

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.697
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/2021)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects – Abstract Syntax
Notation One (ASN.1)

 Information technology – ASN.1 encoding rules:
Specification of JavaScript Object Notation
Encoding Rules (JER)

Recommendation ITU-T X.697

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES (1) X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES (2) X.1300–X.1499

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599

CLOUD COMPUTING SECURITY X.1600–X.1699

QUANTUM COMMUNICATION X.1700–X.1729

DATA SECURITY X.1750–X.1799

5G SECURITY X.1800–X.1819

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.697 (02/2021) i

INTERNATIONAL STANDARD ISO/IEC 8825-8

RECOMMENDATION ITU-T X.697

Information technology – ASN.1 encoding rules: Specification of JavaScript

Object Notation Encoding Rules (JER)

Summary

Rec. ITU-T X.697 | ISO/IEC 8825-8 specifies a set of JavaScript Object Notation Encoding Rules (JER) that may be used

to derive a transfer syntax for values of types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC

8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3 and Rec. ITU-T X.683 | ISO/IEC 8824-4. It is implicit in the specification of

these encoding rules that they are also to be used for decoding.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.697 2017-10-14 17 11.1002/1000/13365

2.0 ITU-T X.697 2021-02-13 17 11.1002/1000/14479

Keywords

ASN.1, JavaScript Object Notation Encoding Rules, JER.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/13365
http://handle.itu.int/11.1002/1000/14479
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.697 (02/2021)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2021

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.697 (02/2021) iii

CONTENTS

Page

1 Scope .. 1

2 Normative references ... 1

2.1 Identical Recommendations | International Standards ... 1

2.2 Additional references ... 1

3 Definitions .. 2

3.1 Specification of Basic Notation ... 2

3.2 Information Object Specification ... 2

3.3 Constraint Specification ... 2

3.4 Parameterization of ASN.1 Specification .. 2

3.5 Basic Encoding Rules (BER) ... 2

3.6 Packed Encoding Rules (PER) ... 2

3.7 Additional definitions .. 2

4 Abbreviations .. 3

5 Encodings specified by this Recommendation | International Standard ... 3

6 Conformance .. 4

7 General provisions ... 4

7.1 Use of the type notation ... 4

7.2 Constraints ... 5

7.3 Type and value model used for encoding ... 6

7.4 Types to be encoded ... 6

7.5 Encoding instructions ... 6

7.6 Production of a complete JER encoding .. 7

8 Notation, lexical items and keywords used in JER encoding instructions ... 7

9 Specifying JER encoding instructions .. 8

10 Assigning a JER encoding instruction using a type prefix ... 9

11 Assigning a JER encoding instruction using a JER encoding control section .. 9

12 Identification of the targets for a JER encoding instruction ... 9

12.1 General rules .. 9

12.2 Types defined in the module .. 10

12.3 Built-in types .. 10

12.4 Types imported from another module .. 10

13 Multiple assignment of JER encoding instructions .. 10

13.1 Order in which multiple assignments are considered ... 10

13.2 Effect of assigning a negating encoding instruction .. 11

13.3 Multiple assignment of JER encoding instructions of the same category .. 11

14 The ARRAY encoding instruction ... 11

14.1 General .. 11

iv Rec. ITU-T X.697 (02/2021)

14.2 Restrictions .. 11

15 The BASE64 encoding instruction ... 11

15.1 General .. 11

15.2 Restrictions .. 12

16 The NAME encoding instruction ... 12

16.1 General .. 12

16.2 Restrictions .. 13

17 The OBJECT encoding instruction ... 13

17.1 General .. 13

17.2 Restrictions .. 13

18 The TEXT encoding instruction ... 13

18.1 General .. 13

18.2 Restrictions .. 14

19 The UNWRAPPED encoding instruction .. 14

19.1 General .. 14

19.2 Restrictions .. 14

20 Encoding of boolean values ... 14

21 Encoding of integer values ... 15

22 Encoding of enumerated values ... 15

23 Encoding of real values .. 15

23.1 General .. 15

23.2 Encoding of the special real values .. 15

23.3 Encoding as a JSON number.. 16

23.4 Encoding as a JSON object .. 16

24 Encoding of bitstring values ... 16

24.1 General .. 16

24.2 Encoding of bitstring types with a fixed size ... 16

24.3 Encoding of bitstring types with a variable size ... 16

24.4 Alternative encoding of bitstring types with a JER-visible contents constraint 16

25 Encoding of octetstring values ... 17

25.1 General .. 17

25.2 Encoding of an octetstring value as a JSON string containing a Base64 encoding 17

25.3 Encoding of an octetstring value as a JSON string containing a hexadecimal encoding 17

25.4 Alternative encoding of an octetstring type with a JER-visible contents constraint 17

26 Encoding of the null value ... 17

27 Encoding of sequence values ... 17

27.1 General .. 17

27.2 Array-based encoding .. 17

27.3 Object-based encoding ... 17

 Rec. ITU-T X.697 (02/2021) v

28 Encoding of sequence-of values ... 18

29 Encoding of set values ... 18

30 Encoding of set-of values ... 18

30.1 General .. 18

30.2 Array-based encoding .. 18

30.3 Object-based encoding ... 18

31 Encoding of choice values .. 19

31.1 General .. 19

31.2 Unwrapped encoding ... 19

31.3 Wrapped encoding ... 19

32 Encoding of object identifier values ... 19

33 Encoding of relative object identifier values .. 19

34 Encoding of values of the internationalized resource reference type ... 19

35 Encoding of values of the relative internationalized resource reference type .. 19

36 Encoding of values of the embedded-pdv type .. 19

37 Encoding of values of the external type ... 20

38 Encoding of values of the restricted character string types .. 20

39 Encoding of values of the unrestricted character string type .. 20

40 Encoding of values of the time types ... 20

41 Encoding of open type values .. 20

42 Object identifier values referencing the encoding rules ... 20

Annex A Examples of JER encodings .. 21

A.1 ASN.1 description of the record structure .. 21

A.2 ASN.1 description of a record value .. 21

A.3 Example JER representation of this record value .. 21

A.4 Additional examples of JER encodings ... 22

Annex B Examples of JER encoding instructions and their effect on the encodings ... 25

B.1 ASN.1 description of the record structure .. 25

B.2 ASN.1 description of a record value .. 25

B.3 JER representation of this record value .. 26

B.4 Additional examples of JER encodings ... 26

B.5 Examples of JER encodings of choice types .. 28

vi Rec. ITU-T X.697 (02/2021)

Introduction

Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3 and Rec.

ITU-T X.683 | ISO/IEC 8824-4 together describe Abstract Syntax Notation One (ASN.1), a notation for the definition of

messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be applied to values of ASN.1 types

defined using the notation specified in the publications listed in the previous paragraph. Application of these encoding

rules produces a transfer syntax for such values. It is implicit in the specification of these encoding rules that they are also

to be used for decoding.

There is more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation |

International Standard defines a set of JavaScript Object Notation Encoding Rules (JER), so called because the encodings

they produce are instances of the JSON grammar specified in ECMA-404.

This Recommendation | International Standard specifies the syntax and semantics of JER encoding instructions that

modify the JSON text produced by the application of JER to certain ASN.1 types.

Clauses 8 to 12 list the JER encoding instructions and specify the syntax for their assignment to an ASN.1 type or

component using either a JER type prefix (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 31.3) or a JER encoding

control section (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 54).

Clause 13 defines the order of precedence if JER encoding instructions are present in both a JER type prefix and in a JER

encoding control section.

Clauses 14 to 19 specify:

a) the syntax of each JER encoding instruction used in a type prefix or a JER encoding control section;

b) restrictions on the JER encoding instructions that can be associated with a particular ASN.1 type (resulting

from inheritance and multiple assignments).

Clauses 20 to 41 specify the JER encoding of ASN.1 types, referencing earlier clauses that define the JER encoding

instructions.

Annex A is informative and contains examples of JER encodings where JER encoding instructions are not used.

Annex B is informative and contains examples of JER encoding instructions and their effect on the JER encodings.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 1

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology – ASN.1 encoding rules: Specification of JavaScript

Object Notation Encoding Rules (JER)

1 Scope

This Recommendation | International Standard specifies a set of JavaScript Object Notation Encoding Rules (JER) that

may be used to derive a transfer syntax for values of types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T

X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3 and Rec. ITU-T X.683 | ISO/IEC 8824-4. It is implicit in

the specification of these encoding rules that they are also to be used for decoding.

The encoding rules specified in this Recommendation | International Standard:

– are used at the time of communication;

– are intended for use in circumstances where interoperability with applications using JSON is the major

concern in the choice of encoding rules;

– allow the extension of an abstract syntax by addition of extra values for all forms of extensibility described

in Rec. ITU-T X.680 | ISO/IEC 8824-1.

This Recommendation | International Standard also specifies the syntax and semantics of JER encoding instructions, as

well as the rules for their assignment and combination. JER encoding instructions can be used to control JER encoding

for specific Abstract Syntax Notation One (ASN.1) types.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid

ITU-T Recommendations.

NOTE – This Recommendation | International Standard is based on ISO/IEC 10646:2003 and the Unicode standard version
3.2.0:2002. It cannot be applied using later versions of these two standards.

2.1 Identical Recommendations | International Standards

– Recommendation. ITU-T X.226 (1994) | ISO/IEC 8823-1:1994, Information technology – Open Systems

Interconnection – Connection-oriented Presentation protocol: Protocol specification.

– Recommendation ITU-T X.680 (2021) | ISO/IEC 8824-1:2021, Information technology – Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

– Recommendation ITU-T X.681 (2021) | ISO/IEC 8824-2:2021, Information technology – Abstract Syntax

Notation One (ASN.1): Information object specification.

– Recommendation ITU-T X.682 (2021) | ISO/IEC 8824-3:2021, Information technology – Abstract Syntax

Notation One (ASN.1): Constraint specification.

– Recommendation ITU-T X.683 (2021) | ISO/IEC 8824-4:2021, Information technology – Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

– Recommendation ITU-T X.690 (2021) | ISO/IEC 8825-1:2021, Information technology – ASN.1 encoding

rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER).

– Recommendation ITU-T X.691 (2021) | ISO/IEC 8825-2:2021, Information technology – ASN.1 encoding

rules: Specification of Packed Encoding Rules (PER).

NOTE – The references above shall be interpreted as references to the identified Recommendations | International Standards
together with all their published amendments and technical corrigenda.

2.2 Additional references

– ECMA Standard ECMA-404 (2017), The JSON Data Interchange Syntax.

ISO/IEC 8825-8:2021 (E)

2 Rec. ITU-T X.697 (02/2021)

– IETF RFC 2045 (1996), Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet

Message Bodies.

–

– ISO/IEC 10646:2003, Information technology – Universal Multiple-Octet coded character set (UCS).

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 Specification of basic notation

For the purposes of this Recommendation | International Standard, all the definitions in Rec. ITU-T X.680 |

ISO/IEC 8824-1 apply.

