

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.780.1
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(08/2001)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS
OSI management – Management functions and ODMA
functions

 TMN guidelines for defining coarse-grained
CORBA managed object interfaces

ITU-T Recommendation X.780.1

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. X.780.1 (08/2001) i

ITU-T Recommendation X.780.1

TMN guidelines for defining coarse-grained CORBA managed object interfaces

Summary
This Recommendation defines extensions to the set of TMN CORBA managed object modelling
guidelines required to support coarse-grained interfaces. It specifies how coarse-grained CORBA
TMN interfaces are to be defined. It also provides guidelines on converting fine-grained interfaces to
coarse-grained. A CORBA IDL module defining the base interface types to be extended is provided.

Source
ITU-T Recommendation X.780.1 was prepared by ITU-T Study Group 4 (2001-2004) and approved
under the WTSA Resolution 1 procedure on 13 August 2001.

Keywords
Common Object Request Broker Architecture (CORBA), Distributed Processing, Guidelines for the
Definition of Managed Objects (GDMO), Interface Definition Language (IDL), Managed Objects,
TMN Interfaces.

ii ITU–T Rec. X.780.1 (08/2001)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2002

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

 ITU-T Rec. X.780.1 (08/2001) iii

CONTENTS
 Page

1 Scope... 1
1.1 Purpose.. 1

1.2 Application.. 1

1.3 Recommendation roadmap ... 2

2 Normative references .. 2

3 Definitions .. 3

3.1 Definitions from ITU-T X.701 ... 3

3.2 Definitions from ITU-T X.703 ... 3

3.3 Additional definitions ... 3

4 Abbreviations.. 3

5 Conventions .. 4
5.1 Conventions .. 4

5.2 Compiling the IDL.. 4

6 Coarse-grained interface design considerations ... 5

6.1 Coarse-grained object creation and deletion... 5

6.2 Attributes .. 5

6.3 Notifications.. 5

6.4 Coarse-grained access to all managed resources .. 5

6.5 Exceptions... 5

6.6 Support for all operations ... 5

6.7 Prescriptive mapping .. 5

6.8 Retrieval of attributes from multiple objects .. 6

7 Framework and requirements overview ... 6
7.1 Framework overview .. 6

7.2 Coarse-grained extensions overview .. 7
7.2.1 The facade design pattern .. 8
7.2.2 Managed object name extension.. 9
7.2.3 Support services for facade-accessible managed objects 9
7.2.4 Facade modelling... 9

8 Providing facade interfaces for accessing managed objects 10
8.1 Facade instantiation .. 11

8.2 The facade interface base class ... 11
8.2.1 Managed object facade basic capabilities.. 12
8.2.2 Managed object facade IDL .. 12

iv ITU–T Rec. X.780.1 (08/2001)

 Page
8.2.3 The objectClassGet() operation... 12
8.2.4 The packagesGet() operation... 13
8.2.5 The creationSourceGet() operation ... 13
8.2.6 The deletePolicyGet() operation.. 13
8.2.7 The attributesGet() operation .. 13
8.2.8 The attributesBulkGet() operation... 14
8.2.9 The destroy() operation ... 16

8.3 The AttributesBulkGet iterator interface... 16

8.4 Factory instantiation ... 17

9 Coarse-grained CORBA modelling guidelines... 17

10 Guidelines for translating fine-grained models to coarse-grained.............................. 17

11 Coarse-grained IDL compliance and conformance .. 19
11.1 Standards document compliance .. 19

11.2 System conformance... 19

11.3 Conformance statement guidelines ... 19

Annex A – Coarse-grained modelling IDL... 19

 ITU-T Rec. X.780.1 (08/2001) 1

ITU-T Recommendation X.780.1

TMN guidelines for defining coarse-grained CORBA managed object interfaces

1 Scope
The TMN architecture defined in ITU-T M.3010 (2000) introduces concepts from distributed
processing and includes the use of multiple management protocols. ITU-T Q.816 and X.780
subsequently define within this architecture a framework for applying the Common Object Request
Broker Architecture (CORBA) as one of the TMN management protocols.

This Recommendation, along with ITU-T Q.816.1, adds specifications to the framework to enable it
to support a slightly different style of interaction between managing systems and managed systems
than that specified in the original framework documents. This style of interaction has certain
benefits, the main one being that it relieves a managing system from having to retrieve an object-
oriented software address for each manageable resource it wishes to access. These software
addresses could number in the millions on large systems. It also changes somewhat the way software
is structured on the managed systems, which some managed system suppliers may prefer.

The scope of this Recommendation is the same as the original TMN CORBA framework. The
framework and these extensions cover all interfaces in the TMN where CORBA may be used. It is
expected, however, that not all capabilities and services defined here are required in all TMN
interfaces. This implies that the framework can be used for interfaces between management systems
at all levels of abstractions (inter and intra-administration) as well as between management systems
and network elements.

1.1 Purpose
The purpose of this Recommendation is to extend the TMN CORBA framework to enable it to be
used in a wider range of applications. The extensions enable a slightly different mode of interaction
between the managing and managed systems which may be preferred in many situations. Thus, this
Recommendation is intended for use by various groups specifying network management interfaces.

1.2 Application
The approach taken in the CORBA TMN framework Recommendations is to model manageable
network resources as software objects accessible using CORBA. Information models written in the
CORBA Interface Definition Language (IDL) describe the object interfaces.

CORBA provides location-transparency, enabling one software object to interact with another
regardless of its location. A software object is accessed using what CORBA refers to as an
Interoperable Object Reference (IOR).

The original CORBA TMN framework models each manageable resource as an independent
CORBA object, each with its own unique IOR. This approach flexibly allows each object to reside
anywhere. It does, however, require that managing systems have on hand an IOR for each object
they wish to access. This is a burden that many companies and administrations in the
telecommunications industry have sought to avoid. It also could require a managed system to support
large numbers of IORs, which some managed system suppliers would like to avoid. This
Recommendation, along with ITU-T Q.816.1, defines how the TMN CORBA framework is to be
extended to avoid the need for large numbers of IORs.

2 ITU–T Rec. X.780.1 (08/2001)

CORBA-based interfaces using the approach where each manageable resource is addressable with a
unique IOR have become known as "fine-grained" interfaces. Alternatively, those where an IOR is
not assigned to each manageable resource are known as "coarse-grained" interfaces.

Because this Recommendation defines a slightly different approach to modelling manageable
resources on coarse-grained interfaces, interface model specifications will be slightly different for
the fine-grained and coarse-grained approaches.

1.3 Recommendation roadmap
This Recommendation has the following structure:

Clause 1 Introduction, roadmap and updates.

Clause 2 References.

Clauses 3 and 4 Definitions and abbreviations used throughout this Recommendation.

