
Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.711
THE INTERNATIONAL (03/91)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

DATA COMMUNICATION NETWORKS:
OPEN SYSTEMS INTERCONNECTION (OSI);
MANAGEMENT

COMMON MANAGEMENT INFORMATION
PROTOCOL SPECIFICATION
FOR CCITT APPLICATIONS

Recommendation X.711
Superseded by a more recent version

Geneva, 1991

Superseded by a more recent version

FOREWORD

The CCITT (the International Telegraph and Telephone Consultative Committee) is the permanent organ of
the International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff
questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide
basis.

The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves
Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between
Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988).

Recommendation X.711 was prepared by Study Group VII and was approved under the Resolution No. 2
procedure on the 22nd of March 1991.

CCITT NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication Administration and a recognized private operating agency.

 ITU 1991

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 1

Recommendation X.711
Recommendation X.711 (03/91) Superseded by a more recent version

COMMON MANAGEMENT INFORMATION PROTOCOL SPECIFICATION
FOR CCITT APPLICATIONS1)

CONTENTS

1 Scope

2 References

3 Definitions

4 Symbols and abbreviations

5 Overview

6 Elements of procedure

7 Abstract syntax

8 Conformance

Annex A – Association rules for CMISE

Annex B – Expanded ASN.1 syntax

Annex C – Examples of CMISE ROSE APDUs

1 Scope

This Recommendation specifies a protocol which is used by application layer entities to exchange
management information.

This Recommendation specifies:

– procedures for the transmission of management information between application entities;

– the abstract syntax of the Common Management Information Protocol (CMIP) and the associated
encoding rules to be applied;

– procedures for the correct interpretation of protocol control information;

– the conformance requirements to be met by implementation of this Recommendation.

This Recommendation does not specify:

– the structure or meaning of the management information that is transmitted by means of CMIP;

– the manner in which management is accomplished as a result of CMIP exchanges;

– the interactions which result in the use of CMIP.

1) Recommendation X.711 and ISO/IEC 9596, Information technology – Open systems interconnection – Common management

information protocol specification were developed in close collaboration and are technically identical.

Superseded by a more recent version

2 Recommendation X.711 (03/91) Superseded by a more recent version

2 References

[1] CCITT Recommendation Reference Model of Open Systems Interconnection for CCITT Applications, Blue
Book, Fascicle VIII.4, Rec. X.200, ITU, Geneva, 1988.

[2] ISO/IEC 7498-4 – Information processing systems – Open Systems Interconnection – Basic Reference
model – Part 4: Management framework 1989.

[3] CCITT Recommendation Specification of abstract syntax notation one (ASN.1), Blue Book, Fascicle VIII.4,
Rec. X.208, ITU, Geneva, 1988.

[4] CCITT Recommendation Specification of Basic Encoding Rules for abstract syntax notation one (ASN.1),
Blue Book, Fascicle VIII.4, Rec. X.209, ITU, Geneva, 1988.

[5] CCITT Recommendation Session Service Definition for Open Systems Interconnection for CCITT
Applications, Blue Book, Fascicle VIII.4, Rec. X.215, ITU, Geneva, 1988.

[6] CCITT Recommendation Presentation Service Definition for Open Systems Interconnection for CCITT
Applications, Blue Book, Fascicle VIII.4, Rec. X.216, ITU, Geneva, 1988.

[7] CCITT Recommendation Association Control Service Definition for Open Systems interconnection for CCITT
Applications, Blue Book, Fascicle VIII.4, Rec. X.217, ITU, Geneva, 1988.

[8] CCITT Recommendation Remote Operations: Model, Notation and Service Definition, Blue Book,
Fascicle VIII.4, Rec. X.219, ITU, Geneva, 1988.

[9] CCITT Recommendation Presentation Protocol Specification for Open Systems Interconnection for CCITT
Applications, Blue Book, Fascicle VIII.5, Rec. X.226, ITU, Geneva, 1988.

[10] CCITT Recommendation Association Control Protocol Specification for Open Systems interconnection for
CCITT Applications, Blue Book, Fascicle VIII.5, Rec. X.227, ITU, Geneva, 1988.

[11] CCITT Recommendation Remote Operations: Protocol Specification, Blue Book, Fascicle VIII.5, Rec. X.229,
ITU, Geneva, 1988.

[12] CCITT Recommendation Common Management Information Service Definition for CCITT Applications,
Rec. X.710, ITU, Geneva, 1991.

3 Definitions

For the purposes of this Recommendation, the following definitions apply.

3.1 Basic Reference Model definitions

This Recommendation makes use of the following terms defined in Recommendation X.200 [1]:

a) application-service-element;

b) application-process;

c) real open system;

d) systems-management.

3.2 Management Framework definitions

This Recommendation makes use of the following terms defined in ISO/IEC 7498-4 [2]:

a) managed object;

b) management information;

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 3

c) management information base;

d) systems management application-entity.

3.3 Remote Operations definitions

This Recommendation makes use of the following terms defined in Recommendation X.219 [8]:

a) association-initiator;

b) association-responder;

c) linked-operations;

d) Remote Operations;

e) Remote Operation Service Element;

f) invoker;

g) performer;

h) Association Class;

i) Operation Class.

3.4 CMIS definitions

This Recommendation makes use of the following terms defined in Recommendation X.710 [12]:

a) attribute;

b) common management information service element;

c) common management information services;

d) CMISE-service-provider;

e) CMISE-service-user;

f) invoking CMISE-service-user;

g) performing CMISE-service-user.

3.5 ACSE definitions

This Recommendation makes use of the following terms defined in Recommendation X.217 [7]:

a) application context;

b) application-association;

c) association.

3.6 Presentation definitions

This Recommendation makes use of the following terms defined in Recommendation X.216 [6]:

a) abstract syntax;

b) transfer syntax.

4 Symbols and abbreviations

ACSE Association Control Service Element

APDU Application protocol data unit

ASE Application Service Element

ASN.1 Abstract Syntax Notation One

Superseded by a more recent version

4 Recommendation X.711 (03/91) Superseded by a more recent version

CMIP Common management information protocol

CMIPM Common management information protocol machine

CMIS Common Management Information service

CMISE Common Management Information Service Element

DCS Defined context set

PCI Protocol control information

PDU Protocol data unit

PICS Protocol implementation conformance statement

RO Remote operations

ROSE Remote Operations Service Element

SMAE Systems management application-entity

5 Overview

The common management information protocol (CMIP) specifies protocol elements that may be used to
provide the operation and notification services described in Recommendation X.710 [12], which defines the Common
Management Information Services (CMIS).

5.1 Service provided

The protocol specified in this Recommendation supports the services defined in Recommen-
dation X.710 [12]. These services are summarized in Table 1/X.711.

TABLE 1/X.711

Common management information services

Service Type

M-CANCEL-GET confirmed

M-EVENT-REPORT confirmed/non-confirmed

M-GET confirmed

M-SET confirmed/non-confirmed

M-ACTION confirmed/non-confirmed

M-CREATE confirmed

M-DELETE confirmed

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 5

5.2 Underlying services

This Recommendation uses the RO-INVOKE, RO-RESULT, RO-ERROR and RO-REJECT-U services of the
Remote Operations Service Element (ROSE) defined in Recommendation X.219 [8]. ROSE assumes the use of the
presentation service defined in Recommendation X.216 [6]. The confirmed operations of CMIP are operation class 2
(asynchronous) or operation class 1 (synchronous) as required by the application. The choice of operation class is a local
matter. The unconfirmed operations of CMIP are operation class 5 (asynchronous, outcome not reported). CMIP uses
Association class 3.

If the extended service functional unit is successfully negotiated, ROSEapdus may be mapped on to
presentation services other than the P-DATA service.

Note – For example, it may be necessary to modify the presentation defined context set (DCS) when the CMIP
operation is sent to the peer CMISE-service-user. In this case, the ROSE APDU which carries the CMIP operation will
be mapped onto the P-ALTER-CONTEXT service which is also used to perform the changes to the DCS.

Details of which other presentation services are required and how they are used, are described in the
description of the application context in use on the association.

5.2.1 Service assumed from the ACSE

This Recommendation assumes the use of the A-ASSOCIATE, A-RELEASE, A-ABORT, and A-P-ABORT
services of the Association Control Service Element.

5.2.2 Service assumed from the presentation layer

Recommendation X.229 [11] assumes the use of the P-DATA service of the presentation layer for the transfer
of the RO-INVOKE, RO-RESULT, RO-ERROR and RO-REJECT PDUs.

5.3 Management information definitions

This Recommendation defines the abstract syntax of the Common Management Information Protocol.
Attributes specific to a particular managed object are specified by the Recommendation which defines that object.

6 Elements of procedure

This clause provides definition for the procedural elements of the CMIP. The procedures define the transfer of
CMIP PDUs whose structure, coding and relationship with the CMIS service primitives is specified in § 7.

The Common Management Information Protocol Machine (CMIPM) accepts CMIS request and response
service primitives, and issues CMIP PDUs initiating specific elements of procedure as specified in this clause.

A CMIPM shall accept any well-formed CMIP PDU, and pass it to the performing CMISE-service-user for
processing, by means of CMIS indication and confirmation service primitives. If the received PDU is not well formed or
does not contain a supported notification or operation, a PDU is returned indicating that the received PDU has been
rejected.

Superseded by a more recent version

6 Recommendation X.711 (03/91) Superseded by a more recent version

The procedures indicate only how to interpret the various fields in the CMIP PDU, not what an invoking
CMISE-service-user should do with the information it requests nor how a performing CMISE-service-user should
process the invocation.

6.1 Association establishment

The establishment of an association involves two CMISE-service-users, one that is the association-initiator and
one that is the association-responder.