3.2 Information object specification

For the purposes of this Recommendation | International Standard, all the definitions in Rec. ITU-T X.681 |

ISO/IEC 8824-2 apply.

3.3 Constraint specification

This Recommendation | International Standard makes use of the following terms defined in Rec. ITU-T X.682 | ISO/IEC

8824-3:

a) component relation constraint;

b) table constraint.

3.4 Parameterization of ASN.1 specification

This Recommendation | International Standard makes use of the following term defined in Rec. ITU-T X.683 |

ISO/IEC8824-4:

– variable constraint.

3.5 Basic Encoding Rules (BER)

This Recommendation | International Standard makes use of the following terms defined in Rec. ITU-T X.690 |

ISO/IEC 8825-1:

a) data value;

b) dynamic conformance;

c) encoding (of a data value);

d) receiver;

e) sender;

f) static conformance.

3.6 Packed Encoding Rules (PER)

This Recommendation | International Standard makes use of the following terms defined in Rec. ITU-T X.691 |

ISO/IEC 8825-2:

a) composite type;

b) composite value;

c) outermost type;

d) relay-safe encoding;

e) simple type;

f) textually dependent.

3.7 Additional definitions

3.7.1 abstract syntax value: A value of an abstract syntax (defined as a set of values of a single ASN.1 type) which

is to be encoded by JER or which is generated by JER decoding.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 3

3.7.2 associated encoding instruction (for a type): A set of JER encoding instructions associated with a type.

3.7.3 effective value constraint (of an integer type): The smallest integer range that includes all the values of the

integer type that are permitted by the JER-visible constraints (see clause 7.2.7).

3.7.4 effective size constraint (of a bitstring type): The smallest integer range that includes the lengths of all the

values of the string type that are permitted by the JER-visible constraints (see clause 7.2.8).

3.7.5 final encoding instructions (for a type): The set of JER encoding instructions associated with a type as a result

of the complete ASN.1 specification, and which are applied in producing encodings of that type.

3.7.6 inherited encoding instructions: A set of JER encoding instructions that are associated with the type identified

by a type reference.

3.7.7 JSON array: A series of JSON tokens that constitute an array structure as specified in ECMA-404, clause 7.

3.7.8 JSON member name string (of a component of a sequence, set or choice type that is encoded as a JSON

object): The Unicode character string denoted by the name of the member of the JSON object identifying the component

in the JER encoding.

3.7.9 JSON number: A JSON token that is a number as specified in ECMA-404, clause 8.

3.7.10 JSON object: A series of JSON tokens that constitute an object structure as specified in ECMA-404, clause 6.

3.7.11 JSON string: A JSON token that is a string as specified in ECMA-404, clause 9.

NOTE – A JSON string is part of a JER encoding, it begins and ends with a quotation mark, may contain escapes, and is distinct
from the Unicode character string that it denotes.

3.7.12 JSON token: A Unicode character string that is one of the several kinds of tokens specified in ECMA-404,

clause 4.

3.7.13 JER encoding instruction: Notation used to change the JER encoding of a type.

3.7.14 JER-visible constraint: An instance of use of the ASN.1 constraint notation that affects the JER encoding of

a value.

3.7.15 octet: A group of eight consecutive bits, numbered from bit 8 (the most significant bit) to bit 1 (the least

significant bit).

3.7.16 prefixed encoding instruction: A JER encoding instruction that is assigned to a type using a type prefix.

NOTE – Prefixed encoding instructions can delete, replace or add to the associated encoding instructions of a type.

3.7.17 targeted encoding instruction: A JER encoding instruction that is assigned to multiple types using a target list

in a JER encoding control section.

NOTE – Targeted encoding instructions can delete, replace or add to the associated encoding instructions of multiple types.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

JER JavaScript Object Notation Encoding Rules

OSI Open Systems Interconnection

PER Packed Encoding Rules

UTF-8 Unicode Transformation Format 8 bit

5 Encodings specified by this Recommendation | International Standard

5.1 This Recommendation | International Standard specifies a set of encoding rules that can be used to encode and

decode the values of an abstract syntax defined as the values of a single (known) ASN.1 type. This clause describes their

applicability and properties.

5.2 JER encodings are always relay-safe provided the abstract values of the types EXTERNAL, EMBEDDED PDV, and

CHARACTER STRING are constrained to prevent the carriage of open systems interconnection (OSI) presentation context

identifiers.

ISO/IEC 8825-8:2021 (E)

4 Rec. ITU-T X.697 (02/2021)

5.3 If a type encoded with JER contains EXTERNAL, EMBEDDED PDV, or CHARACTER STRING types, then the outer

encoding ceases to be relay-safe unless the transfer syntax used for all the EXTERNAL, EMBEDDED PDV, or CHARACTER

STRING types is relay-safe.

NOTE – The character transfer syntaxes supporting all character abstract syntaxes of the form {iso standard 10646

level-1(1) …} are canonical. Those supporting {iso standard 10646 level-2(2) …} and {iso standard 10646
level-3(3) …} are not always canonical. All these character transfer syntaxes are relay-safe.

5.4 JER encodings are self-delimiting. Encodings are always a whole multiple of 8 bits. When carried in an

EXTERNAL type, they shall be carried in the OCTET STRING choice alternative, unless the EXTERNAL type itself is encoded

in JER, in which case the value may be encoded as a single ASN.1 type (i.e., an open type). When carried in an OSI

presentation protocol, the "full encoding" (as defined in Rec. ITU-T X.226 | ISO/IEC 8823-1) with the OCTET STRING

alternative shall be used.

5.5 This Recommendation | International Standard also specifies the syntax and semantics of JER encoding

instructions (see clauses 14 to 19).

5.6 ASN.1 forms a basic JSON schema notation. The ASN.1 schema is used to define the content and structure of

data using ASN.1 and the JavaScript Object Notation Encoding Rules. It can be used without JER encoding instructions.

5.7 JER encoding instructions provide wider flexibility in the JSON texts that can be specified.

5.8 JER encoding instructions are assigned to ASN.1 type definitions or to type references using either or both JER

type prefixes (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 31.3) and a JER encoding control section (see

Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 54). If encoding instructions are associated with a type definition, they are

carried with the ASN.1 type (through its type reference) into other type definitions and other ASN.1 modules. The final

encoding instructions of a type are applied when the type is encoded in JER and modify the JSON text produced.

6 Conformance

6.1 Dynamic conformance for the JavaScript Object Notation Encoding Rules is specified in clauses 7 to 41.

6.2 Static conformance is specified by those standards that specify the application of these encoding rules.

6.3 Alternative encodings are permitted by the JavaScript Object Notation Encoding Rules as encoder's options.

Decoders that claim conformance to JER shall support all JER encoding alternatives.

6.4 The rules in this Recommendation | International Standard are specified in terms of an encoding procedure.

Implementations are not required to mirror the procedure specified, provided the octet string produced as the complete

encoding of an abstract syntax value is identical to one of those specified in this Recommendation | International Standard

for the applicable transfer syntax.

6.5 Implementations performing decoding are required to produce the abstract syntax value corresponding to any

received octet string that could be produced by a sender conforming to the encoding rules identified in the transfer syntax

associated with the material being decoded.

6.6 If an ASN.1 specification assigns JER encoding instructions in accordance with clauses 8 to 13 such that an

ASN.1 type or component has final encoding instructions that violate the restrictions specified in clauses 14 to 19, then

that ASN.1 specification is not in conformity with this Recommendation | International Standard, even if (without the

encoding instructions) it would conform to all the requirements of Rec. ITU-T X.680 | ISO/IEC 8824-1.

NOTE – It is only occasionally invalid to assign an encoding instruction to a "type", as it can be negated (removed from the set of
associated encoding instructions) by a further assignment. It is the final encoding instructions that determine conformity of the
specification.

7 General provisions

7.1 Use of the type notation

7.1.1 These encoding rules make specific use of the ASN.1 type notation as specified in Rec. ITU-T X.680 | ISO/IEC

8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3 and Rec. ITU-T X.683 | ISO/IEC

8824-4, and can only be applied to encode the values of a single ASN.1 type specified using that notation.

7.1.2 In particular, but not exclusively, they are dependent on the following information being retained in the ASN.1

type and value model underlying the use of the notation:

a) the identifiers of the components of a sequence or set type and of the alternatives of a choice type;

b) the identifiers of the enumeration items of an enumerated type;

c) whether a set or sequence type component has a default value or not;

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 5

d) the restricted range of values of a type that arises through the application of JER-visible constraints;

e) whether the type of a component is open.

7.2 Constraints

NOTE – The fact that some ASN.1 constraints may not be JER-visible for the purposes of encoding and decoding does not in any
way affect the use of such constraints in the handling of errors detected during decoding, nor does it imply that values violating
such constraints are allowed to be transmitted by a conforming sender. However, this Recommendation | International Standard
makes no use of such constraints in the specification of encodings.

7.2.1 In general, the constraint on a type will consist of individual constraints combined using some or all of set

arithmetic, contained subtype constraints and serial application of constraints.

The following constraints are JER-visible:

a) non-extensible size constraints on bitstring types;

b) non-extensible single value constraints on real types where the single value is either plus zero or minus

zero or one of the special real values PLUS-INFINITY, MINUS-INFINITY and NOT-A-NUMBER;

c) non-extensible single value constraints and value range constraints on the base of a real type;

d) an inner type constraint that applies a non-extensible single value constraint or value range constraint to

the base of a real type;

e) a contents constraint with CONTAINING but without ENCODED BY;

f) a contained subtype constraint in which the constraining type carries a JER-visible constraint.

7.2.2 All other constraints are not JER-visible. In particular, the following constraints are not JER-visible:

a) constraints that are expressed in human-readable text or in ASN.1 comment;

b) variable constraints (see Rec. ITU-T X.683 | ISO/IEC 8824-4, clauses 10.3 and 10.4);

c) user-defined constraints (see Rec. ITU-T X.682 | ISO/IEC 8824-3, 9.1);

d) table constraints (see Rec. ITU-T X.682 | ISO/IEC 8824-3);

e) component relation constraints (see Rec. ITU-T X.682 | ISO/IEC 8824-3, 10.7);

f) constraints whose evaluation is textually dependent on a table constraint or a component relation constraint

(see Rec. ITU-T X.682 | ISO/IEC 8824-3);

g) extensible subtype constraints;

h) size constraints applied to a character string or octet string type;

i) single value subtype constraints applied to a character string type;

j) permitted alphabet constraints;

k) pattern constraints;

l) value and value range constraints on integer types;

m) constraints on real types except those specified in clause 7.2.1 b) and c);

n) constraints on the time type and on the useful and defined time types;

o) inner type constraints except those specified in clause 7.2.1 d);

p) constraints on the useful types.

