International Telecommunication Union

ITU-T X.692

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — ASN.1 encoding rules:
Specification of Encoding Control Notation
(ECN)

ITU-T Recommendation X.692

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD 8825-3
ITU-T RECOMMENDATION X.692

Information technology —
ASN.1 encoding rules:
Specification of Encoding Control Notation (ECN)

Summary

This Recommendation | International Standard defines the Encoding Control Notation (ECN) used to specify encodings
(of ASN.1 types) that differ from those provided by standardized encoding rules such as the Basic Encoding Rules
(BER) and the Packed Encoding Rules (PER).

Source

ITU-T Recommendation X.692 was prepared by ITU-T Study Group 17 (2009-2012) and approved on 13 November
2008. Anidentical text is also published as ISO/IEC 8825-3.

ITU-T Rec. X.692 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T X.692 (11/2008)

CONTENTS

100 1o o o iX
1 £ oo o TSRO PSRRI 1
2 N0 0T YN = 1= £ 1= OSSR 1
2.1 ldentica Recommendations | International Standards.........cccccovvivveverieereresce s 1
22 2 N (o o g I = = 1= 2
3 D= 1] a0 =R RUR RPN 2
TNt N It e (= 17 T (o= TSR 2
3.2 ECN-SPECITIC AEfiNITIONS.....cciieeeieieceeecere et e e st r e ne e e e e sneneesne e 2
4 F N o] o 1=V = 1 o 0 S 5
5 DefiNitioN OF ECN SYNTAX.......ciuiitirierieeiieieee ettt sttt s e e be bt sbe st e e e e e ss e besaesbesaesaeeneeaeenseseenbesaesaens 5
6 Encoding conventions and NOALIONc.cceiiiieienieieetieeeeese sttt e e e e s re st s aesreere e e esaeseestesresnens 5
7 ThE ECN CharaCLEr SEL.......cciuirieiiterieerti ettt bbbttt sttt bt 6
8 L O VL= I (o SRR 6
S I R = o Toco o [g o o) o = ot = £ (=010 PSSP 6
8.2 ENCOMiNg ODJECt SEL FEFErENCES......cuecieeeiece et e st st b e e re e e e e saenrenne e 7
8.3 ENCOUING ClaSS FEfErENCESccicieiiciececeees ettt et st se e st b e sneene e e e e naeneesre e 7
8.4 RESEIVEI WOIT ITEIMIS... ...ttt ettt st st e saeeseesee st e e seesbesreeneenee e enteseeneeneeens 7
8.5 Reserved encoding Class NAME ITEIMSeiiiirieeie et e b e s be e 7
ST N\ o = A\ (= o TR 8
9 O N IO o= o 8
9.1 Encoding Control Notation (ECN) SPECIfiCaLIONS..........ccureeririeiriirieereieeses e 8
LS A = g Toce o] g o ot PSS PSSP 8
Lo G T = oo o] g o 01 0ot (= 9
LS 2 S = aToro o [9o 0] o= ox S 9
9.5 ENCOUING ODJECE SELS.... ..ttt ettt et b e bbbt et e s b e 10
9.6 Defining NEW eNCOOING ClASSES.......ccuiriiieie ettt se et ae bt e e e b e b enas 10
(AR B T 14 oo = aTeo e (TaTo Mol o] ox = 11
9.8 Differential encoding-AECOUINGccvveiieieeere e sre e 12
9.9 ENcoders optionSin @NCOUINGS.cciiviiririeirie ettt sttt sttt s b e s besb e ebesre e 12
9.10 Properties Of eNCOdiNG ObJECLSc.eiuiriiiiierie ettt et ee bt e e e see b e 12
.11 Par@MELENIZALION.cveiveeetesieiete ettt st et sttt et st et besaeseebeseeseebeseesesbeseesesbeseesenbeseenenreneas 13
.12 GOVEITIONS.ecveeueeueete sttt et e et sh e bt s st s e e e e s e s b e eh e e b e e st e s e e as e R e ne e eh e e R e e Reea s e ne e R e s Rt eb e e st e s e e e e e reneeerennis 13
9.13 General aSPects Of ENCOUINGS.eiveriririeiirieiete ettt sb e bbb e e b e e 13
9.14 Identification of iNfOrMation ElEMENTS.coiiiiiiee e s 14
9.15 Reference fields and determinantS..........cccverieiiireiiereee et sb e st 14
9.16 Replacement Classes and SLIUCIUIES...........ccviireieeereeeereseese e e eeesee e sre st sse e eseeseensesresrennes 14
9.17 Mapping abstract values onto fields of encoding SIrUCLUIES...........ccovreirercinereee e 15
9.18 Transforms and transform COMPOSITEScouireriririeeieie sttt b e e e b e e e 16
9.19 Contents of Encoding Definition MOAUIESccoiiiiiieeicice et 17
9.20 Contents of the ENcoding LinK MOAUIE...........ccooiiiieeeee et 17
9.21 Defining encodings for primitive encoding ClasSeS ..o 17
(1272 N o) o [Tz o g Io) = g oo o [a0 LSS 19
9.23 Combined encoding OBJECE SBLccuciiiieiece e e s erens 20
Lo 127N AN o o 1= 4 Lo 1 oo | 20
9.25 COoNitioNal ENCOGINGS. ... c.eivereeuerterieierie sttt ettt ettt ettt b et et e et s bt et se et b e sae e ebeseenesbe e 20
9.26 Other conditions for applying €NCOINGS........coeiiairieieie et sre s 21
9.27 Encoding control fOr the OPEN tYPE.....ccccue i s se e e sresreens 21
9.28 Changesto ASN.1 Recommendations | International Standards..........ccccocvvivvvvevieeceesenenieseseenes 22

ITU-T Rec. X.692 (11/2008)

Page

10
11

12

13

14
15

16

17

18

19

20
21

iv

I dentifying encoding classes, encoding objects, and encoding ObjeCt SEtSccccvvvveeerecceere s 22

ENCOUING ASN.L EYPES....ceeitieeieitiietertest ettt et b et b et b et b e e et nb et e bbb e 25
O 7= 1= TSRS 25
11.2 Built-in encoding classes used for implicitly generated encoding StrUCtUreS..........cccccevereveecvennene. 25
11.3 Simplification and expansion of ASN.1 notation for encoding PUFPOSES.........ccvvverrereereereereneens 26
11.4 Theimplicitly generated encoding SIUCIUNE..........coirueiriirieerieiees et 28
The Encoding Link MoOdUIE (ELIM) ...ttt st 28
12,1 Structure Of tHE ELIM ..ot sttt sttt bns 28
12,2 ENCOOING LYPES. ... cvitiieiiriiietirtesee sttt sttt s et se st et se s b et e se s b et e s b et e s s benbe e ebenbens 29
APPIICALTON OF BNCOMINGS ...ttt e bbbt eb e eb e b neenes 30
T €1 o 1= SRS 30
13.2 The combined encoding object set and itS apPliCatioN..........ccccvevevereve s s e 30
The Encoding Definition Module (EDIM)c.oeiiieirieirieneesieseeiesiesee s seenes 32
TRNE FENAIMES CLALSE ...ttt sttt e st e besee st s ae e st es e e e enteseesbesbesseeseeseeneeneeseneenrenns 34
15.1 Explicitly generated and eXported StIUCIUIEScouoierieiirere e e e 34
ST \F- 0 4 T o 7= o SRS 35
15.3 Specifying the region for NAME ChaNGES........coviriiiirre e 36
ENCOTiNG ClasS 8SSIONMENEScouiieiiriiieirt ittt ettt bbb bbbt bbb b 37
T A €T o 1= RSSO 37
16.2 Encoding Structure definNition...........ccoeiiie it st s renre e 39
16.3 Alternative encodinNg SIIUCLUE........c.ciirieiriirieirie ettt st 42
16.4 Repetition enCOUiNG SITUCTUIEecueeieeie sttt sttt st st ene e e se e e sreerenee e 42
16.5 Concatenation enCOdiNg SLIUCIUIE..........c.ciiiuietereeeeee ettt seesee et b b sae e e e se e b seesbesae e 42
ENcoding ObjECt ASSIGNMENTSccuiiuicieicie e st s e e e e besa e st e s aeene e e e seenteseenrenneens 43
I €T o 1 TSRS 43
17.2 Encoding With 8 defiNEd SYNLAXcoeoeiirieiririerie e 44
17.3 Encoding With encoding ODJECE SELS........ciueiuiririeie ettt s be e 45
17.4 Encoding uSiNGg ValUE MaPPINGS.....c.civeruereireerereeiesaessessessessessessesseessesssssessessessessssssessessessessessessenns 45
17.5 Encoding an enCodiNg SEIUCLUIE.........cceieieierereeiesiesiesiesteseesseeseeseeseeseessessesseeseesesessessessessessensenns 46
17.6 Differential encoding-dECOTINGccviiruiiririiiriree et 48
A A = w'o o [T To o o1 Lo 0TSSR 48
17.8 Non-ECN definition of encoding ODJECES.........ccveieiiiiie e e 49
Encoding ObjeCt SEt aSSIGNMENES........ccverie et sr et sreeneena e e eneeseesrenne e 50
ST €1 1= SRS 50
18.2 BuUilt-in encoding ODJECE SELS.......oouiiieiei ittt e e 50
V=T o] 0 T a0 IRV = U1 51
ST €1 o 1 SRS 51
19.2 Mapping By EXPliCit VAIUES.........c.ciiiieiiieeree et e 52
19.3 Mapping by MatChing fIEldS.........coiiiie e e 53
19.4 Mapping by #TRANSFORMENCOAING ODJECES......cccieiiie et 54
19.5 Mapping by abstract Value Ordering........ccceiieeieiieieieee st e e e nee s 55
19.6 Mapping by value diStribDULIONcouiiiiiiriiee e e 56
19.7 Mapping integer VAlUES 1O DITS.......oiiiiiieiee ettt s e 57
Defining encoding objects using defined SYNEAX.........cccvcieiererie i s 59
Types used in defined syntaxX SPECITICAIONvceeeeierecre e nre s 59
211 TREUNI T Y8 ettt et bbbt b st b e et b e e ae b et e b e s b 59
21.2 TheENCOdi NOSPACES] ZE 1YPB.. ettt et ae st e e et eae s e neas 60
21.3 TheEncodi ngSpaceDet er m Nat i ON LYPE......cociiiiceie e e 60
21.4 TheUnusedBit SDet er m Nati 0N tYPE. ... ceccerere e nen 61
215 TheQptionalityDet erm Nati ON LYPE ..o eere 61
21.6 TheA ternati veDet erm Nati ON tYPE ...ooeii it 62
21.7 TheRepetitionSpaceDet erm Nati ON tYPE. ..o cerieeiere e e 63

ITU-T Rec. X.692 (11/2008)

22

21.8 TheJUST i fi CAl i ON tY P it e et srenaesnesneeneenen 64

P2 e T I 0 T= T == T Lo [T T IR 1Y oSS 64
21.10 ThePatt ern and Non- NUl | - Pat t € N LYPES.......ooiiiiiiiriereeieee e e 65
21.11 The RANGECONI T i ON LYPE...iiiiiiiriirieiee ettt sttt st ettt see e besee e ebeseeenrens 65
21.12 The COMPAT i SON Y PB..ciiiiiiieceeeeeese sttt e e e e st s s eae e e et e tesaestesaeese e e enseteseeseesneeneeneenen 66
21.13 The Si zeRanNgeCoNdi 11 ON LYPE ..c..cii ittt ne e nean 66
21.14 TheRever sal SpPeci fi Cat i ON TYPE ..o e 67
21.15 THERESUI £ Si ZE LY P ..ttt sttt s e et s ae e ae e e e e e tesaestesneereennenean 67
21.16 TheHandl @Val UESEL LYPe.....coi ettt et sttt e ene s 68
21.17 Thel Nt eger MAPPI NO TYPE .ottt st s b e b e et e ebe e e ere s 68
Commonly used encoding PrOPEITY GIOUDS........ceeeueruerterterseruerieeeereessessessesseseeesssessesseseessesesssssssssessessens 69
22.1 Replacement SPECITICALION.ccciciieceeie e et re s re e e e s e besresresreerens 69
22.1.1 Encoding properties, SyntaX and PUIPOSE........cceiuerrereereerieseessessessesseeseessessessessessesseenees 69
2212 SPeCifiCation rESLIICHIONS.oiveiriereee et 70
22.1.3 ENCOOES CHONS.eiueiueiiiierie sttt ettt sttt se e be e sbe bt saeeae e e e aesbesbesbesaeene e e eneas 71
2214 DECOUES ACHIONS....ccueeetirieeetisiereetesteseetestesestestesestesteseesestesessesbeneebesbenessesteneesessenessessenens 71
22.2 Pre-alignment and padding SPECITiCatiONccccveverierisise st s 72
2221 Encoding properties, syntax and PUIPOSE.........coereeuerierereriereeesieseee e seese e seeeseeseeneees 72
22.2.2 SPeCIfiCation CONSITAINESooviiieiie ettt et s sbe e 72
A T = 0 o0e o L= g ox o] SO S 72
2224 DECOUES ACLIONS......ueieeuirieeetistereete e see sttt sttt st e b sttt st et ettt st s be e ebe b e es 72
22.3 Start pointer SPECITICALIONcoveiiirieiie e bbb 73
22.3.1 Encoding properties, SyntaxX and PUIPOSE........cceiueruererreeriereesieseesreseeseeseeseessesaesseseeneas 73
22.3.2 SPECITICAtioN CONSITAINESccuciviiieie et eeerte sttt e e st eeaeseesresneenens 73
P R T = 0 ola o L= g ox 1 o] OSSPSR 73
P T B = oo (= = o (o] 1P 73
22.4 Encoding SPaCce SPECITICALIONoouiiuiieriiitieeeie ettt sttt e b saesne s 74
22.4.1 Encoding properties, SyntaxX and PUIPOSE........cceiueerereereerieseesresseesesseessessessessessessessessees 74
22.4.2 SPECITICAtioN FESIIICHIONS.cuiieceeceeeesee e ene e enean 74
7 T = 4 Toce o = - o 1 o] = RS 75
2244 DECOOES BCHIOMNS.eiuiiuieeiierte ettt et ettt sttt e se e besbe bt sbesaeeseeseebeseesbesbeeneeneeneaneas 75
22,5 Optionality deterMINGLIONccceciiiieiieriesic e see s e e st e e e e e e e tesresbesresreeseensessessensessessens 76
2251 Encoding properties, SyntaX and PUIPOSE........cceiurrrereereerieseestesseesesseeseeseessessessessesseenees 76
2252 SPeCfiCation rESLIICHIONS.civeiriereee et 76
7 T T = (oo o (= - o [0 < F OSSR 77
2254 DECOUES ACHIONS.....cueieetirieeetisiereeteste et stesee e s te st steste e tesbe e sbesteneebesbe e ebesbeneesesbenessestenenns 77
22.6 AIErnative deterMiNalion..........ccccoerieiiereire et sttt sttt sttt e st st nbne 78
22.6.1 Encoding properties, syntax and PUIPOSE..........coereeuerereeeriereeesieseee st seese e seeesseseeneees 78
22.6.2 SPECITiCAiON FESIIICIONS.....c.i it e sb e 78
P S T = 0 o0e o L= o o] OSSO 79
22.6.4 DECOUES ACLIONS......ueieeuirieeeteriereete sttt sttt sttt st be sttt sttt sttt s be e st sbeneees 79
22.7 Repetition Space SPECITICALTON.cuiiiiereeere e e 79
22.7.1 Encoding properties, SyntaxX and PUIPOSE........coerueeuererreereereesieseesreseeneeseeseestesaesseseeneas 79
22.7.2 SPECITICAioN CONSITAINESccueiviiieiiecieee et sttt e e st re e e eaeseesresreenens 80
P B T = 0 ola o L= o o] SO RTS 81
P (R B = oo o L= = o (o] 1SS 82
22.8 Vaue padding and JUSLITICELIONccoiiiiieiiieeiee et e sneas 82
22.8.1 Encoding properties, SyntaxX, and PUIPOSE........ccieerereereerieseesresseesesseessessessessessessesseesees 82
22.8.2 SPECITiCAioN FESIIICLIONS.......ueiiceeceeeesee st sre e enen 83
P78 T T = 4 Toce o (= - o 1 o] = F SRR 83
22.8.4 DECOOES BCHIOMNS.eiueeueeeiierie ettt ettt sttt sttt e e e be b bt sbesaeeseese e besbesbesbesaeeneeneaneas 84
22.9 ldentification handle SPECITICAIONccueciiiecieercc e e erea 84
22.9.1 Encoding properties, SyntaX and PUIPOSE........ccvrurruereereereeseessessessesseeseessessessessessesseenees 84
22.9.2 SPeCifiCation CONSLIAINTSc.irveuiriirieiriiie e 85
22.9.3 ENCOOEIS ACHIONScueiveeieeuieieseeste sttt ettt et s b e ae e e e et seesbesbe et e st e e ebeseesbesaesnens 85
22,94 DECOUEIS ACHIONS.....eueuereirieririisiesistesteeste ettt sse st be e besbe e e s be e s sesbenesseseens 85
22.10 Concatenation SPECITICALIONc.cieririeierireeeeeerees e e et ssesre e e e e eneesrenrenrenrens 85
22.10.1 Encoding properties, Syntax and PUIPOSE..........ccereeueriereeesereeesieseee e seeie e seeesreseeneees 85
22.10.2 SPeCifiCation CONSITAINEScoiiiieeieeeeee et et se b e sne s 86

ITU-T Rec. X.692 (11/2008)

23

vi

2 O G T o T To (<t = o1 1) 86

22.10.4 DECOUES BCHIONS......ecueeueeeiieriestesteeeeee e testestestesseeseeseesteseesressesseeseeneeteseesressesneeneeneanes 86
22.11 Contained type encoding SPECITICAIONcceiiiiriiie et e 87
22.11.1 Encoding properties, SyntaX and PUIPOSE........cceiueerereereerieseesresseesesseessessessessessessesseesees 87
P N A = 0 ola T L= o o] OSSPSR 87
P72 TS T B = ol L= = 1 o) LSS 87
22.12 Bit reversal SPECITICALION.ccoiiiiieeiee et b e b b se e b saenne s 87
22.12.1 Encoding properties, SyntaxX, and PUIPOSE..........ccueerereereerieseestesseesesseessessessessessessesseesees 87
22.12.2 SPeCifiCation CONSITAINESc.cieieie et ee e seessesnenneas 88
7 R T = oo o = - o 1 o] < TSR 88
22.12.4 DECOUES BCHIOMNS.eiueeueeeiterie st ettt e ee st et st sttt se e e e besbesbesbesaeese e e e beseesbesbeeneeneeneaneas 88
Defined syntax specification for bit-field and CONStrUCLOr ClaSSES.........cccvvieriececicece e 88
23.1 Defining encoding objects for classes in the alternatives Categorycuovvveveveriereseseseseeieenens 88
2311 The defiNEO SYNEAXcvirireeeeriereeie sttt sttt sttt 88
23.1.2 PUrpPOSE @nd FESLIICHIONSeiuiieerieeeeieeeie ettt et a e e b s sbe e nean 89
P22 0 T T = 0 o0o T L= o o] 0 OSSO 89
P22 0 R B = oo o (= = o [TSSO 90
23.2 Defining encoding objects for classesin the bitstring CALEgOrYcovvireeriereerereerereeeseeeeene 90
2321 The defiNEO SYNEBXccoiiierii ettt et b e e b s sbe e nean 90
23.2.2 Mode for the encoding of classesin the bitstring Categoryccceveveverieveveseseenens 90
PG TG T o ¥ 010 == 110 I (= 1 o 91
P T S = 4 Tore o (= - o 1 o] = SR 91
2325 DECOOES BCHIONS.eiueeueieiierie ettt ettt sb e bt se e be b sbe b s aeeseese e beseesbesbesaeeneeneeneas 92
23.3 Defining encoding objects for classes in the boolean categorycccovveevevievirie v, 92
2331 ThedefiNEO SYNBXcoevireii ettt st e e re e ene e enean 92
23.3.2 PUrpose and rESIIICIIONSc.ciuerietirierieie ettt s 93
23.3.3 ENCOUES GCHONS.ciueiueiiiieite sttt ettt sttt se bbbt sbe it eae e e e ae b sbesbesaeeneeeeneas 94
23.34 DECOUES ACHIONS....ccueieeuirieeeterteneeteste et stesee e s te e steste e e tesbe e sbeste e ebesbe e ebesbeneesesteneesessenenns 94
23.4 Defining encoding objects for classes in the characterstring categoryccceocevvvievivviescesesesieennns 95
2341 The defiNeO SYNLAXcciireeiriereeie ettt ettt sb e 95
2342 Mode for the encoding of classesin the characterstring categorycoccveeeeereeeeenene 95
PG TG T = ¥ 0010’ = 110 (= (11 o S 96
P = 0 Tola T L= g ox o] OSSPSR 96
PG TSI B = olo o (= = o 1 o] 1SR 96
23.5 Defining encoding objects for classes in the concatenation Categorycccoveverereserereeienseenens 97
PG T T R I 0 T= o L= 11 o ISV = S 97
PG ST A = ¥ 010 == 110 (= 1 o 98
PG T TeC N = o Toce o (= - o 1 o = SRR 99
2354 DECOOES BCHIOMNS.eiueiueieiierie ettt ettt sttt se e be b sbesbe s st eseese e beseesbesbeeaeeneeneaneas 99
23.6 Defining encoding objects for classesin the integer Categorycovvvvvevieveeereceerere e e 99
23.6.1 ThedefiNEO SYNEAXcceiiieie ittt sttt sr e re e sne e e enean 99
23.6.2 PUrpose and rESIIICIIONSc.ciueietirieiee ettt ettt 99
23.6.3 ENCOUES GCLIONS.oiviitiieiitieieie ettt sttt st b e s bt ae st et e et bbb e s aeene e e eneees 100
23.6.4 DECOUES ACHIONS.....ciiueuiiiirierieiisieieiesteeete e ses e ste e te e sesbese e s besaesesbenbenesbensenesbesseneens 100
23.7 Defining encoding objects for the #CONDI TI ONAL- | NT ClaSS......cocvverivresereeeererene e 100
23.7.1 The defiNEO SYNLAXccceerieieierieeeree bbb 100
23.7.2 PUrp0Se and reStIiCHIONScccciuerieieiiesteeieeee ettt et b e enes 101
P2 I G T = o oro T 1= g ox 1 o ST STS 102
2374 DECOUES ACHIONS.....cuiiueuirtireeeriesieise sttt ettt b et bttt bbbt sbe st ee 103
23.8 Defining encoding objects for classesin the Null CategOrYcccvererirenriineircse e 103
23.8.1 The deEfiNE SYNLAX ..ccveveeiiiiieirieiee ettt st e s ee 103
23.8.2 PUrp0SE and rEStIICHONSccveiueiieeiesie sttt et et te sttt e e sa s e besr et saeereeneennenes 105
PG R G T = o oio o L= g "ox 1 o] SO SPRPS 105
23.8.4 DECOUEN BCHIOMNS.....eiiviieireeeeieeeie e e sie sttt ee e esee st stesaeese et enteseestesbesaessesneeneeeensenes 105
23.9 Defining encoding objects for classes in the octetstring Categoryccoeveveriereienenieeiereee 106
23.9.1 ThedefiNEd SYNLBXccecieieiee ettt sre e s ere e e enes 106
23.9.2 Model for the encoding of classesin the octetstring Categorycooveveererieeeereereene 106
23.9.3 PUrpose and reStIICHIONSceuerveiriirieieiesieeee sttt bbb 107
23.9.4 ENCOUES GCLIONS.oitiitiieieiieieie ettt ettt st b et be st et e e et e sbesaeebeeaeene e e eneees 107
23.9.5 DECOUES ACHIONS.....ciiueuiriirierieiisieieesieeete et et st e te e e s bese e besaesesbebenesbessenestesbenenes 107

ITU-T Rec. X.692 (11/2008)

23.10 Defining encoding objects for classes in the open type Category.......ovvererereniereseseseeeeeeeeens 108

23.10.1 The defiNEO SYNLAXccceerieeeierieeriereee ettt 108

23.10.2 Model for the encoding of classesin the open type categoryc.ccoeeeererienerieenenne 109

23.10.3 PUrpoSe and reStriCHIONScc.coeiieeiesesrecte e eee e se et te st e e se e e besre st saesreeneeneenes 109

23.10.4 ENCOUEr ACHONS......ccceeitiericreerectestee st e st e stesteseesreesteesbeebesabeestessaesbeesbeesbessesnsesanesans 110

23.10.5 DECOUEN BCHIOMNS.....uiiviieereieeieieie ettt e e et sbesaeese e esteseestesbesaesseeneeneeeensenes 110

23.11 Defining encoding objects for classesin the optionality Categoryccocevvveniereiinenieneereeene 110
23.11.1 TR defiNEd SYNLBXccececieiee ettt st se et e st sr e resaeereeneennenes 110

23.11.2 PUrp0Se and reStriClIONSccveeveriereseseesteeeeeere e e see st te et sae e e e e s e tesresresneeresneeneenes 111

220 T I R T oo o = = o £ o 1 = SRR 111

PG T 0 B = oo o L= = 1§ L USSR 111

23.12 Defining encoding objects for classesin the pad Categorycccocvvevevievenesisceccere e 112
23.12.1 The defiNEO SYNEBXcceceeeeiere ettt ere e eneenes 112

23.12.2 PUrpose and rESIIICHIONSc.ceuerieirierieieiesie sttt 113

23.12.3 ENCOUES @CLIONS.oiviiteiuietieieie ettt sttt st st b e sae e st et e e et e b saesbesaeene e e eneees 113

23.12.4 DECOUES ACHIONS.....cueiueueriirienerierieirsesteessesteseeseste e e s tessesesbesesessessesesbestenesbensenessessenenes 113

23.13 Defining encoding objects for classes in the repetition Categoryccovvvvivvevieviecesceereee e 113
23131 The defiNeO SYNLAXccccerieerierieerieree et 113

23.13.2 PUrpoSe and reStriCHIONSccoueruirierieseeeieeeeee ettt r ettt et sbe e ne s 114

23.13.3 ENCOUES ACLIONS......cciiitiericieeiectestee st e steestestesessaeesteesbeebeeabessbesbaesbeesbeesbeensesnsssneesans 114

23.13.4 DECOUES ACLIONS.....cueiueuertirieniriesieee ettt sttt sttt e sttt ettt et sbe b et sbe st ees 114

23.14 Defining encoding objects for the #CONDI TI ONAL- REPETI TI ONclass......cccoovvvnvveievreenenne 114
23.14.1 The defiNE SYNEAX ...veveeiiieieirieie ettt st se st e s es 114

23.14.2 PUrpoSe and reStIiCHONSccccieiieeiesie st et e e re s ettt e e se e e besae st saesreeneennenes 116

23.14.3 ENCOUEr ACLONS......ccieitierieteeteeeeeteectee st e stesaeseesteesteesbeebesabeessessaesbeesbeesbeesesnsesnnesans 116

23.14.4 DECOUEN BCHIOMS.....eiiviiteeeeeeieeeiestes e ste et e e e sees e seesteseesaeese e e esteseestesbesaessesneeneeneensenes 117

23.15 Defining encoding objects for classes in the tag Categorycoceeererere s 117
23.15.1 The defiNE SYNLBXccecieieieie ettt st se et sr et saeereeneeneenes 117

23.15.2 PUrp0Se and reStriClIONSccceoereereriesresieeeeeeseresee e te et sae e seessentesresresnesresneeneenes 118

P20 TN ST T = g Tore o (= = o £ o] = SRS 118

23.15.4 DECOOEN BCHIOMNS.eiviieeiuieuieieie ettt sttt et st sbe b saeeae e e eneeseesbesbesaesbeeaeenee e antenes 119

23.16 Defining encoding objects for classesin the other Categoriesovvevevevevecie v 119
24 Defined syntax specification for the # TRANSFORMENCOAiNG ClaSS.......ccovvvvreieeeeeeereses e 119
24.1 Summary of encoding properties and defined SYNEaXcocoveerereieneneiese e 119
24.2 Source and target Of traNSFONMScoouiiiiie e et e e 122
24.3 Theint-to-iNt traNSfOMM.......ooiece et 122
244 The bool-t0-DOO0I traNSFOMM.....c..ciieiierie e e 124
24.5 The bool-t0-iNt trANSFOMM.......ciie et see e e e 124
24.6 Theint-to-bo0l traNSFOMM.........oii et e bbb 124
24.7 Theint-to-CharS tranSfOMM.......cce i et 125
24.8 Theint-to-bDitS tranSfOrM ..o e 126
24.9 The DitStO-INt traNSFOINMoeice e sttt ae et e e e e 127
24.10 The Char-t0-DitS traNSFOMMN........cieiieeie ettt se et e e e e 127
24.11 The bitSt0-Char tranSfOMML......ccueiiirieeiree e ettt 129
24.12 The bit-to-DitS tranSfOrMcouiiiec e e 130
24.13 The DitStO-bitS tranSfOrM......cce e see e nre e 130
24.14 The chars-to-composite-char tranSFOrM ..o e 131
24.15 The bitst0-compoSite-bitS tranSFOrM..........ccoveiieiisece e e 131
24.16 The octets-to-compOoSite-bitS tranSfOrMccoci i e 131
24.17 The composite-char-to-CharS tranSfOrMcoiiriiiiree e 132
24.18 The composite-bits-10-bitS tranSFOrM..........cooiiii e 132
24.19 The composite-bitS10-0CtELS traNSFONMcceiiiiiece e e 132
25 Complete encodings and the #HOUTER ClaSS......c.cuiviuiririeeieresesieseestesesseeaeseesteseestessessesseeseensessessessessens 132
25.1 Encoding properties, syntax and purpose for the #OUTER ClaSS........ccoeveeireieneneicnenee e 132
25.2 Encoder actionS for #OUTERcoiiiiieiee ettt s e b 133
25.3 Decoder actionS fOr #OUTER.........ccoeiiiieirieiees ettt sttt et b 134
Annex A Addendum to ITU-T RecC. X.680 | ISO/IEC 8824-1ccccereriereiirieeeeeeseenesestesseseeseeseen e senseesns 135

ITU-T Rec. X.692 (11/2008)

vii

A1l EXPorts and impPOrtS ClAUSES.......cccoiirireieciseeeeeestes e e st se e e se e e srestesresnesne s e eseeeensensennens 135

A.2 Addition of REFERENCEccccoiiiiciiisetc ettt sttt st st s et tesaesestesaesesbesaesestesaesestesens 136

A.3 Notation for charaCter StriNg VAIUES...........ooiiiii et 136
Annex B Addendum to ITU-T ReC. X.68L | ISO/IEC 8824-2cccureirineinieinesieneeesenese e siesesse e e 137
2 300 R B T 1 oo LTS 137

B.2 Additional IEXICAl ITEIMScueiieeieeeese et st s seebe e e nnes 137

B.2.1 Ordered valuelist field referenCes..... ..o 137

B.2.2 Ordered encoding object list field references.........cccoceveieverececvecce s 137

B.2.3 Encoding classfield referenCeS........ccoeieiirieie e 137

B.3 Addition of "ENCODING-CLASS"ccocoeieiiteiristeee et e ettt saene s 137

B4 FeldSPEC additiONS........cooieiiiiiiieeieiee et ettt e b e e b et ae e e e saenaas 138

B.5 Fixed-typeordered value list field SPECccvvieicecicse e s 138

B.6 Fixed-class encoding ObjeCt field SPEC.......ccviieieeierere st 138

B.7 Variable-class encoding object field SPEC........cooiiiiiiiie e 138

B.8 Fixed-class encoding object Set field SPECcoiiiririee e e 139

B.9 Fixed-class ordered encoding object list field SPEC......ccvvevieveviiie i 139

B.10 ENCOAiNG ClasS fleld SPECciuiieeeeeeie ettt st st e ne e e renrenns 139

B.11 Ordered value liSt NOLAION........ccoviieieeieeee ettt seestesae e nnas 140

B.12 Ordered encoding ODject liSt NOLALIONcc.eiuiiieiiieee e 140

B.13 Primitive fiEld NAIMESceeuiiiieeese sttt sttt neenes 140

B.14 Additional reSErVE WOIHScceiriiieiiiiiieterieieten ettt sttt seenes 140

B.15 Definition of enCOding ODJECES.......cciriiiiirieiriiriei e 140

B.16 AdditioNSTO "SEIiNG"ciieiiirieiriirieise ettt n ettt nennenen 141

I A = oo o [Ta Tl F= SR 1= Lo 0 o= 141
Annex C Addendum to ITU-T ReC. X.683 | ISO/IEC 8824-4ccoeeeveeeiesesiesieeeeseesese e ste e sreeeenaenaesnenes 142
Annex C Addendum to ITU-T ReC. X.683 | ISO/IEC 88244ccooeecvieieiieieesesieiesesie s sessee e snens 142
C.1 Parameterized @SSINIMENTSoiiiirieieie ettt e sb et ee e e besaesbesbe e st eae e e aneeseeseesee e 142

C.2 Parameterized encoding aSSiGNIMENES.........ccieiiieieeieeie e et ese e te e st e e eae e e eaesresresre e 142

C.3 Referencing parameterized defiNitioNS..........cccovieiireeieeierere s 143

C.4 ACIUA PArEMELES TSteouiiieeeiieeeeiee bbbttt bt b nns 143

F N 0 Lc DI = 1 o= ST 145
Annex E Support for HUffman enNCOdINGS.........cceciiiiiiicie sttt st se e e s reens 171
Annex F Additional information on the Encoding Control Notation (ECN)..........ccoceeeereererereninseseseseeseeens 173
Annex G Summary Of the ECN NOLION..........ccciiriiiiiieree e 174

viii ITU-T Rec. X.692 (11/2008)

I ntroduction

The Encoding Control Notation (ECN) is a notation for specifying encodings of ASN.1 types that differ from those
provided by standardized encoding rules. ECN can be used to encode all types of an ASN.1 specification, but can also
be used with standardized encoding rules such as BER or PER (ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T Rec.
X.691 | ISO/IEC 8825-2) to specify only the encoding of types that have special requirements.

An ASN.1 type specifies a set of abstract values. Encoding rules specify the representation of these abstract values as a
series of bits. ECN is designed to meet the following encoding needs:

a) The need to write ASN.1 types (and get the support of ASN.1 tools in implementations) for established
("legacy™) protocols where the encoding is aready determined and differs from al standardized
encoding rules.

b) The need to produce encodings that are minor variations on standardized rules.

The linkage provided in an ECN specification to an ASN.1 specification is well-defined and machine processable, so
encoders and decoders can be automatically generated from the combined specifications. Thisis a significant factor in
reducing both the amount of work and the possibility of errors in making interoperable systems. Another significant
advantage is the ability to provide automatic tool support for testing.

These advantages are available with ASN.1 alone when standardized encoding rules suffice, but the ECN work
provides these advantages in circumstances where the standardized encoding rules are not sufficient.
NOTE 1 — Currently ECN support only binary-based encodings, but could be extended in the future to cover character-based
encodings.

Annex A forms an integral part of this Recommendation | International Standard, and details modifications to be made
to ITU-T Rec. X.680 | ISO/IEC 8824-1 to support the notation used in this Recommendation | International Standard.

Annex B forms an integral part of this Recommendation | International Standard, and details modifications to be made
to ITU-T Rec. X.681 | ISO/IEC 8824-2 to support the notation used in this Recommendation | International Standard.

Annex C forms an integral part of this Recommendation | International Standard, and details modifications to be made
to ITU-T Rec. X.683 | 1SO/IEC 8824-4 to support the notation used in this Recommendation | International Standard.

NOTE 2 — It is not intended that Annexes A, B and C be progressed as amendments to the referenced Recommendations |
International Standards. The modifications are solely for the purpose of ECN definition (see clause 5 and 9.28).

Annex D does not form an integral part of this Recommendation | International Standard, and contains examples of the
use of ECN.

Annex E does not form an integral part of this Recommendation | International Standard and provides more detail on
the support for Huffman encodings in ECN.

Annex F does not form an integral part of this Recommendation | International Standard, and identifies a Web site
providing access to further information and links relevant to ECN.

Annex G does not form an integral part of this Recommendation | International Standard, and provides a summary of
ECN using the notation of clause 5.

ITU-T Rec. X.692 (11/2008) iX

| SO/IEC 8825-3:2008 (E)

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology —
ASN.1 encoding rules:
Specification of Encoding Control Notation (ECN)

1 Scope

This Recommendation | International Standard defines a notation for specifying encodings of ASN.1 types or of parts
of types.

It provides several mechanisms for such specification, including:
— direct specification of the encoding using standardized notation;
— gpecification of the encoding by reference to standardized encoding rules;
— gpecification of the encoding of an ASN.1 type by reference to an encoding structure;
— gpecification of the encoding using non-ECN notation.
It also provides the meansto link the specification of encodings to the type definitions to which they are to be applied.

ECN does not currently provide any support for specifications using the OID internationalized resource identifier type
or the relative OID internationalized resource identifier type (see ITU-T Rec. X.680 | ISO/IEC 8824-1), and these are
not referred to further in this Standard.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
consgtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and International Standards are subject to revision, and parties to agreements based
on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most
recent edition of the Recommendations and Standards listed below. Members of IEC and SO maintain registers of
currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of
currently valid ITU-T Recommendations.

2.1 ldentical Recommendations| I nter national Sandards

— ITU-T Recommendation X.660 (1992) | |SO/IEC 9834-1:1993, Information technology — Open Systems
Interconnection — Procedures for the operation of OS Registration Authorities. General procedures.
(plus amendments).

— ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation

— ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (2008) | ISO/IEC 8825-1:2008, Information technology — ASN.1
encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER).

ITU-T Rec. X.692 (11/2008) 1

| SO/IEC 8825-3:2008 (E)

— ITU-T Recommendation X.691 (2008) | ISO/IEC 8825-2:2008, Information technology — ASN.1
encoding rules: Specification of Packed Encoding Rules (PER).
NOTE 1 — Notwithstanding the SO publication date, the above specifications are normally referred to as "ASN.1:2008".

NOTE 2 — The above references shall be interpreted as references to the identified Recommendations | International Standards
together with all their published amendments and technical corrigenda.

2.2 Additional references

— ISO/EC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

NOTE — The above reference shall be interpreted as a reference to |SO/IEC 10646 together with all its published amendments
and technical corrigenda.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 ASN.1definitions

This Recommendation | International Standard uses the terms defined in clause 3 of ITU-T Rec. X.680 | ISO/IEC
8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC
8824-4, ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T Rec. X.691 | ISO/IEC 8825-2.

3.2 ECN-specific definitions

3.21 alignment point: The point in an encoding (usually its start) which serves as a reference point when an
encoding specification requires alignment to some boundary.

3.22 auxiliary field: A field of areplacement structure (that is added in the ECN specification) whose value is set
directly by the encoder without the use of any abstract value provided by the application.

NOTE — An example of an auxiliary field is alength determinant for an integer encoding or for a repetition.

3.23 hit-field: Contiguous bits or octets in an encoding which are decoded as a whole, and which either represent
an abstract value, or provide information (such as a length determinant for some other field — see 3.2.31) needed for
successful decoding, or both.

NOTE - Itisin legacy protocolsthat "or both" sometimes occurs.

3.24 bit-field class: An encoding class whose objects specify the encoding of abstract values (of some ASN.1 type)
into hits.
NOTE — Other encoding classes are concerned with more general encoding procedures, such as those required to determine the
end of repetitions of bit-field class encodings, or to determine which of a set of aternative bit-field encodingsis present.

3.25 bounds condition: A condition on the existence of bounds of an integer field (and whether they allow
negative values or not) which, if satisfied, means that specified encoding rules are to be applied.

3.26 choice determinant: A hit-field which determines which of severa possible encodings (each representing
different abstract values) is present in some other bit-field.

3.2.7 combined encoding object set: A temporary set of encoding objects produced by the combination of two sets
of encoding objects for the purpose of applying encodings.

3.2.8 conditional encoding: An encoding which isto be applied only if some specified condition is satisfied.
NOTE — The condition may be a bounds condition or a size range condition, or other more complex conditions.

3.29 containing type: An ASN.1 type (or encoding structure field) where a contents constraint has been applied to
the values of that type (or to the values associated with that encoding structure field).

NOTE — The ASN.1 types to which a contents constraint (using CONTAI Nl NG ENCODED BY) can be applied are the bitstring and
the octetstring types.

3.210 current application point: The point in an encoding structure at which a combined encoding object set is
being applied.

3.211 differential encoding-decoding: The specification of rules for a decoder that require the acceptance of
encodings that cannot be produced by an encoder conforming to the current specification.

2 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

NOTE - Differential encoding-decoding supports the specification of decoding by a decoder (conforming to an initial version of
a standard) which is intended to enable it to successfully decode encodings produced by alater version of that standard. Thisis
sometimes referred to as support for extensibility.

3.2.12 encoding class: The set of all possible encodings for a specific part of the procedures needed to perform the
encoding or decoding of an ASN.1 type.

NOTE - Encoding classes are defined for the encoding of primitive ASN.1 types, but are also defined for the procedures
associated with ASN.1 tag notation, the use of OPTI ONAL and for encoding constructors.

3.2.13 encoding class category: Encoding classes with some common characteristics.
NOTE — Examples are the integer category, the boolean category, and the concatenation category.

3.2.14 encoding constructor: An encoding class whose encoding objects define procedures for combining, selecting,
or repeating parts of an encoding. (Examples are the #ALTERNATI VES, #CHO CE, #CONCATENATI ON, #SEQUENCE, €tc.
classes.)

3.215 Encoding Definition Modules (EDM): Modules that define encodings for application in the Encoding Link
Module.

3.216 Encoding Link Module (ELM): The (unique, for any given application) module that assigns encodings to
ASN.1 types.

3.2.17 encoding object: The specification of some part of the procedures needed to perform the encoding or
decoding of an ASN.1 type.

NOTE — Encoding objects can specify the encoding of primitive ASN.1 types, but can also specify the procedures associated
with ASN.1 tag notation, the use of OPTI ONAL and with encoding constructors.

3.2.18 encoding object set: A set of encoding objects.

NOTE — An encoding object set is normally used in the Encoding Link Module to determine the encoding of all the top-level
types used in an application.

3.2.19 encoding property: A piece of information used to define an encoding using the notation specified in clauses
23, 24 and 25.

3.2.20 encoding space: The number of bits (or octets, words or other units) used to encode an abstract value into a
bit-field (see 9.21.5).

3.221 encoding structure: The structure of an encoding, defined either from the structure of an ASN.1 type
definition, or in an EDM using bit-field classes and encoding constructors.
NOTE 1 — Use of an encoding structure is only one of several mechanisms (but an important one) that the Encoding Control
Notation provides for the definition of encodings for ASN.1 types.
NOTE 2 — Definition of an encoding structureis also the definition of a corresponding encoding class.

3.2.22 explicitly generated encoding structure: An encoding structure derived from an implicitly generated
encoding structure by use of the renames clause in an EDM.

3.2.23 extensibility: Provisionsin an early version of a standard that are designed to maximize the interworking of
implementations of that early version with the expected implementations of alater version of that standard.

3.2.24 fully-qualified name: A reference to an encoding class, object, or object set that includes either the name of
the EDM module in which that encoding class, object, or object set was defined, or (in the case of an implicitly
generated encoding class) the name of the ASN.1 modulein which it was generated. (Seealso 3.2.43.)

NOTE — A fully-qualified name (see production "External EncodingClassReference” in 10.6) has to be used in the body of a

module if the encoding class is an implicitly generated encoding structure whose name is the same as a reserved class name, or if
use of the name alone would produce ambiguity due to multiple imports of classes with that name. (See A.1/13.16).

3.2.25 generated encoding structure: An implicitly or explicitly generated encoding structure whose purpose is to
define the encodings of the corresponding ASN.1 type through application of encodingsin the ELM.

3.2.26 governor: A part of an ECN specification which determines the syntactic form (and semantics) of some other
part of the ECN specification.

NOTE — A governor is an encoding class reference, and it determines the syntax to be used for the definition of an encoding
object (of that class). The concept is the same as the concept of a type reference in ASN.1 acting as the governor for ASN.1
value notation.

3.2.27 handle value set: The specified set of all possible values of the identification handle that is exhibited by an
encoding object.

ITU-T Rec. X.692 (11/2008) 3

| SO/IEC 8825-3:2008 (E)

3.2.28 identification handle: Part of an encoding which serves to distinguish the encodings produced by one
encoding object (of a given class) from those produced by other encoding objects (of other classes).

NOTE — The ASN.1 Basic Encoding Rules use tags to provide identification handlesin BER encodings.

3.2.29 implicitly generated encoding structure: The encoding structure that is implicitly generated and exported
whenever atypeisdefined in an ASN.1 module.

3.2.30 initial application point: The point in an encoding structure at which any given combined encoding object set
isfirst applied (in the ELM and in EDMS) .

3.2.31 length determinant: A bit-field that determines the length of some other bit-field.
3.2.32 negativeinteger value: A value lessthan zero.

3.2.33 non-negativeinteger value: A value greater than or equal to zero.

3.2.34 non-positiveinteger value: A value less than or equal to zero.

3.2.35 optional bit-field: A bit-field that is sometimes included (to encode an abstract value) and is sometimes
omitted.

3.236 positiveinteger value: A value greater than zero.
3.2.37 presencedeterminant: A bit-field that determines whether an optional bit-field is present or not.

3.2.38 primitive class: An encoding class which is not an encoding structure, and which cannot be de-referenced to
some other class (see 16.1.14).

3.2.39 recursive definition (of a reference name): A reference name for which resolution of the reference name, or
of the governor of the definition of the reference name, requires resolution of the original reference name.

NOTE — Recursive definition of an encoding class (including an encoding structure) or an encoding object is permitted (but see
17.1.4). Recursive definition of an encoding object set is forbidden by 18.1.3.

3.240 recursive instantiation (of a parameterized reference name): An instantiation of a reference name, where
resolution of the actual parameters requires resolution of the original reference name.

NOTE — Recursive instantiation of an encoding class (including an encoding structure) or an encoding object is permitted (but
see 17.1.4). Recursive instantiation of an encoding object set is forbidden by 18.1.3.

3.241 replacement structure: A parameterized structure used to replace some or al parts of a construction before
encoding the construction.

3.242 self-delimiting encoding: An encoding for a set of abstract values such that there is no abstract value that has
an encoding that is an initial sub-string of the encoding of any other abstract value in the set.

NOTE — This includes not only fixed-length encodings of a bounded integer, but also encodings generally described as
"Huffman encodings" (see Annex E).

3.243 simplereference name: A reference to an encoding class, object, or object set that includes neither the name
of the EDM module in which that encoding class, object, or object set was defined, nor (in the case of an implicitly
generated encoding class) the name of the ASN.1 module in which it was generated.

NOTE — A simple reference name can only be used when the reference to the encoding class is unambiguous, otherwise a
fully-qualified name (see 3.2.24) hasto be used in the body of a module.

3.2.44 size range condition: A condition on the existence of effective size constraints on a string or repetition field
(and whether the constraint includes zero, and/or allows multiple sizes) which, if satisfied, means that specified
encoding rules are to be applied.

3.245 source governor (or source class): The governor that determines the notation for specifying abstract values
associated with a source class when mapping them to atarget class.

3.246 start pointer: An auxiliary field indicating the presence or absence of an optional bit-field, and in the case of
presence, containing the offset from the current position to the bit-field.

3.2.47 target governor (or target class): The governor that determines the notation for specifying abstract values
associated with atarget class when mapping to them from a source class.

3.2.48 top-level type(s): Those ASN.1 type(s) in an application that are used by the application in ways other than to
define the components of other ASN.1 types.
NOTE 1 - Top-level types may also be used (but usually are not) as components of other ASN.1 types.

4 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

NOTE 2 — Top-level types are sometimes referred to as "the application's messages’, or "PDUS". Such types are normally
treated specially by tools, as they form the top-level of programming language data-structures that are presented to the
application.

3.249 transforms: Encoding objects of the class # TRANSFORMwhich specify that the encoding of the abstract values
associated with some class (or of transform composites — see 3.2.50) is to be the encoding of different abstract values
associated with the same or a different class (or of transform composites).

NOTE — Transforms can be used, for example, to specify simple arithmetic operations on integer values, or to map integer values
into characterstrings or bitstrings.

3.250 transform composites. An ordered list of elements that can itself be the source or the result of transforms.
NOTE — All the elements of a composite are required to have the same classification (see 9.18.2).

3.251 valueencoding: The way in which an encoding space is used to represent an abstract value (see 9.21.5).

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BCD Binary Coded Decimal
BER Basic Encoding Rules of ASN.1
CER Canonica Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
ECN Encoding Control Notation for ASN.1
EDM Encoding Definition Module
ELM Encoding Link Module
PDU Protocol Data Unit
PER Packed Encoding Rules of ASN.1

5 Definition of ECN syntax

51 This Recommendation | International Standard employs the notational convention defined in ITU-T
Rec. X.680 | ISO/IEC 8824-1, clause 5.

5.2 This Recommendation | International Standard employs the notation for information object classes defined in
ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex B.

53 This Recommendation | International Standard references productions defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1 as modified by Annex A, ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex B, and ITU-T
Rec. X.683 | ISO/IEC 8824-4 as modified by Annex C.

6 Encoding conventions and notation

6.1 This Recommendation | International Standard defines the value of each octet in an encoding by use of the
terms "most significant bit" and "least significant bit".
NOTE — Lower layer specifications use the same notation to define the order of bit transmission on a seria line, or the
assignment of bitsto parallel channels.

6.2 For the purpose of this Recommendation | International Standard, the bits of an octet are numbered from 8
to 1, where bit 8 is the "most significant bit" and bit 1 isthe "least significant bit".

6.3 For the purposes of this Recommendation | International Standard, encodings are defined as a string of bits
starting from a"leading bit" through to a"trailing bit". On transmission, the first eight bits of this string of bits starting
with the "leading bit" shall be placed in the first transmitted octet with the leading bit as the most significant bit of that
octet. The next eight bits shall be placed in the next octet, and so on. If the encoding is not a multiple of eight bits,
then the remaining bits shall be transmitted asif they were bits 8 downwards of a subsequent octet.

NOTE — A complete ECN encoding is not necessarily always a multiple of eight bits, but an ECN specification can determine
the addition of padding to ensure this property.

ITU-T Rec. X.692 (11/2008) 5

| SO/IEC 8825-3:2008 (E)

6.4 When figures are shown in this Recommendation | International Standard, the "leading bit" is always shown
on the left of the figure.

7 The ECN character set

7.1 Use of the term "character" throughout this Recommendation | International Standard refers to the characters
specified in 1SO/IEC 10646, and full support for al possible ECN specifications can require the representation of all
these characters.

7.2 With the exception of comment (as defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.6), non-ECN
definition of encoding objects (see 17.8) and character string values, ECN specifications use only the characters listed
in Table 1.

7.3 Lexical items defined in clause 8 consist of a sequence of the characterslisted in Table 1.
NOTE — Additional restrictions on the permitted characters for each lexical item are specified in clause 8.

Table1l—-ECN characters

0to9 (DIGITZEROtoDIGIT9)
Ato Z (LATINCAPITAL LETTERA to LATIN CAPITAL LETTER 2)
atoz (LATINSMALL LETTERA toLATIN SMALL LETTERZ)
" (QUOTATION MARK)
(NUMBER SIGN)
& (AMPERSAND)
(APOSTROPHE)
((LEFT PARENTHESIS)
) (RIGHT PARENTHESIS)
: (COMMA)
- (HYPHEN-MINUS)
(FULL STOP)
: (COLON)
: (SEMICOLON)
LESS-THAN SIGN
(EQUALS SIGN)
GREATER-THAN SIGN
(LEFT CURLY BRACKET)
(VERTICAL LINE)
(RIGHT CURLY BRACKET)

N

— — ~ v

7.4 There shall be no significance placed on the typographical style, size, colour, intensity, or other display
characteristics.

75 The upper-case and lower-case |etters shall be regarded as distinct.

8 ECN lexical items

In addition to the ASN.1 lexical items specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 12, this
Recommendation | International Standard uses lexical items specified in the following subclauses. The general rules
specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, apply in this clause.

NOTE — Annex G lists al lexical items and all the productions used in this Recommendation | International Standard, identifying
those that are defined in ITU-T Rec.X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2 and ITU-T Rec. X.683 |
ISO/IEC 8824-4.

8.1 Encoding object references

Name of item — encodingobjectreference

6 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

An "encodingobjectreference” shall consist of the sequence of characters specified for a"valuereference” in ITU-T Rec.
X.680 | ISO/IEC 8824-1, 12.4. In anayzing an instance of use of this notation, an "encodingobjectreference” is
distinguished from an "identifier" by the context in which it appears.

8.2 Encoding object set references
Name of item - encodingobjectsetreference

An "encodingobjectsetreference” shall consist of the sequence of characters specified for a "typereference” in ITU-T
Rec. X.680 | ISO/IEC 8824-1, 12.2. It shall not be one of the character sequences listed in 8.4.

8.3 Encoding classreferences
Name of item — encodingclassreference

An "encodingclassreference” shall consist of the character "#" followed by the sequence of characters specified for a
"typereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.2. It shall not be one of the character sequences listed in
8.5 except in an EDM imports list (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.20, as modified by A.1) or in an
"External EncodingClassReference” (seethe Notein 14.11).

84 Reserved word items

Names of reserved word items:

ALL FI ELDS PER- BASI G- UNALI GNED
AS FROM PER- CANONI CAL- ALI GNED
BEG N GENERATES PER- CANONI CAL- UNALI GNED
BER I F PLUS- I NFI NI TY

BI TS I MPORTS REFERENCE

BY I'N REMAI NDER

CER LI NK- DEFI NI TI ONS RENAMES

COVPLETED MAPPI NG S| ZE

DECCDE MAX STRUCTURE

DER M N STRUCTURED

DI STRI BUTI ON M NUS-I NFINITY TO

ENCCDE NON- ECN- BEG N TRANSFCRVS

ENCODI NG- CLASS NON- ECN- END TRUE

ENCODE- DECODE NULL UNI ON

ENCCDI NG- DEFI NI TI ONS OPTI ONAL- ENCODI NG USE

END CPTI ONS USE- SET

EXCEPT ORDERED VALUES

EXPORTS QUTER W TH

FALSE PER- BASI G- ALI GNED

Items with the above names shall consist of the sequence of characters in the name.

NOTE — The words (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.9) used in the definition of encoding classes (within a"WITH
SYNTAX" statement) in clause 23 are not reserved words (see also B.14).

8.5 Reserved encoding class nameitems

Names of reserved encoding class name items:

#ALTERNATI VES #ENUMERATED #OUTER

#BI TS #EXTERNAL #PAD

#BI T- STRI NG #CGener al i zedTi ne #Printabl eString
#BMPSt ri ng #Ceneral String #REAL

#BOOL #G aphicString #RELATI VE-AQ D
#BOOLEAN #1 ASStri ng #REPETI TI ON
#CHARACTER- STRI NG #1 NT #SEQUENCE

#CHARS #1 NTEGER #SEQUENCE- OF
#CHO CE #NUL #SET
#CONCATENATI ON #NULL #SET- OF

#CONDI TI ONAL- | NT #NumericString #TAG

#CONDI TI ONAL- REPETI TI ON #OBJECT- | DENTI FI ER #Tel etexString
#DATE #Qbj ect Descri ptor #TI ME

#DATE- TI ME #COCTETS #TI ME- OF- DAY
#DURATI ON #OCTET- STRI NG #TRANSFORM
#EMBEDDED- PDV #OPEN- TYPE #Uni versal String
#ENCODI NGS #OPTI ONAL #UTCTi ne

ITU-T Rec. X.692 (11/2008)

7

| SO/IEC 8825-3:2008 (E)

#UTF8St ri ng #Vi deot exString #Vi si bl eString

Items with the above names shall consist of the sequence of characters in the name.

8.6 Non-ECN item
Name of item — anystringexceptnonecnend

An "anystringexceptnonecnend” shall consist of one or more characters from the ISO/IEC 10646 character set, except
that it shall not be the character sequence NON- ECN- END nor shall that character sequence appear within it.

9 ECN Concepts

This clause describes the main concepts underlying this ITU-T Recommendation | Internationa Standard.

9.1 Encoding Control Notation (ECN) specifications

9.1.1 ECN specifications consist of one or more Encoding Definition Modules (EDMs) which define encoding rules
for ASN.1 types, and asingle Encoding Link Module (ELM) that applies those encoding rules to ASN.1 types.

9.1.2 The most important part of ECN is the concept of an encoding structure definition. ASN.1 is used to define
complex abstract values using primitive types and constructors. In the same way, complex encodings can be defined
using a similar notation where construction mechanisms are used to combine simple bit-fields into more complex
encodings, and eventually into complete messages. This is called encoding structure definition. In using ECN with
ASN.1, itisnecessary in principle to:

a) definethe abstract syntax (the set of abstract values to be communicated, and their semantics); and
b) the encoding structure (the structure of fields) used to carry these abstract values; and
c) torelate the components of the abstract value to the encoding structure fields; and

d) to define the encoding of each encoding structure field and mechanisms for identifying repetitions of
fields and identification of alternatives, etc.

9.1.3 The above process normally takes part in several stages. First an ASN.1 definition is produced detailing the
abstract syntax. From this a crude encoding structure is automatically generated (conceptually within the ASN.1
module). Thisimplicitly generated structure contains only fields that carry the application semantics, without fields for
things like length determination, alternative selection, and so on.

9.1.4 This structure can be transformed by a series of mechanisms into the structure of fields that is actualy
required, including all fields needed to support the decoding activity (determinants). These mechanisms all involve
some form of replacement of a simple field carrying application semantics by a more complex structure. Such
replacements form an important part of ECN specification.

9.1.5 We can further define encoding objects for each of the fields in the final structure. These determine not only
the encoding of fields, but also the way in which one field determines the length (for example) of another, or has its
optionality resolved.

9.1.6 The above definitions occur in Encoding Definition Modules (EDMs). The last step is to apply a set of
defined encoding objects to the final encoding structure in order to completely determine an encoding. Thisisdonein
the Encoding Link Module (ELM).

9.2 Encoding classes

9.21 Anencoding class is an implicit property of all ASN.1 types, and represents the set of all possible encoding
specifications for that type. It provides a reference that allows Encoding Definition Modules to define encoding rules
for encoding structure fields corresponding to the type. Encoding class names begin with the character "#".

Example: Encoding rules for the ASN.1 built-in type | NTEGER are defined by reference to the encoding class
#| NTEGER, and encoding rules for a user-defined type "My- Type" are defined by reference to the encoding class

#MW- Type.
9.2.2 Thereare severa kinds of encoding classes:

9.2.2.1 Built-in encoding classes — There are built-in encoding classes with names such as#| NTEGER and #BOOLEAN.
These enable the definition of special encodings for primitive ASN.1 types. There are aso built-in encoding classes for

8 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

encoding constructors such as #SEQUENCE, #SEQUENCE- OF and #CHO CE (see also 9.3.2), and for the definition of
encoding rules for handling optionality through #0PTI ONAL. Encoding of tags is supported by the #TAG class. Finaly,
there are some built-in classes (#OUTER, #TRANSFORM and others) that allow the definition of encoding procedures
which are part of the encoding/decoding process, but which do not directly relate to any actual bit-field or ASN.1
construct.

9.2.2.2 Encoding classes for implicitly generated encoding structures — These have names consisting of the
character "#" followed by the "typereference” appearing in a " TypeAssignment” in an ASN.1 module. Such encoding
classes are implicitly generated whenever a (non-parameterized) "typereference” is assigned in an ASN.1 module, and
can be imported into an Encoding Definition Module to enable the definition of special encodings for the
corresponding ASN.1 type. These encoding classes represent the structure of an ASN.1 encoding, and are formed from
the built-in encoding classes mirroring the structure of the ASN.1 type definition.

9.2.2.3 Encoding classes for user-defined encoding structures — These are encoding classes defined by the ECN
user by specifying an encoding structure (see 9.3) as a structure made up of bit-fields and encoding constructors. These
encoding structures are similar to the implicitly generated encoding structures, but the ECN user has full control of their
structure. These classes enable complex encoding rules to be defined, and are important for the use of ASN.1 with ECN
for specifying legacy protocols, where additional bit-fields are needed in the encoding for determinants.

9.2.2.4 Encoding classes for explicitly generated encoding structures — These are encoding classes produced from
an implicitly generated encoding structure by selectively changing the names of certain classes in order to indicate
places where specialized encodings are needed for optionality, sequence-of termination, etc.

