International Telecommunication Union

ITU-T X.693

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — ASN.1 encoding rules:
XML Encoding Rules (XER)

ITU-T Recommendation X.693

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 8825-4
ITU-T RECOMMENDATION X.693

Information technology —
ASN.1 encoding rules:
XML Encoding Rules (XER)

Summary

This Recommendation | International Standard specifies rules for encoding values of ASN.1 types using the Extensible
Markup Language (XML).

Sour ce

ITU-T Recommendation X.693 was prepared by ITU-T Study Group17 (2009-2012) and approved on
13 November 2008. An identical text is also published as ISO/IEC 8825-4.

ITU-T Rec. X.693 (11/2008) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T X.693 (11/2008)

o N o O b~

10

11
12
13
14

CONTENTS

S ol o TP U TSP P PP 1
NOIMELIVE FEFEIEICES ...ttt ettt e e e e te s eesbesae b e e e e e e tess e beseeebeeaeeneeneeneenseseenseseennens 1
2.1 ldentica Recommendations | International Standards...........ccoceverereririierene e 1
P o (o N Lo g = = = = 0o OSSPSR 2
(D T T (o] TSRS 2
3.1 ASN.1Basic Encoding RUIES (BER)cccoiiiiiiiriiiiirieineseesies sttt 2
3.2 Additional dEfINITIONScc.oiiiiiieie ittt se e e bbbt e ae e et e sae e b e 2
F N o] o] (=Y - 1o TSRS 4
Encodings specified by this Recommendation | International Standard...........cccceoevvvierienenceeierereseseieens 4
Encoding instructions specified by this Recommendation | International Standard...........cccccoocvievvinivinnnene 5
(@001 017 19 o =2 TSP URR 5
BasiC XML €NCOAING FUIES........ccueiieiiciecececeeees e sttt e e e e st e e s tesbesae e e ese e e e teseestesaesreeseeneenseseenteseennens 5
8.1 Production of acomplete BASIC-XER enCOUING......cccccereririeiiririeeeeesee e see e e 5
8.2 TRE XML PrOIOQ ... eeveeeueetereeieete sttt sttt ettt ettt b et sb e b bbb s e st b e bt b e e ne bt seeneene e enes 6
8.3 The XML dOCUMENt ElEIMENL ..ottt e b e s e e e b e e 6
8.4 Encoding of the EXTERNAL tYPE.....ciiieiiiiirieseceesieese sttt s e sae st besnesre e enaesaesae e snesresnnens 7
8.5 ENCOUING Of the OPEN LYPE ..c.veeiieie ettt r e e e e e e e snenrenne e 7
8.6 Decoding of types with eXtensiON MArKErS........cccuevereiiereriese e e 7
Canonical XML eNCOING FUIEScoueiuiiieiie sttt sb et se et e sbe bt e ae e e e b e b e e abeseesrennas 7
9.1 Generd rulesfor CanoniCal XERccoiieiiiiiiiiisenieese sttt 7
0.2 REBI VAIUBS......cee bbbt bt bbbt b et ne e enes 8
0.3 BISIING VBIUB.......oiieeeeet ettt bbb et s et b et e e nn s 8
LS @ o == (1 o AV [T RSP PRR 8
0.5 SEOUENCE VAIUE.......ocui ettt sttt et e st et te s e s e e e s be s e e s besbeebeeaeeneenseseesbesbesneeteeseenteseenseneenns 8
0.8 SEEVAIUC. ...ttt b e b £ bt et b et b e R et b bt neneenes 8
LS I A = o Y = | 11 8
0.8 ODJECE IAENLITIEr VAIU.... ...ttt e b e bbbttt e b b 9
9.9 Relative 0bject Identifier VAIUEcveviee et 9
S IO C e 0T = = s I T o 1= TR 9
£ 50 T U I I 3T 9
0.12 OPENLYPE VAIUE ...ttt ettt sttt b et e e s e b e et e b e s ae e Rt e aeese e beseesbesbe e st ene e e anbeseesbennan 10
9.13 The Tl ME type and the USEfUl tIMELYPESccecieesere e st e re s 10
Extended XML €NCOUING FUIES........ccueeeeeesesese sttt sae ettt e e st sne st sneeneenaeneeneeseenrenneens 10
O €T 1= SRS 10
10.2 EXTENDED-XER CONFOIMMANCEcceiiiiieieiiteiie ettt sttt st st se e see b sae e 11
10.3 Structure of an EXTENDED-XER €NCOUING.......ccieiiiiiiiieieieeiesese e sreseesee e sae e sresresneenneneens 13
Notation, character set and lexical items used in XER encoding inStructionscccccevevvevvieveserieeieeneens 13
KBYWWOTTS ...ttt bbb bbbt b bbbt b e e h b et e Rt b et et e b et e ne e b e b et b e 14
Assigning an XER encoding instruction to an ASN.1 type using atype prefiX.......c e 15
Assigning an XER encoding instruction using an XER encoding control Section...........cccccceveeveeerenvenne. 17
14.1 Theencoding iNnstruction assigNMENt [iSt........c.covieiirieie e 17
14.2 Identification of the targets for an XER encoding instruction using atarget list...........ccccoeevveennen. 18

1421 GENEIEl TUIES ..ottt ettt et b ettt e e e e see b b 18

14.2.2 Target identification using an ASN.1 typereference and identifiers........cccoeevevveenennns 20

14.2.3 Target identification using abuilt-in tyPe NamMEccccvvvveeerercecre e 22

1424 Use of identifierSin CONEXEooeiiieiisese e 23

ITU-T Rec. X.693 (11/2008)

15

16
17

18

19

20

21

22

23

24

25

26

iv

14.25 Useof imported typesidentifiCation..........ccccceeiieciriecic s 23

Multiple assignment of XER encoding iNSITUCLIONS........cccovrerrienereserreeseesieseesie e sresseeseeeeseseeseesseseeens 23
15.1 Order in which multiple assignments are CONSIAENE..........covreirereninereeee e 23
15.2 Effect of assigning a negating encoding iNSEIUCLIONcoeieeirieeriere e 24
15.3 Multiple assignment of encoding instructions with multiple Categories........cccoovvvvievieieserieeieenens 24
15.4 Multiple assignment of XER encoding instructions of the same category.........ccoovvvvivvvrerieeseeneens 24
155 Permitted combinations of final encoding INSIIUCLIONS...........cccviieiriiniree e 25
XER encoding instruction support for XML namespaces and qualified names.............ccooveererienieeieneenn. 27
Specification of EXTENDED-XER €NCOUINGS.......ccccoiiiiiiiiieiieiesesie e st steseesaessesae e srestesseessesessenseseens 28
17.1 The XML dOCUMENE ElEMENTcoiiiiiiiriieeriee sttt et 28
17.2 The"TypeNameOrModifiedTypeName" producCtion............ccourererireirinenenese e 28
17.3 The " AttribUtEList” PrOQUCTIONc.coiiiiiie ettt 29
17.4 The"ExtendedXMLVaUE" ProdUCLIONcoeiiiiieiieeiesisecieseesesee s et re e aesaeste e sresre e enneneens 29
17.5 The"ExtendedXMLChoiceValue" ProdUCLIONcccvveieeeereeierese e s sreseeee e see e see e e eseeneens 30
17.6 The "ExtendedXML SequenceValue" and "ExtendedX ML SetValue" productions............cc.e.e..... 31
17.7 The "ExtendedX ML SequenceOfValue" and "ExtendedX ML SetOfValue" productions................ 31
17.8 The"ModifiedXMLIntegerValue" ProduCtionccceeereeiciierenese s s 33
17.9 The"ModifiedXMLReaValue" ProduCiONcccoueverieieneieseeeeeesieseesesee s eee e sne s 33
The ANY- ATTRI BUTES encoding iNSIIUCLIONcceiriiiririeieesieesesieeses e 34
RS R €1 o1 | USSR 34
S T2 = L=~ 1 T (TSRS 34
ST T 1= ox 1= oo o (1 0T 1SS 35
The ANY- ELEMENT encoding iNSIIUCEIONcviuiriiiririeieiesieiees bbb 36
ST €1 1 1= SRS 36
ST = L=~ 1 T (SRS 36
S G T 1= ox 1= oo (1 0 1S 37
The ATTRI BUTE enCOdiNg INSEIUCTIONcoiriiiitirieirtisie sttt 37
O € o - TSRS 37
PO = (= e 0] LSS 37
P20 G T = 1= o) = T 1o 1 o £SO 38
The BASEG4 encOding iNSITUCLION..........civiiiirieiiitirieiirtesee sttt se e 39
P2 € o - TSRS 39
P2 = (= o 0] LTSRS 40
P20 G TN = 1= o o) 1 = oo 1o 1o £SO 40
The DECI MAL enCOdiNG INSIIUCTION........coveueitirieiietirieiieteseeiesie st sb e s e e s snenes 40
R € o - SRS 40
P A = (= e o] SRS 41
220G T = 1= o) 0 = g Too 1o 1 o £SO 41
The DEFAULT- FOR- EMPTY encoding iNSIIUCTIONc..ooveiriiirerieesesieeesie e 41
P € o - TSRS 41
G B = = 1 [1 o) SR 42
PG TG TN = 1= o o) 0 = g Too 1o 1o 10O 43
The ELEMENT encCOding iNSIIUCTION........cvcueitirieiriirieiirteseeesie sttt snenes 43
R € o - TSRS 43
P = (= o 0] TSRS 44
P22 C T = 1= o) = Voo 1o] o USROS 44
The EMBED- VALUES encoding iNSITUCLION.........couiiiiiririeinesieisiesiee e 44
25,1 GENEIEL ...ttt e At E Rt R £ e e et e bR e ehe Rt eheeae et enteaeenbesaenreas 44
P = (= e 0] g SR RST 44
Ao TG TN = 1= o) = oo 1o 1 o £SO 45
The GLOBAL- DEFAULTS encoding iNStIUCHTIONcotiiiiririeineseesesieese st 45
B € o= - TSRS 45

ITU-T Rec. X.693 (11/2008)

27

28

29

30

31

32

33

35

36

37

38

39

26.3 EFfECt ON ENCOUINGS.....viiveieieiieieie ettt sttt sttt sttt e st e sbesaesesbesa e s s beseenesbe e esenrns 46
The Ll ST enCOdiNG INSITUCKION.......ceeiieerise st e et e et se e e e e e eeseenresrenrennn 46
A €= o - RSSO 46
A (= {1 o] USSP 46
PG T = 1= a0 1 = T 1o] 3o 3SR 47
I 211NN ALY = o oo o [o [T 15 {0 o 1 o o P 47
2 € o TSRS 47
P2 B A B (= 1 o] USSP 48
P2 R I i (= o g I g oo] 0 SRS 48
The NAMESPACE encoding iNStIUCHION........ccvieieceeeeeereese et ste s e e saesee e see st e eaeeeseessesnessennas 49
A € o TSRS 49
P2 I B (= 1 o] PSSP 50
P22 G TN = 1= o) = g Too o] 3o 30RO 50
The Pl - OR- COMMENT encoding iNSLIUCTION.cveiveriereeseseseesreeeeee e e ste e e sse e ee e esaeseeseesnesresseeneenes 50
I R 7= 0 - TSROSO 50
00D (= 1 [1 LSRR 51
30.3 Effect 0N the @NCOINGS.ciiieiriiieereee et sttt st s se st e esesbe e 51
RN TCT I = G = 1o o [aTo [T 15 {0 1 o o P 52
I R € 7= 0 - TSRS 52
1 I (= 1 [1 LSRR 52
IR T = o a1 = 1o o [T 52
The UNTAGGED encOdinNg INSITUCIONocuiieiiicicieeeceesees ettt ee et ese e e e e seessesnesreenas 53
N R € 7= 0T - TSRS 53
7 B (= 1 Lot 1TSS 54
G722 T i (= o a1 = 10 o [T 54
The USE- NI L €nNCOdING INSITUCLION........ceiiiieieeiecieeeeesees e see st stese e s eeee e see e sne st s e eseeneenseeeseessesnessennes 55
G I R € 7= 0 - TSRS 55
B B (= 1 [t 1o LSS 55
GG IR I i (= o a1 = 10 o [o 56
The USE- NUVBER encoding iNSEIUCLION.........cc.eieeieeeeseesese s steseeeeseesesieseeste e sseseesessesnessesnessessesnennes 56
G €= 0T - SRR 56
Ty (< 1 [t 1] LSRR 56
G/ B i (= o 1= 10 o [o 56
The USE- ORDER encOding iNStIUCHION........ccviiiiceeeceesees e et sie st esee e see e et sse s eseesaeeeseessesnesrennas 57
T R € 7= 0 - TSRS 57
35.2 RESIIICHIONS. ...ttt sttt sttt b e bt ae e e et e s ee s et s be e et eh e e aeem e e beseeebesaeebeeneeneene e e anbeseesbennin 57
ST I i (= o g 1= 1o o [T R 58
The USE- QNAME encOding iNSLIUCHION........ccviueieceeeeeeseese et se s see s eee e see e sne st e s eseenaeseeseessesnessennes 58
T R € 7= 0 - TSRS 58
36.2 RESIIICHIONS. ...ttt sttt b e bt ae e e et e e e s e e s be s aeehe e et e me e eeseeebesaeebeeneeneenee e enbeseenbeenan 59
G ST I i (= o a1 = 1o o [o 59
The USE- TYPE encoding iNSITUCHION ..o s 59
A8 R 7= 0 - TSRS 59
v (= 1 [1L TSP 59
A T i (= o a1 = 1o o [o 60
The USE- UNI ON encOding iNSEIUCHION........ccueieieecieeeceeseesese st st ssee e esee e see e et e s eseenseseeseessesnessennes 60
S I R € 7= 0 - TSRS 60
1B B (= 1 [1 LSRR 61
C1S TR I i (= o a1 = 10 o [o 61
The WHI TESPACE encoding INSEIUCLION.........ccviuieeeeeeseesese st eeeseesae e e e e e esessessessesnessessesseenes 62

ITU-T Rec. X.693 (11/2008)

30.2 RESIICHONS. ...ttt ettt st st b e bt b e et b e e et et e s b et et ese et e bene e bt ebeseenenbe e 62
30.3 EffECE ON BNCOUINGS......veueetiieeeeterieiete ettt sttt st b e bt bbbt b e et e enesbe e 63
40 Identification of the eNCOMING FUIES...........oii e bbb 63
Annex A Examples of BASIC-XER and CXER €NCOAINGS......ccccoeieieiinieieereneeeesiesees e see e e ssessaeseeseeseessesseens 64
A.1 ASN.1 description of the reCord SLIUCIUIE..........ccveveierere st sre e 64
A.2 ASN.1description Of @reCord VAIUB...........ooucuiriirieiiiecrtee et 64
A.3 Basic XML representation of thiSrecord ValUe ... s 64
A.4 Canonical XML representation of thisrecord Value...........cccoevveieievenene e 65
2 T R = - D o | = | S 66
B.2 Recommended restrictions on encodings producing partial XML element contentc...... 66
(@35 R [011 o [F oo O SO 69
C.2 SIMPIEEXAIMPIES ...ttt ettt bbbt bbb et b s bt b e et b e e e ne b bbb 69
C.21 A DASEDEll CA ..o e e 69
(O N = 1110] o) V== RS 70
C.3 MOre complex EXAMPIEScciv i seer ettt e e st ere e e e e e e aesbesaestesneeseensesennenrens 70
C.31 Using aunion of tWo SIMPIELYPES.....cccoireiiireeiereee e 70
C32 Using atype identification attribULe...........cccoereeiirini s 71
C.3.3 USING ENUMEIAtioN VAIUES.........cceieeeeieie e ste et e ettt e et srestesnesre e enean 71
C.34 Using an empty encoding for adefault Value..........ccocveeevevenniece s 71
C.35 Using embedded-values for notification of apayment due...........ccoceeeevveveievnnnnnnnne 71
Vi ITU-T Rec. X.693 (11/2008)

I ntroduction

ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3,
ITU-T Rec. X.683 | ISO/IEC 8824-4 together describe Abstract Syntax Notation One (ASN.1), a notation for the
definition of messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be applied to values of ASN.1 types
defined using the notation specified in ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2.
Application of these encoding rules produces a transfer syntax for such values. It is implicit in the specification of
these encoding rules that they are also to be used for decoding.

There is more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation |
International Standard defines three sets of encoding rules that use the Extensible Markup Language (XML). These
encoding rules all produce an XML document compliant to W3C XML 1.0. The first set is caled the Basic XML
Encoding Rules (BASIC-XER). The second set is called the Canonical XML Encoding Rules (CANONICAL-XER, or
CXER) because there is only one way of encoding an ASN.1 value using these encoding rules. (Canonical encoding
rules are generally used for applications using security-related features such as digital signatures.) The third set is
called the extended XML Encoding Rules (EXTENDED-XER). The extended XML Encoding Rules allow additional
encoders options, and take account of encoding instructions that specify variations of the BASIC-XER encodings in
order to support specific styles of XML documents (see below). The extended XML Encoding Rules are not canonical,
and there is no canonical form for these rules defined in this Recommendation | International Standard.

There are many aspects of an XML representation of data (such as the use of XML attributes instead of child elements,
or the use of white-space delimited lists) whose use is a matter of style and XML designer choice. If a type defined in
an ASN.1 specification is encoded by BASIC-XER or by CXER, then there is a single fixed style used for the XML
representation, with no user control of stylistic features. This Recommendation | International Standard specifies the
syntax and semantics of XER encoding instructions which specify the stylistic features of the XML in an EXTENDED-
XER encoding. XER encoding instructions can also be used to determine the possible insertion of XML processing
instructions in an EXTENDED-XER encoding. XER encoding instructions are ignored by BASIC-XER and by CXER,
but are used by EXTENDED-XER.

NOTE — "Stylistic features", such as use of attributes or white-space delimited lists, can also affect the size of an encoding and
the ease with which it can be processed, so use of such featuresis not just a matter of style. Where such issues are important,
EXTENDED-XER with encoding instructions may be preferred over BASIC-XER or CXER.

Clause 8 specifies the BASIC-XER encoding of ASN.1 types.
Clause 9 specifies the CXER encoding of ASN.1 types.

Clause 10 specifies the EXTENDED-XER encoding of ASN.1 types, referencing later clauses which define the XER
encoding instructions.

Clauses 11 to 14 list and categorize the XER encoding instructions and specify the syntax for their assignment to an
ASN.1 type or component using either an XER type prefix (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 31.3) or an XER
encoding control section (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 54).

Clause 15 defines the order of precedence if XER encoding instructions are present in both an XER type prefix and in
an XER encoding control section.

Clause 16 specifies the XER encoding instruction support for XML namespaces when using EXTENDED-XER.
Clause 17 specifies EXTENDED-XER encodings.
Clauses 18 to 39 specify:

a) thesyntax of each XER encoding instruction used in atype prefix or an XER encoding control section;

b) restrictions on the XER encoding instructions that can be associated with a particular ASN.1 type
(resulting from inheritance and multiple assignments);

c¢) modifications to the XER encoding rules that are required in an EXTENDED-XER encoding when an
XER encoding instruction is applied.

Annex A isinformative and contains examples of BASIC-XER and CXER encodings.

ITU-T Rec. X.693 (11/2008) vii

Annex B isinformative and contains a description of the partial XML content that is produced when constructions such
as seguence and sequence-of have their surrounding tags removed, together with restrictions on EXTENDED-XER
specifications that enable easy determination of the ASN.1 component that an XML element is associated with.

Annex C is informative and contains examples of XER encoding instructions and of the corresponding
EXTENDED-XER encodings.

viii ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology —
ASN.1 encoding rules:
XML Encoding Rules (XER)

1 Scope

This Recommendation | International Standard specifies a set of basic XML Encoding Rules (BASIC-XER) that may be
used to derive a transfer syntax for values of types defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec.
X.681 | ISO/IEC 8824-2. This Recommendation | International Standard also specifies a set of Canonical XML
Encoding Rules (CXER) which provide constraints on the basic XML Encoding Rules and produce a unique encoding
for any given ASN.1 value. This Recommendation | International Standard further specifies a set of extended XML
Encoding Rules (EXTENDED-XER) which adds further encoders options, and also alows the ASN.1 specifier to vary
the encoding that would be produced by BASIC-XER. It isimplicit in the specification of these encoding rules that
they are also used for decoding.

The encoding rules specified in this Recommendation | International Standard:
— areused at the time of communication;

— are intended for use in circumstances where displaying of values and/or processing them using
commonly available XML tools (such as browsers) is the major concern in the choice of encoding rules;

— dlow the extension of an abstract syntax by addition of extra values for all forms of extensibility
described in ITU-T Rec. X.680 | ISO/IEC 8824-1.

This Recommendation | International Standard also specifies the syntax and semantics of XER encoding instructions,
and the rules for their assignment and combination. XER encoding instructions can be used to control the
EXTENDED-XER encoding for specific ASN.1 types.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | I nternational Sandards

— ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (2008) | ISO/IEC 8825-1:2008, Information technology — ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

— ITU-T Recommendation X.691 (2008) | ISO/IEC 8825-2:2008, Information technology — ASN.1
encoding rules: Specification of Packed Encoding Rules (PER).

ITU-T Rec. X.693 (11/2008) 1

| SO/IEC 8825-4:2008 (E)

— ITU-T Recommendation X.692 (2008) | ISO/IEC 8825-3:2008, Information technology — ASN.1
encoding rules: Specification of Encoding Control Notation (ECN).

2.2 Additional references

— |ETF RFC 2045 (1996), Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies.

— |ETF RFC 2141 (1997), URN Syntax.

— |ETF RFC 2396 (1998), Uniform Resource Identifiers (URI): Generic Syntax.

— |ETF RFC 3061 (2001), A URN Namespace of Object Identifiers.

— ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

— The Unicode Standard, Version 3.2.0, The Unicode Consortium. (Reading, MA, Addison-Wesley)

NOTE 1 — The graphics characters (and their encodings) defined by the above reference are identical to those
defined by ISO/IEC 10646, but the above reference is included because it also specifies the names of control
characters.

— W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique e en Automatique, Keio University),
http: //www.w3.or g/ TR/2000/REC-xml-20001006.

— W3C XML Namespaces:1999, Namespaces in XML, W3C Recommendation, Copyright © [14 January
1999] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://mww.w3.org/TR/1999/REC-xml-
names-19990114.

NOTE 2 — The reference to a document within this Recommendation | International Standard does not give it, as a stand-alone
document, the status of a Recommendation or International Standard.

3 Definitions

For the purposes of this Recommendation | International Standard, the definitions of ITU-T Rec. X.680 | ISO/IEC
8824-1 and the following definitions apply.

3.1 ASN.1 Basic Encoding Rules (BER)

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.690 |
ISO/IEC 8825-1:

a) datavalue;

b) dynamic conformance;

¢) encoding (of adatavalue);
d) receiver;

€) sender;

f) static conformance.

3.2 Additional definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

321 ASN.1 schema: The definition of the content and structure of data using an ASN.1 type definition.
NOTE — This enables encoding rules to produce binary encodings of the values of an ASN.1 type, or encodings using XML.

322 associated empty-element tag: The XML empty-element tag that can replace an associated preceding tag
and an associated following tag, when present.

NOTE - Some encoding instructions remove the associated tags of an "XMLValue".
323 associated encoding instructions (for atype): A set of XER encoding instructions associated with a type.

324 associated following tag: The XML end-tag following the "XMLValue" of atype in the absence of encoding
instructions that remove the associated tags.

2 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

3.25 associated preceding tag: The XML start-tag preceding the "XMLVaue" of a type in the absence of
encoding instructions that remove the associated tags.

3.2.6 canonical encoding: A complete encoding of an abstract value obtained by the application of encoding rules
that have no implementation-dependent options. Such rules result in the definition of a 1-1 mapping between
unambiguous and unique encodings and values in the abstract syntax.

3.2.7 canonical valid XML document (for an ASN.1 schema): An XML document which is well-formed (see
W3C XML 1.0) and whose content conforms to the CXER specification for the encoding of an ASN.1 type specified
by an ASN.1 schema.

3.2.8 character-encodable type: An ASN.1 type to which an ATTRI BUTE encoding instruction can be applied
(see 20.2.2).

3.29 control namespace: A namespace that is used to identify attributes that perform functions or carry values that
control an EXTENDED-XER encoding.

NOTE 1 — An example would be a type identification attribute. The control namespace defaults to the ASN.1 namespace
specified in 16.9, but can be changed by the GLOBAL-DEFAULTS encoding instruction.

NOTE 2 — The control namespace may also contain names for attributes that may be present, but which are ignored by
EXTENDED-XER decoders (see 10.2.10). An example of such an attribute name could be schemal ocation.

3.210 enclosed (ASN.1) type: An ASN.1 type whose "XMLValue" in a BASIC-XER encoding is enclosed directly
within the "XMLValue" of an ASN.1 type (the enclosing type).

NOTE — All typesin aBASIC-XER or EXTENDED-XER encoding are enclosed types unless they are used as the root type (see
10.3.1 b) in an encoding.

3.211 enclosing element (of an ASN.1 type): An "ExtendedXMLTypedVaue", "ExtendedXML ChoiceValue",
"ExtendedXMLNamedVaue' or "ExtendedXMLDelimiteditem" that has as its "ExtendedXMLVaue" the
"ExtendedXMLVaue" encoding of the type (see 17.1, 17.5, 17.6 and 17.7).

3212 enclosing type (of an ASN.1 type): An ASN.1 type whose "XMLVaue' in aBASIC-XER encoding directly
enclosesthe "XMLValue' of an ASN.1 type (an enclosed type).
NOTE — The enclosing type can be a sequence type, a set type, a choice type, a sequence-of type, a set-of type, an open type, or
an octetstring or bitstring type (with a CONTAI NI NG and without an ENCODED BY).

3.213 final encoding instructions (for a type): The set of XER encoding instructions associated with a type as a
result of the complete ASN.1 specification, and which are applied in producing encodings of that type.

3.214 inherited encoding instructions. XER encoding instructions that are associated with the type identified by a
type reference.

3.215 namespace-qualified name: A namein an XML document that has an XML namespace prefix or isan XML
element name in the scope of an XML default namespace declaration.
NOTE — XML default namespace declarations affect only XML element names, not the names of attributes. A namespace prefix
can be applied to either.

3.216 nil identification attribute: An XML attribute that can appear on any element to identify whether the content
has anil value (see clause 33).

3.217 partial XML element content: XML child elements defined by an ASN.1 type which is UNTAGGED, and
which provides part of the XML element content generated by the enclosing type.

NOTE - If the enclosing type is itself UNTAGGED, then that enclosing type may also be generating only partial XML element
content.

3.2.18 prefixed encoding instructions. XER encoding instructions that are assigned using a type prefix.
NOTE — Prefixed encoding instructions can delete, replace, or add to the associated encoding instructions of atype.

3219 qualifying information: Information supplied as part of the specification of atarget for the assignment of an
encoding instruction that identifies specific values of the target type.

3.220 targeted encoding instructions: XER encoding instructions that are assigned using a target list in an XER
encoding control section.

NOTE — Targeted encoding instructions can delete, replace, or add to the associated encoding instructions of atype.

3.221 typeidentification attribute: An XML attribute that can appear on any element to identify the type of that
element (see clause 37).

3.2.22 uniform resource identifier (URI): A globally unambiguous identifier, assigned according to any one of a
number of URI schemes, used to provide identification of namespacesin EXTENDED-XER encodings.

ITU-T Rec. X.693 (11/2008) 3

| SO/IEC 8825-4:2008 (E)

NOTE — The URI scheme used by default for ASN.1 enables an ASN.1 object identifier value to be used to identify namespaces
(see 16.9 and 29.1.5).

3.223 valid XML document (for an ASN.1 schema): An XML document which is well-formed (see W3C XML
1.0) and whose content conforms to the BASIC-XER, CXER or EXTENDED-XER specification for the encoding of an
ASN.1 type specified by an ASN.1 schema, possibly including XER encoding instructions.

3.224 XER encoding instructions: Notation used to change the EXTENDED-XER encoding of a type (or of a
component of atype).

NOTE — XER encoding instructions are included in either an XER type prefix (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 31.3) or
an XER encoding control section (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 54).

3225 XML attribute: Part of an EXTENDED-XER encoding consisting of an "XMLValue" enclosed in quotation
marks or apostrophes, preceded by an (attribute) name and an equals sign.

3226 XML element: Part of an XML document specified in W3C XML 1.0.

NOTE — An XML element is either an empty-element tag or starts with a start-tag and ends with an end-tag. Both the start-tag
and the empty-element tag can contain attribute encodings.

3227 XML element name: Thelexical item following a"<" or "</ lexical item in the associated tags.

3228 XML document: A sequence of characters which conforms to the W3C XML 1.0 definition of document.

3.229 XML processing instruction: Part of an XML document which carries information concerning the
processing of some or al of that document (see W3C XML 1.0).

NOTE — The processing instruction identifies the type of processing for which it is applicable, and isignored in other processing.
It could be used to identify a style-sheet that isto be applied if the document is presented for human viewing.

3.230 XML prolog: Theinitial part of an XML document (which does not carry information about the value of the
ASN.1 type that has been encoded).

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
CXER Canonica XML Encoding Rules
PDU Protocol Data Unit
UCS Universal Multiple-Octet Coded Character Set
URI Uniform Resource I dentifier
uTC Coordinated Universal Time
UTF-8 UCS Transformation Format, 8-bit form
XER XML Encoding Rules
XML Extensible Markup Language

5 Encodings specified by this Recommendation | International Sandard

51 This Recommendation | International Standard specifies three sets of encoding rules:
— Basic XML Encoding Rules (BASIC-XER);
— Canonical XML Encoding Rules (CXER);
— Extended XML Encoding Rules (EXTENDED-XER).
52 The basic set of encoding rules specified in this Recommendation | International Standard is BASIC-XER,

which does not in general produce a canonical encoding, and which does not provide any user control over the style of
XML which is produced.

53 A second set of encoding rules specified in this Recommendation | International Standard is CXER, which
produces encodings that are canonical. This is defined as a restriction of implementation-dependent choices in the
BASIC-XER encoding.

4 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

NOTE 1 — Any implementation conforming to CXER for encoding is conformant to BASIC-XER for encoding. Any
implementation conforming to BASIC-XER for decoding is conformant to CXER for decoding. Thus, encodings made according
to CXER are encodings that are permitted by BASIC-XER.

NOTE 2 — CXER produces encodings that have applications when authenticators need to be applied to abstract values.

54 The third set of encoding rules specified in this Recommendation | International Standard is EXTENDED-
XER. This is defined as variations of the BASIC-XER encodings specified by XER encoding instructions (see 6)
associated with an ASN.1 type. In the absence of XER encoding instructions, an EXTENDED-XER encoding differs
from aBASIC-XER encoding only because it provides more encoders options.

55 If atype encoded with CXER contains EMBEDDED PDV, EXTERNAL or CHARACTER STRI NG types, then the
outer encoding ceases to be canonical unless the encoding used for all the EMBEDDED PDV, EXTERNAL and CHARACTER
STRI NGtypesis canonical.

6 Encoding instructions specified by this Recommendation | International Sandard

6.1 This Recommendation | International Standard specifies the syntax and semantics of XER encoding
instructions (see clauses 11 to 39). XER encoding instructions only affect EXTENDED-XER encodings.