7.2.3 If a type is specified using a serial application of constraints, each of those constraints may or may not be

individually JER-visible. If the last subtype constraint of the series of constraints is JER-visible and contains an extension

marker, then that subtype constraint is extensible for the purposes of these encoding rules. Any other constraint is not

extensible for the purposes of these encoding rules, even if it contains an extension marker.

NOTE – In a serial application of constraints, each subtype constraint removes the extensibility specified in earlier constraints of
the series of constraints (see Rec. ITU-T X.680 | ISO/IEC 8824-1, 50.8).

7.2.4 If a constraint that is JER-visible is part of an INTERSECTION construction, then the resulting constraint is JER-

visible, and consists of the INTERSECTION of all the JER-visible parts (with the non-JER-visible parts ignored).

7.2.5 If a constraint that is not JER-visible is part of a UNION construction, then the resulting constraint is not JER-

visible.

7.2.6 If a constraint has an EXCEPT clause, the EXCEPT keyword and the following value set is completely ignored,

whether the value set following the EXCEPT keyword is JER-visible or not.

ISO/IEC 8825-8:2021 (E)

6 Rec. ITU-T X.697 (02/2021)

7.2.7 The effective value constraint of an integer type is an integer range determined as follows, taking into account

all the JER-visible constraints present in the type definition and ignoring any constraints that are not JER-visible:

a) the lower bound of the effective value constraint is the least permitted value of the integer type, if such a

value exists; otherwise, the effective value constraint has no finite lower bound;

b) the upper bound of the effective value constraint is the greatest permitted value of the integer type, if such

a value exists; otherwise, the effective value constraint has no finite upper bound.

NOTE – The only integer types that can have an effective value constraints with a finite lower or upper bound are the type of the
components of a real type, to which a value or value range constraint is applied by using an inner type constraint. Value constraints
on all other integer types are not JER-visible, and therefore the effective value constraint of those types has no finite lower or upper
bound.

7.2.8 The effective size constraint of a bitstring type is a single integer range determined as follows, taking into

account all the JER-visible constraints present in the type definition and ignoring any constraints that are not JER-visible:

a) the lower bound of the effective size constraint is the length of the shortest permitted value of the string

type (possibly zero);

b) the upper bound of the effective size constraint is the length of the longest permitted value of the string

type, if such length is finite; otherwise, the effective size constraint has no finite upper bound.

7.3 Type and value model used for encoding

7.3.1 An ASN.1 type is either a simple type or a type built using other types. The notation permits the use of type

references and tagging of types. For the purpose of these encoding rules, the use of type references and tagging have no

effect on the encoding and are invisible in the model. The notation also permits the application of constraints and of error

specifications. JER-visible constraints are present in the model as a restriction of the values of a type. Other constraints

and error specifications do not affect encoding and are invisible in the JER type and value model.

7.3.2 A value to be encoded can be considered as either a simple value or as a composite value built using the

structuring mechanisms from components that are either simple or composite values, paralleling the structure of the

ASN.1 type definition.

7.4 Types to be encoded

7.4.1 Clauses 20 to 41 specify the encoding of the following types: boolean, integer, enumerated, real, bitstring,

octetstring, null, sequence, sequence-of, set, set-of, choice, object identifier, relative object identifier, internationalized

resource reference, relative internationalized resource reference, embedded-pdv, external, restricted character string,

unrestricted character string, time, and open types.

7.4.2 The selection type shall be encoded as an encoding of the selected type.

7.4.3 This Recommendation | International Standard does not contain specific provisions for the encoding of tagged

types as tagging is not visible in the type and value model used for these encoding rules. Tagged types are thus encoded

according to the type that has been tagged.

7.4.4 An encoding prefixed type is encoded according to the type that has been prefixed.

7.4.5 The useful types GeneralizedTime, UTCTime, and ObjectDescriptor shall be encoded as if they had been

replaced by their definitions given in Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 45. Constraints on the useful types are

not JER-visible.

7.4.6 A type defined using a value set assignment shall be encoded as if the type had been defined using the production

specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, 16.8.

7.5 Encoding instructions

7.5.1 JER encoding instructions modify the JSON text produced by the application of the JER to a type.

7.5.2 All occurrences of ASN.1 "Type" notation have an associated set (possibly empty) of JER encoding instructions

(the final encoding instructions). Encoding instructions are associated with a "Type" through:

a) (inherited encoding instructions) the presence of associated encoding instructions on the "Type" used in

the definition of a "typereference" used as a "Type";

b) (targeted encoding instructions) assignment of one or more JER encoding instructions to multiple types

using a JER encoding control section;

c) (prefixed encoding instructions) assignment of one or more JER encoding instructions to an occurrence of

"Type" using JER type prefixes; and

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 7

d) (import-list encoding instructions) assignment of one or more encoding instructions to all type references

imported from an identified ASN.1 module.

7.5.3 The effect of assigning a JER encoding instruction is to add, delete or replace associated encoding instructions.

7.5.4 The order (or manner) in which encoding instructions become part of (or are removed from) the set of associated

encoding instructions is not significant in the application of the final encoding instructions.

7.5.5 The final encoding instructions affect the JER encoding of types. They have no other impact, and in particular

are not associated with any value reference defined using the type, nor do they affect value mappings, nor do they affect

other encoding rules.

7.6 Production of a complete JER encoding

7.6.1 If an ASN.1 type is encoded using JER and the encoding is contained in:

a) an ASN.1 bitstring type or octetstring type; or

b) any part of an ASN.1 external or embedded-pdv type; or

c) any carrier protocol that is not defined using ASN.1,

then that ASN.1 type is defined as an outermost type, and clause 7.6.2 shall be applied to all the encodings of its abstract

values.

7.6.2 The series of JSON tokens that constitute the encoding of an abstract value of the outermost type shall be

encoded in UTF-8 into an octet string, which is the complete encoding of the abstract value of the outermost type.

7.6.3 The use of any of the escapes specified in ECMA-404, clause 9, is permitted in any JSON string produced by

these encoding rules.

8 Notation, lexical items and keywords used in JER encoding instructions

8.1 The notation used in specifying the syntax of an "EncodingInstruction" in a JER type prefix (see clause 10),

and in an "EncodingInstructionAssignmentList" in a JER encoding control section (see clause 11) is that defined by Rec.

ITU-T X.680 | ISO/IEC 8824-1, clause 5.

8.2 Rec. ITU-T X.680 | ISO/IEC 8824-1, clauses 11 and 12.1 also apply to a JER "EncodingInstruction" and to a

JER "EncodingInstructionAssignmentList".

NOTE – In particular, arbitrary ASN.1 white-space characters and ASN.1 comments can appear between lexical items in both of
these syntactic constructs.

8.3 The following lexical items are used in this Recommendation | International Standard:

 comment (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.6)

identifier (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.3)

modulereference (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.5)

number (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.8)

typereference (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.2)

"{" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.37)

"}" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.37)

":" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.37)

"[" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.37)

"]" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.37)

"," (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 12.37)

8.4 The keywords specified in clause 8.5 are used in either or both JER "EncodingInstruction"s and JER

"EncodingInstructionAssignmentList"s (in addition to some ASN.1 reserved words), and can appear in such syntactic

constructs only with the meaning assigned to them in the following clauses of this Recommendation | International

Standard.

ISO/IEC 8825-8:2021 (E)

8 Rec. ITU-T X.697 (02/2021)

8.5 The keywords are:

ARRAY

AS

BASE64

CAPITALIZED

IN

LOWERCAMELCASED

LOWERCASED

NAME

NOT

OBJECT

TEXT

UNCAPITALIZED

UNWRAPPED

UPPERCAMELCASED

UPPERCASED

9 Specifying JER encoding instructions

9.1 The JER "EncodingInstruction" production is:

EncodingInstruction::=

 PositiveInstruction

 | NegatingInstruction

PositiveInstruction ::=

 Instruction

NegatingInstruction ::=

 NOT Instruction

Instruction ::=

 ArrayInstruction

 | Base64Instruction

 | NameInstruction

 | ObjectInstruction

 | TextInstruction

 | UnwrappedInstruction

9.2 JER encoding instructions can be assigned to ASN.1 types using either the "EncodingInstruction" production

in a JER type prefix or the "EncodingInstructionAssignmentList" production in a JER encoding control section.

Assignment using a type prefix is specified in clause 10. Assignment using a JER encoding control section is specified in

clause 11.

9.3 An encoding instruction in a type prefix or in a JER encoding control section can be a positive instruction, used

to add or to replace an encoding instruction (use of "PositiveInstruction"), or a negating instruction used to cancel one or

more associated encoding instructions (use of "NegatingInstruction").

9.4 An "Instruction" consists of three parts:

a) a keyword identifying the category of the encoding instruction;

b) syntax, specific to each encoding instruction category, providing details of the encoding instruction.

NOTE – When used in a negating instruction, this is always empty. It is also empty in some JER encoding instructions
for which the keyword is a sufficient definition.

9.5 Some JER encoding instructions require the specification of one or more abstract values of a type. This

specification uses the "Value" production (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 17.7). If a "valuereference" is

used as "Value", then this "valuereference" shall be defined in (or imported into) the ASN.1 module containing the JER

encoding instruction.

NOTE – This means that the value can be specified either directly using basic ASN.1 value notation or by a value reference.

9.6 Table 1 lists in column 1 the alternatives in the "Instruction" production. Column 2 gives the clauses that specify

the requirements for use of these encoding instructions and their effects on the encodings.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 9

Table 1 – Encoding instructions and their defining clauses

Encoding instruction Defining clause

ArrayInstruction Clause 14

Base64Instruction Clause 15

NameInstruction Clause 16

ObjectInstruction Clause 17

TextInstruction Clause 18

UnwrappedInstruction Clause 19

9.7 Each of the alternatives of the "Instruction" production is in a defined category of encoding instruction. In this

Recommendation | International Standard, the category of each encoding instruction is denoted by the name of the

corresponding production.

9.8 An ASN.1 type can never have more than one associated JER encoding instruction of a given category, no

matter how they are assigned. The result of multiple assignments of a JER encoding instruction of a given category is

specified in clause 13.3.

9.9 If the "Type" in a "TypeAssignment" (see Rec. ITU-T X.680 | ISO/IEC 8824-1, 16.1) has final encoding

instructions, all uses of the corresponding "typereference" (in the module containing the "TypeAssignment" or in some

other module) inherit its final associated encoding instructions, except that any final NAME encoding instruction is not

inherited.

10 Assigning a JER encoding instruction using a type prefix

Each use of an "EncodingInstruction" in a type prefix assigns that JER encoding instruction to the occurrence of "Type"

associated with the type prefix.

11 Assigning a JER encoding instruction using a JER encoding control section

11.1 The JER "EncodingInstructionAssignmentList" production is:

EncodingInstructionAssignmentList ::=

 TargetedEncodingInstruction

 EncodinginstructionAssignmentList ?