Clause 5 Conventions.

Clause 6 Design considerations that must be addressed as support for coarse-grained
interfaces is added to the framework.

Clause 7 TMN CORBA framework and coarse-grained requirements overview.

Clause 8 Providing facade interfaces for accessing managed objects. This clause covers the
model-specific interfaces that must be implemented on coarse-grained interfaces.

Clause 9 Guidelines for defining coarse-grained CORBA interfaces.

Clause 10 Guidelines for translating fine-grained CORBA interface specifications to
coarse-grained interface specifications.

Clause 11 Compliance and conformance guidelines.

Annex A The IDL module for the coarse-grained modelling guidelines specification. This
annex is normative.

2 Normative references
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] ITU-T X.780 (2001), TMN guidelines for defining CORBA managed objects.

[2] ITU-T Q.816 (2001), CORBA-based TMN services.
[3] ITU-T Q.816.1 (2001), CORBA-based TMN services: Extensions to support coarse-grained

interfaces.
[4] OMG Document formal/99-10-07, The Common Object Request Broker: Architecture and

Specification, Revision 2.3.1.

 ITU-T Rec. X.780.1 (08/2001) 3

3 Definitions

3.1 Definitions from ITU-T X.701
The following terms used in this Recommendation are defined in the Systems Management
Overview (ITU-T X.701):
− managed object class;
− manager;
− agent.

3.2 Definitions from ITU-T X.703
The following terms used in this Recommendation are defined in the Open Distributed Management
Architecture (ITU-T X.703):
− notification.

3.3 Additional definitions
3.3.1 facade: An object interface defined to provide access to a set of managed objects, all of
which are of the same class.

4 Abbreviations
This Recommendation uses the following abbreviations:

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

COS Common Object Services

DN Distinguished Name

EMS Element Management System

GDMO Guidelines for the Definition of Managed Objects

ID Identifier

IDL Interface Definition Language

IIOP Internet Interoperability Protocol

IOR Interoperable Object Reference

ITU-T International Telecommunication Union – Telecommunication Standardization Sector

MO Managed Object

NE Network Element

NMS Network Management System

OAM&P Operations, Administration, Maintenance, and Provisioning

OID Object Identifier

OMG Object Management Group

ORB Object Request Broker

OSI Open Systems Interconnection

PDU Protocol Data Unit

4 ITU–T Rec. X.780.1 (08/2001)

POA Portable Object Adapter

QoS Quality of Service

RDN Relative Distinguished Name

TMN Telecommunications Management Network

UID Universal Identifier

UML Unified Modelling Language

UTC Universal Time Coordinated

5 Conventions

5.1 Conventions
A few conventions are followed in this Recommendation to make the reader aware of the purpose of
the text. While most of this Recommendation is normative, paragraphs succinctly stating mandatory
requirements to be met by a management system (managing and/or managed) are preceded by a
boldface "R" enclosed in parentheses, followed by a short name indicating the subject of the
requirement, and a number. For example:

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by an "O"
instead of an "R". For example:

(O) OPTION-1 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this Recommendation, and IDL specifying the TMN
specific services, and supporting data types, are included in Annex A. The IDL is written in a 9-point
courier typeface:

// Example IDL
interface foo {

void operation1 ();
};

5.2 Compiling the IDL
An advantage of using IDL to specify network management interfaces is that IDL can be "compiled"
into programming code by tools that accompany an ORB. This actually automates the development
of some of the code necessary to enable network management applications to interoperate. Annex A
contains code that implementers will want to extract and compile. Annex A is normative and should
be used by developers implementing systems that conform to this Recommendation. The IDL in this
Recommendation has been checked with two compilers to ensure its correctness. A compiler
supporting the CORBA version specified in ITU-T Q.816 must be used.

Annex A has been formatted to make it simple to cut and paste into plain text files that may then be
compiled. Below are tips on how to do this.
1) Cutting and pasting seems to work better from the Microsoft® Word® version of this

Recommendation. Cutting and pasting from the Adobe® Acrobat® file format seems to
include page headers and footers, which cannot be compiled.

 ITU-T Rec. X.780.1 (08/2001) 5

2) All of Annex A, beginning with the line "/* This IDL code…" through the end should be
stored in a file named "itut_x780_1.idl" in a directory where it will be found by the IDL
compiler.

3) The headings embedded in Annex A need not be removed. They have been encapsulated in
IDL comments and will be ignored by the compiler.

4) Comments that begin with the special sequence "/**" are recognized by compilers that
convert IDL to HTML. These comments often have special formatting instructions for these
compilers. Those that will be working with the IDL may want to generate HTML as the
resulting HTML files have links that make for quick navigation through the files.

5) Annex A has been formatted with tab spaces at 8-space intervals and hard line feeds that
should enable almost any text editor to work with the text.

6 Coarse-grained interface design considerations
This clause identifies several design considerations that must be addressed by the framework as
support for coarse-grained interfaces is added.

6.1 Coarse-grained object creation and deletion
It must be possible to create and delete coarse-grained representations of managed resources. The
possibility of including the create operation on the coarse-grained interface should be investigated.

6.2 Attributes
The framework must support associating attributes with managed resources accessed through a
coarse-grained interface.

6.3 Notifications
The framework must support event notifications from managed resources accessed through
coarse-grained interfaces.

6.4 Coarse-grained access to all managed resources
The framework must enable and require implementations to allow managing systems to access all
managed resources through coarse-grained interfaces.

6.5 Exceptions
Coarse-grained interfaces shall enable managed resources to raise an exception on the invocation of
an operation. These exceptions must be explicitly clarified for each operation.

6.6 Support for all operations
A coarse-grained interface shall support all of the operations applicable to a managed resource.

6.7 Prescriptive mapping
The mapping between fine-grained information models and coarse-grained information models shall
be prescriptive. The mapping shall be capable of being performed algorithmically. If an IDL
information model is developed by translating a GDMO information model, any optimizations
performed by hand during the translation shall appear in both the fine-grained and coarse-grained
models.

6 ITU–T Rec. X.780.1 (08/2001)

6.8 Retrieval of attributes from multiple objects
There is a need to retrieve attributes of multiple managed object instances of the same type in a
single, strongly-typed operation. Since all of these objects would be accessed using the same facade,
this can be accomplished with a single operation carried out by the facade.

7 Framework and requirements overview
Clause 6 outlined the design considerations that must be resolved as support for coarse-grained
interfaces is added the framework. This clause and the rest of this Recommendation provide the
details on how the framework will be extended to address these issues. ITU-T Q.816.1 focuses on
the framework support services for coarse-grained interfaces, while this Recommendation defines
guidelines for developing information models for coarse-grained interfaces. First, a brief overview of
the current framework is presented, then an overview of the extensions.

