

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.785
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(07/2021)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI management – Management functions and ODMA
functions

Guidelines for defining REST-based managed
objects and management interfaces

Recommendation ITU-T X.785

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES (1) X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES (2) X.1300–X.1499

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599

CLOUD COMPUTING SECURITY X.1600–X.1699

QUANTUM COMMUNICATION X.1700–X.1729

DATA SECURITY X.1750–X.1799

IMT-T SECURITY X.1800–X.1819

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.785 (07/2021) i

Recommendation ITU-T X.785

Guidelines for defining REST-based managed objects and

management interfaces

Summary

Recommendation ITU-T X.785 defines a set of guidelines for managed object modelling and a

management interface for representational state transfer (REST)-based network management. It is part

of a framework for REST-based network management interfaces. It specifies how REST-based

management interfaces should be defined. It covers the generic accessing methods of REST-based

managed objects, accessing methods for specific managed object (Mos), information modelling in

REST / hypertext transfer protocol (HTTP) and YAML ain't markup language (YAML) / JavaScript

object notation (JSON) schemas. Some HTTP requests/responses and YAML/JSON schemas are

provided for defining some basic data types: generic managed object (MO) and generic MO accessing

methods.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.785 2021-07-29 2 11.1002/1000/14745

Keywords

REST, framework, guidelines, network management.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14745
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.785 (07/2021)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2021

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.785 (07/2021) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 Overview of a REST-based management framework .. 4

6.1 Overview .. 4

6.2 Resources .. 4

6.3 Definition languages of REST-based interface .. 5

7 Principles for REST-based interface design ... 5

8 Definition of a generic managed object using YAML schema 6

8.1 REST role in management interfaces ... 6

8.2 Definition of managed objects using JSON/YAML schema 7

9 Accessing methods for managed objects .. 12

9.1 Generic MO accessing methods ... 12

9.2 Design guidelines for specific MO class accessing methods 13

10 Information modelling guidelines for REST-based interfaces 15

10.1 Resource Modeling ... 15

10.2 Attribute .. 16

10.3 Name conventions for MOCs, attributes and data types 16

10.4 Other guidelines .. 16

11 Compliance and conformance .. 16

11.1 Standards document compliance .. 16

11.2 System conformance .. 17

11.3 Conformance statement guidelines ... 17

Annex A – Common REST-based YAML/JSON schema definitions 18

A.1 YAML schema definitions for the generic managed object and common

data types .. 18

A.2 YAML/JSON schema definitions for common object accessing methods 21

Appendix I – An example of REST-based interface definitions for resource 38

I.1 An example showing the CRUD definitions for a specific resource 38

Appendix II – Usage examples of the ContainmentRelationshipType and

AssociationRelationType .. 44

Appendix III – Background for REST and HTTP technologies .. 46

III.1 Background ... 46

III.2 Short review of REST and HTTP ... 46

iv Rec. ITU-T X.785 (07/2021)

 Page

III.3 Benefits of introducing REST into network management domain 48

Bibliography... 49

 Rec. ITU-T X.785 (07/2021) 1

Recommendation ITU-T X.785

Guidelines for defining REST-based managed objects and

management interfaces

1 Scope

The network management architecture defined in [ITU-T M.3010] introduces the use of multiple

management protocols. So far, the guidelines for the definition of managed objects (GDMO) /

common management information protocol (CMIP), common object request broker architecture

(CORBA) / Internet inter-ORB protocol (IIOP), structure of management information (SMI) / simple

network management protocol (SNMP), web services / simple object access protocol (SOAP) are

possible choices at the application layer. Based on the management interface specification

methodology defined in [ITU-T M.3020], more technology-based paradigms can be introduced into

network management interfaces, and REST/HTTP is now an additional paradigm for network

management.

This Recommendation sets out a framework for defining how interfaces supported by management

systems and network elements should be modelled using JSON/YAML schemas. It is within the scope

of this Recommendation to provide the following guidelines or instructions:

– principles for REST interface designs;

– containment, association and inheritance relationship and naming rules for managed entities;

– generic accessing methods for managed objects;

– guidelines for defining accessing methods for specific resources;

– information modelling guidelines for REST-based interfaces;

– common data type definitions.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications

management network.

[ITU-T M.3020] Recommendation ITU-T M.3020 (2017), Management interface specification

methodology.

[ITU-T M.3160] Recommendation ITU-T M.3160 (2008), Generic, protocol-neutral

management information model.

[ITU-T M.3701] Recommendation ITU-T M.3701 (2010), Common management services –

State management – Protocol neutral requirements and analysis.

[ITU-T X.701] Recommendation ITU-T X.701 (1997), Information technology – Open

Systems Interconnection – Systems management overview.

[ITU-T X.703] Recommendation ITU-T X.703 (1997), Information technology – Open

Distributed Management Architecture.

2 Rec. ITU-T X.785 (07/2021)

[RFC 3986] IETF RFC 3986 (2005), Uniform Resource Identifier (URI): Generic Syntax.

[RFC 5789] IETF RFC 5789 (2010), PATCH Method for HTTP.

[RFC 6585] IETF RFC 6585 (2012), Additional HTTP Status Codes.

[RFC 6901] IETF RFC 6901 (2013), JavaScript Object Notation (JSON) Pointer.

[RFC 6902] IETF RFC 6902 (2013), JavaScript Object Notation (JSON) Patch.

[RFC 7230] IETF RFC 7230 (2014), Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing.

[RFC 7231] IETF RFC 7231 (2014), Hypertext Transfer Protocol (HTTP/1.1): Semantics

and Content.

[RFC 7232] IETF RFC 7232 (2014), Hypertext Transfer Protocol (HTTP/1.1): Conditional

Requests.

[RFC 7396] IETF RFC 7396 (2014), JSON Merge Patch.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 agent [ITU-T M.3020]: Encapsulates a well-defined subset of management functionality.

It interacts with managers using a management interface. From the manager's perspective, the agent

behaviour is only visible via the management interface.

3.1.2 managed object class [ITU-T X.701]: A named set of managed objects sharing the same

(named) sets of attributes, notifications, management operations (packages), and which share the

same conditions for presence of those packages.

3.1.3 manager [ITU-T M.3020]: Models a user of agent(s) and it interacts directly with the

agent(s) using management interfaces. Since the manager represents an agent user, it gives a clear

picture of what the agent is supposed to do. From the agent perspective, the manager behaviour is

only visible via the management interface.

3.1.4 notification [ITU-T X.703]: An interaction for which the contract between the invoking

object (client) and the receiving object (server) is restricted to the ability of the server to receive the

contents of information sent by the client.

3.2 Terms defined in this Recommendation

This Recommendation does not define any new terms.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

BNF Backus-Naur Form

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

CRUD Create, Retrieve, Update, Delete

DN Distinguished Name

 Rec. ITU-T X.785 (07/2021) 3

GDMO Guidelines for the Definition of Managed Objects

HTTP Hypertext Transfer Protocol

IIOP Internet Inter-ORB Protocol

IT Information Technology

JSON JavaScript Object Notation

MO Managed Object

MOC Managed Object Class

MOI Managed Object Instance

OAS OpenAPI Specification

OSI Open System Interconnection

RDN Relative Distinguished Name

REST Representational State Transfer

RPC Remote Procedure Call

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

TMN Telecommunications Management Network

URI Unified Resource Identifier

XML extensible Markup Language

YAML YAML Ain't Markup Language

5 Conventions

A few conventions are followed in this Recommendation to make the reader aware of the purpose of

the text. While most of the Recommendation is normative, paragraphs succinctly stating mandatory

requirements to be met by a management system (managing and/or managed) are preceded by a

boldface "R" enclosed in parentheses, followed by a short name indicating the subject of the

requirement and a number. For example:

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by

an "O" instead of an "R". For example:

(O) EXAMPLE-2 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Examples of JSON and YAML schemas are included in this Recommendation and normative JSON

or YAML schema specifying the data types, base classes and other modelling constructs of the

framework are included in Annex A. The JSON/YAML schemas are written in a 10 point courier

typeface:

4 Rec. ITU-T X.785 (07/2021)

A JSON schema example {

 "title": "root",

 "items": {

 "title": "array item"

 }

}

A YAML schema example SomeType:

 type: object

properties:

 attr1:

 type: string

 attr2:

 type: string

 enum:

 - e1

 - e2

6 Overview of a REST-based management framework

6.1 Overview

REST-based technologies have been widely used in the information technology (IT) industry.

Appendix III provides more information on the features of REST technology. REST technology is

similar to web services technology and can be used in network management interfaces. The REST

technology uses a resource-oriented approach to define information entities, and unified resource

identifiers (URIs) ([RFC 3986]) for entity identification, and the corresponding operations are also

defined with a close relation with the resource URIs.

This Recommendation sets up a framework for defining how interfaces supported by management

systems and network elements should be modelled using REST application programming interface

(API) and JSON/YAML schemas (see [RFC 6901], [RFC 6902], and [b-OAI-OAS3]).

The complete REST-based management framework includes the following aspects:

1) Managed objects and interface definition guidelines:

– definition of managed object classes using YAML schema;

– inheritance, containment and association relationships of managed objects (Mos);

– accessing methods for managed object instances (MOIs);

– information modelling guidelines for REST-based interfaces;

2) REST-based supporting services for network management:

– definition of a REST-based notification service;

– definition of a REST-based heartbeat service;

– definition of a REST-based containment service.

This Recommendation mainly deals with managed objects and interface definition guidelines. REST-

based supporting services will be dealt with in other Recommendations.

6.2 Resources

Hypertext transfer protocol (HTTP) ([RFC 7230]) uses a different terminology based on the notion

of resources, as defined in clause 2 of [RFC 7231]. Each resource is represented by a resource

representation as defined in clause 3 of [RFC 7231]. Valid resource representations are e.g. extensible

markup language (XML) instance documents or JSON instance documents.

 Rec. ITU-T X.785 (07/2021) 5

Resources can be classified according to their structure and behaviour into resource archetypes.

This helps to specify clear and understandable interfaces. The following three archetypes are defined

(also aligned with [b-3GPP TS 32.158]):

– Document resource: This is the standard resource containing data in form of name-value

pairs and links to related resources. This kind of resource typically represents a real-world

object or a logical concept.

– Collection resource: A collection resource is grouping resources of the same kind.