6.2 ASN.1 forms a basic XML schema notation. The ASN.1 schemais used to define the content and structure of
datausing ASN.1 and the BASIC-XER (and CXER) encoding rules. It can be used without XER encoding instructions.
6.3 XER encoding instructions provide wider flexibility in the XML documents that can be specified.

6.4 XER encoding instructions are assigned to ASN.1 type definitions or to type references using either or both

of XER type prefixes (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 31.3) and an XER encoding control section (see ITU-T
Rec. X.680 | ISO/IEC 8824-1, clause 54). If encoding instructions are associated with a type definition, they are carried
with the ASN.1 type (through its type reference) into other type definitions and other ASN.1 modules. When
EXTENDED-XER encodes a type that has XER encoding instructions associated with some or al of its parts, those
final encoding instructions are applied and modify the EXTENDED-XER encodings that are produced.

NOTE — The final encoding instructions are also used when performing validation and/or decoding of an EXTENDED-XER
encoding.

7 Conformance

7.1 Dynamic conformance for the basic XML Encoding Rules is specified by clause 8, and dynamic conformance
for the Canonical XML Encoding Rules is specified by clause 9, and dynamic conformance for the extended XML
Encoding Rulesis specified by clause 10.

7.2 Static conformance is specified by those standards which specify the application of one or more of these
encoding rules.

7.3 Alternative encodings are permitted by the basic XML Encoding Rules and by the extended XML Encoding
Rules as an encoder's option. Decoders that claim conformance to BASIC-XER shall support al BASIC-XER
aternatives. Decoders that claim conformance to EXTENDED-XER shall support al EXTENDED-XER encoding
alternatives.

NOTE — This clause applies whether or not there are any final encoding instructions.

74 No aternative encodings are permitted by the Canonical XML Encoding Rules for the encoding of an ASN.1
vaue.
8 Basic XML encoding rules

8.1 Production of a complete BASIC-XER encoding

811 A conforming BASIC-XER encoding isavalid XML document which shall consist of:
a) an XML prolog (which may be empty) as specified in 8.2;

b) an XML document element which is the complete encoding of a value of a single ASN.1 type as
specified in 8.3.

8.1.2 The specification in 8.2 to 8.6 completely defines the BASIC-XER encoding.

ITU-T Rec. X.693 (11/2008) 5

| SO/IEC 8825-4:2008 (E)

NOTE - Other constructs of W3C XML 1.0, such as XML processing instructions, are not allowed by those subclauses, and are
never produced by a conforming BASIC-XER encoder.

8.1.3 The XML document shall be encoded using UTF-8 to produce a string of octets which forms the encoding
specified in this Recommendation | International Standard. The ASN.1 object identifier for these encoding rules is
specified in clause 40.

8.14 Where this Recommendation | International Standard uses the term "white-space”, this means one or more of
the following characters of the Unicode Standard: HORIZONTAL TABULATION (9), LINE FEED (10),
CARRIAGE RETURN (13), SPACE (32). The numbers in parentheses are the decimal value of the characters of the
Unicode Standard. The number and choice of characters that constitutes "white-space” is an encoder's option.

8.15 Where this Recommendation | International Standard uses the term "white-space with escapes’, this means
one or more of the characters listed in 8.1.4, with an encoder's option to represent any of these characters with an
escape sequence of the form "&#n;" or "&#xn;" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.8).

8.2 The XML prolog

8.21 The XML prolog shall either:
a) beempty; or
b) shall consist of the following character sequences in order, and as an encoder's option the last character
sequence may be followed by "white-space” (see 8.1.4):
<?xml
version="1.0"
encoding="UTF-8"?>

8.2.2 The character sequences listed in 8.2.1 shall not contain "white-space", but shall be separated by a single
SPACE (32) character.

8.3 The XML document element

8.3.1 The XML document element shall be an "XMLTypedVaue' as specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 16.2, with the changes and restrictions specified in the following subclauses of this clause 8.3.

8.3.2 All occurrences of "Externa TypeReference” within the "XMLTypedVaue' shal be replaced by the
"typereference” in that "External TypeReference”.

8.3.3 The ASN.1 "comment" lexical item (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.6) shall not be present. If
an XER encoding contains a pair of adjacent hyphens, or "/*", or "*/", these shall be treated as part of the data, and not
as ASN.1 comment delimiters.

834 Where ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.4, 12.11 and 12.13, permits the use of ASN.1 white-space
between lexical items or in "xmlbstring" or in "xmlhstring", the characters used shall be restricted to the "white-space"
specified in 8.1.4.

8.35 The "XMLBooleanVaue" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.3, shal only be
"EmptyElementBoolean” and the "XML SequenceOfValue" and "XML SetOfVaue" with a component that is a boolean
type shall be"XMLVauelList".

8.3.6 The "XMLIntegerValue" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.9, shal only be
"XMLSignedNumber".

8.3.7 The "XMLEnumeratedValue' specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 20.8, shall only be
"EmptyElementEnumerated” and the "XML SequenceOfValue' and "XMLSetOfValue" with a component that is an
enumerated type shall be"XMLValuelList".

838 The "XMLSpecialRealValue" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.6, shal only be
"EmptyElementReal".

8.3.9 The "XMLBItStringValue" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.9, shall not be
"XMLIdentifierList".

8.3.10 The "XMLExternaVaue" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 37, shall be replaced by
the "XMLExternalValue" specified in 8.4.

6 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

84 Encoding of the EXTERNAL type

84.1 The "XMLExternalValue" production used for an XER encoding of an "EXTERNAL" type shall be the
"XMLValue" for the encoding of the sequence type specified in ITU-T Rec. X.691 | ISO/IEC 8825-2, 29.1, with a
value as specified in 29.2 to 29.4 of that Recommendation | International Standard.

NOTE — For historical reasons, the XER encoding of an "EXTERNAL" typeis not the same as the XML value notation specified
in ITU-T Rec. X.680 | ISO/IEC 8824-1.

8.4.2 ITU-T Rec. X.691 | ISO/IEC 8825-2, 29.5 to 29.8 shall apply, except that the provisions of 29.6 shall be
replaced by 8.4.3 of this Recommendation | International Standard.

8.4.3 If the data value is the value of a single ASN.1 type, and if the encoding rules for this data value are those
specified in this (XER) Recommendation | International Standard, then the sending implementation shall use the
"single-ASN1-type" aternative.

8.4.4 ITU-T Rec. X.691 | ISO/IEC 8825-2, 29.9 to 29.11 shall apply, except that the provisions of 29.9 shall be
replaced by 8.4.5 of this Recommendation | International Standard. The Note in ITU-T Rec. X.691 | ISO/IEC 8825-2,
29.9 applies.

8.4.5 If the "encoding" choice is "single-ASN1-type", then the ASN.1 type shall be the "XMLTypedVaue" of the
type encoded in the "EXTERNAL", with avalue equa to the data value to be encoded.

8.5 Encoding of the open type

Both alternatives of "XMLOpenTypeFieldVa" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6) can be used.

NOTE — The use of the "xmlhstring" alternative of "XMLOpenTypeFieldVal" is not recommended in general, as there are no
mechanisms to identify the encoding rules being used to produce the "xmlhstring" in an instance of an encoding. Cases where
this alternative may be convenient are when the message being encoded in XER (e.g. for display purposes) is the result of a
previous binary encoding and has not been completely decoded, or when there are bilateral agreements.

8.6 Decoding of typeswith extension markers

8.6.1 A BASIC-XER decoder shall accept as a valid XML document BASIC-XER encodings of types with
extension markers in which unknown extensions are present.

8.6.2 Unknown extensions in a sequence or set type result in unexpected XML elements with names distinct from
any of the names of the next expected XML element.

NOTE — There may be multiple names for a known following XML element when optionality is present, but the extension
additions will always have names that differ from all of these.

8.6.3 Unknown extensions in a choice type result in a single unexpected XML element in place of an element
corresponding to one of the known choices. It will always have a different XML element name from that of any XML
element that encodes a known alternative of the choice type.

8.6.4 Unknown extensions in an enumerated type result in an XML element with an unexpected content, but with
no unexpected XML elements.

8.6.5 Unknown extensions arising from relaxation of a subtype constraint result in an encoding that can be a valid
encoding of any value of the unconstrained type. Such encodings can produce unexpected content, but no unexpected
XML elements.

9 Canonical XML encoding rules

Where "XMLTypedValue" contains options, this clause specifies precisely one of those options in order to produce a
unique encoding. The provisions of this clause determine the canonical XML encoding rules.

9.1 General rulesfor canonical XER
9.1.1 The XML prolog shall be empty (see 8.2.1).

9.1.2 All lexical items forming the "XMLTypedValue" shall have no "white-space” between them (see 8.3.4).

NOTE — This ensures that the digital signature of a document can be easily generated without considering any possible insertion
of "white-space" between the lexical items of the "XMLTypedValue".

9.1.3 The escape sequences specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.8, shall not be used.

ITU-T Rec. X.693 (11/2008) 7

| SO/IEC 8825-4:2008 (E)

914 If the XML value notation permits the use of an XML empty-element tag (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 16.5 and 17.8), then this empty-element tag shall be used.

9.2 Real values
9.2.1 The real value zero shall be encoded as"0".

9.2.2 For al other values, the following subclauses specify restrictions that apply to "realnumber” (see ITU-T Rec.
X.680 | ISO/IEC 8824-1, 12.9).

9.2.3 The "realnumber” shall be normalized so that the integer part consists of a single, non-zero digit. The decimal
point shall be present and shall be followed by a fractional part containing at least one digit (which may be zero). The
fractional part shall not contain any trailing zeros after the first digit.

9.24 The fractional part shall be followed by an"E" (not an "€") and by an exponent (which may be zero).
NOTE - Leading zeros in the exponent are aready forbidden by ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.9.

9.25 No "+" sign shall be present either before the integer part or before the exponent.

9.3 Bitstring value

9.3.1 If the "XMLTypedVaue" aternative of "XMLBItStringValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
22.9) can be used (as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.11), then it shall be used. Otherwise, the
"xmlbstring" aternative shall be used with all "white-space" removed (see 8.3.4).

9.3.2 If the bitstring type has a "NamedBitList", there shall be no trailing zero bits (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 22.7).

94 Octetstring value

If the "XMLTypedValue" aternative of "XMLOctetStringValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 23.3) can
be used (as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 23.4), then it shall be used. Otherwise, the "xmlhstring"
alternative shall be used with all "white-space" removed (see 8.3.4), and all letters in upper-case.

9.5 Sequence value

All components of a sequence which have default values, and which have an abstract value set to those default values,
shall have the encoding of the default value textually present. There shall always be an encoding for those components.

9.6 Set value

9.6.1 The set type shall have the elements in its "RootComponentTypelList" sorted into the canonical order
specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 8.6, and additionally for the purposes of determining the order in
which components are encoded when one or more component is a choice type with no ASN.1 tag, each such choice
type is ordered as though it has a tag equal to that of the smallest tag in the "RootAlternativeTypelist" of that choice
type or any such choice types nested within it.

9.6.2 The set elements that occur in the "RootComponentTypeList" shall then be encoded in the resulting sorted
order. After the elementsin the "RootComponentTypeList", if any, have been encoded, the set elements that occur in the
"ExtensonAdditionList" shall be encoded in the order in which they are defined. (An example of this ordering of elementsis
provided in ITU-T Rec. X.691 | ISO/IEC 8825-2, clause 21.)

9.6.3 All components of a set which have default values, and which have an abstract value set to those default
values, shall have the encoding of the default value textually present. There shall always be an encoding for those
components.

9.7 Set-of value

9.7.1 The order of the elements of an "XMLSetOfValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 28.3) shall be
determined by sorting the character strings which represent the CXER encoding for each element as specifed in 9.7.2
and 9.7.3.

9.7.2 The sort order for the character strings is determined using the 32-bit value of characters specified in ISO/IEC
10646, with lower numbered characters preceding higher numbered characters.

8 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

9.7.3 A conceptual "pad" character is used in specifying the sort order. This character precedes all other characters.
When determining whether a string "A" sorts before a string "B", the shorter string has conceptual "pad" characters
added at its end if necessary. String "A" sorts before string "B" if and only if the character in string "A" precedes the
corresponding character in string "B" in the first character position in which they have different characters.

9.8 Object identifier value
The"XMLObjldComponent” (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 32.3) shall be "XMLNumberForm".

9.9 Relative object identifier value
The"XMLRelativeOlDComponent" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 33.3) shall be "XMLNumberForm".

9.10 GeneralizedTime

9.10.1 The encoding of a value of type "GeneralizedTime" shall terminate with the character "Z" (see ITU-T Rec.
X.680 | ISO/IEC 8824-1, 46.3).

9.10.2 The string representing the seconds shall always be present.

9.10.3 The string representing fractions of seconds, if present, shall omit all trailing zeros. If the fractiona part
corresponds to 0, this string shall be wholly omitted together with the decimal point.

EXAMPLE

Seconds represented with the string "26.000" shall be encoded as"26". Seconds represented with the string "26.5200"
shall be encoded as "26.52".

9.104 Thedecimal point, if present, shall be".".

9.10.5 Midnight (GMT) shall be encoded as a string of the form:
"YYYYMMDDO000000Z"

where"YYYYMMDD" represents the day following the midnight in question.
EXAMPLE

The followings encodings are valid:
"19920521000000Z"
"199206221234217"
"19920722132100.3Z"

The following encodings are invalid:
"19920520240000Z" (midnight represented incorrectly)
"19920622123421.0Z" (spurious trailing zeros)
"'19920722132100.30Z" (spurious trailing zeros)

9.11 UTCTime

9.11.1 The encoding of avalue of type "UTCTime" shall terminate with the character "Z" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 47.3).

9.11.2 The string representing the seconds shall always be present.

9.11.3 Midnight (GMT) shall be encoded as a string of the form:
"YYMMDDO000000Z"

where"YYMMDD" represents the day following the midnight in question.
EXAMPLE

The following encodings are valid:
"920521000000Z"

ITU-T Rec. X.693 (11/2008) 9

| SO/IEC 8825-4:2008 (E)

"9206221234217"
"920722132100Z"

The following encodings are invalid:

9.12

"920520240000Z" (midnight represented incorrectly)
"92072213217" (seconds of "00" omitted)

Open type value

The"xmlhstring" alternative of "XMLOpenTypeFieldVal" shall not be used (see 8.5).

9.13

TheTI ME type and the useful time types

The"XMLTimeValue" for these types shall be modified as follows:

10

10.1
1011

a) al commas used as decimal signs shall be converted to full stop;

b) the minutes digits for all time difference components that are an integral number of hours shall be
removed;

¢) if aninterval or recurring interval contains a start point and an end point, and the end point contains the
same time difference component as the start point, the time difference component of the end point shall be
removed;

d) for aduration, and for aduration in aninterval (or in aninterval in arecurring interval) expressed with a
start point and a duration or with a duration and an end point, the value notation shall be modified to remove
all zero time components except the least significant time component that is present in the instance of the
value notation.

Extended XML encoding rules

General
The extended XML encoding rules (EXTENDED-XER) augment and modify BASIC-XER. They enable

ASN.1 to define the form and content of a much wider range of XML documents.

10.1.2

10.1.3

EXTENDED-XER extends BASIC-XER in three main ways.

a) It provides additional encoder's options (for example, for the insertion of XML Processing Instructions
or XML Comment, and for the use of identifiers for named bits in a bitstring value);

b) It specifies a set of encoding instructions that can be used to specify modification of the BASIC-XER
encoding of an ASN.1 type, including an encoding instruction to use simple text rather than empty-
element tags for boolean, integer (with named numbers), enumerated, special values of real, and bitstring
(with named bits) types,

c) It requires decoders to ignore (in the absence of encoding instructions) attributes from the control
namespace that are unknown (for example, a schemal ocation attribute), and some known attributes that
other XML tools may insert which may have different values from those that a conforming encoder can
insert (for example, use of atype identification attribute). (See 10.2.10.)

If an ASN.1 specification does not contain any XER encoding instructions, then every BASIC-XER encoding

of any abstract value of an ASN.1 typeisaso an EXTENDED-XER encoding of the same abstract value of that type.

NOTE — The opposite is not true. Even in the absence of XER encoding instructions, there are EXTENDED-XER encodings that
are not conforming to BASIC-XER encodings (see 10.1.2 aand 10.1.2 ¢).

10.1.4 All occurrences of ASN.1 "Type" notation have an associated set (possibly empty) of XER encoding
instructions (the final associated encoding instructions). Encoding instructions are associated with a"Type" through:

10

a) (Inherited encoding instructions) the presence of associated encoding instructions on the "Type" used in
the definition of a"typereference” used asa"Type'; and

b) (Targeted encoding instruction) assignment of one or more XER encoding instructions to an occurrence
of "Type" using an XER encoding control section (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 54);
and

NOTE — An ASN.1 module can contain only one XER encoding control section, and hence only one XER
"EncodinglnstructionAssignmentList" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 54.2)

ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

¢) (Prefixed encoding instructions) assignment of one or more XER encoding instructions to an occurrence
of "Type" using XER type prefixes (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 31.3); and

d) (Import-list encoding instructions) assignment of one or more encoding instructions to all type
references imported from an identified ASN.1 module.

10.1.5 The effect of assigning an XER encoding instruction is to add, delete, or replace associated encoding
instructions (see clause 15 for the rules that apply for multiple assignments of XER encoding instructions).

10.1.6 The order (or manner) in which encoding instructions become part of (or are removed from) the set of
associated encoding instructions is not significant in the application of the final encoding instructions.

10.1.7 The final encoding instructions affect the EXTENDED-XER encoding of types. They have no other impact,
and in particular are not associated with any value reference defined using the type, nor do they affect value mappings,
nor do they affect other encoding rules.

NOTE — There are, however, requirements on the unambiguity of names that are affected by the presence of a final NAME,

NAMESPACE, or UNTAGGED encoding instruction. These requirements can be interpreted either as restrictions on the way in which
types with such final encoding instructions can be used, or as restrictions on the use of these encoding instructions.

10.2 EXTENDED-XER conformance

10.2.1 If an ASN.1 specification assigns XER encoding instructions in accordance with clauses 11 to 17 such that an
ASN.1 type or component has final encoding instructions that violate the restrictions specified in clauses 18 onwards,
then that ASN.1 specification is not in conformity with this Recommendation | International Standard, even if (without
the XER encoding instructions) it would conform to all the requirements of ITU-T Rec. X.680 | ISO/IEC 8824-1.
NOTE — It is only occasionally illegal to assign an encoding instruction to a"Type", as it can be negated (removed from the set
of associated encoding instructions) by a further assignment. It is the fina encoding instructions that normally determine
conformity of the specification. In some (but not all) cases, afinal encoding instruction that is not applicable to the type to which
itisbeing applied isignored. If the clauses specifying the syntax and application of encoding instructions identify circumstances
where an encoding instruction is ignored in the application of the final encoding instructions, then clauses specifying encodings
do not normally mention the possible presence of that final encoding instruction.

10.2.2 A conforming EXTENDED-XER encoding of an ASN.1 type with no final encoding instructions shall be the
encoding produced by the basic XML encoding rules (BASIC-XER) specified in clause 8, with the additional encoder's
options specified in 10.2.5 and 10.2.6.

NOTE — EXTENDED-XER decoders are required by 10.2.4 to accept and process W3C XML document type declarations, but
these are not generated by conforming encoders, and do not form part of EXTENDED-XER encodings.

10.2.3 The EXTENDED-XER encoding of an ASN.1 type with final encoding instructions, or with components (at
any depth, and after resolving all type references) that have associated encoding instructions, shall be the encoding
specified in clause 17.

NOTE — The final encoding instructions are applied in an EXTENDED-XER encoding, and are also used by decoders and
validators of EXTENDED-XER encodings.

10.24 EXTENDED-XER decoders (whether MODI FI ED- ENCODI NGS was used or hot — see clause 26) shall process
any document type declaration (see W3C XML 1.0, 2.8) that is present, in accordance with the requirements for non-
validating XML processors (see W3C XML 1.0, 5.1). This processing shall be performed (conceptualy) before
applying all other decoding requirementsin this Recommendation | International Standard. EXTENDED-XER encoders
shall not include a document type declaration.

10.25 An EXTENDED-XER encoder can (as an encoder's option) insert XML Processing Instructions or XML
Comment (in addition to any that might be required by clause 30) in the XML document element or XML prolog in any
position permitted by W3C XML 1.0. The syntactic form and semantics of XML Processing Instructionsis specified in
W3C XML 1.0, 2.6. The syntactic form and semantics of XML Comment is specified in W3C XML 1.0, 2.5.

10.2.6 If thereisno GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCCDI NGS keyword (see clause 26)
in the XER encoding control section, then:

a) the "XMLintegerValue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.9) may be either
"XMLSignedNumber" or "EmptyElementinteger”, as an encoder's option; and

b) the "XMLBItStringvVaue' (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.9) may be any of the
aternatives of this production, as an encoder's option. If the "XMLIdentifierList" is used, it shall be the
"EmptyElementList".

10.2.7 If thereis a GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCODI NGS keyword (see clause 26)
in the XER encoding control section, then:

a) the"XMLBooleanValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.3) shall be "TextBoolean"; and

ITU-T Rec. X.693 (11/2008) 11

| SO/IEC 8825-4:2008 (E)

b) the "ExtendedXMLIntegerVaue" (see 17.4) shal be the "ModifiedXMLIntegerVaue' aternative,
defined in 17.8; and

NOTE 1 — This alows the use of atext value for "NamedNumber"s of an integer type, as an encoder's option,
but also modifies the syntax for numeric encodings of an integer value.

c) the"ExtendedXMLEnumeratedValue" (see 34.3) shall not be "EmptyElementEnumerated"; and

NOTE 2 — In the absence of a GLOBAL- DEFAULTS of MODI FI ED- ENCCDI NGS, it cannot be "TextEnumerated"
(see 8.3.7 and 34.3).

d) the"ExtendedXMLReaValue" (see 17.4) shall be the "ModifiedXMLRealValue' adternative, defined in
17.9; and

e) the "XMLSpecialRedValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.6) shall be the "TextRea"
dternative; and

f) the aternative of "XMLIdentifierList" in the "XMLBItStringValue" (see ITU-T Rec. X.680 | ISO/IEC
8824-1, 22.9) shall be "TextList" (see 10.2.8 b); and

g) the "XMLSequenceOfVaue" and "XMLSetOfValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 26.3
and 28.3) shall be "XMLDelimiteditem" for all component types, with Table 5 ignored (see ITU-T Rec.
X.680 | ISO/IEC 8824-1, 26.5); and

h) the "xmlhstring" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.13) shall not contain "white-space" (see
8.1.4); and

i) &l occurrences of "white-space” that is either outside XML tags or inside the values of XML attributes
can be "white-space with escapes’ (see 8.1.5) as an encoder's option.

NOTE 3 — There are some encoding instructions (such as UNTAGGED) that cannot be used unless there is a GLOBAL- DEFAULTS of
MODI FI ED- ENCODI NGS.

10.2.8 If a GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCODI NGS keyword (see clause 26) is
present in the XER encoding control section, then an EXTENDED- XER encoder can (as an encoder's option):

a) use the "Textinteger" aternative of "ModifiedXMLIntegerValue" (see 17.8), provided there is a
"NamedNumber" for the integer value in the type definition (see also 10.2.7 b);

NOTE 1 — The use of this encoding with named values that have been added in a later version can make the
abstract value represented unreadable by an implementation of an earlier version of the specification.

b) use"XMLIdentifierList" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 22.9) for an "XMLBItStringValue",
provided the hitstring value to be encoded does not contain any "one" bits that are not named hits (see
as010.2.71);

NOTE 2 — The use of this encoding with named bits that have been added in a later version can make the
abstract value represented unreadable by an implementation of an earlier version of the specification.

10.2.9 Where encoder's options are permitted in an EXTENDED-XER encoding, conforming decoders and
validators shall accept all options.

10.2.10 Conforming decoders and validators shall accept, but may ignore, the presence of a type identification
attribute in any XML element of an encoding unless its presence and use is as specified in clauses 37 and 38. Encoders
shall not generate such attributes except as specified in clauses 37 and 38.
NOTE — Other XML tools may insert such attributes. In general, an EXTENDED-XER decoder cannot easily determine the
permitted value and meaning of type identification attributes. Their presence and value may be of use to an application if (for
example) unexpected XML child elements are present that are (as a decoder's option) passed to the application — rather than
being ignored or producing afatal decoding error.

10.2.11 An ASN.1 specification is illega unless it is possible, for al abstract values, for a decoder to determine
unambiguously (using only the name of the XML tag and the contents of any previous XML element) the ASN.1
component (or extension marker) that an XML element is associated with.
NOTE 1 — The association cannot depend on the content of the XML element, or on its attributes, or on any subsequent XML
element.

NOTE 2 — This condition is always satisfied when there are no XER encoding instructions, but the inappropriate use of
UNTAGGED to remove associated tags round (for example) repetitions (sequence-of or set-of) and alternatives (choice) and the
inappropriate use of NAME can result inillegal specifications.

NOTE 3 — Subclause 10.2.11 is a necessary condition for valid encodings, but it is recognized that it isin general not possible for
an ASN.1 tool (or for a human author) to check for legality based on this top-level statement alone. Annex B provides a model
of the effect of the use of UNTAGGED, and rules that, if followed, can ensure legality of the specification as defined in 10.2.11.

10.2.12 If an ASN.1 specification contains "ObjectClassFieldType's that are open types (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 14.2), with table constraints or type constraints, such constraints shall al be ignored in
applying 10.2.11.

12 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

10.3 Sructureof an EXTENDED-XER encoding

10.3.1 A complete EXTENDED-XER encoding is awell-formed XML document consisting (in order) of:
a) an XML prolog (which may be empty as an encoder's option) as specified in 8.2; and

b) an XML document element which is the complete encoding of a value of asingle ASN.1 type, called the
root type, as specified in clause 17.

10.3.2 The"XMLValue" encodings used for BASIC-XER encodings are modified for EXTENDED-XER encodings
by the fina encoding instructions for the "Type's that they encode, and the final encoding instructions for their
components (to any depth), together with any GLOBAL- DEFAULTS encoding instructions.
NOTE — In an extreme case, the entire contents of the XML document element for a heavily nested ASN.1 structure can (through
the use of the UNTAGGED encoding instruction) consist of nothing more than a linear sequence of XML elements, where only the
root element has child elements. The use of UNTAGGED is restricted to ensure that all such resulting linear sequences of XML
elements can be mapped without ambiguity to the components of an abstract value of the ASN.1 root type (see 10.2.11).
10.3.3 The XML document element in an EXTENDED-XER encoding consists of a single XML element that shall
be an "ExtendedX ML TypedValue" for the type being encoded (the root type). It can include attributes in its start-tag or
empty-element tag, and can have a content that includes both child elements (see W3C XML) and untagged text. The
child elements may themselves have both attributes and a content that includes both child elements and untagged text.

10.34 The abstract values of the components of an enclosing type are encoded as "ExtendedXMLValue's (see
17.4), possibly modified by encoding instructions applied to them or to their own components. These
"ExtendedXMLValue's:

a) can be preceded by an XML start-tag and followed by an XML end-tag (called the associated tags) to
form an element within the "ExtendedXMLVaue" of the enclosing type; or

b) can (by the use of an UNTAGGED encoding instruction on a type that is not character-encodable) form a
partial XML element content for the "ExtendedXMLValue' of the enclosing type; or

NOTE — Annex B describes the result of applying UNTAGGED as the production of partial XML element content
that can combine with other encodings to form the XML element content for some enclosing element whose
type has not been UNTAGGED.
c) can (by the use of an UNTAGGED encoding instruction on a character-encodable type) form the complete
"ExtendedXMLValue" of the component; or

d) can (by the use of an ATTRI BUTE encoding instruction on a character-encodable type) form the
"CharacterEncodableValue" in the "QuotedValue" of an "Attribute” (see 20.3.3).

10.35 If an "ExtendedXMLValue' is empty, and its associated tags have not been removed by the use of an
UNTAGGED encoding instruction, then the associated preceding and following tags can (as an encoder's option) be
replaced with an XML empty-element tag (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.8). Thisis called the associated
empty-element tag.

10.3.6 The transformation specified in 10.3.5 is performed conceptually after completion of the entire encoding
process, and can be prevented by a Pl - OR- COWENT encoding instruction (see clause 30) producing one or more XML
Processing Instruction or XML Comment elements between the start-tag and end-tag.

10.3.7 The associated preceding tag, the associated following tag, and the associated empty-element tag are jointly
referred to as the associated tags. The XML element names in the associated tags are called the associated tag names,
and are (in the absence of final NAME and NAMESPACE encoding instructions) identifiers, type reference names, or
"xmlasnltypename's (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.36).

1 Notation, character set and lexical itemsused in XER encoding instructions

111 The notation used in specifying the syntax of an "Encodinglnstruction” in an XER type prefix (see clause 13),
and in an "Encodingl nstructionAssignmentList" in an XER encoding control section (see clause 14) is that defined by
ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 5.

11.2 ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 11, applies to an XER "EncodingInstruction” and to an XER
"EncodinglnstructionAssignmentL.ist".

NOTE - In particular, arbitrary ASN.1 white-space characters can appear between lexical items in both of these syntactic
constructs unless the "&" notation is used (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 5.4).

11.3 The general rules specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, also apply to an XER
"Encodinglnstruction" and to an XER "EncodinglnstructionAssignmentList".

ITU-T Rec. X.693 (11/2008) 13

| SO/IEC 8825-4:2008 (E)

NOTE - In particular, ASN.1 comment can be included wherever ASN.1 white-space is allowed, and requirements for the
insertion of white-space or comment between lexical items that could otherwise be confused are those specified in ITU-T Rec.
X.680 | ISO/IEC 8824-1.

114 The following lexical items are used in this Recommendation | International Standard:

comment (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.6)
cstring (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.14)
identifier (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.3)
modulereference (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.5)
number (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.8)
typereference (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.2)
" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
"} (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)

mon (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
. (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
won (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
e (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
e (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)

me (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
"ot (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.20)
ne (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
N (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.37)
K (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.28)
" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.29)

Additional lexical items ("modifiedXMLNumber" and "modifiedXMLRealNumber") are defined and used in 17.8.3
andin 17.9.

12 Keywords

121 The words specified in 12.3 and 12.4 below are used in either or both of XER "Encodinglnstruction"s and
XER "EncodinglnstructionAssignmentList"s (in addition to some ASN.1 reserved words), and can appear in such
syntactic constructs only with the meaning assigned to them in the following clauses of this Recommendation |
International Standard, except as specified in 12.2.

12.2 Keywords are not reserved words, but if an ASN.1 "typereference" that is the same as a keyword listed in
12.3 is needed in an XER "Encodinglnstruction” or an XER "EncodinglnstructionAssignmentList", then the production
"ModuleAndTypeReference” (see 14.2.2) shall be used.

12.3 The keywords are:

AFTER- TAG DEFAULT- FOR- EMPTY REPLACE
AFTER- VALUE ELEMENT TEXT

ANY- ATTRI BUTES EMBED- VALUES UNCAPI TALI ZED
ANY- ELEMENT GLCBAL- DEFAULTS UNTAGCGED
AS I'N UPPERCASED
ATTRI BUTE LI ST USE- NI L
BASEG4 LOWERCASED USE- NUMBER
BEFORE- TAG MODI FI ED- ENCODI NGS USE- CRDER
BEFORE- VALUE NAME USE- QNAMVE
CAPI TALI ZED NAMESPACE USE- TYPE
COLLAPSE NOT USE- UNI ON
CONTROL- NAMESPACE Pl - OR- COMVENT VWHI TESPACE
DECI VAL PREFI X

124 Additional keywords are used in the "BuiltinTypeName" production (see 14.2.3), but these are all ASN.1
reserved words (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.38) and can never be used in ASN.1 as a "typereference”.

