/

A
"
&

\ I INTERNATIONAL TELECOMMUNICATION UNION
N ¥4

<

ITU-T X.880

TELECOMMUNICATION (07/94)
STANDARDIZATION SECTOR
OF ITU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI APPLICATIONS - REMOTE OPERATIONS

INFORMATION TECHNOLOGY -
REMOTE OPERATIONS: CONCEPTS, MODEL
AND NOTATION

ITU-T Recommendation X.880

(Previously “CCITT Recommendation”)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and

38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.880 was approved on 1st of July 1994. The
identical text is also published as ISO/IEC International Standard 13712-1.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

0 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Recommendation

Subject area series
PUBLIC DATA NETWORKS
Services and Facilities X.1-X.19
Interfaces X.20-X.49
Transmission, Signalling and Switching X.50-X.89
Network Aspects X.90-X.149
Maintenance X.150-X.179
Administrative Arrangements X.180-X.199
OPEN SYSTEMSINTERCONNECTION
Model and Notation X.200-X.209
Service Definitions X.210-X.219
Connection-mode Protocol Specifications X.220-X.229
Connectionless-mode Protocol Specifications X.230-X.239
PICS Proformas X.240-X.259
Protocol |dentification X.260-X.269
Security Protocols X.270-X.279
Layer Managed Objects X.280-X.289
Conformance Testing X.290-X.299
INTERWORKING BETWEEN NETWORKS
General X.300-X.349
Mobile Data Transmission Systems X.350-X.369
Management X.370-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS
Networking X.600-X.649
Naming, Addressing and Registration X.650-X.679
Abstract Syntax Notation One (ASN.1) X.680-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OSI APPLICATIONS
Commitment, Concurrency and Recovery X.850-X.859
Transaction Processing X.860-X.879
Remote Operations X.880-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999

0o N o O b~

10

CONTENTS

NOIMALTIVE FEFEIENCES ...ttt ettt et e e e be e et e et s bt ebe s st eaeeaeenes 2mbeseesbesbeseesbesaenneas
2.1 Identica Recommendations | International Standards............ccovvrrirecinineninee s
2.2 Paired Recommendations | International Standards equivalent in technical contentcccccvvenen.
P2 T N [0 1T g I = 1= =000

DIEFINITIONS.....c.eiictii ettt e et e et e st e e e beesabeesabeeebeeesbeesbes e besenseesabeeens shseenseeenbesenseesabesanseesareas
3.1 OSl reference MOAEl AEfiNITIONSccueiiiiiceiceeee ettt sre e sre e e saeesbeeneesraesbens
3.2 ASNLLAENINITIONSc.viiieeciiecie ettt ettt sb e s be et e s besaeesbeesbeeatesaeesaeesbeensesaeeesnbesnnesneesaeennes
G T T =@ Y o T 0Tl o 1SR

PN ol o (Y= 1) SRR

(O ST o] < o £ TSR U TP UPURURUPRORN
S 30 A g1 (o [FTex i o o TSRS
L0220 © o= - 1 oo 1S
S TG T = (o] USSR
8.4 OPEratioN PACKAGE .. c.veeverteeueeuieteeee ettt sttt bt ae st et e e eese e besaeebesbesheebesaeene e e et enbe s seeshenbenaeereens
T 0 01 01= ot (0] 8 0= o €= [TS
T ST ANS'o = (0 oo 11 -t S
8.7 ROS-ODJECE ClASS.......eitiiiteiteiete ettt sttt b et h e b e b e s e et b s e e st b e seebe e ebe e ebesreneere e
SRS T oo L= TSSOSO PRSP
SRS T = 0] T

GENENTC ROS PIOLOCOIottt sttt et b e e b e b b s et b e s bbb e st ebe st et ebeseenenbenea
Lo I A 11 {0 o (U o 1] SO
LS 2 = (O 1 TSR
LS G T 1 017/ (TSSO
LS I (U a1 (=== U
LRI o= (1 = 4 (0] OSSPSR
1S T = (= =" S
LS A = (= 1= ot £ o] =0 o
LS IS T 101V (=Y o SO
1 I N [0 W 1 1V/0 (=] Lo SRRSO SRPRR
Lo T 0 1 o = SR
LS 0 1 R = T o
Lo I 2 U T o o 1 oo

LO.1 INEFOAUCTION. ...ttt bbbt b ket b bt e R £t nn b e bt e n e
102 EMPLY DING..ciiiie ettt b et e et e e b b
10.3 EMPLY UNDING....coeiiiiiiiieeeeee ettt st b e et bt b e bt b e se s ek nb et b e ene e nens
L0.4 REFUSE ...ttt b et b bt £ bbb e b b e e AR e e Rk e Rt e b b ne e bRt e b ne s
0 2 T N [o o OSSR
0T o 1= o TSR
FO.7 REVEISE ..ttt ettt b ettt s he e s b e et e e et e she e sae e bt oAt e eae e be e bt e as e eRe e beenbe e eabeeheenbe e beenrenaeen
10.8 CONSUMES PEITOIMMS. ...cueiuieieeitetete sttt ettt sttt et e ettt eeeseesbesbeseeebesbeebeshe e st ese e e eseeneene et e sbesbesbenneaaeas
MO TS U ool T= g o= o 0] 0 1SS
LO.10 Al OPEFBLIONS.eiveeeteieeieete sttt sttt ettt ettt b e bttt s et b se e bt s b et b e s e e Rt eb e e eb e e b et e be s sbe st st e seenesbe e ene b

ITU-T Rec. X.880 (1994 E)

Page

O 00N IO O W W W NNINIIN NP

IS
(BN

ISR R RIS
o/ olNINININ ol S w Nk ke

NINEEIRRRRREBE e
old wlwlvlololonlom oo

O B £ oo o T TS TSP TSRS P PSPPSR 20
F0.12 SIWITCR oottt bbbt E R e E R e R R e R bt SRRt R bR nnr e 20
0I5 B o'o 0] 11 1< TR 21
10.14 ROS SiNGIE ADSITACT SYNEAXeoveeeririeiietirieieste ettt sttt b ettt st b e st s a et e s e se b sne e ere s 21
10.15 ROS CONSUMES @DSIFACE SYMEBXeeuveeeieriereietesiestesiesieetes e e ee e se et see b be b sbesaesaeeae e e e e e e e s e e eneeneanean 21
10.16 ROS SUPPITEr @DSIFACE SYNEBXvveveeiereerieiit sttt er et 21
ANNEX A — ASN.L MOUUIES ..ottt e et e e e e s s e e e e e emm e e e e be e e e e e e anneees 22
Annex B — Guidelines for the use of the NOtAtIONuuiiiiiiiiiiii e 29
B.1 Examples of Operations and their EFTOrSuueuiiiiiiiiiiiiiaaae e 29
B.2 Examples of Operation Packages and the use of switch{}cccccovmriiiii e L,
B.3 Examples of Bind and Unbind OPErationSccoouiiiiiiiiiiiiiiiiiie st smmen e 31
B.4 Examples of CONNECHION PACKAGESoouuiiiieiiiiiiiie ettt e s e 31
B.5 Example of an ASSOCIAtION CONLIACE...........uiiiiiiiiiaiiiii it e e e e 32
B.6 EXamples Of ROS-0DJECISuuuiiiiiiiiiiiiiee et e e e e e e e e e e e e eeeeeanan 32
B.7 Example of the use of Forward{} and ReVerse{}........ccoouiiiiiiiiiiiiii e 3Z.
B.8 Examples of ConsumerPerforms{}, SupplierPerforms{} and AllOperations{}............cccccvcevrrurreren. .
Annex C — Migrating from the ROS MACIOSuuuuuiiiiiiiiiiiiiiie et e e e e e e e e e e e e eeeeaaaeaeeeee e e as 35
O30 R 11 (o To [ox o] o PSP PPRRPPOUPPRPRR 35
C.2 OPEIALION ..eeiieiiieeeee ettt e et e e e e s bbb e e e e s eeeeeaae 35
O T ! ¢ (o] ST PP PTPRR 36
Cd BN oot n e 36
C.5 UNDING oo 36
Annex D — Assignment of object identifier VAlUES............oooi i s e 37

I TU-T Rec. X.880 (1994 E)

33

Summary

This Recommendation | International Standard uses the Abstract Syntax Notation One (ASN.1) to define information
object classes corresponding to the fundamental concepts of the Remote Operations Service (ROS). This, in turn,
provides the notation that will allow application designers to specify instances of these classes. This Recommenda-
tion | International Standard also provides a collection of definitions for specifying the generic protocol between objects
that communicate using remote operations. A number of definitions of genera utility to designers of ROS-based
applicationsis also provided.

ITU-T Rec. X.880 (1994 E) iii

Introduction

Remote operations (ROS) is a paradigm for interactive communication between objects. As such it can be used in the
design and specification of distributed applications. The basic interaction involved is the invocation of an operation by
one object (the invoker), its performance by another (the performer), possibly followed by areport of the outcome of the
operation being returned to the invoker.

The concepts of ROS are abstract, and may be realized in many ways. For example, objects whose interactions employ
ROS concepts may be separated by a software interface or by an OS| network.

This Recommendation | International Standard describes the concepts and model of ROS. It uses ASN.1 to specify
information object classes corresponding to the fundamental concepts of ROS, such as operation and error. Thisin turn
provides a notation so that designers can specify particular instances of those classes, e.g. particular operations and
errors.

This Recommendation | International Standard provides a generic set of PDUs which can be used in realizing the ROS
concepts between objects remote from one another. These PDUs are used in the OSI redization of ROS, which are
specified in the companion Recommendations | International Standards to this one.

This Recommendation | International Standard also provides a number of definitions of general utility to designers of
ROS-bhased applications.

Annex A forms anintegral part of this Recommendation | International Standard.

Annexes B, C and D do not form an integral part of this Recommendation | International Standard.

iv ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY -
REMOTE OPERATIONS: CONCEPTS, MODEL AND NOTATION

1 Scope

This Recommendation | International Standard specifies the Remote Operations Service (ROS) using the Abstract
Syntax Notation (ASN.1) to define information object classes corresponding to the fundamental concepts of ROS. This,
in turn, provides the notation that will allow application designers to specify particular instances of these classes.

This Recommendation | International Standard also provides a collection of definitions for specifying the generic
protocol between objects that communicate using ROS concepts. These definitions are used in the companion
Recommendations | International Standards to this one to provide the protocol data units, the service primitives and the
application context definitions used in the OSI realization of ROS.

A number of definitions of general utility to designers of ROS-based applicationsis also provided.

No reguirement is made for conformance to this Recommendation | International Standard.

2 Normative references

The following ITU-T Recommendations and International Standards contain provisions which, through reference in this
text, constitute provisions of this Specification. At the time of publication, the editions indicated were valid. All
Recommendations and Standards are subject to revision, and parties to agreements based on this Specification are
encouraged to investigate the possibility of applying the most recent editions of the Recommendations and Standards
indicated below. Members of IEC and 1SO maintain registers of currently valid International Standards. The
Telecommunications Standardization Bureau of the ITU maintains alist of currently valid ITU-T Recommendations.

21 Identical Recommendations | International Standards

— ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:198rmation technology — Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:198rmation technology — Abstract Syntax

Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1%8rmation technology — Abstract Syntax

Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1%8rmation technology — Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:198frmation technology — Open Systems

Interconnection — Basic Reference Model: The basic model.

— ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:19&ormation technology — Remote

Operations: OSI realizations — Remote Operations Service Element (ROSE) service definition.

— ITU-T Recommendation X.882 (1994) | ISO/IEC 13712-3:19&grmation technology — Remote

Operations: OSI realizations — Remote Operations Service Element (ROSE) protocol specification.

2.2 Paired Recommendations | International Standar ds equivalent in technical content
— CCITT Recommendation X.219 (1988emote Operations. Model, notation and service definition.

ISO/IEC 9072-1:1989)nformation processing systems — Text communication — Remote Operations —

Part 1: Model, notation and service definition.
— CCITT Recommendation X.229 (1988emote Operations: Protocol specification.

ISO/IEC 9072-2:1989)nformation processing systems — Text communication — Remote Operations —

Part 2: Protocol specification.

ITU-T Rec. X.880 (1994 E) 1

ISO/IEC 13712-1: 1995 (E)

2.3 Additional references

— CCITT Recommendation X.407 (1988Message handling systems: Abstract service definition
conventions.

3 Definitions

3.1 OSl reference model definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.200 |
ISO/IEC 7498-1:

a) abstract syntax;
b) protocol data unit;
c) quality of service.