TargetedEncodingInstruction ::=

 "[" EncodingInstruction "]" TargetList

11.2 The "EncodingInstruction" production is defined in clause 9.

11.3 Each use of a "TargetedEncodingInstruction" in a JER encoding control section assigns the JER encoding

instruction to the occurrences of "Type" that are identified in the "TargetList" of the targeted encoding instruction. The

"TargetList" production and the targets it identifies are specified in clause 12.

12 Identification of the targets for a JER encoding instruction

12.1 General rules

12.1.1 The target of a prefixed encoding instruction is always the type associated with the prefix.

12.1.2 The target of a targeted encoding instruction is determined as follows.

12.1.3 The "TargetedEncodingInstruction" specifies the JER encoding instruction that is being assigned, and the

target(s) for that assignment within the ASN.1 module, specified by the production "TargetList". All targets are an

occurrence of the "Type" production within the ASN.1 module.

ISO/IEC 8825-8:2021 (E)

10 Rec. ITU-T X.697 (02/2021)

12.1.4 The "TargetList" production is:

TargetList ::=

 Targets "," +

Targets ::=

 TypeIdentification

 | BuiltInTypeIdentification

 | ImportedTypesIdentification

12.1.5 The JER encoding instruction is assigned to all the types identified by the "TargetList" as specified in

clauses 12.2 to 12.4.

12.2 Types defined in the module

12.2.1 The "TypeIdentification" production is:

TypeIdentification ::=
 ALL

12.2.2 A use of this production identifies all "Type"s in "TypeAssignment"s in the module.

12.3 Built-in types

12.3.1 The "BuiltInTypeIdentification" production is:

BuiltInTypeIdentification ::=
 CHOICE

| ENUMERATED

| OCTET STRING

| SEQUENCE

| SET OF

12.3.2 A use of this production identifies all textual occurrences within the module of the corresponding built-in type

or of a type defined using the corresponding constructor.

12.4 Types imported from another module

12.4.1 The "ImportedTypesIdentification" production is:

ImportedTypesIdentification ::=

 ALL IMPORTS FROM modulereference

12.4.2 The "modulereference" shall be one of the "modulereference"s used in one of the "GlobalModuleReferences"

of the imports clause of the module.

12.4.3 The JER encoding instruction is assigned to each of the "typereference"s in the corresponding "SymbolList",

after the final encoding instructions produced by assignment in the exporting module have been assigned.

12.4.4 If an imported "typereference" is exported from this module, the final encoding instructions inherited by that

"typereference" in a module that imports it are those inherited in this importing module, and are not affected by assignment

of encoding instructions using an "ImportedTypesIdentification". This assignment affects only the use of the type

reference within this module.

13 Multiple assignment of JER encoding instructions

13.1 Order in which multiple assignments are considered

13.1.1 A "Type" which is not a "typereference" initially has an empty set of associated encoding instructions.

13.1.2 A "Type" which is a "typereference" (which may be imported) initially has the set of final encoding instructions

of the "Type" which was assigned to it when it was defined (possibly modified by encoding instructions assigned to it in

the imports list of an importing module – see clause 12.4).

13.1.3 Targeted encoding instructions for a "Type" (using a JER encoding control section) are assigned next, in the

order in which the targeted encoding instructions appear in the JER encoding control section.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 11

13.1.4 Prefixed encoding instructions (using a type prefix) assigned to a type are considered next, with the rightmost

(the innermost) prefixed encoding instruction considered first, and the leftmost (the outermost) prefixed encoding

instruction considered last.

13.1.5 Each assignment of an encoding instruction produces a new set of associated encoding instructions, as specified

in clauses 13.2 to 13.3.

13.2 Effect of assigning a negating encoding instruction

An assignment of a negating encoding instruction (use of "NegatingInstruction") results in the removal (from the set of

associated encoding instructions) of any encoding instruction of the same category.

NOTE 1 – A negating encoding instruction never becomes part of the set of associated encoding instructions.

NOTE 2 – When an "Instruction" occurs as part of a "NegatingInstruction", the "Instruction" consists only of a keyword (for
example, NAME rather than NAME AS "a").

13.3 Multiple assignment of JER encoding instructions of the same category

NOTE – Multiple assignment of JER encoding instructions of the same category is expected to be rare, except where a JER
encoding instruction is assigned globally, and an overriding (possibly negating) encoding instruction is assigned to specific types
or components.

13.3.1 Assignments of positive encoding instructions (use of "PositiveInstruction") result in the addition (to the set of

associated encoding instructions) of that JER encoding instruction if there are no other associated encoding instructions

of the same category.

13.3.2 If there is an encoding instruction of the same category in the set of associated encoding instructions, then that

encoding instruction is removed from the set, and the assigned JER encoding instruction is added.

13.3.3 If a type that appears in a "ContentsConstraint", in a "TypeConstraint", or in a "TableConstraint" is to be

encoded by JER, then the final encoding instructions (as determined by the rules in 13.3.1 and 13.3.2) are used to

determine the encoding of that type. If a type appears in any other ASN.1 constraint, then all associated encoding

instructions are discarded.

14 The ARRAY encoding instruction

14.1 General

14.1.1 The "ArrayInstruction" is:

ArrayInstruction ::=
ARRAY

14.1.2 Application of this final encoding instruction to a sequence type causes the type to be encoded as a JSON array

instead of as a JSON object (see clause 27).

14.2 Restrictions

If the final encoding instructions for an ASN.1 type contain an ARRAY encoding instruction, then the type shall be a

sequence type. Any component of the sequence type that is either:

a) a component marked OPTIONAL or DEFAULT, or

b) an extension addition that is a "ComponentType", or

c) a component contained in an extension addition group

shall not be an open type, an extensible choice type with a final UNWRAPPED encoding instruction, or a type that produces

the JSON token null for one of its abstract values.

15 The BASE64 encoding instruction

15.1 General

15.1.1 The "Base64Instruction" is:

Base64Instruction ::=
BASE64

15.1.2 Application of this final encoding instruction to an octetstring type causes the type to be encoded as a Base64

string as specified in IETF RFC 2045, 6.8 (see clause 25).

ISO/IEC 8825-8:2021 (E)

12 Rec. ITU-T X.697 (02/2021)

15.2 Restrictions

If the final encoding instructions for an ASN.1 type contain a BASE64 encoding instruction then the type shall be an

octetstring type.

16 The NAME encoding instruction

16.1 General

16.1.1 The "NameInstruction" is:

NameInstruction ::=

 NAME AS NewNameOrKeyword

| NAME

NewNameOrKeyword ::=

 NewName

| Keyword

NewName ::=

 RestrictedCharacterStringValue

Keyword ::=
 CAPITALIZED

| UPPERCAMELCASED

| UPPERCASED

| LOWERCAMELCASED

| LOWERCASED

16.1.2 The first alternative of "NameInstruction" shall be used when the "NameInstruction" occurs in a

"PositiveInstruction" and the second alternative shall be used when the "NameInstruction" occurs in a

"NegatingInstruction".

16.1.3 This encoding instruction is normally assigned to the type of a component of a sequence, set, or choice type.

Since this encoding instruction is not inherited (see clause 9.9), its presence among the final encoding instructions of a

type has no effect on the JER encodings unless the type is the "Type" in the "NamedType" (possibly a "Type" that textually

occurs within one or more nested "PrefixedType"s) of a sequence, set, or choice component.

16.1.4 Application of this final encoding instruction to the type of a component of a sequence, set, or choice type

changes the Unicode string to be denoted by the name of the member identifying the component in the JER encoding.

The new name can be specified either as a replacement string (use of "NewName") or as a case change operation (use of

"Keyword") to be applied to the identifier of the component.

16.1.5 When the "Keyword" alternative is used, the new name shall be derived from the identifier by changing the

case of some of its characters as specified in the following subclauses.

16.1.5.1 If the "Keyword" is CAPITALIZED, then the first character of the identifier (a lower-case letter) shall be replaced

by its upper-case equivalent.

16.1.5.2 If the "Keyword" is UPPERCASED, then all characters of the identifier that are lower-case letters shall be replaced

by their upper-case equivalent. Other characters are unchanged.

16.1.5.3 If the "Keyword" is UPPERCAMELCASED, then

a) the first character of the identifier (a lower-case letter) shall be replaced by its upper-case equivalent;

b) all characters of the identifier that are lower-case letters and are preceded by a hyphen shall be replaced by

their upper-case equivalent; and

c) any hyphens present in the identifier shall be removed.

16.1.5.4 If the "Keyword" is LOWERCASED, then all characters of the identifier that are upper-case letters shall be replaced

by their lower-case equivalent. Other characters are unchanged.

16.1.5.5 If the "Keyword" is LOWERCAMELCASED, then

a) all characters of the identifier that are lower-case letters and are preceded by a hyphen shall be replaced by

their upper-case equivalent; and

b) any hyphens present in the identifier shall be removed.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 13

16.2 Restrictions

When this final encoding instruction is associated with the types of one or more components of a sequence, set or choice

type, the final set of Unicode character strings consisting of the unchanged strings and the new strings identifying the

components of the type shall not contain two identical strings.

17 The OBJECT encoding instruction

17.1 General

17.1.1 The "ObjectInstruction" is:

ObjectInstruction ::=
OBJECT

17.1.2 Application of this final encoding instruction to a set-of type whose component is a sequence type causes the

set-of type to be encoded as a JSON object instead of as a JSON array (see clause 30). The JSON object will contain one

member for each item of the set-of value.

NOTE – A typical use of this encoding instruction is to produce a JSON object that represents an unordered set of associations
between a key (a value of an ASN.1 type encoded as a JSON string) and a value of an arbitrary ASN.1 type. Such a set is often
called a "map".

17.2 Restrictions

If the final encoding instructions for an ASN.1 type contain an OBJECT encoding instruction, then the type shall be a set-

of type whose component type is a sequence type with two components and without an extension marker. The first

component of the sequence type shall be of one of the following types: IA5String, ISO646String, VisibleString,

NumericString, PrintableString, BMPString, UniversalString, UTF8String, or an enumerated type. Neither

component of the sequence type shall be marked OPTIONAL or DEFAULT.

18 The TEXT encoding instruction

18.1 General

18.1.1 The "TextInstruction" is:

TextInstruction ::=

 TEXT TextChangeList

| TEXT

TextChangeList ::=

 TextChange "," +

TextChange ::=

IdentifierOrAll AS NewTextOrKeyword

NewTextOrKeyword ::=

 NewText

| Keyword

NewText ::=

 RestrictedCharacterStringValue

IdentifierOrAll ::=

 identifier

| ALL

18.1.2 The first alternative of "TextInstruction" shall be used when the "TextInstruction" occurs in a

"PositiveInstruction" and the second alternative shall be used when the "TextInstruction" occurs in a

"NegatingInstruction".

