

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.902
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2009)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY
Open distributed processing

 Information technology – Open Distributed
Processing – Reference model: Foundations

Recommendation ITU-T X.902

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.889
Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999
INFORMATION AND NETWORK SECURITY X.1000–X.1099
SECURE APPLICATIONS AND SERVICES X.1100–X.1199
CYBERSPACE SECURITY X.1200–X.1299
SECURE APPLICATIONS AND SERVICES X.1300–X.1399

For further details, please refer to the list of ITU-T Recommendations.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) i

INTERNATIONAL STANDARD ISO/IEC 10746-2
RECOMMENDATION ITU-T X.902

Information technology – Open Distributed Processing –
Reference model: Foundations

Summary

Recommendation ITU-T X.902 | ISO/IEC 10746-2 contains the definition of the concepts and analytical framework for
normalized description of (arbitrary) distributed processing systems. It introduces the principles of conformance to ODP
standards and the way in which they are applied. This is only to a level of detail sufficient to support Recommendation
ITU-T X.903 | ISO/IEC 10746-3 and to establish requirements for new specification techniques.

Source

Recommendation ITU-T X.902 was approved on 29 October 2009 by ITU-T Study Group 17 (2009-2012) under
Recommendation ITU-T A.8 procedures. An identical text is also published as ISO/IEC 10746-2.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) ii

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) iii

CONTENTS

 Page
1 Scope .. 1

2 Normative references ... 1
2.1 Identical Recommendations | International Standards .. 1

3 Definitions.. 1
3.1 Definitions from other Recommendations | International Standards... 1
3.2 Background definitions ... 1

4 Abbreviations ... 2

5 Categorization of concepts ... 2

6 Basic interpretation concepts.. 3

7 Basic linguistic concepts .. 3

8 Basic modelling concepts ... 4

9 Specification concepts .. 6
9.1 Composition .. 6
9.3 Decomposition .. 6

10 Organizational concepts ... 10

11 Properties of systems and objects... 11
11.1 Transparencies .. 11
11.2 Policy concepts ... 11
11.3 Temporal properties .. 12

12 Naming concepts .. 13

13 Concepts for behaviour... 13
13.1 Activity structure... 13
13.2 Contractual behaviour ... 13
13.3 Service concepts.. 15
13.4 Causality.. 15
13.5 Establishing behaviours .. 15
13.6 Dependability .. 16

14 Management concepts .. 16

15 ODP approach to conformance .. 17
15.1 Conformance to ODP standards .. 17
15.2 Testing and reference points ... 17
15.3 Classes of reference points.. 17
15.4 Change of configuration.. 18
15.5 The conformance testing process .. 18
15.6 The result of testing... 19
15.7 Relation between reference points .. 19

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) iv

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for the standardization of
open distributed processing (ODP). This reference model of ODP provides such a framework. It creates an architecture
within which support of distribution, interworking, and portability can be integrated.

The reference model of open distributed processing (RM-ODP), Recommendations ITU-T X.901 | ISO/IEC 10746-1 to
X.904 | ISO/IEC 10746-4, is based on precise concepts derived from current distributed processing developments and,
as far as possible, on the use of formal description techniques for specification of the architecture.

The RM-ODP consists of:
– Recommendation ITU-T X.901 | ISO/IEC 10746-1: Overview: Contains a motivational overview of

ODP, giving scoping, justification and explanation of key concepts, and an outline of the ODP
architecture. It contains explanatory material on how the RM-ODP is to be interpreted and applied by its
users, who may include standards writers and architects of ODP systems. It also contains a categorization
of required areas of standardization expressed in terms of the reference points for conformance identified
in Rec. ITU-T X.903 | ISO/IEC 10746-3. This part is not normative.

– Recommendation ITU-T X.902 | ISO/IEC 10746-2: Foundations: Contains the definition of the concepts
and analytical framework for normalized description of (arbitrary) distributed processing systems. It
introduces the principles of conformance to ODP standards and the way in which they are applied. This
is only to a level of detail sufficient to support Rec. ITU-T X.903 | ISO/IEC 10746-3 and to establish
requirements for new specification techniques. This part is normative.

– Recommendation ITU-T X.903 | ISO/IEC 10746-3: Architecture: Contains the specification of the
required characteristics that qualify distributed processing as open. These are the constraints to which
ODP standards must conform. It uses the descriptive techniques from Rec. ITU-T X.902 | ISO/IEC
10746-2. This part is normative.

– Recommendation ITU-T X.904 | ISO/IEC 10746-4: Architectural semantics: Contains a formalization of
the ODP modelling concepts defined in this Recommendation | International Standard (clauses 8 and 9).
The formalization is achieved by interpreting each concept in terms of the constructs of the different
standardized formal description techniques. This part is normative.

This Recommendation | International Standard does not contain any annexes.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 1

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology – Open Distributed Processing –
Reference model: Foundations

1 Scope
This Recommendation | International Standard covers the concepts which are needed to perform the modelling of ODP
systems (see clauses 6 to 14), and the principles of conformance to ODP systems (see 15).

The concepts defined in clauses 6 to 14 are used in the reference model of open distributed processing to support the
definitions of:

a) the structure of the family of standards which are subject to the reference model;
b) the structure of distributed systems which claim compliance with the reference model (the configuration

of the systems);
c) the concepts needed to express the combined use of the various standards supported;
d) the basic concepts to be used in the specifications of the various components which make up the open

distributed system.

Clause 15 defines how the various standards supported constrain an implementation and how such an implementation
can be tested.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– Recommendation ITU-T X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open

Distributed Processing – Reference Model: Architecture.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Definitions from other Recommendations | International Standards

There are no definitions from other Recommendations | International Standards in this Recommendation | International
Standard.

3.2 Background definitions

3.2.1 data: The representations of informationdealt with by information systems and users thereof.

3.2.2 distributed processing: Information processing in which discrete components may be located in different
places, and where communication between components may suffer delay or may fail.

3.2.3 ODP standards: This Reference Model and those standards that comply with it, directly or indirectly.

3.2.4 open distributed processing: Distributed processing designed to conform to ODP standards.

3.2.5 ODP system: A system (see 6.5) which conforms to the requirements of ODP standards.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 2

3.2.6 information: Any kind of knowledge that is exchangeable amongst users, about things, facts, concepts and so
on, in a universe of discourse.

Although information will necessarily have some forms of representation to make it communicable, it is the
interpretation of this representation (the meaning) that is relevant in the first place.

3.2.7 viewpoint (on a system): A form of abstraction achieved using a selected set of architectural concepts and
structuring rules, in order to focus on particular concerns within a system.

3.2.8 viewpoint correspondence: A statement that some terms or other linguistic constructs in a specification from
one viewpoint are associated with (e.g., describe the same entities as) terms or constructs in a specification from a
second viewpoint. The forms of association that can be expressed will depend on the specification technique used.

NOTE – The terms associated by a correspondence need not necessarily be expressed using a single specification technique. The
correspondence may associate a term in one specification technique with a term in some different specification technique. Rather
than linking every individual pair of terms, general correspondences can also be expressed between specification techniques
themselves. For example, composition operators defined in different specification techniques can be associated, implying
correspondences wherever these operators are used to link terms in the respective viewpoints.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ODP Open Distributed Processing
OSI Open Systems Interconnection
PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation Extra Information for Testing
RM-ODP Reference Model of Open Distributed Processing
TP Transaction Processing

5 Categorization of concepts
The modelling concepts defined in this Recommendation | International Standard are categorized as follows:

a) Basic interpretation concepts: Concepts for the interpretation of the modelling constructs of any ODP
modelling language. These concepts are described in clause 6.

b) Basic linguistic concepts: Concepts related to languages; the grammar of any language for the
specification of the ODP architecture must be described in terms of these concepts. These concepts are
described in clause 7.

c) Basic modelling concepts: Concepts for building the ODP architecture; the modelling constructs of any
language must be based on these concepts. These concepts are described in clause 8.

d) Specification concepts: Concepts related to the requirements of the chosen specification languages used
in ODP. These concepts are not intrinsic to distribution and distributed systems, but they are
requirements to be considered in these specification languages. These concepts are described in clause 9.

e) Structuring concepts: Concepts that emerge from considering different issues in distribution and
distributed systems. They may or may not be directly supported by specification languages adequate for
dealing with the problem area. Specification of objects and functions that directly support these concepts
must be made possible by the use of the chosen specification languages. These concepts are described in
clauses 10 to 14.

f) Conformance concepts: Concepts necessary to explain the notions of conformance to ODP standards and
of conformance testing. These concepts are defined in clause 15.

