| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.780

TELECOMMUNICATION (01/2001)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI management — Management functions and ODMA
functions

TMN guidelines for defining CORBA managed
objects

ITU-T Recommendation X.780

(Formerly CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
IP-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation X.780

TMN guidelines for defining CORBA managed objects

Summary

This Recommendation specifies guidelines for defining CORBA-based interfaces to software objects
representing manageable resources in a TMN. It covers information modelling guidelines, rules for
translating models from GDMO, and IDL style conventions. It also provides an IDL module
defining data types, superclasses, and notifications to be used in CORBA-based information model
specifications.

Source

ITU-T Recommendation X.780 was prepared by ITU-T Study Group 4 (2001-2004) and approved
under the WTSA Resolution 1 procedure on 19 January 2001.

Keywords

Abstract Syntax Notation One (ASN.1), Common Object Request Broker Architecture (CORBA),
Distributed Processing, Guidelines for the Definition of Managed Objects (GDMO), Interface
Definition Language (IDL), Managed Objects, TMN Interfaces.

ITU-T X.780 (01/2001) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

ii ITU-T X.780 (01/2001)

1.1
1.2
1.3
1.4
1.5

2.1

3.1
32
33

4.1

4.2

4.3

4.4
45
4.6

4.7

4.8

References.....oeeeeeeeeeeeeeieeeeeeeeeeenenn,

Normative References...................

Definitions and Abbreviations......
Definitions from ITU-T X.701
Definitions from ITU-T X.703

AbbreviationS........ccceeeeeeeeeeenennnnn.

4.1.1
4.1.2
4.13

Entities
4.2.1

CONTENTS

Application Interoperabilityccccoviiiiiiiiiiiiiiiiieeeen

Common Usage of CORBA Common Object Services.........cceevveeeeuveennnen.

Information Model TranSparencCycceeeeerieerienieenieenie e

Access Granularity

Principles of Containment and NamINg........cccueevueeriiiiiiinieniienieieesie e

4.3.1
432

Namingccceceeveevvennenne

Entity Identification.........

Managed Object Classes...............

Packages......ccocevveeiieniieiieeen
AUrIbULeS ...ooeeeveeeieeee e

4.6.1
4.6.2
4.6.3

GET and SET...................
Generic Attribute Get
Set-valued Attributes.......

Creation and Deletion of Managed ObjectS.........cccovieriiiciierieeiieriecie e

4.7.1
4.7.2

Creationeeeeeeeeeeeveennnn.

Deletionceeeeeeeeeeeeennn..

Inheritanceeeeeeeeeeeeeeeieeeeeeeeenn,

The Obj

ect Model IDL Module....

The Base (Top) Managed Object Interface...........coccveevieeniiniiienienieiiieieeeeee

5.1.1

The nameGet() Operation

ITU-T X.780 (01/2001)

O |

NoRlENsRiNe RiRe NN RN RIEN RIEN RIEN RREN| N[l

—_ [—
SO

— == == ==
N = OO OO

[—
(\S]

—_
\S)

—_ | —
B~ W

il

5.2
5.3
5.4
5.5

5.6
5.7

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12
6.13

v

5.1.2 The objectClassGet() OPEration..........cccuveeeerererueeesireeenieesieeesireeesseeenseeenns
5.1.3 The packagesGet() OPEration............ceccueeerieeeiieeeiieeeiieeeiieeeeieeesreeesereeeenes
5.1.4 The creationSourceGet() OPErationcccueeeeveeeriveeeiieeeiieesireeesreeeneree e
5.1.5 The deletePolicyGet() OPeration.............cccueereeeiueenieeeiieeniiesieenieeseeenseesveenne
5.1.6 The attributesGet() OPEIationc.ceveeeueeriieeiiieniieeieeniieeieeriee e neee e e
5.1.7 The destroy() OPeration...........cceeeeeeeuieriieeiiieniieeieeiieeieesieesteereesaeeseeseeeenne

The Managed ODbjJect FACLOTYcccviieiiiieiiiiciie ettt
The Notifications INtEIrfacecceeeiiiiiiiiieieee e
The Data Type DefiNitionsccccuvieiiiieeiiie et

EXCOPLIONS. ...ttt ettt et sttt e et e et e s st e enbeeeaaeenbeenneeenseenne
5.5.1 The ApplicationError EXCEPtionccccvvevviieriieiiiieeieeciie e
5.5.2 The CreateError EXCEPHION.......c.ceevvieeriieeiieeeieeeieee et vee e
5.5.3 The DeleteError EXCEPHIONccuvieeevieiiiieeiieeeiiee et sieeesvee e evee e

MACTO DIETINITIONS c.eeeeeeeieeeieeiiiieeeeeeeeeeeeeeee ettt ettt et eeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeaeeaaeaaeae

ATITIDULES ..ttt ettt et st e et e st e e bt e s ate e bt e snbeenseeenseenseesnseeseens
6.3.1 Readable AtIIDULESccc.eeiiiieiiieeieece e e e
6.3.2 Settable AtITDULESoeeiiieeiieeieeeeeee e
6.3.3 Set-valued AtrIDULESeeiuiiiiieiieeie e
0.3.4 EXCEPHIONS .ooutiiiiiiiiiieiiiesiie ettt ettt et et e et e st e esbeesate e bt e sseeenbeesneeenseennes
6.3.5 Standard AtriDULEScooiieiiiiiiieiee e

ALCHIONS ..t ettt et
NOTHICALIONS. ...ttt ettt et st et e ne e
Conditional PaCKages........ccueriiriiiiiiiiiiieicrteeeet et
BEhavIOUTc..ooiiiiiiiiii e
Name Binding Information...........cccooieriiiiniiiiiineceece e

FaCHOTIES ..ttt sttt
0.9.1 Create OPETAtiONScceevueruieriiriieritenieeiene ettt sae st sbeeseesieesaeenens
0.9.2 Factory FINAET........c.coouiiiiiiiieiiciteeee et e

Managed Object Class Value TyPes......cocoviieiiiiiiiieiiieeciee ettt
COMSLANES ..ottt ettt ettt e et e e ettt e st e e sabeeesabeeesabeesbbeesabeeesanne
ST o4 T 2 212) 1 BTSSR
Versioning of CORBA/IDL Specificationscoceeveeverieneenienienenicneeieeeeeneenes

GDMO Translation ...coooeeeeeeeeee e,

ITU-T X.780 (01/2001)

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

Managed Object Classes.........ccceeevveeeveeennee.
Packages.....c.ccoveviieiienieeiee e
AUIIDULES ..o
ALribute Groupsccveeveveeeveenieeieeniieeieeieenne
ACHONS ..ttt

NOUTICAIONS. ...t eeeeeeeeeeees

Behaviours c.ooeeeeeee oo

Name Bindingsccoeceevieeiiienieeieenieenen.

ParametersS.....coouueeeeeeeeee e

7.9.1 ACTION-INFO and ACTION-REPLYcccccciiiiiiiiiiiiicncceneceeee
7.9.2 EVENT-INFO and EVENT-REPLYcccccociiiiiiiiiiiiiceeeeee

7.9.3 Context-Keywordcccceveeunennee.

7.9.4 SPECIFIC-ERRORc..cccocuueee.

ASN.1 Data Typesccccveeeveeerreeeieeereeenne
7.10.1 Basic Types...ccccooerieenieriieiieeieene
7.10.2 SeqUENCE....ccceveevrieeriieiiieeieeeieeenn
7.10.3 Sequence of.......cccceeeeveereieencieennnnn.

70104 Setof e,
7.10.5 CROICE.ccuuuuueeeeeeeeieeeeeeeee e,

7.10.6 Object Identifier (OID)....................
7.10.7 Object Instanceccceeeeveereeeennennee.

7.10.8 BIT STRINGcccocviiiiiiiiiiee

Style Idioms for CORBA IDL Specificationscccccvveeriieeriieeniieeieeeieeeseee e

Use Consistent Indentation.......cccceeeeeeeeeeeneen.

Use Consistent Case for Identifiers
Follow JIDM Approach for IMPORT

Use JIDM Approach for OPTIONAL and CHOICE...........cccooiiiiiiiiiicieieeee

Use a Consistent Type Suffixc.cccueee..e.

Use a Consistent Suffix for Sequence Types

Use a Consistent Suffix for Set Types..........
Use a Consistent Suffix for Optional Types.

Arrange Operation Parameters in a Consistent Mannerccoccceeeveerciveenieecnneenn.

Assume No Global Identifier Spaces............
Module Level Definitions...........cceceveenennen.
Use of Exceptions and Return Codes

Explicit vs. Implicit Operations....................

Don't Create a Large Number of Exceptions

ITU-T X.780 (01/2001)

\%

9 Compliance and Conformance......................
9.1 Standards Document Compliance.................
9.2 System Conformance.............ccceeeeevveenerennen.
9.3 Conformance Statement Guidelines

Annex A — The Object Model CORBA IDL Module

Annex B — Network Management Constant Definitionscccceeeevieninveniinenneneenennee,

Appendix [— Bibliographyccccocevvevviieniiieenieens

vi ITU-T X.780 (01/2001)

ITU-T Recommendation X.780

TMN guidelines for defining CORBA managed objects

1 Scope

The TMN architecture defined in ITU-T M.3010 introduces concepts from distributed processing
and includes the use of multiple management protocols. The initial TMN interface specifications for
intra- and inter-TMN interfaces were developed using the Guidelines for the Definition of Managed
objects (GDMO) notation from OSI Systems Management with Common Management Information
Protocol (CMIP) as the protocol. The inter-TMN interface (X) included both CMIP and CORBA
GIOP/IIOP as possible choices at the application layer.

CORBA, a distributed processing technology, is being considered for use in the TMN
communication architecture primarily due to its acceptance by the Information Technology industry.
This acceptance is expected to enhance the availability of CORBA-based interfaces due to better
development tools and wide-spread expertise in developing CORBA-based interfaces. This
technology, developed by the Object Management Group (OMG), is also being considered by
multiple industries. Specifications using this technology provide support for standard application
programming interfaces (APIs) and language bindings to programming languages, and they also
facilitate software portability. The interoperability solutions offered by the object request broker
combined with the Inter-ORB protocol address interoperability between client and server. While
CMIP and information models provide solutions for interoperability between manager and agent
systems, CORBA defines inter-object interactions where the objects may be distributed.

1.1 Purpose

Several groups are developing network management specifications that use CORBA modelling
techniques with IDL as the notation along with CORBA services. The scope of this
Recommendation is to define guidelines suitable for use in the specification of interoperable
CORBA-based network management interfaces. The demands placed on "X" interfaces are different
from those used "inside" an administration, "Q" interfaces. The scope of this Recommendation
covers all interfaces in the TMN where CORBA may be used. It is expected that not all capabilities
and models defined here are required in all TMN interfaces. This implies that the framework can be
used for interfaces between management systems at all levels of abstractions (inter and intra-
administration) as well as between management systems and network elements.

ITU-T Q.816 [1] defines a set of services that are required for CORBA-based TMN interfaces. This
Recommendation defines guidelines for specifying information models written in CORBA IDL to
which the services are applicable. It also provides rules for translating existing GDMO models to
IDL. Finally, it defines some base IDL code for use by all CORBA-based TMN information models.
The combination of this Recommendation and ITU-T Q.816 form a framework for defining and
implementing CORBA-based TMN interfaces.

Use of a common framework on telecommunications management interfaces has several advantages.
Some examples are: facilitating reuse of models that are developed to meet the generic requirements
of telecommunications; profiling CORBA services for use by the telecommunications industry;
easing the definition of new services for TMN; reusing the semantics of the existing rich set of
models; and harmonizing the modelling approach across groups using a single source similar to
ITU-T X.720, X.721 and X.722 for CMIP. Reusing a common approach to modelling resources and
reusing a generic information model for a variety of network technologies and network management
applications will speed the introduction of new network services while keeping network
management system development costs down.

ITU-T X.780 (01/2001) 1

The telecommunications industry has invested a great deal of time and energy in the development of
information models for the CMIP network management protocol. A primary goal of the TMN
CORBA framework is the reuse of these information models by enabling their translation to
CORBA Interface Definition Language (IDL) with little change in semantics. As a result, initial IDL
information models are expected to be derived from CMIP models.

1.2 Application

ITU-T M.3020 defines three phases in the development of a TMN specification. The three phases are
Requirements, Analysis and Design. Figure 1 shows this process and the scope of this
Recommendation for developing CORBA-based interface specification relative to this process.

Requirements Specification

Paradigm
independent
Paradigm Independent Specification
(@ (b)
v 4 v
Paradi CMIP- CORBA- Other Paradigm-
ara }fgm based > based based
specitic Specification ©) Specification Specification

T0414410-00

Figure 1/X.780 — CORBA-based Specification

The requirements and analysis are specified using an approach that is not specific to a network
management technology paradigm. The output from the analysis phase, the paradigm independent
specification, is used as input to the paradigm specific design phase.

In the design phase, network management paradigm specific features are used to define information
models. These paradigm specific specifications incorporate both behaviour (normally in natural
language) and formal interface signatures (e.g. GDMO, IDL).

The arrows marked as (a) and (b) show that the analysis output is mapped to GDMO/ASN.1 based
model to use with CMIP or IDL models to use with CORBA/IIOP, respectively. There are no
prescriptive rules available at this time to generate these models. It may be possible to develop such
rules in the future in ITU-T M.3020.

This Recommendation addresses the reuse of existing models developed in the CMIP paradigm if
CORBA/IIOP is to be used instead of CMIP. The arrow shown as (c) is addressed by this
Recommendation.

In developing the transformation from GDMO/ASN.1 definitions to CORB/IDL, two approaches are
possible.

. In the first approach, every element of the syntax is translated to CORBA/IDL using a well-
specified algorithm or a prescriptive definition. This approach is the one taken with Joint
Inter-Domain Management (JIDM) where a gateway can be used to support interoperability.

2 ITU-T X.780 (01/2001)

. The second approach (used in this Recommendation) does not prescriptively translate every
element of the syntax. Rather, the elements are translated from the existing GDMO in a way
that preserves the semantics and also uses the features of CORBA. This approach is not used
for inter-working via gateways but to preserve the requirements and semantics of the models
developed to meet the telecommunication context. It is applied when the managing and
managed systems are designed to communicate using CORBA/IIOP.

In addition to the recommendations for translating from GDMO information models defined here,
ITU-T Q.816 defines recommendations for CORBA services to be used for managing
telecommunications networks. Q.816 aspects of the framework are applicable irrespective of how
CORBA based specifications are developed (i.e., using the path designated as (b) or (¢) in Figure 1).

In addition to taking advantage of CMIP information models, another purpose of the guidelines is to
take advantage of CORBA. The framework leverages the functions defined in the CORBA
specifications, including a set of Common Object Services. Also, these guidelines reuse CORBA
approaches and design patterns wherever they are appropriate. Finally, while reusing existing models
is important, it is equally important that the framework support the development of new models.
These guidelines do not require a GDMO model to be developed prior to the development of an IDL
model. In fact, developing a new IDL information model for use within this framework is
straightforward and guidelines for doing so are provided.

ITU-T M.3120 [11] provides a CORBA IDL version of the generic network information model
originally defined in ITU-T M.3100. The IDL version follows the object modelling guidelines
defined here and is designed to use CORBA-based TMN services defined in ITU-T Q.816.

1.3 Roadmap

This Recommendation has the following structure:

Clause 1 Introduction, document roadmap, and updates.

Clause 2 References.

Clause 3 Definitions of abbreviations used throughout the rest of the Recommendation.

Clause 4 Requirements for the object modelling guidelines. These are the design goals the
guidelines must meet.

Clause 5 Description of the CORBA IDL module that defines interfaces to be used and sub-
classed in network management interface specifications. The actual IDL is in Annexes A
and B.

Clause 6 Guidelines for defining CORBA-based TMN information models. These guidelines are
specifically designed for IDL objects using the TMN CORBA-based services in
ITU-T Q.816.

Clause 7 Guidelines for translating GDMO information models to IDL models suitable for use
with the TMN CORBA-based services in ITU-T Q.816.

Clause 8 Style idioms for CORBA IDL network management interface specifications.
Clause 9 Compliance and conformance guidelines.
Annex A The IDL module for the modelling guidelines specification. This annex is normative.

Annex B Additional IDL defining constants used by the modelling guidelines. This annex is
normative.

ITU-T X.780 (01/2001) 3

14 Conventions

A few conventions are followed in this Recommendation to make the reader aware of the purpose of
the text. While most of the Recommendation is normative, paragraphs succinctly stating mandatory
requirements to be met by a management system (managing and/or managed) are preceded by a
boldface "R" enclosed in parentheses, followed by a short name indicating the subject of the
requirement, and a number.

For example:
(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are likewise preceded
by an "O" instead of an "R." For example:

(O) OPTION-1 An example optional requirement.
The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this Recommendation, and IDL specifying the data
types and base classes are included in normative annexes. The IDL is presented in a 9-point courier
typeface:

/1 Exanple |IDL
interface foo {

voi d operationl ();
b

Instructions for extracting the IDL from an electronic version of this Recommendation and
compiling it are presented in clause 1.5.

1.5 Compiling the IDL

An advantage of using IDL to specify network management interfaces is that IDL can be "compiled"
into programming code by tools that accompany an ORB. This actually automates the development
of some of the code necessary to enable network management applications to interoperate. This
Recommendation has two annexes that contain code that implementors will want to extract and
compile. Both Annex A and Annex B are normative and should be used by developers implementing
systems that conform with this Recommendation. The IDL in this Recommendation has been
checked with two compilers to ensure its correctness. A compiler supporting the CORBA 2.3
specification must be used.

The annexes have been formatted to make it simple to cut and paste them into plain text files that
may then be compiled. Below are tips on how to do this.

1) Cutting and pasting seems to work better from the Microsoft® Word® version of this
Recommendation. Cutting and pasting from the Adobe” Acrobat® file format seems to
include page headers and footers, which cannot be compiled.

2) All of Annex A, beginning with the line "/* This IDL code..." through the end should be
stored in a file named "itut x780.idl" in a directory where it will be found by the IDL
compiler.

3) All of Annex B, beginning with the line "/* This IDL code..." through the end should be
stored in a file named "itut x780Const.idl" in the same directory as the file containing
Annex A.

4) The headings embedded in these annexes need not be removed. They have been
encapsulated in IDL comments and will be ignored by the compiler.

4 ITU-T X.780 (01/2001)

5) Comments that begin with the special sequence "/**" are recognized by compilers that
convert IDL to HTML. These comments often have special formatting instructions for these
compilers. Those that will be working with the IDL may want to generate HTML as the
resulting HTML files have links that make for quick navigation through the files.

The annexes have been formatted with tab spaces at 8-space intervals and hard line feeds that should
enable almost any text editor to work with the text.

2 References

2.1 Normative References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] ITU-T Q.816 (2001), CORBA-based TMN services.

(2] OMG Document formal/99-10-07, The Common Object Request Broker: Architecture and
Specification, Revision 2.3.1.

[3] OMG Document formal/2000-08-01, CORBA/TMN Interworking, Version 1, Edition 4.31.

[4] ITU-T X.701 (1997) | ISO/IEC 10040:1998, Information technology — Open Systems
Interconnection — Systems management overview.

[5] ITU-T X.703 (1997) | ISO/IEC 13244:1998, Information technology — Open Distributed
Management Architecture.

[6] ITU-T X.721 (1992) | ISO/IEC 10165-2:1992, Information Technology — Open Systems
Interconnections — Structure of management information: Definition of management
information.

[7] ITU-T X.722 (1992) | ISO/IEC 10165-4:1992, Information Technology — Open Systems
Interconnection — Structure of management information: Guidelines for the definition of
managed objects.

3 Definitions and Abbreviations

3.1 Definitions from ITU-T X.701

The following terms used in this Recommendation are defined in the Systems Management
Overview (ITU-T X.701):

- managed object class;
- manager;

- agent.

3.2 Definitions from ITU-T X.703

The following term used in this Recommendation is defined in the Open Distributed Managment
Architecture (ITU-T X.703)

— notification.

ITU-T X.780 (01/2001) 5

33 Abbreviations

This Recommendation uses the following abbreviations:
ASN.1 Abstract Syntax Notation No. 1

ATM Asynchronous Transfer Mode

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

COS Common Object Services

DN Distinguished Name

EMS Element Management System

GDMO Guidelines for the Definition of Managed Objects
GIOP General Interoperability Protocol

HTML Hypertext Markup Language

ID Identifier

IDL Interface Definition Language

[IOP Internet Interoperability Protocol

IOR Interoperable Object Reference

ITU-T International Telecommunication Union — Telecommunication Standardization Sector
JIDM Joint Inter-Domain Management

MO Managed Object

NE Network Element

NMS Network Management System

OAM&P Operations, Administration, Maintenance, and Provisioning
OID Object Identifier

OMG Object Management Group

ORB Object Request Broker

OSI Open Systems Interconnection

PDU Protocol Data Unit

QoS Quality of Service

RDN Relative Distinguished Name

TMN Telecommunications Management Network

TTP Trail Termination Point

UID Universal Identifier

UML Unified Modelling Language

UTC Universal Time Code

6 ITU-T X.780 (01/2001)

4 CORBA Modelling Goals and Requirements

This clause describes the key goals for modelling TMN resources using CORBA, and the
requirements that the modelling guidelines must meet to support these goals. Clause 4.1 introduces
the goals of the modelling guidelines. Subsequent subclauses then provide terminology and
requirements. The requirements in clause 4 are requirements that the framework must satisfy. They
are based on the telecommunications management needs. Clauses 5, 6, 7, and 8 then describe
modelling guidelines that meet these needs and define how to achieve the requirements of clause 4
by using CORBA in a certain way. The rules in clauses 5, 6, 7, and 8 on how to use CORBA also are
referred to as requirements.

4.1 Goals

This Recommendation specifies guidelines for defining CORBA managed objects for use on
interfaces supported by telecommunications network management systems and network elements.
Some key goals of the modelling guidelines are:

. Application Interoperability;
. Common Usage of CORBA Common Object Services;
. Information Model Transparency

This clause elaborates on these three goals.

4.1.1 Application Interoperability

A key goal of the TMN architecture, and in particular the information architecture, is to promote a
standard framework for providing interoperability and information exchange between systems from
a diverse set of network management system suppliers. Interoperability between systems involves
many aspects of development. At its lowest layer, a common communication mechanism must be in
place to support a common syntax, the establishment of connectivity and the exchange of operation
requests/replies between systems. This aspect of interoperability is inherently supported by the
CORBA specification.

For TMN, there is the need to provide application interoperability. That is, management systems
from diverse suppliers will be utilized within a single administration's TMN to support different
functions necessary to support management of its networks. To simplify integration of these various
suppliers' systems, they must agree on the semantics of the information being exchanged. This is
accomplished with the specification of an information model. This clause specifies the rules for
defining these information models.

4.1.2 Common Usage of CORBA Common Object Services

A second aspect of these guidelines is the reliance upon a common usage and profiling of the
distributed processing environment of choice. Rather than re-defining the interface capabilities
needed to support common network management functions such as object naming and notification
filtering with each information model, these guidelines rely upon a set of support services. These
support services enable the information models to be simpler, and also enhance interoperability. The
support services required for CORBA-based interfaces are specified in ITU-T Q.816.

4.1.3 Information Model Transparency

If CORBA is used in places within the TMN architecture where existing information models (e.g.
GDMO) are well established, then the framework must support the reuse of those models without
any major changes.

A single standard way to map these GDMO information models to OMG IDL is needed so that the
same models are always presented by the application protocol to the application with the same set of
services (capabilities).

ITU-T X.780 (01/2001) 7

4.2 Entities

An entity type describes a kind of "thing" in the real world. Each entity type has particular
properties, called attributes.

An entity instance (or entity) (e.g. Circuit Pack #1) is of an entity type (e.g. Circuit Pack). Each
entity's attributes have values that represent the state of that instance. In addition, each entity must
be uniquely identifiable.

In CORBA, an entity may be accessed by different methods. For example, an entity may be
accessed by an IDL data structure, a value type, or an interface type. This Recommendation presents
how CORBA is utilized to define entity types.

4.2.1 Access Granularity

In the context of TMN operations, granularity defines the level of abstraction that is exposed
between systems. Access Granularity identifies the level at which entities may be accessed (i.e. how
information is exposed via an interface). For CORBA, each CORBA object is provided a unique
address known as an Interoperable Object Reference (IOR). The IOR provides an address to the
client system identifying which server system to connect to for communication with the server side
CORBA object.

