical representation of the computational language profile (using the UML notation)

The following constraints apply to the elements of the profile:
– The constraint baseComponent.isIndirectlyInstantiated=true means that the component is defined at

design-time, but at runtime (or execution-time) an instance specified by the component does not exist,
that is, the component is instantiated indirectly, through the instantiation of its realizing classifiers or
parts.

ISO/IEC 19793:2008 (E)

42 ITU-T Rec. X.906 (11/2007)

– A component expressing a computational object template has ports and interfaces for interaction with
other computational objects.

In addition, the elements of the computational language (shown in Figure 18) are subject to a set of restrictions, as
described in [9.1.22]. The constraints that implement those restrictions on the corresponding profile elements should
also apply.

9.3 Computational specification structure (in UML terms)

All the elements expressing the Computational specification are defined within a model, stereotyped
«Computational_Spec». Such a model contains packages that express:

– a configuration of computational objects with dependencies among those objects using required and
provided interfaces and signatures they provide, with a component diagram;

– structure of computational objects including composition and decomposition of computational objects,
with a component diagram;

– environment contract for computational objects, with constraints on elements;
– interactions between computational objects, and interactions between composed computational objects

within a computational object, with UML activity diagrams, state charts and interaction diagrams.

9.4 Viewpoint correspondences for the computational language

9.4.1 Contents of this clause

This clause describes the correspondence concepts for the computational language, but not how they are expressed in
UML. The latter is covered in clause 12.

9.4.2 Enterprise and computational viewpoint specification correspondences

The specifier shall provide:
– for each enterprise object in the enterprise specification, that configuration of computational objects (if

any) that realizes the required behaviour;
– for each interaction in the enterprise specification, a list of those computational interfaces and operations

or streams (if any) that correspond to the enterprise interaction, together with a statement of whether this
correspondence applies to all occurrences of the interaction, or is qualified by a predicate;

– for each role affected by a policy in the enterprise specification, a list of the computational object types
(if any) that exhibit choices in the computational behaviour that are modified by the policy;

– for each interaction between roles in the enterprise specification, a list of computational binding object
types (if any) that are constrained by the enterprise interaction;

– for each enterprise interaction type, a list of computational behaviour types (if any) capable of modelling
(i.e., acting as a carrier for) the enterprise interaction type.

If a process based approach is taken, the specifier shall provide:
– for each step in the process, a list of participating computational objects which may fulfil one or more of

actor roles, artefact roles and resource roles.

9.4.3 Information and computational viewpoint specification correspondences

This document does not prescribe exact correspondences between information objects and computational objects. In
particular, not all states of a computational specification need to correspond to states of an information specification.
There may exist transitional computational states within pieces of computational behaviour that are abstracted as
atomic transitions in the information specification.

Where an information object corresponds to a set of computational objects, static and invariant schemata of an
information object correspond to possible states of the computational objects. Every change in state of an information
object corresponds either to some set of interactions between computational objects or to an internal action of a
computational object. The invariant and dynamic schemata of the information object correspond to the behaviour and
environment contract of the computational objects.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 43

9.4.4 Computational and engineering viewpoint specification correspondences

Each computational object that is not a binding object corresponds to a set of one or more basic engineering objects
(and any channels which connect them). All the basic engineering objects in the set correspond only to that
computational object.

Except where transparencies which replicate objects are involved, each computational interface corresponds exactly to
one engineering interface, and that engineering interface corresponds only to that computational interface.

NOTE 1 – The engineering interface is supported by one of the basic engineering objects that corresponds to the computational
object supporting the computational interface.

Where transparencies that replicate objects are involved, each computational interface of the objects being replicated
corresponds to a set of engineering interfaces, one for each of the basic engineering objects resulting from the
replication. These engineering interfaces each correspond only to the original computational interface.

Each computational interface is identified by any member of a set of one or more computational interface identifiers.
Each engineering interface is identified by any member of a set of one or more engineering interface references. Thus,
since a computational interface corresponds to an engineering interface, an identifier for a computational interface can
be modelled unambiguously by an engineering interface reference from the corresponding set.

Each computational binding (either primitive bindings or compound bindings with associated binding objects)
corresponds to either an engineering local binding or an engineering channel. This engineering local binding or
channel corresponds only to that computational binding. If the computational binding supports operations, the
engineering local binding or channel shall support the interchange of at least:

– computational signature names;
– computational operation names;
– computational termination names;
– invocation and termination parameters (including computational interface identifiers and computational

interface signatures).

Except where transparencies that replicate objects are involved, each computational binding object control interface has
a corresponding engineering interface and there exists a chain of engineering interactions linking that interface to any
stubs, binders, protocol objects or interceptors to be controlled in support of the computational binding.

NOTE 2 – The set of control interfaces involved depends on the type of the binding object.

Each computational interaction corresponds to some chain of engineering interactions, starting and ending with an
interaction involving one or more of the basic engineering objects corresponding to the interacting computational
objects.

Each computational signal corresponds either to an interaction at an engineering local binding or to a chain of
engineering interactions that provides the necessary consistent view of the computational interaction.

The transparency prescriptions in [Part 3 – 16] specify additional correspondences.
NOTE 3 – Basic engineering objects corresponding to different computational objects can be members of the same cluster.
NOTE 4 – In an entirely object-based computational language, data are represented as abstract data types (i.e., interfaces to
computational objects).
NOTE 5 – Computational interface parameters (including those for abstract data types) can be passed by reference, such
parameters correspond to engineering interface references.
NOTE 6 – Computational interface parameters (including those for abstract data types) can be passed by migrating or replicating
the object supporting the interface. In the case of migration, such parameters correspond to cluster templates.
NOTE 7 – If the abstract state of a computational object supporting an interface parameter is invariant, the object can be cloned
rather than migrated.
NOTE 8 – Cluster templates can be represented as abstract data types. Thus strict correspondences between computational
parameters and engineering interface references are sufficient. The use of cluster templates or data are important engineering
optimizations and therefore not excluded.

10 Engineering specification

10.1 Modelling concepts

This clause is based on the modelling concepts for use in an engineering specification that are defined, together with the
structuring rules for their use, in [Part 3 – 8]. The explanations of the concepts in the text that follows are not normative,
and in case of conflicts between these explanations and the text in [Part 3 – 8], the latter should be followed.

ISO/IEC 19793:2008 (E)

44 ITU-T Rec. X.906 (11/2007)

An engineering specification includes the definition of mechanisms and functions required to support distributed
interaction between objects in an ODP system. The concepts, rules and structures contained in an engineering
specification (the engineering language) are dependent upon the functionality offered by the platform chosen for the
ODP system.

The modelling concepts and structuring rules defined in [Part 3 – 8] assume a platform that offers only minimal support
for distribution. Where the platform for the system offers significant support for distribution, a language and a UML
profile appropriate for that platform can be used

The set of diagrams at the end of this clause (i.e., at [10.1.6]) summarizes a metamodel for the engineering language.

10.1.1 Basic concepts

10.1.1.1 Basic engineering object

A basic engineering object is an engineering object that requires the support of a distributed infrastructure.

10.1.1.2 Cluster

A cluster is a configuration of basic engineering objects forming a single unit for the purposes of deactivation,
checkpointing, reactivation, recovery and migration.

10.1.1.3 Cluster manager

A cluster manager is an engineering object that manages the basic engineering objects in a cluster.

10.1.1.4 Capsule

A capsule is a configuration of engineering objects forming a single unit for the purpose of encapsulation of processing
and storage.

10.1.1.5 Capsule manager

A capsule manager is an engineering object that manages the engineering objects in a capsule.

10.1.1.6 Nucleus

A nucleus is an engineering object that coordinates processing, storage and communications functions for use by other
engineering objects within the node to which it belongs.

10.1.1.7 Node

A node is a configuration of engineering objects forming a single unit for the purpose of location in space, and that
embodies a set of processing, storage and communication functions.

10.1.2 Channel concepts

10.1.2.1 Channel

A channel is a configuration of stubs, binders, protocol objects and interceptors providing a binding between a set of
interfaces to basic engineering objects, through which interaction can occur.

10.1.2.2 Stub

A stub is an engineering object in a channel, which interprets the interactions conveyed by the channel, and performs
any necessary transformation or monitoring based on this interpretation.

10.1.2.3 Binder

A binder is an engineering object in a channel, which maintains a distributed binding between interacting basic
engineering objects.

10.1.2.4 <X> Interceptor

An <X> interceptor is an engineering object in a channel, placed at a boundary between <X> domains. An <X>
interceptor:

– performs checks to enforce or monitor policies on permitted interactions between basic engineering
objects in different domains;

– performs transformations to mask differences in interpretation of data by basic engineering objects in
different domains.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 45

10.1.2.5 Protocol object

A protocol object is an engineering object in a channel, which communicates with other protocol objects in the same
channel to achieve interaction between basic engineering objects (possibly in different clusters, possibly in different
capsules, possibly in different nodes).

10.1.2.6 Communications domain

A communication domain is a set of protocol objects capable of interworking.

10.1.2.7 Communication interface

A communication interface is an interface of a protocol object that can be bound to an interface of either an interceptor
object or another protocol object at an interworking reference point.

10.1.3 Identifier concepts

10.1.3.1 Binding endpoint identifier

A binding endpoint identifier is an identifier, in the naming context of a capsule, used by a basic engineering object to
select one of the bindings in which it is involved, for the purpose of interaction.

10.1.3.2 Engineering interface reference

An engineering interface reference is an identifier, in the context of an engineering interface reference management
domain, for an engineering object interface that is available for distributed binding.

10.1.3.3 Engineering interface reference management domain

An engineering interface reference management domain is a set of nodes forming a naming domain for the purpose of
assigning engineering interface references.

10.1.3.4 Engineering interface reference management policy

An engineering interface reference management policy is a set of permissions and prohibitions that govern the
federation of engineering interface reference management domains.

10.1.3.5 Cluster template

A cluster template is an object template for a configuration of objects, with any activity required to instantiate those
objects and establish the initial bindings.

10.1.4 Checkpointing concepts

10.1.4.1 Checkpoint

A checkpoint is an object template derived from the state and structure of an engineering object that can be used to
instantiate another engineering object, consistent with the state of the original object at the time of checkpointing.

10.1.4.2 Checkpointing

Checkpointing is to create a checkpoint. Checkpoints can only be created when the engineering object involved satisfies
a pre-condition stated in a checkpointing policy.

10.1.4.3 Cluster checkpoint

A cluster checkpoint is a cluster template containing checkpoints of the basic engineering objects in a cluster.

10.1.4.4 Deactivation

Deactivation is to checkpoint a cluster, followed by deletion of the cluster.

10.1.4.5 Cloning

Cloning is to instantiate a cluster from a cluster checkpoint.

10.1.4.6 Recovery

Recovery is to clone a cluster after cluster failure or deletion.

ISO/IEC 19793:2008 (E)

46 ITU-T Rec. X.906 (11/2007)

10.1.4.7 Reactivation

Reactivation is to clone a cluster following its deactivation.

10.1.4.8 Migration

Migration is to move a cluster to a different capsule.

10.1.5 ODP functions in the context of the engineering viewpoint specifications

Part 3 of RM-ODP describes a set of functions required to support open distributed processing [Part 3 – 11 to 15]. They
are grouped in four main categories:

– Management functions: node management function, object management function, cluster management
function and capsule management function.

– Coordination functions: event notification function, checkpointing and recovery function, deactivation
and reactivation function, group function, replication function, migration function, engineering interface
reference tracking function, transaction function and ACID transaction function.

– Repository functions: storage function, information organization function, relocation function, type
repository function and trading function.

– Security functions: access control function, security audit function, authentication function, integrity
function, confidentiality function, non-repudiation function and key management function.

This clause is only concerned with expressing the engineering specification of these ODP functions.
NOTE – Part 3 is not explicit about the detailed specification of these functions, neither does it explain how the specifications for
individual functions can be combined to form specifications for components of ODP systems. Only two of these functions, the
Type Repository and the Trading Function, are further refined and more extensively described. "ITU-T Rec. X.960 | ISO/IEC
14769 – Type Repository Function" and "ITU-T Rec X.950 | ISO/IEC 13235-1 – ODP Trading Function" contain their complete
specifications.

10.1.6 Summary of the engineering language metamodel

The diagrams below (Figures 26 to 32) illustrate the concepts of the engineering language and the relationships between
them. The descriptions of the concepts have been given above. The descriptions of the relationships between the
concepts are included in the description of the concepts.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 47

10.1.6.1 Engineering objects

Figure 26 – Engineering objects

NOTE – In the figure, and in the text that follows, BEO stands for Basic Engineering Object.

10.1.6.2 Node structure

The node structure is about structuring of a node with nucleus, capsule, cluster and various engineering objects.

