| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.694

TELECOMMUNICATION (01/2004)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — ASN.1 encoding rules:
Mapping W3C XML schema definitions into
ASN.1

ITU-T Recommendation X.694

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
IP-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSINETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to the list of ITU-T Recommendations.

http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

INTERNATIONAL STANDARD ISO/IEC 8825-5
ITU-T RECOMMENDATION X.694

Information technology — ASN.1 encoding rules:
Mapping W3C XML schema definitions into ASN.1

Summary

This Recommendation | International Standard defines rules for mapping an XSD Schema (a schema conforming to the
W3C XML Schema specification) to an ASN.1 schema in order to use ASN.1 encoding rules such as the Basic Encoding
Rules (BER), the Distinguished Encoding Rules (DER), the Packed Encoding Rules (PER) or the XML Encoding Rules
(XER) for the transfer of information defined by the XSD Schema.

The use of this Recommendation | International Standard with the ASN.1 Extended XML Encoding Rules
(EXTENDED-XER) provides the same XML representation of values as that defined by the original XSD Schema.

Source

ITU-T Recommendation X.694 was approved on 13 January 2004 by ITU-T Study Group 17 (2001-2004) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as ISO/IEC 8825-5.

ITU-T Rec. X.694 (01/2004) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. X.694 (01/2004)

CONTENTS

Page

1 N T e] o T ST STRPRRPS 1
2 INOTINALIVE TEEETEIICESeuveuteiientiieiti ettt ettt ettt b ettt et et ettt be s beeb e e st e st et e st e ebe s bt eb e est et e besbeebeeaeenseneenten 1
2.1 Identical Recommendations | International Standardsc..cocceceeviiiininininieiinicceeen 1

2.2 Additional TEIETEIICESc.eeviriiriiiieiieiteteeste sttt ettt et sttt et et s be et be b eae e eneen 2

3 DIETINITIONS ...ttt b et ettt b e sh e bt e bt e et et et bt bt e bt e bt eb s et et bt bbbt et et enten 2
70 O 1010100 o 1eTa A (3L o) o PP 2

3.2 Additional efINITIONS.eeueeeiieieieitierie ettt ettt ettt e et e et e s e et e b e enteeneesneenbeeseeneeeneeenee 3

4 WX o] o) ()74 T 1 o) o USSP 3
5 JA(6] 715 o) WSSOSO 3
6 Purpose and extent of standardizationc.eovieiieierienieieeie ettt re e enaeees 3
7 Mapping XSD SCREIMASeeeuieriieiieiieieeieeee ettt ste st ettt et e et et ee st e seesseesaessaesseeseensesnnesseesseenseenseans 4
8 Ignored schema components and PrOPEILICS........cvecviecrerierierierierie et eeeeeeseesteeteebesaeseaesseesseensesseensesnnennns 5
9 The ASN.1 Module and NAMESPACESeeruieruieiieiietieetierte et ete et et et e et et e et e ssee et enteeneeeseesseesseeseeseeneeenes 6
10 INAITIE COMVETSION ...ttt ettt ettt e bt et et e et setesb e e s bt e bt emteeateebeeeb e e b e e bt embeeatesbeesbeenaee bt emteentesaneebeenbeenbean 6
LU B € 1 1 T) OO PURUSRUROPSRRS 6

10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments............ccccceeueneae 7

10.3 Generating identifiers and type reference NaAMmMEScceeeveeeirierieniieiieieeeeee e e 7

10.4 Order Of the MAPPING ...ccveecviiieiieiieieete ettt te et eseesteesteesbeesbesseesseesseenseesseessesssesseesseessesssesnsensns 9

11 Mapping uses 0f XSD DUIlt-IN dAtatYPES........ccuierrieciieiiiieiieieete ettt ettt sre e e esseessessaessaebeeseessesnsenens 10
12 IMAPPING FACELSvivieeiietieieeie ettt ettt et e e st e s bt et e esseesesaeesseesseenseenseesseessessaeseenseenseensesnsesseenseanseenseans 11
12.1 The length, minLength, and maxLength facetscoceeirieeiiiiininiiiinneeccccese e 11

|0 N (T o2 1) 0 T OSSR 11

12.3 The WhiteSPaCe FACEL.......eeeiieieieieitiee ettt ettt ettt es e s bt e be e seeseeneeeeenes 11

12.4 The enumEeration FACETccouiiieiiei ettt ettt ettt et e et et eene e s bt e be e bt eseeeeeneeenes 12

LB T @ s 1<) g 217 1SS 14

13 Mapping simple type defINIIONSc.eeiirieiieitieeee ettt ettt et ee st e bt e saeeeeeaeesneesneeseeenneens 14
14 Mapping element AECIATALIONScouiiiriiitiite ettt ettt ettt e e testesbe et ebeese e st essesteabesaeeseeneeneeneens 16
15 Mapping attribute deCIArAtIONS..........c.eiviiieiieii ettt ettt te st ste et eeaesreesreesseesseessesssessaessaesseesseessesnsennns 17
16 Mapping values of simple type defiNitions...........ccvecvirciiiiieiiirieie ettt reesbeeaeeseeees 17
17 Mapping model group defiNITIONSecieiiieiiieiieiecieseee ettt ettt aesee e e seeseeaesnnesseesseenseenseens 17
18 MapPINg MOAEL ZIOUPSeeueeenieeieeiie ettt ettt e et e st e bt e et e et s atesueesse e st e et eneeeseeeseeaseeseenseensesneesaeesseenseenneens 17
19 IMAPPING PATLICIES ..ottt ettt ettt ettt e et e et e e bt et e en e es e e es e e seenbeenseeneeeneeeneesneenseeneens 17
20 Mapping complex type defINItIONSccueruiriiiiiiee ettt ettt et seeeseeneeneeneens 19
21 MaAPPING WILACATASeovvitieiieiieie ettt ettt et e et e st esteesteesseesaesseesseesseesseassenssesssessaesseenseensennsensns 20
22 MAPPING AHITDULE TUSESvivietieiiereeteiteieesteesteeteeseesteesseeseesseassesseesseessesssesssesssesseesseessesssenssesseesseesseesenssenses 20
23 Mapping uses of simple and complex type definitions (general case)..........cceevvereereerieriieriienieneeie e 21
24 Mapping special uses of simple and complex type definitions (substitutable)c.cccoceroiriiniiiiniinieee 22
25 Mapping special uses of simple and complex type definitions (substitutable, nillable)...........c.cccccceeeenienn. 23
26 Mapping special uses of simple type definitions (Nillable)coeoieiiiiiiiiiiiiiii e 24
27 Mapping special uses of complex type definitions (Nillable)cccoeeveviiriiriieiiieiieieeeeee e 24
28 Mapping special uses of element declarations (head of element substitution group).........cceccverereeeeveneenne. 25
29 Generating special ASN.1 type assignments for element declarationscccceceevuereneneninenicnienienenenens 26
30 Generating special ASN.1 type assignments for type definitionscooeevieiieiiinienieniee e 27
31 Generating special ASN.1 type assignments for element substitution groups..........cccceeerererereeeeneenenennns 27
Annex A — ASN.1 type definitions corresponding to XSD built-in datatypes..........cccceeeeeerenieneneneneseeeeceeene 28
Annex B — Assignment of object identifier VAIUESccccvieciiiiiiieiieieee ettt e 33

ITU-T Rec. X.694 (01/2004) il

Annex C — Examples of mappings

C.1 A Schema using SIMple type defiNItiONSccveeverierieiieie ettt ebe e eeesae e eseesseeneeees
C.2 The corresponding ASN.1 defiNitioNns.........cccevierieriieiiiriieiieie ettt te e eaesaeseesaeesesneeees
C.3 FUIhET EXAMPIES....uiiiiiiiieiiiieiiereesie ettt ettt e st esteesbe e beesaesseesseeseesseesseessasssessaesseenseensennsensns
C.3.1 Schema documents with import and include element information itemscceevervennen.

C.3.2 Mapping simple type definitions..........c.eecverierieriieieeieeeetese et eee e sneeeeens

C.3.3 MaAPPING FACELS ..euieiieiieiieiieie ettt et et e st e stte et et e e enteesaesseesseeseenseensesnsesseesseenseensenns

C.3.4 Mapping element declarationscceeoeerierierieiieie ettt ettt e e ens

C.3.5 Mapping attribute uses and attribute declarationsccceveereererieieeniereee e

C.3.6 Mapping model group definitionSceceeieeririiiieriee et

C.3.7 MaPPING PATTICIES ...euviiieiieitietiete ettt ettt ettt ettt st esbee bt et et e satesbeenaeenteens

C.3.8 Mapping complex type definitions.eeeeieierierieiirieee st

C.3.9 Mapping WIldCArdScoeeuiiieieiiiee ettt ebe e
Annex D — Use of the mapping to provide binary encodings for W3C XML Schema..........ccccccevenenininincnienenne.
D.1 Encoding XSD SCREMASc.cccveriiiiiiiieiiiiesieeieete et e steesteeteeaesseesaeesseesseesseessessaessaesseenseessesssenses
D.2 Transfer without using the XSD Schema for SChemasccoecverieiiriiiie e
D.3 Transfer using the XSD Schema for SChemascccocverieiiieiiieieniecieeee e

v

ITU-T Rec. X.694 (01/2004)

Introduction

This Recommendation | International Standard specifies a mapping from a W3C XML Schema definition (an XSD
Schema) into an ASN.1 schema. The mapping can be applied to any XSD Schema. It specifies the generation of one or
more ASN.1 modules containing type definitions, together with ASN.1 XER encoding instructions. These are jointly
described as an ASN.1 schema for XML documents.

This ASN.1 schema, when used with the ASN.1 Extended XML Encoding Rules (EXTENDED-XER), can be used to
generate and to validate the same set of W3C XML 1.0 documents as the original XSD Schema. The resulting ASN.1
types and encodings support the same semantic content as the XSD Schema. Thus ASN.1 tools can be used
interchangeably with XSD tools for the generation and processing of the specified XML documents.

Other standardized ASN.1 encoding rules, such as the Distinguished Encoding Rules (DER) or the Packed Encoding
Rules (PER), can be used in conjunction with this standardized mapping.

The combination of this Recommendation | International Standard with ASN.1 Encoding Rules provides fully-
standardized and vendor-independent compact and canonical binary encodings for data defined using an XSD Schema.

The ASN.1 schema provides a clear separation between the specification of the information content of messages (their
abstract syntax) and the precise form of the XML document (for example, use of attributes instead of elements). This
results in both a clearer and generally a less verbose schema than the original XSD Schema.

Annex A forms an integral part of this Recommendation | International Standard, and is an ASN.1 module containing a
set of ASN.1 type assignments that correspond to each of the XSD built-in datatypes. Mappings of XSD Schemas into
ASN.1 schemas either import the type reference names of those type assignments or include the type definitions in-line.

Annex B does not form an integral part of this Recommendation | International Standard, and summarizes the object
identifier values assigned in this Recommendation | International Standard.

Annex C does not form an integral part of this Recommendation | International Standard, and gives examples of the
mapping of XSD Schemas into ASN.1 schemas.

Annex D does not form an integral part of this Recommendation | International Standard, and describes the use of the
mapping defined in this Recommendation | International Standard, in conjunction with standardized ASN.1 Encoding
Rules, to provide compact and canonical encodings for data defined using an XSD Schema.

ITU-T Rec. X.694 (01/2004) v

ISO/IEC 8825-5:2004 (E)

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology — ASN.1 encoding rules:
Mapping W3C XML schema definitions into ASN.1

1 Scope

This Recommendation | International Standard specifies a mapping from any XSD Schema into an ASN.1 schema. The
ASN.1 schema supports the same semantics and validates the same set of XML documents.

This Recommendation | International Standard specifies the final XER encoding instructions that are to be applied as
part of the defined mapping to ASN.1 types, but does not specify which syntactic form is to be used for the specification
of those final XER encoding instructions, or the order or manner of their assignment.
NOTE — Implementers of tools generating these mappings may choose any syntactic form or order of assignment that results in
the specified final XER encoding instructions being applied. Examples in this Recommendation | International Standard

generally use the type prefix form, but use of an XER Encoding Control Section may be preferred for the mapping of a complete
XSD Schema, as a matter of style.

There are different ways (syntactically) of assigning XER encoding instructions for use in EXTENDED-XER
encodings (for example, use of ASN.1 type prefix encoding instructions or use of an XER encoding control section).
The choice of these syntactic forms is a matter of style and is outside the scope of this Recommendation | International
Standard.

2 Normative references

The following Recommendations | International Standards and W3C specifications contain provisions which, through
reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication,
the editions indicated were valid. All Recommendations, International Standards and W3C specifications are subject to
revision, and parties to agreements based on this Recommendation | International Standard are encouraged to
investigate the possibility of applying the most recent edition of the Recommendations, International Standards and
W3C specifications listed below. Members of IEC and ISO maintain registers of currently valid International Standards.
The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T
Recommendations. The W3C maintains a list of currently valid W3C specifications. The reference to a document
within this Recommendation | International Standard does not give it, as a stand-alone document, the status of a
Recommendation or International Standard.

2.1 Identical Recommendations | International Standards

NOTE — The complete set of ASN.1 Recommendations | International Standards are listed below, as they can all be applicable in
particular uses of this Recommendation | International Standard. Where these are not directly referenced in the body of this
Recommendation | International Standard, a symbol is added to the reference.

— ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology — ASN.1
encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER).

— ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology — ASN.I
encoding rules: Specification of Packed Encoding Rules (PER).

ITU-T Rec. X.694 (01/2004) 1

ISO/IEC 8825-5:2004 (E)

2.2

3.1
3.1.1

3.1.2

2

ITU-T Recommendation X.692 (2002) | ISO/IEC 8825-3:2002, Information technology — ASN.1
encoding rules: Specification of Encoding Control Notation (ECN).

ITU-T Recommendation X.693 (2001) | ISO/IEC 8825-4:2002, Information technology — ASN.I
encoding rules: XML Encoding Rules (XER).

ITU-T Recommendation X.693 (2001)/Amd.1 (2003) | ISO/IEC 8825-4:2002/Amd.1:2004, Information
technology — ASN.1 encoding rules: XML Encoding Rules (XER) — Amendment 1: XER Encoding
Instructions and EXTENDED-XER.

Additional references

ISO 8601:2000, Data elements and interchange formats — Information interchange — Representation of
dates and times.

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane.

W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.0rg/TR/2000/REC-xmi-20001006.

W3C XML Namespaces: 1999, Namespaces in XML, W3C Recommendation, Copyright © [14 January
1999] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/1999/REC-xml-
names-19990114.

W3C XML Information Set:2001, XML Information Set, W3C Recommendation, Copyright ©
[24 October 2001] World Wide Web Consortium (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.0org/TR/2001/REC-xml-infoset-20011024.

W3C XML Schema:2001, XML Schema Part 1: Structures, W3C Recommendation, Copyright © [2 May
2001] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.0rg/TR/2001/REC-
xmlschema-1-20010502.
W3C XML Schema:2001, XML Schema Part 2: Datatypes, W3C Recommendation, Copyright © [2 May
2001] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502.
NOTE — When the reference "W3C XML Schema" is used in this Recommendation | International Standard, it
refers to W3C XML Schema Part 1 and W3C XML Schema Part 2.
IETF RFC 2396 (1998), Uniform Resource Identifiers (URI): Generic Syntax.

IETF RFC 1766 (1995), Tags for the Identification of Languages.

Definitions

Imported definitions

This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.680 | ISO/IEC 8824-1
and in ITU-T Rec. X.693 | ISO/IEC 8825-4.

NOTE - In particular, the terms "final XER encoding instructions", "type prefix" and "XER encoding control section" are
defined in the above-mentioned Recommendations | International Standards.

This Recommendation | International Standard also uses the terms defined in W3C XML Schema and W3C
XML Information Set.
NOTE 1 — It is believed that these terms do not conflict with the terms referenced in 3.1.1. If such a conflict occurs, the
definition of the term in 3.1.1 applies.

NOTE 2 — In particular, the terms "schema component" and "property (of a schema component)" are defined in W3C XML
Schema, and the term "element information item" is defined in W3C XML Information Set.

ITU-T Rec. X.694 (01/2004)

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

ISO/IEC 8825-5:2004 (E)

3.2 Additional definitions

For the purposes of this Recommendation | International Standard, the following additional definitions apply:
3.2.1 XSD namespace: A namespace with a URI of "http://www.w3.0rg/2001/XMLSchema".

3.2.2 XSI namespace: A namespace with a URI of "http://www.w3.0rg/2001/XMLSchema-instance".

3.23 XML namespace: A namespace with a URI of "http:/www.w3.0org/XML/1998/namespace".

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BER (ASN.1) Basic Encoding Rules
DER (ASN.1) Distinguished Encoding Rules
PER (ASN.1) Packed Encoding Rules
URI (IETF) Uniform Resource Identifier
XER (ASN.1) XML Encoding Rules
XML (W3C) Extensible Markup Language
XSD (W3C) XML Schema

5 Notation

51 This Recommendation | International Standard references the notation defined by ITU-T Rec. X.680 |
ISO/IEC 8824-1, ITU-T Rec. X.682 | ISO/IEC 8824-3, W3C XML 1.0 and W3C XML Schema.

5.2 When it is necessary in the body of this Recommendation | International Standard to specify, either formally
or in examples, the assignment of XER encoding instructions, the type prefix notation is generally used (but see 6.3
and 6.4). In Annex A, an XER encoding control section is used.

5.3 In this Recommendation | International Standard, bol d Couri er is used for ASN.1 notation and bold Arial is
used for XSD notation and for XSD terms and concepts.

5.4 The XSD Schemas used in the examples in this Recommendation | International Standard use the prefix xsd:
to identify the XSD namespace.

6 Purpose and extent of standardization

6.1 The mapping to ASN.1 that is specified in this Recommendation | International Standard ensures that:

a) any resulting ASN.1 modules generated by tools conforming to this Recommendation | International
Standard (from the same XSD Schema) define the same (structured) abstract values;

b) all BASIC-XER, CXER, EXTENDED-XER, and binary encodings of that resulting ASN.1 specification
will produce the same encodings (subject to encoder's options); and

¢) all XML documents that conform to the source XSD Schema are valid EXTENDED-XER encodings of
abstract values of that ASN.1 specification.

6.2 There are many aspects of an ASN.1 definition (such as the use of white-space, or of encoding control
sections or type prefixes) that affect neither the abstract values being defined nor the XER or binary encodings of those
values. Such aspects of the ASN.1 definition are generally not standardized in this Recommendation | International
Standard.

6.3 There are many different ways in ASN.1 of assigning an XER encoding instruction to a type, including:
a) use of a type prefix for every encoding instruction to be assigned; or
b) use of an encoding control section, with a separate encoding instruction for each required assignment; or

c¢) use of an encoding control section, with a single encoding instruction making a global assignment,
possibly supplemented by use of a negating encoding instruction for specific types.

6.4 This Recommendation | International Standard specifies when a final XER encoding instruction shall be
present, and uses the syntax of 6.3 a) in most of its examples. However, the use of the different options in 6.3 is not

ITU-T Rec. X.694 (01/2004) 3

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/XML/1998/namespace

ISO/IEC 8825-5:2004 (E)

standardized, and conforming implementations of the mapping may choose any syntactic form (or a mixture of syntactic
forms) for the assignment of final XER encoding instructions.

NOTE — The choice among these options does not affect the final binary or XML encodings.
6.5 A formal specification of the required mapping is not provided.

6.6 This Recommendation | International Standard is concerned only with the mapping of XSD Schemas that
conform to W3C XML Schema.

NOTE - Such conformance can be either by the provision of one or more W3C XSD schema documents or by other means as
specified in W3C XML Schema.

7 Mapping XSD Schemas

71 A mapping is based on a source XSD Schema, which is a set of schema components (see W3C XML Schema
Part 1, 2.2). No particular representation of schema components or sets of schema components is required or assumed
for the mapping, although it is expected that the source XSD Schema will usually be provided as one or more XML
schema documents (see W3C XML Schema Part 1, 3.15.2).
NOTE 1 — Since the mapping is defined in terms of schema components (and not in terms of their XML representation), it is not
affected by details of the XML representation, such as the use of multiple schema documents linked by xsd:include and

xsd:redefine element information items, the placement of element information items in one or another schema documents, the
order of xsd:attribute clement information items within a xsd:complexType clement information item, and so on.

NOTE 2 — Two sets of schema documents that differ in many aspects but represent the same set of schema components generate
the same set of ASN.1 type assignments, with the same final encoding instructions assigned to them and to their components to
any depth.

7.2 The source XSD Schema shall meet all the constraints imposed by the XSD specification. If the source XSD
Schema is represented (in part or all) as a set of XML schema documents, each schema document shall be valid
according to the XSD Schema for Schemas (see W3C XML Schema Part 1, Appendix A).

7.3 At least one ASN.1 module (see 7.4) shall be generated for each different target namespace (whether a
namespace name or the keyword absent) that is the target namespace of one or more schema components in the source
XSD Schema. Each ASN.1 module shall contain one or more type assignments corresponding to top-level schema
components (see 7.9) that have the same target namespace. Each ASN.1 module can also contain one or more special
ASN.1 type assignments whose associated ASN.1 type assignments are in the same ASN.1 module (see 7.6).

NOTE —The schema components represented in the multiple schema documents become part of the same XSD Schema through
the use of the xsd:include, xsd:redefine, and xsd:import element information items.