3.2 ASN.1 definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1:

a) (data) type;
b) (data) value.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.681 |
ISO/IEC 8824-2:

a) field;

b) (information) object;

¢) (information) object class;
d) (information) object set.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.682 |
ISO/IEC 8824-3:

a) constraint;
b) exception value.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.683 |
ISO/IEC 8824-4:

— parameterized.

3.3 ROS definitions
This Recommendation | International Standard defines the following terms:
331 argument: A data value accompanying the invocation of an operation.

332 association: A relationship between a pair of objects, serving as the context for the invocation and perfomance
of operations.

333 association contract: A specification of the roles of a pair of communicating objects who may have an
association with each other.

334 asymmetrical: Describing an operation package (or association contract), where the sets of operations which
the two parties are capable of performing differ.

335 connection package: A specification of the roles of a pair of communicating objects in the dynamic
establishment and release of associations between them.

3.36 contract: A set of requirements on one or more objects prescribing a collective behaviour.

337 error: A report of the unsuccessful performance of an operation.

2 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

338 linked operation: An operation invoked during the performance of another operation by the (latter’s)
performer and intended to be performed by the (latter’s) invoker.

339 object: A model of (possibly a self-contained part of) a system, characterized by its initial state and its
behaviour arising from external interactions over well-defined interfaces.

3.3.10 operation: A function that one object (the invoker) can request of another (the performer).

3.3.11 operation package: A collection of related operations used to specify the roles of a pair of communicating
objects, each operation being invokable by one or both objects of the pair and performable by the partner.

3.3.12 parameter (of an error): A data value which may accompany the report of an error.
3.3.13 result: A data value which may accompany the report of the successful performance of an operation.
3.3.14 ROS-object: An object whose interactions with other objects are described using ROS concepts.

3.3.15 symmetrical: Describing an operation package (or assocation contract) in which both parties are capable of
performing the same set of operations.

3.3.16 synchronous. A characteristic of an operation that, once invoked, its invoker cannot invoke another
synchronous operation (with the same intended performer) until the outcome has been reported.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
PDU Protocol Data Unit
QO0s Quality of Service

RO (or ROS) Remote Operations

5 Conventions

This Recommendation | International Standard employs ASN.1 to define:

a) Information object classes corresponding to the ROS concepts — These also provide notation with which
designers of ROS applications can specify particular instances of those classes.

b) Particular information objects of those classes.
c) The PDUs of the generic ROS protocol.
d) Data types needed in these definitions.

Many of these definitions are parameterized, so that their users must supply actual parameters in order to complete them.

6 ROS mode

Remote operations (ROS) is a paradigm for interactive communication between objects. Objects whose interactions are
described and specified using ROS Rf@S-objects. The basic interaction involved is the invocation of an operation by
one ROS-object (the invoker) and its performance by another (the performer).

Completion of the performance of the operation (whether successfully or unsuccessfully) may lead to the return, by the
performer to the invoker, of a report of its outcome. This is illustrated in Figure 1.

A report of the successful completion of an operationrissalt; a report of unsuccessful completioneanor.

During the performance of an operation, the performer can inwoked operations, intended to be performed by the
invoker of the original operation.

For correct interworking, certain properties of the operation must be known by both invoker and performer. The
properties include:

whether reports are to be returned, and if so, which ones;
the types of the values, if any, to be conveyed with invocations of the operation or returns from it;

ITU-T Rec. X.880 (1994 E) 3

ISO/IEC 13712-1: 1995 (E)

which operations, if any, can be linked to it;
the code value to be used to distinguish this operation from the others that might be invoked.

=
Plerform

ROS-object ROS-object
(invoker) (performer)

TISO4150-94/d01

Figure 1 — Invocation, performance, and return of an operation

The interworking capabilities of (pairs of) ROS-abjects of some ROS-object class are defined in terms of sets of related
operations called operation packages. A package may be symmetrical, in which case it is defined by a single set of
operations which each ROS-object in the pair can invoke (of the other). Alternatively, a package may be asymmetrical,
in which case it is defined by two sets of operations, those which one ROS-object of the pair can invoke and those which
the other can invoke. For the purpose of defining an asymmetrical package, the two ROS-objects are (arbitrarily)
labelled the consumer and supplier respectively.

NOTE 1 — While these labels are, in general, arbitrary, it will often be the case that an intuitive assignment can be made,
given that frequently in such a pair of objects one will be supplying a service which the other consumes.

A pair of ROS-objects must have an association between them to serve as a context for the invocation and performance
of operations. Each such association is governed by an association contract. A contract is specified in terms of the set
of packages which (collectively) determine the operations which can be invoked during the association. If the contract
specification includes one or more asymmetrical packages then the contract is itself asymmetrical. For the purpose of
specifying an asymmetrical association contract, the two ROS-objects which establish an association with each other are
labelled the initiator and responder .

An association may be brought into and out of existence by “off-line” means. Alternatively, an association may be
established and released dynamically. One option, described in this Recommendation | International Standard, by which
an association may be established and released dynamically is, respectively, through the invocation and performance of
specialbind andunbind operations. The contract for associations of the latter variety includemaction package,

which includes the particular bind and unbind operations to be used.

NOTE 2 — The mechanism for the establishment and release of associations may also be done by other means described in
other Recommendations | International Standards.

An association requires a relationship between the objects, the existence of which corresponds to the mutual agreement
of the objects to the terms of some association contract.

NOTE 3 — This specification does not address the means by which these relationships are established or terminated.

In the foregoing, the only objects seen to be involved in an operation have been the invoker and performer. However, in
general, the invoker and performer of an operation are not directly attached to one another, but are connected by some
medium through which invocations and returns can be conveyed. This expanded view isillustrated in Figure 2.

ROS-object Medium ROS-object
(invoker) (performer)
TISO4160-94/d02

Figure 2 — Expanded view

4 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

The medium may introduce delay and the possibility of failure or inaccuracy both in the conveyance of invocations and
returns, and in the establishment, release, and maintenance of associations. It may also introduce the possibility of the
security of the association and its operations being threatened. The extent of these (together with other factors) are
described as the quality-of-service (QOS).

Association contracts can now be seen as having three parties, the third party being the medium. The medium'’s
obligation under the contract is to satisfy the QOS requirements.
NOTE 4 - In the future, target and minimum acceptable QOS requirements may form part of the specification of

operations, operation packages and of the association contract itself directly. Different aspects of QOS are applicaloliéf¢oehes
levels of specification.

7 Realization of ROS

A realization of ROS involves the definition of a suitable medium to convey invocations and returns between ROS-
objects. Such amedium may, for example, comprise:

a) amessage-passing or procedure calling capability allowing the invoker and performer of an operation to
be implemented in separately developed software modules within a single computer system;

b) acommunications capability, allowing the invoker and performer of an operation to be implemented in
separate computer systems.

A redlization may be general-purpose, in which case it can be employed to support any association contract. Others are
special-purpose, accommodating only some particular contract(s).

Figure 3 depicts an approach to realizing ROS by communications means which is likely to be widely used.

ROS-object information ROS-object

transfer

TISO4170-94/d03

Figure 3 — Approach to communications realization of ROS

In this approach, the medium is composed of stub objects, one for each ROS-object, and an information transfer object.
The stub object associated with each ROS-object appears to play the role of the partner ROS-object. However, it does
not actually invoke or perform any operations, merely transforming invocations and returns into PDUs and vice versa, as
appropriate. These PDUs are exchanged between the stubs by means of the information transfer object.

Thus, to invoke an operation, the invoker invokes the operation of the associated stub, which forms a PDU describing
the invocation. The stub uses the information transfer capability to transfer the PDU to the other stub. The latter stub
interprets the PDU and then invokes the appropriate operation of the ROS-object with which it is associated, the
performer. When the operation has been performed, the performer conveys any return to its associated stub, which forms
a PDU describing it. The stub then, uses the information transfer capability to transfer the PDU to the other stub. The
latter stub interprets the PDU and then reports the return to the invoker.

Clause 9 defines a collection of suitable PDUs.
Various information transfer capabilities can be used in a ROS realization of this kind. Of particular importance are
theinformation transfer capabilities of OSl. The pair of companion Recommendations | International Standards,

ITU-T Rec. X.881 | ISO/IEC 13712-2 and ITU-T Rec. X.882 | ISO/IEC 13712 -3, describe a number of such
realizations.

ITU-T Rec. X.880 (1994 E) 5

ISO/IEC 13712-1: 1995 (E)

8 ROS concepts

81 Introduction

811 This clause defines the information object classes corresponding to the basic concepts of ROS, specifying the
characteristics that objects of such classes have. The following information object classes are defined:

— OPERATI ON (describing operations);

— ERROR (describing errors);

— OPERATI ON-PACKAGE (describing operation packages);

— CONNECTI ON- PACKAGE (describing connection packages);
— CONTRACT (describing association contracts);

— ROS- OBJECT- CLASS (describing ROS-object classes).

8.1.2 The information object classes are defined using ASN.1. This provides notation which is available to designers
of ROS applications for specifying particular instances of those classes. Designers are encouraged, but not obliged, to
use this specification approach. If some other approach is employed, the resulting specification shall include or reference
a description of how a valid use of the notation provided could be derived.

NOTE — A number of existing specifications employ the ASN.1 MACRO notation (which were defined in previous
versions of this Recommendation | International Standard: see CCITT Rec. X.219 | ISO/IEC 9072-1) to specify operations, errors, and
other classes of information object relevant to ROS. Annex C describes how the use of these macros can be transformed onto the
notation provided. These macros should not be used for new applications.

8.2 Operation

821 An operation is a function that one object (the invoker) can request of another (the performer). The
information object class OPERATI ON, to which all operations belong, is specified as follows, the various fields being
described in 8.2.2t0 8.2.13:

OPERATION ::= CLASS

{
&ArgumentType OPTIONAL,
&argumentTypeOptional BOOLEAN OPTIONAL,
&returnResult BOOLEAN DEFAULT TRUE,
&ResultType OPTIONAL,
&resultTypeOptional BOOLEAN OPTIONAL,
&Errors ERROR OPTIONAL,
&Linked OPERATION OPTIONAL,
&synchronous BOOLEAN DEFAULT FALSE,
&alwaysReturns BOOLEAN DEFAULT TRUE,
&InvokePriority Priority OPTIONAL,
&ResultPriority Priority OPTIONAL,
&operationCode Code UNIQUE OPTIONAL

}

WITH SYNTAX

{
[ARGUMENT &ArgumentType [OPTIONAL &argumentTypeOptional]]
[RESULT &ResultType [OPTIONAL &resultTypeOptional]]
[RETURN RESULT &returnResult]
[ERRORS &Errors]
[LINKED &Linked]
[SYNCHRONOUS &synchronous]
[ALWAYS RESPONDS &alwaysReturns]
[INVOKE PRIORITY &lInvokePriority]
[RESULT-PRIORITY &ResultPriority]
[CODE &operationCode]

}

8.2.2 The &Ar gunent Type field specifies the data type of the argument of the operation. If in some operation the
field is omitted, then that operation takes no argument value.

6 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

8.2.3 The &ar gunent TypeQOpt i onal field, which can be present only if the &Ar gunent Type field is present,
specifies if the data type of the operation argument may optionally be omitted. If this field is absent or takes the value
FALSE, the value of the &Ar gunent Ty pe cannot be omitted from the | nvoke{} PDU (see 9.3).

8.24 The &r et ur nResul t field specifies whether aresult is returned in the event that the operation is performed
successfully, taking the value TRUE if it is, and FAL SE otherwise.

8.25 The &Resul t Type field specifies the data type of the value returned with the result of the operation. If it is
omitted, then the operation returns no result value. It shall be omitted if the & et ur nResul t field is FALSE.

8.2.6 The &resul t TypeOpti onal field, which can be present only if the &Resul t Type field is present,
specifiesif the data type of the value returned as the result of performing the operation may optionally be omitted. If this
field is absent or takes the value FALSE, the value of the &Resul t Type cannot be omitted from the
Ret ur nResul t {} PDU (see9.4).

8.2.7 The &Er r or s field specifies a set of errors, any one of which may be returned to report an unsuccessful
performance of the operation. If this field is omitted, then unsuccessful performance of the operation is either not
possible or not reported.

8.2.8 The &al waysRet ur ns field specifies whether the outcome of performing the operation is aways returned,
taking the value TRUE if it is and FALSE otherwise. If thisfield is set to TRUE, at least one of the &r et ur nResul t
or &Er r or s field must be present.

8.29 The &Li nked field, if present, specifies a set of operations, any of which may be invoked as linked operations
during the performance of the operation. If thisfield is omitted, then no operations may be linked to an invocation of this
one.