ISO/IEC 19793:2008 (E)

48 ITU-T Rec. X.906 (11/2007)

Figure 27 – Engineering language – Basic concepts

The following constraints apply to the elements of the engineering language shown in Figure 27:
– In order for two BEOs to be locally bound to each other, they must reside in the same cluster:

 context BEO inv SameCluster:
self.locallyBoundObject->forAll (obj | obj.cluster = self.cluster)

– A BEO binds to the node management interface provided by the Nucleus associated with the Node that
contains the Capsule that contains the Cluster that contains the BEO:
 context BEO inv NodeManagerDerivationRule:

self.nodeManager = self.cluster.capsule.node.manager
– The engineering object's node manager should be the same as the node manager associated with the

node that contains the Capsule that contains the engineering object:
 context EngineeringObject inv NodeManagerDerivationRule2:

self.nodeManager = self.capsule.node.manager
– The Capsule to which a Cluster belongs is the Capsule to which the Cluster's manager belongs:

 context Cluster inv CapsuleDerivationRule:
self.capsule = self.manager.capsule

– Derivation Rule: The CapsuleManager to which the ClusterManager is bound is the CapsuleManager of
the Capsule that contains the Clusters that the CapsuleManager manages:
 context ClusterManager inv CapsuleManager:

self.cluster->forAll (c : capsule | c.manager = self.capsuleManager)
– The set of other engineering objects that the Capsule owns and the set of ClusterManagers that the

Capsule owns are disjoint:
 context Capsule inv NoOtherEOisClusterManager:

self.otherEngObject->intersection(self.clusterManager)->isEmpty()
– The set of other engineering objects that the Capsule owns and the set of CapsuleManagers that the

Capsule owns are disjoint:
 context Capsule inv NoOtherEOisCapsuleManager:

not self.otherEngObject->includes(self.manager)

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 49

10.1.6.3 Channels

This subclause is about model elements that enable communication around channels.

Figure 28 – Engineering language model – Channels

The following constraints apply to the concepts illustrated in the diagram of Figure 28:
– Each Stub to which a BEO is related must be part of a Channel to which the BEO is related:

 context BEO inv SameChannel:
self.stub->forAll (stub | self.channel->exists (channel | channel = stub.channel))

– For each Channel to which a BEO is related, the BEO must be related to exactly one Stub that is part of
that Channel:

 context BEO inv OneStubPerChannel:
self.channel->forAll (channel | self.stub->select (stub | stub.channel = channel)->size () = 1)

– The collection of BEOs that are the end points linked by a Channel is derived by adding to the collection,
for each Stub in the Channel, the BEO to which the Stub is related:
 context Channel inv EndPointDerivationRule:

self.endPoint->includesAll(self.stub.bEO) and self.stub.bEO->includesAll(self.endPoint)
– The BEOs constituting a Channel's endpoint must each reside in different Clusters:

 context Channel inv EndPointsInDifferentClusters:
self.endPoint->forAll (ep1, ep2 | ep1.cluster <> ep2.cluster)

– The BEO and Binder to which a Stub is related are parts of the same Channel of which the Stub is a part:
 context Stub inv SameChannelStub:

self.bEO.channel = self.channel and self.binder.channel = self.channel
– The Stub to which a Binder is related and the ProtocolObjects to which the Binder is related are all parts

of the same Channel of which the Binder is a part:
 context Binder inv SameChannelBinder:

self.protocolObject->forAll (po | po.channel = self.channel) and self.stub.channel = self.channel
– The ProtocolObjects for which an Interceptor provides protocol conversion must be part of the same

Channel of which the Interceptor is a part:
 context Interceptor inv SameChannelInterceptor:

self.protocolObject->forAll (po | po.channel = self.channel)
– Any Interceptor to which a ProtocolObject is related and the Binder to which the ProtocolObject is

related are part of the same Channel of which the ProtocolObject is a part:
 context ProtocolObject inv SameChannelPO:

self.interceptor->forAll (i | i.channel = self.channel) and self.binder.channel = self.channel

ISO/IEC 19793:2008 (E)

50 ITU-T Rec. X.906 (11/2007)

– In order for two ProtocolObjects to be associated, they must be of the same type:
 context ProtocolObject inv SameType:

self.boundProtocolObject->forAll (po | po.type = self.type)

10.1.6.4 Domains

This subclause is about kinds of domains and object membership of domains that make up domains.

Figure 29 – Domains

The following restrictions apply to the model elements depicted in Figure 29:
– All members of a subdomain are members of its parent domain:
 context Domain inv SubDomainIsSubSet:

self.subDomain->forAll (subDomain | self.member->includes(subDomain.member))
– controlling objects should be associated to the corresponding domains:
 context SecurityDomain inv ControllingObject:

self.controllingObject.oclIsTypeOf(SecurityAuthority)
 context ManagementDomain inv ControllingObject:

self.controllingObject.oclIsTypeOf(ManagementAuthority)
 context AddressingDomain inv ControllingObject:

self.controllingObject.oclIsTypeOf(AddressingAuthority)
 context NamingDomain inv ControllingObject:

self.controllingObject.oclIsTypeOf(NamingAuthority)

10.1.6.5 Identifiers

This subclause is mainly about identity, domain and policy management, with respect to nodes and objects.

Figure 30 – Engineering language model – Identifiers

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 51

10.1.6.6 Checkpoints

This subclause is about checkpoints and checkpointings.

Figure 31 – Engineering language model – Checkpoints

ISO/IEC 19793:2008 (E)

52 ITU-T Rec. X.906 (11/2007)

10.1.6.7 ODP functions

Figure 32 shows the ODP functions introduced in [10.1.5].

Figure 32 – Engineering language model – ODP functions

10.2 UML profile

The following subclauses describe how the ODP engineering concepts described in the previous clause are expressed in
UML in an engineering specification. A brief explanation of the concepts used in the expression of each concept is
given, together with a justification of the expression used.

NOTE 1 – In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an
example, included in the main body of this document or in its Annex A. Where no example has been identified, the concept
concerned is mentioned, but no UML expression is offered.
NOTE 2 – Concepts are presented here in the order in which they appear in Part 3.
NOTE 3 – The concepts and rules of the engineering language concern definition of mechanisms and functions required to
support distributed interaction between objects in an ODP system, something which deals with aspects related to the software
architecture of the system (e.g., distribution or replication) and therefore the appropriate UML mechanisms for modelling
software architectures are used in this text (components, ports, interfaces).
NOTE 4 – The engineering viewpoint assumes that the specifier selects a certain level of refinement below which the use of the
concept of engineering object ceases to be essential; these lower level specification concerns, such as the realization of the
behaviour of engineering objects, are outside the scope of the profile described here, and are addressed by other specification
techniques and languages, including the direct use of UML concepts and rules. Thus, this profile covers the specification of
engineering objects at the level of UML components that interact through their ports, but leaves open to the specifier the way in
which the internal realization of such components is specified.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 53

10.2.1 Engineering object templates and types

An engineering object is generally specified in terms of its template, which is expressed by a component stereotyped as
«NV_Object».

The attribute isIndirectlyInstantiated of the component stereotyped «NV_Object» should be set to false. This attribute
constrains the kind of instantiation that applies to a component. If false, the component is instantiated as an addressable
instance.

The stereotype has the following attributes:
– deployedNode: String (defines a reference to a node where an engineering object is deployed).
– securityDomain: String (defines a reference of a security domain it may belong to).
– managementDomain: String (defines a reference of a management domain it may belong to).

Where an engineering object is required to represent a specific entity in the Universe of Discourse, it is expressed by
instanceSpecification of a component that is stereotyped as «NV_Object». Basic engineering objects are particular
kinds of engineering objects. Therefore, the stereotype «NV_BEO» that expresses such objects inherits from
«NV_Object».

Where there is the need to express an engineering object type, it is also expressed by a component, stereotyped as
«NV_Object». The attribute isIndirectlyInstantiated of the component stereotyped «CV_Object» should be set to false.

When a component stereotyped as «CV_Object» expresses an engineering object template, the attribute is Abstract of
such a component should be set to false, meaning that the component needs to provide all the information required to
instantiate objects.

10.2.2 Object types and templates as engineering objects

There are cases where there is the need to model the type or template of an engineering object at the instance level. An
example is the case of a generic factory, which is invoked by passing it a representation of a template (which has type
template), and responds by instantiating the template and returning a reference to the created object. To indicate that an
object is derived from a given template, we need to represent both the template object and the instantiated object in the
model. Likewise for types, to indicate that an object conforms to a given type, we need to represent both the object and
its object type in the model.

Both type objects and template objects are engineering objects, and therefore are expressed by components, that express
its type or template. To distinguish them from other engineering objects, such components are stereotyped
«NV_TypeObject» or «NV_TemplateObject», respectively. Both stereotypes inherit from «NV_Object».

The relationship between an engineering object and the object that represents its template, or the object(s) that represent
its types can be expressed as an attribute of the class that specifies the engineering object.

EXAMPLE – In some specifications, such as in the ODP Trading Function specification, there is the need to specify the type of a
service, so a trader can locate objects implementing such a service. The diagram shown in Figure 33 represents the specification
of an engineering object, PrintService, and of its type, PrintServiceType, expressed so that type can be manipulated by
engineering operations.

Figure 33 – An explicit representation of the type of an engineering object so that the object can access its type

10.2.3 Cluster

A cluster is expressed by an instanceSpecification of a component, stereotyped as «NV_Cluster». The component
stereotyped as «NV_Cluster» expresses the cluster type or template. It includes a configuration of basic engineering
objects and has bindings to required channels for communication.

10.2.4 Cluster manager

A cluster manager is expressed by an instanceSpecification of a component, stereotyped as «NV_ClusterManager». The
component stereotyped as «NV_ClusterManager» expresses the cluster manager type or template.

ISO/IEC 19793:2008 (E)

54 ITU-T Rec. X.906 (11/2007)

10.2.5 Capsule

A capsule is expressed by an instanceSpecification of a component, stereotyped as «NV_Capsule». The component
stereotyped as «NV_Capsule» expresses the capsule type or template.

10.2.6 Capsule manager

A capsule manager is expressed by an instanceSpecification of a component, stereotyped as «NV_CapsuleManager».
The component stereotyped as «NV_CapsuleManager» expresses the capsule manager type or template.

10.2.7 Nucleus

A nucleus is expressed by an instanceSpecification of a component, stereotyped as «NV_Nucleus». The component
stereotyped as «NV_Nucleus» expresses the nucleus type or template.

10.2.8 Node

A node is expressed by an instanceSpecification of a component, stereotyped as «NV_Node». The component
stereotyped as «NV_Node» expresses the node type or template.

10.2.9 Channel

A channel is expressed by an instanceSpecification of a component, stereotyped as «NV_Channel». The component
stereotyped as «NV_Channel» expresses the channel type or template. It consists of stubs, binders, protocol objects,
and possibly <X> interceptors.

10.2.10 Stub

A stub is expressed by an instanceSpecification of a component, stereotyped as «NV_Stub». The component stereotyped
as «NV_Stub» expresses the stub type or template.

10.2.11 Binder

A binder is expressed by an instanceSpecification of a component, stereotyped as «NV_Binder». The component
stereotyped as «NV_Binder» expresses the binder type or template.

10.2.12 <X> Interceptor

An interceptor is expressed by an instanceSpecification of a component, stereotyped as «NV_Interceptor». The
component stereotyped as «NV_Interceptor» expresses the interceptor type or template.

10.2.13 Protocol object

A protocol object is expressed by an instanceSpecification of a component, stereotyped as «NV_ProtocolObject». The
component stereotyped as «NV_ProtocolObject» expresses the protocol object type or template.

10.2.14 Communication domain

A communication domain is expressed by a package, stereotyped as «NV_CommunicationDomain».

10.2.15 Communication interface

A communication interface is expressed by a port through which a protocol object is associated with other protocol
objects or interceptors for a communication.

10.2.16 Binding endpoint identifier

A binding endpoint identifier is expressed by a valueSpecification.

10.2.17 Engineering interface reference

An engineering interface reference is expressed by a class.

10.2.18 Engineering interface reference management domain

An engineering interface reference management domain is expressed by a package, stereotyped as
«NV_InterfaceReferenceManagementDomain».

10.2.19 Engineering interface reference management policy

An engineering interface reference management policy is expressed by a constraint, stereotyped as
«NV_InterfaceReferenceManagementPolicy».

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 55

10.2.20 Checkpoint

A checkpoint is expressed by an instanceSpecification of a component, stereotyped as «NV_Checkpoint». The
instanceSpecification of a component expresses a checkpointed object's states at the time of checkpointing.

10.2.21 Checkpointing

A checkpointing is expressed by an activity, UML operation, and UML action stereotyped as «NV_Checkpointing».

10.2.22 Cluster checkpoint

A cluster checkpoint is expressed by an instanceSpecification of a component, stereotyped as «NV_ClusterCheckpoint».
The instanceSpecification of a component expresses a checkpointed cluster's state at the time of checkpointing.