9.3 Encoding structures

9.3.1 Encoding structure definitions have some similarity to ASN.1 type definitions, and have a name beginning
with the character "#", then an upper-case letter. Each encoding structure definition defines a new encoding class (the
set of al possible encodings of that encoding structure). Encoding structures are formed from fields which are either
built-in encoding classes or the names of other encoding structures, combined using encoding constructors (which
represent the set of al possible encoding rules that support their type of construction mechanism, and are hence called
encoding classes). (See D.2.8.4 for an example of an encoding structure definition.)

9.32 The most basic encoding constructors are #CONCATENATI ON, #REPETI TI ON, and #ALTERNATI VES,
corresponding roughly to ASN.1 sequence (and set), sequence-of (and set-of), and choice types. There is also an
encoding class #0OPTI ONAL that represents the optional presence of encodings, corresponding roughly to ASN.1
DEFAULT and OPTI ONAL markers.

9.3.3 Anencoding structure definition defines a structure-based encoding class. Such classes cannot have the same
names as encoding classes that are imported into the module. (See ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.13, as
modified by A.1 of this Recommendation | International Standard).

9.34 Encoding structure names can be exported and imported between Encoding Definition Modules and can be
used whenever an encoding class name in the bit-field group of categories (see 9.6) isrequired.

9.35 Values of ASN.1 types (primitive or user-defined) can be mapped to fields of an encoding structure, and
encoding rules for that structure then provide encodings of the ASN.1 type. (Vaues mapped to encoding structures can
be further mapped to fields of more complex encoding structures.) This provides a very powerful mechanism for
defining complex encoding rules.

9.4 Encoding objects

9.4.1 Encoding objects represent the specific definition of encoding rules for a given encoding class. Usualy the
rules relate to the actual bits to be produced, but can also specify procedures related to encoding and decoding, for
example the way in which the presence or absence of optional components is determined.

9.4.2 In order to fully define the encoding of ASN.1 types (typicaly the top-level type(s) of an application), it is
necessary to define (or obtain from standardized encoding rules) encoding objects for al the classes that correspond to
components of those ASN.1 types and for the encoding constructors that are used.

9.4.3 For legacy protocols, this may have to be done by defining a separate encoding object for every component of
an ASN.1 type, but it is more commonly possible to use encoding objects defined by standardized encoding rules (such
as PER).

9.4.4 Although BER and PER encoding specifications pre-date ECN, within the ECN model they simply define
encoding objects for all classes corresponding to the ASN.1 primitive types and constructors (that is, for al the built-in

ITU-T Rec. X.692 (11/2008) 9

| SO/IEC 8825-3:2008 (E)

encoding classes). BER and PER are also considered to provide encoding objects for encoding classes used in the
definition of encoding structures (see 18.2).

9.5 Encoding object sets

9.5.1 Encoding objects can be grouped into sets in the same way as information objectsin ASN.1, and it is these sets
of encoding objects that are (in an ELM) applied to an ASN.1 type to determine its encoding. The governor used when
forming these encoding object setsis the reserved word #ENCCDI NGS. (See D.1.14 for an example.)

9.5.2 A fundamental rule of encoding object set construction is that any set can contain only one encoding object of
agiven encoding class (see also 9.6.2). Thus there is no ambiguity when an encoding object set is applied to atype to
defineits encoding.

9.5.3 There are built-in encoding object sets for all the variants of BER and PER, and these can be used to complete
sets of user-defined encoding objects.

9.6 Defining new encoding classes

9.6.1 Those familiar with ASN.1 will be aware that a type assignment can be used to create new names (new types)
from, for example, the types | NTEGER or BOOLEAN. The new names identify types that are the same as | NTEGER or
BOOLEAN, but carry different semantics. This concept is extended in ECN to allow the creation (in a class assignment —
see 16.1.1) of new names (new classes) for constructors such as #SEQUENCE. The new names identify classes that
perform a similar function in structuring encodings (for example, concatenation), but which are to have different
encoding objects applied to them. A new class name assigned for an old class retains certain characteristics of that old
class. So an assignment such as "#My- Sequence :: = #SEQUENCE" creates the new class name #My- Sequence which
is still an encoding class concerned with the concatenation of components. We say that such encoding classes arein the
same category.

9.6.2 If anew encoding class is created from an existing encoding class, encoding objects of both the old encoding
class and the new encoding class can appear in an encoding object set.

9.6.3 All built-in encoding classes are derived from one of a small number of primitive encoding classes. Thus
#SEQUENCE and #SET are both derived from the #CONCATENATI ON class, #I NTEGER and #ENUMERATED are both
derived from the #I NT class, and the classes for the different ASN.1 character string types are al derived from the
#CHARS class. An encoding structure (for example, one implicitly generated from an ASN.1 type) can contain a mix of
different classes al derived from the same primitive class, enabling different encodings to be applied to #SEQUENCE
and #SET (for example).

9.6.4 It is often convenient to put encoding classes into categories, based on the primitive class they are derived
from. Thus we say that #1 NTEGER, #ENUMERATED and #I NT (and any class derived from them in a class assignment
statement such as "#MW-int ::= #l NT") are in the integer category. There are also groups of categories that contain
very different classes that share some characteristic. Thus any class that can have abstract values directly associated
with it, and hence which produces bitsin an encoding, is said to be in the bit-field group of categories. Thus al classes
that are in the integer or the boolean or the characterstring category are in the bit-field group of categories. Classes that
are responsible for grouping or repeating encodings (for example classes in the aternatives or the repetition category)
are in the encoding constructor group of categories. There are also two classes whose encoding objects define
procedures not directly related to constructing an encoding (#TRANSFORMand #OUTER): these are described as being in
the encoding procedure group of categories. Encoding structures are defined using classes in the bit-field group of
categories that are combined using classes in the encoding constructor group of categories, together with classes in the
optionality (representing encoding procedures for resolving optionality) and tag (representing encoding of tags)
categories. All such classes are in the encoding structure category (and also in the hit-field group of categories).

9.6.5 For the primitive classes, the category is directly assigned. For classes created in an encoding class assignment
statement, the category is determined by the notation to the right of the ": : =" symbol. If that notation is an encoding
structure definition, then the class is in both the encoding structure category and in the bit-field group of categories. If
the notation is a simple class reference name, then the category of the new class is the same as the category of the class
being assigned.
9.6.6 The categories of encoding class (see 16.1.3) are:

— Theadlternatives category (classes that are derived by class assignment from #ALTERNATI VES).

— The concatenation category (classes that are derived by class assignment from #CONCATENATI ON).

— Therepetition category (classes that are derived by class assignment from #REPETI Tl ON).

10 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

— Theoptionality category (classes that are derived by class assignment from #0PTI ONAL).
— Thetag category (classesthat are derived by class assignment from #TAG).

— Theboolean, bitstring, characterstring, integer, null, objectidentifier, octetstring, opentype, pad, real, and
time categories (categories for classes that are derived from the corresponding primitive classes).

— Theencoding structure category (classes generated from ASN.1 type definitions, or by explicit definition
of an encoding structure).

9.6.7 Thefollowing groups of categories are defined:

— The bit-field group of categories (classes that correspond to actua fields in an encoding such as those in
the integer or boolean categories, together with any class in the encoding structure category). Classesin
this group of categories are also referred to as bit-field classes.

— The encoding constructor group of categories (classes that are in the alternatives, concatenation, or
repetition categories). Classes in this group of categories are also referred to as encoding constructor
classes.

— Theencoding procedure group of categories (classes not directly related to ASN.1 constructs, and which
cannot be assigned new names — #OUTER, #TRANSFORM #CONDI TI ONAL- | NT, #CONDI Tl ONAL-
REPETI TI ON). Classesin this group of categories are also referred to as encoding procedure classes.

9.7 Defining encoding objects

There are eight mechanisms available for defining an encoding object of a given encoding class. They are not all
available for al encoding classes.

9.7.1 Thefirst is to specify it as the same as some other defined encoding object of the required class. This does
nothing more than provide a synonym for encoding objects.

9.7.2 The second, available for a restricted set of encoding classes, is to use a defined syntax (see 17.2) to specify
the information needed to define an encoding object of that class. Much of the information needed is common to al
encoding classes, but some of the information always depends on the specific encoding class. (See D.1.1.2 for an
example of defining an encoding object of class #BO0LEAN which contains encodings for the ASN.1 type boolean.)

9.7.3 Thethird, available for al encoding classes, is to define an encoding object as the encoding of the required
class which is contained in some existing encoding object set. Thisis mainly of use in naming an encoding object for a
particular class that will perform BER or PER encodings for that class.

NOTE — This can often be useful, but requires knowledge of the encodings produced by standardized encoding rules.

9.74 The fourth is to map the abstract values associated with an encoding class ("#A", say) to abstract values
associated with another (typically more complex) encoding class ("#B", say), and to define an encoding object for "#B"
(using any of the available mechanisms). An encoding object for the abstract values associated with "#A" can now be
defined as the application to the corresponding abstract values associated with "#B" of the encoding object for "#B".
(See D.2.8.3 for an example.) There are many variants of this (see 9.17).

NOTE — This is the model underlying the definition of an object for encoding an integer type in BER. The integer is mapped to

an encoding structure that contains a tag class (UNI VERSAL, APPLI CATI ON, PRI VATE, or context-specific) field, a
primitive/constructor boolean, atag number field, and a value part that encodes the abstract values of the original integer.

9.75 The fifth mechanism is to define an encoding object for a class (for example, one corresponding to a
user-defined ASN.1 type) by separately defining encoding objects for the components and for the encoding constructor
used in defining the encoding class.

9.7.6 The sixth is to define an encoding object for differentia encoding-decoding (see 9.8), using two separate
encoding objects, one of which defines the encoder's behaviour, and the other of which tells a decoder what encoding
should be assumed.

NOTE — An example would be to encode a field which is "reserved for future use" as all zeros, but to accept any value when
decoding.

9.7.7 The seventh is to define an encoding options encoding object, which contains an ordered list of encoding
objects of the same class. It is an encoder's choice which encoding object from the list is to be applied, subject to the
restriction that if only one encoding option can encode a given abstract value, that shall be used, and to the
recommendation that the first available encoding in the list should be used.
NOTE — An encoding options encoding object could, for example, be used in the specification of short-form length encodings
where these can encode a particular string length, using long-form length encodings where the short-form cannot be used. There

is no current mechanism for the ECN specifier to require the use of the first available encoding object (if more than one can
encode the abstract value), other than by comment.

ITU-T Rec. X.692 (11/2008) 11

| SO/IEC 8825-3:2008 (E)

9.7.8 Finaly, an encoding object can be defined using non-ECN notation. This is a facility to alow use of any
desired notation (including natural language) to define the encoding object (see D.2.7.3).

NOTE — Non-ECN notation should be used with caution, as tool-support for implementation is generally not possible in this
case.

9.8 Differential encoding-decoding

9.8.1 Differential encoding-decoding is the term applied to a specification that requires an implementation to accept
(when decoding) bit-patterns that are in addition to those that it is permitted to generate when performing encoding.

9.8.2 Differentia encoding-decoding underlies all support for "extensibility" (the ability for an implementation of an
earlier version of a standard to have good interworking capability with an implementation of a later version of the
standard).

9.8.3 The precise nature of differential encoding-decoding can be quite complex. It normally includes the
requirement that a decoder accepts (and silently ignores) padding fields (usually variable length) which later versions of
astandard will use for the transfer of information additional to that transferred in the early version communication.

9.84 Support for differential encoding-decoding in ECN is provided by syntax that enables the definition of an
encoding object (for any class) that encapsulates two encoding objects. Each encoding object defines rules for
encoding. The first encoding object defines the rules that an encoder uses. The decoder uses the second encoding
object as a specification of the way the encoding was done.

NOTE — In ECN, the rules a decoder uses (in an early version of a standard) are always expressed by giving the rules for

encoding that it should assume its communicating partner is using. The decoding rules are not given as explicit decoding rules.
The ECN specifier will ensure that such decoding rules provide any necessary "extensibility"”.

9.9 Encoder s optionsin encodings

9.9.1 Encoders options in protocols are generally regarded today as something to be avoided, but ECN has to
provide support for such optionsif a protocol designer decides (or has in the past decided) to include them.

9.9.2 When values are being encoded into an encoding space, it is possible to specify that the size of the encoding
space (see 9.21.5) is an encoder's option, provided there is some form of length determinant associated with the
encoding. (The extent of the encoder's options may be limited by the maximum value that can be encoded in the length
determinant.) This provides a detailed level of support for encoder's options.

9.9.3 A more globa mechanismis similar to the support for differential encoding-decoding (see 9.8), but in this case
an encoding object for a class can be defined as an encoder's choice of any encoding object from an ordered list of
defined encoding objects for that class. In addition to specifying the list of possible encodings, it is aso necessary to
provide the specification of an encoding object for a class in the alternatives category (see 9.6). This encoding object
specifies the encodings and procedures needed to enable a decoder to determine which encoding object was used by the
encoder.

9.10 Propertiesof encoding objects

9.10.1 Encoding objects have some general properties. In most cases, they completely define an encoding, but in
some cases they are encoding constructors, that is, they define only structural aspects of the encoding, requiring
encoding objects for the encoding structure's components to compl ete the definition of an encoding.

9.10.2 Another key feature of an encoding object is that it may require information from the environment where its
rules are eventually applied. One aspect of the environment that is fully supported is the presence of bounds in the
ASN.1 type definition, provided they are "PER-visible" (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 10.3).

NOTE — A somewhat different (and not standardized) external dependency would be the definition of a non-ECN encoding

object for an #ALTERNATI VES encoding class which determines the selected alternative based on external data such as the
channel the message is being sent on.

9.10.3 A third key feature is that an encoding object may exhibit an identification handle in its encodings. Thisisa
part (consisting of a fixed set of bit positions) of all the encodings that it produces and distinguishes those encodings
from the encodings produced by other encoding objects (of any class) that exhibit the same identification handle.
Identification handles have a name and are visible to decoders without knowledge of either the encoding class or the
abstract value that was encoded (but with knowledge of the name of the identification handle that is being used). This
concept models (and generalizes) the use of tags in BER encodings: the tag value in BER can be determined without
knowledge of the encoding class, for al BER encodings, and serves to identify the encoding for resolution of
optionality, ordering of sets, termination of repetitions, and choice alternatives.

12 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

9.11 Parameterization

9.11.1 As with ASN.1 types and values, encoding objects, encoding object sets and encoding classes can be
parameterized. Thisisjust an extension of the normal ASN.1 mechanism.

9.11.2 A primary use of parameterization is in the definition of an encoding object that needs the identification of a
determinant to complete the definition of the encoding (see 9.13.2). (See D.1.11.3 for an example of a parameterized
ECN definition.)

9.11.3 Another important use of parameterization is in the definition of an encoding structure that will be used to
replace many different classes in an encoding (see also 9.16.5). For example, the mechanism used to handle optionality
is often an immediately (mandatory) preceding "presence-bit" for each optional component. A parameterized structure
can be defined consisting of a concatenation of a #BOOLEAN (used as a presence determinant) followed by an optional
component defined as a dummy parameter (which will be instantiated with the component that the structure will
replace), and whose presence is determined by the #BOOLEAN. The original #OPTI ONAL encoding procedure is now
defined as the replacement of the original component with this mandatory structure, using the original optional
component as the actual parameter. (D.3.2 isamore complete example of this process.)

9.11.4 Dummy parameters may be encoding objects, encoding object sets, encoding classes, references to encoding
structure fields, and values of any of the ASN.1 types used in the built-in encoding classes defined in clause 23, as
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4 as modified by B.10 of this Recommendation | International Standard.

9.11.5 The modification of parameterization syntax that is specified in Annex C requires the use of the symbol "{ <"
(without spaces) instead of "{" to start adummy or actual parameter list, and of ">} " to end one.

NOTE — This was done to make parsing of ECN syntax easier for computers, and to avoid ambiguity when user-defined classes
are used in structure definitions in place of #SEQUENCE, #CHO CE, #REPETI Tl ON, #SEQUENCE- OF, or #SET- CF.

9.12 Governors

9.12.1 The concept of a governor and of governed notation will be familiar from ASN.1 value notation, where there
is aways atype definition that "governs' the value notation and determines its syntax and meaning.

9.12.2 The same concept extends to the definition of encoding objects of a given encoding class. The syntax for
defining an encoding object of class #BOOLEAN (for example) is very different from the syntax for defining an encoding
object of class #1 NTEGER (for example). In al cases where an encoding object definition is required, there is some
associated notation that defines the class of that encoding object, and "governs' the syntax to be used in its
specification.

9.12.3 The ECN syntax requires governors that are encoding classes to be class reference names, or parameterized
class reference names.

9.12.4 If the governed notation is a reference name for an encoding object, then that encoding object is required to be
of the same class as the governor (see 17.1.7).

9.13 General aspectsof encodings

9.13.1 ECN provides support for a number of techniques typically used in defining encoding rules (not just those
techniques used in BER or PER). For example, it recognizes that optionality can be resolved in any of three ways: by
use of a presence determinant, by use of an identification handle (see 9.13.3), or by reaching the end of a
length-delimited container (or the end of the PDU) before the optional component appears.

9.13.2 Similarly, it recognizes that delimitation of repetitions can be done (for example) by:
— Some form of length count.
— Detecting the end of a container (or PDU) in which it isthe last item.
— Useof anidentification handle on each of the repetitions and on following encodings (see 9.13.3).

— Some terminating pattern that can never occur in an encoding in the repeated series. (A simple example
isanull-terminated character string.)

— Use of a"more hit" with each element, set to one to indicate that another repetition follows, and set to
zero to indicate the end of the repetition.

ECN supports al these mechanisms for delimitation of repetitions, and similar mechanisms for identification of
alternatives and for resolution of optionality.

ITU-T Rec. X.692 (11/2008) 13

| SO/IEC 8825-3:2008 (E)

9.13.3 In addition to terminating repetitions, the identification handle technique can also be used to determine the
presence of optional components or of alternatives and the ordering of sets. The mechanism is similar in all these
cases. Given an encoding class that is a "possible next class' and an encoding object applied to it, any encoding
produced will contain, at some bit positions (the identification handle), a bit pattern that matches a bit pattern within a
specified set of bit patterns (the handle value set) characterizing that class, but does not match any bit pattern
characterizing any other "possible next class’. All such encodings can be interpreted by a decoder as an encoding of a
"possible next class', and the bit pattern found in the encoding will determine which "possible next class' encoding is
present. The concept is similar to that of using tags for such purposes in BER. ldentification handles have hames that
are required to be unique within an ECN specification.

9.13.4 It is important here to note that ECN alows the definition of encodings in a very flexible way, but cannot
guarantee that an encoding specification is correct —that is, that a decoder can successfully recover the original abstract
values from an encoding. For example, an ECN specifier could assign the same bit-pattern for boolean values true and
false. This would be an error, and in this case a tool could fairly easily detect the error. Another error would be to
claim that an encoding was self-delimiting (and required no length determinant), when in fact it was not. This error
could also be detected by atool. In more subtle and complex cases, however, a tool may find it very hard to diagnose
an erroneous (one that cannot always be successfully decoded) specification.

9.14 ldentification of information elements

9.14.1 Many protocols have an encoding (usually of a fixed number of bits) to identify what are often called
"information elements’ or "data elements" in a protocol. These identifications correspond roughly to ASN.1 tags, but
are usually less complex. They are often used as identification handles, but are not always so used.

9.14.2 ECN contains a#TAG class to support the definition of the encoding of information element identifiers through
use of the ASN.1 tag notation. (It also supports the inclusion of such elements within an encoding structure with no
reference to ASN.1 tags.)

9.14.3 When an encoding structure is implicitly generated from an ASN.1 type definition (see clause 11), the first
textually-present ASN.1 tag notation in that definition generates an instance of the #TAG class, with the number of the
ASN.1 tag associated with that instance of the #TAG class. Subsequent textually present instances of ASN.1 tag
notation are not mapped into #TAG classes in the implicitly generated structure, but these tags and their values become
properties of the element. An encoding for this encoding class can be defined in a similar way to an encoding for the
#| NTEGER class, and will encode the number in the tag notation.

9.14.4 The full ASN.1 tag-list (multiple tags each with a class and number) is notionally associated with all the
abstract values of atagged type, in accordance with the ASN.1 model. Such information is, however, only accessible in
the current version of ECN through a non-ECN definition of an encoding object (see 9.7.8). The generation of a#TAG
classis a separate mechanism, is ssmpler and more specific, and has full support within ECN.

9.14.5 It is, however, important to note that for the purposes of generating a #TAG class, it is only textually-present
tag notation that is visible. Universal class tags and tags generated by automatic tagging are not visible. Similarly, the
class of any textually present tag notation is ignored. Only the tag number is available to encoding objects of the #TAG
class.

9.15 Referencefields and determinants

9.15.1 A very common (but not the only) way of determining the presence of an optiona field, the length of a
repetition, or the selection of an aternative is to include (somewhere in the message) a determinant field. Determinant
fields have to be identified if this mechanism is used for determination, and this frequently requires a dummy parameter
of an encoding object definition, with the actual parameter, providing the encoding structure fieldname of the
determinant, being supplied when the encoding object is applied to an encoding structure.

9.15.2 A new concept — a reference field — is introduced to satisfy the need for a dummy parameter that references
an encoding structure field. The governor is the reserved word REFERENCE, and the allowed notation for an actual
parameter with this governor is any encoding structure field name within the encoding structure to which an encoding
object or encoding object set with such a parameter is being applied (see 17.5.15). (See D.1.11.3 for an example of
references to encoding structure fieldnames.)

9.16 Replacement classes and structures

9.16.1 When writing ASN.1 specifications for legacy protocols (or in order to generate specialized encodings for new
protocoals), it is normal to ignore encoding issues and, in particular, determinant fields that are present solely to support

14 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

decoding. Only fields of relevance to application code (carrying application semantics) are included in the ASN.1
specification.

9.16.2 When such protocols use more than one encoding mechanism to support (for example) SEQUENCE OF
constructions in different places in the protocal, it is not possible (nor would it be appropriate) to formally specify this
within the ASN.1 itself.

9.16.3 This means that the implicitly generated encoding structure will not distinguish between such constructions,
nor will it contain encoding-related fields for determinants, and it is necessary to modify it to "correct" both problems
before a structure is available that matches the encoding requirements.

9.16.4 The first and simplest modification is to replace some instances of a class (within the implicitly generated
structure) with new class names that have been assigned the old class in a class assignment statement. This is done by
creating an explicitly generated structure using a renames clause in an EDM. This clause imports an implicitly
generated structure from an ASN.1 module and makes specified replacements of (textual) occurrences of named
classes. The replacement can be of all occurrences textually within alist of implicitly generated classes (corresponding
to the ASN.1 type definitions in a module), or within components of one of those classes, or "all occurrences except”
those in a given definition or a given component (see 15.3). It is important here to note that these replacements are
restricted to the use of classes that have been defined with an encoding class assignment statement that assigns the
name of a replacement class to an old class (for example: "#Repl acenent -cl ass ::= #0d d-cl ass"), so this
mechanism is sometimes colloquialy referred to as "coloring". The "coloring" identifies those parts of the specification
that require different encodings from other parts. (An example of "coloring" isgivenin D.3.7.)

9.16.5 Even with "coloring", the explicitly generated encoding structure, like the implicitly generated encoding
structure, contains only fields corresponding to the fields in the ASN.1 specification, and it is usually necessary to
modify the generated structures to add fields for determinants, etc. A new replacement structure is needed (for all or
part of the original structure), with added fields. It is also important to identify (for each field in the original structure)
which fields of the replacement structure (and what abstract values of that field) are used to carry the semantics of the
origina abstract values. We talk about mapping the abstract values from the original structure to the replacement
structure.

9.16.6 There are many mechanisms for defining an encoding object for an existing structure as an encoding object for
a totally different replacement structure, with defined value mappings between the old structure and the replacement
structure. These mechanisms are described in 9.17.

9.16.7 A simpler situation frequently occurs, however, in which the designer requires the old structure to form (in its
entirety) a single component of the replacement structure, with all abstract values being mapped from the old structure
to the corresponding value of that component of the replacement structure. For this mechanism to be of general use, the
replacement structure needs to have a dummy parameter for this single component, and for it to be instantiated with the
actual parameter set to the old structure. Thiswas described in 9.11.3.

9.16.8 When defining encoding objects for a class (any class), it is always possible to specify that the first action of
that encoding object is to replace the class it is encoding with a parameterized replacement structure, instantiated as
described in 9.16.7, and with abstract values mapped from the old class to the component.

9.16.9 It is also possible to define encoding objects for the #0PTI ONAL class (or for any class of the optionality
category) that replace the optional component with a parameterized replacement structure (frequently one containing a
#BOOLEAN field as a presence determinant). (An example of thisisgivenin D.3.2.3.)

9.16.10 For constructor classes such as #CONCATENATI ON, #REPETI TI ON, and so on, it is also possible to define
encoding objects that replace not the entire structure, but each component separately (or just mandatory, or just
optional, components).

9.16.11 A more advanced, but powerful, mechanismis to require the replacement action to a so include the insertion of
aspecified field at the head of a#CONCATENATI ON (or similar structure). An example of thisisgivenin D.3.1.5.

9.17 Mapping abstract values onto fields of encoding structures
There are six mechanisms provided for this.

9.17.1 The first is to map specified abstract values associated with one simple encoding class to specified abstract
values associated with another simple encoding class. This can be used in many ways. For example, values of a
character string (of digits) can be mapped to integer values (and hence encoded as integer values). Values of an
enumerated type can be mapped to integer values, and so on (see 19.2). (See D.1.10.2 for an example.)

ITU-T Rec. X.692 (11/2008) 15

| SO/IEC 8825-3:2008 (E)

9.17.2 The second is to map a complete field of one encoding structure into a field of a compatible encoding
structure, which can contain additional fields — typically for use as length or choice determinants (see 19.3). (See
D.2.8.3 for an example.)

9.17.3 The third is to map by transforming all the abstract values associated with one encoding class into abstract
values associated with a different (typically, but not necessarily) encoding class, using a transform encoding object (see
9.18). With this mechanism, it is, for example, possible to map an #1 NTEGER into a #CHARS to obtain characters that
can then be encoded in whatever way is desired (for example, Binary-Coded Decimal or ASCII). (See D.1.6.3 for an
example.)

9.17.4 The fourth mapping mechanism is to use a defined ordering of the abstract values of certain types and
constructions, and to map according to the ordering. This provides a very powerful means of encoding abstract values
associated with one encoding class as if they were abstract values associated with a wholly unrelated encoding class
(see19.5). (SeeD.1.4.2for an example.)

9.17.5 The fifth mechanism is to distribute the abstract values (using value range notation) associated with one
encoding class (typically #1 NTEGER) into the fields of another encoding class. (See 19.6 and D.2.1.3 for examples.)

9.17.6 The final mechanism alows the ECN specifier to provide an explicit mapping from integer values (which may
have been produced by earlier mappings from, for example, an #ENUMERATED class) to the bits that are to be used to
encode those values. Thisis intended to support Huffman encodings, where the frequency of occurrence of each value
is (at least approximately) known, and where the optimum encoding is required. Annex E describes Huffman encodings
in more detail, and gives examples of this mechanism, together with a reference to software that will generate the ECN
syntax for these mappings, given only the relative frequency with which each value of the integer is expected to be used
(see 19.7).

9.18 Transformsand transform composites

9.18.1 Transforms are encoding objects of the class #TRANSFORM They can be used to transform abstract values
between different encoding classes, and can also be used to define simple arithmetic functions such as multiplication by
afixed value, subtraction of afixed value, and so on. When applied in succession, they enable general arithmetic to be
specified (see 19.4). (See D.2.4.2 for an example.)

9.18.2 A transform can take a single value as its source and then produces a single value as its result. The following
isa classification of the values that can be sources and results of transforms:

— aninteger;

— aboolean;

— acharacterstring;

— abitstring;

— asingle character;

— asingle bit (source only, supporting the encoding of a bitstring — see 23.2).

9.18.3 Transform composites are an ordered list of elements, each of which is a single value and has the same
classification (as listed in 9.18.2). (For example, an ordered list of single characters, or of single octets, or of integers.)
They are only produced as the result of transforms, and can only be used as the source of afollowing transform.

9.18.4 If the classification is bitstring, the size of each bitstring value in the composite is the same, and is statically
determined by the transform that produces the composite. (For example, an ordered list of single bits, or of six-bit
units.)

9.18.5 There aretransforms from the following abstract valuesto composites:
— characterstring to a single character composite;
— hitstring to a bitstring composite (all bitstring values of the composite are of the same size);
— octetstring to a bitstring composite (all bitstring values of the composite are of size 8 bits).

9.18.6 There are transforms from the following composites to abstract values:
— single character composites to characterstring values;
— hitstring composites to bitstring values,
— bitstring composites (with bitstring values of size 8 bits) to octetstring values.

16 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

9.18.7 All other transforms can take a value as their source and produce a new value (of the same or of a different
classification). They can also take a transform composite as their source and produce a composite as its result,
transforming each element of the source composite into an element of the result composite.

9.19 Contents of Encoding Definition Modules

9.19.1 Encoding Definition Modules (or EDMs) contain export and import statements exactly like ASN.1 (but can
import only encoding objects, encoding object sets, and encoding classes from other EDM modules, or from ASN.1
modules in the case of implicitly generated encoding structures).

9.19.2 An EDM can aso contain a renames clause (see clause 15) which references implicitly generated encoding
structures from one or more ASN.1 modules and generates, by "coloring" them (see 9.16.4), an explicitly generated
encoding structure for each one. These explicitly generated encoding structures are available for use within the EDM,
but are also automatically exported for possible import into the Encoding Link Module.

9.19.3 Thebody of an EDM module contains:

"EncodingObjectAssignment” statements that define and name an encoding object for some encoding
class (there are eight forms of this statement, discussed in 9.7 and defined in clause 17).

"EncodingObjectSetAssignment” statements that define sets of encoding objects (see clause 17).
"EncodingClassAssignment” statements that define and name new encoding classes (see clause 15).

9.19.4 The EDM can also contain parameterized versions of these statements, as specified in clause 14 and in C.1.

9.19.5 Encoding objects can be defined for built-in encoding classes within any EDM module. Encoding objects can
be defined for a generated encoding structure only in EDM modules that import the implicitly generated encoding
structure from the ASN.1 module that defines the corresponding type (using either an imports or a renames clause), or
that import the generated encoding structure from an EDM module that has exported it.

NOTE — If an implicitly generated encoding structure happens to have a name that is the same as a reserved encoding class name

(see 8.5), it can still be imported into an EDM, but must be referenced in the body of the EDM using a fully-qualified name (see
"External EncodingClassReference” in 10.6).

9.20 Contents of the Encoding Link Module

9.20.1 All applications of the Encoding Control Notation require the identification of a single Encoding Link Module
(or ELM).

9.20.2 The ELM module applies encoding object sets to ASN.1 types (formally, to a generated encoding structure
corresponding to the ASN.1 type). These encoding object sets (or their constituent encoding objects) are imported into
the ELM module from one or more EDM modules.

9.20.3 There are restrictions on the application of encoding object sets to ensure that there is no ambiguity about the
actual encoding rules that are being applied (see 12.2.5). For example, it is not permitted for an ELM to apply more
than one encoding object set to a specific implicitly generated structure.

9.20.4 It is possible in simple cases for an ELM module to contain just a single statement (following an imports
clause) that applies an encoding object set to the implicitly generated encoding structure corresponding to the single
top-level type of an application. (See D.1.17 for an example.)

9.21 Defining encodingsfor primitive encoding classes

9.21.1 Encoding rules for some primitive encoding classes can be defined using a user-friendly syntax which is
specified in the W TH SYNTAX statements of encoding class definitions (see clauses 23 and 25). This syntax can also be
used to define encoding rules for encoding classes derived from these primitive encoding classes (by encoding class
assignment statements).

9.21.2 The notation used for the encoding class definitions in clauses 23 and 25 is based on the notation used for
information object class definition. This syntax (and its associated semantics) is defined by reference to ITU-T Rec.
X.681 | ISO/IEC 8824-2 as modified by Annex B of this Recommendation | International Standard.

9.21.3 The encoding class definition specifies the information that has to be supplied in order to define encoding
rules for particular encoding classes. The set of encoding rules that can be defined in this way is not, of course, al
possiblerules, but is believed to cover the encoding specifications that ECN users are likely to require.

ITU-T Rec. X.692 (11/2008) 17

| SO/IEC 8825-3:2008 (E)

9.21.4 These encoding class definitions specify a series of fields (with corresponding ASN.1 types and semantics).
Encoding rules are specified by providing values for these fields. The values of these fields are effectively providing
the values of a series of encoding properties which collectively define an encoding.

9.21.5 The meaning of the encoding properties is specified using an encoding model (see Figure 1) where the value
of each bit-field class produces a value encoding which is placed (left or right justified) into an encoding space.

9.21.6 The encoding space may have its leading edge aligned to some boundary (such as an octet boundary) by
encoding space pre-padding, and its size can be fixed or variable. The value encoding fits within it, perhaps left or
right justified, and with padding around it. If the size of the encoding space is variable, then either the value encoding
has to be self-delimiting, or there has to be some external mechanism to enable a decoder to determine the size of the
encoding space. Several mechanisms are available for this determination.

9.21.7 Findly, the complete encoding space with the value encoding and any value pre-padding and value
post-padding, is mapped to bits-on-the-line with an optional specification of bit-reversal. This handles encodings that
reguire "most significant byte first" or "most significant byte last" for integers, or that require the bits within an octet to
be in the reverse of the normal order.

9.21.8 Thusthere are three broad categories of information needed:
— thefirst relates to the encoding space in which the encoding is placed;

— the second relates to the way an abstract value is mapped to bits (value encoding), and the positioning of
those bits within the encoding space; and

— thethird relatesto any required bit-reversals.

9.21.9 Figure 1 shows the encoding space (with pre-padding) and the value encoding (with value pre-padding and
value post-padding). Figure 1 also illustrates the specification of an encoding space unit. The encoding space is aways
an integral multiple of this specified number of bits.

Value pre-padding Alignment from start of encoding j

A

Encoding so far

Encoding space pre-padding ‘\ 1001100100100100

/l

101011110 <«

|
i
"
|
|
|
|

Value post-padding

Encoding space unit Value-encoding

:
|
|
Encoding space
|
|
T
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|

— e
—

Encoding then added to bits-on-the-line,
possibly with bit, octet, etc. , reversal

X.692_F1

Figure 1 — Encoding space, value-encoding and padding concepts

9.21.10 If the encoding space is not the same size for al vaues encoded by an encoding object, then some additional
mechanism is needed to determine the actual encoding space used in an instance of an encoding.

9.21.11 It is also possible to specify an arbitrary amount of encoder pre-padding (beyond that needed for alignment)
that ends when the value of an earlier start pointer identifies the start of afield.

9.21.12 The stepsin adefinition of an encoding for a primitive bit-field encoding class are;

18 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

— Specify the alignment (if any) required for the leading edge of the encoding space (relative to the
alignment point — normally the start of the encoding of the top-level type, that is, the type to which an
encoding object set is applied in the ELM). (See 22.2.)

— Specify the form of any necessary padding to that point (encoding space pre-padding). (See22.2.)
— Specify (if necessary) afield that provides a pointer to the start-point of the encoding space. (See 22.3.)
— Specify the encoding of abstract values into bits (value encoding).

— Specify the units of the encoding space (the encoding space will aways be an integral multiple of these
units). (See22.4.)

— Specify the size of the encoding space in these units. This may be fixed (using knowledge of integer or
size bounds associated with the abstract values to be encoded), or variable (different for each abstract
value). The specification may also (in all cases) specify the use of a length determinant that has to be
encoded with the length of the field, and either enables decoding or provides redundant information (in
the case of afixed-size encoding space) that a decoder can check. (See22.4.)

— Specify the alignment of the value encoding within the encoding space. (See 22.8.)

— Specify the form of any necessary padding from the start of the encoding space to the start of the value
encoding (value pre-padding). (See22.8.)

— Specify the form of any necessary padding between the end of the value encoding and the end of the
encoding space (value post-padding). (See22.8.)

— Specify any necessary hit-reversals of the encoding space contents before adding the bits to the encoding
donesofar. (See22.12))

9.21.13 Encoding properties are available to support the specification of the encoding rules for al these steps.

9.21.14 Inred cases, only some (or none!) of these encoding properties will have unusual values, and defaults operate
if they are not specified. (See D.1.3 for an example of the definition of the encoding for an integer that is right-aligned
in afixed two-octet field, starting at an octet boundary.)

9.22 Application of encodings

9.22.1 Application of encodings (encoding rules) to encoding structures is a key part of the ECN work, but is very
distinct from the definition of the encoding rules. Final application of encodings (to an encoding structure generated
from an ASN.1 type definition) only occurs within an Encoding Link Module, but application of encodings to fields of
an encoding structure may be used in the definition of encodings for alarger encoding structure.

9.22.2 Encodings are applied by reference to an encoding object set (or to a single encoding object). Such
application can occur in an EDM in the definition of encoding objects for any class (including encoding objects for a
generated encoding structure and for a user-defined encoding structure). Such application in an EDM is merely the
definition of more encoding objects for that encoding class. The definitive application to an actual type occurs only in
the ELM.

9.22.3 When a set of encoding objects is being applied, it always results in a complete encoding specification for the
encoding classes to which the objects are applied. If, in any given application, encodings are needed for encoding
classes (present within an encoding structure being encoded) for which there are no encoding objects in the set being
applied, then thisis an error (see 13.2.11).

NOTE — Although the specification of the encoding rules will be complete, the precise form of the actual encoding (for example,

the presence or absence of encoding space pre-padding, or the effect of the values of bounds referenced in the encoding rules)
can only be determined when the encoding definition is applied to atop-level ASN.1 type.

9.22.4 There are two exceptions to 9.22.3. The first exception is when the (ASN.1-like) parameterization mechanism
is used to define a parameterized encoding object. In such cases the complete encoding is only defined following
instantiation with actual parameters. The second exception is when an encoding object is defined for an encoding
constructor (#CONCATENATI ON, #ALTERNATI VES, #REPETI TI ON, #SEQUENCE, etc.). In this latter case, the encoding
rules associated with the encoding class simply define the rules associated with the structuring aspects. A complete
encoding specification for an encoding structure using these encoding classes will also require rules for encoding the
components of that encoding structure.

NOTE — There is a distinction here between encoding objects of class #SEQUENCE (an encoding constructor) and encoding

objects for an implicitly generated encoding structure "#My- Type" (which happens to be defined using the ASN.1 type

SEQUENCE). The latter is not an encoding constructor, and encoding objects of this class will provide full encoding rules for the
encoding of values of type "My- Type".

ITU-T Rec. X.692 (11/2008) 19

| SO/IEC 8825-3:2008 (E)

9.23 Combined encoding object set

9.23.1 In order to provide a complete encoding, the ECN user can supply a primary encoding object set, and a second
encoding object set introduced by the reserved words COVPLETED BY.

9.23.2 Theencoding object set that is applied is defined to be the combined encoding object set formed by adding to
the first set encoding objects for any encoding class for which the first set is lacking an encoding object and the second
set contains one (see 13.2). A frequent set to use with COVPLETED BY is the built-in set PER- BASI C- UNALI GNED.
(See D.1.17 for an example of the application of a combined encoding object set.)

9.23.3 While an encoding object set can contain only one encoding object for a class #SEQUENCE- OF (for example), it
can aso contain an encoding object for a class #Speci al - sequence- of (for example) which is defined as
"#Speci al - sequence-of ::= #SEQUENCE- OF'. An explicitly generated encoding structure can have both the
#SEQUENCE- OF class and also the #Speci al - sequence- of class in its definition. In this way, a single combined
encoding object set can be applied to produce standard encodings for some of the original SEQUENCE OF constructs,
and specialized encodings for others.

9.24 Application point

9.24.1 In any given application of encodings, there is a defined starting point (for the ELM, it is the top-level
generated encoding structure(s) to which encodings are being applied). Thisis called the "initial application point" for
the structure that is being encoded by the ELM.

9.24.2 The combined encoding object set is applied to a generated encoding structure, and it is the encodings defined
for the abstract values of this encoding structure that encode the abstract values of the ASN.1 type.

9.24.3 If there is an encoding object in the combined encoding object set that matches a bit-field encoding class
(initially a generated encoding structure) at the application point, it is applied and the process terminates. Otherwise the
class at the application point is "expanded" by de-referencing. This expansion by de-referencing will continue until
either an encoding object is found, or a primitive class is reached. If the class at the application point is an encoding
constructor, and there is an encoding object for that encoding constructor (#CHO CE, #SEQUENCE, #SEQUENCE- COF,
etc.), then it is applied, and the application point then passes to each component (as a parallel activity).

9.24.4 In a more complex case, there may be an #OPTI ONAL class following a component class (and a #TAG class
preceding it). The application point passes first to the #0PTI ONAL, and the encoding object for that class may replace
the component (see 9.16.9). Then the application point passes to the tag, and finally to the component itself.

9.25 Conditional encodings

9.25.1 Mention has already been made of the #TRANSFORM encoding class as a means of performing simple
arithmetic on integer values (see 9.17.3). This encoding class does, however, play a more fundamental role in the
specification of encodings for some primitive classes. In general, the specification of encodings for many of the ASN.1
built-in types is a two or a three stage process, using encoding objects of class #TRANSFORMand (for example) of class
#CONDI T1 ONAL- | NT or #CONDI Tl ONAL- REPETI TI ON.

9.25.2 The #TRANSFORM #CONDI TI ONAL- | NT, and #CONDI TI ONAL- REPETI TI ON encoding classes are restricted in
their use. Encoding objects can only be defined for these classes using either the syntax of clause 24, 23.7 and 23.14
respectively, or by non-ECN definition of an encoding object, and they can only be used in the definition of other
encoding objects. They cannot appear in encoding object sets or be applied directly to encode fields of encoding
structures (see 18.1.7).

9.25.3 Encoding specification for encoding classes in the integer category proceeds as follows: Encodings (of the
#CONDI TI ONAL- | NT encoding class) are defined for a particular bounds condition, specifying the container size (and
how it is delimited), the transform of the integer to bits (using either two's complement or positive integer encodings),
and the way these hits fit into the container. (An example of a bounds condition is the existence of an upper bound and
anon-negative lower bound.) Thisis called a conditional encoding. The encoding of the classin the integer category
is defined as a list of these conditional encodings, with the actual encoding to be applied in any given circumstance
being the one that is earliest in the list whose bounds condition is satisfied. (See D.1.5.4 for an example.)

9.25.4 Encoding specification for encoding classes in the repetition category use the #CONDI Tl ONAL- REPETI TI ON
encoding class, which defines the way in which the encoding space for the repeated items is delimited and how the
repeated encodings are to be placed into it, for a given range condition, again producing a conditional encoding. As
with the encoding of classes in the integer category, the final encoding is defined as an ordered list of conditional
encodings.

20 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

9.25.5 Encoding specification for the encoding classes in the octetstring category proceeds as follows. First,
#TRANSFORM encoding objects are defined to map a single octet to a self-delimiting bitstring. Second, one or more
#CONDI TI ONAL- REPETI TI ON encoding objects (for specific size-range conditions) are defined to take each of the
bitstrings (transformed from an octet in the octet string) and to concatenate them into a delimited container (the
definition of such encoding objects is not specific to encoding #OCTETS). The fina encoding of the class in the
octetstring category is defined as an ordered list of #CONDI TI ONAL- REPETI Tl ON encoding objects. (See D.1.8.2 for an
example.)

9.25.6 Encoding specifications for encoding classes in the hitstring category proceeds as follows: First, #TRANSFORM
encoding objects are defined to map a single bit into a bitstring, similar to the encoding of an integer into bits, but in
this case the mapping of the bit must be to a self-delimiting string. Secondly, one or more
#CONDI TI ONAL- REPETI TI ON encoding objects are defined for the repetition of the bits (these could be the same
encoding objects that were defined for use with an encoding class in the repetition or octetstring categories). Finaly,
the encoding of the class in the bitstring category is defined as an ordered list of #CONDI TI ONAL- REPETI TI ON
encoding objects. (See D.1.7.3 for an example.)

9.25.7 Encoding specifications for encoding classes in the characterstring category proceeds as follows: First,
#TRANSFORMencoding objects are defined to map a single character to a self-delimiting bitstring, using several possible
mechanisms for defining the encoding of the character, and using the effective permitted alphabet constraint where it is
available. Secondly, one or more #CONDI TI ONAL- REPETI TI ON encoding objects are defined, and finally the encoding
of the classin the characterstring category is defined as an ordered list of these. (See D.1.9.2 for an example.)

9.26 Other conditionsfor applying encodings

9.26.1 There are anumber of different conditions that can be tested in order to select an appropriate encoding. These
include the actual value and the range of bounds.

9.26.2 Itisalso possibleto requirethat all of agiven list of conditions are to be satisfied.

9.26.3 A test for a condition uses either a single enumeration value (such as "bounded- wi t hout - negat i ves")
which contains the entire test in the specification of the one enumeration, or atriple of enumerations.

9.26.4 If a triple is used, the first identifies (by an enumeration) the item that is being tested (for example
"t est - upper - bound"), the second is the nature of the test (for example "gr eat er - t han"), and the third provides an
integer value for the test.

9.27 Encoding control for the open type

9.27.1 Open types frequently provide a means of extensibility using an identification field, with new values for the
identification field and new types for the open type being added in successive versions (and often being available for
vendor-specific extensions).

9.27.2 Both these features mean that a decoder may be asked to decode an open type when that particular
implementation has no knowledge of the type that has been encoded into it.

9.27.3 The encoding support provided for the open type is the same as that for most other classes in the bitfield
category, but with the added ability to specify that a different encoding object set isto be applied to the type which isto
be encoded into the open type.

NOTE — This is in recognition that many protocols choose to use a different style of encoding (often based on a type-length-

value approach) for the type contained in an open type, while retaining a more compact style of encoding for the fields of the
message containing the open type.

9.27.4 The model used for decoding an open type recognizes that a decoder will not know what type fills the open
type (table and relational constraints are not visible to either PER or to ECN), but that the application may be able to
determine this from some other field in the protocol, or in a previous message, or (for vendor-specific additions) based
on calling address.

9.27.5 The modd is therefore that, having dealt with any specified pre-padding, and determined the encoding space
and any value pre- and post-padding, the decoder will ask the application for the type which has been encoded. (In the
case of tools, the application will amost certainly have pre-configured the tool with alist of the known types that might
be present, and would simply return a pointer to one of these.) Decoding can now proceed normally.

9.27.6 The application may, however, say "unknown" (see 9.27.4), and the decoder then needs to know how to
determine the end of this unknown encoding. This is satisfied by enabling the ECN specifier in this case to provide an
encoding structure, and (optionally) an encoding object set to use with it, which is to be used by decoders for decoding
unknown types in the open type. Thereis syntax provided in clause 23 for this purpose.

ITU-T Rec. X.692 (11/2008) 21

| SO/IEC 8825-3:2008 (E)

NOTE — An example of such an encoding structure could be one that specifies an encoding that is commonly known asa"Type,
Length, Value" encoding, whose end can be determined without knowledge of the type being encoded.

9.28 Changesto ASN.1 Recommendations| International Sandards

9.28.1 This Recommendation | International Standard references other ASN.1 Recommendations | International
Standards in order to define its notation without repetition. For such references to be correct, the semantics of the
notation (for example the imports clause, parameterization, and information object definition) needs to be extended to
recogni ze the reference names of encoding classes, encoding objects, and so on that form part of ECN.

9.28.2 There is aso a need to extend the information object class notation to allow fields that are ordered lists of
values or objects, not just unordered sets of objects, in order to allow the use of that notation in the definition of ECN
syntax for the definition of encoding objects of certain classes.

9.28.3 Finaly, the rules for parameterization are relaxed to alow a dummy parameter of an encoding object reference
(being assigned in an assignment statement) to be used as an actual parameter of the encoding class reference which
governs the notation defining the encoding object reference name. In particular, a parameterized encoding class can be
used as a governor in an encoding object assignment statement (see C.2/8.4), with the actual parameter being a dummy
parameter of the encoding object that is being defined.

9.28.4 These modifications to other ASN.1 Recommendations | International Standards are specified in Annexes A to
C, and are solely for the purposes of this Recommendation | International Standard.

10 I dentifying encoding classes, encoding objects, and encoding object sets

10.1 Many of the productions within this Recommendation | International Standard require that an encoding class,
encoding object, or encoding object set be identified.

10.2 For each of these, there are five ways in which identification can be made:
a) Using asimple reference name.

b) Using a built-in reference name (not applicable for encoding objects, as there are no built-in encoding
objects).

¢) Using an externa reference (also called a fully-qualified name).
d) Using aparameterized reference.
€) In-line definition.
NOTE — The parameterized reference form may be used with a simple reference name or with an external reference (see C.3).

10.3 There are productions (or lexical items) for al of these means of identification. There are also productions
that allow several alternatives. These lexical items or production names are used where appropriate in other
productions, and are defined in the remainder of this clause.

104 Thelexical itemsfor use of asimple reference name are;

encoding class " encodingclassr eference” (see 8.3)
encoding object " encodingobj ectreference" (see 8.1)
encoding object set " encodingobj ectsetreference” (see 8.2)

10.4.1 An"encodingclassreference” is aname which is either:
a) assigned an encoding classin an "EncodingClassAssignment” (see clause 16); or is
b) imported into an EDM from some other EDM from which it has been exported; or is

c) imported as the name of an implicitly generated encoding structure from an ASN.1 module (see 14.11);
oris

d) generated by arenames clause in the EDM (see clause 15).
NOTE — Only classes that are generated encoding structures can be imported into an ELM (see 12.1.8).
10.4.2 An "encodingclassreference” shall not be imported from an EDM module (as specified in 10.4.1) unless either:

a) itisdefinedin or imported into the referenced module, and that module has no exports clause; or
NOTE 1 - If the referenced module has no exports clause, thisis equivalent to exporting everything.

b) itisdefined in or imported into the referenced module, and appears as a symbol in the exports clause of
that module; or

22 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

c) itisone of the reference names explicitly generated by a renames clause in the module from which it is
being imported.

NOTE 2 — Implicitly generated encoding structures can only be imported from the ASN.1 module which
generates them.

10.4.3 An implicitly generated encoding structure reference never appears in the exports clause of any ASN.1
module, but can always be imported from any ASN.1 module in which the corresponding type is defined and exported.

10.4.4 An explicitly generated encoding structure reference (which is automatically exported by the renames clause
which generates it) shall not appear in the exports clause of the EDM module in which it is generated, but any use of it
in another EDM or the ELM requires its importation from that EDM module.

10.4.5 An "encodingobjectreference” is aname which is either:
a) assigned an encoding object in an "EncodingObjectAssignment” (see clause 17) in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding
object or isimported.

10.4.6 An "encodingobjectreference” shall not be imported from an EDM if the referenced module has an exports
clause and the "encodingobjectreference” does not appear as a symbol in that exports clause.

NOTE - If the referenced module has no exports clause, thisis equivalent to exporting everything.
10.4.7 An "encodingobjectsetreference” isaname which is either:
a) assigned an encoding object set in an "EncodingObjectSetAssignment” (see clause 18) in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding
object set or isimported.

10.4.8 An "encodingobjectsetreference” shall not be imported from an EDM if the referenced module has an exports
clause and the "encodingobjectsetreference” does not appear as a symbol in that exports clause.

NOTE - If the referenced module has no exports clause, thisis equivalent to exporting everything.
10.5 The productions for use of a built-in reference name are:

encoding class " BuiltinEncodingClassReference" (see 16.1.6)
encoding object set " BuiltinEncodingObj ectSetReference” (see 18.2.1)

10.6 The productions for use of an external reference name are:

Exter nalEncodingClassReference ::=
modulereference”." encodingclassreference |
modulereference ™ ." BuiltinEncodingClassRefer ence

Exter nalEncodingObjectReference ::=

modulereference”." encodingobjectreference

Exter nalEncodingObj ectSetReference ::=
modulereference"." encodingobjectsetreference

10.6.1 The"modulereference" isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.5, and identifies a module which
isreferenced in the importslist of the EDM or ELM.

10.6.2 The "ExternalEncodingClassReference” alternative that includes a "BuiltinEncodingClassReference” shall be
used in the body of an EDM if and only if there is a generated encoding structure (whose name is the same as that of a
"BuiltinEncodingClassReference") which is either:

a) defined implicitly in the ASN.1 module referenced by the "modul ereference” (see 11.4.1); or

b) imported into another EDM referenced by the "modul ereference” and exported from that module; or

c) generated in arenames clause of another EDM referenced by the "modul ereference”; or

d) generated in this EDM in arenames clause, in which case the "modulereference” shall refer to this EDM.
NOTE — The "BuiltinEncodingClassReference” name can appear asa " Symbol" in the imports clause (see A.1).

10.6.3 The productions defined in 10.6 (except as specified in 10.6.2) shall be used if and only if the corresponding
simple reference name has been imported from the module identified by the "modulereference”, and either:

a) identica reference names have been imported from different modules, or have been generated in a
renames clause in this EDM, or have been both imported and generated; or

ITU-T Rec. X.692 (11/2008) 23

| SO/IEC 8825-3:2008 (E)

b) thesimplereference nameis a"BuiltinEncodingClassReference" (see 10.5); or
¢) both conditions hold.

10.7 A parameterized reference is a reference name defined in a "ParameterizedAssignment” (see C.1) and
supplied with an actual parameter in accordance with the syntax of C.3. The productionsinvolved are:

encoding classes " ParameterizedEncodingClassAssignment” (see C.1)
" ParameterizedEncodingClass' (see C.3)

encoding objects " Par ameterizedEncodingObjectAssignment” (See C.1)
" ParameterizedEncodingObject” (See C.3)

encoding object sets " ParameterizedEncodingObjectSetAssignment” (See C.1)
" ParameterizedEncodingObjectSet" (See C.3)

10.8 The productions that allow all forms of identification are:

encoding classes " EncodingClass" (See clause 16.1.5)
encoding objects " EncodingObject" (Seeclause 17.1.5)
encoding object sets " EncodingObjectSet" (See clause 18.1)

10.9 The productions which allow all forms except in-line definition are:

encoding classes " DefinedEncodingClass' and " DefinedOr BuiltinEncodingClass'
encoding objects " DefinedEncodingObject™
encoding object sets " DefinedEncodingObjectSet" and " DefinedOr BuiltinEncodingObj ect Set”

except that built-in encoding classes and built-in encoding object sets are not alowed by "DefinedEncodingClass' and
"DefinedEncodingObjectSet".

NOTE — A further production "SimpleDefinedEncodingClass' is aso used. This is defined in C.3 and alows only
"encodingclassreference” and "External EncodingClassReference”.

10.9.1 The "DefinedEncodingClass" and "DefinedOrBuiltinEncodingClass are:

DefinedEncodingClass::=
encodingclassr eference
| Exter nalEncodingClassRefer ence
| ParameterizedEncodingClass

DefinedOrBuiltinEncodingClass ::=
DefinedEncodingClass
| BuiltinEncodingClassReference

10.9.2 The "DefinedEncodingObject” is:

DefinedEncodingObject ::=
encodingobj ectr eference
| Exter nalEncodingObj ectReference
| Par ameterizedEncodingObj ect

10.9.3 The "DefinedEncodingObjectSet" and " DefinedOrBuiltinEncodingObjectSet" are;

DefinedEncodingObjectSet ::=
encodingobjectsetreference

| Exter nalEncodingObj ect SetRefer ence

| Par ameterizedEncodingObj ect Set

DefinedOrBuiltinEncodingObjectSet ::=
DefinedEncodingObj ect Set
| BuiltinEncodingObj ect SetReference

24 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)
11 Encoding ASN.1 types

11.1 Genera

11.1.1 For all ASN.1 types, there is a corresponding implicitly generated encoding structure. This encoding structure
is implicitly generated for each ASN.1 type assignment, and is automatically exported from the ASN.1 module that
contains that type assignment. (It does, however, have to be imported into an EDM module if it is to be used.) The
name of the corresponding encoding structure is the name of the type preceded by a character "#". This encoding
structure defines an encoding class, and is called an implicitly generated encoding structure.

11.1.2 There may aso be one or more explicitly generated encoding structures. These are generated in an EDM
using a renames clause.

11.1.3 The encoding of an ASN.1 type is formally defined as the result of encodings applied to precisely one of the
encoding structures (implicitly or explicitly) generated from the ASN.1 type. The encodings are applied by statements
in the ELM (see clause 12), using encoding objects in a combined encoding object set. An ELM shall apply encodings
to at most one of the generated encoding structures corresponding to any given ASN.1 type.

11.1.4 The implicitly generated encoding structure is defined by first smplifying and expanding the ASN.1 notation
(as specified in 11.3), and then by mapping ASN.1 types, type constructors and component names into corresponding
built-in encoding classes, encoding constructors and encoding structure fieldnames.

11.1.5 An explicitly generated encoding structure is defined by making specified changes to the implicitly generated
encoding structure using a renames clause.

11.1.6 Each field of a generated encoding structure has associated with it the abstract values of the corresponding
type, and constraint-related information derived from the ASN.1 type definition (see 11.4.2). Encodings of the abstract
values of the generated encoding structure are defined to be the encodings for the corresponding abstract values of the
origina ASN.1 type.

11.1.7 Thisclause 11 specifies:

a) The built-in encoding classes that are used in defining the implicitly generated encoding structures
corresponding to ASN.1 types (see 11.2).

NOTE — Subclause 16.1.14 specifies additional classes that are used in the definition of user-defined encoding
structures.

b) Transformations of the ASN.1 syntax (simplification and expansion) before the implicitly generated
structure is produced (see 11.3).

¢) Theimplicitly generated encoding structure for any ASN.1 type (see 11.4).

11.2 Built-in encoding classes used for implicitly generated encoding structures

11.2.1 The encoding classes used for implicitly generated encoding structures, and the ASN.1 types or constructors to
which they correspond are listed in Table 2 below.

11.2.2 Column 1 gives the ASN.1 notation which is replaced by an encoding class in the implicitly generated
encoding structure. Column 2 gives the encoding class that replaces the column 1 notation. Column 3 gives the
primitive class that the column 2 classis derived from.

Table 2 — Encoding classes for ASN.1 notation

ASN.1 notation Encoding Class Primitive Class

BIT STRING #BIT-STRING #BITS

BOOLEAN #BOOLEAN #BOOL

CHARACTER STRING #CHARACTER-STRING Defined using #SEQUENCE
CHOICE #CHOICE #ALTERNATIVES
EMBEDDED PDV #EMBEDDED-PDV Defined using #SEQUENCE
ENUMERATED #ENUMERATED #INT

EXTERNAL H#EXTERNAL Defined using #SEQUENCE
INTEGER #HINTEGER #INT

NULL #NULL #NUL

OBJECT IDENTIFIER #OBJECT-IDENTIFIER #OBJECT-IDENTIFIER
OCTET STRING #OCTET-STRING #OCTETS

open type notation #OPEN-TYPE #OPEN-TYPE

OPTIONAL #OPTIONAL #OPTIONAL

REAL #REAL #REAL

ITU-T Rec. X.692 (11/2008) 25

| SO/IEC 8825-3:2008 (E)

RELATIVE-OID

#RELATIVE-OID

#OBJECT-IDENTIFIER

SEQUENCE #SEQUENCE #CONCATENATION
SEQUENCE OF #SEQUENCE-OF #REPETITION
SET #SET #CONCATENATION
SET OF #SET-OF #REPETITION
TIME #TIME #TIME

DATE #DATE #TIME
TIME-OF-DAY #TIME-OF-DAY #TIME
DATE-TIME #DATE-TIME #TIME
DURATION #DURATION #TIME
GeneralizedTime #GeneralizedTime #CHARS
UTCTime #UTCTime #CHARS
ObjectDescriptor #Obj ectDescriptor #CHARS
BMPString #BMPString #CHARS
GeneralString #GeneralString #CHARS
GraphicString #GraphicString #CHARS
IA5String # A5String #CHARS
NumericString #NumericString #CHARS
PrintableString #PrintableString #CHARS
TeletexString #TeletexString #CHARS
UniversalString #UniversalString #CHARS
UTF8String #UTF8String #CHARS
VideotexString #VideotexString #CHARS
VisibleString #VisibleString #CHARS
Textually present tag notation ~ #TAG #TAG

11.3 Simplification and expansion of ASN.1 notation for encoding purposes

11.3.1 ECN assumes that certain ASN.1 syntactic constructs have been expanded (or reduced) into equivalent or
simpler constructions.