8.210 The&synchronous field specifies whether or not the operation is synchronous, taking the value TRUE if it
is, and FALSE otherwise. If the & et ur nResul t field is FALSE, thisfield shall also take the value FALSE. When the
&synchronous field is set to TRUE, it implies that no other synchronous operation may be invoked by this side until
this operation has returned.

NOTE — The combination of the &l waysRet ur ns and the &ynchr onous fields replaces the earlier concept of
“operation classes” defined in CCITT Rec. X.219 | ISO/IEC 9072-1.

8.211 The&l nvokePri ority field specifiesthe permitted Pri ori t y (see 8.9) levels at which this operation can
be invoked.

8212 The&ResultPriority field specifiesthe permitted Pri ori ty (see 8.9) levels at which the result of this
operation can be returned. If the & et ur nResul t field is FALSE, thisfield shall be omitted.

8.213 The &oper ati onCode field, if present, specifies the Code value (see 8.8) which is used to identify this
operation, e.g. when it is to be invoked.

NOTE — An operation which does not have &wper ati onCode cannot be invoked using tHenvoke{} PDU
(see 9.3). In practice, therefore, all operations should Baper at i onCodes assigned except when intended for use in some
special circumstances, e.g. as a bind operation.

8.3 Error

8.3.1 An error is areport of the unsuccessful performance of an operation. The information object class ERROR, to
which all errors belong, is specified as follows, the various fields being described in 8.3.2 t0 8.3.5:

ERROR ::=CLASS
{
& Parameter Type OPTIONAL,
& parameter TypeOptional BOOLEAN OPTIONAL,
& ErrorPriority Priority OPTIONAL,
&errorCode Code UNIQUE OPTIONAL
}
WITH SYNTAX
{
[PARAMETER & ParameterType [OPTIONAL & parameter TypeOptional]]
[PRIORITY & ErrorPriority]
[CODE &errorCode]
}

8.3.2 The &Par anet er Type field specifies the data type of the parameter of the error. If in some error the field is
omitted, then that error takes no parameter value.

ITU-T Rec. X.880 (1994 E) 7

ISO/IEC 13712-1: 1995 (E)

8.3.3 The &par anet er TypeOpt i onal field, which can be.present only if the &Par anmet er Type field is
present, specifiesif the data type of the value returned as the parameter qualifying the error may optionally be present. If
this field is absent or takes the value FALSE, the vaue of the &Par anet er Type cannot be omitted from the
Ret ur nError {} PDU (see9.5).

8.34 The &Error Priority field specifies the permitted Pri ority (see 8.9) levels at which the error can be
returned.

8.35 The &er r or Code field, if present, specifies the Code value (see 8.8) which is used to identify this error, e.g.
when it isreturned.

NOTE — An error which does not have &er r or Code cannot be returned using tRet ur nErr or {} PDU defined
below. In practice, therefore, all errors should have #&eirr or Code fields assigned except when intended for use in some special
circumstances, e.g. as a bind error.

84 Operation package

84.1 An operation package is a specification of the roles of a pair of communicating objects, in terms of the
operations which they can invoke of each other. Where the package is asymmetrical, the terms “consumer” and
“supplier” are employed for the two objects involved. The information object CRERATI ON- PACKAGE, to which

all such packages belong, is specified as follows, the various fields being described in 8.4.2 to 8.4.7:

OPERATION-PACKAGE ::= CLASS

{
& Both OPERATION OPTIONAL,
& Consumer OPERATION OPTIONAL,
& Supplier OPERATION OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL
}
WITH SYNTAX
{
[OPERATIONS & Both]
[CONSUMER INVOKES &Supplier]
[SUPPLIER INVOKES & Consumer]
[ID &id]
}

8.4.2 The &Bot h field specifies a set (PERATI ONs which both objects shall be capable of performing. This field
may be omitted.

8.4.3 The&Consuner field specifies a set GPERATI ONs which one of the objects, known as the consumer, shall
be capable of performing. This field may be omitted, in which case the consumer shall only be capable of performing the
operations specified by ti&Bot h field.

84.4 The&Suppl i er field specifies a set GPERATI ONs which one of the objects, known as the supplier, shall
be capable of performing. This field may be omitted, in which case the supplier shall only be capable of performing the
operations specified by ti&Bot h field.

NOTE — A parameterized operation package, t ch{}, is provided (see 10.12) to allow one operation package to be
derived by switching the roles of some other.

845 The &i d field, if present, specifies the OBJECT | DENTI Fl ER value which is used to identify this package
e.g. if it isbeing announced or negotiated.

NOTE — A package which does not haveSar cannot be announced or negotiated.

8.4.6 All operations included (directly or indirectly) by the &Bot h, &Consurmer, and &Suppl i er fields shall
have distinct &oper at i onCode values.

8.4.7 All errors included in the &Er r or s field of all of the operations included (see 8.4.6), shall have distinct
&er r or Code values.
8.5 Connection package

85.1 A connection package is a specification of the operations and QOS involved in dynamic establishment and
release of an association. The connection package shall be specified only if the bind and the unbind operations are used
to, respectively, dynamically establish and release an association. The information object class CONNECTI O\

8 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

PACKAGE, to which all such connection packages belong, is specified as follows, the various fields being described
in8.5.2t08.5.6:

CONNECTION-PACKAGE ::=CLASS

{
& bind OPERATION DEFAULT emptyBind,
& unbind OPERATION DEFAULT emptyUnbind,
& responder CanUnbind BOOLEAN DEFAULT FAL SE,
& unbindCanFail BOOLEAN DEFAULT FALSE,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL
}
WITH SYNTAX
{
[BIND & bind]
[UNBIND & unbind]
[RESPONDER UNBIND & responder CanUnbind]
[FAILURE TO UNBIND & unbindCanFail]
[ID &id]
}

85.2 The &bi nd field specifies an OPERATI ON which is to be performed as part of the establishment of an
association. Such an operation must have its & et ur nResult and &al waysRet ur ns fields set to TRUE, and
have a single error, present in the &Er r or s field. If the association is successfully established, the bind operation will
return a result. If the association is not successfully established, the bind operation will report its error. If the &i nd
field is not explicitly included, the connection package will include the enpt yBi nd operation (see 10.2).

8.5.3 The &unbi nd field specifies an OPERATI ON which is to be performed as part of the release of an
association. Such an operation must have its & et ur nResult and &al waysRet ur ns fields set to TRUE, and must
have a single error, defined by the &Er r or s field. If the association is successfully released, the unbind operation will
return aresult. If the association is not successfully released, the unbind operation will not return aresult, and will report
its error. If the &unbi nd field is not explicitly included, the connection package will include the enpt yUnbi nd
operation (see 10.3).

854 The & esponder CanUnbi nd field indicates whether or not the association responder (as well as the
initiator) can invoke the &unbi nd operation.

8.5.5 The &unbi ndCanFai | field indicates whether or not it is possible for the association to till exist after the
&unbi nd operation has signalled an error.

8.5.6 The & d field, if present, specifies the OBJECT | DENTI FI ER value which is used to identify this
connection package e.g. if it is being announced or negotiated.

NOTE — A connection package which does not hav&iahcannot be announced or negotiated.

8.6 Association contr act

8.6.1 An association contract is a specification of the roles of a pair of communicating objects who may establish an
association with each other. The information object class CONTRACT, to which all such contracts belong, is specified as
follows, the various fields being described in 8.6.2 to 8.6.6:

CONTRACT ::=CLASS

{
& connection CONNECTION-PACKAGE OPTIONAL,
& Oper ationsOf OPERATION-PACKAGE OPTIONAL,
& Initiator Consumer Of OPERATION-PACKAGE OPTIONAL,
& Initiator Supplier Of OPERATION-PACKAGE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL
}
WITH SYNTAX
{
[CONNECTION & connection]
[OPERATIONS OF & Oper ationsOf]
[INITIATOR CONSUMER OF & Initiator Consumer Of]
[RESPONDER CONSUMER OF & Initiator Supplier Of]
[ID &id]
}

ITU-T Rec. X.880 (1994 E) 9

ISO/IEC 13712-1: 1995 (E)

8.6.2 The presence of the &connect i on field indicates that the associations governed by this association contract
are dynamically established and released by means of, respectively, the bind and the unbind operations specified as a
part of a connection package, and the contents of the field specify the connection package involved.

8.6.3 The &per ati onsOF field, if present, specifies one or more operation packages applicable while the
association exists, and which are either symmetrical or in which the initiator of the association can play both consumer
and supplier roles.

8.6.4 The &l ni tiat or Consuner O field, if present, specifies one or more operation packages applicable while
the association exists and in which the initiator of the association shall be considered to play the role of consumer.

NOTE — A parameterized operation packagei, t ch{}, is provided (see 10.12) to allow one operation package to be
derived by switching the roles of some other.

8.6.5 The& nitiatorSupplierO fied, if present, specifies one or more operation packages applicable while
the association exists and in which the initiator of the association shall be considered to play the role of supplier.

8.6.6 The & d field, if present, specifies the OBJECT | DENTI FI ER value which is used to identify this
association contract, e.g. if it is being announced or negotiated.

NOTE — An association contract which does not hav&iahcannot be announced or negotiated.

8.7 ROS-object class

8.7.1 A ROS-object class defines the capabilities of a set of ROS-objects which have in common their ability to
interact with other ROS-objects using a particular set of contracts. The information object class ROS- OBJECT- CLASS
is specified as follows, the various fields being described in 8.7.2t0 8.7.6:

ROS-OBJECT-CLASS::=CLASS
{
&ls ROS-OBJECT-CLASSOPTIONAL,
& Initiates CONTRACT OPTIONAL,
& Responds CONTRACT OPTIONAL,
& InitiatesAndResponds CONTRACT OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE
}
WITH SYNTAX
{
[IS &l
[BOTH & InitiatesAndResponds)
[INITIATES & Initiates]
[RESPONDS & Responds]]
ID &id
}

8.7.2 The &l s field, if present, specifies a set of ROS-object classes which are superclasses of the class being
defined. ROS-objects of the latter class are capable of supporting al of the contracts implied by their membership of
each of the specified superclasses, as well asthose explicitly present in the fields defined in 8.7.3 to 8.7.5 below.

8.7.3 The &l ni ti at esAndResponds field specifies a set of CONTRACTSs for which ROS-objects of the class
shall be capable of acting as initiator and responder. Thisfield may be omitted.

8.74 The &l ni ti at es field specifies a set of CONTRACTs for which ROS-objects of the class shall be capable of
playing the initiator. This field may be omitted, in which case the ROS-objects shall only be capable of initiating the
association contracts specified by the &l ni ti at esAndResponds field.

8.75 The &Responds field specifies a set of CONTRACTs for which object of the class shall be capable of playing
the responder. This field may be omitted, in which case the object shall only be capable of responding to the association
contracts specified by the &l ni t i at esAndResponds field.

8.7.6 The & d field specifies the OBJECT | DENTI FI ER value which is used to identify this object class, e.g. if it
is being announced or negotiated.

10 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

8.8 Code

The Code type provides the values for the &oper at i onCode fields of operations and the &er r or Code fields of
errors. It is specified as follows:

Code::= CHOICE
{
local INTEGER,
global OBJECT IDENTIFIER
}
89 Priority

ThePriority typeisspecified asfollows:

| Priority ::= INTEGER (0.MAX)

This parameter defines the priority assigned to the transfer of the corresponding invocation (of an operation) or its return
with respect to the other invocations (and their returns) to be exchanged between the two ROS-objects.

The lower the value, the higher the priority.

9 Generic ROS protocol

9.1 Introduction

This clause provides a collection of definitions which can be used to specify protocols realizing the ROS concepts. The
primary definitions are:

a) aparameterized set of PDUs for invocations and returns of operations (ROS{ });
b) aparameterized PDU for the invocation and return of abind operation (Bi nd{ });
c) aparameterized PDU for the invocation and return of an unbind operation (Unbi nd{ }).

In addition, there are a number of secondary definitions which these rely on.

9.2 ROS

9.21 The parameterized type ROS{ } provides a basis for the definition of an abstract syntax containing PDUs for
the invocation of operations, for the returning of results and errors, and for the rejection of invalid PDUs. It is specified
asfollows:

ROS{Invokeld:Invokel dSet, OPERATION:Invokable, OPERATION:Returnable} ::= CHOICE

{
invoke [1] Invoke {{Invokel dSet}, {Invokable}},
returnResult [2] ReturnResult {{Returnable}},
returnError [3] ReturnError {{Errors{{Returnable}}}},
reject [4 Reject

}

(CONSTRAINED BY { -- must conform to the above definition -- }

! RejectProblem : general-unrecognizedPDU)

NOTE - In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not

permit the distinction between the outer-level and the inner-level constraint violations.