A CMISE-service-user may initiate an association establishment by using the A-ASSOCIATE service of
Recommendation X.217 [7].

The application context specifies, among other things, the rules required for the coordination of initialisation
information corresponding to different ASEs. The association rules for CMISE are specified in Annex A.

6.2 Remote operations

6.2.1 RO elements of procedure

The CMIP elements of procedure rely on the following underlying remote operations elements of procedure

a) invocation;

b) return-result;

c) return-error;

d) user-reject;

e) provider-reject.

These elements of procedure are described fully in Recommendation X.229 [11].

Table 2/X.711 specifies the correspondence between CMIS and ROSE parameters.

The correspondence between other CMIS and ROSE parameters is specified in § 7.

TABLE 2/X.711

Correspondence between CMIS and ROSE parameters

CMIS parameter ROSE parameter

Invoke identifier InvokeID

Linked identifier Linked-ID

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 7

6.2.2 RO-Reject problem parameters

The RO-Reject problem parameters are mapped or processed as follows

6.2.2.1 RO-Reject-User.Invoke-problem mapping to CMIS error codes is specified in Table 3/X.711.

Other Invoke-problem parameters are a local matter.

6.2.2.2 Other RO-Reject parameters will be handled as a local matter.

6.3 Event reporting procedure

6.3.1 Invocation

The event reporting procedures are initiated by the M-EVENT-REPORT request primitive.

On receipt of the M-EVENT-REPORT request primitive, the CMIPM shall

a) in the confirmed mode, construct an APDU requesting the m-EventReport-Confirmed operation,
otherwise, construct an APDU requesting the m-EventReport operation;

b) send the APDU using the RO-INVOKE procedure.

6.3.2 Receipt

On receipt of an APDU requesting either the m-EventReport or m-EventReport-Confirmed operation, the
CMIPM shall, if the APDU is well formed, issue an M-EVENT-REPORT indication primitive to the
CMISE-service-user with the mode parameter indicating whether or not confirmation is requested, otherwise, construct
an APDU containing notification of the error and send it using the RO-REJECT-U procedure.

TABLE 3/X.711

Mapping RO-Reject-User. Invoke-problem
to CMISE error codes

RO-REJECT parameter CMISE error code

duplicate-invocation duplicate invocation

mistyped-argument mistyped argument

resource-limitation resource limitation

unrecognized-operation unrecognized operation

Superseded by a more recent version

8 Recommendation X.711 (03/91) Superseded by a more recent version

6.3.3 Response

In the confirmed mode, the CMIPM shall accept an M-EVENT-REPORT response primitive and shall

a) construct an APDU confirming the M-EVENT-REPORT notification;

b) if the parameters in the M-EVENT-REPORT response primitive indicate that the notification was
accepted, send the APDU using the RO-RESULT procedure, otherwise, send the APDU using the
RO-ERROR procedure.

6.3.4 Receipt of response

On receipt of an APDU responding to an M-EVENT-REPORT notification, the CMIPM shall, if the APDU is
well formed, issue an M-EVENT-REPORT confirmation primitive to the CMISE-service-user, thus completing the
notification procedure, otherwise, construct an APDU containing notification of the error and send it using the
RO-REJECT-U procedure.

6.4 Get procedure

6.4.1 Invocation

The Get procedures are initiated by the M-GET request primitive.

On receipt of the M-GET request primitive, the CMIPM shall

a) construct an APDU requesting the m-Get operation;

b) send the APDU using the RO-INVOKE procedure.

6.4.2 Receipt

On receipt of an APDU requesting the m-Get operation, the CMIPM shall, if the APDU is well formed, issue
an M-GET indication primitive to the CMISE-service-user, otherwise, construct an APDU containing notification of the
error and send it using the RO-REJECT-U procedure.

6.4.3 Response

The CMIPM shall

a) accept zero or more M-GET response primitives containing a linked-ID followed by a single M-GET
response primitive without a linked-ID;

b) or each M-GET response primitive containing a linked-ID the CMIPM shall

– construct an APDU requesting the m-Linked-Reply operation with LinkedReplyArgument set
appropriately as either getListError, getResult or processingFailure;

– send each APDU using the RO-INVOKE procedure

c) for the M-GET response primitive not containing a linked-ID the CMIPM shall

– construct an APDU confirming the m-Get operation;

– if the parameters in the M-GET response primitive indicate that the operation was performed
correctly, send the APDU using the RO-RESULT procedure. If the parameters in the M-GET
response primitive indicate that the operation was performed with partial success or was not
performed because of an error, send the APDU using the RO-ERROR procedure.

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 9

6.4.4 Receipt of response

On receipt of an APDU responding to an m-Get operation, the CMIPM shall

a) if the APDU included a linked-ID and is well formed, issue an M-GET confirm primitive to the
CMISE-service-user;

b) if the APDU is the last response (i.e. not containing a linked-ID) and is well formed, issue an M-GET
confirmation primitive to the CMISE-service-user, thus completing the M-GET procedure;

c) if the APDU is not well formed, construct an APDU containing notification of the error and send it using
the RO-REJECT-U procedure.

6.4.5 CancelGet procedure

6.4.5.1 Invocation

The CancelGet procedures are initiated by the M-CANCEL-GET request primitive.

On receipt of the M-CANCEL-GET request primitive, the CMIPM shall

a) construct an APDU requesting the m-CancelGet operation;

b) send the APDU using the RO-INVOKE procedure.

6.4.5.2 Receipt

On receipt of an APDU requesting the m-CancelGet operation, the CMIPM shall, if the APDU is well formed,
issue an M-CANCEL-GET indication primitive to the CMISE-service-user, otherwise, construct an APDU containing
notification of the error and send it using the RO-REJECT-U procedure.

6.4.5.3 Response

The CMIPM shall:

a) construct an APDU confirming the m-CancelGet operation;

b) if the parameters in the M-CANCEL-GET response primitive indicate that the operation was performed
correctly, send the APDU using the RO-RESULT procedure otherwise, send the APDU using the
RO-ERROR procedure. If the M-CANCEL-GET operation is successful, the performing CMISE-service-
user shall cease from sending linked replies to the M-GET operation and shall issue an M-GET response
primitive which shall contain the “operation cancelled” error.

6.4.5.4 Receipt of response

On receipt of an APDU responding to an m-CancelGet operation, the CMIPM shall, if the APDU is well
formed, issue an M-CANCEL-GET confirm primitive to the CMISE-service-user, otherwise, construct an APDU
containing notification of the error and send it using the RO-REJECT-U procedure.

6.5 Set procedure

6.5.1 Invocation

The Set procedures are initiated by the M-SET request primitive.

On receipt of the M-SET request primitive, the CMIPM shall

Superseded by a more recent version

10 Recommendation X.711 (03/91) Superseded by a more recent version

a) in the confirmed mode, construct an APDU requesting the m-Set-Confirmed operation, otherwise,
construct an APDU requesting the m-Set operation,

b) send the APDU using the RO-INVOKE procedure.

6.5.2 Receipt

On receipt of an APDU requesting the m-Set or m-Set-Confirmed operation, the CMIPM shall, if the APDU is
well formed, issue an M-SET indication primitive to the CMISE-service-user, with the mode parameter indicating
whether or not confirmation is requested, otherwise, construct an APDU containing notification of the error and send it
using the RO-REJECT-U procedure.

6.5.3 Response

In the confirmed mode, the CMIPM shall:

a) accept zero or more M-SET response primitives containing a linked-ID followed by a single M-SET
response primitive without a linked-ID;

b) for each M-SET response primitive containing a linked-ID the CMIPM shall

– construct an APDU requesting the m-Linked-Reply operation with LinkedReplyArgument set
appropriately as either setListError, setResult or processingFailure;

– send each APDU using the RO-INVOKE procedure;

c) for the M-SET response primitive not containing a linked-ID the CMIPM shall

– construct an APDU confirming the m-Set operation;

– if the parameters in the M-SET response primitive indicate that the operation was performed
correctly, send the APDU using the RO-RESULT procedure. If the parameters in the M-SET
response primitive indicate that the operation was performed with partial success or was not
performed because of an error, send the APDU using the RO-ERROR procedure.

6.5.4 Receipt of response

On receipt of an APDU responding to an m-Set-Confirmed operation, the CMIPM shall

a) if the APDU included a linked-ID and is well formed, issue an M-SET confirm primitive to the
CMISE-service-user;

b) if the APDU is the last response (i.e. not containing a linked-ID) and is well formed, issue an M-SET
confirmation primitive to the CMISE-service-user, thus completing the M-SET procedure;

c) if the APDU is not well formed, construct an APDU containing notification of the error and send it using
the RO-REJECT-U procedure.

6.6 Action procedure

6.6.1 Invocation

The Action procedures are initiated by the M-ACTION request primitive.

On receipt of the M-ACTION request primitive, the CMIPM shall

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 11

a) in the confirmed mode, construct an APDU requesting the m-Action-Confirmed operation otherwise,
construct an APDU requesting the m-Action operation,

b) send the APDU using the RO-INVOKE procedure.

6.6.2 Receipt

On receipt of an APDU requesting the m-Action or m-Action-Confirmed operation, the CMIPM shall, if the
APDU is well formed, issue an M-ACTION indication primitive to the CMISE-service-user, with the mode parameter
indicating whether or not confirmation is requested, otherwise, construct an APDU containing notification of the error
and send it using the RO-REJECT-U procedure.