In CORBA, it is possible to define different access abstractions (i.e. access granularity) to the
Entities defined for TMN (e.g. ITU-T M.3100). Two different access abstractions are defined here:

1) Instance granularity: Each entity has its own IOR. For the creation of new Entities, this
implies the instantiation of a new CORBA object.
-1 IOR / entity instance

For example, an entity type in the ATM domain is an atmLink. In the Instance Grained
approach, a CORBA object is defined that supports the same attributes as the entity type
which it represents. For each instance of the atmLink, an independent CORBA object is
created. Thus each atmLink can be uniquely addressed by its IOR.

2) Application-specific granularity: Instances of a well-defined set of entity types are
accessed via a single IOR (a single interface).
-1 IOR / Family (set of) entity types
Bulk operations are defined in application-specific CORBA IDL interfaces, which pass
identities and states of managed entities using operation parameters employing lists of IDL
structured types.

The CORBA object modelling guidelines defined in this specification are applicable to the
specification of managed object interfaces that support instance-grained access granularity. TMN
standards may also be defined using application-specific access granularity. Such interface
specifications, however, are outside the scope of this Recommendation.

4.3 Principles of Containment and Naming

Containment is a logical representation of how entities of one type contain entities of another type. A
Containment Tree defines the relationship between the entity instances. An entity instance is
contained by one and only one containing entity instance. Containing entity instances may
themselves be contained in another entity instance forming a directed graph. The directed graph
forms what is called the Naming (or Containment) Tree.

The containment relationship can be used to model real-world hierarchies of parts (e.g. assembly,
sub-assemblies and components) or real-world organizational hierarchies (e.g. company name, org.
name).

An example of a possible containment tree is shown in Figure 2 below.

8 ITU-T X.780 (01/2001)

Containing
Entity
Contained
Entity
Trail

Termination
Point

Managed
Element

T0414420-00

Eq. Holder

Figure 2/X.780 — Example of Containment

4.3.1 Naming

One purpose of containment relationships is for naming entities. Names are designed to be unique in
a specified context; for TMN, this context is determined by the containing entity instance.

An entity that is named in the context of another entity is termed a "Subordinate Entity". The entity
that establishes the naming context (this term is used in general and should not have the direct
connotation of a COS Naming Service Naming Context) for other entities is called the "Superior
Entity".

A "Subordinate Entity" is named by the combination of:
- The name of its "Superior Entity".

- Information uniquely identifying this "Subordinate Entity" within the scope of its superior
entity.

The name of an entity that is unique in a local naming context may not be so in some larger naming
context. However, if the local naming context is unique in the larger context, a local name can be
made unique by qualifying it by its naming context; the name of the naming context is used as the
qualifier. This arrangement can be visualized as a directed graph with each edge (or arrow) pointing
from a named object to a naming context.

The naming context can itself be recursively qualified by another naming context, so the complete
naming structure can be visualized as a single-rooted hierarchy. This hierarchy is called the naming
tree. Thus "Superior Entities" become the naming contexts and their names become the names of the
contexts. An object name need only be unique within the context of its superior Entities; within a
wider context its name is always qualified by names of it superior Entities.

4.3.2 Entity Identification

Because a "Superior Entity" may contain multiple "Subordinate Entities" of the same type, each of
these contained entities of the same type must be distinguishable relative to their containing entity.
The relative name of an entity within its containing entity is called an entity's Relative
Distinguished Name (RDN). For example, there may be several equipment holders within a
managed element. To uniquely identify each equipment holder within the managed element, the
equipment holders must be provided an RDN. The RDN should identify the name of the entity type

ITU-T X.780 (01/2001) 9

(e.g. equipment holder, which is an entity type) and a unique value within the scope of the
containing entity.

An RDN is a basic element of a Distinguished Name (DN), as specified in ITU-T X.720. A DN is
defined by a sequence of RDNs starting from a specific context. The DN yields a unique name
relative to this context.

4.4 Managed Object Classes

These modelling guidelines specify that each entity type maps one-to-one with a CORBA
operational interface. When an entity type is mapped in this manner, the CORBA object representing
the entity type is called a Managed Object Class. A Managed Object Class must also exhibit the
ability to emit notifications (see ITU-T X.703).

The term "Managed Object Class" is defined in ITU-T X.720. As explained in ITU-T X.703,
managed object classes and sub-classes map to interfaces and derived interfaces.

4.5 Packages

It is necessary to capture the notion of packages in CORBA IDL. Packages are groups of capabilities
(attributes, actions, or notifications) that may be conditionally supported by a Managed Object
Instance. A managing system must have the capability to determine which packages are supported
by a Managed Object Instance. If any operations are performed on a Managed Object, and those
operations are contained by a Conditional Package that is not instantiated for that Managed Object,
then the Managed Object must indicate an error.

4.6 Attributes

The guidelines must support the definition of attributes (i.e. visible properties) on Managed Object
Classes.

4.6.1 GET and SET

The value of an attribute may be observable or modifiable across a standard interface. If observable,
the information modeler must define a "get" method for that attribute. If modifiable, the information
modeler must define a "set" method for that attribute.

4.6.2 Generic Attribute Get

CORBA-based TMN information models should allow a managing system the ability to read
arbitrary groups of attributes from a single managed object with a single operation. This service
allows many management tasks to be performed with a single operation. Support of the Generic
Attribute Get is required.

4.6.3 Set-valued Attributes

For attributes containing lists of values, a modeler should have the capability to allow managing
systems to add or remove individual values to/from lists without resending all the information in the
original list.

4.7 Creation and Deletion of Managed Objects

The existence of Managed Objects (MOs) is closely related to the containment relationship between
the MOs. A MO's existence is tied to the existence of that MO's superior MO Instance. If the
specified "Superior MO" does not exist for a "Subordinate MO", then that "Subordinate MO" cannot
be created. Similarly, if a MO's "Superior MO" is deleted, then that "Subordinate MO" (and the
"Subordinate MO's" subordinates) can no longer exist. Given this, there are creation and deletion
semantics that must be enforced by the TMN CORBA framework.

10 ITU-T X.780 (01/2001)

The following subclauses define the high-level requirements that must be supported for object
creation and deletion. ITU-T Q.816 describes the generic services used to carry out creation (i.e. the
factory) and deletion (i.e. the factory in coordination with the terminator service). Clause 6 defines
modelling guidelines for how the requirements defined in this clause are supported.

4.7.1 Creation

When creating a Managed Object, three aspects of the MO's existence must be identified:
. The MO's name;

. The MO's attribute values;
. The conditional packages of the MO that are to be instantiated with the creation of the
new MO.

Note that definition of these aspects in the create request may be either explicit or implicit. Options
for identifying these aspects of a MO's existence are defined in the following three clauses.

4.7.1.1 Identification of the MO Name

The name of the MO to be created can be determined in one of two ways:

1) The manager may specify, as a parameter of the create operation, a reference to an existing
MO which is to be the superior of the new MO and may specify the RDN of the new MO in
the create operation's attribute list. This results in the complete specification of the MO
name being supplied by the manager.

2) The manager may specify, as a parameter of the creation operation, a reference to an
existing MO which is to be the superior of the new MO and may omit specifying the RDN
of the new MO. In this case, the RDN of the new MO is assigned by the managed system.

If the associated information is not correct, or, for some other reason the create operation cannot be
performed, then the factory attempting to perform the operation shall indicate an error.

4.7.1.2 Identification of the MO Attributes

When a MO is created, its attributes are assigned values that are valid for the type of attribute. These
values are derived from information in the Create operation and the MO class definition in one of the
two manners listed below:

1) The create request is permitted to specify an explicit value for each individual attribute.
When the MO is created, explicit values are assigned to attributes as required by the MO
class definition.

2) The MO class definition is permitted to specify how default values are assigned to attributes
that are not set by the create operation.

If default values are not specified for an attribute, then the managing system must supply a value for
that attribute in the create request. If no value is specified for that attribute, then an error should
occur.

If an explicit value is defined for a particular attribute in the create request, then the MO will take
that value for the specified attribute over any potential default value that may be specified for that
attribute.

4.7.1.3 Identification of MO Packages for Instantiation

To ensure that underlying resources can be instantiated with required capabilities, the manager must
be able to specify the capabilities (i.e. the conditional packages) that the managed object should have
instantiated.

ITU-T X.780 (01/2001) 11

Instantiation of a conditional package will occur if an associated condition is satisfied for the
managed object being instantiated. The manager may also request the instantiation of a conditional
package as part of the create request, by including it in the packages attribute of the create request.

4.7.2 Deletion

For deletion, deletion semantics may support the deletion of all contained entities while in other
cases, the delete method immediately fails if there are contained subordinate entities. These
semantics must be maintained for each entity type.

4.8 Inheritance

One "Managed Object Class" may be defined as a specialization of another "Managed Object Class"
by utilizing inheritance. Specialization of a "Managed Object Class" implies that all methods and
attributes defined on the superclass will also be supported by the subclass.

In CORBA IDL, an attribute or operation cannot be inherited from more than one interface, nor can
an inherited operation or attribute be redefined by a subclass. (Note that, in general, it is not expected
that a CORBA information model would define a method or attribute in a class, where that same
method or attribute may also be defined in the superclass. However, there are cases in the mapping
from GDMO to IDL where this may occur. For example, because GDMO attributes specify
permitted and required values, a subclass in GDMO may sometimes redefine the same attribute.
Care must be taken when mapping to IDL that the same attribute is not redefined.)

A subclass in CORBA cannot inherit the same attribute or method (with the same name) from more
than one superclass (unless they in turn inherited it from the same base class). Also, a subclass
cannot redefine the same attribute or method (with the same name) defined in one of its superclasses.

These guidelines place no constraints over CORBA inheritance.

5 The Object Model IDL Module

Before describing the rules for defining TMN managed objects using CORBA Interface Definition
Language (IDL), [2] this clause presents a network management module containing a set of object
interfaces and supporting data structures specified in CORBA IDL. This IDL module is intended to
play a role in CORBA-based network management similar to that played by the GDMO and ASN.1
definitions in ITU-T X.721 [6] for CMIP. It provides the basic set of IDL definitions on which
information models are then built.

The IDL is included in Annexes A and B of this Recommendation. Annex A contains the base
classes (interfaces), data structures, and notifications. Annex B is a separate file containing just
constant definitions. Both of these are based on the GDMO and ASN.1 definitions found in
ITU-T X.721.

ITU-T X.721 is a convenient source for capabilities that must be provided in network management
information models. ITU-T X.721 defines the following managed object classes using GDMO:

. 9 types of records (Log Record, Event Log Record, Alarm Record, Attribute Value Change
Record, Object Creation Record, Object Deletion Record, Relationship Record, Security
Alarm Report Record, State Change Record);

. Discriminator and Event Forwarding Discriminator;
* Log;

. System;

. Top.

Each of these has attributes, actions, and supporting data types and parameters. In addition, ITU-T
X.721 defines 15 notifications.

12 ITU-T X.780 (01/2001)

Looking at the managed object classes listed above, it is clear that many of these are covered by the
CORBA Common Object Services already included in the framework (see ITU-T Q.816 for details
on the TMN CORBA Based TMN Services):

. The CORBA Telecom Event Log service defines a structure for holding log records, so the
record classes need not be redefined. (Note that by specifying the use of the CORBA
Telecom Event Log Service the TMN CORBA framework treats log records as data
structures, not objects.)

. The CORBA Notification Service defines a filtering capability, so the discriminator and
event forwarding discriminator need not be redefined.
. The CORBA Telecom Event Log Service defines the equivalent of X.721's Log.

That leaves just System and Top, along with the notifications. System is not really a framework class
and belongs instead in a generic information model (if it is needed). The IDL in Annex A, therefore,
defines a "top" managed object interface, called "Managed Object," that is intended to be subclassed
by all other managed object interfaces similar to the way the managed object class named "Top" is
subclassed by all CMIP managed object classes. Also included is a generic "factory" object.
Managed object factories are used for object creation. (The CORBA based TMN services defined in
ITU-T Q.816 includes a Terminator service that handles object deletions independent of object type,
but object creation is handled by class-specific factories so that object creation operations may be
strongly typed.) The notifications are defined on a third IDL interface. In addition, a number of IDL
data types are defined. Finally, some IDL pre-compiler macros are defined to ease managed object
interface specification. Each of these is discussed below.

5.1 The Base (Top) Managed Object Interface

The first interface defined in Annex A is the ManagedObject interface, found after all the data type
definitions. It is intended to be the base managed object interface from which all other interfaces
inherit. It defines a set of capabilities that all managed object instances must support. These
capabilities are:

. A method that returns the name of the object.

. A method that returns the interface (actual class) name of the object.

. A method that returns the conditional packages supported by the object instance.

. A method that returns the creation source of the object (whether it was created
autonomously by the managed resource, in response to a management operation, or
unknown).

. A method that returns the delete policy for the instance. This is an enumerated value and

indicates if the object is not deletable, if it is deletable only if it contains no objects, or if all
contained objects will be deleted when it is deleted.

. A method that returns a CORBA value type object containing all of the readable attributes
for the object.

. A destroy operation.

The IDL describing the ManagedObject interface (without comments) is:

i nterface ManagedObj ect {

NameType nameCet ()
rai ses (ApplicationError);

hj ect Cl assType obj ect d assCet ()
rai ses (ApplicationError);

StringSet Type packagesGet ()
rai ses (ApplicationError);

Sour cel ndi cat or Type creati onSour ceGet ()
rai ses (ApplicationError);

ITU-T X.780 (01/2001) 13

Del et ePol i cyType del et ePol i cyGet ()
rai ses (ApplicationError);
ManagedObj ect Val ueType attri butesGet (
i nout StringSetType attributeNanes)
rai ses (ApplicationError);
voi d destroy()
rai ses (ApplicationError, DeleteError);

}; // end of ManagedObj ect interface

5.1.1 The nameGet() Operation

The first operation, nameGet(), returns the CORBA name of the object. NameType is a type
definition for the CORBA Naming Service Name type. NameType is used to conform to the IDL
conventions defined later in this Recommendation. This method returns the compound name of the
object, beginning with the name assigned to the local root naming context under which the object is
contained. That is, the method returns the "globally unique" name for the object. See ITU-T Q.816
for details on assigning a unique name to the root naming context of a managed system. The
ApplicationError exception is defined to be raised by any managed object operation if the operation
cannot be completed due to some resource problem. See clause 5.5 for details on this and all the
other exceptions.

5.1.2 The objectClassGet() Operation

The objectClassGet() operation returns the scoped interface name (actual class name) of the object.
Scoped interface names include the name(s) of the module(s) in which the interface is defined. The
return value type, ObjectClassType, is a type definition for string. If the object's class is a minor
extension of another class (e.g. an "R1" class), the string returned is the name of the actual class
(with the "R1"). For example, "EquipmentR1".

5.1.3 The packagesGet() Operation

The packagesGet() operation returns the list of conditional packages supported by an object instance.
The notion of conditional packages, each with a string name, is supported by these guidelines. See
clause 6.6 for details. StringSetType is a type definition for a list of strings.

Note that this differs slightly from the packages attribute on CMIP objects because this framework
does not support the definition of mandatory packages, only conditional. In CMIP it is possible for
the packages attribute to list mandatory packages. Obviously, since the definition of mandatory
packages is not supported by this framework, they can't be listed in the packages attribute of a
managed object.

5.1.4 The creationSourceGet() Operation

The creationSourceGet() operation returns a value indicating the system that caused the object to be
created. SourcelndicatorType is an enumerated type with three values: resourceOperation,
managementOperation, and unknown. It indicates if the object was created autonomously by the
resource in response to a management operation or, if it is unknown, why the object was created.

5.1.5 The deletePolicyGet() Operation

The deletePolicyGet() operation returns the delete policy for this object instance. This is an
enumerated value that indicates if the object is not deletable, if it is deletable only if it contains no
objects, or if all contained objects will be deleted when it is deleted. (Deleting an object but not its
contained objects is not allowed.) This policy is set when the object is created by its factory based on
the name binding information identified in the create operation.

14 ITU-T X.780 (01/2001)

5.1.6 The attributesGet() Operation

The attributesGet() method is used to return all, or any subset, of an object's attribute values in one
operation. For each managed object interface in an information model, a CORBA valuetype
containing data members for each of the readable attributes on that interface will be defined.
(Readable attributes are those with an <attribute name>Get() operation.) This method may be used to
retrieve this value type for any managed object. The value types will be defined following the
inheritance hierarchy of the managed object interfaces (except that value types cannot support
multiple inheritance), and each will ultimately be derived from the ManagedObjectValueType
defined for the ManagedObject interface. The managed object must return a value type defined for
its interface in response to this method. Thus, when a client invokes the attributesGet() operation on
any managed object, it will receive back a reference to a ManagedObjectValueType which it may
then narrow (cast) to the value type defined for the interface on which the operation was invoked.

Complicating this somewhat are the concerns that a client may not want to retrieve all of the attribute
values from an instance, and an instance may not support all of the attributes that are in conditional
packages. (The value types include attributes in conditional packages.) This is accommodated
through the use of the in/out attributeNames parameter. On invocation, the client may submit a list
of the names of the attributes in which it is interested, with a null list having the special meaning that
all supported attributes should be returned. Any names on the list that are not valid attribute names
should be ignored by the managed object. In its response, the object will return the actual list of
attributes for which values are supplied. Note that this list may not match the submitted list. The
object must always return an accurate list, even if the submitted list was null or had invalid names. If
all the names on the submitted list are invalid, the object should return a null list and an empty value
type.

Because the structure of the value type is pre-defined, the object must fill in some value for the
attributes not requested or not supported. Basically, the object may return any values for these
attributes, but the values should be as short as possible for efficiency. Thus, null values should be
returned for strings, references, and lists of any kind. Any value may be returned for integers and
enumerated types. The client must consider any value for an attribute not named in the list returned
by the object to be invalid.

The base interface ManagedObject currently only has a method that returns a CORBA value type
containing all of the readable attributes for the object. It does not contain a similar method for setting
the attributes because not all attributes are settable.

5.1.7 The destroy() Operation

The final operation on the object, the destroy() operation, is used to release any resources associated
with the managed object and to delete it. The DeleteError exception is raised by the object if it has a
delete policy of NotDeletable. The DeleteError exception is also an extensible means of reporting
problems destroying an object that are model-dependent. For example, trying to delete a Trail
Termination Point object before the Trail is deleted might result in a DeleteError. ITU-T Q.816
defines a service called the "Terminator Service," however, to implement the logic needed to enforce
delete policies and to maintain the integrity of the naming tree. The destroy operation is actually
intended to be used by this service, and should not be directly invoked by a managing system. See
ITU-T Q.816 for details on the Terminator Service.

(R) OBJECT-1. The interfaces used to model resources on a managed system shall inherit (directly
or indirectly) from the ManagedObject interface described above and defined in the CORBA IDL in
Annex A. The capabilities described above shall be supported.

ITU-T X.780 (01/2001) 15

5.2 The Managed Object Factory

Sometimes managed objects are created automatically by the managed system, sometimes they are
created as a result of an action on another object (such as a cross-connection object created in
response to a connect action on a fabric), and sometimes they are created in response to a request
from a manager to create an object. In this last case, on CMIP systems, the create operation is
typically handled by the CMIP agent framework. It can't be handled by the object itself because it
hasn't been created yet. In CORBA implementations there is no agent framework, so something
needs to be present on the managed system to enable the managing system to create objects. In
CORBA systems this is often handled by "factory" objects. The ManagedObjectFactory interface is
intended to be the base interface from which other factory interfaces inherit. It will define
capabilities that all managed object factories are expected to support. Currently, no such capabilities
have been identified, so the interface is null (inherits from nothing and has no attributes or methods).
It is a placeholder in which capabilities may be placed in the future if needed. It also serves as a
common superclass for all factories.

CORBA IDL information models are expected to include a factory interface per managed object
interface (unless the managed object class is not instantiable). The factories will contain operations
for creating managed objects. These operations will take a number of parameters, such as the new
object's superior object, the new object's name, and values for each of the writeable or set-by-create
attributes, etc. Upon successful creation of the new object, the factory will return a reference to it.

In addition to creating objects, it is expected that factories will also create name bindings in the
CORBA Naming Service for the new objects. Though this functionality could be implemented
elsewhere, it is believed that implementing it in the factories will simplify implementations by
relieving the managed object implementation from this task, leaving them to focus on representing
resources. See ITU-T Q.816 for details on how the TMN CORBA framework makes use of the
CORBA Naming Service.

To help clients find factories, ITU-T Q.816 defines a Factory Finder Service. This service acts as a
broker between clients and factories. Basically, factories register themselves with the service, then
clients query the well-known service to find a factory of a particular type. See ITU-T Q.816 for
details on the Factory Finder Service.

(R) FACTORY-1. The factory objects used to create managed objects on a managed system shall
inherit (either directly or indirectly) from the ManagedObjectFactory interface described above and
defined in the CORBA IDL in Annex A.

(R) FACTORY-2. All factories shall be registered in the Factory Finder object(s) instantiated on
that system.

5.3 The Notifications Interface

The third interface defined in Annex A is the notifications interface. Each of the notifications in
ITU-T X.721 has a corresponding operation on this interface. The notifications are defined as typed
method calls as required by ITU-T Q.816. The OMG Notification Service is used to filter and
broadcast notifications. The typed notification methods can be used directly with a notification
service that supports typed notifications. Mappings between these typed event methods and
structured events are provided in ITU-T Q.816.

All of the notification operations defined in this interface pass a number of parameters, some of
which are common to all of the notifications. Several of the notifications have identical parameters,
but are used for slightly different reasons. The notifications interface IDL looks like this:

interface Notifications {
voi d equi pment Al arm (

i n External Ti neType event Ti e,
in NameType sour ce,
in OojectC assType sour ced ass,

16 ITU-T X.780 (01/2001)

in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNoti ficati ons,
i n Additional Text Type addi ti onal Text,

i n Additional I nformati onSet Type addi ti onal I nf o,

i n Probabl eCauseType pr obabl eCause,

i n SpecificProbl enfSet Type speci fi cProbl ens,

in PerceivedSeverityType percei vedSeverity,

i n Bool eanTypeOpt backedUpSt at us,

in NameType backUpQbj ect ,

in Trendl ndi cati onTypeOpt trendl ndi cati on,

i n Threshol dl nf oType t hr eshol dlI nf o,

in AttributeChangeSet Type st at eChangeDefini tion,
in AttributeSet Type noni t oredAttri but es,

i n ProposedRepai r Acti onSet Type proposedRepai r Acti ons,
i n Bool eanTypeOpt al ar nef f ect OnSer vi ce,

i n Bool eanTypeOpt al ar m ngResuned,

i n Suspect Qbj ect Set Type suspect Cbj ect Li st

)

}; I/ end of Notifications interface

The other fourteen notification operations are similar to the one above. The names of the 15
notifications defined are:

Attribute Value Change . Physical Violation
Communications Alarm . Processing Error Alarm
Environmental Alarm . Quality of Service Alarm
Equipment Alarm . Relationship Change
Integrity Violation . Security Violation
Object Creation . State Change

Object Deletion . Time Domain Violation

Operational Violation

This CORBA Framework requires the use of notification identifiers where they may not be required
in other interfaces (they are not required in ITU-T X.733). To illustrate, below are four possible
cases where the mapping of alarm notification identifiers from the network element/EMS interface to
the EMS/NMS interface must be done:

1)

2)

3)

The network element always uses notification identifiers and the managed object is
represented in both interfaces. In this case, the EMS passes the alarm (with its notification
identifier) on to the NMS.

The network element never uses notification identifiers and the managed object is
represented in both interfaces. In this case, the EMS uses an internal counter, includes this
value as the notification identifier and passes the alarm onto the NMS.

The network element sometimes uses notification identifiers and the managed object is
represented in both interfaces. Because the notification identifier is required, the EMS must
define a value when one is not provided. It may be difficult to define a value at the EMS
because notification identifier values must be unique across all notifications of a particular
managed object instance throughout the time that correlation is significant [1]. Thus, the
EMS must choose a value that is not being used in current alarms and will not be used in
subsequent alarms. Extra care must be taken when doing this, since the algorithm for
choosing notification identifier values is owned by the producing system (in this case, the
network element).

In one possible solution, the EMS could supply its own value for notification identifier for
all alarms. This would also require the updating of each alarm's correlated notification lists,
resulting in the EMS maintaining a complete mapping of network element Notification
Identifier values to EMS Notification Identifier values.

ITU-T X.780 (01/2001) 17

In another possible solution, the EMS and network element could agree on supporting
different subsets of notification identifier numbers.

Alternatively the EMS could supply its own number and ignore potential collisions, thus
allowing their rare occurrence.