922 The ASN.1 parameters which must be supplied to produce a fully-defined type are as follows:

a) I nvokel dSet — This value set of typenvokel d defines the available values for identification of
invocations and thus for correlation of later reports. If in some realization the correlation function can be

carried out by other means, then it can be set to the valtielsevokel d (see 9.9).
NOTES

1 Theapplication designer may choose to leave this parameter as an unconstrained | NTEGER, or provide the
exact range, or propogate it as one of the parameters of the abstract syntax (see 10.14, 10.15 and 10.16).

2 An OSl redization does not support the value nol nvokeld (see 9.9.1) for the Invoke,
Ret ur nResul t , and Ret ur nErr or PDUs.

b) Thel nvokabl e parameter specifies an object set that describes those operations which may be invoked,;

ITU-T Rec. X.880 (1994 E) 11

ISO/IEC 13712-1: 1995 (E)

¢) TheRet ur nabl e parameter specifies an object set that describes those operations for which responses
may need to be generated.

NOTE — This parameter is provided to highlight the asymmetry of the abstract syntax (see 10.15 and 10.16). It
can be derived from thienvokabl e information object set. Operations in thevokabl e information object set
whose&al waysRet ur ns field is notFALSE shall be included in this parameter.

9.2.3 If the receiver of a PDU does not recognize it as one of those defined, aRej ect {} PDU is generated whose
pr obl emcomponent takes the exception value: gener al - unr ecogni zedPDU.

9.3 Invoke

931 The parameterized type | nvoke{} providesaPDU for the invocation of operations. It is specified as follows:

Invoke {Invokel d:Invokel dSet, OPERATION:Operations} ::= SEQUENCE
{
invokeld Invokeld (Invokel dSet)
(CONSTRAINED BY {-- must be unambiguous --}
! RejectProblem . invoke-duplicatel nvocation),
linkedld CHOICE {
present [Q] IMPLICIT present < Invokeld,
absent [1] IMPLICIT NULL
}
(CONSTRAINED BY {-- must identify an outstanding operation --}
! RgjectProblem : invoke-unrecognizedL inkedl d)
(CONSTRAINED BY {-- which has one or more linked operations-}
I RejectProblem : invoke-linkedResponseUnexpected)
OPTIONAL,
opcode OPERATION.& operationCode
({Operations}
! RejectProblem : invoke-unr ecognizedOper ation)
argument OPERATION.&ArgumentType
({Operations} {@opcode}
! RejectProblem : invoke-mistypedArgument)
OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RegjectProblem : general-mistypedPDU)
(
WITH COMPONENTS
linkedld ABSENT
}
| WITH COMPONENTS
{.
linkedld PRESENT,
opcode
(CONSTRAINED BY {-- must bein the&Linked field of the associated operation --}
I RejectProblem . invoke-unexpectedLinkedOper ation)
}
)

NOTE - In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

932 The ASN.1 parameters which must be supplied to produce a fully-defined type are as follows:

a) | nvokel dSet — This value set of typenvokel d defines the available values for identification of
invocations and thus for correlation of later reports [see 9.2.2 a)].

b) Operati ons — Those which may be invoked.

9.33 The resulting PDU has up to four components, as follows:

a) i nvokel d - This component identifies the particular invocation. It shall be one of those allowed by the
I nvokel dSet parameter. The nvokel d shall not be one which is already in use (the rule for
determining this is a characteristic of the specific mapping); otherwigs, @ct {} PDU (see 9.6) shall
be generated, whose probl em component takes the exceptionvalue i nvoke-
dupl i cat el nvocati on.

12 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

b) i nkedl d — This component, if present, indicates that this invocation is linked to a previous invocation
in the opposite direction. It shall be thavokel d of a previous invocation for which no outcome has
been reported; if it is not, thenRej ect {} PDU shall be generated, whog® obl em component
takes the exception valuenvoke- unr ecogni zedLi nkedl D. The previous invocation shall be of
an operation which allows linked operations; if notRaj ect {} PDU shall be generated, whose
pr obl em component will take the exception valueé nvoke- | i nkedResponseUnexpect ed.

NOTE — For an OSlI realization, the valabsent : NULL for thel i nkedl Dis not used.

¢) opcode - This component shall identify, by means of &perati onCode, one of the
Oper at i ons; if not, then aRej ect {} PDU shall be generated, whgseobl emcomponent takes the
exception valuel nvoke- unr ecogni zedQOper at i on. Ifthel i nkedl d component is present, then
the previous invocation shall be of an operation which allowed this particular operation to be linked to it;
if not, aRej ect {} PDU shall be generated, whogeobl em component takes the exception value:
i nvoke- unexpect edLi nkedQper ati on.

d) argunent — This component shall be present and of the type formingAhgunent Type field of the
operation identified by theopcode component, unless that field is omitted or the
&ar gunent TypeQOpt i onal field omitted. If this condition is not met, thenRej ect {} PDU
shall be generated, whoseprobl em component takes the exception valuei nvoke-

nm st ypedAr gunent .
9.34 If the receiver of such a PDU finds it to be mistypedReg ect {} PDU is generated whog® obl em
component takes the exception valgener al - m st ypedPDU.

94 Return result

94.1 The parameterized typRet ur nResul t{} provides a PDU for reporting the successful performance of
operations. It is specified as follows:

ReturnResult {OPERATION:Operations}::= SEQUENCE
{
invokeld Invokeld
(CONSTRAINED BY {-- must bethat for an outstanding operation --}
! RejectProblem : returnResult-unr ecognizedl nvocation)
(CONSTRAINED BY {-- which returnsaresult --}
! RejectProblem : returnResult-resultResponseUnexpected),
result SEQUENCE
{
opcode OPERATION.& operationCode
({Operations})(CONSTRAINED BY {-- identified by invokeld --}
! RgjectProblem : returnResult-unrecognizedl nvocation),
result OPERATION.& ResultType ({Operations} { @opcode}
I RejectProblem : returnResult-mistypedResult)
}
OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RgjectProblem : general-mistypedPDU)

NOTE - In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

94.2 A single ASN.1 parameter must be supplied to produce a fully-defined type, namely Oper at i ons, those
whose result may be returned.

94.3 The resulting PDU has up to three components, as follows:

a) 1invokeld - This component identifies the particular invocation whose successful performance
is being reported It shall be thel nvokel d of a previous invocation for which no outcome has
yet been reported; if it is not, then &eject{} PDU shall be generated, whose
pr obl em component takes the exception valueet ur nResul t - unr ecogni zedl nvocat i on.

The previous invocation shall be of an operation which returns a result; if not, Regreat {} PDU
shall be generated, whoge obl em component takes the exception valuer et ur nResul t -
resul t ResponseUnexpect ed.

ITU-T Rec. X.880 (1994 E) 13

ISO/IEC 13712-1: 1995 (E)

b) opcode — This component, present if and only if thesul t component is present, shall identify, by
means of its&oper ati onCode, one of theCQperati ons, specifically, that indicated by the
i nvokel d; if not, then aRej ect {} PDU shall be generated, whog obl em conponent takes
the exception valuer et ur nResul t -unr ecogni zedl nvocati on.

c) result — This component shall be present and of the type forming&Resul t Type field of the
operation identified by thepcode component, unless that field is omitted, in which case this component
shall itself be omitted. If this condition is not met, theReg ect {} PDU shall be generated, whose
pr obl emcomponent takes the exception valuet ur nResul t - m st ypedResul t.

944 If the receiver of such a PDU finds it to be mistypeiRea ect {} PDU is generated whoga obl em
component takes the exception valgener al - mi st ypedPDU.
9.5 Return error

951 The parameterized typRet ur nError {} provides a PDU for reporting the unsuccessful performance of
operations. It is specified as follows:

ReturnError {ERROR:Errors} ::= SEQUENCE
{
invokeld Invokeld
(CONSTRAINED BY {-- must be that for an outstanding operation --}
! RejectProblem : returnError-unrecognizedl nvocation)
(CONSTRAINED BY {-- which returnsan error --}
I RgjectProblem : returnError-error ResponseUnexpected),
errcode ERROR.&errorCode
({Errors}
I RejectProblem : returnError-unrecognizedError)
(CONSTRAINED BY {-- must bein the & Errorsfield of the associated operation --}
I RejectProblem : returnError-unexpectedError),
parameter ERROR.& Parameter Type
({Errors{@errcode}
! RejectProblem : returnError-mistypedPar ameter)
OPTIONAL
}
(CONSTRAINED BY { -- must conform to the above definition -- }
! RejectProblem : general-mistypedPDU)

NOTE - In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

952 A single ASN.1 parameter must be supplied to produce a fully-defined type, namely Er r or s, which is the set
of errors for those operations whose errors may be returned (see 9.10).

953 The resulting PDU has up to three components, as follows:

a) invokeld — This component identifies the particular invocation whose unsuccessful performance is
being reported It shall be thd nvokel d of a previous invocation for which no outcome has yet been
reported; if it is not, then Rej ect {} PDU shall be generated, whgseobl emcomponent takes the
exception valuer et ur nEr r or - unr ecogni zedl nvocat i on. The previous invocation shall be of
an operation which returns an error; if not, theRegect {} PDU shall be generated, whgseobl em
component takes the exception valuet ur nEr r or - er r or ResponseUnexpect ed.

b) errcode — This component shall identify, by means of &srr or Code, one of the errors of the
Errors; if not, then aRej ect {} PDU shall be generated, whopeobl em component takes the
exception valuer et ur nErr or - unr ecogni zedEr r or . The error shall be one of those appearing in
the&Er r or s field of the operation identified by thenvokel d; if not, then &Rej ect {} PDU shall be
generated, whose probl em component takes the exception value:eturnError-
unexpect edError.

c) paraneter — This component shall be present and of the type formin§Rheanet er Type field of
the error identified by theer r code component, unless that field is omitted, in which case this
component shall itself be omitted. If this condition is not met, theejaect {} PDU shall be generated,
whosepr obl emcomponent takes the exception valuet ur nEr r or - mi st ypedPar anet er .

954 If the receiver of such a PDU finds it to be mistype®Re ect {} PDU is generated whoga obl em
component takes the exception valgener al - m st ypedPDU.

14 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1: 1995 (E)
96 Reect

9.6.1 The type Rej ect provides a PDU for reporting erroneous use of the other ROS{} PDUs. It is specified as
follows:

Reect ::= SEQUENCE
{
invokeld Invokeld,
problem CHOICE
{
general [Q] GeneralProblem,
invoke [1] InvokeProblem,
returnResult [2] ReturnResultProblem,
returnError [3] ReturnErrorProblem
}
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)

NOTE — In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

9.6.2 The resulting PDU has two components, as follows:

a) invokel d - This component is thHenvokel d appearing in the PDU being rejected, except that if the
i nvokel d cannot be determined, then the vaha¢ nvokel d (see 9.9) is sent instead

b) probl em—- This component identifies the particufarobl emwith the rejected PDU. There are four
possible categories, as specified in 9.6.3 to 9.6.6.

9.6.3 A Ceneral Probl emis a fundamental problem with the form or structure oR@{} PDU. The
possibilities are specified as follows:

GeneralProblem ::= INTEGER

{
unrecognizedPDU (0),
mistypedPDU (1),
badlyStructuredPDU (2)

}

and indicate the following:
a) unrecogni zedPDU- The tag of the PDU indicates that it is not one of the alternatives allowed by 9.2;
b) m st ypedPDU- The structure of the PDU does conform to the appropriate definition;

c) badl yStructuredPDU — The structure of the PDU cannot be determined based on the expected
abstract syntax.

NOTE - In some mappings, these problems will be identified and handled within the communications infrastructure.

9.64 An | nvokePr obl emindicates that some component of an | nvoke{} PDU was erroneous. The possibilities
are specified as follows:

InvokeProblem ::= INTEGER

{
duplicatel nvocation (0),
unrecognizedOper ation (1),
mistypedArgument (2),
resour ceL imitation (3),
releasel nProgress (4),
unrecognizedLinkedld (5),
linkedResponseUnexpected (6),
unexpectedLinkedOperation (7)

ITU-T Rec. X.880 (1994 E) 15

ISO/IEC 13712-1: 1995 (E)

and indicate the following:
a) duplicatelnvocation[see9.333)];
b) unrecogni zedOper ati on [see9.3.30)];
¢) m stypedArgunent [see9.3.3d)];

d) resourceLimtation — The intended performer is not willing to perform the operation due to a
resource limitation;

e) releasel nProgress — The intended performer is not willing to perform the operation because it is
about to release the association;

f) unrecogni zedLi nkedlI d [see 9.3.3 b)];
g) |inkedResponseUnexpect ed [see 9.3.3 b)];

h) unexpect edLi nkedOper ati on [see 9.3.3 ¢)].