7.1 Framework overview
The framework for CORBA-based TMN interfaces is a collection of capabilities. A central piece of
the framework is a set of OMG Common Object Services. The framework defines their role in
network management interfaces, and defines conventions for their use. The framework also defines
support services that have not been standardized as OMG Common Object Services, but are
expected to be standard on network management interfaces conforming to the framework.

 ITU-T Rec. X.780.1 (08/2001) 7

 …

T0415630-01

Superclasses:

GDMO to IDL

Connection

Network

Link

Inherit

Names

CORBA 2.3 ORB

Conventions:

Services:

Std. Data
Types

Notification
Specifications

Other
Conventions

Heartbeat
Service

Channel
Finder

Factory
Finder

Notification
Service

Telecom
Log Service

Terminator
Service

Naming
Service

Multiple Object
Operation Service

Managed
Element
Factory

Managed
Element

Application-
specific
Objects

Connection
Factory

Network
Factory

Managed
Object
Factory

Managed
Object

Link
Factory

Figure 1/X.780.1 – Overview of framework

The framework is depicted graphically in Figure 1. The figure shows the framework in gray. In the
middle are the application-specific objects that are supported by the framework. Along the bottom is
a box representing the CORBA ORB. Above that are a number of boxes with names in them
representing the services that compose the framework. (Some also have icons depicting the
databases they would have to maintain to perform their functions.) These services, along with ORB
version requirements, are defined in ITU-T Q.816. Along the top of the figure are icons representing
two superclasses, one for managed objects and one for managed object factories. Each of the
managed objects and managed object factories supported by this framework must ultimately inherit
from these superclasses, respectively. Also shown on the figure are icons of pages with up-turned
corners representing standard object modelling conventions. These conventions and the superclasses
are defined in ITU-T X.780.

7.2 Coarse-grained extensions overview
This clause provides an overview of the extensions to the framework required to support
coarse-grained interfaces.

8 ITU–T Rec. X.780.1 (08/2001)

7.2.1 The facade design pattern
The most significant change to the framework required to support coarse-grained interfaces is the
way managed objects are accessed. The number of managed objects on a managed system must be
able to go up while the number of IORs supported by the system does not. It is still desirable,
though, that access to the managed objects remain strongly-typed. This leads to the use of a design
pattern referred to here as the "facade" pattern. A facade can be thought of as a false front, or as a
portal. Using the facade design pattern, a managed system will support a small number of facade
interfaces, at least one but usually no more than a few for each type of managed object on the
system. A managing system will then invoke an operation on a managed object by actually invoking
the operation on a facade for that type of managed object on that system. In the facade design
pattern, the managed objects do not have to expose a CORBA interface and hence may not have
individual IORs. This means a managed system that supports the facade approach does not need to
implement the fine-grained managed object interfaces.

It is best to think of a facade not as a managed object, but as an intermediary object that enables a
managing system to access managed objects. The facade object has a CORBA interface and is
accessible using CORBA. The managed objects, however, may not have CORBA interfaces and
might not be directly accessible using CORBA. The facade itself does not represent a manageable
network resource; its purpose is to enable interaction with the objects that do represent manageable
resources. All facade objects are created automatically by the managed system, and exist as long as
the managed objects are accessible through the facade. Multiple facades for the same type of
managed objects may exist on a coarse-grained interface, but a managed object shall be accessible
through only 1 facade. See Figure 2 below.

…

…

T0415640-01

MO MO MO

MO MO MO

MO

Facade

Facade
Only

Or

Managing
System

Managed
System

Managed Object

CORBA Interface

Figure 2/X.780.1 – The facade role

The figure shows a managing system accessing a managed system that supports the coarse-grained
approach. The managed system has two facade interfaces that enable the managing system to access
two different sets of managed objects. The managed objects at the top of the figure can only be
accessed through the facade. The managed objects at the bottom also support direct CORBA
interfaces and can be accessed either through the facade or directly. Direct CORBA access is
optional, but a managed system that supports the facade approach must provide facade interfaces for
each of its managed object instances.

 ITU-T Rec. X.780.1 (08/2001) 9

A facade may use a managed object's CORBA interface to invoke an operation on it, or some other
implementation-specific means. A managed system, in fact, need not even implement managed
objects as individual objects internally. By implementing an interface based on this framework,
however, it will give the illusion that managed objects are internally implemented as objects.

When an operation is invoked on a managed object through a facade, the facade must then invoke
the operation on the actual managed object or entity. Because many managed objects will be
accessed through a single facade, the facade must know which managed object is the actual target of
the operation. This will be handled by adopting the convention of including the name of the target
managed object as the first parameter of every facade operation directed at a managed object.

While managed objects may no longer have unique IORs, they will still have unique names and can
still be thought of as individual entities representing manageable resources.

7.2.2 Managed object name extension
As mentioned above, managed objects accessed through a facade will still have a name even though
they may not have an individual CORBA interface. It is important that a managing system be able to
determine which facade to use based on the managed object's name. If it cannot it will have to query
the managed system or persistently associate a facade IOR with every managed object's name. To
support the ability to determine a managed object's facade based on only its name, the names of
managed objects accessible through a facade are extended slightly beyond the names of managed
objects not accessible through a facade. In the final name component, which always has an ID string
with the value "Object" (or, as extended by ITU-T Q.816.1, <empty>), the kind string is set to the
value of a facade identifier assigned to the facade through which the object may be accessed. For
managed objects not accessible through a facade, this kind string is empty. ITU-T Q.816.1 provides
additional details on how the kind string in the final managed object name component is used to
identify a facade.

7.2.3 Support services for facade-accessible managed objects
The framework support services provided on interfaces that use the facade approach will be largely
the same as those defined in ITU-T Q.816. Some, such as the Factory Finder and Channel Finder
services, require no change at all. Others, such as the Terminator and Multiple Object Operation
(MOO) services, require no changes to their interfaces or the way they are used by managing
systems, but may require slight changes to their implementations if they access managed objects
using the managed objects' facade interfaces (rather than some implementation-specific method).
ITU-T Q.816.1 provides details on the framework support service changes required to support
coarse-grained interfaces.

The biggest change to the support services comes in the area of support for naming. The facade
interfaces are bound to names in the naming service, much the same way the support service
interfaces are. On interfaces that use facades, however, the managed objects' names are not required
to be bound to IORs in the OMG Naming Service. Instead, a new service is introduced as a place to
store managed object names and containment relationship information. This new service, the
Containment Service, is defined in ITU-T Q.816.1.