The resources below the collection resource are called items of the collection. An item of a

collection is normally a document resource. Collection resources typically contain links to

the items of the collection and information about the collection like the total number of items

in the collection. Collection resources can be further distinguished into server-managed and

client-managed resources. Collection resources are also known as container resources.

– Operation resource: Operation resources represent executable functions. They may have

input and output parameters. Operation resources allow some kind of fallback to a remote

procedure call (RPC) style design in case application specific actions cannot be mapped

easily to create, retrieve, update, delete (CRUD) style operations.

6.3 Definition languages of REST-based interface

This Recommendation follows the OpenAPI specification (OAS, see [b-OAI-OAS3]) to define

REST-based interfaces. The OpenAPI specification (OAS) is developed by the OpenAPI initiative,

which defines a standard, programming language-agnostic interface description for REST APIs,

which allows both humans and computers to discover and understand the capabilities of a service

without requiring access to a source code, additional documentation, or inspection of network traffic.

There are two languages that can be used in OAS: JSON and YAML, and the relationship between

them is described below.

YAML is a human-friendly, cross language, unicode based data serialization language designed

around the common native data types of agile programming languages. It is broadly useful for

programming needs ranging from configuration files to internet messaging to object persistence to

data auditing.

Both JSON and YAML aim to be human readable data interchange formats. However, JSON and

YAML have different priorities. JSON's foremost design goal is simplicity and universality.

Thus, JSON is trivial to generate and parse, at the cost of reduced human readability. It also uses a

lowest common denominator information model, ensuring any JSON data can be easily processed by

every modern programming environment.

In contrast, YAML's foremost design goals are human readability and support for serializing arbitrary

native data structures. Thus, YAML allows extremely readable files but is more complex to generate

and parse. In addition, YAML ventures beyond the lowest common denominator data types, requiring

more complex processing when crossing between different programming environments.

YAML can therefore be viewed as a natural superset of JSON, offering improved human readability

and a more complete information model. This is also the case in practice; every JSON file is also a

valid YAML file. This makes it easy to migrate from JSON to YAML if/when the additional features

are required.

Within this Recommendation, both JSON and YAML schemas will be used for interface definitions.

7 Principles for REST-based interface design

This clause identifies some interface design considerations that should be addressed by this

framework through REST interfaces. It provides the modelling principles for REST-based managed

objects (MO) and their accessing methods.

6 Rec. ITU-T X.785 (07/2021)

The REST-based design considerations related to REST APIs and JSON/YAML schemas and

modelling concerns super-classes, naming of managed objects and resource-oriented interfaces,

operations and notifications.

This Recommendation defines a lightweight generic use of REST-based interface design patterns.

The management and controlling functions are defined using HTTP methods, not just for an

individual management object class.

The framework has the following principles to define a REST-based management information model

and interfaces.

– All interface interactions are defined as HTTP methods, each operation includes a request

and an optional corresponding response when needed.

– Each managed object class (MOC) is defined as a resource when exchanged through the

management interface, and each attribute or state of the MOC is defined as a property in the

resource.

– The naming of MOC instances follows the concept of a URI, which can be accessed using

an HTTP request.

– There are four basic accessing methods for managed objects in the traditional

telecommunications management network (TMN) management paradigm, which are:

createMO, deleteMO, getMOAttributes, and setMOAttribute. These methods are redefined

in this management framework using HTTP POST, HTTP DELETE, HTTP GET, and HTTP

PUT/PATCH. These methods are applicable for every MOC instances, and the URI is used

to indicate which instances are accessed using these methods.

– Other interface control functions are defined as HTTP POST methods against a specific

resource.

– Common data types are defined in JSON/YAML schemas which can be shared by

application-specific interface definitions.

8 Definition of a generic managed object using YAML schema

8.1 REST role in management interfaces

To support the software objects representing manageable resources, a base class is defined for use in

modelling network resources. Other MOCs (managed object class) in information models must be

derived from this base class in order to operate within this framework. Some generic accessing

methods and some other extended functions are defined to provide interfaces to manage MOs.

Figure 1 – RESTful services role

Figure 1 shows how a managing system accesses a managed system that supports a RESTful services

interface. A RESTful services interface acts as an intermediate entity that enables a managing system

to manage proper MOs in a managed system representing manageable resources.

 Rec. ITU-T X.785 (07/2021) 7

8.2 Definition of managed objects using JSON/YAML schema

An MO is an open system interconnection (OSI) management view of a resource that is subject to

management, such as a connection or an item of physical equipment. It is the abstraction of such a

resource that represents its properties for the purpose of management. An MO may also include

attributes that provide information used to characterize itself and operations that represent its

behaviours. The purpose of the framework is to provide a collection of capabilities to manage these

MOs. MOs need some approaches to describe their properties and behaviours. In REST-based

technology, an MO is a managed entity that represents a manageable resource in terms of shared state

and behaviour where state and behaviour are separated through outsourcing of the behaviour to an

assigned so-called "managing entity" (e.g., a service and its interface) that takes a steward role with

regard to the behaviours of its allocated managed entities. Since an MO's state and behaviour can be

separated, the state can be described by JSON/YAML schema and behaviour by REST APIs. One

important benefit of using a JSON/YAML document to store an MO's state is that REST APIs can

also use JSON/YAML schema to describe the data type of its exchanged messages, and these

JSON/YAML based MOs' information can be exchanged without any modification.

8.2.1 Definition of a generic managed object class

A managed object class is a further abstraction of managed objects. All network resources have some

common attributes and all MOCs shall inherit, either directly or indirectly, from a superclass, namely

a ManagedObject_C (the suffix ''_C'' indicates it represents an MOC, not just a data type). Using

ManagedObject_C to define new MOCs will be easier and faster and provide better maintenance.

As mentioned above, all MOCs are described in JSON/YAML schema and the data type of

ManagedObject_C is given in Table 1 and the attributes can be found in Table 2.

Table 1 – Data type of superclass ManagedObject_C

ManagedObject_C:

 type: object

 required:

- objectClass

- objectInstance

properties:

 objectClass:

 type: string

 objectInstance:

 type: string

 format: uri

 creationSource:

 $ref: '#/components/schemas/SourceIndicatorType'

SourceIndicatorType:

type string

enum:

 - resourceOperation

 - managementOperation

 - unknown

Table 2 – Attributes of superclass ManagedObject_C

Attribute name Support qualifier Read qualifier Write qualifier

objectClass Mandatory Mandatory –

objectInstance Mandatory Mandatory –

creationSource Optional Mandatory –

8 Rec. ITU-T X.785 (07/2021)

As shown in Table 2, ManagedObject_C is made up of three attributes including objectClass,

objectInstance, and creationSource. An attribute has an associated value with a specific data type.

The attribute objectClass is used to identify the class type of this MO instance. The attribute

objectInstance is used to uniquely identify an MO instance, and the data type is a string with the

format of URI, which will be further explained in formula (1). The attribute creationSource indicates

whether an MO is created automatically in a managed system, or by a managing system through a

management operation, or unknown.

In network management, each MOI is uniquely identified by the object instance name. Considering

the REST feature, each managed object can be regarded as a resource, and the URI as the unique

identifier of the resource can naturally be the only instance of the managed object class. Resources in

REST include document resources, collection resources, and task resources. The object instance is

named URI string conforming to the following Backus-Naur form (BNF) paradigm specification, as

shown in Table 3.

Table 3 – BNF paradigm specification for URI

URI = {URI-prefix}/{ResourcePath}

URI-prefix = {irpRoot}/{irpName}/{irpVersion}

ResourcePath={DocumentResourcePath}|{CollectionResourcePath}|{TaskResour

cePath}

DocumentResourcePath = ("/" {RDN})+

CollectionResourcePath=("/" {RDN})+ "/" {className}

TaskResourcePath=("/"{RDN})+ ["/" {className}] "/" {actionName}

RDN={className} "=" {namingAttributeValue}

className = The class name of the specific MO instance.

namingAttributeValue = The value of the naming attribute of the specified

MO instance.

(1)

The namingAttributeValue in the above formula should be the actual value of the naming attribute of

an MOI.

A complete YAML schema definition for the generic ManagedObject_C is defined in Annex A.1.

(R) OBJECT-1. All the classes used to model resources on a managed system shall inherit

(directly or indirectly) from the ManagedObject_C described above and defined in the YAML

schema in clause A.1. The capabilities described above shall be supported.

8.2.2 Inheritance relationship of managed objects

Inheritance is an important concept in the object-oriented mechanism. When defining a new object

class, in order to reuse the definition of the existing object class, some or all of the features defined

in the existing object class can be inherited as the characteristics of the new object class. New object

classes can also define additional features. In network management, all manageable managed object

classes inherit directly or indirectly from the ManagedObject_C base class, and extend their own

unique attribute definitions based on public attributes to more clearly express their own feature

information. In YAML Schema, the inheritance of an attribute is represented by "allOf".

Taking a managed element in a telecommunication network as an example, a managed element may

be composed of multiple frames, each of which includes several racks, and multiple slots are included

in a rack, and circuit packs performing various functions are inserted into the slots. According to the

inheritance relationship in [ITU-T M.3160], the related object classes and the inheritance relationship

between each object class are shown in Figure 2.

 Rec. ITU-T X.785 (07/2021) 9

Figure 2 – An example for inheritance relationship

Table 4 – YAML schema example of Equipment and EquipmentHolder by extension

Equipment_C:

 allOf:

- $ref: '#/components/schemas/ManagedObject_C'

- properties:

 ID:

 type: integer

 userLabel:

 type: string

 - required:

 - ID

 - userLabel

EquipmentHolder_C:

 allOf:

- $ref: '#/components/schemas/Equipment_C'

- properties:

 equipmentHolderType:

 type: string

 holderStatus:

 $ref: '#/components/schemas/HolderStatusType'

 - required:

 - equipmentHolderType

 - holderStatus

Some managed objects may need to support multiple inheritance, and the ''allOf'' syntax of the YAML

schema itself supports multiple inheritance. In addition, YAML schema is only used to describe the

attribute information of managed objects.

8.2.3 Common attributes and data types

The following table shows some common attributes as well as some common data types that can be

shared by this framework.