18.1.3 The "Keyword" is defined in clause 16.

18.1.4 Application of this final encoding instruction to an enumerated type changes the Unicode character strings that

identify one or more enumeration items. Each new string can be specified either as a replacement string (use of

"NewText") or as a case change operation (use of "Keyword") to be applied to the identifier of the enumeration item as

specified in clause 16.1.5.

ISO/IEC 8825-8:2021 (E)

14 Rec. ITU-T X.697 (02/2021)

18.1.5 When the first alternative of "IdentifierOrAll" ("identifier") is used, the change specified by the

"NewTextOrKeyword" applies to the enumeration item with that identifier. When the second alternative of

"IdentifierOrAll" (ALL) is used, the change applies to all the enumeration items whose identifiers do not appear in this

TEXT encoding instruction.

18.2 Restrictions

18.2.1 If the final encoding instructions for an ASN.1 type contain a TEXT encoding instruction then the type shall be

an enumerated type.

18.2.2 Each enumeration identifier shall occur at most once in a TEXT encoding instruction. The second alternative of

"IdentifierOrAll" (ALL) shall occur at most once in a TEXT encoding instruction. When the "IdentifierOrAll" in a

"TextChange" is ALL, the "NewTextOrKeyword" shall be a "Keyword".

18.2.3 The final set of Unicode character strings consisting of the unchanged strings and the new strings identifying

the enumeration items shall not contain two identical strings.

19 The UNWRAPPED encoding instruction

19.1 General

19.1.1 The "UnwrappedInstruction" is:

UnwrappedInstruction ::=
UNWRAPPED

19.1.2 Application of this final encoding instruction to a choice type causes the values of the choice type to be encoded

as unwrapped (see clause 31).

19.2 Restrictions

19.2.1 If the final encoding instructions for an ASN.1 type contain an UNWRAPPED encoding instruction, then the type

shall be a choice type that satisfies the conditions in the following clauses, taking account of any final encoding

instructions present on the types of the alternatives or on their components and ignoring any constraints that are not JER-

visible.

19.2.2 For each of the following kinds of JSON values:

a) the JSON token null

b) the JSON token false

c) the JSON token true

d) a JSON number

e) a JSON string

f) a JSON array

there shall be at most one alternative that produces a JSON value of that kind for one or more abstract values that are

permitted by JER-visible constraints.

19.2.3 If the choice type has two or more alternatives that produce a JSON object for one or more abstract values that

are permitted by JER-visible constraints, then those alternatives shall be sequence or set types without an extension

marker. Each of those types may be either a sequence type or a set type. For any two such types, one of them shall have

at least one component not marked OPTIONAL or DEFAULT whose JSON member name string differs from the JSON

member name strings of all the components of the other.

NOTE – The text in this clause excludes any other ASN.1 type that can produce a JSON object for one or more of its abstract
values (certain real types, certain bit string types, set-of types with a final OBJECT encoding instruction, extensible sequence or set
types, choice types without a final UNWRAPPED encoding instruction, and certain choice types with a final UNWRAPPED encoding
instruction).

19.2.4 None of the alternatives of the choice type shall be an open type or an extensible choice type with a final

UNWRAPPED encoding instruction.

20 Encoding of boolean values

The encoding of a boolean value shall be one of the two JSON tokens false and true, denoting the boolean values

FALSE and TRUE, respectively.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 15

NOTE – The use of quotation marks around false or true is forbidden.

21 Encoding of integer values

The encoding of an integer value shall be a JSON number denoting the value, with no fractional part and no exponent.

NOTE – The use of quotation marks around the number is forbidden. Superfluous leading zeros are forbidden.

22 Encoding of enumerated values

22.1 The encoding of an enumerated value shall be a JSON string.

22.2 If the enumerated type has a final TEXT encoding instruction and the instruction changes the string assigned to

the chosen enumeration item, the Unicode character string denoted by the JSON string shall be the string produced by the

instruction; otherwise, the Unicode character string denoted by the JSON string shall be the identifier of the chosen

enumeration item.

NOTE – The use of quotation marks around the identifier or the string produced by the TEXT encoding instruction is required. The
use of escapes is allowed in all JSON strings.

23 Encoding of real values

23.1 General

23.1.1 If the real value is one of the special values -0, MINUS-INFINITY, PLUS-INFINITY, and NOT-A-NUMBER, it

shall be encoded as specified in clause 23.2.

23.1.2 If the real value is 0 or the base of the real value is 2, then the real value shall be encoded as specified in clause

23.3.

23.1.3 If neither 23.1.1 nor 23.1.2 applies, then the encoding of a real value depends on the effective value constraint

of the base of the real type, which shall be determined as follows:

a) if there are no JER-visible constraints, the effective value constraint of the base is an integer range that

includes both the value 2 and the value 10;

b) if there is an inner type constraint on the real type, the effective value constraint of the base is the one

resulting from the JER-visible constraint that the inner type constraint applies to the base component;

c) when two or more JER-visible constraints are combined into an INTERSECTION construction, they result

in a JER-visible constraint (see clause 7.2.4); the effective value constraint of the base is the intersection

of all the effective value constraints of the bases in the members of the INTERSECTION construction;

d) when two or more JER-visible constraints are combined into a UNION construction, they result in a JER-

visible constraint (see clause 7.2.5); the effective value constraint of the base is the smallest integer range

that includes all the effective value constraints of the bases in the members of the UNION construction;

e) when an EXCEPT clause is present, it is ignored.

23.1.4 If the effective value constraint of the base includes only the value 10, then the real value shall be encoded as

specified in clause 23.3.

23.1.5 Otherwise, the real value shall be encoded as specified in clause 23.4.

23.2 Encoding of the special real values

The real value shall be encoded as a JSON string. The Unicode character string denoted by the JSON string shall be the

one specified in Table 2.

Table 2 – Encoding of the real special values

Value Unicode character

string

-0 "-0"

MINUS-INFINITY "-INF"

PLUS-INFINITY "INF"

NOT-A-NUMBER "NaN"

ISO/IEC 8825-8:2021 (E)

16 Rec. ITU-T X.697 (02/2021)

23.3 Encoding as a JSON number

The real value shall be encoded as a JSON number denoting the value.

23.4 Encoding as a JSON object

The real value shall be encoded as a JSON object with a single member. The Unicode character string denoted by the

name of the member shall be "base10Value" and the value of the member shall be a JSON number denoting the value.

NOTE – The use of escapes is allowed in all JSON strings.

EXAMPLES

Any base-2 value of the real type denoted by REAL is encoded as a JSON number.

Any base-10 value of the real type denoted by REAL is encoded as a JSON object as specified in clause 23.4.

The value MINUS-INFINITY of the real type denoted by REAL is encoded as the JSON string "-INF". Note that the use

of escapes is allowed in all JSON strings.

Any value of the real type denoted by REAL (0 | WITH COMPONENTS { mantissa (-99999..99999), base (2),

exponent (-55..55)}) is encoded as a JSON number. This real type includes a set of base-2 values, including the real

value 0, but does not include the special real values -0, MINUS-INFINITY, PLUS-INFINITY, and NOT-A-NUMBER.

Any value of the real type denoted by REAL (0 | WITH COMPONENTS { mantissa

(-999999999999..999999999999), base (10), exponent (-20..20)}) is encoded as a JSON number. This

real type includes a set of base-10 values, including the real value positive zero, but does not include the special real

values -0, MINUS-INFINITY, PLUS-INFINITY, and NOT-A-NUMBER.

24 Encoding of bitstring values

24.1 General

The encoding of a bitstring value depends on the JER-visible constraints of the bitstring type as follows:

a) if the lower and upper bounds of the effective size constraint are identical, then the value shall be encoded

as specified in clause 24.2;

b) otherwise, if the bitstring type has a JER-visible contents constraint, then the value shall be encoded either

as specified in clause 24.3 or as specified in clause 24.4 as a sender’s option;

c) otherwise, the value shall be encoded as specified in clause 24.3.

24.2 Encoding of bitstring types with a fixed size

24.2.1 The encoding of a bitstring value with a fixed size shall be a JSON string. The Unicode character string denoted

by the JSON string shall consist of an even number of the hexadecimal digits 0123456789abcdefABCDEF, with each

consecutive pair of digits encoding one group of eight consecutive bits in the bitstring value. If the length of the bitstring

value is not a multiple of 8 bits, the bitstring value shall be encoded as if it contained extra bits, up to the next multiple of

8, all set to zero. If the bitstring value is empty, the JSON string shall be empty.

NOTE – The use of escapes is allowed in all JSON strings.

24.2.2 When Rec. ITU-T X.680 | ISO/IEC 8824-1, 22.7, applies (i.e., the bitstring type is defined with a

"NamedBitList"), the bitstring value shall be encoded after trailing 0 bits have been added or removed as necessary to

satisfy the effective size constraint.

24.3 Encoding of bitstring types with a variable size

The encoding of a bitstring value with a variable size shall be a JSON object with the following members:

a) "value", whose value shall be a JSON string encoding the bitstring value as specified in clause 24.2.1 for

a bitstring type with a fixed size;

b) "length", whose value shall be a JSON number indicating the length of the bitstring value (in bits). The

JSON number shall have no fractional part and no exponent.

24.4 Alternative encoding of bitstring types with a JER-visible contents constraint

The bitstring value shall be encoded as a JSON object with a single member. The Unicode character string denoted by

the name of the member shall be “containing”. The value of the member shall be the JER encoding of the contained

value.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 17

25 Encoding of octetstring values

25.1 General

The encoding of an octetstring value depends on the JER-visible constraints and the final encoding instructions of the

octetstring type as follows:

a) if the octetstring type has a final BASE64 encoding instruction, then the value shall be encoded as specified

in clause 25.2;

b) otherwise, if the octetstring type has a JER-visible contents constraint, then the value shall be encoded

either as specified in clause 25.3 or as specified in clause 25.4 as a sender’s option;

c) otherwise, the value shall be encoded as specified in clause 25.3.

25.2 Encoding of an octetstring value as a JSON string containing a Base64 encoding

(This clause applies only to the values of an octetstring type with a final BASE64 encoding instruction.) The octetstring

value shall be encoded as a JSON string. The Unicode character string denoted by the JSON string shall be the Content-

Transfer-Encoding, specified in IETF RFC 2045, 6.8, of the octetstring value, except that the 76-character limit does not

apply.

NOTE – The use of escapes is allowed in all JSON strings.

25.3 Encoding of an octetstring value as a JSON string containing a hexadecimal encoding

The octetstring value shall be encoded as a JSON string. The Unicode character string denoted by the JSON string shall

consist of an even number of the hexadecimal digits 0123456789abcdefABCDEF, with each consecutive pair of digits

encoding one octet in the octetstring value. If the octetstring value is empty, the JSON string shall be empty.

NOTE – The use of escapes is allowed in all JSON strings.

25.4 Alternative encoding of an octetstring type with a JER-visible contents constraint

The octetstring value shall be encoded as a JSON object with a single member. The Unicode character string denoted by

the name of the member shall be "containing". The value of the member shall be the JER encoding of the contained value.