6.6.3 Response

In the confirmed mode, the CMIPM shall

a) accept zero or more M-ACTION response primitives containing a linked-ID followed by a single
M-ACTION response primitive without a linked-ID;

b) for each M-ACTION response primitive containing a linked-ID the CMIPM shall

– construct an APDU requesting the m-Linked-Reply operation with LinkedReplyArgument set
appropriately as either actionError, actionResult or processingFailure;

– send each APDU using the RO-INVOKE procedure;

c) for the M-ACTION response primitive not containing a linked-ID the CMIPM shall

– construct an APDU confirming the m-Action operation;

– if the parameters in the M-ACTION response primitive indicate that the operation was performed
correctly, send the APDU using the RO-RESULT procedure, otherwise, send the APDU using the
RO-ERROR procedure.

6.6.4 Receipt of response

On receipt of an APDU responding to an m-Action-Confirmed operation, the CMIPM shall

a) if the APDU included a linked-ID and is well formed, issue an M-ACTION confirm primitive to the
CMISE-service-user;

b) if the APDU is the last response (i.e. not containing a linked-ID) and is well formed, issue an M-ACTION
confirmation primitive to the CMISE-service-user, thus completing the M-ACTION procedure;

c) if the APDU is not well formed, construct an APDU containing notification of the error and send it using
the RO-REJECT-U procedure.

6.7 Create procedure

6.7.1 Invocation

The Create procedures are initiated by the M-CREATE request primitive.

On receipt of the M-CREATE request primitive, the CMIPM shall

a) construct an APDU requesting the m-Create operation,

b) send the APDU using the RO-INVOKE procedure.

Superseded by a more recent version

12 Recommendation X.711 (03/91) Superseded by a more recent version

6.7.2 Receipt

On receipt of an APDU requesting the m-Create operation, the CMIPM shall, if the APDU is well formed,
issue an M-CREATE indication primitive to the CMISE-service-user, otherwise, construct an APDU containing
notification of the error and send it using the RO-REJECT-U procedure.

6.7.3 Response

The CMIPM shall accept an M-CREATE response primitive and shall

a) construct an APDU confirming the m-Create operation,

b) if the parameters in the M-CREATE response primitive indicate that the operation was performed
correctly, send the APDU using the RO-RESULT procedure, otherwise, send the APDU using the
RO-ERROR procedure.

6.7.4 Receipt of response

On receipt of an APDU responding to an m-Create operation, the CMIPM shall, if the APDU is well formed,
issue an M-CREATE confirmation primitive to the CMISE-service-user, thus completing the M-CREATE procedure,
otherwise, construct an APDU containing notification of the error and send it using the RO-REJECT-U procedure.

6.8 Delete procedure

6.8.1 Invocation

The Delete procedures are initiated by the M-DELETE request primitive.

On receipt of the M-DELETE request primitive, the CMIPM shall

a) construct an APDU requesting the m-Delete operation,

b) send the APDU using the RO-INVOKE procedure.

6.8.2 Receipt

On receipt of an APDU requesting the m-Delete operation, the CMIPM shall, if the APDU is well formed,
issue an M-DELETE indication primitive to the CMISE-service-user, otherwise, construct an APDU containing
notification of the error and send it using the RO-REJECT-U procedure.

6.8.3 Response

The CMIPM shall

a) accept zero or more M-DELETE response primitives containing a linked-ID followed by a single
M-DELETE response primitive without a linked-ID;

b) for each M-DELETE response primitive containing a linked-ID the CMIPM shall

– construct an APDU requesting the m-Linked-Reply operation with LinkedReplyArgument set
appropriately as either deleteError, deleteResult or processingFailure;

– send each APDU using the RO-INVOKE procedure;

c) for the M-DELETE response primitive not containing a linked-ID the CMIPM shall

– construct an APDU confirming the m-Delete operation;

– if the parameters in the M-DELETE response primitive indicate that the operation was performed
correctly, send the APDU using the RO-RESULT procedure, otherwise, send the APDU using the
RO-ERROR procedure.

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 13

6.8.4 Receipt of response

On receipt of an APDU responding to an m-Delete operation, the CMIPM shall

a) if the APDU included a linked-ID and is well formed, issue an M-DELETE confirm primitive to the
CMISE-service-user;

b) if the APDU is the last response (i.e. not containing a linked-ID) and is well formed, issue an M-DELETE
confirmation primitive to the CMIS-service-user, thus completing the M-DELETE procedure;

c) if the APDU is not well formed, construct an APDU containing notification of the error and send it using
the RO-REJECT-U procedure.

6.9 Association orderly release

Either CMISE-service-user may initiate an orderly release of the association by using the A-RELEASE service
of Recommendation X.217 [7].

Note – This specification is different from the ROSE use of the BIND operation in which only the association-
initiator may use the A-RELEASE procedure.

6.10 Association abrupt release

Either CMISE-service-user may initiate an abrupt release of the association using the A-ABORT service of
Recommendation X.217 [7].

The CMISE-service-provider may initiate an abrupt release of the association using the A-P-ABORT service
of Recommendation X.217 [7].

7 Abstract syntax

This clause specifies the abstract syntax for the CMIP PDUs.

7.1 Conventions

The abstract syntax is defined using the notation specified in Recommendation X.208 [3]. The ASN.1
MACRO productions used or referenced by this Recommendation do not exercise the ambiguous aspects of the
grammar.

For each of the CMISE service parameters which is to be transferred by a CMIP PDU, there is a PDU field (an
ASN.1 NamedType) with the same name as the corresponding service parameter (see Recommen-dation X.710 [12]),
except for the differences required by the use of ASN.1, which are that blanks between words are removed and the first
letter of the following word is capitalized, e.g. “managed object class” becomes “managedObjectClass”. To make some
of the names shorter, some words are abbreviated as follows:

ack acknowledgement

arg argument

id identifier

info information

sync synchronization.

Superseded by a more recent version

14 Recommendation X.711 (03/91) Superseded by a more recent version

7.2 Correspondence between CMISE primitives and CMIP operations

TABLE 4/X.711

Correspondence between CMISE primitives and CMIP operations

CMIS primitive Mode Linked-ID CMIP operation

M-CANCEL-GET req/ind Confirmed Not applicable m-Cancel-Get-Confirmed

M-CANCEL-GET rsp/conf Not applicable Not applicable m-Cancel-Get-Confirmed

M-EVENT-REPORT req/ind Non-confirmed Not applicable m-EventReport

M-EVENT-REPORT req/ind Confirmed Not applicable m-EventReport-Confirmed

M-EVENT-REPORT rsp/conf Not applicable Not applicable m-EventReport-Confirmed

M-GET req/ind Confirmed Not applicable m-Get

M-GET rsp/conf Not applicable Absent m-Get

M-GET rsp/conf Not applicable Present m-Linked-Reply

M-SET req/ind Non-confirmed Not applicable m-Set

M-SET req/ind Confirmed Not applicable m-Set-Confirmed

M-SET rsp/conf Not applicable Absent m-Set-Confirmed

M-SET rsp/conf Not applicable Present m-Linked-Reply

M-ACTION req/ind Non-confirmed Not applicable m-Action

M-ACTION req/ind Confirmed Not applicable m-Action-confirmed

M-ACTION rsp/conf Not applicable Absent m-Action-confirmed

M-ACTION rsp/conf Not applicable Present m-Linked-Reply

M-CREATE req/ind Confirmed Not applicable m-Create

M-CREATE rsp/conf Not applicable Not applicable m-Create

M-DELETE req/ind Confirmed Not applicable m-Delete

M-DELETE rsp/conf Not applicable Absent m-Delete

M-DELETE rsp/conf Not applicable Present m-Linked-Reply

Note – The mapping from the OPERATION and ERROR macros to ROSE is as defined in Recommendation X.219 [8]

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 15

7.3 ACSE user data

The ACSE protocol (Recommendation X.227 [10]) is described using ASN.1. The “user information” is
defined using the EXTERNAL data type.

7.3.1 A-ASSOCIATE user data

The encoding of the CMIP user information to be passed to A-ASSOCIATE in the “user information”
parameter is defined as follows:

CMIP-A-ASSOCIATE-Information {joint-iso-ccitt ms(9) cmip(1) modules(0) aAssociateUserInfo(1)}

DEFINITIONS ::= BEGIN

FunctionalUnits ::= BIT STRING {

multipleObjectSelection (0),

filter (1),

multipleReply (2),

extendedService (3),

cancelGet (4)

}

-- Functional unit i is supported if and only if bit i is one

-- Information carried in user-information parameter of A-ASSOCIATE

CMIPUserInfo ::= SEQUENCE {

protocolVersion [0] IMPLICIT ProtocolVersion DEFAULT { version1 },

functionalUnits [1] IMPLICIT FunctionalUnits DEFAULT {},

accessControl [2] EXTERNAL OPTIONAL,

userInfo [3] EXTERNAL OPTIONAL

}

ProtocolVersion ::= BIT STRING {

version1 (0),

version2 (1)

}

Note – This Recommendation specifies protocol version 2 for technical compatibility with ISO/IEC
9596-1: 1991.

END

The encoding of other “user information” supplied by the CMISE-service user is not defined by this
Recommendation.

7.3.2 A-ABORT user data

The encoding of the CMIP user information to be passed to A-ABORT in the “user information” parameter is
defined as follows

CMIP-A-ABORT-Information {joint-iso-ccitt-ms(9) cmip(1) modules(0) aAbortUserInfo(2)}

DEFINITIONS ::= BEGIN

-- Information carried in user-information parameter of A-ABORT

CMIPAbortInfo ::= SEQUENCE {

abortSource [0] IMPLICIT CMIPAbortSource,

userInfo [1] EXTERNAL OPTIONAL

}

Superseded by a more recent version

16 Recommendation X.711 (03/91) Superseded by a more recent version

CMIPAbortSource ::= ENUMERATED {

cmiseServiceUser (0),

cmiseServiceProvider (1)

}

END

The encoding of other “user information” supplied by the CMISE-service user is not defined by this
Recommendation.