10 Rec. ITU-T X.785 (07/2021)

Table 5 − Standard attributes and data types

Attribute name Data type Description

administrativeState AdministrativeStateType See [ITU-T M.3701] for more details

availabilityStatus AvailabilityStatusSetType See [ITU-T M.3701] for more details

backedUpStatus BackedUpStatusType See [ITU-T M.3701] for more details

controlStatus ControlStatusSetType See [ITU-T M.3701] for more details

creationSource (Note) SourceIndicatorType See [ITU-T M.3701] for more details

externalTime ExternalTimeType

objectClass (Note) String It indicates an MOC

objectInstance (Note) URI It indicates an MO instance

operationalState OperationalStateType See [ITU-T M.3701] for more details

proceduralStatus ProceduralStatusSetType See [ITU-T M.3701] for more details

standbyStatus StandbyStatusType See [ITU-T M.3701] for more details

systemLabel String It indicates a label for a system.

unknownStatus UnknownStatusType See [ITU-T M.3701] for more details

usageState UsageState See [ITU-T M.3701] for more details

NOTE – These attributes are inherited by all managed objects.

The detailed YAML/JSON definitions for the above data types can be found in Annex A.1.

8.2.4 Containment relationship of managed objects

Different from the inheritance relationship, the containment relationship is more reflected in the

affiliation between various network resources. As mentioned above, a switch device may contain

several frames, and one frame may contain several racks. A rack may contain a number of slots, and

a board that performs various functions is inserted into a slot. There may be various ports on a board.

In the containment relationship, an object class (or object instance) used to contain other managed

objects is called a superior, and a contained object class (or object instance) is called a subordinate.

The names of the superiors and subordinates here are relative, and the subordinates of one object can

be the superiors of another object. The relation type ContainmentRelationshipType is defined in

YAML schema, which defines six attributes including the relationship name, the superior class name,

the superior class multiplicity, the subordinate class name, the subordinate class multiplicity, and the

naming attribute, and it is shown in Table 6.

Table 6 – The YAML schema for ContainmentRelationshipType

components:

schemas:

 ContainmentRelationshipType:

 type: object

 properties:

 containmentRelationshipName:

 type: string

 superiorClass:

 type: string

 superiorClassMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 subordinateClass:

 type: string

 subordinateClassMuitiplicity:

 Rec. ITU-T X.785 (07/2021) 11

Table 6 – The YAML schema for ContainmentRelationshipType

 $ref: '#/components/schemas/MultiplicityType'

 namingAttrbiute:

 type: string

 DirectionType:

 type: string

 enum:

 - unidirectional

 - bidirectional

 MultiplicityType:

 type: string

 enum:

 - zero_to_one

 - zero_to_n

 - one

 - one_to_n

 - n

Bullet (1) in Appendix II shows an example of the usage of ContainmentRelationshipType.

8.2.5 Association relationship of managed objects

In addition to the inheritance and containment relationships, there are also association relationships

between managed objects, which are abstractions of network resources. An operation on one managed

object may influence the attributes of another one or more managed objects. There are many types of

associations, such as business relationships, control relationships, primary and secondary

relationships, backup relationships, grouping relationships, peer relationships, and so on.

The management system must be able to detect the existence and change of this association, and can

align or coordinate the relationship through appropriate operations. Therefore, various association

relationships between managed objects must be modelled.

For the definition of association relationship, the YAML schema of AssociationRelationshipType is

defined. The attributes of the association relationship include association name, association direction,

from association class name, from association attribute name, from association multiplicity, to

association class name, to association attribute name, to association multiplicity. The types of the

attributes are all string type. The YAML schema definition of the association type is shown in Table 7.

12 Rec. ITU-T X.785 (07/2021)

Table 7 – The YAML schema for AssociationRelationshipType

components:

schemas:

 AssociationRelationshipType

 type : object

 properties:

 associationRelationshipName:

 type: string

 associationDirection:

 $ref: '#/components/schemas/DirectionType'

 fromClass:

 type: stirng:

 fromAssociationAttribute

 type: stirng

 fromMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 toClass:

 type: stirng

 toAssociationAttribute:

 type: stirng

 toMuitiplicity:

 type: '#/components/schemas/MultiplicityType'

Bullet (2) in Appendix II shows an example about the usage of AssociationRelationshipType.

9 Accessing methods for managed objects

There are two ways of accessing MOs in this framework. The first is to use a generic service that

provides the functionality of accessing all kinds of MO instances, where a unique URI of the service

is provided, as defined in clause 9.1. The other way is to access specific MOs using their own URIs,

and follow the guidelines provide in clause 9.2.

9.1 Generic MO accessing methods

This clause describes the MO accessing methods of the REST-based network management

framework, which shall provide a collection of methods to control network resources. These methods

provide basic capabilities to manage MOs and so they are called generic accessing methods, as listed

in Table 8. Figure 1 gives the accessing procedure and the framework uses HTTP protocol to

exchange information of MOs. RESTful services separate an MOs' states and behaviours and expose

their behaviours through a RESTful interface. As a RESTful service is also a service-oriented

technology, in this framework all MOs are designed to be accessed through the REST interface, and

the interface must know which MO is the actual target of an operation, and the unique identifier of

the target MO should be provided in each accessing request (or through the URI). According to the

above requirements, some necessary generic accessing methods are given in Table 8.

Table 8 – Generic accessing methods

Operation name Input parameter Output parameter

getMOAtrributes – objectClass : String

– objectInstance : DN

– attributeNameList : SEQUENCE OF

String

– attributeNameAndValueList :

SEQUENCE OF

{ attributeName string,

attributeType string,

attributeValue object}

– status : ENUMERATION

 Rec. ITU-T X.785 (07/2021) 13

Table 8 – Generic accessing methods

Operation name Input parameter Output parameter

setMOAttributes – objectClass : String

– objectInstance : DN

– attributeNVMList : SEQUENCE OF

 {attributeName string,

attributeType string,

attributeValue object}

– status

createMO – objectclass

– objectClassInstance

– attributeNameAndValueList

– status

deleteMO – objectclass

– objectInstance

– status

Where:

1) getMOAttributes – to retrieve all, or any subset, of an MO's attribute value in one operation.

It uses the URI as the first parameter to uniquely identify the MO and a list of attribute names

to be queried. The return result is made up of attribute values and operation status.

The attributeNameAndValueList is a list of triples including attributeName, attributeType

and attributeValue. The attributeType indicates the original type of attributeValue and

attribute values are returned through the "object" element of JSON/YAML schema for

arbitrary type values. The status parameter indicates whether the operation is performed

successfully or failed. As "object" is defined for the data type of the return attribute value,

when receiving such a request from the client, the server will return the requested attributes

into the output parameter attributeNameAndValueList, where the attributeValue field will be

encoded from a variable element to a piece of JSON text, which can be decoded by the client

application with the help of the attributeType parameter.

2) setMOAttributes – to modify attribute values of an MO in existence. Besides using

objectInstance to indicate the target MO whose values are to be modified, the operation also

uses a list of quadruples including attributeName, attributeType, attributeValue, and

modifyOption to set MO attributes. The three attributes are the same as above.

3) createMO – to create an MO in the managed system. It must specify the created MO's class

and name. The attributeNameAndValueList parameter is used to provide attribute values,

but it can be omitted, and if it is omitted the attributes are set to default values.

4) deleteMO – to release any resources associated with the MO and to delete it. It uses URI to

identify the target MO and then return the operation status. If the target MO cannot be

removed or any of its contained MOs cannot be removed, the operation will return an

OperationFailed status.

All the methods mentioned above just operate on one MO.

A complete YAML/JSON schema and RESTful interface definition for the generic MO accessing

methods can be found in clause A.2.

(O) OBJECT-2. An implementation of the generic MO accessing methods may support all the

operations described above, whose JSON/YAML schema is defined in clause A.2.

9.2 Design guidelines for specific MO class accessing methods

For each specific kind of MO class, under the REST-based management framework, they should have

a unique URI for the instances of the MOC of this kind. The URI for this MOC or instances of this

14 Rec. ITU-T X.785 (07/2021)

MOC usually follows the rules specified in Table 3 of clause 8.2.1. Suppose the target MOC is

''Equipment'' as defined in [ITU-T M.3160], for a collection resource, its URI may look like the

following example, as shown in Table 9:

Table 9 – A URI example for a collection resource

/CM/cmIpr/v1_0/Network=CoreNetwork/ManagedElement=me1/Equipment

For a document resource style MO instance, its URI may look like the following as an example:

Table 10 – A URI example for a document resource

/CM/cmIpr/v1_0/Network=CoreNetwork/ManagedElement=me1/Equipment=eq2

The above two URIs will be used for the CRUD operations for accessing the specific MOs, and the

guidelines will be explained in the following clauses.

9.2.1 Creating a resource instance

When creating a new MO instance of a resource, the HTTP POST method shall be used, and the

target URI for this method shall be the URI of the collection resource without any specific identifier,

like the example shown in Table 9. The input parameter shall contain all the necessary information

for the creation of a resource. On success, the "201 Created" shall be returned, and the complete MO

identifier should also be included in the response. On failure, the appropriate error code shall be

returned, and the response message body may provide additional error information.

An example of the YAML definition of this operation on a specified resource can be found in

Appendix I.1.1.

9.2.2 Reading a group of resource instances by a collection resource

When reading the information of a list of MO instance of a specific kind of resource, the HTTP GET

method shall be used, and the target URI for this method shall be the URI of the collection resource

to be read without identifiers, like the example shown in Table 9. In such cases, the URI indicates the

list of MOs of the same kind of resource, under the same subtree, represented by the parent node of

the subtree. There is no need to provide other input parameters in this collection read operation. On

success, the "200 OK" shall be returned, and the complete information of all the instances that can be

represented by the collection resource shall be included in the response. On failure, the appropriate

error code shall be returned, and the response message body may provide additional error information.

An example of the YAML definition of this operation on a collection resource can be found in

Appendix I.1.2.

9.2.3 Reading a specific resource instance

When reading the information of a specific MO instance of a resource, the HTTP GET method shall

be used, and the target URI for this method shall be the URI of the resource to be read with the

specific identifier, like the example shown in Table 10. There is no need to provide other input

parameters in this read operation. On success, the "200 OK" shall be returned, and the complete

information of the specified MO shall be included in the response. On failure, the appropriate error

code shall be returned, and the response message body may provide additional error information.

An example of the YAML definition of this operation on a specified resource can be found in

Appendix I.1.3.

 Rec. ITU-T X.785 (07/2021) 15

9.2.4 Updating a complete representation of a specific resource instance

When updating the information of a complete MO instance of a specific resource, the HTTP PUT

method shall be used, and the target URI for this method shall be the URI of the resource to be updated

with the specific identifier, like the example shown in Table 10.

