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INTERNATIONAL STANDARD 10746-4

ITU-T RECOMMENDATION X.904

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

AMENDMENT 1

Computational formalization

Summary

Amendment 1 to ITU-T Rec. X.904 | ISO/IEC 10746-4 refines and extends the ODP architectural semantics with a
formalization of the computational language of the Reference Model for ODP. The computational language of the
RM-ODP provides for a description of ODP systems as collections of interacting objects. This Amendment formalizes
the concepts and rules of the ODP computational language using different formal description techniques (LOTOS, SDL,
Z and Estelle).

Source

ITU-T Recommendation X.904, Amendment 1, was prepared by ITU-T Study Group 7 (1997-2000) and approved on
31 March 2000. The identical text is also published as ISO/IEC International Standard 10746-4, Amendment 1.
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FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.
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INTERNATIONAL STANDARD
ISO/IEC 10746-4:1998/Amd.1:2001 (E)
ITU-T Rec. X.904/Amd.1 (2000 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

AMENDMENT 1

Computational formalization

1) Foreword

Replace the lst paragraph of the foreword

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalisation of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9. The
formalisation is achieved by interpreting each concept in terms of the constructs of the different standardised formal
description techniques.

with

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalization of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9 and in
ITU-T Rec. X.903 | ISO/IEC 10746-3, clause 7 (Computational Language). The formalization is achieved by interpreting
each concept in terms of the constructs of the different standardized formal description techniques.

2) Clause 0 – Introduction

Replace the fourth bullet under The RM-ODP consists of

ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural Semantics: contains a formalisation of the ODP modelling
concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, and a formalisation of the viewpoint
languages of ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalisation is achieved by interpreting each concept in terms
of the constructs of the different standardised formal description techniques. This text is normative.

with

ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural Semantics: contains a formalization of the ODP modelling
concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, and a formalization of the computational
viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalization is achieved by interpreting each concept
in terms of the constructs of the different standardized formal description techniques. This text is normative.

Replace the fourth paragraph

The purpose of this Recommendation | International Standard is to provide an architectural semantics for ODP. This
essentially takes the form of an interpretation of the basic modelling and specification concepts of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and the viewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various features of
different formal specification languages. An architectural semantics is developed in four different formal specification
languages: LOTOS, ESTELLE, SDL and Z. The result is a formalisation of ODP's architecture. Through a process of
iterative development and feedback, this has improved the consistency of ITU-T Rec. X.902 | ISO/IEC 10746-2 and
ITU-T Rec. X.903 | ISO/IEC 10746-3.

with

The purpose of this Recommendation | International Standard is to provide an architectural semantics for ODP. This
essentially takes the form of an interpretation of the basic modelling and specification concepts of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and the computational viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various
features of different formal specification languages. An architectural semantics is developed in four different formal
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specification languages: LOTOS, ESTELLE, SDL and Z. The result is a formalization of ODP's architecture. Through a
process of iterative development and feedback, this has improved the consistency of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3.

3) Clause 1 – Scope

Add the following paragraph at the end of Scope:

Annex A shows one way in which the computational viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3 can be
represented in the formal languages LOTOS, SDL, Z and Estelle. This Recommendation | International Standard also
makes use of the concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2.

4) Clause 2 – Normative references

Change publication date for ITU-T Recommendation Z.100 from (1993) to (1999).

ISO/IEC 13568:

Add the following reference:

Z Notation, ISO/IEC JTC 1 SC 22 WG 19 Advanced Working Draft 2.C, July 13th 1999.

5) Subclause 3.2 – Definitions from ITU-T Recommendation Z.100

Replace the list with the following terms:

active, adding, all, alternative, and, any, as, atleast, axioms, block, call, channel, comment, connect, connection,
constant, constants, create, dcl, decision, default, else, endalternative, endblock, endchannel, endconnection,
enddecision, endgenerator, endnewtype, endoperator, endpackage, endprocedure, endprocess, endrefinement, endselect,
endservice, endstate, endsubstructure, endsyntype, endsystem, env, error, export, exported, external, fi, finalized, for,
fpar, from, gate, generator, if, import, imported, in, inherits, input, interface, join, literal, literals, map, mod, nameclass,
newtype, nextstate, nodelay, noequality, none, not, now, offspring, operator, operators, or, ordering, out, output,
package, parent, priority, procedure, process, provided, redefined, referenced, refinement, rem, remote, reset, return,
returns, revealed, reverse, save, select, self, sender, service, set, signal, signallist, signalroute, signalset, spelling, start,
state, stop, struct, substructure, synonym, syntype, system, task, then, this, timer, to, type, use, via, view, viewed, virtual,
with, xor.

6) Subclause 3.3 – Definitions from the Z-Base Standard

Change subclause title to:

3.3 – Definitions from the Z Notation.

Replace the list with following terms:

axiomatic description, data refinement, hiding, operation refinement, overriding, schema (operation, state, framing),
schema calculus, schema composition, sequence, type.
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7) Annex A

Add a new Annex A as follows:

Annex A

Computational Formalization

A.1 Formalization of the Computational Viewpoint Language in LOTOS

A.1.1 Concepts

The formalization of the computational language in LOTOS uses the concepts defined in the formalization of the basic
modelling and structuring rules given in ITU-T Rec. X.902 | ISO/IEC 10746-2 clauses 8 and 9.

Elementary Structures Associated with Operational and Signal Interfaces

To formalize the computational language in LOTOS it is necessary to introduce certain elementary structures. These
include parameters that might be associated with certain computational interfaces and a basic model of information that
might be used in a stream flow.

To formalize parameters it is necessary to introduce two concepts: names for things and types for things. Names are
simply labels. As we shall see, the computational viewpoint requires that checks, e.g. for equality, are done on these
labels when interfaces are constructed. We may represent names generally by:

type Name is Boolean
sorts Name
opns newName: -> Name

anotherName: Name -> Name
_eq_,_ne_: Name, Name -> Bool

endtype (* Name *)

For brevity sake we omit the equations, which are expected to be obvious. It is possible to be more prescriptive here, e.g.
using character strings from the LOTOS library. The only thing we are interested in regarding names is that we can
determine their equality or inequality.

As discussed in this Recommendation | International Standard, a type in the ODP sense may not be interpreted directly in
the process algebra part of LOTOS. It is however possible to model types through the Act One part of LOTOS.
Unfortunately, whilst Act One was designed specifically for representing types, it is limited in the ways in which types
and types relationships are checked. For example, it is not possible to check subtyping or equivalence up to isomorphism
between types due to type equality in Act One being based on name equivalence of sorts. As a basis for reasoning here
we introduce an elementary notion of types that allows us to test for equality, inequality and subtyping.

type AnyType is Boolean
sorts AnyType
opns newType: -> AnyType

anotherType: AnyType -> AnyType
_eq_,_isSubtype_: AnyType, AnyType -> Bool

endtype (* AnyType *)

A parameter is a relation between a name and its underlying type representation. Thus a parameter may be represented
by:

type Param is Name, AnyType
sorts Param
opns newParam: Name, AnyType -> Param

_eq_,_ne_,_isSubtype_: Param, Param -> Bool
endtype (* Param *)

As previously, we require checks on the equality or inequality of parameters as well as when one parameter is a subtype
of another. Two parameters are in a subtype relationship when their types are in a subtype relationship. It is also useful
for us to introduce sequences of these parameters.

type PList is String actualizedby Param
using sortnames PList for String Param for Element Bool for FBool
opns _isSubtype_: PList, PList -> Bool

endtype (* PList *)



4 ITU-T Rec. X.904/Amd.1 (2000 E)

Here we use the type String from the LOTOS library actualised with the type Param defined previously. We also include
an operation here isSubtype that can check whether one sequence of parameters is a subtype of another. One parameter
list is a subtype of a second when all of the parameters it contains are subtypes of those found in the first. In addition the
parameters should be in the same position in their respective lists. It should be noted that these parameters might contain
references to interfaces used to restrict the interactions that can take place. Whilst it is quite possible to model an
interface in the process algebra, it is not possible to model a reference to that interface in the process algebra that, loosely
speaking, captures the functionality of that interface. To overcome this, we model interface references in Act One. Given
that an interface reference captures, amongst other things, the signature of the interface, we provide an Act One model of
signatures for operations. Operations consist of a name, a sequence of inputs and possibly a sequence of outputs. For
simplicity’s sake, we do not consider here whether the operation is of infix, prefix or suffix notation. This may be
represented by:

type Op is Name, PList
sorts Op
opns makeOp: Name, PList -> Op

makeOp: Name, PList, PList -> Op
getName: Op -> Name
getInps: Op -> PList
getOuts: Op -> PList
_eq_: Op, Op -> Bool

eqns forall op1,op2: Op, n: Name; pl1, pl2: PList
ofsort Name getName(makeOp(n,pl1,pl2)) = n;
ofsort PList getInps(makeOp(n,pl1)) = pl1;

getInps(makeOp(n,pl1,pl2)) = pl1;
getOuts(makeOp(n,pl1)) = <>;
getOuts(makeOp(n,pl1,pl2)) = pl2;

ofsort Bool op1 eq op2 = ((getName(op1) eq getName(op2)) and
(getInps(op1) isSubtype getInps(op2)) and
(getOuts(op2) isSubtype getOuts(op1)));

endtype (* Op *)

Having a method of determining whether two operations are the same reduces the problem of subtyping between abstract
data types to a set comparison, where set elements are the created operations. Thus a server is a subtype of a second
server if it supports all operations of the second server. We note here that we model two forms of operations: those that
do not expect results and those that do expect results. We also introduce sets of these operations:

type OpSet is Set actualizedby Op
using sortnames OpSet for Set Op for Element Bool for FBool

endtype (* OpSet *)

Now an interface reference may be represented by the following LOTOS fragment:

type IRef is OpSet
sorts IRef
opns makeIRef : OpSet -> IRef

NULL : -> IRef
getOps : IRef -> OpSet
_eq_ : IRef, IRef -> Bool

eqns forall o: OpSet; ir1, ir2: IRef
ofsort OpSet getOps(makeIRef(o)) = o;
ofsort Bool ir1 eq ir2 = getOps(ir1) eq getOps(ir2) ;

endtype (* IRef *)

Here we note that equality of interface references is based only on the operations contained in that reference. It might
well be extended to cover other aspects, e.g. the location of the interface or constraints on its usage. We also introduce
sets of these interface references.

type IRefSet is Set actualizedby IRef
using sortnames IRefSet for Set IRef for Element Bool for FBool

endtype (* IRefSet *)

Elementary Structures Associated with Stream Interfaces

The computational viewpoint of ITU-T Rec. X.903 | ISO/IEC 10746-3 also considers interfaces concerned with the
continuous flow of data, e.g. multimedia. These interfaces are termed stream interfaces. Stream interfaces contain finite
sets of flows. These flows may be from the interface (produced) or to the interface (consumed). Each flow is modelled
through an action template. Each action template contains the name of the flow, the type of the flow, and an indication of
causality for the flow.

The computational viewpoint abstracts away from the contents of the flow of information itself. We consider here a
generic idea of information flow where the flow of information is represented by a sequence of flow elements. A flow
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element may be regarded as a particular item in the flow of information. We note here that flows are regarded in the
computational viewpoint as continuous actions. In our model here we represent streams as sequences of discrete timed
events. On the one hand this allows us to deal with the timing issues of information flows but we achieve this at the cost
of losing the continuous nature of the flows.