4) An alarm is mapped from one network element/EMS interface object to a different
EMS/NMS interface object. Similar to the above item, the EMS must supply a notification
identifier value that is unique for the EMS/NMS managed object. The correlated notification
lists also must be updated.

5.4 The Data Type Definitions

Preceding the interface definitions in Annex A are a number of data structure and type definitions.
Most of these are used in the notifications. These were derived from the ASN.1 module in ITU-T
X.721 with minor changes to simplify syntax. Where possible, modern object-oriented concepts such
as in/out parameters and exceptions have been employed and are reflected in these types.

One data type to note is the time type. These guidelines adopt the universal time code defined for
CORBA's Time Service. This data type consists of a large integer that counts the hundreds of
nanoseconds that have passed since midnight 15 October, 1582. To account for worldwide time, the
time is expressed relative to the time in the Greenwich time zone using a signed short integer for the
difference. This means systems based on these guidelines must know their local time zone. This
approach makes it easy to compare times, though, because time is represented as an integer.
Standard libraries for converting between the integer representation and more familiar formats will
likely be widely available.

5.5 Exceptions

The IDL Module in Annex A defines some exceptions for use by managed object operations. These
may be raised on some operations, as defined below. In addition, any of the standard CORBA
exceptions may be raised on any operation. For example, the "CORBA:NO PERMISSION"
exception might be raised to signal a security violation. The exceptions defined are:

val uetype ApplicationErrorlnfoType {
public U DType error;
public Istring details;

val uetype CreateErrorlnfoType : ApplicationErrorlnfoType {
publ i c MoSet Type rel at edObj ect s;
public AttributeSet Type attributelist;

vél uetype Del eteErrorlnfoType : ApplicationErrorlnfoType {
public M3Set Type rel at edObj ect s;
public AttributeSet Type attri butelList;

b

val uet ype PackageErrorlnfoType : CreateErrorlnfoType {
public StringSet Type packages;

b

exception ApplicationError { ApplicationErrorlnfoType info; };
exception CreateError { CreateErrorlnfoType info; };
exception DeleteError { DeleteErrorlnfoType info; };

5.5.1 The ApplicationError Exception

An ApplicationError exception is raised when an operation cannot be completed due to some
application-level condition at the managed system. Information returned with the exception includes
an identifier for a specific condition, and a string with additional details or an explanation.

A few identifiers for specific error conditions are defined by the framework. These should be used
whenever possible. Information models, though, may define additional error condition codes, or
create their own exceptions.

18 ITU-T X.780 (01/2001)

The data returned with the application error exception is a value type, which means that it may be
extended. That is, for a certain error condition codes, the actual data type returned might be an
extension of the base application error info type. Because the error code is in the base type, the client
code can examine it, and if its value is one that is passed back in a sub-class, the client can narrow
(cast) the value type and access the additional information.

The ApplicationError exception shall be included in the raises clause of every managed object and
managed object factory operation. A few error code values for the application error exception have
been defined for the framework. Each is discussed in subclauses below.

5.5.1.1 invalidParameter

An application error exception with an error code of invalidParameter is raised when the value of
some operation parameter is not valid for the operation requested. The name of the bad parameter is
returned in the details field.

5.5.1.2 resourceLimit

An application error exception with an error code of resourceLimit is raised when an operation
cannot be completed due to some transient error on the managed system, such as lack of memory. A
string containing an explanation is returned in the details field.

5.5.1.3 downstreamError

An application error exception with an error code of downstreamError is raised when an operation
cannot be completed due to an error downstream from the managed system. An example of this is
when an operation can't be completed because an EMS cannot communicate with an NE.

5.5.2 The CreateError Exception

The CreateError exception is raised when an error occurs on a factory create operation. It should be
included in the raises clause of every managed object factory create operation.

The data returned with this exception extends that of a general ApplicationError, and adds a list of
related object, and the attribute values the object would have had if it had been created. The specific
error codes defined for this exception by this framework are presented below. Implementations
should use these whenever possible. Information models may add new values, or define new
exceptions for special cases.

5.5.2.1 invalidNameBinding

A create error exception with an error code equal to invalidNameBinding is raised when the name
binding included in the create operation does not support the creation of the object in this situation.

5.5.2.2 duplicateName

A create error exception with an error code equal to duplicateName is raised when the name
included in the create operation is a duplicate.

5.5.2.3 unsupportedPackages

A create error exception with an error code equal to unsupportedPackages is raised when one or
more of the requested packages is not supported by the implementation. Note that when this error
code is used, the returned data structure is actually a PackagesErrorinfoType structure, which
extends the CreateErrorinfoType structure. The PackagesErrorInfoType structure includes a list of
packages, which in this case will be the unsupported packages.

ITU-T X.780 (01/2001) 19

5.5.2.4 incompatiblePackages

A create error exception with an error code equal to incompatiblePackages 1s raised when some of
the requested packages are not compatible with each other or the resource for which the object is
being created. Note that when this error code is used, the returned data structure is actually a
PackagesErrorIinfoType structure, which extends the CreateErrorinfoType structure. The
PackagesErrorinfoType structure includes a list of packages, which in this case will be the
incompatible packages.

5.5.3 The DeleteError Exception

The DeleteError exception is raised when an error occurs on a delete operation. It is included in the
raises clause of the destroy operation on the base ManagedObject interface, which is then inherited
by every managed object.

The data returned with this exception extends that of a general ApplicationError, and adds a list of
related object, and the attribute values the object had when the delete attempt was made. The specific
error codes defined for this exception by this framework are presented below. Implementation
should use these whenever possible. Information models may add new values, or define new
exceptions for special cases.

5.5.3.1 notDeletable

A delete error exception with the constant value equal to notDeletable is raised when an attempt is
made to invoke the destroy() operation on a managed object that should not be destroyed according
to its delete policy. (Note that the destroy() managed object operation is defined for use by other
parts of the framework. Managing systems that invoke it directly run the risk of corrupting data on
the managed system.)

Also, the Terminator Service will raise this exception when a client tries to delete an object with a
delete policy of notDeletable.

5.5.3.2 containsObjects

A delete error exception with the constant value equal to containsObjects is raised when an attempt
is made to delete a managed object that has subordinates and a delete policy of
deleteOnlylfNoContainedObjects.

Managed objects are not responsible for detecting this condition, but the Terminator Service is.

5.6 Macro Definitions

Following the interfaces in Annex A are the definitions of some macros. These macros simply
provide shorthand notations for identifying which notifications are supported by which objects. Due
to the limited capability of CORBA IDL to accept information like this, it was felt these macros
would be useful.

The MandatoryNotification macro identifies notifications that must be supported by an object, and
the ConditionalNotification macro identifies notifications that must be emitted by a managed object
if it supports a particular package. Both macros take arguments identifying the name of an operation
(recall that operations are used to convey notifications) and the scoped name of the interface on
which the operation is defined. The ConditionalNotification macro also accepts a third parameter,
the name of the package to which the notification belongs.

The notification macros expand into nothing. Unfortunately, IDL is simply too limited to provide a
way to capture this information. Comments could be generated, but they are just immediately
discarded by the compiler. Formatted comments, like those used to generate HTML, unfortunately
can't be used because they require some IDL construct to which they are associated. It was hoped
that the upcoming CORBA Component Model would provide a solution, but implementations won't

20 ITU-T X.780 (01/2001)

be available in time for these guidelines. In the future it may be possible to modify the macros to
generate IDL consistent with the CORBA Component Model. For now, though, the information
about which notifications are emitted by which object classes is captured by these macros.

5.7 The Constant Definitions

Interface specifications always contain a number of constants whose values are agreed upon by
everyone to mean the same thing. For example, everyone agrees a "1" in a certain field means a loss
of signal, a "2" means a loss of frame, etc. [ITU-T X.721 is no exception and defines a number of
constants. These are reproduced in IDL form in Annex B. For details on the mechanism used to
convey pre-defined constants, see clause 6.11.

6 Information Modelling Guidelines

This clause presents guidelines for developing CORBA-based TMN information models. Guidelines
for the translation of existing models specified in GDMO are provided in the next clause.

6.1 Modules

IDL Modules are used to group together interfaces, type definitions, exceptions, and other IDL
constructs. Modules also provide name-space delineation; identifiers within a module must be
unique but may be reused in other modules. In almost all cases, a module shall be used to group the
constructs used to specify an information model. Modules may be nested within other modules, and
modules may span multiple files. The IDL specified in these guidelines is contained within a single
module, named "itut x780". For example:

nodul e itut_x780 {
} /1 end of nodul e itut_x780

This module has sub-modules for constant definitions.

6.2 Interfaces

Each entity accessible via the CORBA network management interface shall have an IDL interface
defined for it. Interfaces group together a set of attributes and methods that can be thought of as
being provided by a single software object. Interfaces may inherit capabilities from other interfaces
and interfaces defined to model an entify must inherit (directly or indirectly) from the interface
named ManagedObject defined in this Recommendation. For example:

i nterface Equi prent : ManagedObj ect {
} /1 end of interface Equi prent

Such interfaces are referred to as "managed object interfaces." The objects that support these
interfaces are "managed objects." Because the ManagedObject interface defined in this
Recommendation has a set of capabilities that are inherited by all managed object interfaces, each
managed object must implement a base set of functions to exist in the TMN CORBA framework.

One issue information modelers may face is CORBA's limited support for multiple inheritance. An
interface may inherit an operation or attribute from multiple super classes only if they in turn
inherited them from the same super class. This is known as "diamond" inheritance, and is depicted in
Figure 3 below.

ITU-T X.780 (01/2001) 21

T0414430-00

Figure 3/X.780 — Diamond Inheritance

If an information modeler is faced with having to inherit the same capability from two different
classes that do not share a common super class, the modeler may have to modify the classes and
create a virtual super class from which the capability can be inherited. For example, creating "D"
from "B" and "C" above but where "A" does not exist, the modeler may have to modify the super
classes by creating a new virtual class ("A") with the common capability that is then inherited by "B"
and "C."

6.3 Attributes

Attributes are modelled within interfaces as operations used to access the attribute's value. The
names of the operation, as well as the input and output types, indicate the name of the attribute as
well as the type of operation. (CORBA IDL does support attributes in addition to operations, but at
this time only operations are allowed to raise user-defined exceptions. As will be seen, user-defined
exceptions are needed on attribute accesses. For this reason, operations are defined to access
attributes rather than merely defining attributes. Future versions of CORBA plan to allow user-
defined exceptions on attribute access, and these guidelines may change to take advantage of this.)

6.3.1 Readable Attributes

Managed objects should have an operation named "<attribute name>Get" on their interface for each
readable attribute. The type returned by this operation reflects the type of the attribute. For example:

Admi ni strativeStateType admi nistrativeStateGet()
rai ses (ApplicationError);

Attributes that are settable but not readable, which is rare, should not have a read operation defined
on the interface.

Attribute get operations that may return large amounts of data should define an iterator to enable the
client system to control the return flow of information. For an example of the use of iterators, see
ITU-T Q.816.

22 ITU-T X.780 (01/2001)

6.3.2 Settable Attributes

Managed object interfaces should have an operation named "<attribute name>Set" for each settable
attribute. The operation return type should be void and the input parameter should reflect the type of
the attribute. For example:

void admi nistrativeStateSet (in Adm nistrativeStateType adm nState)
rai ses (ApplicationError);

Attributes that are not settable should not have such an operation on the interface.

6.3.3 Set-valued Attributes

Many managed object attributes may contain sets of values. In these cases, the operations defined
above should still be supported (if the attribute is readable and/or writeable). Because CORBA does
not explicitly define a complex type for sets, the input or return types for these operations will be
CORBA sequences. Values returned for these attributes should not contain duplicate values, and the
order of the values is unimportant. Also, it may be necessary to support the addition or removal of
values to these attributes. These operations should be named "<attribute name>Add" and "<attribute
name>Remove". The return types for these operations should be void and the input parameter to
each should be a sequence reflecting the type of the attribute. For example:

voi d supportedByOhj ect sAdd (i n ManagedCbj ect Set Type obj ect s)
rai ses (ApplicationError);

voi d supportedByhj ect sRenove (in ManagedObj ect Set Type obj ects)
rai ses (ApplicationError);

6.3.4 Exceptions

Attribute access operations may also raise exceptions. The following exceptions are defined to be
raised on attribute access operations:

1) ApplicationError. This exception shall be included in the raises clause of every managed
object operation, including attribute access operations. It may be used to signal a number of
conditions, such as a value that is out-of-range, a resource limitation on the managed system,
etc.

2) Conditional Package Exceptions. If the attribute is part of a conditional package, the
exception defined for that conditional package shall be included in the raises clause of the
attribute access operations. It is raised when an attempt to access the attribute is made but
the package to which it belongs is not supported by the instance. See more on Conditional
Packages in clause 6.6 below.

In addition to these, an implementation may also raise any of the standard CORBA exceptions.
Operations that raise exceptions shall not modify the value of the attribute. An example of an
attribute access operation that raises an exception is:

voi d supportedByObj ect sRenmove (i n ManagedObj ect Set Type obj ect s)
rai ses (ApplicationError);

6.3.5 Standard Attributes

Managed objects model resources, and often there is commonality among managed objects. This is
sometimes represented using an inheritance relationship among object classes, but there may also be
commonality between objects when no inheritance relationship exists. A good example of this is
similar attributes. Many managed objects have similar attributes. To make the implementation of
management interfaces easier, these guidelines define some standard data types that should be used
for attributes whenever possible. That is, modelers should attempt to use these type definitions
instead of defining new types. Also, the attribute name, and the names of the operations to access the
operation should be used. In fact, when defining a new model, it is good practice to reuse attribute

ITU-T X.780 (01/2001) 23

types and names from existing models whenever possible. The standard attributes are defined in
Table 1:

Table 1/X.780 — Standard Attributes

Data Type Attribute Name Access Method
AdministrativeStateType administrativeState administrativeStateGet()
AvailabilityStatusSetType availabilityStatus availabilityStatusGet()
BackedUpStatusType backedUpStatus backedUpStatusGet()
ControlStatusSetType controlStatus controlStatusGet()
SourcelndicatorType creationSource creationSourceGet()

(see Note)
DeletePolicyType deletePolicy deletePolicyGet()

(see Note)
ExternalTimeType externalTime external TimeGet()
NameType name nameGet()

(see Note)
ObjectClassType objectClass objectClassGet()

(see Note)
OperationalStateType operationalState operationalStateGet()
StringSetType packages packagesGet()

(see Note)
ProceduralStatusSetType proceduralStatus proceduralStatusGet()
StandbyStatusType standbyStatus standbyStatusGet()
SystemLabel Type systemLabel systemLabelGet()
UnknownStatusType unknownStatus unknownStatusGet()
UsageStateType usageState usageStateGet()
NOTE — These attributes are inherited by all managed objects.

6.4 Actions

In addition to attributes, many managed objects will have actions — methods for purposes other than
accessing an attribute. The parameters and return types for these operations are simply defined to
meet the needs of the action. The name of the operation should reflect the purpose of the operation.
The following exceptions have been defined to be raised on action operations:

1) ApplicationError. This exception shall be included in the raises clause of every managed
object operation, including action operations. It may be used to signal a number of
conditions, such as a parameter value that is out-of-range, a resource limitation on the
managed system, etc.

2) Conditional Package Exceptions. If the action is part of a conditional package, the exception
defined for that conditional package shall be included in the raises clause of the action
operations. It is raised when an attempt to invoke the action is made but the package to
which it belongs is not supported by the instance. See more on Conditional Packages in
clause 6.6 below.

In addition to these, an implementation may also raise any of the standard CORBA exceptions. Other
exceptions specific to the action may and should be defined for other error conditions. Alternatively,
an information model may extend the error code points defined for the ApplicationError exception.

24 ITU-T X.780 (01/2001)

Actions that may return large amounts of data should define an iterator to enable the client system to
control the return flow of information. For an example of the use of iterators, see ITU-T Q.816.

6.5 Notifications

Most managed objects are expected to emit notifications under certain conditions. In the TMN
CORBA framework, notifications are conveyed by method invocations from a managed object back
to a managing system, with the help of the Notification Service. Thus, the notification operation is
actually defined for the managing system's CORBA interface, not the managed object's interface.
These guidelines define a number of standard notifications, but if a new notification must be defined
it should be defined as an operation on an interface named "Notifications" within the information
model's module. The name of the operation should be the name of the notification. The parameters to
the operation should reflect the data to be reported in the notification. The notification operation's
return type must be void, and it must have only "in" parameters. Note that the "oneway" keyword
preceding the notification operation definition should not be used. Notifications following these
guidelines are confirmed. That is, when a managed object sends a notification to a channel, the
receipt of that notification will be confirmed back to the managed object by the channel. Likewise,
as the channel sends the notification to each recipient, a confirmation is received by the channel.
Quality of Service guarantees, specified in ITU-T Q.816, define the reliability of the channel itself.
Thus, the delivery of notifications to recipients can be guaranteed.

A means of documenting which managed objects emit which notifications is also needed. Rather
than simply noting this through comments in an IDL file, a macro statement is used. Actually, these
guidelines define two macros, one for use when the notification is mandatory and the other when the
notification is part of a conditional package. The macros are intended to be used within a managed
object interface and are defined as follows:

MANDATORY_NOTI FI CATI ON(<i nt erface nane>,
<notification operation name>);

CONDI TI ONAL_NOTI FI CATI ON(<i nt erface nane>,
<notification operation nanme> <package nane>);

For example:
i nterface Equi prent : ManagedObj ect {

MANDATORY_NOTI FI CATI ON(i tut_x780:: Notifications, objectCreation);
CONDI TI ONAL_NOTI FI CATI ON(i tut _x780:: Notifications,
equi pnent Al arm equi prent Al ar nPackage) ;

} /1 end of Equipnent interface

The package name used in the conditional notification macro is the same as used elsewhere. See
clause 6.6 on packages for details. The macros actually expand into nothing because there really isn't
a good alternative in CORBA IDL. Thus, the macros are for documentation purposes and don't
actually result in code generation. An item for further study is modifying the macros to generate IDL
that would identify the notifications supported by an object. The release of the CORBA Component
Model specification provides an opportunity to do this in a manner consistent with that model. Only
one notification may be listed in each macro. This is to make the possible future modification of the
macros simpler.

6.6 Conditional Packages

These information modelling guidelines support the notion that not all capabilities defined for a class
of managed objects need to be supported by all instances. In fact, groups of capabilities can be
defined so that either all or none of the capabilities are supported. These groups of capabilities are
referred to as packages. The choices for representing packages in IDL are limited. Defining a
separate interface for each package would result in too many interfaces, so instead the approach
described here is used.

ITU-T X.780 (01/2001) 25

Each operation that is part of a conditional package may raise an exception defined for the package.
The name of the exception shall be NO<package name>. For example:

exception NCadm ni strativeSt at ePackage {};

Admi ni nstrativeStateType adm ni strativeStateGet()
rai ses (NCadmi ni strativeStat ePackage);

Notifications that are emitted as part of a conditional package are denoted with the
CONDITIONAL NOTIFICATION statement as described above.

Rules concerning when the capabilities included in a package should be supported and when they
shouldn't are placed in comments related to the managed object interface. An operation may be
included in more than one conditional package by listing multiple NO<package name> exceptions in
its raises clause. An exception will be raised only if none of the packages are present, and then any
of the package exceptions may be raised. If an operation is mandatory, it must list no package
exceptions 1in its raises clause. A notification may list multiple packages in the
CONDITIONAL NOTIFICATION macro.

6.7 Behaviour

CORBA IDL lacks a formal means of capturing object behaviour. In the future it is possible that
information models will be documented with UML and will include use cases and object interaction
diagrams. IDL, however, is limited to comments. Therefore, when necessary or helpful, comments
must be used to describe object behaviour.

The IDL in this Recommendation contains a number of comments. They are formatted to be parsed
by compilers used to convert IDL to HTML for easier reading. A formatted comment begins with
/** and ends with */ and is associated with the next IDL construct. HTML formatting tags are
allowed with these comments, as are certain keywords (preceded by a '@' symbol) that are converted
by the IDL-to-HTML compilers into additional formatting. While viewing IDL with an HTML
browser is convenient, note that the use of the macros described above is impacted by this. Because
macro expansion is performed as a part of the conversion to HTML, the pre-expanded macro
information will be lost. Thus, the macros used to identify the notifications supported by each
managed object will have been expanded.

6.8 Name Binding Information

Containment is a very important relationship in network management. In the TMN CORBA-based
framework, containment is represented through names. This, unfortunately, places no restrictions on
the containment relationships that could possibly exist. There is nothing to prevent, for example, a
network object from being contained by a connection object. Clearly, some means of restricting the
possible containment relationships to only those that are sensible is desirable. These restrictions,
however, must be extensible under control of the information modeler.

To meet these needs, these guidelines require that IDL modules specifying CORBA-based TMN
information models also contain information defining the possible containment relationships among
the managed object classes. This containment relationship information is referred to as managed
object name binding information. (Unfortunately, this may be easy to confuse with the name binding
information stored in the CORBA Naming Service. The two are not the same.)

Managed object name binding information is represented in CORBA IDL using the following
conventions:

1) Each information model IDL module shall contain a sub-module named "NameBindings"
for managed object name binding information.

2) Within this name binding module, sub-modules shall be defined for each allowed
containment relationship.

26 ITU-T X.780 (01/2001)

3)

4)

Each name binding sub-module shall assign values to these 7 constants;

const string superiord ass

const bool ean superi or Subcl assesAl | owed
const string subordi nat ed ass

const bool ean subor di nat eSubcl assesAl | owed
const bool ean nanager sMayCr eat e

const Del etePolicyType deletePolicy

const string ki nd

The superiorClass constant contains the scoped class name of the superior (containing)
object. If an object may be the "top-most" object on a managed system, that is, if it may be
contained directly under a local root naming context, the superiorClass name binding value
shall be an empty string. The superiorSubclassesAllowed constant is a Boolean field that
will have a value of true if subclasses of the superior class type are acceptable using this
name binding. The subordinateClass constant contains the scoped class name of the
subordinate object (the object to be created). The subordinateSubclassesAllowed constant
indicates if subclasses of the subordinate object may be created using this name binding. The
managersMayCreate flag indicates if object creation is supported across the management
interface using this name binding. The value of setting this flag to false is that it enables all
containment relationship information to be documented in IDL, even if the subordinate
object is only created by the managed system. The deletePolicy constant contains the value
that will be assigned to the managed object's deletePolicy attribute when it is created. The
kind constant contains the value that will be assigned to the kind field in the CORBA Name
Binding for the object when it is created.

The value chosen for the kind field in a name binding will typically be the unscoped
subordinate class name. (Unscoped class names will typically be used to reduce the length of
names.) The main purpose of the kind field is to segment the naming space to keep naming
collisions from occurring. Name binding modules for new versions of existing interfaces
might reuse the kind values used for the older interfaces. For example, name binding
modules for Equipment and EquipmentR1 interfaces might both use the value "Equipment".
Otherwise, though, it will probably be safest to use a unique value for each class of
interface.

The name of a name binding sub-module shall be <subordinateClass> <superiorClass>,
where <subordinateClass> is the value assigned to the subordinateClass constant and
<superiorClass> is the value assigned to the superiorClass constant in the module. If two
name binding modules in the same parent module share the same superiorClass and
subordinateClass values but differ in other values, the name of one of the modules shall be
appended with a word denoting a difference between the two. For example:
"Equipment Equipment" and "Equipment Equipment NotDeleteabe".

Some example managed object name bindings:

nodul e itut_nm8120 {

.../** The foll owi ng nodul e contains nane binding informati on */

nodul e NarmeBi ndi ngs {

/** This nane binding nodul e al |l ows Equi pnment objects to be
created under Managed El ement objects.

*/

nodul e Equi prent _ManagedEl ement {

const string superiordass = "itut_nB120:: ManagedEl emrent ";
const bool ean superi or Subcl assesAl | owed = TRUE;
const string subordi nateC ass = "itut_nm3120:: Equi pnent";

const bool ean subor di nat eSubcl assesAl | owed = TRUE;
const bool ean nmanager sMayCr eat e = TRUE;
const Del etePol i cyType del etePolicy =
i tut_x780:: Del et eOnl yl f NoCont ai ned(bj ect s;
const string ki nd = "Equi prent";
}; /1 end of Equi pnent_ManagedEl enent nane bi ndi ng nodul e

ITU-T X.780 (01/2001) 27

/** This nane bi nding nodul e al |l ows Equi pment objects to be
created under other Equi prent objects.