Recommendation ITU-T X.903 | ISO/IEC 10746-3 uses the concepts in this Recommendation | International Standard
to specify the characteristics for distributed processing to be open. It is organized as a set of viewpoint languages. Each
viewpoint language refines concepts from the set defined in this Recommendation | International Standard. It is not
necessary for all viewpoint languages to adopt the same notations. Different notations may be chosen as appropriate to
reflect the requirements of the viewpoint. These notations may be natural, formal, textual or graphical. However, it will
be necessary to establish correspondences between the various languages to ensure overall consistency.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 3

6 Basic interpretation concepts
Although much of the ODP architecture is concerned with defining formal constructs, the semantics of the architectural
model and any modelling languages used have to be described. These concepts are primarily meta-concepts,
i.e., concepts which apply generally to any form of modelling activity. It is not intended that these concepts will be
formally defined, or that they be used as the basis of formal definition of other concepts.

Any modelling activity identifies:
a) elements of the universe of discourse;
b) one or more pertinent levels of abstraction.

The elements of the universe of discourse are entities and propositions.

6.1 entity: Any concrete or abstract thing of interest. While in general the word entity can be used to refer to
anything, in the context of modelling it is reserved to refer to things in the universe of discourse being modelled.

6.2 proposition: An observable fact or state of affairs involving one or more entities, of which it is possible to
assert or deny that it holds for those entities.

6.3 abstraction: The process of suppressing irrelevant detail to establish a simplified model, or the result of that
process.

6.4 atomicity: An entity is atomic at a given level of abstraction if it cannot be subdivided at that level of
abstraction.

Fixing a given level of abstraction may involve identifying which elements are atomic.

6.5 system: Something of interest as a whole or as comprised of parts. Therefore a system may be referred to as
an entity. A component of a system may itself be a system, in which case it may be called a subsystem.

NOTE – For modelling purposes, the concept of system is understood in its general, system-theoretic sense. The term "system"
can refer to an information processing system but can also be applied more generally.

6.6 architecture (of a system): A set of rules to define the structure of a system and the interrelationships
between its parts.

7 Basic linguistic concepts
Whatever the concepts or semantics of a modelling language for the ODP Architecture, the language will be expressed
in some syntax, which may include linear text or graphical conventions. It is assumed that any suitable language will
have a grammar defining the valid set of symbols and well-formed linguistic constructs of the language. The following
concepts provide a common framework for relating the syntax of any language used for the ODP architecture to the
interpretation concepts.

7.1 term: A linguistic construct which may be used to refer to an entity.

The reference may be to any kind of entity including a model of an entity or another linguistic construct.

7.2 sentence: A linguistic construct containing one or more terms and predicates; a sentence may be used to
express a proposition about the entities to which the terms refer.

A predicate in a sentence may be considered to refer to a relationship between the entities referred to by the terms it
links.

7.3 model: A system of postulates, value declarations and inference rules presented as a description of a state of
affairs (universe of discourse).

NOTE – Construction of a model allows precise description and reasoning about the state of affairs.

7.4 specification: A concrete representation of a model in some notation. Being in the real world, a specification
can be inspected, manipulated or communicated.

NOTE 1 – The specification may itself be an entity in the universe of discourse of the model it represents, but in simple cases it
will generally only be modelled in a separate universe of discourse addressing the system development process.
NOTE 2 – The specification can be instantiated by one or more implementations, particularly, for example, in the specification of
commodity software products. Each instantiation of the specification will, in general, represent a separate universe of discourse
and so lead to a separate set of entities with the relationships defined in the specification. Thus declaration of, for example, a
singleton object (such as the ODP system) in a specification will lead to a separate ODP system instance each time the
specification is implemented. This specification-instantiation distinction should be distinguished from the familiar type-instance
distinctions between terms within the specification.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 4

NOTE 3 – The relationship between a specification and its implementation underlies the conformance architecture defined in
clause 15.

7.5 notation: A means of concrete representation for a particular type of a model, expressed as a grammar and
suitable glyphs for its terminal symbols.

NOTE – One notation may be capable of representing a number of types of models, or of representing a specific viewpoint on a
more general model.

8 Basic modelling concepts
The detailed interpretation of the concepts defined in this clause will depend on the specification language concerned,
but these general statements of concept are made in a language-independent way to allow the statements in different
languages to be interrelated.

The basic concepts are concerned with existence and activity: the expression of what exists, where it is and what it does.

8.1 object: A model of an entity. An object is characterized by its behaviour (see 8.7) and, dually, by its state
(see 8.8). An object is distinct from any other object. An object is encapsulated, i.e., any change in its state can only
occur as a result of an internal action or as a result of an interaction (see 8.3) with its environment (see 8.2).

An object interacts with its environment at its interaction points (see 8.12).

Depending on the viewpoint, the emphasis may be placed on behaviour or on state. When the emphasis is placed on
behaviour, an object is informally said to perform functions and offer services (an object which makes a function
available is said to offer a service (see 13.3.1)). For modelling purposes, these functions and services are specified in
terms of the behaviour of the object and of its interfaces (see 8.5). An object can perform more than one function. A
function can be performed by the cooperation of several objects.

NOTE – The expression "use of a function" is a shorthand for the interaction with an object which performs the function.

8.2 environment (of an object): The part of the model which is not part of that object.
NOTE – In many specification languages, the environment can be considered to include at least one object which is able to
participate without constraint in all possible interactions (see 8.3), representing the process of observation.

8.3 action: Something which happens.

Every action of interest for modelling purposes is associated with at least one object.

The set of actions associated with an object is partitioned into internal actions and interactions. An internal action
always takes place without the participation of the environment of the object. An interaction takes place with the
participation of the environment of the object.

NOTE 1 – "Action" means "action occurrence" not "action type". That is to say, different actions within a specification may be of
the same type but still distinguishable in a series of observations. Depending on context, a specification may express that an
action has occurred, is occurring or may occur.
This usage of action occurrence needs to be seen in the light of the notes on specification in 7.4. Thus the specification of a
firework may require it to produce five flashes and a bang, which are six actions where flash and bang are action types. However,
each member of a box of fireworks conforming to this specification will produce its own copy of this behaviour.
NOTE 2 – The granularity of actions is a design choice. An action need not be instantaneous. Actions may overlap in time.
NOTE 3 – Interactions may be labelled in terms of cause and effect relationships between the participating objects. The concepts
that support this are discussed in 13.3.
NOTE 4 – An object may interact with itself, in which case it is considered to play at least two roles in the interaction.
NOTE 5 – Involvement of the environment represents observability. Thus, interactions are observable whereas internal actions
are not observable, because of object encapsulation. In most specification techniques observability is an implicit property of the
environment and, therefore, it is not necessary to model the observer explicitly; however, there may, in some circumstances, be a
need to include an explicit observer object in the specification, thereby increasing the cardinality of all interactions.
NOTE 6 – Observability of an action may depend on the level of specification. For instance, an action specification at one level
of abstraction or in one viewpoint may correspond to a specification of multiple concurrent actions at a different level of
abstraction or in another viewpoint. For example, a basic single function of a system in one viewpoint may be realized by
multiple concurrent actions in a different viewpoint, defining a grid computing or sensor network, each one executing at the same
time on network-connected computers in different locations. In this case, the observability of the occurrence of the basic single
action can be deduced from the observability of those other multiple concurrent actions.

8.4 event: The fact that an action has taken place. When an event occurs, the information about the action that has
taken place becomes part of the state of the system and may thus subsequently be communicated in other interactions.
Such a communication is called an event notification; it carries the information about the event from the object that
performs or observes it to other objects that have a need to take action as a result of it.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 5

NOTE 1 – An action changes the state of the objects participating in it; an event is the fact that the action has occurred; an event
notification is a communication about the event, caused by some action; the receipt of the notification changes the state of objects
not participating in the original action.
NOTE 2 – An event notification may convey information about the fact that an internal action has occurred. For example, an
internal action may change the availability of some server and a subsequent event notification may convey this fact to its
potential clients.

8.5 interface: An abstraction of the behaviour of an object that consists of a subset of the interactions of that
object together with a set of constraints on when they may occur.

Each interaction of an object belongs to a unique interface. Thus, the interfaces of an object form a partition of the
interactions of that object.