Each flow element in an information flow can be considered as a unit consisting of data (this may be compressed) which
we represent by Data. This model might include how the information was compressed, what information was
compressed, etc. As such it is not considered further here. Flow elements also contain a time stamp used for modelling
the time at which the particular flow element was sent or received. It is also often the case in multimedia flows that
particular flow elements are required for synchronisation, e.g. synchronisation of audio with video for example.
Therefore we associate a particular Name with each flow element. This can then be used for selecting a particular flow
element from the flow as required. From this, we may model a flow element as:

type FlowElement is Name, NaturalNumber, Data, Param
sorts FlowElement
opns makeFlowElement: Data, Nat, Name -> FlowElement

nullFlowElement : -> FlowElement
getData : FlowElement -> Data
getTime : FlowElement -> Nat
getName : FlowElement -> Name
toParam : FlowElement -> Param
setTime : Nat, FlowElement -> FlowElement

eqns forall d: Data, s,t: Nat, n: Name
ofsort Data getData(makeFlowElement(d,t,n)) = d;
ofsort Nat getTime(makeFlowElement(d,t,n)) = t;
ofsort Name getName(makeFlowElement(d,t,n)) = n;
ofsort FlowElement setTime(s,makeFlowElement(d,t,n)) = makeFlowElement(d,s,n);

endtype (* FlowElement *)

It should be noted here that we model time as a natural number however it might well be the case that real (dense) time
could be used, or time intervals. For simplicity here though, we restrict ourselves to discrete time represented as a natural
number. We also introduce an operation that converts a flow element into a parameter. For simplicity we omit the
associated equations. We also introduce sequences of these flow elements:

type FlowElementSeq is FlowElement
sorts FlowElementSeq
opns makeFlowElementSeq: -> FlowElementSeq

addFlowElement: FlowElement, FlowElementSeq -> FlowElementSeq
remFlowElement: FlowElement, FlowElementSeq -> FlowElementSeq
getFlowElement: Name, FlowElementSeq -> FlowElement
timeDiff: FlowElement, FlowElement -> Nat

eqns forall f1, f2: FlowElement, fs: FlowElementSeq, n1,n2: Name
ofsort FlowElementSeq
getTime(f1) le getTime(f2) =>

addFlowElement(f1,addFlowElement(f2,makeFlowElementSeq)) =
addFlowElement(f2,makeFlowElementSeq);

ofsort FlowElement
getFlowElement(n1,makeFlowElementSeq) = nullFlowElement;
n1 ne n2 =>

getFlowElement(n1,addFlowElement(makeFlowElement(d,t,n2),fs)) =
getFlowElement(n1,fs);

n1 eq n2 =>
getFlowElement(n1,addFlowElement(makeFlowElement(d,t,n2),fs)) =

makeFlowElement(d,t,n2);
endtype (* FlowElementSeq *)

For brevity we do not supply all of the equations. Flow elements are added to the sequence provided they have increasing
timestamps. An operation is provided for traversing a sequence of flow elements to find a named flow element. We also
introduce an operation to get the time difference between time stamps of two flow elements. It is possible using this
operation to specify, for example, that all flow elements in a sequence are separated by equal time stamps. In this case
we have an isochronous flow. We also introduce sets of these sequences of flow elements:

type FlowElementSeqSet is Set actualizedby FlowElementSeq
using sortnames FlowElementSeqSet for Set FlowElementSeq for Element Bool for FBool

endtype (* FlowElementSeqSet *)

A.1.1.1 Signal

There is no inherent feature of LOTOS which can be used to distinguish between a signal, a stream flow and an
operation. It may be the case, however, that a style of LOTOS can be used to distinguish between signals, streams and



6 ITU-T Rec. X.904/Amd.1 (2000 E)

operations. For example, all signals might have similar formats for their event offers. An example of one possible format
for the server side of a signal is shown in the following LOTOS fragment.

<g> ?<sigName: Name> !<myRef> ?<inArgs: PList>;

Here and in the rest of A.1, we adopt the notation that <X> represents a placeholder for an X, i.e. g, sigName, myRef and
inArgs represent placeholders for the gate, the name of the signal, the interface reference associated with the server
offering this signal and the parameters associated with the signal respectively.

An example of one possible format for the client side of a signal is shown in the following LOTOS fragment:

<g> !<sigName> !<SomeIRef> !<inArgs>;

Here the client side of the signal contains a gate (g), a label for the signal name (sigName), a reference to the object the
signal is to be sent to (SomeIRef) and the parameters associated with the signal (inArgs). We shall see in A.1.1.11 how
these event offers may be used to construct signal interface signatures.

A.1.1.2 Operation

The occurrence of an interrogation or announcement.

A.1.1.3 Announcement

An interaction that consists of one invocation only. Due to the reasons given in A.1.1.1, only an informal modelling
convention can be used to model announcements. One example of this for the client side of an announcement might be
represented by:

<g> !<invName> !<SomeIRef> !<inArgs>;

The server side of an announcement might be represented by:

<g> ?<invName: Name> !<myRef> ?<inArgs: PList>;

The data structures here are similar to those in A.1.1.1. We shall see in A.1.1.12 how these event offers may be used to
construct parts of operation interface signatures.

A.1.1.4 Interrogation

An invocation from a client to a server followed by one of the possible terminations from that server to that client.
However, due to the reasons given in A.1.1.1, only an informal modelling convention can be used to model
interrogations. One example of this for the client side of an interrogation might be represented by:

<g> !<invName> !<SomeIRef> !<inArgs> !<outArgs>;
( <g> ?<termName:Name> !<myRef> ?<outArgs: PList>; (* ... other behaviour *)

[ ] (* ... other terminations *))

Here termName represents the termination names and outArgs represents the output parameters. The server side of an
interrogation might be represented by:

<g> ?<invName: Name> !<myRef> ?<inArgs: PList> ?<outArgs: PList>;
( <g> !<termName> !<SomeIRef> !<outArgs>; (* ... other behaviour *)

[ ] (* ... other terminations *))

The other data structures here are similar to those in A.1.1.1. We shall see in A.1.1.12 how these event offers may be
used to construct parts of operation interface signatures.

A.1.1.5 Flow

An abstraction of a sequence of interactions between a producer and a consumer object that result in the conveyance of
information. Due to the reasons given in A.1.1.1, flows may only be represented in LOTOS through informal modelling
conventions. It is often the case that flows have strict temporal requirements placed on them. One example of how this
might be achieved for flow production is through a process that is parameterised by a sequence of data structures to be
sent, e.g. flow elements that can be timestamped when they are sent. A simple example of how this might be modelled in
LOTOS is:

process ProduceAction[ g, ...](... toSend: FlowElementSeq, tnow: Nat, rate: Nat ...):noexit:=
g !<flowName> !<SomeIRef> !<SetTime(tnow+rate,head(toSend))>;
(*... other behaviour and recurse with FlowElement removed from toSend *)

endproc (* ProduceAction *)

Here flow elements are sent together with the current (local) time plus the rate at which the flow elements should be
produced.
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Consumption of flow elements typically has different requirements placed upon it. The need to continually monitor the
time stamps of the incoming flow of information is of particular importance. A simple representation of the consumption
of an information flow may be represented by:

process ConsumeAction[ g,...](myRef: IRef, recFlowElements: FlowElementSeq, tnow, rate: Nat...) :noexit:=
g ?<flowName: Name> !myRef ?<inFlowElement: FlowElement>;
(* check temporal requirements of inFlowElement are satisfied then *)
(* display FlowElement and recurse with time incremented *)
(* or recurse with FlowElement added to received FlowElements and time incremented *)

endproc (* ConsumeAction *)

A.1.1.6 Signal Interface

As there is no direct means in LOTOS to distinguish formally between a signal and any other LOTOS event, establishing
a given interface as being a signal interface is only possible informally by modelling the LOTOS events used to represent
signals differently to any other event. An example of how a signal interface signature might be modelled in LOTOS is
given in A.1.1.11.

A.1.1.7 Operational Interface

As there is no direct means in LOTOS to distinguish formally between an operation and any other LOTOS event,
establishing a given interface as being an operational interface is only possible informally by modelling the LOTOS
events used to represent operations differently to any other event. An example of how an operation interface signature
might be modelled in LOTOS is given in A.1.1.12.

A.1.1.8 Stream Interface

As there is no direct means in LOTOS to distinguish formally between a flow and any other LOTOS event, establishing a
given interface as being a stream interface is only possible informally by modelling the LOTOS events used to represent
flows differently to any other event. An example of how a stream interface signature might be modelled in LOTOS is
given in A.1.1.13.

A.1.1.9 Computational Object Template

In LOTOS a computational object template is represented by a process definition which has associated with it a set of
computational interface templates which the object can instantiate; a behaviour specification, i.e. a behaviour expression
that is not composed of events modelled as signal signatures, flow signatures or operation signatures. There should also
be some form of environmental contract modelled as part of the process definition, however, LOTOS does not possess
all of the necessary features to model environmental contracts fully. It may be possible to model some features in an
environmental contract through an Act One data type. This should be given as a formal parameter in the value parameter
list of the process definition.

A.1.1.10 Computational Interface Template

A signal interface template, a stream interface template or an operational interface template.

A.1.1.11 Signal Interface Signature

A signal interface signature is represented in LOTOS by a process definition, such that all event offers which require
synchronisation with the environment in order to occur are modelled as signal signatures. The occurrence of these event
offers result in a one-way communication from an initiating to a responding object. Structurally, a signal signature is
similar to an invocation for an announcement (or a termination associated with an interrogation), i.e. it consists of a name
(for the signal), a sequence of parameters associated with the signal and an indication of causality. Since all events in
LOTOS are atomic, there is no inherent distinction between events modelled as announcements or signals.

Signal interface signatures differ from operational interface signatures though in that they do not require that the
interface as a whole is given a causality. Instead, signal interface signatures may contain signals with either initiating or
responding causalities. From this we model a signal interface signature in LOTOS by:

process SignalIntSig[ g... ](myRef: IRef, known: IRefs...):noexit:=
g !<sigName> !<SomeIRef> !<pl>; ...(* other behaviour *)

[ ]... (* other initiating actions *)
[ ]
g ?<sigName: Name> !myRef ?<inArgs: PList>;

([ not(makeOp(sigName,inArgs) IsIn getOps(myRef))] -> ...(* unsuccessful behaviour *)
[ ]
[ makeOp(sigName,inArgs) IsIn getOps(myRef) ] -> ...(* successful behaviour *) )

[ ]... (* other responding actions *)
endproc (* SignalIntSig *)
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Here we state that a signal interface consists of a collection of event offers. These event offers may model either
outgoing signals, i.e. those event offers with ! prefixing the signal name and list of parameters, or incoming signals, i.e.
those event offers with ? prefixing the signal name and list of parameters. In the case of incoming signals, it is possible
to check that the incoming signal is one expected, i.e. the signal is in the set of allowed signals associated with that
interface reference.

NOTE – This specification fragment requires that the process is instantiated with at least one gate which corresponds to the
interaction point at which the interface exists. The process should also be instantiated with a set of interface references and its own
interface reference. We note here that it is not possible to write predicates on the signals sent. To do so would require a level of
prescriptivity that we do not have, e.g. ensuring that SomeIRef is an interface reference that exists in the set of known interface
references associated with the process. It is possible to perform checks on arriving signals though, i.e. the arriving signal should be
one of the signals associated with that interface reference.We also note that we have used the choice operator here to model the
composition of individual signals. It is quite possible to use several other composition operators here, e.g. interleaving. If
interleaving composition is used then multiple arriving signals can be received before any responding signals are sent. Since
interfaces usually have some form of existence, i.e. they offer operations that can be invoked more than one time, the comments
representing other behaviours are likely to contain recursive process instantiations. Through using the choice operator we have a
form of blocking of signals, i.e. should a signal arrive then it has to be responded to before any other signals can be accepted.
Similar arguments hold for all other processes representing computational interface signatures.

A.1.1.12 Operational Interface Signature

An operational interface signature is represented in LOTOS by a process definition, such that all event offers which
require synchronisation with the environment in order to occur are modelled as part of operation signatures. That is, they
all represent parts of either announcements or interrogations. We may model an operational interface signature for a
client through the following process definition.

process OpIntSigClient[ g... ](myRef: IRef, known: IRefs, ...):noexit:=
g !<invName> !<SomeIRef> !<inArgs>; ...(* other behaviour *)
[ ]... (* other announcements *)

[ ]
g !<invName> !<SomeIRef> !<inArgs> !<outArgs>; ...(* other behaviour *)

(g ?<termName: Name> !myRef ?<outArgs: PList>;
[ not(makeOp(termName,outArgs) IsIn getOps(myRef))] -> ...(* return error message *)
[ ]
[ makeOp(termName,outArgs) IsIn getOps(myRef)] -> ...(* other behaviour *)

[ ] ... (* other terminations *))
[ ] ... (* other interrogations *)

endproc (* OpIntSigClient *)

Here we state that a client interface signature consists of a collection of event offers. These event offers may model either
outgoing (announcement or interrogation) invocations, i.e. those event offers with ! prefixing the invocation name and
list of parameters, or incoming terminations, i.e. those event offers with ? prefixing the termination name and list of
parameters. In the case of incoming terminations, it is possible to check that the incoming termination is one expected,
i.e. the termination is in the set of allowed termination associated with that interface reference.

The Note in A.1.1.11 also applies to operational interface signatures with the appropriate modifications, e.g. replace
arriving signal by invocation.

Operational interfaces signatures for servers may be represented in LOTOS by:

process OpIntSigServer[ g... ](myRef: IRef, known: IRefs, ...):noexit:=
g ?<invName: Name> !myRef ?<inArgs: PList>;
([ not(makeOp(invName,inArgs) IsIn getOps(myRef))] -> ...(* ignore/other behaviour *)
[ ]
[ makeOp(invName,inArgs) IsIn getOps(myRef) ] -> ...(* other behaviour *)
[ ]... (* other announcements *))

[ ]
g ?<invName: Name> !myRef ?<inArgs:PList> ?<outArgs:PList>; ...(* other behaviour *)
([ not(makeOp(invName,inArgs,outArgs) IsIn getOps(myRef))] -> ...(* return error message *)
[ ]
[ makeOp(invName,inArgs,outArgs) IsIn getOps(myRef) ] -> ...(* other behaviour *)
g !<termName> !<SomeIref> !resList ; ...(* other behaviour *)
[ ] ... (* other terminations *))

[ ] ... (* other interrogations *))
endproc (* OpIntSigServer *)

As with client interface signatures, a server interface signature has a set of known interface references and a reference for
itself. This latter interface reference is used to ensure that the announcement or interrogation invocations the server
receives are those that were expected, i.e. they were in the set of operations associated with that interface reference. If
these invocations were not acceptable, e.g. the parameters were not correct or the operation requested was not available,
then error handling behaviours are taken. In the case of announcements this might result in a recursive call with the
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formal parameter list being unchanged. It is also possible to use a guard here to prevent the event from occurring in the
first place. We do not do so since this might produce unwanted deadlocks in the specification. In the case of
interrogations this would result in some form of error message being returned.