26 Encoding of the null value

The encoding of the null value shall be the JSON token null.

27 Encoding of sequence values

27.1 General

The encoding of a sequence value depends on the presence of a final ARRAY encoding instruction on the sequence type.

If an ARRAY encoding instruction is present, clause 27.2 applies, otherwise clause 27.3 applies.

27.2 Array-based encoding

27.2.1 The encoding of a value of a sequence type having a final ARRAY encoding instruction shall be a JSON array

having one element for each component of the sequence type, except as specified in clause 27.2.2. First, an element shall

be added to the JSON array for each component of the extension root in textual order, except as specified in clause 27.2.2;

then, an element shall be added for each extension addition that is a "ComponentType" and for each component contained

in an extension addition group, in textual order, except as specified in clause 27.2.2. Each array element corresponding

to a component that is present in the sequence value shall be the JER encoding of that component's value. Each array

element corresponding to a component that is absent in the sequence value shall be the JSON token null.

27.2.2 Any number of instances of the JSON token null may be omitted from the end of the JSON array, as a sender's

option.

27.3 Object-based encoding

27.3.1 The encoding of a value of a sequence type not having a final ARRAY encoding instruction shall be a JSON

object that has one member for each component of the sequence value that is present and that may have additional

members as specified in clause 27.3.4. Each member of a JSON object has a name, which is a JSON string (see ECMA-

404, clause 6).

27.3.2 For each component that is present:

ISO/IEC 8825-8:2021 (E)

18 Rec. ITU-T X.697 (02/2021)

a) if the type of the component has a final NAME encoding instruction, the Unicode character string denoted

by the name of the member of the JSON object shall be the name produced by the instruction; otherwise,

the Unicode character string denoted by the name of the member shall be the identifier of the component;

b) the value of the member shall be the JER encoding of the value of that component.

27.3.3 The components of the sequence value may be added to the encoding in any order.

NOTE – The use of quotation marks around each component identifier is required. The use of escapes is allowed in all JSON
strings.

27.3.4 For each component marked OPTIONAL or DEFAULT whose type is not an open type, an extensible choice type

with a final UNWRAPPED encoding instruction or a type that produces the JSON token null for one of its abstract values

and which is absent in the sequence value, an additional member may be included in the encoding of the sequence value.

The Unicode character string denoted by the name of the member shall be determined as for a component that is present

in the sequence value, and the value of the member shall be the JSON token null.

NOTE – The types that produce the JSON token null, besides certain open types, are the null type and choice types with a final
UNWRAPPED encoding instruction having an alternative that produces the JSON token null for one of its abstract values.

28 Encoding of sequence-of values

The encoding of a sequence-of value shall be a JSON array having one element for each occurrence of the component of

the sequence-of type in the sequence-of value, in the same order. Each element of the JSON array shall be the JER

encoding of the corresponding item of the sequence-of value.

29 Encoding of set values

A value of a set type shall be encoded as if the type had been declared a sequence type.

NOTE – The object-based encoding (see clause 27.3) is always used for a set value because a set type is not allowed to have a final
ARRAY encoding instruction.

30 Encoding of set-of values

30.1 General

The encoding of a set-of value depends on the presence of a final OBJECT encoding instruction on the set-of type. If an

OBJECT encoding instruction is present, clause 30.3 applies, otherwise clause 30.2 applies.

30.2 Array-based encoding

The encoding of a value of a set-of type not having a final OBJECT encoding instruction shall be a JSON array having one

element for each occurrence of the component of the set-of type in the set-of value, in any order. Each element of the

JSON array shall be the JER encoding of one item of the set-of value.

30.3 Object-based encoding

NOTE – A set-of type can have a final OBJECT encoding instruction only if the component type of the set-of type is a sequence
type with two components, a "key" type (an ASN.1 type encoded as a JSON string) and a "value" type (an arbitrary ASN.1 type),
in this order (see clause 17). The identifiers of the two components do not matter.

30.3.1 The encoding of a value of a set-of type having a final OBJECT encoding instruction shall be a JSON object that

has one member for each occurrence of the component of the set-of type in the set-of value. Each member of a JSON

object has a name, which is a JSON string (see ECMA-404, clause 6).

30.3.2 For each item of the set-of value (a sequence value):

a) the Unicode character string denoted by the name of the member shall be the JER encoding of the value

of the first component of the sequence value;

 NOTE – If the type of the first component is an enumerated type with a final TEXT encoding instruction, the Unicode
character string denoted by the name of the member is the one that results from the application of that instruction.

b) the value of the member shall be the JER encoding of the second component of the sequence value.

30.3.3 The items of the set-of value may be added to the encoding in any order.

NOTE – The use of escapes is allowed in all JSON strings.

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 19

31 Encoding of choice values

31.1 General

The encoding of a choice value depends on the presence of a final UNWRAPPED encoding instruction on the choice type.

If an UNWRAPPED encoding instruction is present, clause 31.2 applies, otherwise clause 31.3 applies.

31.2 Unwrapped encoding

The encoding of a value of a choice type having a final UNWRAPPED encoding instruction shall be the encoding of the

chosen alternative.

NOTE – In the unwrapped encoding, the choice type is encoded by omitting the left brace ("{"), the name of the chosen alternative,
the colon (":"), and the final right brace ("}").The unwrapped encoding relies on the decoder's ability to identify the alternative that
was encoded by examining the JER encoding of the alternative since there is no explicit indication of which alternative was
encoded.

31.3 Wrapped encoding

31.3.1 The encoding of a value of a choice type not having a final UNWRAPPED encoding instruction shall be a JSON

object having exactly one member. Each member of a JSON object has a name, which is a JSON string (see ECMA-404,

clause 6).

31.3.2 The only member of the JSON object shall be as follows:

a) if the type of the chosen alternative has a final NAME encoding instruction, the Unicode character string

denoted by the name of the member of the JSON object shall be the name produced by the instruction;

otherwise, the Unicode character string denoted by the name of the member shall be the identifier of the

chosen alternative;

b) the value of the member shall be the JER encoding of the value of the chosen alternative.

NOTE – The use of quotation marks around the identifier is required.

32 Encoding of object identifier values

The encoding of an object identifier value shall be a JSON string. The Unicode character string denoted by the JSON

string shall be an instance of the "XMLObjectIdentifierValue" production denoting the value (see Rec. ITU-T X.680 |

ISO/IEC 8824-1, 32.3).

33 Encoding of relative object identifier values

The encoding of a relative object identifier value shall be a JSON string. The Unicode character string denoted by the

JSON string shall be an instance of the "XMLRelativeOIDValue" production denoting the value (see Rec. ITU-T X.680

| ISO/IEC 8824-1, 33.3).

34 Encoding of values of the internationalized resource reference type

The encoding of a value of the internationalized resource reference type shall be a JSON string. The Unicode character

string denoted by the JSON string shall be an instance of the "XMLIRIValue" production denoting the value (see

Rec. ITU-T X.680 | ISO/IEC 8824-1, 34.3).

35 Encoding of values of the relative internationalized resource reference type

The encoding of a value of the relative internationalized resource reference type shall be a JSON string. The Unicode

character string denoted by the JSON string shall be an instance of the "XMLRelativeIRIValue" production denoting the

value (see Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 35.3).

36 Encoding of values of the embedded-pdv type

The encoding of a value of the embedded-pdv type shall consist of the JER encoding of the sequence type specified in

Rec. ITU-T X.680 | ISO/IEC 8824-1, 36.5. The value of the data-value component (of type OCTET STRING) shall be

the octets which form the complete encoding of the single data value referenced in Rec. ITU-T X.680 | ISO/IEC 8824-1,

36.3 a).

ISO/IEC 8825-8:2021 (E)

20 Rec. ITU-T X.697 (02/2021)

37 Encoding of values of the external type

37.1 The encoding of a value of the external type shall consist of the encoding of the sequence type specified in Rec.

ITU-T X.691 | ISO/IEC 8825-2, 29.1.

37.2 Rec. ITU-T X.691 | ISO/IEC 8825-2, clauses 29.2 to 29.11, apply, with the following modifications:

a) the reference to "This Recommendation | International Standard" (meaning Rec. ITU-T X.691 |

ISO/IEC 8825-2) present in those clauses shall be read as a reference to this Recommendation |

International Standard;

b) the reference to Rec. ITU-T X.691 | ISO/IEC 8825-2, 11.2 (encoding of open type fields) present in those

clauses shall be read as a reference to clause 41 of this Recommendation | International Standard.

38 Encoding of values of the restricted character string types

38.1 The encoding of a character string value of one of the types IA5String, ISO646String, VisibleString,

NumericString, PrintableString, BMPString, UniversalString, and UTF8String, shall be a JSON string.

The Unicode character string denoted by the JSON string shall be the character string value.

NOTE – The use of escapes is allowed in all JSON strings.

38.2 A value of one of the remaining restricted character string types (TeletexString, T61String,

VideotexString, GraphicString, and GeneralString) shall be encoded as if it were an octetstring value consisting

of the octets specified in Rec. ITU-T X.690 | ISO/IEC 8825-1, 8.23.5.

39 Encoding of values of the unrestricted character string type

The encoding of a value of the CHARACTER STRING type shall consist of the encoding of the type defined in Rec. ITU-T

X.680 | ISO/IEC 8824-1, 44.5. The value of the string-value component (of type OCTET STRING) shall be the octets

which form the complete encoding of the character string value referenced in Rec. ITU-T X.680 | ISO/IEC 8824-1,

44.3 a).

40 Encoding of values of the time types

The encoding of a time value shall be a JSON string. The Unicode character string denoted by the JSON string shall be

an instance of the "XMLTimeValue" production denoting the value (see Rec. ITU-T X.680 | ISO/IEC 8824-1, 38.3.2).

41 Encoding of open type values

NOTE – An open type is an ASN.1 type that can take any abstract value of any ASN.1 type. Each value of an open type consists
of:

a) a contained type; and

b) a value of the contained type.

The encoding of an open type value shall be the encoding of the value of the contained type.

42 Object identifier values referencing the encoding rules

42.1 The encoding rules specified in this Recommendation | International Standard can be referenced and applied

whenever there is a need to specify an unambiguous character string representation for the values of a single identified

ASN.1 type.

42.2 The following object identifier and object descriptor values are assigned to identify the encoding rules specified

in this Recommendation | International Standard:

 For JER:
 {joint-iso-itu-t asn1 (1) jer-encoding (7) }

 "JER encoding of a single ASN.1 type"

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 21

Annex A

Examples of JER encodings

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex illustrates the use of the JavaScript Object Notation Encoding Rules specified in this Recommendation |

International Standard by showing the representation in octets of a (hypothetical) personnel record which is defined using

ASN.1. It also contains additional examples of JER encodings.

A.1 ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described as follows using ASN.1 specified in

Rec. ITU-T X.680 | ISO/IEC 8824-1. This is identical to the example defined in Rec. ITU-T X.690 | ISO/IEC 8825-1,

Annex A.

PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {

 name Name,

 title [0] VisibleString,

 number EmployeeNumber,

 dateOfHire [1] Date,

 nameOfSpouse [2] Name,

 children [3] IMPLICIT

 SEQUENCE OF ChildInformation DEFAULT {} }

ChildInformation ::= SET

 { name Name,

 dateOfBirth [0] Date}

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE

 { givenName VisibleString,

 initial VisibleString,

 familyName VisibleString}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMMDD

NOTE – Tags are used in this example only because it was felt appropriate to use the identical example to that which appeared in
the earliest version of Rec. ITU-T X.680 | ISO/IEC 8824-1. The tags used in this example have no effect on the JER encodings.

A.2 ASN.1 description of a record value

The value of John Smith's personnel record is formally described as follows using the basic ASN.1 value notation:

{ name {givenName "John", initial "P", familyName "Smith"},

 title "Director",

 number 51,

 dateOfHire "19710917",

 nameOfSpouse {givenName "Mary", initial "T", familyName "Smith"},

 children

 {{name {givenName "Ralph", initial "T", familyName "Smith"},

 dateOfBirth "19571111"},

 {name {givenName "Susan", initial "B", familyName "Jones"},

 dateOfBirth "19590717"}}}

A.3 Example JER representation of this record value

A possible representation of the record value given in A.2 (after applying the JavaScript Object Notation Encoding Rules

defined in this Recommendation | International Standard) is as follows.

 {

 "name" : {

 "givenName" : "John",

 "initial" : "P",

 "familyName" : "Smith"

 },

 "title" : "Director",

 "number" : 51,

 "dateOfHire" : "19710917",

 "nameOfSpouse" : {

 "givenName" : "Mary",

ISO/IEC 8825-8:2021 (E)

22 Rec. ITU-T X.697 (02/2021)

 "initial" : "T",

 "familyName" : "Smith"

 },

 "children" : [

 {

 "name" : {

 "givenName" : "Ralph",

 "initial" : "T",

 "familyName" : "Smith"

 },

 "dateOfBirth": "19571111"

 },

 {

 name : {

 "givenName" : "Susan",

 "initial" : "B",

 "familyName" : "Jones"

 },

 "dateOfBirth" : "19590717"

 }

]

 }

A.4 Additional examples of JER encodings

In the following examples, it is understood that whenever a JSON string appears in an encoding, any other JSON string

denoting the same Unicode character string (e.g., by the use of escapes) can appear in its place. This also applies to the

fixed JSON strings that are specified in this Recommendation | International Standard, such as "value" and "NaN". It is

also understood that whenever a JSON object appears in an encoding, its members can occur in an arbitrary order.

Consider the following ASN.1 definitions:

MyInteger ::= INTEGER (0..1500)

MyEnumerated ::= ENUMERATED { red, yellow, green }

MyReal ::= REAL (0 |

 WITH COMPONENTS { mantissa (-999999999999.. 999999999999), base (10), exponent (-

100..100)})

MyBitString1 ::= BIT STRING (SIZE (10))

MyBitString2 ::= BIT STRING (SIZE (10), ...)

MyOctetString ::= OCTET STRING (SIZE (4))

MySequence1 ::= SEQUENCE {

 a INTEGER OPTIONAL,

 b BOOLEAN,

 c UTF8String

}

MySequence2 ::= SEQUENCE {

 x MyReal,

 y MySequence1,

 ...

}

MySequenceOf1 ::= SEQUENCE (SIZE (1..16)) OF INTEGER

MySequenceOf2 ::= SEQUENCE OF MySequence1

MyChoice ::= CHOICE {

 a MySequence1,

 b UniversalString

}

The boolean value
 x BOOLEAN ::= TRUE

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 23

will be encoded as
 true

The integer values
 x1 INTEGER ::= 100

 x2 MyInteger ::= 100

will both be encoded as
 100

The enumerated value
 x MyEnumerated ::= red

will be encoded as
 "red"

The real value
 x REAL ::= 14

will be encoded as
 { "base10Value" : 14 }

because the value denoted by x is a base-10 real abstract value and the real type is unconstrained.

The real value
 x REAL ::= { mantissa 14, base 2, exponent 0 }

will be encoded as
 14

because the value denoted by x is a base-2 real abstract value (14×20).

The real value
 x REAL ::= NOT-A-NUMBER

will be encoded as
 "NaN"

The real value
 x MyReal ::= 14.56

will be encoded as
 14.56

because the constraint restricts the base to 10. This value can also be encoded as any other JSON number denoting the

same numeric value (e.g., 0.145600e2).

The value
 x MyBitString1 ::= '0101010101'B

will be encoded as
 "5540"

because the length (10) is implied by the size constraint.

The value
 x BIT STRING ::= '0101010101'B

will be encoded as
 { "length" : 10, "value" : "5540" }

The value
 x MyBitString2 ::= '0101010101'B

will be encoded as
 { "length" : 10, "value" : "5540" }

because the size constraint contains an extension marker and therefore is not JER-visible.

The values
 x1 OCTET STRING ::= 'EABC001E'H

 x2 MyOctetString ::= 'EABC001E'H

will both be encoded as
 "EABC001E"

ISO/IEC 8825-8:2021 (E)

24 Rec. ITU-T X.697 (02/2021)

The value
 x NULL ::= NULL

will be encoded as
 null

The value
 x MySequence1 ::= { a 123, b TRUE, c "Hello" }

will be encoded as
 { "a" : 123, "b" : true, "c" : "Hello" }

The value
 x MySequence1 ::= { b TRUE, c "Hello" }

will be encoded as
 { "b" : true, "c" : "Hello" }

or as the same JSON object with its members encoded in a different order ({ "c" : "Hello", "b" : true }).

The value
 x MySequence2 ::= { x -3.1415, y { b TRUE, c "Hello" }}

will be encoded as
 { "x" : -3.1415, "y" : { "b" : true, "c" : "Hello" }}

(an extension marker in a sequence type has no effect on the encoding).

The value
 x MySequenceOf1 ::= { 1, 2, 3 }

will be encoded as
 [1, 2, 3]

The value
 x MySequenceOf2 ::= {{ b TRUE, c "one" }, { a 99, b FALSE, c "two" }}

will be encoded as
 [{ "b" : true, "c" : "one" }, { "a" : 99, "b" : false, "c" : "two" }]

The value
 x MyChoice ::= b : "mouse"

will be encoded as
 { "b" : "mouse" }

The values
 x1 OBJECT IDENTIFIER ::= { iso standard 8571 application-context (1) }

 x2 OBJECT IDENTIFIER ::= { 1 0 8571 1 }

will both be encoded as
 "1.0.8571.1"

The values
 x1 VisibleString ::= "ABCDEabcde12345(/)"

 x2 IA5String ::= "ABCDEabcde12345(/)"

 x3 BMPString ::= "ABCDEabcde12345(/)"

 x4 UTF8String ::= "ABCDEabcde12345(/)"

 x5 UniversalString ::= "ABCDEabcde12345(/)"

 x6 PrintableString ::= "ABCDEabcde12345(/)"

will all be encoded as
 "ABCDEabcde12345(/)"

The value
 x TIME ::= "2014-12-31T23:59:59"

will be encoded as
 "2014-12-31T23:59:59"

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 25

Annex B

Examples of JER encoding instructions and their effect on the encodings

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex illustrates the use of the JER encoding instructions specified in this Recommendation | International Standard

and their effect on the JER encodings.

B.1 ASN.1 description of the record structure

The following ASN.1 module contains a few type definitions some of which have JER encoding instructions. The module

also contains a JER encoding control section.

JER-Examples DEFINITIONS JER INSTRUCTIONS AUTOMATIC TAGS ::=

BEGIN

PersonnelRecord ::= SET {

 name Name,

 title VisibleString,

 number EmployeeNumber,

 dateOfHire [NAME AS "date of hire"] Date,

 nameOfSpouse [NAME AS "name of spouse"] Name,

 category [TEXT employee AS "#", contractor AS "@"] ENUMERATED {

employee, contractor },

 children SEQUENCE OF ChildInformation DEFAULT {},

 assignedVehicle [NAME AS "assigned vehicle"] Vehicle,

 certificate [BASE64] OCTET STRING

}

ChildInformation ::= SET {

 name Name,

 dateOfBirth [NAME AS "date of birth"] Date

}

Name ::= SEQUENCE {

 givenName VisibleString,

 initial VisibleString,

 familyName VisibleString

}

EmployeeNumber ::= INTEGER

Date ::= VisibleString (SIZE(8)) -- YYYYMMDD

Vehicle ::= [UNWRAPPED] CHOICE {

 bicycle ENUMERATED { road, mountain, hybrid },

 car MakeAndModel,

 other INTEGER -- number of axles

}

MakeAndModel ::= SEQUENCE {

 make UTF8String,

 model UTF8String

}

ENCODING-CONTROL JER

 [ARRAY] SEQUENCE

END

B.2 ASN.1 description of a record value

The value of John Smith's personnel record is formally described as follows using the basic ASN.1 value notation:

{

 name {givenName "John", initial "P", familyName "Smith"},

 title "Director",

 number 51,

 dateOfHire "19710917",

 nameOfSpouse {givenName "Mary", initial "T", familyName "Smith"},

 category employee,

 children {{name {givenName "Ralph", initial "T", familyName "Smith"},

 dateOfBirth "19571111"},

ISO/IEC 8825-8:2021 (E)

26 Rec. ITU-T X.697 (02/2021)

 {name {givenName "Susan", initial "B", familyName "Jones"},

 dateOfBirth "19590717"}},

 assignedVehicle car : {make "FIAT", model "500"},

 certificate '0102030405FFEE88AACC'H

}

B.3 JER representation of this record value

The representation of the record value given in B.2 (after applying the JER defined in this Recommendation | International

Standard) is as follows.

 {

 "name" : ["John", "P", "Smith"],

 "title" : "Director",

 "number" : 51,

 "date of hire" : "19710917",

 "name of spouse" : ["Mary", "T", "Smith"],

 "category" : "#",

 "children" : [

 {

 "name" : ["Ralph", "T", "Smith"],

 "date of birth": "19571111"

 },

 {

 name : ["Susan", "B", "Jones"],

 "date of birth" : "19590717"

 }

],

 "assigned vehicle" : ["FIAT", "500"],

 "certificate" : "AQIDBAX/7oiqzA=="

 }

B.4 Additional examples of JER encodings

In the following examples, it is understood that whenever a JSON string appears in an encoding, any other JSON string

denoting the same Unicode character string (e.g., by the use of escapes) can appear in its place. This also applies to the

fixed JSON strings that are specified in this Recommendation | International Standard, such as "value" and "NaN". It is

also understood that whenever a JSON object appears in an encoding, its members can occur in an arbitrary order.