NOTE 1 – An interface constitutes the part of an object behaviour that is obtained by considering only the interactions of that
interface and by hiding all other interactions. Hiding interactions of other interfaces will generally introduce non-determinism as
far as the interface being considered is concerned.
NOTE 2 – The phrase "an interface between objects" is used to refer to the binding (see 13.5.2) between interfaces of the objects
concerned. In the two-party case, such bindings normally link interfaces with complementary causalities. For example, in a
client-server binding (see 13.4.5 and 13.4.6), a client initiating interface is bound to a server providing interface. In many
specification languages, the fact that the client has an initiating interface is not explicit, but is indicated by stating a requirement
for the kind of server needed if the client is to operate successfully, i.e., the concept of a required interface.
NOTE 3 – An interface of an object may be used by other objects. Using interfaces provided by other objects may constitute a
part of the object's behaviour.
NOTE 4 – If an interface is provided by an object, part of the providing object's behaviour is triggered when this interface is used
by other objects. If an object uses an interface of some providing object, this is expressed by its behaviour involving an
interaction which forms part of its own initiating interface. The interaction in the first object's initiating interface is associated
with the corresponding interaction in the other object's providing interface as a result of the binding process between the two
interfaces. An object may provide both initiating and providing interfaces.

8.6 activity: A single-headed directed acyclic graph of actions, where occurrence of each action in the graph is
made possible by the occurrence of all immediately preceding actions (i.e., by all adjacent actions which are closer to
the head).

8.7 behaviour (of an object): A collection of actions with a set of constraints on when they may occur.

The specification language in use determines the constraints which may be expressed. Constraints may include for
example sequentiality, non-determinism, concurrency or real-time constraints.

A behaviour may include internal actions.

The actions that actually take place are restricted by the environment in which the object is placed.
NOTE 1 – The composition (see 9.1) of a collection of objects implicitly yields an equivalent object representing the
composition. The behaviour of this object is often referred to simply as the behaviour of the collection of objects.
NOTE 2 – Action and activity are degenerate cases of behaviour.
NOTE 3 – In general, several sequences of interactions, called traces (see 9.7) are consistent with a given behaviour.

8.8 state (of an object): At a given instant in time, the condition of an object that determines the set of all
sequences of actions (or traces) in which the object can participate.

Since, in general, behaviour includes many possible series of actions in which the object might take part, knowledge of
state does not necessarily allow the prediction of the sequence of actions which will actually occur.

State changes are effected by actions; hence a state is partially determined by the previous actions in which the object
took part.

Since an object is encapsulated, its state cannot be changed directly from the environment, but only indirectly as a result
of the interactions in which the object takes part.

8.9 communication: The conveyance of information between two or more objects as a result of one or more
interactions, possibly involving some intermediate objects.

NOTE 1 – Communications may be labelled in terms of a cause and effect relationship between the participating objects.
Concepts to support this are discussed in 13.3.
NOTE 2 – Every interaction is an instance of a communication.
NOTE 3 – Any communication can be seen as an interaction by abstracting away intermediate objects involved in the
communication.
NOTE 4 – Any communication (and, hence, any interaction) can be provided by a wide range of technologies such as remote
invocation, message transfer, etc.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 6

8.10 location in space: An interval of arbitrary size in space at which an action can occur.

8.11 location in time: An interval of arbitrary size in time at which an action can occur.
NOTE 1 – The extent of the interval in time or space is chosen to reflect the requirements of a particular modelling task and the
properties of a particular specification technique. A single location in one specification may be subdivided in either time or space
(or both) in another specification. In a particular specification, a location in space or time is defined relative to some suitable
coordinate system.
NOTE 2 – By extension, the location of an object is the union of the locations of the actions in which the object may take part.

8.12 interaction point: A location at which there exists a set of interfaces.

At any given location in time, an interaction point is associated with a location in space, within the specificity allowed
by the specification language in use. Several interaction points may exist at the same location. An interaction point may
be mobile.

8.13 relation: An association between two or more domains of entities. In RM-ODP, relations can be defined for,
at least, objects, interfaces and actions.

8.14 relationship: An association between two or more entities.
NOTE – Relationships are instances of relations.

9 Specification concepts

9.1 Composition
a) (Of objects) – A combination of two or more objects yielding a new object, at a different level of

abstraction. The characteristics of the new object are determined by the objects being combined and by
the way they are combined. The behaviour of a composite object is the corresponding composition of the
behaviour of the component objects.

b) (Of behaviours) – A combination of two or more behaviours yielding a new behaviour. The
characteristics of the resulting behaviour are determined by the behaviours being combined and the way
they are combined.

NOTE 1 – Examples of combination techniques are sequential composition, concurrent composition, interleaving, choice, and
hiding or concealment of actions. These general definitions will always be used in a particular sense, identifying a particular
means of combination.
NOTE 2 – In some cases, the composition of behaviours may yield a degenerate behaviour, e.g., deadlock, due to the constraints
on the original behaviours.

9.2 Composite object: An object expressed as a composition.

9.3 Decomposition
a) (Of an object) – The specification of a given object as a composition.
b) (Of a behaviour) – The specification of a given behaviour as a composition.

Composition and decomposition are dual terms and represent dual specification.

9.4 behavioural compatibility: An object is behaviourally compatible with a second object with respect to a set
of criteria (see Notes 1 and 2) if the first object can replace the second object without the environment being able to
notice the difference in the objects' behaviour on the basis of the set of criteria.

Typically, the criteria impose constraints on the allowed behaviour of the environment. If the criteria are such that the
environment behaves as a tester for the original object, i.e., the environment defines the smallest behaviour that does not
constrain the behaviour of the original object, the resulting behavioural compatibility relation is called extension.

The criteria may allow the replacement object to be derived by modification of an otherwise incompatible object in
order that it should be an acceptable replacement. An example of such a modification might be hiding of additional
parameters on certain interactions. In this way, an interaction of the new object can be made to look like an interaction
of the original object. In such cases behavioural compatibility is called coerced behavioural compatibility. If no
modification is necessary, behavioural compatibility is called natural behavioural compatibility.

The concept of behavioural compatibility defined above on objects applies equally well to the behavioural compatibility
of templates and of template types.

Behavioural compatibility is reflexive, but not necessarily symmetric or transitive (though it may be either or both).
NOTE 1 – The set of criteria depends on the language in use and the testing theory applied.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 7

NOTE 2 – Behavioural compatibility (with respect to a set of criteria) can be defined on template (see 9.13) and template types
(see 9.22), thus:

a) if S and T are object templates, S is said to be behaviourally compatible with T if and only if any S-instantiation
is behaviourally compatible with some T-instantiation (see 9.16);

b) if U and V are object template types, U and V are said to be behaviourally compatible if their corresponding
templates are behaviourally compatible.

9.5 interoperability: Capability of objects to collaborate, that is, the capability mutually to communicate
information in order to exchange events, proposals, requests, results, commitments and flows.

NOTE – The term covers interoperability for different areas of concern (syntactic, semantic, pragmatic, etc.).

9.6 refinement: The process of transforming one specification into a more detailed specification. The new
specification can be referred to as a refinement of the original one. Specifications and their refinements typically do not
coexist in the same system description. Precisely what is meant by a more detailed specification will depend on the
chosen specification language.

For each meaning of behavioural compatibility determined by some set of criteria (see 9.4), a specification technique
will permit the definition of a refinement relationship. If template X refines a template Y, it will be possible to replace
an object instantiated from Y by one instantiated from X in the set of environments determined by the selected
definition of behavioural compatibility. Refinement relationships are not necessarily either symmetric or transitive.

9.7 trace: A record of an object's interactions, from its initial state to some other state.

A trace of an object is thus a finite sequence of interactions. The behaviour uniquely determines the set of all possible
traces, but not vice versa. A trace contains no record of an object's internal actions.

9.8 <X> pattern: The abstract specification of a composition of objects that results in any instance of the
composition having a given property, named by X.

NOTE 1 – A pattern cannot, by itself, be instantiated (see <X> template, 9.13).
NOTE 2 – This definition is a generalization of the well-known concept of a design pattern. There <X> is the pattern name e.g.,
the factory design pattern.

9.9 type (of an <X>): A predicate characterizing a collection of <X>s. An <X> is of the type, or satisfies the type,
if the predicate holds for that <X>. A specification defines which of the terms it uses have types, i.e., are <X>s.
In RM-ODP, types are needed for, at least, objects, interfaces and actions.

The notion of type classifies the entities into categories, some of which may be of interest to the specifier (see the
concept of class in 9.10).

9.10 class (of <X>s): The set of all <X>s satisfying a type (see 9.9). The elements of the set are referred to as
members of the class.

NOTE 1 – A class may have no members.
NOTE 2 – Whether the size of the set varies with time depends on the definition of the type.

9.11 subtype/supertype: A type A is a subtype of a type B, and B is a supertype of A, if every <X> which satisfies
A also satisfies B.

The subtype and supertype relations are reflexive, transitive and anti-symmetric.