7.4 The number of ASN.1 modules generated for each target namespace (including the keyword absent) may be
more than one, but each ASN.1 module shall not contain type assignments corresponding to top-level schema
components with different target namespaces (including the keyword absent).

7.5 When multiple ASN.1 modules are generated for a given target namespace (including the keyword absent), all
the type assignments present in them shall be generated as if they were being added to a single ASN.1 module for the
purpose of generating distinct type reference names (see 10.3). The type reference names generated from the names of
the top-level schema components with a given target namespace shall be the same type reference names regardless of the
number of ASN.1 modules generated for that target namespace and regardless of the way type assignments are divided
among the various ASN.1 modules.

NOTE — This is designed to provide flexibility without compromising interoperability.

7.6 Each special ASN.1 type assignment (see clauses 29, 30, and 31) shall be inserted in the same ASN.1 module
as its associated ASN.1 type assignment (see 29.4, 31.4, and 30.4, respectively).

7.7 All ASN.1 modules generated by the mapping shall contain (in the XER encoding control section) a GLOBAL-
DEFAULTS MODI FI ED- ENCODI NGS encoding instruction and a GLOBAL- DEFAULTS CONTROL- NAMESPACE encoding
instruction specifying the XSI namespace.

7.8 A source XSD Schema shall be processed as follows:

a) for each top-level element declaration, an ASN.l type assignment shall be generated by applying
clause 14 to the element declaration;

b) for each top-level attribute declaration, an ASN.1 type assignment shall be generated by applying
clause 15 to the attribute declaration;

c) for each user-defined top-level simple type definition, an ASN.1 type assignment shall be generated by
applying clause 13 to the simple type definition;

d) for each top-level complex type definition, an ASN.1 type assignment shall be generated by applying
clause 20 to the complex type definition;

4 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

e) for each model group definition whose model group has a compositor of sequence or choice, an ASN.1 type
assignment shall be generated by applying clause 17 to the model group definition.
NOTE 1 — The remaining schema components of the source XSD schema will be processed as a result of mapping these schema

components.

NOTE 2 — The order in which schema components are to be mapped is specified in 10.4. The order of the items of the list above
has no significance for the mapping.

7.9 Column 1 of Table 1 lists schema components. Column 2 gives the reference to the clause in W3C XML
Schema that defines the schema component. Column 3 lists the clause that defines the mapping of those schema

components into ASN.1.

Table 1 — Mapping of XSD schema components

XSD schema component W3C XML Schema reference Mapping defined by
attribute declaration Part 1, 3.2 Clause 15
element declaration Part 1, 3.3 Clause 14

complex type definition Part 1,3.4 Clause 20
attribute use Part 1, 3.5 Clause 22
attribute group definition Part 1, 3.6 not mapped as such
model group definition Part 1, 3.7 Clause 17
model group Part 1, 3.8 Clause 18
particle Part1,3.9 Clause 19
wildcard Part 1, 3.10 Clause 21
identity-constraint definition Part 1, 3.11 ignored by the mapping
notation declaration Part 1, 3.12 ignored by the mapping
annotation Part 1, 3.13 ignored by the mapping
simple type definition Part 1, 3.14 Clauses 11, 13
schema Part 1, 3.15 Clause 9
ordered Part 2,4.2.2.1 ignored by the mapping
bounded Part 2,4.2.3.1 ignored by the mapping
cardinality Part 2,4.2.4.1 ignored by the mapping
numeric Part 2,4.2.5.1 ignored by the mapping
length Part 2,4.3.1.1 Clause 12
minLength Part 2,4.3.2.1 Clause 12
maxLength Part2,4.3.3.1 Clause 12
pattern Part 2,4.3.4.1 Clause 12
enumeration Part 2, 4.3.5.1 Clause 12
whiteSpace Part2,4.3.6.1 Clause 12
maxIinclusive Part 2,4.3.7.1 Clause 12
maxExclusive Part 2, 4.3.8.1 Clause 12
minExclusive Part 2,4.3.9.1 Clause 12
mininclusive Part 2, 4.3.10.1 Clause 12
totalDigits Part 2,4.3.11.1 Clause 12
fractionDigits Part 2,4.3.12.1 Clause 12
8 Ignored schema components and properties
8.1 The mapping shall ignore the schema components and properties that are listed in this clause.
8.2 All annotations (see W3C XML Schema Part 1, 3.13) shall be ignored.

NOTE — All attribute information items in a schema document with names qualified with namespaces other than the XSD
namespace (see W3C XML Schema Part 1, 3.13.1) are a property of annotations, and are ignored.

8.3 All identity-constraint definitions (see W3C XML Schema Part 1, 3.11) shall be ignored.

ITU-T Rec. X.694 (01/2004) 5

ISO/IEC 8825-5:2004 (E)

NOTE — The identity-constraint definition provides mechanisms for specifying referential constraints that can be required in a
valid instance. ASN.1 currently has no concept of such constraints, and such constraints cannot be mapped into a formal ASN.1
specification, but they may be included as normative comments that are binding on an application implementation.

8.4 All notation declarations (see W3C XML Schema Part 1, 3.12) shall be ignored.

8.5 All schema components that are the fundamental facets (ordered, bounded, cardinality, numeric) of simple type
definitions (see W3C XML Schema Part 2, 4.2) shall be ignored.

8.6 The properties identity-constraint definitions, substitution group exclusions and disallowed substitutions of element
declarations shall be ignored.

8.7 The properties final, abstract, and prohibited substitutions of complex type definitions shall be ignored.
8.8 The property process contents of wildcards shall be ignored.
NOTE - There is no support in ASN.1 for any action other than skip.
8.9 The properties fundamental facets and final of simple type definitions shall be ignored.
8.10 All value constraints that are present on any element declarations or attribute declarations whose type definition is

either xsd:QName or a simple type definition derived from xsd:QName or xsd:NOTATION shall be ignored.

8.11 All attribute group definitions shall be ignored.

NOTE — The attribute uses in an attribute group definition become part of the attribute uses of the complex type definitions whose XML
representation contains a reference to the attribute group definition.

9 The ASN.1 module and namespaces

NOTE — A full description of the relationship between the namespace concept of W3C XML Namespaces and naming in ASN.1
is provided in ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 16. Type reference names and identifiers defined in an ASN.1 module
are assigned a namespace by means of a NAMESPACE encoding instruction, and otherwise do not have a namespace. The mapping
generates NAVESPACE encoding instructions as appropriate.

9.1 The mapping generates one or more ASN.1 modules corresponding to all schema components in the Schema
that have the same target namespace.
9.2 The ASN.1 "Moduleldentifier" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 12) to be generated by the

mapping is not standardized. Where | MPORTS statements are used, the ASN.1 module names and module identifiers in
the | MPORTS statements shall be those generated for the ASN.1 modules generated by the mapping.

NOTE — The choice of "Moduleldentifier" does not affect the encodings in any of the standard encoding rules.
9.3 The ASN.1 modules shall have a "TagDefault" of AUTOVATI C TAGS.

9.4 In each ASN.1 module, there shall be an ASN.1 | MPORTS statement importing the ASN.1 type reference
names in the module named XSD specified in Annex A that are referenced in the ASN.1 module.

9.5 The | MPORTS statement shall also import the ASN.1 type reference names of type assignments that have been
placed (as a result of the mapping) in other ASN.1 modules but are referenced in this ASN.1 module.

9.6 There shall be no EXPORTS statement.
NOTE — This means that all ASN.1 type reference names in the ASN.1 module can be imported into other modules.

10 Name conversion

10.1 General

10.1.1 This Recommendation | International Standard specifies the generation of:

a) ASN.I type reference names corresponding to the names of model group definitions, top-level element
declarations, top-level attribute declarations, top-level complex type definitions, and user-defined top-level
simple type definitions;

b) ASN.1 identifiers corresponding to the names of top-level element declarations, top-level attribute
declarations, local element declarations, and local attribute declarations;

¢) ASN.I identifiers for the mapping of certain simple type definitions with an enumeration facet (see 12.4.1
and 12.4.2);

6 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

d) ASN.I type reference names of special type assignments (see clauses 29, 30, and 31); and

e) ASN.I identifiers of certain sequence components introduced by the mapping (see clause 20).

10.1.2 All of these ASN.1 names are generated by applying 10.3 either to the name of the corresponding schema
component, or to a member of the value of an enumeration facet, or to a specified character string, as specified in the
relevant clauses of this Recommendation | International Standard.

10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments

10.2.1 This subclause applies as explicitly invoked by other clauses of this Recommendation | International Standard
to generate an ASN.1 type definition that is a reference (a "DefinedType") to an ASN.1 type assignment.

10.2.2 If an ASN.I type definition (R, say) that is a "DefinedType" is to be inserted in an ASN.1 module (M, say)
other than the ASN.1 module where the referenced ASN.1 type assignment (TA, say) is being inserted, and the type
reference name of TA is identical to either the type reference name of another ASN.1 type assignment being inserted in
module M or to another type reference name being imported into module M, then R shall be an
"ExternalTypeReference" (constructed as appropriate for module M) for TA; otherwise it shall be a "typereference"
for TA.

10.3 Generating identifiers and type reference names

10.3.1 This subclause applies as explicitly invoked by other clauses of this Recommendation | International Standard
to generate an ASN.1 type reference name or identifier.

10.3.2 Names of attribute declarations, element declarations, model group definitions, user-defined top-level simple type
definitions, and top-level complex type definitions can be identical to ASN.1 reserved words or can contain characters not
allowed in ASN.1 identifiers or in ASN.1 type reference names. In addition, there are cases in which ASN.1 names are
required to be distinct where the names of the corresponding XSD schema components (from which the ASN.1 names
are mapped) are allowed to be identical.

10.3.3 The following transformations shall be applied, in order, to each character string being mapped to an ASN.1
name, where each transformation (except the first) is applied to the result of the previous transformation:

— the characters " " (SPACE), "." (FULL STOP), and "_" (LOW LINE) shall all be replaced by a "-"
(HYPHEN-MINUS); and

— any character except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z), "a"
to "z" (LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT ZERO to DIGIT
NINE), and "-" (HYPHEN-MINUS) shall be removed; and

— a sequence of two or more HYPHEN-MINUS characters shall be replaced with a single
HYPHEN-MINUS; and

— HYPHEN-MINUS characters occurring at the beginning or at the end of the name shall be removed; and

— if a character string that is to be used as a type reference name starts with a lower-case letter, the first
letter shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to DIGIT
NINE), it shall be prefixed with an "X" (LATIN CAPITAL LETTER X) character; and

— if a character string that is to be used as an identifier starts with an upper-case letter, the first letter shall
be uncapitalized (converted to lower-case); if it starts with a digit (DIGIT ZERO to DIGIT NINE), it
shall be prefixed with an "x" (LATIN SMALL LETTER X) character; and

— if a character string that is to be used as a type reference name is empty, it shall be replaced by "X"
(LATIN CAPITAL LETTER X); and

— if a character string that is to be used as an identifier is empty, it shall be replaced by "x" (LATIN
SMALL LETTER X).

10.3.4 Depending on the kind of name being generated, one of the three following subclauses applies.

10.3.4.1 If the name being generated is the type reference name of an ASN.1 type assignment and the character string
generated by 10.3.3 is identical to the type reference name of another ASN.1 type assignment previously generated in
the same ASN.1 module or in another ASN.1 module with the same namespace (including absence of a namespace), or
is one of the reserved words specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.27, then a suffix shall be appended to
the character string generated by 10.3.3. The suffix shall consist of a HYPHEN-MINUS followed by the canonical
lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer. This integer shall be the least positive integer
such that the new name is different from the type reference name of any other ASN.1 type assignment previously
generated in any of those ASN.1 modules.

ITU-T Rec. X.694 (01/2004) 7

ISO/IEC 8825-5:2004 (E)

10.3.4.2 If the name being generated is the identifier of a component of a sequence, set, or choice type, and the
character string generated by 10.3.3 is identical to the identifier of a previously generated component of the same
sequence, set, or choice type, then a suffix shall be appended to the character string generated by 10.3.3. The suffix
shall consist of a HYPHEN-MINUS followed by the canonical lexical representation (see W3C XML Schema Part 2,
2.3.1) of an integer. This integer shall be the least positive integer such that the new identifier is different from the
identifier of any previously generated component of that sequence, set, or choice type.

10.3.4.3 If the name being generated is the "identifier" in an "Enumerationltem" of an enumerated type, and the
character string generated by 10.3.3 is identical to the "identifier" in another "Enumerationltem" previously generated in
the same enumerated type, then a suffix shall be appended to the character string generated by 10.3.3. The suffix shall
consist of a HYPHEN-MINUS followed by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1)
of an integer. This integer shall be the least positive integer such that the new identifier is different from the "identifier"
in any other "Enumerationltem" already present in that ASN.1 enumerated type.

10.3.5 For an ASN.1 type reference name (or identifier) that is generated by applying this subclause 10.3 to the name
of an element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type
definition, if the type reference name (or identifier) generated is different from the name, a final NAME encoding
instruction shall be assigned to the ASN.1 type assignment with that type reference name (or to the component with that
identifier) as specified in the three following subclauses.

10.3.5.1 If the only difference is the case of the first letter (which is upper case in the type reference name and lower
case in the name), then the "Keyword" in the NAME encoding instruction shall be UNCAPI TALI ZED.

10.3.5.2 If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the
name), then the "Keyword" in the NAVE encoding instruction shall be CAPI TALI ZED.

10.3.5.3 Otherwise, the "NewName" in the NAVE encoding instruction shall be the name.

EXAMPLE — The top-level complex type definition:

<xsd:complexType name="COMPONENTS">
<xsd:sequence>
<xsd:element name="Elem" type="xsd:boolean"/>
<xsd:element name="elem" type="xsd:integer"/>
<xsd:element name="Elem-1" type="xsd:boolean"/>
<xsd:element name="elem-1" type="xsd:integer"/>
</xsd:sequence>
</xsd:complexType>

is mapped to the ASN.1 type assignment:

COVPONENTS-1 :: = [NAME AS "COWPONENTS"] SEQUENCE {
el em [NAME AS CAPI TALI ZED] BOCLEAN,
elem1 [NAME AS "el enf] | NTEGER,
elem1-1 [NAME AS "Elem 1"] BOOLEAN,
elem1-2 [NAME AS "el em1"] | NTEGER }

10.3.6 For an ASN.1 type reference name (or identifier) that is generated by applying this subclause 10.3 to the name
of an element declaration, attribute declaration, top-level complex type definition or user-defined top-level simple type
definition, if the target namespace of the schema component is not absent, then a final NAVESPACE encoding instruction
shall be assigned to the ASN.1 type assignment with that type reference name (or to the named type with that identifier)
and shall specify the target namespace of the schema component.

10.3.7 For an ASN.1 identifier that is generated by this subclause 10.3 for the mapping of a simple type definition with
an enumeration facet where the identifier generated is different from the corresponding member of the value of the
enumeration facet, a final TEXT encoding instruction shall be assigned to the ASN.1 enumerated type, with qualifying
information specifying the "identifier" in the "Enumerationltem" of the enumerated type. One of the two following
subclauses applies.

10.3.7.1 If the only difference is the case of the first letter (which is lower case in the identifier and upper case in the

member of the value of the enumeration facet), then the "Keyword" in the TEXT encoding instruction shall be
CAPI TALI ZED.

10.3.7.2 Otherwise, the "NewName" in the TEXT encoding instruction shall be the member of the value of the
enumeration facet.

8 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

10.4 Order of the mapping

10.4.1 An order is imposed on the top-level schema components of the source XSD Schema on which the mapping is
performed. This applies to model group definitions, top-level complex type definitions, user-defined top-level simple type
definitions, top-level attribute declarations, and top-level element declarations.

NOTE — Other top-level schema components are not mapped to ASN.1, and XSD built-in datatypes are mapped in a special way.
10.4.2 The order is specified in the three following subclauses.

10.4.2.1 Top-level schema components shall first be ordered by their target namespace, with the absent namespace
preceding all namespace names in ascending lexicographical order.

10.4.2.2 Within each target namespace, top-level schema components shall be divided into four sets ordered as
follows:

a) element declarations;
b) attribute declarations;
c) complex type definitions and simple type definitions;

d) model group definitions.

10.4.2.3 Within each set (see 10.4.2.2), schema components shall be ordered by name in ascending lexicographical
order.

10.4.3 The mapping generates some ASN.1 type assignments that do not correspond directly to any XSD schema
component. These are:

a) choice types (with a final USE- TYPE encoding instruction) corresponding to a type derivation hierarchy;
the type reference names of these types have a "- deri vat i ons" suffix (see clause 29);

b) choice types (with a final USE- TYPE encoding instruction on the type and a final USE- NI L encoding
instruction on each alternative) corresponding to a type derivation hierarchy where the user-defined top-
level simple type definition or complex type definition that is the root of the derivation hierarchy is used as
the type definition of one or more element declarations that are nillable; the type reference names of these
types have a "- deri v- ni | | abl e" suffix (see clause 29);

¢) choice types (with a final USE- TYPE encoding instruction on the type and a final DEFAULT- FOR- EMPTY
encoding instruction on each alternative) corresponding to a type derivation hierarchy where the user-
defined top-level simple type definition or complex type definition that is the root of the derivation hierarchy
is used as the type definition of one or more element declarations that are not nillable and have a value
constraint that is a default value; the type reference names of these types have a "-deri v-defaul t-"
suffix (see clause 29);

d) choice types (with a final USE- TYPE encoding instruction on the type and a final DEFAULT- FOR- EMPTY
encoding instruction on each alternative) corresponding to a type derivation hierarchy where the user-
defined top-level simple type definition or complex type definition that is the root of the derivation hierarchy
is used as the type definition of one or more element declarations that are not nillable and have a value
constraint that is a fixed value; the type reference names of these types have a "-deri v-fi xed- " suffix
(see clause 29);

e) choice types (with a final USE- TYPE encoding instruction on the type and final USE- Nl L and DEFAULT-
FOR- EMPTY encoding instructions on each alternative) corresponding to a type derivation hierarchy
where the user-defined top-level simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of one or more element declarations that are nillable and
have a value constraint that is a default value; the type reference names of these types have a
"-deriv-nillabl e-defaul t-" suffix (see clause 29);

f) choice types (with a final USE- TYPE encoding instruction on the type and final USE- Nl L and DEFAULT-
FOR- EMPTY encoding instructions on each alternative) corresponding to a type derivation hierarchy
where the user-defined top-level simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of one or more element declarations that are nillable and
have a value constraint that is a fixed value; the type reference names of these types have a
"-deriv-nillable-fixed-" suffix (see clause 29);

ITU-T Rec. X.694 (01/2004) 9

ISO/IEC 8825-5:2004 (E)

g) choice types (with a final UNTAGGED encoding instruction) corresponding to an element substitution
group; the type reference names of these types have a "- gr oup" suffix (see clause 31);

h) sequence types (with a final USE- NI L encoding instruction) corresponding to the use of a user-defined
top-level simple type definition or complex type definition as the type definition of one or more element
declarations that are nillable; the type reference names of these types have a "-ni | | abl e" suffix (see
clause 30).

10.4.4 All ASN.1 type assignments that correspond directly to the XSD schema components in the source XSD
Schema shall be generated before all ASN.1 type assignments listed in 10.4.3 (if any).

10.4.5 ASN.1 type assignments that correspond directly to the XSD schema components shall be generated in the
order of the corresponding XSD schema components (see 10.4.1). ASN.1 type assignments listed in 10.4.3 (if any) shall
be generated in the order of the XSD schema components (see 10.4.1) corresponding to the "associated type
assignment" (see clauses 29, 30, and 31).

10.4.6 For 10.4.3 ¢) to f), if the simple type definition or complex type definition that is the root of the derivation
hierarchy is used as the type definition of multiple element declarations that have different values in the value constraint,
the ASN.1 type assignments shall be generated in ascending lexicographical order of the canonical lexical
representation (see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint.

11 Mapping uses of XSD built-in datatypes

11.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to the use of an XSD built-in datatype.

11.2 A use of an XSD built-in datatype shall be mapped to an ASN.1 type definition in accordance with Table 2.
The table gives the ASN.1 type definition to be used. The notation "XSD.Name" indicates that the ASN.1 type
definition shall be the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the corresponding ASN.1
type assignment present in the XSD module.

Table 2 — ASN.1 type definitions corresponding to uses of XSD built-in datatypes

XSD built-in datatype ASN.1 type definition XSD built-in datatype ASN.1 type definition
anyURI XSD. AnyURI int XSD. | nt
anySimpleType XSD. AnySi npl eType integer | NTEGER
anyType XSD. AnyType language XSD. Language
base64Binary [BASE64] OCTET STRI NG long XSD. Long
boolean BOCLEAN Name XSD. Narre
byte | NTEGER (-128..127) NCName XSD. NCNane
date XSD. Dat e negativelnteger INTEGER (M N..-1)
dateTime XSD. Dat eTi e NMTOKEN XSD. NMIOKEN
decimal XSD. Deci nal NMTOKENS XSD. NMICKENS
double XSD. Doubl e nonNegativelnteger I NTEGER (0. . MAX)
duration XSD. Dur ati on nonPositivelnteger | NTEGER (M N. . 0)
ENTITIES XSD. ENTI TI ES normalizedString XSD. Nor mal i zedStri ng
ENTITY XSD. ENTI TY NOTATION XSD. NOTATI ON
float XSD. Fl oat positivelnteger I NTEGER (1..MAX)
gDay XSD. Ghay QName XSD. Q\amre
gMonth XSD. Gvont h short XSD. Short
gMonthDay XSD. Gvbnt hDay string XSD. String
gYear XSD. Grear time XSD. Ti me
gYearMonth XSD. Gyear Mont h token XSD. Token
hexBinary COCTET STRI NG unsignedByte I NTEGER (0. . 255)
ID XSD. | D unsignedint XSD. Unsi gnedlI nt
IDREF XSD. | DREF unsignedLong XSD. Unsi gnedLong
IDREFS XSD. | DREFS unsignedShort XSD. Unsi gnedShort

10

ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

12 Mapping facets

This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to map a
facet of a simple type definition. A facet of a simple type definition STD is mapped to an ASN.1 constraint applied to the
ASN.1 type definition corresponding to the STD, unless the STD has an enumeration facet that is being mapped to an
ASN.1 "Enumeration" (see 12.4.1 and 12.4.2). In this case, no ASN.1 constraint is generated from the facet (see 12.1.2,
12.2.1,12.3.1, and 12.5.1).