NOTE — The types defined by the simpler constructions are capable of carrying the same set of abstract values as the original
ASN.1 syntactic structures, and those abstract values are mapped to the simpler constructions.

11.3.2 The expansion or simplification of ASN.1 syntactic productionsis either:

a)
b)

0)

d)

fully-defined in clause 11.3.4 below; or

referenced in those clauses as "See 11.3.2 b" and fully-defined in ITU-T Rec. X.680 | ISO/IEC 8824-1
(including Annex C) with al published amendments and technical corrigenda; or

referenced in those clauses as "See 11.3.2 ¢" and fully-defined in ITU-T Rec. X.681 | ISO/IEC 8824-2
with all published amendments and technical corrigenda.

referenced in those clauses as "See 11.3.2 d" and fully-defined in ITU-T Rec. X.683 | ISO/IEC 8824-4
with all published amendments and technical corrigenda.

11.3.3 The ASN.1 syntactic constructs removed by the expansions and simplifications below are not referenced
further in this Recommendation | International Standard.

11.3.4 Thefollowing expansions and simplifications shall be applied to all ASN.1 modules:

11.3.4.1 The following transformations are not recursive and hence are applied only once:

a)
b)

0)
d)
e

All "VaueSetTypeAssignment"s shall be replaced by their equivalent "TypeAssignment”s with subtype
constraints. (See 11.3.2 b.)

The ASN.1 I NSTANCE CF construction shall be expanded into its equivalent sequence type. (See
11.3.2c)

"TypeFromODbject" shall be replaced with the type that is referenced. (See 11.3.2 c.)
"V alueSetFromObjects' shall be replaced with the type that is referenced. (See 11.3.2 ¢.)

Where an instance of ASN.1 tag notation is textually followed by one or more further instances of ASN.1
tag notation, the second and subsequent instances of tag notation are discarded.

NOTE — This is similar to the rules for implicit tagging in ASN.1, but applies for all tagging environments.
Multiple tagging of the sametypeis still possible through the use of type reference names.

11.3.4.2 Thefollowing transformations shall be applied recursively in the specified order, until afixed-point is reached:

a)

All ASN.1 parameterization shall be fully resolved by the substitution of actual parameters for dummy
parameters. (See11.3.2d.)

26 ITU-T Rec. X.692 (11/2008)

b)
0)

| SO/IEC 8825-3:2008 (E)

NOTE — This means that where ASN.1 type notation contains an instantiation of an ASN.1 parameterized type,
that instantiation becomes an inline definition.

All "ComponentsOf"s shall be expanded to their full form. (See 11.3.2 b.)
All uses of "SelectionType" shall beresolved. (See 11.3.2b.)

11.3.4.3 The following transformations shall then be applied:

a)

b)
c)

d)

e

f)
0)

h)
i)
)

Named number lists in integer type definitions shall be removed. Named numbers are not visible to
ECN. ECN seesasingle #I NTEGER class (possibly with bounds as specified in 11.3.4.3 ¢).

Named bit lists in bitstring definitions shall be removed. Named bits are not visible to ECN.

All non-PER-visible constraint notation, except the contents constraint, shall be discarded. PER-visible
constraints shall be resolved to provide the following values that can be referenced in the definition of
encoding rules:

i) Anupper bound on integers and enumerations;
ii) A lower bound on integers and enumerations;

iii) The PER effective permitted alphabet and effective size constraints (see ITU-T Rec. X.691 |
ISO/IEC 8825-2, 10.3).

If there is a contents constraint with a CONTAI NI NG construction, then the existence of the contents

constraint, its contents type, and the presence or absence of an ENCODED BY clause become properties

associated with the abstract values of such a constrained octetstring or bitstring type, and the constraint

shall then be discarded. If there is a contents constraint with no CONTAI NI NG construction, then it is not
visible to ECN and shall be discarded.

NOTE — When specifying encodings for values with an associated contents constraint, a separate combined
encoding object set can be supplied to encode the contents type. This can be specified to override or not to
override any ENCODED BY that is present, as adesigner's option (see 11.3 and 13.2).

All tagging which is not textually present in the ASN.1 notation shall be ignored in the mapping to
encoding structures, but (in order to model BER encodings and PER procedures) the full tag-list of atype
becomes a property of the field of the encoding structure to which the corresponding values are mapped.

Textually present tag notation has the class of the tag removed. (Seeaso 11.3.4.1€)

"DEFAULT Vaue' shal be replaced by "OPTI ONAL- ENCODI NG #OPTI ONAL" and the default value is
associated with the field of the structure to which the ASN.1 component is mapped.

OPTI ONAL shall be replaced by "CPTI ONAL- ENCODI NG #CPTI ONAL".
T61St ri ng shall be replaced by #Tel et exStri ng.
| SO646St ri ng shall bereplaced by #Vi si bl eSt ri ng.

11.3.4.4 Finally, the following transformations shall then be applied:

a)

b)

d)

Automatic allocation of values to enumerations (if applicable) shall be performed. The ENUMERATED
syntax shall be replaced by the #ENUMERATED encoding class with an upper bound and lower bound set.
(See11.34.3c)

NOTE 1 — The #ENUMERATED class de-references to the #1 NT class (see 11.2.2), and the enumerations map
into bounded integer values of the class. The actual names of enumerations are not visible to ECN.

All occurrences of "ObjectClassFieldType" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 14) that
refer to atype field, a variable-type value field, or a variable-type value set field shall be replaced by the
#OPEN- TYPE encoding class. (See11.3.2c.)

Extensibility markers and version brackets in sequence, set and choice constructions are removed, but (in
order to model BER encodings and PER procedures) the identification of a component as part of the root
or of version 1, version 2, etc. becomes a property of the component, and the existence of the
extensibility marker becomes a property of the class the construction maps to.

The extensibility marker in constraints is removed, but the existence of the extensibility marker becomes
a property of the class and whether an abstract value is in the root or is in an extension becomes a
property of the abstract value.

NOTE 2 — The properties referenced in items c¢) and d) above can only be interrogated through non-ECN definition of encoding
objects in this version of this Recommendation | International Standard. Full support for extensibility is expected to be provided
in alater version of this Recommendation | International Standard.

ITU-T Rec. X.692 (11/2008) 27

| SO/IEC 8825-3:2008 (E)

11.3.5 With these transformations, all ASN.1 type-related constructs have corresponding encoding classes, listed in
Table2. The implicitly generated encoding structure shall be constructed by mapping the ASN.1 type-related
constructs in column 1 to the classesin column 2 of Table 2 (as specified in 11.4).

11.4 Theimplicitly generated encoding structure

11.4.1 Thereis an implicitly generated structure for each ASN.1 type definition with a name constructed from the
ASN.1 type reference name by the pre-fixing of a "#" character. Where a fully-qualified name is required for an
implicitly generated encoding structure, that fully-qualified name shall include the "Moduleldentifier" of the ASN.1
modul e containing the type definition. (An example of an implicitly generated structure isgivenin D.1.9.2)

NOTE — An implicitly generated structure is generated and exported for each ASN.1 type in an ASN.1 module whether or not
that typeislisted in the EXPORTS clause.

11.4.2 Theimplicitly generated encoding structure has the same structure as the ASN.1 type definition, with:
a) ASN.1 component identifiers are mapped to encoding structure fieldnames.

b) ASN.1 notation in column 1 of Table2 are mapped to the built-in encoding classes in column 2 of
Table 2.
NOTE 1 — The first textually present tag maps into a "[#TAG " construction in the implicitly generated
structure. The implicitly generated structure does not contain any "[#TAG " constructions for subsequent
textually present tags.
¢) ASN.1 "DefinedType's are mapped to an encoding class name derived from the typereference by the
addition of a character "#". If a type is imported into the ASN.1 module, any
"External EncodingClassReference” to the corresponding class in an implicitly generated structure shall
reference the ASN.1 module that contains the definition of the referenced type.
NOTE 2 — If the resulting class is the name of a built-in encoding class, then al references to it in either the
renames clause, or in the ELM, will use the "External EncodingClassReference" notation.
d) Abstract values are mapped from afield of the type definition to the corresponding field of the encoding
structure.

e) Upper and lower bounds on integer and enumerated types and all effective size constraints and effective
permitted alphabet constraints (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 10.3) are mapped from the type
definition to the corresponding field of the encoding structure.

f) Thetag number of the first textually present tag maps to the #TAG class.

11.4.3 Three further implicitly generated structures are produced and exported from all ASN.1 modules. These
structures have names #CHARACTER- STRI NG, #EMBEDDED- PDV and #EXTERNAL, and the structures that they de-
reference to are the implicitly generated structures corresponding to the associated types for CHARACTER STRI NG,
EMBEDDED PDV and EXTERNAL, specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 44.5, 36.5 and 37.5 respectively.

11.4.4 All implicitly generated encoding structures can be encoded by the built-in encoding object sets (see 18.2), and
will produce the same encodings as are specified by the corresponding Recommendation | International Standard for
those encodings when applied to ASN.1 types.

12 The Encoding Link Module (ELM)

NOTE — There are two top-level productions in ECN, the "ELMDefinition" specified in this clause and the "EDMDefinition”
specified in clause 14. These specify the syntax for defining the ELM and EDMs respectively.

12.1 Sructureof theELM
12.1.1 The"ELMD¢€finition" is:

EL M Definition ::=
Modulel dentifier
LI NK- DEFI NI TI ONS

BEG N
ELMM oduleBody
END

12.1.2 In any given application of ECN, there shall be precisely one ELM which determines the encoding of al the
messages used in that application.

NOTE — The ASN.1 type(s) defining "messages" are often referred to as "top-level types'.

28 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

12.1.3 The production "Moduleldentifier" (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.1.

12.1.4 The"Moduleldentifier" provides unambiguous identification of any module in the set of all ASN.1, ELM, and
EDM modules.

12.1.5 The"ELMModuleBody" is:

ELMModuleBody ::=
Imports ?
EncodingApplicationList

EncodingApplicationList ::=
EncodingApplication
EncodingApplicationList ?

12.1.6 The production "Imports' (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.1, 13.16,
and 13.17, as modified by A.1 of this Recommendation | International Standard.

12.1.7 All reference names used in the "ELMModuleBody" shall be imported into the ELM.

NOTE — This is a stronger requirement than that imposed for ASN.1 modules. In ASN.1 modules externa references can be
used for types and values that have not been imported. In an ELM module (and in an EDM module) external references can only
be used for encoding classes that have been referenced in an imports clause. The purpose of externa references is solely to
resolve ambiguities between imported names and built-in names, or between two identical names imported from different
modules.

12.1.8 The"Imports" makes available within the ELM:
a) implicitly generated encoding structures from an ASN.1 module;

b) explicitly generated encoding structures from an EDM module;

NOTE — When an ELM imports an explicitly generated encoding structure from an EDM, the renames clauses in
other EDMs have no effect on the encoding of that structure (see 15.2.4).

¢) objectsand encoding object sets from an EDM module.

12.1.9 The "EncodingApplicationList" is required to contain at least one "EncodingApplication”, as the sole function
of an ELM isto apply encodings.

12.2 Encoding types
12.21 An"EncodingApplication” is:

EncodingApplication ::=
ENCODE
SimpleDefinedEncodingClass " ," +
CombinedEncodings

12.22 An "EncodingApplication" defines the encoding of the ASN.1 types corresponding to the
"SimpleDefinedEncodingClass'es which shall be generated encoding structures. The encoding of the typesis specified
by the "CombinedEncodings" applied to the generated encoding structures as specified in 13.2.

NOTE - It will be common for an ELM to encode a single type of a single module, but where multiple types are encoded, ECN

tool-vendors may (but need not) assume that this implicitly identifies top-level types needing support in generated
data-structures.

12.2.3 Encodings applied to a generated encoding structure corresponding to an ASN.1 type defined in some ASN.1
module are linked solely to the use of that type as application messages. They have no implications on the encoding of
that type when referenced by other types or when exported from that ASN.1 module and imported into a different
ASN.1 module.

12.24 The encoding of the type in a contents constraint is that specified by the encoding object applied to the
containing class in the octetstring or bitstring category, and can be any combined encoding object set, or can be the
combined encoding object set that was applied to the containing class in the octetstring or bitstring category.

12.25 AnELM shal not apply encodings more than once to the same ASN.1 type.

NOTE — The rules of application of encodings (specified in clause 13) mean that an "EncodingApplication" completely defines
the encoding of atype unlessit contains an instance of a contents constraint.

ITU-T Rec. X.692 (11/2008) 29

| SO/IEC 8825-3:2008 (E)
13 Application of encodings

13.1 General

13.1.1 Encodings are applied by the ELM to a generated structure (or independently to multiple generated structures)
using a "CombinedEncodings' definition as specified in 13.1.3. This clause, together with 13.2, specifies the
application of "CombinedEncodings' to a generated encoding structure.

13.1.2 Inthe ELM, the application is to the generated encoding structures identified in the "EncodingApplication".
Later clauses also specify the application of encodings to all or part of an arbitrary encoding structure definition. This
clause is applicable in both cases.

13.1.3 The"CombinedEncodings' is:

CombinedEncodings ::=
WITH
PrimaryEncodings
CompletionClause ?

CompletionClause ::=
COMPLETED BY
SecondaryEncodings

PrimaryEncodings ::= EncodingObj ect Set

SecondaryEncodings ::= EncodingObj ect Set
13.1.4 "EncodingObjectSet" is defined in 18.1.1.
13.1.5 Theuse of "CombinedEncodings" is specified in 13.2.

13.2 The combined encoding object set and its application

13.21 A combined encoding object set is formed from the "CombinedEncodings' production (see 13.1.3) as
follows:

13.2.2 If thereisno "CompletionClause", then the "PrimaryEncodings' form the combined encoding object set.

13.2.3 Otherwise,
a) al encoding objectsin the "PrimaryEncodings" are placed in the combined encoding object set; then

b) every encoding object in the "SecondaryEncodings" is added to the combined encoding object set if (and
only if) there is no encoding object already in the combined encoding object set that has the same
encoding class (see 17.1.7 and 9.23.2).

13.2.4 Following this conceptual construction of the combined encoding object set, encoding commences with the
"encodingclassreference’ name of the encoding structures identified in the encoding application (see 13.1.2 and 17.5).

13.25 Where there are several encoding applications in the ELM, the rules of 12.2 ensure that applications are
non-overlapping. They proceed independently. Similarly, the application of encodings to encoding structuresin EDMs
(specified in 13.2.10) are aways non-overlapping. The following subclauses provide the rules for application to a
single encoding structure.

13.2.6 Encoding objects from the combined encoding object set are applied at an application point. The application
point is initially the "encodingclassreference” for a generated encoding structure (when application is in the ELM, as
specified in 13.1.2) or isacomponent of an encoding structure (when application isin an EDM, as specified in 17.5).

13.2.7 Any encoding class in the alternatives, concatenation, and repetition categories (see 16.1.8, 16.1.9 and
16.1.10) is an encoding constructor.

13.2.8 Theterm "component” in the following text refers to any of the following:
a) Thealternatives of aconstructor that isin the alternatives category.
b) Thefield following a constructor that isin the repetition category.
c) Thecomponents of a constructor that isin the concatenation category.
d) A contained type (atype specified in a contents constraint).
€) Thetype chosen (in an instance of communication) for use with a class in the opentype category.

30 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

13.29 At later stagesin these procedures, the application point may be on any of the following:

a) Anencoding class name. Thisis completely encodable using the specification in an encoding object of
the same class (see 17.1.7).

b) An encoding constructor (see 16.2.12). The construction procedures can be determined by the
specification contained in an encoding object of the encoding constructor class, but that encoding object
does not determine the encoding of the components. The specification of the encoding object that is
applied may require that one or more of the components of the constructor are replaced by other
(parameterized) structures before the application point passes to the components.

c) A classin the bitstring or octetstring category that has a contained type as a property associated with the
values (see 11.3.4.3 d). The encoding of the contained type depends on whether there is an ENCODED BY
present, and on the specification of the encoding object being applied (see 22.11).

d) A classin the open type category. The encoding of the component of the open type depends on whether
there is an ENCODED W TH present, and on the specification of the encoding object being applied (see
23.10.2).

e) A component which is an encoding class (possibly preceded by one or more classes in the tag category),
followed by an encoding class in the optionality category. The procedures and encodings for
determining presence or absence are determined by the specification contained in an encoding object of
the class in the optionality category. This encoding object may aso require the replacement of the
encoding class (together with al its preceding classes in the tag category) with a (parameterized)
replacement structure before that class is encoded. The application point then passes to the first class in
the tag category (if any), or to the component, or to its replacement.

f) An encoding class preceded by an encoding class in the tag category. The tag number associated with
the class in the tag category is encoded using the specification in an encoding object of the class in the
tag category, and the application point then passes to the tagged class.

g) Any other built-in encoding class. Thisis completely encodable using the specification contained in an
encoding object of that class.

13.2.10 Encoding proceeds as follows:

13.2.10.11f the combined encoding object set contains an encoding object of the same class (see 17.1.7) as the current
application point, then that encoding object is applied. This application may cause replacement of one or more
components of the class to which the encoding is being applied. If the combined encoding object set does not contain
such an encoding object, then either:

a) theencoding class at the current application point is a reference to another encoding class; in this case it
is de-referenced, and the procedures of 13.2.10 are recursively applied; or

b) the encoding class at the current application point is not a reference to another encoding class; in this
case the ECN specification isin error.

13.2.10.2If an encoding has been applied at the application point to the encoding class, and it is not in the optionality
or tag category and does not have any components (see 13.2.7), then that application completely determines the
encoding of the class and terminates these procedures.

13.2.10.3 If an encoding has been applied at the application point to an encoding class that isin the optionality category
then the application point passes to the (possibly tagged) optional component.

13.2.10.41f an encoding has been applied at the application point to an encoding class that is in the tag category then
the application point passes to the tagged element, and the procedures of 13.2.10 are recursively applied.

13.2.10.51f an encoding has been applied at the application point to an encoding class that has components which are
not a contained type, then the procedures of 13.2.10 are applied recursively to each component.
NOTE - If the encoding object being applied to a class in the open type category contains an ENCODED W TH, this determines the

encoding object set that is applied to the component, otherwise the combined encoding object set that is being applied to this
classis applied to the component (see 23.10.2).

13.2.10.6 If an encoding has been applied to an encoding class at the application point that has a component that is a
class in the hitstring or octetstring category with a contained type associated with the values, then there are four cases
that can occur:

a) The contents constraint contains an ENCODED BY, and the encoding object for this class either does not
contain a specification of the encoding of the contained type, or specifies that it should not override an
ENCODED BY (see 22.11). In this case the ENCODED BY specification shall be used for the contained
type, and the application point passes to the contained type using this encoding specification.

ITU-T Rec. X.692 (11/2008) 31

| SO/IEC 8825-3:2008 (E)

b) The contents constraint contains an ENCCDED BY, but the encoding object for this class contains a
specification of the encoding of the contained type, and specifies that it should override an "ENCODED
BY". Inthis case, the specification in the encoding object shall be applied to the contained type, and the
application point passes to the contained type using this encoding specification.

c) The contents constraint does not contain an ENCODED BY and the encoding object for this class contains
a specification of the encoding of the contained type. In this case, the specification in the encoding
object is applied to the contained type, and the application point passes to the contained type using this
encoding specification.

d) The contents constraint does not contain an ENCODED BY, and the encoding object for this class does not
contain a specification of the encoding of the contained type. In this case the combined encoding object
set being applied to the class shall aso be applied to the contents type, and the application point passes
to the contained type using this encoding specification.

13.2.10.7 If there is no encoding object in the combined encoding object set of the same class (see 17.1.7) asthe current
application point, and the current application point is a reference name, then it is de-referenced and these procedures
are applied recursively to the new encoding structure.

13.2.10.8 Otherwise the ECN specificationisin error.

13.2.11 The above agorithm can be summarized as follows. The combined encoding object set is applied in a
top-down manner. If in this process an encoding structure reference name is encountered and there is an object in the
combined encoding object set that can encode it, that object determines its encoding. Otherwise, the reference name is
expanded by de-referencing. If at any stage an encoding is required (and does not exist) for an encoding class that
cannot be de-referenced, then the ECN specification is incorrect, and the combined encoding class is said to be
incomplete. When a primitive bit-field class is reached, the encoding terminates with the encoding of that class, except
that if it has a contained type, encoding proceeds to the generated encoding structure corresponding to the contained
type. When atype with components is reached, the process continues by applying the combined encoding object set to
each component independently. When tags and optionality are involved, the optionality class is encoded first, then the
encoding class in the tag category, and finally the element. When encodings are applied to constructor classes they
may cause replacement of one or more components. When they are applied to an optionality class they may cause
replacement of the entire element (apart from the optionality class, but including any encoding class in the tag

category).

13.2.12 In the encoding process, encoding objects applied to encoding constructors (and to classes in the optionality
category) may require that the encoding objects applied to the components of the constructions defined by those
constructors exhibit identification handles (of a given name) to resolve alternatives, or optionality, or termination of a
repetition, or order in a set-like concatenation. They may also require that the encoding objects applied to other
encoding classes (following those constructions) exhibit the same identification handle, and that the handle value sets
of al the involved encoding objects (exhibiting the same handle) be al digoint. If these conditions are not satisfied,
then the ECN specificationisin error.

NOTE — This problem is most likely to arise if BER encoding objects are applied to encoding constructors and not to their
components, as BER is heavily reliant on identification handles. PER encoding objects make no use of identification handles.

14 The Encoding Definition Module (EDM)

NOTE — There are two top-level productions in ECN, the "EDMDefinition" specified in this clause and the "ELMDefinition"
specified in clause 12. These specify the syntax for defining EDMs and the ELM respectively.

14.1 The "EDMDefinition" is:

EDM Definition ::=
M odulel dentifier
ENCODING-DEFINITIONS

BEGIN
EDM M oduleBody
END

14.2 In any given application of ECN, there are zero, one or more EDMs which define encoding objects for
application in the ELM.
NOTE - If there are zero EDMs, then only built-in encoding object sets can be used in the ELM.

14.3 The production "Moduleldentifier" (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1,
13.1.

32 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

144 The "Moduleldentifier" provides unambiguous identification of any module in the set of all ASN.1, ELM,
and EDM modules.

145 The"EDMModuleBody" is:

EDMM oduleBody ::=
Exports ?
RenamesAndExports ?
Imports ?
EDM AssignmentList ?

EDMAssignmentList ::=
EDM Assignment
EDMAssignmentList ?

EDMAssignment ::=
EncodingClassAssignment
|EncodingObj ectAssignment
|EncodingObj ect SetAssignment
|ParameterizedAssignment

14.6 The productions "Exports' and "Imports' (and their semantics) are defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 13.1, as modified by A.1 of this Recommendation | International Standard.

14.7 The "Exports' makes available for import into other EDMs (and the ELM) any reference name defined in or
imported into the current EDM except that of an implicitly generated structure. The "Symbol" in the "Exports' can
reference any encoding class (except a built-in encoding class or an implicitly generated structure), an encoding object,
or an encoding object set. The"Symbol" shall have been defined in this EDM, or imported into it.

NOTE — When the name of an imported implicitly generated encoding structure is a built-in encoding class reference, it can be

used within the EDM with a fully-qualified name. An implicitly generated encoding structure can never be exported from an
EDM (however, encoding structures defined using it can, of course, be exported).

14.8 The production "RenamesAndExports" is defined in clause 15.

14.9 The "RenamesAndExports' (called the renames clause) makes available (within the EDM) explicitly
generated encoding structures derived from the implicitly generated encoding structures in specified ASN.1 modules. It
also makes these explicitly generated encoding structures available for import into other EDMs (and the ELM). (See
clause 15.)

14.10 The"Imports' makes available (within the EDM) encoding classes, encoding objects and encoding object sets
exported from other EDMs or automatically exported from ASN.1 modules.

1411 All ASN.1 modules that define non-parameterized type reference names automatically produce and export an
implicitly generated encoding structure of the same name preceded by the character "#". Such encoding classes can be
imported into an EDM from that ASN.1 module.

NOTE — Where such names are the same as built-in encoding class names, then the external form of reference, as specified in
A.1, hasto be used in the body of the importing module, and in any renames clause.

14.12 Each "EDMAssignment" defines a reference name, and may make use of other reference names. Each
reference name used in a module shall either be imported into that module or shall be defined precisely once within that
module.
NOTE — This is a stronger requirement than that imposed for ASN.1 modules. In ASN.1 modules, external references can be
used for types and values that have not been imported. In an EDM module (and in an ELM module) external references can only
be used for encoding classes that have been referenced in an imports clause. The purpose of externa references is solely to
resolve ambiguities between imported names and built-in names, or between two identical names imported from different
modules.

14.13 Thereis no requirement that any reference name used in one assignment be defined (in another assignment
statement) textually before its use.

14.14 The productionsin "EDMAssignment” are defined in subsequent clauses as follows:

EncodingClassAssignment Clause 16
EncodingObj ectAssignment Clause 17
EncodingObj ect SetAssignment Clause 18
ParameterizedAssignment Subclause C.1

ITU-T Rec. X.692 (11/2008) 33

| SO/IEC 8825-3:2008 (E)

NOTE - The "ParameterizedAssignment” allows the parameterization of an "EncodingClassAssignment”, an
"EncodingObjectAssignment”, and an "EncodingObjectSetAssignment", as specified in C.1.

15 Therenames clause

15.1 Explicitly generated and exported structures
15.1.1 The production "RenamesAndExports' is:

RenamesAndExports::=
RENAMES
ExplicitGenerationList " ;"

ExplicitGenerationList ::=
ExplicitGeneration
ExplicitGenerationList ?

ExplicitGeneration ::=
OptionalNameChanges
FROM GlobalM oduleReference

OptionalNameChanges ::=
NameChanges| GENERATES

NOTE — An example of the use of the renames clause to produce explicitly generated encoding structuresis givenin D.3.7.

15.1.2 The production "GlobaModuleReference” is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.1, and shall
identify an ASN.1 module.

15.1.3 The"RenamesAndExports' is called a renames clause.

15.1.4 Each "ExplicitGeneration" generates, and exports from this module, an explicitly generated encoding structure
for each of the implicitly generated encoding structures of the ASN.1 module referenced by "GlobalM oduleReference’”.
Each field of the explicitly generated encoding structure has associated with it the same abstract values as the
corresponding field of the implicitly generated encoding structure (which are those associated with the corresponding
field of the ASN.1 type from which it was generated).

15.1.5 If arenames clause references more than one ASN.1 module and as a result of this two explicitly generated
structures have the same simple name, then neither structure is available for explicit import into an ELM or an EDM
module.

NOTE — These explicitly generated structures nonetheless exist, and are likely to be implicitly referenced by other explicitly
generated structures that are exported without restriction.

15.1.6 The primary purpose of the renames clause is to make available the explicitly generated structures for import
into other modules, particularly the ELM. However, this clause also makes these structures available for reference
within the EDM module containing the renames clause except as specified in 15.1.7. If the simple name is ambiguous,
then afully-qualified name shall be used within the EDM module containing the renames clause, as specified in 15.1.9.

NOTE — Ambiguity can arise either because of clashes with the names of built-in classes, or because of clashes of simple names
between structures generated from more than one ASN.1 module, or both.

15.1.7 When arenames clause produces an explicitly generated structure from an implicitly generated structure, that
implicitly generated structure cannot be imported into this EDM module using an imports clause, and the implicitly
generated structure is never available in this EDM module.

15.1.8 These explicitly generated encoding structures have the same simple reference name as the implicitly
generated encoding structure from which they were formed (but are distinct classes). Where a fully-qualified name is
required for an explicitly generated encoding structure, that fully-qualified name shall include the "Moduleldentifier" of
the EDM module containing the renames clause, as specified in 15.1.9.

NOTE — The implicitly generated encoding structures used in their generation have the same simple reference name, but their
fully-qualified name includes the "Modulel dentifier" of the ASN.1 module in which the corresponding type was defined.

15.1.9 If an EDM produces explicitly generated encoding structures from more than one ASN.1 module, it is possible
that some of these structures may have the same simple encoding class names. If any of these structures are referenced
in the body of this EDM, then the reference shall be an "ExternalEncodingClassReference" containing the
"modulereference” used as the ASN.1 module reference in the replaces clause of this EDM module.

15.1.10 The "ExternalEncodingClassReference” notation shall not be used in an imports clause except where required
by clause 15.1.9.

34 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

15.1.11 If a name which has been imported using an "External EncodingClassRefererence” is used in the body of a
module, then the simple "encodingclassreference” can be used unless an "External EncodingClassReference” is required
as specified in clause 15.1.9.

15.1.12 If the "OptionalNameChanges' is GENERATES, then all the explicitly generated encoding structures are the

same structure as the implicitly generated encoding structures used in their generation, except as specified in 15.1.14.
NOTE — (Tutoria) If, in an EDM module, there are multiple structures with the same simple reference name (whether these
names arise from an imports clause or from a renames clause, or from clashes with built-in classes, or from any combination of
these), then a fully-qualified name is used except for references to a built-in class. For implicitly generated structures, the
fully-qualified name always uses the ASN.1 module name. For structures generated by the renames clause in an EDM module,
the fully-qualified name is used. This fully-qualified name in the body of this EDM aways uses the ASN.1 module name
referenced by the renames clause. For structures imported from another EDM module, the fully-qualified name uses the name of
that EDM module. This is always unambiguous, as importation is not permitted if an EDM module generates multiple explicitly
generated structures with the same simple reference name.

15.1.13 If "OptionalNameChanges' is "NameChanges', then 15.1.14 till applies, but the explicitly generated
encoding structures are further modified as specified in 15.2.

15.1.14 Consider an implicitly generated encoding structure (A say) which contains an encoding class reference to
some other implicitly generated encoding structure (B say). Then:

a) If this renames clause (in any of its "ExplicitGeneration"s) produces an explicitly generated encoding
structure corresponding to B (B1 say), then the corresponding reference in the explicitly generated
encoding structure corresponding to A is areference to B1.

b) If there is no explicitly generated encoding structure corresponding to B, then the reference in the
generated encoding structure corresponding to A is areference to B.

15.2 Name changes
15.2.1 The"NameChanges' productionis:

NameChanges ::=
NameChange
NameChanges ?

NameChange ::=
OriginalClassName
AS
NewClassName
IN
NameChangeDomain

OriginalClassName ::= SimpleDefinedEncodingClass | BuiltinEncodingClassReference
NewClassName ::= encodingclassr eference

15.2.2 Each "NameChanges' specifies that, in the generation of explicitly generated encoding structures, all
occurrences of "OriginalClassName" within "NameChangeDomain" in the implicitly generated encoding structures are
to be renamed as the class "NewClassName". "NameChangeDomain" is specified in 15.3, and identifies one or more
implicitly generated encoding structures (or components of those structures) from the ASN.1 module referenced by the
"GlobalModuleReference” in the "ExplicitGeneration”.

NOTE 1 — This enables different encodings to be applied to some occurrences of a class from that applied to other occurrences.

NOTE 2 — Thisimplies that "OriginalClassName" can only be a name implicitly generated from an ASN.1 type, that is, the name
of auser-defined ASN.1 type (preceded by "#"), or one of the class names listed in column 2 of Table 2.

15.2.3 References by "Original ClassName" to fields of the implicitly generated encoding structure which correspond
to use of "External TypeReference" in the ASN.1 type definition shall use the "SimpleDefinedEncodingClass' notation
with the same "modulereference” as the "Externa TypeReference’. Otherwise, if the "DefinedType" (preceded by a
"#") is not a "BuiltinEncodingClassReference”, a simple "encodingclassreference” shall be used. If a "typereference”
(preceded by a "#") is a "BuiltinEncodingClassReference” then the "SimpleDefinedEncodingClass' notation shall be
used with the same "modul ereference" asthe ASN.1 module that generated the implicitly generated encoding structure.

15.24 When an ELM imports an explicitly generated encoding structure from an EDM, renames clauses in other
EDMs have no effect on the encoding of that structure.

NOTE — This means in practice that all the "coloring” (see 9.16.4) needed for any particular message has to be done in asingle
EDM.

15.25 The"NewClassName" shall be defined in an encoding class assignment statement (see clause 16) of the form:

ITU-T Rec. X.692 (11/2008) 35

| SO/IEC 8825-3:2008 (E)

<Newd assNane>::=<Ori gi nal d assNane>

where "<Newd assName>" and "<Ori gi nal O assName>" are the names of the new and original classes appearing in
the "NameChanges" production. The assignment shall be in the EDM module with the renames clause.

NOTE - The"<Cri gi nal A assNanme>" is required to reference a built-in encoding class or an externally generated encoding
structure produced by the renames clause in this module. In case of ambiguity, this will require the use of an external reference
in"<Ori gi nal A assName>".

15.3 Specifying theregion for name changes
15.3.1 The production "NameChangeDomain" is:

NameChangeDomain ::=
IncludedRegions
Exception ?

Exception ::=
EXCEPT
ExcludedRegions

IncludedRegions::=
ALL | RegionList

ExcludedRegions ::= RegionList

RegionList ::=
Region"," +

Region ::=
SimpleDefinedEncodingClass |
ComponentReference

ComponentReference ::=
SimpleDefinedEncodingClass

ComponentldList

ComponentldList ::=
identifier "." +
15.3.2 Each "SimpleDefinedEncodingClass' shall be the name of an implicitly generated encoding structure from the
ASN.1 module referenced by the "GlobalModuleReference” in the "ExplicitGeneration". When used in "Region”, it
identifies the whole of that encoding structure definition.

NOTE - The "ExternalEncodingClassReference” form of "SimpleDefinedEncodingClass' is used if the referenced class is
derived from a"typereference" name which (when preceded by "#") is a "BuiltinEncodingClassReference" (see 15.2.3).

15.3.3 Each "identifier" shall be the "identifier" in a "NamedField" of the implicitly generated encoding structure
identified by the "encodingclassreference” in the "ComponentReference”. The "ComponentReference” identifies the
entire definition of the identified component of that encoding structure.

15.3.4 The first "identifier" of the "ComponentldList" shall be an "identifier" in a "NamedField" of the implicitly
generated encoding structure identified by the "encodingclassreference” in the "ComponentReference”, and identifies
the entire definition of that component of the encoding structure. Each subsequent “identifier" of the
"ComponentldList" shall be an "identifier" in a "NamedField" of the implicitly generated encoding structure identified
by the previous part of the "ComponentldList”, and identifies the entire definition of that component.

15.3.5 The definitionsidentified by different "Region"sin "RegionList" shall be digoint. A definition isidentified by
"RegionList" if and only if it isidentified by a"Region" in "RegionList".

15.3.6 If "IncludedRegions" is ALL, it identifies all parts of all the implicitly generated encoding structures from the
ASN.1 module referenced by the "GlobalModuleReference” in the "ExplicitGeneration™.

15.3.7 The definitions identified by the "ExcludedRegions' shall be a proper subset of the definitions identified by
the "IncludedRegions".

15.3.8 The "NameChangeDomain" specification identifies the definitions in which the name changes are to be made.
The definitions in the "NameChangeDomain" are the definitions identified by the "IncludedRegions' which are not also
identified by "ExcludedRegions’.

36 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)
16 Encoding class assignments

16.1 General
16.1.1 The "EncodingClassAssignment” is:

EncodingClassAssignment ::=
encodingclassr eference

E.r'lcodingCIass

16.1.2 The "EncodingClassAssignment” assigns the "EncodingClass’ to the "encodingclassreference”.

NOTE - Any "EncodingObject" notation that was valid with "EncodingClass' as a governor is valid with
"encodingclassreference” as a governor.

16.1.3 Anencoding classisin one of the following categories:
a) A category in the bit-field group of categories (see 16.1.7).
b) Thealternatives category (see 16.1.8).
¢) The concatenation category (see 16.1.9).
d) Therepetition category (see 16.1.10).
€) Theoptionality category (see 16.1.11).
f) Thetag category (see 16.1.12).

g) A category in the encoding procedure group of categories (see 16.1.13).

NOTE — The term encoding constructor is used for any class in the alternatives, concatenation, and repetition categories. These
are also called the encoding constructor group of categories.

16.1.4 The category of each built-in encoding classis specified in 16.1.14.

NOTE — If an encoding class is a tagged class (see 16.2.1), or has bounds (see 16.2.6), then the category of the class is the
category of the class with the tag and the bounds removed.

16.1.5 The"EncodingClass' is:

EncodingClass ::=
BuiltinEncodingClassReference
|[EncodingStructure

16.1.6 The "BuiltinEncodingClassReference” is:

BuiltinEncodingClassReference ::=
BitfieldClassReference
|Alter nativesClassReference
|ConcatenationClassReference
|RepetitionClassRefer ence
|OptionalityClassRefer ence
[TagClassReference
|[EncodingPr ocedur eClassReference

16.1.7 The"BitfieldClassReference" is:

BitfieldClassReference ::=
#NUL
[#BOOL
[NT
[#BITS
[#OCTETS
[#CHARS
[#PAD
[#BIT-STRING
[#BOOLEAN
[#CHARACTER-STRING
[#EM BEDDED-PDV
[#ENUMERATED
[#HEXTERNAL
[#INTEGER
[#NULL
[#OBJECT-IDENTIFIER

ITU-T Rec. X.692 (11/2008) 37

| SO/IEC 8825-3:2008 (E)

[#OCTET-STRING
[#OPEN-TYPE
[#REAL
[#RELATIVE-OID
[H#TIME

[#DATE
[#DATE-TIME
[#TIME-OF-DAY
[#DURATION
[#GeneralizedTime
[H#UTCTime
[#ObjectDescriptor
[#BM PString
[#GeneralString
[#GraphicString

[#1 A5String
[#NumericString
[#PrintableString
[#T eletexString
[#UniversalString
[#UTF8String
[#VideotexString
[#VisibleString

The categories of the classes that these built-in names reference (see 16.1.14) are al defined to be in the bit-field group
of categories.

16.1.8 The"AlternativesClassReference’ is:

AlternativesClassReference ::=
#ALTERNATIVES
[#CHOICE

16.1.9 The "ConcatenationClassReference” is:

ConcatenationClassReference ::=
#CONCATENATION
[#SEQUENCE
[#SET

16.1.10 The "RepetitionClassReference” is:

RepetitionClassReference ::=
#REPETITION
[#SEQUENCE-OF
[#SET-OF

16.1.11 The "OptionalityClassReference” is:

OptionalityClassReference ::=
#OPTIONAL

16.1.12 The"TagClassReference” is:

TagClassReference ::=
#TAG

16.1.13 The "EncodingProcedureClassReference” is:

EncodingProcedur eClassReference ::=
#TRANSFORM
[#CONDITIONAL-INT
[#CONDITIONAL-REPETITION
[#OUTER

16.1.14 Some of these classes are defined to be primitive, and can only be encoded by encoding objects of their own
class. Others are derived from a primitive class through class assignment statements, and can be de-referenced to these
classes. Their category is that of the class from which they are derived. The following are the primitive classes that
each built-in class is derived from through class assignment statements. When defining encoding objects of derived
classes, any syntax permitted for the corresponding primitive class can be used for the derived class. The third column
of the table gives the category for each of the built-in classes that are not derived from other classes.

38 ITU-T Rec. X.692 (11/2008)

Built-in class
#ALTERNATIVES
#BITS
#BIT-STRING
#BOOL
#BOOLEAN
#CHARACTER-STRING
#CHARS
#CHOICE
#CONCATENATION
#CONDITIONAL-INT
#CONDITIONAL-REPETITION
#EMBEDDED-PDV
#ENUMERATED
#EXTERNAL

#INT

#INTEGER

#NUL

#NULL
#OBJECT-IDENTIFIER
#OCTETS
#OCTET-STRING
#OPEN-TYPE
#OPTIONAL
#OUTER

#PAD

#REAL
#RELATIVE-OID
#REPETITION
#SEQUENCE
#SEQUENCE-OF
#SET

#SET-OF

#TAG

#TIME

#DATE
#TIME-OF-DAY
#DATE-TIME
#DURATION
#TRANSFORM
#GeneralizedTime
#UTCTime
#ObjectDescriptor
#BMPString
#GeneralString
#GraphicString

A5String
#NumericString
#PrintableString
#TeletexString
#UniversalString
#UTF8String
#VideotexString
#VisibleString

16.2 Encoding structure definition

16.2.1

The "EncodingStructure” is:

EncodingStructure ::=
TaggedStructure
|UntaggedStructure

TaggedStructure::=
TagClass

TagValue?
n]II

Derived from
(primitive)

(primitive)

#BITS

(primitive)

#BOOL

(defined using #SEQUENCE)
(primitive)
#ALTERNATIVES
(primitive)

(primitive)

(primitive)

(defined using #SEQUENCE)
H#INT

(defined using #SEQUENCE)
(primitive)

#INT

(primitive)

#NUL

(primitive)

(primitive)

#OCTETS

(primitive)

(primitive)

(primitive)

(primitive)

(primitive)
#OBJECT-IDENTIFIER
(primitive)
#CONCATENATION
#REPETITION
#CONCATENATION
#REPETITION
(primitive)

(primitive)

#TIME

#TIME

#TIME

#TIME

(primitive)

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

#CHARS

| SO/IEC 8825-3:2008 (E)

Category
alternatives

bitstring

boolean

characterstring
concatenation

encoding procedure
encoding procedure

integer
null

objectidentifier

octetstring
opentype
optionality
encoding procedure
pad

real

repetition

tag

time

encoding procedure

ITU-T Rec. X.692 (11/2008) 39

| SO/IEC 8825-3:2008 (E)

16.2.2

UntaggedStructure

UntaggedStructure::=
DefinedEncodingClass
|[EncodingStructur eField
|[EncodingStructureDefn

TagClass::=
DefinedEncodingClass |
TagClassReference

TagValue::=
" (" number ")"

An "EncodingStructure" defines a structure-based encoding class using the notation specified below. This

notation permits the definition of arbitrary encoding classes using built-in encoding classes and defined encoding
classes (which may be generated encoding structures) for bit-fields, encoding constructors, and the encoding procedure
classes in the optionality category. All classes defined by "EncodingStructure” are in the encoding structure category.
(Examples of an encoding structure assignment illustrating many of the syntactic structures is given in D.2.8.4 and
D.2.2.3isan example of the use of #TAG)

NOTE — The syntax prohibits the specification of a tag class immediately following another tag class in the definition of an
encoding structure, nor can such structures be produced by multiple textual tagsin an ASN.1 type definition (see 11.3.4.1 €).

16.2.3
16.2.4
16.2.5
16.2.6

40

The "DefinedEncodingClass" is specified in 10.9.1 and shall be a classin the bit-field group of categories.
The "DefinedEncodingClass' in the "TagClass' shall be aclassin the tag category (see 16.1.3).
The"number" in "TagValue" specifies atag number which is associated with the class in the tag category.
The "EncodingStructureField" is:

EncodingStructureField ::=

#NUL

#BOOL

#INT Bounds?
#BITS Size?
#OCTETS Size?
#CHARS Size?
#PAD

#BIT-STRING Size?
#BOOL EAN

#CHARACTER-STRING
#EMBEDDED-PDV

:

|

|

|

|

|

|

|

|

[#ENUMERATED Bounds?
[H#EXTERNAL

[# NTEGER Bounds?
[#NULL

[#OBJECT-IDENTIFIER

[#OCTET-STRING Size?
[#OPEN-TYPE

[#REAL

[#RELATIVE-OID

[#TIME

[#DATE

[#TIME-OF-DAY

[#DATE-TIME

| #DURATION

| #GeneralizedTime

[#UTCTime

[#Obj ectDescriptor Size?
[#BMPString Size?
| #GeneralString Size?
| #GraphicString Size?
[# A5String Size?
[#NumericString Size?
[#PrintableString Size?
[#T eletexString Size?
| #Univer salString Size?
| #UTF8String Size?
[#VideotexString Size?

ITU-T Rec. X.692 (11/2008)

[#VisbleString

| SO/IEC 8825-3:2008 (E)

Size?

16.2.7 The "EncodingStructureField"s represent all possible bitstring encodings for the corresponding ASN.1 types,
and can be assigned values of those types in a value mapping (see clause 19).

16.2.8 The ASN.1 values which can be associated with each primitive field are as follows:

#NUL

#BOOL

#INT

#BITS
#OCTETS
#CHARS
#PAD
#OBJECT-IDENTIFIER
#OPEN-TYPE
#REAL
#TIME

#TAG

The null value

The boolean values
The integer values
Bitstring values
Octetstring values
Character string values
None

Object identifier values
Open type values

Real values

Time values

Tag numbers

NOTE — The #PAD field cannot have associated ASN.1 values, and is never visible outside the encoding and decoding

procedures.

16.2.9 The"Bounds' and "Size" specify the bounds or effective size constraint respectively on the abstract values that

can be mapped to the field (see clause 19).

NOTE — Effective permitted aphabet constraints cannot be assigned in an encoding structure definition. They can only be

assigned through the value mappings of clause 19.
16.2.10 "Bounds’ and "Size" are:

Bounds::=" (" EffectiveRange")"

EffectiveRange::=
MinMax
[Fixed
Size
SizeEffectiveRange ::=

" (" EffectiveRange")"

MinMax ::=
ValueOrMin
ValueOrMax

ValueOrMin::=
SignedNumber |
MIN

ValueOrMax::=
SignedNumber |
MAX

Fixed ::= SignedNumber

=" (" SIZE SizeEffectiveRange")"

16.2.11 M N and MAX specify that there is no lower or upper bound respectively. M N shall not be used in "Size".

"Fixed" means a single value or a single size.

"SignedNumber” is specified in ITU-T Rec. X.680 | ISO/IEC

8824-1,19.1. It shall be non-negative when used in "Size". "VaueOrMin" and "VaueOrMax" specify lower and

upper bounds respectively.
16.2.12 The "EncodingStructureDefn" is:

EncodingStructureDefn ::=
AlternativesStructure
|RepetitionStructure
|ConcatenationStructure

16.2.13 These encoding structures are defined in the following clauses:

AlternativesStructure 16.3

ITU-T Rec. X.692 (11/2008) 41

| SO/IEC 8825-3:2008 (E)

RepetitionStructure 16.4
ConcatenationStructure 16.5

16.3 Alternative encoding structure
16.3.1 The"AlternativesStructure” is:

AlternativesStructure ::=
AlternativesClass

{
NamedFields
n }ll
AlternativesClass::=

DefinedEncodingClass|
AlternativesClassRefer ence

NamedFields ::= NamedField " " +

NamedField ::=
identifier
EncodingStructure
16.3.2 The "AlternativesStructure” identifies the presence in an encoding of precissly one of the
"EncodingStructure”s in its "NamedFields'. The "DefinedEncodingClass' shall be a class in the alternatives category
(see 16.1.8). The mechanisms used to identify which of the "EncodingStructure”s is present in an encoding are
specified by an encoding object of the "AlternativesClass".

16.3.3 The"AlternativesStructure" is an encoding constructor: when an encoding object set is applied to this structure
as specified in 13.2, the encoding of the "AlternativesClass' determines the selection of aternatives, and the application
point then proceeds to each of the "EncodingStructure'sin its "NamedFields'.

16.4 Repetition encoding structure
16.4.1 The "RepetitionStructure” is:

RepetitionStructure ::=
RepetitionClass
" {ll
identifier ?
EncodingStructure

}

Size?

RepetitionClass ::=
DefinedEncodingClass |
RepetitionClassReference

16.4.2 The "RepetitionStructure" identifies the presence in an encoding of repeated occurrences of the
"EncodingStructure” in the production. The optional "Size" construction (see 16.2.9) specifies bounds on the number
of repetitions. The mechanisms used to identify how many repetitions of the "EncodingStructure" are present in an
encoding are specified by an encoding object of the "RepetitionClass' class. The "DefinedEncodingClass' shall be a
classin the repetition category (see 16.1.10).

16.4.3 The "RepetitionStructure” is an encoding constructor: when an encoding object is applied to this structure as
specified in clause 13.2, the encoding of the "RepetitionClass' determines the mechanisms for determining the number
of repetitions, and the application point then proceeds to the "EncodingStructure” in the production.

NOTE — The characters "{" and "}" are used in this construction, but are not present in the related ASN.1 SEQUENCE OF
construction. This was done to help avoid syntactic ambiguities in structure definition.

16.5 Concatenation encoding structure
16.5.1 The"ConcatenationStructure” is:

ConcatenationStructure ::=
ConcatenationClass
n {ll
ConcatComponents

e

42 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

ConcatenationClass ::=
DefinedEncodingClass |
ConcatenationClassReference

ConcatComponents ::=
ConcatComponent " " *

ConcatComponent ::=
NamedField
ConcatComponentPresence ?

ConcatComponentPresence ::=
OPTIONAL-ENCODING
OptionalClass

OptionalClass ::=
DefinedEncodingClass |
OptionalityClassRefer ence

16.5.2 The "ConcatenationStructure” identifies the presence in an encoding of zero or one encodings for each of the
"EncodingStructure”s in its "NamedField"s. The "DefinedEncodingClass’ in the "ConcatenationClass' shall be a class
in the concatenation category (see 16.1.9), and the "DefinedEncodingClass’ in the "OptionalClass' shall be a class in
the optionality category (see 16.1.3).

16.5.3 If "ConcatComponentPresence” is absent from a "Component”, then the "EncodingStructure" in that named
field shall appear precisely once in the encoding.

16.5.4 If "ConcatComponentPresence" is present, the mechanism used to determine whether there is an encoding of
the corresponding "EncodingStructure” is specified by the encoding object which encodes the "Optional Class'.

16.5.5 The order in which the encodings of each "NamedField" appear in an encoding of the concatenation (and the
means of identifying which "NamedField" an encoding represents) is determined by an encoding object of the
"ConcatenationClass' class.

16.5.6 The "ConcatenationStructure” is an encoding constructor: when an encoding object is applied to this structure
as specified in clause 13.2, the encoding of the "ConcatenationClass" determines the concatenation procedures and the
application point then proceeds to each of the "EncodingStructure”sin its named fields.

17 Encoding object assignments

17.1 General
17.1.1 The "EncodingObjectAssignment" is:

EncodingObjectAssignment ::=
encodingobj ectr eference
DefinedOr BuiltinEncodingClass

E.r.modi ngObj ect
17.1.2 The "EncodingObjectAssignment” defines the "encodingobjectreference” as an encoding object reference to
the "EncodingObject”, which is required to be a production which generates an object of the encoding class

"DefinedOrBuiltinEncodingClass'. (D.1.2.2, D.1.7.3 and D.1.8.2 provide examples of encoding object assignment for
the different syntactic constructions for "EncodingObject” specified below.)

17.1.3 The "DefinedOrBuiltinEncodingClass' is called the governor of the "EncodingObject” notation in this
production.

NOTE 1 — Whenever the "EncodingObject” production appears in ECN, there is a governor, and the syntax of the governed
notation depends on the encoding class of the governor.

NOTE 2 — The syntax of the governed notation has been designed so that a parser can find the end of it without knowledge of the
governor.

17.1.4 There shall be no recursive definition (see 3.2.39) of an "encodingobjectreference”, and there shall be no
recursive instantiation (see 3.2.40) of an "encodingobjectreference” if these recursions lead to an infinite recursion in
the definition of the encoding.

17.1.5 The"EncodingObject” is:

ITU-T Rec. X.692 (11/2008) 43

| SO/IEC 8825-3:2008 (E)

EncodingObject ::=
DefinedEncodingObj ect
|DefinedSyntax
|[EncodeWith
|EncodeByValueM apping
|[EncodeStructure
|Differential EncodeDecodeObj ect
|EncodingOptionsEncodingObj ect
[INonECNENcodingObject

17.1.6 "DefinedEncodingObject” identifies an encoding object and is specified in 10.9.2. The
"DefinedEncodingObject” shall be of the same encoding class as the governor, or of a class which can be obtained from
the governor by de-referencing.

17.1.7 In this Recommendation | International Standard, "the same encoding class' and "the same class' shall be
interpreted as meaning that the notation used for defining the two classes shall be the same encoding class reference
name, or shall be reference names that de-reference to the same encoding class name.

17.1.8 The remaining productions of "EncodingObject” are defined in the following clauses and provide aternative
means of defining encoding objects of the governor class:

DefinedSyntax 17.2 with clauses 20 to 25
EncodeWith 17.3
EncodeByValueM apping 17.4
EncodeStructure 175

DifferentialEncodeDecodeObject 17.6
EncodingOptionsEncodingObject 17.7
NonECNEnNcodingObj ect 17.8

17.2 Encoding with a defined syntax

17.2.1 The "DefinedSyntax" production is specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.5 and 11.6, as
modified by B.16 of this Recommendation | International Standard, and is used for the definition of encoding objects
for agoverning encoding class. The detailed syntax for doing thisis specified in clauses 23 to 25, and the semantics of
the constructsis specified in clause 22.

17.2.2 This notation for defining encoding objects is only available for the governing encoding classes in the
categories (or of the class) listed in Table 3 below. The syntax to be used for each encoding object is the
"DefinedSyntax" for the corresponding category or encoding class (specified in clauses 23 to 25).

NOTE 1 — The use of this syntax frequently requires the inclusion of a parameter for a determinant. Parameterized encoding
objects with such parameters (possibly included as part of a parameterized encoding object set) are only useful for application to
an encoding structure in an EDM, or for inclusion as encoding objects to be applied as part of areplacement action. They cannot
be applied in the ELM.

NOTE 2 — This notation enables users to specify encoding objects which encode #SET in the way PER normally encodes
#SEQUENCE, and vice versa. Users are expected to be responsible in their use of this notation.

Table 3— Categories and classes supported by a defined syntax

null category

boolean category

integer category

bitstring category

octetstring category
characterstring category

pad category

alternatives category
repetition category
concatenation category
optionality category

#CONDI TI ONAL- | NT class
#CONDI TI ONAL- REPETI TI ONclass
tag category
#TRANSFORMclass
#OUTER class

17.2.3 The information required (and the syntax to be used) to specify an encoding object of one of these categories
or classes using the "DefinedSyntax" is specified by the definitions in clauses 23 to 25.

a4 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

17.2.4 If agovernor for avalue of one of the fields appearing in the "DefinedSyntax" is needed for use in a dummy
parameter list, then the notation "EncodingClassFieldType" (specified in B.17) shall be used. No other use shall be
made of the "EncodingClassFieldType" notation.

17.25 Where the syntax defined in clause 23 requires the provision of a REFERENCE, this can only be supplied in the
"DefinedSyntax" construction by using a dummy parameter of the encoding object that is being defined or, in the case
of fl ag-to-be-used or fl ag-t o- be- set, by using a reference name that is textually present in the definition of a
replacement structure. A REFERENCE that is used as a determinant shall not be the named component of a repetition.

17.2.6 The "DefinedSyntax" notation specifies whether the encoding object being defined exhibits an identification
handle.

17.3 Encoding with encoding object sets
17.3.1 The"EncodeWith" is:

EncodeWith ::=
"{" ENCODE CombinedEncodings"}"

17.3.2 "CombinedEncodings" and its application to an encoding classis specified in clause 13.

17.3.3 The encoding object defined by the "EncodeWith" is the application of the "CombinedEncodings" to the
encoding class that is the governor (see 17.1.3) of the "EncodeWith" notation.

17.34 Itisaspecification error if this does not produce a complete encoding specification for the governor class.

17.3.5 If an encoding object set in the "CombinedEncodings’ is parameterized with a parameter that is a REFERENCE,
the actual parameter supplied in this construction can only be a dummy parameter of the encoding object that is being
defined.

17.3.6 Cadll E the encoding object (within the "CombinedEncodings") which is applied to the governor class. If the
encoding object E exhibits an identification handle (with a given handle value set), then the encoding object being
defined (see 17.1.5) exhibits the same identification handle as E (with the same handle value set); otherwise, it does not
exhibit ahandle.

17.4 Encoding using value mappings
17.41 The"EncodeByVaueMapping" is:

EncodeByValueM apping ::=
" {!l
USE

DefinedOr BuiltinEncodingClass
MAPPING

ValueM apping

WITH

ValueM appingEncodingObjects
" }!l

ValueM appingEncodingObjects ::=
EncodingObject
|DefinedOr BuiltinEncodingObj ect Set

17.4.2 The production "DefinedOrBuiltinEncodingClass’ and its semantics are defined in 10.9.1. It shall be a
user-defined encoding structure or a built-in classin the bit-field group of categories (see 16.1.7).

17.4.3 The production "VaueMapping" is specified in 19.1.7, and shall be a mapping of values associated with the
governing encoding class to the class identified by the "DefinedOrBuiltinEncodingClass’. The governing encoding
class shall be aclassin the bit-field group of categories.

17.4.4 The "VaueMappingEncodingObjects" specifies the encoding of the "DefinedOrBuiltinEncodingClass'. The
The "EncodingObject" shall define an encoding object using notation governed by that class, or by a class to which it
can be de-referenced (see 17.1.3). The "DefinedOrBuiltinEncodingObjectSet" can alternatively be used to specify the
encoding of the "DefinedOrBuiltinEncodingClass' and shall contain sufficient encoding objects to fully specify the
encoding of that class through the application of encodings specified in clause 13.

ITU-T Rec. X.692 (11/2008) 45

| SO/IEC 8825-3:2008 (E)

17.45 The syntax for "EncodingObject" allows both in-line definition of encoding objects (recursive application of
this clause) and the use of reference names. (D.2.9.3 gives an example of in-line definition to perform two value
mappings in asingle assignment.)

17.4.6 Where the "EncodingObject” requires the provision of a REFERENCE, this can only be supplied in this
construction by using a dummy parameter of the encoding object that is being defined.

17.4.7 Where there are bounds or effective size constraints on fields of the "DefinedOrBuiltinEncodingClass"’, and
the specifications in clause 19 require values to be mapped to those fields that violate the specified bounds or effective
size constraints, then such values are not mapped, and the encoding of such values is not possible. It is an ECN or
application error if such values are submitted for encoding.

17.4.8 Call E the encoding object which is applied to the "DefinedOrBuiltinEncodingClass’. |f the encoding object
E exhibits an identification handle (with a given handle value set), then the encoding object being defined (see 17.1.5)
exhibits the same identification handle as E (with the same handle value set); otherwise, it does not exhibit a handle.

NOTE — The encoding object E may be either the "EncodingObject” in the "VaueMappingEncodingObjects’, or a member of
the "DefinedOrBuiltinEncodingObjectSet".

17.5 Encoding an encoding structure
1751 The"EncodeStructure” is:

EncodeStructure::=

{
ENCODE STRUCTURE

{

ComponentEncodingL ist
StructureEncoding ?

CombinedEncodings ?

}

StructureEncoding ::=
STRUCTURED WITH
TagEncoding ?
EncodingOr UseSet

TagEncoding ::="[" EncodingOrUseSet " 1"
EncodingOrUseSet ::=

EncodingObject |
USE-SET

17.5.2 The "EncodeStructure" can be used to define an encoding only if the governing encoding class de-references
to a construction defined using an encoding constructor in the alternatives, concatenation, or repetition categories, or to
a construction defined using one of these categories preceded by a class in the tag category. This encoding constructor
is called the governing encoding constructor.

17.5.3 "StructureEncoding", if this production is present, shall define an encoding for the governing encoding
constructor and for any preceding class in the tag category that precedes the governor encoding constructor. If the
production is absent, the "CombinedEncodings' shall be present, and shall contain encoding objects which can encode
the governing encoding constructor and any preceding class in the tag category, otherwise the ECN specification isin
error.

NOTE — "CombinedEncodings' has to be present if the "StructureEncoding” is absent, because a complete encoding has to be
produced. If it is desired to defer the specification of part of an encoding, then adummy parameter should be used.

17.5.4 If the "ComponentEncodingList" is not empty, then the encoding object applied to the governing encoding
constructor (whether from "StructureEncoding” or from "CombinedEncodings") shall not specify any replacement
actions.

17.5.,5 If the "EncodingOrUseSet" in the "StructureEncoding” is an "EncodingObject”, it shall be governed by the
governing encoding constructor.

17.5.6 If USE- SET is specified in any "EncodingOrUseSet", then the encoding of the corresponding class is obtained
by applying the "CombinedEncodings’, which shall be present, and shall be sufficient to encode the corresponding
class, otherwise the ECN specificationisin error.

17.5.7 The "ComponentEncodingList" is:

46 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

ComponentEncodingList ::=
ComponentEncoding " ," *

ComponentEncoding ::=
NonOptional ComponentEncodingSpec|
OptionalComponentEncodingSpec

17.5.8 There shall be at most one "ComponentEncoding" for each component of the governing encoding constructor.
The "ComponentEncoding"s shall be in the same textual order.