7.4 CMIP data units

The protocol is described in terms of Common Management Information Protocol Data Units exchanged
between the peer CMISEs. The PDUs are specified using ASN.1 and the Remote Operations Protocol OPERATION and
ERROR external macros defined in Recommendation X.219 [8].

-- Common Management Information Protocol (CMIP)

CMIP-1 {joint-iso-ccitt-ms(9) cmip(1) modules(0) protocol(3)}

DEFINITIONS ::= BEGIN

-- Remote Operations definitions

IMPORTS OPERATION, ERROR FROM Remote-Operation-Notation {joint-iso-ccitt remoteOperations(4)
notation(0)}

-- Remote Operations Service definitions

InvokeIDType FROM Remote-Operations-APDUs {joint-iso-ccitt remoteOperations(4) apdus(1)}

-- Directory Service definitions

DistinguishedName, RDNSequence FROM InformationFramework {joint-iso-ccitt ds(5) modules(1)
informationFramework(1)};

-- CMISE operations

-- in the following operations, the argument type is mandatory in the corresponding ROSE APDU

-- Action operations (M-ACTION)

m-Action OPERATION
ARGUMENT ActionArgument
::= localValue 6

m-Action-Confirmed OPERATION
ARGUMENT ActionArgument
RESULT ActionResult

-- this result is conditional; for conditions see Recommendation X.710 § 8.3.3.2.9

ERRORS {
accessDenied, classInstanceConflict, complexityLimitation, invalidScope, invalidArgumentValue,
invalidFilter, noSuchAction, noSuchArgument, noSuchObjectClass, noSuchObjectInstance,
processingFailure, syncNotSupported
}

LINKED { m-Linked-Reply }
::= localValue 7

m-CancelGet OPERATION
ARGUMENT
getInvokeId InvokeIDType

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 17

RESULT
ERRORS { mistypedOperation, noSuchInvokeId, processingFailure }
::= localValue 10

-- Create operation (M-CREATE)

m-Create OPERATION
ARGUMENT CreateArgument
RESULT CreateResult

-- this result is conditional; for conditions see Recommendation X.710 § 8.3.4.1.3

ERRORS {
accessDenied, classInstanceConflict, duplicateManagedObjectInstance, invalidAttributeValue,
invalidObjectInstance, missingAttributeValue, noSuchAttribute, noSuchObjectClass,
noSuchObjectInstance, noSuchReferenceObject, processingFailure
}
::= localValue 8

-- Delete operation (M-DELETE)

m-Delete OPERATION
Argument DeleteArgument
RESULT DeleteResult

-- this result is conditional; for conditions see Recommendation X.710 § 8.3.5.2.8

ERRORS {
accessDenied, classInstanceConflict, complexityLimitation, invalidFilter,
InvalidScope, noSuchObjectClass, noSuchObjectInstance, processingFailure, syncNotSupported
}

LINKED { m-Linked-Reply }
::= localValue 9

-- Event Reporting operations (M-EVENT-REPORT)

m-EventReport OPERATION
ARGUMENT EventReportArgument
::= localValue 0

m-EventReport-Confirmed OPERATION
ARGUMENT EventReportArgument
RESULT EventReportResult -- optional

ERRORS {
invalidArgumentValue, noSuchArgument, noSuchEventType, noSuchObjectClass,
noSuchObjectInstance, processingFailure
}
::= localValue 1

-- Get operation (M-GET)

m-Get OPERATION
ARGUMENT GetArgument
RESULT GetResult

-- this result is conditional; for conditions see Recommendation X.710 § 8.3.1.2.8

ERRORS {
accessDenied, classInstanceConflict, complexityLimitation, getListError, invalidFilter, invalidScope,
no SuchObjectClass, noSuchObjectInstance, operationCancelled, processingFailure,
syncNotSupported
}

Superseded by a more recent version

18 Recommendation X.711 (03/91) Superseded by a more recent version

LINKED { m-Linked-Reply }
::= localValue 3

-- Linked operation to M-GET, M-SET (Confirmed), M-ACTION (Confirmed), and M-DELETE

m-Linked-Reply OPERATION
ARGUMENT LinkedReplyArgument
::= localValue 2

-- Set operations (M-SET)

m-Set OPERATION
ARGUMENT SetArgument
::= localValue 4

m-Set-Confirmed OPERATION
ARGUMENT SetArgument
RESULT SetResult

-- this result is conditional; for conditions see Recommendation X.710 § 8.3.2.2.9

ERRORS {
accessDenied, classInstanceConflict, complexityLimitation, invalidFilter, invalidScope,
noSuchObjectClass, noSuchObjectInstance, processingFailure, setListError, syncNotSupported
}

LINKED { m-Linked-Reply }
::= localValue 5

-- CMIS error definitions

-- in the following errors, unless otherwise indicated, the parameter type is mandatory in the corresponding
ROSE APDU

accessDenied ERROR
::= localValue 2

classInstanceConflict ERROR
PARAMETER BaseManagedObjectId
::= localValue 19

complexityLimitation ERROR
PARAMETER ComplexityLimitation -- optional
::= localValue 20

duplicateManagedObjectInstance ERROR
PARAMETER ObjectInstance
::= localValue 11

getListError ERROR
PARAMETER GetListError
::= localValue 7

invalidArgumentValue ERROR
PARAMETER InvalidArgumentValue
::= localValue 15

invalidAttributeValue ERROR
PARAMETER Attribute
::= localValue 6

invalidFilter ERROR
PARAMETER CMISFilter
::= localValue 4

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 19

invalidObjectInstance ERROR

PARAMETER ObjectInstance

::= localValue 17

invalidScope ERROR

PARAMETER Scope

::= localValue 16

missingAttributeValue ERROR

PARAMETER SET OF AttributeId

::= localValue 18

mistypedOperation ERROR

::= localValue 21

noSuchAction ERROR

PARAMETER NoSuchAction

::= localValue 9

noSuchArgument ERROR

PARAMETER NoSuchArgument

::= localValue 14

noSuchAttribute ERROR

PARAMETER AttributeId

::= localValue 5

noSuchEventType ERROR

PARAMETER NoSuchEventType

::= localValue 13

noSuchInvokeId ERROR

PARAMETER InvokeIDType

::= localValue 22

noSuchObjectClass ERROR

PARAMETER ObjectClass

::= localValue 0

noSuchObjectInstance ERROR

PARAMETER ObjectInstance

::= localValue 1

noSuchReferenceObject ERROR

PARAMETER ObjectInstance

::= localValue 12

operationCancelled ERROR

::= localValue 23

processingFailure ERROR

PARAMETER ProcessingFailure -- optional

::= localValue 10

setListError ERROR

PARAMETER SetListError

::= localValue 8

syncNotSupported ERROR

PARAMETER CMISSync

::= localValue 3

Superseded by a more recent version

20 Recommendation X.711 (03/91) Superseded by a more recent version

-- Supporting type definitions

AccessControl ::= EXTERNAL

ActionArgument ::= SEQUENCE {
COMPONENTS OF BaseManagedObjectId,
accessControl [5] AccessControl OPTIONAL,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,
scope [7] Scope DEFAULT baseObject,
filter CMISFilter DEFAULT and {},
actionInfo [12] IMPLICIT ActionInfo
}

ActionError ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
actionErrorInfo [6] ActionErrorInfo
}

ActionErrorInfo ::= SEQUENCE {

errorStatus ENUMERATED {
accessDenied (2),
noSuchAction (9),
noSuchArgument (14),
invalidArgumentValue (15)
},

errorInfo CHOICE {
actionType ActionTypeId,
actionArgument [0] NoSuchArgument,
argumentValue [1] InvalidArgumentValue
} }

ActionInfo ::= SEQUENCE {
actionType ActionTypeId,
actionInfoArg [4] ANY DEFINED BY actionType OPTIONAL
}

ActionReply ::= SEQUENCE {
actionType ActionTypeId,
actionReplyInfo [4] ANY DEFINED BY actionType
}

ActionResult ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
actionReply [6] IMPLICIT ActionReply OPTIONAL
}

ActionTypeId ::= CHOICE {
globalForm [2] IMPLICIT OBJECT IDENTIFIER,
localForm [3] IMPLICIT INTEGER
}

-- This Recommendation does not allocate any values for localForm. Where this alternative is used, the
permissible values for the integers and their meanings shall be defined as part of the application context
in which they are used

Attribute ::= SEQUENCE {
attributeId AttributeId,
attributeValue ANY DEFINED BY attributeId
}

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 21

AttributeError ::= SEQUENCE {

errorStatus ENUMERATED {

accessDenied 2(2),

noSuchAttribute 2(5),

invalidAttributeValue 2(6),

invalidOperation (24),

invalidOperator (25)

},

modifyOperator 2[2] IMPLICIT ModifyOperator OPTIONAL,

2-- present for invalidOperator & invalidOperation

attributeId 2AttributeId,

attributeValue 2ANY DEFINED BY attributeId OPTIONAL
2-- absent for setToDefault

}

AttributeId ::= CHOICE {

globalForm [0] IMPLICIT OBJECT IDENTIFIER,

localForm [1] IMPLICIT INTEGER

}

-- This Recommendation does not allocate any values for localForm. Where this alternative is used, the
permissible values for the integers and their meanings shall be defined as part of the application context
in which they are used

AttributeIdError ::= SEQUENCE {

errorStatus ENUMERATED {

accessDenied (2),

noSuchAttribute (5)UMERATED },

attributeId AttributeId

}

BaseManagedObjectId ::= SEQUENCE {

baseManagedObjectClass ObjectClass,

baseManagedObjectInstance ObjectInstance

}

CMISFilter ::= CHOICE {

item [8] FilterItem,

and [9] IMPLICIT SET OF CMISFilter,

or [10] IMPLICIT SET OF CMISFilter,

not [11] CMISFilter

}

CMISSync ::= ENUMERATED {

bestEffort (0),

atomic (1)