As with client operational interfaces it is possible to require that the messages received are those that were expected. It is
not possible to have prescriptions on the messages sent though. It could be argued that this limitation is not necessarily a
bad thing since, provided every process treats received messages the same way, sent messages should not cause
deadlocks through their format not being understood for example.

A.1.1.13 Stream Interface Signature

A stream interface signature is represented in LOTOS by a process definition, such that all event offers which require
synchronisation with the environment in order to occur are modelled as either producing or consuming flows. This might
be represented in LOTOS as:

process StreamIntSig[ g... ](myRef: IRef, known: IRefSet, fss: FlowElementSeqSet...):noexit:=
ConsumeAction[ g...](myRef, known, recFlowElements...) [ ]... (* other consume actions *)
[ ]
ProduceAction[ g...](myRef, known, FlowElementstoSend, ...) [ ]... (* other produce actions *)

endproc (* StreamIntSig *)

As with signal interfaces the notion of causality is applied to individual action templates in the stream interface signature.
A stream interface signature contains sets of flows consuming or producing actions. Each flow signature is represented
by a process. These processes contain the reference to the stream interface with which they are associated, a set of
interface references representing the interface references known to that interface and a sequence of flow elements to send
(in the case of producing flows) or receive (in the case of consuming flows). For brevity we do not specify how the set of
sequences of flow elements that are passed to a stream interface signature are assigned to the producing flows in that
interface. When instantiated all consume flows are of course empty.

The Note in A.1.1.11 also applies to stream interface signatures with the appropriate modifications, e.g. replace arriving
signal by consumer flow.

A.1.1.14 Binding Object

An object which supports a binding between a set of other computational objects. An example of how this might be
modelled is shown in the following LOTOS fragment:

process ServerInterface[ g ...](myRef: IRef, known: IRefSet, ...):noexit:=
g ?bind: Name !myRef ?pl: PList;

([ getIRef(pl) IsIn known ] -> ....(* already bound to server *)
ServerInterface[ g ...](myRef,known...)

[]
[ not(getIRef(pl) IsIn known) and not(getOps(getIRef(pl)) IsSubsetOf getOps(myRef)) ]->

...(* operations requested by client not supported by server *)
ServerInterface[ g ...](myRef,known...)
[ not(getIRef(pl) IsIn known) and (getOps(getIRef(pl)) IsSubsetOf getOps(myRef)) ] ->

...(* successful behaviour *)
ServerInterface[ g ...](myRef,Insert(getIRef(pl),known)...)

[]
...(* other behaviours restricted to clients in known *)

endproc (* ServerInterface *)

Here, if the client is already bound to the server, we then refuse the binding request and a recursive call is made. It
should be noted that this need not necessarily be the case, i.e. the same client might be bound to the same server several
times concurrently. Each of these bindings might have different properties associated with them, e.g. different sets of
operations requested with different constraints. This would require that the server object returned different interface
references for each successful binding. For example, instead of inserting the client interface reference into the set known
for successful binding requests, the server might generate an interface reference which is sent to the client and added to
the set known.

If the client is not already bound to the server, i.e. not in the set of known interface references, then the operations
associated with the client's request are checked. If the operations asked for are not available at the server then some error
behaviour is taken and a recursive call made. For simplicity we avoid dealing with the issues involved in type checking
the parameters of client and server operations. For similar reasons we do not deal with environment contracts either. For
brevity we do not provide the Act One operations for accessing the interface references contained in the parameter lists
(getIRef). Rather, we simply state that the operations the client requests should be in the set of operations that the server
provides.
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Finally, if the client asks for legal operations, i.e. in the set of operations supported by the server interface reference then
some successful behaviour occurs. This might be the sending of a positive response to the client. Following this the client
interface reference is then added to the set of known interfaces. Membership of this set then allows access to the other
behaviour (not specified here) available at this interface. This other behaviour should realise the set of operations and
constraints given by the interface reference myRef.

A.1.2 Structuring Rules

A.1.2.1 Naming Rules

The naming rules contained in the computational language of ITU-T Rec. X.903 | ISO/IEC 10746-3 may only be
supported in LOTOS provided strict modelling practices are followed. For example, when creating operational interface
references, e.g. myRef, ensuring that the invocation, termination name are unique, as well as the parameter names
associated with these operations. Enforcement of these rules can then be achieved through guards to detect the legality of
the data structures received (via value passing) at that interface.

A.1.2.2 Interaction Rules

A.1.2.2.1 Signal Interaction Rules

It is always the case in LOTOS that an object offering a signal (or stream or operational) interface can only initiate (and
respond to) signals, (or flows or operations) that are instances of the associated signal (or flow or operation) signature in
its signal (or stream or operational) interface type. This is built in to the synchronisation rules of LOTOS, i.e. only event
offers with matching (or overlapping) action denotations can synchronise. As discussed in this Recommendation |
International Standard, there is no real notion of causality in LOTOS and events either happen instantaneously together
or not at all. Thus it is not the case that an invocation is sent and then received. The invocation sending and receiving is
represented by the occurrence of a single LOTOS event.

A.1.2.2.2 Stream Interaction Rules

See A.1.2.2.1.

A.1.2.2.3 Operation Interaction Rules

See A.1.2.2.1.

A.1.2.2.4 Parameter Rules

It is possible in LOTOS to use Act One sorts as computational interface identifiers. These identifiers may then be passed
(via value passing) in the interactions of a given specification. Following these interactions, these identifiers (sorts) can
be used in future event offers of the sender and the receiver objects, thereby allowing for interactions to occur between
the sender and the receiver of the identifier. Thus the identifiers can be regarded as computational interface identifiers.

It is possible to have different representations of a given computational interface identifier modelled in Act One. This can
be achieved by having some form of equality through Act One rewriting.

It is possible in LOTOS to ensure that computational interface identifiers identify the same computational interface.

A.1.2.2.5 Flows, Operations and Signals

If it is required that flows and operations are to be represented in terms of signals then this requires that appropriate
modelling conventions in LOTOS are adopted. For example, through having checks (guards) on the names of the signals
and associated operations or flows.

A.1.2.3 Binding Rules

A.1.2.3.1 Implicit Binding for Server Operation Interfaces

An example of the server side of implicit binding is given in A.1.1.14. An example of the client side of an implicit
binding which wishes to invoke operation SomeOp offered by server referenced by SomeIRef and terminates upon
completion might be represented in LOTOS as:

let myRef: IRef = makeIRef(insert(someOp,{})
in ClientInterface[g,...](myRef,Insert(SomeIRef,{},... )

process ClientInterface[ g, ...](myRef: IRef, known: IRefSet, ...):noexit:=
g !bind !SomeIRef !pl; (* pl contains myRef, SomeIRef references server *)
( g ?reply: Name !myRef ?pl: PList; (* receive successful bind response *)
g !someOp !SomeIRef !pl2; stop) (* invoke someOp (contained in myRef) and terminate *)

endprocess (* ClientInterface *)
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A.1.2.3.2 Primitive Binding Rules

Primitive binding can be achieved through adopting appropriate modelling conventions in LOTOS. An example of this is
shown in A.1.1.14 and A.1.2.3.1. We note that the client side of primitive binding should not have to dynamically create
the associated interface (and hence interface reference) as described in A.1.2.3.1. Rather, the interface should already
exist.

A.1.2.3.3 Compound Binding Rules

Compound binding can be represented in LOTOS through adopting appropriate modelling conventions. These require
that a process (representing a binding object) is specified that accepts (via value passing) collections of interface
references representing the objects wishing to be bound together. Once all references have been received, the binding
object issues a request to create instances of all of these referenced interfaces to the sender of the respective original bind
requests. These created interfaces are then bound (using primitive binding as shown in subclauses A.1.1.14
through A.1.2.3.1) to one another. Once binding has taken place, processes are instantiated (created) within the binding
object that can subsequently be used to control the interactions of the objects involved in the compound binding.

A.1.2.4 Type Rules

A.1.2.4.1 Subtyping Rules for Signal Interfaces

The subtyping rules for signal interfaces can be achieved in LOTOS through ensuring that certain modelling conventions
are followed. Examples of these conventions are shown in A.1.1.11 and A.1.1.14.

A.1.2.4.2 Subtyping Rules for Stream Interfaces

The subtyping rules for stream interfaces can be achieved in LOTOS through ensuring that certain modelling
conventions are followed. Examples of these conventions are shown in A.1.1.13 and A.1.1.14.

A.1.2.4.3 Subtyping Rules for Operational Interfaces

The subtyping rules for operation interfaces can be achieved in LOTOS through ensuring that certain modelling
conventions are followed. Examples of these conventions are shown in A.1.1.12 and A.1.1.14.

A.1.2.5 Template Rules

A.1.2.5.1 Computational Object Template Rules

A computational object can:

• initiate or respond to signals by having event offers in its associated behaviour expression modelled as
signal signatures with the appropriate causality;

• produce or consume flows by modelling flow signatures in its associated behaviour expression;

• invoke or terminate operations by having event offers modelling interrogation and announcement
signatures in its behaviour expression;

• instantiate interface or object templates by having interface and object templates as part of its behaviour
expression;

• bind interfaces by having a behaviour expression that will enable binding between interfaces to occur;

• access and modify its state through events occurring which make up part of its behaviour expression;

• stop (delete) itself by providing a suitable LOTOS termination as part of its behaviour expression, e.g.
stop, exit or [>;

• spawn, fork and join activities by using combinations of different LOTOS composition operators in its
associated behaviour expression, e.g. choice, interleaving and parallel composition;

• bind to a trading function by offering event offers that can synchronise with a trading function as part of
its behaviour expression. This implies that the LOTOS specification containing the object contains a
trader specification also. It should be pointed out that the LOTOS event that may represent a trading
action may not be different to any other LOTOS event. That is, the distinction between a trading action
and any other action is merely that the event is between the trader and the object. Therefore a trading
action will be distinguishable from any other action only through its action denotation parameters in
LOTOS. Hence Act One sorts used as identifiers need to be carefully dealt with to be able to distinguish
between the different actions.
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A.1.2.5.2 Computational Interface Template Instantiation

Whilst it is the case that computational interface template instantiation creates a new computational interface in LOTOS,
it is not the case that computational identifiers are established for these created interfaces also. It is possible to achieve
this however, provided certain modelling conventions are adopted. For example, through engineering interface
references through Act One data structures which are created when the associated interfaces (LOTOS processes) are
created.

A.1.2.5.3 Computational Object Template Instantiation

Instantiation of a computational object template in LOTOS is achieved through instantiating the associated process
definition representing the object template. References to the interfaces created in the object instantiation process have to
be engineered as discussed in A.1.2.5.2.

A.1.2.6 Failure Rules

The modelling of failures in LOTOS may be achieved to a certain extent by giving all possible behaviours for a given
system. That is, successful behaviours and failed behaviours. This means, however, that all possible behaviours were
known beforehand which depending on the failure type, is not always possible. As such this method of modelling
failures is limited in that failures here are predictable, whilst in general this will not be the case.

The infrastructure failures which can occur during interaction (i.e. binding, security, communication and resource) may
all be modelled to a certain extent in LOTOS by giving all possible system behaviours.

A.1.2.7 Portability Rules

LOTOS supports all of the portability rules of ITU-T Rec. X.903 | ISO/IEC 10746-3, however, signature subtype
checking and binding to trading interfaces is only possible if modelling conventions are adopted that allow the signature
of interfaces in Act One to be represented and used as a basis for type checking and subsequent binding operations.

It should be noted that there is no real notion of a given action in LOTOS being a fork or a join action. It is only when
considering the specification behaviour that fork and join actions can be identified.

A.1.2.8 Conformance and Reference Points

A LOTOS specification consists of a system of possible behaviours. As such, it is not possible to directly identify
reference points which may become either programmatic, perceptual, interchange or interworking conformance points.
A specification contains all its reference points inbuilt and it is up to the implementor of the specification to identify,
label and test reference points. Thus a testing process acting on a LOTOS specification may be restricted to a certain part
of the specification, i.e. a given object or interface. The identification of this object or interface as a conformance point is
part of the testing process, however, and not part of the specification process.