NOTE - The absence of "ComponentEncoding's can be detected by following named fields, or by the end of the
"ComponentEncodingList".

17.5.9 The "Optional ComponentEncodingSpec" shall be used if and only if the component is optional (i.e., contains
an encoding classin the optionality category).

17.5.10 If the "ComponentEncoding" for any component is not present in the "ComponentEncodingList”, then the
"CombinedEncodings' shall be present (but see also 17.5.6), and is required, on application to the component (see
13.2), to provide a complete encoding of that component (possibly including use of dummy parameters), otherwise it is
an error in the ECN specification.

NonOptional ComponentEncodingSpec ::=
identifier ?
TagAndElementEncoding

OptionalComponentEncodingSpec ::=
identifier
TagAndElementEncoding
OPTIONAL-ENCODING
OptionalEncoding

TagAndElementEncoding ::=
TagEncoding ?
EncodingOr UseSet

OptionalEncoding ::= EncodingOr UseSet

17.5.11 The "identifier" shall be the "identifier" of the component of the governing encoding constructor. The
"identifier" in "NonOptionalComponentEncodingSpec" shall be omitted if and only if the governing encoding
constructor isaclassin the repetition category for which there is no identifier on the repeated element.

17.5.12 "TagAndElementEncoding" in the "ComponentEncoding” shall provide a complete encoding for the
component (including any class in the tag category that is prefixed to the element, but excluding any class in the
optionality category that follows the element).

17.5.13 The "EncodingObject"s in the "EncodingOrUseSet"s in the "TagAndElementEncoding” shall be governed by
the corresponding encoding classes in the component. If an "EncodingOrUseSet" is USE- SET then the encoding is
obtained by applying the "CombinedEncodings" (which shall be present).

17.5.14 The "EncodingOrUseSet" in the "OptionalEncoding" shall completely encode the class in the optionality
category of the component. If an "EncodingOrUseSet" is USE- SET then the encoding of the class in the optionality
category is obtained by applying the "CombinedEncodings" (which shall be present).

17.5.15 |f aREFERENCE is needed as an actual parameter of any of the encoding objects or encoding object setsused in
this production, then it can either be supplied as a dummy parameter of the encoding object that is being defined, or it
can be supplied as a "ComponentldList" (see 15.3.1 for the syntax of the "ComponentldList" — the meaning of the
"ComponentldList" in this context is specified below).

17.5.16 If the governor is not a constructor in the repetition category, then the first (or only) "identifier" in the
"ComponentldList" shall be the "identifier" of atextually present "NamedType" (at some level of nesting — see 17.5.17)
of the construction that is obtained by de-referencing the governor. It identifies the entire definition of that
"NamedType"' component, whether that definition is textually present or not.

17.5.17 If there is more than one such matching identifier, then the chosen matching identifier shall be determined by
the first match in a scan (in textual order) of the outer-level identifiers, then by a scan (in textual order) of the second
level identifiers, then by a scan (in textual order) of the third-level identifiers, and so on.

17.5.18 Each subsequent "identifier" of the "ComponentldList" (if any) shall be an "identifier" in a"NamedType" of
the structure identified by the previous part of the "ComponentldList", and identifies the entire definition of that
"NamedType" component, whether it is textually present or not in the definition of the structure identified by the
previous part of the "ComponentldList”.

ITU-T Rec. X.692 (11/2008) 47

| SO/IEC 8825-3:2008 (E)

17.5.19 If the governor is a constructor in the repetition category, then the actual parameter for the REFERENCE shall
be a "ComponentldList" whose first "identifier" identifies a component that is textualy present in the
"EncodingStructure” in the "RepetitionStructure” obtained by de-referencing the repetition (see 17.5.17). Subclauses
17.5.17 and 17.5.18 then apply.

17.5.20 If the REFERENCE is required to identify a container, it can also be supplied as:

a) STRUCTURE (provided the constructor for the structure being encoded is not an alternatives category)
when it refers to that structure;

b) QUTERwhen it refers to the container of the complete encoding.

NOTE — The "EncodeStructure” is the only production in which REFERENCES can be supplied, except through the use of
dummy parameters or the use of QUTER, or where references are in support of f | ag-t o- be- used or f1 ag-t o- be-set in
the definition of an encoding object for a class in the repetition category which uses replacement.

17.5.21 Determination of whether the encoding object being defined (see 17.1.5) exhibits an identification handle
shall be done as follows:

a) if the "TagEncoding" is present in "StructureEncoding", call E the encoding object which is applied to
the encoding class in the tag category; or

b) if the "TagEncoding" is not present in "StructureEncoding”, call E the encoding object which is applied
to the governing encoding constructor (this may be either the "EncodingObject” in the
"EncodingOrUseSet" in the " StructureEncoding”, or may be a member of the "CombinedEncodings”).

If the encoding object E exhibits an identification handle (with a given handle value set), then the encoding object
being defined exhibits the same identification handle as E (with the same handle value set); otherwise, it does not
exhibit ahandle.

17.6 Differential encoding-decoding
17.6.1 The "Differentia EncodeDecodeObject” is:

Differential EncodeDecodeObject ::=
" {ll
ENCODE-DECODE
SpecFor Encoding
DECODE ASIF

SpecFor Decoders

}
SpecFor Encoding ::= EncodingObj ect
SpecFor Decoder s ::= EncodingObj ect
17.6.2 The "DifferentialEncodingObject” specifies rules for encoding abstract values associated with the class of the

governor of this notation, and (separately) rules to be used by decoders for recovering abstract values from encodings
that are assumed to have been produced by encoding objects of the class of the governor.

17.6.3 The "SpecForEncoding" shall be applied by encoders. Decoders shall decode as if the encoder had applied the
"SpecForDecoders'.
NOTE 1 — The "SpecForDecoders" is still an encoding specification. It tells decoders to assume that encoders have used this
specification.
NOTE 2 — The behaviour of decoders that decode on the assumption that an encoder has used the " SpecForDecoders’, but detect
encoding errors, is not standardized.
17.6.4 The "SpecForEncoding" and the "SpecForDecoders' encoding objects shall not have been defined using
ENCCDE- DECODE, nor shall any encoding objects used in their definition have been defined using ENCODE- DECCODE.
NOTE — This restriction is present because otherwise specification of the meaning of the encode/decode construction would
become more complex with no added functionality.

17.6.5 If the "SpecForEncoding” and the "SpecForDecoders’ exhibit the same identification handle with the same
handle value set, then the encoding object being defined (see 17.1.5) exhibits that identification handle (with the same
handle value set); otherwise, it does not exhibit a handle.

17.7 Encoding options
17.7.1 The "EncodingOptionsEncodingObject” is:

EncodingOptionsEncodingObject ::=

48 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

{
OPTIONS
EncodingOptionsList
WITH AlternativesEncodingObj ect
nyn

EncodingOptionsList ::= OrderedEncodingObjectList
AlternativesEncodingObject ::= EncodingObj ect

17.7.2 The "EncodingOptionsEncodingObject" specifies that the encoder may encode (subject to 17.7.6) using any of
the "EncodingObject"s in the "EncodingOptionsList". These "EncodingObject"s shall all be encoding objects of the
governing class.
NOTE — New implementations are strongly recommended to encode using the earliest "EncodingObject” in the ordered list that
is capable of encoding the abstract value to be encoded (see 17.7.6). The encoding options specification is provided only

because it is necessary to reflect options provided in legacy protocols and to support different forms of length encoding for
strings. All the encoding options can, of course, occur when decoding.

17.7.3 The "AlternativesEncodingObject” shall be an encoding object of any class in the aternatives category, and
encoders and decoders shall use the encodings and procedures specified by that encoding object as if the encoding
options were encodings for aternatives of an instance of that class. The "AlternativesEncodingObject” shall not
contain a REPLACE specification (see 23.1.1). The DETERM NED BY parameter shall be set to handl e, and an
identification handle shall be specified.

NOTE - |If the "AlternativesEncodingObject” is parameterized with a reference field parameter, then the

"encodingobjectreference” being defined has to be parameterized with a dummy reference field parameter that is used as the
actual parameter for the "AlternativesEncodingObject”.

17.7.4 All "EncodingObject"s in the "EncodingOptionsList" shall exhibit that identification handle, and their handle
value sets shall al be digjoint.

17.7.5 If the "AlternativesEncodingObject” exhibits an identification handle (with a given handle value set), then the
encoding object being defined (see 17.1.5) exhibits the same identification handle (with the same handle value set);
otherwise, it does not exhibit a handle.

NOTE — The identification handle exhibited by the "AlternativesEncodingObject” (if any) is unrelated to the identification
handl e exhibited by the "EncodingObject”s in the "EncodingOptionsList", even if they have the same name.

17.7.6 The encoder shall restrict its choice of "EncodingObject”s in the "EncodingOptionsList” to those that provide
encodings for the actual abstract value being encoded. It is an ECN specification or application error if there is not at
least one such "EncodingObject” for any abstract value that is to be encoded.
NOTE 1 — It is possible that the sets of abstract values encoded by the "EncodingObject"s in the "EncodingOptionsList" are
digoint. This is not an error, and can be a convenient way of specifying different structures for encoding different ranges of
abstract values of the governing class, for example short form and long form encodings where the short form is mandatory for
small values.

NOTE 2 — It is possible to use an encoding options encoding object as the "SpecForDecoders' (see 17.6), where the
"SpecForEncoding” is an encoding options encoding object that contains exactly one of the options in the "SpecForDecoders’.
Thisis another approach to extensibility.

17.8 Non-ECN definition of encoding objects
17.8.1 The"NonECNEnNcodingObject" is:

NonECNEncodingObject::=
NON-ECN-BEGIN
Assignedl dentifier
anystringexceptnonecnend
NON-ECN-END

17.8.2 The "NonECNEnNcodingObject" shall specify an encoding object of the governor class (see 17.1.3). The
notation used to do thisis contained in "anystringexceptnonecnend" and is not standardized.

17.8.3 The production "Assignedldentifier" and its semanticsis defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.1,
as modified by A.1 of this Recommendation | International Standard. It identifies the notation used in the
"anystringexceptuserdefinedend” to specify the encoding.

17.8.4 If the "empty" alternative of "Assignedidentifier” is used, then the notation is determined by means outside of
this Recommendation | International Standard.

ITU-T Rec. X.692 (11/2008) 49

| SO/IEC 8825-3:2008 (E)

17.85 The assignment of object identifiers to any notation for use in "anystringexceptnonecnend" follows the normal
rules for the assignment of object identifiers as specified in the ITU-T Rec. X.660 | ISO/IEC 9834 series.

17.8.6 An identification handle (with a given handle value set) is exhibited by the encoding object being defined (see
17.1.5) if and only if the "anystringexceptnonecnend” specifies that it does so. The means of such specification is not
defined in this Recommendation | International Standard.

18 Encoding object set assignments

18.1 General
18.1.1 The "EncodingObjectSetAssignment” is:

EncodingObjectSetAssignment ::=
encodingobj ectsetr eference
#ENCODINGS

E.ﬁcodi ngObj ect Set
CompletionClause ?
EncodingObjectSet ::=

DefinedOr BuiltinEncodingObjectSet |
EncodingObjectSetSpec

18.1.2 The "EncodingObjectSet" notation is governed by the reserved word #ENCODI NGS, and shall satisfy the
conditions given below.

18.1.3 There shall be no recursive definition (see 3.2.39) of an "encodingobjectsetreference”, and there shall be no
recursive instantiation (see 3.2.40) of an "encodingobjectsetreference’.

18.1.4 "DefinedOrBuiltinEncodingObjectSet" is defined in 10.9.3.
18.1.5 The "EncodingObjectSetSpec” is.

EncodingObj ectSetSpec ::=

EncodingObjects UnionMark *
"y

EncodingObjects::=
DefinedEncodingObj ect|
DefinedEncodingObj ect Set

UnionMark ::=
"
UNION

18.1.6 "EncodingObjectSetSpec" defines an encoding object set using one or more encoding objects or encoding
object sets.

18.1.7 Encoding objects forming an encoding object set shall al be of distinct encoding classes, and shall not be
classes in the encoding procedure group of categories unless they are of the #OUTER class (see 16.1.13).

NOTE — An encoding object set is used for defining other encoding object sets, for defining encoding objects in the EDM, and
for import into the ELM for the application of encodings.

18.1.8 If "CompletionClause" is present, then the encoding object set defined by "EncodingObjectSetSpec” is
considered to be "PrimaryEncodings' (see 13.2), and the encoding object set assigned to the
"encodingobjectsetreference” is the combined encoding object set formed as specified in 13.2.

18.2 Built-in encoding object sets

18.2.1 The "BuiltinEncodingObjectSetReference” is:
BuiltinEncodingObj ectSetReference ::=

PER-BASIC-ALIGNED
|PER-BASIC-UNALIGNED

50 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

|PER-CANONICAL-ALIGNED
[PER-CANONICAL-UNALIGNED
IBER

|CER

IDER

18.2.2 These encoding object set names reference the sets of encoding objects defined by ITU-T Rec. X.690 |
ISO/IEC 8825-1 and ITU-T Rec. X.691 | ISO/IEC 8825-2. The object identifiers for the encoding rules providing these
encoding object sets are given in Table 4.

NOTE — These Recommendations | International Standards were written before this ECN Recommendation | International

Standard, and do not use the encoding object terminology. They define, for example, the way an ASN.1 | NTEGER or BOOLEAN
typeisto be encoded. This should be interpreted as the definition of an encoding object of class#| NTEGER or class #BOOLEAN.

Table 4 — Built-in encoding object set names and associated object identifiers

PER-BASIC-ALIGNED {joint-iso-itu-t(2) asn1(1) packed-encoding(3) basic(0) aligned(0)}
PER-BASIC-UNALIGNED {joint-iso-itu-t(2) asn1(1) packed-encoding(3) basic(0) unaligned(1)}
PER-CANONICAL-ALIGNED {joint-iso-itu-t(2) asn1(1) packed-encoding(3) canonical(1) aligned(0)}
PER-CANONICAL-UNALIGNED {joint-iso-itu-t(2) packed-encoding(3) canonical(1) unaligned(1)}

BER {joint-iso-itu-t(2) asn1(1) basic-encoding(1)}
CER {joint-iso-itu-t(2) asn1(1) ber-derived(2) canonical-encoding(0)}
DER {joint-iso-itu-t(2) asn1(1) ber-derived(2) distinguished-encoding(1)}

18.2.3 These encoding object sets are each a complete set of encoding objects which can be applied to any encoding
structure (either implicitly generated from an ASN.1 type or defined by the user), with appropriate de-referencing, to
specify the corresponding BER or PER encodings.

NOTE — An encoding object for a user-defined or implicitly-generated encoding class can be added to such a set, and will take
precedence over any encoding which could be obtained by de-referencing.

18.2.4 The above sets all contain encoding objects for the classes used in implicitly generated encoding structures
(see 11.2) which are different for each set of encoding rules. They also each contain identical encoding objects for the
classes #1 NT, #BOCOL, #NUL, #CHARS, #OCTETS, #Bl TS, #CONCATENATI ON. They do not contain encoding objects for
#ALTERNATI VES, #REPETI Tl ON, and #PAD.

18.2.5 These encoding classes represent basic building blocks of encodings, and are encoded simply by all the above
built-in encoding object sets. The encoding objects for these classes specify encodings as follows:

18.2.5.1 #I NT is encoded as a PER- BASI G- UNALI GNED #| NTEGER encoding, provided it is bounded. It is an ECN
design error if the #1 NT does not have both a lower and an upper bound when this encoding object is applied to the
#| NT.

18.2.5.2 #BOOL and #NUL are encoded as PER- BASI G- UNALI GNED #BOOLEAN and #NULL respectively.

18.2.5.3 #CHARS, #OCTETS, and #BI TS are encoded as PER- BASI C- UNALI GNED UTF8St ri ng, #OCTET- STRI NG, and
#Bl T- STRI NG, respectively, provided they are asingle size. It isan ECN design error if #CHARS, #OCTETS, or #BI TS
do not have an effective size constraint restricting them to asingle size.

18.2.5.4 #CONCATENATI ON is encoded as a PER- BASI G- UNALI GNED encoding of a #SEQUENCE with no optional
components. If these encoding objects are applied to a #CONCATENATI ON with optional components, then it isan ECN
specification error.

18.2.6 The #OPEN- TYPE encoding objects in the BER, CER, and DER built-in encoding object sets produce no
additional encoding for the #OPEN- TYPE class. When these encoding objects are applied to a class in the opentype
category, it is an ECN specification error if the encodings of the values of the type chosen (in an instance of
communication) for use with the #0PEN- TYPE class are not self-delimiting.

NOTE — The combined encoding object set applied by these encoding objects to the type chosen for use with the #0PEN- TYPE
classis always the same as the combined encoding object set applied to the #OPEN- TYPE class as these encoding objects do not
contain an ENCODED W TH (see 13.2.10.5 and 13.2.9 d).

19 Mapping values

19.1 General

19.1.1 This clause specifies the syntax for mapping values (and tag numbers) to be encoded by the fields of one
encoding structure (which may be a generated encoding structure or any other encoding structure) to the fields of
another encoding structure.

ITU-T Rec. X.692 (11/2008) 51

| SO/IEC 8825-3:2008 (E)

NOTE — The power provided in a single use of this notation has been limited (to avoid complexity). More complex mappings
can be achieved by using multiple instances of "EncodeByVaueMapping" (see 17.4 and the example in D.1.10.2). These
mapping mechanisms can be extended and generalized, but this will not be done unless further user requirements are identified.

19.1.2 In gpecifying the "EncodeByValueMapping” notation (see 17.4.1) the structure to which the
"DefinedOrBuiltinEncodingClass" in the "EncodingObjectAssignment” (see 17.1.1), of which it is a part, de-references
is called the source governor or the source encoding class (depending on context). The structure to which the
"DefinedOrBuiltinEncodingClass" in the "EncodeByVaueMapping” itself de-referencesis called the target governor or
the target encoding class (depending on context).

19.1.3 If the source governor has an initia classin the tag category, then the target governor shall have an initial class
in the tag category and the tag number of the class in the source governor is mapped to the tag number of the class in
the tag category in the target governor. If the class in the tag category in the target governor has an associated tag
number, then it is an ECN specification error if this differs from the tag number being mapped from the source
governor.

19.1.4 If the source governor does not have an initial class in the tag category, then the target governor is not required
to have an initial class in the tag category, but if it does, then there shall be atag number associated with that tag in the
definition of the target governor.

19.1.5 The effect of the presence of an initial class in the tag category in the source or target governors is completely
determined by 19.1.3 and 19.1.4, and the following text ignores the possible presence of such classes.

19.1.6 The encodings specified for values mapped to the target encoding class become the encodings of those values
in the source encoding class.

NOTE 1 — If the total ECN specification maps only some of the values from an ASN.1 type into encodings, that is not an error.
It is a constraint imposed by ECN on the values that can be used by the application. Such constraints should normaly be
identified by comment in either the ASN.1 specification or in the ECN specification (see 17.4.7).

NOTE 2 - If the total ECN specification maps two values into the same encoding produced by a single encoding object, then
that is an ECN specification error. Such errors can be detected by ECN tools, but rules for their avoidance are not complete in
this Recommendation | International Standard, and responsibility rests with the ECN user.

19.1.7 The"VaueMapping"is:

ValueMapping ::=

MappingByExplicitValues

M appingByM atchingFields

M appingByTransformEncodingObjects

M appingByAbstractValueOrdering

M appingByValueDistribution

M appingIntToBits
NOTE — All occurrences of this syntax are preceded by the reserved word MAPPI NG (D.1.2.2, D.1.4.2, D.1.10.2, and D.2.1.3
and Annex E give examples of the definition of encodings using each of these value mappings.)

19.1.8 The"VaueMapping" productions are specified as follows:

MappingByExplicitValues 19.2
M appingByM atchingFields 19.3
M appingByTransfor mEncodingObjects 194
M appingByAbstractValueOrdering 195
M appingByValueDistribution 19.6
M appingl ntToBits 19.7

NOTE - It is frequently the case that severa of the value mappings can be used to define the same encoding, but some will
produce a more obvious or less verbose specification than others. ECN designers should select carefully the form of value
mapping to be used.

19.2 Mapping by explicit values

19.2.1 This clause provides notation for specifying the mapping of values between different primitive bit-field
encoding classes. (D.1.10.2 gives an example.)

19.2.2 This clause uses the notation for ASN.1 values (ASN.1 value notation) specified in ITU-T Rec. X.680 |
| SO/IEC 8824-1 for the type which corresponds to an encoding class.

19.2.3 Table 5 specifies the ASN.1 value notation to be used with each governing encoding class. In each case the
class may or may not have an associated size or value range constraint.

52 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

19.2.4 ECN supports mapping by explicit values (either to or from the encoding class) for all encoding classes in the
categories listed in column 1 of Table 5. Column 2 of the table specifies the value notation (as either an ASN.1
production or by reference to a clause of ITU-T Rec. X.680 | ISO/IEC 8824-1 or both) that shall be used when an
encoding classin the category listed in column 1 is specified as the governor of the notation. It also specifies the clause
inITU-T Rec. X.680 | ISO/IEC 8824-1 that defines the value notation.

NOTE — None of the following ASN.1 value notations can use "DefinedValue's (as defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) because "val uereference”s cannot be imported nor defined in an EDM or ELM module.

Table 5 — Categories of encoding classes and value notation used in mapping by explicit values

Category of governing encoding class ~ ASN.1 value notation

bitstring "bstring" or " hstring”
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.10 and 12.12)
boolean " BooleanValue"

characterstring

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.3)
" RestrictedChar acter StringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 41.8)

integer " SignedNumber"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.1)
null "NullValue"

objectidentifier

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 24.3)
" Definitivel dentifier" (seeA.1)

octetstring "bstring" or " hstring”

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.10 and 12.12)
rea "RealValue'

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.6)
time " TimeValue'

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 38.3.2)
19.25 The"MappingByExplicitValues' is:

MappingByExplicitValues ::=
VALUES
" {ll
MappedValues" " +
" }ll
MappedValues::=
MappedValuel
TO
M appedValue2

MappedValuel ::= Value
MappedValue? ::= Value

19.2.6 The "MappedValuel" shall be value notation governed by the source governor and "MappedVaue2" shall be
value notation governed by the target governor (see 19.1.2). The value in the source specified by "MappedVauel" is
mapped to the value in the target specified by "MappedValue2".

19.2.7 Itisan ECN specification error if "MappedVaue2" is a value which violates a bound or size constraint in the
target.

19.3 Mapping by matching fields

19.3.1 Thismapping is provided primarily to enable the encoding of an ASN.1 type to be defined as the encoding of
an encoding structure that has fields corresponding to the components of the type, but also has added fields for
determinants.

19.3.2 The"MappingByMatchingFields" is:

MappingByMatchingFields::=
FIELDS

19.3.3 |If either the source or the target encoding classes are user-defined encoding structures (see 9.2.2.3) or
generated encoding structures, then these references are resolved until the source and target start with an encoding

ITU-T Rec. X.692 (11/2008) 53

| SO/IEC 8825-3:2008 (E)

congtructor. If this encoding constructor in the target is in the repetitions category, then de-referencing of the
component of this repetition encoding constructor is performed until the component starts with an encoding
constructor. References within the resulting structures are not resolved.

19.34 The effect of the possible presence of classes in the tag category on the initial de-referencing of
"DefinedOrBuiltinEncodingClass' names in the source and target was fully specified in 19.1.3t0 19.1.5. Itisan ECN
specification error if further initial classesin the tag category are introduced by the application of 19.3.3.

19.3.5 After the application of 19.3.3, the source and the target encoding classes shall start with the same encoding
constructor. This shall be either an encoding constructor in the concatenation category, or an encoding constructor in
the repetitions category. If this encoding constructor is in the repetitions category, then its component in the target shall
be a class in the concatenation category. For the purposes of this subclause 19.3, the resulting encoding structures are
called the source and target encoding structures respectively.

19.3.6 The fieldnames of the (top-level) components of the encoding constructor produced by the application of
19.3.3 to the source are called the source fields.

NOTE — Source fields are restricted to the top-level fields of a concatenation or the component of arepetition. Thisrestriction is
imposed to ease implementation of ECN, and could be relaxed in the future.

19.3.7 The fieldnames of the components of the encoding constructor in the concatenation categories produced by the
application of 19.3.3 to the target are called the potential target fields.

NOTE — The potential target fields may be either the components of a top-level concatenation, or the components of a
concatenation that is the component of a repetition.

19.3.8 For every source field, there shall be a potentia target field with the same fieldname (the matching target
field).
NOTE — A component of a repetition class can only be mapped if it contains an identifier (matching one in the target). Use of
mapping by matching fields would not be legal if the identifier was absent.

19.3.9 A matching target field shall be an optional element in a concatenation if and only if its source field is an
optional element in a concatenation, and the presence or absence of the source field in an abstract value associated with
the source encoding structure determines the presence or absence of the target field in the target encoding structure.

19.3.10 If the source field has an initial class in the tag category, then the matching target field shall have an initial
classin the tag category and the tag number of the class in the source field is mapped to the tag number of the classin
the tag category in the matching target field. If the class in the tag category in the matching target field has an
associated tag number, then it is an ECN specification error if this differs from the tag number being mapped from the
source field.

19.3.11 If the source field does not have an initia class in the tag category, then the matching target field is not
required to have an initial classin the tag category, but if it does, then there shall be a tag number associated with that
tag in the definition of the matching target field.

19.3.12 Apart from the presence or absence of classes in the tag category and optionality categories (as specified in
19.3.9 to 19.3.11), the matching target field and the source field shall have the same encoding class (see 17.1.7) or shall
be defined using the same sequence of lexical items, ignoring comment and whitespace and bounds specifications.

19.3.13 All abstract values are mapped from each of the source fields to the matching target fields. Additional fields
in the target encoding structure do not acquire abstract values. In a correct ECN specification, the value of such fields
has to be specified by reference as a determinant.

19.3.14 If the source and target encoding constructors are classes in the repetition category, then the number of
repetitions in the abstract value associated with the source encoding structure is mapped to the number of repetitionsin
the target encoding structure.

19.3.15 If asource field has an associated contents constraint, thisis mapped as an associated contents constraint to the
matching target field.

19.3.16 If, due to the presence of bounds or size constraints, there are values in the source field that are not present in
the matching target field, then 17.4.7 shall apply.

19.4 Mapping by #TRANSFORMencoding objects
19.4.1 This mapping permits one or more # TRANSFORMencoding objects to be applied to produce the mapping.

54 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

19.4.2 The #TRANSFORM encoding class is defined in clause 24. It enables encoding objects to be specified which
will transform source abstract values into result abstract values. The rules for forming an ordered list of transforms (for
"OrderedTransformList") are specified in clause 24. The complete list is defined to transform from a source to a result.

NOTE — Examples of mappings defined with these transforms are given in D.1.2.2 and D.2.4.2. The example in D.1.6.3 shows
the use of this production to define BCD encodings of an ASN.1 integer.

19.4.3 The"MappingByTransformEncodingObjects’ is:

M appingByTransformEncodingObjects::=
TRANSFORMS

{
OrderedTransformList

}

OrderedTransformList ::= Transform " " +

Transform ::= EncodingObj ect

19.4.4 All the "EncodingObject"s in the "OrderedTransformList" shall be governed by the encoding class
#TRANSFORM

19.45 The target and source classes for this mapping (see 19.1.2) shall be of the bitstring, boolean, characterstring,
integer, or octetstring category. The source of the first transform in the list and the result of the last transform in the list
shall agree with the category of the source and target categories as specified in 24.2.7.

19.4.6 It is an ECN specification or application error if any "Transform" in the "OrderedTransformList" is not
reversible for the abstract value being mapped.

NOTE — Clause 24 specifies, for each transform, the abstract values for which it is defined to be reversible.

19.4.7 |f there are bounds or effective size constraints on the target encoding class, then 17.4.7 shall apply.

19.5 Mapping by abstract value ordering

19.5.1 This mapping enables abstract values associated with simple encoding classes to be distributed into the fields
of complex encoding structures, and abstract values associated with complex encoding structures to be mapped to
simple encoding classes such as #I NT. It also allows the compaction of integer values or enumerations into a
contiguous set of integer values (see D.1.4).

NOTE — The tag numbers associated with classes in the tag category are not abstract values.
19.5.2 The"MappingByAbstractVaueOrdering" is:

MappingByAbstractValueOrdering ::=
ORDERED VALUES

19.5.3 For this mapping, all encoding class names are de-referenced (recursively), and the result shall be aclassin the
null, boolean, integer or real category, or shall be a construction defined using a class in the alternatives category, or
shall be a class in the concatenation category which has a single non-optional component.

19.54 The ordered set of values may be finite or infinite.

19.5.4.1 A finite set of ordered abstract valuesis defined for encoding classes in the following categories:
a) null;
b) boolean;
¢) bounded integer;
d) rea constrained to afinite number of values;

€) an encoding structure defined using the aternatives category, provided that al of the alternatives
have afinite ordering defined;

f) an encoding structure defined using the concatenation category that has a single non-optional
component, provided that the component has a finite ordering defined.

19.5.4.2 Aninfinite set of ordered abstract valuesis defined for encoding classes in the following categories:
a) integer, constrained to have afinite lower bound;

ITU-T Rec. X.692 (11/2008) 55

| SO/IEC 8825-3:2008 (E)

b) an encoding structure defined using the alternatives category, provided that all of the alternatives except
the last are defined to have a finite set of ordered values, and the last alternative is defined to have an
infinite set of ordered values,

¢) an encoding structure defined using the concatenation category that has a single non-optional
component, provided that the component is defined to have an infinite set of ordered abstract values.

19.5.5 Classesin the null category have a single abstract value. Classes in the boolean category are defined to have
TRUE before FALSE. Classes in the integer category are defined to have higher integer values following lower integer
values. Classesintherea category are defined to have higher values following lower values.

NOTE — The number of abstract values associated with a classin the integer category is not necessarily finite.

19.5.6 Any bounds present in the source or destination shall be taken fully into account in determining the ordered set
of abstract values.

19.5.7 The ordering of the abstract values associated with a class in the alternatives category (all of whose
aternatives have a defined ordering of abstract values) is defined to be the (ordered) abstract values from the textually
first aternative, followed by those from the textually second alternative, and so on to the textually last alternative.

19.5.8 The ordering of the abstract values associated with a class in the concatenation category that has a single
non-optional component shall be the order determined by the ordering of the abstract values of its single component.

19.5.9 The mapping is defined from the abstract values in the first encoding class to the abstract values in the second
encoding class by their position in the above ordering.

19.5.10 Note that the above rules ensure that there is a defined first value in each ordering, and a defined next value.
There need not be a defined last value (either or both sets may be infinite).

19.5.11 If the number of abstract values in the destination ordering is less than the number of abstract values in the
source ordering, this is not an error. However, the ECN specification will be unable to encode some of the abstract
values of the ASN.1 specification and this should be identified by comment in either the ASN.1 specification or the
ECN specification.

19.5.12 If the number of abstract values in the destination ordering exceeds those in the source ordering, then there
may be some ECN-defined encodings that have no ASN.1 abstract value, and will never be generated.

19.5.13 This mapping can also be applied in all cases where the only abstract values in the target structure are those
associated with a single instance of the same class as the source structure.

NOTE - This case would occur if the target structure was the same as the source structure preceded by one or more instances of
classesin the tag category.

19.5.14 Classes in the tag category may be present in the target structure, but are required to have an associated tag
number specified in the structure definition. Their presence has no affect on the mapping of abstract values.

19.6 Mapping by value distribution

19.6.1 This mapping takes ranges of values from an encoding class in the integer category, mapping each range to a
different integer field in a more complex encoding structure. Fields which receive no abstract values shall have their
values determined by the application of determinants.

19.6.2 All encoding structure names are de-referenced (recursively) before the application of this mapping.

19.6.3 The source encoding class shall then be a class in the integer category, possibly with a preceding class in the
tag category which is mapped according to 19.1.3to 19.1.5.

19.6.4 The target encoding class may be any encoding structure of the concatenation category where all the
components are optional, or of the alternatives category, and may contain classes in the tag category, but all fieldnames
in the entire encoding structure shall be distinct, and al classes in the tag category in the target (except those mapped
by 19.6.3) shall have atag number in their definition and are otherwise ignored in the mapping.

19.6.5 Values shall be mapped only to fields defined at the top-level of the target structure that are classes in the
integer category, possibly preceded by classes in the tag category (see 19.6.4), and possibly with bounds.

19.6.6 The"MappingByVaueDistribution" is:

MappingByValueDistribution ::=
DISTRIBUTION
n {ll

Distribution " " +

56 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

"y

Distribution ::=
SelectedValues
TO

identifier

SelectedValues::=
SelectedValue
|DistributionRange
|[REMAINDER

DistributionRange ::=
DistributionRangeValuel

DistributionRangeValue2
SelectedValue ::= SignedNumber

DistributionRangeValuel ::= SignedNumber
DistributionRangeValue? ::= SignedNumber

19.6.7 "SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.1.
19.6.8 "DistributionRangeVauel" shall be less than "DistributionRangeValue2'.

19.6.9 The vaue specified by "SelectedValue' in "SelectedValues', or the set of values greater than or equal to
"DistributionRangeValuel" and less than or equal to "DistributionRangeVaue2", are mapped to the field specified by
"identifier".

19.6.10 The reserved word REMAI NDER shall only be used once for the last " SelectedValues', and specifies all abstract
values in the source encoding class that have not been distributed by earlier " SelectedValues'.

19.6.11 A value shal not be mapped to more than one target field, but several "SelectedValues' may have the same
destination.

19.6.12 If there are bounds on the target field, then 17.4.7 shall apply.

19.6.13 If avalue from the source is mapped into afield in the target whose presence depends on optionality or choice
of alternatives or both, thisis not an error, but the optionality and choice of aternatives in the target (when encoding
such values) shall be such that the encoding of the target includes the target field.

19.7 Mapping integer valuesto bits

19.7.1 This mapping takes single values or ranges of values from an encoding class in the integer category (possibly
preceded by classes in the tag category as specified in 19.1.3 to 19.1.5), mapping each integer value to a hitstring value
(possibly preceded by classesin the tag category).

NOTE — This mapping is intended to support self-delimiting encodings of integers, such as Huffman encodings. (See Annex E
for further discussion and examples of Huffman encodings.)

19.7.2 The source encoding class shall be a class in the integer category, possibly preceded by classes in the tag
category.

19.7.3 The destination encoding class shall be a class in the bitstring category, possibly preceded by classes in the tag
category.

19.7.4 Classesin the tag category are mapped as specified in 19.1.3 to 19.1.5.
19.7.5 The"MappingIntToBits' is:

M appinglntToBits::=
TOBITS
n {ll
MappedintToBits"," +
n }ll

MappedIntToBits ::=
SinglelntValMap |
IntValRangeM ap

ITU-T Rec. X.692 (11/2008) 57

| SO/IEC 8825-3:2008 (E)

19.7.6 Each"SinglelntVaMap" maps asingle integer value to a single bitstring value.

19.7.7 Each "IntValRangeMap" maps a range of contiguous and increasing integer values to a range of contiguous
and increasing bitstring values.

19.7.8 Bitstring values are defined to be contiguousif:
a) They areadl the samelength in bits.

b) When interpreted as a positive integer value, the corresponding integer values are contiguous and
increasing integer values.

19.7.9 Only values specified in the mapping are encodable. Other abstract values of the source are not mapped and
cannot be encoded by the encoding object defined by the encoding object assignment using this construct. It isan ECN
or application error if such values are presented to an encoder.

NOTE — This limitation of the encoding should be reflected by constraints on the ASN.1 type to which it is applied, or by
comment in the ASN.1 specification.

19.7.10 The"SinglelntVaMap" is:

SinglelntValMap ::=
IntValue
TO
BitValue

IntValue ::= SignedNumber
BitValue::=

bstring |

hstring

19.7.11 The "SignedNumber", "bstring", and "hstring" are specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.1,
12.10 and 12.12, respectively.

19.7.12 The"SinglelntVaMap" maps the specified integer value to the specified bitstring value.
19.7.13 The"IntVaRangeMap" is:

IntValRangeMap ::=
IntRange
TO
BitRange

IntRange::=
IntRangeValuel
IntRangeValue2

BitRange::=
BitRangeValuel

BitRangeValue2
IntRangeValuel ::= SignedNumber
IntRangeValue? ::= SignedNumber

BitRangeValuel ::=
bstring |
hstring

BitRangeValue2 ::=
bstring |
hstring

19.7.14 The bitstrings "BitRangeVauel" and "BitRangeValue2" shall be the same number of bits.
19.7.15 Thevaue "IntRangeVaue2" shall be greater than the value "IntRangeValuel".

19.7.16 When interpreted as a positive integer encoding (see ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.3),
"BitRangeValue2" shall represent an integer value ("B", say) greater than that represented by "BitRangeValuel" ("A",
say), and the difference between the integer values corresponding to "BitRangeVaue2" and "BitRangeVauel" ("B" -
"A") shall equal the difference between the values of "IntRangeVaue2" and "IntRangeValuel".

58 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

19.7.17 The "BitRange" represents the ordered set of bitstrings corresponding to the integer values between "A" and
"B".

19.7.18 The"IntVaRangeMap" maps each of the integers in the specified range to the corresponding bitstring value in
the "BitRange". (Annex E gives examples of an "IntVaRangeMap".)

19.7.19 It is an ECN specification error if any "BitRange" includes a value which violates a size constraint on the
target.

20 Defining encoding objects using defined syntax

20.1 Clauses 21 to 25 specify the information needed to define encoding objects for each encoding class category,
and the syntax to be used. This syntax is called the defined syntax, and is specified using the information object class
notation of ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex B of this Recommendation | International
Standard.

20.2 The defined syntax for each category can also be used to define encoding objects for structures which are
classes of that category, preceded by one or more instances of a class in the tag category. Where the following text
requires that a class be in a specified category, this includes the case where the class is preceded by a class in the tag
category.

20.3 The use of the modified information object class notation is solely for use within this Recommendation |
International Standard.

204 The use of the defined syntax notation to define encoding objects is specified in 17.2. The defined syntax for
defining encoding objects shall be the syntax specified by the W TH SYNTAX statements in clauses 23 to 25.

205 The W TH SYNTAX statements impose constraints on the values of some encoding properties, in conjunction
with the values of other encoding properties, to enforce some (but not all) semantic constraints. Other constraints on the
use of the W TH SYNTAX statements are specified in text.

20.6 The defined syntax for each encoding class specifies a number of encoding properties which can be supplied
with values of the ASN.1 types defined in clause 21 (or in some cases with other encoding classes and encoding
objects) in order to provide the information needed to specify an encoding object of that class. The information needed
to define an encoding object is in general a combination of encoding property values, together with the particular
instance of defined syntax used to specify those values

NOTE — This differs from the use of a W TH SYNTAX statement in normal information object definition, where the semantics

associated with the information object depends solely on the values set for the fields of the information object class, not on the
form of the W TH SYNTAX statement used to set those values (see B.15).

20.7 The encoding properties specified in clauses 23 to 25 operate together in encoding property groups and use
values of ASN.1 types for their definition. Clause 21 specifies the meaning of values of the types commonly used in
the specification of these encoding properties.

20.8 Some definitive text in clauses 21 and 22 is copied into clauses 22 to 25. Where this occurs, the copied text is
grayed-out, and areference is given to the definitive text.

20.9 Clause 25 specifies a number of transforms that can be applied to abstract values. Severa encoding property
groups require an ordered list of transforms that are to be applied by an encoder. For decoding to be possible, the
transforms applied by an encoder have to be reversible by a decoder in order to recover the original abstract values.
Clauses 23 and 24 specify when transforms have to be reversible, and clause 25 specifies the abstract values for which
any given transform is reversible.

21 Typesused in defined syntax specification
NOTE — All ASN.1 type definitions given here assume automatic tags and no extensibility.

21.1 Theunit type

21.1.1 The"unit" typeis:
Unit ::= I NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dwor d32(32)} (0..256)

21.1.2 Thedefault value for thistypeisalwaysbi t .

ITU-T Rec. X.692 (11/2008) 59

| SO/IEC 8825-3:2008 (E)

21.1.3 An encoding property of this type specifies the unit in which other encoding properties or determinant fields
are counting.

21.1.4 Thevalue of an encoding property of thistypeisrestricted in all cases but one to the non-zero values. In these
cases the encoding property specifies a number of bits. That number of bits determines the unit in which other
encoding properties or determinant fields are counting.

21.1.5 When used in the definition of an encoding object of aclassin the repetition category, the valuer epeti ti ons
isalso alowed, and specifies that the associated count gives the number of repetitionsin the encoding.

21.2 TheEncodi ngSpaceSi ze type

21.2.1 The"Encodi ngSpaceSi ze" typeis.

Encodi ngSpaceSi ze :: = | NTEGER
{ encoder-option-with-determnant(-3),
vari abl e-wi t h-det erm nant (- 2),
sel f-delimting-val ues(-1),
fixed-to-max(0)} (-3..MX)

21.2.2 Thedefault valuefor thistypeisalwayssel f - del i mi ti ng- val ues.
21.2.3 Anencoding property of this type specifies the size of the encoding space (see 9.21.5).

21.2.4 Positive (non-zero) values specify afixed size for the encoding space, as the value of type "Uni t " multiplied
by the value of type "Encodi ngSpaceSi ze", in hits. If the value of type "Unit" is "repetitions", then the
encoding space size may be variable (since the encoding space needed for each component may be different), but is
always that fixed number of repetitions, and it is an ECN specification or application error if an abstract value is to be
encoded which does not have that number of repetitions.

21.25 The vaue "encoder - opti on-wi t h- det er mi nant " specifies that the size of the encoding space may vary
according to the abstract value being encoded, and that the encoder shall choose the encoding space size, recording the
chosen size in the associated determinant. In this case, a value of type "Encodi ngSpaceDet er mi nat i on" (see 21.3)
or "Repet i ti onSpaceDet er m nation" (see?21.7) isrequired.
NOTE — A value of type "Encodi ngSpaceDet er m nati on" or "Repetiti onSpaceDet er m nati on" (to determine the
encoding space size) is required in this case (and in the case of 21.2.6), but the provision of a determinant is allowed in all the
other cases, to support encodings (similar to BER) that use length determinants even when they are redundant. Any difference

between the two determinations is an error. It may, however, not aways be possible to determine whether this is an ECN
specification error or is an application error, but conforming encoders are required not to transmit such encodings.

21.2.6 Thevaue'"vari abl e-wi t h-det er ni nant " specifies that the size of the encoding space may vary according
to the abstract value being encoded. In this case, a value of type "Encodi ngSpaceDet er ni nati on" (see 21.3) or
"Repeti ti onSpaceDet er mi nati on" (see 21.7) is required (to provide a precise means of determining the size of the
encoding space).

21.2.7 The value "sel f-del i m ting-val ues" specifies that the value encoding is self-delimiting, that is, each
value encodes into a multiple of the specified value of type "Uni t . There shall be no pair of abstract values for which
the encoding of one abstract value is the first part of the encoding of the other abstract value.

NOTE — A decoder can (after possible determination of unused bits and justification) determine the end of the encoding space by
matching the encoding of each possible abstract value with the encoding that is being examined. Precisely one will match in
encodings produced by a conforming encoder. Decoders may develop more efficient but equivalent approaches.

21.2.8 Thevaue"fi xed-to- max" specifies that the encoding space is to be the same for the encoding of all abstract
values. It specifies that the size of the encoding space is to be the smallest multiple of "Uni t " that can contain the
specified encoding of any one (al) of the abstract values. This value shall not be used if the abstract value to be
encoded into the encoding space is an abstract value associated with a class in the concatenation (see 23.5.2.3) or
repetition category (see 23.14.2.5).

NOTE 1 — A special case is when there is a single abstract value whose value encoding is zero bits. This results in an empty
encoding space (zero hits).

NOTE 2 — If such a specification is applied when a maximum size cannot be determined (for example, for encoding an
unbounded integer), thisis an ECN specification error, but conforming encoders are required to refuse to generate encodings in
such cases.

21.3 TheEncodi ngSpaceDet er mi nat i on type

21.3.1 The"Encodi ngSpaceDet er ni nati on" typeis:

60 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Encodi ngSpaceDet er m nati on ::= ENUMERATED
{field-to-be-set, field-to-be-used, container}

21.3.2 Thedefault valuefor thistypeisaways"fi el d-t o- be-set".

21.3.3 An encoding property of this type specifies the way in which the encoding space is determined when an
encoding property of type "Encodi ngSpaceSi ze" (see 21.2) is set to "vari abl e-wi th-determinant" or
"encoder - opt i on-wi t h- det er mi nant ".

21.3.4 Thevalue "fiel d-to-be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry length information, and used by a decoder. The encoding specification determines how an encoder is
to set the value of this field from the size (in encoding space units) of the encoding space. If afield is set more than
once through the use of "fi el d-to- be-set" or "f| ag-t o- be-set " (see 21.7), then it is an ECN specification or an
application error if different values are produced by the different encoding procedures, and encoders shall not generate
encodings in this case.

21.3.5 Thevaue"fiel d-to-be-used" requires the specification of a REFERENCE to afield whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some
other encoder actions invoked by "fi el d-t o- be- set " or "f | ag-t o- be- set ". The encoding specification determines
how a decoder is to obtain the size of the encoding space from the value of thisfield. A conforming encoder shall not
produce encodings in which the decoder's transforms of this field do not correctly identify the end of the encoding
space.

21.3.6 The vaue "container" requires either the specification of a REFERENCE to another field whose encoding class
(the container) has a length determinant and whose contents include this encoding space, or of a specification that the
end of the PDU determines the end of the encoding space (using QUTER). The encoding space terminates when the
specified container terminates or when the end of the PDU is encountered. This specification can only be used if the
encoding space of the element being encoded is the last encoding to be placed in the container.

NOTE - It is an ECN encoder's error (possibly resulting from an ECN specification or application error) if additional encodings
are placed in the container.

21.4 TheUnusedBit sDet er ni nat i on type

21.4.1 The"UnusedBit sDet er ni nation" typeis:

UnusedBi t sDet erm nati on ::= ENUVERATED
{field-to-be-set, field-to-be-used, not-needed}

21.4.2 Thedefault valuefor thistypeisaways"fi el d-t o- be-set".

21.4.3 An encoding property of this type specifies the way in which a decoder can determine the unused bits when a
value encoding is left or right justified in an encoding space.

21.4.4 Thevalue "fiel d-to-be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry unused bits information, and used by a decoder. The encoding specification determines how an
encoder is to determine the number of unused bits, and how to set the value of this field from the number of unused
bits. If afield is set more than once through the use of "f i el d-t o- be- set " or "f| ag-t o- be- set " (see 21.7), then it
is an ECN specification or an application error if different values are produced by the different encoding procedures,
and encoders shall not generate encodings in this case.

21.45 Thevaue"fiel d-to-be-used" requires the specification of a REFERENCE to afield whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some
other encoder actions invoked by "fi el d-t o- be-set " or "f| ag-t o- be- set ". The encoding specification determines
how a decoder is to determine the number of unused bits from the value of thisfield. A conforming encoder shall not
produce encodings in which the decoder's transforms of this field do not correctly identify the number of unused bits.

21.4.6 Thevalue "not - needed" identifies that a decoder does not require an explicit determinant in order to discover
the number of unused bits. The number of unused bits will be deducible from the encoding specification without
knowledge of the actual abstract value that has been encoded. This determination is described for each value encoding.

21.5 TheptionalityDeternination type

2151 The"OptionalityDeternination"typeis

OptionalityDeternination ::= ENUVERATED
{field-to-be-set, field-to-be-used, container, handle, pointer}

ITU-T Rec. X.692 (11/2008) 61

| SO/IEC 8825-3:2008 (E)

21.5.2 Thedefault valuefor thistypeisaways"fi el d-t o- be-set ".

21.5.3 An encoding property of this type specifies the way in which the presence or absence of an optional
component is determined.

2154 Thevaue "fiel d-to-be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry optionality information, and used by a decoder. The ECN specification will also include an encoding
property that specifies how an encoder is to set the value of this field from a conceptual boolean value which is true if
the optional component is present and false if the optional component is absent. If afield is set more than once through
the use of "fi el d-to-be-set" or "fl ag-to-be-set" (see 21.7), then it is an ECN specification or an application
error if different values are produced by the different encoding procedures, and encoders shall not generate encodings
in this case.

2155 Thevaue"fiel d-to-be-used" requires the specification of a REFERENCE to afield whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some
other encoder actions invoked by "fi el d-t o- be-set™ or "f| ag-t o- be- set ". The specification will also include an
encoding property that specifies how a decoder isto determine the presence or absence of the optional component from
the value of this field. A conforming encoder shall ensure that the value of this field correctly determines the presence
or absence of the optional field.

21.5.6 The value "cont ai ner" requires either the specification of a REFERENCE to another field whose encoding
class (the container) has a length determinant and whose contents include this optional component, or of a specification
that the container is the end of the PDU (using QUTER). If the container end is present when a decoder is looking for
the start of this optional component, then the decoder shall determine that this optional component is absent.
NOTE — This specification can only be used if the abstract values being encoded are such that no further encodings are to be
placed in the container. This may require restrictions to be placed on the abstract values of the ASN.1 type, for example, to
prohibit the inclusion of a later optional component unless al earlier optional components are present. It is either an ECN

specification error or an application error if additional encodings are to be placed in the container following a component whose
optionality is determined in this way, but a conforming encoder shall not generate such encodings.

21.5.7 The value "handl e" requires that an identification handle be specified. This identification handle shall be
exhibited both by the encoding object for the optional component and by the encoding object applied to each possible
alternative encoding class that can follow if this optional component is absent. Each possible alternative encoding class
may be a component of the concatenation containing the optional component, or may be an encoding class following
the concatenation. The handle value sets specified by all the involved encoding objects (exhibiting the same
identification handle) shall all be digoint.

NOTE — Every abstract value of a given component is required to have a handle value matching the specified handle value set
(see 22.9.2.2).

21.5.8 |If the end of any open container (or the end of the PDU) is detected at the time a decoder is attempting to
detect the presence or absence of an optional component, then the decoder shall determine that the optional component
is absent. Otherwise, the decoder shall determine that the component is present if and only if decoding the remaining
parts of the encoding produces a value for the specified identification handle which matches the handle value set of the
optional component. It is an ECN specification error if this does not result in correct identification of the presence or
absence of an encoding of the optional component, but conforming encoders shall not generate such encodings.

21.5.9 The value "poi nter" requires the specification of a start-of-encoding REFERENCE to another field. If that
field is zero, then this component is absent. If it is non-zero, then the rules for a start-of-encoding pointer apply (see
22.3)

21.6 TheA ternativeDet erninati on type

21.6.1 The"Al ternativeDeternination"typeis

Al ternativeDeterm nation ::=
ENUMERATED {fi el d-t o-be-set, field-to-be-used, handl e}

21.6.2 Thedefault valuefor thistypeisaways"fi el d-t o- be-set".

21.6.3 An encoding property of this type specifies the way in which a decoder determines which aternative is present
in an encoding of a classin the alternatives category.

21.6.4 The value "fi el d-to-be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry information identifying an aternative, and used by a decoder. The specification will aso include an
encoding property that specifies how an encoder is to set the value of this field from a conceptual integer value that
identifies each aternative (using an order specified in other encoding properties). |If a field is set more than once

62 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

through the use of "fiel d-to-be-set" or "fl ag-to-be-set" (see 21.7), then it is an ECN specification or an
application error if different values are produced by the different encoding procedures, and encoders shall not generate
encodingsin this case.

21.6.5 Thevaue"fiel d-to-be-used" requires the specification of a REFERENCE to afield whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some
other encoder actions invoked by "fi el d-to- be-set" or "f| ag-t o- be- set ". The specification will also include an
encoding property that specifies how a decoder is to determine (from the value of the referenced field) a conceptual
integer value which identifies the alternative (using an order specified in other encoding properties).

21.6.6 The value "handl e" requires that an identification handle be specified. This identification handle shall be
exhibited by the encoding objects applied to each of the alternatives in the construction defined by the class in the
alternatives category. The handle value sets specified by those encoding objects shall all be digoint. (Violation of this
ruleis an ECN specification error, and conforming encoders are required not to generate encodings where thisrule is
violated.)

21.6.7 A decoder shall determine the alternative that is present by decoding the remaining parts of the encoding to
produce a value for the specified identification handle. The alternative whose handle value set matches this valueis the
alternative that is present. If the end of any open container (or the end of the PDU) is reached before the identification
handle can be decoded, or if the value of the identification handle does not match the handle value set of any
alternative, then thisis an encoding error.

NOTE - Every abstract value of a given aternative is required to have a handle value matching the handle value set of the
aternative (see 22.9.2.2).

21.7 TheRepetitionSpaceDet er ni nati on type

21.7.1 The"RepetitionSpaceDet erm nation" typeis:

RepetitionSpaceDet erminati on ::= ENUVERATED
{field-to-be-set, field-to-be-used, flag-to-be-set, flag-to-be-used,
contai ner, pattern, handle, not-needed}

21.7.2 Thedefault valuefor thistypeisaways"fi el d-t o- be-set ".

21.7.3 An encoding property of this type specifies the way in which a decoder determines the end of the encoding
space in an encoding of a class in the repetition category. It replaces use of an encoding property of type
"Encodi ngSpaceDet er mi nat i on" in the encoding of repetitions.

21.7.4 Thevaue "fiel d-to-be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry information which identifies the size of the repetition space. The encoding specification determines
how an encoder isto set the value of this field from the size (in repetition space units) of the repetition space. If afield
is set more than once through the use of "fi el d-t o- be-set" or "f| ag-t o- be-set ", then it is an ECN specification
or an application error if different values are produced by the different encoding procedures, and encoders shall not
generate encodingsin this case.

21.75 Thevaue"fiel d-to-be-used" requires the specification of a REFERENCE to afield whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some
other encoder actionsinvoked by "fi el d-t o- be-set " or "f | ag-t o- be- set ". The encoding specification determines
how a decoder is to obtain the size (in repetition space units) of the encoding space from the value of this field. A
conforming encoder shall not produce encodings in which the decoder's transforms of this field do not correctly
identify the end of the encoding space.

21.7.6 Thevaue"fl ag-t o- be-set" requires the specification of a REFERENCE to a field that is part of the repeated
element, and that will be set by the encoder to identify the last element of the repetition. The encoding specification
determines how an encoder is to set the value of this field from a boolean value which is false if the element is the last
in the repetition, and is true otherwise. If a field is set more than once through the use of "f 1 ag-t o- be-set" or
"field-to-be-set", thenitisan ECN specification or an application error if different values are produced by the
different encoding procedures, and encoders shall not generate encodings in this case.

21.7.7 The value "f1 ag-t o- be-used" requires the specification of a REFERENCE to a field that is part of the
repeated element and whose value may be set from the abstract syntax (i.e., a corresponding field appears within the
ASN.1 specification) or may be set by some other encoder actions invoked by "f | ag- t o- be-set" or "fi el d-t o- be-
set". The encoding specification determines how a decoder is to obtain a boolean value from the value of this field.
The boolean value will be false if the element is the last element in the repetition, and true otherwise. A conforming
encoder shall not produce encodings in which the decoder's transforms of this field do not correctly identify the last
element of the repetition.

ITU-T Rec. X.692 (11/2008) 63

| SO/IEC 8825-3:2008 (E)

21.7.8 The vaue "cont ai ner" requires either the specification of a REFERENCE to another field whose encoding
class (the container) has a length determinant and whose contents include the encoding class in the repetition category,
or of a specification (using QUTER) that the end of the PDU determines the end of the repetitions. The repetitions
terminate when the specified container terminates or when, following the complete encoding of one repetition, the end
of the PDU is encountered.

NOTE — This specification can only be used if the encoding of the (repetition category) classis the last encoding to be placed in

the container. It is an ECN specification error if additional encodings are placed in the container, but conforming encoders shall
not generate such encodings.

21.7.9 Thevaue"pattern" specifiesthat some specified pattern of bits (see 21.10) will terminate the repetitions. In
this case additional encoding properties will require the insertion by an encoder of a specified pattern, and the detection
of this pattern by a decoder. It is an ECN specification error if the encoding of the pattern can be the initial part of the
encoding of an abstract value of a repetition. A conforming encoder shall detect such errors and shall not generate
encodings that violate thisrule.

NOTE — An example is a null-terminated character string whose contents are not allowed to include anull character.

21.7.10 The value "handl e" requires that an identification handle be specified. This identification handle shall be
exhibited both by the encoding object applied to the component being repeated, and by the encoding object applied to
each possible (taking account of optionality) following encoding class. The handle value sets specified by those
encoding objects shall al be digoint.

NOTE — Every abstract value of a given component is required to have a handle value matching the handle value set of the
component (see 22.9.2.2).

21.7.11 Thevalue"not - needed" specifies that the number of repetitionsis fixed in the abstract syntax.

NOTE — It isan ECN specification error (which shall be detected and blocked by encoders) if this encoding is specified and the
number of repetitions are not so restricted, or if the application violates that restriction.

21.8 TheJustificationtype
21.8.1 The"Justification"typeis:

Justification ::= CHAO CE
{ left I NTEGER (0. . MAX),
right I NTEGER (0. . MAX) }

21.8.2 Thedefault valuefor thistypeisaways'ri ght : 0"

21.8.3 An encoding property of this type specifies right or left justification of the encoding of a value within the
encoding space, with an offset in bits from the ends of the encoding space.

21.8.4 The"l ef t" aternative specifies that the leading bit of the value encoding is positioned relative to the leading
edge of the encoding space. The integer value specifies the number of bits between the leading edge of the encoding
space and the leading bit of the value encoding.

NOTE - If the value encoding is not fixed length or self-delimiting, then the use of value padding in afixed size container canin
some circumstances make it impossible for a decoder to recover the original abstract values. This would be an ECN
specification error.

21.85 The"right" aternative specifies that the trailing bit of the value encoding is positioned relative to the trailing
edge of the encoding space. The integer value specifies the number of bits between the trailing bit of the value
encoding and the trailing edge of the encoding space.

21.8.6 The setting of the bits (if any) before or after the value encoding is determined by encoding properties of type
"Paddi ng" and "Pat t er n" (see 21.9 and 21.10).

21.9 The Paddi ng type

21.9.1 The"Paddi ng" typeis:
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option}

21.9.2 Thedefault value for an encoding property of thistypeisaways"zer o".

21.9.3 An encoding property of this type specifies details of the padding for pre-padding, for classes in the pad
category, and for the post-padding of a PDU specified in the #QUTER encoding class.

21.9.4 |If thevaueis"zero", then the padding iswith zero bits.
21.9.5 |If thevaueis"one", then the padding is with one bits.

64 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

21.9.6 |If the value is "pat tern" then the bits are set according to the encoding property of type "Pattern" (see
21.10).

21.9.7 |If thevaueis"encoder - opti on", then the encoder freely chooses the bit values.

21.10 ThePattern and Non- Nul | - Pat t er n types
21.10.1 The"Pattern"typeis.

Pattern ::= CHO CE

{bits BI T STRI NG

octets OCTET STRI NG
char8 | A5String,

char 16 BMPSt ri ng,

char 32 Uni versal String,
any-of -1 ength I NTEGER (1..MAX),
di fferent ENUMERATED {any} }

21.10.2 The"Non- Nul | - Pat t er n" typeis:

Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:''H| char8:"" | charl6:"" |
char32:""))

21.10.3 The default value for an encoding property of thistypeisaways"bits:' 0' B".

21.10.4 The"bi ts" or "oct et s" alternative specifies a pattern of length and value equal to the given bitstring or octet
string respectively.

21.10.5 The "char 8" alternative specifies a (multiple of 8-bits) pattern where each character in the given string is
converted to its ISO/IEC 10646 value as an 8-bit value.

21.10.6 The "char 16" aternative specifies a (multiple of 16-bits) pattern where each character in the given string is
converted to its |ISO/IEC 10646 value as a 16-bit value.

21.10.7 The "char 32" aternative specifies a (multiple of 32-bits) pattern where each character in the given string is
converted to its ISO/IEC 10646 value as a 32-bit value.

21.10.8 The "any- of -1 engt h" alternative specifies a size for the pattern. The actual value of the pattern is an
encoder's option.