The input parameter of this operation shall contain all the attribute information of the specified MO

to be updated. On success, the attribute values of the specified target resource shall be replaced by

the input parameters (note: partial representations of the resource to be updated are not allowed.),

and the "204 No Content" shall be returned. On failure, the appropriate error code shall be returned,

and the response message body may provide additional error information. If the specified resource

does not exist, the resource code 404 shall be returned.

An example of the YAML definition of this operation on a specified resource can be found in

Appendix I.1.4.

9.2.5 Updating partial information of a resource instance

When updating partial information of a MO instance of a specific resource, the HTTP PATCH method

shall be used, and the target URI for this method shall be the URI of the resource to be updated with

the specific identifier, like the example shown in Table 10.

The input parameters of this operation shall contain the information for partial updates of the resource.

The format of a JSON patch or JSON merge patch document describing a set of modification

instructions to be applied to the target resource can be found in [RFC 7396]. On success, "200 OK"

together with the representation of the updated resource in the message body, or "204 No Content"

shall be returned. On failure, the appropriate error code shall be returned, and the response message

body may provide additional error information.

An example of the YAML definition of this operation on a specified resource can be found in

Appendix I.1.5.

9.2.6 Deleting a resource instance

When deleting a specific resource, the HTTP DELETE method shall be used, and the target URI for

this method shall be the URI of the resource to be deleted with the specific identifier, like the example

shown in Table 10. There is no need to provide other input parameters in this delete operation.

On success, the "204 No Content" shall be returned, and the message body is empty. On failure, the

appropriate error code shall be returned, and the response message body may provide additional error

information.

An example of the YAML definition of this operation on a specified resource can be found in

Appendix I.1.6.

10 Information modelling guidelines for REST-based interfaces

10.1 Resource Modeling

In this Recommendation, MOC represents a resource which is the unit of a collection of attributes.

Resource should be defined as a path in YAML/JSON schema.

When using YAML/JSON schema to define the content of an MOC, the YAML object is used for

modelling the MOC. A YAML/JSON object contains a sequence which can include one or more

properties. Each object corresponding to an MOC should have a "_C" as the suffix to the name.

Other common attribute data types can also be defined as object, but they should use the suffix "Type"

in the type name.

16 Rec. ITU-T X.785 (07/2021)

10.2 Attribute

Attributes and states of an MOC are defined as the properties in the object corresponding to an MOC.

10.3 Name conventions for MOCs, attributes and data types

The following name conventions are applied for YAML/JSON schema based modelling:

– All the attributes of an MOC are defined as an YAML/JSON object, the name of the MOC

should have a "_C" as name suffix, with the first character capitalized, so that this object can

be distinguished from other normal data type definitions. For example: ManagedObject_C,

Equipment_C.

– An attribute of an MOC is defined as a property within the YAML/JSON object presenting

an MOC, and the first character of an attribute name should be in lower case.

– A normal data type definition should have a "Type" as its name suffix, with the first character

capitalized to make it more readable. For example: AdminstrativeStateType.

– Use lowerCamelCase, e.g., "personName" for attribute.

– Use UpperCamelCase for defining data type names.

– A set-valued type (unordered set) should have SetType as its name suffix, and a list-valued

type (ordered sequence) should have ListType as its name suffix.

10.4 Other guidelines

– Normal operations, including create, retrieve, update and delete (CRUD), should be defined

as HTTP operations (post, get, put/patch, and delete).

– Input parameters of a request should be either defined as path parameters, or in the

requestBody of the request.

– Possible return values should be defined using different response codes for different

branches, which can provide the corresponding meaning descriptions, as well as the return

data types.

– Detailed parameters should be defined in the ''parameters'' part of the JSON/YAML interface

file.

– Entity information and concrete data types should be defined in the ''definitions'' part of the

JSON/YAML interface file.

– Tag in an JSON/YAML interface can be used to make several operations for one or more

resources as a group, and it will help to organize certain operations for the same purpose.

11 Compliance and conformance

This clause defines the criteria that must be met by other standard documents claiming compliance to

these guidelines and the functions that must be implemented by systems claiming conformance to

this Recommendation.

11.1 Standards document compliance

Any specification claiming compliance with these guidelines shall:

1) Define all classes that model resources as a derivation (direct or indirect) from the

ManagedObject_C described in clause 8.2.1 and defined in the JSON/YAML schema in

clause A.1.

2) Support the attributes inheritance using the mechanism specified in clause 8.2.2.

3) Use the definitions for generic attribute types found in clause 8.2.3 wherever applicable.

 Rec. ITU-T X.785 (07/2021) 17

4) Use the common data types defined in the JSON/YAML schema in clause A.1 whenever

appropriate.

5) Define specific management information models and REST-based interface following the

guidelines and conventions specified in clause 10.

11.2 System conformance

An implementation claiming conformance to this Recommendation shall:

1) Either support all of the capabilities of the generic MO accessing methods as described in

clause 9.1, and support the corresponding REST interface as defined in clause A.2; or

2) Support specific MO accessing methods following the guidelines as defined in clause 9.2.

11.3 Conformance statement guidelines

The conformance statement must identify a document and year of publication to make sure the right

version of YAML/JSON schema is identified.

18 Rec. ITU-T X.785 (07/2021)

Annex A

Common REST-based YAML/JSON schema definitions

(This annex forms an integral part of this Recommendation.)

In this Annex, the common definitions of REST interfaces as well as some common JSON/YAML

schema based data types are defined.

A.1 YAML schema definitions for the generic managed object and common data types

Table A.1 provides the YAML schema of the generic MOC ManagedObject_C, and the common

attribute data types that can be shared when defining specific interface information models.

Table A.1 – YAML schema for ManagedObject_C and common data types

components:

 schemas:

 ManagedObject_C:

 type: object

 required:

 - objectClass

 - objectInstance

 properties:

 objectClass:

 type: string

 objectInstance:

 type: string

 format: uri

 creationSource:

 $ref: '#/components/schemas/SourceIndicatorType'

 SourceIndicatorType:

 type: string

 enum:

 - resourceOperation

 - managementOperation

 - unknown

 ContainmentRelationshipType:

 type: object

 properties:

 associationRelationshipName:

 type: string

 associationDirection:

 $ref: '#/components/schemas/DirectionType'

 fromClass:

 type: string

 fromAssociationAttribute:

 type: string

 fromMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 toClass:

 type: string

 toAssociationAttribute:

 type: string

 toMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 Rec. ITU-T X.785 (07/2021) 19

 AssociationRelationshipType:

 type: object

 properties:

 associationRelationshipName:

 type: string

 associationDirection:

 $ref: '#/components/schemas/DirectionType'

 fromClass:

 type: string

 fromAssociationAttribute:

 type: string

 fromMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 toClass:

 type: string

 toAssociationAttribute:

 type: string

 toMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 MultiplicityType:

 type: string

 enum:

 - zero_to_one

 - zero_to_n

 - one

 - one_to_n

 - n

 DirectionType:

 type: string

 enum:

 - unidirectional

 - bidirectional

 AdministrativeStateType:

 type: string

 enum:

 - locked

 - unlocked

 - shuttingDown

 AvailabilityStatusType:

 type: string

 enum:

 - inTest

 - failed

 - powerOff

 - offLine

 - offDuty

 - dependency

 - degraded

 - notInstalled

 - logFull

 AvailabilityStatusSetType:

 type: array

 items:

 $ref: '#/components/schemas/AvailabilityStatusType'

20 Rec. ITU-T X.785 (07/2021)

 BackedUpStatusType:

 type: boolean

 ControlStatusType:

 type: string

 enum:

 - inTestsubjectToTest

 - partOfServicesLocked

 - reservedForTest

 - suspended

 ControlStatusSetType:

 type: array

 items:

 $ref: '#/components/schemas/ControlStatusType'

 ExternalTimeType:

 type: string

 format: dateTime

 OperationalStateType:

 type: string

 enum:

 - disabled

 - enabled

 ProceduralStatusType:

 type: string

 enum:

 - initializationRequired

 - notInitialized

 - initializing

 - reporting

 - terminating

 ProceduralStatusSetType:

 type: array

 items:

 $ref: '#/components/schemas/ProceduralStatusType'

 StandbyStatusType:

 type: string

 enum:

 - hotStandby

 - coldStandby

 - providingService

 UnknownStatusType:

 type: boolean

 UsageStateType:

 type: string

 enum:

 - idle

 - active

 - busy

 Rec. ITU-T X.785 (07/2021) 21

A.2 YAML/JSON schema definitions for common object accessing methods

This clause provides the generic MO accessing methods and also provides the JSON schema

definitions used in these operations.

[RFC 7231], [RFC 7232] and [RFC 6585] provide dozens of definitions for status codes, which will

likely be referenced in implementations of this Recommendation. In summary, these status codes can

be found in Table A.2.

Table A.2 – Definitions of status code

Category Status code Definition Reference

Informational 1xx
100 Continue [RFC 7231]

101 Switching protocols [RFC 7231]

Successful 2xx

200 OK [RFC 7231]

201 Created [RFC 7231]

202 Accepted [RFC 7231]

203 Non-authoritative information [RFC 7231]

204 No content [RFC 7231]

205 Reset content [RFC 7231]

Redirection 3xx

300 Multiple choices [RFC 7231]

301 Moved permanently [RFC 7231]

302 Found [RFC 7231]

303 See other [RFC 7231]

304 Not modified [RFC 7232]

305 Use proxy [RFC 7231]

306 (Unused) [RFC 7231]

307 Temporary redirect [RFC 7231]

Client error 4xx

400 Bad request [RFC 7231]

402 Payment required [RFC 7231]

403 Forbidden [RFC 7231]

404 Not found [RFC 7231]

405 Method not allowed [RFC 7231]

406 Not acceptable [RFC 7231]

408 Request timeout [RFC 7231]

409 Conflict [RFC 7231]

410 Gone [RFC 7231]

411 Length required [RFC 7231]

412 Precondition failed [RFC 7232]

413 Request entity too large [RFC 7231]

414 Request-URI too long [RFC 7231]

415 Unsupported media type [RFC 7231]

417 Expectation failed [RFC 7231]

426 Upgrade required [RFC 7231]

428 Precondition required [RFC 6585]

22 Rec. ITU-T X.785 (07/2021)

Table A.2 – Definitions of status code

Category Status code Definition Reference

429 Too many requests [RFC 6585]

431 Request header fields too large [RFC 6585]

Server error 5xx

500 Internal server error [RFC 7231]

501 Not implemented [RFC 7231]

502 Bad gateway [RFC 7231]

503 Service unavailable [RFC 7231]

504 Gateway timeout [RFC 7231]

505 HTTP version not supported [RFC 7231]

511 Network authentication required [RFC 6585]

A.2.1 createMO operation

The createMO operation is used to create an instance of an MO class. The REST interface definition

for this operation contains the following:

(1) The request URL: the URI of the generic MOAccessService. This operation is equivalent to

adding a new instance of a managed resource in a collection resource.