There are many different types of conformance possible within LOTOS. These all relate the behaviour of the specifica-
tion to some form of expected behaviour. Thus a given specification is said to conform if it exhibits the correct
behaviour, i.e. the behaviour expected in the testing process.

A.2 Formalization of the Computational Viewpoint Language in SDL

An ODP system (applications, ODP functions) is described in SDL from the computational viewpoint as a configuration
of computational objects. These computational objects are instances of block types and process types. These (SDL-)
types have to be derived from the process types and block types defined in this contribution. The computational objects
interact using an infrastructure offering the ODP functions. The computational model of the infrastructure is modelled by
an SDL-block. This provides all ODP-functions visible at the computational viewpoint as SDL remote procedures.

Using the formal description technique SDL this subclause shows how the concepts and rules of the computational
language can be expressed. For concepts not fully covered, the use of informal text is proposed. Italics are used to
distinguish between ODP and SDL terms.

An ODP system is described in SDL from the computational viewpoint as a configuration of computational objects.
These computational objects are instances of block and process types.
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A.2.1 Concepts

The concepts of the computational language are expressed in SDL-92 according to ITU-T Recommendation Z.100 and
ITU-T Recommendation Z.105 and according to the generic definitions, rules and guidelines of this Recommendation |
International Standard.

A.2.1.1 Signal

A signal may be represented by the occurrence of an OUTPUT <sdl-signal> action and the reception of that
<sdl-signal> (or a related <sdl-signal> containing the information of the original <sdl-signal>) by the inputport of the
receiving PROCESS.

NOTE – A signal is an atomic action. Although it is modelled in SDL by a series of (SDL-) actions, atomicity is guaranteed
because the transmission by a channel and the reception through the receivers inputport are implicit. An output may be
instantaneous in case that initiator and responder are connected by no-delay channels or by signalroutes.

A.2.1.2 Operation

An operation is the occurence of an interrogation or an announcement.

A.2.1.3 Announcement

An announcement is a sequence of actions, modelled by the occurence of the following actions:

• OUTPUT of an <sdl-signal> by an interface PROCESS of a client object

• INPUT of that <sdl-signal> or a related <sdl-signal> containing the information of the original <sdl-
signal>, by an interface PROCESS of the server object (Invocation).

NOTE – The start of the function to be performed by the server is modelled by the transition triggered by INPUT.

The structure of an announcement is given in Table A.1.

Table A.1 – Announcement (Client and Server side)

A.2.1.4 Interrogation

An interaction between a client object and a server object that consists of:

• OUTPUT of an <sdl-signal> by an interface PROCESS of a client object;

• INPUT of that <sdl-signal> (or a related <sdl-signal> containing the information of the original <sdl-
signal>) by an interface PROCESS of the server object (Invocation) followed by;

• possible execution of the requested function;

• OUTPUT of an <sdl-signal> by an interface PROCESS of the server object; and

• INPUT of that <sdl-signal> (or a related <sdl-signal> containing the information of the original <sdl-
signal>) by an interface PROCESS of the client object (Termination).

The structure of an interrogation is given in Table A.2.

PROCESS TYPE Client
INHERITS OperationInterface;
...
OUTPUT servicel(p1,p2,p3) TO Serverl

...
ENPROCESS TYPE Client

PROCESS TYPE Server
INHERITS OperationInterface;
ADDING GATE InterfaceSignature

ADDING IN WITH servicel;

...
STATE bound;

INPUT service1(a1,a2,a3);
TASK 'perform required function';
NEXTSTATE-;

...
ENDPROCESS TYPE Server
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Table A.2 – Interrogation using SDL signals

Synchronous interrogations can be modelled by value returning REMOTE PROCEDURES. The client calls a REMOTE
PROCEDURE of the interface PROCESS of the server object. The SDL replacement model for REMOTE
PROCEDURES ensures the sequenciality requirements of the interrogation.

The structure of a synchronous interrogation is given in Table A.3.

Table A.3 – Interrogation using SDL remote procedures

A.2.1.5 Flow

A flow is an abstraction of a set of interactions. It is modelled in SDL at the producer side by a continuous signal as
shown in Table A.4.

Table A.4 – Flow (signal based)

A further abstraction may be based on the concept of IMPORTED and EXPORTED values.

PROCESS TYPE Client
INHERITS OperationInterface;
...
OUTPUT servicel(p1,p2,p3) TO Serverl;
NEXTSTATE waitService1;
STATE waitService1

INPUT service1Term1;
...

INPUT service1Term2;

...
SAVE*;

...
ENPROCESS TYPE Client

PROCESS TYPE Server
INHERITS OperationInterface;

ADDING GATE InterfaceSignature
ADDING IN WITH servicel;

...
STATE bound;

INPUT service1(a1,a2,a3);
TASK 'perform required function';
OUTPUT service1term1 TO SENDER;

NEXTSTATE-;

...
ENDPROCESS TYPE Server

PROCESS TYPE Client
INHERITS OperationInterface;
IMPORTED PROCEDURE service1;
...
CALL servicel(par1,par2,par3) TO Serverl;
...
ENPROCESS TYPE Client

PROCESS TYPE Server
INHERITS OperationInterface;
ADDING
EXPORTED PROCEDURE service1 REFERENCED;
...
STATE bound;

INPUT PROCEDURE service1(p1,p2,p3);
NEXTSTATE-;

...
ENDPROCESS TYPE Server

/* Producer*/

...
PROVIDED Available(Data);

OUTPUT Frame(GetFrame(Data)) TO BoundTo;
NEXTSTATE-;

...

/* Consumer*/

...
STATE Receive;

PRIORITY INPUT Frame(Data);
...;

NEXTSTATE-;
INPUT NONE;

...;
NEXTSTATE-;
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A.2.1.6 Signal Interface

A PROCESS instance, which communicates only with (SDL-) SIGNALS via non-delaying CHANNELS. The PROCESS
is an instantiation of a subtype of a SignalInterfaceTemplate.

A.2.1.7 Operational Interface

An interface in which all interactions are operations. The PROCESS is an instantiation of a subtype of an
OperationalInterfaceTemplate.

A.2.1.8 Stream Interface

A PROCESS instance which communicates only with (SDL-) SIGNALS via CHANNELS or through EXPORTED or
IMPORTED variables. The PROCESS is an instantiation of a subtype of a StreamInterfaceTemplate.

A.2.1.9 Computational Object Template

An object template for a Computational Object. It is represented in SDL as a type based BLOCK definition, where the
BLOCK TYPE is a specialization of the BLOCK TYPE ComputationalObjectTemplate. The concept of environment
contract is not supported in SDL, informal text has to be used instead.

All ingoing/outgoing gates of a ComputationalObjectTemplate have to be connected to instantiations of subtypes of the
InterfaceTemplate processes.

The structure of a BLOCK TYPE computational object template is given in Table A.5.

Table A.5 – BLOCK TYPE ComputationalObjectTemplate

A.2.1.10 Computational Interface Template

A signal interface template, stream interface template or operational interface template. The concept of environment
contract is not supported in SDL, informal text has to be used instead.

A SignalInterfaceTemplate is represented by a type based PROCESS definition, where the PROCESS TYPE is at least a
specialization of the PROCESS TYPE signal interface template, as shown in Table A.6. The PROCESS TYPE must have
only one GATE connected to the outside of the surrounding BLOCK. This GATE represents the signal interface signature.
All communication to the outside of the BLOCK must be based on SIGNAL exchange through this GATE. There must not
exist any OUTPUT to the outside of the surrounding BLOCK in the STATE unbound. The behaviour is specified by the
process graph in Table A.6.

Table A.6 – PROCESS TYPE SignalInterfaceTemplate

PROCESS TYPE SignalInterfaceTemplate;
GATE InterfaceSignature IN FROM ATLEAST SignalInterfaceTemplate

OUT TO ATLEAST SignalInterfaceTemplate;
DCL BoundTo PId;

START VIRTUAL; NEXTSTATE unbound;
STATE unbound; INPUT VIRTUAL Bind(BoundTo); NEXTSTATE bound;

INPUT VIRTUAL *; NEXTSTATE -;
STATE bound; INPUT VIRTUAL UnBind; NEXTSTATE unbound;

INPUT VIRTUAL *; NEXTSTATE -;
STATE*; INPUT VIRTUAL Delete; STOP;

ENDPROCESS TYPE;

BLOCK TYPE ComputationalObjectTemplate;
VIRTUAL PROCESS TYPE SignalInterfaceTemplate REFERENCED;
VIRTUAL PROCESS TYPE StreamInterfaceTemplate REFERENCED;
VIRTUAL PROCESS TYPE OperationInterfaceTemplate REFERENCED;
VIRTUAL PROCESS TYPE BehaviourTemplate REFERENCED;
PROCESS LocalBehaviour(1,) : BehaviourTemplate;
/*

GATE Definitions
SIGNALROUTE Definitions
PROCESS Definitions
have to be added in specializations of this TYPE

/*
ENDBLOCK TYPE;
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A Stream Interface Template is represented by a type based PROCESS definition, where the PROCESS TYPE is at least a
specialization of the PROCESS TYPE StreamInterfaceTemplate, as shown in Table A.7. The PROCESS TYPE must have
only one GATE connected to the outside of the surrounding BLOCK. This GATE represents the Stream Interface
Signature. All communication to the outside of the BLOCK must be based on SIGNAL exchange through this GATE by
continuous signals (flows) in the STATE bound.

The behaviour is specified by the process graph in Table A.7.

Table A.7 – PROCESS TYPE StreamInterfaceTemplate

PROCESS TYPE StreamInterfaceTemplate;
INHERITS SignalInterfaceTemplate
GATE InterfaceSignature ADDING IN FROM ATLEAST BinderStreamInterfaceTemplate

OUT TO ATLEAST BinderStreamInterfaceTemplate;
ENDPROCESS TYPE;

An Operation Interface Template is represented by a type based PROCESS definition, where the PROCESS TYPE is at
least a specialization of the PROCESS TYPE OperationInterfaceTemplate, as shown in Table A.8. The PROCESS TYPE
must have only one GATE connected to the outside of the surrounding BLOCK. This GATE represents the Operation
Interface Signature. All communication to the outside of the BLOCK must be based on SIGNAL exchange through this
GATE or by REMOTE PROCEDURES. The behaviour is specified by the PROCESS body in Table A.8.

Table A.8 – PROCESS TYPE OperationInterfaceTemplate

PROCESS TYPE OperationInterfaceTemplate;
INHERITS SignalInterfaceTemplate
GATE InterfaceSignature ADDING IN FROM ATLEAST OperationInterfaceTemplate

OUT TO ATLEAST OperationInterfaceTemplate;
ENDPROCESS TYPE;

A.2.1.11 Signal Interface Signature

The signature of a Signal Interface is given by a GATE definition of the corresponding PROCESS. This contains the set
of names of all SIGNALS sent/received by the Interface PROCESS and gives an indication of their causality (IN WITH or
OUT WITH respectively). A Signal Signature is given by a SIGNAL definition, comprising:

• a name for the Signal;

• the number and types of the parameters for the Signal.

SDL does not allow for a naming of parameters, however parameters are identified by their position.

Additionally the SIGNALSET of the PROCESS contains the set of names of all SIGNALS the PROCESS can receive.

A.2.1.12 Operation Interface Signature

An Interface Signature for an operational Interface, comprises the signature of each operation in the interface. It is given
by GATE definitions according to A.2.1.10 or by REMOTE and IMPORTED or EXPORTED PROCEDURE definitions
(in case of REMOTE PROCEDURES).

The announcement signature is, in case of REMOTE PROCEDURE, reflected by the PROCEDURE signature, otherwise
it is given by a SIGNAL definition.

The termination signature is, in case of REMOTE PROCEDURES, reflected by the signature of the data type of the
PROCEDURE return value, otherwise it is given by a SIGNAL definition.

A.2.1.13 Stream Interface Signature

The signature of a Stream Interface is given by a GATE definition, containing the set of names of all SIGNALS
sent/received by the Interface PROCESS, i.e. the flows, and an indication of causality as given according to A.2.1.10.

Additionally the SIGNALSET of the PROCESS contains the set of names of all SIGNALS the PROCESS can receive.

In case of remote procedures, these have to be specified in the interface PROCESS as EXPORTED or IMPORTED. The
REMOTE clause restricts the visibility of EXPORTED PROCEDURES.

NOTE – Complementary interface signatures are indicated by GATE definitions with identical signal lists but complementary
direction clauses (IN WITH and OUT WITH respectively).
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A.2.1.14 Binding Object

An instance of a CHANNEL. The internal structure of a binding object is specified by a CHANNEL SUBSTRUCTURE.

More complex binding objects should be represented by a configuration of two or more CHANNELS and one or more
BLOCK -instances.

NOTE – Some CHANNELS in SDL are given implicitly, e.g. CHANNELS supporting the communication via EXPORTED
PROCEDURES and EXPORTED values. The use of a configuration consisting of a BLOCK and two or more CHANNELS allows
for bindings between more than two interfaces and for bindings with control interface(s).