9.6.5 A Ret ur nResul t Pr obl emindicates that some component dRet ur nResul t {} PDU was erroneous.
The possibilities are specified as follows:

ReturnResultProblem ::= INTEGER

{
unr ecognizedl nvocation (0),
resultResponseUnexpected (1),
mistypedResult (2)

}

and indicate the following:
a) unrecogni zedl nvocati on [see 9.4.3 a)];
b) resul t ResponseUnexpect ed [see 9.4.3 a)];

c) mstypedResult [see 9.4.3b)and 9.4.3 c)].

9.6.6 A Ret ur nEr r or Pr obl emindicates that some component d®et ur nErr or {} PDU was erroneous. The
possibilities are specified as follows:

ReturnErrorProblem ::= INTEGER

{
unr ecognizedl nvocation (0),
error ResponseUnexpected (1),
unrecognizedError (2),
unexpectedError (3),
mistypedParameter (4)

}

and indicate the following:
a) unrecogni zedl nvocati on [see 9.5.3 a)];
b) errorResponseUnexpect ed [see 9.5.3 a)];
c) unrecogni zedError [see 9.5.3 b)];
d) unexpectedError [see 9.5.3 b)];

c) m stypedParaneter [see 9.5.3 ¢)].

9.6.7 If the receiver of such a PDU finds it to be mistyped, no Rejvect {} PDU shall be generated.

16 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

9.7 Reect Problem

Theinteger Rej ect Pr obl emdescribes the error code value generated in the event of some type or constraint in a PDU
definition being violated.

RejectProblem ::= INTEGER

{
gener al-unrecognizedPDU (0),
general-mistypedPDU (1),
general-badlyStructuredPDU (2),
invoke-duplicatel nvocation (10),
invoke-unrecognizedOper ation (11),
invoke-mistypedArgument (12),
invoke-resour cel imitation (13),
invoke-releasel nProgress (14),
invoke-unrecognizedL inkedld (15),
invoke-linkedResponseUnexpected (16),
invoke-unexpectedL inkedOperation (17),
retur nResult-unrecognizedl nvocation (20),
returnResult-resultResponseUnexpected (21),
returnResult-mistypedResult (22),
returnError-unrecognizedl nvocation (30),
returnError-error ResponseUnexpected (31),
returnError-unrecognizedError (32),
returnError-unexpectedError (33),
returnError-mistypedParameter (34)

}

9.71 The reaction to the signalling of an error is the sending of a Rej ect {} PDU. Where the error signalled is
denoted by the Rej ect Pr obl em identifier “a- " for some stringsa and B, the pr obl em component of the
Rej ect {} PDU shall take the valuex® 3".

9.8 Invokeid

9.8.1 Thel nvokel d type defines the values that may be used to identify a particular invocation of an operation. It
is specified as follows:

Invokeld ::= CHOICE

{
present INTEGER,
absent NULL

}

9.8.2 Where thd nvokel d ispr esent, it is a value of typé NTEGER. When it isabsent , aNULL value is used
in its place.
9.9 Noinvokeid

9.9.1 nol nvokel d is the value of nvokel d used when ahNTEGER value is either not needed or not available.
It is specified as follows:

| nolnvokeld Invokeld ::= absent:NUL L |

99.2 Nol nvokel d is a value set of typenvokel d consisting only of the valueol nvokel d. It is specified as
follows:

| Nolnvokeld Invokeld ::={nol nvokel d} |

9.10 Errors

The parameterized error d&tr or s{}, given a set ofper at i ons as its ASN.1 parameter, is the set of all errors in
the&Er r or s fields of thoseOper at i ons. It is specified as follows:

| Errors{OPERATION:Operations} ERROR ::={Operations.& Errors} |

ITU-T Rec. X.880 (1994 E) 17

ISO/IEC 13712-1: 1995 (E)

911 Bind

The parameterized type Bi nd{}, given a single bind oper ati on as its ASN.1 parameter, provides PDUs for the
invocation of that operation, for the returning of the result of that operation, and for the reporting of an error. It is
specified as follows:

Bind {OPERATION:operation} ::= CHOICE

{
bind-invoke [16] OPERATION.& ArgumentType({operation}),
bind-result [17] OPERATION.& ResultType({operation}),
bind-error [18] OPERATION.&Errors.& Parameter Type({operation})

}

9.12 Unbind

The parameterized type Unbi nd{ }, given asingle unbind oper at i on asits ASN.1 parameter, provides PDUs for the
invocation of that operation for the returning of the result of that operation, and for the reporting of an error. It is
specified as follows:

Unbind {OPERATION:operation} ::= CHOICE

{
unbind-invoke [19] OPERATION.&ArgumentType({operation}),
unbind-result [20] OPERATION.& ResultType({operation}),
unbind-error [21]] OPERATION.&Errors.&Parameter Type({operation})

}

10 Useful definitions

10.1 Introduction

This clause provides a collection of definitions which may prove useful to designers of ROS-based applications. They
include:

a) generally useful operations, (enpt yBi nd, enpt yUnbi nd, no- op), and their associated errors;

b) parameterized definitions which deliver the sets of operations involved in some operation package
(Consumer Performs{}, SupplierPerforns{}, Al Qperations{}) and some auxiliary
definitions;

c) a parameterized definition which allows one operation to be derived from another by changing the
operation code (r ecode{ });

d) parameterized definitions which allow operation packages to be defined either by switching the roles of
another, or by combining several others (swi t ch{}, conbi ne{});

€) parameterized types which can be used to define abstract syntaxes corresponding to an operation package
(RCS- Si ngl eAS{}, ROS- Consuner AS{}, RCS- Suppl i er AS{}).

10.2 Empty bind

The enpt yBi nd operation provides the simplest bind operation, which stands as the default should a bind operation not
be explicitly specified for some connection package. This operation has no argument or result values, and has a single
possible error, r ef use (see 10.4), corresponding to refusal of the association. The operation is synchronous, meaning
that no synchronous operations can be invoked until the result of the bind operation has been returned. The enpt yBi nd
operation is specified as follows:

| emptyBind OPERATION ::= {ERRORS {refuse} SYNCHRONOUS TRUE} |

10.3 Empty unbind

The enpt yUnbi nd operation provides the simplest unbind operation, which stands as the default should an unbind
operation not be explicitly specified for some connection package. This operation has no argument, result or error
values. The operation is synchronous, meaning that the unbind operation can not be invoked until the result of any
outstanding synchronous operation has been returned.The enpt yUnbi nd operation is specified as follows:

| emptyUnbind OPERATION ::= {SYNCHRONOUS TRUE} |

18 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

104 Refuse

Ther ef use error provides for arefusal of some request, without any reason being provided. It is specified as follows:

| refuse ERROR ::= {CODE local:-1} |

10.5 No-op

10.5.1 Theno- op operation does nothing. It is specified as follows:

no-op OPERATION ::=

{
ALWAYSRESPONDSFALSE
CODE local:-1

}

10.5.2 The operation does not return.

10.6 Forward

The parameterized operation set For war d{ }, given an Qper ati onSet as its ASN.1 parameter, is the expanded
operation set formed by adding any operations indirectly linked to operations in the set, and with the same directionality.
Itisspecified asfollows:

Forward {OPERATION:OperationSet} OPERATION ::=
{

OperationSet |

OperationSet.& Linked.& Linked |

OperationSet.& Linked.& Linked.& Linked.& Linked
}

It is assumed that there are no operations in the fifth or later level of linkage which are not also present at earlier levels.
If for some Oper at i onSet this assumption is not valid, then some other method of identifying the full set of implied
operations would be required.

10.7 Reverse

The parameterized operation set Rever se{}, given an Oper at i onSet asits ASN.1 parameter is that consisting of
all operations directly or indirectly linked to operations in the set, and with opposite directionality. It is specified as
follows:

| Reverse {OPERATION:OperationSet} OPERATION ::= {Forward{{OperationSet.& L inked}}} |

It is assumed that there are no operations in the sixth or later level of linkage which are not also present at earlier levels.
If for some Oper at i onSet this assumption is not valid, then some other method of identifying the full set of implied
operations would be required.

10.8 Consumer performs

The parameterized operation set Consumner Per f or ns{}, given an operation package package as its ASN.1
parameter, is that which contains all operations which the consumer needs to be capable of performing. It is specified as
follows:

Consumer Performs {OPERATION-PACK AGE:package} OPERATION ::=
{

Forwar d{{package.& Consumer}} |

Forwar d{{package.& Both}} |

Rever se{{package.& Supplier}} |

Rever se{{package.& Both}}
}

This can only be used if the assumptions associated with Forwar d{} and Reverse{} concerning the linked
operations are valid.

ITU-T Rec. X.880 (1994 E) 19

ISO/IEC 13712-1: 1995 (E)

10.9 Supplier performs

The parameterized operation set Suppl i er Per f orns{}, given an operation package package as its ASN.1
parameter, is that which contains all operations which the supplier needs to be capable of performing. It is specified as
follows:

Supplier Performs {OPERATION-PACK AGE:package} OPERATION ::=
{

Forwar d{{package.& Supplier}} |

Forwar d{{package.& Both}} |

Rever se{{package.& Consumer}} |

Rever se{{package.& Both}}
}

This can only be used if the assumptions associated with Forwar d{} and Rever se{} concerning the linked
operations are valid.
10.10 All operations

The parameterized operation set Al | Oper at i ons{}, given an operation package package as its ASN.1 parameter,
isthat which contains all operations involved in the package. It is specified as follows:

AllOperations {OPERATION-PACKAGE:package} OPERATION ::=
{

Consumer Performs {package} | Supplier Performs{package}
}

This can only be used if the assumptions associated with Forwar d{} and Rever se{} concerning the linked
operations are valid.

10.11 recode

The parameterized operation r ecode{ }, given an oper at i on asitsfirst ASN.1 parameter, isidentical in all respects
to that oper at i on, except that its & ode field has the value of the second ASN.1 parameter, code. It is specified as
follows:

recode {OPERATION:operation, Code:code} OPERATION ::=
{
ARGUMENT operation.& ArgumentType
OPTIONAL oper ation.& ar gumentTypeOptional
RETURN RESULT operation.&returnResult
RESULT operation.& ResultType,
OPTIONAL oper ation.& resultTypeOptional
ERRORS {operation.& Errors}
ALWAYSRESPONDS operation.& alwaysReturns
LINKED {operation.& Linked}
SYNCHRONOUS operation.& synchronous
INVOKE PRIORITY {operation.& InvokePriority}
RESULT-PRIORITY {operation.& ResultPriority}
CODE code
}
10.12 switch

The parameterized package swi t ch{}, given a package asits first ASN.1 parameter, is identical in al respects to
that package, except that the consumer and supplier roles are reversed and its & d field has the value of the second
ASN.1 parameter, i d. It is specified as follows:

switch {OPERATION-PACKAGE:package, OBJECT IDENTIFIER:id} OPERATION-PACKAGE ::=

{
OPERATIONS {package.& Both}
SUPPLIER INVOKES {package.& Supplier}
CONSUMER INVOKES {package.& Consumer}
ID id

20 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

10.13 combine

10.13.1 The parameterized operation package conbi ne{}, combines a number of operation packages into one. It is
specified asfollows:

combine {OPERATION-PACKAGE:Consumer Consumes, OPERATION-PACK AGE:Consumer Supplies,

OPERATION-PACKAGE:base} OPERATION-PACKAGE ::=

{
OPERATIONS {Consumer Consumes.& Both | Consumer Supplies.& Both}
SUPPLIER INVOKES {Consumer Consumes.& Supplier | Consumer Supplies.& Consumer}
CONSUMER INVOKES {Consumer Consumes.& Consumer | Consumer Supplies.& Supplier}
ID base.&id

}

10.13.2 The ASN.1 parameters which must be supplied to produce a fully-defined operation package are as follows:

a) Consuner Consunes — The set of operation packages in which the consumer of the resulting operation
package will play the consumer role.

b) Consumer Suppl i es — The set of operation packages in which the consumer of the resulting operation
package will play the supplier role.

c) base — An operation package, typically incompletely defined, wi&ise field is used in defining the
resulting operation package.

NOTE — Thebase package will not normally have any operations defined; even if it does, they will not appear
in the resulting operation package unless they also app€ansuner Consumnes or Suppl i er Suppl i es.