7.2.4 Facade modelling
To support the facade design pattern and the definition of facades usable with this framework, a new
base interface is introduced. This interface will be known as the Managed Object Facade interface. It
plays the same role in coarse-grained interfaces as the Managed Object interface does in fine-grained
interfaces. That is, it is the base interface from which all managed object facade interfaces must
either directly or indirectly inherit to work with the framework. The Managed Object Facade
interface is quite similar to the Managed Object interface defined in ITU-T X.780. See clause 8 for
the definition of the Managed Object Facade interface.

10 ITU–T Rec. X.780.1 (08/2001)

The changes to the framework are reflected in Figure 3 below. A new superclass,
ManagedObjectFacade, is added to the figure. Also, the Containment Service is added. Note that it
provides access to a database of managed object names. The managed object name database
maintained by the Naming Service is shown with dotted lines, indicating that it need not store the
names and IORs of managed objects. The Naming Service is still required, however, to enable
managing systems to find facade interfaces and support service references. Finally, the managed
objects are also shown drawn with dotted lines, to indicate that they need not be directly accessible.

…

T0415650-01

Superclasses:

GDMO to IDL

Connection

Network

Link

Inherit

Names

CORBA 2.3 ORB

Conventions:

Services:

Std. Data
Types

Notification
Specifications

Other
Conventions

Heartbeat
Service

Channel
Finder

Factory
Finder

Notification
Service

Telecom
Log Service

Terminator
Service

Naming
Service

Multiple Object
Operation Service

Managed
Element
Factory

Managed
Element

Application-
specific
Objects

Connection
Factory

Network
Factory

Managed
Object
Factory

Managed
Object

Link
Factory

Names

Managed
Object
Facade

Link
Facade

Connection
Facade

Managed
Element
Facade

Network
Facade

Containment
Service

…

Figure 3/X.780.1 – Framework with extensions to support
coarse-grained interfaces

8 Providing facade interfaces for accessing managed objects
As described above, facade interfaces provide a different way of accessing managed objects. On a
coarse-grained interface (one where facade interfaces are present), managed objects may or may not
be accessible using individual CORBA interfaces. So, a managing system may use a facade to access
managed objects by invoking operations on the facade. Even if the managed system does not
implement managed objects as separate objects, by supporting this Recommendation it gives the
illusion of doing so.

 ITU-T Rec. X.780.1 (08/2001) 11

8.1 Facade instantiation
This clause defines requirements managed systems shall follow when providing facade interfaces for
accessing managed objects.

(R) FACADE-1 − A managed system shall provide at least one facade interface for each class of
managed objects that may be instantiated on it, even if these objects also support direct CORBA
interfaces. Facade interfaces for managed object classes that cannot be instantiated on the system
need not be provided. This includes superclasses. Thus, a facade for a superclass of managed objects
need not be instantiated if managed objects of that type may not be instantiated, even if managed
objects of the subclass may be instantiated. This does not mean superclass interfaces do not need to
be defined, though. The definition of facade interfaces follows the same inheritance hierarchy as the
managed objects. See clauses 9 and 10 below. Name binding requirements for facade interfaces are
defined in ITU-T Q.816.1.

Relieving the managed system from providing facade interfaces for superclasses that are not
instantiable on the system does not preclude a managing system from taking advantage of
polymorphism. A managing system may still treat a facade interface as a superclass of the facade
and access capabilities available through the superclass in the same way that any CORBA client may
treat an object as a superclass. The operation, though, will actually be invoked on the subclass
facade, using that facade's IOR. The programming language on the client system handles the
polymorphism.

(R) FACADE-2 − A managed system may provide multiple facade interfaces for a given class of
managed objects. Managed objects accessible through one facade interface shall not be accessible
through any other. ITU-T Q.816.1 provides details on how to identify which facade to use to access
a managed object based on its name.

(R) FACADE-3 − All facade interfaces are created and destroyed by the managed system. A facade
interface must exist for the entire time that any of the managed objects accessible through it exist.
No notifications are sent when a facade is created or deleted. Therefore, a managing system will
become aware of the existence of a new facade if and when managed objects with names indicating
that they are accessible through the new facade begin to appear.

(R) FACADE-4 − Each facade operation that is directed at a specific managed object will contain
the name of that managed object in the first parameter of the operation. The facade shall invoke that
operation on the named managed.object and return the results including exceptions. If the named
managed object is not accessible through that facade, the facade shall raise an applicationError
exception in response to the operation. The error code in this exception shall be set to the
objectNotFound code defined in the IDL in Annex A.

8.2 The facade interface base class
This clause describes a managed object facade base class that is defined in the IDL in Annex A. All
managed object facade interfaces provided on a managed system must inherit, either directly or
indirectly, from this interface. This interface provides a set of basic operations all facade interfaces
must support to be usable with this framework.

The Managed Object Facade interface, called "ManagedObject_F" in the IDL code in Annex A,
plays the same role on coarse-grained interfaces as the ManagedObject interface plays on
fine-grained interfaces. Thus, it is very similar to the ManagedObject interface defined in
ITU-T X.780. Most of the operations on the ManagedObject_F interface are nearly identical to the
operations on the ManagedObject interface. One new operation, attributesBulkGet, is added, and
one, nameGet, dropped.

12 ITU–T Rec. X.780.1 (08/2001)

8.2.1 Managed object facade basic capabilities
The capabilities that all managed object facade interfaces must support are:
• A method that returns the class name of a named managed object.
• A method that returns the conditional packages supported by a named managed object.
• A method that returns the creation source of a named managed object (whether it was

created autonomously by the managed resource, in response to a management operation, or
unknown).

• A method that returns the delete policy for a named managed object. This is an enumerated
value and indicates if the object is not deletable, if it is deletable only if it contains no
objects, or if all contained objects will be deleted when it is deleted.

• A method that returns a CORBA value type object containing all of the readable attributes
for the named managed object.

• A method that returns a CORBA value type object containing all of the readable attributes
for a set of managed objects.

• A destroy operation.

8.2.2 Managed object facade IDL
The IDL describing the ManagedObject_F interface (without comments) is:

interface ManagedObject_F {
ObjectClassType objectClassGet(in NameType name)

raises (ApplicationError);

StringSetType packagesGet (in NameType name)
raises (ApplicationError);

SourceIndicatorType creationSourceGet(in NameType name)
raises (ApplicationError);

DeletePolicyType deletePolicyGet (in NameType name)
raises (ApplicationError);

ManagedObjectValueType attributesGet (
in NameType name,
inout StringSetType attributeNames)
raises (ApplicationError);

boolean attributesBulkGet (
in NameSetType names,
in StringSetType attributeNames,
in unsigned short howMany,
out AttributesGetResultSet attributes,
out AttributesGetResultIterator iterator)
raises (ApplicationError);

void destroy(in NameType name)
raises (ApplicationError,

DeleteError);

}; // end of ManagedObject_F interface

8.2.3 The objectClassGet() operation
The objectClassGet() operation returns the scoped interface name of the named managed object. The
named managed object is the managed object with the name included in the first parameter, named
"name".