9.12 subclass/superclass: One class A is a subclass of another class B, and B is a superclass of A, precisely when
the type associated with A is a subtype of the type associated with B.

NOTE – A subclass is by definition a subset of any of its superclasses.

9.13 <X> template: The specification of the common features of a collection of <X>s in sufficient detail that an
<X> can be instantiated using it. <X> can be anything that has a type (see 9.9).

An <X> template is an abstraction of a collection of <X>s.

A template may specify parameters to be bound at instantiation time.

The definition given here is generic; the precise form of a template will depend on the specification technique used. The
parameter types (where applicable) will also depend on the specification technique used.

Templates may be combined according to some calculus. The precise form of template combination will depend on the
specification language used.

9.14 action signature: The specification of an action that comprises the name for the action, the number, names
and types of its parameters, and an indication of the causality of the object that instantiates the action template.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 8

NOTE 1 – Action signatures focus just on the syntactic aspects of the specification of action, while action templates cover all
aspects. Hence, an action template normally comprises the specification of the action signature, together with further information
such as a behavioural specification and an environment contract specification, for instance.
NOTE 2 – The inclusion, in an action signature, of information about the number of parameters is optional.

9.15 interface signature: The set of action signatures associated with the interactions of an interface.

An object may have many interfaces with the same signature.
NOTE – Usually, interface signatures are part of the specification of interface templates. Thus, an interface template comprises
the specification of the interface signature, a behaviour specification and an environment contract specification.

9.16 instantiation (of an <X> template): An <X> produced from a given <X> template and other necessary
information. This <X> exhibits the features specified in the <X> template. <X> can be anything that has a type
(see 9.9).

The definition given here is generic: how to instantiate an <X> template depends on the specification language
used. Instantiating an <X> template may involve actualization of parameters, which may in turn involve instantiating
other <X> templates or binding of existing interfaces (see 13.5).

NOTE 1 – Instantiating an action template just results in an action occurring. The phrase "instantiation of an action template" is
deprecated. "Occurrence of an action" is preferred.
NOTE 2 – If <X> is an object, it is instantiated in its initial state. An object can participate in interactions immediately after its
instantiation.
NOTE 3 – Instantiations from different templates may satisfy the same type. Instantiations from the same template may satisfy
different types.

9.17 role: A formal placeholder in the specification of a composite object. It identifies those aspects of the
behaviour of some component object required for it to form part of the composite and links them as constraints on an
actual object in an instance of the composite. In order to satisfy the specification, the actual object is required to exhibit
the specified behaviour. It is then said to fulfil the role in the instance of the composite.

Thus, the specification of the composite object is expressed as a composition of roles, which parameterize it.
Instantiation binds specific component objects to each of the role parameters in the specification of the resultant
composite object.

NOTE 1 – The metaphor on which the role concept is based is theatrical. The text of a play is expressed in terms of lines and
actions associated with various roles, which are declared initially in a cast-list. Putting the play on involves assigning actors to
the various roles, although one actor may play several minor roles, and the actor playing a role may change during the run of the
production. Identifying the roles rather than the actors obviously makes the script more reusable.
NOTE 2 – Any dynamic agreement governing shared behaviour of two or more objects implicitly defines a template for a
composite object and the roles of those objects in that composite object. Thus, roles are defined in interactions (see 8.3), contracts
(see 11.2.1), liaisons (see 13.2.4) and bindings (see 13.5.2), amongst others. When roles are defined in such contexts, the term
role should be appropriately qualified (e.g., interaction-role, contract-role, etc.).

9.18 creation (of an <X>): Instantiating an <X>, when it is achieved by an action of objects in the model. <X> can
be anything that can be instantiated, in particular objects and interfaces.

If <X> is an interface, it is either created as part of the creation of a given object, or as an additional interface to the
creating object. As a result, any given interface must be part of an object.

9.19 introduction (of an <X>): Instantiating an <X> when it is not achieved by an action of objects in the model.
NOTE 1 – An <X> can be instantiated either by creation or introduction but not both.
NOTE 2 – Introduction does not apply to interfaces and actions since these are always supported by objects.

9.20 deletion (of an <X>): The action of destroying an instantiated <X>. <X> can be anything that can be
instantiated, in particular objects and interfaces.

If <X> is an interface, it can only be deleted by the object to which it is associated.
NOTE – Deletion of an action is not meaningful: an action just happens.

9.21 instance (of a type): An <X> that satisfies the type.

9.22 template type (of an <X>): A predicate defined in a template that holds for all the instantiations of the
template and that expresses the requirements the instantiations of the template are intended to fulfil.

The object template subtype/supertype relation does not necessarily coincide with behavioural compatibility. Instances
of a template type need not be behaviourally compatible with instantiations of the associated template. They do coincide
if:

a) a transitive behavioural compatibility relation is considered; and
b) template subtypes are behaviourally compatible with their template supertypes.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 9

NOTE 1 – This concept captures the notion of substitubility by design.
NOTE 2 – The form of the predicate that expresses the template type depends on the specification language used.
NOTE 3 – As a shorthand, "instances of a template T" are defined to be "instances of the template type associated with
template T".
NOTE 4 – Figure 1 illustrates the relationships between some of the concepts: template type, template class, etc. The set of
instances of t contains both the set of instantiations of t and the sets of all instantiations of subtypes of t. The sets of instantiations
of different templates are always disjoint.

X.902(09)_F01

Figure 1 – Relationship between templates,
instantiations and instances

9.23 template class (of an <X>): The set of all <X>s satisfying an <X> template type, i.e., the set of <X>s which
are instances of the <X> template. <X> can be anything that has a type (see 9.9).

Each template defines a single template class, so we may refer to instances of the template as instances of the
template-class.

The notion of class is used to refer to a general classification of <X>s. Template class is a more restrictive notion where
the members of a template class are limited to those instantiated from the template (or any of its subtypes), i.e., those
<X>s which satisfy the <X> template type.

NOTE – Given a template type, we may shorten statements of the form "the template class associated with template A is a
subclass of the template class associated with template B" to "template A is a subclass of template B" or "template A is a subtype
of template B".

9.24 derived class/base class: If a template A is an incremental modification of a template B, then the template
class CA of instances of A is a derived class of the template class CB of instances of B, and the CB is a base class of
CA.

The criteria for considering an arbitrary change to be an incremental modification would depend on metrics and
conventions outside of this Recommendation | International Standard. If the criteria allow, a derived class may have
several base classes.

The incremental modification relating templates must ensure that self-reference or recursion in the template of the base
class becomes self-reference or recursion in the template of the derived class.

The incremental modification may, in general, involve adding to or altering the properties of the base template to obtain
the derived template.

Classes can be arranged in an inheritance hierarchy according to derived class/base class relationships. This is the
interpretation of inheritance in the ODP reference model. If classes can have several base classes, inheritance is said to
be multiple. If the criteria prohibit suppression of properties from the base class, inheritance is said to be strict.

It is possible for one class to be a subclass of a second class without being a derived class, and to be a derived class
without being a subclass. The inheritance hierarchy (where arcs denote the derived class relation) and the type hierarchy
(where arcs denote the subtype or subclass relation) are therefore logically distinct, though they may coincide in whole
or in part.

9.25 factory (for an object): An object that, in response to an interaction initiated by its environment, creates a
new object and returns a reference to it to the environment.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 10

9.26 component: An object that encapsulates its own template, so that the template can be interrogated by
interaction with the component. The template and other instantiation parameters are expressed in a form that allows
them to be updated during the lifetime of any system of which the component is to form a part, allowing alternative
realizations of the component to be substituted.

9.27 container (for a component): An object that can act as a factory and can provide the necessary environment
for subsequent management of the components created by it. The container will, in response to an interaction initiated
by its environment, provide information about the components it contains.

9.28 invariant: A predicate that a specification requires to be true for the entire life time of a set of objects.

9.29 precondition: A predicate that a specification requires to be true for an action to occur.

9.30 postcondition: A predicate that a specification requires to be true immediately after the occurrence of an
action.

10 Organizational concepts
10.1 <X> group: A set of objects with a particular characterizing relationship <X>. The relationship <X>
characterizes either the structural relationship among objects or an expected common behaviour of the objects.

NOTE – Examples of specialized groups are:
a) Addressed group: A set of objects that are addressed in the same way.
b) Fault group: A set of objects that have a common fault dependency. For example, it may be assumed that if a

computer fails, all objects executing on that computer also fail.
c) Communicating group: A set of objects where all the objects participate in the same sequence of interactions with

their environment.
d) Fault tolerant replication group: A communicating group whose purpose is to provide a certain level of tolerance

against some faults.