21.10.9 The"di fferent:any" valueis permitted only when there is another encoding property of type "Patt ern" in
the same encoding property group. In this case, either (but not both) of the encoding properties of type "Pat t er n" can
be set to "di f f erent : any". The"di f f er ent : any" value specifies that the length of the pattern shall be the same as
the length of the pattern specified for the other encoding property. It also specifies that its value is an encoder's option,
provided that the value is different from the value of the pattern specified for the other encoding property.

21.10.10When used for pre-padding and for justification (but not for other uses), the "Non- Nul | - Pat t er n" is used,
and the pattern is truncated and/or replicated as necessary to provide sufficient bits for the pre-padding, value pre-
padding, or value post-padding.

21.10.11The "di f f er ent : any" value of type "Pat t er n" is excluded from most uses of this type. When a parameter
of type "Pattern” is used to specify the pattern for a boolean value (TRUE, say), then the value "di f f er ent : any" can be
used to specify the pattern for the other boolean value (FALSE in this case). When used in thisway, "di f f er ent : any”
means an encoder's option for the pattern. The encoder may use any pattern it chooses, but it shall be of the same
length as the other pattern and shall differ from it in at least one hit position.

21.11 TheRangeCondi ti on type

21.11.1 The"RangeConditi on" typeis:

RangeCondi tion ::= ENUVERATED

{ unbounded- or - no-| ower - bound,
seni - bounded- wi t h- negati ves,
bounded-wi t h- negati ves,
seni - bounded- wi t hout - negat i ves,
bounded- wi t hout - negat i ves,
t est - | ower - bound,
t est - upper - bound,

ITU-T Rec. X.692 (11/2008) 65

| SO/IEC 8825-3:2008 (E)

t est - range}
21.11.2 The default value for an encoding property of thistype is always "unbounded- or - no- | ower - bound".

21.11.3 An encoding property of type "RangeCondi tion" is used in the specification of a predicate which tests the
existence and nature of bounds on the integer values associated with an encoding classin the integer category.

21.11.4 The predicate is satisfied for each of the first five enumeration values of 21.11.1 if and only if the following
conditions are satisfied by the bounds on the encoding class in the integer category:

a) unbounded- or - no- | ower - bound: either there are no bounds, or else there is only an upper bound but
no lower bound.

b) seni-bounded-wit h- negati ves: thereisalower bound that is less than zero, but no upper bound.
¢) bounded-wit h-negati ves: thereisalower bound that is less than zero, and an upper bound.

d) seni-bounded-wit hout - negat i ves: there is a lower bound that is greater than or equal to zero, but
no upper bound..

€) bounded-wi t hout - negat i ves: there is a lower bound that is greater than or equal to zero, and an
upper bound
NOTE — For any given set of bounds, exactly one predicate will be satisfied.

21.11.5 If the last three enumeration values of 21.11.1 are used, a value of the "Conpari son" type (see 21.12) shall
be provided, together with an integer conpar at or value. If the other enumeration values are used, these shall not be
provided.

21.12 The Conpar i son type

21.12.1 The"Conpari son" typeis:

Conpari son ::= ENUMERATED
{equal -to,
not - equal -t o,
greater-than,
| ess-t han,
greater-than-or-equal -to,
| ess-t han- or-equal -t o}

21.12.2 Thereisno default value for an encoding property of thistype.

21.12.3 An encoding property of type "Conpari son" is used to test an identified property of a class against an integer
value (the conpar at or).

21.12.4 The predicate using a "Conpari son" is satisfied for each enumeration value if and only if the identified
property satisfies the following conditions:

a) equal -t o: itsvalue equals that of the specified integer conpar at or value.

b) not-equal -t o: itsvalueis different from that of the specified integer conpar at or value.

Cc) greater-than:itsvalueisgreater than that of the specified integer conpar at or value.

d) Iess-than:itsvalueislessthan that of the specified integer conpar at or value.

€) greater-than-or-equal -to: its value is greater than or equal to that of the specified integer
conpar at or vaue.

f) less-than-or-equal -to: its value is less than or equal to that of the specified integer conpar at or
value.

21.13 The Si zeRangeCondi ti on type

21.13.1 The"Si zeRangeCondi ti on" typeis:

Si zeRangeCondi ti on ::= ENUMERATED
{ no-ub-with-zero-Ib,
ub-wi t h-zero-1 b,
no- ub- wi t h-non- zero- | b,
ub-wi t h-non-zero-1 b,
fixed-size,
t est - | ower - bound,

66 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

t est - upper - bound,
t est - range}

21.13.2 Thedefault value for an encoding property of thistype isaways "no- ub- wi t h- zer o- 1 b".

21.13.3 An encoding property of type"Si zeRangeCondi ti on" is used to test properties of the bounds in an effective
size constraint associated with aclass in the repetition or characterstring category.

21.13.4 The predicate is satisfied for each of the first five enumeration values of 21.13.1 if and only if the effective
size constraint satisfies the following conditions:

a) no-ub-with-zero-Ib:thereisno upper bound on the size and the lower bound is zero.
b) ub-with-zero-Ib:thereisan upper bound on the size and the lower bound is zero.
C) no-ub-with-non-zero-| b:thereisno upper bound on the size and the lower bound is non-zero.
d) ub-with-non-zero-I b:thereisan upper bound on the size and the lower bound is non-zero.
e) fixed-size:thelower bound and the upper bound on the size are the same value.
NOTE - Only the"f i xed- si ze" case overlaps with other predicates.

21.13.5 |If the last three enumeration values of 21.13.1 are used, a value of the "Conpari son" type (see 21.12) shall
be provided, together with an integer conpar at or value. If the other enumeration values are used, these shall not be
provided.

21.14 TheRever sal Speci fi cati on type

21.14.1 The"Rever sal Speci fi cati on" typeis:

Rever sal Speci fication ::= ENUVERATED
{no-reversal,
reverse-bits-in-units,
reverse-hal f-units,
reverse-bits-in-half-units}

21.14.2 The default value for an encoding property of thistypeisaways "no-reversal ".

21.14.3 An encoding property of type "Rever sal Speci fi cation" is used in the final transform of bits from an
encoding space into an output buffer for transmission (with the reverse transform being applied for decoding).

NOTE — Bits inserted as a result of pre-padding specified by an encoding object do not form part of the encoding to which bit-
reversal specified by that encoding object, but may be subject to bit-reversal specified by an encoding object for a container in
which the complete encoding is embedded.

21.14.4 Values of this type are always used in conjunction with an encoding property of type "Uni t " that specifies a
unit sizein bits (see 21.1).

211451t is an ECN gpecification error if the vaues ‘"reverse-half-units" and
"reverse-bi ts-in-hal f-units" are used when the encoding property of type "Uni t " is not an even number of bits.

21.14.6 The enumerations specify (in the order of enumerations listed above) either:
a) no reversa of bits; or
b) reversal of the order of half-units (without changing the order of bitsin each half unit); or
¢) reversal of the order of bitsin each half-unit but without reversing the order of the half-units; or
d) reversal of the order of the bitsin each unit.

21.14.7 It isan ECN specification error if the number of bits in an encoding to which bit-reversal is applied is not an
integral multiple of "Uni t ".

21.14.8 Bit-reversal can be specified for the encoding of all classes that can appear as fields of encoding structures,
except an encoding class of the alternatives category, which does not use the encoding space concept.
21.15 TheResul t Si ze type

21.15.1 The"Resul t Si ze" typeis:
Resul t Size ::= I NTEGER {variabl e(-1), fixed-to-max(0)} (-1..MAX)

21.15.2 Thedefault value for an encoding property of thistypeisalways"vari abl e".

ITU-T Rec. X.692 (11/2008) 67

| SO/IEC 8825-3:2008 (E)

21.15.3 An encoding property of this type specifies the size of the result in a # TRANSFORMCclass.

21.15.4 Thevalue"vari abl e" specifies that the size of the #TRANSFORMresult will vary for different abstract values,
and is determined by the detailed specification of the transform.

21.155 The value "fi xed-t o- max" specifies that the size of the #TRANSFORM result is to be the same for the
transform of all abstract values. It specifies that the target size is to be the smallest size that can contain the specified
encoding of any one (all) of the abstract values. The precise details of this specification are defined for each transform
in which values of thistype are used.

21.15.6 A positive value of type "Resul t Si ze" specifies that the size of the #TRANSFORMresult is fixed. Thisvalueis
used in the specification of the actual transform.

21.16 TheHandl eval ueSet type
21.16.1 The"Handl eVal ueSet " typeis:

Handl eVal ueSet ::= CHA CE {
bits BIT STRING
octets OCTET STRI NG
nunber I NTEGER (0. . MAX),
tag ENUMERATED { any},
range SEQUENCE {

low | NTEGER(O. . MAX),

high | NTEGER(O..NMAX) },
ranges SET (Sl ZE(1..MAX)) OF SEQUENCE {
low | NTEGER(O..NMAX),

hi gh | NTEGER(O. . MAX) }}

21.16.2 The "Handl eVal ueSet " is used to specify the set of hit patterns (the handle value set) characterizing the
encodings produced by an encoding object that exhibits an identification handle.

21.16.3 The value of an identification handle can be used to identify the presence or absence of optional components,
the choice of alternatives, the ordering of sets, or the end of arepetition. There are requirements in such circumstances
that the handle value sets of the encoding objects applied to the different alternatives or components be al digoint (see
2157, 21.6.6, 21.7.10, and 22.10.2.1), and requirements that all the possible values of the identification handle
occurring in the encodings of any given alternative or component all match the specified handle value set of the
encoding object applied to that alternative or component (see 22.9.2.2).

NOTE — The ECN specifier is required to specify the handle value set in all cases except where (for encodings of the tag class)
the handle value set consists of a single value and depends on the tag number associated with that tag class, either directly
through implicit generation from an ASN.1 tag, or by mapping from an implicitly generated structure.

21.16.4 The"bits", "octets" and "nunber" aternatives specify a handle value as a bitstring, octetstring or integer
value respectively. It isan ECN specification error if this value cannot be encoded within the number of bits specified
for the identification handle (see 22.9).

21.16.5 The "t ag: any" aternative specifies a handle value determined by the number specified in an ECN encoding
structure for a class in the tag category, or by the tag number mapped from an ASN.1 tag construction. It shall only be
used when specifying the handle identification for the encoding of a classin the tag category.

21.16.6 The"range" aternative specifies arange of integer values, with hi gh greater than or equal to | ow.

21.16.7 The "ranges" dternative specifies a set of ranges of integer values, each with hi gh greater than or equa to
I ow. One or more such ranges can be specified, and they shall not overlap.

21.17 Thel nt eger Mappi ng type

21.17.1 The"l nt eger Mappi ng" typeis:

I nt eger Mappi ng ::= SET OF SEQUENCE ({
source SET OF | NTEGER,
result I NTEGER} (CONSTRAI NED BY {/* the intersection of the source
conponents shall be enmpty */})

21.17.2 The"I nt eger Mappi ng" isused to specify explicitly an ints-to-ints transform.

68 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

22 Commonly used encoding property groups

This clause specifies groups of encoding properties that are commonly used in the defined syntax (see clause 20). The
purpose of each group, the restrictions on both the values of encoding properties and the syntax that can be used, as

well as the encoder and decoder actions for each group are a so specified.

22.1 Replacement specification

There are three variants of replacement specification:

a) Full replacement specification: This is used for classes in the concatenation category, where
replacement can be of the entire structure, or can selectively replace optional and non-optional
components.

b) Structure or component replacement specification: This is used for classes in the aternatives category
and for the #CONDI TI ONAL- REPETI TI ON encoding class, where replacement can be of the entire
structure or of the component.

NOTE — When an encoding object of the #CONDI Tl ONAL- REPETI TI ON class is used to define encodings for a class in the

bitstring, characterstring, or octetstring category, it can only perform structure-only replacement.

¢) Structure-only replacement specification: Thisisused for classes that do not have components.

22.1.1 Encoding properties, syntax and purpose

22.1.1.1 Full replacement specification uses the following encoding properties:

&#Repl acenent - structure OPTI ONAL,
&#Repl acenent - st ruct ur e2 OPTI ONAL,
&r epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect 2 &*#Repl acenent -structure2 OPTI ONAL,
&t#tHead- end- st ruct ure OPTI ONAL,
&f#tHead- end- st ruct ure2 OPTI ONAL

22.1.1.2 The syntax to be used for full replacement specification shall be:

[REPLACE
[STRUCTURE]
[COMPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acenment - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect
[NSERT AT HEAD &#tHead- end-structure]]
[AND OPTI ONALS W TH &#Repl acenent - st ruct ur e2
[ENCCDED BY é&r epl acenent - struct ur e- encodi ng- obj ect 2
[I NSERT AT HEAD &#Head- end-structure2]]]]

22.1.1.3 Structure or component replacement specification uses the following encoding properties:

&#Repl acenent - structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,
&#Head- end- structure OPTI ONAL

22.1.1.4 The syntax to be used for structure or component replacement specification shall be:

[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COMPONENTS]
W TH &Repl acenent - structure
[ENCODED BY &r epl acenent - st r uct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]

22.1.1.5 Structure-only replacement specification uses the following encoding properties:

&#Repl acenent - structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL

22.1.1.6 The syntax to be used for structure-only replacement specification shall be:

[REPLACE

ITU-T Rec. X.692 (11/2008)

69

| SO/IEC 8825-3:2008 (E)

[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]

22.1.1.7 Use of the W TH SYNTAX for these encoding property groups specifies that either:

a) the encoding class to which this encoding object is applied is to be replaced completely (REPLACE
STRUCTURE); in the case of an encoding class in the optionality category, the entire component is
replaced; in the case of a #CONDI TI ONAL- REPETI TI ON encoding object used in defining an encoding
object for a class in the bitstring, characterstring, octetstring or repetition category, then (if the range
condition is satisfied), the entire bitstring, characterstring, octetstring or repetition structure is replaced;
or

b) al its components (except for the structure-only specification) are to be replaced (with the same
replacement action for all components) ("REPLACE COVPONENT" or "REPLACE ALL COVPONENTS'); or

c) all its optional components (only for full replacement specification) are to be replaced ("REPLACE
OPTI ONALS"); or

d) all its non-optional components (only for full replacement specification) are to be replaced ("REPLACE
NON- OPTI ONALS"); or

e) all its components (only for full replacement specification) are to be replaced, with different replacement
actions for optionals and for non-optionals ("REPLACE NON- OPTI ONALS AND CPTI ONALS").

22.1.1.8 "REPLACE COMPONENT" isa synonym for "REPLACE ALL COVPONENTS'. It would be normal but not required
to use thisif thereis only a single component.

22.1.1.9 The optional "ENCODED BY"s specify an encoding object for the replacement structure.

22.1.1.10The optional "I NSERT AT HEAD's specify an encoding structure (the head-end insertion) to be inserted
before all components of the (constructor) class performing the replacement. There is one head-end insertion for each
component that is replaced, and they are inserted in the textual order of the original components.

22.1.1.11 In a full replacement specification, if the encoding object applied to the replacement structure exhibits an
identification handle (with a given handle value set), then the encoding object whose defined syntax contains the full
replacement specification exhibits the same identification handle (with the same handle value set), otherwise it does not
exhibit ahandle.

2212 Specification restrictions
22.1.2.1 Exactly one of the permitted syntaxes between "REPLACE" and "W TH' shall be used.

22.1.2.2 The "W TH" replacement structures shall be parameterized encoding structures with a single encoding class
parameter. When they are specified in the above defined syntax, only the class reference name of the structure shall be
given. It shall not have any parameter list in this use of the names.

22.1.2.3 These parameterized structures are instantiated during the replacement action with an actual parameter as
specified in 22.1.3. The use of the dummy parameter in the replacement parameterized structures shall be consistent
with the class of the actual parameter that will be supplied in the replacement action.

NOTE — In particular, if "REPLACE STRUCTURE" is used for an encoding class in the tag category, the dummy parameter can
only occur in the replacement structure where an encoding class in the tag category is permitted.

22.1.2.4 The "ENCODED BY" encoding objects shall be parameterized encoding objects for the "W TH' encoding
structures. They shall have a dummy parameter (#D, say) that is an encoding class, and they shall be defined in a
parameterized encoding object assignment in which the governor is the corresponding "W TH' parameterized encoding
structure, instantiated with #D. When they are specified in the above defined syntax, the encoding object reference
name only shall be given. They shall not have any parameter list in this use of the names.

22.1.2.5 They are instantiated during the replacement action with an actual parameter which is the same as the actual
parameter used to instantiate the corresponding "W TH' replacement encoding structures. They may also have:

— (optionally) another (but only one) dummy parameter that is an encoding object set; when they are
instantiated during the replacement action, the actual parameter for this dummy parameter is the current
combined encoding object set;

— (conditionally) another (but only one) dummy parameter that is a REFERENCE parameter. This parameter
shall be present if and only if "INSERT AT HEAD' is specified. When the encoding objects are
instantiated during the replacement action, the actual parameter for this dummy parameter is a reference
to the corresponding "I NSERT AT HEAD' structure.

70 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

22.1.2.6 All fields of the replacement structure that are not part of the encoding class parameter are auxiliary fields, and
shall be set by the encoding of the replacement structure.

22.1.2.7 The "I NSERT AT HEAD' encoding structures shall not have dummy parameters. All their fields are auxiliary
fields, and shall be set by the "ENCODED BY" encoding object through its REFERENCE parameter.

22.1.2.8 If an encoding object has a "REPLACE STRUCTURE" clause, it shall not have an "INSERT AT HEAD" clause
and shall have an "ENCODED BY" clause.

22.1.3 Encoder actions

22.1.3.1 If an encoding object of aclass in the hit-field group of categories or in the tag category specifies "REPLACE
STRUCTURE", then an encoder shall replace the structure with an instantiation of the replacement structure, using the
name of the original structure as the actual parameter.

22.1.3.2 If an encoding object of a class in the encoding constructor category specifies "REPLACE STRUCTURE", then
an encoder shall replace the entire construction with an instantiation of the replacement structure, using the entire
original construction as the actual parameter.

22.1.3.3 If an encoding object of a class in the optionality category specifies "REPLACE STRUCTURE", then an encoder
shall replace the entire optional component with a non-optional instantiation of the replacement structure. The actual
parameter shall be a hidden structure name (which matches no other structure, and which can never have encoding
objects). This hidden structure name shall de-reference to the entire original optional component (including any classes
in the tag category) except for the classin the optionality category.

22134 If an encoding object of any class specifies "REPLACE COVPONENT", "REPLACE ALL COVPONENTS',
"REPLACE OPTI ONAL COVPONENTS'", or "REPLACE NON- OPTI ONAL COMPONENTS", then an encoder shall replace the
entire specified component(s) with a non-optional instantiation of the replacement structure. The actual parameter shall
be a hidden structure name (which matches no other structure, and which can never have encoding objects). This
hidden structure name shall de-reference to the entire original optional component (including any classes in the tag
category) except for any class in the optionality category.

22.1.3.5 All abstract values and tag numbers of the original structure or component shall be mapped to corresponding
abstract values and tag numbers in the actual parameter of the replacement structure. Values of other fields in the
replacement structure shall be set according to the specification in the replacement structure encoding object.

22.1.3.6 If ahead-end insertion is specified, then the encoder shall insert the head-end structure before all components
of the structure whose encoding object is performing the replacement. Head-end insertions shall be inserted in the
same textual order as the components being replaced. The values of fields of this structure shall be set in accordance
with the specification in the replacement structure encoding object.

NOTE — These structures will normally be asimple integer field providing alocation determinant for the field being replaced.
22.1.3.7 The encoder shall instantiate the replacement structure encoding-object(s) with actual parameters as follows:

a) Thedummy parameter that is an encoding class shall be given an actual parameter that is the same as the
actual parameter of the instantiation of the replacement structure.

b) The dummy parameter (if any) that is a REFERENCE parameter shall be given an actual parameter that isa
reference to the inserted head-end structure.

¢) The dummy parameter (if any) that is an encoding object set (whose governor is #ENCODI NGS) shall be
given an actual parameter that is the current combined encoding object set.

22.1.3.8 The encoder shall then use this instantiated encoding object to encode the corresponding replacement structure
instead of the combined encoding object set.

NOTE — The encoding of the head-end insertions is determined by the application of the current combined encoding object set.

22.1.4 Decoder actions

A decoder shall generate (for an application) the abstract values of the original structure that was being encoded, hiding
any replacement activity (even if performed by repeated application of replacements).

ITU-T Rec. X.692 (11/2008) 71

| SO/IEC 8825-3:2008 (E)

22.2 Pre-alignment and padding specification

22.2.1 Encoding properties, syntax and purpose
22.2.1.1 Pre-alignment and padding specification uses the following encoding properties:

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0'B

22.2.1.2 The syntax to be used for pre-alignment and padding specification shall be:

[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]

22.2.1.3 The definition of types used in pre-alignment and padding specification is:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Pattern ::= CHO CE
{bits BI T STRI NG
octets OCTET STRI NG
char 8 | A5String,
char 16 BWPSt ri ng,
char 32 Uni versal Stri ng,
any-of -1 ength | NTEGER (1..MAX),
di fferent ENUVERATED {any} }
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:"'"H | char8"" | charl6:"" |

char32:"")) -- (see 21.10)

22.2.1.4 The pre-alignment encoding properties use a value of type "Uni t " to specify that a container is to start at a
multiple of "Uni t " bits from the alignment point. The alignment point is the start of the encoding of the type to which
an ELM applied an encoding, except when reset for the encoding of a contained type by the use of a #QUTER encoding
object (see clause 25). Encoding properties of type "Paddi ng" and "Pat t er n" are used to control the bits that provide
padding to the required alignment. Specification of "ALI GNED TO NEXT" produces the minimum number of inserted
bits. Specification of "ALI GNED TO ANY" leaves the actual number of inserted bits (subject to the above restriction to a
multiple of "Unit") as an encoders option, and requires the specification of a start pointer.

22.2.2 Specification constraints

22.2.2.1 At most one of "NEXT" and "ANY" shall be specified. When not specified, "NEXT" is assumed.

22222 If "ALI GNED TO ANY" is specified, then the encoding object specification shall include the "START- PO NTER"
clause.

2223 Encoder actions

22.2.3.1 If "NEXT" is specified (or is defaulted), the encoder shall insert the minimum number of bits necessary to
ensure that the total number of bits in the encoding (from the alignment point up to the beginning of the container, see
22.2.1.4) isamultiple of the encoding property of type "Uni t ".

22.2.3.2 If "ANY" is specified, the encoder shall insert an encoder-dependent number of bits, provided that the total
number of bitsin the encoding (from the alignment point) is a multiple of the encoding property of type "Uni t .

22.2.3.3 The inserted bits shall be set so that the first inserted bit is the leading bit of "Patt ern", and so on. If more
bits are needed than are present in the encoding property of type "Pat t er n", then the pattern shall be re-used, most
significant bit first.

2224 Decoder actions
22.2.4.1 The decoder shall determine the number of inserted bits from the encoder actionsif "NEXT" is specified.

72 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

22.2.4.2 The decoder shall determine the number of inserted bits from the start pointer specification if "ANY" is
specified.

22.2.4.3 In al cases, the decoder shall discard the inserted bits transparently to the application. It shall not diagnose an
encoder or a specification error if the bits are not in agreement with the specified encoders actions.

22.3 Sart pointer specification
22.3.1 Encoding properties, syntax and purpose
22.3.1.1 Start pointer specification uses the following encoding properties:

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nt er - encoder -transforns #TRANSFORM ORDERED OPTI ONAL

22.3.1.2 The syntax to be used for start pointer specification shall be:
[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns] |

22.3.1.3 The definition of the type used in start pointer specificationis;

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dwor d32(32)} (0..256) -- (see 21.1)

22.3.1.4 This specification identifies the start of the encoding space for an element. If the start of the encoding space
for the element is an offset of "n" "MULTI PLE OF" units, then the value placed in the field referenced by the "START-
PO NTER' encoding property isthe value obtained by applying "ENCODER- TRANSFORMS" to "n".

NOTE 1 — If "MULTI PLE OF" is not "bi t s", this implies that that offset from the start of the field referenced by the
"START- PO NTER' encoding property to the start of the encoding space is required to be an integra multiple of
"MULTI PLE OF" units.

NOTE 2 — There will in general be encodings of other elements, and perhaps of other start-pointers between the field referenced
by the "START- PO NTER" encoding property and the start of the encoding of this element.

22.3.2 Specification constraints
22.3.2.1 If "ENCODER- TRANSFORMB" is not present, then "START- PO NTER' shall be a classin the integer category.

22.3.2.2 If "ENCCDER- TRANSFORMS" is present, then "START- PO NTER' shall be a class with a category that can
encode a value of the result of the final transform in "ENCODER- TRANSFORMS".

22.3.2.3 1t is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not
reversible for the abstract value to which it is applied. The first transform shall have a source which isinteger.

22.3.3 Encoder actions

22.3.3.1 The encoder shall determine the number "n" of "MULTI PLE OF" units from the start of the encoding of the
"START- PO NTER" field (after any pre-alignment of that field) to the start of the encoding of the element with the start-
pointer specification (after any pre-alignment of that element). It isan ECN specification error if "n" isnot integral. If
the element being encoded is optional, and is absent, then "n" shall be set to zero.

22.3.3.2 The value "n" shall be transformed using the "ENCODER- TRANSFORMS" (if present) to produce a conceptual
value "m". If this resulting value "m" is not an abstract value that can be associated with the encoding class of the
"START- PO NTER", then it isan ECN specification error, and encoding shall not proceed. Otherwise the value "m" shall
be the value encoded in the field referenced by "START- PO NTER".

NOTE — The encoding object applied to the field referenced by "START- PO NTER" will determine the encoding of the value
"m",

22.3.4 Decoder actions

22.3.4.1 The decoder shall determine the conceptual value "m" in the field referenced by "START- PO NTER", and shall
use knowledge of the encoder's actions to reverse the transforms (if any) to produce the integer value "n".

22.3.4.2 If "n" is zero, then the decoder shall diagnose an encoder's error if the element being decoded is not an
optional element with an optionality specification determining optionality by the start pointer. If "n" is zero, and the

ITU-T Rec. X.692 (11/2008) 73

| SO/IEC 8825-3:2008 (E)
element being decoded is an optional element with an optionality specification determining optionality by the start
pointer, then the decoder shall determine that the element is absent.

22.3.4.3 Thevalue "n" ismultiplied by "MULTI PLE OF", and the start of the encoding of the "START- PQ NTER' field is
added to produce a position "p". If "p" isaposition in the encoding that is earlier than the current decoding point, then
the decoder shall diagnose an encoding error.

22.3.4.4 If "p" isaposition in the encoding that is equal to or beyond the current decoding point, then the decoder shall
silently ignore all bits up to position "p", and shall continue decoding of this element from position "p".

22.4 Encoding space specification

22.4.1 Encoding properties, syntax and purpose

22.4.1.1 Encoding space specification uses the following encoding properties:

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space-det erm nati on Encodi ngSpaceDet er m nati on
DEFAULT fi el d-t o- be-set,
&encodi ng- space-r ef erence REFERENCE OPTI ONAL,
&Encoder -t ransf orms #TRANSFORM ORDERED OPTI ONAL,
&Decoder - t r ansf or s #TRANSFORM ORDERED OPTI ONAL

22.4.1.2 The syntax to be used for encoding space specification shall be:

ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng- space-unit]]
[DETERM NED BY &encodi ng- space- det er m nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns]]

22.4.1.3 The definition of types used in this specification is:

Encodi ngSpaceSi ze ::= | NTECER
{ encoder-option-wth-determ nant(-3),
vari abl e-w t h-determ nant (-2),
sel f-delimting-val ues(-1),
fixed-to-max(0)} (-3..MAX) -- (see 21.2)

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Encodi ngSpaceDet erm nation ::= ENUVERATED
{field-to-be-set, field-to-be-used, container} -- (see 21.3)

22.4.1.4 The purpose of this specification is to determine encoder and decoder actions to ensure that a decoder can
correctly determine the end of an encoding space.
NOTE — An actual value encoding does not necessarily fill the entire encoding space, and recovery of the value encoding by a
decoder will in general also reguire actions specified for value padding and justification (see 22.8).

22.415The meaning of the encoding properties of type "Unit", "EncodingSpaceSize", and
"Encodi ngSpaceDet er mi nat i on” were given in 21.1, 21.2, and 21.3. Together these specify the way in which the
end of the encoding space for this element is determined.

NOTE — "vari abl e-wi t h-det er mi nant " can be specified even if the encoding space is fixed size, if the ECN specifier
requires that alength determinant is to be included, even if not needed.

22.4.1.6 The "UsI NG' specification is a reference which enables a decoder to determine the end of the encoding space.
It is areference to an auxiliary field or to afield carrying abstract values, or to a container, depending on the value of
"DETERM NED BY".

22.4.2 Specification restrictions

22.4.2.1 If "SI ZE" is"vari abl e-wi t h- det er mi nant " and "DETERM NED BY" is not present, then the default value
("fiel d-to-be-set")isassumed.

74 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

22422 "USING' shall be gspecified if and only if "SIZE' is "variable-with-deterninant" or
"encoder - opti on-wi t h- det er m nant ".

22.4.2.3 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set". The "USING' reference in this case shal be an auxiliary field of category bitstring,
characterstring or integer.

22.4.2.4 1t is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not
reversible for the abstract value to which it is applied. The first transform shall have a source which is integer and the
last transform shall have aresult which can be encoded by the class of the field referenced by "USI NG'.

22.4.2.5 "DECODER- TRANSFORMS" shall be present only if "DETERM NED BY" isset to "fi el d- t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be
an auxiliary field. Thelast transform shall have aresult which isinteger.

22.4.2.6 The"UsSI NG' encoding property, if present, shall be areference to afield that is present in the encoding earlier
than the field being encoded. It is an application or an ECN specification error if, in an instance of encoding, the field
being encoded is present but the field referenced by the "USI NG' encoding property is absent (through the exercise of
optionality).

22.4.2.7 If "DETERM NED BY" is"container", the "USI NG' reference shall be to a concatenation or to a repetition (or to
a bitstring or octetstring with a contained type) in which the element being encoded is a component (or a component of
a component, to any depth). It is an application or an ECN specification error if, in an instance of encoding, later
elements within the same concatenation or repetition are to be encoded.

22.4.2.8 This specification is considered set if the "ENCODI NG- SPACE" keyword is used, and it is mandatory for it to be
set in al places in the defined syntax where it is allowed. Defaulting all encoding properties of this group (e.g., use of
"ENCODI NG SPACE" alone) would not satisfy the above constraints.

2243 Encoder actions
22.4.3.1 Encoders shall not generate encodings if the conditions of 22.4.2 are not satisfied.

22.4.3.2 If "SI ZE" is a positive value, then the encoding space is that multiple of "MULTI PLE OF" units and there is no
further encoder action.

22.4.3.3If "SI ZE" is not set to a positive value, then the encoder shall determine the size ("s', say) of the encoding
space in "MULTI PLE OF" units from the value encoding specification. This determination is specified in the clauses on
value encoding specification.

22.4.3.4 If "SI ZE" is"encoder - opt i on-wi t h- det er m nant " then the encoder (as an encoder's option) may increase
the size "s' (as determined in 22.4.3.3) in "MULTI PLE OF" units from that determined from the value encoding
specification to any value which can be encoded in the associated determinant.

22435 1f "SI ZE" is"fi xed-t o- max" or to "sel f - del i mi ti ng- val ues", then there is no further encoder action.

22.4.3.6 If "SI ZE" is "vari abl e-wi t h-determi nant" and "DETERM NED BY" is "cont ai ner", then there is no
further encoder action.

22.4.3.7 If "DETERM NED BY" is "fi el d-t o- be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMB" (if any) to the value "'s" to produce a value that shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference (bit-field "A", say) in this case appears earlier in the encoding than the
encoding of this field (bit-field "B", say), and an encoder will need to defer the encoding of bit-field "A" until the value to be
encoded has been determined by the encoding of bit-field "B".

22.4.3.8 If "DETERM NED BY" is "fi el d-t o- be- used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMB" (if any) is equal to "s'. It is an application error if this
condition is not met, and encoding shall not proceed.

2244 Decoder actions

22.4.4.1 If "SI ZE" is a positive value, then the decoder determines the encoding space as that multiple of "MULTI PLE
OF" units.

22442 1f "SI ZE" is"fi xed-t o- max" or to "sel f - del i nmi ti ng- val ues", then the decoder shall determine the end
of the encoding space in accordance with the specification of the value encoding. This determination is specified in the
clauses on value encoding specification.

ITU-T Rec. X.692 (11/2008) 75

| SO/IEC 8825-3:2008 (E)

22443 |f "SI ZE" is "vari abl e-wi t h-det erm nant" and "DETERM NED BY" is set to "cont ai ner", then the
decoder shall use the end of the container specified by "USI NG' as the end of the encoding space.

22444 1f "SIZE" is "variable-with-deternminant” and "DETERM NED BY" is set to (or defaults to)
"field-to-be-set", then the decoder shall recover the value "s' by applying the reversal of the "ENCODER-
TRANSFORME" (if any) to the value of the "USI NG' reference.

22.4.45 If "DETERM NED BY" is "fi el d-t o- be- used" then the decoder shall recover the value "s' by applying the
"DECODER- TRANSFORMB' (if any) to the value of that field.

22.5 Optionality determination

225.1 Encoding properties, syntax and purpose
22.5.1.1 Optionality determination uses the following encoding properties:

&optionality-determ nation OptionalityDeternination
DEFAULT fi el d-t o- be-set,

&optionality-reference REFERENCE OPTI ONAL,

&Encoder - t r ansf or s #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&handl e-id PrintableString

DEFAULT "def aul t - handl e"
22.5.1.2 The syntax to be used for optionality determination shall be:

PRESENCE
[DETERM NED BY &optionality-determ nation
[HANDLE &handl e-i d]]
[USI NG &optionality-reference
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t r ansf or ms]]

22.5.1.3 The definition of types used in optionality determination is:

OptionalityDeterm nation ::= ENUVERATED
{field-to-be-set, field-to-be-used, container, handle, pointer} -- (see 21.5)

22.5.1.4 The purpose of this specification is to specify rules that ensure that a decoder can correctly determine whether
an encoder has encoded a value of an optional component. Where a pointer is used to determine optionality, pre-
alignment and start pointer specification is also required.

22.5.1.5 An encoder will encode the value of an optional component if required to do so by the application, unless such
an encoding would be in violation of rules governing the presence of optional components.

NOTE — An example of violation of such a rule would be where the presence of an (absent) optional component was to be
determined by the end of a container, and the application requested that later optional components in the same container be
encoded.

22.5.1.6 This specification is considered set if the "PRESENCE" keyword is used, and it is mandatory for it to be set in
al places in the defined syntax where it is alowed. Defaulting al other parts of this defined syntax (e.g., use of
"PRESENCE" alone) would not satisfy the above constraints.

2252 Specification restrictions

22.5.2.1 If "DETERM NED BY" is not present, then the default value ("f i el d- t o- be- set ") is assumed.
22.5.2.2 "HANDLE" shall not be specified unless "DETERM NED BY" is"handl e".

22.5.2.3 "USI NG' shall not be specified if "DETERM NED BY" is"handl e" or "poi nter ".

22.5.2.4 If "DETERM NED BY" is "poi nter", there shall be a "START- PO NTER' specification in the same encoding
object (see 22.3).
NOTE — A start pointer specification normally also needs a pre-alignment specification with "ALI GNED TO ANY" (see 22.2).

22.5.2.5 If "DETERM NED BY" is"handl e", then 21.5.7 applies.

22.5.2.6 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set". The "USI NG' reference in this case shall be an auxiliary field of category bitstring, boolean,
characterstring or integer.

76 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

225271t is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not
reversible for the abstract value to which it is applied. The first transform shall have a source which is boolean and the
last transform shall have aresult which can be encoded by the class of the field referenced by "USI NG'.

22.5.2.8 "DECODER- TRANSFORMS" shall be present only if "DETERM NED BY" isset to "fi el d- t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be
an auxiliary field. The last transform shall have aresult which is boolean.

22.5.2.9 The"USI NG' encoding property, if present, shall be areferenceto afield that is present in the encoding earlier
than the field whose presence is being determined. It is an application or an ECN specification error if, in an instance of
encoding, the field referenced by the "USI NG' encoding property is required by a decoder but is absent (through the
exercise of optionality).

22.5.2.101f "DETERM NED BY" is"cont ai ner ", the "USI NG' reference shall be to a concatenation or to a repetition (or
to a bitstring or octetstring with a contained type) in which the element being encoded is a component (or a component
of a component, to any depth). It is an application or an ECN specification error if, in an instance of encoding, later
elements within the same concatenation or repetition are to be encoded when the component whose optionality is being
determined is absent.

22.5.2.111f "DETERM NED BY" is"cont ai ner ", thenitisan ECN specification error if any of the abstract values of the
optional component have an encoding that is zero bits.

2253 Encoder actions
22.5.3.1 Encoders shall not generate encodings if the conditions of 22.5.2 are not satisfied.

22.5.3.2 An encoder shall determine whether the application wishes the optional component to be encoded, and shall
create a conceptual boolean value "el enent -i s- present " set to "TRUE" if avalue of the component is to be encoded,
and to "FALSE" otherwise.

22533 If "DETERM NED BY" is "fi el d-t o- be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMB" (if any) to the conceptual boolean value "el enent -i s- present” to produce a value that
shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of this field, and
an encoder will need to suspend the encoding of that field until the value to be encoded has been determined by the encoding of
thisfield.
225.3.4 If "DETERM NED BY" is "fi el d-to- be-used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMS' (if any) is a boolean value equal to the conceptual value
"element-is-present”. It is an application error if this condition is not met, and encoding shall not proceed.

22.5.3.5 If "DETERM NED BY" is "cont ai ner" there is no further action needed by the encoder, except to detect an
error and to cease encoding if the application requests the encoding of further components in the "USI NG' container
when the conceptua value "el enent -i s- present " isfalse for this optional component.

22.5.3.6 If "DETERM NED BY" is"handl e" thereis no further action needed by the encoder.

225.3.7 If "DETERM NED BY" is "pointer" then there are no encoder actions needed except those of the
accompanying pre-alignment (if any) and start pointer specifications.

2254 Decoder actions

22.5.4.1 If "DETERM NED BY" is set to (or defaults to) "f i el d- t o- be- set ", then the decoder shall recover the value
"el enent - i s- present " by applying the reversal of the "ENCODER- TRANSFORMS" (if any) to the value of the "USI NG’
reference.

22542 If "DETERM NED BY" is "fi el d-to-be-used" then the decoder shall recover the conceptual value
"el enent -i s- present " by applying the "DECODER- TRANSFORMS" (if any) to the value of that field.

22543 If "DETERM NED BY" is "contai ner" then the decoder shall set the conceptual value "el ement -i s-
present " to TRUEif and only if thereisat least one bit remaining in the "USI NG' container.

22.5.4.4 If "DETERM NED BY" is "handl e", then the decoder shall determine the value of the specified identification
handle. If the value matches the handle value set of the optional component, then the decoder shall set the conceptual
value"el enent - i s- present " to TRUE, otherwise the decoder shall set it to FALSE.

22545 If "DETERM NED BY" is "poi nt er " then the decoder shall proceed as specified in 22.3 in order to determine
the conceptual value of "el enent - i s- present ".

ITU-T Rec. X.692 (11/2008) 77

| SO/IEC 8825-3:2008 (E)

22.5.4.6 If the decoder determines (by any of the above means) that the conceptual value "el enent -i s- present " is
FALSE, then decoding proceeds to the next component, otherwise the decoder expects an encoding of a value of the
optional component and will diagnose an encoding error if one is not present.

22.6 Alternative determination

22.6.1 Encoding properties, syntax and purpose

22.6.1.1 Alternative determination uses the following encoding properties:

&al ternati ve-determ nation Al ternativeDeterm nation
DEFAULT fi el d-to- be-set,
&al t ernati ve-reference REFERENCE OPTI ONAL,
&Encoder -t ransf or ms #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI QNAL,
&handl e-id Printabl eString
DEFAULT "def aul t - handl e",
&al ternative-ordering ENUMERATED {t ext ual , tag}

DEFAULT t ext ual
22.6.1.2 The syntax to be used for alternative determination shall be:

ALTERNATI VE
[DETERM NED BY &al ternati ve-determ nation
[HANDLE &handl e-i d]]
[USI NG &al ternative-reference
[ORDER &al t er nati ve-orderi ng]
[ENCODER- TRANSFORVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns]]

22.6.1.3 The definition of types used for aternative determination is:

AlternativeDeterm nation ::=
ENUVERATED {fi el d-t o-be-set, field-to-be-used, handle} -- (see 21.6)

22.6.1.4 The purpose of this specification is to determine the rules that ensure that a decoder can correctly identify
which component of an encoding class in the alternatives category has been encoded.

22.6.2 Specification restrictions

22.6.2.1 If "DETERM NED BY" is not present, then the default value ("f i el d- t o- be- set ") is assumed.
22.6.2.2 "HANDLE" shall not be specified unless "DETERM NED BY" is"handl e".

22.6.2.3 "USI NG' shall not be specified if "DETERM NED BY" is"handl e".

22.6.2.4 If "DETERM NED BY" is"handl e", then 21.6.6 applies.

22.6.2.5 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set". Thefirst transform shall have a source which isinteger and the last transform shall have a result
which can be encoded by the class of the field referenced by "USI NG'.

22.6.2.6 It is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not
reversible for the abstract value to which it is applied.

22.6.2.7 "DECODER- TRANSFORMS" shall be present only if "DETERM NED BY" isset to "fi el d-t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be
an auxiliary field. The last transform shall have aresult which isinteger.

22.6.2.8 The"UsSI NG' encoding property, if present, shall be areference to afield that is present in the encoding earlier
than the encoding of the aternative. It is an application or an ECN specification error if, in an instance of encoding, the
field referenced by the "USI NG' encoding property is required by a decoder but is absent (through the exercise of
optionality).

22.6.2.9 This specification is considered set if the "ALTERNATI VE" keyword is used, and it is mandatory for it to be set
in all places in the defined syntax where it is allowed. Defaulting all other parts of this defined syntax (e.g., use of
"ALTERNATI VE" aone) would not satisfy the above constraints.

22.6.2.101f "ORDER" is "t ag", then every aternative shall start with an encoding class in the tag category. The tag
number associated with this classis called the component-tag.

78 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

22.6.2.11 The component-tags of each alternative shall be distinct.

22.6.3 Encoder actions
22.6.3.1 Encoders shall not generate encodings if the conditions of 22.6.2 are not satisfied.

22.6.3.2 An encoder shall determine which alternative the application wishes to be encoded, and shall create a
conceptua integer value "al t er nat i ve- i ndex" to identify that alternative.

22.6.3.3 Thevalue "al t er nat i ve-i ndex" shal be zero for the first alternative, one for the next, and so on, where the
order of the aternativesis determined by "ORDER".

22.6.3.4 If "ORDER" is "t ext ual ", the textual order in the ASN.1 type specification or the ECN structure definition
shall be used. If "ORDER" is "t ag", then the order shall be that of the tag humbers in the component-tags (lowest tag
number first).

22.6.35 If "DETERM NED BY" is "fi el d-t o- be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMB" (if any) to the conceptual value "al t er nat i ve-i ndex" to produce a vaue that shall be
encoded in the "USI NG' reference.
NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of the alternative,
and an encoder will need to suspend the encoding of that field until the alternative to be encoded has been determined.
22.6.3.6 If "DETERM NED BY" is "fi el d-t o- be- used" then the encoder shall check that the value in the "USI NG’
reference when transformed by the "DECODER- TRANSFORMS" (if any) is an integer value equal to the conceptua value
"al ternative-index". Itisan application error if this condition is not met, and encoding shall not proceed.

22.6.3.7 If "DETERM NED BY" is"handl e" thereis no further action needed by the encoder.

22.6.4 Decoder actions

22.6.4.1 The decoder shall use "ORDER" as specified for encoder actions to determine the "al t er nat i ve-i ndex" value
that is associated with each alternative, and shall assume the presence of an encoding of the associated alternative once
an"al ternative-index" conceptua value has been determined.

22.6.4.2 If "DETERM NED BY" is set to (or defaults to) "fi el d- t o- be- set ", then the decoder shall recover the value
"al ternative-index" by applying the reversal of the "ENCCDER- TRANSFORME" (if any) to the value of the "USI NG'
reference.

22.6.4.3 If "DETERM NED BY" is "fi el d-to-be-used" then the decoder shall recover the conceptual value
"al ternative-i ndex" by applying the "DECODER- TRANSFORMB" (if any) to the value of that field.

22.6.4.4 If "DETERM NED BY" is "handl e", then the decoder shall determine the value of the identification handle.
This value shall be compared to the handle value set of each of the alternatives. If none match, then the decoder shall
diagnose an encoder's error. Otherwise the conceptual value "al t er nati ve-i ndex" shal be set to the matching
aternative.

22.7 Repetition space specification
22.7.1 Encoding properties, syntax and purpose
22.7.1.1 Repetition space specification uses the following encoding properties:

& epetition-space-size Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
& epetition-space-unit Uni t

DEFAULT bit,

& epetition-space-determn nation Repetiti onSpaceDet ernm nati on
DEFAULT fi el d-t o- be-set,

&mai n-ref erence REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t ransf or s #TRANSFORM ORDERED OPTI ONAL,
&andl e-i d PrintableString

DEFAULT "def aul t - handl e",
& erm nation-pattern Non- Nul | -Pattern (ALL EXCEPT

different:any) DEFAULT bits '0'B

22.7.1.2 The syntax to be used for repetition space specification shall be:

REPETI T1 ON- SPACE
[SI ZE &repetition-space-size

ITU-T Rec. X.692 (11/2008) 79

| SO/IEC 8825-3:2008 (E)

[MULTI PLE OF &repetition-space-unit]]
[DETERM NED BY &repetition-space-determ nation
[HANDLE &handl e-i d]]
[USI NG &mai n-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t r ansf or nms]]
[PATTERN &t erm nati on-pattern]

22.7.1.3 The definition of types used in this specification is:

Encodi ngSpaceSi ze ::= | NTECER
{ encoder-option-wth-determ nant(-3),
vari abl e-w t h-det erm nant (-2),
sel f-delimting-values(-1),
fixed-to-max(0)} (-3..MAX) -- (see 21.2)

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
RepetitionSpaceDet erninati on ::= ENUVERATED
{field-to-be-set, field-to-be-used, flag-to-be-set, flag-to-be-used,
container, pattern, handle, not-needed} -- (see 21.7)
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:"'B | octets:'"H | char8:"" | charl6:"" |

char32:"")) -- (see 21.10.2)

22.7.1.4 The purpose of this specification is to determine encoder and decoder actions to ensure that a decoder can
correctly determine the end of the encoding space occupied by a repetition.

NOTE — An actual repetition encoding does not necessarily fill the entire encoding space, and recovery of the repetition
encoding by adecoder will in general also require actions specified for value padding and justification (see 22.8).

22.7.1.5The meaning of the encoding properties of type "Unit", "EncodingSpaceSize", and
"Repeti ti onSpaceDet er mi nati on" were given in 21.1, 21.2 and 21.7. Together these specify the way in which the
end of the encoding space for repetitions is determined.

NOTE - If the ECN specifier requires that a length determinant is to be included, the value "vari abl e-wi t h-
det erm nant " of "SI ZE" can be specified even if the repetition space isfixed size.

22.7.1.6 The "USI NG' specification is a reference to an auxiliary field or to a field carrying abstract values, or to a
container, depending on the value of "DETERM NED BY".

22.7.2 Specification constraints

22.7.2.1 If "SI ZE" is"vari abl e-wi t h- det er mi nant " and "DETERM NED BY" is not present, then the default value
("fi el d-to- be-set") isassumed.

22.7.2.2 "USI NG' shall be specified if and only if "SI ZE" is"vari abl e- wi t h- det er mi nant " and "DETERM NED BY"
is"field-to-be-set" or"field-to-be-used" or"fl ag-to-be-set" or"fl ag-to-be-used", or "cont ai ner".

22.7.2.3 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set" or "flag-to-be-set". The first transform shall have a source which is integer if the
"DETERM NED BY" is "fi el d-to-be-set" and which is boolean if the "DETERM NED BY" is "f| ag-t o- be-set".
The last transform shall have aresult which can be encoded by the class of the field referenced by "USI NG'.

22.7.2.4 1t is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not
reversible for the abstract value to which it is applied.

22.7.2.5 "DECODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to "fi el d-to-be-used" or
"f1 ag-t o- be- used". The first transform shall have a source which is the same as the category of the field referenced
by "USI NG'. The last transform shall have a result which isinteger if the "DETERM NED BY" is"fi el d-t o- be- used"
and which is boolean if the "DETERM NED BY" is"f | ag-t o- be- used".

22.7.2.6 The "USI NG' encoding property, if present, for a"fi el d-to-be-set" or a"fi el d-t o- be-used" shal be a
reference to afield that is present in the encoding earlier than the field being encoded. It is an application or an ECN
specification error if, in an instance of encoding, the repetition being encoded is present but the field referenced by the
"USI NG' encoding property is absent (through the exercise of optionality).

22.7.2.7 The "USI NG' encoding property, if present, for a "f| ag-t o- be-set" or a "f| ag- t o- be- used" shall be a
reference to afield that is present in the repeated element of a repetition. It is an application or an ECN specification

80 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

error if, in an instance of encoding, the field referenced by the "USI NG' encoding property is absent (through the
exercise of optionality) from any of the repeated elements.

NOTE — The requirement that the referenced field be present in an element of the repetition is satisfied if it is an identifier that is
visible in accordance with 17.5 (encode structure), 19.3 (mapping by matching fields), 19.6 (mapping by value distribution), or if
it istextualy present in the definition of a replacement structure when "REPLACE COMPONENT" is used by an encoding object
of aclassin the repetition category.

22.7.2.8 If "DETERM NED BY" is"cont ai ner ", the "USI NG' reference shall be to a concatenation or to a repetition (or
to a bitstring or octetstring with a contained type) in which the repetition being encoded is a component (or a
component of a component, to any depth). It is an application or an ECN specification error if, in an instance of
encoding, later elements within the same concatenation or repetition are to be encoded.

22.7.2.9 "HANDLE" shall be specified only if "SI ZE" is "vari abl e-wi t h-det er mi nant" and "DETERM NED BY" is
"handl e".

22.7.2.101f "DETERM NED BY" is"handl e", then 21.7.10 applies.

22.7.2.11"PATTERN' shall be specified only if "SI ZE" is "variable-with-determinant” and "DETERM NED BY" is
"pattern”.

22.7.2.12"PATTERN' shall not betheinitial sub-string of the encoding of any value of the repeated element.

NOTE — There is no prohibition on the occurrence of "PATTERN' within an encoding of the repeated element other than at its
Start.

22.7.2.13 This specification is considered set if the "REPETI TI ON- SPACE" keyword is used, and it is mandatory for it to
be set in al places in the defined syntax where it is allowed. Defaulting all other parts of this defined syntax (e.g., use
of "REPETI TI ON- SPACE" alone) would not satisfy the above constraints.

22.7.3 Encoder actions
22.7.3.1 Encoders shall not generate encodings if the conditions of 22.7.2 are not satisfied.

22.7.3.2 If "SI ZE" is apositive value, then the encoding space is that multiple of "MULTI PLE OF" units. If "MULTI PLE
OF" is repetitions, then the encoder shall cease encoding if the abstract value to be encoded is not "SIZE" repetitions,
diagnosing a specification or application error.

22.7.3.3 If "SI ZE" is not set to a positive value, then the encoder shall determine the size "'s" of the repetition space in
"MULTI PLE OF" units from the value encoding specification. This determination is specified in the subclauses on value
encoding specification.

22.7.3.4 If "SI ZE" is"encoder - opt i on-wi t h- det er m nant " then the encoder (as an encoder's option) may increase
the size "s' (as determined in 22.7.3.3) in "MULTI PLE OF" units from that determined from the value encoding
specification to any value which can be encoded in the associated determinant.

22.7.351f "SI ZE" is"fi xed-t o- max" or to "sel f - del i mi ti ng- val ues", then there is no further encoder action.

22.7.3.6 If "SI ZE" is "vari abl e-wi t h-determ nant" and "DETERM NED BY" is "cont ai ner", then there is no
further encoder action.

22.7.3.7 If "DETERM NED BY" is "fi el d-t o- be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORME" (if any) to the value "'s" to produce a value that shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of the repetition,
and an encoder will need to suspend the encoding of that field until the repetition to be encoded has been determined.

22.7.3.8 If "DETERM NED BY" is "fi el d-to- be- used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMB" (if any) is equal to "s". It is an application error if this
condition is not met, and encoding shall not proceed.

22.7.3.9 If "DETERM NED BY" is "fl ag-t o- be-set ", then the encoder shall apply (for each repeated element) the
transforms specified by "ENCODER- TRANSFORMS" (if any) to a boolean value which is true for all elements except the
last and is false for the last element. The result of the "ENCODER- TRANSFORMS" shall be encoded in the "USI NG'
reference.

22.7.3.101f "DETERM NED BY" is"f| ag-t o- be- used" then the encoder shall check (for each repeated element) that
thevalue in the "USI NG' reference when transformed by the "DECODER- TRANSFORVE" (if any) is a boolean value which
istrue for all elements except the last, and is false for the last element. It is an application error if this condition is not
met, and encoding shall not proceed.

22.7.3.111f "DETERM NED BY" is"handl e" thereis no further action needed by the encoder.

ITU-T Rec. X.692 (11/2008) 81

| SO/IEC 8825-3:2008 (E)

22.7.3.121f "DETERM NED BY" is "pattern", then the encoder shall check that the specified pattern is not an initial
substring of any of the encodings of the repeated element, and shall cease encoding if this check fails, diagnosing a
specification or application error. The encoder shall add the pattern "PATTERN' to the end of the encoding of the
repetition.

22.7.4 Decoder actions

22.7.4.1 If "SI ZE" is a positive value, then the decoder determines the encoding space as that multiple of "MULTI PLE
OF" units. If "MULTI PLE OF" is repetitions, then the actual end of the repetition space is determined by decoding and
counting repetitions.

22.7.4.2 If "SI ZE" is not set to a positive value, then the encoder shall determine the size "'s" of the repetition space in
"MULTI PLE OF" units from the value encoding specification. This determination is specified in the subclauses on value
encoding specification.

22.7.43 If "SI ZE" is "vari abl e-wi t h-det erm nant" and "DETERM NED BY" is set to "cont ai ner", then the
decoder shall use the end of the container specified by "USI NG' as the end of the encoding space.

22744 1f "SIZE" is "variable-with-deternminant” and "DETERM NED BY" is set to (or defaults to)
"field-to-be-set", then the decoder shall recover the value "s' by applying the reversal of the "ENCODER-
TRANSFORME" (if any) to the value of the "USI NG' reference.

22.7.4.5 If "DETERM NED BY" is "fi el d-t o- be- used" then the decoder shall recover the value "s' by applying the
"DECODER- TRANSFORME" (if any) to the value of the "USI NG' reference.

22.7.4.6 If "DETERM NED BY" is"f| ag-t o- be- set ", then the decoder shall recover a boolean value by applying the
reversal of the "ENCODER- TRANSFORVE" (if any) to the value of the "USI NG' reference. The element is the last of the
repetition if and only if the boolean valueisfalse.

22.7.4.7 If "DETERM NED BY" is"f| ag-t o- be- used" then the decoder shall recover a boolean value by applying the
"DECODER- TRANSFORME" (if any) to the value of the "USI NG' reference. The element is the last of the repetition if and
only if the boolean value is false.

22.7.4.8 If "DETERM NED BY" is"handl e", then the decoder shall determine the value of the identification handle and
attempt to decode the following encoding (in parallel) as either a further occurrence of the repetition or as a following
encoding class, using the value of the identification handle to distinguish these alternatives. |f decoding succeeds for
more than one of these or for none of these, it is an encoding or a specification error.

22.7.4.9 If "DETERM NED BY" is "pattern" then the decoder shall, at the start of decoding each repetition, check
whether "PATTERN' is present. If "PATTERN' is present, the bits of pattern shall be discarded, and the repetition
terminated.

22.8 Valuepadding and justification

22.8.1 Encoding properties, syntax, and purpose
22.8.1.1 Value padding and justification uses the following encoding properties:

&val ue-justification Justification DEFAULT right:O,
&val ue- pre-paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&unused- bi ts-determ nation UnusedBi t sDet er m nati on
DEFAULT fi el d-t o- be-set,
&unused- bi ts-reference REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -tr ansf or s #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -transforns #TRANSFORM ORDERED OPTI ONAL

22.8.1.2 The syntax to be used for value padding and justification shall be:

[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det er m nati on]

82 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

[USI NG &unused- bi ts-reference
[ENCODER- TRANSFORVS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORVS &Unused- bi t s- decoder -transforns]]]]

22.8.1.3 The definition of typesused in justification is:

Justification ::= CHO CE
{ left | NTEGER (0..MAX),
right I NTEGCER (0..NMAX)} -- (see 21.8)
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Pattern ::= CHO CE
{bits BI T STRI NG
octets OCTET STRI NG
char 8 | A5String,
char 16 BWPSt ri ng,
char 32 Uni versal String,
any-of -1 ength | NTEGER (1..MAX),
di fferent ENUVERATED {any} }
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:""H | char8"" | charl6:"" |
char32:"")) -- (see 21.10)
UnusedBi t sDet erm nation ::= ENUVERATED
{field-to-be-set, field-to-be-used, not-needed} -- (see 21.4)

22.8.1.4 The purpose of this specification is to determine the way in which an encoder places a value encoding in an
encoding space, and enables a decoder to determine the position of the value encoding.

22.8.1.5 The precise number of bits to be added by an encoder depends on both the encoding space specification and on
the value encoding specification, and is specified for each instance of value encoding.

22.8.1.6 "USI NG' is a reference that enables a decoder to determine the number of padding bits inserted. It is a
reference to an auxiliary field or to afield carrying abstract values, depending on "DETERM NED BY".

22.8.2 Specification restrictions

22.8.2.1 The number of bits specified in justification shall be less than or equal to the total number of padding bits "b"
(see below).

22.8.2.2 "USI NG' shall be specified if and only if "DETERM NED BY" isnot "not - needed".

22.8.2.3 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set". Thefirst transform shall have a source which isinteger and the last transform shall have a result
which can be encoded by the class of the field referenced by "USI NG'.

22.8.2.4 It is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not
reversible for the abstract value to which it is applied.

22.8.2.5 "DECODER- TRANSFORMS" shall be present only if "DETERM NED BY" isset to "fi el d- t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be
an auxiliary field. Thelast transform shall have aresult which isinteger.

22.8.2.6 The"USI NG' encoding property, if present, shall be areferenceto afield that is present in the encoding earlier
than the field being encoded. It is an application or an ECN specification error if, in an instance of encoding, the field
being encoded is present but the field referenced by the "USI NG' encoding property is absent (through the exercise of
optionality).

22.8.2.7 This specification is considered set if the "VALUE- PADDI NG' keyword is used. Actions if it is not set are
specified in al places where that syntax is permitted.

22.8.3 Encoder actions
22.8.3.1 Encoders shall not generate encodings if the conditions of 22.8.2 are not satisfied.

22.8.3.2 This specification is applied if and only if the encoding space or the repetition space encoding specification,
together with the value encoding specification, determine that there may be added padding bits around the value or
repetition encoding within the encoding or repetition space. Let the determined number of added padding bits in an
instance of encoding be "b" (where"b" is greater than or equal to 0).

ITU-T Rec. X.692 (11/2008) 83

| SO/IEC 8825-3:2008 (E)

22.8.3.3 If "JUSTI FI ED" is "ri ght : n", then "b"-"n" bits shall be added as pre-padding before the value or repetition
encoding, and "n" bits shall be added as post-padding after it.

22.8.3.4 If "JUSTI FI ED" is "l eft: n", then "n" bits shall be added as pre-padding before the value or repetition
encoding, and "b"-"n" bits shall be added as post-padding after it.

22.8.3.5 The padding bits shall be set in accordance with the "PRE- PADDI NG' and "POST- PADDI NG' specifications,
with the leading hit of the pattern as the first inserted bit in each case.

22.8.3.6 If "DETERM NED BY" is"not - needed" then this completes the encoders actions.

22.8.3.7 If "DETERM NED BY" is "fi el d-t o- be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMB" (if any) to the value "b" to produce a value that shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of this field, and
an encoder will need to suspend the encoding of that field until the value to be encoded has been determined by the encoding of
thisfield.