}

ComplexityLimitation ::= SET {

scope [0] Scope OPTIONAL,

filter [1] CMISFilter OPTIONAL,

sync [2] CMISSync OPTIONAL

}

CreateArgument ::= SEQUENCE {

managedObjectClass ObjectClass,

Superseded by a more recent version

22 Recommendation X.711 (03/91) Superseded by a more recent version

CHOICE {
managedObjectInstance ObjectInstance,
superiorObjectInstance [8] ObjectInstance } OPTIONAL,
accessControl [5] AccessControl OPTIONAL,
referenceObjectInstance [6] ObjectInstance OPTIONAL,
attributeList [7] IMPLICIT SET OF Attribute OPTIONAL
}

CreateResult ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,

-- shall be returned if omitted from CreateArgument
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL
}

DeleteArgument ::= SEQUENCE {
COMPONENTS OF BaseManagedObjectId,
accessControl [5] AccessControl OPTIONAL,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,
scope [7] Scope DEFAULT baseObject,
filter CMISFilter DEFAULT and {}
}

DeleteError ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
deleteErrorInfo [6] ENUMERATED { accessDenied (2)
} }

DeleteResult ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL
}

EventReply ::= SEQUENCE {
eventType EventTypeId,
eventReplyInfo [8] ANY DEFINED BY eventType OPTIONAL
}

EventReportArgument ::= SEQUENCE {
managedObjectClass ObjectClass,
managedObjectInstance ObjectInstance,
eventTime [5] IMPLICIT GeneralizedTime OPTIONAL,
eventType EventTypeId,
eventInfo [8] ANY DEFINED BY eventType OPTIONAL
}

EventReportResult ::= SEQUENCE {
managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
eventReply EventReply OPTIONAL
}

EventTypeId ::= CHOICE {
globalForm [6] IMPLICIT OBJECT IDENTIFIER,
localForm [7] IMPLICIT INTEGER
}

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 23

-- This Recommendation does not allocate any values for localForm. Where this alternative is used, the
permissible values for the integers and their meanings shall be defined as part of the application context
in which they are used

FilterItem ::= CHOICE {

equality [0] IMPLICIT Attribute,

substrings [1] IMPLICIT SEQUENCE OF CHOICE {

initialString [0] IMPLICIT SEQUENCE {

[0] attributeId AttributeId,

[0] string ANY DEFINED BY attributeId },

anyString [1] IMPLICIT SEQUENCE {

[0] attributeId AttributeId,

[0] string ANY DEFINED BY attributeId },

finalString [2] IMPLICIT SEQUENCE {

[0] attributeId AttributeId,

[0] string ANY DEFINED BY attributeId} },

greaterOrEqual [2] IMPLICIT Attribute, -- asserted value ≥ attribute value

lessOrEqual [3] IMPLICIT Attribute, -- asserted value ≥ attribute value

present [4] AttributeId,

subsetOf [5] IMPLICIT Attribute, -- asserted value is a subset of
attribute value

supersetOf [6]IMPLICIT Attribute, -- asserted value is a superset of
attribute value

nonNullSetIntersection [7] IMPLICIT Attribute

}

GetArgument ::= SEQUENCE {

COMPONENTS OF BaseManagedObjectId,

accessControl [5] AccessControl OPTIONAL,

synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,

scope [7] Scope DEFAULT baseObject,

filter CMISFilter DEFAULT and {},

attributeIdList [12] IMPLICIT SET OF AttributeId OPTIONAL

}

GetInfoStatus ::= CHOICE {

attributeIdError [0] IMPLICIT AttributeIdError,

attribute [1] IMPLICIT Attribute

}

GetListError ::= SEQUENCE {

managedObjectClass ObjectClass OPTIONAL,

managedObjectInstance ObjectInstance OPTIONAL,

currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,

getInfoList [6] IMPLICIT SET OF GetInfoStatus

}

GetResult ::= SEQUENCE {

managedObjectClass ObjectClass OPTIONAL,

managedObjectInstance ObjectInstance OPTIONAL,

currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,

attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

}

Superseded by a more recent version

24 Recommendation X.711 (03/91) Superseded by a more recent version

InvalidArgumentValue ::= CHOICE {
actionValue [0] IMPLICIT ActionInfo,
eventValue [1] IMPLICIT SEQUENCE {

[1] eventType EventTypeId,
[1] eventInfo [8] ANY DEFINED BY eventType OPTIONAL }

}

LinkedReplyArgument ::= CHOICE {
getResult [0] IMPLICIT GetResult,
getListError [1] IMPLICIT GetListError,
setResult [2] IMPLICIT SetResult,
setListError [3] IMPLICIT SetListError,
actionResult [4] IMPLICIT ActionResult,
processingFailure [5] IMPLICIT ProcessingFailure,
deleteResult [6] IMPLICIT DeleteResult,
actionError [7] IMPLICIT ActionError,
deleteError [8] IMPLICIT DeleteError
}

ModifyOperator ::= INTEGER {
replace (0),
addValues (1),
removeValues (2),
setToDefault (3)
}

NoSuchAction ::= SEQUENCE {
managedObjectClass ObjectClass,
actionType ActionTypeId
}

NoSuchArgument ::= CHOICE {
actionId [0] IMPLICIT SEQUENCE {

[0] managedObjectClass ObjectClass OPTIONAL,
[0] actionType ActionTypeId },

eventId [1] IMPLICIT SEQUENCE {
[0] managedObjectClass ObjectClass OPTIONAL,
[0] eventType EventTypeId }

}

NoSuchEventType ::= SEQUENCE {
managedObjectClass ObjectClass,
eventType EventTypeId
}

ObjectClass ::= CHOICE {
globalForm [0] IMPLICIT OBJECT IDENTIFIER,
localForm [1] IMPLICIT INTEGER
}

-- This Recommendation does not allocate any values for localForm. Where this alternative is used, the
permissible values for the integers and their meanings shall be defined as part of the application context
in which they are used

ObjectInstance ::= CHOICE {
distinguishedName [2] IMPLICIT DistinguishedName,
nonSpecificForm [3] IMPLICIT OCTET STRING,
localDistinguishedName [4] IMPLICIT RDNSequence
}

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 25

-- localDistinguishedName is that portion of the distinguished name that is necessary to unambiguously
identify the managed object within the context of communication between the open systems

ProcessingFailure ::= SEQUENCE {

managedObjectClass ObjectClass,

managedObjectInstance ObjectInstance OPTIONAL,

specificErrorInfo [5] SpecificErrorInfo

}

Scope ::= CHOICE { INTEGER {

baseObject (0),

firstLevelOnly (1),

wholeSubtree (2) },

individualLevels [1] IMPLICIT INTEGER, -- POSITIVE integer indicates the
level to be selected

baseToNthLevel [2] IMPLICIT INTEGER } -- POSITIVE integer N indicates
that the range of levels

-- (0 - N) is to be selected

-- with individualLevels and baseToNthLevel, a value of 0 has the same semantics as baseObject
-- with individualLevels, a value of 1 has the same semantics as firstLevelOnly

SetArgument ::= SEQUENCE {

COMPONENTS OF BaseManagedObjectId,

accessControl [5] AccessControl OPTIONAL,

synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,

scope [7] Scope DEFAULT baseObject,

filter CMISFilter DEFAULT and { },

modificationList [12] IMPLICIT SET OF SEQUENCE {

modifyOperator [2] IMPLICIT ModifyOperator DEFAULT replace,

attributeId AttributeId,

attributeValue ANY DEFINED BY attributeId OPTIONAL -- absent for
setToDefault

} }

SetInfoStatus ::= CHOICE {

attributeError [0] IMPLICIT AttributeError,

attribute [1] IMPLICIT Attribute

}

ListError ::= SEQUENCE {

managedObjectClass ObjectClass OPTIONAL,

managedObjectInstance ObjectInstance OPTIONAL,

currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,

setInfoList [6] IMPLICIT SET OF SetInfoStatus

}

SetResult ::= SEQUENCE {

managedObjectClass ObjectClass OPTIONAL,

managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL
}

SpecificErrorInfo ::= SEQUENCE {
errorId OBJECT IDENTIFIER,
errorInfo ANY DEFINED BY errorId
}

END -- End of CMIP syntax definitions

Superseded by a more recent version

26 Recommendation X.711 (03/91) Superseded by a more recent version

7.5 Definition of abstract syntax for CMIP

This Recommendation assigns the ASN.1 object identifier value

{joint-iso-ccitt ms(9) cmip(1) cmip-pci(1) abstractSyntax(4)}

as an abstract syntax name for the set of presentation data values, each of which is either a value of the ASN.1 type

Remote-Operations-APDUs.ROSEapdus

as defined in Recommendation X.229 [11] with the argument component filled according to the definitions in CMIP-1,
or a value of one of the ASN.1 types:

- CMIP-A-ASSOCIATE-Information.CMIPUserInfo;

- CMIP-A-ABORT-Information.CMIPAbortInfo.

The corresponding ASN.1 object descriptor value shall be

“CMIP-PCI”.

This abstract syntax is defined to include all data types resolved by the ANY DEFINED BY X productions, in
which X is of type OBJECT IDENTIFIER.

The ASN.1 object identifier and object descriptor values

{joint-iso-ccitt asn1(1) basic-encoding(1)} and “Basic Encoding of single ASN.1 type”

(assigned to an object in Recommendation X.209 [4]) can be used as a transfer syntax name with this abstract syntax.