(2) The HTTP method: the create resource operation should be mapped to the ''POST'' request

method.

(3) The content of the request body: the createMO operation needs to give all the attribute names

and the corresponding values of the managed object instance (MOI) to be created in the

request body. The request body type is CreateMORequest, and its JSON Schema type inherits

from the ManagedObject_C base class.

(4) Possible response codes and corresponding response body contents: the possible status codes

for the operation are 201, 400, 404, 405, 409, and 500. When the status code is 201, the

creation is successful, and the MO ID will be returned in the response body. The URI

identifier of the newly created object instance needs to be given in the location header field

of the response, and all attribute information of the newly created object is returned in the

response body. In general, the status code 404 indicates the URL does not exist; the status

code 405 indicates this operation is not allowed for the specified resource; the status code

500 indicates there is an internal server error. The status code 409 indicates that there is a

conflict. If the ID of the newly created managed object is determined by the client side, there

may be a 409 conflict; if it is determined by the server side, there will be no 409 conflict.

When the response status code is 400, the error information returned in the response body is

CreateMOErrorInfo, and the enumeration values of the error type in the code attribute

information include: objectClassSpecificationMissmatched, InvalidObjectInstance,

noSuchObjectClass, noSuchAttribute, invalidAttributeValue, missingAttributeValue, and

the JSON schema is of the CreateMOErrorInfo type. Based on the above analysis, the JSON

schema interface definition of the createMO operation can be found in Table A.3.

 Rec. ITU-T X.785 (07/2021) 23

Table A.3 – JSON schema definition of createMO operation

Name JSON schema

REQUEST "POST" "/MOAccessService" {HTTPVersion} {RequestBody}

RequestBody CreateMORequest : extends ManagedObject_C

RESPONSE {HTTPVersion} {StatusCode} {ReasonPhrase}

Location: {URI}

{ResponseBody}

The YAML schema definitions of the createMO operation can be defined in Table A.4.

Table A.4 – YAML schema definition of createMO operation

paths:

 /MOAccessService:

 post:

 tags:

 - MOAccessService

 summary: "createMO"

 description: "create an MO instance with the specified attribute list"

 operationId: "createMO"

 requestBody:

 description: "The input parameters of the createMO operation"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/CreateMORequest'

 required: true

 responses:

 201:

 description: "MO is successfully created, and the new MO ID value

will be returned."

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/MOID'

 400:

 description: "Parameter Error occurred in the createMO operation"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/CreateMOErrorInfo'

 404:

 description: "The URL does not exist"

 content: {}

 405:

 description: "Method Not Allowed"

 content: {}

 409:

 description: "Conflict MO Id"

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

components:

 schemas:

24 Rec. ITU-T X.785 (07/2021)

 MOInfo:

 type: object

 properties:

 moInfo:

 $ref: '#/components/schemas/ManagedObject_C'

 attributeList:

 type: array

 items:

 $ref: '#/components/schemas/NVPair'

 NVPair:

 type: object

 required:

 - name

 - value

 properties:

 name:

 type: string

 value:

 type: string

 type:

 type: string

 NVPairList:

 type: object

 properties:

 attributeList:

 type: array

 items:

 $ref: '#/components/schemas/NVPair'

 CreateMORequest:

 allOf:

 - $ref: '#/components/schemas/ManagedObject_C'

 - $ref: '#/components/schemas/NVPairList'

 CreateMOErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - objectClassSpecificationMissmatched

 - invalidObjectInstance

 - noSuchObjectClass

 - noSuchAttribute

 - invalidAttributeValue

 - missingAttributeValue

 message:

 type: string

 required:

 - code

 MOID:

 type: string

 format: uri

A.2.2 getMOAttributes operation

The getMOAttributes operation is used to get all or part of the attribute values of an MO instance.

The REST interface definition for this operation contains the following:

 Rec. ITU-T X.785 (07/2021) 25

(1) The request URL: the URI of the generic MOAccessService. This operation supports

querying all attribute values or partial attribute values of a managed object instance. The

input parameters contain object class, and MO instance, which identifies the managed object

to be queried. If the client needs to query partial attribute values, the list of attribute names

to be queried should be listed in the query parameters in the request body; otherwise the

response returns all the attribute values of the specified MO;

(2) The HTTP method: this operation is a query operation and should be mapped to the 'GET'

request method.

(3) Possible response codes and corresponding response body contents: the possible status codes

of the method are 200, 400, 404, and 500. When the request is successful, the response status

code is 200, and the object containing the attribute name and value pairs is returned in the

response body, and the JSON schema is of the ''MOInfo'' type. When the response status code

is 400, the response body will give the error reason for the request failure. The error

information type GetMOAttributesErrorInfo of the method gives the code attribute

information unique to the method. The enumerated values include four types:

duplicateInvocation, resourceLimitation, operationCancelled, and complexityLimitation.

The status code 404 indicates the MO instance does not exist; the status code 500 indicates

there is an internal server error.

Based on the above analysis, the JSON schema interface definition of the getMOAttributes operation

can be found in Table A.5.

Table A.5 – JSON schema definition of getMOAttributes operation

Name JSON schema

REQUEST "GET" "/MOAccessService" {HTTPVersion} {Parameters}

Parameters {objectClass, moInstance, [{attributeNameList}]}

attributeNameList {attributeName} ("," {attributeName})*

RESPONSE {HTTPVersion} {StatusCode} {ReasonPhrase} {ResponseBody}

ResponseBody MOInfo: object

The YAML schema definitions of the getMOAttributes operation can be defined in Table A.6.

Table A.6 – YAML schema definition of getMOAttributes operation

paths:

 /MOAccessService:

 get:

 tags:

 - MOAccessService

 summary: "getMOAttributes"

 description: "get the attributes information of a specific MO instance"

 operationId: "getMOAttributes"

 parameters:

 - name: objectClass

 in: query

 description: "The Obejct class of the specified MO instance"

 required: true

 schema:

 type: string

 - name: moInstance

 in: query

 description: "The unique ID of the specific MO instance"

 required: true

26 Rec. ITU-T X.785 (07/2021)

 schema:

 type: string

 format: uri

 - name: attributeNameList

 in: query

 description: "the attribute name of the string"

 required: false

 schema:

 type: array

 items:

 $ref: '#/components/schemas/attributeName'

 responses:

 200:

 description: "The attribute value list of the specified MO is retrieved

successfully"

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/MOInfo"

 400:

 description: "Parameter Error occured in the getMOAttributes

operation"

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/GetMOErrorInfo"

 404:

 description: "Specified MO Not found"

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

components:

 schemas:

 GetMOErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - duplicateInvocation

 - resourceLimitation

 - operationCancelled

 - complexityLimitation

 message:

 type: string

 required:

 - code

 attributeName:

 type: string

A.2.3 setMOAttributes operation

The setMOAttributes operation is used to set or modify all or part of the attribute values of an MO

instance. The REST interface definition for this operation contains the following:

(1) The HTTP method: this is an operation to update the resource attribute, and supports partial

updating of the MO attributes, so it should be mapped to the 'PATCH' request method.

 Rec. ITU-T X.785 (07/2021) 27

(2) The content of the request body: the setMOAttributes operation needs to give the attribute

name and value pairs of the MO instance to be modified in the request body, and the JSON

schema of the request body is of an ''object'' type.

(3) Possible response codes and corresponding response body contents: the possible status codes

of the method are 200, 204, 400, 404, 405, and 500. The 200 status code indicates that the

operation has been successfully processed, maybe with some minor changes, and the

response body contains the updated new values of the specified MO instance; the 204 status

code indicates that the operation has been successfully processed without any changes, and

no response is needed. When the status code is 400, the error information returned in the

response body is SetMOAttributesErrorInfo, and the enumeration values of the error type in

the code attribute information include modifyNotAllowed, noSuchAttribute,

invalidAttributeValue, missingAttributeValue, complexityLimitation. The status code 404

indicates the MO instance does not exist; the status code 405 indicates this operation is not

allowed for the specified resource; the status code 500 indicates there is an internal server

error.

Based on the above analysis, the JSON schema definition of the setMOAttributes operation can be

found in Table A.7.

Table A.7 – JSON schema definition of setMOAttributes operation

Name JSON schema

REQUEST "PATCH" {"/MOAccessService"} {HTTPVersion}{RequestBody}

RequestBody MOInfo: object

RESPONSE {HTTPVersion} {StatusCode} {ReasonPhrase}

The YAML schema definitions of the setMOAttributes operation is defined in Table A.8.

Table A.8 – YAML schema definition of setMOAttributes operation

paths:

 /MOAccessServie

 patch:

 tags:

 - MOAccessService

 summary: Set attribute values of an MO instance

 operationId: setMOAttributes

 requestBody:

 description: MO information that is used for modification

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/MOInfo'

 required: true

 responses:

 200:

 description: "The specified MO instance attributes are updated

successfullly."

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/MOInfo'

 204:

 description: "MO successfully modified, without any change. No

28 Rec. ITU-T X.785 (07/2021)

response is needed."

 400:

 description: "Parameter Error occurred in the setMOAttributes

operation"

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/SetMOAttributesErrorInfo"

 404:

 description: Specific MO does not exist.

 content: {}

 405:

 description: Validation parameter

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

components:

 schemas:

 SetMOAttributesErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - modifyNotAllowed

 - noSuchAttribute

 - invalidAttributeValue

 - missingAttributeValue

 - complexityLimitation

 message:

 type: string

 required:

 - code

A.2.4 deleteMO operation

The deleteMO operation is used to delete an MO instance. The REST interface definition for this

operation contains the following:

(1) The request URL: the URI of the generic MOAccessService. This operation supports deleting

a specified managed object instance. The input parameters contain the object class, and MO

instance to be deleted.

(2) The HTTP method: this operation is to delete a resource operation, so it should be mapped

to the 'DELETE' request method.