10.2 configuration (of objects): A collection of objects able to interact at interfaces. A configuration determines
the set of objects involved in each interaction.

The specification of a configuration may be static or may be in terms of the operation of dynamic mechanisms which
change the configuration, such as binding and unbinding (see 13.5).

NOTE – A configuration can be expressed in terms of the concepts of concurrent composition. The process of composition
generates an equivalent object for the configuration, at a different level of abstraction.

10.3 <X> domain: A set of objects, each of which is related by a characterizing relationship <X> to a controlling
object.

Every domain has a controlling object associated with it.

The controlling object can determine the identities of the collection of objects which comprises the associated domain.
The controlling object may communicate with a controlled object dynamically or it may be considered to have
communicated in an earlier epoch (see 10.5) of the controlling object. Generally, the controlling object is not a member
of the associated domain.

NOTE 1 – In enterprise terms, various policies can be administered by the controlling object over the domain.
NOTE 2 – Domains can be disjoint or overlapping.
NOTE 3 – By definition, a domain is a group, but not vice versa.
NOTE 4 –Examples of specialized domains are:

Domain Member Class Relationship Controlling Class

Security domain processing object subject to policy set by security authority object
Management domain managed object subject to policy set by management domain object
Addressing domain addressed object address allocated by addressing authority object
Naming domain named object name allocated by name authority object

10.4 subdomain: A domain which is a subset of a given domain.

10.5 epoch: A period of time for which an object displays a particular behaviour. Any one object is in a single
epoch at one time, but interacting objects may be in different epochs at the time of interaction.

A change of epoch may be associated with a change in the type of the object, so as to support type evolution.
Alternatively, a change of epoch may be associated with a phase in the behaviour of an object of constant type.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 11

For a distributed system to function correctly, the objects composing its configuration must be consistent. Thus, as the
whole system evolves through a series of epochs, the individual objects which interact must never be in epochs in which
their behaviours are sufficiently different that their concurrent composition leads to a failure. This concept will support
the formalization of concepts of version and extensibility.

NOTE – A specification language may need to express:
a) the way epochs are labelled;
b) the sequence of epochs, and whether all objects need to pass through all members of the sequence;
c) the rules for deriving the epoch of a composition from the epochs of its objects, particularly for configurations

and complete systems;
d) whether identity of the epoch of an object is necessarily part of the state of that object;
e) whether objects can negotiate on the basis of their current epoch identities;
f) the relation of epoch to the concepts of local and global time.

10.6 reference point: An interaction point defined in an architecture for selection as a conformance point in a
specification which is compliant with that architecture.

Significant classes of reference point are identified in ODP; details of these, and of the relationship of modelling to
conformance, are given in clause 15.

10.7 conformance point: A reference point at which behaviour may be observed for the purposes of conformance
testing.

11 Properties of systems and objects
This clause describes the properties which may apply to an ODP system or part of an ODP system.

11.1 Transparencies

11.1.1 distribution transparency: The property of hiding from the user some specific aspects of the system's
complexity needed to support distribution.

NOTE 1 – Users may include for instance end-users, application developers and function implementors.
NOTE 2 – Transparencies are often related to structuring into viewpoints. The requirements for transparencies are drawn from
one or more of the designer oriented viewpoints, and are expressed in terms of the properties object interactions are to have in
those viewpoints. The templates for the mechanisms that can provide object interactions with the right guaranteed properties are
defined in other viewpoints.

11.2 Policy concepts

11.2.1 contract: An agreement governing part of the collective behaviour of a set of objects. A contract specifies
obligations, permissions and prohibitions for the objects involved.

The specification of a contract may include:
a) a specification of the different roles that objects involved in the contract may assume, and the interfaces

associated with the roles;
b) Quality of Service constraints (see 11.2.2 and 11.2.3);
c) indications of duration or periods of validity;
d) indications of behaviour which invalidates the contract;
e) liveness and safety conditions.

NOTE 1 – Objects in a contract need not be hierarchically related, but may be related on a peer-to-peer basis. The requirements
in a contract are not necessarily applicable in the same way to all the objects concerned.
NOTE 2 – A contract can apply at a given reference point in a system. In that case, it specifies the behaviour which can be
expected at the reference point.
NOTE 3 – An object template provides a simple example of a contract. An object template specifies the behaviour common to a
collection of objects. As such, it specifies what the environment of any such objects may assume about their behaviour. Note that,
for partial specifications, an object template leaves unspecified the behaviour of an object under certain environmental
circumstances (e.g., particular interactions); the contract only extends to the specified behaviour.

11.2.2 quality of service: A set of quality requirements on the collective behaviour of one or more objects.

Quality of service may be specified in a contract or measured and reported after the event.

The quality of service may be parameterized.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 12

NOTE – Quality of service is concerned with such characteristics as the rate of information transfer, the latency, the probability
of a communication being disrupted, the probability of system failure, the probability of storage failure, etc.

11.2.3 environment contract: A contract between an object and its environment, including Quality of Service
constraints, usage and management constraints.

Quality of service constraints include:
– temporal constraints (e.g., deadlines);
– volume constraints (e.g., throughput);
– dependability constraints covering aspects of availability, reliability, maintainability, security and safety

(e.g., mean time between failures).

Usage and management constraints include:
– location constraints (i.e., selected locations in space and time);
– distribution transparency constraints (i.e., selected distribution transparencies).

Quality of service constraints can imply usage and management constraints. For instance, some quality of service
constraints (e.g., availability) are satisfied by provision of one or more distribution transparencies (e.g., replication).

Environment constraints can describe both:
– requirements placed on an object's environment for the correct behaviour of the object;
– constraints on the object behaviour in a correct environment.

11.2.4 obligation: A prescription that a particular behaviour is required. An obligation is fulfilled by the occurrence
of the prescribed behaviour.

11.2.5 permission: A prescription that a particular behaviour is allowed to occur. A permission is equivalent to there
being no obligation for the behaviour not to occur.

11.2.6 prohibition: A prescription that a particular behaviour must not occur. A prohibition is equivalent to there
being an obligation for the behaviour not to occur.

11.2.7 rule: A constraint on a system specification. Where appropriate, a rule can be expressed as an obligation, a
permission or a prohibition.

NOTE – Rules may apply to the structure, behaviour or other properties of the system, including for example quality of service.

11.2.8 policy: A constraint on a system specification foreseen at design time, but whose detail is determined
subsequent to the original design, and capable of being modified from time to time in order to manage the system in
changing circumstances.

NOTE 1 – Policies can be applied in any viewpoint; examples are an enterprise delegation policy, a computational persistence
policy or an engineering scheduling or quality support policy.
NOTE 2 – The expectation of change is fundamental to the concept of policy, and a rule that does not envisage change is not a
policy.
NOTE 3 – Policies may be expressed in terms of obligations, permissions or prohibitions, but this is not necessary for simple
policies.

11.2.9 policy declaration: An element in a specification defined in order to allow incorporation of future constraints,
together with rules determining the allowed form of acceptable constraints and the circumstances in which such
constraints can be applied.

11.2.10 policy value: The specific constraints associated with a policy in some particular epoch.

11.2.11 policy envelope: The set of acceptable policy values that could be applied at a particular policy declaration.
Restricting policy values to be within the policy envelope allows future flexibility but guarantees that the required
properties of the system design will be preserved by all valid policies.

11.2.12 policy setting behaviour: The behaviour defined in a specification via which a policy may be changed. A
policy setting behaviour can be both an establishing behaviour (see 13.2.1) and a terminating behaviour (see 13.2.5).

11.3 Temporal properties

11.3.1 persistence: The property that an object continues to exist across changes of contractual context (see 13.2.3)
or of epoch.

11.3.2 isochronicity: A sequence of actions is isochronous if every adjacent pair of actions in the sequence occupy
unique, equally-sized, adjacent intervals in time.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 13

12 Naming concepts
NOTE – Naming concepts and the mechanisms that support them in the context of distributed systems are further specified in
Rec. ITU-T X.910 | ISO/IEC 14771, Information technology – Open Distributed Processing – Naming framework.

12.1 name: A term which, in a given naming context, refers to an entity.

12.2 identifier: An unambiguous name, in a given naming context.

12.3 name space: A set of terms usable as names.

12.4 naming context: A relation between a set of names and a set of entities. The set of names belongs to a single
name space.

12.5 naming action: An action that associates a term from a name space with a given entity.

All naming actions are relative to a naming context.

12.6 naming domain: A subset of a naming context such that all naming actions are performed by the controlling
object of the domain (the name authority object).

NOTE – "Naming domain" is an instance of the <X> domain concept (see 10.3).