7.5.1 Extensibility rules

7.5.1.1 When processing incoming CMIP-A-ASSOCIATE-Information, the accepting CMIPM shall

– ignore all tagged values that are not defined in the abstract syntax of this Recommendation; and

– ignore all unknown bit name assignments within a BIT STRING.

7.5.1.2 The abstract syntax name may be used when the presentation data values are modified to include:

– new system management operations;

– new tagged elements within a SET or SEQUENCE;

– new bit name assigments within a BIT STRING;

– new named numbers for an INTEGER; and

– new named enumerations within an ENUMERATED.

8 Conformance

A system claiming to implement the procedures specified in this standard shall comply with the requirements
in §§ 8.1 and 8.2.

8.1 Static requirements

The system shall

a) support the kernel functional unit defined in Recommendation X.710 [12], and the facilities implied by
that functional unit;

b) support the transfer syntax derived from the encoding rules specified in Recommendation X.209 [4] and
named

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 27

{joint-iso-ccitt asn1(1) basic-encoding(1)}

for the purpose of generating and interpreting CMISE protocol information as defined by the abstract syntax

“CMIP-PCI”

for the functional units supported:

c) support the ACSE protocol defined in Recommendation X.227 [10], to establish and to release an
association;

d) support the rules specified in annex A in any application context that includes CMISE as one of the
ASEs;

e) support association class 3 of the ROSE protocol defined in Recommendation X.229 [11];

f) support the multiple reply functional unit if the multiple object selction functional unit is supported.

8.2 Dynamic requirements

The system shall

a) follow the procedures relevant to each functional unit that the system claims to implement;

b) when used, verify the optional security parameters defined in the CMIP PDUs;

c) when the extended service functional unit is supported, support the presentation protocol defined in
Recommendation X.226 [9], as required by the application context;

d) when scoping is provided, support the multiple reply functional unit.

ANNEX A

(This annex does not form an integral part of this Recommendation)

Association rules for CMISE

A.1 ACSE, session and presentation requirements

A.1.1 CMISE requires the kernel presentation functional unit as defined in Recommendation X.216 [6].

A.1.2 CMISE requires the kernel and full duplex session functional units as defined in Recommendation X.215 [5].

A.1.3 CMISE requires the normal mode of ACSE and presentation services as defined in Recommendations
X.227 [10] and X.216 [6].

A.2 Association initialisation rules

A.2.1 Request

The CMISE-service-user that initiates the association establishment shall provide the A-ASSOCIATE user
information defined by Recommendation X.710 [12]. The CMIP user information shall be made available to the
CMIPM which shall

Superseded by a more recent version

28 Recommendation X.711 (03/91) Superseded by a more recent version

a) construct CMIPUserInfo from the information supplied;

b) set the protocol version parameter within CMIPUserInfo by setting the bit corresponding to each version
supported;

c) include CMIPUserInfo as a separate EXTERNAL in the user information parameter of the
A-ASSOCIATE request primitive;

d) wait for the user information specific to CMIS to be returned in the A-ASSOCIATE confirm primitive.

A.2.2 Indication

On receipt of an A-ASSOCIATE indication primitive, the CMIPUserInfo parameter shall be made available to
the CMIPM which shall

a) check that at least one of the proposed protocol version can be supported;

b) verify that the optional access control parameter is valid;

c) if any of the checks fail, the association shall be rejected by setting the reason for failure parameter in the
A-ASSOCIATE response primitive to “rejected by responder (permanent)”. The association is not
established and that instance of the CMIPM shall cease to exist;

d) if the above checks succeed, the following information, if present in CMIPUserInfo, shall be made
available to the CMISE-service-user: functional units supported by the CMISE-service-provider, access
control and user information. The CMIPM shall wait for the response from the CMISE-service-user.

A.2.3 Response

The A-ASSOCIATE response primitive indicating “accepted” or “rejected”, and which if accepted, includes
the functional units, access control and user information parameters, shall be made available to the CMIPM which shall

a) construct CMIPUserInfo required for the response. The CMIPUserInfo shall include the version
parameter indicating all versions of CMIP that are supported;

b) include CMIPUserInfo as a separate EXTERNAL in the user information parameter of the
A-ASSOCIATE response primitive;

c) if the association response indicates “accepted”, the protocol version agreed to is the version
corresponding to the highest number supported by both CMIPMs. The CMIPM shall then be ready to
accept CMISE indication primitives;

d) if the association response indicates “rejected”, that instance of the CMIPM shall cease to exist.

A.2.4 Confirmation

On receipt of the A-ASSOCIATE confirmation primitive, the CMIPUserInfo parameter shall be made
available to the CMIPM which shall

a) if the association confirmation indicates success, the association is established and the functional units,
access control and user information parameters, if present in the confirmation, are made available to the
asociation-initiator. The functional units agreed to correspond to those for which both
CMISE-service-users indicated support and the protocol version is the highest version number supported
by both CMIPMs;

b) if the association confirmation indicates failure, the association is not established and that instance of the
CMIPM shall cease to exist.

A.3 Association release rules

Either CMISE-service-user may initiate an association release.

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 29

A.3.1 Request

On receipt of a request for association release, the necessary A-RELEASE parameters shall be made available
to the CMIPM which shall cease to accept service requests and wait for the confirmation of the release of the
association.

A.3.2 Indication

On receipt of an A-RELEASE indication primitive, the necessary A-RELEASE indication parameters shall be
made available to the responding CMIPM which shall wait for the association release response.

A.3.3 Response

On receipt of an association release response from the responding CMISE-service-user, the necessary
A-RELEASE response parameters shall be made available to the responding CMIPM. Thereafter, that instance of the
CMIPM shall cease to exist.

A.3.4 Confirmation

On receipt of an A-RELEASE confirm primitive, the necessary A-RELEASE confirm parameters shall be
made available to the initiating CMIPM. Thereafter, that instance of the CMIPM shall cease to exist.

A.4 Association abort rules

Either CMISE-service-user may initiate an abrupt termination of the association.

On the basis of local information, if the ability of the underlying services to convey unlimited user information
by A-ABORT does not exist, the CMIPAbortInfo parameter may not be included in the A-ABORT service primitives.

A.4.1 A-ABORT request

On receipt of a request to abort the association, the necessary A-ABORT request parameters including the
A-ABORT user information defined by Recommendation X.710 [12] shall be made available to the CMIPM which shall

a) construct CMIPAbortInfo from the information supplied;

b) set the abort source parameter within CMIPUserInfo to CMISE-service-user;

c) include CMIPAbortInfo as a separate field in the user information parameter of the A-ABORT request
primitive;

d) thereafter, that instance of the CMIPM shall cease to exist.

A.4.2 A-ABORT Indication

On receipt of an A-ABORT indication primitive, the necessary A-ABORT indication parameters including
CMIPAbortInfo shall be made available to the CMIPM. Thereafter, that instance of the CMIPM shall cease to exist.

A.4.3 A-P-ABORT Indication

On receipt of an A-P-ABORT indication primitive, the necessary A-P-ABORT indication parameters shall be
made available to the CMIPM. Thereafter, that instance of the CMIPM shall cease to exist.

Superseded by a more recent version

30 Recommendation X.711 (03/91) Superseded by a more recent version

A.4.4 CMIP protocol error

On detecting a protocol error, the CMIPM shall

a) construct CMIPAbortInfo with the abort source parameter set to CMISE-service-provider;

b) indicate to the CMISE-service-user that a protocol error has occurred;

c) include CMIPAbortInfo as a separate field in the user information parameter of the A-ABORT request
primitive;

d) thereafter, that instance of the CMIPM shall cease to exist.

ANNEX B

(This annex does not form an integral part of this Recommendation)

Expanded ASN.1 syntax

This annex describes how the OPERATION and ERROR macros of Recommendation X.219 [8] are expanded
into ASN.1 data types and subtypes.

If any inconsistencies exist between these definitions and the definitions in § 7, then the definitions in § 7 take
precedence.

-- Common Management Information Protocol (CMIP)

CMIP-1 {joint-iso-ccitt ms(9) cmip(1) modules(0) protocol(3)}

DEFINITIONS ::= BEGIN

-- Remote Operations definitions

IMPORTS OPERATION, ERROR FROM Remote-Operation-Notation {joint-iso-ccitt remoteOperations(4)
notation(0)}

-- Directory Service definitions

DistinguishedName, RDNSequence FROM InformationFramework {joint-iso-ccitt ds(5) modules(1)
informationFramework(1)};

-- CMISE operations

ROSEapdus := CHOICE {
roiv-apdu [1] IMPLICIT ROIVapdu,
rors-apdu [2] IMPLICIT RORSapdu,
roer-apdu [3] IMPLICIT ROERapdu,
rorj-apdu [4] IMPLICIT RORJapdu
}

ROIVapdu ::= SEQUENCE {
invokeID InvokeIDType,
linked-ID [0] IMPLICIT InvokeIDType OPTIONAL,
operation-value OPERATION,
argument ANY DEFINED BY operation-value OPTIONAL
}

RORSapdu ::= SEQUENCE {
invokeID InvokeIDType,
SEQUENCE { operation-value OPERATION,

result ANY DEFINED BY
operation-value } OPTIONAL

}

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 31

ROERapdu ::= SEQUENCE {

invokeID InvokeIDType,

error-value ERROR,

parameter ANY DEFINED BY error-value OPTIONAL

}

RORJapdu ::= SEQUENCE {

invokeID CHOICE { InvokeIDType,

NULL },

problem CHOICE { [0] IMPLICIT GeneralProblem,

[1] IMPLICIT InvokeProblem,

[2] IMPLICIT ReturnResultProblem,

[3] IMPLICIT ReturnErrorProblem }

}

InvokeIDType ::= INTEGER

-- The use of the GeneralProblem, ReturnResultProblem, and ReturnErrorProblem codes are a local issue.