12.1 The length, minLength, and maxLength facets

12.1.1 The length, minLength, and maxLength facets shall be ignored for the XSD built-in datatypes xsd:QName and
xsd:NOTATION and for any simple type definition derived from these by restriction.

12.1.2 If a length, minLength, or maxLength facet belongs to a simple type definition that has also an enumeration facet
being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then no "Enumerationltem"s shall be included in the
"Enumeration” for the members (if any) of the value of the enumeration facet that do not satisfy the length, minLength, or
maxLength facet.

12.1.3 Otherwise, the length, minLength, and maxLength facets of the simple type definition shall be mapped to an
ASN.1 size constraint according to Table 3.

Table 3 — ASN.1 size constraints corresponding to the length, minLength,
and maxLength facets

XSD facet ASN.1 size constraint
length=value (Sl ZE(value))
minLength=min (Sl ZE(min .. NAX))
maxLength=max (SI ZE(O .. max))
minLength=min maxLength=max (Sl ZE(min .. max))

12.2 The pattern facet

12.2.1 If a pattern facet belongs to a simple type definition that has also an enumeration facet being mapped to an
ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then no "Enumerationltem"s shall be included in the "Enumeration” for
the members (if any) of the value of the enumeration facet that do not satisfy the pattern facet.

12.2.2 Otherwise, the pattern facet shall be mapped to a user-defined constraint. One of the two following subclauses
applies.

12.2.2.1 If the value of the pattern facet is a single regular expression, the user-defined constraint shall be:

(CONSTRAI NED BY {/* XM representation of the XSD pattern "xyz" */})

where "xyz" is the XML representation of the value of the pattern facet, except that if the substring "*" appears in the
value of the pattern facet, it shall be replaced by the character string "*/".

12.2.2.2 If the value of the pattern facet is a conjunction of unions of regular expressions (the general case), the user-
defined constraint is not specified (but see 12.5.4).

12.3 The whiteSpace facet

12.3.1 If a whiteSpace facet with a value of replace or collapse belongs to a simple type definition that has also an
enumeration facet being mapped to an ASN.1 "Enumeration” (see 12.4.1 and 12.4.2), then no "Enumerationltem"s shall
be included in the "Enumeration" for the members (if any) of the value of the enumeration facet that contain any of the
characters HORIZONTAL TABULATION, NEWLINE or CARRIAGE RETURN, or (in the case of collapse) contain
leading, trailing, or multiple consecutive SPACE characters.

12.3.2 Otherwise, at most one of the three following subclauses applies:
12.3.2.1 If the value of the whiteSpace facet is preserve, then the whiteSpace facet shall be ignored.

12.3.2.2 If the value of the whiteSpace facet is replace and the ASN.1 type definition corresponding to the simple type
definition is an ASN.1 restricted character string type, then a permitted alphabet constraint shall be added to the ASN.1
type definition to remove HORIZONTAL TABULATION, NEWLINE, and CARRIAGE RETURN characters. A final

ITU-T Rec. X.694 (01/2004) 11

ISO/IEC 8825-5:2004 (E)

WH TESPACE REPLACE encoding instruction shall be assigned to the ASN.1 type definition. The following or an
equivalent permitted alphabet constraint shall be used:

(FROM ({0, 0, 0, 32} .. {0, 16, 255, 255}))

12.3.2.3 If the value of the whiteSpace facet is collapse and the ASN.1 type definition corresponding to the simple type
definition is an ASN.1 restricted character string type, then both a permitted alphabet constraint as specified in 12.3.2.2
and a pattern constraint that forbids leading, trailing, and multiple consecutive SPACE characters shall be added to the
ASN.1 type definition. A final WHI TESPACE COLLAPSE encoding instruction shall be assigned to the ASN.1 type
definition. The following or an equivalent pattern constraint shall be used:

(PATTERN " ([~ 1([~ 11 [~ 1)™)7?")

124 The enumeration facet

12.4.1 An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by restriction
(directly or indirectly) from xsd:string shall not be mapped to an ASN.1 constraint. Instead, the facet shall be mapped to
the "Enumeration” of the ASN.1 enumerated type corresponding to the simple type definition (see 13.5) as specified in
the three following subclauses.

12.4.1.1 For each member of the value of the enumeration facet, an "Enumerationltem" that is an "identifier" shall be
added to the "Enumeration" (subject to 12.1.2, 12.2.1, 12.3.1, and 12.5.1).

12.4.1.2 Each "identifier" shall be generated by applying 10.3 to the corresponding member of the value of the
enumeration facet.

12.4.1.3 The members of the value of the enumeration facet shall be mapped in ascending lexicographical order and
any duplicate members shall be discarded.

12.4.2 An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by restriction
(directly or indirectly) from xsd:integer shall not be mapped to an ASN.1 constraint. Instead, the facet shall be mapped
to the "Enumeration" of the ASN.1 enumerated type corresponding to the simple type definition (see 13.6) as specified in
the three following subclauses.

12.4.2.1 For each member of the value of the enumeration facet, an "Enumerationltem" that is a "NamedNumber" shall
be added to the "Enumeration"” (subject to 12.1.2, 12.2.1, 12.3.1, and 12.5.1).

12.4.2.2 The "identifier" in each "NamedNumber" shall be generated by concatenating the character string "i nt " with
the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of the corresponding member of the value of
the enumeration facet. The "SignedNumber" in the "NamedNumber" shall be the ASN.1 value notation for the member
(an integer number).

12.4.2.3 The members of the value of the enumeration facet shall be mapped in ascending numerical order and any
duplicate members shall be discarded.

12.4.3 Any other enumeration facet shall be mapped to an ASN.1 constraint that is either a single value or a union of
single values corresponding to the members of the value of the enumeration.

NOTE — The enumeration facet applies to the value space of the base type definition. Therefore, for an enumeration of the XSD built-
in datatypes xsd:QName or xsd:NOTATION, the value of the uri component of the [USE- QNAME] SEQUENCE produced as a single
value ASN.1 constraint is determined, in the XML representation of an XSD Schema, by the namespace declarations whose
scope includes the xsd:QNane or xsd:NOTATI ON, and by the prefix (if any) of the xsd:QNane or xsd:NOTATI ON.

EXAMPLE 1 — The following represents a user-defined top-level simple type definition that is a restriction of xsd:string
with an enumeration facet:

<xsd:simpleType name="state">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="off"/>
<xsd:enumeration value="on"/>
</xsd:restriction>
</xsd:simpleType>

12 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

It is mapped to the ASN.1 type assignment:
State ::= [NAVE AS UNCAPI TALI ZED] ENUMERATED {of f, on}

EXAMPLE 2 — The following represents a user-defined top-level simple type definition that is a restriction of xsd:integer
with an enumeration facet:

<xsd:simpleType name="integer-0-5-10">
<xsd:restriction base="xsd:integer">
<xsd:enumeration value="0"/>
<xsd:enumeration value="5"/>
<xsd:enumeration value="10"/>
<I/xsd:restriction>
</xsd:simpleType>

It is mapped to the ASN.1 type assignment:
Integer-0-5-10 ::= [NAVE AS UNCAPI TALI ZED] ENUMERATED {int0(0), int5(5), int10(10)}

EXAMPLE 3 — The following represents a user-defined top-level simple type definition that is a restriction of xsd:integer
with a minInclusive and a maxInclusive facet:

<xsd:simpleType name="integer-1-10">
<xsd:restriction base="xsd:integer">
<xsd:mininclusive value="1"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

It is mapped to the ASN.1 type assignment:
Integer-1-10 ::= [NAME AS UNCAPI TALI ZED] | NTEGER(1..10)

EXAMPLE 4 — The following represents a user-defined top-level simple type definition that is a restriction (with a
minExclusive facet) of another simple type definition, derived by restriction from xsd:integer with the addition of a
mininclusive and a maxinclusive facet:

<xsd:simpleType name="multiple-of-4">
<xsd:restriction>
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minlnclusive value="1"/>
<xsd:maxInclusive value="10"/>
<I/xsd:restriction>
</xsd:simpleType>
<xsd:minExclusive value="5"/>
<Ixsd:restriction>
</xsd:simpleType>

It is mapped to the ASN.1 type assignment:
Mul tiple-of-4 ::= [NAVE AS UNCAPI TALI ZED] | NTEGER(5<. . 10)

EXAMPLE 5 — The following represents a user-defined top-level simple type definition that is a restriction (with a
minLength and a maxLength facet) of another simple type definition, derived by restriction from xsd:string with the
addition of an enumeration facet:

<xsd:simpleType name="color">
<xsd:restriction>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="white"/>
<xsd:enumeration value="black"/>
<xsd:enumeration value="red"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:minLength value="2"/>
<xsd:maxLength value="4"/>
<Ixsd:restriction>
</xsd:simpleType>

It is mapped to the ASN.1 type assignment:
Col or ::= [NAME AS UNCAPI TALI ZED] ENUVERATED {r ed}

ITU-T Rec. X.694 (01/2004) 13

ISO/IEC 8825-5:2004 (E)

12.5 Other facets

12.5.1 If a totalDigits, fractionDigits, maxInclusive, maxExclusive, minExclusive, or mininclusive facet belongs to a simple
type definition that has also an enumeration facet being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then
no "Enumerationltem"s shall be included in the "Enumeration" for the members (if any) of the value of the enumeration
facet that do not satisfy the totalDigits, fractionDigits, maxinclusive, maxExclusive, minExclusive, or mininclusive facet.

12.5.2 If a maxinclusive, maxExclusive, minExclusive, or mininclusive facet belongs to a simple type definition without an
enumeration facet or with an enumeration facet which is not being mapped to an ASN.1 "Enumeration" (see 12.4.1 and
12.4.2), then one of the two following subclauses applies:

12.5.2.1 If the simple type definition is derived by restriction (directly or indirectly) from an XSD built-in date or time
datatype (xsd:date, xsd:dateTime, xsd:duration, xsd:gDay, xsd:gMonth, xsd:gYear, xsd:gYearMonth, xsd:gMonthDay, or
xsd:time), then the maxinclusive, maxExclusive, minExclusive, and mininclusive facets of the simple type definition shall be
mapped to an ASN.1 user-defined constraint (see 12.5.4).

12.5.2.2 Otherwise, the maxinclusive, maxExclusive, minExclusive and mininclusive facets of the simple type definition
shall be mapped to an ASN.1 value range or single value constraint in accordance with Table 4.

Table 4 — ASN.1 constraints corresponding to the maxinclusive, maxExclusive,
minExclusive, and mininclusive facets

XSD facet ASN.1 constraint
maxinclusive=ub (MN .. ub)
maxExclusive=ub (MN .. < ub)
minExclusive=/b (b <.. MAX)
mininclusive=/bh (.. MAX)

mininclusive=ub maxinclusive=/b (Ib.. ub)
mininclusive=y maxIinclusive=y (v)
mininclusive=ub maxExclusive=/b (Ib..<ub)
minExclusive=ub maxinclusive=/b (Ib<.. ub)
minExclusive=ub maxExclusive=/h (Ib<..<ub)

12.5.3 If a totalDigits or fractionDigits facet belongs to a simple type definition without an enumeration facet or with an
enumeration facet which is not mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then the totalDigits and
fractionDigits facets of the simple type definition shall be mapped to a user-defined constraint (see 12.5.4).

12.5.4 When a facet is mapped to an ASN.1 user-defined constraint, it is recommended that the facet and its value
appear in an ASN.1 comment in the user-defined constraint. The precise form of the user-defined constraint is not
specified.

13 Mapping simple type definitions

13.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment or ASN.1 type definition corresponding to a simple type definition.

13.2 This clause specifies the mapping of simple type definitions that are not XSD built-in datatypes. The set of XSD
built-in datatypes are mapped to the predefined ASN.1 module specified in Annex A (the XSD module), which shall be
included in the ASN.1 specifications generated by the mapping.

13.3 A user-defined top-level simple type definition shall be mapped to an ASN.1 type assignment. The
"typereference” in the "TypeAssignment”" shall be generated by applying 10.3 to the name of the simple type definition
and the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as specified in 13.5 to 13.10.

13.4 An anonymous simple type definition shall be mapped to an ASN.1 type definition as specified in 13.5 to 13.10.

13.5 For a simple type definition with a variety of atomic with an enumeration facet that is derived by restriction
(directly or indirectly) from xsd:string, the ASN.1 type definition shall be an ASN.1 enumerated type whose
"Enumeration" shall be generated as specified in 12.4.1.

14 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

13.6 For a simple type definition with a variety of atomic with an enumeration facet that is derived by restriction
(directly or indirectly) from xsd:integer, the ASN.1 type definition shall be an ASN.1 enumerated type whose
"Enumeration" shall be generated as specified in 12.4.2. A final USE- NUMBER encoding instruction shall be assigned to
the ASN.1 enumerated type.

13.7 For any other simple type definition (D, say) with any variety that is derived by restriction (directly or
indirectly) from a user-defined top-level simple type definition, the ASN.1 type definition shall be generated by applying
clause 23 to the user-defined top-level simple type definition (B, say) such that:

a) D is derived by restriction (directly or indirectly) from B; and

b) either B is the base type definition of D, or all intermediate derivation steps from B to D are anonymous
simple type definitions.

Then, for each of the facets of D (if any), an ASN.1 constraint generated by applying clause 12 to the facet shall be
added to the ASN.1 type definition.

13.8 For any other simple type definition (D, say) with a variety of atomic, the ASN.1 type definition shall be
generated by applying clause 23 to the XSD built-in datatype (B, say) such that:

a) D is derived by restriction (directly or indirectly) from B; and

b) either B is the base type definition of D, or all intermediate derivation steps from B to D are anonymous
simple type definitions.

Then, for each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet shall be added to the
ASN.1 type definition.

13.9 For any other simple type definition (D, say) with a variety of list, the three following subclauses apply.

13.9.1 The ASN.1 type definition shall be an ASN.1 sequence-of type whose component shall be a "Type" generated
by applying clause 23 to the item type definition.

13.9.2 For each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet shall be added to
the ASN.1 sequence-of type.

13.9.3 A final LI ST encoding instruction shall be assigned to the ASN.1 sequence-of type.
EXAMPLE — The following represents a user-defined top-level simple type definition that is a list of xsd:float:

<xsd:simpleType name="list-of-float">
<xsd:list itemType="xsd:float"/>
</xsd:simpleType>

It is mapped to the ASN.1 type assignment:
List-of-float ::= [LIST] [NAME AS UNCAPI TALI ZED] SEQUENCE OF XSD. Fl oat

13.10 For any other simple type definition (D, say) with a variety of union, the five following subclauses apply.

13.10.1 The ASN.1 type definition shall be an ASN.1 choice type with one alternative for each member of the member
type definitions.

13.10.2 For each member of the member type definitions, the "identifier" in the "NamedType" of the corresponding
alternative shall be generated by applying 10.3 either to the name of the member (if the member is an XSD built-in
datatype or a user-defined top-level simple type definition) or to the character string "alt" (if the member is an
anonymous simple type definition), and the "Type" in the "NamedType" shall be the ASN.1 type definition generated by
applying clause 23 to the member of the member type definitions.

13.10.3 For each member of the member type definitions that is an anonymous simple type definition, the corresponding
"NamedType" shall have a final NAME AS "" encoding instruction.

13.10.4 For each of the facets of D, an ASN.I constraint generated by applying clause 12 to the facet shall be added to
the ASN.1 choice type.

13.10.5 A final USE- UNI ON encoding instruction shall be assigned to the ASN.1 choice type.

ITU-T Rec. X.694 (01/2004) 15

ISO/IEC 8825-5:2004 (E)

EXAMPLE — The following represents a user-defined top-level simple type definition that is a union of two anonymous
simple type definitions:

<xsd:simpleType name="decimalOrBinary">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="xsd:decimal"/>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="xsd:float"/>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

It is mapped to the ASN.1 type assignment:

Deci mal OrBi nary ::= [NAVE AS UNCAPI TALI ZED] [USE-UNI ON] CHO CE {
alt [NAME AS ""] XSD. Deci nal ,
alt-1 [NAVE AS ""] XSD.Fl oat }
14 Mapping element declarations
14.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to

generate an ASN.1 type assignment or ASN.1 type definition corresponding to an element declaration.

NOTE — The presence of a value constraint on an element declaration normally affects the mapping. However, 8.10 implies that an
element declaration that has a value constraint and whose type definition is xsd:QName or xsd:NOTATION or a restriction of these XSD
built-in datatypes is mapped as if it had no value constraint.

14.2 A top-level element declaration that is abstract shall be ignored.

14.3 A top-level element declaration that is not abstract shall be mapped to an ASN.1 type assignment. The
"typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the element declaration and
the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as specified in 14.5.

14.4 A local element declaration shall be mapped to an ASN.1 type definition as specified in 14.5.
14.5 One of the two following subclauses (14.5.1 and 14.5.2) applies.

14.5.1 If the type definition of the element declaration is an anonymous simple type definition or complex type definition or
an XSD built-in datatype (A, say), then one of the two following subclauses applies.

14.5.1.1 If the element declaration is not nillable, then the ASN.1 type definition shall be generated by applying
clause 23 to A.

14.5.1.2 If the element declaration is nillable, then the ASN.1 type definition shall be generated by applying either
clause 26 (if A is a simple type definition) or clause 27 (if A is a complex type definition) to A.

14.5.2 If the type definition of the element declaration is a user-defined top-level simple type definition or complex type
definition (T, say), then one of the four following subclauses applies.

14.5.2.1 If the element declaration is not nillable and does not have a substitutable type definition (see 14.6), then the
ASN.1 type definition shall be generated by applying clause 23 to T.

14.5.2.2 If the element declaration is nillable and does not have a substitutable type definition (see 14.6), then the ASN.1
type definition shall be generated by applying either clause 26 (if T is a simple type definition) or clause 27 (if T is a
complex type definition) to T.

14.5.2.3 If the element declaration is not nillable and has a substitutable type definition (see 14.6), then the ASN.1 type
definition shall be generated by applying clause 24 to T.

14.5.2.4 If the element declaration is nillable and has a substitutable type definition (see 14.6), then the ASN.1 type
definition shall be generated by applying clause 25 to T.

14.6 The phrase "has a substitutable type definition", applied to an element declaration, means that the type definition
of the element declaration is a user-defined top-level simple type definition or complex type definition that occurs as the base
type definition of another top-level simple type definition or complex type definition.

16 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

15 Mapping attribute declarations

15.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment or ASN.1 type definition corresponding to an attribute declaration.

15.2 A top-level attribute declaration shall be mapped to an ASN.1 type assignment. The "typereference" in the
"TypeAssignment" shall be generated by applying 10.3 to the name of the attribute declaration, and the "Type" in the
"TypeAssignment" shall be an ASN.1 type definition as specified in 15.4. A final ATTRI BUTE encoding instruction shall
be assigned to the ASN.1 type assignment.

15.3 A local attribute declaration shall be mapped to an ASN.1 type definition as specified in 15.4.

15.4 The ASN.1 type definition shall be generated by applying clause 23 to the type definition of the attribute
declaration.

16 Mapping values of simple type definitions

16.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 "Value" corresponding to a value in the value space of a simple type definition.

16.2 Given a value V in the value space of a simple type definition, and:
a) the ASN.1 type definition mapped from this simple type definition; and
b) the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of V,

V shall be mapped to an ASN.1 basic value notation for the abstract value of the ASN.1 type definition for which, in
EXTENDED-XER, the canonical lexical representation is a valid "ExtendedXMLValue" encoding.

17 Mapping model group definitions

17.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment corresponding to a model group definition.

17.2 A model group definition whose model group has a compositor of sequence or choice shall be mapped to an
ASN.1 type assignment. The "typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name
of the model group definition and the "Type" in the "TypeAssignment" shall be generated by applying clause 18 to the
model group of the model group definition.

NOTE — Model group definitions whose model group has a compositor of all are not mapped to ASN.1.

18 Mapping model groups

18.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a model group.

NOTE - This clause is not invoked for every model group. For example, a model group with a compositor of all is not mapped to
ASN.1, but its particles are mapped as specified in 20.9.

18.2 A model group with a compositor of sequence shall be mapped to an ASN.1 sequence type. For each particle in
the model group in order, a "NamedType" shall be generated by applying clause 19 to the particle, and that
"NamedType" shall be added to the sequence type as one of its components. A final UNTAGGED encoding instruction
shall be assigned to the sequence type.