12.7 naming graph: A directed graph where each vertex denotes a naming context, and where each edge denotes
an association between:

– a name appearing in the source naming context; and
– the target naming context.

NOTE – The existence of an edge between two naming contexts in a naming graph means that the target naming context can be
reached (identified) from the source naming context.

12.8 name resolution: The process by which, given an initial name and an initial naming context, an association
between a name and the entity designated by the initial name can be found.

NOTE – The name resolution process does not necessarily provide sufficient information to interact with the designated entity.

13 Concepts for behaviour

13.1 Activity structure

13.1.1 chain (of actions): A sequence of actions within an activity where, for each adjacent pair of actions,
occurrence of the first action is necessary for the occurrence of the second action.

13.1.2 thread: A chain of actions, where at least one object participates in all the actions of the chain.

An object may have associated with it one single thread or many threads simultaneously.

13.1.3 joining action: An action shared between two or more chains resulting in a single chain.

13.1.4 dividing action: An action which enables two or more chains.

There are two cases of a dividing action, depending on whether the enabled chains are required to join eventually.

13.1.5 forking action: A dividing action, where the enabled chains must (subject to failure) eventually join each
other, i.e., the enabled chains cannot join other chains and they cannot terminate separately.

13.1.6 spawn action: A dividing action, where the enabled chains will not join. The enabled chains may interact and
they may terminate separately.

13.1.7 head action: In a given activity, an action that has no predecessor.

13.1.8 subactivity: A subgraph of an activity which is itself an activity and which satisfies the following condition.
For any pair of fork-join actions in the parent activity, if one of these actions is included in the subgraph, then both must
be included in the subgraph.

13.2 Contractual behaviour

The concepts introduced here are illustrated in Figure 2.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 14

X.902(09)_F02

Figure 2 – Liaison and related concepts

13.2.1 establishing behaviour: The behaviour by which a given contract is put in place between given objects. An
establishing behaviour can be:

a) explicit, resulting from the interactions of objects that will take part in the contract; or
b) implicit, being performed by an external agency (e.g., a third party object, not taking part in the contract)

or having been performed in a previous epoch.
NOTE 1 – Negotiation is an example of a particular kind of establishing behaviour in which information is exchanged in the
process of reaching a common view of permitted future behaviour.
NOTE 2 – Publication is an example of a particular kind of establishing behaviour in which information is distributed from one
object to a number of others.
NOTE 3 – Explicit establishing behaviour must include an instantiation of the template associated with the contract. This may
follow a possible negotiation/publication about which contract to set up and which template to instantiate, and with what
parameters.

13.2.2 enabled behaviour: The behaviour characterizing a set of objects which becomes possible as a result of
establishing behaviour.

The enabled behaviour will not necessarily be the same for all objects involved in the contractual context.

13.2.3 contractual context: The knowledge that a particular contract is in place, and thus that a particular behaviour
of a set of objects is required.

An object may be in a number of contractual contexts simultaneously; the behaviour is constrained to the intersection of
the behaviours prescribed by each contractual context.

NOTE – In OSI, the concept of a presentation context is an example of a contractual context which can be established at
connection establishment time or subsequently.

13.2.4 liaison: The relationship between a set of objects which results from the performance of some establishing
behaviour; the state of having a contractual context in common.

A liaison is characterized by the corresponding enabled behaviour.
NOTE 1 – Examples of liaisons which result from different establishing behaviours are:

a) a dialogue (as in OSI-TP);
b) a binding (see 13.5.2);
c) a distributed transaction (as in OSI-TP);
d) an (N)-connection (as in OSI);
e) an association between (N)-entities enabling them to participate in (N)-connectionless communication (as

in OSI);
f) a relationship between files and processes which access the files.

NOTE 2 – Certain behaviours may be contingent on the establishment of multiple related liaisons. For example, a distributed
transaction may depend on both the liaison between the transaction users and the supporting association. The liaison between the
transaction users (the distributed transaction) may continue to exist, but be inactive, when the association is broken.
NOTE 3 – A liaison may involve more than two objects. The objects involved in a liaison do not necessarily all have equivalent
roles. Thus, there may be liaisons for the collection or distribution of information. The number of participants and the roles of the
participants are determined by the contract expressed by the liaison.
NOTE 4 – Agreeing a contract implies establishment of a contractual context and acceptance of any contractual obligation; the
act of agreement to the contract makes the enabled behaviour possible for as long as the context or liaison exists. In practice,
contexts may be arbitrarily nested and the enabled behaviour at an outer level may negotiate and agree a contract enabling further
behaviour at an inner level of the hierarchy.

13.2.5 terminating behaviour: The behaviour which breaks down a liaison and repudiates the corresponding
contractual context and the corresponding contract.

A terminating behaviour must be explicitly identified as such in the contract if the establishing behaviour was explicit.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 15

13.3 Service concepts

13.3.1 service: A behaviour, triggered by an interaction, that adds value for the service users by creating, modifying,
or consuming information; the changes become visible in the service provider's environment.

NOTE 1 – Services are associated with interfaces and defined by the structural, behavioural and semantic rules of the interaction
types involved.
NOTE 2 – A service can be characterized by a service type. A service is identifiable. A service may be composed of other
services.
NOTE 3 – A service is in general invoked from within a liaison. Rules can be associated with the liaison, which refine the service
for the duration of the liaison.
NOTE 4 – The service may be a complex behaviour, including both interactions and internal actions.
NOTE 5 – The provision of a service involves a collaboration between its provider and user. This collaboration may involve a
complex series of interactions.

13.4 Causality

Identification of causality allows the categorization of roles of interacting objects. This clause gives a basic set of roles.

Causality implies a constraint on the behaviour of each of the participating objects while they are interacting. Causality
will be identified in the definition of classes (or subclasses) to which interacting objects belong, or in the refinement of
templates for their classes (or subclasses).

13.4.1 initiating object (with respect to a communication): An object causing a communication.
NOTE – The identification of an initiating object with respect to a communication involves an interpretation of the intent of the
communication.

13.4.2 responding object: An object taking part in a communication, which is not the initiating object.

13.4.3 producer object (with respect to communication): An object which is the source of the information
conveyed.

The usage of this term does not imply any specific communication mechanism.

13.4.4 consumer object (with respect to communication): An object which is a sink of the information conveyed.

The usage of this term does not imply any specific communication mechanism.

13.4.5 client object: An object which requests that a service be performed by another object.

13.4.6 server object: An object which performs some service on behalf of a client object.

Client/server relationships of a different nature (or level of abstraction) may exist between an object and different
compositions of the objects with which it communicates.

NOTE – With respect to a specific interaction, client and server objects perform client and server roles respectively. However, a
given object may be involved in a number of interactions and may perform client or server roles in each of these interactions; the
interactions will, in general, be of different types and are not necessarily expressed at the same level of abstraction.

13.5 Establishing behaviours

13.5.1 binding behaviour: An establishing behaviour between two or more interfaces (and hence between their
supporting objects).

NOTE – "To bind" means "to execute a binding behaviour".

13.5.2 binding: A contractual context, resulting from a given establishing behaviour.

Establishing behaviour, contractual context and enabled behaviour may involve just two object interfaces or more
than two.

An object which initiates an establishing behaviour may or may not take part in the subsequent enabled behaviour.

Enabled behaviour (and, by analogy, contractual context) may be uniform (i.e., each participating object can do the
same as every other) or non-uniform (i.e., one participating object has a different role from another, as in client and
server).

There is no necessary correspondence between an object which initiates establishing behaviour and a particular role in
non-uniform enabled behaviours (e.g., in a client-server contractual context, either object could validly have initiated
the establishing behaviour).

13.5.3 binding precondition: A set of conditions required for the successful execution of a binding behaviour.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 16

The objects performing the binding behaviour must possess identifiers for all the interfaces involved in the binding.
There may be additional preconditions.

13.5.4 unbinding behaviour: A behaviour that terminates a binding, i.e., a terminating behaviour for the binding.

13.5.5 trading: The interaction between objects in which information about new or potential contracts is exchanged
via a third party object. It involves:

a) Exporting: The provision of an identifier to an interface which is claimed to meet some statement of
requirements (i.e., offer a potential contract).

b) Importing: The provision of an identifier to an interface which matches a given statement of
requirements, allowing a future binding behaviour to take place (i.e., the establishment of a contract).