14 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

13 Assigning an XER encoding instruction to an ASN.1 type using a type prefix

131 Final encoding instructions for atype can:

a)

b)
c)
d)
€)

f)

¢))

require the use of alternatives of an "ExtendedXMLValue" that are not "XMLValue' aternatives for that
type; or
NOTE 1 — Alternatives of the "ExtendedXMLValue" production include both the (unchanged) "XMLValue"

production alternatives used in BASIC-XER, and aternative productions selected by XER encoding
instructions.

change the associated tag name, the "AttributeName", or the value of the type identification attribute for
the encoding of that type; or

cause the "ExtendedXMLVaue' of a component of an ASN.1 type to be inserted as the
"CharacterEncodableValue" in the "QuotedValue" of an "Attribute" (see 20.3.3); or

specify the XML namespace name for type reference names and identifiers defined in an ASN.1 module
and recommend a namespace prefix to be used with that namespace; or

specify when a namespace-qualified name (instead of an unqualified name) is to be used in an XML
element or as the name of an XML attribute; or

specify the removal of the associated tags, generally resulting in either untagged text or in partial XML
element content (which can be preceded or followed by other partial XML element content — see Annex
B); or
specify the insertion of one or more XML Processing Instructions or XML Comments (see clause 30):
1) before the associated preceding tag or the associated empty-element tag; or
2) between the associated preceding tag and the "ExtendedXMLValue"; or
NOTE 2 — This prohibits the use of an associated empty-element tag.
3) between the "ExtendedXMLValue" and the associated following tag; or
NOTE 3 — This prohibits the use of an associated empty-element tag.

4) dafter the associated following tag.
NOTE 4 — All the above prohibit the use of UNTAGGED to remove the associated tags (see 30.2.2).

13.2 XER encoding instructions can be assigned to ASN.1 types using either the "Encodinglnstruction”
production in an XER type prefix or the "EncodinglnstructionAssignmentList" production in an XER encoding
control section. Assignment using a type prefix is specified in this clause. Assignment using an XER encoding control
section is specified in clause 14.

NOTE — The effect of multiple assignments of encoding instructions of the same category is specified in clause 15.

133 The XER "Encodinglnstruction” production is:

Encodingl nstruction::=

Positivel nstruction
| Negatingl nstruction

Positivel nstruction ::=

AnyAttributel nstruction

| AnyElementInstruction

| Attributel nstruction

| Base64l nstruction

| Decimallnstruction

| DefaultFor Emptylnstruction
| EmbedValuesl nstruction

| Global Defaultsl nstruction
| ListInstruction

| Namel nstruction

| Namespacel nstruction

| PIOrCommentlinstruction
| TextInstruction

| Untaggedl nstruction

| UseNillnstruction

| UseNumber I nstruction

| UseOrderInstruction

| UseQNamel nstruction

ITU-T Rec. X.693 (11/2008) 15

| SO/IEC 8825-4:2008 (E)

| UseTypel nstruction
| UseUnionl nstruction
| Whitespacel nstruction

Negatingl nstruction ::=
NOT Positivel nstruction
| ElementInstruction

134 The "Elementinstruction™” (see clause 24) is a strict synonym for NOT UNTAGGED, and is not discussed further
in this clause.
NOTE 1 — The ELEMENT synonym is provided to avoid the double negative, and for human readability of specifications. It will
normally be used (in opposition to the ATTRI BUTE encoding instruction) to identify the nature of top-level typesin the ASN.1
module. Top-level types that have neither ELEMENT nor ATTRI BUTE fina encoding instructions will be supporting types that do
not directly correspond to XML attributes or elements, and will usually be UNTAGGED.

NOTE 2 — There is no negating encoding instruction for ELEMENT. An ELEMENT encoding instruction can be cancelled by a
subsequent UNTAGGED encoding instruction, but such usage is not recommended.

135 Each use of a "Positivelnstruction" in an XER type prefix or in an XER encoding control section assigns that
XER encoding instruction to the corresponding "Type". Each of the aternatives of "Positivelnstruction” (for example
"AnyAttributesinstruction") has two alternatives. Only the first aternative of these shall be used in atype prefix.

13.6 If the "Type" in a "TypeAssignment" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.1) has final encoding
instructions, all uses of the corresponding "typereference” (in the module containing the "TypeAssignment" or in some
other module) inherit its final associated encoding instructions, except that any final NAME and NAMESPACE encoding
instructions are not inherited.

NOTE — These two encoding instructions affect the XML name used in place of atype reference name. Where the type reference

name is used to define the type in a type assignment or the type of a component, it is not appropriate to inherit such final
encoding instructions from its definition.

13.7 An encoding instruction in atype prefix or in an XER encoding control section can be a positive instruction,
used to add or to replace an encoding instruction (use of "Positivelnstruction™), or a negating instruction used to cancel
(use of "Negatinglnstruction™) one or more associated encoding instructions.

13.8 XER encoding instructions consist of four parts (some of which may be empty):

a) NOT, indicating negation or removal of encoding instructions of a given category; and
NOTE 1- This is present for negating instructions (except "Elementinstruction") and absent for positive
instructions.

b) akeyword identifying the category of the encoding instruction; and
NOTE 2 — Thisis always present.

c) identification of a target list for the assignment of the encoding instruction (possibly with qualifying
information restricting its application to a subset of the values of the type); and
NOTE 3 - When used in a type prefix, the target list is always the "empty" production, as the target for the

assignment is always the type associated with the type prefix (see 13.12). The target list is also always "empty"
for the GLOBAL- DEFAULTS encoding instruction.

d) syntax, specific to each encoding instruction category, providing details of the encoding instruction in
that category.

NOTE 4 — When used in a negating instruction, this is always the "empty" production. It is also absent from
some XER encoding instructions for which the keyword is a sufficient definition.

13.9 Some XER encoding instructions require the specification of the abstract value of a type. This specification
uses the "Vaue" production (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.7). If a"valuereference” is used as "Value",
then this "valuereference” shall be defined in (or imported into) the ASN.1 module containing the XER encoding
instruction.

NOTE — This means that the value can be specified either directly using basic ASN.1 value notation, or by a value reference that
was specified using either basic ASN.1 value notation or XML value notation.

13.10 Table 1 listsin column 1 the alternatives in the "Positivel nstruction” productions. Column 2 gives the clauses
that specify the requirements for use of these encoding instructions and the modified encodings that they produce.
Column 3 gives the category of the encoding instruction.

NOTE — These categories are introduced in order to provide clear statements on the result of multiple assignments of encoding
instructions from the same category.

16 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

Table 1—-Encoding instructionsand their defining clauses and categories

Encoding instruction Defining clause Category
AnyAttributesl nstruction Clause 18 Any-attributes instruction
AnyElementinstruction Clause 19 Any-element instruction
Attributel nstruction Clause 20 Attribute instruction
Base64Instruction Clause 21 Base64 instruction
Decimallnstruction Clause 22 Decimal instruction
DefaultForEmptylnstruction Clause 23 Default-for-empty instruction
Elementinstruction Clause 24 Element instruction
EmbedV aluesl nstruction Clause 25 Embed-values instruction
Global Defaultsl nstruction Clause 26 Global-defaults instruction (but see 15.3)
ListInstruction Clause 27 List instruction
Namel nstruction Clause 28 Name instruction (but see 15.3)
Namespacel nstruction Clause 29 Namespace instruction
PiOrCommentInstruction Clause 30 Pi-or-comment instruction (but see 15.3)
TextInstruction Clause 31 Text instruction (but see 15.3)
UntaggedI nstruction Clause 32 Untagged instruction
UseNillnstruction Clause 33 Use-nil instruction
UseNumberInstruction Clause 34 Use-number instruction
UseOrderInstruction Clause 35 Use-order instruction
UseQNamel nstruction Clause 36 Use-gname instruction
UseTypelnstruction Clause 37 Use-typeinstruction
UseUnionlnstruction Clause 38 Use-union instruction
Whitespacel nstruction Clause 39 Whitespace instruction

13.11 Each of the dternatives of the "Positivelnstruction" production is in a defined category of encoding
instruction (or in some cases encompasses multiple categories). The category of each encoding instruction is specified
in column 3 of Table 1 (but see aso 15.3 for encoding instructions that encompass multiple categories).

NOTE — The categories of encoding instructions are used in 15.4 to determine the effect of multiple assignment of encoding
instructions.

13.12 The"TargetList" in al "Encodinglnstruction" constructions that appear in a type prefix shall be "empty" and
the target shall be the "Type" associated with the type prefix.

13.13 A negating instruction is in the same category as the corresponding positive instruction.

13.14 An ASN.1 type can never have associated with it more than one XER encoding instruction of a given
category (see 15.3 and 15.4), no matter how they are assigned. The result of multiple assignments of an XER encoding
instruction of a given category is specified in clause 15.

14 Assigning an XER encoding instruction using an XER encoding control section

141 Theencoding instruction assignment list

14.1.1 XER encoding instructions can be assigned to ASN.1 types using either the "Encodinglnstruction” production
in an XER type prefix or the "EncodinglnstructionAssignmentList" production in an XER encoding control section.
Assignment using a type prefix is specified in clause 13. Assignment using an XER encoding control section is
specified in this clause.

14.1.2 The XER "EncodinglnstructionAssignmentList" productionis:

Encodingl nstructionAssignmentList ::=
Encodinglnstruction
Encodingl nstructionAssignmentList ?
|"[" Encodingl nstruction
EncodinginstructionAssignmentList ?

ITU-T Rec. X.693 (11/2008) 17

| SO/IEC 8825-4:2008 (E)

14.1.3 The "Encodinglnstruction” production is defined in 13.3. Each aternative of "Positivelnstruction” (for
example "AnyAttributesl nstruction") has two alternatives. An XER encoding control section shall contain only one of
the alternatives for "EncodinglnstructionAssignmentList”. [f the first alternative is used, then the first alternative for
each of the aternatives of "Positivelnstruction" shall be used. If the second aternative is used, then the second
aternative for each of the alternatives of "Positivel nstruction" shall be used.
NOTE — Each dternative of "Positivelnstruction” provides two aternative forms. The first is provided for historical reasons.
The second alternative form provides the matching "]" and moves the "TargetList" (if any) to the end of the production. It is
provided for similarity with the syntax used in the "EncodinglnstructionAssignmentList" of other ASN.1 encoding rule

standards, and for readability. The use of the second aternative of the "EncodinglnstructionAssignmentList” (and hence the
second alternative of all the alternatives of "Positivel nstruction” within it) is recommended for new specifications.

1414 Each use of an "Encodinglnstruction” in an XER encoding control section assigns that XER encoding
instruction to the occurrences of "Type" that are identified in the "TargetList" of the encoding instruction, or to the type
referencesin an importslist. The "TargetList" production and the targets it identifies are specified in 14.2.

14.15 Subclauses 13.4 to 13.14 also apply to encoding instructions in an XER encoding control section. The
clauses defining the detailed syntax for each encoding instruction category are listed in Table 1. Categories of XER
encoding instructions are also listed in Table 1.

14.2 Identification of the targetsfor an XER encoding instruction using a target list

14.2.1 General rules

14.2.1.1 The "Encodinglnstruction” alternatives specify the XER encoding instruction that is being assigned, and the
target(s) for that assignment within the ASN.1 module. All targets are an occurrence of the "Type" production within
the ASN.1 module.
NOTE — Multiple targets, in the same or in different ASN.1 type assignments, can be specified. A target that is the entire
module, or al occurrences within the module of a built-in type or constructor can also be specified. Thus (using an XER

encoding control section) a single "Encodinglnstruction” can be used to assign a particular XER encoding instruction to all the
typesin an ASN.1 module that require to have that encoding instruction assigned.

14.2.1.2 Inidentifying the target(s) for the assignment of an XER encoding instruction, the production "TargetList" is
used. Thisis defined in the following subclauses.

NOTE 1 - The "TargetList" production is referenced in clauses 18 onwards.

NOTE 2 — The "TargetList" production has an "empty" alternative. This is the only permitted alternative if the

"Encodinglnstruction” is used in a type prefix (see 13.12). This subclause 14.2 considers only the use of the "TargetList" in an
XER encoding control section.

14.2.1.3 The"TargetList" production is:

TargetList ::=
Targets"," +
| empty

Targets::=
Typel dentification
| BuiltlnTypel dentification
| IdentifiersinContext
| ImportedTypesl dentification

14.2.1.4 If the "TargetList" isalist of one or more "Targets' productions, then each of the "Targets' identifies one or
more targets ("Type's to which the encoding instruction is assigned), but can also provide qualifying information for
the encoding instruction, restricting its application to encodings using a particular identifier in the target type definition,
or to the use of the empty element tags for control characters specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.5.

NOTE - The qudifying information is only present if the target is a boolean, bitstring, enumerated, integer, or restricted
character string type definition (see 14.2.2.9).

14.2.1.5 A "TargetList" of "empty" is permitted only in atype prefix (when it is the only permitted alternative) and in
the GLOBAL- DEFAULTS encoding instruction. In a type prefix, it identifies the type associated with the prefix. In the
GLOBAL- DEFAULTS encoding instruction, it identifies al "Type"'sin the module.

14.2.1.6 The XER encoding instruction (possibly with associated qualifying information) is assigned to all the types
identified by the "TargetList" as specified in 14.2.1.10 to 14.2.1.16.

NOTE - It would be unusual, but not illegal, for a given "Type" to be identified more than once in the target list. In such cases,
clause 15 applies.

18 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

14.2.1.7 (Tutoria) ldentification of the target(s) (and possible qualifying information) by the "Targets' production
uses one of five basic forms:

a) useof a"typereference” (see 14.2.2), possibly followed by a dot-separated list of identifiers, identifying
either:

1) the"Type" in atype assignment (no identifiers present); or

2) the"Type" in acomponent of atype definition (which can include top-level components introduced
by the COVPONENTS OF construct — see 14.2.1.12); or

3) oneof 1) or 2), plus afinal identifier (preceded by a colon, not a dot) for an identifier used in the
target type definition, providing the qualifying information;

b) useof ALL asthelast identifier in the a) form, identifying all of the "Type"s textually present in the type
definition (that is identified by the preceding type reference and dot-separated list of identifiers), or
qualifying information (preceded by a colon, not a dot) identifying all of the identifiers used for values
of a boolean, bitstring, enumerated, or integer type definition (that is identified by the preceding type
reference and dot-separated list of identifiers) or identifying all uses of the XML empty-element tags
used to represent some control characters (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.5);

c) useof a"BuiltinTypeName" (see 14.2.3), identifying all "Type"s in the module that are defined by use
of the corresponding built-in type name or constructor, possibly (in the case of BOOLEAN, BI T STRI NG,
ENUMERATED, | NTEGER and restricted character string types only) followed by qualifying information;

d) useof alist of "identifier"s followed by I N (or ALL followed by I N, or COVPONENTS followed by | N)
and the &) form above (see also 14.2.4), identifying:

1) the"Type" of theidentified components of the @) form; or
2) (useof ALL) all "Type's that textually occur within the "Type" identified by the a) form; or

3) (use of COVPONENTS) al "Type"s that are the top-level components of the "Type" identified by the
a) form;

€) use of "ImportedTypesldentification" (see 14.2.5) identifies all the "typereference’s in the | MPORTS list
that are imported from a specified module.

NOTE 1 — The term "type definition" used in @) and b) above emphasizes that only textually present identifiers can be used.
Identifiers cannot be used if the "Type" is atype reference.

NOTE 2 — In general a component can be referenced by use of @) or d) above. If more than one component of a type is to be
referenced, then d) would be preferred asit isless verbose, otherwise a) would be preferred. Thisis a matter of style.

14.2.1.8 A hitstring or octetstring type with a contents constraint that contains a type shall be treated as a type with a
single component, using "*" as the component identifier, for the purpose of assigning a targeted instruction to the
"Type" in the contents constraint.

14.2.1.9 A type definition that is a sequence-of or a set-of shal be treated as a type with a single component, using "*"
as the component identifier, for the purpose of assigning a targeted instruction to the "Type" that is the component of
the sequence-of or set-of.

NOTE - It is also possible to identify this single component using the component identifier (if present).

14.2.1.10 If atarget isthe use of adummy parameter of a parameterized type, the target inherits the final encoding
instructions of the actual parameter before encoding instructions targeting the dummy parameter are assigned. The
specification is legal only if the resulting final encoding instructions for all instantiations of the parameterized type are
legal.

NOTE 1 - If the parameterized type is exported, the final encoding instructions for its dummy parameters are carried with it.

NOTE 2 — There are no mechanisms provided to assign encoding instructions directly to the "Type" of an actual parameter in an
instantiation of a parameterized type.

142111 If the target is a "SelectionType", the target inherits the final encoding instructions of the selected
aternative of the choice type referenced by the selection type, after which encoding instructions assigned to the
"SelectionType" are assigned.

14.2.1.12 If the target is a component produced as a result of the COVPONENTS OF transformation, the target
inherits the final encoding instructions of the component of the type referenced by the COVPONENTS OF, after which
encoding instructions assigned to the components produced by the COVPONENTS COF are assigned. Any encoding
instructions for the "Type" from which the components are extracted are ignored.

14.2.1.13 If the "Targets" production is " Typeldentification", then the targets it identifies are specified in 14.2.2.

ITU-T Rec. X.693 (11/2008) 19

| SO/IEC 8825-4:2008 (E)

14.2.1.14 If the "Targets' production is "BuiltinTypeldentification”, then the targets it identifies are specified
in14.2.3.

14.2.1.15 If the"Targets" production is"IdentifiersinContext", then the targets it identifies are specified in 14.2.4.

14.2.1.16 If the "Targets' production is "ImportedTypesldentification”, then the targets it identifies are specified
in14.2.5,

14.2.1.17 EXAMPLE: The example below shows an ASN.1 type definition followed by two different ways of
assigning XER encoding instructions in an XER encoding control section, and finally, the same ASN.1 type definition
with the XER encoding instructions assigned using type prefixes. All three approaches result in the same EXTENDED-
XER encoding.

The type definition is:
M- Type ::= SEQUENCE {
fieldl |NTEGER
field2 CHO CE {
first SEQUENCE OF | NTEGER,
second SEQUENCE OF OBJECT I DENTIFIER } }

The XER encoding instructions in the encoding control section could be:
ATTRIBUTE fieldl IN M- Type
LI ST first IN M/-Type.field2

Alternatively, they could be;
ATTRIBUTE M- Type. fiel d1
LI ST M/- Type. fiel d2.first

The type definition with type prefixesis:
M- Type :: = SEQUENCE {
fieldl [ATTR BUTE] |NTEGER
field2 CHOCE {
first [LI ST] SEQUENCE OF | NTEGER,
second SEQUENCE OF OBJECT IDENTIFIER } }

14.2.2 Target identification using an ASN.1 typereference and identifiers
14.2.2.1 The"Typeldentification" production is:
Typel dentification ::=
ALL

| ModuleAndTypeReference
ComponentReference ?
Qualifyingl nformationPart ?

ModuleAndTypeReference ::=
typer eference

| modulereference™ . " typereference

ComponentReference ::=

ComponentldList

ComponentldList ::=
Componentid". " +

Componentld ::=
identifier
| "agn

| ALL

Qualifyingl nformationPart ::=

Qualifyinglnformation
Qualifyingl nformation

identifier

| ALL

14.2.2.2 A "Typeldentification" of ALL identifiesal "Type'sin "TypeAssignment"s in the module.

20 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

14.2.2.3 The "ModuleAndTypeReference" production identifies the "Type" that is assigned to the "typereference”.
The "modulereference” in "ModuleAndTypeReference" shall be the module reference for the module containing the
"EncodinglnstructionAssignmentList”, and the "typereference" shall be a type reference that is defined in the module. It
shall be used if and only if the "typereference” consists of the same characters as one of the keywords specified in 12.3,
otherwise the "typereference” alone shall be used.

14.2.2.4 A symbol"*" identifies the "Type" of the (sole) component of a sequence-of or set-of type, or the typein a
contents constraint that contains a"Type".

NOTE — This form can be used even if the sequence-of or set-of component has an identifier, but the use of the identifier should
be preferred.

14.2.25 If ALL isused asa"Componentld”, it shall be the last "Componentld" in the "ComponentldList" and shall not
be followed by "Qualifyinglnformation”.

14.2.2.6 If the first "Componentld” in the "ComponentldList" (if present) is an identifier that is textually present (or
results from use of COVPONENTS OF) as a component identifier in the "Type' identified by the
"ModuleAndTypeReference”, then it identifies the "Type" of that component. If it is not an identifier that is textually
present (or results from use of COMPONENTS OF) as a component identifier in the "Type" identified by the
"ModuleAndTypeReference”, then this occurrence of "Typeldentification” is not illegal, but does not identify any
target.

NOTE — This requires that the type referenced by the "ModuleAndTypeReference” be a sequence, set, choice, sequence-of or
set-of type definition, or a bitstring or an octetstring type definition with a contents constraint that contains a " Type".

14.2.2.7 If a subsegquent "Componentld" (except the last) in the "ComponentldList" (if present) is an identifier that is
textually present as a component identifier in the "Type" identified by the previous "Componentld”, then it identifies
the "Type" of that component. If it is not a component identifier that is textually present in the "Type" identified by the
previous "Componentld”, then this occurrence of "Typel dentification" is not illegal, but does not identify any target.

NOTE — The first use of "Componentld" can refer to components introduced by a COVPONENTS OF. Components of those
components cannot be identified by subsequent "Componentld"s.

14.2.2.8 If thelast "Componentld” in the "ComponentldList" (if present) is:

a) an identifier that is textually present as a component identifier in the "Type" identified by the previous
"Componentld”, then it identifies the "Type" of that component; the encoding instruction shall be
assigned to that "Type"; or

b) the keyword ALL; the encoding instruction shall be assigned to all "Type's that are textually present in
the type definition identified by the previous "Componentld”, which shall be a type with one or more
components.

14.2.2.9 The "QualifyinglnformationPart" shall not be present unless the "ModuleAndTypeReference” with the
"ComponentReference” (if present) identifies target(s) that are:

a) boolean types; or

b) bitstring types with named bits; or

C) enumerated types, or

d) integer types with named numbers; or
€) restricted character string types.

14.2.2.10 The ‘identifier" dternative of "Quadifyinginformation" shall not be used unless the
"ModuleAndTypeReference" with the "ComponentReference" (if present) identifies a single target that is not a
restricted character string type, or identifies a target list all of whose types are the boolean type. The "identifier" shall
be an identifier in the target type definition if the target is not a boolean type, or shall be true or fal se. The
"identifier" is qualifying information that identifies that the encoding instruction applies only to encodings using that
identifier.

14.2.2.11 The true and f al se aternatives of "Qualifyinglnformation" for a boolean type specify qualifying
information that identifies that the encoding instruction applies only to the encoding of the TRUE or the FALSE abstract
values, respectively.

14.2.2.12 The ALL aternative of "Qualifyinglnformation” shall not be used unless the target identifies (only) one
or more type definitions for the types listed in 14.2.2.9. It shall not be used if the target identifies one or more restricted
character string target(s), unless the encoding instruction being applied is NAMESPACE. It specifies qualifying
information that identifies that the encoding instruction appliesto all the identifiersin the type definitions, or in the case
of arestricted character string type, to all uses of the XML empty-element tags used to represent the control characters
listed in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.5.

ITU-T Rec. X.693 (11/2008) 21

| SO/IEC 8825-4:2008 (E)

NOTE - It is not possible to use qualifying information with an "identifier" to selectively affect the representation of control
characters. Only ALL is possiblein this case.

14.2.3 Target identification using a built-in type name
14.2.3.1 The "BuiltinTypeldentification” productionis:

BuiltInTypel dentification ::=
BuiltinTypeName
BuiltlnTypeQualifyingl nformationPart ?

BuiltInTypeName::=
BI T STRI NG

| BOOLEAN

| CHARACTER STRI NG
| cHO CE

| DATE

| DATE- TI ME

| DURATI ON

| EMBEDDED PDV

| ENUMERATED

| EXTERNAL

| General i zedTi me
| I NSTANCE OF

| I NTEGER

| NULL

| Qbj ect Descri ptor
| OBJECT | DENTI FI ER
| OCTET STRI NG
|OD IR

| REAL

| RELATI VE- O D

| RELATIVE-Q D-IRI
| SEQUENCE

| SEQUENCE OF

| SET

| SET OF

| TI VE

| TI ME- OF- DAY

| UTCTi me

| RestrictedCharacter StringType

BuiltlnTypeQualifyingl nformationPart ::=

BuiltlnTypeQualifyingl nfor mation

BuiltlnTypeQualifyingl nformation
identifier
| ALL
14.2.3.2 The "BuiltInTypeldentification" production specifies that the encoding instruction is to be applied to all

textual occurrences within the module of the corresponding built-in type or of a type defined using the corresponding
constructor.

14.2.3.3 The "RestrictedCharacterStringType" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 41.

14.2.3.4 The "BuiltinTypeQualifyinglnformationPart" shall not be present unless the "BuiltinTypeName" is BOOLEAN,
Bl T STRI NG ENUMERATED, | NTEGER, or arestricted character string type.

NOTE — Only the ALL form of "BuiltinTypeQualifyinglnformation” is permitted for a restricted character string type (see
14.2.2.10 and the next subclause).

14.2.35 The "identifier" aternative of "BuiltinTypeQualifyinginformation” shall not be used unless the
"BuiltinTypeName" is BOOLEAN, and shall then be either true or fal se. It specifies qualifying information that
identifies that the encoding instruction applies only to the encoding of the TRUE or the FALSE abstract values,
respectively.

22 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

14.2.3.6 The ALL alternative of "BuiltinQualifyinglnformation” specifies qualifying information that identifies that the
encoding instruction applies to all identifiers used in any instance of use of the "BuiltinTypeName" within the module
(or to all values of the BOOLEAN type definition, or to all the empty-element tags used in values of the specified
restricted character string type — see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.5).

14.24 Useof identifiersin context
14.2.4.1 The"ldentifiersinContext" production is:

| dentifiersinContext ::=

IdentifierLList
I'N

Typel dentification

IdentifierList ::=
identifier ", " +
| ALL
| COVPONENTS

14.2.4.2 "Typeldentification" is defined in 14.2.2, and identifies a type defined in a type assignment statement in the
module, or a component or sub-component of a type defined in the module. The "QualifyinglnformationPart" shall be
absent.

14.2.4.3 The"Type" identified by the "Typeldentification" shall be a sequence, set or choice type, and is called for the
purposes of this clause the identified "Type".
NOTE — The "Typeldentification" in "ldentifiersinContext" cannot be used for a sequence-of or set-of type. Such use is
prohibited for clarity, as it would be no less verbose than direct use of "Typeldentification” in "Targets".

14.2.4.4 Each "identifier" in "ldentifierList" shall be the "identifier" of a component of the identified "Type". The
XER encoding instruction is assigned to the "Type" of all the components of the identified "Type" that have a
component "identifier" in the "ldentifierList".

14.2.4.5 The use of ALL for "ldentifierList" specifies that all textually present components (and all textually present
components of those components, to any depth) in the identified "Type" are targets to which the XER encoding
instruction is being assigned.

14.2.4.6 The use of COVPONENTS for "ldentifierList" specifies that all components (at the first level) of the identified
"Type" are targets to which the XER encoding instruction is being assigned.

14.25 Useof imported typesidentification
14.2.5.1 The "ImportedTypesldentification" production is:

ImportedTypesl dentification ::=
ALL | MPORTS FROM moduler eference

14.2.5.2 The "modulereference" shall be one of the "modulereference"s used in one of the "Global M odul eReferences’
of the imports clause of the module.

14.2.5.3 The XER encoding instruction is assigned to each of the "typereference”sin the corresponding "SymbolList",
after the final encoding instructions produced by assignment in the exporting module have been assigned.

14.2.5.4 |If an imported "typereference” is exported from this module, the final encoding instructions inherited by that
"typereference” in a module that imports it are those inherited in this importing module, and are not affected by
assignment of encoding instructions using an "ImportedTypesldentification". This assignment affects only the use of
the type reference within this module.

15 Multiple assignment of XER encoding instructions

151 Order in which multiple assignments are consider ed
15.1.1 A "Type" which isnot a"typereference” hasinitially an empty set of associated encoding instructions.

15.1.2 A "Type" which is a "typereference” (which may be imported) has initialy the set of final encoding
instructions of the "Type" which was assigned to it when it was defined (possibly modified by encoding instructions
assigned to it in the importslist of an importing module — see 14.2.5).

ITU-T Rec. X.693 (11/2008) 23

| SO/IEC 8825-4:2008 (E)

15.1.3 Targeted encoding instructions for a "Type" (using an XER encoding control section) are assigned next, in
the order in which the targeted encoding instructions appear in the XER encoding control section. If the "Type" is
identified by more than one element of a"TargetList" (see 14.2), then that shall be treated as multiple assignments of
the same encoding instruction to that "Type", in the order in which the elements occur in the "TargetList".

NOTE — The effect of 15.1.2 and 15.1.3 means that targeted assignment to a "Type" in a "TypeAssignment" is always over-
ridden by a targeted assignment to a "Type" defined using the corresponding "typereference", no matter which targeted
assignment appears first in the XER encoding control section. However, if a targeted assignment is made to all the components
of atype, and aso to an individual component of that type, the effect will depend on the order of the encoding instructionsin the
XER encoding control section.

15.1.4 Prefixed encoding instructions (using a type prefix) assigned to atype are considered next, with the rightmost
(the innermost) prefixed encoding instruction considered first, and the leftmost (the outermost) prefixed encoding
instruction considered last.

15.1.5 As specified in 14.2.1.10, encoding instructions are assigned to a dummy parameter only after the final
encoding instructions for the actual parameter have been determined.

15.1.6 As specified in 14.2.1.11 and 14.2.1.12, a "SelectionType" and the components produced by a COVPONENTS
OF transformation inherit first the final encoding instructions of the original type, and then have encoding instructions
targeted at them applied.

15.1.7 Each assignment of an encoding instruction produces a new set of associated encoding instructions, as
specifiedin 15.2to 15.4.

152 Effect of assigning a negating encoding instruction

15.2.1 All assignments of a negating encoding instruction result in the removal (from the set of associated encoding
instructions) of any encoding instruction of the same category. If there are no associated encoding instructions of a
different category, the set becomes empty.

15.2.2 TheNOT GLOBAL- DEFAULTS encoding instruction shall never be assigned.

15.2.3 For those encoding instructions with multiple categories (see 15.3), a hegating encoding instruction removes
all the encoding instructionsin any of those categories.
NOTE — A negating encoding instruction never becomes part of the set of associated encoding instructions.

15.3 Multiple assignment of encoding instructions with multiple categories

15.3.1 The NAME and TEXT encoding instructions (see clauses 28 and 31) can be assigned to atype to either:
a) change the associated tag name (no "Qualifyinglnformation" present); or
NOTE — This applies only to the NAMVE encoding instruction.
b) change the "ExtendedXMLVaue" encoding by providing a new name for a specified "identifier" present
in the type definition ("Qualifyinglnformation" present that isnot ALL); or

c) changethe "ExtendedXMLValue" encoding by providing a modification to be applied to all "identifier"s
present in the type definition ("Qualifyinglnformation” present that is ALL, with a target that is not a
restricted character string type).