*/

nodul e Equi prent _Equi pnent {

const string superiordass = "itut_nB120:: Equi pment";
const bool ean superi or Subcl assesAl | owed = TRUE;
const string subordi nateC ass = "itut_nmB8120:: Equi pnent";

const bool ean subordi nat eSubcl assesAl | owed = TRUE;
const bool ean manager sMayCreat e = TRUE;
const Del etePolicyType del etePolicy =
i tut_x780:: Del et eOnl yl f NoCont ai ned(bj ect s;
const string kind = "Equi prent";
}; // end of Equi pment_Equi prrent name bi ndi ng nodul e
}; end of nane binding nodul e
}; end of itut_nB8120 nodul e

Note that the deletePolicy constant is of an enumerated type and according to CORBA IDL constant
definition rules, if this type is defined in another module, the value assigned to the constant must be
scoped to that module. The DeletePolicyType is defined in module itut x780, and the example IDL
module is itut m3120. Therefore, the DeleteOnlylfNoContained value must be scoped by preceding
it with the string "itut x780::". The type itself, DeletePolicyType, must also be scoped. This can be
done with a typedef statement at the beginning of the module.

6.9 Factories

The TMN CORBA-based framework defines a service for deleting objects, but objects are created
with class-specific factories. Factories are objects with interfaces distinct from the objects they are
used to create, but usually related. Each class of managed objects will also have a factory class. This
is done so that the factory create operations may be strongly typed and specific to the class of objects
they create. The result of this is that the IDL modules defining managed object interfaces will also
contain interfaces for the factories used to create the objects. The name of the factory IDL interface
shall be "<Managed Object Class Name>Factory".

This Recommendation defines a base managed object factory interface from which each factory
interface must inherit. Factories do not follow the same inheritance hierarchy as the objects they
create. Factories simply inherit from the ManagedObjectFactory interface. An example of a factory
interface definition is:

i nterface Equi pment Factory : ManagedObj ect Factory {
} /1 end of EquipnentFactory interface

Because factories cannot create subclasses of objects, new factories must be defined for each
subclass.

Every instantiable class shall have a factory defined for it, even if at the time no name binding
modules allowing managers to create instances are defined. This is to allow for the future definition
of name binding modules that do enable managers to create instances.

6.9.1 Create Operations

Each factory interface shall define a single operation for clients to use to create objects. The name of
this operation shall be "create" and it shall return a reference to the type of object created by the
factory. The first four parameters to every create operation are always the same. After these come
parameters for each writeable or set-by-create attribute defined for the managed object. (A set-by-
create attribute is one for which the object has no "set" operation, but for which a value is specified
on the create operation.) The names of these parameters are the same as the name of the attribute.
(This is the name of an attribute accessor operation minus the ending "Get" or "Set".) Each create
operation also has to accept parameters to set the values of any writeable or set-by-create attributes
of all super-classes of the object created by the factory. Here is an example of a create operation for
an equipment factory:

28 ITU-T X.780 (01/2001)

Equi prrent cr eat e(

i n NanmeBi ndi ngType naneBi ndi ng, // nodul e nane containing NB info.

i n ManagedObj ect superiorObject,// Reference to containing object.

i nout string nane, /1 Infout, may be null if auto-create.

in StringSet Type packages, /1 List of packages requested.

/1 Witeable and set-by-create val ues
/1 for Equi pment superclass attributes.
/1 Witeable and set-by-create val ues
/1 for Equipnment attributes.

)
6.9.1.1 Name Binding

The name binding parameter conveys the name of a module containing managed object name
binding information, as described in the clause 6.8. An example value might be
"itut m3120::NameBindings::Equipment Equipment". Given this, the factory can check to see if the
value is a valid name binding identifier. (A factory might either be "hard-coded" with name binding
information available when the system is compiled, or it might access the information in the
CORBA Interface Repository at run-time.) If the name binding information can not be found, the
factory shall raise an invalidParameter ApplicationError exception, returning "nameBinding" as an
argument. (This is an ApplicationError exception with the error code set to invalidParameter and
the details string set to "nameBinding".) If the name binding information can be found, but is
incomplete, the factory shall raise an invalidNameBinding CreateError exception.

The factory must also check to see if the subordinate class type specified in the name binding
module matches the type of objects it creates. If it is doesn't, the factory can then check to see if the
type of objects it creates is a subclass of the subordinate class constant value. If it is, and if the
subordinateSubclassesAllowed constant is true, it can proceed to create the object. If not, it would
reject the request by raising an invalidNameBinding CreateError exception.

Finally, if the managersMayCreate constant in the name binding module is false, the factory would
also reject the request by raising an invalidNameBinding CreateError exception. (Factories may
have a second create operation for internal use by the managed system that does not check this value
and that is not exposed across the management interface.) The inclusion of name binding modules
with managersMayCreate values set to false enables capturing all of the containment information in
IDL, as is possible with GDMO, even if the objects are created only by the managed system itself.

The other information in the name binding module will be used by the factory when it creates the
object and its CORBA naming service name binding. The deletePolicy constant will be assigned to
the new managed object's attribute of the same name. The kind constant value will be used when the
factory creates the managed object's name binding in the CORBA naming service.

6.9.1.2 Superior Object

The second parameter in the create operation is a reference to the superior object, under which the
new object is to be created. Using standard CORBA capabilities, the factory shall examine the class
of the superior object to determine if it matches the type specified in the superiorClass constant
defined in the name binding module. If it doesn't, the factory must next check to see if the supplied
reference is of a subclass of the type specified in the superiorClass constant. If it is, and if the
superiorSubclassesAllowed constant in the name binding is true, the factory may proceed to create
the object. If not, the factory must reject the request by raising an invalidNameBinding CreateError
exception, returning "superiorObject" in the details.

If the superiorClass constant in the name binding module is an empty string, then objects of the
subordinate class may be created with no superior object (parent), and their name is bound directly to
a local root naming context. Usually, these objects will be created by the managed system, but in
these cases the superior object reference would be null.

ITU-T X.780 (01/2001) 29

6.9.1.3 Name

The third parameter is the name to be assigned to the new object. This string will become the ID
field of the CORBA Name Binding created in the CORBA naming service for the new object. This
will be relative to the superior object's name. If the parameter is inout, it indicates that the factory
must support auto-naming. In this case, a client may submit a null string for the name, and the
factory will choose a suitable string and return the chosen value. If instead the client submits a string,
the factory shall use this value instead (and return it as the out value). If the parameter is in only,
auto-naming is not supported and the client must supply a name. If it doesn't, the factory shall raise a
badName CreateError exception. The factory raises a duplicateName CreateError exception if the
supplied name is a duplicate. (This means both the /D and kind fields match an existing object
contained by the superior object.)

6.9.1.4 Packages

The packages attribute is important. It tells the factory not only which packages an instance must
support, but which parameter values on the create operation it must ignore. Because they are
strongly-typed, create methods include a parameter for each writeable or set-by-create attribute of an
object, even if an attribute is part of a conditional package. The factory must ignore the values for
any attribute in packages that are not requested by the client, even if the factory instantiates the
object with the package anyway. (If the factory instantiates an object with a package not requested
by the client, the factory must choose the initial values.) This frees the client from having to supply
values for attributes in packages it does not want. Instead, the client can submit any value. For
efficiency, the values submitted for attributes in packages not requested by the client should be short.

If the client supplies an invalid package name in the packages parameter, the factory shall raise an
unsupportedPackage CreateError exception and return the name of the package as the argument. An
incompatiblePackages CreateError exception may also be raised if the client requests the creation of
an instance but specifies packages that may not coexist in the same instance.

6.9.1.5 Superclass Parameters

Following these first four parameters will be parameters for each of the writeable and set-by-create
attributes for any superclasses of the type of objects created by the factory.

6.9.1.6 Object Class Parameters

Finally, following the superclass parameters will be parameters for each of the writeable and set-by-
create attributes for the managed object class created by the factory.

6.9.2 Factory Finder

To ease the task of finding a factory, ITU-T Q.816 defines a factory finder interface. (The factory
finder is a common design pattern in CORBA applications.) This enables a client to easily find a
factory by interacting with a well-known broker with knowledge of all the factories present on a
managed system.

6.10 Managed Object Class Value Types

Each managed object class compliant with these guidelines inherits an operation from the base
Managed Object class that returns all or some subset of the object's attributes in a single valuetype.
(CORBA 2.3 introduces the concept of value types, objects that are passed by value instead of by
reference.) Not only must the managed object implementation support this feature, the IDL
describing the managed object must include a value type with public attributes for each of the
attributes supported by the managed object. These guidelines define a base
ManagedObjectValueType, and the value types defined for managed objects must ultimately derive
from this base value type. The value types defined for managed objects should usually follow the
inheritance pattern of the managed objects interface, but since CORBA's value types support only

30 ITU-T X.780 (01/2001)

single inheritance, this won't always be possible. This is not a serious limitation, though. It simply
means that the value types defined for interfaces using multiple inheritance will have to singly
inherit from one of the superior value types, and the other attributes will have to be added and
maintained by hand.

As an example, assume the Equipment managed object interface inherits directly from the base
ManagedObject class, and has, among others, an attribute access function called userLabelGet that
returns a type UserLabelType. The IDL describing the value type for the Equipment managed object
would look like this:

val uet ype Equi pnent Val ueType : ManagedObj ect Val ueType {
public UserLabel Type user Label ;
/1 other attributes
b

The name of the value type is the name of the interface with "ValueType" appended. Notice, too,
that the name of the public attribute in the value type is the name of the method on the managed
object interface used to access the attribute without the appended "Get." This convention should be
followed for all attributes in value types. The type of the attribute is the same as the type returned by
the attribute access function.

Code on the client side wishing to retrieve the attribute values for an equipment object might look
something like this:

ManagedObj ect Val ueType noVal ue;

Equi prent Val ueType eqVal ue;
Equi prent eq;
eq = ... [/ code that sets eq to a CORBA proxy representing an

/1 equi pment obj ect.
noVal ue = eq.getAttributes();
eqVal ue = (Equi pnent Val ueType) noValue; // cast return to proper type
Systemout. println("User Label =" + eqVal ue.userlLabel); // print |abel

When the IDL is compiled into an object-oriented programming language, both the interfaces (in this
case, Equipment) and the value types (ManagedObjectValueType and EquipmentValueType) will be
translated into classes. For the interfaces, the classes are actually proxies. When methods are invoked
upon them they make use of the ORB to send the request back to the server. The classes translated
from value types, however, are not proxies. They are simply local objects.

When the client invokes the call on the equipment proxy to get attributes, the response from the
server will be an EquipmentValueType. When the ORB receives this, it will create a local instance of
an EquipmentValueType object with the attribute values received from the server. Because the return
type to the attributesGet() method, defined on the base Managed Object interface, is
ManagedObjectValueType, the reference to the EquipmentValueType instance is passed back as a
reference of type ManagedObjectValueType. This works because EquipmentValueType is derived
from ManagedObjectValueType. In order to access attributes that are specific to
EquipmentValueType, though, the client must narrow the reference by casting it to type
EquipmentValueType.

While the behind-the-scenes processing being done by the ORB is a bit complicated, the alternative
would be to use lists of CORBA any types to hold the attribute values. This approach, though, would
require even more processing. The any types would be much more complicated for the programmer,
too. As shown in the example above, using the value types is actually quite simple.

6.11 Constants

Network management systems require the ability to exchange information with previously agreed-
upon meanings. For example, a state change notification with a probable cause of "1" might mean it
was likely caused by a loss of signal, while a "2" means a loss of frame, etc. It is simple enough to
define an enumeration or set of integer values to be passed across an interface in some field, but it is

ITU-T X.780 (01/2001) 31

a little trickier to make this mechanism extensible by multiple groups, likely acting in parallel. The
mechanism used by these guidelines for this is referred to as the "Universal Identifier (UID)."

A UID is a data structure with two fields. The first is a string meant to contain the scoped name of an
IDL module containing the constants defined for some field. The second is a short (16 bit) signed
integer containing the value. For example, to send a value of "loss of signal" in a probable cause
field, a system would construct a UID structure with a moduleName string equal to
"itut_x780::ProbableCauseConst" and an integer value equal to 29. (Annex B contains the constants
defined for these guidelines. In it is a module named "ProbableCauseConst" which contains a
constant named /ossOfSignal with a value of 29.)

Note that this is the only format for constant values used within this framework. There are no "local"
values used.

These conventions shall be followed when defining constants for an information model:

1) Constant values shall be defined in separate modules, one for each set of constants defined
for a particular field. These sub-modules shall be contained within the top-level module that
contains the other constructs defined for the information model.

2) The name of the module shall be the name of the field appended with "Const". For example,
values for the probableCause field (defined as type UIDType) are contained within a
module named "ProbableCauseConst".

3) The constants defined within the sub-module must be of type const short. For example:
const short | ossOF Signal = 29;
4) Constants may be kept in a separate file, to reduce the length and complexity of the main

IDL file. Even if the constants are in a separate file, the sub-modules shall be within an IDL
module statement with the same name as the module in the main file. The main file shall
have a pre-compiler include statement at the top of the file to include the constants in any
compilation run.

5) The sub-module shall also contain a string constant named "moduleName" that contains the
scoped name for that module. For example:
nodul e itut_x780 {

nodul e Probabl eCauseConst {
const string nodul eName = "itut_x780:: Probabl eCauseConst";

Yool en(.j”of nmodul e Probabl eCauseConst

Yoo en(.j”of nmodul e itut_x780

This is really just a courtesy to allow programmers to refer to the module's name by a
constant rather than hard-coding module string names.

Note that other information models may extend the values for probable cause. There could, for
example, be a module "itut m3120::ProbableCauseConst" with additional values for the probable
cause field. These modules can even reuse the value 29. The UID will still be unique because the
module names will differ.

6.12 Registration

CORBA IDL requires that all the identifiers within a module must be unique. This means that as
long as a module name is unique, all of its contents will be uniquely named. CORBA IDL also
defines an IDL compiler pragma statement that may be used to define a unique prefix to the module
identifiers when they are registered in the CORBA interface repository, a central directory of
interface information used by CORBA ORBs. This framework requires that IDL documents contain

32 ITU-T X.780 (01/2001)

a pragma prefix statement using the organization's Internet domain name as a prefix for the
contained modules.

This eliminates the need to register each individual construct.

6.13 Versioning of CORBA/IDL Specifications

When using CORBA, a management interface is specified as one or more object interfaces defined
using IDL. Inevitably, management interfaces change. Adding a new CORBA object interface to a
management interface is straightforward. The new CORBA interface simply needs to be defined in
IDL, and added to the specification identifying the object interfaces to be supported on that
particular management interface.

Updating an existing CORBA object interface, however, is a little trickier. These guidelines place a
priority on backward compatibility. Therefore, the following rules apply to extending an existing
managed object interface. Note that these rules apply only to extensions being made to a base class
that do not result in changing the business purpose of the object. That is, the new class models the
same resource as the old class, it simply has some additional capabilities.

1) The name of the new object interface shall be the same as the existing interface with the
letter "R" and a numeral appended, starting with "1." Subsequent extensions will increment
the numeral. So, extending an interface for "Equipment" managed objects would result in an
interface named "EquipmentR1."

2) The new interface shall be defined within the same module name as the existing interface.
(CORBA modules are really just name spaces, and may be spread across multiple files.)

3) The new interface shall inherit from the existing interface.

4) Capabilities inherited from the existing interface cannot be removed or modified in the new

interface. If an operation definition must be modified, a new operation must be defined. The
name of the new operation shall be the same as the existing operation with the letter "R" and
a numeral appended, starting with "1." Subsequent extensions will increment the numeral.

5) The value for the kind field used in name bindings will continue to be determined by a
constant in the name binding modules referenced when the object is created. Any name
bindings valid for the existing interface shall be valid for the new interface. That is, a name
binding module for an Equipment object shall also be valid for an EquipmentR1 object, even
if the module's value for subordinateSubclassesAllowed is false.

6) References to the new interfaces should be of the most specific type. (If they aren't, the new
capabilities can't be accessed.) Also, the value of the objectClass attribute reported by an
object of the new class should be the most specific type. CORBA provides some means for
determining the actual class of a reference based on information contained in the IOR.

For example, consider the following object interface:
interface Foo {
void action(inint A inint B);
}
The action might be extended like this:
i nterface FooRl: Foo {
void actionRL(in int A, inint B, inint C;
}
The old action would still be a valid operation.

A similar approach, appending the name with "R" and an incremented number, shall be used when
other existing IDL definitions are revised, including constant definitions, type definitions, and
valuetype definitions.

ITU-T X.780 (01/2001) 33

7 GDMO Translation

This clause provides guidelines for creating IDL information models from existing information
models described using GDMO. The subclauses below describe how each of the GDMO templates is
to be translated to CORBA IDL.

7.1 Managed Object Classes

Each Managed Object Class in a GDMO specification shall be translated into a managed object
interface. Translations of Managed Object Classes derived from the GDMO Top class shall inherit
from the ManagedObject CORBA IDL interface. Translations of classes not derived directly from
Top shall inherit from the translation of whatever class they are derived from. All managed object
interfaces must inherit directly or indirectly from the ManagedObject interface. Multiple inheritance
is allowed subject to the rules of CORBA IDL. Note, however, that these rules do differ from CMIP.
In particular, CORBA does not allow an attribute or operation to be inherited from multiple sources
unless they in turn inherited it from the same common source. If a multiple-inheritance translation
from CMIP does not meet the CORBA rules, the translator will have to choose to inherit from one
superclass and manually add the other capabilities from the other class. Another option is to modify
the conflicting superclasses so that they inherit the conflicting capability from a common source.
This, of course, would require re-definition of these superclasses.

The inability to inherit from a potential superclass also means manual work may be required if the
potential superclass or any of its super classes is modified. A more serious issue is that CORBA
polymorphism is based on inheritance. If the subclass does not inherit from a class, it cannot be
polymorphic to it. Unfortunately this is a limitation of CORBA, not these guidelines.

Attributes, actions, and notifications in mandatory and conditional packages are translated into
operations on the interface according to the guidelines below. A comment preceding the interface
should describe the conditions under which the capabilities of a conditional package are to be
supported by an instance, based on the PRESENT IF clause for that package. Note that CORBA
does not allow the redefinition of a capability present in a superclass. Therefore, if a capability is
defined as conditional in a superclass, it cannot be redefined as mandatory in a subclass. (As
described above, capabilities are denoted conditional when they raise a NO<package name>
exception. This exception cannot be removed in a subclass. The best alternative will be a comment
indicating that the subclass should not raise the exception. Another alternative would be to forsake
inheritance and manually add the capability, making it mandatory while doing so. This could lead to
problems with polymorphism, however, and manual updating.)

Registration of individual interfaces is not required.

7.2 Packages

Unfortunately, IDL does not provide a means of defining packages in one place other than by
translating a package into an interface. This, though, would result in a large number of extra
interfaces and increase the complexity of the CORBA interface. Instead, these guidelines include the
concept of conditional support for groups of capabilities.

As described above, whenever a GDMO package is included in a Managed Object Class, the
translation of that class to an IDL interface includes a translation of each of the templates in the
package.

GDMO attributes that are part of a conditional package shall be translated into access operations
each with a raises clause that includes the exception defined for that package. GDMO actions that
are part of a conditional package shall be translated into an operation that also has a raises clause
that includes the exception defined for that package. GDMO notifications that are part of a
conditional package shall be translated into a CONDITIONAL NOTIFICATION macro statement.

34 ITU-T X.780 (01/2001)

The present if clause in the GDMO object's conditional package statement shall be translated to a
comment preceding the IDL translation of the object.

Translations from CMIP can also encounter problems when the same capability is included in
different conditional packages. These rules shall be followed:

1) If the capability is mandatory in one source and conditional in another, it must be mandatory
in the translated class.

2) If the capability is part of multiple conditional packages, the translated operation will
include an exception for each package. An exception will be raised only if none of the
packages is present, and then any one of the exceptions may be raised.

3) If the same conditional package is included from multiple super classes, the condition under
which the packages is included in the new class is a logical "OR" of the conditions in the
super classes.

4) Notifications that are part of multiple packages are translated into just a single macro
statement. If any of the packages are mandatory, the MANDATORY NOTIFICATION macro
statement is used. Otherwise, the CONDITIONAL NOTIFICATION macro statement is
used, and all of the package exceptions are listed.

If a GDMO template occurs in multiple conditional packages included in a single object, the modeler
may want to consider making the capability mandatory or defining a new conditional packages for
the capability.

Note that using exceptions to represent packages only supports conditional packages. If multiple
mandatory packages are present in a GDMO class, they won't be distinguishable on the translated
interface

Behaviour statements accompanying a package definition shall be translated to comments in the
interface definitions of the IDL objects translated from the GDMO objects that include the package.

Registration of packages is not required.

7.3 Attributes

As described above, GDMO managed object classes list the packages that are to be included in the
class definition. The package then lists the attributes, actions, and notifications that make up that
package. When translating a managed object class, each template in the included packages will be
translated to an operation on the managed object interface, and most of these will include attribute
definitions.

Attributes that support GET capabilities shall have an <Attribute Name>Get operation defined for
them. The return type for the operation shall be a translation of the attribute's ASN.1 syntax.

Attributes that support REPLACE capabilities shall have an <Attribute Name>Set operation defined
for them. The input parameter type for the operation shall be a translation of the attribute's ASN.1
syntax.

Attributes that support ADD capabilities shall have an <Attribute Name>Add operation defined for
them. Attributes that support REMOVE capabilities shall have an <Attribute Name>Remove
operation defined for them. The input parameter type for these operations shall be IDL sequences
translated from the attribute's ASN.1 syntax.

Attributes that support the set-by-create capability shall accept an initial value for the attribute on
factory create methods but shall not have a SET operation. (The factory create method will also
accept values for attributes that are settable, but not attributes that are merely readable.)

Default values are defined as constants within an interface. The identifier of the constant shall be
<AttributeName>Default. The interface may also have an operation for setting the attribute to its
default, or the client can just use the SET operation with the default constant. The set-to-default

ITU-T X.780 (01/2001) 35

operation shall be named <AttributeName>SetDefault and it shall accept no parameters and return
void. CORBA IDL allows constants to be defined for only base types and enumerated types, so if the
attribute's type is complex, no default can be defined for it. In these cases, a set-to-default operation
must be defined and a comment associated with the set-to-default operation shall describe the default
value.

A few other attribute-related GDMO capabilities cannot be re-created with IDL. GDMO attributes
with a DERIVED-FROM clause will have to have the capabilities of the other attribute manually
added to the interface specification. (The syntax of the derived-from attribute will be used.)
Matching rules are defined by the Multiple-Object Operation Service constraint language, which is
part of the TMN CORBA services defined in ITU-T Q.816. These matching rules simply depend on
the basic type of the attribute. There are no matching rules per attribute. Initial values, permitted
values, and required values are not supported.

It will often make sense to define an IDL type for each attribute. Even if the attribute is a simple
type, an IDL typedef statement may be used to define a type for it. A comment preceding the type
definition for an attribute is the best place to put a translation of an attribute's behaviour statement.
Otherwise, the behaviour statement may be translated to a comment preceding the attribute's access
operation on the object interface.

The standard attributes defined by these guidelines shall be used whenever possible. See
clause 6.3.5.

Registration of attributes is not required.

7.4 Attribute Groups

These guidelines do not support the concept of attribute groups. GDMO attribute groups have no
equivalent translation.

7.5 Actions

Actions shall be translated to IDL operations. The input parameters, output parameters, and return
type for the operation shall be translated from the action's input and output ASN.1 syntax. That is,
the input syntax should be translated to IDL in parameters, while the output syntax is translated to a
mix of out parameters and the return value. IDL inout (in/out) parameters may be used where
appropriate. Also, exceptions should be defined to return values for error conditions rather than
returning unions of normal and error values.

GDMO actions with a mode of unconfirmed (those that lack the MODE CONFIRMED clause) may
be translated to methods with the IDL keyword oneway preceding the return type. Such operations
must have a return type of void and no out or inout parameters, though. IDL operations without the
oneway keyword are confirmed.

7.6 Notifications

These guidelines define the IDL equivalent of the 15 notifications found in ITU-T X.721, which are
the notifications used in most GDMO information models. Typically, notifications in GDMO
packages will simply be translated to a notification macro statement on each interface that includes
the package. A MANDATORY NOTIFICATION statement is used if the notification is part of a
mandatory package and a CONDITIONAL NOTIFICATION statement is used if it is part of a
conditional package.

The mapping of object attributes to notification fields within a notification statement is not
supported. If some special mapping is required it should be documented with a comment. Replies to
notifications are not supported.