A.2.2 Structuring Rules

A computational specification in SDL describes the functional decomposition of an ODP system in distribution
transparent terms, as:

• a configuration of BLOCKS and CHANNELS;

• internal actions are modelled by local PROCESSES which do not communicate to the outside of the
BLOCK;

• interactions are modelled by Interface PROCESSES.

A computational specification in SDL is constrained by the rules of the computational language and by the semantics
of SDL.

The initial set of computational objects is given by the set of BLOCKS and the PROCESSES contained in them. An
initial number may be specified for each different kind of PROCESS. The changes in the configuration are expressed in
the behaviour specification.

A.2.2.1 Naming Rules

The static semantics of SDL ensures the following rules:

• signal names are distinct in any signal interface signature because a SIGNAL may appear only once in a
GATE definition;

• operation names are distinct in any operation interface signature, because a PROCESS must not export or
import two different PROCEDURES with the same name;

• parameters are uniquely identified by their position. There is no naming for SIGNAL parameters;

• computational interface identifiers are mapped to PIds (PROCESS identifiers) and are therefore unique
throughout the specification.

A.2.2.2 Interaction rules

To fulfil the constraint that interactions at an unbound interface cause an infrastructure failure, all OUTPUT actions must
be qualified with VIA and/or TO clauses. All SIGNALS sent outside a Computational Object BLOCK have to be sent by
an Interface PROCESS and routed through a GATE of that PROCESS.

All Remote Procedure Calls must be qualified with TO. All failures have to be explicitly specified, since SDL does not
provide a mechanism for handling failures. Behaviour is undetermined after an error has occurred.

A.2.2.2.1 Signal Interaction rules

The Signal interaction rules are guaranteed by the SDL semantics. A Signal Interface PROCESS can only send/receive
those SIGNALS that are specified for that PROCESS.

A.2.2.2.2 Stream interaction rules

Stream interfaces are based on SIGNAL exchange, therefore the stream interaction rules are guaranteed by the SDL
semantics. A Stream Interface PROCESS can only produce/consume those flows that are specified for that PROCESS.

A.2.2.2.3 Operation interaction rules

In case of Remote PROCEDURES the Operation Interaction Rules are guaranteed by the SDL semantics. In case of
SIGNALS the specifier has to apply the following rules:

• for all SIGNALS modelling the operation invocations there must be transitions in all states of the
PROCESS to handle these SIGNALS (no implicit discard!);

• the transition or sequence of transitions triggered by the invocation must end with exactly one OUTPUT
<sdl-signal>, where <sdl-signal> is a SIGNAL modelling one of the terminations.
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The order of occurrence of invocation/termination deliver signals of concurrent invocations/terminations does not
necessary follow the order of occurrence of the corresponding invocation/termination submit signals. Concurrent
SIGNALS are ordered in SDL in arbitrary (non-deterministic) order. There is no means to describe the duration of an
operation directly, the duration is arbitrary.

A.2.2.2.4 Parameter rules

Computational interface identifiers are represented as PIds. They can be both argument and result parameters in signal
and operation interactions. The identifiers can be passed as a parameter in further interactions.

The recipient of a computational interface identifier can use the identifier to engage in interactions with the object
supporting the interface, provided a binding can be established between the interfaces.

Computational identifiers are unambiguous within the SYSTEM specification. SYNONYMS may be used to give an
interface more than one identifier.

It is always possible to determine whether two computational interface identifiers identify the same computational
interface, however, there is no means to qualify a PId with an interface signature type or to detect the type of the
interface the PId references.

A.2.2.2.5 Flows, Operations and Signals

The replacement model of operations and streams by signals is guaranteed in SDL. In case of REMOTE PROCEDURES
and EXPORTED/IMPORTED a similar replacement model is provided by the SDL standard.

A.2.2.3 Binding rules

Interaction between computational objects is only possible when their interfaces are bound to the same binding object.
This is ensured by the SDL semantics since each communication between BLOCKS in SDL requires the BLOCKS to be
connected by a CHANNEL. Each OUTPUT shall use the TO <PId> or VIA <channel> or VIA <gate> clause.

A.2.2.3.1 Implicit Binding for Server Operation Interfaces

Implicit binding is possible in SDL for computational object BLOCKS which are directly connected by a CHANNEL.
Implicit binding always takes place with operations modelled with REMOTE PROCEDURES. The SDL replacement
model guarantees the implicit binding rules for server operation interactions. However, the client operation interface has
to be created explicitly. The scope of an EXPORTED PROCEDURE is restricted by a REMOTE clause.

A.2.2.3.2 Primitive binding rules

Primitive binding requires that the interface PROCESSES of the two computational objects are directly connected by a
CHANNELS as shown in Table A.9.

Table A.9 – Binding Action

/*Initiater*/

...
STATE unbound;
...
TASK
Destination:=CALL Bind(SELF,TDesc) TO Dest;
DECISON Destination=Dest;
FALSE: /*Binding Failure*/

NEXTSTATE -;
TRUE: TASK BoundTo:= add(BoundTo,Dest)

NEXTSTATE Bound;
ENDDECISION;
STATE Bound;
...

/*Destination*/
VIRTUAL EXPORTED PROCEDURE Bind
NEWTYPE PIDSet ATLEAST

OPERATORS noequality;
add: PIDSet,PId->PIDSet;
remove: PIDSet,PId->PIDSet;

ENDNEWTYPE;
DCL BoundTo PIDSet,ThisType TypeDescrType, Failure Boolean>>
FPAR Source PId, Typ TypeDescrType;
RETURNS Dest PId;
START;

/*type checking*

NULL: TASK Failure:=true; RETURN NULL;
ELSE: TASK BoundTo:=add(BoundTo,Source),

Failure:= false; RETURN SELF;
ENDDECISION;

RETURN NULL
ENDPROCEDURE;
STATE unbound;

INPUT Bind;
DECISION failure;

false: NEXTSTATE Bound;
ENDDECISION;
NEXTSTATE -;
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The binding action is modelled by an EXPORTED PROCEDURE according to Table A.9. A complementary
PROCEDURE has to be provided to delete the binding.

A.2.2.3.3 Compound Binding

In order to use compound binding, a binding object has to be specified (BLOCK TYPE). This BLOCK TYPE must contain
at least two interface PROCESSES and a local behaviour PROCESS. This binding object has to be connected to the
objects involved in the binding by CHANNELS. ATLEAST clauses may be used to ensure the binding pre-conditions.

The compound binding action comprises:

• instantiation of the binding object;

• instantiation of the interface templates within the binding object, which are associated with a formal role
in the binding object template (this may be part of the object instatiation);

• primitive binding of the interfaces involved in the binding with the corresponding interfaces of the binding
object;

• instantiation of control interfaces as required.

Control interfaces may be specified and instantiated according to A.2.1.10 and A.2.2.5.2.

A.2.2.4 Type rules

SDL does not have means to formally describe the ODP type concept. The type rules of ITU-T Rec. X.903 |
ISO/IEC 10746-3 must be used as a style guide for the specification process. The required subtyping relations for the
binding of interfaces have to be expressed as behaviour of the binding action (PROCESS Binder).

Template type rules may be expressed using ATLEAST clauses.
NOTE – ASN.1 or Act One data types can be used to model the type concept, however, the relation between an object and the
object type can not be verified formally.

A.2.2.5 Template rules

A.2.2.5.1 Computational object template rules

A computational object can:

• initiate or respond to signals (INPUT/OUTPUT);

• produce/consume flows;

• initiate operation invocations;

• respond to operation invocations;

• initiate operation terminations;

• respond to operation terminations;

• instantiate interface templates (CREATE <process>);

• instantiate object templates (OUTPUT CreateObject(<objectname>) TO LocalBehaviour);

• bind interfaces;

• access and modify its state (TASK-actions, NEXTSTATE);

• delete one or more of its interfaces (OUTPUT Delete TO Interface);

• delete itself (STOP);

• spawn, fork and join activities (PROCESS Creation, SERVICE decomposition);

• obtain a computational interface identifier for an instance of the trading function.

A.2.2.5.2 Computational interface instantiation

Computational interface template instantiation:

• creates a new interface PROCESS;

• produces a computational interface identifier for the interface (PId).

The instantiation is modelled by CREATE <interface-process-type>. The variables SELF of the creator and OFFSPRING
of the createe contain the new interface identifier.
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A.2.2.5.3 Computational object template instantiation

Computational object template instantiation:

• creates a new PROCESS LocalBehaviour for the object;

• produces a (non-empty) set of identifiers for the initial interface PROCESSES of the new object.

The instantiation is modelled by CALL CreateObject TO <object-type>. This creates a new PROCESS LocalBehaviour.
The instantiation of the interface PROCESSES of the new object may be included in the CreateObject PROCEDURE or
may be part of the start transistion of LocalBehaviour. The PROCEDURE CreateObject may be refined by inheritance.

Table A.10 – CreateObject PROCEDURE

NOTE – The approach specified here is based on the assumption that there always will exist at least on object of that type. If this
can not be guaranteed, a special (manager) process has to be added to the ComputationalObjectTemplate-BLOCK. Its purpose is
the creation of new instances.

A.2.2.6 Failure rules

All possible computational failures have to be specified explicitly. SDL does not provide a means to handle failures in
the execution of a specification. After the occurence of an (SDL-) error the further behaviour of a system is undefined.

A.2.2.7 Portability rules

SDL meets all requirements of the portability rules with the following exceptions:

• ordering and delivery guarantees for announcements (delivery of SIGNALS always succeeds or fails);

• interface signature subtype testing.

SDL provides an event based processing model, the permitted actions are represented directly as a part of the language
(INPUT,OUTPUT,CREATE,CALL) and through syntactic structures.

A.2.2.8 Conformance and reference point

The GATES of interfaces PROCESSES act as the communication to the outside of the computational object represent the
reference points.

Message Sequence Charts (MSC) can additionally be used to specify the required behaviour at a reference point. Test
methodologies are available to check the conformance between an SDL specification and an ITU-MSC specification.

A language binding between the standardized interface specification language CORBA-IDL and SDL has been
developed and can be used to test the conformance of an object at programmatic conformance points.

A.3 Formalization of the Computational Viewpoint Language in Z

Elementary Structures Associated with Operational and Signal Interfaces

To formalize the concepts associated with the computational viewpoint in Z, it is necessary to introduce labels [!"#$] for
things, e.g. names of operations and their ODP types. The ODP types existing in the system are denoted by [%&'$].

The parameters that are associated with interfaces to computational objects consist of a name and a type. It should
always be possible to determine the type of a parameter in a given context, e.g. as given in 7.2.1 of ITU-T Rec. X.903 |
ISO/IEC 10746-3. Thus (")"# is introduced as a partial function from names to ODP types in such a context.

(")"#* !"#$ ,-. %&'$ 

This function includes in its domain, all of the parameter names that exist in a given context. It is also useful to introduce
sequences of these parameters to enable consideration of the sets of parameters associated with signals, invocations or
terminations.

(/012 33 1$41$41$41$4 (")"# 

EXPORTED PROCEDURE CreateObject ATLEAST CreateObject
RETURNS ObjectID PId;

START VIRTUAL; CREATE THIS;
RETURN OFFSPRING;

ENDPROCEDURE CreateObject;
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Elementary Structures Associated with Stream Interfaces

As with the LOTOS formalization of the computational viewpoint, we consider a generic notion of flow consisting of
flow elements. Each flow element in an information flow can be considered as a unit consisting of data (this may be
compressed) which we represent by [5"2"]. This model might include how the information was compressed, what
information was compressed, etc. As such it is not considered further here. Flow elements also contain a time stamp (21)
used for modelling the time at which the particular flow element was sent or received, hence we introduce the type
[%0#$]. It is also often the case in multimedia flows that particular flow elements are required for synchronisation, e.g.
synchronisation of audio with video for example. Therefore we associate a particular !"#$ with each flow element. This
can then be used for selecting a particular flow element from the flow as required. From this, we may model a flow
element as:

   6789:;<9$#$=27777777777777777 
   >9"?$9 * !"#$ 
   >@"2" * 5"2" 
   >21 * %0#$ 
   A7777777777777777777777777777 

A.3.1 Concepts

A.3.1.1 Signal

A signal is an atomic interaction from an initiator to a responder. Since Z does not fully possess the object oriented
feature of encapsulation, the modelling of interactions between objects requires restrictions on specification styles to be
followed. For example, through ensuring that signals sent from initiators to responders have appropriate variable names
(and compatible types) for the associated output and input labels respectively. Ensuring naming considerations are
satisfied can be achieved through appropriate renaming of the schema text representing signal signatures as provided
in A.3.1.11. An example of how this can be achieved is shown in the following Z fragment.