 ITU-T Rec. X.780.1 (08/2001) 13

Note that this value is different from the class name of the facade. Since it is possible for managed
objects on a coarse-grained interface to also support direct CORBA interfaces, the decision was
made to require this operation to return the same value a managing system would get if it invoked
the equivalent operation directly on the managed object. If no fine-grained managed object interface
has been defined for the class of managed objects accessible through the facade, the response shall
be the scoped interface name of the facade without the trailing "_F". The same value returned in
response to this operation will be included in notifications from the object, and in the value type
returned for the object. The return type, ObjectClassType, is a type definition for string.

Given a reference to a facade, a managing system can determine what type of facade it is through
standard CORBA calls (e.g. the get_interface call on interface CORBA::Object). Therefore, a
separate operation for this is not defined on the base facade interface.

8.2.4 The packagesGet() operation
The packagesGet() operation returns the list of conditional packages supported by the named
managed object. It is possible for managed objects accessed through the same facade to support
different conditional packages. The notion of conditional packages, each with a string name, is
defined in ITU-T X.780. StringSetType is a type definition for a sequence of strings.

8.2.5 The creationSourceGet() operation
The creationSourceGet() operation returns a value indicating the system that caused the named
managed object to be created. SourceIndicatorType is an enumerated type with three values:
resourceOperation, managementOperation, and unknown. It indicates if the object was created
autonomously by the resource, in response to a management operation, or if it is unknown why the
object was created.

8.2.6 The deletePolicyGet() operation
The deletePolicyGet() operation returns the delete policy for the named managed object. This is an
enumerated value that indicates if the object is not deletable, if it is deletable only if it contains no
objects, or if all contained objects will be deleted when it is deleted. (Deleting an object but not its
contained objects is not allowed.) This policy is set when the object is created by its factory based on
the name binding information identified in the create operation.

8.2.7 The attributesGet() operation
The attributesGet() method is used to return all, or any subset, of an object's attribute values in one
operation. For each managed object or facade interface in an information model, a CORBA
valuetype containing data members for each of the readable attributes on that interface will be
defined. (Readable attributes are those with an <attribute name>Get() operation.) This method may
be used to retrieve this value type for any managed object. The value types will be defined following
the inheritance hierarchy of the managed object interfaces (except that value types cannot support
multiple inheritance), and each will ultimately be derived from the ManagedObjectValueType
defined in ITU-T X.780. The managed object must return the subclass defined for its interface in
response to this method. Thus, when a client invokes the attributesGet() operation on any managed
object, it will receive back a reference to a ManagedObjectValueType which it may then narrow
(cast) to the value type defined for the interface on which the operation was invoked.

14 ITU–T Rec. X.780.1 (08/2001)

Complicating this somewhat are the concerns that a client may not want to retrieve all of the attribute
values from an instance, and an instance may not support all of the attributes that are in conditional
packages. (The value types include attributes in conditional packages.) This is accommodated
through the use of the in/out attributeNames parameter. On invocation, the client may submit a list
of the names of the attributes in which it is interested, with an empty list having the special meaning
that all supported attributes should be returned. Any names on the list that are not valid attribute
names should be ignored by the managed object. In its response the object will return the actual list
of attributes for which values are supplied. Note that this list may not match the submitted list. The
object must always return an accurate list, even if the submitted list was empty or had invalid names.
If all the names on the submitted list are invalid, the object should return a null list and an empty
value type.

Because the structure of the value type is predefined, the object must fill in some value for the
attributes not requested or not supported. Basically, the object may return any values for these
attributes, but the values should be as short as possible for efficiency. Thus, null values should be
returned for strings, references, and lists of any kind. Any value may be returned for integers and
enumerated types. The client must consider any value for an attribute not named in the list returned
by the object to be invalid.

8.2.8 The attributesBulkGet() operation
The attributesBulkGet() method is used to return multiple attributes from multiple managed objects
of the same type that are accessible through the facade. The managing system supplies a list of
attribute names, and a list of managed object names from which to retrieve those attributes. The list
of attribute names is handled in the same way as it is for the attributesGet operation described above.
Processing the list of managed object names is described below.

8.2.8.1 Determining the objects from which to retrieve attributes
If the list of names is empty, all objects accessible through the facade are implicitly requested.

If the list includes an item that does not include the final component with an ID value of either
"Object" or <empty>, then that list item serves as a partial name, which implicitly requests the set of
managed objects (accessible through the facade) whose names start with that partial name. Such a
name would be created by removing one or more name components from the end of a managed
object's name.

For example, start with a Managed Element named with an ID of "me1" and using a kind value
"ME" under a local root defined for acme telecom:

 acme\.com/me1.ME/.facadeID1

Notice that in the final name component (after the last '/'), the ID string (which precedes the '.') is
empty. Therefore, this is not a partial name. Next, assume there is an Equipment object "eq1", named
under me1 using "EQ" as kind:

 acme\.com/me1.ME/eq1.EQ/.facadeID2

Finally, assume there are Equipment Holder managed objects named under this equipment object
(using kind "EH"), as shown in Figure 4 below, all accessible through an equipment holder facade
with the ID "facadeID3".

 ITU-T Rec. X.780.1 (08/2001) 15

T0415660-01

me1

eq1 eq2

eh1eh2 eh9

eh11 eh12

Figure 4/X.780.1 – Example naming tree

If the partial name "acme\.com/me1.ME/eq1.EQ" is used in the list of managed object names
parameter of the attributesBulkGet operation on the Equipment Holder facade, attribute values from
the following equipment holder objects shall be returned:

 acme.com/me1.ME/eq1.EQ/eh1.EH/.facadeID3

 acme.com/me1.ME/eq1.EQ/eh2.EH/.facadeID3

 acme.com/me1.ME/eq1.EQ/eh1.EH/eh11.EH/.facadeID3

 acme.com/me1.ME/eq1.EQ/eh1.EH/eh12.EH/.facadeID3

The facade can recognize that the name is a partial name because the ID value in the final name
component is not "Object" or <empty>.

While this example did not demonstrate it, the object at the root of the tree identified by the partial
name is included in the scope of the operation.

8.2.8.2 Returning the results
Data is returned in strongly typed managed object value types, one from each managed object
named. If the facade does not provide access for a managed object name provided by the client, no
value type for that object is returned. Since a managed system may provide multiple facade
interfaces of the same type, the client may have to invoke this operation on multiple interfaces to
retrieve values from all of the managed objects of a given type on a system.

Even if the client does not request that values for the "name" attribute be returned, the facade shall
return the name in each managed object value type. It must do this so the client will know which
values apply to which managed object.