36 ITU-T X.780 (01/2001)

If a new notification must be defined, it should be defined as an operation on an interface named
"Notifications" within the new information model's module. (This does not imply that this interface
must inherit from the itut x780::Notifications interface.) The name of the operation shall be the
name of the notification. The parameters to the operation shall be translated from the notification's
information syntax. The notification operation's return type must be void, and it must have only in
parameters. ITU-T Q.816 provides information on how the data is placed into a structured
notification. Note that attribute IDs are not needed. Instead, parameters are identified with a name
and data type. The scoped interface name and notification operation may then be used within
notification macro statements. A new name is given to this notification (by appending an "R1", etc.)
to allow the managing system to create a multiply-inherited interface for receiving the alarms that
includes both the old and extended versions.

If a notification needs to be extended, it must be done by defining a new operation. The new
operation should contain the same parameters as the old. For example, the IDL below extends the
equipment alarm by adding a parameter named "newData" of type "newType."

nodul e newibdul e {

interface Notifications {
voi d equi prrent Al arnR1 (

i n External Ti neType event Ti e,

... (ot her equi prent Al ar m par anet er s)

i n Suspect Obj ect Set Type suspect bj ect Li st
in newType newDat a) ;

7.7 Behaviours

GDMO behaviour templates shall be translated to formatted IDL comments immediately preceding
the IDL construct with which each behaviour is associated. Attribute behaviours shall be translated
to IDL comments preceding the type definition for the attribute type. Package behaviours shall be
translated to IDL comments preceding the exception defined for the comment.

7.8 Name Bindings

Each GDMO name binding shall be translated into an IDL name binding module as defined in
clause 6.8. The various constructs in the GDMO name binding shall be translated as follows.

The superior class name in the name binding shall be assigned to the value of the superiorClass
constant in the name binding module. If the GDMO superior class clause has an AND SUBCLASSES
modifier, the value of the IDL name binding constant superiorSubclassesAllowed shall be true.
Otherwise, it shall be false.

The subordinate class name in the name binding shall be assigned to the value of the
subordinateClass constant in the name binding module. If the GDMO subordinate class clause has
an AND SUBCLASSES modifier, the value of the IDL name binding constant
subordinateSubclassesAllowed shall be true. Otherwise, it shall be false.

If the GDMO name binding has a CREATE clause, the value of the IDL name binding constant
managersMayCreate shall be true. Otherwise, it shall be false.

If the GDMO name binding has no DELETE clause, the value of the IDL name binding constant
deletePolicy shall be notDeletable. If it has a DELETE clause with either no modifier or an ONLY-
IF-NO-CONTAINED-OBJECTS modifier, the value of deletePolicy shall be
deleteOnlylfNoContainedObjects. 1If it has a DELETE clause with a CONTAINED-OBJECTS
modifier, the value of deletePolicy shall be deleteContainedObjects.

ITU-T X.780 (01/2001) 37

If the name binding create clause has a WITH-AUTOMATIC-INSTANCE-NAMING modifier, the
managed object factory create operation should define the name parameter as inout, and include a
comment indicating that the client may submit a null name, and if so the factory will choose a name
and return it.

Creating an object by copying a partial set of attribute values from a reference object is not possible
with a strongly-typed factory method because there is no way for the factory to tell which values it
should copy and which it should use from the operation's parameters. A strongly-typed operation that
copies all values from a reference could be defined, but the utility of this is limited. A weakly-typed
operation that accepted a reference object as well as a partial list of attributes could also be defined
on a factory, but the difficulty of implementing this does not seem to be worth the benefit. Therefore,
the translation of the WITH-REFERENCE-OBJECT modifier in a name binding create clause is not
supported.

Parameters on create clauses shall be translated to CreateError exceptions. This may require
defining a new value for the error ID. A comment should be placed in the name binding IDL module
noting which CreateError exception error IDs apply to objects created with that name binding. If it
i1s not possible to translate a create clause parameter to a CreateError exception, another, less
desirable, alternative is to define a new factory, and translate the parameter to an exception on a
create operation on that factory. Because of the general-purpose nature of the CreateError exception,
though, the need for this should be rare. (See more on parameters, below.)

7.9 Parameters

GDMO parameters provide extensibility for GDMO information models. Parameter templates are
used to augment an existing specification in the areas of notifications, actions (requests, responses,
and failures), and specific errors when defining subclasses. The GDMO definitions of all
notifications and many actions contain an extensibility field that is further defined by the subclasses
(if required). In the case of specific errors, class-specific errors are used to augment the general
"processing failure" error in CMIP. The format of this information is often a list of name-value pairs,
where the name defines the data type of the value.

Translating GDMO parameters to IDL provides a good opportunity to make the currently defined
extensions that have been found useful with many object classes a "normal," strongly-typed part of
the model. For example, three GDMO parameters that have been defined for alarms have been
included in the notifications defined in the IDL. (The three parameters are "Alarm Effect On
Service," "Suspect Object List," and "Alarming Resumed.")

There are several key words used in GDMO parameter templates to specify the semantics of the
extensions. The translation of the various extension capabilities available with parameter templates
based on these keywords is discussed below.

7.9.1 ACTION-INFO and ACTION-REPLY

In keeping with the strong typing recommended in the framework, GDMO parameters with the
keywords "ACTION-INFO" in the template are not translated as an extension field. Instead, a new
interface is subclassed from an existing interface that specifies the action but adds the extensions as
regular "in" parameters of that method. The name of the IDL parameter should be taken from the
name of the parameter, and the data type of the parameter should be translated from the GDMO
parameter's syntax. "ACTION-REPLY" parameters would likewise be translated to "out" parameters
on the operation.

The above method implies that subsequently adding a parameter to an already-existing IDL
operation is not supported. Instead, the information modeler may use the more conventional
approaches provided by CORBA for extending an interface, such as subclassing an object interface
and defining a new method there, with additional in and/or out parameters, or additional exceptions.
See clause 6.13 for guidelines on this.

38 ITU-T X.780 (01/2001)

7.9.2 EVENT-INFO and EVENT-REPLY

In cases where the "EVENT-INFO" parameters have already been defined, they are translated to
regular "in" parameters on the IDL operations used to convey a notification. These guidelines do not
support responses to notifications, so there is no translation for "EVENT-REPLY" parameters.

Since this framework already defines a set of notifications, translating EVENT-INFO parameters
could mean redefining one of the notification operations. See clause 7.6.

In most cases, however, reusing an existing notification definition will be preferred. In cases where
the GDMO extensions are predefined, as for alarm information, they should be included in the
translated notification IDL specifications. The framework notification IDL, however, also supports
an "additional information" field, which is a weakly typed name-value pair list. This can be used to
add information to these previously-defined notifications. The notification event type will not
change. The new managed object interface that needs to use the extension for a specific parameter
must note the use of this parameter in comments, though. Unfortunately, there is no other
mechanism except using the macros shown above to specify which notifications are supported by
which objects, and this does not support also specifying parameters. The advantage of using the
same notification type is to allow the managers to receive the notifications and not be concerned
with having to register for a new notification type. If the extensions are not understood because of
different versions of manager and agent, then the additional information is discarded.

The specification of the extensions for the additional information is described below.

The notifications defined by this framework include a field named "additionallnformation" that
closely resembles the "additionallnformation" field in CMIP notifications. The IDL syntax of the
"additionallnformation" field in the notifications is type "AdditionallnformationSetType":

struct Managenent Ext ensi onType {
Ul DType id; // identifies the type of info
any i nfo; /1 type will depend on id

%;/pedef sequence <Managenent Ext ensi onType> Addi ti onal | nf or mati onSet Type;
Parameters with the EVENT-INFO keywords are translated by defining a Unique Identifier (UID)
for each parameter. See clause 6.11 for details on this. In short, though, the modeler defines a sub-
module named "AdditionallnformationConst" in which a constants of value type "short" is defined.
The names of these constants are the names of the GDMO parameters. The value of each constant
could also be derived from the GDMO, based perhaps on the last number of the parameter's
registration. Otherwise, an integer unique to the constants in that module should be chosen. This
definition must also include a comment indicating the data type of the value that accompanies the
UID in the "additionallnformation" field. As an example, if the Alarm Effect On Service parameter
had not been made a normal member of the Alarm Info data structure used by alarms in this
framework, it might have been translated like this:
nodul e itut_nB8100 {
merduI e Additional I nformationConst {
/** Alarmeffect on service paraneters are acconpani ed by a bool ean
value in the "any" field indicating if service has been affected. */
const short al arnEffectOnService = 1;

} /1 end of nobdul e Additional | nformati onConst
}:; // end of nodule itut_nB100

A managed object's IDL interface can then identify the notifications it supports as usual, but a
comment should indicate the parameters that will be included in the notifications.

ITU-T X.780 (01/2001) 39

7.9.3 Context-Keyword

Context-keyword parameters identify information that is to be passed in a named field in a CMIP
PDU. This named field is usually a sequence of data structures consisting of an identifier and an
"any" data type which holds a value whose type depends on the identifier. In CMIP, these context-
keyword parameters may be passed in action parameters or in notifications. The translation of
context-keyword parameters for actions is not supported by this framework due to the preference for
strong typing. Instead, additional information for actions should be translated to regular operation
parameters. (See ACTION-INFO parameters above.)

For notifications, except for extensions (explained above), if fields are defined to be of a weak type,
then the same approach as for the extension field can be used. However, this approach has not been
used in most of the GDMO standards. The distinction in the case with EVENT-INFO keyword
versus context-keyword is the former is designed for extensibility where one or more parameters can
be added. The recommended approach in the case of multiple extension is the use of EVENT-INFO
and therefore all standards have defined parameters using this keyword.

7.9.4 SPECIFIC-ERROR

"SPECIFIC-ERROR" parameters are returned in CMIP processing failure messages. They indicate
an abnormal outcome of an operation. There are two options for translating these parameters. First,
they may be translated to IDL exceptions raised by the operation for which the specific error
parameter is defined. The name of the exception should be taken from the GDMO parameter name,
and the data type returned with the exception should be derived from the GDMO parameter's syntax.
Since specific-error parameters may be defined for different kinds of GDMO templates, specific
error parameters on actions should be translated to exceptions raised by the action and specific error
parameters on attributes should be translated to exceptions raised by the attribute access operation.
Also, specific error parameters on the "Create" clause of a name binding should be translated to
exceptions on the create operation on the factory interface. There is no translation of a specific-error
parameter on a notification supported by this framework since responses to notifications are not
allowed.

The second option for translating specific-error parameters is to translate the parameter into a new
code point for one of the standard exceptions defined by the framework. The framework defines
three standard exceptions: the CreateError exception, raised on factory create operations, the
DeleteError exception, raised on managed object delete operations, and ApplicationError
exceptions, raised on all other managed object operations. The ApplicationError exception returns a
unique identifier that identifies the specific application error, and a text explanation. The create and
delete error exceptions extend this information by adding a list of related objects that may be
involved, and the attributes of the object on which the object was attempted. The list of related
objects might show, for example, some objects that must be deleted before the target object can be
deleted. The attributes might contain object state information pertinent to the error.

Translating a specific-error to a code point used by one of these standard exceptions should be used
whenever possible. Since the data types returned in the exceptions are value types, they may be
extended for specific code points. Because the delete operation is inherited from the base managed
object interface specific-error parameters appearing in GDMO name binding delete clauses must be
translated to DeleteError exception code points. This is done similarly to the EVENT-INFO
parameters described above. Basically, the modeler defines a delete error sub-module for UID
constants. The constant definitions must include a comment indicating what data will be placed in
the "relatedObjects" and "attributeList" fields accompanying an error with that identifier. Also, if the
modeler has extended the standard value type returned for the code point, a comment must note the
actual data type returned so that the managing system may narrow the type and access the additional
information. The framework, in fact, includes some delete error code points that extend the standard
delete error value type.

40 ITU-T X.780 (01/2001)

Finally, a comment on the managed object's IDL interface indicates the delete error values that might
be raised in an exception when an incorrect attempt to delete the object is made. An example
translation is:

nodul e itut_nB8100 {

nodul e Del et eError Const {

/** Network TTP Term nates Trail delete errors are rai sed when an
attenpt is nade to delete a TTP before the trail has been del eted.

It includes a reference to the Trail in the "rel atedCbjects" field. */
const short networ kTTPTerm natesTrail = 54;

} /1 end of nodul e Del et eError Const
}; // end of nodule itut_nB100

7.10 ASN.1 Data Types

GDMO uses the ASN.1 language to define the syntax of attributes as well as operation and
notification parameters, so when converting GDMO templates to IDL, these syntax definitions will
also have to be translated. This clause gives guidelines on translating ASN.1 syntax to CORBA IDL.

7.10.1 Basic Types

CORBA IDL defines the following basic types to which ASN.1 basic types may be translated: any,
boolean, char, double (for double-precision floating-point numbers), enum (for enumerated types),
fixed, float (for single-precision floating-point numbers), long (for large integers), object (for object
references), octet, short (for small integers), string, wchar (for "wide" characters), and wstring (for
strings of "wide" characters).

This framework uses! the string type for all strings, and defines a typedef called "Istring" for cases
where the string may contain escaped international characters. Istring is a typedef of wstring, or
"wide" strings. These are strings composed of "wide" (16-bit) characters.

In addition, the CORBA Time service defines a time type referred to a "UtcT" that is used by this
framework.

7.10.2 Sequence

CORBA IDL supports the definition of data structures using the struct keyword, similar to ASN.1
sequence types.

7.10.3 Sequence of

CORBA IDL supports the definition of sequences of types, both basic and complex, in much the
same way as the ASN.1 sequence of type.

7.10.4 Set of

CORBA IDL does not support the definition of complex set types as does ASN.1. Instead, sets are
translated to IDL sequences. The convention of ending the type name with "SetType" shall be
followed. When handling set values, duplicates should be eliminated and order ignored.

I' ITU-T NOTE - Contributions are solicited on using the alternative typedef of Istring to string instead of
wstring since strings can carry international character sets when codeset negotiation, supported by GIOP
version 1.1 and greater, is used. Wstring types are mapped by CORBA language bindings to the
programming language wstring type, which is often tied to just Unicode.

ITU-T X.780 (01/2001) 41

7.10.5 Choice

CORBA IDL supports the definition of discriminated unions, which serve the same purpose as
ASN.1 choice types.

In the interest of simplifying the implementation of CORBA-based TMN standards, this framework
recommends the conservative use of discriminated unions. Often when translating from ASN.1 to
CORBA IDL, the translated type can be simplified with no loss of semantics. For example, usually a
choice between a string and null can simply be translated to a string. A comment that the string may
possibly be null can be added to identify this possibility. A choice between a sequence of (or set of)
and null can likewise be translated to just the sequence.

7.10.6 Object Identifier (OID)

This framework defines a type called "Universal Identifier" (UID) that is designed to be a
replacement for ASN.1 OIDs.

7.10.7 Object Instance

The framework supports two possible translations for ASN.1 object instance types. Since each
managed object has a name, the name type defined by the CORBA Naming Service can be used.
(This framework defines a typedef for the CORBA Naming Service names, called NameType.) Also,
CORBA object references may be used. Since all managed object interfaces must inherit from the
ManagedObject interface, the type ManagedObject should be used whenever a general reference to
an object is required. The modeler may also use a type specific to a class of managed objects, such as
Equipment. This has the advantage of making a model more strongly typed.

7.10.8 BIT STRING

This clause defines two mappings of ASN.1 BIT STRING for use when translating GDMO
specification to CORBA Managed objects, or for specifying syntaxes for use in new CORBA
Managed Object specifications.

Two mappings are justified, since ASN.1 bit strings are used in different ways.

BitStringType ::=
BI T STRI NG |
Bl T STRI NG NanedBit Li st}

The two mappings are:

. ASN.1 BIT STRING maps to an IDL sequence of octets. No semantic tags are carried in the
IDL.

ASN.1 BIT STRING is mapped to the IDL value type, with a state representation, local
helper functions to manipulate values, and associated semantic tag constants.

7.10.8.1 Simple Representation for ASN.1 BIT STRING
ASN.1 BIT STRING state representation is mapped to an IDL typedef of BitString defined as

sequence<octet>. The following declaration is included in "itut x780.idl", for use with simple bit
string representations:

t ypedef sequence<octet> BitString;

The interpretation of a BitString is defined as follows to match the BER encoding of BIT STRING.
The sequence of octet shall have an initial octet followed by zero, one, or more subsequent octets.
The bits in the bitstring, commencing with the first bit and proceeding to the trailing bit, shall be
placed in bits 8 to 1 of the second octet, followed by bits 8 to 1 of each octet in turn, followed by as
many bits as are need in the final octet, commencing with bit 8 (the notation "first bit" and ""trailing
bit" is specified in ITU-T X.208 | ISO/IEC 8824). The initial octet shall encode, as an unsigned
binary integer with bit 1 as the least significant bit, the number of unused bits in the final octet. The

42 ITU-T X.780 (01/2001)

number shall be in the range zero to seven. If the bitstring is empty, there shall be no subsequent
octets, and the initial octet shall be zero.

With this simple representation, when GIOP is used to pass a bit string value in an IDL "any", a
repository ID will be sent letting the receiver (i.e. orb user) know to interpret the octet sequence as
an encoded Bit String.

ASN.1 Bit string constants are represented as an octet sequence using a variant of the X.208
specified "bstring" form, having the single quotes eliminated. ASN.1 constants defined using the
"hstring" form will have to be translated to this modified "bstring" form for the associated IDL
constant.

Table 2/X.780 — Example of simple ASN.1 BIT STRING Mapping

ASN.1 IDL

CCDScan ::= BIT STRING typedef ITUT X780::BitString CCDScanType;
scan CCDScan ::= const string scan ="100110100100001110110B" ;
'100110100100001110110'B
G3FacsimilePage ::= BIT STRING typedef ITUT X780::BitString G3FacsimilePageType;
-- a seq of bits conforming to Rec. T.4 | //string constants generated for BIT STRING constants
image G3FacsimilePage ::= const string image = "100110100100001110110B";

'100110100100001110110'B const string trailer = "00000001B";
trailer BIT STRING ::='01'H

7.10.8.2 Valuetype representation of ASN.1 BIT STRING

The state representation for the value type is ITUT X780::BitString. The representation of constants
for the BitStringValType is the same as for the more simple BitString type. Helper methods (which
map to local programming language object function calls) are included in the defined value type.

exception InvalidLength { long length } ;
val uetype Bit StringVal ue {
public BitString bitStringVval;
factory initValue (in unsigned | ong nunber_of _bits);
factory InitFromBitString (in BitString desiredVal ue);
/1 local operations
short getBit (in unsigned |ong position)
rai ses (InvalidLength);
void setBit (in unsigned |ong position, in short new bit_val ue)
rai ses (InvalidLength);
unsigned long length ();
string asString (); // produces a string with binary val ues ("1001011B")
/1 input a string with binary values ("1001011B")
void setFronBtring (in string string_val ue)
rai ses (lnvalidString);

b

IDL constants are generated in valuetypes inheriting from BitStringValue, for semantic tags
associated with the named bit positions. Each named bit is mapped as an IDL constant of type
unsigned long with value equal to the offset into the bit string. The name of the constant is the given
name, disambiguated by the JIDM rules (i.e. "a n" for the n + Ist use of identifier "a" in same
context) if there are identifier collisions within the scope of the derived value type definition.

const unsigned | ong <bitnanme> = <offset>;

ITU-T X.780 (01/2001) 43

Table 3/X.780 — Example Mappings to Bit String ValueType

ASN.1 IDL
TO ::= BIT STRING valuetype TOType : ITUT X780::BitStringValue {}
//could have used typedef to BitString for simpler mapping
MessageFlag ::= BIT STRING { valuetype MessageFlagType : ITUT X780::BitStringValue {
posResp (0), negResp (1), const unsigned long posResp = 0;
doNotForward (2) } const unsigned long negResp = 1;
const unsigned long doNotForward = 2;
}
aINTEGER ::=1 const longa=1;
T1::= INTEGER { a(2) } typedef long T1Type;
T2 ::= BIT STRING { a(3), b(a) } const T1Typea 1=2;
valuetype T2Type : ITUT X780::BitStringValue {
const unsigned long a = 3;
const unsigned long b = a;
}

NOTE - In some translation cases, it may be necessary to disambiguate the constant names, even within the
scope of a valuetype declaration. To avoid a naming clash, the JIDM collision rules (demonstrated for T1 in
the example) could be used within the scope of the valuetype.

8 Style Idioms for CORBA IDL Specifications

This clause defines a set of style idioms for the Interface Definition Language (IDL) of the Common
Object Request Broker Architecture (CORBA) to be used in interface specifications. Having a set of
style idioms will result in CORBA/IDL specifications with a consistent style. This may require some
additional work by editors, but this extra effort is worth the increased readability of the CORBA/IDL
specifications. It is important to keep in perspective that style conventions are for the benefit of the
reader, not necessarily to the benefit of the author.

8.1 Use Consistent Indentation

This clause demonstrates the indentation style that may be used in the IDL modules. As an example,
an excerpt from the CORBA Security Service non-repudiation module is shown below:

enum Evi denceType {
SecPr oof of Creati on,
SecPr oof of Recei pt,
SecPr oof of Appr oval ,
SecProof of Retri eval ,
SecPr oof of Ori gi n,
SecPr oof of Del i very,
SecNoEvi dence // used when request-only token desired

i hterface NRPol i cy {
void get _NR policy_info (
out Security::ExtensibleFam|ly NR policy_id,

out unsigned | ong pol i cy_version,
out Security::TineT policy_effective_tine,
out Security::TimeT policy_expiry_tine,

out Evi denceDescri ptorlListType supported_evi dence_types,
out Mechani snDescri pt orLi st Type supported_nechani sns

44 ITU-T X.780 (01/2001)

8.2 Use Consistent Case for Identifiers

Several languages enforce case rules (such as ASN.1) while others have de-facto rules. These rules
allow readers to easily distinguish identifiers of different type leading to increased readability. IDL
does not enforce case, so the following rules are proposed.

. Operations, parameters, attributes, members and constants shall have every embedded word
capitalized except for the first word capitalized.

. All other identifiers shall have the first letter of every embedded word capitalized.

nodul e Car Modul e {
struct Engi neType {
Pi st onType pi ston;
RodType pi stonRod,;

typedef string KeyType;
enum Wont St art ReasonType {
Bat t eryl sDead,
NoGas
s
exception WntStart {
Wont St art ReasonType reasonEngi neWwnt Start;

i’nterface For dRanger {
voi d startEngi ne(
in KeyType key
)

rai ses (
vwnt Start;
)

attribute Engi neType engine;

8.3 Follow JIDM Approach for IMPORT

At the beginning of a module that imports a type from another module, create a local typedef. This
explicitly lists the type that the importing module is dependent upon from the exporting module.
(NOTE — The name of the local identifier need not be the same name as the identifier in the
exporting module.) This use of typedef should not be used for imported interface or valuetype
definitions, though. Instead, fully scoped names should be used for these.

nodul e | mporti nghbdul e {

/1 Inports
t ypedef ExportinghMdul e:: SomeType SomeType;
t ypedef ExportingModul e:: SomeQt her Type SoneQt her Type;

t ypedef Exportinghodul e:: Sonet hi ngEl se Sonet hi ngEl seType,;
i

8.4 Use JIDM Approach for OPTIONAL and CHOICE

For enumerated and numeric (integer and floating) types, use the ASN OPTIONAL and CHOICE
mappings to IDL as prescribed in the Open Group and Open-Network Management Forum Joint
Inter-domain Management (JIDM) group's Inter-Domain Management: Specification Translation [3].
An example is given below:

ITU-T X.780 (01/2001) 45

/1 Choi ce
enum Car Choi ceType {
For d,
Cheverol et,
Chrysl er
s
uni on Car Type swi tch (CarChoi ceType) {
case Ford: For dType f or dval ue;
case Cheverol et: Chevr ol et Type chevr ol et Val ue;
case Chrysler: Chrysl ert Type chrysl er Val ue;
}
/1 Optional
uni on SunRoof TypeOpt swi tch(bool ean) {case TRUE: SunRoof Type the_val ue};

For strings, sequences, and object references, a null value can usually be used to represent optional
cases where no value is present. In cases where there is a semantic difference between a null and a
not present, the above method may be used.

For structures and unions, the above method may be used or a decision may be made to use null
values within the structure to represent optional values that are not present. For example, for a
structure composed of two strings, two nulls could represent an optional value that is not present. If a
value is optional it should be marked as optional with a comment.

As always, guidelines need to be used with common sense. The resulting translation should be
evaluated for clarity and usability. If the translation is too complex, the modeler may want to try to
simplify it.