10.2.23 Deactivation

A deactivation is expressed by an activity, an operation, or an action stereotyped as «NV_Deactivation».

10.2.24 Cloning

A cloning is expressed by an activity, an operation, or an action stereotyped as «NV_Cloning».

10.2.25 Recovery

A recovery is expressed by an activity, an operation, or an action stereotyped as «NV_Recovery».

10.2.26 Reactivation

A reactivation is expressed by an activity, an operation, or an action stereotyped as «NV_Reactivation».

10.2.27 Migration

A migration is expressed by an activity, an operation, or an action stereotyped as «NV_Migration». A migration, as an
ODP function, can also be expressed by an interface (see [10.2.28]).

10.2.28 ODP functions

The ODP functions described in [10.1.5] are expressed by interfaces, stereotyped as «NV_X», where X is the name of
the function.

More precisely, the following stereotypes extend UML metaclass interface to express the corresponding ODP function:

«NV_ObjectManagement», «NV_NodeManagement», «NV_ClusterManagement»,
«NV_CapsuleManagement», «NV_EventNotification», «NV_CheckpointAndRecovery»,
«NV_DeactivationAndReactivation», «NV_Group», «NV_Replication», «NV_Migration»,
«NV_InterfaceReferenceTracking», «NV_ACIDTransaction», «NV_Transaction», «NV_Storage»,
«NV_InformationOrganization», «NV_Relocation», «NV_TypeRepository», «NV_Trading»,
«NV_AccessControl», «NV_SecurityAudit», «NV_Authentication», «NV_Integrity», «NV_Confidentiality»,
«NV_NonRepudiation» and «NV_KeyManagement».

10.2.29 Summary of the UML extensions for the engineering language

The engineering language profile (NV_Profile) specifies how the engineering viewpoint modelling concepts relate to,
and are expressed in, standard UML using stereotypes, tag definitions and constraints.

Figure 34 shows diagrammatic representations of this profile.

ISO/IEC 19793:2008 (E)

56 ITU-T Rec. X.906 (11/2007)

NOTE 1 – In the diagrams above, the infrastructure mechanisms are not well represented using UML. It may be necessary to
introduce roles for standard functional objects, like trader in the ODP Trading Function standard and recovery manager for
recovery function, to cover these mechanisms as well as the ODP functions.
NOTE 2 – Not all management functions are shown in the above figure, e.g., thread management for Nucleus.

Figure 34 – Graphical representation of the engineering language profile (using the UML notation)

10.3 Engineering specification structure (in UML terms)

An engineering specification defines the infrastructure required to support functional distribution of an ODP system.
This includes:

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 57

– identifying the ODP functions required to manage physical distribution, communication, processing and
storage;

– identifying the roles of different engineering objects supporting the ODP functions (for example the
nucleus).

NOTE – Some ODP functions have been standardized, others have been defined only in outline. Where a suitable
definition exists, it can be brought into the engineering specification.

An engineering specification models a system in terms of:
– a configuration of engineering objects, structured as clusters, capsules and nodes (that will be expressed

with UML component diagrams, including instanceSpecification of component for capsule, clusters,
basic engineering objects, capsule manager, cluster manager, and nucleus);

– the activities that occur within those engineering objects (that will be expressed with UML Activity
diagrams);

– the interactions of those engineering objects (that will be expressed with UML Sequence diagrams).

An engineering specification is constrained by the rules of the engineering language. These comprise:
– channel rules [Part 3 – 8.2.1], interface reference rules [Part 3 – 8.2.2], distributed binding rules [Part 3 –

8.2.3] and relocation rules [Part 3 – 8.2.4] for the provision of distribution transparent interaction among
engineering objects;

– cluster rules [Part 3 – 8.2.5], capsule rules [Part 3 – 8.2.6] and node rules [Part 3 – 8.2.7] governing the
configuration of engineering objects;

– failure rules [Part 3 – 8.2.9].

Those rules will be expressed with UML or OCL constraints for relevant elements.

All the elements expressing the Engineering specification will be defined within a model, stereotyped
«Engineering_Spec». Such a model contains packages that express:

– the structure of a node, including nucleus, capsules, capsule managers, clusters, cluster managers, stub,
binder, protocol objects, interceptors, and basic engineering objects, with a component diagram;

– channels, with component diagrams and a package;
– domains, with a package;
– interactions among those engineering objects, with activity diagrams, stateMachines and interaction

diagrams.

10.4 Viewpoint correspondences for the engineering language

10.4.1 Contents of this clause

This clause describes the correspondence concepts for the engineering language, but not how they are expressed in
UML. The latter is covered in clause 12.

10.4.2 Engineering and computational viewpoint specification correspondences
NOTE – The correspondence between an engineering specification and a computational specification can be derived from
[9.4.4].

10.4.3 Engineering and technology viewpoint specification correspondences

Each engineering object corresponds to a set of one or more technology objects. The correspondence and
implementable standards for each technology object are dependent on the choice of technology.

The engineering viewpoint specification does not have any correspondences to implementation.

Engineering objects and their interfaces correspond to technology objects and their interfaces, and thus will become
basic information source for testing in the technology viewpoint.

ISO/IEC 19793:2008 (E)

58 ITU-T Rec. X.906 (11/2007)

11 Technology Specification

11.1 Modelling concepts

A technology specification uses the RM-ODP technology language. The modelling concepts and the structuring rules of
the technology language are defined in [Part 3 – 9]. They are summarized in this clause. Except where otherwise stated,
in case of conflict between the explanations therein and the text in Part 3, the latter document should be followed.

The set of diagrams at the end of this clause (i.e., at [11.1.4]) summarizes a metamodel for the technology language.

11.1.1 Implementable standard

A template for a technology object.

11.1.2 Implementation

A process of instantiation whose validity can be subject to test.

11.1.3 IXIT

Implementation eXtra Information for Test.

11.1.4 Summary of the technology language metamodel

Figure 35 below illustrates the concepts of the technology language and the relationships between them. The
descriptions of the concepts have been given above. The descriptions of the relationships between the concepts are
included in the description of the concepts.

Figure 35 – Model of the technology language

11.2 UML profile

The following subclauses describe how the ODP technology concepts described in the previous clause are expressed in
UML in a technology specification. A brief explanation of the UML concepts used in the expression of each concept is
given, together with a justification of the expression used.

NOTE – In this clause UML expressions are only defined for those concepts for which use has been demonstrated through an
example, included in the main body of this document or in its Annex A. Where no example has been identified, the concept
concerned is mentioned, but no UML expression is offered.

11.2.1 Technology object

A technology object is generally specified in terms of its type, which is expressed by an artifact or a node, stereotyped as
«TV_Object». Technology object types can be used to characterize the different kinds of technology objects that are
used in a technology specification (such as PCs, application servers, LANs, WANs, etc.).

Where a technology object is required to represent a specific entity in the Universe of Discourse, it is expressed by
instanceSpecification of an artifact or a node that is stereotyped as «TV_Object».

11.2.2 Object types and templates as technology objects

There are cases where there is the need to model the type or template of a technology object at the instance level. An
example is the case of a technology object, which needs to know the types of the objects it interacts with in order to fix
the appropriate QoS constraints that rule their interactions.

Both type objects and template objects are technology objects, and therefore are expressed by nodes or artifacts, that
express its type or template. To distinguish them from other technology objects, such classes are stereotyped
«TV_TypeObject» or «TV_TemplateObject», respectively. Both stereotypes inherit from «TV_Object».

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 59

The relationship between a technology object and the object that represents its template, or the object(s) that represent
its type(s) can be expressed as an attribute of the node or artifact that specifies the technology object.

11.2.3 Implementable standard

An implementable standard is expressed by a component, stereotyped as «TV_ImplementableStandard».

11.2.4 Implementation

An implementation is expressed by an activity, stereotyped as «TV_Implementation».

11.2.5 IXIT

An IXIT is expressed by a comment, stereotyped as «TV_IXIT».

11.2.6 Summary of the UML extensions for the technology language

The technology language profile (TV_Profile) specifies how the engineering viewpoint modelling concepts relate to and
are expressed in standard UML using stereotypes, tag definitions, and constraints.

Figure 36 shows diagrammatic representations of this profile. See clause [A.6] for a detailed specification of the
stereotypes described here.

Figure 36 – Graphical representation of the technology language profile (using the UML notation)

The following restrictions apply to the elements depicted in Figure 36. They are derived from the corresponding
constraints on the elements shown in Figure 35 and on their relationships:

– Every technology object type is associated with at least one implementable standard.
– Every implementation standard is associated with (or is implemented as) one or more technology

objects.
– Every implementation is associated with (or produces) one or more technology objects.

11.3 Technology specification structure (in UML terms)

A technology specification defines the choice of technology for an ODP system in terms of:
– a configuration of technology objects; and
– interfaces between the technology objects.

NOTE 1 – Links between deployment boxes may be used to model physical communication lines (e.g., to model multiple lines
for redundancies).
NOTE 2 – A network (e.g., the Internet) may be modelled with a deployment box connected with other deployment boxes.

ISO/IEC 19793:2008 (E)

60 ITU-T Rec. X.906 (11/2007)

A technology specification states:
– how the specifications for an ODP system are implemented, which may be modelled with component

instances and the relationships between them with text explanation;
– a taxonomy of such specifications, which may be provided with name(s) of implementable standards

described in stereotyped notes attached to a deployment diagram including a component instance
diagram.

– information required from implementers to support testing, which may be specified with a stereotyped
note describing IXIT.

NOTE 3 – Software architecture styles, such as SOA, MVC and N-tier, are considered mainly in the engineering viewpoint, since
they are closely related to the distribution strategy.

All the elements expressing the technology specification will be contained within a model, stereotyped
«Technology_Spec». Such a model contains packages that express:

– the structure of a node instance, including node instances within a node instance, artefacts, and networks,
using a deployment diagram, and

– communication links among nodes, using a deployment diagram.

11.4 Viewpoint correspondences for the technology language

This clause describes the correspondence concepts for the technology language, but not how they are expressed in
UML. The latter is covered in clause 12.

A set of one or more technology objects correspond to an engineering object, and they implement specified
functionality in corresponding engineering object in technology specific way.

NOTE 1 – The choice of specific technology in the technology viewpoint may constrain the possible architecture/platform
styles/patterns and deployment patterns in the engineering viewpoint specification.
NOTE 2 – A wide variety of factors, including procurement policy, extra-functional requirements, etc., may influence the choice
of technology, and therefore the technology specification.

12 Correspondences specification

12.1 Modelling concepts

A correspondences specification is composed of a set of correspondence specifications.

A complete specification includes six correspondence specifications:
– between the enterprise specification and the information specification;
– between the enterprise specification and the computational specification;
– between the enterprise specification and the engineering specification;
– between the computational specification and the information specification;
– between the computational specification and the engineering specification; and
– between the engineering specification and the technology specification.

12.1.1 Correspondence specification

A correspondence specification is composed of a set of correspondence rules and a set of correspondence links. It
describes consistency relationships between terms belonging to two specifications based on different viewpoints.

When a correspondence rule and a correspondence link are related, this means that the constraint in the correspondence
rule must be enforced by the set of terms referenced by the correspondence link.

12.1.2 Correspondence rule

A correspondence rule is expressed by a constraint that must be enforced by a set of terms belonging to two
specifications from different viewpoints.

A correspondence rule may be:
– a correspondence statement as defined in [7.4], [8.4], [9.4], [10.4] or [11.4];
– some other consistency rule resulting from a design choice.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 61

12.1.3 Correspondence link

A correspondence link is established between two specifications from different viewpoints. Each end of the
correspondence link is called a correspondence endpoint.

12.1.4 Correspondence endpoint

A correspondence endpoint is composed of terms involved in the consistency relationship.

12.1.5 Term

A linguistic construct which may be used to refer to an entity. The reference may be to any kind of entity including a
model of an entity or another linguistic construct.

NOTE – Definition extracted from [Part 2 – 5]. An ODP term is analogous to a UML element.

12.1.6 Summary of the correspondences metamodel

The modelling concepts introduced for a correspondences specification are summarized in Figure 37.

Figure 37 – Correspondences specification concepts

12.2 UML profile

The following subclauses describe how the modelling concepts for correspondences specification are expressed in
UML.

12.2.1 Correspondence specification

A correspondence specification is expressed by a package, stereotyped as «CorrespondenceSpecification».

The relationship between a correspondence specification and the models expressing the viewpoints involved in the
correspondence specification is expressed by a usage dependency, stereotyped as «CorrespondingSpecification». There
are exactly two such dependencies for each correspondence specification.

12.2.2 Correspondence rule

A correspondence rule is expressed by a constraint, stereotyped as «CorrespondenceRule».
NOTE – The constraints expressing constraints defined in ODP standards may be defined outside the package expressing the
correspondence specification to enable reuse among multiple specifications.