22.8.3.8 If "DETERM NED BY" is "fi el d-t o- be-used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMS' (if any) is equal to "b". It is an application error if this
condition is not met, and encoding shall not proceed.

22.8.4 Decoder actions

22.8.4.1 If "DETERM NED BY" is"not - needed", then the decoder shall determine the value of "b" as determined by the
specification of value encoding and encoding space or repetition determination.

22.8.4.2 If "DETERM NED BY" is set to (or defaults to) "f i el d- t o- be- set ", then the decoder shall recover the value
"b" by applying the reversal of the "ENCCDER- TRANSFORMS" (if any) to the value of the "USI NG' reference.

22.8.4.3 If "DETERM NED BY" is "fi el d-t o- be- used" then the decoder shall recover the value "b" by applying the
"DECODER- TRANSFORMB' (if any) to the value of that field.

22.8.4.4 The decoder shall use the "JUSTI FI ED" and the value of "b" to determine the position of the value encoding
within the encoding space, and shall ignore the value of all padding bits.

22.9 ldentification handle specification

22.9.1 Encoding properties, syntax and purpose

22.9.1.1 Identification handle specification uses the following encoding properties:

&exhi bi t ed- handl e Printabl eStri ng DEFAULT "def aul t - handl e",
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT tag: any

22.9.1.2 The syntax to be used for identification handle specification shall be:

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e- val ue-set]]

22.9.1.3 The definition of the type used in identification handle specification is:

Handl eVal ueSet ::= CHO CE {
bits BIT STR NG
octets OCTET STRI NG
nunmber | NTEGER (0. . MAX),
tag ENUMERATED {any},
range SEQUENCE {

low | NTEGER(O. . MAX),
hi gh | NTEGER(O.. MAX) },

ranges SET (SIZE(1..MAX)) OF SEQUENCE ({
low | NTEGER(O..MAX),
high | NTEGER(O..MAX) }} -- (see 21.16)

22.9.1.4 The purpose of this specification is to declare that an encoding object exhibits an identification handle and to
specify its properties, which are;

a) the name of the handle;
b) the bit positions that form the handle; and

84 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

c) the possible hit patterns (for the bit positions forming the handl€) occurring in the encodings produced
by this encoding object (the handle value set).

22.9.1.5 The list of positions in "AT" shall be the positions of the bits forming the identification handle in the final
encoding, after any pre-alignment has been applied, and after any encoder bit-reversal actions have occurred, except
those bit-reversals that result from the specification of an encoding object in the #0UTER class.

NOTE — This means that a decoder needs to perform any bit-reversals specified in #0UTER for the entire PDU, but otherwise

examines the bit-positions and their values without any consideration of possible bit-reversals that may be specified for particular
encoding objects.

22.9.1.6 The list of positions in "AT" is a set of integer values (not necessarily contiguous, and not necessarily in
ascending order in the ECN specification). These positions shall be ordered by encoders and decoders from the zero
position (the first bit in that part of the encoding that is exhibiting the handle) upwards, and the bits in those positions
form a conceptual handle field.

22.9.1.7 For a"nunber " value of "Handl eVal ueSet " or the encoding of atag number, the bit in the conceptual handle
field nearest to the zero position is the high-order bit, and the "nunber" or tag number that specifies the
"Handl eVal ueSet " is right-justified within this field. If the "nunber " or tag number is too large for the field, thisis
an ECN specification error.

22.9.1.8 If the "bi tstring" or "octetstring" aternatives of "Handl eval ueSet " are used, then their values shall
have the same number of bits as those specified for the identification handle by "AT". The bit in the conceptual handle
field nearest to the zero position is the leading bit of the "bitstring" or "octetstring" that specifies the
"Handl eVal ueSet ".

22.9.1.9 The "Handl eVal ueSet " shall not be specified as"t ag: any" unless the specification is for an encoding object
of the #TAG class. In this case the value of the identification handle is determined by either the tag number in the ECN
specification or by the tag number mapped from an ASN.1 tag (as specified in clause 19), and need not be specified
using "Handl eval ueSet ". If, however, a value is specified by "Handl eVal ueSet " and differs from that assigned in
an ECN specification of atag class or in an ASN.1 tag that maps to an ECN tag, that is an ECN specification error.

22.9.2 Specification constraints

22.9.2.1 In any ECN specification, al identification handles with the same name shall specify the same set of bit
positions.

NOTE — There is no general requirement that the handle value sets of different encoding objects defined in an ECN specification
be all digoint, but disoint handle value sets are required when the identification handle is used to resolve optionality, alternative
selection, repetition termination, or ordering of set (see 21.5.7, 21.6.6, 21.7.10, and 22.10.2.1).

22.9.2.2 For an encoding object that exhibits an identification handle (with a given handle value set), the value of the
identification handle occurring in each of the possible encodings produced by that encoding object (for all possible
abstract values) shall be a member of the specified handle value set.

22.9.2.3 All encoding objects that exhibit the same identification handle shall either have no pre-alignment
specification, or shall align to the same pre-alignment unit.

NOTE — This restriction is imposed so that decoders can move to the alignment position before looking for the handle when the
decoding depends on a handle value.

22.9.2.4 This specification is considered set if the "EXH Bl TS- HANDLE" keyword is used. If it is not set then there is
no identification handle exhibited.

22.9.3 Encodersactions

22.9.3.1 If an encoding object exhibits an identification handle, the encoder shall check that the value of the
identification handle occurring in the encoding produced is a member of the specified handle value set, and shall
diagnose a specification or application error otherwise.

22.9.4 Decodersactions

22.9.4.1 There are no decoders actions directly resulting from the exhibition of an identification handle. Decoder
actions only result from use of the identification handle to determine optionality, end of repetitions, or choice of
aternatives.

22.10 Concatenation specification

22.10.1 Encoding properties, syntax and purpose

22.10.1.1 Concatenation specification uses the following encoding properties:

ITU-T Rec. X.692 (11/2008) 85

| SO/IEC 8825-3:2008 (E)

&concat enat i on- or der ENUVERATED {textual, tag, randomn}
DEFAULT textual,

&concat enat i on- al i gnment ENUVERATED { none, al i gned}
DEFAULT al i gned,

&concat enat i on- handl e PrintableString

DEFAULT "def aul t - handl e"
22.10.1.2 The syntax to be used for concatenation specification shall be:

[CONCATENATI ON
[ORDER &concat enati on-order]
[ALI GNVENT &concat enat i on-al i gnrent]
[HANDLE &concat enati on- handl e]]

22.10.1.3 This specification determines the order in which the components of an encoding class in the concatenation
category are encoded, the means an encoder uses to identify each component, and any pre-alignment padding that is to
be provided between components.

22.10.2 Specification constraints

22.10.2.11f "ORDER" is "r andont, then "HANDLE" assumes the default value of "def aul t - handl e" if not set, and the
encoding objects applied to all components shall exhibit that identification handle. The handle value sets of those
encoding objects shall al be digoint.

22.10.2.21f "ALI GNVENT" is"al i gned", then the pre-alignment specification assumes the default value unless set.

22.10.2.31f a component has its own explicit pre-alignment, this is applied after any pre-alignment of the component
resulting from the setting of "ALI GNVENT" in the encoding class of the concatenation category.
NOTE — The equivalent function is not provided for repetitions, asit can be achieved more ssimply by pre-alignment of the single
Component.

22.10.2.41f "ORDER' is "t ag", then every component shall start with an encoding class in the tag category. The tag
number associated with this classis called the component-tag.

22.10.2.5 The component-tags of each alternative shall be distinct.

22.10.2.6 This specification is considered set if the "CONCATENATI ON" keyword is used. If it is not set then encoders
and decoders act asif it was set with each encoding property taking its default value.

22.10.2.7 I (through the exercise of optionality) thereis at least one abstract value of a concatenation that has no bitsin
its encoding, then the concatenation shall have no pre-alignment.

NOTE — This subclause will apply if a concatenation has no mandatory components, or if all its mandatory components can have
(through the exercise of optionality) no bitsin their encodings.

22.10.3 Encoder actions

22.10.3.11f "ORDER" is "t ext ual ", the textual order in the ASN.1 type specification or the ECN structure definition
shall be used.

22.10.3.21f "ORDER" is"t ag", then the order shall be that of the tag numbers in the component-tags (lowest tag number
first).

22.10.3.31f "ORDER'is "r andont', then the encoder shall determine the order of concatenation without constraint.
22.10.3.41f "ALI GNVENT" is"none", the encoder shall juxtapose the encodings of components with no inserted bits.

22.10.3.51f "ALI GNVENT" is"al i gned", then the encoder shall apply the pre-alignment specification of the classin the
concatenation category before encoding each component, except that a pre-alignment specification of "ALI GNED TO
ANY" shall be interpreted as a specification of "ALI GNED TO NEXT" (see 22.2).

NOTE 1 - Thisis because there can only be asingle start pointer for "ALI GNED TO ANY".
NOTE 2 — Any pre-alignment specified for acomponent (including "ALI GNED TO ANY") is applied after the above actions.

22.10.4 Decoder actions

22.10.4.1When decoding a component, a decoder shall first perform the decoder actions associated with the pre-
alignment specification for "ALI GNMENT" if it is set to "al i gned”, treating "ALI GNED TO ANY" as "ALI GNED TO
NEXT" (see 22.2). If "ALI GNMVENT" is set to "none", then the decoder shall proceed directly to decoding the component.

22.10.4.2 The decoder shall determine the order of the components from the defined order for the encoder if "ORDER" is
"textual " or"tag".

86 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

22.10.4.31f "ORDER' is "r andon', the decoder shall determine the order of the components by examining the value of
the identification handle.

22.10.4.4 Decoding shall proceed until an abstract value for every component has been obtained, and a decoder shall
diagnose an encoder's error if more than one encoding is identified for a component, or if unexpected values appear for
identification handles during the decoding.

NOTE — Unexpected values can occur as part of extensibility provision, but this is not supported in this version of this
Recommendation | International Standard, and such occurrences shall be treated as encoder errors.

22.11 Contained type encoding specification

22.11.1 Encoding properties, syntax and purpose

22.11.1.1 The contained type encoding specification uses the following encoding properties:

&Pri mar y- encodi ng- obj ect - set #ENCCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over - ri de- encoded- by BOOLEAN DEFAULT FALSE

22.11.1.2 The syntax to be used for contained type encoding specification shall be:

[CONTENTS- ENCODI NG &Pri mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondar y- encodi ng- obj ect - set]
[OVERRI DE &over-ri de- encoded- by]]

22.11.1.3 The purpose of this specification is to determine the encoding of a contained type, and whether an ASN.1
"ENCODED BY" contents constraint associated with that contained type shall be overridden.

22.11.1.4 This specification provides either one or two encoding object sets. If two are provided, they are combined
according to clause 13.2 to produce a combined encoding object set.

22.11.1.5 This specification is considered set if the "CONTENTS- ENCCDI NG' keyword is used.

22.11.2 Encoder actions

22.11.2.1If "CONTENTS- ENCODI NG' is not set, then a contained type shall be encoded using the combined encoding
object set applied to the container if "ENCODED BY" is not present in the ASN.1 contents constraint, otherwise with the
encoding rules specified by the "ENCCDED BY" statement.

22.11.2.21f "CONTENTS- ENCODI NG' is set, the combined encoding object set formed from "COVPLETED BY" shall be
applied to the contained type if "ENCODED BY" is not present in the ASN.1 contents constraint, or if "ENCODED BY" is
present and "OVERRI DE" is TRUE. Otherwise the combined encoding set applied to the containing type shall be applied
to the contained type.

22.11.3 Decoder actions

22.11.3.1A decoder shall decode the contained type in accordance with the encoding applied by the encoder, as
specified above.

22.12 Bit reversal specification

22.12.1 Encoding properties, syntax, and purpose
22.12.1.1Bit reversal specification uses the following encoding property:

&bit-reversal Rever sal Speci fication
DEFAULT no-rever sal

22.12.1.2 The syntax to be used for bit reversal specification shall be:

[Bl T- REVERSAL &bit-reversal]

22.12.1.3 The definition of typesused in thisgroup is:

Rever sal Speci fication ::= ENUVERATED
{no-reversal,
reverse-bits-in-units,
reverse-half-units,
reverse-bits-in-half-units} -- (see 21.14)

ITU-T Rec. X.692 (11/2008) 87

| SO/IEC 8825-3:2008 (E)

22.12.1.4 The purpose of this specification is to enable the order of bits in the final encoding to be different from those
bits generated as part of an encoding-space or repetition-space, or in the complete encoding of a PDU (see clause 25).

NOTE 1 - Bit reversal can be specified for individua bit-field encodings and also for the results of concatenation or repetition.
Care should be taken to ensure that one reversal does not negate the other.

NOTE 2 — Bit reversal applies to the contents of an encoding space or repetition space (including any value pre-padding or
post-padding), but does not apply to any pre-alignment padding.

22.12.2 Specification constraints

22.12.2.1 This specification is only available when an encoding space or repetition space encoding is required, and
within #0UTER.

22.12.2.2"BI T- REVERSAL" shall not be "reverse-hal f-units" or "reverse-bits-in-half-units" unless
"MULTI PLE OF" is set to an even number of bits for the encoding space or repetition space or #QUTER reversal. (This
requirement means that avalue of "repeti ti ons" for "MULTI PLE OF" isnot allowed in this case.)

22.12.2.3"BI T- REVERSAL" shall not be set unless "MULTI PLE- OF" is"r epet i ti ons" or is greater than one bit.

22.12.2.4 This specification is considered set if the "Bl T- REVERSAL" keyword is used. If it is not set then encoders and
decoders act asif it was set with the encoding property taking its default value.

22.12.3 Encoder actions

22.12.3.1 Except when performing #OUTER actions, an encoder shall divide the contents of the encoding space or
repetitions space into "MULTI PLE OF" units unless "MULTI PLE OF" is "repetitions"”. If "MULTIPLE OF" is
"repetitions", then the entire encoding space shall be treated as a single unit. When performing bit-reversal for
#QOUTER, the entire encoding (after any "PADDI NG' has been applied) shall be divided into "MULTI PLE OF" units. It is
an ECN specification error if the entire encoding is not an integral multiple of "MULTI PLE OF" units.

22.12.3.2 The encoder shall do no reversal (the default value), or shall reverse the bits in each unit, or shall reverse the
half-units (without changing the order of bits in each half-unit) or shal reverse the bits within each half-unit, as
specified by the value of "Bl T- REVERSAL".

22.12.4 Decoder actions

22.12.4.1 The decoder shall first determine (see encoding space and repetition space specification) the end of the
encoding space or repetition space or (for bit-reversal specification within #0UTER) the end of the entire encoding, and
shall then perform the reversal actions specified for the encoder before continuing with decoding.

NOTE — Performing the same reversals will recover the original bit-order.

23 Defined syntax specification for bit-field and constructor classes

This clause provides the full syntax for defining encoding objects of each encoding classin the different categories.

NOTE — Encoder and decoder actions are specified in the following clauses as conditional on an encoding property group being
set. A group is set if and only if theinitial keyword of the group is present in the specification of the encoding object.

23.1 Defining encoding objectsfor classesin the alter natives category

23.1.1 Thedefined syntax

The syntax for defining encoding objects for classes in the aternatives category is defined as:

#ALTERNATI VES :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent -structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

88 ITU-T Rec. X.692 (11/2008)

| SO/ EC 8825-3:2008 (E)

&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Alternative determ nation (see 22.6)

&al ternati ve-determ nation Al ternativeDeterm nation
DEFAULT fi el d-to-be-set,
&al ternati ve-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
&handl e-id Printabl eString
DEFAULT "def aul t - handl e",
&l ternative-ordering ENUMERATED {textual, tag}

DEFAULT t extual ,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "def aul t - handl e",
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT t ag: any
} WTH SYNTAX {
[REPLACE
[STRUCTURE]

W TH &#Repl acenent - structure
[ENCCDED BY &repl acenent - struct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns] |
ALTERNATI VE

[DETERM NED BY &al ternati ve-determ nation
[HANDLE é&handl e-i d]]
[USI NG &al ternative-reference
[ORDER &al t ernati ve-ordering]
[ENCODER- TRANSFORVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns] |
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]

}

2312 Purposeand restrictions

23.1.2.1 This syntax is used to define the start of the encoding space for an encoding class in the alternatives category,
the determination of the alternative that has been encoded, and an optional declaration that the encoding object exhibits
a specified identification handle (with a given handle value set).

23.1.2.2 If "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set. If the encoding object
of the replacement structure exhibits a handle (with a given handle value set), the encoding object being defined
exhibits the same identification handle (with the same handle value set — see 22.1.1.11).

23.1.2.3 An encoding object of this class does not exhibit an identification handle unless "EXH Bl TS HANDLE" is set
(even if the components of the defined construction exhibit an identification handle) or unless "REPLACE STRUCTURE"
is set and the encoding object of the replacement structure exhibits an identification handle (see 22.1.1.11).

23.1.2.4 If "BEXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.

23.1.3 Encoder actions

23.1.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.
c) Start pointer.

d) Alternative determination.
e) ldentification handle.

ITU-T Rec. X.692 (11/2008) 89

| SO/I EC 8825-3:2008 (E)

23.1.4 Decoder actions

23.1.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-aignment and padding.
b) Start pointer.
c) Alternative determination.

23.2 Defining encoding objectsfor classesin the bitstring category

2321 Thedefined syntax

The syntax for defining encoding objects for classes in the bitstring category is defined as:
#BI TS :: = ENCODI NG CLASS {

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Bits val ue encoding

&val ue-reversal BOOLEAN DEFAULT FALSE,

&Tr ansf or s #TRANSFORM ORDERED OPTI ONAL,

&Bi ts-repetition-encodings #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&bits-repetition-encoding #CONDI TI ONAL- REPETI TI ON OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eStri ng DEFAULT "def aul t - handl e,
&Handl e- posi tions | NTEGER (0..MAX) OPTI ONAL,

&handl| e- val ue- set Handl eVal ueSet DEFAULT tag: any,

-- Contained type encodi ng specification (see 22.11)

&Pr i mar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,

&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,

&over -ri de- encoded- by BOOLEAN DEFAULT FALSE

} WTH SYNTAX {

[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-al i gnnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start - pointer

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns] |
[VALUE- REVERSAL &val ue-reversal]
[TRANSFORVS &Tr ansf or ns]
[REPETI TI ON- ENCODI NGS &Bits-repetition-encodi ngs]
[REPETI TI ON- ENCODI NG &bi ts-repetition-encodi ng]

[EXHI BI TS HANDLE &exhi bit ed- handl e AT &Handl e-positions
[AS &handl e-val ue-set]]
[CONTENTS- ENCODI NG &Pri mar y- encodi ng- obj ect - set
[COWLETED BY &Secondary- encodi ng- obj ect - set]
[OVERRI DE &over -ri de-encoded- by]]

}

2322 Mode for the encoding of classesin the bitstring category
23.2.2.1 The model of bits encodingsis:

% ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

a) Theorder of bitsin the hitstring can be reversed.
b) The bits are then considered as a repetition of bit.

c) Thereis an optional transform (specified by "TRANSFORMS") in which each bit is transformed into a
(self-delimiting) bitstring.

d) Either "REPETI TI ON- ENCODI NG' or "REPETI TI ON ENCODI NGS" specify how the repetition of the
sequences of bits (or of the original bits, if "TRANSFORVB" is not set) are to be encoded.

NOTE — The sole purpose of alowing "REPETI TI ON- ENCODI NG' as well as "REPETI TI ON- ENCCODI NGS' is to
provide a syntax that does not contain a double curly-bracket ("{{") in the common case of a single conditional
encoding. Use of "REPETI TI ON- ENCODI NGS" when there is a single conditional encoding is deprecated but is
allowed.

23.2.2.2 Bounds (if present) on the class being encoded (a class in the bitstring category) are bounds on the number of
bitsin the bitstring forming each abstract value.

23.2.2.3 When considered as a repetition of a bit, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDI TI ONAL- REPETI Tl ON that are
used in the specification of this encoding object.

23.23 Purposeand restrictions

23.2.3.1 This syntax is used to define the start of the encoding space for a class in the bitstring category, the encoding
of the abstract values of that class, an optional declaration that the encoding object exhibits a specified identification
handle (with a given handle value set), and a specification of how to encode a contained type.

23.2.3.2 The #CONDI Tl ONAL- REPETI TI ONthat is applied by this encoding object shall not specify "REPLACE" unless it
iS"REPLACE STRUCTURE".

23.2.3.3 If any of the #CONDI TI ONAL- REPETI Tl ON encoding objects contain a"REPLACE STRUCTURE" clause, then all
of the #CONDI TI ONAL- REPETI TI ON encoding objects shall contain a"REPLACE STRUCTURE" clause.

23.2.3.4 If there is a "REPLACE STRUCTURE" clause in the #CONDI Tl ONAL- REPETI Tl ON encoding objects, then no
other parameters shall be set. If the encoding object of the replacement structure exhibits a handle (with a given handle
value set), the encoding object being defined exhibits the same identification handle (with the same handle value set —
see 22.1.1.11).

23.2.3.5 The first transform in "TRANSFORMB" (if any) shall have a source that is a single bit and the last transform
shall have aresult that is bitstring. The bitstrings produced for a one-bit and for a zero-bit shall form a self-delimiting
set (see 3.2.42).

NOTE — This means that the final transform is required to be self-delimiting.

23.2.3.6 It is an ECN specification or application error if any transform in the "TRANSFORMVB" is not reversible for the
abstract value to which it is applied.

23.2.3.7 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

23.2.3.8 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F* or "I F- ALL", then
all preceding encoding objectsin that list shall be defined using "I F* or "I F- ALL".

23.2.3.9 If "DETERM NED BY" is "not-needed" in one or more of the "REPETI TI ON- ENCCDI NG(S)" specifications, then
the abstract values of the original bitstring to which that encoding object is applied shall be constrained to a finite self-
delimiting set that can be identified from the ECN specification.

NOTE — This would be the case if the bitstring values resulted from a Huffman-style encoding (see Annex E) specified by
mapping integer values to bits (see 19.7), or if the bitstring values had an ECN-visible bound restricting them to a fixed number
of bits.

23.2.3.101f "EXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.

NOTE — This will in general require restrictions on the abstract values of the associated type or the addition of redundant bits in
the transform into bits, or both.

2323.111f "EXHBITS HANDLE' is set, then "ALIGNED TO' shall not be set in any of the
"REPETI TI ON- ENCODI NG(S)" specifications.

23.2.4 Encoder actions

23.2.4.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

ITU-T Rec. X.692 (11/2008) 91

| SO/IEC 8825-3:2008 (E)

a) Pre-aignment and padding.

b) Start pointer.

c) Bitsvaueencoding (see 23.2.4.2).

d) Identification handle.

€) Contained type encoding.
23.2.4.2 For bits value encoding, the encoder shall:

a) Reversetheorder of bitsin the entire bitstring abstract value if "VALUE- REVERSAL" is set to TRUE;

b) Treat the bitstring value as arepetition of abit;

c) Apply the specified "TRANSFORMS" (if any) to each bit to produce a repetition of bits;

d) Encode the repetition by applying the first "REPETI TI ON- ENCODI NAS)" whose condition is satisfied.
23.2.4.3 Itisan ECN specification error if thereisno "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.

23.25 Decoder actions

23.2.5.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

c) Bitsvaluedecoding (see 23.2.5.2).
d) Contained type decoding.

23.2.5.2 For bits value decoding, the decoder shall use the "REPETI TI ON- ENCODI NE(S) " to determine the repetition
space and to recover the original bit order using the "Bl T- REVERSAL" specification.

23.2.5.3 If "TRANSFORME" is set, then the decoder shall use the self-delimiting property of the encoding of each bit to
determine the end of each repetition, and shall reverse the transforms to recover the original bitstring value.

23.2.5.4 If "VALUE- REVERSAL" is set to TRUE, then the final order of the bits in the bitstring abstract value shall be
reversed.
23.3 Defining encoding objectsfor classesin the boolean category

23.3.1 Thedefined syntax

The syntax for defining encoding objects for classes in the boolean category is defined as:

#BOOL :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent -structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent -structure OPTI ONAL,

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng-space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:' 0" B,

-- Start pointer specification (see 22.3)

&start - pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delim ting-val ues,

&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,

&encodi ng- space- det er mi nati on Encodi ngSpaceDet er mi nati on
DEFAULT fi el d-to-be-set,

&encodi ng- space-ref erence REFERENCE OPTI ONAL,

&Encoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,

92 ITU-T Rec. X.692 (11/2008)

233.2

| SO/ EC 8825-3:2008 (E)

&Decoder -t ransf or s #TRANSFORM ORDERED OPTI ONAL,
-- Bool ean val ue encodi ng
&val ue-true-pattern Pattern DEFAULT bits:'1'B,
&val ue-fal se-pattern Pattern DEFAULT bits:'0'B,
-- Val ue padding and justification (see 22.8)
&val ue-justification Justification DEFAULT right:O,
&val ue- pre- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0' B,
&unused- bi ts-determ nation UnusedBi t sDet er m nati on
DEFAULT fi el d-to-be-set,
&unused- bi ts-reference REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -tr ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t ransforns #TRANSFORM ORDERED COPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "defaul t - handl e",
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT tag: any,

-- Bit reversal specification (see 22.12)
&bit-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {

[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCCDED BY &r epl acenent - struct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVE &St art - poi nt er - encoder - t r ansf or ns] |
ENCODI NG- SPACE
[SI ZE &encodi ng- space- si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-ref erence
[ENCODER- TRANSFORMS &Encoder - t r ansf or ns]
[DECODER- TRANSFORMB &Decoder -t r ansf or ns] |
[TRUE- PATTERN &val ue-true-pattern]
[FALSE- PATTERN &val ue-fal se-pattern]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-j ustification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bits-determ nati on]
[USI NG &unused- bi ts-reference
[ENCODER- TRANSFORVS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORVS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bit ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]
[BI T- REVERSAL &bit-reversal]

Purpose and restrictions

23.3.2.1 This syntax is used to define the start of the encoding space for a class in the boolean category, the encoding
of the abstract values of that class, their positioning within the encoding space, an optional declaration that the

ITU-T Rec. X.692 (11/2008)

93

| SO/IEC 8825-3:2008 (E)

encoding object exhibits a specified identification handle (with a given handle value set), and possible bit-reversal of
the encoding space for the boolean.

23.3.2.2 If "REPLACE" is set, then no other encoding property groups shall be set.
23.3.2.3 At most one of "TRUE- PATTERN" and "FALSE- PATTERN' shall be set to "di f f er ent : any".

23.3.2.4 If the dternative "any- of - | engt h" is selected for either pattern (or both), then the length in bits of the two
patterns shall be different.

23.3.2.5 If "ENCODI NG SPACE SI ZE" is "sel f-del i m ti ng", then "TRUE- PATTERN' and "FALSE- PATTERN" shall
form a self-delimiting set (see 3.2.42).

23.3.2.6 "UNUSED BI TS DETERM NED BY" shall not be "not - needed" unless:

a) Both patterns are integral multiples of "ENCODI NG SPACE MULTI PLE OF" units and "ENCODI NG SPACE
Sl ZE" is"vari abl e-wi t h- det er ni nant"; or

b) Both patterns are the same length; or
c) "JUSTIFIED'is"l eft" and the patterns form a self-delimiting set; or
d) "JUSTIFI ED"is"ri ght " and the reverse of the patterns form a self-delimiting set (see 3.2.42).

23.3.2.7 If there are any unused bits in the encoding space, then "VALUE- PADDI NG' shall be set.

23.3.3 Encoder actions

23.3.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space (see 23.3.3.2).
€) Vaueencoding (see 23.3.3.3).
f) Value padding and justification.
g) Identification handle.

h) Bitreversa.

23.3.3.2 If "ENCODI NG SPACE Sl ZE" is not set to a positive value, then the encoding space size s’ is the smallest
number of "MULTI PLE OF" units (subject to 23.3.3.3) that can accommodate the pattern of the value that is to be
encoded.

23.3.3.3 An encoder (as an encoder's option) may increase the encoding space size "'s" (as determined in 23.3.3.2) in
"MULTI PLE OF" units (subject to any restrictions that the range of values of any "field-to-be-set" or
"fiel d-to-be-used" imposes) if the "ENCODI NG SPACE Sl ZE" is set to "encoder - opt i on- wi t h- det er mi nant ".

23.3.3.4 The number of unused bits can be determined from the value "s' and from the pattern of the value to be
encoded.

23.3.3.5 If the number of unused bits is non-zero, then "VALUE- PADDI NG' shall be applied.

23.3.4 Decoder actions

23.3.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
c) Encoding space.
d) Bitreversal.
€) Value padding and justification.
f) Vauedecoding (see 23.3.4.2).
23.3.4.2 Vaue decoding shall be performed by identifying the "TRUE- PATTERN' or the "FALSE- PATTERN' by:
a) Using an"UNUSED BI TS" determination, if any; or

%4 ITU-T Rec. X.692 (11/2008)

b)

| SO/IEC 8825-3:2008 (E)

Using the self-delimiting property of the patterns or their reversals.

23.4 Defining encoding objectsfor classesin the characterstring category

23.4.1 Thedefined syntax

The syntax for defining encoding objects for classes in the characterstring category is defined as:
#CHARS :: = ENCCODI NG CLASS {

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Chars val ue encoding

&val ue-reversal BOOLEAN DEFAULT FALSE,
&Tr ansf or s #TRANSFORM ORDERED OPTI ONAL,
&Char s-repetition-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&chars-repetition-encodi ng #CONDI TI ONAL- REPETI TI ON OPTI ONAL,
-- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eStri ng DEFAULT "def aul t - handl e",
&Handl e- posi tions I NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT tag: any
} WTH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]

}

&encodi ng- space-pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORVE &St art - poi nt er - encoder - t ransf or ns] |
[VALUE- REVERSAL &val ue-reversal]
[TRANSFORVS &Tr ansf or s

[REPETI TI ON- ENCODI NGS ~ &Char s-repetiti on-encodi ngs]

[REPETI TI ON- ENCODI NG &char s-repetition-encodi ng]

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]

2342 Mode for the encoding of classesin the characterstring category

23.4.2.1 The model of characterstring encodingsis:

a)
b)
0)

d)

The order of charactersin the character string can be reversed.
The chars are considered as a repetition of achar.

There is a transform (specified by "TRANSFCRMS') in which each character is transformed into a self-
delimiting bitstring.

Either "REPETI TI ON- ENCODI NG' or "REPETI TI ON- ENCODI NGS" specify how the repetition of bitstring
isto be encoded.

NOTE — The sole purpose of alowing "REPETI TI ON- ENCODI NG' as well as "REPETI TI ON- ENCODI NGS" is to provide a
syntax that does not contain a double curly-bracket ("{{") in the common case of a single conditional encoding. Use of
"REPETI TI ON- ENCODI NGS" when there isa single conditional encoding is deprecated but is allowed.

23.4.2.2 Bounds (if present) on the class being encoded (a class in the characterstring category) are bounds on the
number of charsin the character string forming each abstract value.

ITU-T Rec. X.692 (11/2008) 95

| SO/IEC 8825-3:2008 (E)

23.4.2.3 When considered as a repetition of chars, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDI TI ONAL- REPETI Tl ON that are
used in the specification of this encoding object.

23.4.3 Purposeand restrictions

23.4.3.1 This syntax is used to define the start of the encoding space for a class in the characterstring category, the
encoding of the abstract values associated with that class, an optional declaration that the encoding object exhibits a
specified identification handle (with a given handle value set).

23.4.3.2 The #CONDI Tl ONAL- REPETI Tl ONthat is applied by this encoding object shall not specify "REPLACE" unless it
iS"REPLACE STRUCTURE".

23.4.3.3 If any of the #CONDI TI ONAL- REPETI Tl ON encoding objects contain a"REPLACE STRUCTURE" clause, then all
of the #CONDI TI ONAL- REPETI TI ON encoding objects shall contain a"REPLACE STRUCTURE" clause.

23.4.3.4 If there is no "REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI TI ON encoding objects, then
"TRANSFORMVB" shall be set. If thereis a"REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI TI ON encoding
objects, then no other parameters shall be set. If the encoding object of the replacement structure exhibits a handle
(with a given handle value set), the encoding object being defined exhibits the same identification handle (with the
same handle value set —see 22.1.1.11).

23.4.3.5 The first transform of "TRANSFORVE" shall have a source that is a single character and the last transform shall
have a result that is bitstring. The bitstrings produced for the set of all characters to be encoded shall form a self-
delimiting set (see 3.2.42).

NOTE — This means that the final transform is required to be self-delimiting.

23.4.3.6 It is an ECN specification or application error if any transform in the "TRANSFORMVE" is not reversible for the
abstract value to which it is applied.

23.4.3.7 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

23.4.3.8 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F* or "I F- ALL", then
all preceding encoding objectsin that list shall be defined using "I F* or "I F- ALL".

23.4.39 If "BEXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.

NOTE — This will in general require restrictions on the abstract values of the associated type, or the inclusion of redundant bits
in the encoding of each character, or both.

23.43.10l1f "EXH BITS HANDLE' is set, then "ALIGNED TO' shall not be set in any of the
"REPETI TI ON- ENCODI NG(S)" specifications.
23.4.4 Encoder actions

23.4.4.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
¢) Charsvalue encoding (see 23.4.4.3).
d) Repetition encoding as specified by the first "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.
€) ldentification handle specification.
23.4.4.2 Itisan ECN specification error if thereisno "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.

23.4.4.3 For characterstring value encoding, the encoder shall:

a) Reverse the order of characters in the entire character string abstract value if "VALUE- REVERSAL" is set
to TRUE;

b) Treat the characterstring value of chars as arepetition of char;
c¢) Apply the specified "TRANSFORMS" (if any) to each char to produce a repetition of bits;
d) Encode the repetition by applying the "REPETI TI ON- ENCCDI N&X(S)".

23.45 Decoder actions

23.4.5.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

% ITU-T Rec. X.692 (11/2008)

a)
b)
0)
d)

Pre-alignment and padding.
Start pointer.

Repetition decoding as specified by the first "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.

Characterstring value decoding (see 23.4.5.2).

| SO/ EC 8825-3:2008 (E)

23.4.5.2 For characterstring value decoding, the decoder shall use the "REPETI TI ON- ENCODI NG(S)" to determine the
repetition space and to recover the original characters. If "TRANSFORMB" is set, then the decoder shall use the self-
delimiting (which includes a possible fixed length) property of the encoding of each character to determine the end of
each repetition, and shall reverse the transforms to recover a characterstring value.

23.4.5.3 If "VALUE- REVERSAL" is set to TRUE, then the final order of the characters in the characterstring abstract value
shall be reversed.

23.5 Defining encoding objectsfor classesin the concatenation category

2351 Thedefined syntax
The syntax for defining encoding objects for classes in the concatenation category is defined as:
#CONCATENATI ON : : = ENCODI NG CLASS {
-- Full

&#Repl acenment - struct ure
&#Repl acenent - st ruct ur e2

&r epl acemnent - st r uct ur e- encodi ng- obj ect
& epl acenent - st ruct ur e- encodi ng- obj ect 2 &#Repl acenent - struct ure2

&#tHead- end- structure
&#tHead- end- st ruct ure2

repl acenent specification (see 22.1)
OPTI ONAL,
OPTI ONAL,
OPTI ONAL,
OPTI ONAL,
OPTI ONAL,
OPTI ONAL,

&#Repl acenent - structure

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnment - uni t
&encodi ng- space- pr e- paddi ng
&encodi ng- space- pre-pattern

Uni t
Paddi ng DEFAULT zero,

Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer
&start-pointer-unit
&St art - poi nt er - encoder -t r ansf or ns

REFERENCE OPTI ONAL,
Uni t
#TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze

&encodi ng- space- uni t

&encodi ng- space- det er m nati on
&encodi ng- space-r ef erence

&Encoder -t ransf or ns
&Decoder -t r ansf or ns

Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
Unit (ALL EXCEPT repetitions)
DEFAULT bit,

Encodi ngSpaceDet er m nat i on
DEFAULT fi el d-to-be-set,
REFERENCE OPTI ONAL,

#TRANSFORM ORDERED OPTI ONAL,
#TRANSFORM ORDERED OPTI ONAL,

-- Concatenation specification (see 22.10)

&concat enat i on- or der
&concat enati on- al i gnnent

&concat enat i on- handl e

-- Val ue padding and justification
&val ue-justification

&val ue- pr e- paddi ng

&val ue-pre-pattern

&val ue- post - paddi ng

&val ue- post-pattern

&unused- bi t s-det erm nati on

&unused- bi t s-ref erence

ENUMVERATED {textual, tag, randon}
DEFAULT t ext ual ,
ENUMVERATED { none, al i gned}

DEFAULT al i gned,
Printabl eString
DEFAULT "def aul t - handl e",

(see 22.8)

Justification DEFAULT right: O,

Paddi ng DEFAULT zer o,

Non- Nul | - Patt ern DEFAULT bits:'0'B,
Paddi ng DEFAULT zer o,

Non- Nul | - Patt ern DEFAULT bits:'0'B,
UnusedBi t sDet erm nati on

DEFAULT fi el d-t o-be-set,

REFERENCE OPTI ONAL,

ITU-T Rec. X.692 (11/2008)

(ALL EXCEPT repetitions) DEFAULT bit,

(ALL EXCEPT repetitions) DEFAULT bit,

97

| SO/I EC 8825-3:2008 (E)

&Unused- bi t s- encoder-transforns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t r ansf or s #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "defaul t - handl e",
&Handl e- posi ti ons | NTEGER (0..NMAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bit-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acenent - structure
[ENCCDED BY &r epl acenent - struct ur e- encodi ng- obj ect
[NSERT AT HEAD &f#Head- end-structure]]
[AND OPTI ONALS W TH &#Repl acenent - st ruct ur e2
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect 2
[NSERT AT HEAD &#Head- end-structure2]]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns] |
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng- space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ms]
[DECODER- TRANSFORMB &Decoder -t r ansf or ns] |
[CONCATENATI ON
[ORDER &concat enat i on- or der]
[ALI GNVENT &concat enat i on-al i gnnment]
[HANDLE &concat enati on- handl e]]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-determ nati on]
[USI NG &unused- bi ts-ref erence
[ENCODER- TRANSFORMS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORVS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]
[BI T- REVERSAL &bit-reversal]

}

235.2 Purposeand restrictions

23.5.2.1 This syntax is used to define the start of the encoding space for a class in the concatenation category, the way
in which the encodings of the components are to be combined, their positioning within the encoding space, an optional
declaration that the encoding object exhibits a specified identification handle (with a given handle value set), and
possible bit-reversal of the encoding space.

98 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

23.5.2.2 If "REPLACE STRUCTURE" is set, then no other encoding parameter groups shall be set. If the encoding object
of the replacement structure exhibits a handle (with a given handle value set), the encoding object being defined
exhibits the same identification handle (with the same handle value set — see 22.1.1.11).

23.5.2.3 "ENCODI NG SPACE SI ZE" shal be either "variabl e-with-deterninant” or "sel f-delimting-
val ues".

23.5.2.4 If "EXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.

23.5.3 Encoder actions

23.5.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space. (See23.5.3.2.)

€) Concatenation.

f) Vaue padding and justification.

g) Identification handle specification.
h) Bitreversal.

23.5.3.2If "ENCODING SPACE"' is "variable-with-deternminant"”, it shal be the minimum number of
"MULTI PLE OF" units needed to contain the concatenation.

23.5.4 Decoder actions

23.5.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

c) Encoding space.

d) Bitreversal.

e) Value padding and justification.
f) Concatenation.

23.6 Defining encoding objectsfor classesin the integer category

23.6.1 Thedefined syntax

The syntax for defining encoding objects for classes in the integer category is defined as:

#I NT ::= ENCODI NG CLASS {
-- I nteger encoding
&l nt eger - encodi ngs #CONDI TI ONAL- | NT ORDERED OPTI ONAL,
& nt eger - encodi ng #CONDI TI ONAL- | NT OPTI ONAL

} WTH SYNTAX {
[ENCODI NGS &l nt eger - encodi ngs]
[ENCODI NG &i nt eger - encodi ng]

}

23.6.2 Purposeand restrictions

23.6.2.1 This syntax is used to define the encoding of a class in the integer category by specifying one or more
encodings of the #CONDI TI ONAL- | NT class.
23.6.2.2 Exactly one of "ENCODI NG' and "ENCODI NGS" shall be set.

NOTE — The sole purpose of alowing "ENCODI NG' as well as "ENCODI NGS" is to provide a syntax that does not contain a
double curly-bracket ("{{") in the common case of a single encoding object. Use of "ENCCDI NGS" when there is a single
encoding object is deprecated but is allowed.

ITU-T Rec. X.692 (11/2008) 99

| SO/IEC 8825-3:2008 (E)

23.6.2.3 If an encoding object in the "ENCODI NGS" ordered list is defined using "I F* or "I F- ALL", then all preceding
encoding objectsin that list shall be defined using "I F* or "I F- ALL".
23.6.3 Encoder actions

23.6.3.1 The encoder shall select and apply the first #CONDI TI ONAL- | NT encoding object in "ENCODI NES)" whose
conditions are satisfied. It isan ECN specification error if none of the conditional encodings have conditions that are
satisfied.
NOTE — It would be unusual but not illegal if there were #CONDI TI ONAL- | NT encoding objects present that could never be
used because the conditions on use of earlier encoding objects would always be satisfied.

23.6.4 Decoder actions

23.6.4.1 The decoder shall select and use the first #CONDI TI ONAL- | NT encoding object in "ENCODI NG(S)" whose
conditions are satisfied.

23.7 Defining encoding objects for the #CONDI TI ONAL- | NT class

23.7.1 Thedefined syntax
The syntax for defining encoding objects for the #CONDI TI ONAL- | NT classis defined as:
#CONDI TI ONAL- | NT :: = ENCODI NG CLASS {

-- Condition (see 21.11)

& ange-condi tion RangeCondi ti on OPTI ONAL,

&conpari son
&conpar at or
&Range- condi ti ons
&Conpari sons
&Conpar at or s

Conpari son OPTI ONAL,

| NTEGER OPTI ONAL,

RangeCondi ti on ORDERED OPTI ONAL,
Conpar i son ORDERED OPTI ONAL,

| NTEGER ORDERED OPTI ONAL,

-- Structure-only replacenent specification (see 22.1)

&#Repl acenent -structure

& epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent -structure

OPTI ONAL,
OPTI ONAL,

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space- pre-al i gnnent-unit Unit

&encodi ng- space- pr e- paddi ng

(ALL EXCEPT repetitions) DEFAULT bit,
Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)

DEFAULT bits:' 0" B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)
&encodi ng- space- si ze Encodi ngSpaceSi ze

DEFAULT sel f-delim ting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bit,
Encodi ngSpaceDet er m nati on
DEFAULT fi el d-to-be-set,
REFERENCE OPTI ONAL,
#TRANSFORM ORDERED OPTI ONAL,
#TRANSFORM ORDERED OPTI ONAL,

&encodi ng- space- det er mi nati on

&encodi ng- space-ref erence
&Encoder -t ransf orns
&Decoder -t ransf or ns

-- Val ue encodi ng
&Transform
&encodi ng

#TRANSFORM ORDERED CPTI ONAL,

ENUVERATED

{positive-int, twos-conplenent,
reverse-positive-int, reverse-twos-conpl enent}
DEFAULT twos- conpl enent

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right: O,

&val ue- pre- paddi ng Paddi ng DEFAULT zero,

&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zero,

100 ITU-T Rec. X.692 (11/2008)

23.7.2

| SO/ EC 8825-3:2008 (E)

&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:' 0" B,
&unused- bi t s-det erm nati on UnusedBi t sDet erm nati on

DEFAULT fi el d-to-be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf orns #TRANSFORM ORDERED COPTI ONAL,
&Unused- bi t s- decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "defaul t - handl e",
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[IF & ange-condition [&conparison &conparator]]
[F-ALL &Range-conditions [&Conpari sons &Conpar at ors]]
[ELSE]
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - struct ure
[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORNVS &St art - poi nt er - encoder -t ransf or ns] |
ENCODI NG- SPACE
[SI ZE &encodi ng- space- si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECCODER- TRANSFORVS &Decoder -t r ansf or ms] |
[TRANSFORMVSB &Tr ansf or ns]
[ENCCODI NG &encodi ng]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-j ustification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue-post-pattern]]
[UNUSED BI' TS
[DETERM NED BY &unused- bits-determ nati on]
[USI NG &unused- bi t s-reference
[ENCODER- TRANSFORVS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]
[BI T- REVERSAL &bit-reversal]

}

Purpose and restrictions

23.7.2.1 This syntax is used to define a#CONDI TI ONAL- | NT encoding object. The only use of such an encoding object
isin the specification of an encoding object of a classin the integer category.

23.7.2.2 The syntax allows the specification of a single condition on the bounds of the integer for this encoding to be
applied (use of "I F"). It also allows the specification that all of a set of conditions are to be satisfied (use of "I F- ALL").
It also allows the specification that there is no condition. The use of "ELSE", or omission of "I F*, "I F- ALL" and
"ELSE" specifies that there is no condition. "I F-ALL" shall be used with three lists if one or more of the
size-range-conditions require a comparison, and shall be used with one list otherwise. When using three lists,
size-range-conditions that do not require a comparison or comparator (if any) shall follow all those that require a

ITU-T Rec. X.692 (11/2008) 101

| SO/IEC 8825-3:2008 (E)

comparison, and shall have no corresponding entry in the second and third lists. In using "I F- ALL" with three lists, the
lists shall be interpreted as alist of predicates using the values in corresponding positionsin the threelists.

NOTE — It is recommended that the three lists be formatted to provide a condition in each column.

EXAMPLE:

| F- ALL {test-1ower-bound, test-range , bounded-wi t h-negatives }
{greater-than , less-than-or-equal-to }
{-10 , 20 }

23.7.2.3 Using this syntax the ECN specifier can define the start of the encoding space for the encoding of aclassin the
integer category, the encoding of the abstract values associated with that class, their positioning within the encoding
space, and possible bit-reversal of the encoding space.

23.7.2.4 At most one of "I F", "I F- ALL" and "ELSE" shall be present.
23.7.2.5 If "REPLACE" is set, then no other encoding property groups shall be set.

23.7.2.6 It is an ECN specification or application error if any transform in the "TRANSFORMVB" is not reversible for the
abstract value to which it is applied. Thefirst transform of "TRANSFORMS", if present, shall have a source that is integer
and the last transform shall have aresult that isinteger.

NOTE — The test for the "I F* and "I F- ALL" condition takes place on the bounds of the original value, and is not affected by
these transforms.

23.7.2.7 The "I NT- TO- | NT" transform with the value "subt r act : | ower - bound" shall be included only if the "I F* or
"I F- ALL" condition restricts the application of this encoding to classes of the integer category with alower bound, and
(if present) shall be the first transform in the list.

23.7.2.8 The "ENCODI NG SPACE SI ZE" shall not be "f i xed- t o- max" unlessthe "I F* or "I F- ALL" condition restricts
the encoding to a class with both an upper and alower bound.

23.7.2.9 "ENCODI NG SPACE SI ZE" shall not be set to "sel f-del i mi ti ng- val ues".
NOTE — This means that the default value (which is set for consistency with other uses of this type) always has to be overridden.

23.7.2.101f "EXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.

NOTE - Thiswill normally require use of "VALUE- PADDI NG' with justification from the | eft to allow the padding to exhibit the
identification handle.

23.7.3 Encoder actions

23.7.3.1 The encoder shall detect an ECN specification or application error if any of the restrictions in 23.7.2 are
violated.

23.7.3.2 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.
b) Pre-aignment and padding.
c) Start pointer.
d) Encoding space.
e) Value encoding (see below).
f) Value padding and justification.
0) Identification handle.
h) Bitreversa.
23.7.3.3 The encoder shall apply the "TRANSFORVE", if any to the value being encoded.

23.7.3.4 The encoder shall use the following table giving the range of integer values that can be encoded in "n" hits;

"ENCODI NG' Min value Max value
"positive-int" 0 2"-1
"reverse-positive-int" 0 2"-1
"t wos- conpl enent " —2n1 2t
"rever se-t wos- conpl enent " —2n-1 2"l

102 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

23.7.3.5 The "ENCODI NG' parameter selects the encoding as 2's-complement encoding or as a positive integer encoding,
or asthe reversal of one of these. The specification of 2's-complement encoding and positive integer encoding is given
in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3. A reversal of these encodings is an encoding in which,
following production of the "n" bits, the order of the "n" bitsis reversed.

23.7.3.6 An encoder shall detect an ECN specification or an application error if avalue is to be encoded into a number
of bitswhich isinsufficient, as specified in 23.7.3.4.

23.7.3.7 If the "ENCODI NG SPACE SI ZE" is a positive integer, then its size in bitsis calculated as "SI ZE" multiplied by
"MULTI PLE OF" units. If "VALUE- PADDI NG' is not set, then this shall be the number of bits "n" that the integer shall
encode into and there are no unused bits. If "VALUE- PADDI NG' is set, then the number of bits that the integer shall
encode into is reduced by the integer value "m" specified for "JUSTI FI ED", and there will be "m" unused bits.

23.7.3.8 If the "ENCODI NG- SPACE SI ZE" is "f i xed- t o- max", then the encoder shall determine the minimum number
of "MULTI PLE OF" units that has sufficient bits to encode any of the values of the class, and shall proceed (as specified
above) asif "SI ZE" were a positive integer set to that value.

23.7.3.9 If the "ENCODI NG SPACE SI ZE" is "vari abl e-wi t h- det er mi nant ", then the encoder shall determine the
minimum number of "MULTI PLE OF" units ("'s", say) that has sufficient bits to encode the actual abstract value being
encoded, and shall proceed (as specified above) asif "SI ZE" were a positive integer set to that value.

23.7.3.10 The encoder (as an encoder's option) may increase "'s" (as determined in 23.7.3.9) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-to- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE SI ZE" isset to "encoder - opt i on-wi t h- det er mi nant ".

23.7.3.11 The encoder shall then proceed (as specified above) asif "SI ZE" were a positive integer setto "'s".

23.7.4 Decoder actions

23.7.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
c) Encoding space.
d) Bitreversal.
e) Value padding and justification.
f) Vauedecoding (see 23.7.4.2).
23.7.4.2 The decoder shall recover the integer value from the bits used to encode it, decoding according to the specified

encoding, and shall then reverse the "TRANSFORMS" (if specified) to recover the original abstract value.
23.8 Defining encoding objectsfor classesin the null category

2381 Thedefined syntax

The syntax for defining encoding objects for classes in the null category is defined as.

#NUL :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent -structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent-structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:' 0" B,

-- Start pointer specification (see 22.3)

&start - pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nt er - encoder -t ransforns #TRANSFORM ORDERED OPTI ONAL,

ITU-T Rec. X.692 (11/2008) 103

| SO/I EC 8825-3:2008 (E)

104

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-del i mting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT hi t,
&encodi ng- space- det erm nati on Encodi ngSpaceDet er ni nat i on
DEFAULT fi el d-t o- be-set,
&encodi ng- space-ref erence REFERENCE OPTI ONAL,
&Encoder - t r ansf or s #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Value pattern
&val ue-pattern Pattern (ALL EXCEPT different:any)
DEFAULT bits:''B,

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right: O,
&val ue- pre-paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&unused- bi t s-det erm nati on UnusedBi t sDet erm nati on
DEFAULT fi el d-to- be-set,
&unused- bi ts-reference REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "defaul t - handl e",
&Handl e- posi ti ons I NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder - t r ansf or ns] |
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng- space-unit]]
[DETERM NED BY &encodi ng- space- det er m nati on]
[USI NG &encodi ng- space-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or]
[DECODER- TRANSFORMB &Decoder -t r ansf or ns] |
[NULL- PATTERN &val ue-pattern]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det erm nati on]
[USI NG &unused- bi t s-reference
[ENCODER- TRANSFORVS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORVS &Unused- bi t s- decoder -transforns]]]]

ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

[EXHI BI TS HANDLE &exhi bit ed- handl e AT &Handl e-positions
[AS &handl e-val ue-set]]
[BI T- REVERSAL &bit-reversal]

}

23.8.2 Purposeand restrictions
23.8.2.1 Thissyntax is used to define the encoding of a classin the null category.

23.8.2.2 If "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set. If the encoding object
of the replacement structure exhibits a handle (with a given handle value set), the encoding object being defined
exhibits the same identification handle (with the same handle value set — see 22.1.1.11).

23.8.2.3 If the "ENCODI NG SPACE SI ZE" is positive, it shall be sufficient to hold the size of the "NULL- PATTERN'
together with any bits added as a result of a"VALUE- PADDI NG' specification.

23.8.2.4 If there are unused bits in the encoding space, then "VALUE- PADDI NG' shall be set.

23.8.3 Encoder actions

23.8.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.
b) Pre-aignment and padding.
c) Start pointer.
d) Encoding space.
€) Vaueencoding (see 23.8.3.2).
f) Value padding and justification.
0) Identification handle.
h) Bitreversa.
23.8.3.2 The value encoding shall be the bits of the "NULL- PATTERN".

23.8.33If "ENCODING SPACE SIZE' is "variable-with-determinant” or "“encoder-option-with-
det er emi nant ", it shall be the minimum number of "MULTI PLE OF" units needed to contain the pattern ("s’, say),
subject to 23.8.3.4.

23.8.3.4 An encoder (as an encoder's option) may increase s (as determined in 23.8.3.3) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-to- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE Sl ZE" isset to "encoder - opt i on-wi t h- det er mi nant ".

23.8.3.5 If there are unused bits in the encoding space, then "VALUE- PADDI NG' shall be applied.

23.8.4 Decoder actions

23.8.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

c) Encoding space.

d) Bitreversal.

e) Value padding and justification.

23.8.4.2 The decoder shall determine the size of the null pattern, and identify those bits in the encoding, but shall
silently accept any value for those bits.

ITU-T Rec. X.692 (11/2008) 105

| SO/IEC 8825-3:2008 (E)

23.9 Defining encoding objectsfor classesin the octetstring category

239.1 Thedefined syntax

The syntax for defining encoding objects for classes in the octetstring category is defined as:
#OCTETS :: = ENCODI NG CLASS {

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)

DEFAULT bits:'0' B,

-- Start pointer specification (see 22.3)
&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&St art - poi nter-encoder -transforns #TRANSFORM ORDERED OPTI ONAL,

-- Cctets val ue encodi ng

&val ue-reversal BOOLEAN DEFAULT FALSE,
&Tr ansf or s #TRANSFORM ORDERED OPTI ONAL,
& ct et s-repetition-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&oct ets-repetition-encodi ng #CONDI TI ONAL- REPETI TI ON OPTI ONAL,
-- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eStri ng DEFAULT "def aul t - handl e",
&Handl e- posi tions I NTEGER (0..MAX) OPTI ONAL,
&handl| e- val ue- set Handl eVal ueSet DEFAULT tag: any,
-- Contained type encodi ng specification (see 22.11)
&Pri mar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over -ri de- encoded- by BOOLEAN DEFAULT FALSE
} WTH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]

&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORNVS &St art - poi nt er - encoder -t ransf or ns] |
[VALUE- REVERSAL &val ue-reversal]
[TRANSFORVS &Tr ansf or ns]

[REPETI TI ON- ENCODI NGS ~ &Cctets-repetiti on-encodi ngs]
[REPETI TI ON- ENCODI NG &oct et s-repetition-encodi ng]
[EXHI BI TS HANDLE &exhi bit ed- handl e AT &Handl e-positions
[AS &handl e-val ue-set]]
[CONTENTS- ENCODI NG &Pri mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondary-encodi ng- obj ect - set]
[OVERRI DE &over -ri de-encoded- by]]

}

23.9.2 Mode for the encoding of classesin the octetstring category
23.9.2.1 The model of octetstring encoding is:

a) Theorder of octetsin the octetstring can be reversed.

b) The octets are then considered as a repetition of an octet.

¢) Thereisan optiona transform (specified by "TRANSFORMS") in which each octet is transformed into a

self-delimiting bitstring.

d) Either "REPETI TI ON- ENCODI NG' or "REPETI TI ON- ENCODI NGS" specify how the repetition of octet isto

be encoded.

NOTE — The sole purpose of alowing "REPETI TI ON- ENCODI NG' as well as "REPETI TI ON- ENCODI NGS" is to provide a
syntax that does not contain a double curly-bracket ("{{") in the common case of a single conditional encoding. Use of

"REPETI TI ON- ENCODI NGS" when there isa single conditional encoding is deprecated but is allowed.

106 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

23.9.2.2 Bounds (if present) on the class being encoded (a class in the octetstring category) are bounds on the number
of octets in the octetstring forming each abstract value.

23.9.2.3 When considered as a repetition of an octet, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDI TI ONAL- REPETI Tl ON that are
used in the specification of this encoding object.

23.9.3 Purposeand restrictions

23.9.3.1 Thissyntax is used to define the start of the encoding space for a classin the octetstring category, the encoding
of the abstract values associated with that class, an optional declaration that the encoding object exhibits a specified
identification handle (with a given handle value set), a specification of how to encode a contained type.

23.9.3.2 The #CONDI Tl ONAL- REPETI TI ONthat is applied by this encoding object shall not specify "REPLACE" unless it
iS"REPLACE STRUCTURE".

23.9.3.3 If any of the #CONDI TI ONAL- REPETI Tl ON encoding objects contain a"REPLACE STRUCTURE" clause, then all
of the #CONDI TI ONAL- REPETI TI ON encoding objects shall contain a"REPLACE STRUCTURE" clause.

23.9.3.4 If there is a "REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI Tl ON encoding objects, then no
other parameters shall be set. If the encoding object of the replacement structure exhibits a handle (with a given handle
value set), the encoding object being defined exhibits the same identification handle (with the same handle value set —
see 22.1.1.11).

23.9.3.5 The first transform of "TRANSFORVE" (if any) shall have a source that is bitstring and the last transform shall
have aresult that is a self-delimiting bitstring (see 3.2.42).

23.9.3.6 It is an ECN specification or application error if any transform in the "TRANSFORMVB" is not reversible for the
abstract value to which it is applied.

23.9.3.7 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

23.9.3.8 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F* or "I F- ALL", then
all preceding encoding objectsin that list shall be defined using "I F* or "I F- ALL".

23.9.39 If "BEXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.
NOTE — Thiswill in general require restrictions on the abstract values of the associated type.

239.3.10I1f "EXHIBITS HANDLE' is set, then "ALIGNED TO' shall not be set in any of the
"REPETI TI ON- ENCODI NG&(S)" specifications.

23.9.4 Encoder actions

23.9.4.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
c) Vaue encoding as specified below.
d) Repetition encoding as specified by the first "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.
€) ldentification handle.
f) Contained type encoding.
23.9.4.2 For vaue encoding, the encoder shall:
a) Reversetheorder of octetsin the entire octetstring abstract value if "VALUE- REVERSAL" is set to TRUE;
b) Treat the octetstring value as a repetition of octet;

c) Apply the "TRANSFORMS" (if any) to each octet to produce a repetition of bitstring.
NOTE - If there are no transforms, each octet forms a bitstring.

d) Encode the repetition by applying the first "REPETI TI ON- ENCODI NAS)" whose condition is satisfied.
23.9.4.3 Itisan ECN specification error if thereisno "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.

23.9.5 Decoder actions

23.9.5.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

ITU-T Rec. X.692 (11/2008) 107

| SO/I EC 8825-3:2008 (E)

a) Pre-alignment and padding.

b) Start pointer.

¢) Vauedecoding (see 23.9.5.2).
d) Contained type decoding.