13.6 Dependability

13.6.1 failure: Violation of a contract.
NOTE 1 – The behaviour specified in the contract is, by definition, the "correct behaviour". A failure is thus a deviation from
compliance with the correct behaviour.
NOTE 2 – The ways an object can fail are called its failure modes. Several types of failure modes can be distinguished:
 – arbitrary failures (non-compliance with the specification – the most general failure mode);
 – omission failure (when expected interactions not take place);
 – crash failures (persistent omission failures);
 – timing failures (incorrectness due to untimely behaviour).
NOTE 3 – A failure can be perceived differently by different objects in the environment of the object that exhibits it. A failure
may be: consistent if all the perceptions of the failure are the same; inconsistent if objects in the environment may have different
perceptions of a given failure.

13.6.2 error: Part of an object state which is liable to lead to failures. A manifestation of a fault (see 13.6.3) in an
object.

NOTE 1 – Whether an error will actually lead to a failure depends on the object decomposition, its internal redundancy, and on
the object behaviour. Corrective action may prevent an error from causing a failure.
NOTE 2 – An error may be latent (i.e., not recognized as such) or detected. An error may disappear before being detected.

13.6.3 fault: A situation that may cause errors to occur in an object.
NOTE 1 – Faults causing an error may appear from the time an object is specified through to the time it is destroyed. Faults in an
early epoch (e.g., design faults) may not lead to failure until a later epoch (e.g., execution time).
NOTE 2 – A fault is either active or dormant. A fault is active when it produces errors. The presence of active faults is
determined only by the detection of errors.
NOTE 3 – Faults can be:

– accidental (that appear or are created fortuitously) or intentional (created deliberately);
– physical (due to some physical phenomena) or human-made (resulting from human behaviour);
– internal (part of an object state that may cause an error) or external (resulting from interference or interaction

with the environment);
– permanent or temporary.

NOTE 4 – The definitions of fault, error and failure imply, recursively, causal dependencies between faults, errors and failures:
– a fault can lead to an error (it will lead to an error if it becomes active);
– an error can lead to a system's failure (it will lead to a failure unless the system can deal with it);
– a failure occurs when an error affects the correctness of the service delivered by a system (or system component).

13.6.4 stability: The property that an object has with respect to a given failure mode if it cannot exhibit that failure
mode.

14 Management concepts
Management in ODP is concerned with overall systems management, including application management and
communication management.

14.1 application management: The management of applications within an ODP system. Some aspects of
applications management are common to all applications and are termed application independent management. Those
aspects which are specific to a given application are termed application specific management.

14.2 communication management: Management of objects which support the communication between objects
within an ODP system.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 17

14.3 management information: Knowledge concerning objects which are of relevance to management.

14.4 managed role: The view of the management interface of an object which is being managed within an ODP
system.

NOTE – Where the object provides OSI communication services, OSI management refers to the management interface as a
managed object.

14.5 managing role: The view of an object which is performing managing actions.

14.6 management notification: An event notification initiated by an object operating in a managed role.

15 ODP approach to conformance
NOTE – The definitions of concepts in clauses 6-14 do not apply in this clause, and terms such as "interface", "system", and
"role" are used in their normal English sense.

15.1 Conformance to ODP standards

Conformance relates an implementation to a standard. Any proposition that is true of the specification must be true in
its implementation.

A conformance statement is a statement that identifies conformance points of a specification and states the behaviour
which must be satisfied at these points. Conformance statements will only occur in standards which are intended to
constrain some feature of a real implementation, so that there exists, in principle, the possibility of testing.

The RM-ODP identifies certain reference points in the architecture as potentially declarable as conformance points in
specifications. That is, as points at which conformance may be tested and which will, therefore, need to be accessible
for test. However, the requirement that a particular reference point be considered a conformance point must be stated
explicitly in the conformance statement of the specification concerned.

Requirements for the necessary consistency of one member of the family of ODP standards with another (such as
the RM-ODP) are established during the standardization process. Adherence to these requirements is called
compliance.

If a specification is compliant, directly or indirectly, with some other standards, then the propositions which are true of
those standards are also true of a conformant implementation of the specification.

15.2 Testing and reference points

The truth of a statement in an implementation can only be determined by testing and is based on a mapping from terms
in the specification to observable aspects of the implementation.

At any specific level of abstraction, a test is a series of observable stimuli and events, performed at prescribed points
known as reference points, and only at these points. These reference points are accessible interfaces. A system
component for which conformance is claimed is seen as a black box, testable only at its external linkages. Thus, for
example, conformance to OSI protocol specifications is not dependent on any internal structure of the system under test.

15.3 Classes of reference points

A conformance point is a reference point where a test can be made to see if a system meets a set of conformance
criteria. A conformance statement must identify where the conformance points are, and what criteria are satisfied at
these points. Four classes of reference points at which conformance tests can be applied are defined.

15.3.1 programmatic reference point: A reference point at which a programmatic interface can be established to
allow access to a function. A programmatic conformance requirement is stated in terms of a behavioural compatibility
with the intent that one object be replaced by another. A programmatic interface is an interface which is realized
through a programming language binding.

NOTE – For example, a programmatic reference point may be established in a database standard to support a language binding at
some level of abstraction.

15.3.2 perceptual reference point: A reference point at which there is some interaction between the system and the
physical world.

NOTE 1 – A perceptual reference point may be e.g., a human-computer interface or a robotic interface (specified in terms of the
interactions of the robot with its physical environment).
NOTE 2 – A human-computer interface perceptual conformance requirement is stated in terms of the form of information
presented to a human being and the interaction metaphor and dialogues the human may be engaged in. The specification of a
human-computer interface in an ODP system specification is discussed in Rec. ITU-T X.903 | ISO/IEC 10746-3, Annex B.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 18

NOTE 3 – A perceptual reference point may, for example, be established in a graphics standard.

15.3.3 interworking reference point: A reference point at which an interface can be established to allow
communication between two or more systems. An interworking conformance requirement is stated in terms of the
exchange of information between two or more systems. Interworking conformance involves interconnection of
reference points.

NOTE – For example, OSI standards are based on the interconnection of interworking reference points (the physical medium).

15.3.4 interchange reference point: A reference point at which an external physical storage medium can be
introduced into the system. An interchange conformance requirement is stated in terms of the behaviour (access
methods and formats) of some physical medium so that information can be recorded on one system and then physically
transferred, directly or indirectly, to be used on another system.

NOTE – For example, some information interchange standards are based on interchange reference points.

15.4 Change of configuration

The testing of conformance may take place at a single reference point, or it may involve some degree of consistency
over use in a series of configurations involving several reference points. This may involve the testing of conformance
to:

a) the requirement for a component to be able to operate after some preparatory process to adapt it to the
local environment;

b) the requirement for a component to operate according to its specification at a particular reference point
from initialization onwards;

c) the requirement for a component to continue to work when moved into a similar environment during
operation.

The properties being tested above give rise to attributes of the objects or interfaces involved, as follows.

15.4.1 portability: The property that the reference points of an object allow it to be adapted to a variety of
configurations.

NOTE – If the reference point is a programmatic reference point, the result can be source-code or execution portability. If it is an
interworking reference point, the result is equipment portability.

15.4.2 migratability: The ability to change the configuration, substituting one reference point of an object for
another while the object is being used.

15.5 The conformance testing process

Conformance is a concept which can be applied at any level of abstraction. For example, a very detailed perceptual
conformance is expected to a standard defining character fonts, but a much more abstract perceptual conformance
applies to screen layout rules.

The more abstract a specification is, the more difficult it is to test. An increasing amount of implementation-specific
interpretation is needed to establish that the more abstract propositions about the implementation are in fact true. It is
not clear that direct testing of very abstract specifications is possible at reasonable cost using currently available or
foreseeable techniques.

Conformance testing can take many forms, mirroring different forms of specification, implementation and deployment
processes. The description below concentrates on third-party testing, because this gives the clearest separation of roles,
but the same distinctions and responsibilities can be identified in more integrated processes, such as those associated
with modern, modularised, late-bound, loosely-coupled systems involving runtime conformance assurance performed
by the distribution infrastructure, or otherwise.

The testing process makes reference to a specification. To be complete, the specification must contain:
a) the behaviour of the object being standardized and the way this behaviour must be achieved;
b) a list of the primitive terms used in the specification when making the statements of behaviour;
c) a conformance statement indicating the conformance points, what implementations must do at them and

what information implementors must supply (corresponding to the OSI notions of PICS and PIXIT).

In principle, there are two roles in providing a specification for testing: the system specifier and the system owner. The
system specifier is responsible for the content of the specification and determines the possible behaviour of an
implementation of that specification.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 19

The system owner is responsible for the specific use to which the implementation will be put. The system owner may
only be interested in a subset of the possible behaviour and, thus, may specify constraints on the scope of an
implementation and, hence, on the nature of the conformance testing required.