12.2.3 Correspondence link

A correspondence link is expressed by a class, stereotyped as «CorrespondenceLink».

It may be constrained by a constraint expressing the applicable correspondence rule.

The stereotype «CorrespondenceLink» has two tag definitions, named endPoint1 and endPoint2, which specify the two
correspondence endpoints of the correspondence link (see [12.2.4]).

A constraint stereotyped as «CorrespondenceRule» is only applied to a class stereotyped as «CorrespondenceLink».

ISO/IEC 19793:2008 (E)

62 ITU-T Rec. X.906 (11/2007)

12.2.4 Correspondence endpoint

A correspondence endpoint is expressed by a tag definition of stereotype «CorrespondenceLink», which gives
references to the elements expressing the terms involved in the correspondence relationship. Thus, this tag definition is
typed by an element (see [12.2.5]) and has a multiplicity of 1..*.

NOTE – As many elements expressing ODP concepts cannot be used directly in a Class diagram, tag definitions are used to
allow indirect reference to those concepts.

12.2.5 Summary of the UML extensions for correspondences specification

Figure 38 shows a graphical representation of the UML profile for correspondences specifications.

Figure 38 – Graphical representation of the UML profile for correspondences specifications

13 Modelling conformance in ODP system specifications

13.1 Modelling conformance concepts

Conformance relates an implementation to a specification. Any proposition that is true in the specification must be true
for its implementation. A conformance statement is a statement that identifies conformance points of a specification and
the behaviour which must be satisfied at these points. Conformance statements will only occur in specifications which
are intended to constrain some feature of a real implementation, so that there exists, in principle, the possibility of
testing.

The RM-ODP [Part 2 – 15] identifies certain reference points in the architecture as potentially declarable as
conformance points in specifications. That is, as points at which conformance may be tested and which will, therefore,
need to be accessible for test. However, the requirement that a particular reference point be considered a conformance
point must be stated explicitly in the conformance statement of the specification concerned, together with the
conformance criteria that should be satisfied at this point.

13.2 UML profile

Reference points are identified in the UML expression of an ODP specification by the use of the stereotype
«ODP_ReferencePoint» (which extends metaclass element) on the element(s) that express them. Conformance
statements are expressed by comments stereotyped «ODP_ConformanceStatement», attached to the elements
(stereotyped «ODP_ReferencePoint») that express the corresponding reference points. These comments describe the
conformance criteria that should be satisfied at the reference point. Therefore, conformance criteria are those elements
stereotyped «ODP_ReferencePoint», which have also attached a «ODP_ConformanceStatement» comment. It is

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 63

possible to attach multiple «ODP_ConformanceStatement» comments to one element stereotyped
«ODP_ReferencePoint», thus declaring several conformance criteria at the same reference point.

Figure 39 shows a diagrammatic representation of this UML profile.

Figure 39 – UML profile for conformance

14 Conformance and compliance to this document

14.1 Conformance

Levels of conformance may vary. At the least, implementations of tools claiming conformance to this document must
support:

– one or more of the UML profiles for viewpoint languages defined in clauses 7 to 11; further conformance
may be claimed if the tool concerned supports policing or enforcing of the constraints specified for the
stereotypes defined in the relative profiles;

– specification of the correspondences, as defined in clause 12, between ODP modelling elements in the
viewpoint models supported by the tool, as defined in [7.4], [8.4], [9.4], [10.4] and [11.4];

– the structuring style for ODP system specifications defined in [6.6].
NOTE – Claims of conformance to the metamodels alone are outside the scope of this document.

14.2 Compliance

Specifications claiming compliance with this document shall:
– use the structuring style defined in [6.6];
– use the UML profiles for the viewpoint languages defined in clauses 7 to 11 to express the concepts and

structuring rules for which they are defined;
– specify the correspondences between ODP modelling elements in different viewpoint models using the

tracing mechanisms defined in [7.4], [8.4], [9.4], [10.4] and [11.4];
– specify the conformance using the UML profile for conformance defined in clause 13.

Compliance to this document does not preclude the use in a specification of concepts and structuring rules in Part 2 and
Part 3, and in the Enterprise Language that are not covered by this document and the definitions of the corresponding
UML profile elements.

ISO/IEC 19793:2008 (E)

64 ITU-T Rec. X.906 (11/2007)

Annex A

An example of ODP specifications using UML

(This annex does not form an integral part of this Recommendation | International Standard)

The following example illustrates the results of use of UML for expressing ODP system specifications.

This annex is not normative.

A.1 The Templeman Library System

A.1.1 Introduction

This is an example of an ODP specification of a Library system, using UML. The example is about the computerized
system that supports the operations of a University Library, in particular those related to the borrowing process of the
Library items. The system should keep track of the items of the University Library, its borrowers, and their outstanding
loans. The library system will be used by the library staff (librarian and assistants) to help them record loans,
returns, etc. The borrowers will not interact directly with the library system.

NOTE – In the following, the library system (or the system, for short) will refer to the computerized system that supports the
library operations, while the library will refer to the business itself, i.e., the environment of the system.

Instead of a general and abstract library, this example is based on the regulations that rule the borrowing process
defined at the Templeman Library at the University of Kent at Canterbury, a library that has been previously used by
different authors for illustrating some of the ODP concepts.

A.1.2 Rules of operation of the Library

The basic rules that govern the borrowing process of that Library are as follows:
(1) Borrowing rights are given to all academic staff, and to postgraduate and undergraduate students of the

University.
(2) Library books and periodicals can be borrowed.
(3) The librarian may temporarily withhold the circulation of Library items, or dispose them when they are

no longer appropriate for loan.
(4) For requesting a loan, the borrower must hand the books or periodicals to a Library assistant.
(5) There are prescribed periods of loan and limits on the number of items allowed on loan to a borrower at

any one time. These rules may vary from time to time, the Librarian being responsible for setting the
chosen policy. Typical limits are detailed below:
– Undergraduates may borrow eight books. They may not borrow periodicals. Books may be

borrowed for four weeks.
– Postgraduates may borrow 16 books or periodicals. Periodicals may be borrowed for one week.

Books may be borrowed for one month.
– Teaching staff may borrow 24 books or periodicals. Periodicals may be borrowed for one week.

Books may be borrowed for up to one year.
(6) Items borrowed must be returned by the due day and time which is specified when the item is borrowed.
(7) Borrowers who fail to return an item when it is due will become liable to a charge at the rates prescribed

until the book or periodical is returned to the Library, and may have borrowing rights suspended.
(8) Borrowers returning items must hand them in to an assistant at the Main Loan Desk. Any charges due on

overdue items must be paid at this time.
(9) Failure to pay charges may result in suspension by the Librarian of borrowing facilities.

In the following, we will refer to these rules as the "textual regulations" of the Library system. They will be the starting
point for the ODP specifications below.

It is important to note that the textual regulations above leave many details of the system unspecified, such as when or
how a borrower suspension is lifted by the librarian, or the precise information that needs to be kept in the system for
each user and Library item. The specification process followed here will help uncover such missing details
progressively, so the appropriate stakeholders of the system can determine them by making the corresponding decisions.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 65

A.1.3 Expressing the Library System Specification in UML

This annex describes a specification of the different ODP viewpoints of such a system, using UML. For each of the
viewpoints, this specification uses the corresponding languages defined in RM-ODP and, where appropriate, expresses
the languages in terms of the UML notation.

The UML specifications of the ODP system will consist of one top-level model stereotyped «ODP_SystemSpec»
composed of five models with the specifications of the five ODP viewpoints (Figure A.1), together with the models that
describe the correspondences between them. These models will be described in the following clauses.

Figure A.1 – UML specification of the ODP system

A.2 Enterprise specification in UML

A.2.1 Basic enterprise concepts

The enterprise viewpoint is an abstraction of the system that focuses on the purpose (i.e., objective), scope and policies
for that system and its environment. It describes the business requirements and how to meet them, but without having to
worry about other system considerations, such as particular details of its software architecture, its computational
processes, or the technology used to implement it.

Four key concepts of the enterprise language are: system, scope, enterprise specification and field of application. In the
first place, the system to be specified is a computerized system that supports the operations of a University Library, in
particular those related to the borrowing process of the Library items. This system has a name "The Templeman Library
System" (or "TLS" for short).

The scope of the TLS system describes its expected behaviour, i.e., the way it is supposed to work and interact with its
environment in the business context. In the enterprise language, the scope of the system is modelled as the set of roles it
fulfils.

In UML, the enterprise specification of the TLS system is expressed by one model, stereotyped «Enterprise_Spec»,
which is shown in Figure A.3, and whose contents are further detailed in this clause.

In the figures that follow, to improve the clarity of the diagrams, the icons shown in Figure A.2 have been used to
represent instances of the corresponding stereotypes.

ISO/IEC 19793:2008 (E)

66 ITU-T Rec. X.906 (11/2007)

«EV_Community»

«EV_Objective»

«EV_Object»

«EV_CommunityObject»

«EV_ODPSystem»

«EV_Role»

«EV_Interaction»

«EV_Process»

«EV_Step»

«EV_Artefact»

«EV_PolicyEnvelope»

«EV_PolicyValue»

Figure A.2 – Enterprise language icons

The ODP Enterprise Language specification does not prescribe any particular method for building the enterprise
specification of a system, as the approach taken will depend very much on the system being specified, the business that
it will support, and the constraints that arise from the environment in which the system will operate. For this example,
the following process has been followed:

1. Identify the communities, with which the system is involved, and their objectives.
2. Define the behaviour required to fulfil the objectives of the communities. This may be in the form of

processes, their corresponding actions, and the participant roles in them. Objects may participate in
actions as actors (if they participate in or perform the action), artefacts (if they are referenced in the
action), and resources (if they are essential to the action and may become unavailable or used up).

3. In addition, depending on the modelling objectives, behaviour may be modelled in the form of
interactions between objects fulfilling roles. This approach is appropriate when it is required to model a
behaviour in detail.

4. Identify the enterprise objects in each community (either as typical instances of a type, or as unique
instances) and how they fill the roles.

5. Identify the policies that govern the behaviour.
6. Identify any behaviours that may change the rules that govern the system, and the policies that govern

such behaviours (changes in the structure, behaviour or policies of a community can occur only if the
specification includes the behaviour that can cause those changes).

7. Identify the actions that involve accountability of the different parties, and the possible delegations.
8. Identify any behaviour that may change the structure or the members of each community during its

lifetime, and the policies that govern such behaviour.

Of course, the order of these activities need not necessarily be linear, and nor will all activities be appropriate for all
modelling situations.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 67

A.2.2 Communities

As shown in Figure A.3, the enterprise specification of the library example contains two communities (the Library and
the Academic Community). Each of these is specified in a package, stereotyped as «EV_CommunityContract»,
containing a component, stereotyped as «EV_Community» (as well as other elements specifying other aspects of the
community). Each of these components has a dependency, stereotyped as «EV_RefinesAsCommunity», from the
relevant class stereotyped as «EVCommunityObject» (Library and Academic Community) which expresses the
community object that models the community when considered as a single object. (Note, the Academic Community is
included only to illustrate the principle that, at the top level, there may be more than one community. The Academic
Community is not further detailed in this example.) For convenience, these community objects are included in a
package named as Enterprise Objects (Global), which contains those enterprise objects that model entities whose
scope is wider than the Library itself. Examples of such enterprise objects are Person and the University admin
system, with which the Library System has to interact.

Figure A.3 – UML Enterprise specification of the Library System

The field of application of the enterprise specification describes the properties that the environment of the ODP system
must have for the specification to be used. It is expressed in a tagged value of the package, stereotyped as
«Enterprise_Spec» that contains the enterprise specification of the system.

ISO/IEC 19793:2008 (E)

68 ITU-T Rec. X.906 (11/2007)

Figure A.4 – UML specification of the Library community

A community is a configuration of objects modelling a collection of entities (e.g., human beings, information processing
systems, resources of various kinds, and collections of these) that are subject to some implicit or explicit contract
governing their collective behaviour, and that has been formed for a particular objective.

The package containing the specification of the Library community is stereotyped "EV_CommunityContract", and
contains the component, Library, stereotyped as «EV_Community» that expresses that community and owns the
processes of the community, three packages containing, respectively, the roles in the community, the set of enterprise
objects specific to the community (Library Enterprise Objects, which model its structure), and the policies for the
community, and one class (stereotyped «EV_Objective») which has a tagged value that expresses the community
objective as follows: "To allow the use, by authorised borrowers, of the varying collection of Library items, as fairly
and efficiently as possible". This class has an association, stereotyped as «EV_ObjectiveOf», with the component
expressing the Library community.