10.14 ROSsingle abstract syntax

The parameterized type ROS- Si ngl eAS{} isthe basis of an abstract syntax which allows the invocation and reporting
of al of the operationsin some package, using invoke idsfrom | nvokel dSet . It is specified asfollows:

ROS-SingleAS {Invokeld:Invokel dSet, OPERATION-PACKAGE:package} ::=
ROS {{Invokel dSet}, {AllOperations{package}}, {AllOperations{package}}}

10.15 ROSconsumer abstract syntax

The parameterized type ROS- Consuner AS{ } is the basis of an abstract syntax which allows the invocation of all of
the consumer-performed operations, and reporting of al supplier-performed operations in some package, using invoke
idsfrom | nvokel dSet . It is specified as follows:

ROS-Consumer AS {Invokel d:Invokel dSet, OPERATION-PACKAGE:package} ::=
ROS {{Invokel dSet}, { Consumer Per for ms{package}}, {Supplier Performs{package}}}

10.16 ROSsupplier abstract syntax

The parameterized type ROS- Suppl i er AS{} isthe basis of an abstract syntax which alows the invocation of all of
the supplier-performed operations, and reporting of all consumer-performed operations in some package, using invoke
idsfrom| nvokel dSet . It is specified as follows:

ROS-SupplierAS{Invokel d:Invokel dSet, OPERATION-PACKAGE:package} ::=
ROS {{Invokel dSet}, {Supplier Per for ms{package}}, { Consumer Performs{package}}}

ITU-T Rec. X.880 (1994 E) 21

ISO/IEC 13712-1: 1995 (E)

Annex A

ASN.1 modules

(Thisannex forms an integral part of this Recommendation | International Standard)

Remote-Oper ations-1 nfor mation-Objects {j oint-iso-itu-t remote-oper ations(4) infor mationObj ects(5) version1(0)}

DEFINITIONS::=
BEGIN
-- exports everything

IMPORTS emptyBind, emptyUnbind FROM Remote-Oper ations-Useful-Definitions {j oint-iso-itu-t remote-oper ations(4)

useful-definitions(7) version1(0)};

OPERATION ::= CLASS
{
& ArgumentType
& argumentTypeOptional
&returnResult
& ResultType
& resultTypeOptional
&Errors
&Linked
& synchronous
& alwaysReturns
& InvokePriority
& ResultPriority
& operationCode

}

WITH SYNTAX
{
[ARGUMENT

[RESULT

[RETURN RESULT
[ERRORS

[LINKED
[SYNCHRONOUS
[ALWAYSRESPONDS
[INVOKE PRIORITY
[RESULT-PRIORITY

[CODE

}

ERROR ::= CLASS

{
& Parameter Type
& parameter TypeOptional
& ErrorPriority
&errorCode

}

WITH SYNTAX

{
[PARAMETER
[PRIORITY
[CODE

}

OPERATION-PACKAGE ::=CLASS

{
& Both
& Consumer
& Supplier
&id

}

-- continued on the next page

OPTIONAL,

BOOLEAN OPTIONAL,
BOOLEAN DEFAULT TRUE,
OPTIONAL,

BOOLEAN OPTIONAL,
ERROR OPTIONAL,
OPERATION OPTIONAL,
BOOLEAN DEFAULT FALSE,
BOOLEAN DEFAULT TRUE,
Priority OPTIONAL,

Priority OPTIONAL,

Code UNIQUE OPTIONAL

&ArgumentType [OPTIONAL &argumentTypeOptional]]
& ResultType [OPTIONAL &resultTypeOptional]]

& returnResult]

& Errorg]

& Linked]

& synchronous]

& alwaysReturns]

& InvokePriority]

& ResultPriority]

& operationCode]

OPTIONAL,

BOOLEAN OPTIONAL,
Priority OPTIONAL,

Code UNIQUE OPTIONAL

& ParameterType [OPTIONAL & parameter TypeOptional]]
& ErrorPriority]
&errorCode]

OPERATION OPTIONAL,
OPERATION OPTIONAL,
OPERATION OPTIONAL,
OBJECT IDENTIFIER UNIQUE OPTIONAL

22 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

WITH SYNTAX
{
[OPERATIONS
[CONSUMER INVOKES

[SUPPLIER INVOKES
[ID

}
CONNECTION-PACKAGE ::=CLASS
{
& bind
& unbind
& responder CanUnbind
& unbindCanFail
&id

}
WITH SYNTAX
{
[BIND
[UNBIND
[RESPONDER UNBIND
[FAILURE TO UNBIND
[ID
}
CONTRACT ::=CLASS
{
& connection
& Oper ationsOf
& I nitiator Consumer Of
& Initiator Supplier Of
&id

}

WITH SYNTAX

{
[CONNECTION
[OPERATIONS OF
[INITIATOR CONSUMER OF
[RESPONDER CONSUMER OF
[ID

}
ROS-OBJECT-CLASS::= CLASS
{
&ls
& Initiates
& Responds
& InitiatesAndResponds
&id
}
WITH SYNTAX
{
[Is
[BOTH
[INITIATES
[RESPONDS
ID

}

Code::=CHOICE

{
local
global

}
Priority ::= INTEGER (0..MAX)

END -- end of Information Object specifications

& Both]

& Supplier]
& Consumer]
&id]

OPERATION DEFAULT emptyBind,
OPERATION DEFAULT emptyUnbind,
BOOLEAN DEFAULT FALSE,

BOOLEAN DEFAULT FALSE,

OBJECT IDENTIFIER UNIQUE OPTIONAL

&bind]

& unbind]

& responder CanUnbind]
& unbindCanFail]

&id]

CONNECTION-PACKAGE OPTIONAL,
OPERATION-PACKAGE OPTIONAL,
OPERATION-PACKAGE OPTIONAL,
OPERATION-PACKAGE OPTIONAL,
OBJECT IDENTIFIER UNIQUE OPTIONAL

& connection]

& OperationsOf]

& Initiator Consumer Of]
& Initiator Supplier Of]
&id]

ROS-OBJECT-CLASS OPTIONAL,
CONTRACT OPTIONAL,
CONTRACT OPTIONAL,
CONTRACT OPTIONAL,
OBJECT IDENTIFIER UNIQUE

&l

& InitiatesAndResponds)
& Initiates)

& Responds]

&id

INTEGER,
OBJECT IDENTIFIER

I TU-T Rec. X.880 (1994 E)

23

ISO/IEC 13712-1: 1995 (E)

Remote-Operations-Generic-ROS-PDUs {joint-iso-itu-t remote-oper ations(4) generic-ROS-PDUS(6) version1(0)}
DEFINITIONSIMPLICIT TAGS::=

BEGIN

-- exports everything

IMPORTS OPERATION, ERROR FROM Remote-Oper ations-1 nfor mation-Objects {joint-iso-itu-t remote-oper ations(4)
infor mationObj ects(5) version1(0)};

ROS{Invokeld:Invokel dSet, OPERATION:Invokable, OPERATION:Returnable} ::= CHOICE

{
invoke [1] Invoke {{Invokel dSet}, {Invokable}},
returnResult [2] ReturnResult {{Returnable}},
returnError [3] ReturnError {{Errors{{Returnable}}}},

reject [4] Reect
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RegjectProblem : gener al-unrecognizedPDU)
Invoke {Invokeld:Invokel dSet, OPERATION:Operations} ::= SEQUENCE
{
invokeld Invokeld (Invokel dSet)
(CONSTRAINED BY {-- must be unambiguous--}
! RejectProblem : invoke-duplicatel nvocation),
linkedld CHOICE {
present [0] IMPLICIT present < Invokeld,
absent [1] IMPLICIT NULL
}
(CONSTRAINED BY {-- must identify an outstanding operation --}
! RejectProblem : invoke-unrecognizedL inked! d)
(CONSTRAINED BY {-- which hasone or more linked operations--}
! RejectProblem : invoke-linkedResponseUnexpected)
OPTIONAL,
opcode OPERATION.& operationCode
({Operations}
! RejectProblem : invoke-unr ecognizedOper ation),
argument OPERATION.&ArgumentType
({Operations} { @opcode}
! RejectProblem : invoke-mistypedArgument)
OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)
(
WITH COMPONENTS
linkedld ABSENT
}
WITH COMPONENTS
{.
linkedld PRESENT,
opcode
(CONSTRAINED BY {-- must bein the & Linked field of the associated operation --}
! RejectProblem . invoke-unexpectedL inkedOper ation)

}
)

-- continued on the next page

24 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

ReturnResult {OPERATION:Operations}::= SEQUENCE

{
invokeld Invokeld
(CONSTRAINED BY {-- must be that for an outstanding operation --}
! RejectProblem : returnResult-unr ecognizedl nvocation)
(CONSTRAINED BY {-- which returnsaresult --}
! RejectProblem : returnResult-resultResponseUnexpected),
result SEQUENCE
{
opcode OPERATION.& operationCode
({Operations})(CONSTRAINED BY {-- identified by invokeld --}
I RejectProblem : returnResult-unr ecognizedl nvocation),
result OPERATION.& ResultType
({Operations} { @opcode}
! RejectProblem : returnResult-mistypedResult)
}
OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)
ReturnError {ERROR:Errors} ::= SEQUENCE
{
invokeld Invokeld
(CONSTRAINED BY {-- must be that for an outstanding operation --}
I RejectProblem : returnError-unrecognizedl nvocation)
(CONSTRAINED BY {-- which returnsan error --}
! RejectProblem : returnError-error ResponseUnexpected),
errcode ERROR.&errorCode
({Errors}
! RejectProblem : returnError-unrecognizedError)
(CONSTRAINED BY {-- must bein the & Errorsfield of the associated operation --}
! RejectProblem : returnError-unexpectedError),
parameter ERROR.& Parameter Type
({Errorsi{@errcode}
! RejectProblem : returnError-mistypedParameter) OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)
Reect ::= SEQUENCE
{
invokeld Invokeld,
problem CHOICE
{
general [0] GeneralProblem,
invoke [1] InvokeProblem,
returnResult [2] ReturnResultProblem,
returnError [3] ReturnErrorProblem
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)
GeneralProblem ::= INTEGER
{
unrecognizedPDU (0),
mistypedPDU (1),
badlyStructuredPDU (2)
}

-- continued on the next page

ITU-T Rec. X.880 (1994 E) 25

ISO/IEC 13712-1: 1995 (E)

InvokeProblem ::= INTEGER

{
duplicatel nvocation (0),
unrecognizedOper ation (1),
mistypedArgument (2),
resour cel imitation (3),
releasel nProgress (4),
unrecognizedLinkedld (5),
linkedResponseUnexpected (6),
unexpectedLinkedOperation (7)

}

ReturnResultProblem ::= INTEGER

{
unrecognizedl nvocation (0),
resultResponseUnexpected (1),
mistypedResult (2)

}

ReturnErrorProblem ::= INTEGER

{
unr ecognizedl nvocation (0),
error ResponseUnexpected (1),
unrecognizedError (2),
unexpectedError (3),
mistypedParameter (4)

}

RejectProblem ::= INTEGER

{
gener al-unrecognizedPDU (0),
general-mistypedPDU (1),
general-badlyStructuredPDU (2),
invoke-duplicatel nvocation (10),
invoke-unrecognizedOper ation (11),
invoke-mistypedArgument (12),
invoke-resour ceL imitation (13),
invoke-releasel nProgress (14),
invoke-unrecognizedL inkedld (15),
invoke-linkedResponseUnexpected (16),
invoke-unexpectedL inkedOperation (17),
retur nResult-unrecognizedl nvocation (20),
retur nResult-resultResponseUnexpected (21),
retur nResult-mistypedResult (22),
returnError-unrecognizedl nvocation (30),
returnError-error ResponseUnexpected (31),
returnError-unrecognizedError (32),
returnError-unexpectedError (33),
returnError-mistypedParameter (34)

}

Invokeld ::= CHOICE

{
present INTEGER,

absent NULL
}

nolnvokeld Invokeld ::= absent:NUL L
Nolnvokeld Invokeld ::={nol nvokel d}

Errors{OPERATION:Operations} ERROR ::={Operations.& Errors}

-- continued on the next page

26 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

Bind {OPERATION:operation} ::= CHOICE

{
bind-invoke [16] OPERATION.&ArgumentType({operation}),
bind-result [17] OPERATION.& ResultType ({operation}),
bind-error [18] OPERATION.&Errors.& Parameter Type ({operation})
}
Unbind {OPERATION:operation} ::= CHOICE
{
unbind-invoke [19] OPERATION.& ArgumentType({operation}),
unbind-result [20] OPERATION.& ResultType ({operation}),
unbind-error [21] OPERATION.& Errors.& Parameter Type ({operation})
}

END -- end of generic ROS PDU definitions

Remote-Oper ations-Useful-Definitions {j oint-iso-itu-t remote-oper ations(4) useful-definitions(7) version1(0)}
DEFINITIONSIMPLICIT TAGS::=