18.3 A model group with a compositor of choice shall be mapped to an ASN.1 choice type. For each particle in the
model group in order, a "NamedType" shall be generated by applying clause 19 to the particle, and that "NamedType"
shall be added to the choice type as one of its alternatives. A final UNTAGGED encoding instruction shall be assigned to
the choice type.

19 Mapping particles

19.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 "NamedType" corresponding to a particle.

NOTE - This clause is not invoked for all particles. For example, the (topmost) particle of the content type of a complex type
definition is mapped in a special way if its term is a model group with a compositor of sequence or all (see 20.8).

ITU-T Rec. X.694 (01/2004) 17

ISO/IEC 8825-5:2004 (E)

19.2 The three following subclauses define terms that are used in the remainder of this clause 19.
19.2.1 If both min occurs and max occurs of a particle are one, the particle is called a "mandatory presence particle".

19.2.2 If min occurs is zero and max occurs is one, then:

a) if the mapping of the particle is to generate a component of an ASN.1 sequence type, the particle is called
an "optional presence particle";

b) otherwise, the particle is called an "optional single-occurrence particle".
19.2.3 If max occurs is two or more, the particle is called a "multiple-occurrence particle".

19.3 A "mandatory presence particle" or "optional presence particle”" shall be mapped to a "NamedType" as
specified in the two following subclauses.

19.3.1 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the character string specified in
19.5 and the "Type" in the "NamedType" shall be generated by applying 19.6 to the term of the particle.

19.3.2 If the particle is an "optional presence particle", the "NamedType" shall be followed by the OPTI ONAL
keyword.

19.4 An "optional single-occurrence particle" or a "multiple-occurrence particle" shall be mapped to a
"NamedType" as specified in the six following subclauses.

19.4.1 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the character string obtained by
appending the suffix "-1ist" to the character string specified in 19.5. The "Type" in the "NamedType" shall be a
sequence-of type.

19.4.2 If the particle is an "optional single-occurrence particle" or "multiple-occurrence particle", a size constraint
shall be added to the sequence-of type in accordance with Table 5.

Table 5 — ASN.1 size constraint corresponding to min occurs and max occurs

min occurs and max occurs ASN.1 size constraint
min occurs = 71 max occurs = 71 Sl ZE (n)
n>2
min occurs = min max occurs = max S| ZE (min .. max)
max > min and max > 2
min occurs =0 max occurs = 1 SIZE (0 .. 1)
min occurs = min max occurs = unbounded S| ZE (min .. NAX)
min > 1
min occurs = 0 max occurs = unbounded no size constraint

19.4.3 If the term of the particle is an element declaration, then the component of the sequence-of type shall be a
"NamedType". The "identifier" in this "NamedType" shall be generated by applying 10.3 to the name of the element
declaration and the "Type" in this "NamedType" shall be generated by applying 19.6 to the term of the particle.

19.4.4 If the term of the particle is a wildcard, then the component of the sequence-of type shall be a "NamedType".
The "identifier" in this "NamedType" shall be el emand the "Type" in this "NamedType" shall be generated by applying
19.6 to the term of the particle.

19.4.5 If the term of the particle is a model group, then the component of the sequence-of type shall be a "Type" and
shall be generated by applying 19.6 to the term of the particle.

19.4.6 A final UNTAGGED encoding instruction shall be assigned to the sequence-of type.

19.5 The character string used in the generation of the "identifier" in the "NamedType" corresponding to the
particle shall be:

a) if the particle is the content type of a complex type definition, the character string "content";

b) if the term of the particle is an element declaration, the name of the element declaration;

c) if the term of the particle is the model group of a model group definition, the name of the model group
definition;

d) if the term of the particle is a model group with a compositor of sequence unrelated to a model group
definition, the character string "sequence";

18 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

e) if the term of the particle is a model group with a compositor of choice unrelated to a model group definition,
the character string "choi ce";

f) if the term of the particle is a wildcard, the character string "el enf'.

19.6 The "Type" in the "NamedType" corresponding to the particle (see 19.3) or the "Type" in the "NamedType" in
the "SequenceOfType" corresponding to the particle (see 19.4) shall be:

a) if the term of the particle is a top-level element declaration which is not the head of an element substitution
group, the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.I type
assignment generated by applying clause 14 to the element declaration;

b) if the term of the particle is a top-level element declaration which is the head of an element substitution
group, the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type
assignment generated by applying clause 31 to the element declaration;

c) if the term of the particle is a local element declaration, the ASN.1 type definition generated by applying
clause 14 to the element declaration;

d) if the term of the particle is the model group of a model group definition, the ASN.1 type definition (a
"DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by applying
clause 17 to the model group definition;

e) if the term of the particle is a model group unrelated to a model group definition, the ASN.1 type definition
generated by applying clause 18 to the model group;

f) if the term of the particle is a wildcard, the ASN.1 type definition generated by applying clause 21 to the
wildcard.

20 Mapping complex type definitions

20.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment or ASN.1 type definition corresponding to a complex type definition.

20.2 A top-level complex type definition shall be mapped to an ASN.1 type assignment. The "typereference" in the
"TypeAssignment" shall be generated by applying 10.3 to the name of the complex type definition and the "Type" in the
"TypeAssignment" shall be an ASN.1 type definition as specified in 20.4 to 20.11.

20.3 An anonymous complex type definition shall be mapped to an ASN.1 type definition as specified in 20.4 to
20.11.

204 The ASN.1 type definition shall be an ASN.1 sequence type. Zero or more components shall be added to the
ASN.1 sequence type as specified by the following subclauses, in the specified order.

20.5 If the content type of the complex type definition is a mixed content model, then a component shall be added to
the ASN.1 sequence type. The "identifier" in the "NamedType" of this component shall be enbed- val ues and the
"Type" in the "NamedType" shall be a sequence-of type whose component shall be a "Type" generated by applying
clause 23 to the XSD built-in datatype xsd:string. A final EMBED- VALUES encoding instruction shall be assigned to the
ASN.1 sequence type.

20.6 If the content type of the complex type definition is a particle whose term is a model group with a compositor of
all, then a component shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the
component shall be or der and the "Type" in the "NamedType" shall be a sequence-of type whose component shall be
an "EnumeratedType". For each particle of the model group (whose term is always an element declaration), an
"Enumerationltem" that is an "identifier" identical to the "identifier" in the "NamedType" corresponding to each particle
shall be added to the "Enumeration” in order. A final USE- ORDER encoding instruction shall be assigned to the ASN.1
sequence type.

NOTE — The "identifier"s in the "NamedType"s being mapped from the particles are generated (applying 10.3) as each

component is added to the sequence type. Therefore, even though the or der component is placed in a position that textually

precedes the positions of those components within the ASN.1 sequence type, the generation of the or der component can only be
completed after all the particles have been mapped to sequence components.

20.7 If the complex type definition has attribute uses, then components generated by applying clause 22 to the
attribute uses shall be added to the ASN.1 sequence type in an order based on the target namespace and name of the
attribute declaration of each attribute use. The attribute uses shall first be ordered by target namespace of the attribute
declaration (with the keyword absent preceding all namespace names sorted in ascending lexicographical order) and then
by name of the attribute declaration within each target namespace (also in ascending lexicographical order).

20.8 If the complex type definition has an attribute wildcard, then a component generated from the attribute wildcard
(see 21.3) shall be added to the ASN.1 sequence type.

ITU-T Rec. X.694 (01/2004) 19

ISO/IEC 8825-5:2004 (E)

20.9 If the content type of the complex type definition is a particle, then one of the four following subclauses applies.

20.9.1 If the term of the particle is a model group with a compositor of sequence whose min occurs and max occurs are
both one, then, for each particle of the model group in order, a component generated by applying clause 19 to the particle
in the model group shall be added to the ASN.1 sequence type.

20.9.2 If the term of the particle is a model group with a compositor of sequence whose min occurs and max occurs are
not both one, then a component generated by applying clause 19 to the particle in the content type shall be added to the
ASN.1 sequence type.

20.9.3 If the term of the particle is a model group with a compositor of all, then, for each particle of the model group in
order, a component generated by applying clause 19 to the particle of the model group shall be added to the ASN.1
sequence type. If the particle in the content type of the complex type definition has min occurs zero, each of the particles of
the model group with min occurs one shall be mapped as if it had min occurs zero.

20.9.4 If the term of the particle is a model group with a compositor of choice, then a component generated by applying
clause 19 to the particle in the content type shall be added to the ASN.1 sequence type.

20.10 If the content type of the complex type definition is a simple type definition, then a component shall be added to
the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by applying 10.3 to
the character string "base" and the "Type" in the "NamedType" shall be the ASN.1 type definition generated by
applying clause 23 to the content type. A final UNTAGGED encoding instruction shall be assigned to the component.

20.11 If the content type of the complex type definition is empty, then no further components shall be added to the
ASN.1 sequence type.

21 Mapping wildcards

21.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment or ASN.1 type definition corresponding to a simple type definition.

21.2 A wildcard that is the term of a particle shall be mapped to the ASN.1 type definition generated by applying
clause 23 to the XSD built-in datatype xsd:string. A final ANY- ELEMENT encoding instruction shall be assigned to the
ASN.1 type definition.

21.3 A wildcard that is the attribute wildcard of a complex type shall be mapped to a "NamedType". The "identifier"
in the "NamedType" shall be generated by applying 10.3 to the character string "attr" and the "Type" in the
"NamedType" shall be a sequence-of type. The component of the sequence-of type shall be a "Type" generated by
applying clause 23 to the XSD built-in datatype xsd:string. The following user-defined constraint shall be applied to the
sequence-of type:

(CONSTRAI NED BY
{/* Each itemshall conformto the "AnyAttributeFormat" specified in
ITUT Rec. X. 693 | 1SO | EC 8825-4, clause 18 */})

A final ANY- ATTRI BUTES encoding instruction shall be assigned to the sequence-of type.

214 If the wildcard has a namespace constraint, this shall be mapped to a "NameSpaceRestriction" in the
ANY- ELEMENT or ANY- ATTRI BUTES encoding instruction.

22 Mapping attribute uses

22.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 "NamedType" corresponding to an attribute use.

22.2 An attribute use shall be mapped to a "NamedType".

22.3 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of the attribute
declaration of the attribute use, and the "Type" in the "NamedType" shall be:

a) if the attribute use has a top-level attribute declaration, the ASN.1 type definition (a "DefinedType")
generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 15 to the attribute
declaration;

b) if the attribute use has a local attribute declaration, the ASN.1 type definition generated by applying
clause 15 to the attribute declaration.

20 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

22.4 If either the attribute use or its attribute declaration has a value constraint, the "NamedType" shall be followed
by the keyword DEFAULT and by a "Value" generated by applying clause 16 either to the value in the value constraint of
the attribute use (if the attribute use has a value constraint), or to the value in the value constraint of its attribute declaration
(otherwise).

22.5 If either the attribute use or its attribute declaration has a value constraint that is a fixed value, then an ASN.1
single value constraint with a "Value" identical to the "Value" following the DEFAULT keyword shall be added to the
"NamedType".

22.6 If the attribute use is not required and neither the attribute use nor its attribute declaration has a value constraint,
the "NamedType" shall be followed by the keyword OPTI ONAL.

22.7 A final ATTRI BUTE encoding instruction shall be assigned to the "Type" in the "NamedType".

23 Mapping uses of simple and complex type definitions (general case)

23.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a use of a simple type definition or complex type definition. This
includes their use as the type definition of element declarations that do not have a substitutable type definition (see 14.6),
are not nillable, and may or may not have a value constraint.

23.2 A use of a top-level simple type definition that is an XSD built-in datatype shall be mapped as specified in
clause 11.

23.3 A use of a user-defined top-level simple type definition shall be mapped to the ASN.I type definition (a
"DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 13 to the simple
type definition.

234 A use of a top-level complex type definition shall be mapped to the ASN.I type definition (a "DefinedType")
generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 20 to the complex type definition.

23.5 A use of an anonymous simple type definition is not distinguished from the simple type definition itself, and shall
be mapped as specified in clause 13 for the simple type definition.

23.6 A use of an anonymous complex type definition is not distinguished from the complex type definition itself, and
shall be mapped as specified in clause 20 for the complex type definition.

23.7 If a simple type definition or complex type definition is used as the type definition of an element declaration with a
value constraint, then a final DEFAULT- FOR- EMPTY encoding instruction shall be assigned to the ASN.1 type definition,
and one of the three following subclauses applies.

23.7.1 For a simple type definition, the "Value" in the final DEFAULT- FOR- EMPTY encoding instruction shall be
generated by applying clause 16 to the value in the value constraint considered as a value in the value space of the simple
type definition.

23.7.2 For a complex type definition whose content type is a simple type definition, the "Value" in the final DEFAULT-
FOR- EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of the simple type definition.

23.7.3 For a complex type definition with a mixed content type, the "Value" in the final DEFAULT- FOR- EMPTY
encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a value in
the value space of xsd:string with whiteSpace preserve.

23.8 If a simple type definition or complex type definition is used as the type definition of an element declaration with a
value constraint that is a fixed value, then one of the three following subclauses applies.

23.8.1 For a simple type definition, an ASN.1 single value constraint with a "Value" identical to the "Value" in the
final DEFAULT- FOR- EMPTY encoding instruction shall be added to the ASN.1 definition.

23.8.2 For a complex type definition whose content type is a simple type definition, an ASN.1 inner subtype constraint
shall be added to the ASN.1 definition and shall apply to the base component a single value constraint with a "Value"
identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding instruction.

ITU-T Rec. X.694 (01/2004) 21

ISO/IEC 8825-5:2004 (E)

23.8.3 For a complex type definition with a mixed content type, an ASN.1 inner subtype constraint shall be added to
the ASN.1 definition and shall apply:

a) to the enbed- val ues component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding
instruction;

b) to each component that is OPTI ONAL and does not have a final ATTRI BUTE encoding instruction, the
keyword ABSENT; and

¢) to each component whose type is a sequence-of type, a SI ZE(0) constraint.

24 Mapping special uses of simple and complex type definitions (substitutable)

24.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a simple type definition or complex type definition used as the type
definition of element declarations that have a substitutable type definition (see 14.6), are not nillable, and may or may not
have a value constraint.

24.2 A use of a simple type definition (STD, say) or complex type definition (CTD, say) shall be mapped to an ASN.1
choice type.

24.3 One alternative shall be added to the ASN.1 choice type for STD or CTD itself and one alternative shall be
added for each user-defined top-level simple type definition and complex type definition in the source XSD Schema that is
derived by restriction or extension (directly or indirectly) from STD or CTD.

24.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of
the simple type definition or complex type definition corresponding to the alternative, and the "Type" in the "NamedType"
shall be the ASN.1 type definition generated by applying clause 23 to the simple type definition or complex type definition.

24.5 The first alternative added to the choice type shall be the one corresponding to STD or CTD itself. The
subsequent alternatives shall be added to the choice type in an order based on the target namespace and name of the
simple type definitions and complex type definitions. Type definitions shall first be ordered by target namespace (with the
absent namespace preceding all namespace names sorted in ascending lexicographical order) and then by name (also in
ascending lexicographical order) within each target namespace.

24.6 A final USE- TYPE encoding instruction shall be assigned to the ASN.1 choice type.

24.7 If there is a value constraint, then a final DEFAULT- FOR- EMPTY encoding instruction shall be assigned to each
alternative of the ASN.1 choice type. One of the three following subclauses applies.

24.7.1 If the alternative corresponds to a simple type definition, the "Value" in the final DEFAULT- FOR- EMPTY
encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a value in
the value space of the simple type definition.

24.7.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition, the
"Value" in the final DEFAULT- FOR- EMPTY encoding instruction shall be generated by applying clause 16 to the value in
the value constraint considered as a value in the value space of the simple type definition.

24.7.3 If the alternative corresponds to a complex type definition with a mixed content type, the "Value" in the final
DEFAULT- FOR- EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of xsd:string with whiteSpace preserve.

24.8 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be added to the
ASN.1 choice type. One of the three following subclauses applies.

24.8.1 If the alternative corresponds to a simple type definition, the inner subtype constraint shall apply to the
alternative an ASN.1 single value constraint with a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY
encoding instruction.

24.8.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition, the inner
subtype constraint shall apply to the alternative another ASN.1 inner subtype constraint that applies to the base
component a single value constraint with a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY
encoding instruction.

22 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

24.8.3 If the alternative corresponds to a complex type definition with a mixed content type, the inner subtype
constraint shall apply to the alternative another ASN.1 inner subtype constraint that applies:

a) to the enbed- val ues component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding
instruction;

b) to each component that is OPTI ONAL and does not have a final ATTRI BUTE encoding instruction, the
keyword ABSENT; and

¢) to each component whose type is a sequence-of type, a SI ZE(0) constraint.

25 Mapping special uses of simple and complex type definitions (substitutable, nillable)

25.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a simple type definition or complex type definition used as the type
definition of element declarations that have a substitutable type definition (see 14.6), are nillable, and may or may not have a
value constraint.

25.2 A use of a simple type definition (STD, say) or complex type definition (CTD, say) shall be mapped to an ASN.1
choice type.

25.3 One alternative shall be added to the ASN.1 choice type for STD or CTD itself and one alternative shall be
added for each user-defined top-level simple type definition and complex type definition in the source XSD Schema that is
derived by restriction or extension (directly or indirectly) from STD or CTD.

254 For each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of
the simple type definition or complex type definition corresponding to the alternative, and the "Type" in the "NamedType"
shall be the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type assignment
generated by applying clause 30 to the simple type definition or complex type definition.

25.5 The first alternative added to the choice type shall be the one corresponding to STD or CTD itself. The
subsequent alternatives shall be added to the choice type in an order based on the target namespace and name of the
simple type definitions and complex type definitions. Type definitions shall first be ordered by target namespace (with the
absent namespace preceding all namespace names sorted in ascending lexicographical order) and then by name (also in
ascending lexicographical order) within each target namespace.

25.6 A final USE- TYPE encoding instruction shall be assigned to the ASN.1 choice type.

25.7 If there is a value constraint, then a final DEFAULT- FOR- EMPTY encoding instruction shall be assigned to each
alternative of the ASN.1 choice type. One of the three following subclauses applies.

25.7.1 If the alternative corresponds to a simple type definition, the "Value" in the final DEFAULT- FOR- EMPTY
encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a value in
the value space of the simple type definition.

25.7.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition, the
"Value" in the final DEFAULT- FOR- EMPTY encoding instruction shall be generated by applying clause 16 to the value in
the value constraint considered as a value in the value space of the simple type definition.

25.7.3 If the alternative corresponds to a complex type definition with a mixed content type, the "Value" in the final
DEFAULT- FOR- EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of xsd:string with whiteSpace preserve.

25.8 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be added to the
ASN.1 choice type. One of the three following subclauses applies.

25.8.1 If the alternative corresponds to a simple type definition, the inner subtype constraint shall apply to the
alternative (which is an ASN.1 sequence type with a final USE- NI L encoding instruction) another ASN.1 inner subtype
constraint which in turn shall apply to the cont ent component the keyword PRESENT and an ASN.1 single value
constraint with a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding instruction.

25.8.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition, the inner
subtype constraint shall apply to the alternative (which is an ASN.1 sequence type with a final USE- NI L encoding
instruction) another ASN.1 inner subtype constraint that applies to the cont ent component the keyword PRESENT and
an ASN.1 single value constraint with a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding
instruction.

ITU-T Rec. X.694 (01/2004) 23

ISO/IEC 8825-5:2004 (E)

25.8.3 If the alternative corresponds to a complex type definition with a mixed content type, the inner subtype
constraint shall apply to the alternative (which is an ASN.1 sequence type with a final USE- NI L encoding instruction)
another ASN.1 inner subtype constraint that applies:

a) to the enbed-val ues component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding
instruction;

b) tothe content component (which is an ASN.1 sequence type), the keyword PRESENT and another inner
subtype constraint that applies the keyword ABSENT to each of its components that is OPTI ONAL and a
Sl ZE(0) constraint to each of its components whose type is a sequence-of type;

c) to each component that is OPTI ONAL and does not have a final ATTRI BUTE encoding instruction, the
keyword ABSENT; and

d) to each component whose type is a sequence-of type, a SI ZE(0) constraint.

26 Mapping special uses of simple type definitions (nillable)

26.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a simple type definition used as the type definition of element
declarations that do not have a substitutable type definition (see 14.6), are nillable, and may or may not have a value
constraint.

26.2 A use of a simple type definition shall be mapped to an ASN.1 sequence type with one OPTI ONAL component.

26.3 The "identifier" in the "NamedType" of the component shall be content and the "Type" in the
"NamedType" shall be the ASN.1 type definition generated by applying clause 23 to the simple type definition.

26.4 A final USE- NI L encoding instruction shall be assigned to the ASN.1 sequence type.

26.5 If there is a value constraint, then a final DEFAULT- FOR- EMPTY encoding instruction shall be assigned to the
ASN.1 sequence type. The "Value" in the final DEFAULT- FOR- EMPTY encoding instruction shall be generated by
applying clause 16 to the value in the value constraint.

26.6 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be added to the
ASN.1 sequence type. The inner subtype constraint shall apply to the cont ent component an ASN.1 single value
constraint with a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding instruction. The inner
subtype constraint shall also apply the keyword PRESENT to the cont ent component.

27 Mapping special uses of complex type definitions (nillable)

27.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a complex type definition used as the type definition of element
declarations that do not have a substitutable type definition (see 14.6), are nillable, and may or may not have a value
constraint.