A.2.3 Processes

Processes specify behaviour in terms of (partially ordered) sets of steps, and are related to achieving some particular
sub-objective within the community. Steps are abstractions of actions, which may hide some of the objects participating
in the actions.

Figure A.5 – Processes

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 69

The processes of the Library community are expressed by a set of activities stereotyped as «EV_Process» that have the
component that expresses it as their context, as shown in Figure A.5.

Each of these activities has associated with it an Activity Diagram that expresses the steps of the process, and identifies
the roles involved in these steps (either as actor or as artefact roles). Actor roles are expressed by the activityPartitions
(stereotyped «EV_Role»), and artefact roles are expressed by objectNodes (stereotyped «EV_Artefact»). In this
example, we detail the Borrow item and the Add member processes.

A.2.3.1 Borrow item process

In Figure A.6, the behaviour of the Library system role in the Borrow item process is defined by the actions in the
activityPartition for the Library system role. The complete behaviour of the Library system role is the composition of
its behaviours in all of the processes in which it is involved.

The process starts with a Borrower (a role filled by a Library member) performing the step State loan requirement.
(The exact mechanism and procedures for doing this are not stated at this time, but it could be as simple as the borrower
taking the item concerned to a desk for processing by the Library assistant.) This step implies that a Loan (enterprise
object) has come into existence, and this fact is modelled by an artefact of Loan expressed as an objectFlow, named in
the model borrower requests which has the type Loan.

Note that in this example, artefacts have been further detailed by identifying for each, a state of the enterprise object
that the artefact represents a usage of. This is not mandated by the enterprise language but allows the use of a UML
feature to build an important bridge to the information specification. The resultant stateMachine of the class that
expresses the enterprise object can form the basis for expressing a dynamic schema for the associated information
object type. For details of the stateMachine for the Loan enterprise object, see Figure A.16. In this case, the artefact
represents the enterprise object Loan in the state Requested by borrower.

The Assistant (a role filled by a Person who is of type Library Staff), next performs the step Check request, which
references, as an artefact, the enterprise object Loan in the state Requested by assistant. Again, this step, being part of
the human behaviour associated with the system's operation, is not further detailed in this model, which is directed
towards the system's specification. In a real life situation, such behaviour would need to be documented, and the model
may be a good place to do it.

Figure A.6 – Borrow item process

Next the enterprise object Library system (filling the role Library system) performs the step Validate loan. This step,
which may be more or less complex, depending on the rules of the library, and is constrained by the Lending policies
(see Figure A.19), is not detailed at this level. Instead, as can be seen from the small forked symbol under the name of
the step, the model element is linked, using the callBehavior feature, to a stateMachine which expresses the detailed
behaviour of the role Library system, in this process. See Figure A.12 for this detail.

NOTE – Note that the role Library system is filled by an enterprise object with the same name. It is a fact of life that in
enterprise models, enterprise objects and the roles they fulfil often have the same name. This is due to the natural tendency of
people to name things by the things they do, or to name behaviour by the thing that exhibits it. Since a key objective of an RM-
ODP enterprise specification is to be approachable to the stakeholders it is not considered desirable to introduce artificial new
names, and instead to make clear whether a role or an enterprise object is being referred to.

ISO/IEC 19793:2008 (E)

70 ITU-T Rec. X.906 (11/2007)

The remainder of Figure A.6 is largely self-explanatory and is not detailed further in textual form. It should be noted
that the states of the enterprise object Loan, identified in the various artefacts, are not exhaustive. Other states, see
Figure A.16, may also be discovered from considerations of other behaviour. For example, the sub-states of Loan
extant, Valid and Overdue, are discovered from consideration of Fining interactions or Fining processes.

A.2.3.2 Add member process

As a further example of process modelling, Figure A.7 shows the top-level process involved when a prospective new
member of the library applies to join. The diagram is largely self-explanatory, but it can be seen that through the use of
artefacts a number of states of the Library member enterprise object (but by no means all of them), have been
identified.

In this process, the Library system has 3 steps, which are detailed in two different ways. The simple case is for the two
steps Create member and Refuse new member. Each of these is detailed by an opaqueBehavior owned by the role
Library system, see [A.2.4].

Figure A.7 – Add member process

The step Validate member is refined as a process, also named Validate member, which is owned by the process Add
member. (It is unfortunate that there is no visual means of indicating which of the different detailing approaches is
used; in the model, however, querying the model element concerned will show whether the detail of a step is provided
by an activity expressing a process, a stateMachine expressing a set of actions, or an opaqueBehavior modelling directly
the details of the behaviour required.) The step is performed (at the high level) by the Library system (enterprise
object and role). In this example, for the purposes of illustration, it has been assumed that, because appropriate
technology is available, the actual check on validity of an application will be made by the agent best placed to do it,
namely an enterprise object, known as the University admin system (filling the role University admin system), and
that a direct link will be made in order to check an applicant's credentials. The details of this sub-process, as well as the
required states of the enterprise object Library member, are shown in Figure A.8. As in other activity diagrams, some
of the steps performed by either the Library system role or the University admin system role are detailed elsewhere

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 71

in the model, as indicated by the small forked symbol under the name of the step. In each case they are detailed by an
opaqueBehavior, owned by the relevant role.

Figure A.8 – Validate member sub-process

A.2.4 Roles

From the textual description of the Library (and, in real life more importantly, from discussions, interviews and
workshops with stakeholders), we can identify several roles in the Library community, in particular borrowers with
various privileges, librarians, library assistants, and the computerized system that supports the Library operations
(Library System). Figure A.9 shows these Library roles within the package that contains the specification of the
community, each with a realization link to the component that expresses the community.

ISO/IEC 19793:2008 (E)

72 ITU-T Rec. X.906 (11/2007)

Figure A.9 – Library community roles

The behaviour identified by a role is expressed by the set of behavioural features of the class that expresses the role. An
example of the (partial) list of behavioralFeatures of the role Library system is shown in Figure A.10, which shows that
the behaviour of the role is specified in three opaqueBehaviours, viz: Create member, Prepare validation request,
and Refuse new member, and one stateMachine, Loan validation.

Figure A.10 – Behaviour of the Library system role

A.2.5 Interactions

Behaviour can also be modelled in terms of interactions between roles in a community. This is normally appropriate for
modelling the detail of a particular interaction and the associated behaviour of the roles concerned where a process
model lacks semantic power. In this example, we detail an interaction between the Assistant role and the Library
System role, and the associated behaviour of the Library System role since we are concerned to specify in detail the
behaviour which the Library System is required to provide.

The relationships between the classes expressing the interaction involved in the behaviour of requesting a loan, and
those classes expressing the roles involved in this interaction are shown in Figure A.11. There is one interaction in this
case: Process Loan in which Assistant and Library System are involved. The relationship is expressed with an
association, stereotyped as «EV_InteractionInitiator» or «EVInteractionResponder» as appropriate. Note that, with
delegated authority from the Librarian role, the Assistant role is performing an Accountable actions, in performing its
actions as part of the Process loan interaction.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 73

Figure A.11 – Process Loan interaction

Figure A.11 also shows that the Process Loan interaction is initiated by the role Assistant and responded to by the role
Library System and involves, through associations which are each stereotyped as «EV_ArtefactReference», three
signals, each stereotyped as «EV_Artefact», expressing artefact roles of the Loan enterprise object: loan: requested by
assistant, loan: authorised and loan: disqualification respectively.

Figure A.12 shows the stateMachine for the behaviour defined for the role Library system, in the interaction Process
loan, with the role Assistant.

Figure A.12 – State diagram for Library system role in the interaction Process loan

This example has defined the behaviour of the Library system role in the Request Item interaction. The complete
behaviour of the Library system role is the composition of its behaviours in all of the interactions in which it is
involved (see Figure A.10).

A.2.6 Enterprise objects

A.2.6.1 Actors

Roles are fulfilled by enterprise objects. The fulfilment of actor roles in a community by enterprise objects is governed
by assignment rules. Using UML, the fact that an actor role may be fulfilled by an enterprise object is expressed by an
association, stereotyped as «EV_FulfilsRole», between the classes that express the objects and the roles concerned.
Assignment rules can be constrained by the policies of the system, in which case there would be links between the roles
and elements expressing the policies. Figure A.13 shows the UML expression of the basic (i.e., unconstrained by any
policies) assignment rules of the Library community.

ISO/IEC 19793:2008 (E)

74 ITU-T Rec. X.906 (11/2007)

Figure A.13 – Actor Role fulfilment and assignment rules

A.2.6.2 Artefacts

Enterprise objects may also participate in actions by filling artefact roles. In this example, Loans are enterprise objects
that model the relationship that is established between a borrower and an item when he/she requests the item, and
continues for a period from either the loan being refused or the item, having been loaned, being returned. Loans fulfil
artefact roles in several actions (from process model, see interaction model, see [A.2.5] above), as shown in
Figure A.14.

Figure A.14 – Loan as an Artefact

A.2.6.3 Summary of enterprise objects

In summary, the enterprise objects, and the relationships between them, that have roles (either actor or artefact) in the
Library community are shown in Figure A.15. Note that the list of such items includes enterprise objects that have
wider scope than just the Library community.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 75

Figure A.15 – Enterprise objects

A.2.6.4 Enterprise object states

As noted in [A.2.3.1], it is useful to model the states of the enterprise objects, because they may help specify the
corresponding information object types.

Figure A.16 is a stateMachine for the Loan enterprise object and is compiled from consideration of both the Process
model (see [A.2.3]) and the Interaction model (see [A.2.5]).

Figure A.16 – States of the Loan enterprise object

In a similar fashion, Figure A.17 is an incomplete diagram representing those of the states of the enterprise object
Library member that have been identified from the process models that have been developed, including the Add

ISO/IEC 19793:2008 (E)

76 ITU-T Rec. X.906 (11/2007)

member process shown in Figures A.7 and A.8. It should be noted that these state diagrams will only be "complete"
when all behaviour that the system under consideration is involved in has been defined.

Figure A.17 – States of the Library member enterprise object

A.2.7 Policies

A.2.7.1 General

In an enterprise specification the concept, policy is intended to be used where the desired behaviour of the system may
be changed to meet particular circumstances.

The Policies package specifies the community policies, which constrain the structure and/or the behaviour of the
community. Therefore, the elements of that package will constrain the elements of the other two packages in the
Library Community package (Behaviour and Library Enterprise Objects).

Providing an independent and modular specification of policies will enable the definition and implementation of some
traceability mechanisms, both intra- and inter-viewpoints. Within the UML expression of the enterprise specification of
a system, we need to be able to list all the elements affected by a given policy, and all the policies that constrain a given
element, in case there is a change in the specification's elements or policies. But such independent expression of
enterprise policies may also allow the definition of correspondences between these policies and other related elements
from different ODP viewpoints (such as information invariant schemata). We expect UML modelling tools to exploit
such traceability mechanisms, checking for absences of policies for some of the modelling elements, and also for policy
conflicts and inconsistencies at various levels.

In this relatively simple example, the aspects of the system that are most appropriate for use of this concept are in the
rules regarding borrowing permissions (see [A.1.2] rule (5)).

According to the considerations above, in order to be properly specified, policies need to identify the relevant enterprise
elements to which they apply: roles, objects, actions, processes, communities, as well as their relationships. Such
elements are precisely those described in the two other packages that form part of the enterprise specification of the
system: Enterprise Objects and Behaviour.

A.2.7.2 Expressing ODP policies in UML

In this example, we will express policies using the pattern shown in [7.2.14], Figure 9, which corresponds to the
elements that comprise the specification of an enterprise policy in the Enterprise Language [E/L – 7.9.2]:

– description: text with the description of the policy in natural language;
– controllingAuthority: an authority that controls the policy (in this case, a role);
– relatedBehaviour: an identified behaviour (i.e., role) that is subject to that authority;
– relatedObjects: optionally, an object or objects that may fulfil the roles involved;
– specificationConstraint: set of constraints on the modelling elements involved;
– affectedBehaviour: the subset of the related behaviour that is required, permitted, forbidden, or

authorized.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 77

The behaviours, roles and objects related to a policy specification in UML refer, of course, to the UML elements
expressing these behaviours, roles and objects, respectively. Such elements will normally be used as contexts in the
constraints that specify the policy. Note that all policy statements are made in a context that defines the elements in the
specification to which the policy applies, and have a condition that specifies when the policy can be used. In this sense,
OCL can be of real help. Each OCL constraint has a particular context, related to some element in the model. OCL
statements can be directly associated to some elements in a diagram, establishing an implicit context by attachment, or
they can form part of a separate piece of specification in which the context of each statement is explicitly established by
naming. Rules are expressed as Constraints, using a given notation (such as OCL, or a specific policy language).

A.2.7.3 Expressing Loan policies in the Templeman Library

Figure A.18 shows the structure of the Policies package.