BEGIN

-- exports everything

IMPORTS OPERATION, ERROR, OPERATION-PACKAGE, Code FROM Remote-Operations-1 nfor mation-Objects

{joint-iso-itu-t remote-oper ations(4) infor mationObj ects(5) version1(0)}
Invokeld, ROS(}, FROM Remote-Operations-Generic-ROS-PDUs {joint-iso-itu-t remote-oper ations(4)
generic-ROS-PDUS(6) version1(0)};

emptyBind OPERATION ::= {ERRORS{refuse} SYNCHRONOUS TRUE}
emptyUnbind OPERATION ::={ SYNCHRONOUS TRUE }

refuse ERROR ::= {CODE local:-1}

no-op OPERATION ::=

ALWAYSRESPONDSFALSE
CODE local:-1
}
Forward {OPERATION:OperationSet} OPERATION ::=
{
OperationSet |
OperationSet.& Linked.& Linked |
OperationSet.& Linked.& Linked.& Linked.& Linked
}

Reverse {OPERATION:OperationSet} OPERATION ::=
{Forwar d{{OperationSet.& Linked}}}

Consumer Performs {OPERATION-PACK AGE:package} OPERATION ::=

{
Forwar d{{package.& Consumer}} |
Forwar d{{package.& Both}} |
Rever se{{package.& Supplier}} |
Rever se{{package.& Both}}
}
Supplier Performs {OPERATION-PACK AGE:package} OPERATION ::=
{
Forwar d{{package.& Supplier}} |
Forwar d{{package.& Both}} |
Rever se{{package.& Consumer}} |
Rever se{{package.& Both}}
}
AllOperations {OPERATION-PACK AGE:package} OPERATION ::=
{
Consumer Performs {package} |
Supplier Performs {package}
}

-- continued on the next page

I TU-T Rec. X.880 (1994 E)

27

ISO/IEC 13712-1: 1995 (E)

recode {OPERATION:operation, Code:code} OPERATION ::=

{
ARGUMENT operation.& ArgumentType
OPTIONAL oper ation.& ar gumentTypeOptional
RETURN RESULT operation.& returnResult
RESULT operation.& ResultType
OPTIONAL oper ation.& resultTypeOptional
ERRORS {operation.& Errors}
ALWAYSRESPONDS operation.& alwaysReturns
LINKED {operation.& L inked}
SYNCHRONOUS operation.& synchronous
INVOKE PRIORITY {operation.& InvokePriority}
RESULT-PRIORITY {operation.& ResultPriority}
CODE code
}

switch {OPERATION-PACKAGE:package, OBJECT IDENTIFIER:id} OPERATION-PACKAGE ::=

{
OPERATIONS {package.& Both}
SUPPLIER INVOKES {package.& Supplier}
CONSUMER INVOKES {package.& Consumer}
ID id

}

combine {OPERATION-PACKAGE:Consumer Consumes, OPERATION-PACKAGE:Consumer Supplies,
OPERATION-PACKAGE:base} OPERATION-PACKAGE ::=

{
OPERATIONS {Consumer Consumes.& Both | Consumer Supplies.& Both}
SUPPLIER INVOKES {Consumer Consumes.& Supplier | Consumer Supplies.& Consumer}
CONSUMER INVOKES {Consumer Consumes.& Consumer | Consumer Supplies.& Supplier}
ID base.&id

}

ROS-SingleAS {Invokeld:Invokel dSet, OPERATION-PACKAGE:package} ::=
ROS {{Invokel dSet}, {AllOper ations{package}}, {AllOperations{package}}}

ROS-Consumer AS {Invokel d:Invokel dSet, OPERATION-PACKAGE:package} ::=
ROS {{Invokel dSet}, { Consumer Per for ms{package}}, {Supplier Perfor ms{package}}}

ROS-Supplier AS {Invokel d:Invokel dSet, OPERATION-PACKAGE:package} ::=
ROS {{Invokel dSet}, {Supplier Performs{package}}, { Consumer Perfor ms{package}}}

END -- end of useful definitions.

28 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

Annex B

Guidelinesfor the use of the notation
(This annex does not form an integral part of this Recommendation | International Standard)

This annex provides examples and guidelines for application protocol designers on the use of the information object
classes corresponding to the basic concepts of ROS, and on the application of the set of parameterized useful definitions.

B.1 Examples of Operationsand their Errors

This subclause provides some examples of information objects belonging to the class OPERATI ON and ERROR.

operationExamplel OPERATION ::=

{
ARGUMENT ArgumentTypel
RESULT ResultTypel
ERRORS {errorExamplel | error Example2}
LINKED {operationExample2}
CODE local:1
}

operationExample2 OPERATION ::=
ARGUMENT ArgumentType2
RESULT ResultType2 OPTIONAL TRUE
LINKED {operationExample4}
ALWAY S RESPONDS FALSE
CODE local:2
}

oper ationExample3 OPERATION ::=
{
ARGUMENT ArgumentType3
ERRORS {errorExample3}
SYNCHRONOUS TRUE
CODE local:3
}

operationExample4 OPERATION ::=
ARGUMENT ArgumentTyped
RETURN RESULT FALSE
ALWAYSRESPONDS FALSE
CODE local:4
}

The asynchronous remote operation oper at i onExanpl el, which carries an argument of type Ar gunent Typel,
always responds (as implied by the absence of the key words ALWAYS RESPONDS), returning, in the case of the
successful performance of the operation, a result value of type Resul t Typel, or, if the operation is unsuccessful, one
of the errorser r or Exanpl el or error Exanpl e2 depending on the circumstances of the failure. The operation
oper ati onExanpl e2 is “linked” to this operation, which means thaer at i onExanpl e2 can be invoked in
response to this operation at any time prior to the completion of this operationofddrisat i onExanpl el is
identified by its code, the integer 1.

The asynchronous remote operataper at i onExanpl e2 carries an argumeitr gunent Type2. It is an operation

which either never fails or, should it fail, the failure is not reported. When the result of successfully performing this
operation is reported, the result value of tyResul t Type2 may optionally be omitted by the performer. The
operationoper at i onExanpl e4 is “linked” to this operation, which means thaper at i onExanpl e4 can be
invoked in response toper at i onExanpl e2 at any time before the completion of the latter. This operation is
identified by the integer value 2.

The synchronous remote operatimper at i onExanpl e3, identified by the integer value 3 and carrying an argument
of type Ar gunent Type3, always reports its outcome. Should the operation be performed successfully, an indication is
returned but no value of the result is returned. If the operation fails, areemor Exanpl e3 is returned.

NOTE - As this is a synchronous operation, the application designer must ensure that this operation always returns,
particularly if furthersynchronous operations are expected to be invoked by the invoker.

ITU-T Rec. X.880 (1994 E) 29

ISO/IEC 13712-1: 1995 (E)

The asynchronous operation oper at i onExanpl e4, identified by the integer value 4, and whose invocation is
accompanied by an argument of type Ar gument Ty pe4, does not return.

The following are instances of the (information object) class ERROR which are used to report the unsuccessful
performance of (some of) the operations defined just above:

errorExamplel ERROR ::=

{
PARAMETER Parameter Typel

CODE local: 1
}

errorExample2 ERROR ::=

{
PARAMETER Parameter Type2 OPTIONAL TRUE

CODE local:2

errorExample3 ERROR

{
CODE local:3

}

error Exanpl el, which can be used to report the unsuccessful performance of either oper at i onExanpl el or
oper ati onExanpl e2, is identified by the integer value 1. An error diagnostic parameter value of type
Par amet er Typel accompaniesthis error.

error Exanpl e2, which can be used to report the unsuccessful completion of operati onExanpl el, is
accompanied by a value of type Par anet er Type2. At the discretion of the performer, this value may sometimes be
omitted. It isidentified by theinteger 2.

err or Exanpl e3, which is identified by the integer value 3, is used to report the unsuccessful performance of
oper at i onExanpl e3. No parameter value (i.e. error diagnostic) is returned with this error.
B.2 Examples of Operation Packages and the use of switch{}

The operations and errors defined in section B.1 can be grouped into an operation package, packagel asfollows:

packagel OPERATION-PACKAGE ::=

{

CONSUMER INVOKES {operationExamplel | operationExample3}
SUPPLIER INVOKES {operationExample2}

1D objectl dentifier Of Packagel

}

Of the two ROS-objects that interact, one of them, arbitrarly called the “consumer”, can invoke
oper ati onExanpl el andoper at i onExanpl e3. The other ROS-object, designated the “supplier”, may only
invoke operati onExanmpl e2. This particular combination is identified globally by the value
obj ectldenti fier O Packagel.

NOTE — The terms “consumer” and “supplier”, which distinguish the two interacting ROS objects, have to be defined with

reference to something outside remote operations. The simplest case is to define them with respect to their roles in forming an
association contract (see B.5).

A different combination of the same collection of operations forms package2, defined as follows:

package2 OPERATION-PACKAGE ::=
{
BOTH {operationExample3}
CONSUMER INVOKES {operationExamplel}
1D objectl dentifier Of Package2
}
In package2, ether object may invoke operationExanpl e3, the consumer may invoke

oper ati onExanpl el, whileneither side may invoke oper at i onExanpl e2.

A third operation package, package3, can be derived from packagel by using the parameterized definition
switch{}.

| package3 OPERATION-PACKAGE ::= switch{OPERATION:packagel, objectl dentifier Of Package3} |

30 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

Theuseof swi t ch{} reverses the operations that can be invoked by the “consumer” and “supptiackagel and
allocate a new object identifier value to this combination. Thaskage3 written out in full is as follows:

package3 OPERATION-PACKAGE ::=
{
CONSUMER INVOKES {operationExample2}
SUPPLIER INVOKES {operationExamplel | operationExample3}
1D objectl dentifier OfPackage3
}

B.3 Examples of Bind and Unbind operations

An association can be established dynamically by invokimigred operation, an example of which is:

bindExamplel OPERATION ::=

{

ARGUMENT BindArgumentTypel
RESULT BindResultTypel
ERRORS {bindError1}
SYNCHRONOUS TRUE

}

bindError1 ERROR ::=

{
PARAMETER BindErrorTypel OPTIONAL TRUE
}

The synchronous operatidoi ndExanpl el is used to establish an association between two ROS-objects. The
invocation of the operation is accompanied by an argument value oBityp#Ar gunent Typel and the successful
establishment of the establishment of the binding is accompanied by a result valueBbingtiResul t Typel. In case

the association is not successfully established, an &irodError1 will be returned with the accompanying
diagnostic parametd@i ndEr r or Typel optionally present.

The release of the association is accomplished by the invocation of another synchronous apeBatidixanpl el
defined as follows.

unBindExamplel OPERATION ::=

{

ARGUMENT UnBindArgumentTypel

RESULT UnBindResultTypel OPTIONAL TRUE
ERRORS {unBindError 1}

SYNCHRONOUS TRUE

}

unBindErrorl ERROR ::=

PARAMETER UnBindErrorTypel OPTIONAL TRUE
}

B.4 Examples of Connection Packages

The examplesbi ndExanpl el and unBi ndExanpl el can be used to define a connection package
connecti onPackagel, which may be used to dynamically establish or release an association between two ROS-
objects.

connectionPackagel CONNECTION-PACKAGE ::=

{
BIND bindExamplel
UNBIND unBindExamplel

RESPONDER UNBIND
FAILURE TO UNBIND
1D

}

TRUE
TRUE
objectl dentifier OfConnectionPackagel

ITU-T Rec. X.880 (1994 E) 31

ISO/IEC 13712-1: 1995 (E)

connecti onPackagel, which is identified globally by the value objectldentifierOf Connecti on-
Packagel when the association between the two ROS-objects is dynamically established or announced, uses the
operations bi ndExanpl el and unBi ndExanpl el to, respectively, establish and terminate the association. It allows
the association establishment responder to unbind and permits the association to remain even if the unBi ndExanpl el
operation fails.

An example of a very simple connection package which defaults to the use of the operations enpt yBi nd and
enpt yUnbi nd (see 10.2 and 10.3) to, respectively, establish and terminate an association is given below.

simpleConnectionPackage CONNECTION-PACKAGE ::=
{
1D objectl dentifier OfSimpleConnectionPackage
}

For this connection package, only the association establishment initiator may invoke the binding and the association is
released even if the attempt at unbinding fails.

B.5 Example of an Association Contract

The association contract cont r act 1 defined as

contractl CONTRACT ::=
{
CONNECTION connectionPackagel
INITIATOR CONSUMER OF {packagel}
1D objectldentifier OfContractl
}

shows that the connection package connect i onPackagel is used to establish and terminate the association and that

the ROS-object initiating the association establishment plays the role of the “consumer” in the operation package
packagel. This contract is identified by the valobj ect | denti fi er Of Contract 1.