27.2 A use of a complex type definition shall be mapped to an ASN.1 sequence type. One or more components shall
be added to the ASN.1 sequence type as specified by the following subclauses, in the specified order.

27.3 If the content type of the complex type definition is a mixed content model, then an enbed- val ues component
shall be added to the ASN.1 sequence type as specified in 20.5.

27.4 If the content type of the complex type definition is a particle whose term is a model group with a compositor of all,
then an or der component shall be added to the ASN.1 sequence type as specified in 20.6.

27.5 If the complex type definition has attribute uses, components mapped from the attribute uses shall be added to the
ASN.1 sequence type as specified in 20.7.

27.6 If the complex type definition has an attribute wildcard, then a component generated from the attribute wildcard
shall be added to the ASN.1 sequence type as specified in 20.8.

27.7 If the content type of the complex type definition is a particle, then one of the two following subclauses applies.

24 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

27.7.1 If the term of the particle is a model group with a compositor of sequence or choice, then an OPTI ONAL
component shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be
generated by applying 10.3 to the character string "cont ent " and the "Type" in the "NamedType" shall be an ASN.1
sequence type with a single component, which shall be generated by applying clause 19 to the particle in the content
type.

27.7.2 If the term of the particle is a model group with a compositor of all, then an OPTI ONAL component shall be
added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by
applying 10.3 to the character string "cont ent " and the "Type" in the "NamedType" shall be an ASN.1 sequence type.
For each particle of the model group in order, a component generated by applying clause 19 to the particle of the model
group shall be added to the inner ASN.1 sequence type. If the particle in the content type of the complex type definition has
min occurs zero, each of the particles of the model group with min occurs one shall be mapped as if it had min occurs zero.

27.8 If the content type of the complex type definition is a simple type definition, then an OPTI ONAL component shall
be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be generated by
applying 10.3 to the character string "cont ent " and the "Type" in the "NamedType" shall be the ASN.1 type definition
generated by applying clause 23 to the content type.

27.9 If the content type of the complex type definition is empty, then no further components shall be added to the
ASN.1 sequence type.

27.10 A final USE- NI L encoding instruction shall be assigned to the ASN.1 sequence type.

27.11 If there is a value constraint, then a final DEFAULT- FOR- EMPTY encoding instruction shall be assigned to the
ASN.1 sequence type. One of the two following subclauses applies.

27.11.1 If the content type of the complex type definition is a simple type definition, the "Value" in the final DEFAULT-
FOR- EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of the simple type definition.

27.11.2 If the content type of the complex type definition is a mixed content type, the "Value" in the final DEFAULT- FOR-
EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint considered as a
value in the value space of xsd:string with whiteSpace preserve.

27.12 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be added to the
ASN.1 sequence type. The inner subtype constraint shall apply the keyword PRESENT to the cont ent component.
One of the two following subclauses applies.

27.12.1 If the content type of the complex type definition is a simple type definition, the inner subtype constraint shall
apply to the cont ent component an ASN.1 single value constraint with a "Value" identical to the "Value" in the final
DEFAULT- FOR- EMPTY encoding instruction.

27.12.2 If the content type of the complex type definition is a mixed content type, the inner subtype constraint shall apply:

a) to the enbed-val ues component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT- FOR- EMPTY encoding
instruction;

b) to each component of the content component (an ASN.l sequence type) that is OPTI ONAL, the
keyword ABSENT;

c) to each component of the cont ent component (an ASN.1 sequence type) whose type is a sequence-of
type, a Sl ZE(0) constraint.

28 Mapping special uses of element declarations (head of element substitution group)

28.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type definition corresponding to a top-level element declaration that is the head of an element
substitution group and is used as the term of particles.

28.2 A use of a top-level element declaration shall be mapped to an ASN.1 choice type.

28.3 One alternative shall be added to the ASN.1 choice type for the top-level element declaration itself (H, say) and
one alternative shall be added for each top-level element declaration in the source XSD Schema that is not abstract and
whose substitution group affiliation is H.

ITU-T Rec. X.694 (01/2004) 25

ISO/IEC 8825-5:2004 (E)

28.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of
the top-level element declaration corresponding to the alternative, and the "Type" in the "NamedType" shall be the
ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by
applying clause 14 to the top-level element declaration.

NOTE - In XSD, substitution group membership is transitive, i.e., the members of a substitution group ESG1 whose head is a
member of another substitution group ESG2 are all also members of ESG2.

28.5 Alternatives shall be added to the choice type in an order based on the target namespace and name of the top-
level element declarations. The element declarations shall first be ordered by target namespace (with the absent namespace
preceding all namespace names sorted in ascending lexicographical order) and then by name (also in ascending
lexicographical order) within each target namespace.

NOTE — The element declaration that is the head of the element substitution group is ordered together with the other element
declarations that belong to the element substitution group.

28.6 A final UNTAGGED encoding instruction shall be assigned to the choice type.

29 Generating special ASN.1 type assignments for element declarations

29.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment corresponding to a user-defined top-level simple type definition or complex type
definition used as the type definition of element declarations that have a substitutable type definition (see 14.6) or are nillable.

29.2 This clause is invoked by other clauses for a given combination of:
a) a simple type definition or complex type definition;
b) whether the element declarations have a substitutable type definition (see 14.6);
¢) whether the element declaration is nillable; and

d) whether the element declaration has a value constraint and the kind and value of the value constraint;

and generates an ASN.1 type assignment (called a "special ASN.1 type assignment (for element declarations)") for a
combination of the above items.

29.3 One and only one special ASN.1 type assignment shall be generated for each different combination of the

above items that actually occurs in one or more invocations of this clause over the mapping of a source XSD Schema.
NOTE - For example, if two or more element declarations in a large XSD Schema have identical type definitions, are both nillable,
and both have a value constraint that is a default value and is the same value, then a single special ASN.1 type assignment is

generated. The type reference name of this type assignment will occur in the "Type" in the "TypeAssignment"s corresponding to
both element declarations.

29.4 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being mapped from the
simple type definition or complex type definition that is the type definition of the element declaration for which a special
ASN.1 type assignment is generated, by applying clause 13 or clause 20, respectively.

NOTE — Any special ASN.1 type assignment has an associated ASN.1 type assignment, as this clause applies only when the type

definition of an element declaration is a user-defined top-level simple type definition or complex type definition. All such simple type
definitions and complex type definitions are mapped to ASN.1 type assignments.

29.5 For a given element declaration, the "typereference" in the "TypeAssignment" for a special ASN.1 type
assignment shall be constructed by appending a suffix to the type reference name of the associated ASN.1 type
assignment and applying 10.3 to the resulting character string, and the "Type" in the "TypeAssignment" shall be the
ASN.1 type definition generated by applying either clause 24 or clause 25 to the simple type definition or complex type
definition that is the type definition of the element declaration. One of the following applies:

a) if the element declaration is not nillable, has a substitutable type definition, and does not have a value
constraint, the suffix shall be "- der i vat i ons" and clause 24 shall be applied;

b) if the element declaration is nillable, has a substitutable type definition, does not have a value constraint, the
suffix shall be "- deri v-ni | | abl e" and clause 25 shall be applied;

c) if the element declaration is not nillable, has a substitutable type definition, and has a value constraint that is a
default value, the suffix shall be "- deri v-defaul t -" followed by the canonical lexical representation
(see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 24 shall be applied;

d) if the element declaration is not nillable, has a substitutable type definition, and has a value constraint that is a
fixed value, the suffix shall be "-deri v-fi xed-" followed by the canonical lexical representation (see
W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 24 shall be applied;

26 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

e) if the element declaration is nillable, and has a substitutable type definition, and has a value constraint that is
a default value, the suffix shall be "-deri v-nill abl e-defaul t-" followed by the canonical lexical
representation (see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 25
shall be applied;

f) if the element declaration is nillable, has a substitutable type definition, and has a value constraint that is a
fixed value, the suffix shall be "-deriv-nillable-fixed-" followed by the canonical lexical
representation (see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 25
shall be applied.

30 Generating special ASN.1 type assignments for type definitions

30.1 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment corresponding to a user-defined top-level simple type definition or complex type
definition that belongs to the derivation hierarchy of the type definition of element declarations that have a substitutable
type definition (see 14.6) and are nillable.

30.2 This clause is invoked by other clauses for a given simple type definition or complex type definition and generates
an ASN.1 type assignment (called a "special ASN.1 type assignment (for a type definition)").

30.3 One and only one special ASN.1 type assignment shall be generated for each simple type definition or complex
type definition that actually occurs in one or more invocations of this clause over the mapping of a source XSD Schema.

304 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being mapped from the
simple type definition or complex type definition by applying clause 13 or clause 20, respectively.

30.5 The "typereference" in the "TypeAssignment" for a special ASN.1 type assignment shall be constructed by
appending the suffix "-nillabl e" to the type reference name of the associated ASN.1 type assignment and
applying 10.3 to the resulting character string, and the "Type" in the "TypeAssignment” shall be the ASN.1 type
definition generated by applying either clause 26 or clause 27 to the simple type definition or complex type definition,
respectively.

31 Generating special ASN.1 type assignments for element substitution groups

311 This clause applies as explicitly invoked by other clauses of this Recommendation | International Standard to
generate an ASN.1 type assignment corresponding to a particle whose term is a top-level element declaration that is the
head of an element substitution group.

31.2 This clause is invoked by other clauses for a top-level element declaration that is the head of an element
substitution group and generates an ASN.1 type assignment (called a "special ASN.1 type assignment (for an element
substitution group)").

313 One and only one special ASN.1 type assignment shall be generated for each top-level element declaration that
actually occurs in one or more invocations of this clause over the mapping of a source XSD Schema.

314 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being mapped from the
top-level element declaration by applying clause 14.

31.5 The "typereference" in the "TypeAssignment" for a special ASN.1 type assignment shall be constructed by
appending the suffix "- gr oup" to the type reference name of the associated ASN.1 type assignment and applying 10.3
to the resulting character string, and the "Type" in the "TypeAssignment" shall be the ASN.1 type definition generated
by applying clause 28 to the top-level element declaration.

ITU-T Rec. X.694 (01/2004) 27

ISO/IEC 8825-5:2004 (E)

Annex A

ASN.1 type definitions corresponding to XSD built-in datatypes

(This annex forms an integral part of this Recommendation | International Standard)

Al This annex specifies a module that defines the ASN.1 types that correspond to the XSD built-in datatypes and
that are used for the mapping from W3C XML Schema to ASN.1.

A2 W3C XML Schema defines many built-in date and time datatypes to represent durations, instants or recurring
instants. Although they are all derived from ISO 8601, there are some extensions and restrictions. The XSD built-in date
and time datatypes are mapped to Vi si bl eString with a user-defined constraint referencing the applicable XSD
clause. A permitted alphabet constraint is added to provide a more efficient encoding with the Packed Encoding Rules
(PER), since user-defined constraints are not PER-visible (and hence are not used in optimizing encodings).

A3 The XSD module is:

XSD {joint-iso-itu-t asnl(1l) specification(0) nodul es(0) xsd-nodul e(2)}
DEFI NI TI ONS

AUTOVATI C TAGS :: =

BEG N

/* xsd: anySi npl eType */
AnySi npl eType ::= XM.Conpati bl eString
/* xsd:anyType */

AnyType ::= SEQUENCE ({
enbed- val ues SEQUENCE COF Stri ng,
attr SEQUENCE
(CONSTRAI NED BY {
/* Each itemshall conformto the "AnyAttributeFornmat" specified
in ITUT Rec. X. 693 | ISQIEC 8825-4, clause 18 */ }) OF String,
elemlist SEQUENCE OF elem String
(CONSTRAI NED BY {
/* Shall conformto the "AnyEl enment Fornmat" specified
in ITUT Rec. X. 693 | ISOIEC 8825-4, clause 19 */ }) }
(CONSTRAI NED BY {
/* Shall conformto ITUT Rec. X 693 | ISOIEC 8825-4, clause 25 */ })

/* xsd:anyUri */

AnyURI @ := XM.StringW t hNoCRLFHT
(CONSTRAI NED BY {
/* The XM.StringWthNoCRLFHT shall be a valid URI as defined in | ETF RFC

2396 */ })
/* xsd: base64Bi nary */
Base64Bi nary ::= OCTET STRI NG

/* xsd: bool ean */
Bool ean :: = BOOLEAN
/* xsd:byte */

Byte ::= I NTEGER (-128..127)
/* xsd:date */
Date ::= DATE-TI ME (DateOnly)

/* xsd:dateTine */
Dat eTi ne ::= DATE-TI ME
/* xsd:deci mal */

Decimal ::= REAL (WTH COVPONENTS {..., base(10)})
(ALL EXCEPT(-0 | MNUS-INFINITY | PLUS I NFINITY | NOT- A- NUVBER))

/* xsd: double */

28 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

Double ::= REAL (W TH COVPONENTS {
mant i ssa(-9007199254740991. . 9007199254740991) ,
base(2),
exponent (- 1075..970)})

/* xsd:duration */

Duration ::= DURATI ON
/* xsd: ENTI TI ES */
ENTI TIES ::= SEQUENCE (Sl ZE(1..MAX)) OF ENTITY

/* xsd: ENLITY */
ENTI TY ::= NCNane
/* xsd:float */

Float ::= REAL (WTH COVPONENTS {
manti ssa(-16777215. . 16777215),
base(2),
exponent (-149..104)})

/* xsd: gbDay */

GDay ::= DATE-TI ME (Day)

/* xsd:ghonth */

Gwont h :: = DATE-TI ME (Mont h)

/* xsd: gvont hDay */

Gwont hDay :: = DATE- TI ME (Mont hDay)
/* xsd:gYear */

GYear ::= DATE-TIME (Year)

/* xsd:gYearMonth */

GYear Mont h :: = DATE- TI ME (Year Mont h)

/* xsd: hexBi nary */

HexBi nary ::= OCTET STRI NG
/* xsd: 1D */

ID::= NCNane

/* xsd: | DREF */

| DREF ::= NCName

/* xsd: | DREFS */

I DREFS ::= SEQUENCE (SI ZE(1..MAX)) OF |DREF
/* xsd:int */

Int ::= | NTEGER (-2147483648..2147483647)

/* xsd:integer */
Integer ::= I NTEGER
/* xsd: | anguage */
Language ::= VisibleString (FROM ("a".."2" | "A".."Z2" | "-"] "0".."9"))
(PATTERN
"[a-zA-Z]#(1,8)(-[a-zA-Z0-91#(1,8))*")
/* The semantics of Language is specified in | ETF RFC 3066 */
/* xsd:long */
Long ::= I NTEGER (-9223372036854775808. .9223372036854775807)

/* xsd: name */

ITU-T Rec. X.694 (01/2004) 29

ISO/IEC 8825-5:2004 (E)

Name ::= Token (XM.StringWthNoWhitespace)
(CONSTRAI NED BY {
/* The Token shall be a Nane as defined in WBC XM. 1.0, 2.3 */ })
/* xsd: NCNare */

NCNare ::= Name
(CONSTRAI NED BY {
/* The Name shall be an NCNane as defined in WBC XM. Nanespaces, 2 */ })

/* xsd: negativel nteger */

Negativel nteger ::= INTEGER (MN..-1)
/* xsd: NMTOKEN */
NMIOKEN : : = Token (XM.StringW t hNowi t espace)

(CONSTRAI NED BY {
/* The Token shall be an NMIOKEN as defined in WBC XM. 1.0, 2.3 */ })

/* xsd: NMTOKENS */

NMIOKENS : : = SEQUENCE (SI ZE(1..MAX)) OF NMIOKEN
/* xsd: nonNegat i vel nt eger */

NonNegat i vel nteger ::= I NTEGER (0..NAX)

/* xsd: nonPosi tivel nteger */

NonPosi tivelnteger ::= INTEGER (M N.. 0)

/* xsd:normalizedString */

Nor mal i zedString ::= String (XM.StringW t hNoCRLFHT)
(CONSTRAI NED BY {
/* The String shall be a normalizedString as defined in WBC XM. Schena
Part 2, 3.3.1 */})

/* xsd: NOTATI ON */

NOTATI ON : : = Q\ane

/* xsd: positivel nteger */
Positivelnteger ::= I NTEGER (1..MAX)
/* xsd: QNane */

QNane :: = SEQUENCE {
uri AnyURI OPTI ONAL,
namre NCNanme }

/* xsd:short */

Short ::= I NTEGER (-32768..32767)
/* xsd:string */

String ::= XM.Conpati bl eString
[* xsd:tine */

Tine ::= DATE-TI ME (Ti meOnly)

/* xsd:token */

Token ::= NormalizedString (CONSTRAI NED BY {
/* The NornmalizedString shall be a token as defined in WBC XML Schena Part 2,
3.3.2 */})

/* xsd: unsi gnedByte */

Unsi gnedByte ::= | NTEGER (0. .255)

/* xsd:unsi gnedlnt */

Unsi gnedint ::= | NTEGER (0. .4294967295)
/* xsd: unsi gnedLong */

Unsi gnedLong ::= | NTEGER (O0..18446744073709551615)

30 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

/* xsd: unsi gnedShort */
Unsi gnedShort ::= I NTEGER (0. .65535)

/* ASN. 1 type definitions supporting the mappi ng of WVBC XM. Schenm built-in
dat atypes */

XM.Compati bl eString ::= UTF8Stri ng (FROM
{0, 0, 0, 9} |
{0, 0, 0, 10} |
{0, 0, O, 13} |
{0, o, o, 323 .. {0, O, 215, 255} |
{0, 0, 224, 0} .. {0, 0, 255, 253} |
{0, 1, o, 0} .. {0, 16, 255, 253}))

XMLSt ri ngW t hNoWhi t espace ::= UTF8String (FROM
{0, 0, 0, 33} .. {0, 0, 215, 255} |
{0, 0, 224, 0} .. {0, 0, 255, 253} |
{0, 1, 0, O} .. {0, 16, 255, 253}))

XMLSt ri ngW t hNoCRLFHT :: = UTF8String (FROM
{0, 0, 0, 32} .. {0, O, 215, 255} |
{0, 0, 224, 0} .. {0, 0, 255, 253} |
{0, 1, o, 0} .. {0, 16, 255, 253}))

/* ASN. 1 type definitions supporting the mappi ng of WVBC XM_ Schena built-in date
and tinme datatypes */

DURATION ::= VisibleString (FROM ("0".."9" | "DHWPSTY:.+-"))
(CONSTRAI NED BY {/* WBC XM. Scherma Part 2, 3.2.6 */})
DATE-TIME ::= VisibleString (FROM ("0".."9" | "TZ .+-"))
(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.7 */})
DateOnly ::= DATE-TIME (FROM ("0".."9" | "Z +"))
(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.9 */})
Day ::= DATE-TI ME (FROM ("0".."9" | "Z:+-"))
(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.13 */})
Mont h ::= DATE-TI ME (FROM ("0".."9" | "Z: +-"))
(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.14 */})
Mont hDay ::= DATE-TI ME(FROM ("0Q0".."9" | "Z: +-"))
(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.12 */})
Year ::= DATE-TI ME (FROM ("0".."9" | "Z: +"))
(CONSTRAI NED BY {/* WBC XML Schema Part 2, 3.2.11 */})
Year Mont h :: = DATE-TI ME (FROM ("0".."9" | "Z:+-"))
(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.10 */})
TinmeOnly ::= DATE-TI ME (FROM ("0".."9" | "Z:.+"))

(CONSTRAI NED BY {/* WBC XM. Schema Part 2, 3.2.8 */})

ENCODI NG- CONTROL XER

GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS

GLOBAL- DEFAULTS CONTROL- NAMESPACE
"http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
PREFI X "xsi"

NAMESPACE ALL, ALL IN ALL AS
"http://ww. w3. org/ 2001/ XM_Schena"
PREFI X "xsd"

USE- QNAVE QNarre

BASE64 Base64Bi nary

DECI MAL Deci nal

LI ST ENTI TI ES, | DREFS, NMIOKENS

EMBED- VALUES AnyType

ANY- ATTRI BUTES AnyType. any-attri butes

ANY- ELEMENT AnyType. any-el enents. *

UNTAGGED AnyType. any- el enent s

NAME AnySi npl eType, AnyURl, Base64Bi nary, Bool ean,
Byte, Date, DateTine, Decimal, Double, Duration,

ITU-T Rec. X.694 (01/2004) 31

ISO/IEC 8825-5:2004 (E)

Fl oat, GDay,
HexBi nary, Int,
Negati vel nt eger,
Nor mal i zedStri ng,
String, Tine, Token,
Unsi gnedByt e, Unsi gnedl nt,
AS UNCAPI TALI ZED
WH TESPACE AnyURI, Language, Token,
WHI TESPACE Nor mal i zedStri ng REPLACE

I nt eger,

END

32 ITU-T Rec. X.694 (01/2004)

Gvont h, Gwvbnt hDay,
Language,
NonNegat i vel nt eger,

Posi ti vel nt eger,

Unsi gnedLong,

Gyear, GYear Mont h,

Long,

NonPosi ti vel nt eger,
Short,

Unsi gnedShort

DURATI ON, DATE- TI ME COLLAPSE

ISO/IEC 8825-5:2004 (E)

Annex B

Assignment of object identifier values

(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifier and object descriptor value is assigned in this Recommendation | International Standard:

For the module defining ASN.1 types corresponding to the XSD built-in datatypes:
{ joint-iso-itu-t asnl(1) specification(0) nodul es(0) xsd-nodule(2) }

"ASN. 1 XSD Modul e"

ITU-T Rec. X.694 (01/2004) 33

ISO/IEC 8825-5:2004 (E)

Annex C

Examples of mappings

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates the mapping specified in this Recommendation | International Standard by giving an ASN.1

module corresponding to an XSD Schema.