Figure A.18 – Structure of the Policies package

Details of the Lending Policies are shown in Figures A.19 and A.20, which for illustrative purposes offer both
behavioural modelling styles (i.e., with processes and interactions). From this, it can be seen that the Lending Limit
Policy is set by a process Set lending limit policy (located in the Administrative Processes package), and impacts on
the role Library System, when taking part in the process Borrow Item, or the interaction of the same name.

Similarly the Loan Duration policy is set by the interaction Set loan duration policy (located in the Administrative
Interactions package), and impacts on the role Library System, when taking part in the process Fine Borrower, or
the interaction of the same name.

ISO/IEC 19793:2008 (E)

78 ITU-T Rec. X.906 (11/2007)

Figure A.19 – Examples of policy expressions: Lending limit policy

Figure A.20 – Examples of policy expressions: Loan duration policy

A.2.8 Accountability

An enterprise specification should also identify those actions that involve accountability of a party, where a party
models a natural person or any other entity considered to have some of the rights, powers and duties of a natural person.
Principal parties are responsible for the acts of any parties acting as their delegated agents, including their possible
commitments, prescriptions, evaluations, declarations and further delegations.

Accountable parties in a given process or action are expressed in the UML diagram that defines such process or action.
The stereotype «EV_Accountable» on an association between an actor and an action indicates the actor that is

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 79

accountable for the action. Figure A.21 shows an example of the use of such a stereotype, indicating that the Assistant
is the accountable party for the Process Loan action.

Delegations are expressed in UML by associations between roles in activity diagrams stereotyped «EV_Delegation»,
showing the principal and agent parties of each delegation. Such associations allow delegated parties to initiate or
participate in actions on behalf of their principals. In particular, Figure A.21 specifies that the Librarian can delegate
his actions to an Assistant. As previously mentioned, the delegation may convey some information about its duration,
conditions, further delegations allowed, etc. Attributes of the «EV_Delegation» stereotype may be used to express such
kinds of information.

Figure A.21 – Example of delegation

A.3 Information specification in UML

A.3.1 Overview

The information viewpoint is concerned with information modelling. An information specification defines the
semantics of information and the semantics of information processing in an ODP system, without having to worry about
other system considerations, such as particular details of its implementation, the computational process, or the nature of
the distributed architecture to be used. The information specification in this subclause defines both the basic concepts
for information used in this specification, and the invariant, static and dynamic schemata.

In the figures that follow, to improve the clarity of the diagrams, the icons shown in Figure A.22 have been used to
represent instances of the corresponding stereotypes.

«IV_Object»

«IV_Action»

«IV_InvariantSchema»

«IV_StaticSchema»

«IV_DynamicSchema»

Figure A.22 – Information language icons

According to [8.4], the UML information specification of the Library system is expressed by one model, stereotyped
«Information_Spec», that contains a set of packages that express the invariant, dynamic and static schemata of the
ODP information specification in UML. Figure A.23 shows the information specification of the Library system,
composed of four main packages. The following subclauses define these packages and their contents.

ISO/IEC 19793:2008 (E)

80 ITU-T Rec. X.906 (11/2007)

Figure A.23 – Structure of the information viewpoint specification of the Library system (excerpt)

A.3.2 Basic elements

From the textual regulations of the Library, and from the objects, roles and artefacts identified in the enterprise
specification, several information object types can be identified, namely Borrowers, library Items, Librarians and
Library Assistants. They describe the information stored and handled by the Templeman Library System about them.
In addition, a Calendar object should model the passage of time, and Loan objects will model the relationships
between Borrowers and Items. Figure A.24 shows a class diagram with all the basic object types used in this
information specification. UML class Person contains the personal information about the library users, librarians and
assistants.

Figure A.24 – Object types of the information viewpoint specification of the Library system

The attributes of each class define the information captured by this specification. Please note that this information
specification is built considering the elements of the enterprise specification described in [A.2]. The RM-ODP does not
impose any methodology for the definition and use of the five viewpoints. However, for building the UML information

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 81

viewpoint specifications of this particular example, we have used its enterprise specifications. This approach greatly
facilitates the definition of the ODP correspondences between the related entities that appear in the different
viewpoints, and also simplifies the treatment of consistency among viewpoints. Viewpoint consistency tries to detect
and resolve the possibility that different viewpoints may impose contradictory requirements on the same system.

In particular, this information specification incorporates the information kept in the system for each user and library
staff (name, address, phone, e-mail), and for each Library item: title, author, ISBN or ISSN, its physical location,
and its current status: on-loan, free, withheld (if the circulation of the item has been temporarily withheld), disposed
(if the item has been sold, donated, recycled, or discarded), missing (if the item is missing), or other (in case the item is
in a status not contemplated by any of the previous options).

Information object LibraryPolicies contains the library system values associated to the policies identified in the
enterprise viewpoint specification, such as the details about the daily rates to be charged to late-returners and the current
loan limits and periods for the different kinds of users.

General and common parameters about the library are modelled by another information object (Library). Its attribute
isOpen stores whether the library is open or not to the public, while its attribute credit stores the cumulative credit
obtained by collecting the payment of the fines. The Library object is a composite information object which includes
the information about the current Library Borrowers, Items and Loans. It also gathers the information about the rest of
the objects of the system, expressed in terms of associations between this object and the Librarian, Assistants,
LibraryPolicy and Calendar objects.

The classes in Figure A.24 express the ODP information object types of the library system information specification.
Please note that the information specification captures the information handled by the Templeman Library System, and
there is no need to represent the computerized system itself (as happened in the enterprise viewpoint specification). This
is one notable difference between the enterprise and the rest of the viewpoints. The enterprise viewpoint focuses on the
system and its environment (and therefore the system needs to be modelled as one of the enterprise objects in the
specification), while the rest of the viewpoints focuses on the information, functionality, distribution and technology of
the system itself.

The class diagram in Figure A.24 also expresses constraints on the kinds of objects and the kinds of links that can
appear in a valid object configuration of the information specification. Such restrictions on the classes, their attributes,
and the multiplicity of the associations specify some invariant schemata of the information specification (see [A.3.3]).

The information actions of this viewpoint specification are the ones described in Figure A.25. These actions have been
identified from the processes and interactions defined in the enterprise viewpoint specification of the system. In the
UML information specification, the information actions are expressed using a package that expresses the invariant
schema that specifies the action types supported by the information objects of the system.

Figure A.25 – Action types of the information viewpoint specification of the Library system

As information action types, they will all be expressed in this example by signals, which will trigger the state changes
in the stateMachines of the objects. These stateMachines will express the dynamic schemata that will describe the state

ISO/IEC 19793:2008 (E)

82 ITU-T Rec. X.906 (11/2007)

changes caused in the system by such information actions. Those dynamic schemata will be described later in [A.3.5].
Attributes of the signals model the information conveyed by the ODP interactions expressed by such signals.

Once we have defined the main information object types of the system, and the possible actions that may take place, the
way the library system works (from the perspective of the information viewpoint) needs to be defined in terms of how
information is processed. Invariant, static and dynamic schemata are the mechanisms defined for that purpose.

A.3.3 Invariant schemata

An invariant schema is the specification of the types of one or more information objects that will always be satisfied by
whatever behaviour the objects may exhibit. The following are examples of invariants that can be defined for the
Library system:

1. Both Library users and items should have unique identifiers in the system.
2. No item can be simultaneously referenced by two loans in the system.
3. There should be at most one Librarian and at least one Assistant on duty while the library is open.
4. The number of pending loans in the system should be consistent with the sum of the values of attribute

borrowedItems of all the Borrower objects.
5. Borrowers who do not pay their fines will eventually be suspended.
6. Suspended borrowers who settle their debts will eventually be reinstated, and their borrowing rights

restored.

Please note how some of these invariants have been incorporated into the UML class diagram that describes the system
structure (shown in Figure A.24) in terms of the multiplicity of the associationEnds. This is the case, for instance, of
invariant 2 (which is represented by a multiplicity "1" in the corresponding associationEnd).

Other invariants can be naturally expressed in UML by associating OCL constraints to some of the elements of the
specification. For example, invariant 1 imposes that the identifiers of users and Library items should be unique in the
system. This invariant can be expressed in terms of OCL constraints on the Library class:

-- Invariant 1
 context Library
 inv UniqueItemIdentifiers: self.item->isUnique(id)
 inv UniqueMemberIdentifiers: self.borrower->isUnique(id)

Invariant 2 imposes that no item can be simultaneously referenced by two loans in the system. As mentioned before,
this invariant has been implemented by a multiplicity "1" in the corresponding associationEnd.

Invariant 3 states that there should be at most one Librarian and at least one Assistant on duty while the library is
open.

-- Invariant 3
 context Library inv AtMostOneLibrarianAndAtleastOneAssistantWhileLibraryOpen:
 self.isOpen implies
 (sef.librarian->select(onDuty)->size()<=1) and
 (self.assistant->select(onDuty)->notEmpty())

Invariant 4, which imposes a consistency check on the system, can be also expressed by an OCL constraint on the
Library class:

-- The number of pending loans should be consistent with the sum of the number of pending loans of each user.
 context Library inv ConsistentNumberOfLoans:
 (self.borrower.borrowedItems->sum()) = (self.loan->select(status=extant)->size())

Other invariants may need to be expressed using different notations. In fact, invariants 5 and 6 can be considered as
predicates in a given discrete linear temporal logic that imposes some fairness constraints. OCL is not expressive
enough to specify them, although we can always either use a textual description of such predicates, or use any other
notation (in this case we will consider an extension of OCL with the temporal logic operators "always" and
"eventually"):

-- Invariant 5: Borrowers who do not pay their fines will eventually be suspended.
context Borrower
 inv: eventually always (fines = 0) or always eventually (suspended = true)

-- Invariant 6: Suspended borrowers who have paid their fines will eventually be released
 context Borrower
 inv: eventually always (fines > 0) or always eventually (suspended = false)

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 83

Finally, other OCL constraints may express invariants relating to well-formedness rules of the model. For instance, the
following constraint restricts the valid values of Loan objects:

context Loan inv ValidLoan:
 issueDate <= dueDate

Similarly, other OCL expressions can help determine the value of some of the system attributes, e.g., when the library is
open:

context Library inv OpeningTimes:
 (hour(self.clock.now) >= 8) and (hour(self.clock.now) <5) implies self.isOpen = true

All these invariants are expressed as constraints, and specified in the InformationObjects package, associated with the
corresponding elements.

A.3.4 Static schemata

Static schemata provide instantaneous views of information, for example at system initialization, or at any other
specific moment in time that is relevant to any of the system stakeholders. This specification of the instantaneous state
of the objects is precisely the one provided by UML object diagrams (also known as snapshots in some UML dialects).

For instance, the UML package shown in Figure A.26 expresses the initial state of the system, just before the Library
opens for the first time, when there are no items, borrowers or loans. There are, however, one clock, one assistant, and
one librarian registered in the Library at that moment in time. At least one assistant should be present in order for such a
configuration of objects to respect the invariant schemata specified by the multiplicity of the associations in the class
diagram shown in Figure A.24. Please note as well how the constraints on the Library object explicitly specify the
multiplicity of the links, and how this static schemata defines the initial values of the variables that store the system
policies, as described in the textual regulations of the library.

Figure A.26 – Static schema with the initial state of the Library system

Similarly, the UML object diagram shown in Figure A.27 expresses a static schema that models the state of the system
at a moment in time (namely, at year end, when the state of the system should be recorded to serve as an inventory), in
which there are only two Borrowers (John and Mary), one Librarian (Emerald), two Assistants (Eve and Pete), three
Books (one copy of Ulysses and two copies of Dubliners), and one Periodical (today's edition of The Times). There is
only one Loan (Mary borrowed one copy of Ulysses in March).

ISO/IEC 19793:2008 (E)

84 ITU-T Rec. X.906 (11/2007)

Figure A.27 – Static schema with the configuration of the Library system at day 95

A.3.5 Dynamic schemata: Description of the system behaviour

The way the system evolves is dictated by the behaviour of the objects of the system, which in the information
viewpoint is modelled in terms of a set of dynamic schemata. They describe the allowed state changes of the system or
of any subset of its constituent information objects.

This subclause presents dynamic information schemata that describe changes of state associated with the action types
identified in [A.3.2]. In this case, such action types have been expressed by signals stereotyped «IV_Action».

NOTE – It is worth noting here that some authors have proposed the use of UML operations for expressing action types.
However, this approach presents some limitations. For example, it forces actions to be owned by one object (i.e., the object to
which the operation is assigned). In general, it may be the case that more than one ODP object might be related to a single
action, because ODP interactions are pieces of shared behaviour, with no necessarily single owner or initiator. However, the
interaction model of the UML is based on message exchange between objects, which forces all UML operations to be assigned to
only one object. Thus, if ODP information actions are expressed by UML operations, the system designer has to decide, for
every action, the object to which an operation expressing the ODP information action type is assigned. This is in general a
difficult decision, and therefore more practical applications are required in order to identify a set of guidelines or patterns to
support the practising modeller in assigning ODP action types to UML classifiers.