GeneralProblem ::= INTEGER {

unrecognisedAPDU (0), -- ROSE-provider detected

mistypedAPDU (1),

badlyStructuredAPDU (2)

}

InvokeProblem ::= INTEGER {

duplicateInvocation (0), -- ROSE-user detected

unrecognisedOperation (1),

mistypedArgument (2),

resourceLimitation (3),

initiatorReleasing (4),

unrecognisedLinkedID (5),

linkedResponseUnexpected (6),

unexpectedChildOperation (7)

}

ReturnResultProblem ::= INTEGER {

unrecognisedInvocation (0) -- ROSE-user detected

resultResponseUnexpected (1),

mistypedResult (2)

}

ReturnErrorProblem ::= INTEGER {

unrecognisedInvocation (0), -- ROSE-user detected

errorResponseUnexpected (1),

unrecognisedError (2),

unexpectedError (3),

mistypedParameter (4)

}

-- This part of the ASN.1 specification provides a definition of the InvokeProblem subtype used by CMIP.

InvokeProblem-CMIPUser ::= InvokeProblem (

duplicateInvocation |

unrecognisedOperation |

mistypedArgument |

resourceLimitation

)

Superseded by a more recent version

32 Recommendation X.711 (03/91) Superseded by a more recent version

-- This part of the ASN.1 specification provides a definition of ROIVapdu and RORSapdu subtypes used by
CMIP. The subtypes of the ROIVapdu define the allowed values of the operation-value and argument
defined by that operation-value for all CMIP notifications and operations. The subtypes of the RORSapdu
define the allowed values of the operation-value and result defined by that operation-value for all CMIP
notifications and operations.

m-Action OPERATION ::= localValue 6

ROIV-m-Action ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID ABSENT,
operation-value (m-Action),
argument (INCLUDES ActionArgument) })

m-Action-Confirmed OPERATION ::= localValue 7

ROIV-m-Action-Confirmed ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID ABSENT,
operation-value (m-Action-Confirmed),
argument (INCLUDES ActionArgument) })

RORS-m-Action-Confirmed ::= RORSapdu (WITH COMPONENTS
{ ... ,
invokeID PRESENT,

-- result sequence -- (WITH COMPONENTS

{ operation-value (m-Action-Confirmed),
result (INCLUDES ActionResult) })
-- required only if there is a single reply to the ROIV-m-Action-Confirmed ROIVapdu and data is to be
returned in the RORSapdu
})

m-Cancel-Get OPERATION ::= localValue 10

ROIV-m-Cancel-Get ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID ABSENT,
operation-value (m-Cancel-Get),
argument (INCLUDES InvokeIDType)
})

RORS-m-Cancel-Get ::= RORSapdu (WITH COMPONENTS
{ invokeID PRESENT,
-- There is no result sequence for RORS-m-Cancel-Get
})

m-Create OPERATION ::= localValue 8

ROIV-m-Create ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID ABSENT,
operation-value (m-Create),
argument (INCLUDES CreateArgument) })

RORS-m-Create ::= RORSapdu (WITH COMPONENTS
{ ... ,
invoke-ID PRESENT,
-- result sequence -- (WITH COMPONENTS
{ operation-value (m-Create),
result (INCLUDES CreateResult) })
})

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 33

m-Delete OPERATION ::= localValue 9

ROIV-m-Delete ::= ROIVapdu (WITH COMPONENTS

{ invokeID PRESENT,

linked-ID ABSENT,

operation-value (m-Delete),

argument (INCLUDES DeleteArgument) })

RORS-m-Delete ::= RORSapdu (WITH COMPONENTS

{ ... ,

invokeID PRESENT,

-- result sequence -- (WITH COMPONENTS

{ operation-value (m-Delete),

result (INCLUDES DeleteResult) })

-- required only if there is a single reply to the ROIV-m-DeleteROIVapdu and data is to be returned in the
RORSapdu

})

m-EventReport OPERATION ::= localValue 0

ROIV-m-EventReport ::= ROIVapdu (WITH COMPONENTS

{ invokeID PRESENT,

linked-ID ABSENT,

operation-value (m-EventReport),

argument (INCLUDES EventReportArgument) })

m-EventReport-Confirmed OPERATION ::= localValue 1

ROIV-m-EventReport-Confirmed ::= ROIVapdu (WITH COMPONENTS

{ invokeID PRESENT,

linked-ID ABSENT,

operation-value (m-EventReport-Confirmed),

argument (INCLUDES EventReportArgument) })

RORS-m-EventReport-Confirmed::= RORSapdu (WITH COMPONENTS

{ ... ,

invokeID PRESENT,

-- result sequence -- (WITH COMPONENTS

{ operation-value (m-EventReport-Confirmed),

result (INCLUDES EventReportResult) })

-- required only if data is to be returned in the RORSapdu

})

m-Get OPERATION ::= localValue 3

ROIV-m-Get ::= ROIVapdu (WITH COMPONENTS

{ invokeID PRESENT,

linked-ID ABSENT,

operation-value (m-Get),

argument (INCLUDES GetArgument) })

RORS-m-Get ::= RORSapdu (WITH COMPONENTS

{ ... ,

invokeID PRESENT,

-- result sequence -- (WITH COMPONENTS

{ operation-value (m-Get),

result (INCLUDES GetResult) })

-- required only if there is a single reply to the ROIV-m-Get ROIVapdu

})

Superseded by a more recent version

34 Recommendation X.711 (03/91) Superseded by a more recent version

m-Linked-Reply OPERATION ::= localValue 2

ROIV-m-Linked-Reply ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID PRESENT,
operation-value (m-Linked-Reply),
argument (INCLUDES LinkedReplyArgument) })

-- This part of the ASN.1 specification provides a definition of ROIV-m-Linked-Reply subtypes used by
CMIP. The subtypes of the ROIV-m-Linked-Reply ROIVapdu define the allowed values of the argument
defined by the operation-value for the specific CMIP linked reply operations.

ROIV-m-Linked-Reply-Action ::= ROIV-m-Linked-Reply (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID PRESENT,
operation-value (m-Linked-Reply),
argument (INCLUDES LinkedReplyArgument (WITH COMPONENTS

getResult ABSENT,
getListError ABSENT,
setResult ABSENT,
setListError ABSENT,
actionResult PRESENT,
processingFailure PRESENT,
deleteResult ABSENT,
actionError PRESENT,
deleteError ABSENT)

) })

ROIV-m-Linked-Reply-Delete ::= ROIV-m-Linked-Reply (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID PRESENT,
operation-value (m-Linked-Reply),
argument (INCLUDES LinkedReplyArgument (WITH COMPONENTS

getResult ABSENT,
getListError ABSENT,
setResult ABSENT,
setListError ABSENT,
actionResult ABSENT,
processingFailure PRESENT,
deleteResult PRESENT,
actionError ABSENT,
deleteError PRESENT)

) })

ROIV-m-Linked-Reply-Get ::= ROIV-m-Linked-Reply (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID PRESENT,
operation-value (m-Linked-Reply),
argument (INCLUDES LinkedReplyArgument (WITH COMPONENTS

getResult PRESENT,
getListError PRESENT,
setResult ABSENT,
setListError ABSENT,
actionResult ABSENT,
processingFailure PRESENT,
deleteResult ABSENT,
actionError ABSENT,
deleteError ABSENT)

) })

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 35

ROIV-m-Linked-Reply-Set ::= ROIV-m-Linked-Reply (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID PRESENT,
operation-value (m-Linked-Reply),
argument (INCLUDES LinkedReplyArgument (WITH COMPONENTS

getResult ABSENT,
getListError ABSENT,
setResult PRESENT
setListError PRESENT,
actionResult ABSENT,
processingFailure PRESENT,
deleteResult ABSENT,
actionError ABSENT,
deleteError ABSENT)

) })

m-Set OPERATION ::= localValue 4

ROIV-m-Set ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID ABSENT,
operation-value (m-Set),
argument (INCLUDES SetArgument) })

m-Set-Confirmed OPERATION ::= localValue 5

ROIV-m-Set-Confirmed ::= ROIVapdu (WITH COMPONENTS
{ invokeID PRESENT,
linked-ID ABSENT,
operation-value (m-Set-Confirmed),
argument (INCLUDES SetArgument) })

RORS-m-Set-Confirmed ::= RORSapdu (WITH COMPONENTS
{ ... ,
invokeID PRESENT,
-- result sequence -- (WITH COMPONENTS
{ operation-value (m-Set-Confirmed),
result (INCLUDES SetResult) })
-- required only if there is a single reply to the ROIV-m-Set-Confirmed ROIVapdu and data is to be returned
in the RORSapdu
})

-- This part of the ASN.1 specification provides a definition of ROERapdu subtypes used by CMIP. The
subtypes of the ROERapdu define the allowed values of the error value and parameter defined by that
error-value for all CMIP notifications and operations.

accessDenied ERROR ::= localValue 2

ROER-accessDenied ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (accessDenied) })

-- This ROERapdu may only be returned in response to the ROIV-m-Get, ROIV-m-Set-Confirmed,
ROIV-m-Action-Confirmed, ROIV-m-Create and ROIV-m-Delete ROIVapdus

classInstanceConflict ERROR ::= localValue 19

ROER-classInstanceConflict ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (classInstanceConflict),
parameter (INCLUDES BaseManagedObjectId) })