Along with each managed object value type returned is a list of the names of the attributes in that
value type that have valid values. This list may not match the list of requested attributes, as the
instance may not support all of the requested attributes. If the instance supports none of the requested
attributes the facade shall return a managed object value type for that instance with only the name
attribute containing a valid value.

Since a potentially large amount of data may be returned, the iterator design pattern is used. The
client specifies the maximum number of value types to be returned. The rest must be returned in an
iterator. If an iterator is needed, the return value shall be true. Otherwise, it shall be false and the
iterator reference shall be nil.

16 ITU–T Rec. X.780.1 (08/2001)

8.2.9 The destroy() operation
The final operation on the base facade, the destroy() operation, is used to release any resources
associated with the named managed object and to delete it. The DeleteError exception is raised if the
object has a delete policy of NotDeletable. The DeleteError exception is also an extensible means of
reporting problems destroying an object that are model-dependent. For example, trying to delete a
Trail Termination Point object before the Trail is deleted might result in a DeleteError. ITU-T Q.816
defines a service called the "Terminator Service," however, to implement the logic needed to enforce
delete policies and to maintain the integrity of the naming tree. The destroy operation is actually
intended to be used by this service, and should not be directly invoked by a managing system. See
ITU-T Q.816 for details on the Terminator Service.

(R) FACADE-5 − The facade interfaces defined for a coarse-grained CORBA interface shall inherit
(directly or indirectly) from the ManagedObject_F interface described above and defined in the
CORBA IDL in Annex A. The capabilities described above shall be supported.

8.3 The AttributesBulkGet iterator interface
As mentioned in 8.2.8, if many results are to be returned in response to an attributesBulkGet
operation, an iterator may be required. The iterator design pattern is a well-known CORBA design
pattern. When large amounts of data are to be retuned in response to an operation, a reference to an
iterator interface is returned instead. The client may then query the iterator to retrieve the results in
manageable chunks.

The IDL description of the "attributes get result" iterator is shown below.

interface AttributesGetResultIterator {

boolean getNext(in unsigned short howMany,
out AttributesGetResultSet results)
raises (ApplicationError);

void destroy();

}; // end of interface AttributesGetResultIterator

(R) FACADE-6 − The managed system shall instantiate an iterator with an interface matching the
description of the AttributesGetResultIterator definition in the IDL in Annex A when the number of
results to be returned in response to an attributesBulkGet operations exceeds the number requested
by the client.

(R) FACADE-7 − Each time a client invokes a getNext operation on the iterator, it shall return the
next set of results. The iterator shall keep track of how many results have already been retrieved by
the client, and return all of the results once. The results initially returned in response to the
attributesBulkGet operation shall not be returned again by the iterator. The iterator shall return in
response to a getNext operation at most the number of names indicated by the value of the howMany
parameter. The iterator may return less than the requested batch size, balancing the efficiency of
returning results in a large batch with the possible need to block until more results are available. If
there are more results to return (in addition to those being returned), the return value of the getNext
operation shall be true, otherwise false. The iterator shall not return an empty result set unless
howMany was set to zero or there are no more results to return, as doing so would force the client to
poll the iterator.

 ITU-T Rec. X.780.1 (08/2001) 17

(R) FACADE-8 − The managed system shall control the life-cycle of the iterator. A destroy
operation, however, is provided if the manager wants to stop retrieving results before reaching the
last result. Upon invocation of the destroy operation, the iterator shall free any resources it is using
and delete itself. Upon returning the last result, the iterator shall destroy itself. The iterator may also
be destroyed by the managed system if it is unused for an unreasonably long period of time.

8.4 Factory instantiation
Factories are persistent object interfaces that are used to instantiate other objects. The use of
factories follows a well-known CORBA design pattern. Factories are used on fine-grained interfaces
to provide a managing system with a method to create new instances of managed objects. Even
though not strictly required on coarse-grained interfaces because the facade could play the role of the
factory, separate factory interfaces shall be used on coarse-grained interfaces. One advantage of
doing this is to make the coarse-grained and fine-grained approaches more compatible. Another
advantage is to prevent the inheritance of create operations for superclass objects by subclasses. This
problem does not occur with separate factories because factory interfaces do not follow the
inheritance hierarchy of the managed objects. The factory interfaces used to create managed objects
on coarse-grained interfaces are the same as those defined for fine-grained interfaces. See clause 9.

(R) FACADE-6 −−−− A managed system shall provide at least one factory interface for each class of
managed object that may be instantiated on it. Factory interfaces for managed object classes that
cannot be instantiated on the system need not be provided. Factory interfaces are registered with the
Factory Finder service, defined in ITU-T Q.816. Factories on coarse-grained interfaces may return a
nil reference in response to a create operation rather than a reference to the newly created object. The
managed object name returned by the factory in response to a create operation shall indicate the
facade that may be used to access the new object according to the managed object naming rules
defined in ITU-T Q.816.1.

9 Coarse-grained CORBA modelling guidelines
This clause defines the rules for defining coarse-grained IDL interfaces. A coarse-grained interface is
created by first defining a fine-grained interface according to the guidelines defined in ITU-T X.780.
ITU-T X.780 covers both creating IDL interfaces from scratch as well as translating a GDMO
interface to IDL. Once a fine-grained interface is defined, facade interfaces for each of the managed
object interfaces are then developed according to the rules defined in clause 10 below. The
fine-grained managed object interface specifications shall be retained. All of the other constructs
defined for the fine-grained interface, including data types, value types, exceptions, notifications,
and factories, are reused without modification on the coarse-grained interface.

10 Guidelines for translating fine-grained models to coarse-grained
A coarse-grained IDL model may be created from a fine-grained IDL model by following the steps
below.
1) A facade interface shall be created for each managed object interface. A managed object

interface is an interface that is derived either directly or indirectly from the ManagedObject
interface.

2) The facade interfaces shall be created within the same IDL module as the fine-grained object
interfaces. This relieves the modeller from having to include type definitions for all of the
types defined for the fine-grained model.

 The facade interfaces may be created in a separate file, or included in a new version of the
fine-grained file. If in a separate file, the file containing the fine-grained model will have to
be included for compilation.

18 ITU–T Rec. X.780.1 (08/2001)

 Splitting a module across files is allowed by OMG standards. Basically, an IDL module
defines a name space. Within a module, all names must be unique. So, for example, a
module cannot contain two interfaces named "ManagedObject_F." Two different modules
can contain identical names, though, and modules can be contained within other modules.
When a module is split across files the uniqueness rule still applies. Duplicate names in the
same module, but in separate files, are not allowed.