The behaviour of every information object is specified using UML stateMachines, which describe its state changes as a
consequence of the occurrence of the signals that express the possible information actions previously specified. These
stateMachines express the dynamic schemata of the ODP information specifications. Please note how a signal causes
changes in all stateMachines that define a transition for it. In this way we can model, in a natural manner, the fact that
an ODP interaction may cause a state change in all objects related to that interaction, i.e., an ODP interaction is a piece
of shared behaviour. This would be very difficult to do if ODP interactions were expressed by operations.

In this case, the dynamic schema of the library is specified in terms of the stateMachines of the classifiers that support
the actions defined in [A.3.2], namely the Librarian, Assistant, Borrower, Loan and Item. Figures A.28, A.29 and
A.30 show some of these stateMachines, for illustration purposes.

The specification of these stateMachines has been developed based on the enterprise specification of their
corresponding objects. Thus, Figure A.28 depicts the stateMachine of the Loan information object, based on the
corresponding stateMachine of the Loan enterprise object depicted in Figure A.16.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 85

Figure A.28 – StateMachine of the Loan information object

Likewise, Figure A.29 shows the stateMachine of the Borrower information object, based on the corresponding
stateMachine of the Loan enterprise object depicted in Figure A.17. In the information specification, two of the states of
the enterprise object, Valid and Suspended, have been refined (defining them as composite states) to show the effects
of fines imposed by the assistants and debt settlements (FineMember and PayFine actions). Figure A.29 also shows
the transitions between the states, and the valid actions accepted in each one.

Figure A.29 – StateMachine of a Borrower information object

ISO/IEC 19793:2008 (E)

86 ITU-T Rec. X.906 (11/2007)

Finally, Figure A.30 shows the stateMachine of the Item information object.

Figure A.30 – StateMachine of an Item information object

Note as well that the previous diagrams show not only the effect of the actions on the corresponding information
objects, but also the states in which the actions are allowed, serving as pre- and post-conditions for those actions.

A.3.6 Correspondences between the Enterprise and the Information specifications

Correspondences between the Enterprise and Information specifications are expressed in the corresponding package
LibrarySystem (E-I Corr), as shown in Figure A.1. Correspondences are expressed using the Correspondence Profile
(see [12.2]).

Figure A.31 shows an example of a correspondence between Loan entreprise and information objects. There is a top-
level correspondence, LoanCorrespondence, which links these two types of objects. Such a correspondence is broken
down into a set of correspondences, which establish its particular details.

Thus, correspondence LoanInstances establishes that the sets of Loan instances in the enterprise and information
models should be consistent. This is specified by stating that the set of names of the instances of enterprise loans should
include the set of names of the instances of information loans.

Similarly, correspondence CheckLoanAuthorization establishes a correspondence between the opaqueBehaviour
ValidateLoanRequest of the LibrarySystem role (see Figures A.6, A.12 and A.19), and the transitions between states
of the Loan information object (see Figure A.28).

Figure A.31 – Example of correspondence between the Enterprise and Information specifications

Of course, top-level correspondence LoanCorrespondence is composed of more correspondences, not shown here for
the sake of simplicity.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 87

A.4 Computational specification in UML

A.4.1 Overview

The computational viewpoint is concerned with functional decomposition of an ODP system in distribution transparent
terms. A computational specification defines units of function as computational objects, and the interactions among
those computational objects, without considering their distribution over networks and nodes. This subclause
concentrates on the computational specification in UML of the borrowing process of the Library system.

A.4.2 Computational objects and interfaces

The basic structure of the computational viewpoint specification of the Library system is shown in Figure A.32. Each
package specifies the corresponding elements, and will be described in the following subclauses. The elements of each
package have been defined by "componentizing" the functionality specified in the enterprise and information
viewpoints, identifying the basic operations first and grouping them into interfaces. These interfaces define operations
which handle data, as part of their parameters and return values. The types of these parameters are specified in the
DataTypes package. Finally, the computational objects that own these interfaces are specified in the ObjectTemplates
package.

Figure A.32 – Basic structure of the computational viewpoint specification of the Library system

It is interesting to note that the decomposition of the system functionality into computational objects that interact at
interfaces provides the software architecture of the application. In UML, we express such architecture using a
component diagram that describes the computational object templates and the computational interface templates at
which these objects interact.

In the Library system example, the software architecture of the application is composed, at the highest level, of three
main components: one that describes the basic functionality of the system (LibrarySystemMainFunctionality), and
the other two (InterfaceToAssistant and InterfaceToLibrarian) which specify the user interfaces that the application
will offer to assistants and librarians to interact with it, respectively. This is shown in Figure A.33.

ISO/IEC 19793:2008 (E)

88 ITU-T Rec. X.906 (11/2007)

Figure A.33 – Component diagram with computational object templates and interface signatures of the system

Each computational object is expressed as a component. Object interfaces are expressed as component ports. Finally,
interface signatures are expressed as interfaces. Thus, computational objects interact which each other at computational
interfaces (port instances), which are instantiated from their corresponding interface templates (ports). Each port uses or
implements some interfaces, which specify the corresponding interaction signatures. In Figure A.33, the ports of the
InterfaceToAssistant and InterfaceToLibrarian components make use of the services provided by the ports of the
LibrarySystemMainFunctionality component.

Figure A.34 shows the interfaces that specify the interaction signatures of the Library system. They are all operation
interface signatures, since our interaction mechanisms have been modelled as such. The way to identify these
operations is by inspecting the enterprise and information specifications, trying to capture and specify as computational
operations the relevant enterprise processes, steps and actions of the LibrarySystem enterprise object, together with
the relevant actions of the information specification. The way to group them into operation interfaces that provide
services depends on the designer's choice, and is usually based on the similarity of the functionality offered by each
operation.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 89

Figure A.34 – Interaction signatures

Once the high-level architecture of the application has been defined, the next step is to refine its components, specifying
their internals. Figure A.35 shows the structure of the LibrarySystemMainFunctionality computational object. It has
been refined into 6 computational objects (expressed as six components), each one dealing with a particular piece of
functionality. Each component interacts with the rest through its ports, which express the corresponding computational
interfaces. We can see how each port is of a particular type (described in the InterfaceTemplate package) and
implements and/or uses several interfaces (which express the corresponding interface signatures shown in Figure A.34).
The way to achieve such decomposition is something that again depends on the designer's choice.

ISO/IEC 19793:2008 (E)

90 ITU-T Rec. X.906 (11/2007)

Figure A.35 – Internal structure of the LibrarySystemMainFunctionality computational object

The connections between the different components are shown using either the "ball-and-socket" notation that expresses
implicit primitive bindings between the corresponding computational objects (see [9.2.17]), or some assembly
connectors that express the explicit primitive bindings. We have also used some delegation connectors to map the
external view of the component to its internal view (see [UML – 8.3.1]), specifying how the services provided by an
external port are in fact provided by a port of one of its internal components.

Please note as well how in Figure A.35 we have included further information about the components, such as some of
their internal realizing classifiers. For instance, the LoanMgr component is in charge of managing the loans in the
system (representing, e.g., a database that stores and manages them) and thus contains a realizing classifier (the
LoanManager "focus" class) which specifies its behaviour, and that owns the set of Loans of the systems (that
represent the elements of the database). The structure and contents of such Loans are specified in the DataType
package, which is shown in Figure A.36. These data types have been derived from the corresponding information
object types (which in turn came from the enterprise artefacts, roles and objects).

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 91

Figure A.36 – Data types handled by the computational objects

A.4.3 Behaviour

Apart from the structural aspects, we need to specify the behaviour of the elements of a computational specification.
StateMachines can be used to express the internal behaviour of computational elements: ports, components and
realizing classifiers. The way to use stateMachines to represent that behaviour has already been illustrated in the
enterprise and information specifications.

In case we want to specify object interactions, activities can be useful because they are abstractions of the many ways in
which messages are exchanged between objects. Alternatively, UML interaction diagrams are more appropriate when
messages and interaction protocols are the focus of design.

For illustration purposes, Figure A.37 shows a sequence diagram with the interactions that occur between the
components of the computational specification during the borrowing process. First, an Assistant issues a
loanRequest() operation, which is received by the component that implements it (BorrowingSystem). That component
asks the MemberMgr for the details of the borrower, and then requests a validation. If the validation fails (reply
message number 5), the BorrowingSystem registers and archives the loan in the system (through the LoanManager),
and responds to the InterfaceToAssistant. Alternatively, i.e., if the member is valid (reply message number 11), the
BorrowingSystem component asks the ItemMgr for details about the item to borrow, and the LoanMgr for the current
loans of the borrower. Two alternative behaviours are possible then, depending on whether the request is valid or not
(the conditions correspond to those specified in the information viewpoint: the loan limits are not exceeded, the item is
indeed free, etc. – see Figure A.28). If the request is not valid then the loan is registered and archived, and a response is
issued to the InterfaceToAssistant. Finally, if the loan request is valid then the item is marked as loaned (through the
reserveItem() operation), the loan is registered in the system, and the Assistant is notified.

Please note how it is possible to incorporate environment contracts in the specification, expressed by constraints
stereotyped «CV_EnvironmentContract». In this case, the duration constraint corresponds to one of the requirements
specified in the enterprise viewpoint, which mandated that the operation should not exceed 5 seconds (see Figure A.6).

ISO/IEC 19793:2008 (E)

92 ITU-T Rec. X.906 (11/2007)

Figure A.37 – Interaction diagram for the borrowing process

A.4.4 Correspondences between the Enterprise and Computational specifications

Correspondences between the Enterprise and Computational specifications are expressed in the package
LibrarySystem (E-C Corr), as shown in Figure A.1. Correspondences are expressed using the Correspondence Profile
(see [12.2]).

Figure A.38 shows the LoanRequestDuration correspondence, that we have mentioned above between the
requirement specified in the enterprise viewpoint about the duration of a loan request, and the corresponding
environment contract in the computational specification. The other correspondence shown in this package relates the
enterprise object type Loan with the computational object type Loan.

Figure A.38 – Example of correspondence between the Enterprise and Computational specifications

A.4.5 Correspondences between the Information and Computational specifications

Correspondences between the Information and Computational specifications are expressed in the package
LibrarySystem (I-C Corr), as shown in Figure A.1. Correspondences are expressed using the Correspondence Profile
(see [12.2]).

Figure A.39 shows an example of a correspondence between Loan information and computational objects:
correspondence LoanCorrespondence links these two types of objects.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 93

The other correspondence in that package establishes that the sets of Loan instances in the information model should
be consistent with the objects stored by the LoanMgr component (i.e., with the loans stored in the application's
database). This is specified by stating that the set of names of the instances of information object loan should coincide
with the set of names of the instances stored by LoanMgr.

Figure A.39 – Example of correspondence between the Information and Computational specifications

A.5 Engineering specification in UML

A.5.1 Overview

The engineering viewpoint is concerned with the mechanisms and functions required to support distributed interaction
between objects in the system. An engineering specification defines the structure of node (nucleus, capsule, cluster,
(basic) engineering objects), channel, and their management functions. This subclause concentrates on the engineering
specification in UML of the borrowing process of the Library system.

A.5.2 Computational objects

A set of computational objects, which this engineering specification will support, needs to be clarified. In this example,
those are the computational objects defined in [A.4]: InterfaceToAssistant, InterfaceToLibrarian, and
LibrarySystemMainFunctionality, which contains BorrowingSystem, FineSystem, LoanMgr, ItemMgr,
MemberMgr and LibraryAdmin. Those computational objects will be supported by the corresponding basic
engineering objects, which are deployed within clusters on nodes, and by the engineering infrastructure using nodes,
nucleus, capsules, capsule managers, clusters, cluster managers and channels.

NOTE – There are several architectural styles to define a physical deployment model, such as client-server, n-tier, model-view-
controller (MVC), and service oriented architecture (SOA). In this example, n-tier and MVC architectural style are used. Even
with the choice of architectural styles, there will be various types of node configurations, depending on requirements, such as
performance, reliability, availability, etc.

A.5.3 Node configuration

The basic node configuration model for this example consists of four nodes: ClientTier, InteractionTier,
EnterpriseTier and EISTier (EIS: Enterprise Information System) (see Figure A.40). An assistant (i.e., a user of the
system) will use a desktop or notebook PC, which serves as ClientTier. A request from ClientTier node is sent to a
server node, which serves as the InteractionTier. A functional request is passed to another server node, which serves as
the EnterpriseTier. Finally, data persistence is taken care of by yet another server node, which serves as the
EIS_Server. The following diagram (Figure A.40) shows an overview of the node configuration.