C.1 A Schema using simple type definitions

The following Schema contains examples of XSD built-in datatypes (xsd:string, xsd:decimal, xsd:integer, xsd:int,

xsd:date), other simple type definitions and complex type definitions.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlins:xsd="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="unqualified">

<xsd:element name="EXAMPLES">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="personnelRecord"/>
<xsd:element name="decimal" type="xsd:decimal"/>
<xsd:element name="daysOfTheWeek" type="ListOfDays"/>
<xsd:element ref="namesOfMemberNations"/>
<xsd:element ref="fileldentifier" maxOccurs="unbounded"/>
<Ixsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="personnelRecord">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="name"/>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="decimal" type="xsd:integer"/>
<xsd:element name="dateOfHire" type="xsd:date"/>
<xsd:element ref="nameOfSpouse"/>
<xsd:element ref="children"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="nameOfSpouse" type="name"/>
<xsd:complexType name="name">

<xsd:sequence>
<xsd:element name="givenName" type="xsd:string"/>
<xsd:element name="initial" type="xsd:string"/>
<xsd:element name="familyName" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
<xsd:element name="children">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ChildInformation” minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="ChildInformation">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="name"/>
<xsd:element name="dateOfBirth" type="xsd:date"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:simpleType name="ListOfDays">

<xsd:list itemType="Day"/>

</xsd:simpleType>
<xsd:simpleType name="Day">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="monday"/>
<xsd:enumeration value="tuesday"/>
<xsd:enumeration value="wednesday"/>
<xsd:enumeration value="thursday"/>
<xsd:enumeration value="friday"/>
<xsd:enumeration value="saturday"/>
<xsd:enumeration value="sunday"/>

</xsd:restriction>

34 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

</xsd:simpleType>
<xsd:element name="namesOfMemberNations">
<xsd:simpleType>
<xsd:list itemType="xsd:string"/>
</xsd:simpleType>
</xsd:element>
<xsd:element name="fileldentifier">
<xsd:complexType>
<xsd:choice>
<xsd:element name="serialNumber" type="xsd:int"/>
<xsd:element name="relativeName" type="xsd:string"/>
<xsd:element ref="unidentified"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="unidentified">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType"/>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>

C.2 The corresponding ASN.1 definitions
The following is the corresponding ASN.1 specification and validates the same XML documents as the XSD Schema:

EXAMPLES{j oi nt-iso-itu-t asnl(1l) exanpl es(999) xni-defined-types(3)}
DEFI NI TI ONS AUTQVATI C TAGS

XER I NSTRUCTI ONS :: =
BEG N

| MPORTS String, Decimal, Int, Date, AnyType

FROM XSD
{joint-iso-itu-t asnl(1l) specification(0) nmodul es(0) xsd-nodul e(1)};
EXAMPLES : : = SEQUENCE {
per sonnel Record Per sonnel Record,
nunber Deci nal ,
daysCOf TheWeek Li st O Days,

namesOf Menber Nat i ons NanmesOf Menber Nat i ons,
fileldentifier-list [UNTAGGED|
SEQUENCE (Sl ZE(1..MAX)) OF fileidentifier Fileldentifier }

Personnel Record ::= [NAME AS UNCAPI TALI ZED] SEQUENCE {
name Nane,
title XSD. Stri ng,
nunber | NTEGER,
dateCO Hre Dat e,
namef Spouse NaneCf Spouse,
children Children }
NanmeOFf Spouse ::= [NAME AS UNCAPI TALI ZED] Nane
Name ::= [NAVME AS UNCAPI TALI ZED] SEQUENCE {
gi venNane XSD. Stri ng,
initial XSD. Stri ng,
fam | yNane XSD. String }
Children ::= [NAVE AS UNCAPI TALI ZED] SEQUENCE {

childlinformation-Ilist [UNTAGGED]
SEQUENCE OF Childlnformation }

Childinformation ::= SEQUENCE {
nane Nane,
dateOBirth Date }

ITU-T Rec. X.694 (01/2004) 35

ISO/IEC 8825-5:2004 (E)

ListOfDays ::= [LI ST] SEQUENCE OF Day
Day ::= ENUMERATED { nonday, tuesday, wednesday, thursday, friday,
sat urday, sunday}
NamesCOf Menber Nati ons ::= [NAME AS UNCAPI TALI ZED] [LIST] SEQUENCE OF XSD. String
Fileldentifier ::= [NAME AS UNCAPI TALI ZED] SEQUENCE {
choi ce [UNTAGGED] CHO CE {

seri al Nunber I nt,

rel ati veNane XSD. String,

uni dentified UNIDENTIFIED } }
UNIDENTIFIED ::= [NAVE AS LOANERCASED] XSD. AnyType

ENCCDI NG CONTROL XER
GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS

END

C3 Further examples

In this subclause, all the partial examples (the examples that do not contain the schema element) assume that the XML
elements representing the XSD syntax are in the scope of a default namespace declaration whose namespace name is the
target namespace of the schema.

C3.1 Schema documents with import and include element information items

The following XSD Schema is composed of two namespaces that are composed from four schema files:
<!--file "http://example.com/xyz/schema.xsd" -->

<xsd:schema xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xyz="http://example.com/xyz"
targetNamespace="http://example.com/xyz">

<xsd:element name="xyz-elem" type="xsd:string"/>

<xsd:complexType name="Xyz-type">
<xsd:attribute name="xyz-attr" type="xsd:boolean"/>
<Ixsd:complexType>
<I/xsd:schema>

<I-- file "http://example.com/abc/main.xsd" -->

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlins:abc="http://example.com/abc"
targetNamespace="http://example.com/xyz">

<xsd:include schemalLocation="http://example.com/abc/sub1.xsd"/>

<xsd:import namespace="http://www.w3.0rg/2001/XMLSchema"
schemaLocation="http://example.com/xyz/schema.xsd"/>

<xsd:redefine schemaLocation="http://example.com/abc/sub2.xsd">
<xsd:attribute name="sub2-attr" type="xsd:token"/>
</xsd:redefine>

<xsd:element name="abc-elem" type="Xyz-type"/>
<Ixsd:schema>

<!-- file "http://example.com/abc/sub1.xsd" -->

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:abc="http://example.com/abc"
targetNamespace="http://example.com/xyz">

<xsd:element name="sub1-elem" type="xsd:string"/>
<I/xsd:schema>

<I-- file "http://example.com/abc/sub2.xsd" -->

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="sub2-elem " type="xsd:string"/>
<xsd:attribute name="sub2-attr" type="xsd:string"/>
<Ixsd:schema>

36 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

Those four schema documents are mapped to the two following ASN.1 modules:

XYZ -- The nodule reference is not standardi zed
DEFI NI TI ONS AUTOMATI C TAGS :: =
BEG N

NAME AS UNCAPI TALI ZED] XSD. String

Xyz-elem::= [
Xyz-type ::= SEQUENCE {
xyz-attr [ATTRI BUTE] BOOLEAN OPTI ONAL }

ENCODI NG CONTROL XER
GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
GLOBAL- DEFAULTS CONTROL- NAMESPACE
"http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
END

ABC -- The nodule reference is not standardized
DEFI NI TI ONS AUTOMATI C TAGS :: =

BEG N

| MPORTS

Xyz-type FROM XYZ

Token, String FROM XSD;

Abc-el em:: = [NAME AS UNCAPI TALI ZED] Xyz-type

Subl-el em::= [NAME AS UNCAPI TALI ZED] XSD. Stri ng
Sub2-el em::= [NAME AS UNCAPI TALI ZED] XSD. String
Sub2-attr = [NAME AS UNCAPI TALI ZED] [ATTRI BUTE] XSD. Token

ENCCDI NG CONTROL XER
GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
GLOBAL- DEFAULTS CONTROL- NAMESPACE
"http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
END

C.3.2 Mapping simple type definitions

C.3.2.1 simple type definition derived by restriction

For a complete set of examples of simple type restrictions, see the examples of facets in C.3.3.

C.3.2.2 simple type definition derived by list

<xsd:simpleType name="Int-list">
<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

<xsd:simpleType name="Int-10-to-100-list">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minlnclusive value="10"/>
<xsd:minlinclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
<Ixsd:list
</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:
Int-list ::= [LIST] SEQUENCE CF | NTECER
Int-10-to0-100-1ist ::= [LIST] SEQUENCE COF | NTEGER (10..100)

C.3.2.3 simple type definition derived by union

<xsd:simpleType name="Int-or-boolean">
<xsd:union itemType="xsd:integer xsd:boolean"/>
</xsd:simpleType>

<xsd:simpleType name="Time-or-int-or-boolean--or-dateRestriction">
<xsd:union itemType=" xsd:time Int-or-boolean™>
<xsd:simpleType>
<xsd:restriction base="xsd:date">
<xsd:mininclusive value="2003-01-01"/>

ITU-T Rec. X.694 (01/2004) 37

ISO/IEC 8825-5:2004 (E)

</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:

Int-or-boolean ::= [USE-UNIQ\] CHO CE {
i nteger [NAMESPACE "http://ww. w3. or g/ 2001/ XM_Schera"] | NTEGER,
bool ean [NAMESPACE "htt p://ww. w3. or g/ 2001/ XM_.Scherma"] BOCLEAN }

Ti me-or-int-or-bool ean-or-dateRestriction ::= [USE-UNIQ\] CHO CE {
time [NAMESPACE "http://ww. w3. or g/ 2001/ XM_Schema"] XSD. Ti ne,
i nteger [NAMESPACE "http://ww. w3. or g/ 2001/ XM_Schera"] | NTEGER,
bool ean [NAMESPACE "http://ww. w3. or g/ 2001/ XM_Schena"] BOCOLEAN,
alt [NAME AS ""] XSD. Dat e (CONSTRAI NED BY
{ /* mnlnclusive="2003-01-01" */ }) }

C.3.2.4 Mapping type derivation hierarchies for simple type definitions

<xsd:simpleType name="Int-10-to-50">
<xsd:restriction base="xsd:integer">
<xsd:minExclusive value="10"/>
<xsd:maxExclusive value="50"/>
<I/xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="Ten-multiples">
<xsd:restriction base="Int-10-to-50">
<xsd:enumeration value="20"/>
<xsd:enumeration value="30"/>
<xsd:enumeration value="40"/>
<Ixsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="Twenty-multiples">
<xsd:restriction base="Ten-multiples">
<xsd:pattern value=".*[02468]0|0"/>
<Ixsd:restriction>
<Ixsd:simpleType>

<xsd:complexType name="Stock-level">
<xsd:extension base="Int-10-to-50">
<xsd:attribute name="procurement” type="Int-10-to-50"/>
<I/xsd:extension>
<Ixsd:complexType>

These simple type definitions are mapped to the following ASN.1 type assignments:

Int-10-to0-50 ::= I NTEGER (10<..<50)
Ten-mul tiples ::= ENUMERATED {int20(20), int30(30), int40(40)}
Twenty-mul tiples ::= ENUVERATED {i nt 20(20), int40(40)}
St ock-1 evel ::= SEQUENCE {
procurenment [ATTRI BUTE] Int-10-to-50 OPTI ONAL,
base I nt-10-to-50-derivations }
Ten-nul tipl es-derivations ::= [USE-TYPE] CHO CE {

ten-mul tipl es [NAVE AS CAPI TALI ZED] Ten-rul ti pl es,
twenty-mul tiples [NAVE AS CAPI TALI ZED] Twenty-rmul tiples }

Int-10-to-50-derivations ::= [USE-TYPE] CHO CE {
int-10-to-50 [NAME AS CAPI TALI ZED] | nt-10-t o-50,
ten-mul tipl es [NAVME AS CAPI TALI ZED] Ten-rul ti pl es,
twenty-mul tiples [NAVE AS CAPI TALI ZED] Twenty-nul ti pl es,
st ock- 1 evel [NAVME AS CAPI TALI ZED] Stock-1evel }

C33 Mapping facets

C.3.3.1 length, minLength, and maxLength

<xsd:simpleType name="String-10">
<xsd:restriction base="xsd:string">
<xsd:length value="10"/>
</xsd:restriction>
</xsd:simpleType>

38 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

<xsd:simpleType name="String-5-to-10">
<xsd:restriction base="xsd:string">
<xsd:minLength value="5"/>
<xsd:maxLength value="10"/>
<Ixsd:restriction>
<Ixsd:simpleType>

These two simple type definitions are mapped to the following ASN.1 type assignments:
String-10 ::= XSD. String (SIZE(10))
String-5-to-10 ::= XSD. String (Sl ZE(5..10))

C.3.3.2 pattern

<xsd:simpleType name="My-filename">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[�-&#FF;]*"/>
<xsd:pattern value="/2([*]*/)*["]*[*" I>
<Ixsd:restriction>
<Ixsd:simpleType>

This simple type definition is mapped to the following ASN.1 type assignment:

My-filename ::= XSD. String
(CONSTRAI NED BY
{/* XML representation of the XSD pattern
" � - &HFF; " | "I 2([N] *&H#X2F;) * [N] *&H#X2F; " %))

C.3.3.3 whiteSpace

<xsd:simpleType name="My-String">
<xsd:restriction base="xsd:string">
<xsd:whitespace value="preserve"/>
<Ixsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="My-NormalizedString">
<xsd:restriction base="xsd:string">
<xsd:whitespace value="replace"/>
<Ixsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="My-TokenString">
<xsd:restriction base="xsd:string">
<xsd:whitespace value="collapse"/>
<Ixsd:restriction>
<Ixsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:

M/-String ::= XSD. String

M/- Normal i zedString ::= [WH TESPACE REPLACE] XSD. String
(FROM ({0, O, 0, 32} .. {0, 16, 255, 255}))

M/- TokenString ::= [WH TESPACE REPLACE] XSD. String

(FROM ({0, 0, 0, 32} .. {0, 16, 255, 255}))
(PATTERN " ([~ 1([~ 11 [~ 1)*)?")

C.3.3.4 minInclusive, minExclusive, maxinclusive, and maxExclusive

<xsd:simpleType name="Int-10-to-100">
<xsd:restriction base="xsd:integer">
<xsd:minExclusive value="10"/>
<xsd:maxInclusive value="100"/>
<I/xsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="Pi-approximation">
<xsd:restriction base="xsd:double">
<xsd:minExclusive value="3.14159"/>
<xsd:maxExclusive value="3.1416"/>
<Ixsd:restriction>
</xsd:simpleType>

ITU-T Rec. X.694 (01/2004) 39

ISO/IEC 8825-5:2004 (E)

<xsd:simpleType name="Morning">
<xsd:restriction base="xsd:time">
<xsd:mininclusive value="00:00:00"/>
<xsd:maxExclusive value="12:00:00"/>
</xsd:restriction>
<Ixsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:

Int-10-to0-100 ::= | NTEGER (10<..100)
Pi - approxi mation ::= XSD. Doubl e (3.14159<..<3. 1416)
Morning ::= XSD. Ti ne (CONSTRAI NED BY

{/* mnlnclusive="00: 00: 00" maxExcl usi ve="12: 00: 00" */ })

C.3.3.5 totalDigits and fractionDigits

<xsd:simpleType name="RefundableExpenses™>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits="5"/>
<xsd:fractionDigits value="2"/>
<Ixsd:restriction>
<Ixsd:simpleType>

This simple type definition is mapped to the following ASN.1 type assignment:

Ref undabl eExpenses ::= XSD. Deci mal (CONSTRAI NED BY
{/* total Digits="5" fractionDigits="2" */ })

C.3.3.6 enumeration

<xsd:simpleType name="FarmAnimals">
<xsd:restriction base="xsd:normalizedString">
<xsd:enumeration value="Horse"/>
<xsd:enumeration value="Bull"/>
<xsd:enumeration value="Cow"/>
<xsd:enumeration value="Pig"/>
<xsd:enumeration value="Duck"/>
<xsd:enumeration value="Goose"/>
<I/xsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="PrimeNumbersBelow30">
<xsd:restriction base="xsd:integer">
<xsd:enumeration value="2"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="5"/>
<xsd:enumeration value="7"/>
<xsd:enumeration value="11"/>
<xsd:enumeration value="13"/>
<xsd:enumeration value="17"/>
<xsd:enumeration value="19"/>
<xsd:enumeration value="23"/>
<xsd:enumeration value="29"/>
<I/xsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="X680-release">
<xsd:restriction base="xsd:gYearMonth">
<xsd:enumeration value="2002-07"/>
<xsd:enumeration value="1997-12"/>
<xsd:enumeration value="1994-07"/>
<I/xsd:restriction>
</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:

Far mAni mal s ::= ENUMERATED {horse, bull, cow, pig, duck, goose}

Pri meNunber sBel ow30 :: = [USE- NUMBER] ENUMERATED {int2(2), int3(3), int5(5),
int7(7), int11(11), int13(13), int17(17), int19(19), int23(23), int29(29)}

X680-rel ease ::= XSD. Gvear Month ("2002-07" | "1997-12" | "1994-07")

40 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

The following encoding instruction is included in the XER encoding control section:

TEXT Far mAni mal s: ALL AS CAPI TALI ZED

C.3.3.7 enumeration in conjunction with other facets

The following examples are based on the inheritance of facets using the restriction of some of the types defined
in C.3.3.6.

<xsd:simpleType name="FarmAnimals-subset">
<xsd:restriction base="FarmAnimals">
<xsd:minLength value="4"/>
<xsd:pattern value="[*oe]*"/>
<Ixsd:restriction>
<Ixsd:simpleType>

<xsd:simpleType name="PrimeNumbersBelow30-subset">
<xsd:restriction base="PrimeNumbersBelow30">
<xsd:minExclusive value="5"/>
<xsd:pattern value=".*[23].*"/>
<I/xsd:restriction>
</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:
/* Horse and Goose do not satisfy the pattern facet
Cow and Pig do not satisfy the mnLength facet */
Far mAni mal s- subset ::= ENUMERATED {bul |, duck}
/* 2, 3 and 5 do not satisfy the m nExcl usive facet
2, 5, 7, 11, 17 and 19 do not satisfy the pattern facet */

Pri meNunber sBel ow30- subset ::= [USE- NUMBER] ENUMERATED {i nt 13(13), int23(23),
i nt29(29)}

The following encoding instruction is included in the XER encoding control section:

TEXT Far mAni mal s-subset: ALL AS CAPI TALI ZED
C.3.4 Mapping element declarations

C.3.4.1 element declarations whose type definition is a user-defined top-level simple type definition or complex type
definition

<xsd:element name="Forename" type="xsd:token"/>
<xsd:element name="File" type="My-filename"/>

<xsd:element name="Value" type="Int-10-to-50"/>

These element declarations are mapped to the following ASN.1 type assignments:

Forenane ::= XSD. Token
File ::= My-fil enane
Val ue ::= Int-10-to-50-derivations

NOTE — The type "My-filename" and its mapping to ASN.1 is defined in C.3.3.2; the type "Int-10-to-50" and its mapping to
ASN.1 is defined in C.3.2.4.

C.3.4.2 element declarations whose type definition is an anonymous simple type definition or complex type definition

<xsd:element name="maxOccurs">
<xsd:simpleType>
<xsd:union memberTypes="xsd:nonNegativelnteger">
<xsd:simpleType>
<xsd:restriction base="xsd:token">
<xsd:enumeration name="unbounded"/>
<I/xsd:restriction>
</xsd:simpleType>
</xsd:union>
<Ixsd:simpleType>
</xsd:element>

<xsd:element name="address">
<xsd:complexType>

ITU-T Rec. X.694 (01/2004) 41

ISO/IEC 8825-5:2004 (E)

<xsd:sequence>

<xsd:element name="line-1" type="xsd:token"/>

<xsd:element name="line-2" type="xsd:token"/>

<xsd:element name="city" type="xsd:token"/>

<xsd:element name="state" type="xsd:token" minOccurs="0"/>
<xsd:element name="zip" type="xsd:token"/>

</xsd:sequence>

<xsd:attribute name="country" type="xsd:token"/>
<Ixsd:complexType>

<I/xsd:element>

These element declarations are mapped to the following ASN.1 type assignments:

MaxQccurs ::

Addr ess :

= [NAVE AS UNCAPI TALI ZED] [USE-UNION] CHO CE {

nonNegat i vel nt eger [NAMESPACE AS "http://ww. w3. or g/ 2001/ XM_Schena"]

al t

Country
line-1
line-2
city
state
zip

XSD. NonNegat i vel nt eger,
[NAME AS ""] ENUVMERATED {unbounded} }

= [NAVE AS UNCAPI TALI ZED] SEQUENCE {

[ATTRI BUTE] XSD. Token OPTI ONAL,
XSD. Token,

XSD. Token,

XSD. Token,

XSD. Token OPTI ONAL,

XSD. Token }

C.3.4.3 element declarations which are the head of an element substitution group

<xsd:element name="Tic" type="xsd:integer" abstract="true"/>

<xsd:element name="Tac" type="xsd:byte" substitutionGroup="Tic"/>

<xsd:element name="Toe" substitutionGroup="Tic"/>

<xsd:element name="Foo" type="xsd:date"/>

<xsd:element name="Bar" substitutionGroup="Foo"/>

These element declarations are mapped to:

Tac ::= | NTECGER (-128..127)

Toe ::= | NTEGER

Tic-group ::= [UNTAGGED] CHA CE {
tac [NAME AS CAPI TALI ZED] Tac,
toe [NAME AS CAPI TALI ZED] Toe }

Foo ::= XSD. Dat e

Bar = XSD. Dat e

Foo-group ::= [UNTAGGED] CHQO CE {

foo [NAME AS CAPI TALI ZED] Foo,
bar [NAME AS CAPI TALI ZED] Bar }

C.3.4.4 element declarations with a value constraint that is a default value

C.3.4.4.1 The following is an element declaration with an anonymous simple type definition, not used as the base type

definition of any type.