23.9.5.2 The decoder shall reverse the "TRANSFORMVB" (if any) to recover the original octets.
23.9.5.3 If "VALUE- REVERSAL" is set to TRUE, then the final order of the octets in the octetstring abstract value shall be

reversed.
23.10 Defining encoding objectsfor classesin the open type category

23.10.1 Thedefined syntax
The syntax for defining encoding objects for classes in the open type category is defined as:

#OPEN- TYPE :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenment - structure OPTI ONAL,
&r epl acemnent - st ruct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng-space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&st art - pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nt er - encoder -transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delim ting-val ues,

&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,

&encodi ng- space- det er mi nati on Encodi ngSpaceDet erm nati on
DEFAULT fi el d-to-be-set,

&encodi ng- space-ref erence REFERENCE OPTI ONAL,

&Encoder - t ransf or ns #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Open-type encodi ng

&Known- st r uct ur e- encodi ngs #ENCCODI NGS OPTI ONAL,

&Unknown- st ruct ure OPTI ONAL,

&Unknown- st r uct ur e- encodi ngs #ENCCODI NGS OPTI ONAL,

-- Value padding and justification (see 22.38)

&val ue-justification Justification DEFAULT right: O,

&val ue- pre- paddi ng Paddi ng DEFAULT zero,

&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,

&val ue- post - paddi ng Paddi ng DEFAULT zero,

&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,

&unused- bi t s-det erm nati on UnusedBi t sDet erm nati on
DEFAULT fi el d-to-be-set,

&unused- bi t s-reference REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

}
W TH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure

108 ITU-T Rec. X.692 (11/2008)

}

| SO/IEC 8825-3:2008 (E)

[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &st art - pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORNVS &St art - poi nt er - encoder -t ransf or ns] |
ENCCDI NG SPACE
[SI ZE &encodi ng- space- si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORVS &Decoder -t r ansf or ms] |
[ENCOCDED W TH &Known- st r uct ur e- encodi ngs]
[UNKNOWN |'S &Unknown- st ruct ure
[ENCODED W TH &Unknown- st ruct ur e- encodi ngs]]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi ts-det erm nati on]
[USI NG &unused-bits-reference
[ENCODER- TRANSFORMS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORVS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]
[BI T-REVERSAL &bit-reversal]

23.10.2 Model for the encoding of classesin the open type category

23.10.2.1 The model of open type encodingsis:

a)

b)

d)

e)

The class in the open type category can be replaced by another structure to provide length delimitation if
required.

The encoding object defined for this category applies the "ENCODED W TH' encoding object set to the
type whose value is to be encoded for the open type. If there is no "ENCCDED W TH', then the current
combined encoding object set is used.

The decoder will request the application for identification of the type encoded into the open type. The
application will either respond with identification of the type, which is then decoded, or will state that
the type encoded in the open type cannot be determined (an "unknown" response).

If the response is "unknown" and the "UNKNOWN | S" is present, then the decoder will use the " UNKNOAN
I S" structure and the "ENCODED W TH" within the "UNKNOWN 1 S" (if present) to determine the end of the
encoding space.

If the response is "unknown" and the "UNKNOM | S" is absent, then the encoding space size can be
determined by the "ENCODI NG SPACE" (see 23.10.3.3), and the decoder will return to the application all
the bits contained in the defined encoding space except for value pre- and post-padding.

23.10.2.21In the case of an unknown decoding, the decoder will pass the hits forming the unknown encoding to the
application as the value of the open type.

23.10.3 Purposeand restrictions

23.10.3.1 This syntax is used to define the way an open type is encoded, and the means that a decoder uses to determine
the end of the encoding of an unknown type in an open type.

23.10.3.2 If "REPLACE STRUCTURE" is set no other parameters shall be set.

23.10.3.3If "ENCCODI NG SPACE SI ZE" is"sel f-del i mi ti ng" then "UNKNOM | S" shall be set.

ITU-T Rec. X.692 (11/2008) 109

| SO/IEC 8825-3:2008 (E)

23.10.4 Encoder actions

23.10.4.1For any encoding property group that is set, the encoder shall perform the encoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) replacement;

b) pre-alignment and padding;

c) dtart pointer;

d) encoding space (see 23.10.4.3);

€) open-type encoding (see 23.10.4.2);

f) value padding and justification (see 23.10.4.5);
g) hitreversal.

23.10.4.2 The encoder shall encode the value of the type supplied by the application using the "ENCCDED W TH'
encoding object set if thisis present, otherwise the current combined encoding object set shall be used.

23.10.4.3If "ENCODI NG SPACE SIZE' is '"variable-with-determnant” or "encoder-option-with-
det ermi nant ", it shall be the minimum number of "MULTI PLE OF" units needed to contain the pattern ("s', say),
subject to 23.10.4.5.

23.10.4.4 An encoder (as an encoder's option) may increase "s' (as determined in 23.10.4.3) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "added-field" or "asnl-field" imposes) if
"ENCODI NG SPACE Sl ZE" isset to "encoder - opt i on-wi t h- det er mi nant ".

23.10.4.5If the number of unused bits is not zero, then "VALUE- JUSTI FI CATI ON" shall be applied using either the set
values or the default values.

23.10.5 Decoder actions

23.10.5.1For any encoding property group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) pre-aignment and padding;

b) start pointer;

¢) encoding space;

d) bit-reversal;

€) vaue padding and justification;

f) open-type decoding (see 23.10.5.2).

23.10.5.2 For open type decoding, the decoder shall query the application for the type which has been encoded and
shall decode a value of that type or of the "UNKNOWN | S" structure in accordance with the "ENCODED W TH'
specificationsin the "UNKNOM | S".

23.10.5.3 If the decoding was of an unknown type, the bits forming the unknown encoding (without pre-padding
bits and without value pre- and post-padding bits, if any) shall be passed to the application as the value of the open

type.
23.11 Defining encoding objectsfor classesin the optionality category

23.11.1 Thedefined syntax
The syntax for defining encoding objects for classes in the optionality category is defined as:

#OPTI ONAL :: = ENCODI NG CLASS {
-- Structure-only repl acenment specification (see 22.1)
&#Repl acenment - struct ure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:' 0" B,

110 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Optionality determnation (see 22.5)

&optionality-determ nation OptionalityDeterm nation
DEFAULT fi el d-t o- be-set,

&optionality-reference REFERENCE OPTI ONAL,

&Encoder -t ransforns #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&handl e-i d Printabl eString

DEFAULT "def aul t - handl e"

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - struct ure
[ENCODED BY &repl acenent - struct ure-encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &st art - pointer

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORNVS &St art - poi nt er - encoder -t ransf or ns] |
PRESENCE

[DETERM NED BY &optionality-determ nation
[HANDLE &handl e-i d]]

[USI NG &optionality-reference
[ENCODER- TRANSFORMVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns] |

}

23.11.2 Purpose and restrictions
23.11.2.1 This syntax is used to define the encoding of a classin the optionality category.

23.11.2.21f "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set. If the encoding object
of the replacement structure exhibits a handle (with a given handle value set), the encoding object being defined
exhibits the same identification handle (with the same handle value set — see 22.1.1.11).

23.11.3 Encoder actions

23.11.3.1For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, inthe following order and in accordance with the encoding object definition:

a) Replacement (see 23.11.3.2).
b) Pre-alignment and padding.
c) Start pointer.
d) Optionality determination.
23.11.3.21f "REPLACE STRUCTURE" is set then the entire component (including any classes in the tag category, but

excluding classes in the optionality category) is provided as the actual parameter for the replacement structure, which
becomes a mandatory component.

23.11.4 Decoder actions

23.11.4.1For any encoding property group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) Pre-aignment and padding.
b) Start pointer.
¢) Optionality determination.

ITU-T Rec. X.692 (11/2008) 111

| SO/I EC 8825-3:2008 (E)

23.12 Defining encoding objectsfor classesin the pad category

23.12.1 Thedefined syntax
The syntax for defining encoding objects for classes in the pad category is defined as:

#PAD :: = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,

-- Pre-alignnment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder -transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space- det erm nati on Encodi ngSpaceDet er ni nat i on
DEFAULT fi el d-t o- be-set,
&encodi ng- space-ref erence REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED COPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Val ue encodi ng
&pad-pattern Pattern (ALL EXCEPT different:any)
DEFAULT bits:''B,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "defaul t - handl e",
&Handl e- posi ti ons | NTEGER (0..NMAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent -structure
[ENCCDED BY é&repl acenent - struct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns] |
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space- det er m nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns] |
[PAD- PATTERN &pad- pattern]

112 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

[EXHI BI TS HANDLE &exhi bit ed- handl e AT &Handl e-positions
[AS &handl e-val ue-set]]
[BI T- REVERSAL &bit-reversal]

}

23.12.2 Purposeand restrictions
23.12.2.1 This syntax is used to define the encoding of a class in the pad category.

23.12.2.21f "ENCODI NG SPACE SI ZE" is positive, "PAD- PATTERN" shall not be of zero length, and is replicated and
truncated to fill the encoding space.

23.12.2.31f "REPLACE STRUCTURE" is set, then no other encoding property group shall be set. If the encoding object
of the replacement structure exhibits a handle (with a given handle value set), the encoding object being defined
exhibits the same identification handle (with the same handle value set — see 22.1.1.11).

23.12.3 Encoder actions

23.12.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.
c) Start pointer.

d) Encoding space.

e) Vaue encoding (see below).
f) Identification handle.

g) Bitreversa.

23.12.3.21f "ENCODI NG SPACE Sl ZE" is positive, the value shall be the "PAD- PATTERN', replicated and truncated to
fill the encoding space.

23.12.3.3"ENCODI NG SPACE SI ZE" is "fixed-to-max", or is "variable-with-determinant” or is
"encoder - opt i on-wi t h- det er mi nant ", then the encoding space shall be the smallest number of "MULTI PLE OF"
units that is greater than the size of "PAD- PATTERN' ("s", say), and the "PAD- PATTERN" shall then be replicated and
truncated to fill that space (but see 23.12.3.4).

NOTE - Thiswill be an empty encoding space if the "PAD- PATTERN' is null.

23.12.3.4 An encoder (as an encoder's option) may increase "s" (as determined in 23.12.3.3) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE Sl ZE" isset to "encoder - opt i on- wi t h- det er mi nant ".

23.12.4 Decoder actions

23.12.4.1For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-aignment and padding.
b) Start pointer.

c) Bitreversal.

d) Encoding space.

23.12.4.2 The decoder shall determine the size of the pad value encoding, and identify those bits in the encoding, but
shall silently accept any value for those bits.
23.13 Defining encoding objectsfor classesin the repetition category

23.13.1 Thedefined syntax
The syntax for defining encoding objects for classes in the repetition category is defined as:

#REPETI TI ON : : = ENCODI NG CLASS {
-- Repetition encoding
&Repeti ti on-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
& epetition-encoding #CONDI TI ONAL- REPETI TI ON OPTI ONAL

ITU-T Rec. X.692 (11/2008) 113

| SO/IEC 8825-3:2008 (E)

} WTH SYNTAX {
[REPETI TI ON- ENCODI NGS &Repeti ti on- encodi ngs]
[REPETI TI ON- ENCODI NG &r epeti ti on-encodi ng]

}

23.13.2 Purposeand restrictions

23.13.2.1This syntax is used to define the encoding of a class in the repetition category by specifying one or more
encodings of the #CONDI TI ONAL- REPETI TI ON class.

23.13.2.2 Exactly one of "REPETI TI ON- ENCODI NG' and "REPET! TI ON- ENCODI NGS" shall be set.

NOTE — The sole purpose of alowing "REPETI TI ON- ENCODI NG' as well as "REPETI TI ON- ENCCDI NGS" is to provide a
syntax that does not contain a double curly-bracket ("{{") in the common case of a single encoding object. Use of
"REPETI TI ON- ENCODI NGS" when there is asingle encoding object is deprecated but is allowed.

23.13.2.31f an encoding object in the "REPETI TI ON- ENCODI NGS' ordered list is defined using "1 F* or "I F- ALL", then
all preceding encoding objectsin that list shall be defined using "I F* or "I F- ALL".

23.13.3 Encoder actions

23.13.3.1 The encoder shall select and apply the first #CONDI TI ONAL- REPETI TI ON encoding object in "ENCODI NX(S)"
whose conditions are satisfied. It is an ECN specification error if none of the conditional encodings have conditions
that are satisfied.

NOTE — It would be unusual but not illegal if there were #CONDI TI ONAL- REPETI TI ON encoding objects present that could
never be used because the conditions on use of earlier encoding objects would always be satisfied.

23.13.4 Decoder actions

23.13.4.1 The decoder shall select and use the first #CONDI TI ONAL- REPETI Tl ON encoding object in "ENCODI NX(S)"
whose conditions are satisfied.

23.14 Defining encoding objectsfor the #CONDI TI ONAL- REPETI TI ON class

23.14.1 Thedefined syntax
The syntax for defining encoding objects for the #CONDI TI ONAL- REPETI TI ONclassis defined as:

#CONDI TI ONAL- REPETI TI ON : : = ENCCDI NG CLASS {
-- Condition (see 21.13)
&si ze-range-condition Si zeRangeCondi tion OPTI ONAL,
&conpari son Conpari son OPTI ONAL,
&conpar at or | NTEGER OPTI ONAL,
&Si ze-range-condi ti ons Si zeRangeCondi ti on ORDERED OPTI ONAL,
&Conpari sons Conpari son ORDERED OPTI ONAL,
&Conpar at or s | NTEGER ORDERED OPTI ONAL,
-- Structure or conponent replacenent specification (see 22.1)
&#Repl acenent -structure OPTI ONAL,
&r epl acemnent - st ruct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,
&#Head- end- structure OPTI ONAL,

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space- pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&st art - pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nt er - encoder -transforns #TRANSFORM ORDERED OPTI ONAL,

-- Repetition space specification (see 22.7)

& epetition-space-size Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
&repetition-space-unit Uni t

DEFAULT bit,
& epetition-space-determnation Repeti ti onSpaceDet er mi nati on

DEFAULT fi el d-t o-be-set,

114 ITU-T Rec. X.692 (11/2008)

| SO/ EC 8825-3:2008 (E)

&mai n-ref erence REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t ransf or s #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d PrintableString

DEFAULT "def aul t - handl e",
& erm nation-pattern Non- Nul | -Pattern (ALL EXCEPT

di fferent:any) DEFAULT bits '0'B,

-- Repetition alignnent

& epetition-alignnent ENUMVERATED { none, aligned}
DEFAULT none,
-- Val ue padding and justification (see 22.8)
&val ue-justification Justification DEFAULT right:O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Patt ern DEFAULT bits:'0' B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0' B,
&unused- bi ts-determ nation UnusedBi t sDet er m nati on
DEFAULT fi el d-to- be-set,
&unused- bi ts-reference REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf orns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t ransforns #TRANSFORM ORDERED COPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "defaul t - handl e",
&Handl e- posi ti ons | NTEGER (0..NMAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT tag: any,

-- Bit reversal specification (see 22.12)
&bit-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[l F &size-range-condition [&conparison &conparator]]
[IF-ALL &Si ze-range-conditions [&Conpari sons &Conpar at or s]]
[ELSE]
[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
W TH &Repl acenent -structure
[ENCODED BY é&r epl acenent - struct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start - pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORNVS &St art - poi nt er - encoder -t ransf or ns] |
REPETI TI ON- SPACE
[SI ZE &repetition-space-size
[MULTI PLE OF &repetition-space-unit]]
[DETERM NED BY &repetition-space-determ nation
[HANDLE &handl e-i d]]
[USI NG &ai n-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or nms]
[DECODER- TRANSFORMB &Decoder -t r ansf or ms] |
[PATTERN &t erm nati on-pattern]
[ALI GNVENT &repetition-alignment]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det er mi nati on]

ITU-T Rec. X.692 (11/2008) 115

| SO/IEC 8825-3:2008 (E)

[USI NG &unused- bi t s-reference
[ENCODER- TRANSFORMS &Unused- bi t s- encoder - t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder-transforns]]]]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e-positions
[AS &handl e-val ue-set]]
[Bl T- REVERSAL &bit-reversal]

}

23.14.2 Purpose and restrictions

23.14.2.1This syntax is used to define the encoding of a class in the repetition category subject to satisfaction of a
condition based on the bounds of the repetition (use of "I F'). It also allows the specification that all of a set of
conditions are to be satisfied (use of "I F- ALL"). It also alows the specification that there is no condition. The use of
"ELSE", or omission of "I F', "I F- ALL" and "ELSE" specifies that there is no condition. "I F- ALL" shall be used with
three lists if one or more of the size-range-conditions require a comparison, and shall be used with one list otherwise.
When using three lists, size-range-conditions that do not require a comparison or comparator (if any) shall follow all
those that require a comparison, and shall have no corresponding entry in the second and third lists. In using "I F- ALL"
with three lists, the lists shall be interpreted as a list of predicates using the values in corresponding positions in the
threelists.

NOTE - It is recommended that the three lists be formatted to provide a condition in each column (see the example in 23.7.2.2).
23.14.2.2 At most one of "I F", "I F- ALL" and "ELSE" shall be present.

23.14.2.31f "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set. If the encoding object
of the replacement structure exhibits a handle (with a given handle value set), the encoding object being defined
exhibits the same identification handle (with the same handle value set — see 22.1.1.11).

23.14.2.41f "EXH BI TS HANDLE" is set, then the encoding object exhibits the specified identification handle.
23.14.2.5"REPETI TI ON- SPACE S| ZE" shall not be "f i xed- t o- max".

23.14.261f the "REPETITION-SPACE SIZE" is "self-deliniting-values”, and "MULTIPLE OF" is
"repetitions", then the number of repetitions shall be constrained by boundsto asingle value.

23.14.2.7 If there are any unused bits in the encoding space, then "VALUE- PADDI NG' shall be set.

23.14.3 Encoder actions

23.14.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Repetition space.

€) Repetition encoding (see 23.14.3.4).
f) Vaue padding and justification.

g) ldentification handle.

h) Bitreversal.

23.14.3.21f "ALI GNVENT" is set to "al i gned”, then the settings of pre-alignment and padding shall be used to pre-align
each encoding of the component.
NOTE - Thisis performed before any pre-alignment specified by the component.

23.14.3.3 The complete encodings of the components (with any pre-alignment however specified) shall be concatenated
to form the bits for the value of the repetition.

23.14.341f the "REPETI TI ON- SPACE Sl ZE" is "vari abl e-wi t h-det er ni nant " or
"encoder - opti on-wi t h- det er mi nant ", then the size shall be the smallest multiple of "MULTI PLE OF" units ("s',
say) that will contain the value of the repetition (but see 23.14.3.5).

23.14.3.5An encoder (as an encoder's option) may increase "s" (as determined in 23.14.3.4) in "MULTI PLE COF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE Sl ZE" isset to "encoder - opt i on- wi t h- det er mi nant ".

116 ITU-T Rec. X.692 (11/2008)

| SO/ EC 8825-3:2008 (E)

23.14.3.6 The repetition value is then placed in the encoding space, using "VALUE- PADDI NG' if there are any unused
bits.

23.14.4 Decoder actions

23.14.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, inthe following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
c) Repetition space.
d) Bitreversa.
e) Value padding and justification.
f) Repetition decoding (see 23.14.4.2).
23.14.4.2 Each repetition shall be extracted, and decoded in accordance with the encoding specification of the

component of the repetition class.
23.15 Defining encoding objectsfor classesin the tag category

23.15.1 Thedefined syntax
The syntax for defining encoding objects for classes in the tag category is defined as:

#TAG : : = ENCODI NG CLASS {
-- Structure-only replacenent specification (see 22.1)
&#Repl acenent -structure OPTI ONAL,
&r epl acenent - st ruct ur e- encodi ng- obj ect &#Repl acenent - structure OPTI ONAL,

-- Pre-alignnent and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignment-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bit,
&encodi ng- space- det er m nati on Encodi ngSpaceDet er mi nat i on
DEFAULT fi el d-to- be-set,
&encodi ng- space-r ef erence REFERENCE OPTI ONAL,
&Encoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Val ue padding and justification (see 22.8)
&val ue-justification Justification DEFAULT right: O,
&val ue- pre- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&unused- bi t s-det erm nati on UnusedBi t sDet erm nati on
DEFAULT fi el d-to-be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString DEFAULT "def aul t - handl e",
&Handl e- posi ti ons I NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue- set Handl eVal ueSet DEFAULT t ag: any,

ITU-T Rec. X.692 (11/2008) 117

| SO/I EC 8825-3:2008 (E)

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fi cati on
DEFAULT no-reversal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - struct ure
[ENCODED BY &repl acenent - struct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder - t r ansf or ns] |
ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space- det er m nati on]
[USI NG &encodi ng- space-ref erence
[ENCCDER- TRANSFORVS &Encoder - t r ansf or ns]
[DECCDER- TRANSFORVS &Decoder -t r ansf or ns] |
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post -pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det er mi nati on]
[USI NG &unused- bi t s-reference
[ENCODER- TRANSFORMVS &Unused- bi t s- encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue-set]]
[BI T- REVERSAL &bit-reversal]

}

23.15.2 Purpose and restrictions
23.15.2.1 This syntax is used to define the encoding of a classin the tag category.

23.15.2.21f "REPLACE STRUCTURE" is set, then no other specifications shall be set. If the encoding object of the
replacement structure exhibits a handle (with a given handle value set), the encoding object being defined exhibits the
same identification handle (with the same handle value set — see 22.1.1.11).

23.15.2.3 The "ENCODI NG SPACE S| ZE" shall not be"f i xed-t o- max" or "sel f - del i mi ti ng- val ues".
NOTE - This means that the default value (which is set for consistency with other uses of this type) always has to be overridden.

23.15.3 Encoder actions

23.15.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space.

e) Vaueencoding (see 23.15.3.3).
f) Vaue padding and justification.
g) ldentification handle.

h) Bitreversal.

118 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

23.15.3.2 The encoder shall determine the minimum number of bits"n" needed to encode the tag number as the smallest
value of "n" such that 21 is greater than or equal to the tag number. If "n" is zero, it shall be increased to 1.

23.15.3.3 The encoding shall be a positive integer encoding. The specification of apositive integer encoding isgivenin
ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3.

23.15.3.4 An encoder shall detect an ECN specification error if a tag number is to be encoded into a number of bits
which isinsufficient, as specified above.

23.15.3.51f "ENCODI NG SPACE Sl ZE" is a positive integer, then its size in bits is calculated as "SI ZE" multiplied by
"MULTI PLE OF" units. If "VALUE- PADDI NG' is not set, then this shall be the number of bits "n" that the tag number
shall encode into and there are no unused bits. If "VALUE- PADDI NG' is set, then the number of bits that the tag number
shall encode into is reduced by the integer value "m" specified for "JUSTI FI ED", and there will be "m" unused bits.

23.15.3.61f "ENCODI NG SPACE SI ZE" is "variable-with-determinant” or “encoder-option-with-
det er mi nant ", then the encoder shall determine the minimum number of "MULTI PLE OF" units that has sufficient bits
to encode the tag number ("s", say), and shall proceed (as specified above) as if "SI ZE" were a positive integer set to
that value (but see 23.15.3.7).

23.15.3.7 An encoder (as an encoder's option) may increase "s" (as determined in 23.15.3.6) in "MULTI PLE COF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE Sl ZE" is set to "encoder - opt i on-wi t h- det er mi nant ".

23.15.4 Decoder actions

23.15.4.1For any encoding property group that is set, the decoder shall perform the decoder actions specified in
clause 22, in the following order and in accordance with the encoding object definition:

a) Pre-aignment and padding.

b) Start pointer.

¢) Encoding space.

d) Bitreversal.

€) Vaue padding and justification.
f) Vauedecoding.

23.15.4.2 The decoder shall recover the tag number from the bits used to encode it, decoding from a positive integer
encoding.

23.16 Defining encoding objectsfor classesin the other categories

In this version of this Recommendation | International Standard, there is no defined syntax for classes in the following
categories:

obj ectidentifier

open-type

real

tine

24 Defined syntax specification for the #TrRansForRMencoding class

24.1 Summary of encoding properties and defined syntax

24.1.1 The syntax for defining encoding objects for the #TRANSFCRM class shall be:
#TRANSFORM : : = ENCODI NG CLASS {

-- int-to-int (see 24.3)

& nt-to-int CHA CE {
i ncrenment I NTEGER (1..MAX),
decr enent I NTEGER (1..NAX),
mul tiply I NTEGER (2. . MAX),
di vi de | NTEGER (2.. NAX),
negat e ENUMVERATED({ val ue},
nodul o | NTEGER (2.. NAX),
subt ract ENUVERATED({ | ower - bound} },
nmappi ng | nt eger Mappi ng

ITU-T Rec. X.692 (11/2008) 119

| SO/I EC 8825-3:2008 (E)

} OPTI ONAL,
-- bool -to-bool (see 24.4)
&bool -t o- bool CHO CE
{l ogi cal ENUVERATED{ not } }

DEFAULT | ogi cal : not,

-- bool -to-int (see 24.5)

&bool -to-int ENUMERATED {true-zero, true-one}
DEFAULT true-one,

-- int-to-bool (see 24.6)

& nt -t o-bool ENUMERATED {zero-true, zero-false}
DEFAULT zero-fal se,

& nt-to-bool -true-is | NTEGER OPTI ONAL,

& nt-to-bool-fal se-is | NTEGER OPTI ONAL,

-- int-to-chars (see 24.7)

& nt-to-chars-size Resul t Si ze DEFAULT vari abl e,

& nt-to-chars-plus BOOLEAN DEFAULT FALSE,

& nt-to-chars-pad ENUVERATED

{spaces, zeros} DEFAULT zeros,

-- int-to-bits (see 24.8)

& nt -t o-bits-encoded- as ENUVERATED
{positive-int, twos-conplenent}
DEFAULT twos- conpl enent,

& nt-to-bits-unit Unit (1..MAX) DEFAULT bit,

& nt-to-bits-size Resul t Si ze DEFAULT vari abl e,

-- bits-to-int (see 24.9)

&bi ts-to-int-decoded-assum ng ENUVERATED
{positive-int, twos-conplenent}
DEFAULT twos-conpl enent,

-- char-to-bits (see 24.10)

&char -t o-bi t s- encoded- as ENUVERATED
{i s010646, conpact, napped}
DEFAULT conpact,

&Char -t o-bits-chars Uni versal String (SIZE(1))
ORDERED COPTI ONAL,

&Char -t 0- bi t s-val ues BI T STRI NG ORDERED CPTI ONAL,

&char-to-bits-unit Unit (1..MAX) DEFAULT bit,

&char -t o-bits-size Resul t Si ze DEFAULT vari abl e,

-- bits-to-char (see 24.11)
&bi t s-t o- char - decoded- assum ng ENUVERATED
{is010646, mapped}
DEFAULT i 5010646,
&Bi t s-t o- char-val ues Bl T STRI NG ORDERED OPTI ONAL,
&Bits-to-char-chars Uni versal String (SIZE(1))
ORDERED OPTI ONAL,

-- bit-to-bits (see 24.12)

&bi t-to-bits-one Non- Nul | - Pattern DEFAULT bits:'1'B,
&bit-to-bits-zero Non- Nul | - Pattern DEFAULT bits:'0'B,
-- bits-to-bits (see 24.13)

&Sour ce-val ues BI T STRI NG ORDERED,

&Resul t - val ues BI T STRI NG ORDERED,

-- chars-to-conposite-char (see 24.14)
-- There are no encoding properties for this transfornmation

-- bits-to-conposite-bits (see 24.15)
&its-to-conposite-bits-unit Unit (1..MAX) DEFAULT bit

-- octets-to-conposite-bits (see 24.16)
-- There are no encoding properties for this transfornmation

-- conposite-char-to-chars (see 24.17)

120 ITU-T Rec. X.692 (11/2008)

| SO/ EC 8825-3:2008 (E)

-- There are no encoding properties for this transfornation

-- conposite-bits-to-bits (see 24.18)
-- There are no encoding properties for this transfornmation

-- conposite-bits-to-octets (see 24.19)
-- There are no encoding properties for this transfornation

} WTH SYNTAX {
-- Only one of the follow ng clauses can be used.
[INT-TO INT & nt-to-int]
[BOOL- TO-BOCOL [AS &bool -t o-bool]]
[BOOL- TO- I NT AS &bool -to-int]

[I NT- TO- BOCL
[AS & nt-to-bool]
[TRUE-1S &l nt-to-bool-true-is]
[FALSE-1S &l nt-to-bool -fal se-is]]

[I NT- TO CHARS
[SI ZE & nt-to-chars-size]
[PLUS- SI GN & nt -t o-chars- pl us]
[PADDI NG &i nt -t o- char s- pad]]

[INT-TO-BITS
[AS & nt-to-bits-encoded- as]
[SI ZE & nt-to-bits-size]
[MULTIPLE OF & nt-to-bits-unit]]

[BI TS- TO- | NT
[AS &bits-to-int-decoded-assumn ng]]

[CHAR-TO-BI TS
[AS &char -t o-bits-encoded- as]
[CHAR- LI ST &Char -t o-bits-chars]
[BITS-LI ST &Char -t o-bits-val ues]
[SI ZE &char-to-bits-size]
[MULTI PLE OF &char-to-bits-unit]]

[BI TS- TO- CHAR
[AS &bits-to-char-decoded-assum ng]
[BITS-LI ST &Bits-to-char-val ues]
[CHAR- LI ST &Bits-to-char-chars]]
[BIT-TOBITS
[ZERO PATTERN &bi t-to-bits-zero]
[ONE- PATTERN &bi t-to-bits-one]]
[BITS-TO-BITS
SQURCE- LI ST &Sour ce-val ues
RESULT- LI ST &Resul t -val ues]
[CHARS- TO- COVPCSI TE- CHAR]

[BI TS- TO COWPCSI TE-BI TS
[UNIT &bits-to-conposite-bits-unit]]

[OCTETS- TO- COVPCSI TE- BI TS]
[COVPCSI TE- CHAR- TO- CHARS]
[COWPCSI TE- BI TS- TO- BI TS

[COVPCSI TE- BI TS- TO- OCTETS]

ITU-T Rec. X.692 (11/2008) 121

| SO/IEC 8825-3:2008 (E)

24.2 Source and target of transforms

24.2.1 The #TRANSFORMencoding class allows the specification of procedures which transform input abstract values
(the source) into output abstract values of the same or a different type (the result). It also allows the specification of
procedures that map a characterstring, octetstring or bitstring source into a transform composite, and a transform
composite (whose values are a single character, a single octet, or bitstrings with a fixed unit size) into an abstract value
(a characterstring, an octetstring, or a bitstring). The source is either the result of a previous transform, or is obtained
from a source class (see 19.4). The result is either the source for a following transform, or becomes associated with a
target class (see 19.4).

NOTE — Clause 23 a so uses transforms whose source is a single bit and a single character.

24.2.2 These transforms are used in the definition of value mappings and in the definition of encoding objects for
encoding classes in the bit-field group of categories (see clauses 20 to 23).

24.2.3 The source and result are indicated by words ("I NT- TO- | NT", "BOOL- TO- BOOL", etc.) in the specification of a
#TRANSFORMencoding object, and are defined in the associated text.

24.2.4 Subclauses 24.2.4.1 to 24.2.4.3 specify rules for using transforms in succession, and for the source and target
classes of alist of transforms.

24.2.4.1 When encoding objects of the class #TRANSFORM are specified in an ordered list, the source of a following
#TRANSFORMencoding object shall be the result of the preceding #TRANSFORMencoding object.

24.2.4.2 For the first and last of an ordered list of transforms used in the definition of encoding objects in clauses 22
and 23, text in those clauses specifies the source for the first transform and the required result for the last transform.

24.2.4.3 For the first and last of an ordered list of transforms used in the specification of value mapping by transforms
in 19.4, text in that subclause specifies a source class and a target class, both of which will be of the bitstring, boolean,
characterstring, integer or octetstring category (see 19.4.2). The required source for the first transform and the required
result of the last transform (for each of these categories) are specified in 24.2.7.

2425 Text in this clause specifies the source of a transform and the result of a transform as an integer, a boolean, a
characterstring, a hitstring, a single character, or a single bit (source only). The source and result of a transform can
also be a composite of these values. Transform composites can only be produced by transforms, and must be processed
by another (the next) transform in alist of transforms. There are two groups of transforms: those designed to create
composites from abstract values or to produce an abstract value from a composite; and those designed to transform
single values. The latter can also transform composites of those values, producing a composite as the result which is the
transform of every element in the source composite.

24.2.6 A source or target that is a single bit or a single character occurs only when successive transforms have these
as output and input, or as specified in clauses 22 and 23. The first transform of the ordered list referenced in 19.4 shall
not have a source which is a single bit or a single character. The last transform of the ordered list referenced in 19.4
shall not have atarget which isasingle bit or asingle character.

24.2.7 When used in 19.4, the source for the first transform and the target for the last transform shall be the same as
the category of the source encoding class and target encoding class (respectively), with the following exceptions.
When the category of the source encoding class is octetstring, the source for the first transform shall be bitstring
(treating each octetstring value as a bitstring value). When the last transform is "Bl TS- TO- BI TS" with "MULTI PLE OF"
set to 8, the target class may be octetstring.

24.2.8 The following subclauses specify conditions on the abstract values of the source which enable a transform to
be defined as reversible. It isan ECN or application error if such values are supplied to a transform which is required
to be reversible, and encoders shall not generate encodings for such values.

24.3 Theint-to-int transform
NOTE — Examples of thistransform are givenin D.1.2.2.

24.3.1 Theint-to-int transform uses the following encoding property:

& nt-to-int CHA CE {
i ncrement | NTEGER (1..MAX),
decr ement I NTEGER (1..MAX),
mul tiply | NTEGER (2. . MAX),
di vi de | NTEGER (2. . MAX),
negat e ENUVERATED{ val ue},
nodul o | NTEGER (2. . MAX),
subt ract ENUVERATED{ | ower - bound} },

122 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

nappi ng | nt eger Mappi ng
} OPTI ONAL

24.3.2 The syntax for the int-to-int transform shall be:
[INT-TOINT & nt-to-int]

24.3.3 Thedefinition of the type used in the int-to-int transformiis:

I nt eger Mappi ng ::= SET OF SEQUENCE {
source SET OF | NTEGER,
resul t | NTEGER} (CONSTRAI NED BY {/* the intersection of the source

conponents shall be enpty
(see 21.17) */})

24.3.4 Both the source and result of this transform are integer or an integer composite. There are no bounds
associated with the result unless this is the last transform in a mapping by transforms (see 19.4) (which means that
neither the source nor the target can be a composite) and the target class of the mapping by transforms has bounds. In
that case, it is an ECN specification or application error if the transform is applied to source integer values that do not
map into the bounds of the target class.

24.35 Anint-to-int transform is defined by giving avaueto "I NT- TO- | NT", permitting any given encoding object to
specify precisely one arithmetic operation. General arithmetic can, however, be defined by the use of an ordered list of
transforms (this is permitted wherever transforms involving integers are allowed).

24.3.6 The values "i ncrement : n", "decrenent : n", "mul ti ply: n",
meaning.

negat e: n" have their normal mathematical

24.3.7 Thevaue "di vi de: n" is defined to produce an integer result which is the integer value that is closest to the
mathematical result, but is no further from zero than that result. In programming terms, "di vi de: n" truncates towards
zero, so avalue of -1 with "di vi de: 2" will give zero.

24.3.8 The transform for the value "nodul o: n" is defined as follows: Let "i" be the original integer value, let the
transform be "nodul o: n". Let "j" be the result of applying "di vi de: n" followed by "mul tiply: n" to "i". Then

"modul o: n" applied to "i" is defined to be the same as applying "decr enent : j " to "i".

24.3.9 The transform for the value "subt ract : | ower - bound" shall only be used as the first of an ordered list of
transforms (and hence can never be used if the source is a composite). The source shall have alower bound.

24.3.10 Thetransform for the value "mappi ng: i nt eger Mappi ng" is defined as follows. The original integer valueis
replaced with the value associated to the set of values to which it belongs. It is an ECN specification error if the
intersection of the sets of values is not empty; it is an application error if the original integer does not belong to one of
the value sets.

24.3.11 Each of these transforms is defined to be reversible if the source is a single value, not a composite, and if the
condition on the abstract value (to which it is being applied) listed in Table 6 is satisfied. It is also defined to be
reversibleif the source is a composite and Table 6 specifies Always reversible as the condition.

NOTE — While an int-to-int transform with a composite input is formally reversible if Table 6 specifies Always reversible as the
condition, it cannot in practice form part of a chain of reversible transforms since there is no such chain that starts with a non-
composite input and produces a composite integer (with currently defined transforms).

Table6—Reversal of "INT-TO-INT" transforms

Transform Condition
increment:n Alwaysreversible
decrenent: n Alwaysreversible

mul tiply:n Always reversible
divide:n Vaueisamultiple of n
negat e: val ue Always reversible
modul o: n Never reversible

subt ract : | ower - bound Always reversible

mappi ng: i nt eger Mappi ng Spurce value sets, each containing only one value, and
the result values are distinct.

ITU-T Rec. X.692 (11/2008) 123

| SO/IEC 8825-3:2008 (E)

24.4 The bool-to-bool transform
24.4.1 The bool-to-bool transform uses the following encoding property:

&bool -t o- bool CHO CE
{l ogi cal ENUMERATED(not } }
DEFAULT | ogi cal : not

24.4.2 The syntax for the bool-to-bool transform shall be:
[BOOL- TO- BOCOL [AS &bool -t o-bool]]
24.4.3 Both the source and result of this transform are boolean or a boolean composite.

24.4.4 If the source is a boolean, the result is a boolean. If the source is a boolean composite, the result is a boolean
composite in which each element of the source has been transformed as specified in 24.4.5.

2445 There is only one value for "BOOL- TO- BOOL", "AS | ogi cal : not ", which may be omitted. This transform
converts boolean TRUE to FALSE, and vice versa.

24.4.6 Thistransform is defined to be reversible for all abstract values.

24.5 Thebool-to-int transform
24.5.1 The bool-to-int transform uses the following encoding property:

&bool -to-int ENUMERATED {true-zero, true-one}
DEFAULT true-one

2452 The syntax for the bool-to-int transform shall be:
[BOOL- TO- I NT AS &bool -to-int]

2453 The source for this transform is boolean or a boolean composite and the result is integer or an integer
composite. The integer result (and each element in the integer composite) has the value zero or one. The result has no
associated bounds.

24.5.4 If the source is a boolean, the result is an integer. If the source is a boolean composite, the result is an integer
composite in which each element of the source has been transformed as specified in 24.5.5.

2455 Thevaue"true-zero" of "BOOL- TO- | NT" produces integer O for TRUE and integer 1 for FALSE. The value
"t r ue- one" producesinteger 1 for TRUE and integer O for FALSE.

245.6 Thistransform isdefined to be reversible for al abstract values.

24.6 Theint-to-bool transform

24.6.1 Theint-to-bool transform uses the following encoding properties:

& nt -t o-bool ENUMERATED {zero-true, zero-false}
DEFAULT zero-fal se,

& nt-to-bool-true-is | NTEGER OPTI ONAL,

& nt-to-bool-fal se-is | NTEGER OPTI ONAL

24.6.2 The syntax for the int-to-bool transform shall be:

[1 NT- TO- BOOL
[AS & nt-to-bool]
[TRUE-1S &l nt-to-bool -true-is]
[FALSE-1S &l nt-to-bool -fal se-is]]

24.6.3 The source for this transform is integer or an integer composite and the result is boolean or a boolean
composite.

24.6.4 Either one of "AS", "TRUE- | S" and "FALSE- | S" is set, or both "TRUE- | S" and "FALSE- | S" are set (and "AS"
isnot set), or none are set. If none are set, then the default value for "AS" is assumed.

24.6.5 |If "AS" isset (or is defaulted), then the value "zer o- t r ue" produces TRUE for the value zero and FALSE for all
non-zero values, and the value "zer o- f al se" produces FALSE for the value zero and TRUE for all non-zero values.

124 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)
24.6.6 If "TRUE-1S" only is set, all of the integer values for "TRUE- | S" produce TRUE and all other integer values
produce FALSE

24.6.7 If "FALSE-1S" only isset, all of theinteger values for "FALSE- | S" produce FALSE and al other integer values
produce TRUE.

24.6.8 If both "TRUE-1S" and "FALSE-1 S" is set, then the integer values in "TRUE- 1 S" and "FALSE- | S" shall be
digoint. In this case, it is an ECN specification or application error if abstract values which are not included in either
"TRUE- | S" or "FALSE- | S" areincluded in the source, and encoders shall not generate encodings for such values.

24.6.9 This transform is defined to be reversible if and only if both "TRUE- 1 S" and "FALSE- | S" are set, and they
each specify asingleinteger value.
24.7 Theint-to-charstransform

24.7.1 Theint-to-chars transform uses the following encoding properties:

& nt-to-chars-size Resul t Si ze DEFAULT vari abl e,
& nt-to-chars-plus BOOLEAN DEFAULT FALSE,
& nt -t o-chars- pad ENUMERATED

{spaces, zeros} DEFAULT zeros
24.7.2 The syntax for the int-to-chars transform shall be:

[I NT- TO CHARS
[SI ZE & nt-to-chars-size]
[PLUS- SI GN & nt -t o- char s- pl us]
[PADDI NG & nt -t o-char s-pad]]

24.7.3 Thedefinition of the type used in the int-to-chars transformis;
Resul t Size ::= I NTECER {variable(-1), fixed-to-max(0)} (-1..MAX) -- (see 21.15)

24.7.4 The source for this transform is an integer or an integer composite, and the result is a characterstring or a
characterstring composite.

24.7.5 If the source is an integer, the result is a characterstring. If the source is an integer composite, the result is a
characterstring composite in which each element of the source has been transformed as specified in 24.7.6 to 24.7.13.

24.7.6 "SI ZE","PLUS- SI G\', and "PADDI NG' all have default values and can be omitted.

24.7.7 "SI ZE" specifies either:
a) afixed sizein charactersfor the resulting size (a positive value of "SI ZE"); or
b) that avariable length string of charactersisto be produced (the value "vari abl e" of "SI ZE"); or
c) afixed-sizejust large enough to contain the transform of all abstract values in the source class (the value
"fi xed-t o- max" of "SI ZE").

24.7.8 "SI ZE" shal not be set to "f i xed- t o- nax" unless thisis the first transform in an ordered set, and the source
class has both lower and upper bounds. This is synonymous with the specification of a positive value equal to the
smallest value needed to contain the transform of every abstract value within the bounds.

24.7.9 Theinteger valueis first converted to a decimal representation with no leading zeros and with a pre-fixed "-"
(HYPHEN-MINUS) if it is negative. If, and only if, "PLUS- SI G\' is set to true, positive values have a "+" (PLUS
SIGN) pre-fixed to the digits.

24.7.10 The most significant digit shall be at the leading end of the characterstring.

24.7.11 If "SI ZE" is"vari abl e", then thisis the resulting string of characters. In this caseit is not an error to specify
avalue for "PADDI NG', but the value isignored.

24.7.12 If "SI ZE" isapositive value or "f i xed- t o- max", and the resulting string (in an instance of application of this
transform during encoding) is too large for the fixed size, then this is an ECN specification or application error, and
encoders shall not generate encodings for such abstract values.

24.7.13 If "SI ZE" isapositive value or "f i xed- t o- max", and the string is smaller than the fixed size, then it is padded
with either " " (SPACE) or "0" (DIGIT ZERO), determined by the value of "PADDI NG', pre-fixed to produce the
specified size.

ITU-T Rec. X.692 (11/2008) 125

| SO/IEC 8825-3:2008 (E)

24.7.14 Thistransform is defined to be reversible for all abstract values.

24.8 Theint-to-bitstransform
NOTE — An example of thistransformisgivenin D.1.5.5.

24.8.1 Theint-to-bits transform uses the following encoding properties:

& nt-to-bits-encoded- as ENUMVERATED
{positive-int, twos-conplenent}
DEFAULT twos- conpl enent,

& nt-to-bits-unit Unit (1..MAX) DEFAULT bit,

& nt-to-bits-size Resul t Si ze DEFAULT vari abl e

24.8.2 The syntax for the int-to-bits transform shall be:
[INT-TO-BI TS
[AS & nt-to-bits-encoded- as]
[SI ZE & nt-to-bits-size]
[MULTIPLE OF & nt-to-bits-unit]]

24.8.3 The definition of the types used in the int-to-bits transform are:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Resul t Size ::= I NTECER {variable(-1), fixed-to-max(0)} (-1..MAX) -- (see 21.15)

24.8.4 The source for this transform is an integer or an integer composite and the result is a bitstring or a bitstring
composite. There are no bounds associated with the result. The following clauses use the term resulting bitstring.

24.85 If the sourceis an integer, the result is the resulting bitstring. If the source is an integer composite, theresult is
a bitstring composite in which each element of the source has been transformed to the resulting bitstring as specified
in24.5.5,

24.8.6 "AS' and"MJULTI PLE OF" have default values and need not be set.

24.8.7 "SI ZE" has a default value and need not be set if the source is not a composite. It shall be set to a positive
value if the source is a composite.

24.8.8 "SI ZE" shall not be set to "fi xed-t o- max" unless this is the first transform in an ordered set in the syntax
defined in 19.4, and the source class has both lower and upper bounds. This is synonymous with the specification of a
positive value equal to the smallest value needed to contain the transform of every abstract value within the bounds.

NOTE —"SI ZE" cannot be set to "f i xed- t o- nax" if the source is a transform composite.

2489 "AS" selects the encoding of the integer as either a 2's-complement encoding or as a positive integer encoding.
The definition of these encodingsisgivenin ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3.

24.8.10 The most significant bit shall be at the leading end of the bitstring.

24.8.11 The integer shall first be encoded into the minimum number of hits necessary to produce an initial bitstring.
This means that a positive integer encoding shall not have zero as the leading bit (unless there is asingle zero bit in the
encoding), and a 2's-complement encoding shall not have two successive leading zero bits or two successive leading
one bits.

24.8.12 If "AS" isset to "posi tive-int", and the value to be transformed is negative, thisis an ECN specification or
an application error and encoders shall not encode such values.

24.8.13 If "SI ZE" is"vari abl e", then the initial bitstring becomes the resulting bitstring. In this caseit is not an error
to specify avalue for "MULTI PLE OF", but the value isignored.

NOTE — This clause cannot apply if the source is composite.
24.8.14 If "SI ZE" isapositive value, the size of the resulting bitstring shall be "MULTI PLE OF" multiplied by "SI ZE".

24.8.15 If "SI ZE" is "fi xed-t o- max", then the size of the resulting bitstring shall be the smallest multiple of
"MULTI PLE OF" that islarge enough to receive the encoding of any abstract value of the class to which the transformis

applied.
NOTE — This clause cannot apply if the source is composite.

126 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)
24.8.16 If theinitia bitstring (in an instance of application of this transform during encoding) is too large for the fixed
size, then thisis an ECN specification or an application error and encoders shall not encode such values.

24.8.17 If the initial bitstring is smaller than the specified size, then for a positive integer encoding it shall have zero
bits prefixed to produce the resulting bitstring. If the encoding is 2's-complement, then it shall have bits prefixed equal
in valueto the original leading bit to produce the resulting bitstring.

24.8.18 This transform is defined to be reversible for all abstract values. This transform produces a self-delimiting
bitstring if and only if "SI ZE" is not "vari abl e" and the source is not composite. A composite result is never self-
delimiting.

24.9 Thebitsto-int transform

249.1 The bits-to-int transform uses the following encoding property:

&bi ts-to-int-decoded-assum ng ENUVERATED
{positive-int, twos-conplenent}
DEFAULT t wos- conpl enent

24.9.2 The syntax for the bits-to-int transform shall be:

[BITS-TO | NT
[AS &bits-to-int-decoded-assum ng]]

24.9.3 The source for this transform is a bitstring or a bitstring composite and the result is an integer or an integer
composite. There are no bounds associated with the result.

24.9.4 If the source is a bitstring, the result isan integer. If the source is a bitstring composite, the result is an integer
composite in which each integer isthe result of the specification in 24.9.5.

2495 The integer value shall be produced by interpreting the bits as 2's-complement or as a positive integer
encoding, as specified in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3. The value of "AS" (or its default value
if not set) determines the encoding to be assumed.

24.9.6 Thistransform shall not be used where reversible transforms are required.

24.10 Thechar-to-bitstransform
24.10.1 The char-to-bits transform uses the following encoding properties:
&char -t o- bi t s- encoded- as ENUVERATED

{i s010646, conpact, mapped}
DEFAULT conpact,

&Char-to-bits-chars Uni versal String (Sl ZE(1))
ORDERED OPTI ONAL,

&Char -t 0- bi t s-val ues BI T STRI NG ORDERED CPTI ONAL,

&char-to-bits-unit Unit (1..MAX) DEFAULT bit,

&char -t o- bits-size Resul t Si ze DEFAULT vari abl e

24.10.2 The syntax for the char-to-bits transform shall be:

[CHAR-TO-BI TS
[AS &char -t o-bits-encoded- as]
[CHAR- LI ST &Char -t o-bits-chars]
[BI TS- LI ST &Char -t o-bits-val ues]
[SI ZE &char-to-bits-size]
[MULTI PLE OF &char-to-bits-unit]]

24.10.3 The definition of the types used in the char-to-bits transform are:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Resul t Size ::= I NTECER {variabl e(-1), fixed-to-max(0)} (-1..MAX) -- (see 21.15)

24.10.4 The source for thistransformis a single character from either:
a) the specification of an encoding for the characterstring category (see 23.4.2.1); or
b) asingle character composite;

ITU-T Rec. X.692 (11/2008) 127

| SO/IEC 8825-3:2008 (E)

and the result is a bitstring in case a) and a bitstring composite in case b).

24.10.5 The source for this transform is a single character or a single character composite. If the source is a single
character, the result is a bitstring. If the source is a single character composite, the result is a bitstring composite.

24.10.6 Where the source is a composite, the resulting composite is determined by applying the following specification
to all elements of the source composite to form the result composite. It isan ECN specification error if thistransformis
applied to a composite with "AS" set to "mapped"” and the size of the bitstringsin the "Bl TS- LI ST" are not all the same.

24.10.7 Where the following text refers to a possible "effective permitted alphabet constraint”, such a constraint exists
if and only if the transform is the first in an ordered list used in 23.4 and the class to which the encoding object is
applied has an effective permitted alphabet constraint.

NOTE — This can only be the case if the class to which the transform is applied is part of an implicitly or explicitly generated
structure. This clause can never apply to a composite, whose elements never have effective permitted a phabet constraints.

24.10.8 "AS", "SI ZE" and "MULTI PLE OF" dl have default values and need not be set. "CHAR- LI ST" and "Bl TS-
LI ST" are only used if "AS" is set to "mapped"”, in which case their presence is mandatory, and they shall then contain at
least one element in the ordered list.

24.10.9 ECN supports only characters in the ISO/IEC 10646 character set. Where ASN.1 types such as
"GeneralString" are in use, characters outside of this character set can in theory appear. Such characters are not
supported by this transform.

24.10.10If "AS" is "mapped", then the transform is specified by the values of "CHAR- LI ST" and "BI TS- LI ST", both of
which shall be specified, and the values of "MULTI PLE OF" and "SI ZE" are ignored. The transform is specified in
24.10.10.1 to 24.10.10.5.

24.10.10.1"CHAR- LI ST" and "BI TS- LI ST" are respectively an ordered list of single characters and of bitstring values.
(These parameters areignored if "AS" is not set to "mapped".)

24.10.10.2 There shall be an equal number of values in each list, and al character values in "CHAR- LI ST" shall be
distinct.

24.10.10.3 The transform of a character in "CHAR- LI ST" is the bitstring specified in the corresponding position in
"BI TS- LI ST".

24.10.10.41f in an instance of application of this transform a character is to be transformed that is not in the
"CHAR- LI ST", thisisan ECN specification or an application error.

NOTE — In general it will only be possible for atool to check for this error at encode time, as restrictions on possible abstract
values may not be formally present in the ASN.1 specification.
24.10.10.5In this case ("AS" set to "mapped"), the transform is defined to be reversible (for all abstract values) if and
only if the set of al bitstring values in "BI TS- LI ST" are distinct, otherwise it shall not be used where a reversible
transform is required. The result is self-delimiting if the bitstring values in "BI TS- LI ST" are self-delimiting (see
3.2.42). A composite result is never self-delimiting.

24.10.11If "AS" is"i s010646", the transform is specified in 24.10.11.1 to 24.10.11.5.

24.10.11.1 The character isfirst converted to an integer with the numerical value specified in 1SO/IEC 10646.
NOTE — ISO/IEC 10646 includes the so-called ASCII control characters, which have positionsin row 1.

24.10.11.2 If the character is from a character string that has an associated effective permitted alphabet constraint
(see 24.10.7), then the integer has effective size constraints just sufficient to contain the numerical values of all
characters in the effective permitted alphabet.

24.10.11.31f there is no effective permitted alphabet constraint, then the integer has an associated effective size
constraint of 0..32767.

24.10.11.4 Thisinteger value is then converted to bits using the transform:

INT-TO-BI TS -- (see 24.8)
AS positive-int
S| ZE <si ze>
MULTI PLE OF <nul ti pl e- of >

where "<size>" is the value of "SI ZE" and "<multiple-of>" is the value of "MULTI PLE OF" for the char-to-bits
transform. ("SI ZE" and "MULTI PLE OF" take their default valuesif not set.)

128 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

24.10.11.5In this case ("AS" set to "i s010646"), the transform is defined to be reversible for all abstract values. It
produces a self-delimiting string of bits if and only if "SI ZE" is not "variable'. A composite result is never self-
delimiting.

24.10.12If "AS" is "conpact ", then it is an ECN specification error if there is no effective permitted aphabet
constraint, otherwise the transform is specified in 24.10.12.1 to 24.10.12.4.

24.10.12.1 All characters in the effective permitted alphabet are placed in canonical order using their 1ISO/IEC 10646
value, lowest valuefirst. Thefirst in the list isthen assigned the integer value zero, the next one, and so on.

24.10.12.2 If the effective permitted alphabet contains "n" characters, then the integer has an effective size constraint of
0..n-1.

24.10.12.3 Thisinteger is then converted to bits using the transform:

INT-TO-BITS -- (see 24.8)
AS positive-int
Sl ZE <si ze>
MULTI PLE OF <mul ti pl e-of >

where "<size>" is the value of "SI ZE" and "<multiple-of>" is the value of "MULTI PLE OF" for the char-to-bits
transform. ("SI ZE" and "MULTI PLE OF" take their default valuesif not set.)

NOTE — The PER encoding of character string types uses the equivalent of "conpact " only if the application of this algorithm
reduces the number of bits required to encode characters (using "f i xed-t o- max"). This degree of control is not possible in
this version of this Recommendation | International Standard.

24.10.12.4 In this case ("AS" set to "conpact "), the transform is defined to be reversible for all abstract values. It
produces a self-delimiting string of bits if and only if "SI ZE" is not "vari abl e". A composite result is never self-
delimiting.

24.11 The bits-to-char transform
24.11.1 The bits-to-char transform uses the following encoding properties:

&bi t s-t o- char - decoded- assumi ng ENUVERATED
{i s010646, mapped}
DEFAULT i s010646,
&Bi t s-t o- char - val ues Bl T STRI NG ORDERED OPTI ONAL,
&Bi ts-to-char-chars Uni versal String (SIZE(1))
ORDERED OPTI ONAL

24.11.2 The syntax for the bits-to-char transform shall be:

[BI TS- TO CHAR
[AS &bits-to-char-decoded-assum ng]
[BI TS-LI ST &Bits-to-char-val ues]
[CHAR-LI ST &Bits-to-char-chars]]

24.11.3 The source for this transform is a bitstring or a bitstring composite. If the source is a bitstring, the result is a
single character. If the sourceis a bitstring composite, the result is a single character composite.

24.11.4 If the source is a bitstring composite, then the resulting single character composite is an ordered list of single
characters resulting from the transformation of each of the elements of the bitstring composite.

24115 If "AS" is"i s010646", then the bitstring shall be interpreted as a positive integer encoding which contains the
ISO/IEC 10646 numerical value of acharacter. It isan ECN specification error if the integer value exceeds 32767.

24.11.6 If "AS" is "mapped", then the transform is specified by the values of "CHAR- LI ST" and "Bl TS- LI ST". The
transformis defined in 24.11.6.1 to 24.11.6.5.

24.11.6.1"CHAR- LI ST" and "BI TS- LI ST" are respectively an ordered list of single characters and of bitstring values.
(These parameters are ignored if "AS" is not set to "mapped".)

24.11.6.2 There shall be an equal nhumber of values in each list, and all character values and al bitstring values in the
list shall be distinct.

24.11.6.3 The transform of abitstring in the "Bl TS- LI ST" is the character specified in the corresponding position in the
"CHAR- LI ST".

ITU-T Rec. X.692 (11/2008) 129

| SO/IEC 8825-3:2008 (E)

24.11.6.41f in an instance of application of this transform a bitstring is to be transformed that is not in the
"Bl TS- LI ST", thisisan ECN specification or an application error.

NOTE — In genera it will only be possible for a tool to check for this error at encode time, as restrictions on possible abstract
values may not be formally present in the ASN.1 specification.

24.11.6.5 The transform is defined to be reversible for all abstract values.

24.12 The bit-to-bitstransform
24.12.1 The bit-to-bits transform uses the following encoding properties:

&bi t-to-bits-one Non- Nul | - Pattern DEFAULT bits:'1'B,
&bit-to-bits-zero Non- Nul | - Pattern DEFAULT bits:'0'B

24.12.2 The syntax for the hit-to-bits transform shall be:

[BIT-TOBITS
[ZERO- PATTERN &bi t-to-bits-zero]
[ONE- PATTERN &bi t-to-bits-one]]

24.12.3 The definition of the type used in the bit-to-bits transform is:

Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:'"'B | octets:'""H| char8:"" | charl6:"" |
char32:"")) -- (see 21.10.2)

24.12.4 The source for thistransformis asingle bit from either:
a) the specification of an encoding for the bitstring category (see 23.2); or
b) abitstring composite with a unit of 1 hit.

Theresult isabitstring in case @) and a hitstring composite in case b).

24.12.5 The bitstring composite in case b) shall be the ordered sequence of bitstrings produced by the following
transformations applied to each element of the source bitstring composite. It is an ECN specification error if the
"ZERO PATTERN' and the "ONE- PATTERN' have different sizes.

24.12.6 At most one of "ZERO- PATTERN" and "ONE- PATTERN" shall be"di f f er ent : any".
NOTE — A valueof "di f f er ent : any" here means a pattern that is not the same as the other pattern, but is the same length.

24.12.7 The"any- of -1 engt h" alternative shall not be used for either "ZERO- PATTERN' or "ONE- PATTERN".

24.12.8 If the bit is set to zero, the result is the "ZERO PATTERN'. If the bit is set to one, the result is the
"ONE- PATTERN".

24.12.9 Itisan ECN specification error if "ZERO- PATTERN' and "ONE- PATTERN' are the same, or if oneis an initia
sub-string of the other.

24.12.10This transform is defined to be reversible for all abstract values and the result is self-delimiting unless the
transformis applied to acomposite. A composite result is never self-delimiting.

24.13 The bitsto-bitstransform

24.13.1 The bits-to-bits transform uses the following encoding properties:

&Sour ce- val ues Bl T STRI NG ORDERED,
&Resul t - val ues BI T STRI NG ORDERED

24.13.2 The syntax for the bits-to-bits transform shall be;

[BITSTOBITS
SOURCE- LI ST &Sour ce-val ues
RESULT- LI ST &Resul t - val ues]

24.13.3 The source for this transform is either a bitstring or a bitstring composite. If the source is a bitstring the result
isahitstring. If the source is abitstring composite the result is a bitstring composite.

24.13.4 If the source is a hitstring composite, then the resulting bitstring composite is the ordered list of bitstrings
obtained by applying the following specification to each bitstring in the source.

130 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)
24,135 "SI ZE" and "MULTIPLE OF" both have default values and need not be set. "SOURCE-LIST" and
"RESULT- LI ST" arerequired, and shall contain at least one element in the ordered list.
24.13.6 Thetransformis specified by the values of "SOURCE- LI ST" and "RESULT- LI ST".

24.13.7 There shall be an equal number of bitstring valuesin each list, and al hitstring values in "SOURCE- LI ST" shall
be distinct.

24.13.8 The transform of a bitstring in "SOURCE- LI ST" is the bitstring specified in the corresponding position in
"RESULT- LI ST".

24.13.9 If thistransform is applied to a composite, al bitstringsin the "RESULT- LI ST" shall have the same size.

24.13.10If, in an instance of application of this transform, a source bitstring is not in the "SOURCE- LI ST", thisis an
ECN specification or an application error.

NOTE — In general it will only be possible for atool to check for this error at encode time, as restrictions on possible abstract
values may not be formally present in the ASN.1 specification.

24.13.11The transform is defined to be reversible (for all abstract values) if and only if the set of al bitstring valuesin
"RESULT- LI ST" are distinct, otherwise it shall not be used where a reversible transform is required. The result is self-
delimiting if the bitstring values in "RESULT- LI ST" are distinct and self-delimiting (see 3.2.42) and the transform is
applied to a bitstring. A composite result is never self-delimiting.