ISO/IEC 19793:2008 (E)

94 ITU-T Rec. X.906 (11/2007)

Figure A.40 – Node configuration overview

A.5.4 Node structures

Each node consists of the node itself, nucleus, capsule(s), capsule manager(s), cluster(s), cluster manager(s), basic
engineering objects (BEOs), engineering objects, stub(s), binder(s), protocol object(s), and interceptor(s). In the node
configuration above, BEOs are deployed as follows:

– BEOs for graphical user interface to access the system are deployed on the AssistantPC;
– BEOs to support n-tier and MVC architectural style are deployed on the InteractionServer and the

EnterpriseServer; and
– BEOs for application specific computational objects are deployed on the EnterpriseServer and the

EIS_Server.
Figure A.41 shows an example of a configuration of BEOs in the engineering specification. BEOs are deployed on
various nodes and within clusters in capsules. BEOs can have interactions between them by using channels. For
instance, Browser_APC1 BEO on AssistantPC1 node communicates with Controller BEO on InteractionServer
node via Channel1.

Figure A.41 – Example BEOs configuration

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 95

NOTE – Capsule managers and cluster managers are not included, interfaces of various engineering objects are not shown for
simplicity, and channels are shown using comments (see Figure A.43 for channel structure example).

As an example of a detailed node structure, Figure A.42 shows the internals of the EnterpriseServer node. In it,
BorrowingSystem BEO makes use of the services provided by locally bound LoanMgr BEO, ItemManager BEO,
and MemberMgr BEO. It also makes use of the services provided by FineSystem BEO in another cluster via a local
channel. LoanMgr BEO then makes use of an external service (not shown in Figure A.42) via a channel to a BEO
residing on another node. All BEOs in Cluster_ES1 are bound to ClusterMgr_ES1, and they all are bound to
Nucleus_ES to have management services provided by the nucleus.

Figure A.42 – Example EnterpriseServer internals

A.5.5 Channels

In this example, four channels exist: one between AssistantPC and InteractionServer, one between
InteractionServer and EnterpriseServer, and two between Enterprise Server and IntegrationServers. The first
channel comprises a stub, a binder, and a protocol object for the AssistantPC, and a stub, a binder, and a protocol
object for the InteractionServer.

ISO/IEC 19793:2008 (E)

96 ITU-T Rec. X.906 (11/2007)

Figure A.43 shows an example of a channel called Channel_A, which allows binding and communication between a
BEO of type2 and a BEO of type3. To allow both sides to use the channel, Channel_A provides interfaces to both
ends.

Figure A.43 – Internals of a channel

A.5.6 Communication domain

Figure A.44 shows an example of a communication domain specification in UML, using packages that contain protocol
objects which belong to the same communication domain.

Figure A.44 – Example of a communication domain

A.5.7 Representing functions

Checkpointing, deactivation, cloning, recovery, reactivation, and migration are functions defined in [Part 3 – 8]. Since
this document defines stereotypes based on multiple metaclasses, the following is a series of diagrams describing the
use of activities and actions to express functions. The diagrams are just examples. Users may add more actions and/or
objectNodes to define their extended activity models.

Figure A.45 shows an example of a checkpointing process expressed as an activity, which contains a checkpointing
action inside.

Figure A.45 – Checkpointing process

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 97

Figure A.46 shows an example of a deactivation process expressed as an activity, which contains a checkpointing action
inside.

Figure A.46 – Deactivation process

Figure A.47 shows an example of a cloning process expressed as an activity.

Figure A.47 – Cloning process

Figure A.48 shows an example of a reactivation process expressed as an activity, which contains both deactivation and
cloning actions inside.

Figure A.48 – Reactivation process

Figure A.49 shows an example of a recovery process expressed as an activity, which contains a cloning action inside.

Figure A.49 – Recovery process

Figure A.50 shows an example of a migration process expressed as an activity, which contains a deactivation action
inside.

ISO/IEC 19793:2008 (E)

98 ITU-T Rec. X.906 (11/2007)

Figure A.50 – Migration process

Finally, Figure A.51 is an example of a diagram showing the use of functions, which are represented in terms of an
interface (TradingInterface) that specifies its signature, and the specific engineering object (Trader_A) that realizes
or provides the function.

Figure A.51 – Use of functions

A.5.8 Channel creation and interface location

Figure A.52 shows how a nucleus provides a channel creation and an interface location interface to a BEO. Using this
interface, the BEO can do several operations, such as publish its interface reference, bind to a trader, find a target object
and a bind object, and get channel type and communication interface. The interface is stereotyped as
«NV_NodeManagement».

Figure A.52 – Channel creation interface

A.5.9 Interface reference management domain

According to [Part 3 – 8.2.2], "The information within an engineering interface reference can take the form of:
– data;
– identifiers for interfaces giving access to such data;

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 99

– a combination of data and identifiers.

The data necessary for binding can include any or all of the following items:
– the interface type of the referenced interface;
– a channel template describing the interceptors, protocol objects, binders and stubs that can be selected

when configuring a channel to support the distributed binding;
– the location in space and time (e.g., a network address) of the communication interfaces at which the

binding process can be initiated;
– information to enable the detection and repair of distributed bindings invalidated by engineering object

relocation."

If necessary, it is possible to show a set of nodes belonging to an engineering interface reference management domain
as in Figure A.53 below.

Figure A.53 – Interface reference management domain

A.5.10 Management functions

The diagram below (Figure A.54) shows examples of interfaces that objects, nucleus, cluster manager, and capsule
manager can provide. Interfaces are stereotyped to show their different types, and some operations are also stereotyped
to show their kind of functionality. More operations than those described here can of course be specified, using the
stereotypes defined in this document.

ISO/IEC 19793:2008 (E)

100 ITU-T Rec. X.906 (11/2007)

Figure A.54 – Management functions

A.5.11 Correspondences between Enterprise and Engineering specifications

Correspondences between the Enterprise and Engineering specifications are expressed in the package LibrarySystem
(E-N Corr), as shown in Figure A.1. Correspondences are expressed using the Correspondence Profile (see [12.2]).
Figure A.55 shows the LibrarySystemCorrespondence that expresses the correspondence between the requirements
specified in the enterprise viewpoint about the existence of Library system, and the nodes supporting the Library
system in the engineering viewpoint.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 101

Figure A.55 – Example of correspondences between Enterprise and Engineering specifications

A.5.12 Correspondences between Computational and Engineering specifications

Correspondences between the Computational and Engineering specifications are expressed in the package
LibrarySystem (C-N Corr), as shown in Figure A.1. Correspondences are expressed using the Correspondence Profile
(see [12.2]).

Figure A.56 shows the ObjectCorrespondence that describes the correspondence between the functionality specified
in the computational viewpoint, and the engineering objects supporting this functionality in the engineering viewpoint.

Figure A.56 – Example of correspondences between Computational and Engineering specifications

NOTE – In this clause [A.5], generic UML constructs are used to complement ODP Engineering specifications in UML. For
instance, ports are used to represent engineering object's interfaces, and operations are used to represent engineering interface's

ISO/IEC 19793:2008 (E)

102 ITU-T Rec. X.906 (11/2007)

signatures, since both are not defined in RM-ODP Part 3 Engineering language. This issue may be resolved in a future version of
this Recommendation | International Standard.

A.6 Technology specification in UML

A.6.1 Overview

The technology viewpoint is concerned with the choice of technology to implement the ODP system. A technology
specification defines technology objects (hardware, software, and network products), which implement implementable
standards as its templates, implementation as a process of instantiation, and IXIT as implementation extra information
for testing. This subclause concentrates on the technology specification in UML of the borrowing process of the
Library system.

The primary diagram for this specification is a Deployment Diagram.

A.6.2 Node configuration

In a Deployment Diagram, a computer node is expressed as a node and lines are introduced to express communication
links between the nodes. Different types of network can also be depicted as nodes.

Figure A.57 shows the node configuration of the Library system, in two parts. The upper part of the figure describes the
deployment architecture of the system by showing the different technology objects types that will be used, and how they
can be connected among themselves. The diagram shows that there will be three different kinds of computing resources
(PCs, application servers and enterprise servers) and two different kinds of communication media (LAN and WAN).
PCs and application servers can be connected to LANs and WANs, whilst enterprise servers can only be connected
to WANs.

The lower part of Figure A.57 describes the actual system, with concrete instanceSpecifications of the nodes shown in
the upper part of the diagram, showing the technology objects that will comprise the system, and how they are
connected.

Figure A.57 – Node configuration overview

A.6.3 Node structure

Technology objects, such as those implementing the corresponding engineering objects, are deployed on each node.
This is shown using a UML Deployment Diagram with the representation of hardware elements, software elements and
network elements. There are cases where both the Technology profile and standard profile (e.g., ExecutionEnvironment
stereotype) need to be applied to the same element.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 103

In UML, node structures can be specified both at the type level and at the object level. The following diagram
(Figure A.58) shows the internal structure of the application servers used in the Library.

Figure A.58 – Node structure

A.6.4 IXIT

The truth of a statement in an implementation can only be determined by testing, and is based on a mapping from terms
in the specification to observable aspects of the implementation. A test is a series of observable stimuli and events,
performed at prescribed points known as reference points, and only at these points. These reference points are
accessible interfaces. Four classes of reference point at which conformance tests can be applied are defined, which are
programmatic reference point, perceptual reference point, interworking reference point, and interchange reference
point.

IXIT is Implementation eXtra Information for Testing, which means additional information when performing a test
against an implementation claiming to implement a defined specification or standard. In this respect, IXIT can be
attached to any technology objects for interaction with a user, other technology objects in the same node, and other
technology objects in other nodes.

ISO/IEC 19793:2008 (E)

104 ITU-T Rec. X.906 (11/2007)

Figure A.59 – IXIT

A.6.5 Implementation

The diagram below (Figure A.60) shows an example of an implementation process.

Figure A.60 – Example of implementation process

A.6.6 Correspondences between Engineering and Technology specifications

Correspondences between the Technology and Engineering specifications are expressed in the package LibrarySystem
(N-T Corr), as shown in Figure A.1. Correspondences are expressed using the Correspondence Profile (see [12.2]).

Figure A.61 shows the BEOcorrespondence that provides a correspondence link between an ItemManager BEO in
the engineering viewpoint and an ItemManager technology object in technology viewpoint.

ISO/IEC 19793:2008 (E)

 ITU-T Rec. X.906 (11/2007) 105

Figure A.61 – Example of correspondences between Engineering and Technology specifications

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.906 (11/2007) – Information technology - Open distributed processing - Use of UML for ODP system specifications
	Summary
	Source
	FOREWORD
	CONTENTS
	0 Introduction
	0.1 RM-ODP
	0.2 UML
	0.3 Overview and motivation

	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 OMG specifications

	3 Definitions
	3.1 Definitions from ODP standards
	3.2 Definitions from the Enterprise Language
	3.3 Definitions from the Unified Modeling Language
	3.4 Definitions from ODP standards refined or extended in this Recommendation | International Standard

	Abbreviations
	Conventions
	Overview of modelling and system specification approach
	6.1 Introduction
	6.2 Overview of ODP concepts (extracted from RM-ODP Part 1)
	6.3 Overview of UML concepts
	6.4 Universes of discourse, ODP specifications and UML models
	6.5 Modeling concepts and UML profiles for ODP viewpoint languages and correspondences
	6.6 General principles for expressing and structuring ODP system specifications using UML
	6.7 Correspondences between viewpoint specifications

	7 Enterprise specification
	7.1 Modelling concepts
	7.2 UML profile
	7.3 Enterprise specification structure (in UML terms)
	7.4 Viewpoint correspondences for the enterprise language

	8 Information specification
	8.1 Modelling concepts
	8.2 UML profile
	8.3 Information specification structure (in UML terms)
	8.4 Viewpoint correspondences for the information language

	9 Computational specification
	9.1 Modelling concepts
	9.2 UML profile
	9.3 Computational specification structure (in UML terms)
	9.4 Viewpoint correspondences for the computational language

	10 Engineering specification
	10.1 Modelling concepts
	10.2 UML profile
	10.3 Engineering specification structure (in UML terms)
	10.4 Viewpoint correspondences for the engineering language

	11 Technology Specification
	11.1 Modelling concepts
	11.2 UML profile
	11.3 Technology specification structure (in UML terms)
	11.4 Viewpoint correspondences for the technology language

	12 Correspondences specification
	12.1 Modelling concepts
	12.2 UML profile

	13 Modelling conformance in ODP system specifications
	13.1 Modelling conformance concepts
	13.2 UML profile

	14 Conformance and compliance to this document
	14.1 Conformance
	14.2 Compliance

	Annex A – An example of ODP specifications using UML
	A.1 The Templeman Library System
	A.2 Enterprise specification in UML
	A.3 Information specification in UML
	A.4 Computational specification in UML
	A.5 Engineering specification in UML
	A.6 Technology specification in UML