Consider the following ASN.1 definitions:

MyEnumerated ::= ENUMERATED { red, yellow, green }

MyEnumerated2 ::= [TEXT ALL AS UPPERCASED] MyEnumerated

MyEnumerated3 ::= [NOT TEXT] MyEnumerated

MyOctetString ::= [BASE64] OCTET STRING

MySequence1 ::= SEQUENCE {

 a NAME ["_A_"] INTEGER OPTIONAL,

 b NAME ["_B_"] BOOLEAN,

 c NAME ["_C_"] UTF8String

}

MySequence2 ::= [ARRAY] SEQUENCE {

 x MyReal,

 y MySequence1,

 ...

}

MySequenceOf2 ::= SEQUENCE OF MySequence1

MySetOf ::= SET OF SEQUENCE {

 key UTF8String,

 value SEQUENCE {

 a INTEGER,

 b BOOLEAN OPTIONAL

 }

}

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 27

MySetOf2 ::= [OBJECT] MySetOf

Assume that the preceding definitions appear in an ASN.1 module with the following JER encoding control section:

ENCODING-CONTROL JER

 [TEXT ALL AS CAPITALIZED] ENUMERATED

END

The enumerated value
 x MyEnumerated ::= red

will be encoded as
 "Red"

because the encoding instruction TEXT ALL AS CAPITALIZED specified in the JER encoding control section is associated

by default with all the enumerated types in the ASN.1 module, including MyEnumerated.

The enumerated value
 x2 MyEnumerated2 ::= red

will be encoded as
 "RED"

because the encoding instruction TEXT ALL AS CAPITALIZED specified in the encoding control section is overridden

by the encoding instruction TEXT ALL AS UPPERCASED assigned to the type MyEnumerated2.

The enumerated value
 x3 MyEnumerated3 ::= red

will be encoded as
 "red"

because the encoding instruction TEXT ALL AS CAPITALIZED specified in the encoding control section is cancelled by

the negating encoding instruction NOT TEXT assigned to the type MyEnumerated3.

The value
 x MyOctetString ::= '0102030405FFEE88AACC'H

will be encoded as
 "AQIDBAX/7oiqzA=="

The value
 x MySequence1 ::= { a 123, b TRUE, c "Hello" }

will be encoded as
 { "_A_" : 123, "_B_" : true, "_C_" : "Hello" }

The value
 x MySequence1 ::= { b TRUE, c "Hello" }

will be encoded as
 { "_B_" : true, "_C_" : "Hello" }

or as the same JSON object with its members encoded in a different order ({ "_C_" : "Hello", "b" : true }).

The value
 x MySequence2 ::= { x -3.1415, y { b TRUE, c "Hello" }}

will be encoded as
 [-3.1415, { "_B_" : true, "_C_" : "Hello" }]

(an extension marker in a sequence type has no effect on the encoding).

The value

 x MySetOf ::= {

 { key "XDHASD",

 value { a -3716, b TRUE }},

 { key "JJHAATU",

 value { a 916 }},

 { key "EEULZWI",

ISO/IEC 8825-8:2021 (E)

28 Rec. ITU-T X.697 (02/2021)

 value { a 4515, b FALSE }}

 }

will be encoded as

 [

 { "key" : "XDHASD",

 "value" : { "a" : -3716, "b" : true }},

 { "key" : "JJHAATU",

 "value" : { "a" : 916 }},

 { "key" : "EEULZWI",

 "value" : { "a" :4515, "b" : false}}

]

The value

 x MySetOf2 ::= {

 { key "XDHASD",

 value { a -3716, b TRUE }},

 { key "JJHAATU",

 value { a 916 }},

 { key "EEULZWI",

 value { a 4515, b FALSE }}

 }

will be encoded as

 {

 { "XDHASD" : { "a" : -3716, "b" : true }},

 { "JJHAATU" : { "a" : 916 }},

 { "EEULZWI" : { "a" :4515, "b" : false}}

 }

B.5 Examples of JER encodings of choice types

Several choice type definitions follow. For each type definition, a few value assignments and the corresponding JER

encodings are shown.

MyChoice1 ::= CHOICE {

 a SEQUENCE { q BOOLEAN },

 b UniversalString

}

MyChoice2 ::= [UNWRAPPED] MyChoice1

Value assignment JER encoding Notes

x MyChoice1 ::= b : "mouse" { "b" : "mouse" } This choice type has wrapped encodings.

x MyChoice2 ::= b : "mouse" "mouse" This choice type has unwrapped encodings. The two

alternatives of the choice type are encoded as a JSON

object and as a JSON string, respectively. The JER

decoder will determine which alternative is present

based on the syntax of the JSON text present.

MyChoice3 ::= [UNWRAPPED] CHOICE {

 a INTEGER,

 b NULL,

 c BOOLEAN,

 d UTF8String,

 e SEQUENCE OF INTEGER,

 f SEQUENCE { w ENUMERATED { enabled } OPTIONAL }

}

ISO/IEC 8825-8:2021 (E)

 Rec. ITU-T X.697 (02/2021) 29

Value assignment JER encoding Notes

x MyChoice3 ::= a : 14 14 This choice type has unwrapped encodings.

The JER decoder will determine which

alternative is present based on the syntax of

the JSON text present.

x MyChoice3 ::= b : NULL null

x MyChoice3 ::= c : TRUE true

x MyChoice3 ::= d : "ASN.1" "ASN.1"

x MyChoice3 ::= e : { -13, 16 }} [-13, 16]

x MyChoice3 ::= f : { w "enabled"} { "w" : "enabled" }

MyChoice4 ::= CHOICE {

 s1 SEQUENCE {

 a INTEGER,

 b BOOLEAN,

 c BOOLEAN OPTIONAL

 },

 s2 SEQUENCE {

 a INTEGER,

 b BOOLEAN OPTIONAL,

 c BOOLEAN

 }

}

Value assignment JER encoding Notes

x MyChoice4 ::= s1 : { a 77, b

FALSE }

{ "s1" : { "a" : 77, "b" : false }} This choice type has wrapped

encodings
x MyChoice4 ::= s2 : { a 154, b

TRUE, c FALSE }

{ "s2" : { "a" : 154, "b" : true, "c" :

false }}

MyChoice5 ::= [UNWRAPPED] CHOICE {

 s1 SEQUENCE {

 a INTEGER,

 b BOOLEAN,

 c BOOLEAN OPTIONAL

 },

 s2 [ARRAY] SEQUENCE {

 a INTEGER,

 b BOOLEAN OPTIONAL,

 c BOOLEAN

 }

}

Value assignment JER encoding Notes

x MyChoice5 ::= s1 : {

a 77, b FALSE }

{ "a" : 77, "b" : false } This choice type has unwrapped encodings. The

JER decoder will determine which alternative is

present based on the syntax of the JSON text

present.

x MyChoice5 ::= s2 : {

a 154, b TRUE, c FALSE

}

[154, true, false]

Printed in Switzerland
Geneva, 2021

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T X.697 (02/2021) Information technology – ASN.1 encoding rules: Specification of JavaScript Object Notation Encoding Rules (JER)
	Summary
	History
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 Specification of basic notation
	3.2 Information object specification
	3.3 Constraint specification
	3.4 Parameterization of ASN.1 specification
	3.5 Basic Encoding Rules (BER)
	3.6 Packed Encoding Rules (PER)
	3.7 Additional definitions

	4 Abbreviations
	5 Encodings specified by this Recommendation | International Standard
	6 Conformance
	7 General provisions
	7.1 Use of the type notation
	7.2 Constraints
	7.3 Type and value model used for encoding
	7.4 Types to be encoded
	7.5 Encoding instructions
	7.6 Production of a complete JER encoding

	8 Notation, lexical items and keywords used in JER encoding instructions
	9 Specifying JER encoding instructions
	10 Assigning a JER encoding instruction using a type prefix
	11 Assigning a JER encoding instruction using a JER encoding control section
	12 Identification of the targets for a JER encoding instruction
	12.1 General rules
	12.2 Types defined in the module
	12.3 Built-in types
	12.4 Types imported from another module

	13 Multiple assignment of JER encoding instructions
	13.1 Order in which multiple assignments are considered
	13.2 Effect of assigning a negating encoding instruction
	13.3 Multiple assignment of JER encoding instructions of the same category

	14 The ARRAY encoding instruction
	14.1 General
	14.2 Restrictions

	15 The BASE64 encoding instruction
	15.1 General
	15.2 Restrictions

	16 The NAME encoding instruction
	16.1 General
	16.2 Restrictions

	17 The OBJECT encoding instruction
	17.1 General
	17.2 Restrictions

	18 The TEXT encoding instruction
	18.1 General
	18.2 Restrictions

	19 The UNWRAPPED encoding instruction
	19.1 General
	19.2 Restrictions

	20 Encoding of boolean values
	21 Encoding of integer values
	22 Encoding of enumerated values
	23 Encoding of real values
	23.1 General
	23.2 Encoding of the special real values
	23.3 Encoding as a JSON number
	23.4 Encoding as a JSON object

	24 Encoding of bitstring values
	24.1 General
	24.2 Encoding of bitstring types with a fixed size
	24.3 Encoding of bitstring types with a variable size
	24.4 Alternative encoding of bitstring types with a JER-visible contents constraint

	25 Encoding of octetstring values
	25.1 General
	25.2 Encoding of an octetstring value as a JSON string containing a Base64 encoding
	25.3 Encoding of an octetstring value as a JSON string containing a hexadecimal encoding
	25.4 Alternative encoding of an octetstring type with a JER-visible contents constraint

	26 Encoding of the null value
	27 Encoding of sequence values
	27.1 General
	27.2 Array-based encoding
	27.3 Object-based encoding

	28 Encoding of sequence-of values
	29 Encoding of set values
	30 Encoding of set-of values
	30.1 General
	30.2 Array-based encoding
	30.3 Object-based encoding

	31 Encoding of choice values
	31.1 General
	31.2 Unwrapped encoding
	31.3 Wrapped encoding

	32 Encoding of object identifier values
	33 Encoding of relative object identifier values
	34 Encoding of values of the internationalized resource reference type
	35 Encoding of values of the relative internationalized resource reference type
	36 Encoding of values of the embedded-pdv type
	37 Encoding of values of the external type
	38 Encoding of values of the restricted character string types
	39 Encoding of values of the unrestricted character string type
	40 Encoding of values of the time types
	41 Encoding of open type values
	42 Object identifier values referencing the encoding rules
	Annex A Examples of JER encodings
	A.1 ASN.1 description of the record structure
	A.2 ASN.1 description of a record value
	A.3 Example JER representation of this record value
	A.4 Additional examples of JER encodings

	Annex B Examples of JER encoding instructions and their effect on the encodings
	B.1 ASN.1 description of the record structure
	B.2 ASN.1 description of a record value
	B.3 JER representation of this record value
	B.4 Additional examples of JER encodings
	B.5 Examples of JER encodings of choice types