15.3.2 Incase 15.3.1 b), the encoding instruction for a specified "identifier" is treated as a different category from an
encoding instruction for any other "identifier", and from an encoding instruction for 15.3.1 a).

15.3.3 Incase 15.3.1 c), the encoding instruction is expanded into a set of encoding instructions of type 15.3.1 b),
with one encoding instruction for each "identifier" present in the type definition.

15.34 The PI - OR- COWENT encoding instruction (see clause 30) has four categories, corresponding to the four
alternatives for "Position".

1535 Subject to 15.3.3 to 15.3.4, subclause 15.4 specifies the rules for multiple assignment of XER encoding
instructions.

15.3.6 Each of the alternatives of the GLOBAL-DEFAULTS encoding instruction is a separate category, but each
category of this encoding instruction shall be assigned at most once.

154 Multiple assignment of XER encoding instructions of the same category

NOTE — Multiple assignment of XER encoding instructions of the same category is expected to be rare, except where an XML
encoding instruction is assigned globally, and an overriding (possibly negating) encoding instruction is assigned to specific types

24 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

or components. This subclause specifies the rules if multiple assignment of XER encoding instructions in the same category
occurs. This clause is aso referenced by 15.3.5 for the treatment of multiple assignments of NAME, PI - OR- COMVENT, and TEXT
encoding instructions.

1541 Assignments of positive encoding instructions result in the addition (to the set of associated encoding
instructions) of that XER encoding instruction if there are no other associated encoding instructions of the same
category.

15.4.2 Assignment of an ELEMENT encoding instruction is always equivalent to assignment of a NOT UNTAGGED
encoding instruction.

15.4.3 If there is an encoding instruction of the same category in the set of associated encoding instructions, then
that encoding instruction is removed from the set, and the assigned XER encoding instruction is added.

NOTE - If encoding instructions are being assigned globally in an XER encoding control section, with the intention of
overriding them in specific cases, then the overriding has to be done using either a type prefix or a later encoding instruction in
the XER encoding control section, not an earlier one.

1544 If a type that appears in a "ContentsConstraint* or in a "TypeConstraint” is to be encoded by
EXTENDED-XER, then the final encoding instructions (as determined by the above rules) are used in determining the
encoding of that type. If a type appears in any other ASN.1 constraint, then all associated encoding instructions are
discarded.

155 Permitted combinations of final encoding instructions

1551 Table 2 gpecifies the permitted combinations of final encoding instructions for a "Type' when a
GLOBAL-DEFAULTS of MODI FI ED-ENCCODI NGS has been used. Column 1 lists all encoding instructions. Column 2 lists
all the encoding instructions that can be used in combination with the column 1 encoding instruction as final encoding
instructions, but in many cases restrictions apply that are listed in the applicable clauses.

NOTE — GLOBAL-DEFAULTS is not listed in the table, asthisis not assigned to atype.

Table 2 — Permitted combinations of final encoding instructionswith MODI FI ED- ENCCDI NGS

Encoding instruction Permitted other encoding instructions

ANY- ATTRI BUTES (see clause 18) ELEMVENT, NAME, NAMESPACE

ANY- ELEMENT (see clause 19) ELEMVENT, NAME, NAMESPACE

ATTRI BUTE (see clause 20) BASE64, DECI MAL, ELEMENT, LI ST, NAME, NAMESPACE, TEXT,
USE- NUMBER, USE- ONAME, USE- UNI ON, WH TESPACE

BASE64 (see clause 21) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,
Pl - OR- COMMENT, UNTAGCGED

DECI MAL (seeclause 22) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,

Pl - OR- COMMENT, UNTAGCGED

DEFAULT- FOR- EMPTY (seeclause23) | BASE64, DECI MAL, ELEMENT, EMBED- VALUES, LI ST, NAME,
NAMESPACE, PI-OR-COMMENT, TEXT, USE-NIL, USE-NUMBER,
USE- ORDER, USE- QNAME, USE- UNI ON, VHI TESPACE

ELEMENT (see clause 24) Equivalent to NOT UNTAGGED

EMBED- VALUES (see clause 25) DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE, PI-OR-
COMMVENT, USE- NI L, USE- ORDER

LI ST (seeclause27) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,
Pl - OR- COWMENT, UNTAGGED

NAME (see clause 28) No restrictions

NAMESPACE (see clause 29) No restrictions

Pl - OR- COVWMENT (see clause 30) BASE64, DECI MAL, DEFAULT- FOR- EMPTY, ELEMENT, EMBED-

VALUES, LIST, NAME, NAMESPACE, TEXT, USE-NIL,
USE- NUMBER, USE- ORDER, USE- QNAME, USE- TYPE, USE- UNI ON,

VWH TESPACE

TEXT (seeclause 31) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,
Pl - OR- COMMENT, UNTAGCGED

UNTAGGED (see clause 32) BASE64, DECI VAL, LI ST, NAME, NAMESPACE, TEXT, USE-
NUMBER, USE- QNAME, USE- UNI ON, WHI TESPACE

USE- NI L (seeclause 33) DEFAULT- FOR- EMPTY, ELEMENT, EMBED- VALUES, NAME,
NAMESPACE, PI - OR- COMMENT, USE- ORDER

USE- NUMBER (see clause 34) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,

ITU-T Rec. X.693 (11/2008) 25

| SO/IEC 8825-4:2008 (E)

Table 2 — Permitted combinations of final encoding instructionswith MODI FI ED- ENCODI NGS

Encoding instruction Permitted other encoding instructions

Pl - OR- COMWMENT, UNTAGGED

USE- ORDER (see clause 35) DEFAULT- FOR- EMPTY, ELEMENT, EMBED- VALUES, NAME,
NAMESPACE, PI - OR- COMMENT, USE- NI L.

USE- QNAME (see clause 36) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,
Pl - OR- COMMENT, UNTAGGED

USE- TYPE (see clause 37) ELEMENT, NAME, NAMESPACE, PI-OR- COMVENT

USE- UNI ON (see clause 38) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,
Pl - OR- COMMENT, UNTAGGED

VWH TESPACE (see clause 39) ATTRI BUTE, DEFAULT- FOR- EMPTY, ELEMENT, NAME, NAMESPACE,
Pl - OR- COMMENT, UNTAGGED

155.2 Table 3 specifies the permitted combinations of final encoding instructions when a GLOBAL-DEFAULTS of
MODI FI ED-ENCCDI NGS has not been used. Column 1 lists all encoding instructions that are permitted as final encoding
instructions if a GLOBAL-DEFAULTS of MODI FI ED-ENCODI NGS has not been used. Column 2 either says "Not permitted”
or lists al the encoding instructions that can be used in combination with the column 1 encoding instruction as final
encoding instructions, but in many cases restrictions apply that are listed in the applicable clauses. "Not permitted”
means that that encoding instruction cannot be used as a final encoding instruction if a GLOBAL-DEFAULTS of
MODI FI ED-ENCCDI NGS has not been used.

NOTE — GLOBAL-DEFAULTS is not listed in the table, asthisis not assigned to a"Type".

Table 3 - Permitted combinations of final encoding instructionswith no MODI FI ED- ENCCODI NGS

Encoding instruction Permitted other encoding instructions

ANY- ATTRI BUTES Not permitted

ANY- ELEMVENT Not permitted

ATTRI BUTE BASE64, LI ST, NAME, TEXT, USE-NUMBER, WH TESPACE

BASE64 ATTRI BUTE, NAME, PI - OR COMVENT

DECI MAL Not permitted

DEFAULT- FOR- EMPTY Not permitted

ELEMENT Not permitted

EMBED- VALUES Not permitted

LI ST ATTRI BUTE, NAME, PI - OR- COMVENT

NAVE ATTRI BUTE, BASE64, LI ST, PI-OR COMWENT, TEXT, USE- NUMBER
VWH TESPACE

NAMESPACE Not permitted

Pl - OR- COVMENT BASE64, LI ST, NAME, TEXT, USE-NUMBER WH TESPACE

TEXT ATTRI BUTE, NAME, PI-OR- COMVENT

UNTAGGED Not permitted

USE- NI L Not permitted

USE- NUMBER ATTRI BUTE, NAME, PI-OR- COMVENT

USE- CRDER Not permitted

USE- QNAVE Not permitted

USE- TYPE Not permitted

USE- UNI ON Not permitted

VWH TESPACE ATTRI BUTE, NAME, PI-OR- COMVENT

26 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

16 XER encoding instruction support for XML namespaces and qualified names

16.1 W3C XML Namespaces defines concepts and rules governing necessary qualifiers and mechanisms to ensure
that an XML element name or attribute name can be correctly identified with a corresponding specification of the
associated semantics.

16.2 W3C XML Namespaces defines an XML namespace as a collection of unambiguous names, identified by a
URI, which are used in XML documents as element types and attribute names. The URI that identifies a namespace is
called the namespace name. In this Recommendation | International Standard, namespaces are also used to qualify the
values of atype that has afinal encoding instruction of USE- QNAME (see clause 36) and that represents an XML QName
(see W3C XML Schema, Part 2, 3.2.18).

16.3 Type reference names and identifiers can (but need not) be assigned a namespace.

NOTE — This Recommendation | International Standard uses a hamespace hame that is, by default, a form of URI based on
ASN.1 object identifiers (see clause 29). All other forms of URI can be used to assign a namespace name to the names in an
ASN.1 module.

16.4 Whether or not a type is part of an XML namespace (and if so its namespace name) is determined by the
presence (or absence) of afinal NAMESPACE encoding instruction.

NOTE — A NAMESPACE encoding instruction can only be present if a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS encoding
instruction is also present in the XER encoding control section (see 29.2.1).

16.5 A namespace is identified by the "NameSpaceSpecification" production that provides the Uniform Resource
Identifier for the namespace, and optionally a recommended namespace prefix. The "NameSpaceSpecification” is
specified in clause 29.

16.6 Names of XML elements and attributes in an EXTENDED-XER encoding are generated from severa
sources. The subclauses of 16.8 list the sources of XML element and attribute names, identify what namespace they are
part of, and specify whether they are to be namespace-qualified names or not.

16.7 An XML element name, an XML attribute name, or a value of a type identification attribute may (but need
not) have a final NAMESPACE encoding instruction on the "Type" that generates the name. If it does, then the name shall
be a namespace-qualified name in the encoding. (The namespace-qualification in an encoding can be done either
explicitly using a defined XML namespace prefix, or indirectly by establishing a default XML namespace for a scope
that includes the use of the name or of the value) If there is no NAMESPACE encoding instruction on a "Type" that
generates a name, then the name is not a namespace-qualified name. Names that are not namespace-qualified names are
called unqualified names, and shall not occur in the scope of an established default XML namespace.

NOTE — BASIC-XER does not support XML namespaces, and namespace-qualified names never occur in BASIC-XER
encodings.

16.8 In the following subclauses, the term "ASN.1 namespace’ refers to the namespace whose name and
recommended prefix are specified in 16.9. The term "assigned namespace” refers to the namespace assigned by the
NAMESPACE encoding instruction to atype. If generated names are not from the ASN.1 namespace, and there is no such
assignment of a namespace name, then the XML element names, XML attribute names, and values of type
identification attributes are unqualified names.

16.8.1 In all the subclauses of this 16.8, the element names and attribute names in the XML tags (whether XML
empty-element tags or start tags) are namespace-qualified names in an encoding if and only if the generating "Type"
has a final NAMESPACE encoding instruction.

16.8.2 Element names in XML empty-element tags used for control characters (see ITU-T Rec. X.680 | ISO/IEC
8824-1, 12.15.5) have no namespace unless one is assigned by the application of a NAMESPACE encoding instruction to
the restricted character string type with qualifying information of ALL.

16.8.3 Element names in XML empty-element tags used for values of the integer, enumerated, bitstring types, and
special values of real types (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.9, 20.8, 21.6 and 22.9) will always be
unqualified names (see 16.7) in an encoding of these types.

16.9 The namespace of the type identification attribute (see clause 37) and of the nil identification attribute (see
clause 33) isthe control namespace, which is, by default, the ASN.1 namespace, unless a different control namespaceis
specified by a GLOBAL- DEFAULTS encoding instruction (see clause 26). The ASN.1 namespace has a name of
"urn:oid:2.1.5.2.0.1" (see40.3), and arecommended namespace prefix of "asn1". (Seeaso 26.3.2.)

16.10 For an octetstring type with a contents constraint that specifies an EXTENDED-XER encoding, any abstract
value of the octetstring type shall be a complete EXTENDED-XER encoding of a value of an ASN.1 type (see ITU-T
Rec. X.682 | ISO/IEC 8824-3, 11.5 and 11.6), and shall contain all necessary namespace declarations for all prefixed
and unprefixed qualified names present in the octetstring abstract value.

ITU-T Rec. X.693 (11/2008) 27

| SO/IEC 8825-4:2008 (E)

NOTE - Such an octetstring type is encoded as an "xmlhstring" or "Base64OctetStringValue'. Any namespace declarations
present in the XML document that contains the "xmlhstring" or "Base64O0ctetStringVaue" do not include in their scope the
names present in the octet string.

16.11 When an open type is encoded as an "xmlhstring” or "Base64XML OpenTypeFieldVal", and the encoding
rules used for the contained type are EXTENDED-XER, the "xmlhstring" or the "Base64XMLOpenTypeFieldva"
shall be the hexadecimal or base64 representation (respectively) of an octet string that is a complete EXTENDED-XER
encoding of a value of the contained type, and shall contain all necessary namespace declarations for al prefixed and
unprefixed qualified names present in it.
NOTE- Any namespace declarations present in the XML document that contains the "xmlhstring" or the
"Base64XMLOpenTypeFieldVal" do not include in their scope the names present in the octet string.

17 Specification of EXTENDED-XER encodings

The specification of EXTENDED-XER encodings uses the productions specified in the following subclauses. These
productions allow all of the syntax of the corresponding productions used by BASIC-XER (of the same name but with
"Extended" removed), but provide additional syntax that is allowed in EXTENDED-XER encodings. The use of this
additional syntax is determined by the application of XER encoding instructions, and is specified in clauses 18 to 39.

NOTE — The alternative productions available are frequently restricted by the use or non-use of a GLOBAL- DEFAULTS
encoding instruction with the MODI FI ED- ENCODI NGS keyword (see 10.2.7 and 10.2.8). In particular, the use of empty-element
or text encodings for some built-in typesis controlled by this.

171 The XML document element
1711 The XML document element shall be an "ExtendedXML TypedValue'.
17.1.2 "ExtendedXMLTypedValue" is:

ExtendedXML TypedValue::=
"<" & TypeNameOrModifiedTypeName AttributelList " >"
ExtendedXML Value
"</" & TypeNameOrModifiedTypeName" >"
|"<" & TypeNameOrModifiedTypeName"/ >"

NOTE — The differences from the "XMLTypedValue" production are the inclusion of a possibly empty "AttributeList”, and the
use of an "ExtendedXMLValue" instead of an "XMLValue" for the contents of the XML element.

17.1.3 "TypeNameOrModifiedTypeName" is defined in 17.2.
17.1.4 “AttributeList" isdefined in 17.3.

17.1.5 "ExtendedXMLVaue' isdefined in 17.4, and shall be the "ExtendedXMLValue" of the typeidentified by the
"TypeNameOrM odifiedTypeName".

17.1.6 The second aternative of "XMLTypedValue' (use of an XML empty-element tag) can be used only if an
instance of the "ExtendedXMLValue" production is empty.

NOTE - If the "ExtendedXMLValue" production was an "xmlcstring" containing only "white-space”, this would not be empty,
and the second alternative could not be used.

17.2 The" TypeNameOrModifiedTypeName" production
17.21 "TypeNameOrModifiedTypeName" is:

TypeNameOrModifiedTypeName ::=
NonParameterizedTypeName
| QualifiedOrUnqualifiedName

17.2.2 "NonParameterizedTypeName" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 14.2, and is used (as
specified in that subclause and in ITU-T Rec. X.680 | ISO/IEC 8824-1, 14.3 to 14.7) as an XML element name that
identifiesan ASN.1 type.

17.2.3 "QuaifiedOrUnqualifiedName" is specified in 29.3.2. The "QualifiedOrUnqualifiedName" alternative shall
be used if and only if there is a final NAME or NAMESPACE encoding instruction applied to the type (see clause 28),
otherwise the "NonParameterizedTypeName" shall be used.

28 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

173 The" AttributeList" production
17.31 The"AttributeList" is:

Attributelist ::=
Attribute Attributelist
| empty

17.3.2 The"Attribute" is defined in 20.3.3.

17.3.3 The "AttributeList" shall be empty unless the application of final encoding instructions requires its use (see
clauses 20, 33, and 37).

17.3.4 The"Attribute'sin the "AttributeList" shall be preceded by "white-space” (see 8.1.4).

174 The" ExtendedXMLValue" production
1741 "ExtendedXMLVaue'is:

ExtendedXMLValue::=
ExtendedX ML BuiltinValue
| ExtendedXM L ObjectClassFieldValue
| empty

ExtendedXM L BuiltinValue ::=
XMLBItStringValue
| XML BooleanValue
| ExtendedXM L Char acter StringValue
| ExtendedXM L ChoiceValue
| XM LEmbeddedPDVValue
| ExtendedXM L EnumeratedValue
| XMLExternalValue
| XMLInstanceOfValue
| ExtendedXMLIntegerValue
| XMLIRIValue
| XMLNullValue
| XML Objectldentifier Value
| ExtendedXML OctetStringValue
| ExtendedXML RealValue
| XMLRelativelRIValue
| XMLRelativeOlDValue
| ExtendedXM L SequenceValue
| ExtendedX M L SequenceOfValue
| ExtendedXM L SetValue
| ExtendedXM L SetOfValue
| ExtendedXM L PrefixedValue

ExtendedXML Character StringValue ::=
ExtendedXML RestrictedChar acter StringValue
| XMLUnrestrictedCharacter StringValue

ExtendedXM L RestrictedCharacter StringValue ::=
XML RestrictedCharacter StringValue
| Base64X M L RestrictedChar acter StringValue

ExtendedXM L ObjectClassFieldValue::=
ExtendedXML OpenTypeFieldVal
| XMLFixedTypeFieldVal

ExtendedXML OpenTypeFieldval ::=
ExtendedXML TypedValue
| Base64XM L OpenTypeFieldVal
| xmlhstring

ITU-T Rec. X.693 (11/2008) 29

| SO/IEC 8825-4:2008 (E)

ExtendedXML OctetStringValue::=
ExtendedXML TypedValue
| Base64XML OctetStringValue
| xmlhstring

ExtendedXMLRealValue::=
XMLRealValue
| ModifiedXMLRealValue

ExtendedXMLIntegerValue ::=
XMLIntegerValue
| Modified XM LIntegerValue

Extended XML PrefixedValue ::=
ExtendedXMLValue

17.4.2 The alternatives of "ExtendedXMLBuUiltinVaue" whose production names do not start with "Extended", and
their use to encode abstract values, are fully specified in ITU-T Rec. X.680 | ISO/IEC 8824-1 (see 17.10 and 17.2 of
that Recommendation | International Standard) and (for "XMLFixedTypeFieldvVal" and the third alternative of
"ExtendedXMLOpenTypeFieldval") in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6.

17.43 The "Base64X ML RestrictedCharacterStringValue' is defined in 21.3.5 and shall only be used as specified in
that subclause.

1744 The"ExtendedXMLChoiceVaue" is defined in 17.5 and shall only be used as specified in that subclause.

1745 The "ExtendedXMLEnumeratedVaue' is defined in 34.3 and shal only be used as specified in that
subclause.

1746 The "ExtendedXML SequenceValue" and "ExtendedXMLSetValue" are defined in 17.6 and shall only be
used as specified in that subclause.

17.4.7 The "ExtendedX ML SequenceOfValue" and "ExtendedX ML SetOfValue" are defined in 17.7 and shall only
be used as specified in that subclause.

17.4.8 The "Base64XMLOctetStringValue' and "Base64XMLOpenTypeFieldvVal" are defined in 21.3.2 and 21.3.4
and shall only be used as specified in those subclauses.

1749 The"ModifiedXMLIntegerValue" isdefined in 17.8 and shall only be used as specified in that subclause.
17.4.10 The"ModifiedXMLRealVaue' isdefinedin 17.9 and shall only be used as specified in that subclause.

17.4.11 The"empty" alternative of "ExtendedXMLVaue" shall only be used as specified in clause 23.

NOTE — The other alternatives of "ExtendedXMLValue" can also produce an "empty" lexical item. This subclause does not
affect the use of such occurrences.

175 The" ExtendedXML ChoiceValue" production
1751 The"ExtendedXMLChoiceValue" is:

Extended XML ChoiceValue::=
"<" & TagNameAttributelist " >"
ExtendedXMLValue

"</" & TagName" >
| ExtendedXML Value

TagName::=
Identifier Or M odifiedl dentifier

| dentifier Or M odifiedl dentifier ::=
identifier
| QualifiedOrUnqualifiedName
1752 The"QuaifiedOrUnqualifiedName" is defined in 29.3.2. The "QualifiedOrUnqualifiedName" shall be used if
and only if there is a final NAME encoding instruction (see clause 28), or a final NAMESPACE encoding instruction
applied to the type (see clause 29), otherwise the "identifier" shall be used.

NOTE — If "identifier" is used, then the encoding cannot include an XML default namespace declaration with a scope that
includes the use of that "identifier" (see 16.7).

30 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

17.5.3 The"AttributeList" and its useis defined in 17.3 and the clauses it references.

1754 The "ExtendedXMLVaue' in both alternatives of the "ExtendedXMLChoiceVaue' shall be the
"ExtendedXMLValue" of the selected alternative of the choice type.

1755 The second dternative of "ExtendedXMLChoiceVaue' shall be used if either:
a) theselected aternative of the choice type has an UNTAGGED final encoding instruction (see clause 32); or

b) the choice type has a USE-TYPE or USE-UNI ON final encoding instruction (see clauses 37 and 38).

NOTE — This means that the presence of these final encoding instructions results in the omission of XML tags as a choice
determinant, and choice determination has to occur by other means (see clauses 37, 38 and Annex B).

176 The" ExtendedXML SequenceValue' and " ExtendedXML SetValue" productions
17.6.1 The"ExtendedXML SequenceVaue' and "ExtendedX ML SetValue" are:

ExtendedXML SequenceValue::=
ExtendedXML ComponentValuelL ist
| empty

ExtendedXML SetValue::=
Extended XML ComponentValuel ist
| empty

ExtendedXM L ComponentValuelList ;:=
ExtendedXML NamedValue
| ExtendedXM L ComponentValuelL ist ExtendedXM L NamedValue

ExtendedXMLNamedValue::=
"<" & TagName AttributeList " >"
ExtendedXMLValue
II</ " & TagNamell>ll
| ExtendedXML Value

17.6.2 The "empty" alternatives of "ExtendedXML SequenceValue' and "ExtendedXMLSetValue' shall only be
used if no component of the sequence or set type (to any depth), after resolution of all type references and after
application of al final encoding instructions, produces an "ExtendedX ML NamedValue".

NOTE — This includes (but is not limited to) the cases in which all components are marked DEFAULT or OPTI ONAL and all
values are omitted; have a final UNTAGGED encoding instruction and their values have an empty encoding; have a fina
ATTRI BUTE encoding instruction. It also includes combinations of the above, and the case in which the type notation is
SEQUENCE {} or SET {}.

17.6.3 The "TagName' is defined in 1751 The "QudifiedOrUnqualifiedName" in the
"IdentifierOrModifiedldentifier" form of "TagName" shall be used if and only if there is a final NAME or NAVESPACE
encoding instruction applied to the type (see clause 29), otherwise the "identifier" shall be used.

17.6.4 The"AttributeList" and itsuseis defined in 17.3 and the clauses it references.

17.6.5 The "ExtendedXMLVaue" in both aternatives of the "ExtendedXMLNamedVaue' shal be the
"ExtendedXMLValue" of the component of the sequence or set type.

17.6.6 The second alternative of "ExtendedX ML SequenceValue" and "ExtendedXML SetValue' shall be used if and
only if the aternative has an UNTAGGED final encoding instruction (see clause 32).

17.7 The" Extended XML SequenceOfValue" and " ExtendedXM L SetOfValue" productions
17.7.1 The"ExtendedXML SequenceOfVaue" and "ExtendedXML SetOfValue' are:

ExtendedXM L SequenceOfValue ::=
ExtendedXMLValueL ist
| ExtendedXM L DelimiteditemL ist
| empty
| ExtendedXMLListValue

ExtendedXML SetOfValue::=
ExtendedXMLValuelL ist
| ExtendedXM L DelimitedltemList
| empty

ITU-T Rec. X.693 (11/2008) 31

| SO/IEC 8825-4:2008 (E)

| ExtendedX ML ListValue

ExtendedXMLValuelList ::=
ExtendedXM L ValueOr Empty
| ExtendedXM L ValueOr Empty ExtendedXM L ValuelL ist

ExtendedXMLValueOrEmpty ::=
ExtendedXMLValue
|"<" & TypeNameOrM odifiedTypeName "/ >"

ExtendedXML DelimitedltemList ::=
ExtendedXM L Delimitedltem
| ExtendedXM L Delimitedltem ExtendedXM L Delimitedl temL ist

Extended XML Ddimitedltem ::=

"<" & TypeNameOrModifiedTypeName Attributelist " >"
ExtendedXMLValue
"</" & TypeNameOrM odifiedTypeName " >"

|"<" & ldentifier OrModifiedl dentifier Attributelist ">"
ExtendedXMLValue
"</" & ldentifierOrModifiedl dentifier " >"

| ExtendedXML Value

17.7.2 The use of the dternatives of "ExtendedXML SequenceOfVaue', "ExtendedXMLSetOfValue' and of
"ExtendedXMLValueList" shal be in accordance with the use of the corresponding alternatives of
"XML SeguenceOfVaue", "XMLSetOfValue" and of "XMLValueList" (respectively) as specified in ITU-T Rec. X.680
| ISO/EC 8824-1, clauses 26 and 28, except that if a GLOBAL- DEFAULTS encoding instruction with a MoDI FI ED-
ENCCODI NGS keyword is present, "ExtendedXMLVauelist" shall never be used (see aso 10.2.7 g).

17.7.3 The "ExtendedXMLListVaue" is defined in 27.3.2. These alternatives of "ExtendedX ML SequenceOfVaue'
and "ExtendedX ML SetOfValue" shall be used only if thereisafinal LI ST encoding instruction (see clause 27) on the
sequence-of or set-of type.

17.7.4 Thefirst alternative of the "ExtendedXMLDelimiteditem” shall be used if and only if the sequence-of or set-
of type does not contain an "identifier" and the component does not have a final UNTAGGED encoding instruction. The
following subclauses apply.

17.7.4.1 If the component of the sequence-of or set-of type is a "typereference” or an "Externa TypeReference”
(possibly with one or more "TypePrefix"s), then the "TypeNameOrModifiedTypeName" shall be the "typereference” or
the "typereference” in the "External TypeReference", respectively, possibly modified in accordance with any final NAVE
and NAMESPACE encoding instructions applied to the component (see clause 28).

17.7.4.2 |If the component of the sequence-of or set-of type (after ignoring any occurrences of "TypePrefix") is not a
"typereference” or an "ExternaTypeReference', then the "TypeNameOrModifiedTypeName" shall be the
"xmlasnltypename" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 4, corresponding to the built-in type of the
component, possibly modified in accordance with any final NAVESPACE encoding instruction applied to the component
(see clause 29).

17.75 The second aternative of the "ExtendedXMLDelimiteditem" shall be used if and only if the sequence-of or
set-of type contains an "identifier" and the component does not have a final UNTAGGED encoding instruction. The
"IdentifierOrModifiedldentifier" shall be that "identifier", possibly modified in accordance with any final NAME and
NAMVESPACE encoding instructions applied to the component (see clauses 28 and 29).

17.7.6 The third dternative of "ExtendedXMLDelimiteditem” shall be used if and only if the component of the
sequence-of or set-of type has afinal UNTAGGED encoding instruction (see clause 32).

17.7.7 The "ExtendedXMLValue' in al the dternatives of the "ExtendedXMLDeimitedltem” shall be the
"ExtendedXMLVaue" of the repeated component of the sequence-of or set-of type.

17.7.8 The "TypeNameOrModifiedTypeName" in the "ExtendedXMLVaueOrEmpty" shall be the
"xmlasnltypename" specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 4, corresponding to the built-in type of the
component, possibly modified in accordance with any final NAMESPACE encoding instruction applied to the component
(see clause 29).

32 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

178 The" ModifiedXMLIntegerValue" production
17.8.1 The"ModifiedXMLIntegerValue" is.

ModifiedXMLIntegerValue::=
M odifiedX M L SignedNumber
| Textlnteger

M odifiedXM L SignedNumber ::=
modified XML Number
["-" & modifiedXMLNumber
|"+" & modifiedXM L Number

17.8.2 This aternative of "ExtendedXMLIntegerVaue" (see 17.4) shall only be used if a GLOBAL- DEFAULTS
encoding instruction with a MODI FI ED- ENCODI NGS keyword is assigned.

17.8.3 The"modifiedXMLNumber" lexical item shall consist of one or more digits.
NOTE 1 — The "modifiedXMLnumber" lexical item is mapped to an integer value by interpreting it as decimal notation.

NOTE 2 — This lexical item differs from "number" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.8) lexical item, only because it
permits any number of leading "0" digits.

17.84 Any positive integer value can be encoded using either the first or the third alternative of
"ModifiedXML SignedNumber”, as an encoder's option. A negative integer value shall be encoded using the second
aternative. The integer value zero can be encoded using any of the three alternatives, as an encoder's option.

17.85 "Textinteger" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.9, and provides an aternative encoding
(as an encoder's option) for integer values that have a"NamedNumber" definition.

179 The"ModifiedXMLRealValue" production
1791 The"ModifiedXMLReadValue" is:

ModifiedXMLRealValue::=
ModifiedXMLNumericRealValue
| XML SpecialRealValue
| XML DecimalMinusZer oRealValue

ModifiedXMLNumericRealValue ::=
modifiedXM L RealNumber
|"-" & modifiedXMLRealNumber
|"+" & modifiedXM L RealNumber

17.9.2 This alternative of "ExtendedXMLReaValue" (see 17.4) shall only be used if a GLOBAL- DEFAULTS encoding
instruction with a MODI FI ED- ENCODI NGS keyword is assigned.

17.9.3 The "modifiedXMLRealNumber" lexical item shall consist of an integer part that is a series of one or more
digits, and optionally adecimal point (.). The decimal point can optionally be followed by a fractional part that is one or
more digits. The integer part, decimal point or fractional part (whichever islast present) can optionally be followed by
an e or E and an optionally-signed exponent which is one or more digits.

NOTE — This lexical item differs from the "realnumber” (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.9) lexica item only
because it permits any number of leading zeros in the exponent.

17.9.4 Any positive rea value and the real value plus zero can be encoded using either the first or the third
aternative of "ModifiedXMLNumericRealValue', as an encoder's option. Any negative real value shall be encoded
using the second alternative of "ModifiedXMLNumericRealValue". The real value minus zero shall be encoded using
the second alternative.