(3) Possible response codes and corresponding response body contents: The possible status codes

of the method are 200, 400, 404, 405, and 500. When the response status code is 400, the

error information returned in the response body is DeleteMOErrorInfo, and the enumeration

values of the error type in the code attribute information include resourceLimitation and

complexityLimitation. The status code 404 indicates the MO instance does not exist; the

status code 405 indicates the ''DELETE'' operation is not allowed for the specified resource;

the status code 500 indicates there is an internal server error. Based on the above analysis,

the JSON schema definition of the deleteMO operation can be found in Table A.9.

 Rec. ITU-T X.785 (07/2021) 29

Table A.9 – JSON schema definition of deleteMO operation

Name JSON schema

REQUEST "DELETE" "/MOAccessService" {HTTPVersion} {RequestBody}

RequestBody DeleteMORequest : object

RESPONSE {HTTPVersion} {StatusCode} {ReasonPhrase}

The YAML schema definitions of the deleteMO operation can be defined in Table A.10.

Table A.10 – YAML schema definition of deleteMO operation

paths:

 /MOAccessService:

 delete:

 tags:

 - MOAccessService

 summary: "deleteMO"

 description: "delete a specific MO instance"

 operationId: "deleteMO"

 parameters:

 - name: objectClass

 in: query

 description: "The Object class of the specified MO instance"

 required: true

 schema:

 type: string

 - name: moInstance

 in: query

 description: "The unique ID of the specific MO instance"

 required: true

 schema:

 type: string

 format: uri

 responses:

 200:

 description: "The specified MO instance is deleted successfullly"

 content: {}

 400:

 description: "Parameter Error occurred in the deleteMO operation"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/DeleteMOErrorInfo'

 404:

 description: "Specified MO does not exist"

 content: {}

 405:

 description: "Method Not Allowed, the specified MO cannot be deleted"

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

components:

 schemas:

 DeleteMOErrorInfo:

 type: object

 properties:

 code:

30 Rec. ITU-T X.785 (07/2021)

 type: string

 enum:

 - resourceLimitation

 - complexityLimitation

 message:

 type: string

 required:

 - code

A.2.5 Complete definitions of the MO access service

In summary, the REST interface definition of the four operations of the MO access service can be

found in Table A.11.

Table A.11 – Complete interface definition of MOAccessService operations

openapi: 3.0.0

info:

 title: ITU-T_MOAccessService

 description: 'This is the formal definition of the generic MO Access Service.'

 termsOfService: https://www.itu.int/en/ITU-T/about/Pages/default.aspx

 contact:

 email: zlwang@bupt.edu.cn

 license:

 name: Apache 2.0

 url: http://www.apache.org/licenses/LICENSE-2.0.html

 version: 1.0.0

externalDocs:

 description: See Recommendation ITU-T X.785

 url: https://www.itu.int/itu-t/recommendations/index.aspx?ser=X

servers:

- url: https://www.itu.int/demo/genericMOAccessService/v1.0.0

- url: http://www.itu.int/demo/genericMOAccessService/v1.0.0

tags:

- name: MOAccessService

 description: All APIs realted to the generic MO Access Service

 externalDocs:

 description: Find out more

 url: https://www.itu.int/itu-t/recommendations/index.aspx?ser=X

paths:

 /MOAccessService:

 post:

 tags:

 - MOAccessService

 summary: "createMO"

 description: "create an MO instance with the specified attribute list"

 operationId: "createMO"

 requestBody:

 description: "The input parameters of the createMO operation"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/CreateMORequest'

 required: true

 responses:

 201:

 description: "MO is successfully created, and the new MO ID value will

be returned."

 content:

 Rec. ITU-T X.785 (07/2021) 31

 application/json:

 schema:

 $ref: '#/components/schemas/MOID'

 400:

 description: "Parameter Error occurred in the createMO operation"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/CreateMOErrorInfo'

 404:

 description: "The URL does not exist"

 content: {}

 405:

 description: "Method Not Allowed"

 content: {}

 409:

 description: "Conflict MO Id"

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

 get:

 tags:

 - MOAccessService

 summary: "getMOAttributes"

 description: "get the attributes information of a specific MO instance"

 operationId: "getMOAttributes"

 parameters:

 - name: objectClass

 in: query

 description: "The Obejct class of the specified MO instance"

 required: true

 schema:

 type: string

 - name: moInstance

 in: query

 description: "The unique ID of the specific MO instance"

 required: true

 schema:

 type: string

 format: uri

 - name: attributeNameList

 in: query

 description: "the attribute name of the string"

 required: false

 schema:

 type: array

 items:

 $ref: '#/components/schemas/attributeName'

 responses:

 200:

 description: "The attribute value list of the specified MO is retrieved

successfully"

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/MOInfo"

 400:

32 Rec. ITU-T X.785 (07/2021)

 description: "Parameter Error occured in the getMOAttributes

operation"

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/GetMOErrorInfo"

 404:

 description: "Specified MO Not found"

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

 delete:

 tags:

 - MOAccessService

 summary: "deleteMO"

 description: "delete a specific MO instance"

 operationId: "deleteMO"

 parameters:

 - name: objectClass

 in: query

 description: "The Object class of the specified MO instance"

 required: true

 schema:

 type: string

 - name: moInstance

 in: query

 description: "The unique ID of the specific MO instance"

 required: true

 schema:

 type: string

 format: uri

 responses:

 200:

 description: "The specified MO instance is deleted successfullly"

 content: {}

 400:

 description: "Parameter Error occurred in the deleteMO operation"

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/DeleteMOErrorInfo'

 404:

 description: "Specified MO does not exist"

 content: {}

 405:

 description: "Method Not Allowed, the specified MO cannot be deleted"

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

 patch:

 tags:

 - MOAccessService

 summary: Set attribute values of an MO instance

 operationId: setMOAttributes

 requestBody:

 description: MO information that is used for modification

 Rec. ITU-T X.785 (07/2021) 33

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/MOInfo'

 required: true

 responses:

 200:

 description: "The specified MO instance attributes are updated

successfullly."

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/MOInfo'

 204:

 description: "MO successfully modified, without any change. No

response is needed."

 400:

 description: "Parameter Error occurred in the setMOAttributes

operation"

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/SetMOAttributesErrorInfo"

 404:

 description: Specific MO does not exist.

 content: {}

 405:

 description: Validation parameter

 content: {}

 500:

 description: "Internal Server Error"

 content: {}

components:

 schemas:

 ManagedObject_C:

 type: object

 required:

 - objectClass

 - objectInstance

 properties:

 objectClass:

 type: string

 objectInstance:

 type: string

 format: uri

 creationSource:

 $ref: '#/components/schemas/SourceIndicatorType'

 SourceIndicatorType:

 type: string

 enum:

 - resourceOperation

 - managementOperation

 - unknown

 ContainmentRelationshipType:

 type: object

 properties:

 associationRelationshipName:

34 Rec. ITU-T X.785 (07/2021)

 type: string

 associationDirection:

 $ref: '#/components/schemas/DirectionType'

 fromClass:

 type: string

 fromAssociationAttribute:

 type: string

 fromMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 toClass:

 type: string

 toAssociationAttribute:

 type: string

 toMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 AssociationRelationshipType:

 type: object

 properties:

 associationRelationshipName:

 type: string

 associationDirection:

 $ref: '#/components/schemas/DirectionType'

 fromClass:

 type: string

 fromAssociationAttribute:

 type: string

 fromMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 toClass:

 type: string

 toAssociationAttribute:

 type: string

 toMuitiplicity:

 $ref: '#/components/schemas/MultiplicityType'

 MultiplicityType:

 type: string

 enum:

 - zero_to_one

 - zero_to_n

 - one

 - one_to_n

 - n

 DirectionType:

 type: string

 enum:

 - unidirectional

 - bidirectional

 AdministrativeStateType:

 type: string

 enum:

 - locked

 - unlocked

 - shuttingDown

 AvailabilityStatusType:

 type: string

 Rec. ITU-T X.785 (07/2021) 35

 enum:

 - inTest

 - failed

 - powerOff

 - offLine

 - offDuty

 - dependency

 - degraded

 - notInstalled

 - logFull

 AvailabilityStatusSetType:

 type: array

 items:

 $ref: '#/components/schemas/AvailabilityStatusType'

 BackedUpStatusType:

 type: boolean

 ControlStatusType:

 type: string

 enum:

 - inTestsubjectToTest

 - partOfServicesLocked

 - reservedForTest

 - suspended

 ControlStatusSetType:

 type: array

 items:

 $ref: '#/components/schemas/ControlStatusType'

 ExternalTimeType:

 type: string

 format: dateTime

 OperationalStateType:

 type: string

 enum:

 - disabled

 - enabled

 ProceduralStatusType:

 type: string

 enum:

 - initializationRequired

 - notInitialized

 - initializing

 - reporting

 - terminating

 ProceduralStatusSetType:

 type: array

 items:

 $ref: '#/components/schemas/ProceduralStatusType'

 StandbyStatusType:

 type: string

 enum:

 - hotStandby

36 Rec. ITU-T X.785 (07/2021)

 - coldStandby

 - providingService

 UnknownStatusType:

 type: boolean

 UsageStateType:

 type: string

 enum:

 - idle

 - active

 - busy

 MOInfo:

 type: object

 properties:

 moInfo:

 $ref: '#/components/schemas/ManagedObject_C'

 attributeList:

 type: array

 items:

 $ref: '#/components/schemas/NVPair'

 NVPair:

 type: object

 required:

 - name

 - value

 properties:

 name:

 type: string

 value:

 type: string

 type:

 type: string

 NVPairList:

 type: object

 properties:

 attributeList:

 type: array

 items:

 $ref: '#/components/schemas/NVPair'

 CreateMORequest:

 allOf:

 - $ref: '#/components/schemas/ManagedObject_C'

 - $ref: '#/components/schemas/NVPairList'

 CreateMOErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - objectClassSpecificationMissmatched

 - invalidObjectInstance

 - noSuchObjectClass

 - noSuchAttribute

 - invalidAttributeValue

 Rec. ITU-T X.785 (07/2021) 37

 - missingAttributeValue

 message:

 type: string

 required:

 - code

 GetMOErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - duplicateInvocation

 - resourceLimitation

 - operationCancelled

 - complexityLimitation

 message:

 type: string

 required:

 - code

 SetMOAttributesErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - modifyNotAllowed

 - noSuchAttribute

 - invalidAttributeValue

 - missingAttributeValue

 - complexityLimitation

 message:

 type: string

 required:

 - code

 DeleteMOErrorInfo:

 type: object

 properties:

 code:

 type: string

 enum:

 - resourceLimitation

 - complexityLimitation

 message:

 type: string

 required:

 - code

 attributeName:

 type: string

 MOID:

 type: string

 format: uri

38 Rec. ITU-T X.785 (07/2021)

Appendix I

An example of REST-based interface definitions for resource

(This appendix does not form an integral part of this Recommendation.)