8.5 Use a Consistent Type Suffix

Append the suffix "Type" to all IDL types. This allows type identifiers and members to use the same
name without collisions since IDL is case insensitive. In addition, this idiom increases readability by
clearly separating type identifiers from other identifiers.

8.6 Use a Consistent Suffix for Sequence Types

For sequences (ordered, duplicates allowed) use a suffix of "SeqType" to distinguish sequences from
singulars.

8.7 Use a Consistent Suffix for Set Types

For sets (unordered, duplicates disallowed) use a suffix of "SetType" to distinguish sets from
singulars.

8.8 Use a Consistent Suffix for Optional Types
For optional types use a suffix of "TypeOpt" to distinguish them from the non-optional type.

8.9 Arrange Operation Parameters in a Consistent Manner

A consistent ordering of parameters increases readability. Arrange parameters to operations by in,
inout, then out.

8.10 Assume No Global Identifier Spaces

To reduce name collisions and promote reuse, all identifiers shall be scoped to a particular context
(e.g. module, and interface).

46 ITU-T X.780 (01/2001)

8.11 Module Level Definitions

All type definitions shall be at the module level. Nesting type definitions within a lower context
leads to difficulties in reuse and duplication.

8.12 Use of Exceptions and Return Codes

Exceptions shall be used for exceptional conditions such as error conditions. Normal returns shall be
handled though return codes and output parameters.

8.13 Explicit vs. Implicit Operations

An operation should perform an explicit function. Using parameters as a flag to implicitly change the
behaviour of the operation can be confusing. Factor each behaviour into a separate explicit
operation.

8.14 Don't Create a Large Number of Exceptions

Having a large number of exceptions increases the difficulty of understanding an interface definition.
Group exceptions by category, or make use of the standard exceptions (ApplicationError,
CreateError, and DeleteError) by defining new error code points for them, if necessary.

9 Compliance and Conformance

This clause defines the criteria that must be met by other standards documents claiming compliance
to these guidelines and the functions that must be implemented by systems claiming conformance to
this Recommendation.

9.1 Standards Document Compliance

Any specification claiming compliance with these guidelines shall:

1) Derive (directly or indirectly) all interfaces that model resources from the ManagedObject
interface described in clause 5.1 and defined in the CORBA IDL in Annex A.
2) Define, for each managed object class that can be instantiated, a factory interface derived

(directly or indirectly) from the ManagedObjectFactory interface described in clause 5.2 and
defined in the CORBA IDL in Annex A.

3) Use the constants defined in the CORBA IDL in Annex B whenever appropriate.

4) Use the notifications described in clause 5.3 and defined in the CORBA IDL in Annex A
whenever appropriate.

5) Adhere to the conventions for defining CORBA TMN managed objects specified in

clause 6.

6) Adhere to the IDL conventions specified in clause 8

7) Specify notifications as methods on a "Notifications" interface if none of the notifications
defined in this Recommendation are applicable.

8) Define and use a NO<package name> exception for identifying the attributes and actions
that are parts of a conditional package.

9) Use the macros defined in this Recommendation for identifying the notifications that are to
be supported by a managed object.

10) Use the definitions for generic attribute types found in clause 6.3.5 wherever applicable.

11) Define IDL name binding modules to identify allowable containment relationships.

ITU-T X.780 (01/2001) 47

12) State in its compliance clause a reference to the module(s) from which other generic
attributes are used.

13) Follow the GDMO to IDL mapping rules defined in clause 7 if the IDL model is a
translation from GDMO.

9.2 System Conformance

An implementation claiming conformance to this Recommendation shall:

1) Support all of the capabilities of the ManagedObject interface described in clause 5.1.
2) Support the create operation behaviour described in clause 6.9.
9.3 Conformance Statement Guidelines

The users of these guidelines must be careful when writing conformance statements. Because IDL
modules are being used as name spaces, they may, as allowed by OMG IDL rules, be split across
files. Thus, when a module is extended its name won't change. Instead, a new IDL file will simply be
added. Simply stating the name of a module in a conformance statement, therefore, will not suffice
to identify a set of IDL interfaces. The conformance statement must identify a document and year of
publication to make sure the right version of IDL is identified.

ANNEX A
The Object Model CORBA IDL Module

/* This IDL code is neant to be stored in a file named "itut_x780.idl"

| ocated in the search path used by IDL conpilers on your system */

#i f ndef | TUT_X780_I DL

#define | TUT_X780_I DL

#i ncl ude <CosNani ng.idl >

#i ncl ude <CosTi ne.idl >

#i ncl ude <itut_x780Const.idl>

#pragma prefix "itu.int"

/* Most comments in this file are fornatted to be parsed by an | DL-to-HTM
converter such as idldoc or orbacus hidl. */

// MODULE itut_x780

/** This nodul e provides the fundanmental capabilities for inplementing network
managenent interfaces and defines the "nanaged object” interface. The
interfaces bel ow are nodel ed after the nanaged object specifications

found in the ITUT CMP specification docunment X 721. */

nodul e itut_x780 {

/[IMPORTED TYPES

/1 Types inported from CosNam ng
t ypedef CosNami ng:: Name NaneType;
/1 Types inported from CosTi ne
typedef TineBase::UtcT UcT,

// FORWARD DECLARATIONS AND TYPEDEFS

/** International strings are strings of wide (16 bit unicode)
characters. */

typedef wstring Istring;

/** 1string Sets are just sets of Istrings */

t ypedef sequence <Istring> IstringSetType;

/** Additional Text Type is often used in notifications to convey a
text explanation for the notification.

*/

typedef Istring Additional Text Type;

48 ITU-T X.780 (01/2001)

/** Avalibility Type is used in a sequence to indicate the
availability of a resource. Zero or nore of these conditions may be
i ndi cat ed.

*/

typedef short AvailabilityStatusType;
const Avail abilityStatusType inTest = O;
const AvailabilityStatusType failed = 1;

const AvailabilityStatusType power O f 2;
const Avail abilityStatusType of fLine = 3;
const AvailabilityStatusType of fDuty = 4;

const Avail abilityStatusType dependency = 5;

const Avail abilityStatusType degraded = 6;

const AvailabilityStatusType notlnstalled = 7;

const AvailabilityStatusType |ogFull = 8;

/** Availability status is used to indicate the availability of a
resource. It is represented as a sequence of integers because several
of the conditions may exist at once.

*/

typedef sequence<Avail abilityStatusType> Avail abilityStatusSet Type;
/** Backed Up Status Type is used to indicate if an object has a back
up. */

t ypedef bool ean BackedUpSt at usType;

/** BitStrings are used to hold strings of bits. They nay be of any
length. */

t ypedef sequence<octet> BitString;

/** Control Status Type is used in a sequence to indicate the

control status of a resource. Zero or nore of these nmay be indicated.
*/

typedef short Control StatusType;

const Control StatusType subject ToTest = O;

const Control StatusType part Of Servi cesLocked = 1;

const Control StatusType reservedFor Test = 2;

const Control StatusType suspended = 3;

/** Control status set is used to indicate the control status of a
resource. It is represented as a sequence of integers because several
of the conditions may exist at once.

*/

typedef sequence<Control StatusType> Control St atusSet Type;

/** Generalized tine is a basic ASN.1 type. It is usually represented
as a string in conputing |anguages but it has certain, parseable
formats. The 3 possible fornms are:

Local time only. "YYYYMVDDHHMVSS. fff", where the optional fff is
accurate to three deci mal places,

Universal time (UTC time) only. "YYYYMVDDHHMMVSS. fffZ", and

Di fference between | ocal and UTC tines. "YYYYMVDDHHWVSS. f f f +- HHVM' .
</ ol >

The options for representing this in IDL seemto be either a string or
the UtcT structure fromthe CORBA Tinme Service. U cT nmakes it a little
easier to conpare tines fromdifferent zones, but requires nanaged
systens to know their tine zones. U cT was picked.

*/

typedef UtcT GeneralizedTi meType;

/** External Tine is generalized time. */

typedef GeneralizedTi meType External Ti meType;

/** Forward declarati on. CORBA uses object references

of type "object" to identify objects. These are used instead of ASN. 1
obj ect instances. For network managenent interfaces, all objects wll
inherit fromthe "ManagedObj ect" interface. */

i nterface Managedj ect ;

/** MO Set is a set of ManagedObj ect references. */

t ypedef sequence <ManagedCbj ect > MOSet Type;

/** MO Seq is a sequence of Managedbj ect references. */
t ypedef sequence <ManagedCbj ect > MOSeqType;

/** A set of nanes is definded as a sequence of nanes. */
t ypedef sequence <NameType> NaneSet Type;

/** Notification IDs are long integers. */

typedef |ong Notifl DType;

/** This defines a set of notification IDs. */

t ypedef sequence <l ong> Notifl DSet Type;

ITU-T X.780 (01/2001)

49

/** Procedural Status Type is used in a sequence to indicate the
procedural status of a resource. Zero or nore of these may be

i ndi cat ed.

*/

t ypedef short Procedural StatusType;

const Procedural StatusType initializationRequired = O;

const Procedural StatusType notlnitialized = 1;

const Procedural StatusType initializing = 2;

const Procedural StatusType reporting = 3;

const Procedural StatusType termnating = 4;

/** Procedural Status Set is used to indicate the procedural status of
a resource. It is represented as a sequence of integers because
several of the conditions nmay exist at once.

*/

t ypedef sequence<Procedural Stat usType> Procedural St at usSet Type;
/** ScopedNane is just a string. */

typedef string ScopedNaneType;

/** Scoped Nanme Sets are sinply sets of Scoped Nanes. */

typedef sequence <ScopedNaneType> ScopedNaneSet Type;

/** I n CORBA, strings containing scoped nanes are used to identify
obj ect classes (actually, "interfaces"). */

t ypedef ScopedNameType Obj ect d assType;

/** Object Class Set is a set of object classes */

t ypedef sequence <Cbject d assType> hj ect Cl assSet Type;

/** Name Bi nding Mdul es are identified with scoped nanes. */

t ypedef ScopedNameType NaneBi ndi ngType;

/** StartTi neType is used to specify a time when sonething starts.
It is often paired with a StopTi neType to control the activation of
some function.

*/

typedef GCeneralizedTi meType StartTi meType;

/** String sets are sets of strings. */

t ypedef sequence <string> StringSetType;

/** System Labels are strings used to identify systems. */

typedef string Systemnlabel Type;

/** Unknown status is used to indicate if the status of a resource is
not known. A value of true indicates the status is unknown. */

t ypedef bool ean UnknownSt at usType;

/ ENUMERATED TYPES

/* The following state objects are used in many interfaces and parall el

the state objects in CMP standards. */

/** Administrative State is read/wite. A "locked" object is usually

one that may not be changed or one which is not providing service.

Setting the Admi ninstrative State of an object to "shuttingDown" begins

t he shutdown process for that object. */

enum Admi ni strativeStateType {l ocked, unlocked, shuttingDown};

/** Operational State is read only. It sinply reports the current

capability of the object to provide service. */

enum Oper ati onal St at eType {di sabl ed, enabl ed};

/** Usage state is read only. If "idle," the resource is conpletely

unused. If "busy,"” the total capacity of the resource is in use.

"Active" is in between. */

enum UsageSt at eType {idle, active, busy};

/** Delete Policy indicates if an object can be deleted and if so if

any cont ai ned obj ects should automatically be del eted. Since objects

must not be orphaned, if an object has a delete policy of

"del et eOnl yl f NoCont ai nedQbj ects" the object nust not be deleted if it

has contai ned objects. A value of "del eteContai nedCbjects" neans if

the object is deleted its contai ned objects should al so be deleted. */

enum Del et ePol i cyType {not Del etabl e, del eteOnlylfNoCont ai nedObj ect s,
del et eCont ai nedObj ect s} ;

/** PerceivedSeverity reports the severity of an alarm "Indeterm nate"

is used when it is not possible to assign one of the other values */

enum Per cei vedSeverityType {indeterm nate, critical, major, mnor,

war ni ng, cleared};

/** Source Indicator is used in nmany notifications. It identifies

whet her the notification is a result of a managenent operation or

sonmet hi ng that occurred on the managed system */

50 ITU-T X.780 (01/2001)

enum Sour cel ndi cat or Type {resourceQperati on, nanagenent Qperati on,
unknown} ;

/** The standby status attribute is single-valued and read-only.

The value is only meani ngful when the back-up relationship role exists.

I f "hot standby" the resource is not providing service, but is

operating in synchronismw th another resource that is to be backed-up

If "cold standby" the resource is to back-up another resource, but is

not synchronized with that resource. |If "providing service" the back-up

resource is providing service and is backing up another resource.

*/

enum St andbySt at usType { hot St andby, col dSt andby, providi ngService};

/** Stop tines are used to specify when sone function should cease

There are normally two choices, the function runs continually (in

whi ch case no actual tinme is specified) or the function ends at

a specified tine.

*/

enum St opTi meChoi ce {specific, continual};

/** Threshol d indication describes if the threshold crossed was in the

up or down direction. */

enum Thr eshol dl ndi cati onType {up, down};

/** Trendl ndi cation values indicate if some observed condition is

getting better, worse, or not changing. */

enum Tr endl ndi cati onType {l essSevere, noChange, noreSevere};

/I STRUCTURES AND UNIONS

/* The structures defined bel ow are used to pass val ues that nay be
optionally included. For sone types of values, like strings, lists,
and pointers, it is easy to tell if the value is included. For others,
| i ke enunerations, nunbers, and structures, it is not. */

/** AdministrativeStateTypeOpt is an optional type. If the
discrimnator is true the value is present, otherwi se the value is

nul | . */

uni on Admi ni strativeStateTypeOpt switch (bool ean) ({

case TRUE: Admi ni strativeStateType val ue;
};
/** Bool eanTypeOpt is an optional type. If the discrimnator is
true the value is present, otherwise the value is null. */
uni on Bool eanTypeOpt switch (bool ean) {

case TRUE: bool ean val ue;
b
/** Fl oat TypeOpt is an optional type. If the discrimnator is
true the value is present, otherwise the value is null. */
uni on Fl oat TypeOpt switch (bool ean) {

case TRUE: f1 oat val ue;

/;‘* LongTypeOpt is an optional type. If the discrimnator is

true the value is present, otherwise the value is null. */
uni on LongTypeOpt swi tch (bool ean) {
case TRUE: | ong val ue;
b
/** Operational StateTypeOpt is an optional type. If the discrimnator
is true the value is present, otherwise the value is null. */
uni on Operational StateTypeOQpt switch (bool ean) {
case TRUE: Qper ati onal St at eType val ue;
s
/** Short TypeOpt is an optional type. If the discrimnator is
true the value is present, otherwise the value is null. */
uni on Short TypeOpt switch (bool ean) {
case TRUE: short val ue;
b
/** Trendl ndi cati onTypeOQpt is an optional type. If the discrinnator
is true the value is present, otherwise the value is null. */
uni on Trendl ndi cati onTypeOpt switch (bool ean) {
case TRUE: Trendl ndi cati onType val ue;
b
/** Unsi gnedShort TypeOpt is an optional type. If the discrimnator is
the value is present, otherwise the value is null. */
uni on Unsi gnedShort TypeOpt switch (bool ean) ({
case TRUE: unsi gned short val ue;
b

ITU-T X.780 (01/2001)

51

52

/** UsageStateTypeOpt is an optional type. If the discrimnator is

true the value is present, otherwise the value is null. */
uni on UsageSt at eTypeQpt switch (bool ean) {

case TRUE: UsageSt at eType val ue;
s

/** Many tines interface specifications need to define standard val ues
to be passed across the interface. Al so, often the schene used to
define these val ues needs to be extensible as new interfaces are

subcl assed, so enunerations don't work well. CMP uses O Ds, strings
of nunbers that are often appended, in standards. To serve this
purpose, the Unique IDis used. It consists of two parts, a string
contai ning a scoped nodul e name, and an integer value defined as a
constant within that nmodul e. These U Ds, and the Objectd ass type
defined above, replace ASN.1 O Ds. It is expected that each nodul e

will contain a constant string named "nodul eNane" that contains the
name of the nodule for error-free use by the programer. A null nodul e
name wWill indicate a null value for the UD. <p>

Code to interpret a UD mght ook Iike the followi ng code snippet:

<code><pre>
Ul DType pc; /1 probabl e cause

i f (pc.nodul eName ==
i tut_x780:: Probabl eCauseConst : : nodul eNane) //string compare
switch (pc.value) {
case itut_x780:: Probabl eCauseConst: : adapterError:
case
i tut_x780:: Probabl eCauseConst : : appl i cati onSubsyst enfai | ure:
ééée i tut_x780:: Probabl eCauseConst : : bandwi dt hReduced:

else if (pc.nodul eNane == MyLocal : : Probabl eCauseConst : : nodul eNane)
switch (pc.value) {

</ pr e></ code>

@renmber nodul eNane The scoped nodul e name where val ues are
def i ned.
@renber val ue The val ue defined as a constant within the
nodul e.
*/
struct Ul DType {
string nodul eNane; // modul e where val ue i s defined
short val ue; /! constant within the nodule
b

t ypedef sequence <Ul DType> Ul DSet Type;

/** Managenment Extension is a structure for flexibly reporting
information. It is typically used in the Additional Infornation field
of notifications.

@ee

Addi tional | nf ornati onSet Type </ a>

@renber id identifies the type of infornation
@renber any contains the actual information, type will depend on
the value of the id menber.
*/
struct Managenent Ext ensi onType {
Ul DType i d; /1 identifies the type of info
any i nfo; /1 type will depend on id
1

/** Additional Information is a flexible way to report infornation that
does not fit into the structure of a notification. It contains a
sequence of a structure called "Managenent Extension". */
t ypedef sequence <Managenent Ext ensi onType>

Addi ti onal | nf or mat i onSet Type;
/** An Attribute Value structure is used in a notification to report
the value of any attribute. The string used for the attribute's nane
is the same as the nane of the data nenber in the value object defined
for the object. In other words, it is the nane of an attribute accessor
nmet hod mnus the "get" or "set".
@renber attri but eNane the nane of the attribute

ITU-T X.780 (01/2001)

@renber val ue contains the value of the attribute, type wll
depend on the attributeNamne.
*/
struct AttributeVal ueType {
string attributeNane;
any val ue; /1 type will depend on the attribute
s
/** Attribute Value Sets are used to report attributes generically,
in a batch nmode. */
typedef sequence <Attri buteVal ueType> Attri buteSet Type;
/** An Attribute Value Change structure is used in a notification to
report an attribute that has been changed.
@ee Attri but eVal ueType</ a>
@renber attribut eNanme the nane of the attribute

@renber ol dVval ue the old value, type will depend on the
attri but eNane
@renber newval ue the new value, type will depend on the
attri but eNare.
*/
struct AttributeVal ueChangeType {
string attri but eNane;
any ol dVval ue; /1 type depends on attribute
any newval ue; /1 type depends on attribute
IS

/** An Attribute Change Set is used to report the attributes that have

been changed in an attribute val ue change notification. */

t ypedef sequence <Attri buteVal ueChangeType> Attri but eChangeSet Type;

/** A Correlated Notification is identified by the object that enmtted

the notification and the notification ID. Both are included in case

the Notification |IDs are not uni que across objects.

@renber source Reference to object that emitted the correl ated
notification. If null, the correlated notifications
are fromthe same source as the notification containing
this data structure.

@renmber notiflDs | Ds of the correlated notifications. Notification
identifiers nust be chosen to be unique across all
notifications froma particul ar nanaged obj ect
t hroughout the time that correlation is significant.

*/
struct CorrelatedNotificationType {
NameType sour ce;
Not i f |1 DSet Type notifl Ds;
b

/** Correlated Notification sets are sets of Correlated Notification
structures. */
t ypedef sequence <Correl atedNotificati onType>

Correl atedNoti fi cati onSet Type;
/** Probabl eCause, in CMP standards, may be either an integer or GDMO
O D, a dot-notation string. The UD type is used instead. */
t ypedef Ul DType Probabl eCauseType;
/** Proposed Repair Actions are sets of unique identifiers. */
t ypedef Ul DSet Type ProposedRepairActi onSet Type;
/** Security Al arm Causes are unique identifiers. */
t ypedef Ul DType SecurityAl ar nCauseType;
/** Security Alarm Detector can indicate either a nechanismor a
specific object. According to X. 721 a choice is made between one or
the other, though it is not clear why. (Actually, X 721 adds a third
choice for an AE-title which has no equivalent here.) Unless otherw se

i ndi cated, then, at nobst one of the nenbers will be non-null. Two
nulls may be sent if the managed system does not support this property.
@renber nechani sm the scheme or function detecting the alarm may
be nul |

@renber obj the object detecting the alarm nmay be null
*/
struct SecurityAl arnDet ect or Type {

Ul DType nmechani sm /1 may be null

NanmeType obj ; /1 may be null

}s

ITU-T X.780 (01/2001)

53

54

/** Service User
@renber id the id of the service user
@renber details details about the service user, type will depend on id
*/
struct ServiceUserType {
Ul DType id;
any details; /1 value will depend on id
IS
/** Service Providers share the same representation as Service Users.
*/
t ypedef ServiceUser Type ServiceProvi der Type;
/** Specific Problenms are sets of unique identifiers. */
t ypedef Ul DSet Type Speci fi cProbl enfSet Type;
/** A Stop Time Type is used to indicate when sone function should
cease. In the specific case, an actual tine is given. In the
continual case, the function runs continually and no value is
carried in this union.
*/
uni on St opTi meType switch (StopTi meChoice) ({
case specific: GCeneralizedTi neType tine;
/* case continual carries NULL val ue */
i
/** A Suspect Cbject identifies an object that nmay be the cause of a
failure. It is usually a conmponent of a Suspect ObjectlList.

@renber obj ectd ass hj ect class of the suspect object
@renber suspect Obj ect | nst ance oj ect instance of the suspect object
@renber failureProbability Optional failure responsibility
probability from1l to 100

*/
struct Suspect bj ect Type {

oj ect Cl assType obj ect Cl ass;

ManagedObj ect suspect Cbj ect | nst ance;

Unsi gnedShort TypeOpt failureProbability;
b

/** Suspect (bject Lists are used to identify objects that may be the
cause of a failure.

*/

t ypedef sequence<Suspect Obj ect Type> Suspect Obj ect Set Type;

/** Threshol d Level I|ndication describes nulti-Ievel threshold
crossings. Up is the only pernmitted choice for a counter. In ASN. 1,

if indication is "up", low value is optional.
@renber indication i ndi cates up or down direction of crossing.
@renmber | ow the | ow observed val ue.
@renber hi gh t he hi gh observed val ue.
*/
struct Threshol dLevel | ndType {
Thr eshol dl ndi cati onType i ndi cation;
Fl oat TypeOpt | ow, /'l observed val ue
fl oat hi gh; /1 observed val ue

b
/** Threshol d Level Ind Type Opt is an optional type. If the
discrimnator is true the value is present, otherwi se the value is
nul I . */
uni on Threshol dLevel | ndTypeOpt sw tch (bool ean) {

case TRUE: Thr eshol dLevel | ndType val ue;
b

/** Threshold Information indicates some guage or counter attribute
passed a set threshold. The structure differs fromX 721 sone to
sinplify the syntax.

@renber attributelD Identifies the attribute that crossed the
threshold. Actually, it is an operation nanme
on an interface mnus the "get" or "set". The
interface on which the operation is defined is
i ncluded el sewhere in the notification as
ohjectd ass. A Null value indicates the entire
structure is null.

@renber observedVal ue Attributes that are of type integer will be
converted to floats.

@renber threshol dlevel This parameter is for nulti-level threhsolds.
Opti onal .

@renber arnfi ne May be null (0). */

ITU-T X.780 (01/2001)

struct Threshol dl nf oType {

string attributel D
fl oat obser vedVal ue;
Thr eshol dLevel | ndTypeOpt t hr eshol dLevel ;
Ext er nal Ti neType ar nTi ne;

3

/ EXCEPTIONS

/** Application error info types are passed back in nanaged obj ect
exceptions.

@renber error A unique identifier identifying the problem

@renber details A text nmessage with additional information about the

probl em

*/

val uetype ApplicationErrorlnfoType {
public U DType error;
public Istring details;

b

/** Create error info types are passed back in nanaged object create

exceptions. They extend application error info types.

@renber rel atedOojects objects that have sone relationship to the
object to be created that sonehow prevented the
creation.

@renber attri butelLi st the val ues that woul d have been assigned to the
created object. These may hol d sone key to why
t he object could not be created.