 The IDL in Annex A is defined within a single module named "itut_x780", which is the
same module used in ITU-T X.780. Thus, this module is split across files. One impact is that
no names used in the IDL in ITU-T X.780 can be reused in the IDL in this
Recommendation. An advantage, however, is that any IDL constructs defined in
ITU-T X.780 can be reused in this Recommendation by simply including the file with a
precompiler directive. No type definitions or scoped names are required, as would be the
case if the IDL was in separate modules. Note that compliance and conformance are still
based on documents, not IDL modules. Thus, a system may be conformant to ITU-T X.780
without being conformant to this Recommendation.

3) The name of the facade interface shall be the name of the fine-grained interface from which
it is created, appended with "_F" (an underscore followed by a capital 'F'). So, the facade
interface created for the "Equipment" managed object shall be named "Equipment_F".

4) If the fine-grained object interface inherits directly from the ManagedObject interface, the
facade interface created for it shall inherit from the ManagedObject_F interface. If the
fine-grained object interface instead inherits from a subclass of the ManagedObject
interface, the facade interface created for it shall inherit from the facade interface created for
that subclass. So, the inheritance hierarchy of the facade interfaces matches that of the
managed object interfaces. For example, say the EquipmentHolder fine-grained object
interface inherits from the Equipment interface. The EquipmentHolder_F interface shall then
inherit from the Equipment_F interface. Facade interfaces for all of a fine-grained object's
superclasses must be created before the fine-grained object's facade may be created.

5) The entire contents of the fine-grained object interface shall be copied to the facade interface
with the following changes:
• An in parameter of type NameType and named name shall be added as the first

parameter to each operation. This parameter shall be used to pass in the name of the
target managed object on which the operation should be invoked. If the operation
already has a parameter named "name," it shall be renamed.

• Any parameter or return type that uses a managed object IOR must be translated to a
NameType. A managed object IOR value will be identified as a reference to a
ManagedObject interface or subclass interface. The use of such types of values is
discouraged on fine-grained object interfaces, so few if any should be encountered.

• It is acceptable for a behaviour description on a coarse-grained interface specification to
reference a behaviour description of the equivalent construct on a fine-grained interface
specification rather than duplicate it.

6) Fine-grained modelling guidelines currently prohibit the use of OMG IDL attributes to
model managed object attributes. This is because OMG IDL does not allow user-defined
exceptions to be raised on attribute access operations. So, instead, managed object attributes
are modelled with separate operations used to get or set the value of the attribute, or add or
remove values to or from the attribute. In the future, though, the OMG will likely allow
user-defined exceptions on attribute access operations. Should this happen, and should a
fine-grained object interface use IDL attributes, then when creating a facade for this object
the attributes shall be translated into separate IDL operations, then the name parameter shall
be added as the first parameter of those operations.

 ITU-T Rec. X.780.1 (08/2001) 19

7) The rest of the fine-grained interface IDL such as data types and value types is used on the
coarse-grained interface without modification.

11 Coarse-grained IDL compliance and conformance
This clause defines the criteria that must be met by other standards documents claiming compliance
to these guidelines and the functions that must be implemented by systems claiming conformance to
this Recommendation.

11.1 Standards document compliance
Any specification claiming compliance with these guidelines shall:
1) Support all of the standards document compliance requirements of ITU-T X.780.
2) Follow the fine-grained IDL to coarse-grained IDL mapping rules defined in clause 10.

11.2 System conformance
An implementation claiming conformance to this Recommendation shall:
1) Meet all of the facade, factory, and iterator instantiation requirements specified in clause 8.
2) Implement an IDL interface compliant with the guidelines in this Recommendation. See

clause 11.1.

11.3 Conformance statement guidelines
The users of these guidelines must be careful when writing conformance statements. Because IDL
modules are being used as name spaces, they may, as allowed by OMG IDL rules, be split across
files. Thus, when a module is extended its name will not change. Instead, a new IDL file will simply
be added. Simply stating the name of a module in a conformance statement, therefore, will not
suffice to identify a set of IDL interfaces. The conformance statement must identify a document and
year of publication to make sure the right version of IDL is identified.

ANNEX A

Coarse-grained modelling IDL

/* This IDL code is intended to be stored in a file named "itut_x780_1.idl"
located in the search path used by IDL compilers on your system. */

#ifndef ITUT_X780_1_IDL
#define ITUT_X780_1_IDL

#include <itut_x780.idl>

#pragma prefix "itu.int"

module itut_x780 {

// IMPORTED TYPES
// DATA TYPES

/** This structure holds the results of retrieving a set of attribute
values from a single managed object. The attribute values are placed
in the strongly typed attributes member. Because not all values in
the attributes may have been requested or supported, the attribute
names member holds the list of attribute names for which the
attributes member holds valid values. The rest are invalid. */

20 ITU–T Rec. X.780.1 (08/2001)

struct AttributesGetResultType {
ManagedObjectValueType attributes;
StringSetType attributeNames; };

typedef sequence <AttributesGetResultType> AttributesGetResultSetType;

interface AttributesGetResultIterator;

// ATTRIBUTES GET RESULT ITERATOR INTERFACE

/** The Attributes Get Result Iterator interface is used to retrieve
the results from an attributesBulkGet operation using the iterator
design pattern. */

interface AttributesGetResultIterator {

/** This method is used to retrieve the next "howMany" results
in the result set.
@param howMany The maximum number of items to be returned in

the results. Fewer may be returned if that is all
that is left, or to balance delay with efficiency.

@param results The next batch of results.
@return True if there are more results after those being

returned. If the return value is true the results
set should not be empty, as this forces the client
to poll for results.
Instead the call should block.

*/

boolean getNext(in unsigned short howMany,
out AttributesGetResultSetType results)
raises (ApplicationError);

/** This method is used to destroy the iterator and release its
resources. The iterator, though, is automatically destroyed after the
last results are returned, and may be destroyed if unused for an
unreasonably long period. */

void destroy();

}; // end of interface AttributesGetResultIterator

// MANAGED OBJECT FACADE

/** The Managed Object facade is intended to be the base interface from
which all other managed object facades inherit. It is a central place to
specify basic functions which all managed object facades are expected to
support. */

interface ManagedObject_F {

/** This method returns the scoped name of the most-specific class of
the managed object (e.g. "itut_x780::EquipmentR1").
NOTE This operation returns the class name of the object, not the
facade. This is the name of the facade interface minus the trailing
"_F". This is also the same name that goes in the objectClass parameter
of notifications, even on interfaces supporting facades.
@param name The name of the managed object instance on which the

operation is to be invoked.
@return The interface name of the managed object.
*/

ObjectClassType objectClassGet(in NameType name)

 ITU-T Rec. X.780.1 (08/2001) 21

raises (ApplicationError);