I.1 An example showing the CRUD definitions for a specific resource

An example of the YAML definitions of CRUD operations for a specific resource indicating a kind

of MO is illustrated in this appendix.

Suppose the target MOC is equipment as described in [ITU-T M.3160], in order to show the entity

information as an example, a simplified attributes definition may contain the following list, as shown

in Table I.1.

Table I.1 – Attribute list of MOC equipment

Attribute name Support qualifier Type

equipmentId M String

serialNumber M String

locationName O String

userLabel O String

vendorName O String

Part of the YAML entity for Equipment_C and PartialEquipmentAttributeType definitions may look

like the following:

components:

 schemas:

 Equipment_C:

 allOf:

 - $ref: '#/components/schemas/ManagedObject_C'

 - properties:

 equipmentId:

 type: string

 serialNumber:

 type: string

 locationName:

 type: string

 userLabel:

 type: string

 vendorName:

 type: string

 - required:

 - equipmentId

 - serialNumber

 PartialEquipmentAttributeType:

 type: object

 properties:

 serialNumber:

 type: string

 locationName:

 type: string

 userLabel:

 type: string

 vendorName:

 type: string

 Rec. ITU-T X.785 (07/2021) 39

According to clause 9.2, the collection resource URI example of "Equipment" is shown in Table 9;

and the document resource URI example of "Equipment" is shown in Table 10. There are several

operations for the access of equipment instances that will be shown in the following sections.

I.1.1 Creating an "Equipment" resource instance

Corresponding to clause 9.2.1, the following example for creating an ''Equipment'' resource instance

can be shown as the following:

paths:

 /Network={networkId}/ManagedElement={manageElementId}/Equipment:

 post:

 tags:

 - Equipment

 summary: Create an instance of Equipment

 operationId: createEquipment

 parameters:

 - name: networkId

 in: path

 description: ID of Network

 required: true

 schema:

 type: string

 - name: manageElementId

 in: path

 description: ID of ManagedElement

 required: true

 schema:

 type: string

 requestBody:

 description: Equipment MO information that needs to be created

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Equipment_C'

 required: true

 responses:

 201:

 description: Successfully Created

 content: {}

 400:

 description: Invalid ID supplied

 content: {}

 405:

 description: Validation exception

 content: {}

I.1.2 Reading a group of "Equipment" resource instances by a collection resource

Corresponding to clause 9.2.2, the following example for reading a group of ''Equipment'' resource

instances by a collection resource can be shown as the following:

paths:

 /Network={networkId}/ManagedElement={manageElementId}/Equipment:

 get:

 tags:

 - Equipment

 summary: Get a list of Equipment under the specific parent MO

 description: On success, the list of Equipment entity information will be

returned.

 operationId: getEquipmentList

40 Rec. ITU-T X.785 (07/2021)

 parameters:

 - name: networkId

 in: path

 description: ID of Network

 required: true

 schema:

 type: string

 - name: manageElementId

 in: path

 description: ID of ManagedElement

 required: true

 schema:

 type: string

 responses:

 200:

 description: successful operation

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Equipment_C'

 404:

 description: Specific parent MO does not exist.

 content: {}

I.1.3 Reading a specific "Equipment" resource instance

Corresponding to clause 9.2.3, the following example for reading a specific ''Equipment'' resource

instances can be shown as the following:

paths:

/Network={networkId}/ManagedElement={manageElementId}/Equipment={equipmentId}:

 get:

 tags:

 - Equipment

 summary: Get an Equipment instance under the specific parent MO

 description: On success, the specified Equipment entity information will

be returned.

 operationId: getEquipment

 parameters:

 - name: networkId

 in: path

 description: ID of Network

 required: true

 schema:

 type: string

 - name: manageElementId

 in: path

 description: ID of ManagedElement

 required: true

 schema:

 type: string

 - name: equipmentId

 in: path

 description: ID of Equipment

 required: true

 schema:

 type: string

 responses:

 200:

 Rec. ITU-T X.785 (07/2021) 41

 description: successful operation

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Equipment_C'

 404:

 description: Specific Equipment MOI does not exist.

 content: {}

I.1.4 Updating a complete representation of a specific "Equipment" resource instance

Corresponding to clause 9.2.4, the following example for updating a complete representation of a

specific ''Equipment'' resource instance can be shown as the following:

paths:

/Network={networkId}/ManagedElement={manageElementId}/Equipment={equipmentId}:

 put:

 tags:

 - Equipment

 summary: Replace an instance of Equipment

 operationId: replaceEquipment

 parameters:

 - name: networkId

 in: path

 description: ID of Network

 required: true

 schema:

 type: string

 - name: manageElementId

 in: path

 description: ID of ManagedElement

 required: true

 schema:

 type: string

 - name: equipmentId

 in: path

 description: ID of Equipment

 required: true

 schema:

 type: string

 requestBody:

 description: Equipment MO information that is used for replacement

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Equipment_C'

 required: true

 responses:

 200:

 description: MO successfully replaced, there may include some changes,

and the new MO value will be returned.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Equipment_C'

 204:

 description: MO successfully replaced, without any change.

 404:

 description: Specific MO does not exist.

 content: {}

 405:

42 Rec. ITU-T X.785 (07/2021)

 description: Validation parameter

 content: {}

I.1.5 Updating partial information of a specific "Equipment" resource

Corresponding to clause 9.2.5, the following example for updating partial information of a specific

''Equipment'' resource instance can be shown as the following:

paths:

/Network={networkId}/ManagedElement={manageElementId}/Equipment={equipmentId}:

 patch:

 tags:

 - Equipment

 summary: Set partial attribute value of an Equipment instance

 operationId: setEquipment

 parameters:

 - name: networkId

 in: path

 description: ID of Network

 required: true

 schema:

 type: string

 - name: manageElementId

 in: path

 description: ID of ManagedElement

 required: true

 schema:

 type: string

 - name: equipmentId

 in: path

 description: ID of Equipment

 required: true

 schema:

 type: string

 requestBody:

 description: Equipment MO information that is used for replacement

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/PartialEquipmentAttributeType'

 required: true

 responses:

 200:

 description: MO attribute values successfully modified, and the new

MO value will be returned.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Equipment_C'

 204:

 description: MO successfully modified, without any change. No response

is needed.

 404:

 description: Specific MO does not exist.

 content: {}

 405:

 description: Validation parameter

 content: {}

 Rec. ITU-T X.785 (07/2021) 43

I.1.6 Deleting an "Equipment" resource

Corresponding to clause 9.2.6, the following example for deleting a specific ''Equipment'' resource

instance can be shown as the following:

paths:

 /Network={networkId}/ManagedElement={manageElementId}/Equipment=

{equipmentId}:

 delete:

 tags:

 - Equipment

 summary: Deletes an instance of Equipment

 operationId: deleteEquipment

 parameters:

 - name: networkId

 in: path

 description: ID of Network

 required: true

 schema:

 type: string

 - name: manageElementId

 in: path

 description: ID of ManagedElement

 required: true

 schema:

 type: string

 - name: equipmentId

 in: path

 description: ID of Equipment

 required: true

 schema:

 type: string

 responses:

 204:

 description: successful operation

 404:

 description: Specific Equipment does not exist.

 content: {}

 405:

 description: Specific Equipment cannot be deleted.

 content: {}

Following the above examples, an interface specification author can develop application-specific

REST-based interface operations for accessing specific resources.

44 Rec. ITU-T X.785 (07/2021)

Appendix II

Usage examples of the ContainmentRelationshipType and

AssociationRelationType

(This appendix does not form an integral part of this Recommendation.)

In clauses 8.2.4 and 8.2.5, the definition of containment and association relationship of managed

objects are provided, and the ContainmentRelationshipType is defined. This appendix will show an

example on the usage of such types.

The ContainmentRelationshipType is used to express the containment relationship in the resource

model. Traditionally in guidelines for the definition of managed objects (GDMO), the containment

information is expressed in syntax by Name-Binding, but in REST, there is no syntax to express this

information. Usually, there are also UML diagrams associated with the information model, the

containment and association relationship can be expressed in UML, but if only data types are left in

REST interface definitions, the relationship information might be lost. In such cases, the

"ContainmentRelationshipType" and "AssociationRelationshipType" can be used in a formal way for

resource information model so that a program can parse such information immediately. The

information expressed using ContainmentRelationshipType and the AssociationRelationType is

equivalent to the information expressed in UML entity-relationship diagrams.

(1) An example for the usage of ContainmentRelationshipType is given in clause 8.2.4

For example, suppose the MOC EquipmentHolder may contain MOC CircuitPack

(See [ITU-T M.3160]), then a JSON instance of ContainmentRelationshipType may be provided as

shown in Table II.1.

Table II.1 – An example of ContainmentRelationshipType

{

“containmentRelationshipName”: “EquipmentHolder-CircuitPack-Containment”

“superiorClass: “EquipmentHolder”

“superiorClassMuitiplicity”: “one”

“subordinateClass”: “CircuitPack”

“subordinateClassMuitiplicity”: “zero_to_n”

“namingAttrbiute”: “circuitPackId”

}

The above example can be explained like this: one instance of MOC EquipmentHolder may contain

zero or multiple instances of MOC CircuitPack, and the naming attribute of CircuitPack is

circuitPackId. This is equivalent to the UML diagram as shown in Figure II.1.

Figure II.1 – An example of containment relationship in UML

 Rec. ITU-T X.785 (07/2021) 45

(2) An example for the usage of AssociationRelationshipType given in clause 8.2.5

For example, there is an association relationship between MOC Trail and MOC LinkConnection

(see [ITU-T M.3160]), a JSON instance of AssociationRelationshipType may be provided as shown

in Table II.2:

Table II.2 – An example of AssociationRelationshipType

{

“associationRelationshipName”: “Trail-LinkConnection-Association”

“associationDirection”: “bidirectional”

“fromClass: “Trail”

“fromAssociationAttribute”: “clientLinkConneciotnPointerList”

“fromMuitiplicity”: “zero_to_n”

“toClass”: “LinkConnection”

“toAssociationAttribute”: “serverTrailList”

“toMuitiplicity”: “zero_to_n”

}

The above example can be explained like this: zero or multiple instances of MOC Trail are associated

with zero or multiple instances of LinkConnection, and it is a bidirectional association, the name of

the relationship is Trail-LinkConnection-Association. The association attribute from the Trail MOC

to the LinkConnection MOC is clientLinkConneciotnPointerList, and the association attribute from

the LinkConnection MOC to the Trail MOC is serverTrailList. This is equivalent to the UML diagram

as shown in Figure II.2.