*/

val uetype CreateErrorlnfoType : ApplicationErrorlnfoType {
publ i c MoSet Type rel at edObj ect s;
public AttributeSet Type attributelist;

b

/** Delete error info types are passed back in nanaged object delete

exceptions. They extend application error info types.

@renber rel atedOojects objects that have sone relationship to the
object to be deleted that sonehow prevented the
del eti on.

@renber attributelLi st the attribute val ues assigned to the object to
be del eted. These may hol d sone key to why the
obj ect could not be del eted.

*/
val uetype Del eteErrorinfoType : ApplicationErrorlnfoType {
publ i c M3Set Type rel at edObj ect s;
public AttributeSet Type attri butelList;
IS
/** A package error info type is a special create error. It will be

passed back in a nmanaged object create exception as a create error. |If
the U D error code nmatches the package error info type, the client
application may narrow the value type fromcreate error info type to
package error info type to access the additional information.
@renber packages the list of requested packages that conflicted
or could not be supported.

*/
val uetype PackageErrorlnfoType : CreateErrorlnfoType {

public StringSetType packages;
b

/** Application error exceptions may be rai sed on any managed obj ect
operation to identify a problempreventing the operation from being
conpl eted. */

exception ApplicationError { ApplicationErrorlnfoType info; };

/** Create error exceptions may be raised on any managed object create
operation to identify a problem preventing the object from being
conpl eted. */

exception CreateError { CreateErrorlnfoType info; };

/** Del ete error exceptions may be raised by a managed object in
response to an attenpt to delete the object. They nay al so be raised
by the term nator service. */

exception DeleteError { DeleteErrorinfoType info; };

/** Invalid |l ength exceptions are raised when an invalid length is
suppl i ed on an operation invocation. */

exception InvalidLength { long length; };

ITU-T X.780 (01/2001)

55

/** Invalid string exceptions are raised when an invalid string is
suppl i ed on an operation invocation. */
exception InvalidString {};

/I VALUE TYPES

/** Bit string value types are used to represent bit strings with
associ ated senantic tags representing the bit string positions. */
val uetype Bit StringVal ue {
/** The state of a bit string is kept in a data nenber
of type BitString (sequence of octets). The first octed
is the count of unused bits in the last octed. */
public BitString bitStringVal
/** This initializer shall set all bit positions to '0" */
factory initValue (in unsigned | ong nunber_of bits);
/** This initializer shall create a new BitStringValue with
the same | ength and value as the supplied BitString. */
factory InitFromBitString (in BitString desiredVal ue);
/1 1ocal operations
/** This |local operation returns O or 1 for the bit val ue
at the specified position. If the position requested is
beyond the length of the bit string an invalid |length
exception shall be raised. */
short getBit (in unsigned |ong position)
rai ses (IlnvalidLength);
/** This local operation is used to set the value of the
bit at the requested position. If the position requested is
beyond the I ength of the bit string an invalid | ength
exception shall be raised. If the new bit_value is O,
the bit shall be set to 0, otherwise it shall be set to 1. */

void setBit (in unsigned |ong position, in short new bit_val ue)
rai ses (InvalidLength);
/** This | ocal operation returns the nunber of bits in the bit
string. Since the first octet contains the nunber of unused
bits in the last octet, and the |ast octet nmay contain unused
bits, the value returned is
(Nurmber O Cctets — 2)*8 + (8 — firstCOctetVal) */
unsi gned | ong length ();
/** This | ocal operation returns the value of a bit string as a
character string. Each bit of value O shall be represented as
a '0'" character, and each bit of value 1 shall be represented
as a '1l'" character. A'B character shall be appended to the
end of the string ("1001011B").
string asString ();
/** This | ocal operation sets the value of the bit string given
a character string. Each '0" character in the string is
converted to a bit of value 0, and each '1' character is
converted to a 1. If the string has any characters other than
"0, '1', or atermnating 'B, the InvalidString exception
shall be raised. */
void setFronttring (in string string_val ue)
rai ses (lnvalidString);

}s

/I MANAGED OBJECT INTERFACE

56

/** This val uetype object contains nenbers for each of the attributes
accessible on this interface. */
val uet ype Managedbj ect Val ueType {

publ i c NanmeType nane;

public Objectd assType obj ect O ass;
public StringSet Type packages;
publ i ¢ Sourcel ndi cat or Type creationSource
public Del et ePolicyType del et ePol i cy;

i

/** The Managed Object interface is intended to be the base interface
fromwhich all other managed object interfaces inherit. It is a
central place to specify basic functions which all managed objects are
expected to support. */

ITU-T X.780 (01/2001)

i nterface ManagedObj ect {

/** This method returns the fully-qualified name for the
object. This nethod is used rather than having a "get*|D"
met hod defined for each interface, as is done in CMP
specifications. This will ensure that objects have only a
singl e operation to retrieve names when they are sub-cl assed
<p>
The response is a sequence of nanme conponent structures,
starting with the name assigned to the "local root" nam ng
context under which this object is contained. The client may
find the superiors of this object by renmoving conponents from
the tail end of this sequence and perform ng a resolve
operation on the first part of the nane. */
NameType nanmeCet ()

rai ses (ApplicationError);
/** This nmethod returns the scoped nane of the nost-specific
class of the interface (e.g. "Equi pmentR1"). */
hj ect A assType obj ect d assGet ()

rai ses (ApplicationError);
/** This nmethod returns a list of all the conditional packages
supported by this instance. */
StringSet Type packagesGet ()

rai ses (ApplicationError);
/** This nmethod returns an indication of how the object was
created. */
Sour cel ndi cat or Type creati onSourceCet ()

rai ses (ApplicationError);
/** This nmethod returns a value indicating if the object nay be
deleted and if it may, if all contained objects are
automatically deleted. */
Del et ePol i cyType del etePolicyGet ()

rai ses (ApplicationError);
/** This nmethod may be used to generically get all of the
attributes supported by an instance. Each interface is
expected to sub-class the Managed Object value type and add the
other attributes supported by that interface. The managed
obj ect must return a value object of that type. The client
must then narrow the reference to access all the attributes.
<p>
The client may al so subnmit a list of names indicating the
attributes it wi shes to receive. These nanes nmust match the
menber nanes in the val ue object. For nenbers not on the I|ist,
and for menbers that are part of packages that are not
supported, the server may return any value but it should be as
short as possible. The server also returns the list of
attributes, which may be shorter due to exclusion of attributes
i n unsupported packages. The client nust regard the val ue of
any nmenber not in the |list as garbage. <p>
A null attribute names list indicates that all supported
attributes are to be returned. The server nust return the
actual list. */
ManagedObj ect Val ueType attri butesGet (

i nout StringSetType attributeNanes)

rai ses (ApplicationError);
/** This method destroys the object. It is used to sinply
rel ease any resources associ ated with the nanaged object. It
does not check for contained objects or renpve nane bindi ngs
fromthe namng tree. <p>
The intent of this operation is to allow support services to
destroy the managed object. <p>
NOTE: Direct invocation of this operation froma nmanagi ng
system coul d corrupt the nam ng tree and is reconmended only
under extraordinary circunstances. Cients wishing to delete
an object should instead use the term nator service. */
voi d destroy()

rai ses (ApplicationError, DeleteError);

}; I/ end of ManagedOhject interface

ITU-T X.780 (01/2001)

/l MANAGED OBJECT FACTORY INTERFACE

/** This interface defines the generic nanaged object factory
interface. All Managed bject factories should inherit fromthis
interface. <p>

In addition to providing the neans for creating objects by managenent
operation, the factories are assuned to take responsibility for

mai ntaining the integrity of the namng tree by creating name bindi ngs
for the objects they create. <p>

Currently, this interface is null. It is included, however, as a

pl acehol der for capabilities that nust be supported by all managed
obj ect factories.

*/

i nterface ManagedObj ect Factory {

}; /1 end of ManagedObj ect Factory interface

/I NOTIFICATIONS INTERFACE

58

/** This interface contains the definitions of notifications enitted by
many managed objects. <p>

The use of "typed" notifications is done here so that the notifications
can be docunmented in IDL and to support typed notifications for those
manager and managi ng systens that wish to use them Note that the

OMG s Notification Service supports both structured and typed
notifications. It is not clear if inplenentations of the Notification
Service will support translation between them It is expected that the
i mpl erent ati on agreenment between the managi ng and nanaged system wi | |
specify the use of structured or typed notifications. <p>

Notification users wishing to use typed notifications need only support
the interfaces below Notification publishers and subscribers wi shing
to use structured notifications based on the operations defined bel ow
shoul d fol low these rules for constructing and reading the notification
structure:

The domain_type string in the fixed header of the structure should be
set to "tel ecomunications”.

The event _type string in the fixed header of the structure should be
set to the scoped name of the operation. For exanple, for the
Attribute Value Change notification defined below this field would be
"itut_x780::Notifications::attributeVal ueChange".

The event _name string in the fixed header of the structure is not used
by this framework. It can be set to null or used for other purposes.

Opti onal header fields may be included to support features like Quality
of Service as appropriate.

Each paraneter in the operation should be placed in a name-val ue pair
in the filterable body portion of the notification. The fd_nane string
of this pair shall be set to the nanme of the paraneter and the type

pl aced in the associated fd_value will be the type specified for the
parameter. For exanple, each of the notifications defined bel ow has a
paraneter named "eventTime" that is an "External Ti meType." This
parameter would be placed in the filterable data portion of the event.
The fd_name string of this pair would be set to "eventTi me" and
fd_val ue woul d contain an External Ti mreType val ue.

The remai nder of the body of the notification (the unfilterable part)
shoul d be null.

Unfortunately, typed notifications are mapped to notification
structures differently, so if one systemwants to use typed
notifications and the other structured, the structured notification
user must be aware of how the CORBA Notification Service translates
typed notifications to structured notifications. See the specification
for details. In short, however, each of the paraneters in the
operations below wi |l be converted into a nanme-value pair in the
filterable data protion of the structured notification. Al so, the

event _type field in the fixed header of the structured notification
will be set to the special value "9%YPED' and the domain_type field
will be an enpty string. Finally, a nane-value pair will be added as
the first element in the filterable data portion of the notification
with the name "operation". The value associated with this nane will be
a string with the value set to the scoped nane of the operation used to
emt the notification

ITU-T X.780 (01/2001)

(e.g. itut_x780::Notifications::attributeValueChange). <p>
Al so, structured notification publishers may exclude notification
paranmeters that are marked "optional" or are of an optional type (a
type nanme ending in "TypeOpt." This should be done for efficiency.
This will, however, preclude the automatic conversion of structured
notifications to typed, so managers nust be capabl e of accepting
structured notifications. (They do not strictly have to support typed
notifications, but if managed systens emt typed notifications managers
shoul d accept themrather than transl ations because it will be nore
efficient.) If an "optional" paranmeter is included in a notification,
the "optional" type (discrimnnated union) nmust be used. <p>
Par amet ers naned "operation" should be avoided in notification
operations to support the use of typed notifications. Wile the
notification channel should be able to differentiate the real paraneter
fromthe one added based on their positions in the filterable data
list, it could have an inpact on filtering as the default filtering
| anguage does not have a way to differentiate paraneters based on
position. <p>
Because the scoped operation name is placed in either the type_nane
string (when structured notifications are used) or a filterable body
name-val ue pair with the name "operation" (when typed notifications are
used), there is no "event type" paraneter explicitly included in any of
the notification data structures. */

interface Notifications {
/** An Attribute Value Change notification is used to report changes to
the attributes of an object such as addition or deletion of nenbers to
one or nmore set-valued attributes and repl acenent of the val ue of one
or nore attributes.

@ar am event Ti ne Managed system s current tinme.
@ar am sour ce Ooj ect emtting notification.
@ar am sour ceC ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Miust be unique for
an obj ect instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications
Optional. Zero |l ength sequence
i ndi cates absence of this paraneter

@ar am addi t i onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er .
@ar am addi ti onal I nfo Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.
par am sour cel ndi cat or Cause of event. Optional. Use
"unknown" if not supported
@ar am attri but eChanges Changed attri butes
*/
voi d attri buteVal ueChange (
i n External Ti neType event Ti me,
in NameType source
in Ooj ectC assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
i n Additional I nformationSet Type addi tional I nf o,
i n Sourcel ndi cat or Type sour cel ndi cat or
in AttributeChangeSet Type attri but eChanges
)

/** A Communi cations Alarmnotification is used to report when an
obj ect detects a conmuni cations error.

@ar am event Ti ne Managed system s current tine.
@ar am sour ce Ooject emtting notification.
@ar am sour ceC ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Miust be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)

ITU-T X.780 (01/2001) 59

@aram correl atedNotifications List of correlated notifications.
Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.

@ar am addi t i onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er .

@ar am addi ti onal I nfo Optional. Zero length sequence

i ndi cates absence of this paraneter.
@ar am pr obabl eCause
@ar am speci fi cProbl ens Optional. Zero length sequence

i ndi cates absence of this paraneter.
@ar am per cei vedSeverity

@ar am backedUpSt at us "True" if backed up
@ar am backUpObj ect WIIl be null if backedUpStatus is
"fal se"
@ar am t rendl ndi cati on Optional. See type for details.
@ar am t hreshol dl nfo Optional. See type for details.
@ar am st at eChangeDefini tion Optional. Zero length sequence
i ndi cates absence of this paraneter.
@ar am noni toredAttri butes Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.
@ar am proposedRepai r Acti ons Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am al ar nEf f ect OnSer vi ce True if alarmis service effecting.
@ar am al ar mi ngResumned True if alarm ng was just resuned,

possibly resulting in del ayed reporting
of an alarm

@ar am suspect Obj ect Li st oj ects possibly involved in failure.
*/
voi d conmuni cati onsAl arm (
i n External Ti meType event Ti e,
in NanmeType sour ce,
in Objectd assType sour ceC ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
i n Additional I nfornati onSet Type addi ti onal I nf o,
i n Probabl eCauseType pr obabl eCause,
i n Speci ficProbl enSet Type speci fi cProbl ens,
in PerceivedSeverityType percei vedSeverity,
i n Bool eanTypeOpt backedUpSt at us,
in NameType backUpQbj ect ,
in Trendl ndi cati onTypeOpt trendl ndi cati on,
i n Threshol dl nf oType t hr eshol dlI nf o,
in AttributeChangeSet Type st at eChangeDefini tion,
in AttributeSet Type noni t oredAttri butes,
i n ProposedRepai r Acti onSet Type proposedRepai r Acti ons,
i n Bool eanTypeOpt al ar nef f ect OnSer vi ce,
i n Bool eanTypeOpt al ar m ngResuned,
i n Suspect Obj ect Set Type suspect Obj ect Li st

)
/** An Environnmental Alarmnotification is used to report a problemin
the environnent.

@ar am event Ti ne Managed systenmis current tinme.
@ar am sour ce Ohj ect emtting notification.
@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.
Optional. Zero | ength sequence
i ndi cates absence of this paraneter.

@ar am addi ti onal Text Text message. Optional. Zero length
string indicates absence of this
par anet er .

@ar am addi ti onal I nfo Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
@ar am pr obabl eCause

ITU-T X.780 (01/2001)

@ar am speci fi cProbl ens

@ar am percei vedSeverity
@ar am backedUpSt at us
@ar am backUpObj ect

@ar am trendl ndi cati on

@ar am t hreshol dl nfo

@ar am st at eChangeDef i ni tion
@ar am noni toredAttri butes
@ar am proposedRepai r Acti ons
@ar am al ar nEf f ect OnSer vi ce

@ar am al ar mi ngResuned

@ar am suspect Obj ect Li st
*/
voi d envi ronment al Al arm (

Optional. Zero length sequence

i ndi cates absence of this paraneter.
"True" if backed up

WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in del ayed reporting
of an alarm

oj ects possibly involved in failure.

i n External Ti neType event Ti e,

in NameType sour ce,

in Objectd assType sour ceCd ass,

in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNoti fications,
i n Additional Text Type addi ti onal Text,

i n Additional I nfornati onSet Type addi ti onal I nf o,

i n Probabl eCauseType pr obabl eCause,

i n SpecificProbl enfSet Type speci fi cProbl ens,

in PerceivedSeverityType percei vedSeverity,

i n Bool eanTypeOpt backedUpSt at us,

in NameType backUpQbj ect ,

i n Trendl ndi cati onTypeQOpt trendl ndi cati on,

in Threshol dl nfoType t hr eshol dI nf o,

in AttributeChangeSet Type st at eChangeDefi ni tion,
in AttributeSet Type noni t oredAttri butes,

i n ProposedRepai r Acti onSet Type pr oposedRepai r Act i ons,
i n Bool eanTypeOpt al ar nEf f ect OnSer vi ce,

i n Bool eanTypeOpt al ar m ngResuned,

i n Suspect Obj ect Set Type suspect Cbj ect Li st

)

/** An Equi pment Alarmnotification is used to report a failure in the

equi pnent .

@ar am event Ti ne

@ar am sour ce

@ar am sour ced ass

@aram notificationldentifier

@aram correl atedNotifications

@ar am addi ti onal Text

@ar am addi ti onal I nfo

@ar am pr obabl eCause
@ar am speci fi cProbl ens

@ar am percei vedSeverity
@ar am backedUpSt at us
@ar am backUpObj ect

@ar am t rendl ndi cati on
@ar am t hreshol dl nfo
@ar am st at eChangeDefinition

Managed system s current tine.

hj ect enmitting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text message. Optional. Zero length
string indicates absence of this

par anet er.

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.

"True" if backed up

WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.

ITU-T X.780 (01/2001) 61

@ar am noni toredAttri butes
@ar am pr oposedRepai r Acti ons
@ar am al ar nEf f ect OnSer vi ce

@ar am al ar mi ngResumned

@ar am suspect Gbj ect Li st
*/
voi d equi prent Al arm (

Optional. Zero length sequence

i ndi cates absence of this paraneter.
Optional. Zero length sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in delayed reporting
of an alarm

hj ects possibly involved in failure.

i n External Ti neType event Ti e,
in NameType sour ce,
in Objectd assType sour ceC ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
i n Additional I nfornati onSet Type addi ti onal I nf o,
i n Probabl eCauseType pr obabl eCause,
in SpecificProbl enSet Type speci fi cProbl ens,
in PerceivedSeverityType percei vedSeverity,
i n Bool eanTypeOpt backedUpSt at us,
in NameType backUpQbj ect ,
in Trendl ndi cati onTypeOpt trendl ndi cati on,
i n Threshol dl nf oType t hr eshol dlI nf o,
in AttributeChangeSet Type st at eChangeDefini tion,
in AttributeSet Type noni t oredAttri butes,
i n ProposedRepai r Acti onSet Type proposedRepai r Acti ons,
i n Bool eanTypeOpt al ar nEf f ect OnSer vi ce,
i n Bool eanTypeOpt al ar m ngResuned,
i n Suspect Obj ect Set Type suspect Cbj ect Li st
)
/** An Integrity Violation notification is used to report that a
potential interruption in information flow has occurred such that
informati on may have been illegally nodified, inserted or del eted.
@ar am event Ti ne Managed system s current tinme.
@ar am sour ce Ooject emtting notification.
@ar am sour ceCd ass Actual class of source object.
@aram notificationldentifier A unique identifier for this
notification. Miust be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.
Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text message. Optional. Zero length
string indicates absence of this
par anet er.
@ar am addi ti onal I nfo Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am securi t yAl ar nCause
@ar am securityAl arnBSeverity Clears all owed? X 721 appears to
restrict the "cleared" value on this
al arm but cl ears shoul d be al | owed.
@ar am securi t yAl ar mDet ect or
@ar am servi ceUser
@ar am servi ceProvi der
*/

void integrityViolation (

i n External Ti neType

in NameType

in OojectC assType

in NotiflDType

in CorrelatedNotificatio
i n Additional Text Type

in Additional I nformation
in SecurityAl armCauseTyp
in PerceivedSeverityType
in SecurityAl arnDet ect or
in ServiceUserType

62 ITU-T X.780 (01/2001)

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi ti onal I nf o,
securityAl arnCause,
securityAl arnSeverity,
securityAl arnDet ect or,
servi ceUser,

nSet Type

Set Type
e

Type

)

in ServiceProviderType

servi ceProvi der

/** An Object Creation notification is used to report the creation of a
managed obj ect to another open system Note that the source field

shoul d be set to the created object,

@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am
@ar am

@ar am

*/

event Ti nme

source

sour ceCl ass
notificationldentifier

correl atedNotifications

addi ti onal Text

addi tional I nfo
sour cel ndi cat or

attri but eSet

voi d obj ectCreation (

)
/** An

managed obj ect.

t he obj
@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am
@ar am

@ar am

*/

n External Ti meType
NanmeType

Ohj ect Cl assType
Not i f | DType

Addi ti onal Text Type

Sour cel ndi cat or Type

i
i
i
i
i
i
i
i
in AttributeSet Type

D 53 3 53 3 5335 5

hj ect
ect being del et ed.
event Ti me

source

sour ced ass
notificationldentifier

correl atedNotifications

addi ti onal Text

addi tional I nfo
sour cel ndi cat or

attri but eSet

voi d obj ectDel etion (

n External Ti neType
NanmeType

hj ect O assType
Noti f | DType

i
i
i
i
i
i n Additional Text Type
i

5 5 3 5 35 5

Correl atedNotificati onSet Type

Addi ti onal | nfornati onSet Type

Correl atedNotificati onSet Type

Addi ti onal | nf or mati onSet Type

not the factory.

Managed system s current tinme.
Oohject emtting notification

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an obj ect instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter
Text nessage. Optional. Zero length
string indicates absence of this

par anet er.

Optional. Zero length sequence

i ndi cates absence of this paraneter.
Cause of event. Optional. Use
"unknown" if not supported
Attribute values. Optional. Zero length
sequence i ndicates absence of this
par anet er.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi ti onal | nf o,

sour cel ndi cat or,
attributeli st

Del etion notification is used to report the deletion of a
Not e that the source field should be set to

Managed system s current tinme.

Oohj ect emtting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Cause of event. Optional. Use
"unknown" if not supported.
Attribute values. Optional. Zero length
sequence indi cates absence of this
par anet er .

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi tional I nf o,

ITU-T X.780 (01/2001)

63

i n Sourcel ndi cat or Type sour cel ndi cat or,

in AttributeSet Type attributeLi st
)
/** An Operational Violation notification is used to report that the
provi sion of the requested service was not possible due to the
unavail ability, malfunction or incorrect invocation of the service.

@ar am event Ti ne Managed systems current tine.
@ar am sour ce Ooj ect emtting notification.
@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Miust be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.
Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.

@ar am addi ti onal Text Text message. Optional. Zero length
string indicates absence of this
par anet er.

@ar am addi ti onal I nfo Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
@ar am securityAl ar mCause
@ar am securityAl arnBSeverity Clears all owed? X 721 appears to
restrict the "cleared" value on this
al arm but cl ears shoul d be al |l owed.
@ar am securityAl ar nmDet ect or
@ar am servi ceUser
@ar am servi ceProvi der

*/

voi d operational Violation (
i n External Ti neType event Ti e,
in NanmeType sour ce,
in ObjectC assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
i n Additional I nformati onSet Type addi ti onal I nf o,
in SecurityAl armCauseType securityAl arnCause,
in PerceivedSeverityType securityAl arnSeverity,
in SecurityAl arnDet ect or Type securityAl arnDet ector,
in ServiceUser Type servi ceUser,
in ServiceProviderType servi ceProvi der

)

/** A Physical Violation notification is used to report that a physical
resource has been violated in a way that indicates a potential security

at t ack.

@ar am event Ti ne Managed system s current tinme.
@ar am sour ce Ohject emitting notification.
@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.
Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.

@ar am addi ti onal Text Text message. Optional. Zero length
string indicates absence of this
par anet er .

@ar am addi ti onal I nfo Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.

@ar am securi tyAl arnCause

@ar am securi tyAl arnBeverity Clears allowed? X. 721 appears to
restrict the "cleared" value on this
al arm but cl ears shoul d be al | owed.

@ar am securityAl ar mDet ect or

@ar am servi ceUser

@ar am servi ceProvi der

*/

64 ITU-T X.780 (01/2001)

voi d physical Violation (

n

Ext er nal Ti meType

NaneType

hj ect Cl assType

Noti f | DType

Correl atedNoti ficati onSet Type
Addi ti onal Text Type

Addi ti onal | nfornati onSet Type
Securi tyAl ar mCauseType

Per cei vedSeverityType

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNoti fi cati ons,
addi ti onal Text,

addi tional I nf o,
securityAl ar nCause,
securityAl arnSeverity,

i
i
i
i
i
i
i
i
i
i
in ServiceUserType
i

5D 3 03 035 3 3 03 535 5 5

)

Securi t yAl ar mDet ect or Type

Servi ceProvi der Type

securityAl arnDet ect or,
servi ceUser,
servi ceProvi der

/** A Processing Error Alarmnotification is used to report a
processing failure in a managed object.