 B=020"20=CD0C="9D0C="2E)$ F D0C="9D0C="2E)$G'9HI0=J)C1K 
 L$1':=@0=CD0C="9D0C="2E)$ F D0C="9D0C="2E)$G'9MI0=J)C1K 

Now a template for an initiating and responding signal may be given as:

 67B=020"20=CD0C="9%$#'9"2$7777  67L$1':=@0=CD0C="9%$#'9"2$7777 
 > B=020"20=CD0C="9D0C="2E)$  > L$1':=@0=CD0C="9D0C="2E)$ 
 > NNN       > NNN 
 O7777       O7777 
 > NNN       > NNN  
 A77777777777777777777777777777  A77777777777777777777777777777 

Here the dots are used to imply that there will likely be more information contained in the declaration part of the
schemas, e.g. related to state information of the objects associated with the initiating and responding signals, and
predicates to indicate the effects of the operation schemas occurring, i.e. the behaviour.

It should be noted that schema hiding and schema projection can be used to hide declarations that should not be visible
during the interaction, i.e. they can be removed from the declarations and existentially quantified in the predicate part of
the schema. The signal template for the interaction itself may be modelled through piping of the respective initiating and
responding signal schema templates.

 D0C="9%$#'9"2$ F B=020"20=CD0C="9%$#'9"2$ PP L$1':=@0=CD0C="9%$#'9"2$

Whether the signal itself can actually take place is dependent upon the satisfaction of the predicates associated with the
composed schemas.

NOTE – The information that is being conveyed as required in 8.8 of ITU-T Rec. X.902/ISO/IEC 10746-2 is given by the output
parameters from the initiating signal, i.e. '9H.

A.3.1.2 Operation

The occurrence of an operation schema modelling an interrogation or announcement. See also the Note in A.3.1.4.

A.3.1.3 Announcement

The occurrence of an operation schema modelling an invocation from a client to a server. As discussed in A.3.1.1, Z does
not fully support object-orientation so modelling conventions have to be adopted to model systems of interacting objects.
The conventions on naming can be enforced through appropriate renaming of the invocation template given in A.3.1.12.
This can be represented as:

 Q90$=2B=R:S"20:=D0C="2E)$ F B=R:S"20:=D0C="2E)$G'9HI0=J)C1K 
 D$)R$)B=R:S"20:=D0C="2E)$ F B=R:S"20:=D0C="2E)$G'9MI0=J)C1K 
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Now a template for a client and server invocation may be given as:

 67Q90$=2B=R:S"20:=%$#'9"2$7777  67D$)R$)B=R:S"20:=%$#'9"2$7777 
 > Q90$=2B=R:S"20:=D0C="2E)$  > D$)R$)B=R:S"20:=D0C="2E)$ 
 > NNN       > NNN 
 O7777       O7777 
 > NNN       > NNN  
 A77777777777777777777777777777  A77777777777777777777777777777 

The announcement itself may then be modelled through piping of the respective client and server invocation schemas.

 B=R:S"20:=%$#'9"2$ F Q90$=2B=R:S"20:=%$#'9"2$ PP D$)R$)B=R:S"20:=%$#'9"2$

Whether the announcement itself can actually take place is dependent upon the satisfaction of the predicates associated
with the composed schemas.

NOTE – The text in A.3.1.1 to explain the dots in the schemas to represent the unspecified behaviour and the usage of schema
hiding and projection to provide a form of encapsulation is also applicable to announcements.

A.3.1.4 Interrogation

The occurrence of an operation schema modelling an invocation between a client and server followed by the occurrence
of an associated operation schema modelling a termination between that server and client. As discussed in A.3.1.1, Z
does not fully support object-orientation so modelling conventions have to be adopted to model systems of interacting
objects. The conventions on naming can be enforced through appropriate renaming of the invocation template given
in A.3.1.12. Invocations associated with interrogations are modelled similarly to invocations associated with
announcements as given in A.3.1.3.

As discussed in A.3.1.1, schema hiding and schema projection can be used to model a form of encapsulation.
Terminations and the naming conventions they are to adhere to, can be modelled through renaming of termination
templates (see A.3.1.12). The client and server side of a termination may be represented as:

D$)R$)%$)#0="20:=D0C="2E)$0 F %$)#0="20:=D0C="2E)$G'90HI:E2J)C1K 
Q90$=2%$)#0="20:=D0C="2E)$0 F %$)#0="20:=D0C="2E)$G'90MI:E2J)C1K 

Here the underscore i indicates that there may be several of these (termination signatures) associated with a single
invocation. Now a template for a client and server termination may be given as:

 67Q90$=2%$)#0="20:=%$#'9"2$0777  67D$)R$)%$)#0="20:=%$#'9"2$077 
 > Q90$=2%$)#0="20:=D0C="2E)$0  > D$)R$)%$)#0="20:=D0C="2E)$0 
 > NNN       > NNN 
 O7777       O7777 
 > NNN       > NNN  
 A777777777777777777777777777777  A77777777777777777777777777777 

The subscript i is used to imply that there will likely be several termination templates, each of which has an associated
signature. These signatures may be different.

Terminations themselves may then be modelled through piping of the respective server and client termination schemas.

%$)#0="20:=%$#'9"2$T F D$)R$)%$)#0="20:=%$#'9"2$T PP Q90$=2%$)#0="20:=%$#'9"2$T
%$)#0="20:=%$#'9"2$U F D$)R$)%$)#0="20:=%$#'9"2$U PP Q90$=2%$)#0="20:=%$#'9"2$U
NNN 

A template for an interrogation as an invocation followed by one of the possible terminations may be represented as:

 B=2$)):C"20:=%$#'9"2$ F B=R:S"20:=%$#'9"2$ PP  
    V%$)#0="20:=%$#'9"2$T W %$)#0="20:=%$#'9"2$U W NNN X 

Whether the interrogation itself can actually take place is dependent upon the satisfaction of the predicates associated
with the composed schemas.

NOTE 1 – The text in A.3.1.1 to explain the dots in the schemas to represent the unspecified behaviour and the usage of schema
hiding and projection to provide a form of encapsulation is also applicable to interrogations.

NOTE 2 – This model of an interrogation, represents a single operation schema, i.e. it is not the case that the invocation occurs
first and is followed by one of the terminations. The whole interrogation represents a single atomic action which either occurs in
its entirety or does not occur at all, depending upon the associated predicates. The informal commentary associated with the Z
specification should be used to explain the intended effect.

A.3.1.5 Flow

The modelling of flows in Z is very much dependent upon the level of abstraction used when considering the sequence of
interactions representing the flow. Typically, flows of information have stringent timing considerations associated with
them. We consider here a model based upon a flow producer having a sequence of data items (flow elements) to send to
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a flow consumer. These are time stamped when they are sent by the producer and this is used to determine their validity
on arrival by the consumer. Examples of the state of a producer (PState) and consumer (CState) can be represented as:

 67(D2"2$77777777777777777777777777      67QD2"2$7777777777777 
 >'1 * 1$4 89:;<9$#$=2    >S1 * 1$4 89:;<9$#$=2 
 >'2=:;Y ')"2$ * %0#$     >S2=:;Y S)"2$ * %0#$   
 >NNN        >NNN  
 O7777777777777777777    O7777777777777777777 
 >Z[TY[U * 89:;<9$#$=2 \     >NNN 
 >   ][TY[U^ 0= '1 _ [UN21 P [TN21   A7777777777777777777 
 >NNN  
 A777777777777777777777777777777777 

Here we use the model of a flow element as given in A.3.1. We state that the producer (and consumer) state consists of at
least a sequence of flow elements (ps/cs), the current local time (ptnow/ctnow) and the rate at which flow elements are to
be sent (prate) or accepted (crate). We also state that all flow elements in the sequence of flow elements associated with
a producer have increasing time stamps. With this model of the producer state we can model the sending of a flow
element as:

 67(D$=@89:;<9$#$=277777777777777777777777777777777777777777 
 >`(D2"2$ 
 >[H* 89:;<9$#$=2 
 >NNN  
 O7777777777777777777 
 >'1 a b P c ')"2$d 3 ')"2$ c  
 >'1d 3 2"09 '1 c '2=:;d 3 '2=:; e T I ')"2$ c 
 >[H 33 Vf 89:;<9$#$=2 \ @"2" 3 Vg$"@ '1XN@"2" c  
 >     21 3 '2=:;d c 9"?$9 3 Vg$"@ '1XN9"?$9X NNN  
 A7777777777777777777777777777777777777777777777777777777777

Several things should be pointed out here. Sending a flow element removes that flow element from the sequence of flow
elements to be sent. The current rate associated with the flow is unchanged. The actual time at which the flow element
was sent is dependent upon the current rate and time.

The actual flow element sent is the head flow element in the sequence of flow elements to be sent. This is time stamped
with the value for the time calculated previously. We note here that the use of the definite description requires that a
proof obligation is fulfilled to ensure that the flow element sent is unique. This obligation is satisfied through modelling
all flow elements in the sequence with increasing (i.e. non-equal) time stamps. Since no flow element in the sequence has
the same time stamp, the flow element sent with the current time is unique. Also we require as a precondition that the
sequence of flow elements is non-empty.

A consumer may receive a flow element successfully provided the constraints for its acceptance are satisfied.

 67Qh$289:;<9$#$=2ij77777777777777777777777777777777777777777777777 
 >`QD2"2$ 
 >[M* 89:;<9$#$=2 
 >NNN  
 O7777777777777777777 
 >S1d 3 S1kb[MP c S)"2$d 3 S)"2$ c S2=:;d 3 S2=:; e T I S)"2$ c NNN  
 A77777777777777777777777777777777777777777777777777777777777777777 

For brevity we do not consider the acceptance constraints in detail. These might entail allowing variations in the times at
which the flow element is acceptable, e.g. jitter. The actual model of a flow may now be represented as:

89:; F (D$=@89:;<9$#$=2 PP Qh$289:;<9$#$=2ij 

We note here that this model of a flow requires that the flow element sent and received has the same base name and that
the other local variables of the producer and consumer states have different labels. For brevity, we do not consider the
erroneous cases associated with sending and receiving flow elements in a flow of information.

A.3.1.6 Signal Interface

An interface in which all operation schemas are modelled as signals. An example of the format of an operation schema
representing a signal signature is given in A.3.1.1.

NOTE – The behaviour specification and environment contract associated with a given interface should be represented by
additional Z data structures, e.g. schemas representing the state of the objects involved in the interactions at the interface. The
instantiation of a given interface template should satisfy all predicates associated with the interface template.



24 ITU-T Rec. X.904/Amd.1 (2000 E)

A.3.1.7 Operation Interface

An interface in which all operation schemas are modelled as operations. An example of the format of the operation
schemas representing parts of an operation signature are given in A.3.1.3 and A.3.1.4. See also the NOTE in A.3.1.6.

A.3.1.8 Stream Interface

An interface in which all operation schemas are modelled as flows. An example of the format of the operation schemas
representing a flow signature is given in A.3.1.5. See also the Note in A.3.1.6.

A.3.1.9 Computational Object Template

An object template (see 4.4.2.11) which comprises a set of interface templates the object can instantiate, a behaviour
specification and an environment contract. It should be noted that Z is essentially a flat notation and hence does not
support the modelling of objects as a language feature directly. Instead, the natural language commentary that should be
associated with every Z specification should be used to denote the Z text, e.g. the operation schemas, comprising the
interface(s) of the objects and the relation between them.

A.3.1.10 Computational Interface Template

An interface template for either a signal interface, a stream interface or an operation interface. See also the Note
in A.3.1.6.

A.3.1.11 Signal Interface Signature

An interface signature for a signal interface. A signal interface signature comprises a finite set of action templates, one
for each signal type in the interface. Each action template comprises the name for the signal, the number, name and types
of its parameters and an indication of causality (initiating or responding) with respect to the object that instantiates the
template. A signal signature may be represented by:

67D0C="9D0C="2E)$77777777777777 
  >0=J)C1* (/012 
  A777777777777777777777777777777

Here the schema name (D0C="9D0C="2E)$) is used to represent the signal name and inArgs to represent the number,
name and type of the parameters associated with this signal. The usage of this schema to create instances of initiating or
responding signal signatures, i.e. with causality is given in A.3.1.1. See also the Note in A.3.1.6.

A.3.1.12 Operation Interface Signature

An interface signature for an operation interface. An operation interface signature comprises a finite set of
announcements and interrogations as appropriate, one for each operation in the interface, together with an indication of
causality (client or server) for the interface as a whole with respect to the object that instantiates the template.
Announcements consist of invocations only. Interrogations consist of an invocation followed by one of the possible
terminations. An invocation signature may be represented as:

67B=R:S"20:=D0C="2E)$7777777777777 
   >0=J)C1* (/012  
   A777777777777777777777777777777777

Here the schema name is used to represent the invocation name and inArgs to represent the number, name and type of the
parameters associated with this invocation. The usage of this schema to create instances of client or server invocations
signatures, i.e. with the associated causality, is given in A.3.1.3 and A.3.1.4. The predicate associated with this schema is
used to satisfy the naming rules for parameters, i.e. that parameter names are unique in the context of an invocation
template. See A.3.2.1.