Superseded by a more recent version

36 Recommendation X.711 (03/91) Superseded by a more recent version

-- This ROERapdu may only be returned in response to the ROIV-m-Get, ROIV-m-Set-Confirmed,
ROIV-m-Action-Confirmed, ROIV-m-Create and ROIV-m-Delete ROIVapdus

complexityLimitation ERROR ::= localValue 20

ROER-complexityLimitation ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (complexityLimitation),

parameter (INCLUDES ComplexityLimitation) OPTIONAL })

-- This ROERapdu may only be returned in response to the ROIV-m-Get, ROIV-m-Set-Confirmed,
ROIV-m-Action-Confirmed and ROIV-m-Delete ROIVapdus

duplicateManagedObjectInstance ERROR ::= localValue 11

ROER-duplicateManagedObjectInstance ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (duplicateManagedObjectInstance),

parameter (INCLUDES ObjectInstance) })

-- This ROERapdu may only be returned in response to the ROIV-m-Create ROIVapdu

getListError ERROR ::= localValue 7

ROER-getListError ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (getListError),

parameter (INCLUDES GetListError) })

-- This ROERapdu may only be returned in response to the ROIV-m-Get ROIVapdu

invalidArgumentValue ERROR ::= localValue 15

ROER-invalidArgumentValue ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (invalidArgumentValue),

parameter (INCLUDES InvalidArgumentValue) })

-- This ROERapdu may only be returned in response to the ROIV-m-EventReport-Confirmed
and ROIV-m-Action-Confirmed ROIVapdus

invalidAttributeValue ERROR ::= localValue 6

ROER-invalidAttributeValue ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (invalidAttributeValue),

parameter (INCLUDES Attribute) })

-- This ROERapdu may only be returned in response to the ROIV-m-Create ROIVapdu

invalidFilter ERROR ::= localValue 4

ROER-invalidFilter ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (invalidFilter),

parameter (INCLUDES CMISFilter) })

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 37

-- This ROERapdu may only be returned in response to the ROIV-m-Get, ROIV-m-Set-Confirmed,
ROIV-m-Action-Confirmed and ROIV-m-Delete ROIVapdus

invalidObjectInstance ERROR ::= localValue 17

ROER-invalidObjectInstance ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (invalidObjectInstance),
parameter (INCLUDES ObjectInstance) })

-- This ROERapdu may only be returned in response to the ROIV-m-Create ROIVapdu

invalidScope ERROR ::= localValue 16

ROER-invalidScope ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (invalidScope),
parameter (INCLUDES Scope) })

-- This ROERapdu may only be returned in response to the ROIV-m-Get, ROIV-m-Set-Confirmed,
ROIV-m-Action-Confirmed and ROIV-m-Delete ROIVapdus

missingAttributeValue ERROR ::= localValue 18

ROER-missingAttributeValue ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (missingAttributeValue),
parameter (INCLUDES SET OF AttributeId) })

-- This ROERapdu may only be returned in response to the ROIV-m-Create ROIVapdu

mistypedOperation ERROR ::= localValue 21

ROER-mistypedOperation ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (mistypedOperation) })

-- This ROERapdu may only be returned in response to the ROIV-m-Cancel-Get ROIVapdu

noSuchAction ERROR ::= localValue 9

ROER-noSuchAction ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (noSuchAction),
parameter (INCLUDES NoSuchAction) })

-- This ROERapdu may only be returned in response to the ROIV-m-Action-Confirmed ROIVapdu

noSuchArgument ERROR ::= localValue 14

ROER-noSuchArgument ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (noSuchArgument),
parameter (INCLUDES NoSuchArgument) })

-- This ROERapdu may only be returned in response to the ROIV-m-EventReport-Confirmed and
ROIV-m-Action-Confirmed ROIVapdus

noSuchAttribute ERROR ::= localValue 5

ROER-noSuchAttribute ::= ROERapdu (WITH COMPONENTS
{ invokeID PRESENT,
error-value (noSuchAttribute),
parameter (INCLUDES AttributeId) })

Superseded by a more recent version

38 Recommendation X.711 (03/91) Superseded by a more recent version

-- This ROERapdu may only be returned in response to the ROIV-m-Create ROIVapdu

noSuchEventType ERROR ::= localValue 13

ROER-noSuchEventType ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (noSuchEventType),

parameter (INCLUDES NoSuchEventType) })

-- This ROERapdu may only be returned in response to the ROIV-m-EventReport-Confirmed ROIVapdu

noSuchInvokeId ERROR ::= localValue 22

ROER-noSuchInvokeId ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (noSuchInvokeId),

parameter (INCLUDES InvokeIdType) })

-- This ROERapdu may only be returned in response to the ROIV-m-Cancel-Get ROIVapdu

noSuchObjectClass ERROR ::= localValue 0

ROER-noSuchObjectClass ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (noSuchObjectClass),

parameter (INCLUDES ObjectClass) })

-- This ROERapdu may only be returned in response to the ROIV-m-EventReport-Confirmed, ROIV-m-Get,
ROIV-m-Set-Confirmed, ROIV-m-Action-Confirmed, ROIV-m-Create, and ROIV-m-Delete ROIVapdus

noSuchObjectInstance ERROR ::= localValue 1

ROER-noSuchObjectInstance ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (noSuchObjectInstance),

parameter (INCLUDES ObjectInstance) })

-- This ROERapdu may only be returned in response to the ROIV-m-EventReport-Confirmed, ROIV-m-Get,
ROIV-m-Set-Confirmed, ROIV-m-Action-Confirmed, ROIV-m-Create, and ROIV-m-Delete ROIVapdus

noSuchReferenceObject ERROR ::= localValue 12

ROER-noSuchReferenceObject ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (noSuchReferenceObject),

parameter (INCLUDES ObjectInstance) })

-- This ROERapdu may only be returned in response to the ROIV-m-Create ROIVapdu

operationCancelled ERROR ::= localValue 23

ROER-operationCancelled ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (operationCancelled) })

-- This ROERapdu may only be returned in response to the ROIV-m-Get ROIVapdu

processingFailure ERROR ::= localValue 10

ROER-processingFailure ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (processingFailure),

parameter (INCLUDES ProcessingFailure) OPTIONAL })

Superseded by a more recent version

Recommendation X.711 (03/91) Superseded by a more recent version 39

-- This ROERapdu may only be returned in response to the ROIV-m-EventReport-Confirmed, ROIV-m-Get,
ROIV-m-Set-Confirmed, ROIV-m-Action-Confirmed, ROIV-m-Create, and ROIV-m-Delete ROIVapdus

setListError ERROR ::= localValue 8

ROER-setListError ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (setListError),

parameter (INCLUDES SetListError) })

-- This ROERapdu may only be returned in response to the ROIV-m-Set-Confirmed ROIVapdu

syncNotSupported ERROR ::= localValue 3

ROER-syncNotSupported ::= ROERapdu (WITH COMPONENTS

{ invokeID PRESENT,

error-value (syncNotSupported),

parameter (INCLUDES CMISSync) })

-- This ROERapdu may only be returned in response to the ROIV-m-Get, ROIV-m-Set-Confirmed,
ROIV-m-Action-Confirmed and ROIV-m-Delete ROIVapdus

-- To complete the abstract syntax specification provided in this annex, the definitions of the supporting
types in § 7.4 are incorporated by reference

END -- of CMIP syntax definitions

ANNEX C

(This annex does not form an integral part of this Recommendation)

Examples of CMISE ROSE APDUs

This annex provides some examples of the complete expansion of ROSE APDUs carrying CMIP information.

These examples are provided as guidance for users of this Recommendation.

-- ROIVapdu for the CMISE confirmed action operation.

ROIVapdu-example 1::= [1] IMPLICIT SEQUENCE {

invokeID 1InvokeIDType,

operation-value 1INTEGER {m-Action-Confirmed (7)},

argument 1SEQUENCE {

COMPONENTS OF 1BaseManagedObjectId,

accessControl 1[5] AccessControl OPTIONAL,

synchronization 1[6] IMPLICIT CMISSync OPTIONAL,

scope 1[7] Scope DEFAULT baseObject,

filter 1CMISFilter DEFAULT and {},

actionInfo 1[12] IMPLICIT SEQUENCE (

actionType 1ActionTypeId,

actionInfoArg 1[4] ANY DEFINED BY actionType OPTIONAL

} }

Superseded by a more recent version

40 Recommendation X.711 (03/91) Superseded by a more recent version

-- RORSapdu for the CMISE confirmed action operation.

RORSapdu-example ::= [2] IMPLICIT SEQUENCE {

invokeID InvokeIDType,

SEQUENCE {

operation-value INTEGER {m-Action-Confirmed (7)},

result SEQUENCE {

managedObjectClass ObjectClass OPTIONAL,

managedObjectInstance ObjectInstance OPTIONAL,

currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,

actionReply [6] IMPLICIT SEQUENCE (

actionType ActionTypeId,

actionReplyInfo [4] ANY DEFINED BY actionType OPTIONAL } OPTIONAL

}

-- ROIVapdu for the CMISE Linked Reply for a confirmed action operation.

ROIVapdu-linked-example ::= [1] IMPLICIT SEQUENCE {

invokeID InvokeIDType,

linked-ID [0] IMPLICIT InvokeIDType,

operation-value INTEGER {m-Action-Confirmed (7)},

argument CHOICE {

actionResult [4] IMPLICIT ActionResult,

processingFailure [5] IMPLICIT ProcessingFailure,

actionError [7] IMPLICIT ActionError

} }

-- ROERapdu for the CMISE confirmed action operation when a noSuchAction error occurs.

ROERapdu-example ::= [3] IMPLICIT SEQUENCE {

invokeID InvokeIDType,

error-value INTEGER {noSuchAction (9)},

parameter SEQUENCE { managedObjectClass ObjectClass
OPTIONAL,

actionId ActionTypeId

} }