1795 The "XMLDecimalMinusZeroReaVaue' is defined in 22.3.2 and shall only be used as specified in that
subclause.

NOTE — The DECI MAL encoding instruction defined in 22.3.2 provides this production as an alternative representation for the
positive zero abstract real value, but requires that the minus zero abstract value be excluded from the type to which it is applied.

ITU-T Rec. X.693 (11/2008) 33

| SO/IEC 8825-4:2008 (E)

18 The ANY- ATTRI BUTES encoding instruction

18.1 General
18.1.1 The"AnyAttributesinstruction is:

AnyAttributesl nstruction ::=
ANY- ATTRI BUTES TargetList NamespaceRestriction ?
| ANY- ATTRI BUTES NamespaceRestriction ? "]" TargetList

NamespaceRestriction ::=
FROM URIList
| EXCEPT URIList

URIList ::=
QuotedURIor Absent
| URIList QuotedURIor Absent

QuotedURIlor Absent ::=
QuotedURI
| ABSENT

18.1.2 The"TargetList" production isdefined in 14.2.
18.1.3 The"QuotedURI" isdefined in 29.1.1.

18.1.4 This encoding instruction is assigned to an ASN.1 type that is a sequence-of or set-of type with a
UTF8St ri ng component whose value provides zero, one or more attribute names and values (one in each
UTF8St ri ng), each of which is subject to any "NamespaceRestriction” that is present (see 18.2).

NOTE — Although sequence-of may be used for the specification of the attributes, this use of sequence-of does not imply that
order is semanticaly significant, and the encoding/decoding process may result in a different order of the components of the
seguence-of.

18.1.5 The content of each UTF8St ri ng is encoded as an "Attribute" of the enclosing XML element. The name of
the sequence-of or set-of component isignored.

18.1.6 The FROMand EXCEPT clauses (if present) identify lists of namespace names, or the special keyword ABSENT.

18.1.7 FROM restricts attribute names to be namespace-qualified names from one of the specified namespaces. If
ABSENT is present in the "URIList", unqualified names can aso be used.

18.1.8 EXCEPT alows namespace-qualified names from any namespaces except those listed. It also alows
unqualified names unless ABSENT is present in the "URIList".

18.2 Restrictions

18.21 An ASN.1 type shall not have this final encoding instruction unless it is a set-of or sequence-of type with a
component that isaUTF8St ri ng type.

18.2.2 A type with this final encoding instruction shall only be used as a component of an enclosing sequence or set
type, and the component shall not be marked OPTI ONAL or DEFAULT. There shall only be one such component in the
enclosing type.

18.2.3 A sequence-of or set-of type with this final encoding instruction is required to have a constraint applied to it
that imposes the format and content specified in 18.2.6 to 18.2.11 on each occurrence of the UTF8St ri ng, by reference
to this clause 18 or otherwise.

NOTE — It is recommended that the constraint on the sequence-of or set-of type be expressed as:

(CONSTRAI NED BY
{/* Each UTF8String shall conformto the "AnyAttributeFormat" specified in
ITUT Rec. X 693 | [1SQAIEC 8825-4, clause 18. */})

18.24 There shall be no final UNTAGGED encoding instruction on either the type that has this final encoding
instruction or on the enclosing type.

18.25 Each "URIList" shall contain a most one occurrence of ABSENT and shall not contain two identica
"QuotedURI"s.

34 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

18.26 Theformat of each UTF8St ri ng shall conform to the production "AnyAttributeFormat":

AnyAttributeFormat ::=
URI ?
NCName & "=" & xmlcstring

18.2.7 See 29.1.4 for the definition of the "URI" production, and 29.1.7 for the definition of the "NCName"
production. The "xmlcstring” lexical itemisdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.

18.2.8 If thereis a "NamespaceRestriction" of FROV| then the "URI" in "AnyAttributeFormat" shall be the "URI" in
a"QuotedURI" in the "URIList", and may be absent only if the keyword ABSENT occursin the "URIList".

18.2.9 If there is a "NamespaceRestriction" of EXCEPT, then the "URI" in "AnyAttributeFormat" shall not be the
"URI" in a"QuotedURI" in the "URIList", and shall not be absent if the keyword ABSENT occursin the "URIList".

18.2.10 The "xmicstring" shall be a syntactically correct XML attribute value (defined in W3C XML, clause 3)
preceded and followed by either a single APOSTROPHE (39) character or by a single QUOTATION MARK (34)
character.

18.2.11 Application of this encoding instruction and the ATTRI BUTE encoding instruction to different components of
the enclosing type shall not violate 20.3.11.

18.2.12 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULT MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

18.2.13 A type with this final encoding instruction shall not also have any of the final encoding instructions LI ST,
Pl - OR- COVMENT or UNTAGGED.
NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their

application to the type is forbidden: ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, DEFAULT- FOR- EMPTY, EMBED- VAL UES,
TEXT, USE- NI L, USE- NUMBER, USE- ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

18.2.14 There shall be no qualifying information in the "TargetList".

18.3 Effect on encodings
18.3.1 If thetypeisencoded as atop-level type, this encoding instruction shall be ignored.

1832 The "ExtendedXMLNamedVaue' for this component shall not be included in the
"ExtendedX ML SequenceValue' or "ExtendedXML SetValue' of the enclosing sequence or set type. Instead, the value
of the enclosing type shall be encoded using the value of each UTF8Stri ng as an "Attribute" (see clause 20) of the
enclosing element as specified below.

18.3.3 Theencoder shall:

a) treat each "URI" that is present in aUTF8St ri ng as requiring that the following "NCName" (the attribute
name) be namespace-qualified with the namespace specified by the "URI", and treat the absence of a
"URI" in a UTF8St ri ng as specifying that the following "NCName" shall not be namespace-qualified,
and shall then remove the "URI" from the UTF8St ri ng; and

b) insert into the encoding any necessary namespace declarations with scopes that include the inserted
attributes, in order to ensure that the required namespace-qualification of the "NCName"s identified in a)
above can be achieved; and

C) insert each UTF8String (after the "URI" has been removed) as an attribute in the enclosing element,
inserting namespace prefixes as necessary before each "NCName' in order to ensure that the
requirements of @) above are satisfied.

18.34 Theorder of al attributes in the enclosing element (resulting from the presence of one or more components of
the enclosing type with afinal ATTRI BUTE or ANY- ATTRI BUTES encoding instruction) is an encoder's option.

18.35 An EXTENDED-XER decoder shall generate a UTF8St r i ng in the format of 18.2.6 for each attribute in the
enclosing element that is not from the control namespace, and whose name is not that of the identifier (possibly
modified in accordance with any fina NAME or NAMESPACE encoding instructions) of another component of the
enclosing type that has afinal ATTRI BUTE encoding instruction.

ITU-T Rec. X.693 (11/2008) 35

| SO/IEC 8825-4:2008 (E)

19 The ANY- ELEMVENT encoding instruction

191 General
19.1.1 The"AnyElementinstruction™ is:

AnyElementInstruction ::=
ANY- ELEMENT TargetList NamespaceRestriction ?
| ANY- ELEMENT NamespaceRestriction ? "]" TargetList

19.1.2 The"TargetList" production isdefinedin 14.2.
19.1.3 The"NamespaceRestriction" is defined in 18.1.

19.1.4 This encoding instruction enables an ASN.1 type that is an octetstring or a UTF8St ri ng to provide the
specification of asingle XML element.

NOTE — The content and attributes of the XML element are unrestricted. It may have attributes or child elements, and names of
child elements and attributes may be qualified or unqualified, and are not affected by any "NamespaceRestriction”.

19.1.5 If thereisa"NamespaceRestriction", then the element name is required to satisfy the "NamespaceRestriction”
(see 18.1.6 t0 18.1.8) but is otherwise unrestricted.

19.1.6 Thetype with thisfina encoding instruction may be the root type of the encoding, or may be a component of
a choice, sequence, set, sequence-of or set-of type. If it is atop-level type, the type reference nameisignored. If itisa
component, the identifier isignored.

19.2 Restrictions

19.21 An ASN.1 type shall not have this final encoding instruction unless it is an octetstring or a UTF8St r i ng type
restricted as follows:
a) if thetypeisan octetstring type, it is required to have arestriction applied to it so that each abstract value
isafast infoset document in conformance with ITU-T Rec. X.891 | ISO/IEC 24824-1,
NOTE 1 — It isrecommended that the constraint on the octetstring be expressed as:
(OONSTRAI NED BY
{/* Shall be a fast infoset docunent in confornmance with
ITUT Rec. X. 891 | |SQOIEC 24824-1. */})
b) if thetypeisaUTF8Stri ng, it isrequired to have arestriction applied to it that imposes the format and
content specified in 19.2.4 to 19.2.9 by reference to this clause 19 or otherwise.
NOTE 2 — It is recommended that the constraint on the UTF8St ri ng be expressed as:
(OONSTRAI NED BY
{/* Shall conformto the "AnyEl enent Fornat" specified in
ITUT Rec. X. 693 | 1SQIEC 8825-4, clause 19. */})

19.2.2 Thereshall be no final UNTAGGED encoding instruction on the type.

19.2.3 Each "URIList" shall contain at most one occurrence of ABSENT and shall not contain two identical
"QuotedURI"s.

19.24 Theformat of the abstract values of the UTF8St r i ng shall conform to the production "AnyElementFormat":

AnyElementFormat ::=
xmilcstring

19.25 The "xmlcstring” shall be a syntactically correct XML element defined in W3C XML 1.0 and W3C XML
Namespaces.

19.2.6 It shall use only namespace prefixes that are declared in namespace declarations present in the "xmlcstring”.
If there are unprefixed qualified names, a corresponding default namespace declaration shall be present.

19.2.7 Thevalue of the octetstring or of the UTF8St ri ng shall not cause 10.2.11 to be violated.

19.2.8 If there is a "NamespaceRestriction" of FROM then the root element of the fast infoset document (case a
of 19.2.1) or the (outermost) element name in "AnyElementFormat" (caseb of 19.2.1) shall be the "URI" in a
"QuotedURI" in the "URIList", and may be absent only if the keyword ABSENT occursin the "URIList".

36 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

19.29 If there is a "NamespaceRestriction" of EXCEPT, then the root element of the fast infoset document (case a
of 19.2.1) or the (outermost) element name in "AnyElementFormat" shall not be the "URI" in a "QuotedURI" in the
"URIList", and shall not be absent if the keyword ABSENT occursin the "URIList".

19.2.10 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCCDI NGS
encoding instruction in the XER encoding control section.

19.2.11 A type with this fina encoding instruction shall not also have any of the final encoding instructions
ATTRI BUTE, BASE64, DEFAULT- FOR- EMPTY, Pl - OR- COMVENT, UNTAGGED or WH TESPACE.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, DEC! MAL, EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUVBER, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON.

19.2.12 There shall be no qualifying information in the "TargetList".

193 Effect on encodings

19.3.1 When this encoding instruction is applied to an octetstring, an EXTENDED-XER encoder shall convert the
fast infoset document in the octetstring to an XML document, and shall include the root element of that XML document
in the encoding in place of an XML element that would otherwise be generated for this component (ignoring the
identifier of the component), or for the root type.

19.3.2 When this encoding instruction is applied to a UTF8St ri ng, an EXTENDED-XER encoder shall include the
abstract value of the UTF8String in the encoding as an XML element in place of an XML element that would
otherwise be generated for this component (ignoring the identifier of the component), or for the root type. The element
included shall be identical to the abstract value of the UTF8St r i ng, except as specified in 19.3.3.

19.3.3 Any namespace declarations that are present in the element and are identical to namespace declarations that
are in-scope at the point of insertion may (but need not) be removed, as an encoder's option.

NOTE - Changing, moving, or deleting other namespace declarations in the UTF8St ri ng has not been alowed, as such actions
may affect the namespace and qualification of XML QNames present in element content or attribute values, and it is generally
not possible for an encoder to determine whether such content or attribute values are QNames or not.

19.34 When this encoding instruction is applied to an octetstring, an EXTENDED-XER decoder shall convert the
next XML element in the encoding to an XML document that has that element as its root element, and shall convert that
XML document to afast infoset document.

19.35 When thisencoding instruction is applied to a UTF8St ri ng, an EXTENDED-XER decoder shall generate the
format of 19.2.4 from the next XML element in the encoding, as the abstract value of the UTF8St ri ng.

19.3.6 The decoder shall include in the root element of the fast infoset document or in the topmost element in the
UTF8St ri ng namespace declaration attributes for all namespace declarations that are in scope for the element being
decoded but that are not present in that element.

20 The ATTRI BUTE encoding instruction

20.1 General
20.1.1 The"Attributelnstruction” is:

Attributel nstruction ::=
ATTRI BUTE TargetList
| ATTRIBUTE"]" TargetList

20.1.2 The"TargetList" production is defined in 14.2.

20.1.3 This encoding instruction specifies that a character-encodable ASN.1 type is to be encoded as an XML
attribute.

NOTE — A particular (but important) case of a character-encodable type is a choice type (all of whose alternatives are character-
encodable types) that has afinal USE-UNI ON encoding instruction.

20.2 Restrictions

20.2.1 An ASN.1 type shall not have this final encoding instruction unless it has at least one "ExtendedXMLValue"
encoding (taking account of encoder's options), for each of its abstract values, that does not contain any XML tags and

ITU-T Rec. X.693 (11/2008) 37

| SO/IEC 8825-4:2008 (E)

does not rely on the use of "xmlhstring" (if the type is an open type or octetstring type) or "xmlbstring” (if the typeisa
bitstring type) or on a final UNTAGGED, ATTRI BUTE, or ANY- ATTRI BUTES encoding instruction applied to its
components (if the type is a sequence or set type) to achieve this.

NOTE 1 - Thisimplies that a restricted character string type with afinal ATTRI BUTE encoding instruction has to be restricted so
that it does not contain any of the control characterslisted in ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 3 (Escape sequences for
control charactersin an "xmlcstring"), or has to have afinal BASE64 encoding instruction.

NOTE 2 — This does not include open types, or octetstring and bitstring types with CONTAI NI NG without ENCODED BY,
because their "ExtendedXMLVaue" can contain tags unless they are encoded as an "xmlhstring".

NOTE 3 — It is recognized that some ASN.1 tools may not be able to statically check that the above restriction will be satisfied
for al abstract values, but conforming encoders cannot generate encodings in which the "ExtendedXMLValue" violates this
restriction (see 20.3.14).

20.2.2 A typewith thisfinal encoding instruction shall only be used as a component of a sequence or set type.
NOTE — The component may be OPTI ONAL or DEFAULT.

20.2.3 There shall be no final UNTAGGED encoding instruction on either the type that has this final encoding
instruction or on the enclosing type that contains it as a component.

20.2.4 If the final encoding instructions on other components of the enclosing type include either this encoding
instruction or the ANY-ATTRI BUTES encoding instruction, 20.3.11 shall not be violated.

20.25 A type with this final encoding instruction shall not also have any of the final encoding instructions ANY-
ELEMENT, DEFAULT- FOR- EMPTY, Pl - OR- COMVENT or UNTAGGED.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, EMBED- VALUES, USE- NI L, USE- ORDER, USE- TYPE.

20.2.6 There shal be no qualifying information in the "TargetList".

20.3 Effect on encodings
20.3.1 If thetypeisencoded as atop-level type, this encoding instruction shall be ignored.

2032 The "ExtendedXMLNamedValue'® of this component shall not be included in the
"ExtendedX ML SequenceValue" or "ExtendedXML SetValue' of the enclosing sequence or set type. Instead, the value
of the component (if present) shall be encoded as an "Attribute” (see 20.3.3 to 20.3.15) of the enclosing element.

20.3.3 The"Attribute" productionis:

Attribute::=
AttributeName

QuotedValue

AttributeName ::=
Identifier Or M odifiedl dentifier
| ControlAttributeName

QuotedValue::=
DoubleQuotedValue
| SingleQuotedValue

DoubleQuotedValue ::=
""" & CharacterEncodableValue& """

SingleQuotedValue::=
"'" & CharacterEncodableValue& "' "

ControlAttributeName ::= QualifiedName
Character EncodableValue ::= Extended XML Value

20.3.4 The "ldentifierOrModifiedidentifier" production is defined in 17.5.1, and its use in the context of this
encoding instruction is defined in 17.6.3.

20.3.5 The "Control AttributeName" production is not directly used by this clause. All "QualifiedName's in this
production are from the control namespace (see 16.9). Such attributes are only generated in accordance with clauses 33
and 37, but unexpected control attributes are required to be accepted by decoders (see 10.2.10).

20.3.6 The"QualifiedName" isdefined in 29.3.2.

38 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

20.3.7 The"ExtendedXMLVaue" isdefined in 17.4.

20.3.8 The "AttributeName" shall be either the "identifier" of the component that has this final encoding instruction
or, if there are final NAME or NAVESPACE encoding instructions, the "QualifiedOrUnqualifiedName" determined by
those encoding instructions as specified in clauses 28 and 29.

20.3.9 The "CharacterEncodableVaue' in the "QuotedValue' of the attribute (see 20.3.3) shall be the
"ExtendedXMLValue' of thistype, possibly modified as specified in 20.3.12 to 20.3.15.

20.3.10 The order in which "Attribute"s appear in an "AttributeList" is an encoder's option, whether these are
generated by this encoding instruction or by the ANY- ATTRI BUTES encoding instruction.

NOTE — No semantics can be placed on the order of attributesin any EXTENDED-XER encoding. Thisrestriction is required by
W3C XML 1.0, 3.1.

20.3.11 When an "AttributeList" in an instance of an encoding contains multiple attributes, then for any two
"Attribute'sin thelist:

a) if the"AttributeName's of the two attributes are both unqualified names, then they shall be different;

b) if the "AttributeName's of the two attributes are both namespace-qualified names, then they shall either
have different namespace names, or shall be different names in the same namespace.

Itisanillegal use of encoding instructions if this condition is violated by the application of final encoding instructions
for any abstract value of the top-level type that is being encoded.

20.3.12 If the "QuotedValue' is a "DoubleQuotedValue', and the "ExtendedXMLVaue' in the
"CharacterEncodableVaue" contains a QUOTATION MARK (34) character, then that character shall be replaced by
the characters:

" ;

or, as an encoder's option, by an escape sequence of the form &#n; or &#xn; , specified in ITU-T Rec. X.680 | ISO/IEC
8824-1, 12.15.8.

20.3.13 If the "Quotedvalue' is a "SingleQuotedVaue' and the "ExtendedXMLVaue' in the
"CharacterEncodableVaue" contains an APOSTROPHE (39) character, then that character shall be replaced by the

characters:
'

or, as an encoder's option, by an escape sequence of the form &#n; or &#xn; , specified in ITU-T Rec. X.680 | ISO/IEC
8824-1, 12.15.8.

20.3.14 The "ExtendedXMLValue" in the "CharacterEncodableValue" shall be one of the encodings of the character-
encodable type that does not contain XML tags.

20.3.15 If the "ExtendedXMLValue' contains HORIZONTAL TABULATION (9), LINE FEED (10), or
CARRIAGE RETURN (13) characters, then these characters shall be replaced in the "ExtendedXMLValue" by escape
sequences of the form "&#n; " or "&#xn; " specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.8.

21 The BASE64 encoding instruction

21.1 General
21.1.1 The"Baseb4lInstruction” is:

Base64l nstruction ::=
BASE64 TargetList
| BASE64 "]" TargetList

21.1.2 The"TargetList" productionisdefined in 14.2.

21.1.3 Thisencoding instruction can be assigned to an OCTET STRI NG, to an open type or to any restricted character
string type.

21.1.4 Application of this final encoding instruction to an octet string type or an open type removes the option of a
hexadecimal encoding, but allows the option of a Base64 encoding (as specified in IETF RFC 2045, 6.8). Application
of this final encoding instruction to a restricted character string type requires that the value of the restricted character
string type be encoded as a Base64 encoding.

ITU-T Rec. X.693 (11/2008) 39

| SO/IEC 8825-4:2008 (E)

21.2 Restrictions

21.21 If thefina encoding instructions for an ASN.1 type contain a BASE64 encoding instruction then the type shall
be:

@) an OCTET STRING or
b) an open type; or
c) arestricted character string type.

21.2.2 A typewiththisfina encoding instruction shall not have any of the final encoding instructions ANY- ELEMENT
or WHI TESPACE.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUVBER, USE-
CORDER, USE- QNAME, USE- TYPE, USE- UNI ON.

21.2.3 Thereshal be no quaifying information in the "TargetList".

21.3 Effect on encodings

21.3.1 Thisencoding instruction affects only the "ExtendedXMLValue" of the typeto which it is applied. It requires
the use of either the first or the second aternative of "ExtendedXMLOctetStringvVaue” and
"ExtendedX ML OpenTypeFieldVa" (as an encoder's option), forbidding the third alternative (see 17.4). It requires use
of the second alternative of "ExtendedX ML RestrictedCharacterStringValue" (see 17.4).

21.3.2 The"Base64XML OctetStringValue" is:

Base64XML OctetStringValue::=
XML Base64String

The"XMLBase64String" is defined in 21.3.6.
21.3.3 ITU-T Rec. X.680 | ISO/IEC 8824-1, 23.4, applies.
21.3.4 The"Base64XMLOpenTypeFieldva" is:

Base64XML OpenTypeFieldval ::=
XML Baseb4String

21.35 The"Base64XMLRestrictedCharacterStringValue' is:

Base64X M L RestrictedChar acter StringValue ::=
XML Base64String

2136 The"XMLBase64String" is:

XMLBase64String ::=
XMLRestrictedCharacter StringValue

The "XMLRestrictedCharacterStringValue”" shall be the Content-Transfer-Encoding specified in IETF RFC 2045, 6.8,
except that the 76-character limit does not apply, and "white-space with escapes’ (see 8.1.5) is allowed in any position
within the "XMLBase64String".

NOTE - |IETF RFC 2045 mandates the presence of line breaks dividing the encoding into lines of at most 76 characters, but this
is not required in EXTENDED-XER encodings. It also alows "white-space” to be inserted in any position within the base64
encoding.

21.3.7 If applied to arestricted character string type, then each character in the character string shall be encoded with
UTF-8 (see ISO 10646, Annex D). The resulting octets for the entire character string shall then be encoded into
characters as specified in IETF RFC 2045, 6.8, and the resulting characters shall form the "ExtendedX MLV alue".

22 The DECI MAL encoding instruction

22.1 General
22.1.1 The"Decimallnstruction" is:

Decimallnstruction ::=
DECI MAL TargetList

40 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

| DECI MAL "]" TargetList
22.1.2 The"TargetList" productionisdefined in 14.2.

22.1.3 The purpose of this encoding instruction is to modify the encoding of a real type so that the exponential
notation is forbidden and a hyphen followed by "0" denotes the value plus zero instead of the value minus zero.
NOTE — The value minus zero cannot be represented.

22.2 Restrictions
2221 Thisencoding instruction shall only be assigned to areal type.

22.2.2 The real type to which this encoding instruction is applied shall be restricted in such a way that the values
minus zero, M NUS- | NFI NI TY, PLUS- | NFI NI TY, and NOT- A- NUMBER are not permitted and the base is10.

NOTE - It is recommended that this be done by applying the following constraints:
(WTH COVPONENTS {..., base(10)})
(ALL EXCEPT (-0 | MNUS-INFINITY | PLUS-INFINITY | NOT- A-NUMBER))

22.2.3 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

2224 A type with this final encoding instruction can have any other final encoding instructions permitted for that
type.
NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their

application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, EMBED- VALUES, LI ST, TEXT,
USE-NI L, USE-NUMBER, USE-CRDER, USE-QNAME, USE-TYPE, USE-UN ON, \WH TESPACE.

2225 Thereshal be no qualifying information in the "TargetList".

22.3 Effect on encodings

22.3.1 The"modifiedXMLRealNumber" (see 17.9.3) shall not contain an e or E followed by an exponent.

NOTE — All abstract values, including those that are very large or very small real numbers, are therefore encoded as an integer
part optionally followed by adecimal point and afractiona part.

22.3.2 The rea value plus zero can be encoded, as an encoder's option, as "XMLDecimalMinusZeroRea Value",
defined as follows:

XMLDecimalMinusZeroRealValue::=
"." & modifiedXMLRealNumber

where the "modifiedX MLRealNumber" is restricted by 22.3.1 and contains no digits except the digit zero.

NOTE — The above cannot be confused with the real value minus zero, because the value minus zero is removed by the
mandatory restriction that applies to the real type (see 22.2.2).

23 The DEFAULT- FOR- EMPTY encoding instruction

23.1 General
23.1.1 The"DefaultForEmptylnstruction” is;

DefaultFor Emptylnstruction::=
DEFAULT- FOR- EMPTY TargetList ASValue
| DEFAULT- FOR- EMPTY ASValue"]" TargetList

2312 The"TargetList" production is defined in 14.2.

23.1.3 This encoding instruction specifies an abstract value that can be encoded in an EXTENDED-XER encoding
(as an encoder's option) as the "empty" alternative of "ExtendedXMLValue" for atype (see 17.4) that is encoded as the
sole content of an XML element.

NOTE — This defaulting mechanism supports the presence of an XML element with no content (typically, but not necessarily,
encoded as an empty-element tag). It is distinct from the use of ASN.1 DEFAULT, which relates to the absence of the
"ExtendedXMLNamedValue" of acomponent of a sequence or set.

23.1.4 The"TargetList" shall not use the keyword ALL and shall identify asingle target.

ITU-T Rec. X.693 (11/2008) 41

| SO/IEC 8825-4:2008 (E)

23.1.5 Therearefivedistinct cases where this encoding instruction can be used, identified below.

23.15.1 The first case is when it is assigned directly to a character-encodable type that is not UNTAGGED (see
clause 32). If the enclosing element has empty content, then that empty content represents the specified "Value" of the
character-encodabl e type (which is the governor for "Vaue").

23.1.5.2 The second case is when it is assighed to a (NOT UNTAGGED, NOT EMBED-VALUES and NOT USE-NI L) sequence
type that contains an UNTAGGED character-encodable component whose encoding forms the sole content (for all
abstract values of the sequence type) of the enclosing element of the sequence type. If the enclosing element of the
sequence type has empty content, then that empty content represents the specified "Value" of the character-encodable
component (which is the governor for "Value").

NOTE — The character-encodable component may be the sole content because it is the only component, or it may be the sole
content because al other components have a final ATTRI BUTE (see clause 20) or ANY-ATTRI BUTES (see clause 18) encoding
instruction.

23.1.5.3 The third case is when it is assigned to a (NOT UNTAGGED and NOT USE-NI L) sequence type with a final
EMBED- VALUES encoding instruction (see 25.3.1.4). If the enclosing element of the sequence type has empty content,
then that empty content represents an abstract value of the sequence type that would otherwise produce content that is
solely the specified "Value' of asole UTF8St ri ng in the EMBED- VALUES sequence-of (UTF8St ri ng isthe governor for
"Vaue").

23.1.5.4 The fourth case is when it is assigned to a (NOT UNTAGGED, NOT EMBED-VALUES) sequence type with a final
USE- NI L encoding instruction (see clause 33) whose OPTI ONAL component is a character-encodable type. If the
enclosing element of the sequence type has a nil identification attribute with valuet r ue, the DEFAULT-FOR-EMPTY does
not affect the meaning of the encoding. If the enclosing element of the sequence type has a nil identification attribute
with value f al se (or has no nil identification attribute), and has empty content, then that empty content represents the
specified "Value' of the OPTI ONAL component (whose type is the governor for "Value").

23.1.5.5 The fifth case is when it is assigned to a (NOT UNTAGGED) sequence type with a fina EMBED- VALUES
encoding instruction (see 25.3.1.4) and a final USE-NI L encoding instruction (see clause 33) whose OPTI ONAL
component is a sequence type. If the enclosing element of the sequence type has anil identification attribute with value
t r ue, the DEFAULT-FOR-EMPTY does not affect the meaning of the encoding. If the enclosing element of the sequence
type has a nil identification attribute with value f al se (or has no nil identification attribute), and has empty content,
then that empty content represents an abstract value of the sequence type that would otherwise produce content that is
solely the specified "Value' of a sole UTF8String in the EMBED- VALUES sequence-of (the UTF8String is the
governor for "Value").

23.1.6 "Value'isdefinedin ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.7.

NOTE — This permits use of a value reference defined in or imported into the module. The value reference can be defined using
XML Value Notation, but such notation cannot be used directly in " DefaultForEmptylnstruction”.

23.2 Restrictions

23.2.1 If thefina encoding instructions for an ASN.1 type that is a NOT UNTAGGED character-encodable type contain
a DEFAULT- FOR- EMPTY encoding instruction, then that type shall not be a component (of an ASN.1 SEQUENCE or SET)
with an ASN.1 DEFAULT value.
NOTE - This restriction is not strictly necessary, but is imposed to avoid confusion between the normal ASN.1 and the
EXTENDED-XER defaulting mechanisms.

23.2.2 Thisencoding instruction shall only be assigned to:
a) acharacter-encodable type without afinal UNTAGGED encoding instruction; or

b) a NOT UNTAGGED sequence type, without a final EMBED- VALUES, or USE- NI L encoding instruction, one
of whose components is a character-encodable type with a final UNTAGGED encoding instruction and all
other components (if any) have afinal ATTRI BUTE or ANY- ATTRI BUTES encoding instruction; or

C) aNOT UNTAGGED sequence type, without a final USE- NI L encoding instruction, but with a final EMBED-
VALUES encoding instruction (see 25.3.1.4); or

d) a NOT UNTAGGED sequence type, without a final EMBED- VALUES encoding instruction, but with a final
USE- NI L encoding instruction, whose CPTI ONAL component is a character-encodable type; or

€) a NOT UNTAGGED sequence type with a final EMBED- VALUES encoding instruction and with a final
USE- NI L encoding instruction, whose OPTI ONAL component is a sequence type.

42 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

2323 If 23.2.2 @) applies, and "empty” is a valid "ExtendedXMLVaue" for one of the abstract values (V, say) of
the (possibly constrained) type, and V is different from the "Value" in the "DefaultForEmptylInstruction”, then there
shall be at least one alternative encoding for V.

2324 If 23.2.2 b) or d) applies, and "empty" isavalid "ExtendedXMLVaue" for one of the abstract values (V, say)
of the UNTAGGED component (case b)) or of the OPTI ONAL component, (case d)), and V is different from the "Value"
in the "DefaultForEmptylnstruction”, then there shall be at |east one alternative encoding for V.

NOTE - It is recognized that some ASN.1 tools may not be able to statically check that the above restrictions will be satisfied for
al abstract values, but conforming encoders cannot generate encodings in which the "ExtendedXMLValue" violates this
restriction.

2325 If 23.2.2 c) applies, the SEQUENCE type shall be constrained so that (without DEFAULT-FOR-EMPTY) thereis no
abstract value that would produce an empty content for the enclosing element.

23.2.6 If acharacter-encodable type (case 23.2.2 a)) with this final encoding instruction has an enclosing type that is
a sequence-of or set-of type with afinal LI ST encoding instruction, or that is a choice type with a USE-UNI ON encoding
instruction, then this final encoding instruction shall be ignored.

23.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

23.2.8 A type with this fina encoding instruction shall not have any of the final encoding instructions ANY-
ELEMENT, ATTRI BUTE or UNTAGGED.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, USE- TYPE.