A termination signature may be represented as:

67%$)#0="20:=D0C="2E)$777777777777 
   >:E2J)C1* (/012  
   A777777777777777777777777777777777

Here the schema name is used to represent the termination name and outArgs to represent the number, name and type of
the parameters associated with this termination. The usage of this schema to create client or server termination
signatures, i.e. with the associated causality, is given in A.3.1.3 and A.3.1.4. It is likely that there will be predicates
associated with this schema, e.g. naming rules etc. as discussed in A.3.2.1. These predicates are similar to those given
previously for invocation templates (with appropriate quantification changes, e.g. replace inArgs with outArgs). See also
the Note in A.3.1.6.
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A.3.1.13 Stream Interface Signature

An interface signature for a stream interface. A stream interface signature comprises a finite set of action templates, one
for each flow type in the interface. Each action template for a flow contains the name of the flow, the information type of
the flow and an indication of causality for the flow (producer or consumer) with respect to the object which instantiates
the template. An example of a particular flow signature is given in A.3.1.5. The identification of flow signatures as being
part of a given stream interface can be done through the informal text associated with every Z specification. See also the
Note in A.3.1.6.

A.3.1.14 Binding Object

An object that supports a binding between a set of other computational objects. Since Z does not support the modelling
of objects and their associated interfaces as a language feature, the modelling of binding objects in general is limited.
Using the schema calculus and providing informal textual descriptions however, it is quite possible to model complex
interaction scenarios where a form of binding can be considered as existing. For binding objects between client and
server objects for example, this might be achieved through modelling additional operation schemas (representing parts of
the interface to the binding object) that are composed with client invocations and their subsequent delivery at servers.
This might be represented as:

B=R:S"20:=l0"m0=@ F VQ90$=2B=R:S"20:= PP m0=@B=R:S"20:=X PP D$)R$)B=R:S"20:=  

Schema BindInvocation should have compatible data types and labels for the variables that represent the information
being passed between the client and server. An example of the schema BindInvocation for the client and server
invocation given in A.3.1.3. is:

   67m0=@B=R:S"20:=7777777 
   >0=J)C1HY0=J)C1M* (/012 
   >NNN  
   O7777777777777777777777 
   >NNN  
   A7777777777777777777777 

Here the schema should have the same base name for the data structures being passed from the client (inArgs?) and
being passed to the server (inArgs!). It should be pointed out that there is no notion of the schema InvocationViaBind
partially failing. That is, it is not the case that the client invocation (ClientInvocation) and its acceptance by the binder
object (BindInvocation) can pass and the delivery of the invocation from the binding object to the server
(ServerInvocation) can fail. This can then be represented as:

B=R:S"20:=l0"m0=@8"09 F Q90$=2B=R:S"20:= PP m0=@B=R:S"20:=8"09  

Here the schema BindInvocationFail might be modelled as:

67m0=@B=R:S"20:=8"0977777 
   >0=J)C1M* (/012 
   >NNN  
   O777777777777777777777777 
   >NNN  
   A777777777777777777777777

That is, the binding object accepts the data from the client (inArgs?) but does not deliver it to the server for some
unspecified reason. The different possibilities of successful or unsuccessful operations that might take place through a
binding object can be represented through the schema calculus. Typically, logical disjunction is used to represent the
choices that are possible, i.e. failure cases.

NOTE – The behaviour associated with the schema BindInvocation might impose constraints on the data it receives and
subsequently sends, i.e. it is possible to write predicates on the values of the variables it accepts as inputs and gives as outputs.

A.3.2 Structuring Rules of Computational Viewpoint

A.3.2.1 Naming Rules

The naming rules of the computational viewpoint language can be supported either through the writing of predicates, as
shown in A.3.1.12 for the naming rules associated with parameters, or through the global scoping of schema names. Thus
it is not possible to declare two operation schemas with the same names, i.e. all actions are uniquely identified in a
semantically correct Z specification.

A.3.2.2 Interaction Rules

It is typically not the case in Z that operation schemas are grouped together to form a new Z construct, e.g. a schema,
that represents the interface to an object. To do so would in the general case would result in a schema that does not have
the
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same modular structuring and with potentially conflicting predicates representing the behaviour of the individual
schemas. From this it follows that the interaction rules of ITU-T Rec. X.903 | ISO/IEC 10746-3 are not generally
supported in Z.

A.3.2.2.1 Signal Interaction Rules

There is no notion of causality in Z, hence it is not meaningful to state that interfaces initiate signals if they have
initiating causality or respond to signals if they have responding causality. The causality label that can be applied to a
given interface is done so informally. It might be the case, however, that notions of causality can be dealt with in the
informal commentary associated with every Z specification in accompaniment with appropriate schema combinations,
e.g. through PPN

A.3.2.2.2 Stream Interaction Rules

See A.3.2.2 and A.3.2.2.1.

A.3.2.2.3 Operation Interaction Rules

See A.3.2.2 and A.3.2.2.1. It should also be noted that it is typically not the case that Z models sequencing or ordering of
actions. This is typically done when refinement of a specification is made. Thus because a client sends an invocation
which a server receives, there is no inherent Z language construct that requires that server to send an appropriate
termination at some later stage. Instead, the sending and receiving of the invocation from the client to the server and the
subsequent sending and receiving of the termination from the server to the client is usually modelled as a single schema
as shown in the example of A.3.1.4. Alternatively, the actions of sending and receiving an invocation and sending and
receiving a termination can be modelled as separate schemas where the accompanying informal text is used to explain
their relationship.

A.3.2.2.4 Parameter Rules

It is typically not the case in Z that operation schemas are grouped together to form an interface of an object that can be
labelled and subsequently used for interacting with the interface it references. As such Z does not directly support the
modelling of computational interface references as parameters.

A.3.2.2.5 Flows, Operations and Signals

There is no inherent distinction between a flow, operation or signal in Z. They are all represented by operation schemas
that can be composed with one another in numerous ways, e.g. through the schema calculus, depending upon the
behaviour of the system being specified. As such, modelling flows or operations through signals can be achieved through
ensuring that the schemas representing the signals have the appropriate labels and data types associated with the
corresponding schema representing the flow or operation respectively.

A.3.2.3 Binding Rules

It is typically not the case in Z that operation schemas are grouped together to form an interface of an object that can be
labelled and subsequently used for interacting with the interface it references. As such, the binding rules of
ITU-T Rec. X.903 | ISO/IEC 10746-3 are not generally supported by a Z specification. Instead, it is more often the case
that Z supports a form of binding based upon individual operation schemas (representing signals, flows, invocations or
terminations) being composed with one another. An example of this is given in A.3.1.14. Through this, it is possible to
ensure that certain binding rules are satisfied, e.g. through writing predicates to check on the types of parameters being
passed. There is no feature of Z that restricts how operation schemas may be composed generally, however. For
example, ensuring that only operation schemas with a certain name and having similar declarations are composed with
one another. Composing schemas that are incompatible, e.g. combining schemas through n that have declarations of
variables with similar basenames but different types, results in a semantically incorrect specification.

A.3.2.3.1 Implicit Binding Rules for Server Operation Interfaces

See A.3.2.2, A.3.2.3 and A.3.2.2.4.

A.3.2.3.2 Primitive Binding Rules

See A.3.2.2, A.3.2.3 and A.3.2.2.4.

A.3.2.3.3 Compound Binding Rules

See A.3.2.2, A.3.2.3 and A.3.2.2.4.
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A.3.2.4 Type Rules

The type rules given for computational interfaces in ITU-T Rec. X.903 | ISO/IEC 10746-3 are not generally supported
in Z due to the reasons given in A.3.2.2, A.3.2.3 and A.3.2.2.4.

A.3.2.4.1 Signature Subtyping Rules for Signal Interfaces

See A.3.2.4.

A.3.2.4.2 Signature Subtyping Rules for Stream Interfaces

See A.3.2.4.

A.3.2.4.3 Signature Subtyping Rules for Operation Interfaces

See A.3.2.4.

A.3.2.5 Template Rules

A.3.2.5.1 Computational Object Template Rules

Z supports all actions associated with the computational object template rules, provided appropriate Z text is given,
e.g. operation schemas are given for modelling initiating or responding signals, with the following exceptions:

• the binding of interfaces is not supported fully due to the reasons given in A.3.2.3 and A.3.2.2.4;

• the spawning, forking and joining of activities are not a feature of the Z language, however, it is possible
to model an abstract representation of these;

• obtaining a reference to a trading function is not supported fully due to the reasons given in A.3.2.3
and A.3.2.2.4;

• Z does not support computational interface signature subtype checking for the reasons given in A.3.2.3
and A.3.2.2.4.

A.3.2.5.2 Computational Interface Instantiation

Instantiation of a computational interface template can be achieved through providing a valid binding for the variables in
the Z text identified as representing the interface template. It is not generally the case in Z that an identifier is produced
that can be used for interacting with the created interface due to the reasons given in A.3.2.3.

A.3.2.5.3 Computational Object Template Instantiation

Instantiation of a computational object template can be achieved through providing a valid binding for the variables in
the Z text identified as representing the object template.

A.3.2.6 Failure Rules

The failure modes visible to an object are determined by its behaviour specification and its environment contract. Any of
the actions given in A.3.2.5 can fail.

In Z failure can be modelled in several ways. Perhaps the simplest of these is through logical disjunction of schemas.
That is, a successful schema is specified along with possible error schemas. These are then combined with the successful
schema through logical disjunction. The visiblity of these error schemas is dependent upon the possession of inputs (?)
and outputs (!). Thus, since signal failures are visible and identical to all parties involved in the interaction, a signal
failure can be specified as a schema with outputs that are sent to all parties involved in the interaction.

Depending upon the requirements, flow, operation schema failures and failures associated with interface and object
instantiation, can be specified so that they are: visible to all parties at the same time; visible to only one party at a given
time; and return different parameters to the different parties. All of these can be achieved through schema calculus in Z.

A.3.2.7 Portability Rules

The actions required to support a basic or extended portability standard are supported by Z, provided Z text is given to
represent the appropriate action, with the exceptions identified in A.3.2.5.1.

A.3.2.8 Conformance and Reference Points

A reference point exists at any interface of any computational object. Implementors claiming conformance must list the
engineering reference points corresponding to the computational reference point and state which transparencies and
engineering structures apply to them. Through this act, the computational reference points become conformance points.
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Thus, given a Z specification from the computational viewpoint, conformance can be checked through ensuring that the
operation schemas associated with those interfaces in the specification that have been identified as conformance points
by the implementor, are satisfied by the implementation. Here, satisfaction must ensure that the invariants of the
specification are not violated and that all preconditions and postconditions satisfied by the specification are also satisfied
by the implementation.

A.4 Formalization of the Computational Viewpoint Language in ESTELLE

This subclause shows how the formal description technique Estelle may be used to interpret the concepts and rules of the
computational language of ITU-T Rec. X.903 | ISO/IEC 10746-3. In the following text, italics are used to denote Estelle
concepts as defined in the standard document. The interpretation is explained in examples. Due to the reason that not all
ODP concepts can be formally interpreted using Estelle, a style is sometimes used which implies the appropriate concept.

A.4.1 Concepts

A.4.1.1 Signal

A signal is interpreted as the submission of an Estelle interaction through an interaction point of a module instance and
its subsequent consumption by the recipient.

A.4.1.2 Operation

The occurrence of an announcement or interrogation.

A.4.1.3 Announcement

An announcement is interpreted as the submission of an Estelle interaction through an interaction point of a module
instance which represents the client and its subsequent use by a module instance which represents the server.

A.4.1.4 Interrogation

An interrogation is interpreted as the submission of Estelle interactions. One interaction, the invocation, is submitted
from a module instance, representing the client. The other interaction, the termination, is submitted from a module
instance representing the server. The management of the relations between invocations and terminations should be done
in the module instances.

A.4.1.5 Flow

There are two ways to interpret this concept in Estelle. A flow is modelled through a sequence of interactions sent from a
producer object to a consumer object. This can be realised by attaching a child module to the interaction point, which
generates the sequence of interactions. Alternatively, a continuous interaction between both modules and the data
conveyed can be used to represent an information flow.

A.4.1.6 Signal interface

A signal interface is interpreted as an interaction point in Estelle. The interaction point has a defined set of interactions
which can only be signals. The definition of the interaction point is based on an appropriate channel definition.

A.4.1.7 Operation interface

An operation interface is interpreted as an interaction point in Estelle. The interaction point has a defined set of
interactions which can be only invocations and their respective terminations and announcements. The definition of the
interaction point is based on the respective channel definition.