<xsd:element name="Telephone" type="xsd:token" default="undefined"/>

This element declaration is mapped to the following ASN.1 type assignment:

Tel ephone ::

C.3.4.4.2 The following is an element declaration with an anonymous complex type definition with simple content, not

= [DEFAULT- FOR- EMPTY "undefi ned"] XSD. Token

used as the base type definition of any type.

<xsd:element name="InternationalTelephone" default="undefined">
<xsd:simpleContent>
<xsd:extension base="xsd:token">

<xsd:attribute name="country-code" type="xsd:integer"/>

</xsd:extension>
</xsd:simpleContent>
</xsd:element>

42 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

This element declaration is mapped to the following ASN.1 type assignment:

I nt ernati onal Tel ephone ::= [DEFAULT- FOR- EMPTY "undefi ned"] SEQUENCE {
country-code [ATTRI BUTE] | NTEGER OPTI ONAL,
base [UNTAGGED] XSD. Token }

C.3.4.4.3 The following is an element declaration with an anonymous complex type definition. The complex type definition
has complex content that is mixed and emptiable, and is not used as the base type definition of any type.

<xsd:element name="Description" default="absent" mixed="true">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="bold" type="xsd:string"/>
<xsd:element name="italic" type="xsd:string"/>
</xsd:choice>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:

Description ::= [EMBED- VALUES] [DEFAULT- FOR- EMPTY "absent"] SEQUENCE {
enbed-val ues SEQUENCE OF XSD. Stri ng,
choice-list [UNTAGGED] SEQUENCE OF [UNTAGGED] CHO CE {
bol d XSD. Stri ng,
italic XSD. String } } (CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | ISQOIEC 8825-4, clause 25 */})

C.3.4.4.4 The type definition of the element declaration in the following example is used as the base type definition of
another type.

This example uses the XSD and ASN.1 types of the example in C.3.2.4.
<xsd:element name="Quantity" type="Int-10-to-50" default="20"/>

This element declaration is mapped to the following ASN.1 type assignment:
Quantity ::= Int-10-to-50-deriv-default-20

If no ASN.1 type corresponding to | nt-10-to-50, with a default value of "20" has already been generated, the
following type is also generated:

Int-10-to0-50-deriv-default-20 ::= [USE-TYPE] CHO CE {
int-10-to-50 [NAME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY 20]
I nt-10-to-50,

ten-mul tiples [NAVE AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY i nt 20]
Ten-mul ti pl es,

twenty-mul tiples [NAVME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY i nt 20]
Twenty-mul tipl es,

st ock-1 evel [NAME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY 20]
St ock-1 evel }

C.3.4.5 element declaration with a value constraint that is a fixed value

C.3.4.5.1 The following is an element declaration with an anonymous simple type definition, which is not used as the base
type definition of any type.

<xsd:element name="UnknownTelephone" type="xsd:token" fixed="undefined"/>
This element declaration is mapped to the following ASN.1 type assignment:

UnknownTel ephone ::= [DEFAULT- FOR- EMPTY "undefi ned"] XSD. Token ("undefined")

C.3.4.5.2 The following is an element declaration with an anonymous complex type definition. The complex type definition
has simple content and is not used as the base type definition of any type.

<xsd:element name="UnknownlinternationalTelephone" fixed="undefined">
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="country-code" type="xsd:integer"/>
</xsd:extension>
<I/xsd:simpleContent>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:

Unknownl nt er nat i onal Tel ephone :: = [DEFAULT- FOR- EMPTY "undefi ned"] SEQUENCE {
country-code [ATTRI BUTE] | NTEGER OPTI ONAL,
base [UNTAGGED] XSD. Token }
(WTH COWONENTS {..., base ("undefined")})

ITU-T Rec. X.694 (01/2004) 43

ISO/IEC 8825-5:2004 (E)

C.3.4.5.3 The following is an element declaration with an anonymous complex type definition. The complex type definition
has complex content that is mixed and emptiable, and is not used as the base type definition of any type.

<xsd:element name="UnknownDescription" fixed="absent" mixed="true">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="bold" type="xsd:string"/>
<xsd:element name="italic" type="xsd:string"/>
</xsd:choice>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:

UnknownDescri ption ::= [EMBED- VALUES] [DEFAULT- FOR- EMPTY "absent"] SEQUENCE {
enbed- val ues SEQUENCE OF XSD. Stri ng,
choi ce-1i st [UNTAGGED] SEQUENCE OF [UNTAGGED] CHO CE {
bol d XSD. String,
italic XSD. String } }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | 1SO|EC 8825-4, clause 25 */})
(W TH COWONENTS {enbed-val ues ({"absent"}),
choice-list (SIZE(0))})

C.3.4.5.4 The type definition of the following element declaration is a simple type definition used as the base type definition
of another type.

This example uses the XSD and ASN.1 types of the example in C.3.2.4.
<xsd:element name="Quantity" type="Int-10-to-50" fixed="20"/>

This element declaration is mapped to the following ASN.1 type assignment:
Quantity ::= Int-10-to-50-deriv-fixed-20

If no ASN.1 type corresponding to | nt - 10- t 0- 50 with a fixed value of "20" has already been generated, the following
type is also generated:

Int-10-to-50-deriv-fixed-20 ::= [USE-TYPE] CHO CE {
int-10-to-50 [NAME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY 20]
I nt-10-to0-50,

ten-mul tiples [NAME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY i nt 20]
Ten-rmul ti pl es,

twenty-mul tiples [NAME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY i nt 20]
Twenty-nul tiples,

st ock- | evel [NAME AS CAPI TALI ZED] [DEFAULT- FOR- EMPTY 20]
St ock-1evel }

(W TH COWONENTS {

int-10-to-50 (20),

ten-mul tiples (int20),

twenty-mul tiples (int20),

stock-1evel (WTH COVPONENTS {..., base (20)}) })

C.3.4.6 element declarations that are nillable

C.3.4.6.1 The following example shows an element declaration that is nillable and whose type definition is an XSD built-in
datatype.

<xsd:element name="Nillable-1" type="xsd:string" nillable="true"/>
This element declaration is mapped to the following ASN.1 type assignment:

Nillable-1 ::= [USE-N L] SEQUENCE {
content XSD. String OPTI ONAL }

C.3.4.6.2 The following example shows an element declaration that is nillable and whose type definition is an anonymous
complex type definition.

<xsd:element name="Nillable-2" nillable="true">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="b" type="xsd:boolean"/>
<Ixsd:complexType>
</xsd:element>

44 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

This element declaration is mapped to the following ASN.1 type assignment:

Nillable-2 ::= [USE-NI L] SEQUENCE {
b [ATTRI BUTE] BOOLEAN OPTI ONAL,
cont ent SEQUENCE {
a XSD. Stri ng,
b XSD. String } OPTIONAL }

C.3.4.6.3 The following example shows an element declaration that is nillable, and whose type definition is a top-level

complex type definition.

<xsd:complexType name="Foo">

<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>

<xsd:element name="b" type="xsd:string"/>

<Ixsd:sequence>
<xsd:attribute name="b" type="xsd:boolean"/>

</xsd:complexType>
<xsd:element name="Nillable-3" type="Foo" nillable="true"/>

These schema components are mapped to the following ASN.1 type assignments:

Foo ::= SEQUENCE {
b [ATTRI BUTE] BOOLEAN OPTI ONAL,
a XSD. Stri ng,
b-1 [NAME AS "b"] XSD. String }
Foo-nillable ::= [USE-N L] SEQUENCE {
b [ATTRI BUTE] BOOLEAN OPTI ONAL,
cont ent SEQUENCE {
a XSD. Stri ng,
b XSD. String } OPTI ONAL }
Nillable-3 ::= Foo-nillable

C.3.4.6.4 The following example shows an element declaration that is nillable, whose type definition is a top-level complex
type definition, and which is used as the base type definition of another complex type definition.

The following schema components are defined in addition to the schema components of C.3.4.6.3:

<xsd:complexType name="Bar">
<xsd:complexContent>
<xsd:extension base="Foo">

<xsd:sequence>
<xsd:element name="z" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="c" type="xsd:boolean"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Nillable-4" type="Foo" nillable="true"/>

In addition to the type Foo of C.3.4.6.3, the following ASN.1 types are generated:

Bar = SEQUENCE {
b [ATTRI BUTE] BOOLEAN OPTI ONAL,
c [ATTRI BUTE] BOOLEAN OPTI ONAL,
a XSD. String,
b-1 [NAME AS "b"] XSD. String,
z XSD. String }
Foo-derivations ::= [USE-TYPE] CHO CE {
foo [NAME AS CAPI TALI ZED] Foo,
bar [NAVE AS CAPI TALI ZED] Bar }
Foo-nillable ::= [USE-N L] SEQUENCE {
b [ATTRI BUTE] BOOLEAN OPTI ONAL,
cont ent SEQUENCE {
a XSD. Stri ng,
b XSD. String } OPTIONAL }

ITU-T Rec. X.694 (01/2004)

45

ISO/IEC 8825-5:2004 (E)

Bar-nillable ::= [USE-N L] SEQUENCE {
b [ATTRI BUTE] BOOLEAN OPTI ONAL,
c [ATTRI BUTE] BOOLEAN OPTI ONAL,
cont ent SEQUENCE {
a XSD. Stri ng,
b XSD. Stri ng,
z XSD. String } OPTI ONAL }
Foo-deriv-nillable ::= [USE-TYPE] CHO CE {
foo [NAVME AS CAPI TALI ZED] Foo-nil | abl e,
bar [NAME AS CAPI TALI ZED] Bar-nillable }
Nillable-4 ::= Foo-deriv-nillable

C.3.5 Mapping attribute uses and attribute declarations

C.3.5.1 The following is an example of a top-level attribute declaration whose type definition is a user-defined top-level
simple type definition.

<xsd:attribute name="name" type="NCName"/>
This attribute declaration is mapped to the following ASN.1 type assignment:
Name ::= [NAVE AS UNCAPI TALI ZED] [ATTRI BUTE] XSD. NCNane

C.3.5.2 The following is an example of a top-level attribute declaration whose type definition is an anonymous simple
type definition.

<xsd:attribute name="form">
<xsd:simpleType>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="qualified"/>
<xsd:enumeration value="unqualified"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

This attribute declaration is mapped to the following ASN.1 type assignment:
Form::= [NAVE AS UNCAPI| TALI ZED| [ATTRI BUTE] ENUMERATED {qualified, unqualified}
C.3.5.3 The following example is an attribute use with a value constraint that is a default value.

The attribute declaration whose name is "form" and that is referenced in this example is defined in C.3.5.2.

<xsd:complexType name="element">

<xsd:attribute name="name" type="xsd:NCName" default="NAME"/>
<xsd:attribute ref="form" default="qualified"/>
</xsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignment:

El ement ::= [NAME AS UNCAPI TALI ZED] SEQUENCE {
name [ATTRI BUTE] XSD. NCNanme DEFAULT " NAME",
form [ATTRI BUTE] Form DEFAULT qualified }

C.3.5.4 This example shows a top-level attribute declaration with a value constraint that is a default value and an attribute
use with this attribute declaration.

<xsd:attribute name="minOccurs" type="xsd:nonNegativelnteger" default="1"/>

<xsd:attribute name="maxOccurs" default="1"/>
<xsd:simpleType>
<xsd:union memberTypes="xsd:nonNegativelnteger" >
<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="unbounded"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</xsd:attribute>

46 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

<xsd:complexType name="Particle">
<xsd:sequence>
<xsd:element name="particle"/>
</xsd:sequence>
<xsd:attribute ref="minOccurs"/>
<xsd:attribute ref="maxOccurs" default="unbounded"/>
</xsd:complexType>

These schema components are mapped to the following ASN.1 type assignments:
M nCccurs ::= [ATTRI BUTE] [NAME AS UNCAPI TALI ZED] XSD. NonNegat i vel nt eger

MaxQOccurs ::= [ATTRI BUTE] [NAME AS UNCAPI TALI ZED] [USE-UNION] CHO CE {
nonNegat i vel nt eger [NAMESPACE AS "http://ww. w3. or g/ 2001/ XM_Schera"]
XSD. NonNegat i vel nt eger,
alt [NAME AS ""] ENUMERATED {unbounded} }

Particle ::= SEQUENCE {
m nCccurs [ATTRI BUTE] M nCccurs DEFAULT 1,
maxCccur s [ATTRI BUTE] MaxCccurs DEFAULT alt : unbounded,
particle XSD. AnyType }

C.3.5.5 This example shows an attribute use whose attribute declaration has a target namespace that is not absent.

<xsd:complexType name="Ack">
<xsd:attribute name="number" type="xsd:integer" form="qualified" />
</xsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignment:

Ack ::= SEQUENCE {
nunmber [NAMESPACE AS "http://target nanespaceFor Exanpl e"] [ATTRI BUTE]
| NTEGER OPTI ONAL }

C.3.6 Mapping model group definitions
C.3.6.1 The following is a model group definition whose model group has a compositor of sequence.

<xsd:group name="mySequence">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequence>
</xsd:group>

This model group definition is mapped to the following ASN.1 type assignment:

M/Sequence ::= [UNTAGGED] SEQUENCE {
a XSD. String,
b BOCLEAN }

C.3.6.2 The following is a model group definition whose model group has a compositor of all.

<xsd:group name="myAll ">
<xsd:all>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<Ixsd:all>
</xsd: group>

This model group definition is not mapped to ASN.1. See C.3.8.3.1 for an example of the mapping of a complex type
definition where the model group of this model group definition occurs as the topmost model group.

C.3.6.3 The following is a model group definition whose model group has a compositor of choice.

<xsd:group name="myChoice">
<xsd:choice>
<xsd:element name="am" type="xsd:string"/>
<xsd:element name="bm" type="xsd:boolean"/>
<Ixsd:choice>
</xsd:group>

This model group definition is mapped to the following ASN.1 type assignment:

MyChoi ce ::= [UNTAGGED] CHO CE {
am XSD. Stri ng,
bm BOCOLEAN }

ITU-T Rec. X.694 (01/2004) 47

ISO/IEC 8825-5:2004 (E)

C.3.7 Mapping particles
The model group definition of C.3.6.3, and its corresponding ASN.1 type, are used in some of the particle examples.

C.3.7.1 The following example shows particles of a model group with a compositor of sequence.

<xsd:complexType name="ElementSequence">
<xsd:sequence>
<xsd:element name="elem1" type="xsd:boolean"/>
<xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/>
<xsd:element name="elem3" type="xsd:boolean" minOccurs="2" maxOccurs="5"/>
<xsd:element name="elem4" type="xsd:boolean” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="elem5" type="xsd:boolean" minOccurs="5" maxOccurs="unbounded"/>
<xsd:sequence>
<Ixsd:complexType>

<xsd:complexType name="ModelGroupSequence">
<xsd:sequence>

<xsd:group ref="myChoice"/>

<xsd:choice>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>

<I/xsd:choice>

<xsd:sequence>
<xsd:element name="c" type="xsd:string"/>
<xsd:element name="d" type="xsd:string"/>

</xsd:sequence>

<xsd:choice minOccurs="3" maxOccurs="12">
<xsd:element name="e" type="xsd:string"/>
<xsd:element name="f" type="xsd:string"/>

</xsd:choice>

</xsd:sequence>
<Ixsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

El enent Sequence :: = SEQUENCE {
el em BOCLEAN,
el en? BOCLEAN OPTI ONAL,
el enB-1i st [UNTAGGED] SEQUENCE (Sl ZE(2..5)) OF el en8 BOOLEAN,
el emd-1ist [UNTAGGED] SEQUENCE OF el et BOOLEAN,
el enb-11i st [UNTAGGED] SEQUENCE (S| ZE(1..NMAX)) OF el enb BOOLEAN }
Model G oupSequence :: = SEQUENCE {
myChoi ce My Choi ce,
choi ce [UNTAGGED] CHA CE {
a XSD. Stri ng,
b XSD. String },
sequence [UNTAGGED] SEQUENCE {
c XSD. String,
d XSD. String },
choi ce-1i st [UNTAGGED] SEQUENCE (Sl ZE(3..12)) OF [UNTAGGED] CHO CE {
e XSD. String,
f XSD. string } }

C.3.7.2 The following example shows particles of a model group with a compositor of all.

<xsd:complexType name="ElementAll">
<xsd:all>
<xsd:element name="elem1" type="xsd:boolean"/>
<xsd:element name="elem2" type="xsd:boolean” minOccurs="0"/>
<Ixsd:all>
<Ixsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignments:

El ement All ::= [USE- ORDER] SEQUENCE ({
order SEQUENCE OF ENUMERATED {el enl, el enk},
eleml XSD. String,
elen2 XSD. String OPTI ONAL }
(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | ISOIEC 8825-4, clause 35 */})

48 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

C.3.7.3 The following example shows particles of a model group with a compositor of choice.

<xsd:complexType name="ElementSequence">
<xsd:choice>
<xsd:element name="elem1" type="xsd:boolean"/>
<xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/>
<xsd:element name="elem3" type="xsd:boolean” minOccurs="2" maxOccurs="5"/>
<xsd:element name="elem4" type="xsd:boolean” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="elem5" type="xsd:boolean" minOccurs="5" maxOccurs="unbounded"/>
<xsd:choice>
</xsd:complexType>

<xsd:complexType name="ModelGroupChoice">
<xsd:choice>
<xsd:group ref="myChoice"/>
<xsd:choice>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>
</xsd:choice>
<xsd:sequence>
<xsd:element name="c" type="xsd:string"/>
<xsd:element name="d" type="xsd:string"/>
</xsd:sequence>
<xsd:choice minOccurs="3" maxOccurs="12">
<xsd:element name="e" type="xsd:string"/>
<xsd:element name="f" type="xsd:string"/>
</xsd:choice>
<Ixsd:choice>
<Ixsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

El enent Sequence :: = SEQUENCE {
choi ce [UNTAGGED] CHO CE {
el enl BOCLEAN,

el em2-1ist [UNTAGGED] SEQUENCE (Sl ZE(O..1)) OF el en?2 BOOLEAN,

el enB-1ist [UNTAGGED] SEQUENCE (SIZE(2..5)) OF el enB BOOLEAN,

el emd-1ist [UNTAGGED] SEQUENCE OF el emt BOOLEAN,

el enb-1ist [UNTAGGED] SEQUENCE (Sl ZE(5..MAX)) OF el enb BOOLEAN } }

Model G oupChoi ce :: = SEQUENCE {
choi ce [UNTAGGED] CHO CE {
nmyChoi ce My Choi ce,

choi ce [UNTAGGED] CHA CE {
a XSD. String,
b XSD. String },
sequence [UNTAGGED] SEQUENCE {
[XSD. String,
d XSD. String }
choi ce-1ist [UNTAGGED] SEQUENCE (Sl ZE(3..12)) OF [UNTAGGED] CHA CE {
e XSD. String,
f XSD. String } }

C.3.8 Mapping complex type definitions

C.3.8.1 The following example is a complex type definition whose content type is empty.
<xsd:complexType name="Null"/>

<xsd:complexType name="Ack">

<xsd:sequence/>

<xsd:attribute name="packetNumber" type="xsd:integer"/>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
Nul | ::= SEQUENCE {}

Ack ::= SEQUENCE {
packet Nunber [ATTRI BUTE] | NTEGER OPTI ONAL }

C.3.8.2 The following example is a complex type definition whose content type is a simple type definition.

<xsd:complexType name="Formatted">
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="format">
<xsd:simpleType>

ITU-T Rec. X.694 (01/2004) 49

ISO/IEC 8825-5:2004 (E)

<xsd:restriction base="xsd:token">
<xsd:enumeration value="bold"/>
<xsd:enumeration value="italic"/>

</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>
</xsd:extension>
</xsd:simpleContent>
<Ixsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignment:

Formatted ::= SEQUENCE {
For mat [ATTRI BUTE] ENUMERATED {bol d, italic} OPTI ONAL,
Base [UNTAGGED] XSD. Token }

C.3.8.3 The following examples are complex type definitions whose content type is an element-only content model.

C.3.8.3.1 In the following example, the content type is the model group of a model group definition.

This example uses the types defined in C.3.6.

<xsd:complexType name="MyComplexType-1">
<xsd:group ref="myAll"/>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-2">
<xsd:group ref="myChoice" />
</xsd:complexType>

<xsd:complexType name="MyComplexType-3">
<xsd:group ref="mySequence" maxOccurs="100"/>

</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

MyConpl exType-1 ::= [USE- ORDER] SEQUENCE {
or der SEQUENCE OF ENUMERATED {a, b},
a XSD. String,
b BOCLEAN }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | |1SQ | EC 8825-4,

MyConpl exType-2 :: = SEQUENCE {
nyChoi ce MyChoi ce }

MyCompl exType-3 :: = SEQUENCE {
nySequence- | i st SEQUENCE (Sl ZE(1..100)) OF MySequence }

C.3.8.3.2 In the following example, the content type is a model group whose compositor is choice.