@ar am event Ti ne

@ar am sour ce

@ar am sour ceCd ass

@aram notificationldentifier

@ar am correl atedNoti fications

@ar am addi ti onal Text

@ar am addi ti onal I nfo

@ar am pr obabl eCause
@ar am speci fi cProbl ens

@ar am per cei vedSeverity
@ar am backedUpSt at us

@ar am backUpObj ect

@ar am t rendl ndi cati on

@ar am t hreshol dl nfo

@ar am st at eChangeDef i ni tion
@ar am noni toredAttri butes
@ar am proposedRepai r Acti ons
@ar am al ar nEf f ect OnSer vi ce
@ar am al ar mi ngResumred

@ar am suspect Obj ect Li st

*/

voi d processingErrorA arm (

i n External Ti mreType
NaneType

hj ect O assType
Noti f | DType

Addi ti onal Text Type
Pr obabl eCauseType
Bool eanTypeOpt
NameType

Thr eshol dl nf oType

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
in AttributeSet Type
i

5 303 05 353 3035 35 3 05 35 35 O D

Correl atedNoti fi cati onSet Type
Addi tional I nf or nati onSet Type
Speci fi cProbl enSet Type

Per cei vedSeverityType

Trendl ndi cati onTypeOpt

At tri but eChangeSet Type

Pr oposedRepai r Acti onSet Type

Managed system s current tinme.
Ooject emtting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero length sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er.

Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.

Optional. Zero |l ength sequence
i ndi cates absence of this paraneter.

"True" if backed up

WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in delayed reporting
of an alarm

Obj ects possibly involved in failure.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,

addi ti onal Text,

addi ti onal I nf o,

pr obabl eCause,

speci fi cProbl ens,
percei vedSeverity,
backedUpSt at us,
backUpQbj ect ,

t rendl ndi cati on,

t hr eshol dI nf o,

st at eChangeDefini tion,
noni t oredAttri but es,
pr oposedRepai r Acti ons,

ITU-T X.780 (01/2001)

correl atedNotifications,

65

66

)

i n Bool eanTypeOpt
i n Bool eanTypeOpt
i n Suspect Obj ect Set Type

al ar nEef f ect OnSer vi ce,
al ar m ngResuned,
suspect Obj ect Li st

/** A Quality of Service Alarmnotification is used to report a failure
quality of service of the managed object.

in the
@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am

@ar am
@ar am

@ar am
@ar am
@ar am
@ar am
@ar am
@ar am
@ar am
@ar am
@ar am

@ar am

@ar am
*/

event Ti me

source

sour ced ass
notificationldentifier

correl atedNotifications

addi t i onal Text

addi tional I nfo

pr obabl eCause
speci fi cProbl ens

per cei vedSeverity
backedUpSt at us
backUphj ect

trendl ndi cati on

t hreshol dl nfo

st at eChangeDefinition
nmoni t oredAttri butes
pr oposedRepai r Acti ons
al ar nEf f ect OnSer vi ce
al ar mi ngResuned

suspect Cbj ect Li st

void qualityOf ServiceAl arm (

Managed systems current tine.

Ooj ect emtting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Optional. Zero length sequence

i ndi cates absence of this paraneter.
"True" if backed up

WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero length sequence

i ndi cates absence of this paraneter.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in delayed reporting
of an alarm

hj ects possibly involved in failure.

i n External Ti neType event Ti e,
in NameType sour ce,
in Objectd assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Addi tional Text Type addi ti onal Text,
i n Additional I nfornati onSet Type addi ti onal | nf o,
i n Probabl eCauseType pr obabl eCause,
i n SpecificProbl enfSet Type speci fi cProbl ens,
in PerceivedSeverityType per cei vedSeverity,
i n Bool eanTypeOpt backedUpSt at us,
in NaneType backUpObj ect ,
in Trendl ndi cati onTypeOpt trendl ndi cati on,
i n Threshol dl nfoType t hr eshol dI nf o,
in AttributeChangeSet Type st at eChangeDefi ni ti on,
in AttributeSet Type noni t oredAttri butes,
i n ProposedRepai r Acti onSet Type pr oposedRepai r Acti ons,
i n Bool eanTypeOpt al ar nEf f ect OnSer vi ce,
i n Bool eanTypeOpt al ar m ngResuned,
i n Suspect Qbj ect Set Type suspect Cbj ect Li st
)
/** A Rel ationship Change notification is used to report the change in
the value of one or nore relationship attributes of a managed object,
that result through either internal operation of the managed object or
vi a nmanagenent operation.
@ar am event Ti ne Managed systemi s current time.
@ar am sour ce Ooject emtting notification.

ITU-T X.780 (01/2001)

@ar am sour ced ass
@aram notificationldentifier

@ar am correl atedNoti fications
@ar am addi ti onal Text

@ar am addi ti onal I nfo
@ar am sour cel ndi cat or

@ar am r el at i onshi pChanges
*/

voi d rel ati onshi pChange (

i n External Ti neType
NanmeType

hj ect O assType
Noti f | DType

Addi ti onal Text Type

i
i
i
i
i
i
i
i n Sourcel ndi cat or Type
i

D 5 O3 53 3 53 5 S5

)

Correl atedNotificati onSet Type
Addi ti onal | nfornati onSet Type

At tri but eChangeSet Type

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an obj ect instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
List of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero |l ength sequence

i ndi cates absence of this paraneter
Cause of event. Optional. Use
"unknown" if not supported

Changed rel ationship attributes

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi ti onal | nf o,

sour cel ndi cat or,

rel ati onshi pChanges

/** A Security Violation notification is used to report that a security
attack has been detected by a security service or mechani sm

@ar am event Ti ne

@ar am sour ce

@ar am sour ceCd ass

@aram notificationldentifier

@ar am correl atedNoti fications
@ar am addi ti onal Text

@ar am addi ti onal I nfo

@ar am securityAl ar mCause
@ar am securityAl arnBSeverity

@ar am securi t yAl ar mDet ect or
@ar am servi ceUser

@ar am servi ceProvi der

*/

void securityViolation (

i n External Ti neType
NaneType

bj ect Cl assType
Not i f | DType

Managed system s current tine.

Ooj ect emtting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er.

Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.

Clears all owed? X 721 appears to
restrict the "cleared" value on this
al arm but clears should be all owed.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,

5 3 3 05 53 3 3 53 35 O

Correl atedNoti ficati onSet Type
Addi ti onal Text Type

Addi tional I nf or nati onSet Type
SecurityAl arnCauseType

Per cei vedSeverityType
SecurityAl ar nDet ect or Type
Servi ceUser Type

Servi ceProvi der Type

correl atedNotifications,
addi ti onal Text,

addi ti onal I nf o,
securityAl ar nCause,
securityAl arnSeverity,
securityAl arnDet ect or,
servi ceUser,

servi ceProvi der

ITU-T X.780 (01/2001)

67

/** A State Change notification is used to report the change in the the

val ue of one or
t hrough either internal

managenent operation.

@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am
@ar am

@ar am
*/

event Ti me

sour ce

sour ceCl ass
notificationldentifier

correl atedNotifications

addi t i onal Text

addi tional I nfo
sour cel ndi cat or

st at eChanges

voi d st at eChange (

)

[** A Tine

event
@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am

@ar am
@ar am

@ar am
@ar am
@ar am
*/

void ti

68

i n External Ti mreType
NanmeType
hj ect C assType

Noti f | DType
Addi ti onal Text Type

i
i
i
i
i
i
i n Sourcel ndi cat or Type
i

5D 3 3 O3 53 53 5 5

event Ti ne

source

sour ced ass
notificationldentifier

correl atedNotifications
addi ti onal Text

addi tional I nfo

securityAl arnCause
securityAl arnSeverity

securityAl ar nDet ect or
servi ceUser
servi ceProvi der

nmeDomai nVi ol ati on (

i n External Ti neType
NameType

bj ect Cl assType
Not i f | DType

i
i
i
i
i
i n Additional Text Type
i
i
i

5 3 3 353353 355

ITU-T X.780 (01/2001)

nore state attributes of a managed object,
operation of the nanaged object or via

Correl atedNotificationSet Type
Addi ti onal | nfornati onSet Type

At tri but eChangeSet Type

Correl atedNotificationSet Type

Addi ti onal | nf or mati onSet Type
SecurityAl ar nCauseType
Per cei vedSeverityType

that result

Managed systems current tine.

hj ect enmitting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Cause of event. Optional. Use
"unknown" if not supported.

Changed state attributes.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi ti onal | nf o,

sour cel ndi cat or,

st at eChanges

Dormain Violation notification is used to report that an
has occurred at an unexpected or

prohibited tine.

Managed system s current tinme.

Ooj ect emtting notification.

Actual class of source object.

A unique identifier for this
notification. Miust be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero |l ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er.

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Clears all owed? X 721 appears to
restrict the "cleared" value on this
al arm but clears should be all owed.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi tional I nf o,
securityAl arnCause,
securityAl arnSeverity,

)

in SecurityAl arnDet ect or Type

in ServiceUser Type servi ceUser,
i n ServiceProviderType servi ceProvi der

/** These

above
const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

and
stri

stri

stri

stri

stri

stri

stri

stri

stri

stri

stri

stri

stri

stri

stri

/** These
notificati

*/

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri

constants define the names of the notifications declared
are provided to help reduce errors. */

ng attributeVal ueChangeTypeNanme =

tut_x780:: Notifications::attributeVal ueChange";
ng conmuni cati onsAl ar nTypeNane =

tut _x780:: Notifications::conmunicationsAl arn';
ng environnental Al ar mTypeNanme =

tut _x780:: Notifications::environnental Al arni;

ng equi prent Al ar nifypeNanme =

tut_x780:: Notifications::equipnentAl arni;

ng integrityViol ati onTypeNane =
tut_x780::Notifications::integrityViolation";

ng obj ect Creati onTypeNane =

tut _x780::Notifications::objectCreation";

ng obj ect Del eti onTypeNane =

tut _x780:: Notifications::objectDeletion";

ng operational Vi ol ati onTypeName =

tut _x780:: Notifications::operationalViolation";
ng physical Vi ol ati onTypeNane =

tut _x780:: Notifications::physical Violation";

ng processi ngErrorAl arnifypeName =

tut _x780:: Notifications::processingErrorAl arni;
ng qual ityCF Servi ceAl ar nifypeNane =

tut_x780:: Notifications::qualityOServiceAl arni;
ng rel ati onshi pChangeTypeNane =
tut_x780::Notifications::relationshi pChange";

ng securityViol ati onTypeNane =

tut _x780:: Notifications::securityViolation";

ng stateChangeTypeNane =
tut_x780::Notifications::stateChange";

ng ti meDomei nVi ol ati onTypeNane =

tut_x780:: Notifications::tinmeDonainViolation";
constants define the nanes of the paraneters used in the
ons decl ared above and are provided to hel p reduce errors.

ng additional I nfoName = "additional | nfo";

ng additional Text Name = "additional Text";

ng al ar nEf f ect OnServi ceNanme = "al ar nEf f ect OnSer vi ce";
ng al ar m ngResunedNanme = "al ar m ngResuned";

ng attributeChangesNane = "attri but eChanges”;

ng attributelListNane = "attributelList";

ng backedUpSt at usNanme = "backedUpSt at us™;

ng backUpQhj ect Nane = "backUpObj ect”;

ng correl atedNotificati onsNane = "correl atedNotifications";
ng event Ti meNane = "event Ti me";

ng nonitoredAttri butesName = "nonitoredAttributes"”;

ng notificationldentifierName = "notificationldentifier";
ng percei vedSeverityNane = "percei vedSeverity";

ng probabl eCauseNane = "probabl eCause";

ng proposedRepai r Acti onsName = "proposedRepairActi ons";
ng rel ati onshi pChangesNane = "rel ati onshi pChanges";

ng securityAl arnCauseNane = "securityAl arnCause";

ng securityAl arnDet ect or Name = "securityAl arnDet ector”;
ng securityAl arnSeverityName = "securityAl arnSeverity";
ng serviceProviderNanme = "serviceProvider";

ng serviceUserName = "serviceUser";

ng sourceNanme = "source",

ng sourceC assName = "sourced ass";

ng sourcel ndi cat orName = "sourcelndicator";

ng speci ficProbl ensNane = "specificProbl ens";

ng stateChangeDefinitionName = "stateChangeDefinition";
ng stateChangesNane = "stat eChanges”;

ng suspect Obj ectLi st Name = "suspect Obj ect List";

ITU-T X.780 (01/2001)

securityAl arnDet ector,

69

const string threshol dl nfoName = "threshol dl nfo";
const string trendl ndicati onName = "trendl ndi cation";
}; I/ end of Notifications interface

}; /1 end of itut_x780 nodul e
/Il MACROS

/* The following macros are provided for quickly and concisely defining

the notifications to be supported by an object. Exanple usage (wthin an
interface):

MANDATORY_NOTI FI CATI ON(itut_x780:: Notifications, objectCreation);

CONDI TI ONAL_NOTI FI CATI ON(i tut _x780:: Notifications, stateChange, statePackage);
The macros sinply expand into nothing, as CORBA | DL doesn't really have
anything for themto expand into that nakes sense. Eventually, these

may be changed to expand into | DL supporting the CORBA Conponent MNodel.

*/

#undef MANDATORY_NOTI FI CATI ON

#def i ne MANDATORY_NOTI FI CATI ON(I nt er f aceName, Noti fi cati onNane)

#undef CONDI TI ONAL_NOTI FI CATI ON

#def i ne CONDI TI ONAL_NOTI FI CATI ON(I nt er f aceName, Notificati onName, PackageNane)
#endif // end of ifndef itut_x780_IDL

ANNEX B

Network Management Constant Definitions

/* This IDL code is intended to be stored in a file named "itut_x780Const.idl"
and located in the same directory as the file containing Annex A */

#i f ndef |1 TUT_X780Const _| DL

#define | TUT_X780Const | DL

#pragma prefix "itu.int"

nodul e itut_x780 {

/I ApplicationErrorConst Module

/** This nodul e contains the constants defined for the error code contained in
Application Error Info structures returned with Application Error exceptions.
*/
nodul e Applicati onError Const {
const string nodul eName = "itut_x780:: ApplicationErrorConst”;
/** This application error exception code indicates the operation
failed due to a probl em downstream fromthe nanaged system
possi bly a comuni cation probl em between the managed system
and the resource */
const short downstreanError = 1;
/** An application error exception returining this code will return
the nanme of the offending paranter in the details field. */
const short invalidParaneter = 2;
/** This application error exception code indicates the operation
failed due to a transient problemon the nmanaged system */
const short resourceLimt = 3;
}; /1 end of nodul e ApplicationErrorConst

// CreateErrorConst Module

/** This nodul e contains the constants defined for the error code contained in
Create Error Info structures returned with Create Error exceptions.
*/
nodul e Creat eErrorConst {
const string nodul eName = "itut_x780:: CreateErrorConst";

/** This create error exception code indicates that the name incl uded
in the create operation is not valid. */

const short badName = 1,

/** This create error exception code indicates that the nanme included
in the create operation is a duplicate. */

const short duplicateName = 2;

70 ITU-T X.780 (01/2001)

/** This create error exception code indicates sone packages requested
in the create operation are inconpatible with each other. It nust
be included in a PackageErrorlnfoType structure (subcl ass of
CreateErrorl nfoType). The packages |ist contains the nanes of the
unsupported packages. */

const short inconpatibl ePackages = 3;

/** This create error exception code indicates that the nane binding
referenced in the create operation is not valid. */

const short invalidNanmeBinding = 4;

/** This create error exception code indicates a package requested in
the create operation is not supported. It must be included in a
PackageError| nfoType structure (subclass of CreateErrorlnfoType).
The packages |ist contains the nanes of the unsupported packages.
*/

const short unsupportedPackages = 5;

}; /1 end of nodul e CreateErrorConst

// DeleteErrorConst Module

/** This nodul e contains the constants defined for the error code contained in
Delete Error Info structures returned with Delete Error exceptions.
*/
nodul e Del et eError Const {
const string nodul eName = "itut_x780:: Del et eErrorConst";
/** This delete error exceptin code indicates the object has both
subordi nates and a delete policy of del eteOnlylfNoContained. */
const short contai nsObjects = 1;
/** This delete error exception code indicates the object has a delete
policy of notDel etable, and cannot be del eted. */
const short notDel etable = 2;
/** This delete error exception code indicates the object had a
subordi nate object that could not be deleted, so the superior
obj ect(s) could not be deleted. */
const short undel et abl eCont ai nedOhj ect = 3;
/** This delete error exception code indicates the object is in
a state in which it cannot be deleted. */
const short invalidStateForDestroy = 4;
}; // end of nodul e Del et eError Const

// ProbableCauseConst Module

/** This nodul e contains the constant val ues defined for the
Pr obabl eCause U D. These val ues were borrowed from X 721. */
nodul e Probabl eCauseConst {
const string nodul eName = "itut_x780:: Probabl eCauseConst";

const short indetermnate = O;

const short adapterError = 1;

const short applicationSubsystenfailure = 2;

const short bandw dt hReduced = 3;

const short call EstablishnmentError = 4;

const short communi cati onsProtocol Error = 5;

const short communi cati onsSubsystenfailure = 6;

const short configurationO Custom zati onError = 7;

const short congestion = 8;

const short corruptData = 9;

const short cpuCycl esLinitExceeded = 10;

const short dataSet O MbdenError = 11;

const short degradedSi gnal = 12;

const short dTE DCElnterfaceError = 13;

const short encl osureDoor Open = 14;

const short equi pnent Mal functi on = 15;

const short excessiveVibration = 16;

const short fileError = 17;

const short fireDetected = 18;

const short floodDetected = 19;

const short fram ngError = 20;

const short heatingOrVentilationO CoolingSystenProblem= 21;

const short humi dityUnacceptable = 22;

const short inputQutputDeviceError = 23;

const short inputDeviceError = 24;

const short | ANError = 25;

ITU-T X.780 (01/2001)

71

const short | eakDetected = 26;
const short | ocal NodeTransm ssi onError = 27;
const short |ossOf Frane = 28;
const short | ossCf Signal = 29;
const short material Suppl yExhausted = 30;
const short nultipl exerProblem= 31,
const short outOf Menory = 32;
const short ouput DeviceError = 33;
const short performanceDegraded = 34;
const short power Probl em = 35;
const short pressureUnacceptable = 36;
const short processorProbl em = 37;
const short punpFailure = 38;
const short queueSi zeExceeded = 39;
const short receiveFailure = 40;
const short receiverFailure = 41;
const short renoteNodeTransm ssi onError
const short resourceAt Or Neari ngCapacity
const short responseTi neExcessive = 44;
const short retransm ssi onRat eExcessive = 45;
const short softwareError = 46;
const short softwareProgramibnormal | yTerm nated = 47;
const short softwareProgrankError = 48;
const short storageCapacityProblem = 49;
const short tenperatureUnacceptable = 50;
const short threshol dCrossed = 51;
const short tim ngProblem = 52;
const short toxiclLeakDetected = 53;
const short transmtFailure = 54;
const short transmtterFailure = 55;
const short underlyi ngResour ceUnavai |l abl e = 56;
const short versionM smatch = 57;

}; /1 end of Probabl eCauseConst nodul e

/1 SecurityAl ar nCauseConst Modul e
/** This nodul e contains the constant val ues defined for the
SecurityAl arnCause U D. These val ues were borrowed from
X 721. */
nodul e SecurityAl ar nmCauseConst {
const string nodul eName = "itut_x780:: SecurityAl ar mCauseConst";
const short authenticationFailure = 1;
const short breachOfConfidentiality = 2;
const short cabl eTanper = 3;
const short del ayedl nformation = 4;
const short denial O Service = 5;
const short duplicatelnformation = 6;
const short informationMssing = 7;
const short informationModificationDetected = 8;
const short informationQutOf Sequence = 9;
const short intrusionDetection = 10;
const short keyExpired = 11;
const short nonRepudiationFailure = 12;
const short out O HoursActivity = 13;
const short outOf Service = 14;
const short procedural Error = 15;
const short unauthorizedAccessAttenpt = 16;
const short unexpectedl nformation = 17;
const short unspecifiedReason = 18;
}; /1 end of SecurityAl arntCauseConst nodul e

}; /1 end of itut_x780 nodul e
#endif // end of ifndef |TUT_X780Const_| DL

= 4
= 4

2;
3,

72 ITU-T X.780 (01/2001)

APPENDIX I
Bibliography

The following Recommendations and other references contain information that was used in the
development of these guidelines. As stated in the introduction, a primary design goal of these
guidelines is to enable the reuse of existing network management information models, at least
without significant semantic changes. These documents provide many of the details on the ITU-T's
CMIP framework, and therefore define some of the functionality the CORBA object modelling
guidelines must support.

[8] ITU-T X.720 (1992) | ISO/IEC 10165-1:1993, Information technology — Open Systems
Interconnection — Structure of management information: management information model.

[9] ITU-T X.733 (1992) | ISO/IEC 10164-4:1992, Information technology — Open Systems
Interconnection — Systems Management: Alarm reporting function.

[10] ITU-T M.3010 (2000), Principles for a telecommunications management network.
[11] ITU-T M.3120 (2001), CORBA generic network and NE level information model.

[12] ITU-T Q.821 (2000), Stage 2 and Stage 3 description for the Q3 interface — Alarm
surveillance.

ITU-T X.780 (01/2001) 73

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors
Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series | Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Seriess M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits
Series O Specifications of measuring equipment
Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission
Series S Telegraph services terminal equipment
Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

Geneva, 2001

	ITU-T Rec. X.780 (01/2001) TMN guidelines for defining CORBA managed objects
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	TMN guidelines for defining CORBA managed objects
	1 Scope
	1.1 Purpose
	1.2 Application
	1.3 Roadmap
	1.4 Conventions
	1.5 Compiling the IDL

	2 References
	2.1 Normative References

	3 Definitions and Abbreviations
	3.1 Definitions from ITU-T X.701
	3.2 Definitions from ITU-T X.703
	3.3 Abbreviations

	4 CORBA Modelling Goals and Requirements
	4.1 Goals
	4.2 Entities
	4.3 Principles of Containment and Naming
	4.4 Managed Object Classes
	4.5 Packages
	4.6 Attributes
	4.7 Creation and Deletion of Managed Objects
	4.8 Inheritance

	5 The Object Model IDL Module
	5.1 The Base (Top) Managed Object Interface
	5.2 The Managed Object Factory
	5.3 The Notifications Interface
	5.4 The Data Type Definitions
	5.5 Exceptions
	5.6 Macro Definitions
	5.7 The Constant Definitions

	6 Information Modelling Guidelines
	6.1 Modules
	6.2 Interfaces
	6.3 Attributes
	6.4 Actions
	6.5 Notifications
	6.6 Conditional Packages
	6.7 Behaviour
	6.8 Name Binding Information
	6.9 Factories
	6.10 Managed Object Class Value Types
	6.11 Constants
	6.12 Registration
	6.13 Versioning of CORBA/IDL Specifications

	7 GDMO Translation
	7.1 Managed Object Classes
	7.2 Packages
	7.3 Attributes
	7.4 Attribute Groups
	7.5 Actions
	7.6 Notifications
	7.7 Behaviours
	7.8 Name Bindings
	7.9 Parameters
	7.10 ASN.1 Data Types

	8 Style Idioms for CORBA IDL Specifications
	8.1 Use Consistent Indentation
	8.2 Use Consistent Case for Identifiers
	8.3 Follow JIDM Approach for IMPORT
	8.4 Use JIDM Approach for OPTIONAL and CHOICE
	8.5 Use a Consistent Type Suffix
	8.6 Use a Consistent Suffix for Sequence Types
	8.7 Use a Consistent Suffix for Set Types
	8.8 Use a Consistent Suffix for Optional Types
	8.9 Arrange Operation Parameters in a Consistent Manner
	8.10 Assume No Global Identifier Spaces
	8.11 Module Level Definitions
	8.12 Use of Exceptions and Return Codes
	8.13 Explicit vs. Implicit Operations
	8.14 Don't Create a Large Number of Exceptions

	9 Compliance and Conformance
	9.1 Standards Document Compliance
	9.2 System Conformance
	9.3 Conformance Statement Guidelines

	ANNEX A - The Object Model CORBA IDL Module
	ANNEX B - Network Management Constant Definitions
	APPENDIX I - Bibliography