A.4.1.8 Stream interface

A stream interface is interpreted as an interaction point in Estelle. The interaction point has a defined set of interactions
which can be only flows. The definition of the interaction points is based on the appropriate channel definition. If the
flow is modelled through a sequence of interactions, a child module instance is attached to the interaction point which
realises the sequence of interactions.

A.4.1.9 Computational object template

A computational object template can be modelled using a module header definition, which contains the interaction
points, a module body definition which contains the internal behaviour and the behaviour of the interface templates.
There is no way to explicitly specify environment constraints in Estelle.
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A.4.1.10 Computational interface template

A computational interface template is modelled using a channel definition which contains the interface signatures, using
a module header definition which contains the appropriate interaction points and using a module body definition which
contains the behaviour specification of the interface. Environment constraints can not be explicitly modelled using
Estelle. A computational interface template in Estelle consists of an interaction point of a parent module instance which
is attached to a child module instance with the same interaction point of the same channel. This approach provides for
transparent reception of various interactions, because the child module instance is always ready for reception.

A.4.1.11 Signal interface signature

A signal interface signature is interpreted as part of the channel definition. This definition contains the roles associated
with the channel, the name of the interactions and the information carried by them, specified using one or more
parameter names and associated types.

A.4.1.12 Operation interface signature

An operation interface signature is interpreted as part of the channel definition. This definition contains the roles
associated with the channel, the name of the interaction and the information carried by them, specified using parameter
names and associated types. An announcement signature contains only an interaction representing the invocation. An
interrogation signature contains both an interaction representing the invocation and a set of interactions representing the
possible terminations.

A.4.1.13 Stream interface signature

A stream interface signature is interpreted as part of the channel definition. This definition contains the roles associated
with the channel, the name of the interactions and the information carried by them, specified using one parameter name
and associated type.

A.4.1.14 Binding object

A binding object is modelled by a module instance, together with the CHANNELS through which it is connected to
computational objects.

A.4.2 Structuring rules

In Estelle, a computational specification describes the functional decomposition of an ODP system as a configuration of
computational and binding objects, both represented as module instances. The internal actions of a module instance are
modelled as an extended finite state machine. This machine is realised in Estelle using transitions. Interactions between
objects are exchanged via CHANNELS. Interactions between modules are asynchronous. The endpoints of a channel are
computational interfaces represented in Estelle as interaction points. The module instances are all direct child module
instances of a module instance attributed systemactivity. This means, that the execution of all child modules is non-
deterministic. The parent module can be substructered only into modules attributed with activity. The parent module
instance provides for: instantiation; destruction; connection and disconnection of module instances representing
computational objects. The environment contracts of the objects are not modelled explicitly in Estelle.

A.4.2.1 Naming rules

The semantics of Estelle ensure all naming rules. Names in Estelle have the following associated context: interaction,
role and channel are part of a channel definition. There is no syntactic difference between the various interactions.
Semantic differences are caused by the different use of the interactions. Channel and role identifier are used for the
definition of interaction points in the module header definition. An interaction name is defined in the context of the
module instance, combining it with the respective interaction point name. The parameter name of an interaction is an
identifier in the context of the interaction definition. The name of an interaction point is defined in the context of all
module instances whose module header definition have defined this interaction point.

The name of a module instance is valid in the module body definition where it has been defined.

A.4.2.2 Interaction rules

In Estelle interactions can be sent and received only at interaction points. The sending of an interaction through an
interaction point that is not connected causes the loss of the interaction. The sending module instance is not informed
about its error. If we have to report an infrastructure failure in the case where interaction occurs at an interface that has
not been bound, all interfaces of an object that are not bound, may be connected to internal interaction points of the
environment. Thus, interactions at any of these interfaces can be detected and reported as an infrastructure failure.
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A.4.2.2.1 Signal Interaction Rules

When a module instance represents an object that offers a signal interface of a given signal interface type, this interface
is represented through an interaction point of appropriate channel and role definition, with a child module instance
attached to it that models the behaviour at the interface. This child module instance may only output interactions with the
causality parameter set to initiating. It must contain a transition with the appropriate WHEN clauses for the reception of
any of the interactions defined in the signal interface template.

A.4.2.2.2 Stream Interaction Rules

A stream interface is modelled through an interaction point with a child module instance attached to it which models the
behaviour at the interface. A flow can be represented by one interaction or by a sequence of interactions, according to
the various kinds of a flow. If the object has a consumer role for this interface, the child module instance must contain a
transition with the appropriate WHEN clauses for the reception of the flow interaction. If the object has a producer role,
the child module instance must contain output statements for the flow interaction.

A.4.2.2.3 Operation Interaction Rules

When a module instance represents an object that offers an operation interface of a given operation interface type, this
interface is represented through an interaction point of appropriate channel and role definition, with a child module
instance attached to it that models the behaviour at the interface. If the object has the client role for this interface the
child module instance must contain a transition with the appropriated WHEN clause for the reception of terminations and
the appropriate output statements to deliver invocations. If the object has the server role for this interface the child
module instance must contain a transition with the appropriated WHEN clause for the reception of invocations and the
appropriate output statements to deliver terminations. In Estelle, there is no way to assign a duration to a transition or a
sequence of transitions.

A.4.2.2.4 Parameter Rules

For a computational interface identifier, a specific (Estelle) data type has to be defined. Each computational interface can
be identified by a variable of this type. These variables can be passed as arguments in interactions representing
operations. The recipient of such a computational interface identifier can subsequently use it to bind to the referenced
interface.

A.4.2.2.5 Flows, Operations and Signals

Information between Estelle modules is always exchanged using interactions. Using this approach, the kind of
information is not visible. A signal is interpreted using only the interaction model. As the interpretation of flow and
operations are based on the notion of an interaction, signals can be used to explain their special features. In Estelle, only
complementary interaction points of the same channel can be connected. Based on the assumption that all interactions at
an interaction point have the same type, a compound binding between different kinds of interfaces is not possible in
Estelle.

A.4.2.3 Binding rules

In order to allow interaction between interfaces of computational objects, the interaction points modelling these
interfaces are both connected to interaction points of the same binding object. The binding object is instantiated by a
binding action. A binding action is invoked by the environment of the module instances. Each computational object
possesses a designated external interaction point through which it is connected with (an internal interaction point of) its
environment, i.e. the surrounding module instance. At this interaction point, the binding action is invoked with the
appropriate parameters.

It should be noted that this interaction point may be considered as a special kind of interface in the ODP sense, but the
binding action itself is not an ODP interaction since it does not occur between computational objects. A control interface
of the binding object is connected to a corresponding control interface of the client object. The environment, i.e. the
surrounding module instance, can check whether the interfaces to be bound are in an appropriate subtype relationship.
Since environment contracts are not modelled explicitly (so far), the satisfaction of environment contracts cannot be
checked. Binding without explicit participation of the environment can not be interpreted using Estelle concepts.

A.4.2.3.1 Implicit Binding Rules for Server Operation Interfaces

Implicit binding is required if the client object and the server object are still not bounded. There is no way in Estelle to
detect the non-existence of this binding. The client has to handle an array with interaction points and bounded servers.
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A.4.2.3.2 Primitive Binding Rules

In the case of primitive binding there is no binding object involved. Interaction points of module instances modelling
computational objects are connected immediately. This connection can be established during instantiation or can be done
by the environment after the invocation of the respective function. In the second case there will be a notification if a
failure occurs.

A.4.2.3.3 Compound Binding Rules

Compound binding actions enable a set of interfaces to be bound, using a binding object to support the binding. A
binding object template can be interpreted using Estelle in the same way as a computational object template. The pre-
conditions for compound binding can be expressed by the following Estelle expressions:

• corresponding interface parameters must be of the same kind; this can be realised in Estelle using a valid
channel definition;

• corresponding interface parameters must be of complementary causality. This can be realised in Estelle
using a valid channel definition and the respective role;

• corresponding interface parameter must be a subtype of the signature type. Although subtyping is not
supported in Estelle this can be realised using a valid channel definition.

A compound binding action can be interpreted using the following Estelle constructs:

• A module instance for a binding object is initialised by the parent module. The module header, the module
body and a module variable have been defined before.

• During instantiation the interaction points of the module instance are instantiated also.

• Using the connect statement a primitive binding between the binding object and the other computational
objects will be done.

• Control interfaces have been instantiated. Their identifier can be returned.

• The necessary functions at the control interface can be provided by the module instance.

A.4.2.4 Type rules

In Estelle, interaction points can only be connected if they are defined with the same channel definition. There is no
subtyping relationship between interaction points. In order to bind interfaces standing in a subtyping relationship using a
binding object, this binding object needs to have different interface types for its client (consumer) and server (producer)
role interfaces. Since recursive definition of interfaces is not supported in Estelle, only the simplified subtyping rules can
be applied. Estelle data types are based on the data types of ISO PASCAL. Thus, the only subtyping supported are
subrange types. Subrange types can be defined for ordinal data types, namely the data type integer and user-defined
enumerated types.

A.4.2.5 Template rules

A.4.2.5.1 Computational object template rules

A computational object can:

• initiate a signal by executing the corresponding output statements for the interaction representing the
signal or respond to signals by executing the corresponding WHEN clauses at an interaction point
representing a signal interface. Output statements and WHEN clauses are realised in child modules
attached to the interaction point of the parent module;

• produce flows by executing the corresponding output statements for the interaction representing the flow
or consuming flows by executing the corresponding WHEN clauses at an interaction point representing a
stream interface. Output statements and WHEN clauses are realised in son modules attached to the
interaction point of the father module. A loop can exist inside the son module to initiate the sequence of
interactions modelling a flow;

• invoke operations by executing the corresponding output statement for the interaction representing the
operation invocation or responding to operation invocations by executing the corresponding WHEN clause
at a operation interface. Output statements and WHEN clauses are realised in son modules attached to the
interaction point of the father module;

• terminate operations by executing the corresponding output statement for an interaction representing an
operation termination;

• instantiate interface templates by assigning an unused interaction point to the new interface, instantiating
the child module instance defining the behaviour at the interface and attaching it to the interaction point;
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• instantiate object templates directly by instantiating a new instance of the corresponding module definition
(this way only objects internal to the instantiating object can be created), or indirectly via an exchange of
interactions with the environment;

• bind interfaces by invoking a binding action with the environment;

• access and modify its state by either executing a state transition or modifying variables;

• delete itself indirectly by requesting itself to be stopped by the environment;

• spawn an activity by instantiating a child module instance;

• bind to a trading function object by invoking a binding action with the environment.

It should be noted that forking and joining of activities are not supported in Estelle. It should also be noted that interfaces
cannot be deleted, only connections between interaction points can be disconnected.

A.4.2.5.2 Computational Interface Template Instantiation

An unused interaction point is assigned to the new interface, a child module instance is created by the parent module and
attached to the interaction point and an internal interface identifier is produced for the interface. Dynamic creation of
interaction points is not possible in Estelle. This implies, that each module instance is created with (for each interface
type) an array of interaction points, representing the maximum number of simultaneously existing interfaces of this type.
At a given point in time, an interaction point is either unused or representing an interface (assigned to an interface). The
parent module has to maintain information about the state of each interaction point in a suitable data structure. The
initial interfaces of the object are instantiated in the initialise-transition of the module. Each module produces an internal
interface identifier for each of its interfaces. The full external computational identifier is created by the environment of
the object using the internal interface identifier and a module identifier.

A.4.2.5.3 Computational Object Template Instantiation

The instantiation of a computational object can only be undertaken by the environment which is modelled as a module
with the attribute systemactivity. Two phases have to be differentiated. First, the module instance is created. This can be
done using two generic forms of the init-statement. In one form, parameters can be passed to the module instance being
created. Since module-variables used in the init-statement have to be declared before being used, dynamic creation of
module-instances is not possible in Estelle. In a second step, appropriate interaction points have to be connected to their
respective partners.

A.4.2.6 Failure rules

Since signals, like operation invocation submit, are modelled in Estelle by messages sent through an interaction point, an
infrastructure failure does not occur automatically if the interface is not bound. A message sent through an interaction
point which is not connected is simply lost. In an implementation of the Estelle interpretation, however, the loss of a
message due to unbound interfaces can be detected and reported to the sending module instance as an infrastructure
failure. Dynamic creation of interaction points or module instances is not possible in Estelle. It is always necessary to
define an array with variables of the respective type. The instantiation of templates will fail if all possible instances are
already existing.

A.4.2.7 Portability rules

Action templates for all actions which can be interpreted, using Estelle, can be given. Estelle meets all requirements of
the portability rules with the following exceptions: forking and joining actions are not supported in Estelle nor are
ordering and delivery guarantees for announcements

A.4.2.8 Conformance and Reference Points

Reference points are external interaction points of Estelle modules. Methods to derive test cases from Estelle
specifications are available. Nevertheless, derivation of test cases for multi-module specifications is still an open issue.
There is no language binding between a standardized interface specification language and Estelle. A comprehensive
methodology for testing, based on interactions visible in communications protocols, does, however, exist.
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