<xsd:complexType name="MyComplexType-4">
<xsd:choice>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<Ixsd:choice>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-5">
<xsd:choice minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:choice>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-6">
<xsd:choice maxOccurs="5">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<I/xsd:choice>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

MyConpl exType-4 :: = SEQUENCE {
choi ce [UNTAGGED] CHO CE {
a XSD. String,
b BOOLEAN } }

50 ITU-T Rec. X.694 (01/2004)

clause 35 */})

ISO/IEC 8825-5:2004 (E)

M/Conpl exType-5 :: = SEQUENCE {
choi ce [UNTAGGED] CHO CE {
a XSD. String,
b BOOLEAN } OPTI ONAL }

MyConpl exType-6 :: = SEQUENCE {
choi ce-1ist [UNTAGGEED] SEQUENCE (S| ZE(1..5)) OF [UNTAGGED] CHO CE {
a XSD. String,
b BOCLEAN } }

C.3.8.3.3 In the following example, the content type is a model group whose compositor is all.

<xsd:complexType name="MyComplexType-7">
<xsd:all>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:all>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-8">
<xsd:all minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:all>
<Ixsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

MyConpl exType-7 ::= [USE- ORDER] SEQUENCE {
or der SEQUENCE OF ENUMERATED {a, b},
a XSD. Stri ng,
b BOCOLEAN }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | 1SOIEC 8825-4, clause 35 */})

M/Conpl exType-8 :: = [USE- ORDER] SEQUENCE {
or der SEQUENCE OF ENUMERATED {a, b},
a XSD. String OPTI ONAL,
b BOOLEAN OPTI ONAL }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X. 693 | ISOIEC 8825-4, clause 35 */ })

C.3.8.3.4 In the following example, the content type is a model group whose compositor is sequence.

<xsd:complexType name="MyComplexType-9">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<Ixsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyComplexType-10">
<xsd:sequence minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyComplexType-11">
<xsd:sequence maxOccurs="5">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequence>
<Ixsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

MyConpl exType-9 :: = SEQUENCE {
a XSD. String,
b BOCOLEAN }
MyConpl exType- 10 :: = SEQUENCE {
sequence [UNTAGGED] SEQUENCE {
a XSD. String,

b BOOLEAN } CPTI ONAL }

ITU-T Rec. X.694 (01/2004) 51

ISO/IEC 8825-5:2004 (E)

MyConpl exType- 11 :: = SEQUENCE {
sequence-|ist [UNTAGGED] SEQUENCE (Sl ZE(1..5)) OF [UNTAGGED] SEQUENCE {
a XSD. String,
b BOOLEAN } }

C.3.8.4 The following example shows a complex type definition whose content type is a mixed content model.

<xsd:complexType name="MyComplexType-12" mixed="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyComplexType-13" mixed="true">
<xsd:all>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<Ixsd:all>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-14" mixed="true">
<xsd:choice>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:choice>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-15" mixed="true">
<xsd:all minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<Ixsd:all>
</xsd:complexType>

<xsd:complexType name="MyComplexType-16">
<xsd:sequence maxOccurs="unbounded" minOccurs="0">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
</xsd:sequence>
<Ixsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

MyConpl exType-12 :: = [EMBED VALUES] SEQUENCE {
enbed- val ues SEQUENCE OF XSD. Stri ng,
a XSD. Stri ng,
b BOOLEAN }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | |1SO|EC 8825-4, clause 25 */})

M/Conpl exType- 13 :: = [EMBED- VALUES] [USE- ORDER] SEQUENCE {
enbed- val ues SEQUENCE OF XSD. Stri ng,
or der SEQUENCE OF ENUMERATED {a, b},
a XSD. Stri ng,
b BOOLEAN }

(CONSTRAI NED BY

{/* Shall conformto ITUT Rec. X 693 | 1SOIEC 8825-4, clause 25 */})
(CONSTRAI NED BY

{/* Shall conformto ITUT Rec. X 693 | 1SOIEC 8825-4, clause 35 */})

MyConpl exType- 14 :: = [EMBED VALUES] SEQUENCE {
enbed- val ues SEQUENCE OF XSD. Stri ng,
choi ce [UNTAGGED] CHA CE {

a XSD. Stri ng,
b BOOLEAN } }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | 1SOIEC 8825-4, clause 25 */})

M/Conpl exType- 15 ::= [EMBED- VALUES] [USE- ORDER] SEQUENCE {
enbed- val ues SEQUENCE OF XSD. Stri ng,
or der SEQUENCE OF ENUMERATED ({a, b},
a XSD. String OPTI ONAL,
b BOOLEAN OPTI ONAL }

52 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

(CONSTRAI NED BY

{/* Shall conformto ITUT Rec. X. 693 | I1SOIEC 8825-4, clause 35 */})
(CONSTRAI NED BY

{/* Shall conformto ITUT Rec. X 693 | 1SO|EC 8825-4, clause 25 */})

MyConpl exType- 16 ::= [EMBED VALUES] SEQUENCE {
enbed- val ues SEQUENCE OF XSD. Stri ng,
sequence-| i st [UNTAGGED] SEQUENCE OF [UNTAGGED] SEQUENCE {
a XSD. String,
b BOOLEAN } }

(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X 693 | |1SQOIEC 8825-4, clause 25 */})

C.3.8.5 The following example shows attribute uses of a complex type definition built using an attribute group definition.

<xs:attributeGroup name="AG1">
<xs:attribute name="a1" type="xs:string"/>
<xs:attribute name="a2" type="xs:string"/>
<xs:attribute name="a3" type="xs:decimal"/>
<Ixs:attributeGroup>

<xs:attributeGroup name="AG2">
<xs:attribute name="a1" use="prohibited"/>
<xs:attribute name="a3" type="xs:integer"/>
</xs:attributeGroup>

<xs:complexType name="MyComplexType-17">
<xs:attribute name="a4" type="xs:boolean"/>
<xs:attribute name="a5" type="xs:boolean"/>
<xs:attributeGroup ref="AG1"/>
</xs:complexType>

<xs:complexType name="MyComplexType-18">
<xs:complexContent>
<xs:restriction base="MyComplexType-17">
<xs:attributeGroup ref="AG2"/>
<xs:attribute name="a4" use="prohibited"/>
<Ixs:restriction>
</xs:complexContent>
</xs:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

MyConpl exType- 17 :: = SEQUENCE {
al [ATTRI BUTE] XSD. String OPTI ONAL,
a2 [ATTRI BUTE] XSD. String OPTI ONAL,
a3 [ATTRI BUTE] XSD. Deci mal OPTI ONAL,
a4 [ATTRI BUTE] BOOLEAN OPTI ONAL,
a5 [ATTR BUTE] BOOLEAN OPTI ONAL }

MyConpl exType- 18 :: = SEQUENCE {
a2 [ATTRI BUTE] XSD. String OPTI ONAL,
a3 [ATTRI BUTE] | NTEGER OPTI ONAL,
a5 [ATTRI BUTE] BOOLEAN CPTI ONAL }

MyConpl exType- 17-derivations ::= [USE-TYPE] CHO CE {
nyConpl exType- 17 [NAME AS CAPI TALI ZED] MyConpl exType- 17,
nmyConpl exType- 18 [NAME AS CAPI TALI ZED] MyConpl exType-18 }

C.3.8.6 Derivation of complex type definitions.

<xsd:complexType name="MyComplexType-19">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:boolean"/>
<xsd:element name="c" type="xsd:boolean" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="attr1" type="xsd:short" use="required"/>
<xsd:attribute name="attr2" type="xsd:short"/>
<Ixsd:complexType>

<xsd:complexType name="MyComplexType-20">
<xsd:complexContent>
<xsd:restriction base="MyComplexType-19">
<xsd:sequence>
<xsd:element name="a" type="xsd:token"/>
<xsd:element name="b" type="xsd:boolean"/>

ITU-T Rec. X.694 (01/2004) 53

ISO/IEC 8825-5:2004 (E)

</xsd:sequence>
<xsd:attribute name="attr2" type="xsd:short" use="prohibited"/>
<I/xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="MyComplexType-21">
<xsd:complexContent>
<xsd:extension base="MyComplexType-20">
<xsd:sequence>
<xsd:element name="d" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="attr3" type="xsd:boolean"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

M/Conpl exType-19 :: = SEQUENCE {
attrl [ATTRI BUTE] XSD. Short,
attr2 [ATTRI BUTE] XSD. Short OPTI ONAL,
sequence-|i st [UNTAGGED] SEQUENCE OF [UNTAGGED] SEQUENCE {
a XSD. Stri ng,
b BOOLEAN,
c BOOLEAN OPTI ONAL } }
My Conpl exType-20 :: = SEQUENCE {
attri [ATTRI BUTE] XSD. Short,
a XSD. Token,
b BOOLEAN }
MyConpl exType- 21 :: = SEQUENCE {
attrl [ATTRI BUTE] XSD. Short,
attr3 [ATTRI BUTE] BOOLEAN OPTI ONAL,
a XSD. Stri ng,
b BOOLEAN,
d XSD. String }
M/Conpl exType- 20-deri vations ::= [USE- TYPE] CHO CE {

myConpl exType- 20 [NAME AS CAPI TALI ZED] MyConpl exType- 20,
nyConpl exType-21 [NAME AS CAPI TALI ZED] MyConpl exType-21 }

MyConmpl exType- 19-deri vations ::= [USE-TYPE] CHO CE {
nyConpl exType-19 [NAME AS CAPI TALI ZED] MyConpl exType- 19,
nyConpl exType-20 [NAVE AS CAPI TALI ZED] MyConpl exType- 20,
nyConpl exType-21 [NAME AS CAPI TALI ZED] MyConpl exType-21 }

C.3.9 Mapping wildcards
For these examples, the target namespace is assumed to be the following URI: "http://www.asnl.org/X694/wildcard".

C.3.9.1 Attribute wildcard.

<xsd:complexType name="AnyAttribute-1">
<xsd:anyAttribute namespace="##any"/>
<Ixsd:complexType>

<xsd:complexType name="AnyAttribute-2">
<xsd:anyAttribute namespace="##other"/>
</xsd:complexType>

<xsd:complexType name="AnyAttribute-3">
<xsd:anyAttribute namespace="##targetNamespace"/>
<Ixsd:complexType>

<xsd:complexType name="AnyAttribute-4">
<xsd:anyAttribute namespace="##local http://www.asn1.org/X694/attribute"/>
<Ixsd:complexType>

<xsd:complexType name="AnyAttribute-5">
<xsd:complexContent>
<xsd:extension base="AnyAttribute-4">
<xsd:anyAttribute namespace="##targetNamespace"/>
</xsd:extension>
</xsd:complexContent>
<Ixsd:complexType>

54 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

These complex type definitions are mapped to the following ASN.1 type assignments:

AnyAttribute-1 ::= SEQUENCE {
attr [ANY- ATTRI BUTES] SEQUENCE (CONSTRAI NED BY ({
/* Each itemshall conformto the "AnyAttributeFormat" specified in
ITUT Rec. X. 693 | I1SQOIEC 8825-4, clause 18 */})
OF XSD. String }

AnyAttribute-2 ::= SEQUENCE {
attr [ANY- ATTRI BUTES EXCEPT "http://wwmv. asnl. or g/ X694/ wi | dcar d"]
SEQUENCE (CONSTRAI NED BY {
/* Each itemshall conformto the "AnyAttributeFormat"” specified in
ITUT Rec. X. 693 | ISO|EC 8825-4, clause 18 */})
OF XSD. String }

AnyAttribute-3 ::= SEQUENCE {
attr [ANY- ATTRI BUTES FROM "http://ww. asnl. or g/ X694/ wi | dcar d"]
SEQUENCE (CONSTRAI NED BY {
/* Each itemshall conformto the "AnyAttributeFormat" specified in
ITUT Rec. X. 693 | ISO|EC 8825-4, clause 18 */})
OF XSD. String }

AnyAttribute-4 ::= SEQUENCE {
attr [ANY-ATTRI BUTES FROM ABSENT
"http://ww. asnl. org/ X694/ attri bute"]
SEQUENCE (CONSTRAI NED BY {
/* Each itemshall conformto the "AnyAttributeFormat" specified in
ITUT Rec. X. 693 | ISOIEC 8825-4, clause 18 */})
OF XSD. String }

AnyAttribute-5 ::= SEQUENCE {
attr [ANY- ATTRI BUTES FROM ABSENT

"http://ww. asnl. org/ X694/ attri bute"
"http://ww. asnl. or g/ X694/ wi | dcar d"]

SEQUENCE (CONSTRAI NED BY {

/* Each itemshall conformto the "AnyAttributeFormat" specified in

ITUT Rec. X. 693 | 1SQO | EC 8825-4, clause 18 */})
OF XSD. String }

C.3.9.2 The following is an example of a content model wildcard.

<xsd:complexType name="Any-1">
<xsd:sequence>
<xsd:any namespace="##any"/>
<I/xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Any-2">
<xsd:sequence>
<xsd:any minOccurs="0" namespace="##other"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Any-3">
<xsd:sequence>
<xsd:any minOccurs="0" masOccurs="unbounded" namespace="##local"/>
</xsd:sequence>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

Any-1 ::= SEQUENCE {
el em [ANY- ELEMENT] XSD. String (CONSTRAI NED BY {
/* Shall conformto the "AnyEl enent Format" specified in
ITUT Rec. X 693 | ISOIEC 8825-4, clause 18 */}) }

Any-2 ::= SEQUENCE {
el em [ANY- ELEMENT EXCEPT ABSENT
"http://ww. asnl. or g/ X694/ wi | dcard"]
XSD. String (CONSTRAI NED BY {
/* Shall conformto the "AnyEl ement Format" specified in
ITUT Rec. X. 693 | 1SOIEC 8825-4, clause 18 */})
OPTI ONAL }

ITU-T Rec. X.694 (01/2004) 55

ISO/IEC 8825-5:2004 (E)

Any- 3 ::= SEQUENCE {
elem!ist SEQUENCE OF el em
[ANY- ELEMENT FROM ABSENT] XSD. String (CONSTRAI NED BY {
/* Shall conformto the "AnyEl enent Format" specified in
ITUT Rec. X 693 | |ISOIEC 8825-4, clause 18 */}) }

NOTE - For more examples on the computation of the "NamespaceRestriction", see examples on attribute wildcards in C.3.9.1.

56 ITU-T Rec. X.694 (01/2004)

ISO/IEC 8825-5:2004 (E)

Annex D

Use of the mapping to provide binary encodings for W3C XML Schema

(This annex does not form an integral part of this Recommendation | International Standard)

This annex describes the use of the mapping specified in this Recommendation | International Standard in conjunction
with standardized ASN.1 Encoding Rules to provide canonical and compact binary encodings for data defined by an
XSD Schema.

D.1 Encoding XSD Schemas

D.1.1 XSD Schemas can be mapped to ASN.1 type definitions as specified in the body of this Recommendation |
International Standard, and the top-level type can then be encoded using any of the ASN.1 encoding rules specified in
ITU-T Rec. X.690 | ISO/IEC 8825-1, ITU-T Rec. X.691 | ISO/IEC 8825-2, and ITU-T Rec. X.693 | ISO/IEC 8825-4.

D.1.2 Each of these encodings has an associated object identifier value that can be used to identify the encoding in
transfer. The way in which such identification is communicated to a decoder is outside the scope of this
Recommendation | International Standard.

D.1.3 When the XSD Schema is not sent to the receiver by the method described in D.3, the way in which the
receiver obtains the Schema is outside the scope of this Recommendation | International Standard.

D.2 Transfer without using the XSD Schema for Schemas
D.2.1 This method makes the assumption that the receiver knows the XSD Schema used by the sender.

D.2.2 Figure D.1 shows how to use the mapping defined in this Recommendation | International Standard to encode
XML documents by means of ASN.1 encoding rules.

D.2.3 The sender and the receiver use the same (fixed) XSD Schema to generate an ASN.1 schema which in turn is
given to an ASN.1 compiler to generate the BER, DER, PER or XER encoding table for XML documents conforming
to that XSD Schema.

D.3 Transfer using the XSD Schema for Schemas
D.3.1 Since a unique XSD Schema for Schemas is available, it is possible to proceed in two steps (see Figure D.2).

D.3.2 The sender and the receiver build an ASN.1 module and an encoder/decoder from the XSD Schema for
Schemas.

D.3.3 In the first step, the sender encodes in BER, DER or PER the XSD Schema for the document and sends the
encoded Schema to the receiver. The receiver decodes that Schema and, using the mapping from XSD Schema to
ASN.1 and an ASN.1 compiler, generates an ASN.1 module and an encoder/decoder for XML documents conforming
to that Schema.

D.34 In the second step, the sender encodes in BER, DER, PER, or XER the XML document and sends the
encoded document to the receiver.

ITU-T Rec. X.694 (01/2004) 57

ISO/IEC 8825-5:2004 (E)

Sender

XSD Schema
-

XML document

v

XSD to ASN.I mapping defined in
this Recommendation | International
Standard

!

as an ASN.1 abstract value

BER/DER/PER/XER encoding

Description of the XML document

ASN.1 Module

!

ASN.1 compiler

BER/DER/PER/XER decoding

ASN.1 compiler

?

Generation of an XML document

ASN.1 Module
e

+

XML document

Mapping from XSD to ASN.1 defined
in this Recommendation |
International Standard

Receiver

A

XSD Schema

Figure D.1 — Transfer of an XML document using the mapping from XSD to ASN.1

58 ITU-T Rec. X.694 (01/2004)

XSD Schema
known by the
sender and the
receiver

X.694_F01

ISO/IEC 8825-5:2004 (E)

Sender
XSD Schema for the document Unique XSD Schema for Schemas
L=
Step 1
XML document A Y
Mapping from XSD to ASN.1 defined in
this Recommendation | International Standard
Step 2 Step 1 Step 1
A 4 \ 4
ASN.1 Module ASN.1 Module
(Schema dependent) (Schema independent)
Description of an XSD Schema L=
or XML document as an ASN. 1
abstract value Step 1
v A 4
BER/DER/PER encoding ASN.1 compiler
Step 2 Step 1
ASN.1 compiler
BER/DER/PER decoding - -
Creation of an XSD Schema or Step 1
XML document
ASN.1 Module ASN.1 Module
(Schema dependent) (Schema independent)
L=
A o
Step 2 Step 1 Step 1
Mapping from XSD to ASN.1 defined in
this Recommendation | International Standard
XML document

Receiver

A

Step 1

a

XSD Schema for the document

Unique XSD Schema for Schemas

L=

X.694_F02

Figure D.2 — Transfer of an XSD Schema and an XML document using the mapping from XSD to ASN.1

ITU-T Rec. X.694 (01/2004) 59

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series I

Series J

Series K
Series L

Series M

Series N
Series O
Series P

Series Q
Series R
Series S

Series T

Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure, Internet protocol aspects and Next Generation Networks

Languages and general software aspects for telecommunication systems

* 25505 %

Printed in Switzerland
Geneva, 2004

	ITU-T Rec. X.694 (01/2004) Information technology - ASN.1 encoding rules: Mapping W3C XML schema definitions into ASN.1
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 Imported definitions
	3.2 Additional definitions

	4 Abbreviations
	5 Notation
	6 Purpose and extent of standardization
	7 Mapping XSD Schemas
	8 Ignored schema components and properties
	9 The ASN.1 module and namespaces
	10 Name conversion
	10.1 General
	10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments
	10.3 Generating identifiers and type reference names
	10.4 Order of the mapping

	11 Mapping uses of XSD built-in datatypes
	12 Mapping facets
	12.1 The length, minLength, and maxLength facets
	12.2 The pattern facet
	12.3 The whiteSpace facet
	12.4 The enumeration facet
	12.5 Other facets

	13 Mapping simple type definitions
	14 Mapping element declarations
	15 Mapping attribute declarations
	16 Mapping values of simple type definitions
	17 Mapping model group definitions
	18 Mapping model groups
	19 Mapping particles
	20 Mapping complex type definitions
	21 Mapping wildcards
	22 Mapping attribute uses
	23 Mapping uses of simple and complex type definitions (general case)
	24 Mapping special uses of simple and complex type definitions (substitutable)
	25 Mapping special uses of simple and complex type definitions (substitutable, nillable)
	26 Mapping special uses of simple type definitions (nillable)
	27 Mapping special uses of complex type definitions (nillable)
	28 Mapping special uses of element declarations (head of element substitution group)
	29 Generating special ASN.1 type assignments for element declarations
	30 Generating special ASN.1 type assignments for type definitions
	31 Generating special ASN.1 type assignments for element substitution groups
	Annex A - ASN.1 type definitions corresponding to XSD built-in datatypes
	Annex B - Assignment of object identifier values
	Annex C - Examples of mappings
	C.1 A Schema using simple type definitions
	C.2 The corresponding ASN.1 definitions
	C.3 Further examples
	C.3.1 Schema documents with import and include element information items
	C.3.2 Mapping simple type definitions
	C.3.3 Mapping facets
	C.3.4 Mapping element declarations
	C.3.5 Mapping attribute uses and attribute declarations
	C.3.6 Mapping model group definitions
	C.3.7 Mapping particles
	C.3.8 Mapping complex type definitions
	C.3.9 Mapping wildcards

	Annex D - Use of the mapping to provide binary encodings for W3C XML Schema
	D.1 Encoding XSD Schemas
	D.2 Transfer without using the XSD Schema for Schemas
	D.3 Transfer using the XSD Schema for Schemas