Figure II.2 – An example of association relationship in UML

The above examples should be used together with a resource model, which can provide extra

information than just JSON object definitions, as an optional choice. They are not used to express the

relationships between data instances but only used to express the relationship between classes in a

resource model. Its role in expressing containment and association relationships is similar to that of

UML, but in a JSON format, which may be resolved using the same tool for resolving REST

interfaces.

46 Rec. ITU-T X.785 (07/2021)

Appendix III

Background for REST and HTTP technologies

(This appendix does not form an integral part of this Recommendation.)

III.1 Background

REST technology is now broadly used in the IT Industry. In some organizations and fora, research

work has started on how to apply REST technology in the network management field as an alternative

interface technology.

When using a REST technology in network management interfaces, some guidelines on how to use

it to define interfaces and managed entities, as well as some supporting services should be provided.

These guidelines, supporting services and some common definitions of generic managed objects

together can be called the framework for REST-based paradigm.

The purpose of this document is to provide some related information in order to establish the

framework for defining REST based network management interfaces and supporting services, so that

in the future, specific REST-based interface definitions can follow those guidelines, and reuse some

common services.

III.2 Short review of REST and HTTP

III.2.1 REST design principles

REST stands for representational state transfer. It is an architectural style defined by the following

principles:

1) Client-server architecture

REST follows a client-server architecture. Client and server are linked by the uniform interface. The

server is concerned with data storage. The client manipulates this data with create, read, update and

delete (CRUD) operations. This architecture allows the client and server to evolve independently.

2) Stateless servers

REST servers are stateless, meaning that no client context is stored on the server. It is the client

holding the session state. Each request from a client contains all the information required to service

the request.

3) Cacheability

REST is cacheable. The client and any intermediary can cache responses, helping to improve system

scalability and performance.

4) Layered system

REST is a layered system. A client cannot know if it is interacting with the end server or an

intermediate server on the way to the end server. Each component has only knowledge about the

component it is interacting with. All components are independent and easily replaceable or

extendable. This improves system scalability and enables load-balancing.

5) Code on demand

Code on demand is an optional REST feature. It allows servers to transfer executable code to the

client, thereby extending the functionality of the client.

 Rec. ITU-T X.785 (07/2021) 47

6) Uniform interface

The uniform interface is the most important aspect of REST. Client and server communicate via the

uniform interface. It is characterized by the following:

– Resource identification: The key concept is to abstract information into resources. These

resources have a unique resource identification. Requests are directed towards resources.

– Resource representation: Each resource has one or multiple representations. Representations

can be in e.g., XML, JSON or HTML. Resource representations are exchanged over the wire

together with any representation metadata. The metadata provides information about the

representation, such as its media type, the date of last modification, or even a checksum.

– Self-descriptive messages: Messages must be self-descriptive. All the information required

to process the message is included in the message.

– Hypermedia as the engine of application state (HATEOAS): This refers to the capability of

the server to send hyperlinks to the client allowing the client to traverse and dynamically

discover resources without referring to external documentation.

III.2.2 HTTP methods

HTTP has several methods that can be used for this Recommendation, which are listed in Table III.1.

Table III.1 – Introduction of HTTP methods to be used

HTTP methods Explanations

HTTP GET The HTTP GET method requests a representation of the resource specified by the

URI. It is used to retrieve one or multiple resources from the server. The query

component of the URI can be used for filtering purposes in case more than one

resource is scoped by the path-abempty part of the URI. Only those resources

passing the filtering criteria are returned.

HTTP HEAD The HTTP HEAD method returns only the headers that are returned with a HTTP

GET method together with the message body, except for the payload header fields.

This method can be used to check if resources exist.

HTTP POST The POST method sends data in the message body to the server. In contrast to HTTP

PUT, replacing the resource representation, it requests the target resource to process

the representation enclosed in the request according to the resource's own specific

semantics. With this method, it is possible to create a new resource.

When a new resource is created, 201 (Created) is returned. The returned location

header carries the URI of the created resource. The URI of the new resource is

created by the server. The response message body contains a representation of the

created resource.

HTTP PUT The HTTP PUT method requests that the resource representation of the target

resource be created or replaced with the representation enclosed in the request

message payload. This method replaces always the complete resource

representation. Partial resource modifications are not possible. If a resource at the

URI specified in the request does not exist yet, the server creates a new resource at

this URI.

Conditional requests ([RFC 7232]) using e.g., the entity tag (ETag) can be used to

prevent accidentally overwriting modifications made to a resource by another client

("lost update problem").

HTTP DELETE The DELETE method requests that the origin server deletes the resource identified

by the Request-URI. This does not imply that the underlying information is deleted

as well.

48 Rec. ITU-T X.785 (07/2021)

Table III.1 – Introduction of HTTP methods to be used

HTTP methods Explanations

HTTP PATCH The HTTP PUT method only allows a complete resource replacement. For this

reason, a new method, HTTP PATCH, has been defined by IETF in [RFC 5789] for

partial resource modifications. The set of changes to be applied is described in the

request message body.

HTTP has already provided several methods to carry the interaction capabilities between managing

and managed systems.

III.3 Benefits of introducing REST into network management domain

REST provides a simplified mechanism to connect applications regardless of the technology or

devices they use, or their location. They are based on industry standard protocols with universal

vendor support that can leverage the internet for low cost communications, as well as other transport

mechanisms. The loosely coupled messaging approach supports multiple connectivity and

information sharing scenarios via services that are self describing and can be automatically

discovered.

REST solutions uses HTTP as its operation protocols, which have been broadly used in the

IT-industry for years, and it is mature and cost effective. The following features can be made use of

when it is applied in the network management domain.

1) Good interoperability

REST solution has good support for it is universally interoperable, as far as the application supports

the globally used protocol HTTP, it can be connected to the REST environment.

2) Loosely coupled

Loosely coupled systems require a much simpler level of coordination and allow for more flexible

reconfiguration, compared to tightly coupled systems.

REST solutions are self-describing software modules that encapsulates discrete functionality. REST-

based services are accessible via standard internet communication protocol HTTP directly. These

services can be developed in any technology (like C++, Java, .NET, PHP, Pearl etc.) and any

application can access these services. So, the REST-based services are loosely coupled and can be

used by applications developed in any technology.

3) Broadly used

With the more rapid development of internet-based technologies, REST-based services are now

broadly used in the IT service industries, for example e-business, business-to-business applications.

4) Low cost

REST APIs are open standards, and many tools, products, technologies are based on HTTP

applications. This gives organizations a wide variety of choices, and they can select configurations

that best meet their application requirements. Developers can enhance their productivity with low

cost, rather than having to develop their own solutions, they can choose from a ready market of off-

the-shelf application components or third-party tools.

 Rec. ITU-T X.785 (07/2021) 49

Bibliography

[b-OAI-OAS3] OAI-OAS3 (2017), OpenAPI Initiative, OpenAPI Specification Version

3.0.0. http://spec.openapis.org/oas/v3.0.0

[b-3GPP TS 32.158] 3GPP TS 32.158 (2020), Management and orchestration; Design rules for

REpresentational State Transfer (REST) Solution Sets (SS) (Release 16),

Version 16.2.0.
https://www.3gpp.org/ftp/Specs/archive/32_series/32.158/32158-g20.zip

Printed in Switzerland
Geneva, 2021

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T X.785 (07/2021) Guidelines for defining REST-based managed objects and management interfaces
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of a REST-based management framework
	6.1 Overview
	6.2 Resources
	6.3 Definition languages of REST-based interface

	7 Principles for REST-based interface design
	8 Definition of a generic managed object using YAML schema
	8.1 REST role in management interfaces
	8.2 Definition of managed objects using JSON/YAML schema
	8.2.1 Definition of a generic managed object class
	8.2.2 Inheritance relationship of managed objects
	8.2.3 Common attributes and data types
	8.2.4 Containment relationship of managed objects
	8.2.5 Association relationship of managed objects

	9 Accessing methods for managed objects
	9.1 Generic MO accessing methods
	9.2 Design guidelines for specific MO class accessing methods
	9.2.1 Creating a resource instance
	9.2.2 Reading a group of resource instances by a collection resource
	9.2.3 Reading a specific resource instance
	9.2.4 Updating a complete representation of a specific resource instance
	9.2.5 Updating partial information of a resource instance
	9.2.6 Deleting a resource instance

	10 Information modelling guidelines for REST-based interfaces
	10.1 Resource Modeling
	10.2 Attribute
	10.3 Name conventions for MOCs, attributes and data types
	10.4 Other guidelines

	11 Compliance and conformance
	11.1 Standards document compliance
	11.2 System conformance
	11.3 Conformance statement guidelines

	Annex A Common REST-based YAML/JSON schema definitions
	A.1 YAML schema definitions for the generic managed object and common data types
	A.2 YAML/JSON schema definitions for common object accessing methods
	A.2.1 createMO operation
	A.2.2 getMOAttributes operation
	A.2.3 setMOAttributes operation
	A.2.4 deleteMO operation
	A.2.5 Complete definitions of the MO access service

	Appendix I An example of REST-based interface definitions for resource
	I.1 An example showing the CRUD definitions for a specific resource
	I.1.1 Creating an "Equipment" resource instance
	I.1.2 Reading a group of "Equipment" resource instances by a collection resource
	I.1.3 Reading a specific "Equipment" resource instance
	I.1.4 Updating a complete representation of a specific "Equipment" resource instance
	I.1.5 Updating partial information of a specific "Equipment" resource
	I.1.6 Deleting an "Equipment" resource

	Appendix II Usage examples of the ContainmentRelationshipType and AssociationRelationType
	Appendix III Background for REST and HTTP technologies
	III.1 Background
	III.2 Short review of REST and HTTP
	III.2.1 REST design principles
	III.2.2 HTTP methods

	III.3 Benefits of introducing REST into network management domain

	Bibliography