23.2.9 Thereshal be no quaifying information in the "TargetList".

233 Effect on encodings

23.3.1 This encoding instruction affects only the "ExtendedXMLValue" of the type that is the governor of "Value",
(see 23.1.5).

23.3.2 The"ExtendedXMLValue" encoding of the abstract value specified by "Value" shall, as an encoder's option,
be either:

a) the"ExtendedXMLVaue' encoding of that value which would be produced if the DEFAULT- FOR- EMPTY
was not present (the normal encoding); or

b) "empty".

NOTE — Decoders are required to accept both the normal encoding and the "empty" encoding as a denotation of the default-for-
empty value.

23.3.3 If 23.2.2 a) applies, and "empty" is a valid "ExtendedXMLValue" for one of the abstract values (V, say) of
the type, and V is different from the "Value" specified in the "DefaultForEmptylnstruction”, then any one of the
alternative encodings for V shall be used (as an encoder's option) instead of "empty".

2334 If 23.2.2 b) or d) applies, and "empty" isavalid "ExtendedXMLVaue" for one of the abstract values (V, say)
of the UNTAGGED component (case b)) or of the OPTI ONAL component (case d)), and V is different from the "Value"
specified in the "DefaultForEmptylnstruction”, then any one of the alternative encodings for V shall be used (as an
encoder's option) instead of "empty".

23.35 If 23.2.2 c) applies, the effect of this encoding instruction is specified in 25.3.1.4 and 25.3.1.5.
23.3.6 If 23.2.2 €) applies, the effect of this encoding instruction is specified in 25.3.1.6.

24 The ELEMENT encoding instruction

24.1 General
24.1.1 The"Elementlnstruction” is:

ElementInstruction ::=
ELEMENT TargetlList
| ELEMENT "]" TargetList

2412 The"TargetList" production is defined in 14.2.

ITU-T Rec. X.693 (11/2008) 43

| SO/IEC 8825-4:2008 (E)

24.1.3 This encoding instruction is synonymous with NOT UNTAGGED, and does not imply any semantics other than
NOT UNTAGCED.

24.2 Restrictions
2421 Thereshal be no qualifying information in the "TargetList".

24.2.2 This encoding instruction should not be used as a prefixed encoding instruction in combination with any of
the prefixed encoding instructions ANY- ATTRI BUTES, ANY- ELEMVENT or ATTRI BUTE to avoid confusing the reader.

24.3 Effect on encodings

This encoding instruction negates an UNTAGGED encoding instruction, and does not otherwise affect encodings.

25 The EMBED- VALUES encoding instruction

25.1 General
25.1.1 The"EmbedVaueslinstruction" is:

EmbedValuesl nstruction ::=
EMBED- VALUES TargetList
| EMBED- VALUES "]" TargetList

25.1.2 The"TargetList" production isdefined in 14.2.

25.1.3 This encoding instruction enables the first component of a (NOT UNTAGGED) sequence type to provide
character strings to be inserted before the first XML element, after the last XML element, and between the XML
elements, that form the "ExtendedXMLValue" encoding of the sequence type.

25.1.4 If afinal USE- NI L encoding instruction is also present, and the OPTI ONAL component supporting USE- NI L is
absent in a particular abstract value, then there will be no XML elements for components of the sequence type, and no
character string are provided for that abstract value. Otherwise, for all abstract values, the number of character strings
provided is required to be equal to one greater than the number of elements in the encoding of the sequence type. Some
or al of the character strings may be empty.

25.2 Restrictions

25.2.1 An ASN.1 type shall not have thisfinal encoding instruction unlessit is a sequence type. The first component
of the sequence shall not be marked OPTI ONAL or DEFAULT, and shall be a sequence-of type whose component is a
UTF8St ri ng with a constraint that forbids control characters.

25.2.2 There shall be no final UNTAGGED encoding instruction (see clause 32) on either the sequence-of type or on
the component of the sequence-of.

25.2.3 There shall be no final UNTAGGED encoding instruction on any component of the sequence type that is a
character-encodabl e type.

25.2.4 I the sequence type also has a final USE- NI L encoding instruction, the OPTI ONAL component supporting the
USE- NI L encoding instruction shall not be a character-encodable type (see also 33.2.4).

2525 None of the components of the sequence shall be marked DEFAULT unless they have a fina ATTRI BUTE
encoding instruction. If there are components of a SEQUENCE or SET type (at any depth) that, through the use of
UNTAGGED, can produce elements in the "ExtendedXMLValue' that are immediate child elements of the sequence type,
these shall not be marked DEFAULT.

25.2.6 The sequence type shall be restricted in such away that:

a) if the type has aso a fina USE- N L encoding instruction and the OPTI ONAL component supporting
USE- NI L isabsent, the number of repetitions of the sequence-of component is required to be zero;

b) otherwise, the number of repetitions of the sequence-of component in every abstract value equals one
plus the number of XML elements in the "ExtendedXMLValue" of the sequence type, determined after
application of al final encoding instructions to the other components of the sequence, and ignoring the
first component.

44 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

NOTE - It is recommended that the constraint on the sequence type be expressed as:
(CONSTRAI NED BY
{/* Shall conformto ITUT Rec. X. 693 | 1SQ | EC 8825-4, clause 25 */})

25.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

25.28 A typewith thisfina encoding instruction shall not have afinal UNTAGGED encoding instruction.

NOTE — The following final encoding instructions can never occur together with this encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, LI ST, TEXT, USE-
NUMBER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

25.2.9 Thereshal be no qualifying information in the "TargetList".

25.3 Effect on encodings

25.3.1 An encoder shall first produce a partia "ExtendedXMLVaue" encoding of the enclosing sequence type,
ignoring the first component. It shall then modify this encoding as specified in the following subclauses.
NOTE — The UTF8St ri ng valuesthat are being inserted may be "empty".

25.3.1.1 Thefirst UTF8St ri ng value in the sequence-of shall be inserted (subject to 25.3.1.6) at the beginning of the
partial encoding, before the start-tag of the first XML element (if any).

25.3.1.2 Each successive UTF8St ri ng value (if any) shall be inserted between the end-tag of an XML element and the
start-tag of the following XML element, proceeding from the first element to the last element.
NOTE — The above implies that no UTF8St ri ng valueisinserted inside any of these elements, even if they have child elements.

25.3.1.3 Thelast UTF8St ri ng vaue (if there is one) shall be inserted at the end of the partial encoding, after the end-
tag of thelast XML element.

25.3.1.4 If no XML elements are present in the partia encoding, and there is aso a final DEFAULT- FOR- EMPTY
encoding instruction (see clause 23) on the sequence type, and the value of the first (and only) UTF8Stri ng in the
sequence-of is identical to the "Value" specified in the DEFAULT- FOR- EMPTY encoding instruction, an encoder can
optionally encode the UTF8St ri ng as an empty string (but see 25.3.1.6).

25.3.1.5 If no XML elements are present in the partia encoding, and there is aso a final DEFAULT- FOR- EMPTY
encoding instruction on the sequence type, and the encoding is empty, a decoder shall interpret it as an encoding for the
"Value" specified in the DEFAULT- FOR- EMPTY encoding instruction and assign this abstract value to the first (and only)
UTF8St ri ng in the sequence-of (but see 25.3.1.6).

NOTE — This means that a value with no XML elements present and with a single empty UTF8String value cannot be encoded.
The sequence typeis required to be constrained to prohibit such values (see 23.2.5).

25.3.1.6 If the type also has a final USE- NI L encoding instruction and the OPTI ONAL component is absent, then the
EMBED- VALUES encoding instruction has no effect. If the type also has a final USE- NI L encoding instruction and the
OPTI ONAL component is present, then 25.3.1.4 applies. If a decoder determines that the OPTI ONAL component is
present, by the absence of anil identification attribute (or its presence with the value false), then 25.3.1.5 applies.

26 The GLOBAL- DEFAULTS encoding instruction

26.1 General
26.1.1 The"GlobaDefaultsInstruction” is:

Global Defaultsinstruction ::=
GLOBAL- DEFAULTS TargetList DefaultSetting
| GLOBAL- DEFAULTS DefaultSetting "]" TargetList

DefaultSetting ::=
ControlNamespace
| MODI FI ED- ENCODI NGS

ControlNamespace ::=
CONTROL- NAMESPACE

QuotedURI
Prefix ?

ITU-T Rec. X.693 (11/2008) 45

| SO/IEC 8825-4:2008 (E)

26.1.2 The"TargetList" production is defined in 14.2, and shall be "empty".
26.1.3 "QuotedURI" and "Prefix" are defined in 29.1.1.

26.1.4 The "ControlNamespace' production specifies the name of the control namespace (the "URI" in the
"QuotedURI"), and a recommended prefix for that namespace. If this GLOBAL-DEFAULTS encoding instruction is not
present, the control namespace shall be that specified in 16.9.

26.1.5 The use of MODI FI ED-ENCODI NGS produces "ExtendedXMLValues' that are modified in accordance
with 10.2.7 and 10.2.8.

26.2 Restrictions

26.2.1 The GLOBAL-DEFAULTS encoding instruction shall be assigned only in an XER encoding control section and
shall not be preceded by any other encoding instructions except other GLOBAL-DEFAULTS encoding instructions.

26.2.2 Each of the aternatives of GLOBAL-DEFAULTS shall be used at most once in any XER encoding control
section.

26.2.3 The GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS, if present, shall be the first encoding instruction in the XER
encoding control section in an ASN.1 module.

26.3 Effect on encodings

26.3.1 The application of MODI FI ED-ENCODI NGS requires that encodings shall be modified as specified in 10.2.7
and 10.2.8.

26.3.2 The control namespace used for an entire XML document shall be the control namespace assigned to the
ASN.1 type whose encoding forms the root element of that XML document.

27 The LI ST encoding instruction

27.1 General
27.1.1 The"Listlnstruction” is:

ListInstruction ::=
LI ST TargetList
|LI ST "]" TargetList

2712 The"TargetList" production is definedin 14.2.

2713 This encoding instruction requires that the "ExtendedX ML SequenceOfValue' or
"ExtendedX ML SetOfValue" of a sequence-of or set-of type (see 17.7) be the "ExtendedXMLListValue", producing a
space-separated list for the values of the component of the sequence-of or set-of .

NOTE — A common assignment of this encoding instruction is to a SEQUENCE OF | NTEGER, to which an ATTRI BUTE encoding
instruction (see clause 20) is also assigned.

27.2 Restrictions
27.2.1 Thetypeto which thisencoding instruction is assigned shall be a sequence-of or a set-of type.

27.2.2 The component of the sequence-of or set-of type:
a) shal be acharacter-encodable type; and

b) shal be such that, for all of its abstract values, there is at least one "ExtendedXMLValue" encoding
(taking account of all encoder's options) that is not "empty" and that does not contain "white-space with
escapes' (see 8.1.5).
NOTE 1 — The above restrictions imply that the component cannot itself be a sequence-of or set-of type with aLl ST encoding
instruction, or contain a nested sequence-of or set-of typewith aLl ST encoding instruction at any depth.

NOTE 2 — The above restrictions will be satisfied if the type of the component of the sequence-of or set-of is the integer type,
real type, object identifier type, relative object identifier type, or the Gener al i zedTi me and UTCTi ne useful types. They will
also be satisfied if it is a character string type constrained so that it always has at least one character in the character string and
none of its values contains a "white-space” character.

46 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

NOTE 3 — It is recognized that some ASN.1 tools may not be able to statically check that the above rules are satisfied, but a
conforming encoder shall not generate encodings that violate b) above.
27.2.3 A typewith thisfinal encoding instruction shall not have afinal ANY- ATTRI BUTES encoding instruction.

NOTE - The following final encoding instructions can never occur together with this encoding instruction because their
application to the type is forbidden: ANY- ELEMENT, BASE64, DECI MAL, EMBED- VALUES, TEXT, USE- NI L, USE- NUMBER, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

27.2.4 There shall be no qualifying information in the "TargetList".

27.3 Effect on encodings
27.3.1 Thisencoding instruction affects only the encoding of the type to which it is applied.

27.3.2 The "ExtendedX ML SequenceOfValue" or "ExtendedXML SetOfValue' production (see 17.7) shal be the
"ExtendedXMLListValue" aternative. "ExtendedXMLListVaueis:

ExtendedXMLListValue::=
empty
| Character EncodableValueExtendedXMLListValue

2733 There shall be "white-space with escapes’ (see 8.1.5) between each par of adjacent
"CharacterEncodableValue'sin the "ExtendedXMLListValue".

27.3.4 The "CharacterEncodableValue" is defined in 20.3.3. Each "CharacterEncodableVaue' shall encode a value
of a component of the sequence-of or set-of.

27.3.5 The order in which the "CharacterEncodableValue's appear in the "ExtendedXMLListVaue" shal be the
same order in which the corresponding "ExtendedXMLValue's would appear in an "ExtendedX ML SequenceOfVaue"
or "ExtendedX ML SetOfVaue" if afinal LI ST encoding instruction were not present.

27.3.6 The"CharacterEncodableVaue'sin the "ExtendedXMLListValue" shal not be "empty" and shall not contain
"white-space with escapes’ (see 8.1.5).
NOTE — Subclause 27.2.2 b) ensures that thisis possible, but 27.3.4 may restrict encoder's options.

28 The NAME encoding instruction

28.1 General
28.1.1 The"Namelnstruction" is;

Namel nstruction ::=
NAME TargetList AS NewNameOrKeyword
| NAMVE AS NewNameOrKeyword "]" TargetList

NewNameOrKeyword ::=
NewName

| Keyword
NewName::=
RestrictedChar acter StringValue
Keyword ::=
CAPI TALI ZED
| UNCAPI TALI ZED

| UPPERCASED
| LOWERCASED

28.1.2 The"TargetList" productionisdefined in 14.2.

28.1.3 Thisencoding instruction has five separate purposes.

a) to change the associated tag name, the attribute name, or the value of a possible type identification
attribute ("NewName" with no "QualifyingInformation” in the "TargetList") of the target; or

b) to change the case (or the case of the initial letter) of the associated tag name, the attribute name, or the
value of a possible type identification attribute ("Keyword" with no "Qualifyinglnformation” in the
"TargetList") of the target(s); or

ITU-T Rec. X.693 (11/2008) 47

| SO/IEC 8825-4:2008 (E)

¢) to change the element name used in an empty-element tag normally (as specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1) derived from a specified identifier used in the type definition ("NewName" with
"Qualifyinglnformation™ in the "TargetList" which isnot ALL) of the target; or

d) to change the case (or the case of the initial letter) of the element name used in an empty-element tag
normally derived from a specified identifier used in the type definition ("Keyword" with
"Qualifyinglnformation™ in the "TargetList" which isnot ALL) of the target(s); or

e) to change the case (or the case of the initia letter) of the edement names used in the
"ExtendedXMLVaue" encoding derived from any identifier used in the type definition ("Keyword" with
"Qualifyinglnformation™ in the "TargetList" which is ALL) of the target(s).

NOTE 1 - "NewName" can be used to change the names used in an EXTENDED-XER encoding derived from identifiers or type
references, but is rarely useful if the new name could have been used in the first place as an ASN.1 identifier or type reference.
Thus the normal use of the NAME encoding instruction is for producing required XML element or attribute names when they

would otherwise not be allowed because of ASN.1 rules on the case of the initial letter of identifiers or type reference names, or
where the ASN.1 rules for distinct identifiersin sequence, set and choice constructions prevent adesired XML encoding.

NOTE 2 — The use of ALL IN ALL AS CAPI TALI ZED to capitalize al identifiers in a module can be particularly useful to
provide acommon style using initial upper-case letters.

NOTE 3 - If a NAME encoding instruction is assigned using a target identified by an "identifier" or "typereference”, this affects
the name used in an EXTENDED-XER encoding, but does not affect the name that is used to identify the same target in
subsequent XER encoding instructions.

28.14 The"RestrictedCharacterStringValue" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 41.

28.2 Restrictions
28.2.1 "NewName" shall not be used if the "Qualifyinglnformation™ is ALL.

28.2.2 The NAME encoding instruction with "Qualifyinglnformation™ shall only be assigned to the following type
definitions:

a) aboolean type definition; or

b) abitstring type definition with named bits; or
c) anenumerated type definition; or

d) aninteger type definition with named numbers.

28.2.3 The "RestrictedCharacterStringValue' in "NewName" when used in the NAME encoding instruction shall be
either an "NCName" defined in W3C XML Namespaces, clause 2, production 4, or an empty character string. It shall
not be an empty character string unless the NAME encoding instruction is applied to an alternative of achoice type with a
final USE- UNI ON encoding instruction.
NOTE 1 — It is a requirement in W3C XML Namespaces that an "NCName" does not commence with characters that when
uppercased are "XML".

NOTE 2 — The "NewNameOrKeyword" production (and hence the "NewName" production) is also used in clause 31. The above
restrictions on "RestrictedCharacterStringValue" do not apply to the usein clause 31.

28.2.4 If thereisa GLOBAL- DEFAULTS encoding instruction with a MODI FI ED- ENCCDI NGS keyword, there shall be
no "Qualifyinglnformation” in the "TargetList".
NOTE — This is because empty-element tags are not used in this case. The TEXT encoding instruction can instead be used to
change the encoding of the individual values of atype.

28.2.5 This encoding instruction should not be used, as a prefixed encoding instruction in combination with any of
the prefixed encoding instructions ANY- ATTRI BUTES, ANY- ELEMENT or UNTAGGED to avoid confusing the reader.

28.3 Effect on encodings

28.3.1 If the type to which this encoding instruction is applied has a final ATTRI BUTE encoding instruction, the
"AttributeName" (which isin this case an "IdentifierOrModifiedldentifier") of the "Attribute” (see 20.3.3) shall be the
"QualifiedOrUnqualifiedName" alternative as specified in 28.3.3 to 28.3.6.

28.3.2 If the type to which this encoding instruction is applied does not have a final ATTRI BUTE encoding
instruction, then the enclosing element tag name (which is "TagName" - see 17.5.1) shal be the
"QualifiedOrUnqualifiedName" alternative as specified in 28.3.3 to 28.3.6.

28.3.3 The "ldentifierOrModifiedidentifier" and "QualifiedOrUnqualifiedName" alternatives shall be used. The
"UnprefixedName" in the "QualifiedOrUnqgualifiedName" shall be the "identifier" of the component modified
according the "NewNameOrKeyword" as specified below.

48 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

28.3.4 If the"NewName" adternativeis used, the "UnprefixedName" shall be replaced by the "NewName".

28.35 If the"Keyword" aternative is used, the "UnprefixedName" shall be modified as specified in the subclauses
of this 28.3.5.

28.3.5.1 If the "Keyword" is CAPI TALI ZED, then if the first character of the "UnprefixedName" is a lower-case letter,
that character shall be replaced by the upper-case equivalent, otherwise the name is not affected.

28.3.5.2 If the "Keyword" is UNCAPI TALI ZED, then if the first character of the "UnprefixedName" is an upper-case
letter, then that character shall be replaced by the lower-case equivalent, otherwise the name is not affected.

28.3.5.3 If the "Keyword" is UPPERCASED, then all characters of the "UnprefixedName" that are lower-case letters
shall be replaced by their upper-case equivalent. Other characters are unchanged.

28.3.5.4 If the "Keyword" is LONERCASED, then all characters of the "UnprefixedName" that are upper-case letters
shall be replaced by their lower-case equivalent. Other characters are unchanged.

28.3.6 The"QualifiedOrUnqualifiedName" shall be a namespace-qualified name if and only if the "Type" has afinal
NAMESPACE encoding instruction.

29 The NAMESPACE encoding instruction

29.1 General
29.1.1 The"Namespacelnstruction" is:

Namespacel nstruction ::=
NAMESPACE TargetList NamespaceSpecification ?
| NAMESPACE NamespaceSpecification ?"]" TargetList

NamespaceSpecification ::=
AS

QuotedURI
Prefix ?

Prefix ::=
PREFI X
QuotedNCName

QuotedURI ::=
"nmapgn & URI & nmpn

QuotedNCName ::=
""" & NCNameé& """

29.1.2 The"TargetList" production is defined in 14.2.
NOTE — The most common use of this encoding instruction is NAVESPACE ALL.

29.1.3 This encoding instruction enables a namespace hame and recommended namespace prefix to be assigned to
the target(s).

29.1.4 The "URI" production is not defined in this Recommendation | International Standard, but consists of
characters that identify a Uniform Resource Identifier (URI). The syntax (and semantics) of a URI is defined in IETF
RFC 2396, and commences with the name of a URI scheme. For allocations of namespace names with the NAVMESPACE
encoding instruction, any URI scheme can be used.

NOTE — Attention is drawn to the "oid" scheme for IETF URIs and IRIs based on the Internationalized Object Identifier tree (see
Annex F of ITU-T Rec. X.660 | ISO/IEC 9834-1).

29.1.5 If the "NamespaceSpecification" is absent, then a default is assigned with the recommended "Prefix" set to
the "modulereference” and the "URI" set asfollows:

a) theURI scheme (see IETF RFC 2396) shall be ur n;
b) the URN namespace identifier (see IETF RFC 2141) shall be oi d;

¢) the URN Namespace Specific String (see IETF RFC 2141) shall be the "Definitivel dentifier" of the
module expressed as an "XMLObjectldentifierValue" (see IETF RFC 3061).

The "Definitiveldentifier" for the module is defined as:

ITU-T Rec. X.693 (11/2008) 49

| SO/IEC 8825-4:2008 (E)

Definitivel dentifier ::=
"{" DefinitiveObjldComponentList "}"
| empty

29.1.6 EXAMPLE: With an object identifier value of {i so standard 1564 nodul es(0) basic(1)} the"URI"
would be the character string " ur n: oi d: 1. 0. 1564. 0. 1".

29.1.7 The "NCName" production is defined in W3C XML Namespaces, clause 2, production 4, and shall not
commence with characters that when uppercased are "XM." .

NOTE - Thisis arequirement imposed by W3C XML Namespaces.

29.2 Restrictions

29.2.1 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

29.22 An ASN.1 type shall not have both a final ATTRI BUTE encoding instruction and a final NAMESPACE encoding
instruction specifying the control namespace.

29.3 Effect on encodings

29.3.1 A namespace-qualified name can be required for an associated tag name, for an attribute name, or for the
value of a type identification attribute. A namespace-qualified name is required if the type generating the name has a
final NAMESPACE encoding instruction.

29.3.2 The"QualifiedOrUnqualifiedName" is:

QualifiedOrUnqualifiedName ::=
QualifiedName |
UnqualifiedName

QualifiedName ::=
PrefixedName |
UnprefixedName

UnqualifiedName::=
UnprefixedName

PrefixedName ::=
DeclaredPrefix & ":" & UnprefixedName

UnprefixedName ::= NCName
DeclaredPrefix ::= NCName

29.3.3 Theencoding of a namespace-qualified name requires either:
a) the use of the "PrefixedName" alternative for "QualifiedName" with the addition to XML elements of
further attributes providing namespace declarations (as specified in W3C XML Namespaces); or
b) the use of the "UnprefixedName" aternative for "QualifiedName" with the addition to XML elements of
further attributes providing default namespace declarations (as specified in W3C XML Namespaces).
29.3.4 The choice of these two mechanisms and the XML elements to which the namespace declaration attributes
are added are an encoder's option.

NOTE 1 — W3C XML Namespaces specifies that a default namespace declaration has in its scope only the name of the element
inwhich it is declared (and of child element names), but not of attributes on that element or child elements.

NOTE 2 — It is recommended, but not required, that the recommended prefix in the NAMESPACE encoding instruction be used.

NOTE 3 — Use of the recommended prefix may be inappropriate if NAVESPACE encoding instructions with different namespace
names but the same recommended prefix are present in the module.

30 The PI - OR- COWENT encoding instruction

30.1 General
30.1.1 The"PIOrCommentlnstruction” is:

50 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

PiOr Commentlnstruction ::=

Pl - OR- COWENT TargetList AS RestrictedCharacter StringValue Position

| Pl - OR- COWENT AS RestrictedCharacter StringValue Position "]" TargetList
Position ::=

BEFORE- TAG

| BEFORE- VALUE

| AFTER- VALUE

| AFTER- TAG

30.1.2 The"TargetList" production isdefined in 14.2.

30.1.3 This encoding instruction causes specified XML processing instructions and/or comments to be inserted
before or after the "ExtendedXMLValue" or before or after the associated tags.

NOTE — Subclause 10.2.5 permits an encoder (as an encoder's option) to insert additional XML processing instructions and
XML comments.

30.1.4 The"RestrictedCharacterStringValue" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 41.

30.2 Restrictions

30.2.1 The value of the "RestrictedCharacterStringValue" shall be the concatenation of one or more character strings
each of which conforms to the syntax of an XML Processing Instruction specified in W3C XML 1.0, 2.6, or to the
syntax of an XML Comment specified in W3C XML 1.0, 2.5, and defines the processing instructions and/or comments
that are to be inserted in the XML document.

30.2.2 An ASN.1 type shal not have both a final UNTAGGED encoding instruction and a final Pl - OR- COMVENT
encoding instruction.

30.2.3 A type with this fina encoding instruction shall not have any of the final encoding instructions ANY-
ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE or UNTAGGED.

30.24 There shal be no qualifying information in the "TargetList".

30.3 Effect on the encodings

30.3.1 If the "Position" is BEFORE- TAG, then the processing instructions and/or comments shall be inserted before
the associated start-tag or empty-element tag. If that start-tag or empty-element tag is the start of some enclosing
"ExtendedXMLValue", then any processing instructions and/or comments inserted before that "ExtendedXMLvalue"
(using BEFORE- VALUE on the corresponding type) shall precede these processing instructions and/or comments in the
XML document.

30.3.2 If the "Position" is BEFORE- VAL UE, then the processing instructions and/or comments shall be inserted at the
start of the "ExtendedXMLValue'. If that "ExtendedXMLValue" starts with a tag that is the associated start-tag of
some embedded "ExtendedXMLValue', then any processing instructions and/or comments inserted before that
associated start-tag (using BEFORE- TAG on the corresponding type) shall follow these processing instructions and/or
commentsin the XML document.

NOTE — In this case the contents of the associated tagsis never empty, and the empty-element tag cannot be used.

30.3.3 If the "Position" is AFTER- VALUE, then the processing instructions and/or comments shall be inserted at the
end of the "ExtendedXMLValue". If that "ExtendedXMLVaue" ends with atag that is the associated end-tag of some
embedded "ExtendedXMLVaue", then any processing instructions and/or comments inserted after that associated end-
tag (using AFTER- TAG on the corresponding type) shall precede these processing instructions and/or comment in the
XML document.

NOTE - In this case the contents of the associated tagsis never empty, and the empty-element tag cannot be used.

30.3.4 If the "Position" is AFTER- TAG, then the processing instructions and/or comments shall be inserted after the
associated end-tag or empty-element tag. If that end-tag or empty-element tag is the end of some enclosing
"ExtendedXMLValue', then any processing instructions and/or comments shall be inserted after that
"ExtendedXMLvaue" (using AFTER- VALUE on the corresponding type) shall follow these processing instructions
and/or comments in the XML document.

ITU-T Rec. X.693 (11/2008) 51

| SO/IEC 8825-4:2008 (E)

31 The TEXT encoding instruction

311 General
31.1.1 The"TextInstruction" is:

Textlnstruction ::=
TEXT TargetList TextToBeUsed ?
| TEXT TextToBeUsed ?"]" TargetlList

TextToBeUsed ::=
AS

NewNameOr K eyword
31.1.2 The"TargetList" production is defined in 14.2.

31.1.3 The purpose of this encoding instruction is:

a) in the absence of GLOBAL-DEFAULTS MODI FI ED-ENCODI NGS, to enable values of boolean types,
enumerated types, bitstrings with named bits, and integers with named numbers, to be encoded as
character strings instead of empty-element tags;

b) in the presence of GLOBAL-DEFAULTS MODI FI ED-ENCODI NGS, to enable the character strings that are
used for the values of boolean types, enumerated types, bitstrings with named bits, and integers with
named numbers, to be changed.

31.1.4 The"NewNameOrKeyword" is defined in clause 28.

31.2 Restrictions

31.2.1 This encoding instruction shall only be assigned to the following types, with qualifying information
identifying one or more of the identifiers used in the definition of the type (or t r ue or f al se for the boolean type):

a) aboolean type definition; or

b) abitstring type definition with named bits; or

c) anenumerated type definition; or

d) aninteger type definition with named numbers.

31.2.2 Thefinal character strings used for the values of the type to which this encoding instruction is assigned shall
be distinct.

31.2.3 "NewName" in "NewNameOrKeyword" shall not be used if the "Qualifyinglnformation™” is ALL. Subclause
28.2.3 does not apply to this use of "NewNameOrKeyword".

31.24 The "RestrictedCharacterStringValue” in "NewName" when used in the TEXT encoding instruction shall not
contain any control characters.

31.2.5 In the absence of a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS encoding instruction, the set of final TEXT
encoding instructions for a type shall not produce text encodings for some abstract values and empty element encodings
for other abstract values.

NOTE - If thereis a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS encoding instruction, then all encodings are text encodings.

31.2.6 If the TEXT encoding instruction is applied to a bitstring type with named bits and "NewName" is used, the
"NewName" shall contain at least one character, shall not contain "white-space with escapes’ (see 8.1.5), and shall not
commence witha"0" (DIGIT ZERO) or a"1" (DIGIT ONE).

31.2.7 A typewith thisfinal encoding instruction shall not also have afinal USE- NUMBER encoding instruction.

NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEVENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, USE- NI L, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

31.2.8 The"Qualifyinglnformation" shall always be present.

313 Effect on encodings
31.3.1 Oneof thefollowing five subclauses (31.3.2 to 31.3.6) applies.

52 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

3132 If the type is not a bitstring type with named bits and the "TextToBeUsed" is absent, the
"ExtendedXMLValue" encoding of each value referenced by the qualifying information for this instruction shall be a
character string containing the characters of the identifier (or shall bet r ue or f al se in the case of boolean types). For
integer types with named values, either the identifiers or the corresponding numbers shall be used (as an encoder's
option).

31.3.3 If thetypeisabitstring type with named bits and the "TextToBeUsed" is absent, a character string identical to
the identifier of the bit shall represent the bit when it is set. Each abstract value shall be encoded as the concatenation
(possibly empty) of these character strings for al the bits that are set, separated by "white-space with escapes' (see
8.1.5).

31.3.4 If the type is not a bitstring type with named bits and the "TextToBeUsed" is present, then the following
subclauses apply (but see 31.3.5).

31.3.4.1 If the "NewName" alternative is used, the character string used to encode the value identified by the
"Qualifyinglnformation” is "NewName". Each occurrence of the characters "<", ">", and "&" in the "NewName" shall
be replaced either by one of the escape sequences"&l t; ", " > ;", and "&anp; " respectively, or by an escape sequence
of the form "&#n; " or "&#xn; ", specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.15.8.

31.3.4.2 If the "Keyword" alternative is used, the character string used to encode values of the type is the identifier
name, modified as specified below.

31.3.4.3 If the "Keyword" is CAPI TALI ZED, then the first character of the name is replaced by the upper-case
equivalent, otherwise the nameis not affected.

31.3.4.4 If the"Keyword" is UNCAPI TALI ZED, then the name is unchanged.

31.3.4.5 If the "Keyword" is UPPERCASED, then all characters of the name that are lower-case |etters are replaced by
their upper-case equivaent. Other characters are unchanged.