There are two roles in the testing process: the implementor and the tester. The implementor constructs an
implementation on the basis of the specification within the scope defined by the system owner. The implementor must
provide a statement of a mapping from all the terms used in the specification to things or happenings in the real world.
Thus, the interfaces corresponding to the conformance points must be indicated and the representation of signals given.
If the specification is abstract, the mapping of its basic terms to the real world may itself be complex. For example, in a
computational viewpoint specification (see Rec. ITU-T X.903 | ISO/IEC 10746-3), the primitive terms might be a set of
interactions between objects. The implementor wishing to conform to the computational viewpoint specification would
have to indicate how the interactions were provided, either by reference to an engineering specification or by providing
a detailed description of an unstandardized mechanism (although this course limits the field of application of the
implementation to systems in which there is an agreement to use the unstandardized mechanism).

The tester observes the system under test. Testing involves some shared behaviour between the testing process and the
system under test. If this behaviour is given a causal labelling, there is a spectrum of testing types from:

a) passive testing, in which all behaviour is originated by the system under test and recorded by the tester;
b) active testing, in which behaviour is originated and recorded by the tester.

Normally, the specification of the system under test is in the form of an interface, as is the specification of the tester and
test procedures. When testing takes place, these interfaces are bound.

The tester must interpret its observations using the mapping provided by the implementor to yield propositions about
the implementation which can then be checked to show that they are also true in the specification, within the scope
defined by the system owner.

15.6 The result of testing

The testing process succeeds if all the checks against the specification succeed. However, it can fail because:
a) the specification is logically inconsistent or incomplete, so that the propositions about the

implementation cannot be checked (this should not occur);
b) the mapping given by the implementor is logically incomplete, so that it is inconsistent or observations

cannot be related to terms in the specification; testing is impossible;
c) the observed behaviour cannot be interpreted according to the mapping given by the implementor. The

behaviour of the system is not meaningful in terms of the specification, and so the test fails;
d) the behaviour is interpreted to give terms expressed in the specification, but these occur in such a way

that they yield propositions which are not true in the specification, and so the test fails.

15.7 Relation between reference points

The flow of information between modelled system components may pass through more than one reference point. For
example, a distributed system may involve interactions of two components A and B, but communication between them
may pass in turn through a programmatic interface, a point of interconnection and a further programmatic interface.

A refinement of the same system may show interconnected components that have more than one component on the
communication path between them.

In either case, conformance testing may involve:
a) testing the information flow at each of these reference points;
b) testing the consistency between events at pairs of reference points.

In general, testing for correct behaviour of a configuration of objects will require testing that statements about
communication interfaces are true, but it will also require observation of other interfaces of these objects, so that the
statements about the composition can also be checked.

The general notion of conformance takes into account the relation between several conformance points. Since the
specification related to a given conformance point may be expressed at various levels of abstraction, testing at a given
conformance point will always involve interpretation at the appropriate level of abstraction. Thus, the testing of the
global behaviour requires coordinated testing at all the conformance points involved and the use of the appropriate
interpretation at each point.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 20

In particular, conformance of a template to a given programmatic interface can only be asserted when considering the
language binding for the language in which the template has been written, and compliance of the written template to the
language binding specification, which must itself be conformant with the abstract interface specification.

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 21

Index
NOTE – Associated with each index entry is the clause or subclause where the index entry is defined.

<X> Domain, 10.3
<X> Group, 10.1
<X> Pattern 9.8
<X> Template, 9.13
Abstraction, 6.3
Action, 8.3
Action signature 9.14
Activity, 8.6
Application management, 14.1
Architecture (of a system), 6.6
Atomicity, 6.4
Base class, 9.24
Behaviour (of an object), 8.7
Behavioural compatibility, 9.4
Binding behaviour, 13.5.1
Binding precondition, 13.5.3
Binding, 13.5.2
Chain (of actions), 13.1.1
Class (of <X>s), 9.10
Client object, 13.4.5
Coerced behavioural compatibility, 9.4
Communication management, 14.2
Communication, 8.9
Compliance, 15.1
Component 9.26
Composite object, 9.2
Composition, 9.1
Configuration (of objects), 10.2
Conformance point, 10.7
Consumer object, 13.4.4
Container (for a component), 9.27
Contract, 11.2.1
Contractual context, 13.2.3
Creation (of an <X>), 9.18
Data, 3.2.6
Decomposition, 9.3
Deletion (of an <X>), 9.20
Derived class, 9.24
Distributed processing, 3.2.1
Distribution transparency, 11.1.1
Dividing action, 13.1.4
Enabled behaviour, 13.2.2
Entity, 6.1
Environment (of an object), 8.2
Environment contract, 11.2.3
Epoch, 10.5
Error, 13.6.2
Establishing behaviour, 13.2.1

Event, 8.4
Event notification, 8.4
Factory (for an object), 9.25
Failure, 13.6.1
Fault, 13.6.3
Forking action, 13.1.5
Head action, 13.1.7
Identifier, 12.2
Information, 3.2.5
Initiating object (with respect to a communication),
13.4.1
Instance (of a type), 9.21
Instantiation (of an <X> template), 9.16
Interaction point, 8.12
Interaction, 8.3
Interchange reference point, 15.3.4
Interface signature, 9.15
Interface, 8.5
Internal action, 8.3
Interoperability 9.5
Interworking reference point, 15.3.3
Introduction (of an <X>), 9.19
Invariant, 9.28
Isochronicity, 11.3.2
Joining action, 13.1.3
Liaison, 13.2.4
Location in space, 8.10
Location in time, 8.11
Managed role, 14.4
Management information, 14.3
Management notification 14.6
Managing role, 14.5
Migratability, 15.4.2
Model, 7.3
Name resolution, 12.8
Name space, 12.3
Name, 12.1
Naming action, 12.5
Naming context, 12.4
Naming domain, 12.6
Naming graph, 12.7
Natural behavioural compatibility, 9.4
Notation 7.5
Object, 8.1
Obligation, 11.2.4
ODP standards, 3.2.2
ODP System, 3.2.4
Open Distributed Processing, 3.2.3

ISO/IEC 10746-2:2010 (E)

 Rec. ITU-T X.902 (10/2009) 22

Perceptual reference point, 15.3.2
Permission, 11.2.5
Persistence, 11.3.1
Policy envelope 11.2.11
Policy declaration 11.2.9
Policy setting behaviour 11.2.12
Policy value 11.2.10
Policy, 11.2.8
Portability, 15.4.1
Postcondition, 9.30
Precondition, 9.29
Producer object (with respect to a communication),
13.4.3
Programmatic reference point, 15.3.1
Prohibition, 11.2.6
Proposition, 6.2
Quality of Service, 11.2.2
Reference point, 10.6
Refinement, 9.6
Relation 8.13
Relationship 8.14
Responding object, 13.4.2
Role, 9.17
Rule 11.2.7
Sentence, 7.2

Server object, 13.4.6
Service 13.3.1
Spawn action, 13.1.6
Specification 7.4
Stability, 13.6.4
State (of an object), 8.8
Subactivity, 13.1.8
Subclass, 9.12
Subdomain, 10.4
Subtype, 9.11
Superclass, 9.12
Supertype, 9.11
System, 6.5
Template class (of an <X>), 9.23
Template type (of an <X>), 9.22
Term, 7.1
Terminating behaviour, 13.2.5
Thread, 13.1.2
Trace, 9.7
Trading, 13.5.5
Type (of an <X>), 9.9
Unbinding behaviour, 13.5.4
Viewpoint (on a system), 3.2.7
Viewpoint correspondence 3.2.8

Printed in Switzerland
Geneva, 2010

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.902 (10/2009) Information technology - Open Distributed Processing - Reference model: Foundations
	Summary
	Source
	FOREWORD
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards

	3 Definitions
	3.1 Definitions from other Recommendations | International Standards
	3.2 Background definitions

	4 Abbreviations
	5 Categorization of concepts
	6 Basic interpretation concepts
	7 Basic linguistic concepts
	8 Basic modelling concepts
	9 Specification concepts
	9.1 Composition
	9.3 Decomposition

	10 Organizational concepts
	11 Properties of systems and objects
	11.1 Transparencies
	11.2 Policy concepts
	11.3 Temporal properties

	12 Naming concepts
	13 Concepts for behaviour
	13.1 Activity structure
	13.2 Contractual behaviour
	13.3 Service concepts
	13.4 Causality
	13.5 Establishing behaviours
	13.6 Dependability

	14 Management concepts
	15 ODP approach to conformance
	15.1 Conformance to ODP standards
	15.2 Testing and reference points
	15.3 Classes of reference points
	15.4 Change of configuration
	15.5 The conformance testing process
	15.6 The result of testing
	15.7 Relation between reference points