/** This method returns a list of all the conditional packages
supported by this instance.
@param name The name of the managed object instance on which the

operation is to be invoked.
@return The list of package names suported by the managed object
*/

StringSetType packagesGet (in NameType name)
raises (ApplicationError);

/** This method returns an indication of how the object was created.
@param name The name of the managed object instance on which the

operation is to be invoked.
@return An indication of whether the named managed object was

created autonomously or by a managing system
*/

SourceIndicatorType creationSourceGet(in NameType name)
raises (ApplicationError);

/** This method returns a value indicating if the object may be deleted
and if it may, if all contained objects are automatically deleted.
@param name The name of the managed object instance on which the

operation is to be invoked.
@return The delete policy of the named managed object
*/

DeletePolicyType deletePolicyGet (in NameType name)
raises (ApplicationError);

/** This method may be used to generically get all of the attributes
supported by an instance. Each interface is expected to sub-class the
Managed Object value type and add the other attributes supported by
that interface. The managed object must return a value object of that
type. The client must then narrow the reference to access all the
attributes. <p>

The client may also submit a list of names indicating the attributes it
wishes to receive. These names must match the member names in the value
object. For members not on the list, and for members that are part of
packages that are not supported, the server may return any value but it
should be as short as possible. The server also returns the list of
attributes, which may be shorter due to exclusion of attributes in
unsupported packages. The client must regard the value of any member
not in the returned list as garbage. <p>

A null attribute names list indicates that all supported attributes are
to be returned. The server must return the actual list.
@param name The name of the managed object instance on

which the operation is to be invoked.
@param attributeNames A list of names of attributes to be retrieved.
@return The value type containing the attriubtes.
*/

ManagedObjectValueType attributesGet (
in NameType name,
inout StringSetType attributeNames)
raises (ApplicationError);

22 ITU–T Rec. X.780.1 (08/2001)

/** This method is used to return multiple attributes from multiple
managed objects of the same type. The client supplies a list of
attribute names, and a list of managed object names from which to
retrieve the attributes. <p>

Data is returned in strongly-typed managed object value types, one from
each managed object named. If the facade does not provide access for a
managed object name provided by the client, no value type for that
object is returned. Since a managed system may provide multiple facade
interfaces of the same type, the client may have to invoke this
operation on multiple interfaces to retrieve values from all of the
managed objects of a given type on a system. <p>

Even if the client does not request that values for the 'name'
attribute be returned, the facade shall return the name in each managed
object value type. If it does not, the client will not know which
values apply to which managed object instance. <p>

Along with each managed object value type returned is a list of the
names of the attributes in that value type that have valid values. This
list may not match the list of requested attributes as the instance may
not support all of the requested attributes. The value "name" shall
always be on the returned list. If the instance supports none of the
requested attributes the facade shall return a managed object value
type for that instance with only the name attribute containing a valid
value. <p>

Since a potentially large amount of data may be returned, the iterator
design pattern is used. The client specifies the maximum number of
value types to be returned. The rest must be returned in an iterator.
If an iterator is used, the return value shall be true. Otherwise, it
shall be false and the iterator reference shall be null.
@param names The names of the managed objects from which to

retrieve the attribute values.
@param attributeNames The names of the attributes to retrieve.
@param howMany The maximum number of value types to return in

the attributes parameter.
@param attributes The first batch of results.
@param iterator A reference to an iterator, if needed.

Otherwise, null.
@return True if an iterator is being returned,

otherwise false.
*/

boolean attributesBulkGet (
in NameSetType names,
in StringSetType attributeNames,
in unsigned short howMany,
out AttributesGetResultSetType attributes,
out AttributesGetResultIterator iterator)
raises (ApplicationError);

/** This method destroys the object. It is used to simply release any
resources associated with the managed object. It does not check for
contained objects or remove name bindings from the naming tree. <p>

The intent of this operation is to allow support services to destroy
the managed object. <p>

NOTE – Direct invocation of this operation from a managing system could
corrupt the naming tree and is recommended only under extraordinary
circumstances. Clients wishing to delete an object should instead use
the terminator service.
@param name The name of the managed object instance on

which the operation is to be invoked.
*/

 ITU-T Rec. X.780.1 (08/2001) 23

void destroy(in NameType name)
raises (ApplicationError,

DeleteError);

}; // end of ManagedObject_F interface

// ApplicationErrorConst Module

/** This module contains the constants defined for the error code contained in
Application Error Info structures returned with Application Error exceptions.
*/

module ApplicationErrorConst {

/** This application error exception code indicates that a target object of
an operation could not be found. */

const short objectNotFound = 4;

}; // end of module ApplicationErrorConst

}; // end of module itut_x780

#endif // end of #ifndef ITUT_X780_1_IDL

Printed in Switzerland
Geneva, 2002

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.780.1 (08/2001) TMN guidelines for defining coarse-grained CORBA managed object ...
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	1 Scope
	1.1 Purpose
	1.2 Application
	1.3 Recommendation roadmap

	2 Normative references
	3 Definitions
	3.1 Definitions from ITU-T X.701
	3.2 Definitions from ITU-T X.703
	3.3 Additional definitions

	4 Abbreviations
	5 Conventions
	5.1 Conventions
	5.2 Compiling the IDL

	6 Coarse-grained interface design considerations
	6.1 Coarse-grained object creation and deletion
	6.2 Attributes
	6.3 Notifications
	6.4 Coarse-grained access to all managed resources
	6.5 Exceptions
	6.6 Support for all operations
	6.7 Prescriptive mapping
	6.8 Retrieval of attributes from multiple objects

	7 Framework and requirements overview
	7.1 Framework overview
	7.2 Coarse-grained extensions overview
	7.2.1 The facade design pattern
	7.2.2 Managed object name extension
	7.2.3 Support services for facade-accessible managed objects
	7.2.4 Facade modelling

	8 Providing facade interfaces for accessing managed objects
	8.1 Facade instantiation
	8.2 The facade interface base class
	8.2.1 Managed object facade basic capabilities
	8.2.2 Managed object facade IDL
	8.2.3 The objectClassGet() operation
	8.2.4 The packagesGet() operation
	8.2.5 The creationSourceGet() operation
	8.2.6 The deletePolicyGet() operation
	8.2.7 The attributesGet() operation
	8.2.8 The attributesBulkGet() operation
	8.2.9 The destroy() operation

	8.3 The AttributesBulkGet iterator interface
	8.4 Factory instantiation

	9 Coarse-grained CORBA modelling guidelines
	10 Guidelines for translating fine-grained models to coarse-grained
	11 Coarse-grained IDL compliance and conformance
	11.1 Standards document compliance
	11.2 System conformance
	11.3 Conformance statement guidelines

	ANNEX A - Coarse-grained modelling IDL