31.3.4.6 If the "Keyword" is LONERCASED, then all characters of the name that are upper-case letters are replaced by
their lower-case equivalent. Other characters are unchanged.

31.35 If the type is an integer type with named values, the character strings produced by application of sub-
clauses 31.3.4.1 to 31.3.4.6 shall be used in place of the identifiers. Either the character strings or the corresponding
numbers shall be used (as an encoder's option).

31.3.6 If the type is a bitstring type with named bits and the "TextToBeUsed" is present, subclauses 31.3.4.1
to 31.3.4.6 shall be applied to each bit identifier to produce the character string that represents the bit when it is set. The
bitstring value shall then be encoded as the concatenation (possibly empty) of these character strings for all the bits that
are set, separated by "white-space with escapes’.

32 The UNTAGGED encoding instruction

321 General
32.1.1 The"Untaggedinstruction™ is:

UntaggedInstruction ::=
UNTAGGED TargetList
| UNTAGGED "]" TargetList

32.1.2 The"TargetList" productionisdefined in 14.2.

32.1.3 (Tutorid) Aninformal description of the effect of UNTAGGED on ASN.1 constructorsis provided in Annex B.
This clause and its subclauses provide a tutorial introduction illustrating some of the effects of using UNTAGGED.

3214 Used (possibly repeatedly and nested) in conjunction with sequence, set, choice, sequence-of, and set-of, it
enables an almost arbitrary pattern of XML elements to be specified. Its effect is to remove the XML start-tag that
precedes the "ExtendedXMLValue' of the "Type" to which it is applied and the XML end-tag that follows it, resulting
in the XML elements normally contained between those tags becoming partial XML content.

3215 Applied to a choice type as a component of a sequence or set, it specifies the inclusion at that point in the
sequence (set) of exactly one of the alternatives of the choice type (or none if the choice type is an OPTI ONAL
component). The identifier of the choice type does not appear in the encoding. Some alternatives of the choice type

ITU-T Rec. X.693 (11/2008) 53

| SO/IEC 8825-4:2008 (E)

may be XML elements, but others may be partial XML content containing an almost arbitrary pattern of multiple
elements, through use of UNTAGGED in the definition of those alternatives.

32.1.6 Applied to a sequence-of type as a component of a sequence or set, it specifies the inclusion at that point in
the sequence (set) of a specified or arbitrary number of repetitions of the sequence-of component (which may produce a
single XML element, or may produce partial XML content if it is itself UNTAGGED).

32.1.7 Applied to a sequence (or set) type or a sequence-of (or set-of) type as the alternative of a choice type, it
enables that aternative to consist of the partial XML content which is the "ExtendedXMLVaue" of the sequence, set,
sequence-of or set-of.

32.1.8 A separate function of UNTAGGED when applied to a character-encodable type is to enable character content to
appear in the encoding of a sequence, with no tags around that content. This use is restricted to a component of a
sequence which is not itself untagged.

NOTE — Therestriction isin order to simplify the rules needed to ensure easy and unambiguous decoding.

32.2 Restrictions

32.2.1 Inadl instances of use, the enclosing type shall be a sequence, set, choice, sequence-of, or set-of type. When
the enclosing type is a sequence, set, or choice type, it shall not contain an extension marker.

32.2.2 If the type is a character-encodable type, the enclosing type shal be a sequence type without a final
UNTAGGED encoding instruction. The type shall not be marked OPTI ONAL or DEFAULT. All the other components of the
enclosing sequence type (if any) shall have afinal ATTRI BUTE or ANY- ATTRI BUTES encoding instruction.

32.2.3 If thetypeis not a character-encodable type, it shall be a sequence, a set, a choice, a sequence-of, a set-of, an
octetstring or bitstring type with a contained "Type" without ENCODED BY, or an open type.

NOTE — Annex B provides guidelines that can ensure that ambiguities do not result from the use of this encoding instruction.

32.2.4 Thisencoding instruction shall not be applied to a type that has an empty "ExtendedXMLValue" encoding for
one of its abstract values, if the typeis used as:

a) acomponent of asequence or set type with OPTI ONAL or DEFAULT; or
b) the component of a sequence-of or set-of type; or

c) an dternative of a choice type, if another aternative of the same choice type has an empty
"ExtendedXMLValue' encoding for one of its abstract values and has a final UNTAGGED encoding
instruction.

EXAMPLE: A type that is a sequence type with al of its components OPTI ONAL has an abstract value with an empty
"ExtendedXMLVaue" encoding, as does a sequence-of type where zero repetitions are allowed.

32.2.5 This encoding instruction shall not be assigned unless there is a GLOBAL-DEFAULTS MODI FI ED-ENCODI NGS
encoding instruction in the XER encoding control section.

32.2.6 A type with this final encoding instruction shall not have any of the final encoding instructions ANY-
ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, DEFAULT- FOR- EMPTY, EMBED- VALUES, PI - OR- COMMENT, USE- NI L, USE-
CORDER or USE- TYPE.

32.2.7 Thereshal be no quaifying information in the "TargetList".

32.3 Effect on encodings
32.3.1 If thetypeisencoded as atop-level type, this encoding instruction shall be ignored.

32.3.2 If the enclosing type is a choice type, the "ExtendedXML ChoiceValue" (see 17.5.1) for this alternative of the
enclosed type shal be the "ExtendedXMLVaue' of the alternative (the second aternative in the
"ExtendedX ML ChoiceValue" production).

NOTE — This "ExtendedXMLVaue" for the aternative may be asingle XML element or may be partial XML content consisting
of multiple XML elements.

32.3.3 If the enclosing type is a sequence or set type, the "ExtendedXMLNamedVaue' (see 17.6) for this
component of the enclosed type shall be replaced by the "ExtendedXMLValue' of the component (the second
aternative in the "ExtendedX MLNamedValue" production).

NOTE — This "ExtendedXMLValue" may be asingle XML element or may be partial XML content consisting of multiple XML
elements.

54 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

32.3.4 If the enclosing type is a sequence-of or set-of type, the "ExtendedX ML Delimiteditem” (if used — see 17.7) of
each repetition shall be replaced by the "ExtendedXMLValue" enclosed in the "ExtendedX ML Delimiteditem".

NOTE 1 - It isnot possible to use UNTAGGED unless a GLOBAL- DEFAULTS of MODI FI ED- ENCODI NGS has been included in
the XER encoding control section, in which case "ExtendedXMLValueList" is not permitted (see 17.7.2).

NOTE 2 — This "ExtendedXMLValue" may be a single XML element or may be partial XML content consisting of multiple
XML elements.

32.3.5 If thetypeis an octetstring or bitstring type with a contained "Type" without ENCODED BY, or an open type,
the "ExtendedXMLVaue" shall be an "ExtendedXMLTypedVaue" (not an "xmlhstring”" or an "XMLBase64String").

NOTE — Such types do not match the definition of character-encodable type (see 3.2.8). Subclause 32.3.5 implies that when they
have afinal UNTAGGED encoding instruction, they are always encoded as XML elements.

33 The USE- NI L encoding instruction

33.1 General
33.1.1 The"UseNillnstruction" is:

UseNillnstruction ::=
USE-NI L TargetlList
|USE-NIL "]" TargetList

33.1.2 The"TargetList" productionisdefined in 14.2.

33.1.3 This encoding instruction provides an optimized EXTENDED-XER encoding for a sequence with a single
OPTI ONAL component whose other components (if any) all have a final ATTRI BUTE or ANY- ATTRI BUTES encoding
instruction, possibly preceded by an initial sequence-of type supporting USE-ORDER (see clause 35).

33.1.4 Inthe absence of this encoding instruction, the optional component would encode as follows:

a) (the "not missing but empty" case) if the component is present in the abstract value, with the abstract
value that has an empty "ExtendedXMLValue' encoding, an "ExtendedXMLNamedVaue' for the
component is present in the XML document, usually as an empty-element tag (or with adjacent start and
end tags);

b) (the"missing" case) if the component is absent in the abstract value, the "ExtendedX MLNamedValue" is
not present;

¢) (the"not missing and not empty" case) if the component is present in the abstract value with an abstract
value that does not have an empty encoding, an "ExtendedXMLNamedVaue" for the component is
present with non-empty content.

33.1.5 Useof USE-NL requires that the absence of the optional component (case b) above) be signalled by the
inclusion of anil identification attribute with name "ni | " and avalue of either "t rue" or "1".

33.1.6 Incasesa) and c) of 33.1.4, the nil identification attribute can either be omitted (as an encoder's option), or it
can be present with a value of either "fal se" or "0". The optional component shall be encoded by omitting the
associated tags.

33.2 Restrictions

3321 The USE-NL encoding instruction shall only be assigned to a sequence type that has an OPTI ONAL
component without a final ATTRI BUTE encoding instruction. All the other components of the sequence type, if any,
shall have a final ATTRI BUTE or ANY- ATTRI BUTES encoding instruction, or shall be the sequence-of components
supporting a USE- ORDER or an EMBED- VALUES encoding instruction that are also final encoding instructions on the

sequence type.
33.2.2 The sequence type shall not have afinal UNTAGGED encoding instruction.

33.2.3 The OPTIONAL component shall not have any of the final encoding instructions ANY- ELEMENT, ANY-
ATTRI BUTES, DEFAULT- FOR- EMPTY, EMBED- VALUES, Pl - OR- COMVENT, UNTAGCGED, USE- NI L, USE- ORDER or USE-
TYPE.

NOTE — Apart from UNTAGGED, the encoding instructions listed above are those that cannot be applied to a type that has a final
UNTAGGED encoding instruction.

ITU-T Rec. X.693 (11/2008) 55

| SO/IEC 8825-4:2008 (E)

33.2.4 If the OPTI ONAL component is not a character-encodable type, then it shal be a sequence, set, choice,
sequence-of, set-of type, an open type, or an octetstring or bitstring type with a contained "Type" and without ENCODED
BY.

33.25 If the OPTI ONAL component is a sequence type, none of its components shall have a final ATTRI BUTE or
ANY- ATTRI BUTES encoding instruction.

33.2.6 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

33.2.7 A type with this final encoding instruction shall not also have any of the final encoding instructions
UNTAGCED or USE- QNAME.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, LI ST, TEXT, USE-
NUMBER, USE- TYPE, USE- UNI ON, WHI TESPACE.

33.28 Thereshal be no qualifying information in the "TargetList".

33.3 Effect on encodings

33.3.1 If the OPTI ONAL component is absent (case b) of 33.1.4), then a nil identification attribute with name "ni | "
and avalue of either "t rue" or "1" shall be added to the "AttributeList" of the enclosing element.

33.3.2 If the OPTI ONAL component is present (cases a) and c) of 33.1.4), the nil identification attribute can either be
omitted (as an encoder's option), or it can be added to the "AttributeList" of the enclosing element with avalue of either
"fal se" or"0". The optional component shall be encoded by omitting the associated tags.

34 The USE- NUMBER encoding instruction

341 General
34.1.1 The"UseNumberlnstruction" is:

UseNumberInstruction ::=
USE- NUMBER TargetList
| USE-NUMBER "]" TargetList

34.1.2 The"TargetList" productionisdefined in 14.2.

34.1.3 The purpose of this encoding instruction is to modify the encoding of an enumerated type so that the numbers
in the "NamedNumber" enumerations are used instead of the names.

34.2 Restrictions
3421 Thisencoding instruction shall be ignored unlessit is applied to an enumerated type.

34.2.2 A typewith thisfina encoding instruction shall not also have afinal TEXT encoding instruction.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEVENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, USE- NI L, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

34.2.3 Thereshal be no qualifying information in the "TargetList".

34.3 Effect on encodings
3431 The"ExtendedXMLEnumeratedValue" is:

ExtendedXMLEnumeratedValue ::=
EmptyElementEnumer ated
| TextEnumerated
| XMLSignedNumber

34.3.2 The "EmptyElementEnumerated” and "TextEnumerated” are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1,
20.8 and 20.10.

56 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

34.3.3 The"XMLSignedNumber" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.9 and 19.13, and shall be
the number in the "NamedNumber" of the enumeration.

34.3.4 The XMLSignedNumber alternative shall be used if and only if the enumerated type has this final encoding
instruction.
NOTE — If a GLOBAL- DEFAULTS of MODI FI ED- ENCODI NGS is present in the XER encoding control section but the

enumerated type does not have this final encoding instruction, then the second alternative is used. If there is no GLOBAL-
DEFAULTS of MODI FI ED- ENCODI NGS present in the XER encoding control section, then the first alternative is used.

35 The USE- ORDER encoding instruction

35.1 General
35.1.1 The"UseOrderlnstruction” is:

UseOrderInstruction ::=
USE- ORDER TargetList
| USE-ORDER "]" TargetList

35.1.2 The"TargetList" production isdefined in 14.2.

35.1.3 The purpose of this encoding instruction is to allow an optimized EXTENDED-XER encoding of a sequence
type in which there is a sequence-of component that determines the semantic order of the values of the following
components of the sequence type that are encoded as elements. It can also be used, if there is aso a final USE-NI L
encoding instruction (see clause 33), and the single OPTI ONAL component required by the use of USE-NIL is a
sequence, to determine the semantic order of the components of that OPTI ONAL sequence.

35.1.4 The sequence-of component that determines the semantic order is the first component of the sequence, unless
there is also a sequence-of component supporting a final EMBED-VALUES encoding instruction on the sequence type. In
this case, the sequence-of component supporting the EMBED- VALUES encoding instruction precedes the sequence-of
component supporting the USE- CRDER encoding instruction.

35.1.5 The component determining the semantic order is required to be a sequence-of type with a component that is
an enumerated type. That sequence-of type and its semantics depends on the presence or absence of a USE- NI L
encoding instruction on the sequence type, as described in the following subclauses.

35.1.5.1 Where there is no final USE- NI L encoding instruction, the names of the enumerations are identical to the
ASN.1 identifiers of the components of the sequence type. The order of the enumerations in each abstract value
determines the semantic order of the values of the following components of the sequence type that are present in the
encoding.

35.1.5.2 Where thereisaso afinal USE- NI L encoding instruction, the OPTI ONAL component required by the use of
USE- NI L is required to be a sequence type (B, say), and the names of the enumerations are identical to the ASN.1
identifiers of the components of the sequence type B. The order of the enumerations in each abstract value determines
the semantic order of the values of the components of the sequence type B that are present in the encoding.

35.2 Restrictions

35.2.1 Thisencoding instruction shall only be assigned to a sequence type that does not contain an extension marker.
The sequence type shall contain a component that is a sequence-of type (type A, say) with a component that is an
enumerated type. If the sequence type does not have also a final EMBED- VALUES encoding instruction, then type A shall
be the first component, otherwise it shall be the second component. If there is no final USE- NI L encoding instruction,
the sequence type shall also have at least one other component with no final ATTRI BUTE or ANY- ATTRI BUTES
encoding instruction (a non-attribute component). If there is a final USE- NI L encoding instruction, the OPTI ONAL
component supporting the USE- NI L shall be a sequence type, and it shall have at |east one component.

35.2.2 The enumerated type shall have identifiers that depend on the presence or absence of a final USE-NI L
encoding instruction on the sequence type with the USE-ORDER encoding instruction, as specified in the following
subclauses.

35.2.2.1 If there is no final USE- NI L encoding instruction, then the enumerated type shall have identifiers for the
enumerations that are in one-to-one correspondence (and are in the same textual order) with the identifiers of the
following non-attribute components (see 35.2.1) of the sequence. The sequence type shall be constrained so that every

ITU-T Rec. X.693 (11/2008) 57

| SO/IEC 8825-4:2008 (E)

abstract value of the sequence-of component contains exactly one identifier for each non-attribute component of the
sequence that is present in the abstract value.

35.2.2.2 If there is a final USE-NI L encoding instruction, then the enumerated type shall have identifiers for the
enumerations that are in one-to-one correspondence (and are in the same textual order) with the identifiers of the
components of the OPTI ONAL component in the sequence type. The sequence type shall be constrained so that every
abstract value of the sequence-of component contains exactly one identifier for each component of the OPTI ONAL
sequence that is present in the abstract value.
NOTE - It is recommended that the constraint on the sequence type be expressed as:
(CONSTRAINED BY {/* Shall conformto ITUT Rec. X. 693 | 1SQO | EC 8825-4, clause 35 */})

35.2.2.3 The "Enumerationltem"s in the enumerations shall al be "identifier"s or shal al be "NamedNumber"s with
the value O for the first "Enumerationltem”, 1 for the second, and so on, up to the last "Enumerationltem™.

35.2.3 The sequence-of type shall not be marked OPTI ONAL or DEFAULT.

35.2.4 The following components of the sequence (if there is no final USE-NI L encoding instruction), and the
components of the OPTI ONAL sequence (if there is afinal USE-NI L encoding instruction) shall not be marked DEFAULT
unless they have afinal ATTRI BUTE encoding instruction.

35.2.5 No component of either the sequence with this final encoding instruction or the OPTI ONAL sequence (when a
final USE- NI L encoding instruction is present) shall have a final UNTAGGED encoding instruction, whether the type of
that component is a character-encodable type or not, unless the type of that component is a choice type and none of its
alternatives has a final UNTAGGED encoding instruction.

35.2.6 No component of the sequence with this final encoding instruction shall have afinal ANY- ELEMENT encoding
instruction.

35.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

35.28 A typewith thisfina encoding instruction shall not also have afinal UNTAGGED encoding instruction.

NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, LI ST, TEXT, USE-
NUMBER, USE- QNAME, USE- TYPE, USE- UNI ON, WHI TESPACE.

35.2.9 Thereshal be no qualifying information in the "TargetList".

35.3 Effect on encodings
35.3.1 The sequence-of type with the enumerated component shall not be directly encoded.

35.3.2 An encoder shall encode the semantics of this type (the semantic order of the sequence components or of the
OPTI ONAL sequence components) by encoding the components that are encoded as elements in the order specified by
the sequence-of type with the enumerated component. A decoder shall recover the value of the sequence-of component
by use of the order of the encoded elements.

36 The USE- QNAVE encoding instruction

36.1 General
36.1.1 The"UseQNamelnstruction” is:

UseQNamel nstruction ::=
USE- QNAME TargetlList
| USE-QNAME "]" TargetList

36.1.2 The"TargetList" production isdefined in 14.2.

36.1.3 The purpose of this encoding instruction is to modify the encoding of a sequence type, each of whose values
specifies an optional namespace name (a URI) and an unprefixed name, so that it encodes as an XML namespace-
qualified or unqualified name.

NOTE — Thisis provided because it is available in other schema notations. An example of a sequence type to which it could be
applied isthe QNarre type defined in ITU-T Rec. X.694 | I1SO/IEC 8825-5.

58 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

36.1.4 If the optiona component is present in an abstract value of the sequence type, then that abstract value
represents a namespace-qualified name. If the optional component is absent, the sequence type represents an
ungualified name.

36.2 Restrictions

36.2.1 This encoding instruction shall only be assigned to a sequence with exactly two components, both of type
UTF8St ri ng. The first component shall be OPTI ONAL.

36.2.2 Thefirst component shall be restricted to represent a URI (see IETF RFC 2396). The second component shall
be restricted to contain an "NCName" as specified in W3C XML Namespaces, clause 2, production 4, and shall not
commence with characters that when uppercased are "XM." .

36.2.3 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

36.2.4 A typewith thisfinal encoding instruction shall not also have afinal USE- NI L encoding instruction.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE-
NUMBER, USE- ORDER, USE- TYPE, USE- UNI ON, WHI TESPACE.

36.2.5 Thereshal be no qualifying information in the "TargetList".

36.3 Effect on encodings

36.3.1 The presence of this encoding instruction on a type, if the optional component is present, requires that a
namespace declaration (or default namespace declaration) be in scope for the attribute value or element content that
encodes the value of this type, in accordance with clause 29. The attribute value or element content is then encoded as
specified for a namespace-qualified namein clause 29.

36.3.2 If the optional component is absent, a default namespace declaration shall not be in scope for the attribute
value or element content that encodes the value of this type.

37 The USE- TYPE encoding instruction

37.1 General
37.1.1 The"UseTypelnstruction" is:

UseTypel nstruction ::=
USE- TYPE TargetList
| USE- TYPE "]" TargetList

37.1.2 The"TargetList" productionisdefined in 14.2.

37.1.3 This encoding instruction optimizes the EXTENDED-XER encoding of a choice type. It requires a type
identification attribute to be encoded in the enclosing element to identify the alternative that has been encoded (unless
thisisthe first aternative) and the removal of the start-tag and end-tag around the encoding of the alternatives.

37.1.4 The type identification attribute identifies the type of an XML element. The name of the attribute is required
to be the name "t ype" from the control namespace (see 16.9) and its value identifies an aternative of the choice typeto
which this encoding instruction is applied (it provides alternative determination for the choice type).

37.2 Restrictions

37.2.1 The type to which USE-TYPE is assigned shall be a choice type without a final UNTAGGED encoding
instruction.

37.2.2 None of the alternatives of the choice type shall have afinal UNTAGGED encoding instruction.

37.2.3 None of the alternatives of the choice type shall itself be a choice type with a fina USE-TYPE encoding
instruction.

NOTE — One or more alternatives of the choice type may be choice types with afinal USE- UNI ON encoding instruction.

ITU-T Rec. X.693 (11/2008) 59

| SO/IEC 8825-4:2008 (E)

37.24 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

37.25 A type with this final encoding instruction shall not also have any of the final encoding instructions
UNTAGCED or USE- UNI ON\.
NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their

application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, ATTRI BUTE, BASE64, DECI MAL, DEFAULT- FOR- EMPTY,
EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUMBER, USE- ORDER, USE- QNAVE, WH TESPACE.

37.2.6 Thereshal be no qualifying information in the "TargetList".

37.3 Effect on encodings

37.3.1 If the dternative of the choice being encoded is not the first aternative of that choice, then a type
identification attribute (see 37.3.3 and 37.3.4) shal be added to the "Attributelist" of the enclosing element,
unless 37.3.8 applies.

37.3.2 If the alternative of the choice being encoded is the first alternative, the type identification attribute may be
added or omitted as an encoder's option, unless 37.3.8 applies.

37.3.3 The type identification attribute shall be an instance of the "Attribute" production (see 20.3.3) with a
namespace-qualified " Control AttributeName" (see 20.3.5) of "t ype" from the control namespace (see 16.9).

37.3.4 The value of the type identification attribute shall be the identifier of the chosen alternative, possibly
modified in accordance with any final NAME and NAMESPACE encoding instructions.

37.3.5 If thereisno type identification attribute present in an encoding of a type with this final encoding instruction,
a decoder shall assume that the first alternative of the choice is present.

37.3.6 The presence of a type identification attribute with an unexpected value shall not result in a decoding error.
When encountering such an attribute in an encoding, a decoder shall assume that the first alternative of the choice has
been identified, and may ignore the type identification attribute (or pass it to the application). In addition, in such cases,
the decoder may ignore (or pass to the application) any other unexpected attributes and any unexpected child elements
encountered after all the expected child elementsin the "ExtendedXMLValue" of the alternative.

37.3.7 All the "Attribute"s that would otherwise be in the "AttributeList" of the "ExtendedXMLChoiceValue" shall
be added to the "AttributeList" of the enclosing element and the "ExtendedXML ChoiceVaue" of the choice type shall
be replaced by the "ExtendedXMLValue' in the "ExtendedX ML ChoiceValue".

37.3.8 If one or more aternatives of the choice type with the USE-TYPE final encoding instruction are choice types
with afinal USE- UNI ON encoding instruction, the type identification attribute may, as an encoder's option, identify one
of the alternatives of the choice type with the final USE-UNI ON instruction instead of an alternative of the choice type
with the USE-TYPE final encoding instruction.

38 The USE- UNI ON encoding instruction

38.1 General
38.1.1 The"UseUnionlnstruction" is:

UseUnionlnstruction ::=
USE- UNI ON TargetList
| USE- UNION "]" TargetList

38.1.2 The"TargetList" productionisdefined in 14.2.

38.1.3 This encoding instruction optimizes the encoding of a choice type in cases where the encoding of the abstract
values of each alternative is sufficiently distinct from the encoding of abstract values of other alternatives for a decoder
to determine the abstract value represented by analysis of the encoding.

38.1.4 If the choice type with a final USE- UNI ON encoding instruction does not also have a final ATTRI BUTE or a
final UNTAGGED encoding instruction, then this encoding instruction can result in the insertion of a type identification
attribute in the enclosing element to identify the alternative that has been encoded. If the choice type has a final
ATTRI BUTE or UNTAGGED encoding instruction, or is the component of a sequence-of or set-of type with a LI ST
encoding instruction, the insertion of the type identification attribute is not possible.

60 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

38.1.5 This encoding instruction causes the removal of the start-tag and end-tag around the encoding of the
aternative.

38.2 Restrictions
38.2.1 A typewith afina encoding instruction of USE- UNI ON shall be a choice type.

38.2.2 All the alternatives of the choice type shall be character-encodable types, but shall not be choice types with a
final USE- UNI ON encoding instruction.

38.2.3 If the choice type has a final ATTRI BUTE or UNTAGGED encoding instruction or is used in atype definition as
a component of a sequence-of or set-of type with afinal LI ST encoding instruction, the alternatives of the choice type
shal be constrained so that, for any aternative, al its abstract values have at least one encoding (its
"ExtendedXMLValue") that is different from al the allowed encodings of al the textually-preceding alternatives.

NOTE — This requirement is imposed because it is impossible to insert a type-identification attribute determining the alternative
that was selected. Without this requirement, the encoding would be ambiguous.

38.2.4 In thefollowing two subclauses, the term "identifier" means:. identifier (possibly modified in accordance with
any final NAME and NAMESPACE encoding instructions) of an alternative (of the choice type).

38.2.5 If the choice type (type U, say) is being encoded as an alternative of an enclosing choice type (type E, say)
that has a final USE- TYPE encoding instruction, and the identifier of one of the alternatives of E is identical to the
identifier of one of the aternatives of U, then each abstract value of that aternative of U shall have at least one
encoding that is different from al the encodings of the textually-preceding alternatives of U.

NOTE — This requirement is imposed because in this case it is not possible to identify the alternative of U, as the identifier in a
type identification attribute for E would merely identify the whole of U.

38.2.6 If the choicetype (U1, say) is being encoded as an alternative of an enclosing choice type (E, say) with afinal
USE- TYPE encoding instruction, and E contains another choice type (U2, say) with a USE- UNI ON encoding instruction
that textually follows Ul in E, and the identifier of any one of the aternatives of U2 isidentical to one of the identifiers
in U1, then each abstract value of that alternative of U2 shall have at least one encoding that is different from all the
encodings of all the alternatives of U1.

NOTE — This requirement is imposed because in this case it is not possible to identify the alternative of U2, as the identifier in a
type identification attribute for E would identify the alternativein U1.

38.2.7 This encoding instruction shall not be assigned unless there is a GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS
encoding instruction in the XER encoding control section.

38.2.8 A typewith thisfinal encoding instruction shall not also have afinal USE- TYPE encoding instruction.

NOTE — The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, ANY- ELEMENT, BASE64, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE-
NI L, USE- NUMBER, USE- CRDER, USE- QNAVE, WHI TESPACE.

38.2.9 Thereshal be no quaifying information in the "TargetList".

38.3 Effect on encodings

38.3.1 If the choice type does not have a final ATTRI BUTE or UNTAGGED encoding instruction and is not encoded as
the component of a sequence-of or set-of type with afinal LI ST encoding instruction, then atype identification attribute
may be added, as an encoder's option, to the "AttributeList" of the enclosing element (but see 38.3.8).

NOTE - If the choice type is encoded as an alternative of a choice with a USE- TYPE encoding instruction, the type identification

attribute specified by the USE- UNI ON encoding instruction can be used instead of the type identification attribute specified by
the USE- TYPE encoding instruction (see 37.3.8).

38.3.2 If every possible encoding of the abstract value being encoded is identical to one of the encodings of an
abstract value of atextually-preceding aternative, then atype identification attribute shall be added.
NOTE - This subclause 38.3.2 removes the encoder's option of subclause 38.3.1 and makes the addition of the type identification

attribute mandatory. The restrictions specified in 38.2.4 to 38.2.6 ensure that this can only occur when the choice typeis encoded
as an element and when no ambiguity due to identical identifiersis possible.

38.3.3 If the choice type has a final ATTRI BUTE or UNTAGGED encoding instruction or its enclosing type is a
sequence-of or set-of type with afina LI ST encoding instruction, no type identification attribute can be inserted in any
element. In the case of the scenarios described in 38.2.4 to 38.2.6, a type identification attribute cannot be inserted to
precisely identify some of the aternatives of U or U2. Decoders shall therefore rely on the conditions of 38.2.4
to 38.2.6 to determine the abstract value that has been encoded.

ITU-T Rec. X.693 (11/2008) 61

| SO/IEC 8825-4:2008 (E)

NOTE — These rules imply that a decoder is required, in the absence of atype identification (or in the presence of an ambiguous
one), to attempt to decode against the textually first alternative, then the next, and so on, accepting the first successful decode
that isfound (or diagnosing an error if there is no successful decode).

38.3.4 The type identification attribute shall be an instance of the "Attribute" production (see 20.3.3) with a
namespace-qualified " Control AttributeName" (see 20.3.5) of "t ype" from the control namespace (see 16.9).

38.3.5 The value of the type identification attribute shall be the identifier of the chosen alternative, possibly
modified in accordance with any final NAME and NAMESPACE encoding instructions.

38.3.6 All the "Attribute"s that would otherwise be in the "AttributeList" of the "ExtendedXMLChoiceVaue" shall
be added to the "AttributeList" of the enclosing element and the "ExtendedXML ChoiceValue" of the choice type shall
be replaced by the "ExtendedXMLValue' in the "ExtendedX ML ChoiceValue".

38.3.7 The "ExtendedXMLValue" of the character-encodable type shall be one of the encodings that does not
contain any XML tags.

NOTE — This may restrict encoders' options.

38.3.8 If an dternative of the choice type has a final NAME AS "" encoding instruction, no type identification
attribute shall be added for that alternative.

39 The WH TESPACE encoding instruction

39.1 General
39.1.1 The"WhiteSpacel nstruction” is:

WhiteSpacel nstruction ::=
VWHI TESPACE TargetList WhiteSpaceAction
| WHI TESPACE WhiteSpaceAction "]" TargetList

WhiteSpaceAction ::=
REPLACE
| COLLAPSE

39.1.2 The"TargetList" production is defined in 14.2.

39.1.3 This encoding instruction requires decoders to accept additional options in the encoding of the SPACE (32)
character and in the use of leading and trailing "white-space with escapes’ (see 8.1.5) for character string encodings.

39.2 Restrictions

39.2.1 Thisencoding instruction can only be assigned to:

a) a restricted character string type that either does not contain, or is constrained not to contain the
following characters:

1) HORIZONTAL TABULATION (9);
2) LINE FEED (10);
3) CARRIAGE RETURN (13);
b) atypewith afinal TEXT encoding instruction whose "NewName" does not contain these characters.
39.2.2 If this encoding instruction has the COLLAPSE option, then it shall not be applied to a restricted character
string type unless that type is constrained not to have leading or trailing spaces or contain multiple adjacent spaces for

any abstract value.

NOTE — It is recognized that some ASN.1 tools may not be able to statically check that the above restriction will be satisfied for
al abstract values, but conforming encoders cannot generate encodings in which the "ExtendedXMLValue" violates this
restriction.