B.6 Examples of ROS-objects

One may define a ROS-objeob)j ect 1,

objectl ROS-OBJECT-CLASS ::=

{
INITIATES {contract1}
1D objectldentifier of ROSODbject1

}

obj ect 1, which is identified byobj ect | denti fi er Of ROSCbj ect 1, is one of a set of objects that can interact
with other ROS-objects by initiating the interaction using the association coninaict act 1.

Similarly, obj ect 2, defined as

object2 ROS-OBJECT-CLASS ::=

{
RESPONDS {contract1}
1D objectl dentifier Of ROSODbj ect2

}

is one of a set of objects which can interact with other ROS-objects by responding to initiation of the interactions offered
by the association contracbnt r act 1.

B.7 Example of the use of Forward{} and Rever se{}

The information object s&@onsuner | nvokes, derived frompackagel. &Suppl i er defined in B.2 as follows:

| Consumer Invokes OPERATION ::= {packagel.& Supplier} |

gives rise to the sdtoper ati onExanpl el | operati onExanpl e2} which lists the operations that may be
invoked by the “consumer.” In turn,

32 ITU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

| SupplierLinkedlnvokes OPERATION ::={ConsumerInvokes.& L inked} |

produces { oper at i onExanpl e2} which is the set of operations which may be invoked in the “reverse” direction,
i.e. by the “supplier”, while

| ConsumerLinkedlnvokes OPERATION ::= {SupplierLinkedl nvokes.& Linked} |

produces { oper at i onExanpl e4} which is the operation set indirectly linked to the set formed by
packagel. &Consuner and is invoked by the “consumer”.

The operation sdtor war d{ OPERATI ON: Consuner | nvokes} is the set of operations which include the original
operation se€Consuner | nvokes together with any indirectly-linked operations with the same “directionality”, i.e. in
our example, the ones that may be invoked by the “consumer”. Thus:

Forward {OPERATION:ConsumerInvokes} OPERATION ::=
{operationExamplel | operationExample3 | operationExampled}

On the other hand, the operation Betver se{ OPERATI ON: Consurmer | nvokes} is the collection of operations
that are a part of the set formedfgckagel. &Consuner . &Li nked, which are the operations that can be invoked
by the “supplier” in response to those in the set of operations give@dmsuner | nvokes, together with those
indirectly linked to it and with the same “directionality”, i.e., from “consumer” to “supplier”. That is,

Rever se{ OPERATION:Consumerinvokes} OPERATION ::=
Forwar d{ OPERATION: SupplierLinkedl nvokes}

which, when written out explicitly, is

| Rever se{ OPERATION: ConsumerInvokes} OPERATION ::={operationExample2} |

On the other hand, for the operation Seppl i er | nvokes derived as follows

| SupplierInvokes OPERATION ::= {packagel.& Consumer} |

we obtain{ oper at i onExanpl e2}.

Thus, we have

Forward{ OPERATION:SupplierInvokes} OPERATION ::= {operationExample2}

Rever se{ OPERATION:SupplierInvokes} OPERATION ::= {operationExampled}

B.8 Examples of Consumer Performs{}, Supplier Performs{} and AllOperations{}

With the help of the examples in B.7, given the operation packag&agel, the “consumer” can perform all the
operations in the set

Consumer Performs{OPERATION-PACKAGE:packagel} OPERATION ::=
{Forwar d{OPERATION:Consumer|nvokes} |
{Rever se{OPERATION:Suppliernvokes}}

which produces the operation $etper at i onExanpl el | oper ati onExanpl e3| oper ati onExanpl e4}.

Similarly, inpackagel, all the operations that the “supplier” should be capable of performing are

Supplier Performs{OPERATION-PACKAGE:packagel} OPERATION ::=
{{Forward{ OPERATION:Supplierinvokes} |
{Rever se{OPERATION:Consumer|nvokes}}

which is the sef oper at i onExanpl e2}.

The usefulness of th€onsumer Perforns{} and SupplierPerforns{} constructs is that it permits an
application designer to see, in a complex situation consisting many nested linkages between the operations in that
package, those with the same “directionality”, i.e. those that can be invoked by the consumer and those by the supplier,
without regard to the nature of their linkages.

ITU-T Rec. X.880 (1994 E) 33

ISO/IEC 13712-1: 1995 (E)

The set Al | Oper ati ons{ OPERATI ON- PACKAGE: packagel} lists al the operations both implicitly (i.e. via
linkages) and explicitly cited by packagel that can be invoked by either side in some instance of the use of this
package.

AllOperations{ OPERATION-PACK AGE:packagel} OPERATION ::=
{Consumer Perfor ms{packagel} |
{Supplier Perfor ms{packagel}}

which produces the operation set { oper at i onExanpl el | operati onExanpl e2 | operati onExanpl e3
| operationExanpl e4}.

34 I TU-T Rec. X.880 (1994 E)

ISO/IEC 13712-1 : 1995 (E)

Annex C

Migrating from the ROS macros
(This annex does not form an integral part of this Recommendation | International Standard)

In previous versions of ROS, ASN.1 macros were provided to allow ROS application designers to specify their
operations, errors, bind-operations, application-service-elements, etc. In addition, and closely affiliated to ROS, CCITT
Recommendation X.407, provided further macros which designers could use in the object-based specification of
distributed applications. The macro capability is being phased out from ASN.1, and accordingly, the ROS notation
provided by the present Specification makes use instead of the ASN.1 “macro replacement” notation, including
information object classes and parameterization.

C.1 Introduction

However, there are a significant number of specifications in existence which use the macro approach. Accordingly, this
annex shows how the use of these macros could be transformed into the use of the replacement notation. In many cases
the replacement notation is more comprehensive than the macro it replaces; however, such features are not generaly
pointed out in this annex, which is concerned only with understanding existing macro usage. The macros should not be
used for new specifications.

This annex is organized with one subclause devoted to each existing macro. The subclause describes the purpose of the
macro, gives an example of its use together with the equivalent in the newer notation, and then explains any aspects not
clear from the example. In the examples using the macro notation, symbols under | i ned are to be deleted to form the
new notation, while symbolsin BOLD | TALI CSareto beinserted.

One particular approach to using macros, “two-stage definition” has been widely employed in the existing specifications.
In this approach, the “identifiers” for various kinds of information object (e.g. the operation or error code) is assigned in
the second stage. However the interpretation of such specifications by the reader sometimes requires taking into account
such normally irrelevant factors as the similarity of spelling of distinct ASN.1 references, and the proximity of ASN.1
definitions. This is not acceptable with the replacement notation. Accordingly, this annex describes the mapping only of
the second or only stage of the definition using macros.

C.2 Operation

The OPERATI ON macro was used to specify operations (except for bind and unbind operations). The changes as we go
from defining an instance, callgget , of the OPERATI ON macro to a member of tH@PERATI ON information object

class is shown below as we go, respectively, from right to left. Looking at the macro notation on the left hand side,
symbols underlined twice are to be deleted from the old notation while symbols in bold italics are to be inserted into the
old notation to form the new notation (as seen on the right hand side).

get OPERATION ::= get OPERATION ::=
{ ARGUMENT Descriptor {
RESULT Information ARGUMENT Descriptor
ERRORS { unknown ., / noAccess} RESULT Information
LINKED {getPassword} |:| ERRORS { unknown | noAccess}
= CODE local:73 LINKED { getPassword}
} CODE local: 73
}
NOTES

1 Omission of the RESULT clause in the macro notation 0 RETURN RESULT FALSE in the new notation.

2 Presence of RESULT without data type in the macro notation 00 omission of RESULT clause in the new notation (the
keywords RETURN RESULT TRUE isthe default and hence omitted).

3 As a result of the above assumption concerning 2-stage definition, the names of individua errors and linked
operations start with lower-case letters.

4 The following operation fields permitted by the information object class definition could not be specified with the
macro, but, if needed, would have to be specified in text: &ynchr onous, & nvokePriority,&Resul tPriority.

5 It is possible to state in the new notation, through the use of the &ar gument TypeOptional and
&r esul t TypeOpt i onal fields, if, respectively, the argument or result value may, as a user option, be omitted.

ITU-T Rec. X.880 (1994 E) 35

ISO/IEC 13712-1: 1995 (E)

C3 Error

The ERROR macro was used to specify errors (except for those of bind and unbind operations).

unknown ERROR ::=
{ PARAMETER Descriptor
= CODE loca:14

f~—

NOTES

1 The&ErrorPriority field could not be specified with the macro, but, if needed, would be specified in text.
2 It is possible to state in the new notation, through the use of the &par amet er TypeOpt i onal

[]

unknown ERROR ::=

PARAMETER
CODE

Descriptor
local:14

parameter value, if any, defined to accompany the report of an error may, as a user option, be omitted.

C4 Bind

The Bl ND macro was used to specify bind operations.

Hallohallo ::= BIND OPERATION::=

{ ARGUMENT HowAreYou
RESULT Fine-AndYou
BIND-ERRORS { GgoAway}

[~

NOTE — The absence of the key word CODE in the new notation indicates that this is a specia operation which cannot be

invoked using the | nvoke{} PDU.

C5 Unbind

[]

The UNBI ND macro was used to specify unbind operations.

Byebye ::= UNBIND OPERATION ::=

{ ARGUMENT SeeY ouSoon
RESULT LetsDoL unch
BIND-ERRORS { DdontGo}

NOTE — The absence of the key word CODE in the new notation indicates that this is a specia operation which cannot be

invoked using the | nvoke{} PDU.

36 ITU-T Rec. X.880 (1994 E)

[]

hallo OPERATION::=

ARGUMENT
RESULT
ERRORS

}

HowAreYou
Fine-AndY ou

{goAway}

bye OPERATION ::=
{
ARGUMENT
RESULT
ERRORS

}

SeeY ouSoon
LetsDol unch
{dontGo}

ISO/IEC 13712-1 : 1995 (E)

Annex D

Assignment of object identifier values
(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifier values are assigned in this Recommendation | International Standard:

Clause Object Identifier Value

Annex A {joint-iso-itu-t remote-oper ations(4) infor mationObj ects(5) version1(0)}
{joint-iso-itu-t remote-operations(4) generic-ROS-PDUS(6) version1(0)}
{joint-iso-itu-t remote-oper ations(4) useful-definitions(7) version1(0)}

ITU-T Rec. X.880 (1994 E) 37

	ITU-T Rec. X.880 (07/94) INFORMATION TECHNOLOGY … REMOTE OPERATIONS: CONCEPTS, MODEL AND NOTATION
	FOREWORD
	CONTENTS
	Summary
	Introduction
	INFORMATION TECHNOLOGY … REMOTE OPERATIONS: CONCEPTS, MODEL AND NOTATION
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Additional references

	3 Definitions
	3.1 OSI reference model definitions
	3.2 ASN.1 definitions
	3.3 ROS definitions

	4 Abbreviations
	5 Conventions
	6 ROS model
	7 Realization of ROS
	8 ROS concepts
	8.1 Introduction
	8.2 Operation
	8.3 Error
	8.4 Operation package
	8.5 Connection package
	8.6 Association contract
	8.7 ROS-object class
	8.8 Code
	8.9 Priority

	9 Generic ROS protocol
	9.1 Introduction
	9.2 ROS
	9.3 Invoke
	9.4 Return result
	9.5 Return error
	9.6 Reject
	9.7 Reject Problem
	9.8 Invoke id
	9.9 No invoke id
	9.10 Errors
	9.11 Bind
	9.12 Unbind

	10 Useful definitions
	10.1 Introduction
	10.2 Empty bind
	10.3 Empty unbind
	10.4 Refuse
	10.5 No-op
	10.6 Forward
	10.7 Reverse
	10.8 Consumer performs
	10.9 Supplier performs
	10.10 All operations
	10.11 recode
	10.12 switch
	10.13 combine
	10.14 ROS single abstract syntax
	10.15 ROS consumer abstract syntax
	10.16 ROS supplier abstract syntax

	Annex A
	ASN.1 modules
	Annex B
	Guidelines for the use of the notation
	B.1 Examples of Operations and their Errors
	B.2 Examples of Operation Packages and the use of switch{}
	B.3 Examples of Bind and Unbind operations
	B.4 Examples of Connection Packages
	B.5 Example of an Association Contract
	B.6 Examples of ROS-objects
	B.7 Example of the use of Forward{} and Reverse{}
	B.8 Examples of ConsumerPerforms{}, SupplierPerforms{} and AllOperations{}
	Annex C
	Migrating from the ROS macros
	C.1 Introduction
	C.2 Operation
	C.3 Error
	C.4 Bind
	C.5 Unbind
	Annex D
	Assignment of object identifier values