39.2.3 If thisencoding instruction has the COLLAPSE option, then it shall not be applied to a type with a final TEXT
encoding instruction whose "NewName" has leading or trailing spaces or contains multiple adjacent spaces.

39.2.4 A type with this final encoding instruction shall not also have any of the final encoding instructions ANY-
ELENMENT or BASEG4.

62 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

NOTE - The following final encoding instructions can never occur together with this final encoding instruction because their
application to the type is forbidden: ANY- ATTRI BUTES, DECI MAL, EMBED- VALUES, LI ST, TEXT, USE- NI L, USE- NUMBER, USE-
ORDER, USE- QNAME, USE- TYPE, USE- UNI ON.

39.25 Thereshall be no qualifying information in the "TargetList".

39.3 Effect on encodings

39.3.1 If the keyword REPLACE is used, every SPACE (32) present in the abstract value of the character string (case
(@) of 39.2.1) or in the "NewName" of the TEXT encoding instruction (case (b) of 39.2.1) can be replaced, as an
encoder's option, by asingle character that is "white-space with escapes’ (see 8.1.5).

39.3.2 If thekeyword COLLAPSE is used, every SPACE (32) present in the abstract value of the character string (case
(a) of 39.2.1) or in the "NewName" of the TEXT encoding instruction (case (b) of 39.2.1) can be replaced, as an
encoder's option, by any number of "white-space with escapes' characters. In addition, one or more such characters can
be added to the beginning and/or to the end of the "ExtendedXMLValue" encoding as an encoder's option.

40 I dentification of the encoding rules

40.1 The encoding rules specified in this Recommendation | International Standard can be referenced and applied
whenever there is a heed to specify an unambiguous character string representation for the values of a single identified
ASN.1 type.

40.2 The following object identifier, OID internationalized resource identifier and object descriptor values are
assigned to identify the encoding rules specified in this Recommendation | International Standard:

For BASIC-XER:
{joint-iso-itu-t asnl (1) xm-encoding (5) basic (0) }
"/ ASN. 1/ XM.- Encodi ng/ Basi c"
"Basic XML encoding of a single ASN. 1 type"

For CXER:
{joint-iso-itu-t asnl (1) xm-encoding (5) canonical (1) }
"/ ASN. 1/ XML- Encodi ng/ Canoni cal "
"Canoni cal XM. encoding of a single ASN.1 type"

For EXTENDED-XER:
{joint-iso-itu-t asnl (1) xm-encoding (5) extended (2)}
"/ ASN. 1/ XML- Encodi ng/ Ext ended"
"Ext ended XM. encodi ng of a single ASN. 1 type"

40.3 The following object identifier, OID internationalized resource identifier and object descriptor values are
assigned in order to identify the ASN.1 namespace (see 16.9):
asnlNanmespace OBJECT I DENTIFIER :: =
{joint-iso-itu-t asnl (1) xm-encoding (5) extended (2)
nmodul es (0) support (1) }
"/ ASN. 1/ XML- Encodi ng/ Ext ended/ Mobdul es/ Support™

NOTE - The IETF /IRI/URI corresponding to thisvalue is
"oi d: / ASN. 1/ XM_- Encodi ng/ Ext ended/ Modul es/ Support"
"ASN. 1 nanespace for EXTENDED- XER support"

ITU-T Rec. X.693 (11/2008) 63

| SO/IEC 8825-4:2008 (E)

Annex A

Examples of BASIC-XER and CXER encodings
(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates the use of the basic and canonical XML Encoding Rules specified in this Recommendation |
International Standard by showing XML Markup representations of a (hypothetical) personnel record which is defined
using ASN.1.

Al ASN.1 description of therecord structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1. This is identical to the example defined in Annex A of ITU-T Rec. X.690 |
ISO/IEC 8825-1.

Per sonnel Record ::= [APPLI CATION O] IMPLIC T SET {

nane Nane,
title [0] VisibleString,
nunber Enpl oyeeNunber ,
dateOHre [1] Date,
naneCf Spouse [2] Nane,
chil dren [3] IMPLICT
SEQUENCE OF Chi |l dl nformati on DEFAULT {} }
Childinformation ::= SET
{ name Narmre,
dateOBirth [0] Date}
Name ::= [APPLICATION 1] IMPLIC T SEQUENCE
{ gi venNane Vi si bl eString,
initial Vi sibleString,
fam | yNane Vi si bl eString}

Enpl oyeeNunber ::= [APPLI CATION 2] | MPLICI T I NTEGER

Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMVDD
NOTE - Tags are used in this example only because it was felt appropriate to use the identical example to that which appeared in

the earliest version of ITU-T Rec. X.680 | ISO/IEC 8824-1. They have no effect on the BASIC-XER, CXER, and
EXTENDED-XER encodings.
A2 ASN.1 description of arecord value

The value of John Smith's personnel record is formally described below using the basic ASN.1 value notation:

{ name {gi venNane "John", initial "P', fam|yName "Smth"},
title "Director",
nunber 51,
dateOHre "19710917",
namef Spouse {gi venNane "Mary", initial "T", famlyName "Smth"},
children

{{name {givenNane "Ral ph", initial "T", faml|yName "Smth"},
dateOBirth "19571111"},
{name {givenNane "Susan", initial "B", fam|yName "Jones"},
dateCfBirth "19590717"}}}

A.3 Basic XML representation of thisrecord value

The representation of the record value given above (after applying the basic XML Encoding Rules defined in this
Recommendation | International Standard) is shown below assuming an empty prolog.

The length of this encoding in BASIC-XER is 653 octets ignoring all "white-space’. For comparison, the same
Personnel Record value encoded with the UNALIGNED variant of PER (see ITU-T Rec. X.690 | ISO/IEC 8825-1) is 84
octets, with the ALIGNED variant of PER it is 94 octets, with BER (see ITU-T Rec. X.691 | ISO/IEC 8825-2) using the
definite length form it is a mininum of 136 octets, and with BER using the indefinite length form it is a minimum of
161 octets.

64 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

<Per sonnel Recor d>
<nane>
<gi venNane>John</ gi venNane>
<initial >P</initial>
<f am | yName>Sm t h</ f am | yNane>
</ nanme>
<title>Director</title>
<nunber >51</ nunber >
<dat eOf Hi re>19710917</ dat eCf H r e>
<namef Spouse>
<gi venNanme>Mar y</ gi venNane>
<initial>T</initial>
<fam | yName>Sm t h</ f am | yNane>
</ nane Spouse>
<chi | dren>
<Chi | dI nf or mat i on>
<nane>
<gi venNane>Ral ph</ gi venNane>
<initial >T</initial>
<f am | yName>Sm t h</ f am | yNane>
</ nanme>
<dateOr Bi rt h>19571111</dated Bi rt h>
</ Chi | dI nf or mati on>
<Chi | dI nf or mat i on>
<nane>
<gi venNane>Susan</ gi venNane>
<initial >B</initial>
<f am | yNane>Jones</ f am | yNane>
</ nanme>
<dat e Bi rt h>19590717</ dateO' Bi rt h>
</ Chi | dI nf or mat i on>
</ chi |l dren>
</ Per sonnel Recor d>

A4 Canonical XML representation of thisrecord value

The representation of the record value given above (after applying the Canonical XML Encoding Rules defined in this
Recommendation | International Standard) is shown below:

<Per sonnel Recor d><nane><gi venNanme>John</ gi venNanme><i ni ti al >P</ini ti al ><famni | yName>Sni t h</fa
m | yNane></ nane><nunber >51</ nunber><titl e>Director</titl e><dateO H re>19710917</ dat eCf Hi r e>
<named Spouse><gi venNanme>Mar y</ gi venNanme><i ni ti al >T</ini ti al ><famni | yName>Sni t h</f ami | yName>
</ nane Spouse><chi | dr en><Chi | dI nf or mat i on><nane><gi venNane>Ral ph</ gi venNane><i ni ti al >T</in
itial><fam | yName>Snith</fani | yNanme></ nane><dat e Bi rt h>19571111</ dat e Bi rt h></ Chi | dI nf orm
ati on><Chi | dl nf or mat i on><name><gi venName>Susan</ gi venNanme><i ni ti al >B</i ni ti al ><f am | yName>J
ones</ f am | yName></ name><dat eX Bi rt h>19590717</ dat eOX Bi rt h></ Chi | dl nf or mat i on></ chi | dr en></
Per sonnel Recor d>

ITU-T Rec. X.693 (11/2008) 65

| SO/IEC 8825-4:2008 (E)

Annex B

Partial XML content and deter ministic encodings
(Thisannex does not form an integral part of this Recommendation | International Standard)

B.1 Partial XML content
NOTE — This annex describes validity when MODI FI ED-ENCODI NGS isin use.

B.1.1 The following subclauses describe the construction of partial XML element content. This clause describes
what partidl XML element content is produced as part of encodings, and B.2 specifies restrictions on partial XML
element content that are necessary to satisfy the requirement of 10.2.11. If an ASN.1 specification with XER encoding
instructions does not violate these restrictions, it is a legal specification, and tools can easily check its legality. If the
restrictions are violated, the specification may still not violate the normative requirements of 10.2.11, but tools may
find it hard to check that thisis the case.

NOTE — The restrictions are designed to ensure that a decoder can easily and unambiguously recover the abstract values that
were used by an encoder in the production of the encoding.

B.1.2 A partial XML element content is made up of a combination of single XML elements provided by an
[ELEMENT] SEQUENCE, SET, SEQUENCE OF, SET OF or CHO CE, and of other partial XML element content provided by
[UNTAGGED] SEQUENCE, SET, SEQUENCE OF, SET OF or CHO CE.
NOTE — The boundary between partial XML element content within a larger partial XML element content is not visible in the
encoding, but can be determined from the ASN.1 schema and restrictions on the names of elements.

B.1.3 A partiad XML element content consists of either:
a) asingle XML eement; or

b) aconcatenation group, consisting of an ordered concatenation of zero, one or more partial XML element
content in which some of the partial XML element content may be absent in an instance of encoding
(representing the absence of an optional abstract value); or

NOTE 1 — An encoding of an [UNTAGGED] SEQUENCE or SET type will in general produce a concatenation
group.

C) arepetition group, consisting of the repetition (unlimited or constrained) of partial XML element content
(called the repeated component) produced from the component of a SEQUENCE OF or SET OF; or

NOTE 2 — An encoding of an [UNTAGGED] SEQUENCE OF or SET OF type will in general produce a repetition
group.

d) an aternatives group, consisting of the presence of a single partial XML element content chosen from a
set of alternative partial XML element contents (of which exactly oneis present in an encoding).

NOTE 3 — An encoding of a CHO CE type produces an alternatives group. Each aternative of the CHO CE type
produces one of the alternative partial XML element contents for that CHO CE type.

B.2 Recommended restrictions on encodings producing partial XML element content

B.2.1 For the purposes of this clause only, any repetition group is treated as if it were optional, that is, may have
Zero repetitions.
NOTE — The restriction that the repetition group be treated as if it were optional is not strictly necessary if there are constraints
that require at least one repetition of the corresponding ASN.1 type, but is introduced for simplicity.

B.2.2 For the purposes of this clause only, a requirement that element names be distinct should be interpreted as
follows:

a) dl comparisons are made after the application of any final NAMVE and NAMESPACE encoding instructions
on the type that generated the name;

b) namesthat are namespace-qualified names are distinct from unqualified names;

¢) namespace-quaified names are distinct if and only if they differ in either their unprefixed name or their
namespace name or both.

B.2.3 For any resulting partial XML element content, there is possible ambiguity (and hence a possible violation
of 10.2.11) if the conditions specified in this subclause B.2 are not satisfied for all possible choices of aternativesin an
alternatives group, for all possible exercise of optionality in a concatenation group, for al possible repetitions of a
repeated group, and for all possible ordering of the encodings of the components of a set.

66 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

NOTE - In reading and implementing the following clauses, the above text saying "for al possible" is very important.
Implementers of tools that determine what is an unambiguous specification and what is not will need to analyse all possible
combinations of choices, optionality, repetitions and ordering.

B.24 (Ddimitation requirement) There should be no two adjacent partial XML element contents with the same
element name for the first element of the second partial XML element content and for the last element of the first partial
XML element content, unless the first partial XML element content is self-delimiting.

EXAMPLE 1: Partial XML element content produced by an [UNTAGGED] SEQUENCE is self-delimiting if it does not
end with an oPTI ONAL el ement.

EXAMPLE 2: Partial XML element content produced by an [UNTAGGED] SEQUENCE CF is self-delimiting if it has a
fixed number of iterations, which themselves are self-delimiting. This means, inter alia, that SEQUENCE OF [UNTAGGED]
SEQUENCE CF | NTEGER is ambiguous and violates 10.2.11 unless the number of repetitions of the second SEQUENCE CF is
fixed.

EXAMPLE 3: Partial XML element content produced by an [UNTAGGED] SET is never self-delimiting if it has any
optional elements.

B.25 (Alternative determination requirement) The first XML elements of the aternative partial XML element
content in an alternatives group should al have distinct element names.

NOTE — The above text ignores the possible use of USE-TYPE and USE-UNI ON, which are beyond the scope of this annex.
EXAMPLE 4: An encoding of:

BadExanpl el ::= CHO CE {
-- First alternative partial XM el ement content
altl [UNTAGCED] SEQUENCE {
nane UTF8Stri ng,
zi p- code UTF8String },
al t2 [UNTAGGED] SEQUENCE {
name UTF8St ri ng,
post-code UTF8String } }

is not in fact an ambiguous EXTENDED-XER encoding (for a human decoder), but it violates the above requirement
and also violates 10.2.11. It isan illegal use of encoding instructions.

B.2.6 (Optionality determination requirement) The XML element names of the first XML element of all
consecutive optiona partial XML element content plus that of the next following mandatory partial XML element
content should be distinct.
NOTE — This means, inter alia, that any optional partial XML element content at the end of a group that is being repeated and
any optional partial XML element content at its start have to have distinct XML element names unless the number of repetitions

is restricted to a maximum of 1. If the entire partial XML element content of the group that is being repeated is optional, then
their XML element names should all be distinct.

EXAMPLE 5: An encoding of:

BadExanpl e2 ::= SEQUENCE OF
[UNTAGGED] SEQUENCE {
first [UNTAGGED] Conmonl ni ti al Par ns,
second Mai nl nf or nat i on,
third [UNTAGGED] ConmonEndPar s }
where
Commonlnitial Parns ::= SEQUENCE { date GeneralizedTi ne OPTI ONAL,
marri ed BOOLEAN}
ComonEndParns :: = SEQUENCE { nane UTF8Stri ng,

date GeneralizedTi ne OPTI ONAL}
violates the optionality determination requirement and also violates 10.2.11. It isan illegal use of encoding instructions.

B.2.7 (Repetition count determination requirement) All repetition groups that have a number of repetitions that is
not fixed should be followed by a partial XML element content whose first XML element has a name that is distinct
from the name of the first XML element of the partial XML element content that is being repeated.

ITU-T Rec. X.693 (11/2008) 67

| SO/IEC 8825-4:2008 (E)

EXAMPLE 6: An encoding of:

BadExanpl e3::= SEQUENCE {
required-itens [UNTAGGED] SEQUENCE COF Book,
optional -itens [UNTAGGED] SEQUENCE OF Book }

violates the repetition count determination requirement and also violates 10.2.11. It is an illegal use of encoding

instructions. Alternatively:
GoodExanpl el 1= SEQUENCE {
required-itens [UNTAGGED] SEQUENCE OF required- books Book |,
optional -itens [UNTAGGED] SEQUENCE OF opti onal - books Book }

would be alegal use of encoding instructions.

B.28 (Set component determination requirement) The first XML element in the partial XML content of the
components of a concatenation group that is an encoding of a set type should have an XML element name that is
distinct from the name of the first XML element in the partial XML content of all other components.

EXAMPLE 7: An encoding of:
BadExanpl e4::= SET {
uk-nmailing [UNTAGGED] SEQUENCE {nane UTF8String, post-code UTF8String},
us-mai ling [UNTAGGED] SEQUENCE {name UTF8String, zip-code UTF8String}}

violates the component determination requirement and also violates 10.2.11. It isanillegal use of encoding instructions.
Alternatively:
GoodExanpl e2 o= SET {
uk-mailing [UNTAGGED] SEQUENCE {uk-name UTF8String, post-code UTF8String},
us-nmai l i ng [UNTAGGED] SEQUENCE {us-nane UTF8String, zip-code UTF8String}}

would be alegal use of encoding instructions.

68 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

Annex C

Examples of EXTENDED-XER encodings using XER encoding instructions
(This annex does not form an integral part of this Recommendation | International Standard)

Cl1 I ntroduction

C.1.1 Thisannex providestutorial information and examples on the application of XER encoding instructions.
NOTE — All ASN.1 examplesin this annex assume an environment of AUTOVATI C TAGS.

C.1.2 Encoding instructions normally need to be assigned to an ASN.1 specification only if the designer has a
requirement for the actual form of the XML encoding to match that defined by other schema specifications, or expected
by other XML tools. Otherwise, ASN.1 alone (with BASIC-XER or CXER encoding) can be used.

C.1.3 If ASN.1 is used as the schema definition notation, then additiona use of encoding instructions will in
general provide more compact XML encodings than use of ASN.1 alone, but the encodings are still far more verbose
than use of ASN.1 with PER.

NOTE — The examples (and the identifiers and type names used) are designed to illustrate features of EXTENDED-XER, and do
not in general represent real-world specifications.

C.14 XER encoding instructions broadly fall into two categories.

C.15 Thefirst category is encoding instructions that are likely to be generally useful in designing the form of an
XML document. These are generally allowed even when GLOBAL- DEFAULTS MODI FI ED- ENCODI NGS is absent. The
two most useful of these are ATTRI BUTE and LI ST, and C.2 provides simple examples of their use.

C.1.6 The second category is encoding instructions that are designed to support the mapping from W3C XML
Schema specified in ITU-T Rec. X.694 | ISO/IEC 8825-5. These generally require the presence of GLOBAL- DEFAULTS
MODI FI ED- ENCODI NGS in an XML encoding control section, but that is not shown in the examples. In these examples,
any type reference commencing with "XSD." is assumed to be imported from Annex A of ITU-T Rec. X.694 |
ISO/IEC 8825-5. Clause C.3 provides examples of their use. These examples are not complete ASN.1 modules,
nor are they complete XML documents. module headers are generally omitted; and any XML attribute commencing
"asnl: " isassumed to be acontrol attribute using the asnl namespace for the control attribute, where the prefix "asn1"”
is assumed to be already declared. (In practice, if the encoding is derived from W3C XML Schema, the prefix "xsi " is
more likely to be used, with the X S| namespace.)

C.1.7 Inamost al cases, prefixed encoding instructions are used for clarity, although in areal specification greater
brevity (and a clearer separation of abstract syntax definition from encoding issues) will be obtained by the use of an
XML encoding control section.

C.2 Simple examples

C.21 Abaseball card

BBCard ::= SEQUENCE {
name [ATTRIBUTE] | A5String FROM (" " | "A".."Z" | "a".."z")),
team [ATTRIBUTE] IA5String FROM (" " | "A"'.."Z" | "a".."z")),
age | NTECGER,
posi tion I A5String,
handedness ENUVERATED {
| ef t - handed,

ri ght - handed,
anbi dextrous 1},
batti ng- average REAL }

Ignoring the encoding instructions (BASIC-XER), we could get:

<BBCar d>
<nane>Jor ge Posada</ nane>
<t eanrNew Yor k Yankees</teanr
<age>29</ age>
<posi ti on>C</ posi ti on>
<handedness><ri ght - handed/ ></ handedness>
<batti ng- aver age>0. 277</ bat ti ng- aver age>
</ BBCar d>

ITU-T Rec. X.693 (11/2008) 69

| SO/IEC 8825-4:2008 (E)

The EXTENDED-XER encoding (with MODIFIED-ENCODINGS) of the same valueis.
<BBCard narme = “Jorge Posada” team = “New York Yankees” >
<age>29</ age>
<posi ti on>C</ posi ti on>
<handedness>ri ght - handed</ handedness>
<batti ng- average>0. 277</ batti ng- aver age>

</ BBCar d>
C.22 Anemployee
Enpl oyee ::= [NAVE AS UNCAPI TALI ZED] SEQUENCE {
id [ATTRI BUTE] | NTEGER(0. . MAX),

recruited XSD. Date,
sal ari es [LI ST] SEQUENCE
OF salary REAL }

Ignoring the encoding instructions (BASIC-XER), we could get:

<Enpl oyee>

<i d>239</i d>
<recruited>27-11-2002</recruited>
<sal ari es>

<sal ary>29876</ sal ary>

<sal ary>54375</ sal ary>

<sal ary>98435</ sal ary>
</sal ari es>

</ Enpl oyee>

The EXTENDED-XER encoding of the same valueis:

<enpl oyee id = "239">
<recruited>27-11-2002</recruited>
<sal ari es>29876 54375 98435</sal ari es>
</ enpl oyee>

Using an XER encoding control section, we would have:

Enpl oyee ::= SEQUENCE ({
id I NTEGER(0. . MAX) ,
recruited Date,
sal ari es SEQUENCE
OF salary REAL }

ENCODI NG CONTRCL XER
NAME Enpl oyee AS UNCAPI TALI ZED
ATTRI BUTE Enpl oyee. id
LI ST Enpl oyee. sal ari es

The XER encoding control section could alternatively be (recommended):

ENCODI NG CONTRCOL XER
[NAVE AS UNCAPI TALI ZED] Enpl oyee
[ATTRI BUTE] Enpl oyee. i d
[LI ST] Enpl oyee. sal ari es

C3 M ore complex examples
C.3.1 Usingaunion of two simpletypes
Int-or-boolean ::= [USE-UNION] CHO CE {

int I NTEGER,
bool ean BOOLEAN }

70 ITU-T Rec. X.693 (11/2008)

| SO/IEC 8825-4:2008 (E)

Encodings could be:

<l nt - or - bool ean><i nt >39</i nt ></ I nt-or-bool ean> -- BASI CG XER

<l nt - or - bool ean><bool ean><t r ue/ ></ bool ean></ I nt - or - bool ean>- - BASI C XER
<I nt - or - bool ean>39</ | nt - or - bool ean> - - EXTENDED- XER
<Int-or-bool ean>true</ I nt - or - bool ean> - - EXTENDED- XER

C.3.2 Usingatypeidentification attribute

Int-or-boolean ::= [USE- TYPE] CHO CE {
int | NTEGER,
bool ean BOOLEAN }

Encodings could be:
<l nt - or - bool ean><i nt >39</i nt ></ I nt - or - bool ean> -- BAS| C XER
<l nt - or - bool ean><bool ean><t r ue/ ></ bool ean></ | nt - or - bool ean>- - BASI C XER
<l nt-or-bool ean asnl:type="int">39</1nt-or-bool ean>-- EXTENDED- XER
<l nt-or-bool ean asnl:type="bool ean" >t rue</ I nt-or-bool ean>-- EXTENDED- XER

C.3.3 Using enumeration values

Pri mesUnder30 ::= [USE- NUMBER] ENUMERATED {
int2(2), int3(3), int5(5), int7(7), int11(11), int13(13),
int17(17), int19(19), int23(23), int29(29)}
I nput Val ues ::= [ATTRI BUTE] [LIST] SEQUENCE OF Pri nesUnder 30
Pri meProducts ::= SEQUENCE {
i nput | nput Val ues,
out put [ATTRI BUTE] [DECI MAL] REAL
(WTH COVPONENTS {..., base (10)})
(ALL EXCEPT (-0 | MNUS-INFINITY | PLUS-INFINTY | NOT- A NUMBER))}

Encodings could be:

<Pri mePr oduct s>
<i nput ><i nt 2/ ><i nt 7/ ><i nt 17/ ><i nt 23/ ><i nt 29/ ><i nt 3/ ></ i nput >
<out put >476338. 00</ out put >

</ Pri neProduct s> -- BASI C XER
<PrineProducts input="2 7 17 23 29 3" output="476338.00"/>
- - EXTENDED- XER

C.3.4 Using an empty encoding for a default value

Responses ::= ENUMERATED {ri ngi ng, engaged, nunber-not-known }
Cal | Details ::= [DEFAULT- FOR- EMPTY AS nunber - not - known] SEQUENCE {
nunber [ATTRI BUTE] NunericString,

response [UNTAGGED] Responses }
Encodings could be:

<Cal | Det ai | s>
<nunber >0164593746</ nunber >
<r esponse><nunber - not - known/ ></ r esponse>
</ Cal |l Detail s> -- BASI G XER
<Cal | Det ai | s nunber="0164593746"/ > - - EXTENDED- XER

C.35 Using embedded-valuesfor notification of a payment due

Notification ::= [EMBED VALUES] SEQUENCE {
t ext SEQUENCE OF UTF8Stri ng,
account | NTEGER,

anmount - due | NTEGER,
payabl e-by XSD.Date } (CONSTRAINED BY {/* Shall conformto ITUT Rec. X 693 |
1 SO | EC 8825-4, 25.2 */})

ITU-T Rec. X.693 (11/2008) 71

| SO/IEC 8825-4:2008 (E)

A value in basic ASN.1 vaue notation could be:

FfirstNotification Notification :-:= {

text {""Please note the following details:",
"(your business account)",
"This is in excess of your normal monthly allowance",
"or earlier"},

account 568903,

amount-due 536,

payable-by "27-08-2003" }

The EXTENDED-XER encoding would be:

<Notification>

Please note the following details:
<account>568903</account>

(your business account)
<amount-due>536</amount-due>

This is in excess of your normal monthly allowance
<payable-by>27-08-2003</payable-by>

or earlier

</Notification>

72 ITU-T Rec. X.693 (11/2008)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T RECOMMENDATION X.693 (11/2008) – Information technology ASN.1 encoding rules: XML Encoding Rules (XER)
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 ASN.1 Basic Encoding Rules (BER)
	3.2 Additional definitions

	4 Abbreviations
	5 Encodings specified by this Recommendation | International Standard
	6 Encoding instructions specified by this Recommendation | International Standard
	7 Conformance
	8 Basic XML encoding rules
	8.1 Production of a complete BASIC-XER encoding
	8.2 The XML prolog
	8.3 The XML document element
	8.4 Encoding of the EXTERNAL type
	8.5 Encoding of the open type
	8.6 Decoding of types with extension markers

	9 Canonical XML encoding rules
	9.1 General rules for canonical XER
	9.2 Real values
	9.3 Bitstring value
	9.4 Octetstring value
	9.5 Sequence value
	9.6 Set value
	9.7 Set-of value
	9.8 Object identifier value
	9.9 Relative object identifier value
	9.10 GeneralizedTime
	9.11 UTCTime
	9.12 Open type value
	9.13 The
	type and the useful time types

	10 Extended XML encoding rules
	10.1 General
	10.2 EXTENDED-XER conformance
	10.3 Structure of an EXTENDED-XER encoding

	11 Notation, character set and lexical items used in XER encoding instructions
	12 Keywords
	13 Assigning an XER encoding instruction to an ASN.1 type using a type prefix
	14 Assigning an XER encoding instruction using an XER encoding control section
	14.1 The encoding instruction assignment list
	14.2 Identification of the targets for an XER encoding instruction using a target list

	15 Multiple assignment of XER encoding instructions
	15.1 Order in which multiple assignments are considered
	15.2 Effect of assigning a negating encoding instruction
	15.3 Multiple assignment of encoding instructions with multiple categories
	15.4 Multiple assignment of XER encoding instructions of the same category
	15.5 Permitted combinations of final encoding instructions

	16 XER encoding instruction support for XML namespaces and qualified names
	17 Specification of EXTENDED-XER encodings
	17.1 The XML document element
	17.2 The "TypeNameOrModifiedTypeName" production
	17.3 The "AttributeList" production
	17.4 The "ExtendedXMLValue" production
	17.5 The "ExtendedXMLChoiceValue" production
	17.6 The "ExtendedXMLSequenceValue" and "ExtendedXMLSetValue" productions
	17.7 The "ExtendedXMLSequenceOfValue" and "ExtendedXMLSetOfValue" productions
	17.8 The "ModifiedXMLIntegerValue" production
	17.9 The "ModifiedXMLRealValue" production

	18 The ANY-ATTRIBUTES encoding instruction
	18.1 General
	18.2 Restrictions
	18.3 Effect on encodings

	19 The ANY-ELEMENT encoding instruction
	19.1 General
	19.2 Restrictions
	19.3 Effect on encodings

	20 The ATTRIBUTE encoding instruction
	20.1 General
	20.2 Restrictions
	20.3 Effect on encodings

	21 The BASE64 encoding instruction
	21.1 General
	21.2 Restrictions
	21.3 Effect on encodings

	22 The DECIMAL encoding instruction
	22.1 General
	22.2 Restrictions
	22.3 Effect on encodings

	23 The DEFAULT-FOR-EMPTY encoding instruction
	23.1 General
	23.2 Restrictions
	23.3 Effect on encodings

	24 The ELEMENT encoding instruction
	24.1 General
	24.2 Restrictions
	24.3 Effect on encodings

	25 The EMBED-VALUES encoding instruction
	25.1 General
	25.2 Restrictions
	25.3 Effect on encodings

	26 The GLOBAL-DEFAULTS encoding instruction
	26.1 General
	26.2 Restrictions
	26.3 Effect on encodings

	27 The LIST encoding instruction
	27.1 General
	27.2 Restrictions
	27.3 Effect on encodings

	28 The NAME encoding instruction
	28.1 General
	28.2 Restrictions
	28.3 Effect on encodings

	29 The NAMESPACE encoding instruction
	29.1 General
	29.2 Restrictions
	29.3 Effect on encodings

	30 The PI-OR-COMMENT encoding instruction
	30.1 General
	30.2 Restrictions
	30.3 Effect on the encodings

	31 The TEXT encoding instruction
	31.1 General
	31.2 Restrictions
	31.3 Effect on encodings

	32 The UNTAGGED encoding instruction
	32.1 General
	32.2 Restrictions
	32.3 Effect on encodings

	33 The USE-NIL encoding instruction
	33.1 General
	33.2 Restrictions
	33.3 Effect on encodings

	34 The USE-NUMBER encoding instruction
	34.1 General
	34.2 Restrictions
	34.3 Effect on encodings

	35 The USE-ORDER encoding instruction
	35.1 General
	35.2 Restrictions
	35.3 Effect on encodings

	36 The USE-QNAME encoding instruction
	36.1 General
	36.2 Restrictions
	36.3 Effect on encodings

	37 The USE-TYPE encoding instruction
	37.1 General
	37.2 Restrictions
	37.3 Effect on encodings

	38 The USE-UNION encoding instruction
	38.1 General
	38.2 Restrictions
	38.3 Effect on encodings

	39 The WHITESPACE encoding instruction
	39.1 General
	39.2 Restrictions
	39.3 Effect on encodings

	40 Identification of the encoding rules
	Annex A
	Examples of BASIC-XER and CXER encodings
	A.1 ASN.1 description of the record structure
	A.2 ASN.1 description of a record value
	A.3 Basic XML representation of this record value
	A.4 Canonical XML representation of this record value

	Annex B
	Partial XML content and deterministic encodings
	B.1 Partial XML content
	B.2 Recommended restrictions on encodings producing partial XML element content

	Annex C
	Examples of EXTENDED-XER encodings using XER encoding instructions
	C.1 Introduction
	C.2 Simple examples
	C.3 More complex examples