24.14 The charsto-composite-char transform
24.14.1 The chars-to-composite-char transform converts a characterstring to a single character composite.
24.14.2 The syntax for the chars-to-composite-char transform shall be;

[CHARS- TO- COMPOSI TE- CHAR]
24.14.3 The source of this transform is a characterstring and the result is a single character composite.
24.14.4 Thesingle character composite is an ordered list of the charactersin the source characterstring.

24.14.5 Thistransform is defined to be reversible for all abstract values.

24.15 The bits-to-composite-bits transform

24.15.1 The bits-to-composite-hits transform converts a bitstring to a bitstring composite, where each bitstring element
has the same (known) size.

24.15.2 The bits-to-composite-bits transform uses the following encoding properties:
&its-to-conposite-bits-unit Unit (1..MAX) DEFAULT bit
24.15.3 The syntax for the hits-to-composite-bits transform shall be:

[BI TS- TO COWCSI TE- BI TS
[UNIT &bits-to-conposite-bits-unit]]

24.15.4 The definition of the type used in the bits-to-composite-bits transformiis:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)

24.15.5 The source of thistransform is a bitstring and the result is a bitstring composite of size "UNI T".

24.15.6 The bitstring composite of size "UNI T" is an ordered list of bitstrings each of which is of size "UNI T". The first
bitstring in the composite is the first "UNI T* bits from the source bitstring. The second is the next "UNI T" bits, and so
on. If the source bitstring is not a multiple of "UNI T" bits, thisisan ECN specification or application error.

24.15.7 Thistransform is defined to be reversible for all abstract values.

24.16 The octets-to-composite-bitstransform
24.16.1 The octets-to-composite-bits transform converts an octetstring to a bitstring composite of size 8 bits.

24.16.2 The syntax for the octets-to-composite-bits transform shall be:

ITU-T Rec. X.692 (11/2008) 131

| SO/IEC 8825-3:2008 (E)

[OCTETS- TO COWPCSI TE- BI TS|
24.16.3 The source of thistransform is an octetstring and the result is a bitstring composite of size 8 bits.

24.16.4 The bitstring composite of size 8 is an ordered list of the bitstrings corresponding to the octets in the source
octetstring.

24.16.5 Thistransform is defined to be reversible for all abstract values.

24.17 The composite-char-to-charstransform
24.17.1 The composite-char-to-chars transform converts a single character composite to a characterstring.
24.17.2 The syntax for the composite-char-to-chars transform shall be:
[COVPCS| TE- CHAR- TO- CHARS]
24.17.3 The source of this transform is a single character composite and the result is a characterstring.

24.17.4 The characterstring is formed from the ordered list of characters present in the (source) single character
composite.

24.17.5 Thistransform is defined to be reversible for all abstract values.

24.18 The composite-bits-to-bitstransform
24.18.1 The composite-bits-to-bits transform converts a bitstring composite of a known unit size to a bitstring.
24.18.2 The syntax for the composite-bits-to-bits transform shall be:
[COWPCSI TE- BI TS- TO BI TS]
24.18.3 The source of this transform is a bitstring composite and the result is a bitstring.
24.18.4 The bitstring is formed from the ordered list of bitstrings present in the (source) bitstring composite.

24.18.5 Thistransform is defined to be reversible for all abstract values. The result bitstring is not self-delimiting.
NOTE — This transform is reversible because the units used in its generation are specified in the transform that produced the

bitstring composite, and are associated with that composite.
24.19 The composite-bits-to-octetstransform

24.19.1 The composite-bits-to-octets transform converts a bitstring composite of unit size 8 to an octetstring. It isan
ECN specification error if thisis applied to a bitstring composite that has a unit size which is not 8.

24.19.2 The syntax for the composite-bits-to-octets transform shall be:
[COWPCOSI TE- BI TS- TO- CCTETS]
24.19.3 The source of this transform is a bitstring composite and the result is an octetstring.
24.19.4 The octetstring is formed from the ordered list of bitstrings present in the (source) bitstring composite.
24.19.5 Thistransform is defined to be reversible for all abstract values.

25 Complete encodings and the #ouUTer class
If there is no encoding object of the #OUTER class in the combined encoding object set being applied to a type in the

ELM, then the encoder and decoder shall assume an encoding object of this class in which all encoding properties have
their default values.
25.1 Encoding properties, syntax and purpose for the #0UTER class

25.1.1 The syntax for defining encoding objects of the #OUTER class is defined as:
#OUTER : : = ENCODI NG CLASS {

-- Alignment point

132 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

&al i gnment - poi nt ENUVERATED
{unchanged, reset } DEFAULT reset,
-- Paddi ng
&post - paddi ng- uni t Unit (1..MAX) DEFAULT octet,
&post - paddi ng Paddi ng DEFAULT zero,
&post - paddi ng- pattern Non- Nul | - Pattern (ALL EXCEPT different: any)

DEFAULT bits:'0'B,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-reversal,

-- Added bits action

&added-bits ENUVERATED
{hard-error, signal-application,
silently-ignore, next-value}
DEFAULT har d-error

} WTH SYNTAX {

[ALI GNVENT &al i gnmrent - poi nt]
[PADDI NG
[MULTI PLE OF &post - paddi ng-uni t]
[PCST- PADDI NG &post - paddi ng
[PATTERN &post - paddi ng- pattern]]]
[BI T- REVERSAL &bit-reversal]

[ADDED BI TS DECODI NG &added- bi t s]
}
25.1.2 Thedefinition of the types used in the #OUTER specification are:
Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Paddi ng ::= ENUVERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:"'B | octets:'"H| char8:"" | charl6:"" |

char32:"")) -- (see 21.10.2)

25.1.3 Encoding objects of the #0UTER class specify encoder and decoder actions in relation to the entire encoding of
atype which is encoded by either:

a) application of an encoding in the ELM; or
b) application of an encoding to a contained type.

25.1.4 Three independent specifications can be made (see 25.1.5t0 25.1.7).

25.1.5 The"ALI GNVENT" specification is applicable only for a contained type, and determines whether the alignment
point isto be reset to the head of the container or isto be the same asthat in use for the encoding of the container.

25.1.6 The "PADDI NG' specification determines that the entire encoding is to be padded with trailing bits to make the
number of bits from the alignment point an integral multiple of some unit.

25.1.7 The"ADDED BI TS DECODI NG' specification is applicable only to decoders, and determines the action to be
taken if there are further bitsin the PDU after decoding according to encoding specifications has been completed.
NOTE — This provision is primarily to provide a simple mechanism for extensibility without use of the ASN.1 extensibility
marker. A later version of this Recommendation | International Standard is expected to give enhanced support for extensibility.

25.1.8 "ALI GNMVENT", "PADDI NG', and "ADDED BI TS DECODI NG' all take their default values if not set or if thereis
no encoding object of class #OQUTER in the combined encoding object set.

NOTE — The default values are those used by the encoding object of class #OUTER for PER basic unaligned.

25.2 Encoder actions for #OUTER

25.2.1 If "ALI GNVENT" is "unchanged", then the alignment point used in encoding a contained type shall be the
alignment point used in encoding the container.

ITU-T Rec. X.692 (11/2008) 133

| SO/IEC 8825-3:2008 (E)

25.2.2 If "ALI GNMENT" is "reset ", then the alignment point used in encoding a contained type shall be the start of
the encoding of that type.

25.2.3 If "PADDING' is set, then the encoder shall add bits in accordance with the value of "PADDI NG' and
"PATTERN' to make the number of bits from the alignment point a multiple of "MULTI PLE OF" units. "PATTERN" shall
be replicated and truncated as necessary.

25.2.4 The encoder shall diagnose an ECN specification or application error if the encoding is for atype in a contents
constraint on an octetstring, and the encoding of the type (after all specified "PADDI NG' actions) is not an integral
multiple of eight bits.

25.2.5 |If bit-reversal is set, the encoder actions specified in 22.12 shall be applied using the value of "MULTI PLE OF"
specified for (or defaulted in) "PADDI NG'.

25.2.6 Theencoder shall ignore "ADDED BI TS DECODI NG'.

25.3 Decoder actionsfor #OUTER

25.3.1 |If bit-reversal is set, the decoder actions specified in 22.12 shall be applied using the value of "MULTI PLE OF"
specified for (or defaulted in) "PADDI NG'.

25.3.2 If "ALI GNVENT" is "unchanged"”, then the alignment point used in encoding a contained type shall be the
alignment point used in encoding the container.

25.3.3 If "ALI GNMENT" is "reset ", then the alignment point used in encoding a contained type shall be the start of
the encoding of that type.

25.3.4 The decoder shall determine the bits added by "PADDI NG' (if any), and shall silently ignore the added bits, no
matter what their value.

25.3.5 If the PDU (or the container of a contained type) contains further bits after the end of the encoding, then the
decoder shall take the following actions:

a) if "ADDED BI TS DECODI NG' is"har d- error ": diagnose an encoder error;

b) If "ADDED BI TS DECODI NG' is "signal -application": ignore all further bits and signal the
application that there may be critical extensions to the protocol;

c) |If"ADDED BI TS DECODI NG'is"si | ent|y-i gnore": ignoreal further bits;

d) |If "ADDED BI TS DECODI NG' is "next - val ue": cease decoding and expect the application to initiate
decoding of anew value from the remaining bits.

134 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Annex A

Addendum to ITU-T Rec. X.680 | I SO/IEC 8824-1

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.680 | ISO/IEC 8824-1 are referenced in this Recommendation | International Standard.

Al Exportsand imports clauses

The productions "Assignedidentifier”, "Symbol" and "Reference" of 13.1, as well as subclauses 13.13 and 13.16, of
ITU-T Rec. X.680 | ISO/IEC 8824-1 are modified as follows:

13.1 Assignedi dentifier ::= Definitivel dentifier [
empty
Symbol ::=
Reference

[BuiltinEncodingClassRefer ence
|Par ameterizedReference

Reference::=
encodingclassr eference
|Exter nalEncodingClassRefer ence
|encodingobj ectr eference
|encodingobj ectsetr efer ence

NOTE 1 — The production "Assignedidentifier" is changed because "valuereference”s can neither be defined nor imported into
ELM or EDM modules.

NOTE 2 — "BuiltinEncodingClassReference" can only be used as a "Symbol" in an imports clause. The use of production
"External EncodingClassReference” in "Reference” is explained in 14.11.

where "Definitivel dentifier is defined as:

Definitivel dentifier ::=
"{" DefinitiveObjldComponentList "}"
| empty

13.13 When the "Symbol sExported” alternative of "Exports" is selected, then each "Symbol” in " SymbolsExported”
shall satisfy one and only one of the following conditions:
a) itisdefined inthe module from which it is being exported; or
b) it appears exactly once in the " Symbolslmported" aternative of "Imports" in the module from which it is
being exported.
13.16 When the "Symbolsimported" aternative of "Imports" is selected:
a) Each"Symbol" in"SymbolsFromModule" shall either:

1) be defined in the body of the module denoted by the "GlobalModuleReference” in
"SymbolsFromModule"; or

2) be present precisedly once in the imports clause of the module denoted by the
"GlobalModuleReference” in " SymbolsFromModule".

NOTE — This does not prohibit the same symbol name defined in two different modules from being imported into
another module. However, if the same "Symbol" name appears more than once in the imports clause of module "A",
that "Symbol" name cannot be exported from "A" for import to another module "B".

b) All the "SymbolsFromModule' in the "SymbolsFromModulelist" shall include occurrences of
"GlobalModuleReference" such that:

i) the "modulereference” in them are all different from each other (whether they are ASN.1, or EDM
modules) and from the "modulereference” associated with the referencing module; and

ii) the "Assignedidentifier", when non-empty, denotes object identifier values which are all different
from each other and from the object identifier value (if any) associated with the referencing module.

ITU-T Rec. X.692 (11/2008) 135

| SO/IEC 8825-3:2008 (E)

A2 Addition of REFERENCE
NOTE - This modification isintroduced for the sole purpose of clause 23.

The production "Type" in ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.1, is modified as follows:

Type::=
BuiltinType
|ReferencedType
|ConstrainedType
|REFERENCE

A3 Notation for character string values
The production "CharsDefn" of ITU-T Rec. X.680 | ISO/IEC 8824-1, 41.8, is modified as follows:

CharsDefn ::=
cstring
|Quadruple
[Tuple
|AbsoluteChar Reference

AbsoluteChar Reference ::=
Modulel dentifier

valuer eference

The "AbsoluteCharReference” is a fully-qualified name which references a character string value (of type | A5St ri ng
or BVPSt ri ng) defined in the "ASNL- CHARACTER- MCDULE" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 42.1).

136 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Annex B

Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.681 | ISO/IEC 8824-2 are referenced in this Recommendation | International Standard.

B.1 Definitions
The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4:
encoding classfield: A field which contains an arbitrary encoding class.
encoding classfield type: A type specified by reference to some type field of an encoding object class.

encoding object field: A field which contains an encoding object of some specified encoding class. Such a
field is either of fixed-class or of variable-class. In the former case, the class of the encoding object is fixed
by the field specification. In the latter case, the class of the encoding object is contained is some (specific)
encoding class field of the same encoding object.

encoding object set field: A field which contains a set of encoding objects of some specified encoding class.

fixed-type ordered value list field: A field which contains an ordered (possibly empty) list of values of
some specified type.

ordered encoding object list field: A field which contains an ordered non-empty list of encoding objects of
some specified encoding class.

referencefield: A field which contains areference to an encoding structure field (see dlso 17.5.15).

B.2 Additional lexical items
NOTE - This modification isintroduced for the sole purpose of clause 23.

The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 7:
B.2.1 Ordered valuelist field references
Name of item — orderedvaludlistfieldreference

An "orderedvaluelistfieldreference” shall consist of an ampersand ("&") immediately followed by a sequence of
characters as specified for a"typereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.2.

B.2.2 Ordered encoding object list field references
Name of item — orderedencodingobjectlistfieldreference

An "orderedencodingobjectlistfieldreference” shall consist of an ampersand ("&") immediately followed by a sequence
of characters as specified for an "objectsetreference” in ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.3.

B.2.3 Encoding classfield references
Name of item — encodingclassfieldreference

An "encodingclassfieldreference" shall consist of an ampersand ("&") immediately followed by a sequence of characters
as specified for an "encodingclassreference” in 8.3.

B.3 Addition of "ENCODING-CLASS"
NOTE — This modification isintroduced for the sole purpose of clause 23.

Replace the reserved word "CLASS' with "ENCODING-CLASS' in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.3.

ITU-T Rec. X.692 (11/2008) 137

| SO/IEC 8825-3:2008 (E)

B4 FieldSpec additions
NOTE — This modification is introduced for the sole purpose of clause 23.

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.4, is modified as follows:

FieldSpec ::=
FixedTypeValueFieldSpec
|FixedTypeValueSetFieldSpec
|FixedTypeOrderedValuel istFieldSpec
|FixedClassEncodingObjectFieldSpec
|VariableClassEncodingObjectFieldSpec
|FixedClassEncodingObjectSetFieldSpec
|FixedClassOrderedEncodingObjectL istFieldSpec
|EncodingClassFieldSpec

B.5 Fixed-type ordered valuelist field spec

NOTE - This modification isintroduced for the sole purpose of clause 23.

A "FixedTypeOrderedValuelListFieldSpec" specifies that the field is a fixed-type ordered value list field (see B.1 of this
Recommendation | International Standard):

FixedTypeOrderedValuelL istFieldSpec ::=
orderedvaluelistfieldreference
DefinedType
ORDERED
FixedTypeOrderedValuelL istOptionalitySpec ?

FixedTypeOrderedValuelL istOptionalitySpec ::= OPTIONAL | DEFAULT OrderedValuelL ist

The name of the field is "orderedvaludlistfieldreference”. The "DefinedType" references the type of values contained in
the field. The "FixedTypeOrderedV alueL istOptionalitySpec”, if present, specifies that the field may be unspecified in
an encoding object definition, or, in the "DEFAULT" case, that omission produces the following "OrderedValuelList"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 26.3), all of whose values shall be of "DefinedType".

B.6 Fixed-class encoding object field spec
NOTE - This modification isintroduced for the sole purpose of clause 23.

A "FixedClassEncodingObjectFieldSpec" specifies that the field is a fixed-class encoding object field (see B.1 of this
Recommendation | International Standard):

FixedClassEncodingObjectFieldSpec ::=
objectfieldreference
DefinedOr BuiltinEncodingClass
EncodingObjectOptionalitySpec?

EncodingObjectOptionalitySpec ::= OPTIONAL | DEFAULT EncodingObject

The name of the field is "objectfieldreference". The "DefinedOrBuiltinEncodingClass' references the encoding class of
the encoding object contained in the field (which may be the "EncodingClass' currently being defined). The
"EncodingObjectOptionalitySpec”, if present, specifies that the field may be unspecified in an encoding object
definition, or, in the DEFAULT case, that omission produces the following "EncodingObject" (see 17.1.5 of this
Recommendation | International Standard) which shall be of the "DefinedOrBuiltinEncodingClass".

B.7 Variable-class encoding object field spec

A "VariableClassEncodingObjectFieldSpec” specifies that the field is a variable-class encoding object field (see B.1 of
this Recommendation | International Standard):

VariableClassEncodingObjectFieldSpec ::=
objectfieldreference
encodingclassfieldr eference
EncodingObjectOptionalitySpec?

The name of the field is "objectfieldreference”. The "encodingclassfieldreference” references an encoding class field of
the encoding class being specified. The "EncodingObjectOptionalitySpec”, if present, specifies that the encoding
object may be omitted in an encoding object definition, or, in the DEFAULT case, that omission produces the following
"EncodingObject". The "EncodingObjectOptionalitySpec" shall be such that:

138 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

a) if thetype field denoted by the "encodingclassfieldreference” has an "EncodingClassOptionalitySpec” of
OPTI ONAL, then the "EncodingObjectOptionalitySpec" shall also be OPTI ONAL; and

b) if the "EncodingObjectOptionalitySpec” is "DEFAULT EncodingObject”, then the encoding class field
denoted by the "encodingclassfieldreference” shall have an "EncodingClassOptionalitySpec” of
"DEFAULT DefinedOrBuiltinEncodingClass®, and "EncodingObject” shall be an encoding object of that
class.

B.8 Fixed-class encoding object set field spec
NOTE — This modification isintroduced for the sole purpose of clause 23.

A "FixedClassEncodingObjectSetFieldSpec” specifies that the field is a fixed-class encoding object set field (see B.1 of
this Recommendation | International Standard):

FixedClassEncodingObjectSetFieldSpec ::=
objectsetfieldreference
DefinedOr BuiltinEncodingClass
EncodingObj ect SetOptionalitySpec?

EncodingObjectSetOptionalitySpec ::= OPTIONAL | DEFAULT EncodingObject Set

The name of the field is "objectsetfieldreference’. The "DefinedOrBuiltinEncodingClass’ references the class of the
encoding objects contained in the field. The "EncodingObjectSetOptionalitySpec”, if present, specifies that the field
may be unspecified in an encoding object definition, or, in the DEFAULT case, that omission produces the following
"EncodingObjectSet" (see clause 18), all of whose objects shall be of "DefinedOrBuiltinEncodingClass'.

B.9 Fixed-class ordered encoding object list field spec
NOTE - This modification isintroduced for the sole purpose of clause 23.

A "FixedClassOrderedEncodingObjectListFieldSpec" specifies that the field is a fixed-class ordered encoding object
list field (see B.1 of this Recommendation | International Standard):

FixedClassOr deredEncodingObjectListFieldSpec ::=
order edencodingobj ectlistfieldr eference
DefinedOr BuiltinEncodingClass
ORDERED
OrderedEncodingObjectL istOptionalitySpec?

OrderedEncodingObjectListOptionalitySpec ::= OPTIONAL | DEFAULT OrderedEncodingObjectL ist

The name of the field is "orderedencodingobjectlistfieldreference”. The "DefinedOrBuiltinEncodingClass" references
the class of the encoding objects contained in the field. The "OrderedEncodingObjectListOptionalitySpec”, if present,
specifies that the field may be unspecified in an encoding object definition, or, in the DEFAULT case, that omission
produces the following "OrderedEncodingObjectList" (see B.11 of this Recommendation | International Standard), all
of whose objects shall be of "DefinedOrBuiltinEncodingClass".

B.10 Encoding classfield spec
NOTE - This modification isintroduced for the sole purpose of clause 23.

An "EncodingClassFieldSpec" specifies that the field is an encoding class field (see B.1 of this Recommendation |
International Standard):

EncodingClassFieldSpec ::=
encodingclassfieldr eference
EncodingClassOptionality Spec?

EncodingClassOptionalitySpec ::= OPTIONAL | DEFAULT DefinedOr BuiltinEncodingClass

The name of the field is "encodingclassfieldreference”. If the "EncodingClassOptionalitySpec” is absent, all encoding
object definitions for that class are required to include a specification of an encoding class for that field. If OPTI ONAL
is present, then the field can be left undefined. If DEFAULT is present, then the following
"DefinedOrBuiltinEncodingClass" provides the default setting for the field if it is omitted in a definition.

ITU-T Rec. X.692 (11/2008) 139

| SO/IEC 8825-3:2008 (E)

B.11 Ordered valuelist notation
OrderedValuelList ::="{" Value" " +"}"

The "OrderedValueList" is an ordered list of one or more values of the governing type. It is used when the application
applies semantics to the order of valuesin thelist.

NOTE — A value list can only be specified by in-line notation (which is governed by atype field, a fixed-type value set field, or
afixed-type ordered value list field).

B.12 Ordered encoding object list notation
OrderedEncodingObjectList ::="{" EncodingObject "," +"}"

The "OrderedEncodingObjectList" is an ordered list of one or more encoding objects of the governing class. It is used
when the application applies semantics to the order of encoding objectsin thelist.

Example: A list of #TRANSFORMencoding objectsis applied in the stated order.

NOTE — The following restrictions arise from normative text and BNF productions: An ordered encoding object list can only be
specified by in-line notation (which is governed by an ordered encoding object list field); encoding objects within that list can be
specified using either a reference name or in-line notation; the governor cannot be #ENCCDI NGS.

B.13 Primitive field names

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.13, is modified as follows:

9.13 The construct "PrimitiveFieldName" is used to identify a field relative to the encoding class containing its
specification:

PrimitiveFieldName ::=
valuefieldr eference
|valuesetfieldreference
|or der edvaludlistfieldr eference
B.14 Additional reserved words
ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.6 and 10.7, are modified as follows:

10.6 A "word" lexical item used asa"Literal" cannot be one of the following:

BEGIN MINUSINFINITY PER-CANONICAL-UNALIGNED
BER NON-ECN-BEGIN PLUSINFINITY

CER NULL TRUE

DER OPTIONS UNION

ENCODE OUTER USE

ENCODE-DECODE PER-BASIC-ALIGNED USE-SET

END PER-BASIC-UNALIGNED

FALSE PER-CANONICAL-UNALIGNED

NOTE - This list comprises only those ASN.1 reserved words which can appear as the first item of a "Vaue",
"EncodingObject”, or "EncodingObjectSet", and also the reserved word END. Use of other ECN reserved words does not cause
ambiguity and is permitted. Where the defined syntax is used in an environment in which a "word" is aso an
"encodingobjectsetreference”, the use as a "word" takes precedence.

10.7 A "Literal" specifies the actual inclusion of that "Literal", which is required to be a "word", at that position in
the defined syntax.

B.15 Definition of encoding objects

Therestriction imposed by ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.12. d), is removed.

NOTE — This affects the defined syntax for defining encoding objects of some classes (see clauses 23 and 24). It means, for
example, that, for a defined syntax such as:

[BOOL- TO- | NT [AS &bool -to-int]]
the user is allowed to write:
BOOL- TO- | NT

when defining an encoding object of this class. In such a case, the DEFAULT value associated with the parameter
"&bool -to-int" (i.e,"fal se-zero0")isused in the definition of the transform "BOOL- TO- | NT".

140 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

B.16 Additionsto" Setting"
ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.7, is modified as follows:

11.7 A "Setting" specifies the setting of some field within an encoding object being defined:

Setting ::=
Value
[ValueSet
|[OrderedValuelL ist
|EncodingObj ect
|EncodingObj ectSet
|OrderedEncodingObjectList
|DefinedOr BuiltinEncodingClass
[OUTER

If thefieldis:
a) avauefidd, the"Vaue' aternative;
b) afixed-typevalue set field, the "ValueSet" aternative;
c) afixed-type ordered valuelist field, the "OrderedValuel ist" alternative;
d) anencoding object field, the "EncodingObject” alternative;
€) anencoding object set field, the "EncodingObjectSet" aternative;
f) an ordered encoding object list field, the " OrderedEncodingObjectList" alternative;
g) anencoding classfield, the "DefinedOrBuiltinEncodingClass' alternative;
h) areferencefield, the"Vaue' or the OUTER alternative,

shall be selected. For a reference field specified using the syntax of clauses 20 to 25, the "Value" shall be a dummy
parameter. OUTER can be used whenever areferenceis required and identifies a container which is the entire encoding.

NOTE — The setting is further restricted as described in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.5t09.12, and 11.8 to 11.9.
B.17 Encoding classfield type

The type that is referenced by this notation depends on the category of the field name. For the different categories of
field names, B.17.2 to B.17.4 below specify the type that is referenced.

B.17.1 The notation for an encoding class field type shall be "EncodingClassFieldType":

EncodingClassFieldType ::=
DefinedOr BuiltinEncodingClass

FieldName

where the "FieldName" is as specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.14, relative to the encoding class
identified by the "DefinedOrBuiltinEncodingClass'.

B.17.2 For afixed-type value, afixed-type value set field, or a fixed-type ordered value list field, the notation denotes
the "Type" that appears in the specification of that field in the definition of the encoding object class.

B.17.3 Thisnotation is not permitted if the field is an encoding object, an encoding object set or an ordered encoding
object list field.

B.17.4 The notation for defining a value of this type shall be "FixedTypeFieldVal" as defined in ITU-T Rec. X.681 |
ISO/IEC 8824-2, 14.6.

ITU-T Rec. X.692 (11/2008) 141

| SO/I EC 8825-3:2008 (E)
Annex C

Addendum to ITU-T Rec. X.683 | | SO/IEC 8824-4

(Thisannex forms an integral part of this Recommendation | International Standard)

This annex specifies the modifications that need to be applied when productions and/or clauses from ITU-T Rec.
X.683 | ISO/IEC 8824-4 are referenced in this Recommendation | International Standard.

C.l Parameterized assignments
Clauses 8.1 and 8.3 of ITU-T Rec. X.683 | ISO/IEC 8824-4 are modified as follows:

8.1 There are parameterized assignment statements corresponding to each of the assignment statements specified
in this Recommendation | International Standard. The "ParameterizedAssignment” construct is:

ParameterizedAssignment ::=
Par ameterizedEncodingObjectAssignment
| ParameterizedEncodingClassAssignment
| Par ameterizedEncodingObjectSetAssignment

8.3 ParameterList ::="{<" Parameter " " + ">}"

Governor ::=
EncodingClassFieldType
|IREFERENCE
|DefinedOr BuiltinEncodingClass
[#ENCODINGS

[Type
A "DummyReference” in "Parameter” may stand for:
a) anencoding class, in which case there shall be no "ParamGovernor";

a) an ASN.1value, value set, or fixed-type ordered value list, in which case the "ParamGovernor" shall be
present as a"Governor" that is atype extracted from an encoding class ("EncodingClassFieldType");

b) an"identifier", in which case the "ParamGovernor" shall be present as a"Governor" that is REFERENCE;

c) an encoding object, or an ordered encoding object list, in which case the "ParamGovernor" shall be
present as a " Governor” that is an encoding class (" DefinedOrBuiltinEncodingClass");

d) an encoding object set, in which case the "ParamGovernor" shall be present as a "Governor" that is
#ENCODI NGS.

NOTE - "DummyGovernor"s are not allowed in ECN.
C.2 Parameterized encoding assignments
The following productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2:

Par ameterizedEncodingClassAssignment ::=
encodingclassr eference
ParameterList

E.ﬁcodingCIass

Par ameterizedEncodingObjectAssignment ::=
encodingobjectr eference
ParameterList
DefinedOr BuiltinEncodingClass

EncodingObject

ParameterizedEncodingObj ectSetAssignment ::=
encodingobjectsetr eference
ParameterList
#ENCODI NGS

E.r.1codi ngObj ect Set

142 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.4, is modified as follows:

8.4 The scope of a"DummyReference” appearing in a"ParameterList" isthe "ParameterList" itself, together with
that pat of the “ParameterizedAssignment® which follows the "::=". In case of a
"ParameterizedEncodingObjectAssignment”, the scope extends to the "DefinedOrBuiltinEncodingClass' which
precedesthe": : =". The "DummyReference" hides any other "Reference” with the same name in that scope.

NOTE — The specia case for "ParameterizedEncodingObjectAssignment” is intended to be used in common with renames
clauses (see D.3.3.3). It alowsto write an assignment such as the following in which the dummy parameter "#Any- d ass" of
the encoding object "new conponent - encodi ng" is used as an actual parameter for the encoding class "#New-
conponent ":
new conponent - encodi ng {< #Any-cl ass >} #New conponent {< #Any-class >} ::=
{ -- encoding object definition -- }

C.3 Referencing parameterized definitions
The production " ParameterizedReference" of ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.1, is modified as follows:

ParameterizedReference ::=
Reference
| Referer]ce“{<" " >}II

The following productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.2:

Par ameterizedEncodingObject ::=
SimpleDefinedEncodingObject
ActualParameterList

SimpleDefinedEncodingObject ::=
Exter nalEncodingObjectReference
| encodingobj ectr eference

ParameterizedEncodingObjectSet ::=
SimpleDefinedEncodingObj ect Set
ActualParameterList

SimpleDefinedEncodingObjectSet ::=
Exter nalEncodingObjectSetRefer ence
| encodingobjectsetr eference

ParameterizedEncodingClass ::=
SimpleDefinedEncodingClass
ActualParameterList

SimpleDefinedEncodingClass ::=
Exter nalEncodingClassRefer ence
| encodingclassr eference

C4 Actual parameter list
ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.5, is modified as follows:
9.5 The "Actua ParameterList" is:

ActualParameterList ::=
"{<" ActualParameter " " +">}"

ActualParameter ::=
Value
[ValueSet
[OrderedValuelL ist
|DefinedOr BuiltinEncodingClass
|EncodingObj ect
|EncodingObj ect Set
|Or der edEncodingObj ectL ist
[ComponentldList
[STRUCTURE
|OUTER

If the corresponding dummy parameter is:
a) avalue the"Vaue' alternative shall be used;
b) avalue set: the"ValueSet" dternative shall be used;

ITU-T Rec. X.692 (11/2008) 143

| SO/IEC 8825-3:2008 (E)

0)
d)
€
f)
9)
h)

afixed-type ordered value list: the "OrderedValuelist" alternative shall be used;

an encoding class: the "DefinedOrBuiltinEncodingClass' aternative shall be used;

an encoding object: the "EncodingObject” alternative shall be used;

an encoding object set: the "EncodingObjectSet" alternative shall be used;

an ordered encoding object list: the "OrderedEncodingObjectList" aternative shall be used;
areference: the "identifier", STRUCTURE or QUTER aternative shall be used.

STRUCTURE shall only be used when the actual parameter is used as specified in 17.5.15. OUTER can be used whenever
areference isrequired to identify a container, and identifies the container of the entire encoding.

144

ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Annex D

Examples

(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ECN. The examples are divided into five groups:
— General examples, which show the look-and-feel of ECN definitions (D.1).

— Specialization examples, which show how to modify some parts of a standardized encoding. Each
example has a description of the requirements for the encoding and a description of the selected solution
and possible alternative solutions (D.2).

— Explicitly generated structure examples, which show the use of explicitly generated structures when the
same specialized encoding is used several times (D.3).

— A legacy protocol example which shows three ways of handling the problem of a traditional "more-bit"
approach to sequence-of termination (D.4).

— A second legacy protocol example, which shows how to construct ECN definitions for a protocol whose
message encodings have been specified using atabular notation (D.5).

D.1 General examples

The examples described in D.1.1 to D.1.14 are part of a complete ECN specification whose ASN.1, EDM, and ELM
modules are given in outline in D.1.15, D.1.16 and D.1.17, and are given completely in a copy of this annex which is
available from the website cited in Annex F.

D.1.1 An encoding object for a boolean type
D.1.1.1 The ASN.1 assignment is:

Married ::= BOOLEAN
D.1.1.2 The encoding object assignment (see 23.3.1) is:

bool eanEncodi ng #BOOLEAN :: = {
ENCODI NG SPACE
SIZE 1
MULTI PLE OF bit
TRUE- PATTERN bits:'1'B
FALSE- PATTERN bits:'0' B}

marri edEncodi ng-1 #Married ::= bool eanEncodi ng

D.1.1.3 Thereis no pre-alignment, and the encoding space is one bit, so "Mar ri ed" is encoded as a bit-field of length
1. Patterns for TRUE and FALSE values (in this case asingle bit) are '1'B and '0'B respectively.

D.1.1.4 The values specified above are the values that would be set by default (see 23.3.1) if the corresponding
encoding properties were omitted, so the same encoding can be achieved with less verbosity by:

marri edEncodi ng-2 #Married ::= {
ENCODI NG- SPACE
Sl ZE 1}

D.1.1.5 This encoding for a boolean is, of course, just what PER provides, and another aternative is to specify the
encoding using the PER encoding object for boolean by way of the syntax provided by 17.3.1.

marri edEncodi ng-3 #Married ::= {
ENCODE W TH PER- BAS| C- UNAL| GNED}

D.1.1.6 Asthese examples show, there are often cases where ECN provides multiple ways to define an encoding. It is
up to the user to decide which aternative to use, balancing verbosity (stating explicitly values that can be defaulted)
against readability and clarity.

ITU-T Rec. X.692 (11/2008) 145

| SO/IEC 8825-3:2008 (E)

D.1.2 An encoding object for an integer type

D.1.2.1 The ASN.1 assignments are:
EvenPositivelnteger ::= INTEGER (1..MAX) (CONSTRAINED BY {-- Miust be even --})
EvenNegativel nteger ::= INTEGER (M N..-1) (CONSTRAINED BY {-- Must be even --})

D.1.2.2 The encoding object assignments are:

evenPosi ti vel nt eger Encodi ng #EvenPositivel nteger ::= {
USE #NonNegat i vel nt
MAPPI NG TRANSFORMS {{| NT-TO- I NT di vi de: 2}}
W TH PER- BASI G UNALI GNED}

#NonNegat i vel nt ::= #I NT(0. . NVAX)

evenNegat i vel nt eger Encodi ng #EvenNegati vel nteger ::= {
USE #NonPosi ti vel nt
MAPPI NG TRANSFORMS {{I NT- TO- | NT di vi de: 2
-- Note: -1/ 2 =0 - see clause 24.3.7 -- }}
W TH PER- BASI G- UNAL| GNED}

#NonPosi tivelnt ::= #I NT(MN.. 0)

D.1.2.3 Aneven vaueisdivided by two, and is then encoded using standardized PER encoding rules for positive and
negative integer types.

D.1.3 Another encoding object for an integer type

D.1.3.1 Here we assume the requirement to define an encoding object which encodes an integer in a two-octet field
starting at an octet boundary.

D.1.3.2 The ASN.1 assignment is:
Altitude ::= I NTEGER (0. .65535)

D.1.3.3 The Encoding object assignment (see 23.6.1 and 23.7.1) is:

i nt eger Ri ght Al i gnedEncodi ng #Al titude ::= {
ENCCODI NG {
ALI GNED TO NEXT oct et
ENCODI NG SPACE
S| ZE 16}}

D.14 An encoding object for an integer type with holes
D.1.4.1 The ASN.1 assignment is:
IntegerWthHol e ::= I NTEGER (-256..-1 | 32..1056)

D.1.4.2 The encoding object assignment (see 19.5.2) is:

i nt eger Wt hHol eEncodi ng #l ntegerWthHole ::= {
USE #l nt Fr onDT01280
MAPPI NG ORDERED VALUES
W TH PER- BASI G- UNAL| GNED}

#1 nt Fron0T01280 :: = #I NT (0..1280)

D.1.4.3 "I nteger Wt hHol e" is encoded as a positive integer. Values in the range -256..-1 are mapped to values in the
range 0..255 and valuesin the range 32..1056 are mapped to 256..1280.

D.1.5 A morecomplex encoding object for an integer type
D.1.5.1 The ASN.1 assignments are:
Positivelnteger ::= I NTEGER (1.. MAX)
Negati velnteger ::= INTEGER (M N..-1)
D.1.5.2 The encoding object assignments are:

posi ti vel nt eger Encodi ng #Positivelnteger ::=
i nt eger Encodi ng

146 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

negati vel nt eger Encodi ng #Negativelnteger ::=
i nt eger Encodi ng

D.1.5.3 Vaues of "Positivelnteger" and "Negativel nteger" types are encoded by the encoding object
"i nt eger Encodi ng" as a positive integer or as a twos-complement integer respectively. This is defined below, and
provides different encodings depending on the bounds of the type to which it is applied.

D.1.5.4 The"i nt eger Encodi ng" encoding object defined here is very powerful, but quite complex. It contains five
encoding objects of the class #CONDI TI ONAL- | NT; they all define an octet-aligned encoding. When the integer values
being encoded are bounded, the number of bits is fixed; when the values are not bounded, the type is required to be the
last in aPDU, and the value isright justified in the remaining octets of the PDU.

D.1.5.5 The definition of the encoding object (see 23.6.1 and 23.7.1) is:

i nteger Encodi ng #I NT ::= {ENCODI NGS {
{ I F unbounded- or - no- | ower - bound
ENCODI NG- SPACE
S| ZE vari abl e-wi t h- det er mi nant
DETERM NED BY cont ai ner
USI NG OUTER
ENCODI NG t wos- conpl enent}
{ I F bounded-wi t h-negati ves
ENCODI NG- SPACE
Sl ZE fi xed-t o- max
ENCODI NG t wos- conpl enent}
{ IF sem -bounded-wi t h-negatives
ENCODI NG SPACE
Sl ZE vari abl e-wi t h- det er mi nant
DETERM NED BY cont ai ner
USI NG QUTER
ENCODI NG t wos- conpl enent}
{ I F sem -bounded-wi t hout - negati ves
ENCODI NG- SPACE
Sl ZE vari abl e-wi t h- det er m nant
DETERM NED BY cont ai ner
USI NG QUTER
ENCODI NG positive-int} ,
{ I'F bounded-wi t hout - negati ves
ENCODI NG- SPACE
Sl ZE fi xed-t o- max
ENCODI NG positive-int}}}

D.16 Positiveintegersencoded in BCD

D.1.6.1 This example shows how to encode a positive integer in BCD (Binary Coded Decimal) by successive
transforms: from integer to character string then from character string to bitstring.

D.1.6.2 The ASN.1 assignment is:

Posi tivel nteger BCD :: = | NTEGER(O. . NAX)
D.1.6.3 The encoding object assignment (see 19.4, 24.1 and 23.4.1) is:
posi ti vel nt eger BCDEncodi ng #Posi tivel ntegerBCD :: = {
USE #CHARS
MAPPI NG TRANSFORMS{ {
I NT- TO- CHARS
-- W convert to characters (e.g., integer 42

-- becones character string "42") and encode the characters
-- with the encodi ng object "nuneric-chars-to-bcdEncodi ng"
S| ZE vari abl e
PLUS- SI GN FALSE}}
W TH nuneri c- chars-to- bcdEncodi ng }

numeri c- chars-to- bcdEncodi ng #CHARS :: = {
ALl GNED TO NEXT ni bbl e
TRANSFORMS { {
CHAR-TO-BI TS
-- We convert each character to a bitstring
--(e.g., character "4" becomes '0100'B and "2" becones
-- '0010' B)
AS mapped
CHAR-LIST { "O"," 21", "2","3",

ITU-T Rec. X.692 (11/2008) 147

| SO/IEC 8825-3:2008 (E)

"4t "5t e, T,
"8","9"}
BI TS-LI ST { '0000'B, '0001' B, '0010'B, '0011'B,
'0100' B, '0101'B, '0110'B, '0111'B,
'1000' B, '1001'B }}}
REPETI T ON- ENCODI NG {
REPETI TI ON- SPACE
-- We determine the concatenation of the bitstrings for the
-- characters and add a termnator (e.g.,
-- '0100'B + '0010' B becones ' 0100 0010 1111' B)
S| ZE vari abl e- wi t h- det er m nant
DETERM NED BY pattern
PATTERN bits:'1111' B}}

D.1.6.4 The positive number is first transformed into a character string by the int-to-chars transform using the options
variable length and no plus sign, and in addition the default option of no padding, giving a string containing characters
"0" to "9". Then the character string is encoded such that each character is transformed into a bit pattern, ' 0000' B for
"0",' 0001 Bfor "1".., ' 1001' Bfor "9". The bitstring is aligned on a nibble boundary and terminates with a specific
pattern '1111'B.

D.1.6.5 A more complex aternative, not shown here, but commonly used, would be to embed the BCD encoding in an
octet string, with an external boolean identifying whether there is an unused nibble at the end or not.

D.1.7 An encoding object of class#BI TS

D.1.7.1 This example defines an encoding object of class #BI TS (see 23.2.1) for a bitstring that is octet-aligned,
padded with 0, and terminated by an 8-bit field containing * 00000000’ B (it is assumed that an abstract value never
contains eight successive zeros):

D.1.7.2 The ASN.1 assignment is:

Fax ::= BIT STRI NG (CONSTRAI NED BY
{-- must not contain eight successive zero bits --})

D.1.7.3 The encoding object assignment (see 23.2.1, 23.13.1 and 23.14.1) is:

faxEncodi ng #Fax ::= {
ALI GNED TO NEXT oct et
REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE
S| ZE vari abl e-wi t h- det er m nant
DETERM NED BY pattern
PATTERN bi t s: ' 00000000' B}}

D.1.7.4 This encoding object (of class #BITS) contains an embedded encoding object of class
#CONDI TI ONAL- REPETI TI ON which specifies the mechanism and the termination pattern.

D.1.7.5 Aswith many of the examplesin this annex, there is heavy reliance here on the defaults provided in clause 23,
and advantage is taken of the ability to define encoding objects in-line rather than separately assigning them to
reference names which are then used in other assignments.

D.1.8 An encoding object for an octetstring type
D.1.8.1 The ASN.1 assignment is:

Bi naryFile ::= OCTET STRI NG
D.1.8.2 The encoding object assignment (see 23.9.1) is:

bi naryFi | eEncodi ng #BinaryFile ::= {

ALI GNED TO NEXT oct et

PADDI NG one

REPETI T1 ON- ENCODI NG {

REPETI TI ON- SPACE

S| ZE vari abl e- wi t h- det er ni nant
DETERM NED BY cont ai ner
USI NG OUTER} }

D.1.8.3 Thevaueisoctet-aligned using padding with ones and terminates with the end of the PDU.
D.1.9 An encoding object for a character string type

D.1.9.1 The ASN.1 assignment is:

148 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Password ::= PrintableString

D.1.9.2 The encoding object assignment (see 23.4.1 and 23.14.1) is:

passwor dEncodi ng #Password ::= {
ALI GNED TO NEXT oct et
TRANSFORMVS {{CHAR- TO-BI TS AS conpact
SI ZE fi xed-t o- max
MULTI PLE OF bit }}
REPETI TI ON- ENCODI NG {
REPETI TI O\ SPACE
S| ZE vari abl e-w t h- det er m nant
DETERM NED BY cont ai ner
USI NG QUTER} }

D.1.9.3 The string is octet-aligned using padding with "0" and terminates with the end of the PDU; the character-
encoding is specified as "conpact ", so each character is encoded in 7 bits using * 0000000' B for the first ASCII
character of typePri nt abl eStri ng,' 0000001' B for the next, and so on.

D.1.10 Mapping character valuesto bit values
D.1.10.1The ASN.1 assignment is:
CharacterStringToBit ::= IA5String ("FIRST'" | "SECOND' | "TH RD")

D.1.10.2The encoding object assignment (see 19.2) is:

character StringToBi t Encodi ng #CharacterStringToBit ::= {
USE #l nt Fr onDTo2
MAPPI NG VALUES ({

" FI RST" TO 0,
" SECOND' TO 1,
"TH RD' TO 2}
W TH i nt eger Encodi ng}
#l nt Fron0To2 ::= #I NT (O..2)

where "integerEncoding” is defined in D.1.5.5.

D.1.10.3The three possible abstract values are mapped to three integer numbers and then those numbers are encoded in
atwo-bit field.

D.1.11 An encoding object for a sequencetype

D.1.11.1Here we encode a sequence type that has afield "a" which carries application semantics (i.e., is visible to the
application), but we also want to use it as a presence determinant for a second (optional) integer field "b". Thereisthen
an octet string that is octet-aligned, and delimited by the end of the PDU. We need to give specialized encodings for
the optionaity of "b", and we use the specialized encoding defined in D.1.8 (by reference to the encoding object
"binaryFileEncoding") for the octet string "c". We want to encode everything else with PER basic unaligned.

D.1.11.2The ASN.1 assignment is:

Sequencel 1= SEQUENCE ({
a BOOLEAN,
b | NTEGER OPTI ONAL,
c Bi naryFil e

- "BinaryFile" is defined in D.1.8.1 --}
D.1.11.3The ECN assignments (see 17.5 and 23.11.1) are:

sequencelEncodi ng #Sequencel ::= {
ENCODE STRUCTURE {
b USE- SET OPTI ONAL- ENCODI NG par anet er i zedPr esenceEncodi ng {< a >},
¢ binaryFi | eEncodi ng
-- "binaryFileEncoding" is defined in D.1.8.2 -- }
W TH PER- BASI C- UNALI GNED}

par anet eri zedPr esenceEncodi ng {< REFERENCE: ref erence >} #OPTIONAL :: = {
PRESENCE
DETERM NED BY fi el d-t o- be-used
USI NG r ef er ence}

D.1.11.4Notice that we did not need to provide the "DECODERS- TRANSFORMB' encoding property in the
"par anet er i zedPr esenceEncodi ng" encoding object, because the component "a" was a boolean, and it is assumed

ITU-T Rec. X.692 (11/2008) 149

| SO/IEC 8825-3:2008 (E)

that TRUE meant that "b" was present. If, however, "a" had been an integer field, or if the application value of TRUE for
"a" actually meant that "b" was absent, then we would have included a "DECODER- TRANSFORMS" encoding property as
inD.2.6.

D.1.12 An encoding object for a choicetype

D.1.12.1 A choice type with three alternatives is encoded using the tag number of class context, encoded in a three bit
field, as a selector. The encoding object of class #ALTERNATI VES specify that the identification handle "Tag" is used as
determinant; the encoding object of class #TAG defines the position of the identification handle (three bits). For each
alternative, the value is encoded with PER basic unaligned.

D.1.12.2The ASN.1 assignment is:

Choice ::= CHO CE {
bool ean [1] BOOLEAN,
i nt eger [3] I NTECER,
string [5] I A5St ri ng}

D.1.12.3The ECN assignments (see 23.1.1 and 23.15.1) are:

choi ceEncodi ng-1 #Choice ::= {
ENCODE STRUCTURE {
bool ean [tagEncodi ng] USE- SET,
i nt eger [tagEncodi ng] USE- SET,
string [tagEncodi ng] USE- SET
STRUCTURED W TH {
ALTERNATI VE
DETERM NED BY handl e
HANDLE "Tag"}}
W TH PER- BASI C- UNALI GNED}

tagEncodi ng #TAG :: = {
ENCCODI NG- SPACE
SIZE 3
MULTI PLE OF bit
EXH BI TS HANDLE "Tag" AT {0 | 1| 2}}

D.1.12.4Perhaps a neater way of providing the first assignment in D.1.12.3 would be to define a new encoding object
set and apply it asfollows:

M/Encodi ngs #ENCODI NGS :: = { tagEncoding } COVPLETED BY PER- BASI G- UNALI GNED

choi ceEncodi ng-2 #Choice ::= {
ENCODE STRUCTURE {
STRUCTURED W TH {
ALTERNATI VE
DETERM NED BY handl e
HANDLE " Tag"}}
W TH MyEncodi ngs}

D.1.13 Encoding a bitstring containing another encoding

D.1.13.1A bitstring value encoded with PER basic unaligned, contains the PER basic unaligned encoding of a sequence
as an integral number of octets (padded with zeros) but not necessarily aligned on an octet boundary.

D.1.13.2The ASN.1 assignment are:

Sequence?2 ::= SEQUENCE {

a BOOLEAN,

b BI T STRI NG (CONTAI NI NG Sequence3) }
Sequence3 :: = SEQUENCE {

a I NTEGER(O. . 10),

b BOOLEAN }

D.1.13.3The ECN assignments (see 25.1) are:

sequence2Encodi ng #Sequence2 :: = {
ENCCDE STRUCTURE {
b { REPETI TI O\ ENCCDI NG {
REPETI Tl ON- SPACE
SI ZE 8
MJULTI PLE OF bit}
CONTENTS- ENCODI NG { sequence3Encodi ng}

150 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

COVPLETED BY PER- BAS| C- UNALI GNED} }
W TH PER- BASI G- UNALI GNED}

sequence3Encodi ng #Sequence3 ::= {
ENCODE STRUCTURE {
STRUCTURED W TH sequence3St r uct ur eEncodi ng

}
W TH PER- BASI G- UNALI GNED }

sequence3Struct ur eEncodi ng #CONCATENATI ON :: = {
ENCODI NG- SPACE
MULTI PLE OF oct et
VALUE- PADDI NG
JUSTIFIED left: 0
PCST- PADDI NG zer o
UNUSED BI TS
DETERM NED BY not - needed }

D.1.14 An encoding object set
These encoding object sets contain encoding definitions for some types specified in the ASN.1 module of D.1.15.

Exanpl elEncodi ngs #ENCODI NGS :: = {
mar ri edEncodi ng- 1 |
i nt eger R ght Al i gnedEncodi ng |
evenPosi tivel nt eger Encodi ng |
evenNegat i vel nt eger Encodi ng |
i nt eger Ri ght Al i gnedEncodi ng |
i nt eger Wt hHol eEncodi ng |
posi tivel nt eger Encodi ng |
negati vel nt eger Encodi ng |
posi tivel nt eger BCDEncodi ng |
f axEncodi ng |
bi naryFi | eEncodi ng |
passwor dEncodi ng |
character StringToBit Encodi ng |
sequencelEncodi ng |
choi ceEncodi ng- 1 |
sequence2Encodi ng |
sequence3Encodi ng }

D.1.15 ASN.1definitions

D.1.15.1This ASN.1 module groups al the ASN.1 definitions from D.1.1 to D.1.13 together. They will be encoded
according to the encoding objects defined in the EDM of D.1.16, together with the PER basic unaligned encoding rules.

Exanpl el- ASN1- Modul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-
nmodul e1(2)}

DEFINITIONSAUTOMATIC TAGS::=

BEGIN

M/PDU ::= CHO CE {
marri edMessage Marri ed,
al titudeMessage Al titude
-- etc.

}
Married ::= BOOLEAN
Al titude ::= I NTEGER (0. .65535)
-- etc.

END
D.1.16 EDM definitions

D.1.16.1This EDM module groups al the ECN definitions from D.1.1 to D.1.13 together.

Exanpl el-EDM {joi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul el(3)}
ENCODING-DEFINITIONS ::=
BEGIN

ITU-T Rec. X.692 (11/2008) 151

| SO/IEC 8825-3:2008 (E)

EXPORTS Exanpl elEncodi ngs;

| MPORTS #Married, #A titude, #EvenPositivelnteger, #EvenNegativel nteger,
#lnteger WithHole, #Positivel nteger, #Negativel nteger, #Positivel nteger BCD,
#Fax, #BinaryFile, #Password, #Char acter StringT oBit, #Sequencel, #Choice
FROM Examplel-ASN1-Module{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5)
asnl-modulel(2) };

Exanpl elEncodi ngs #ENCODI NGS :: = {
marriedEncoding-1|

-- etc
sequence3Encoding}

-- efc

END
D.1.17 ELM definitions

The following ELM encodes the ASN.1 module defined in D.1.15, using objects specified in the EDM defined in
D.1.16.

Exanpl el-ELM {joi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul el(1)}
LINK-DEFINITIONS::=
BEGIN

IMPORTS
ExamplelEncodings FROM Example-EDM
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-modulel(3)}
#MyPDU, #Sequence2 FROM Examplel-ASN1-Module
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-modulel(2)};
ENCCODE #M/PDU W TH Exanpl elEncodi ngs
COMPLETED BY PER-BASIC-UNALIGNED

END
D.2 Specialization examples

The examples in this clause show how to modify selected parts of an encoding for given types in order to minimize the
size of encoded messages. PER basic unaligned encodings normally produce as compact encodings as possible.
However, there are some cases when specialized encodings might be desired:

— There are some special semantics associated with message components that make it possible to
remove some of the PER-generated auxiliary fields.

— The user wants different encodings for PER auxiliary fields that are generated by default, such as
variable-width determinant fields.

D.21 Encoding by distributing valuesto an alter native encoding structure
D.2.1.1 The ASN.1 assignment is:

Nor mal | ySmal | Val ues ::= | NTEGER (0..1000)

-- Usually values are in the range 0..63, but sometimes the whole value range
-- isused.

D.2.1.2 PER would encode the type using 10 bits. We wish to minimize the size of the encoding such that the normal
caseis encoded using as few bits as possible.

NOTE - In this example we take a simple direct approach. A more sophisticated approach using Huffman encodingsis givenin
E.1.

D.2.1.3 The encoding object assignment (see 19.6) is:

nor mal | ySmal | Val uesEncodi ng-1 #Nornal | ySnal | Val ues :: = {
USE #Nornal | ySnal | Val uesStruct-1
MAPPI NG DI STRI BUTI ON {
0..63 TO smal |,
REMAI NDER TO | arge }
W TH PER- BASI G- UNALI GNED}

D.2.1.4 The encoding structure assignment is:

152 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

#Nor mal | ySmal | Val uesStruct-1 ::= #CHJO CE {
smal | # NT (0. .63),
I arge #I NT (64..1000)}

D.2.1.5 Vaues which are normally used are encoded using the "smal | " field and the ones used only occasionally are
encoded using the "I ar ge" field. The selection between the two is done by a one-bit PER-generated selector field. The
length of the"smal | " field is 6 bits and the length of the "I ar ge" field is 10 bits, so the normal caseis encoded using 7
bits and the rare case using 11 hits.

D.2.2 Encoding by mapping ordered abstract valuesto an alter native encoding structure

D.2.2.1 Example D.2.1 used explicit definition of how value ranges are mapped to fields of the encoding structure.
The same effect can be achieved more simply by using "mapping by ordered abstract values'. However, as illustration,
we here also modify the requirement: Arbitrarily large values may occasionally occur, and the ASN.1 assignment is
assumed to have its constraint removed.

D.2.2.2 The encoding object assignments (see 19.5) are:

nor mal | ySmal | Val uesEncodi ng-2 #Nornal | ySnal | Val ues :: = {
USE #Normal | ySnal | Val uesStruct -2
MAPPI NG ORDERED VALUES
W TH Normal | ySmal | Val uesTag- encodi ng- pl us- PER}

nor mal | ySmal | Val uesTag- encodi ng #TAG :: = {
ENCCDI NG- SPACE
S| ZE 1}

Nor nal | ySmal | Val uesTag- encodi ng- pl us- PER #ENCODI NGS : : =
{normal | ySnal | Val uesTag- encodi ng}
COVPLETED BY PER- BASI C- UNALI GNED

D.2.2.3 The encoding structure assignment is:

#Nor mal | ySmal | Val uesStruct-2 ::= #CHO CE {
smal | [#TAG0)] #I NT (O..63),

large [#TAG(1)] #INT (0..MAX) }

D.2.2.4 The result is very similar to D.2.1, but now the values above 64 that are mapped to the field "l ar ge" are
encoded from zero upwards. The two alternatives are distinguished by an index of one bit. Another difference is that
the field "large" is left unbounded, so the encoding object can encode arbitrarily large integers, but with the cost of a
length field in the "I ar ge" case. This example can also be used if there is no upper-bound on the values that might
occasionally occur ("I ar ge" is not bounded in the replacement structure). This again illustrates the flexibility available
to ECN specifiers to design encodings to suite their particular requirements.

D.2.3 Compression of nhon-continuous value ranges

D.2.3.1 This example aso uses a mapping of ordered abstract values. In this case the mapping is used to compress
sparse values in a base ASN.1 specification. The compression could also have been achieved by defining the ASN.1
abstract value "X" to have the application semantics of "2x", then using a simpler constraint on the ASN.1 integer type.
The assumption in this example, however, is that the ASN.1 designer chose not to do that, and we are required to apply
the compression during the mapping from abstract values to encodings.

D.2.3.2 The ASN.1 assignment is:
Spar seEvenl yDi stri butedValueSet ::= INTEGER (2 | 4| 6 | 8 | 10 | 12 | 14 | 16)

D.2.3.3 PER basic unaligned takes only lower bounds and upper bounds into account when determining the number of
bits needed to encode an integer. This results in unused bit patterns in the encoding. The encoding can be compressed
such that unused bit patterns are omitted, and each value is encoded using the minimum number of bits.

D.2.3.4 The encoding object assignment (see 19.5) is:

spar seEvenl yDi stri but edVal ueSet Encodi ng-1 #Spar seEvenl yDi stri but edVal ueSet ::= {
USE #l ntFron0DTo7
MAPPI NG ORDERED VALUES
W TH PER- BASI G- UNAL| GNED}

#l nt Fron0To7 ::= #I NT (0..7)
D.2.3.5 Theeight possible abstract values have been mapped to the range 0..7 and will be encoded in a three-hit field.

D.24 Compression of non-continuous valueranges using atransform

ITU-T Rec. X.692 (11/2008) 153

| SO/IEC 8825-3:2008 (E)

D.2.4.1 Example D.2.3 used mapping of ordered abstract values. The same effect can be achieved by using the
#TRANSFORM(Class.

D.2.4.2 The encoding object assignment (see 19.4) is:

spar seEvenl yDi st ri but edVval ueSet Encodi ng-2 #Spar seEvenl yDi stri but edval ueSet ::= {
USE #l nt FronDTo7
MAPPI NG TRANSFORMS {{I NT-TO-I NT di vide: 2}, {INT-TO INT decrenent:1}}
W TH PER- BASI C- UNALI GNED}

D.2.4.3 Again, the eight possible abstract values are mapped to the range 0. . 7 and encoded in a three-bit field.
D.25 Compression of an unevenly distributed value set by mapping ordered abstract values

D.25.1 The ASN.1 assignment is:

Spar seUnevenl yDi stri but edVal ueSet ::= | NTEGER (0| 3| 5| 6] 11| 8)
-- Qut of order to illustrate that order does not matter in the constraint

D.2.5.2 The encoding should be such that there are no holes in the encoding patterns used.

D.2.5.3 The encoding object assignment is:

spar seUnevenl yDi stri but edVal ueSet Encodi ng #Spar seUnevenl yDi stri but edVal ueSet ::= {
USE #l nt Fron0To5
MAPPI NG ORDERED VALUES
W TH PER- BASI G- UNALI GNED}

#IntFromOT o5 ::= #INT (0..5)

D.2.5.4 Thesix possible abstract values are mapped to the range 0. . 5 and encoded in athree-bit field. The mapping is
asfollows; 0—0, 3—1, 552, 63, 8—4, and 11-5.

D.26 Presenceof an optional component depending on the value of another component

D.2.6.1 The ASN.1 assignment is:

Condi ti onal PresenceOnVal ue ::= SEQUENCE {
a I NTEGER (0. . 4),
b I NTEGER (1..10),
c BOOLEAN OPTI ONAL
-- Condition: "c" is present if "a" is 0, otherwise "c" is absent --,
d BOOLEAN OPTI ONAL
-- Condition: "d" is absent if "a" is 1, otherwise "d" is present -- }
-- Note the inplied presence constraints in coments.
-- Note also that the integer field "a" carries application semantics and
-- has values other than zero and one.
-- If "a" has value 0, both "c" and "d" are present.
-- If "a" has value 1, both "c¢" and "d" are m ssing.
-- If "a" has values 3 or 4, "c¢" is absent and "d" is present.
-- These conditions are very hard to express formally using ASN. 1 al one.

D.2.6.2 The component "a" acts as the presence determinant for both components "c" and "d", but a PER encoding
would produce two auxiliary bits for the optional components. We require an encoding in which these auxiliary bits are
absent.

D.2.6.3 The encoding object assignment is:

condi ti onal PresencenVal ueEncodi ng #Condi ti onal PresencenVal ue :: = {
ENCCDE STRUCTURE {
c USE- SET OPTI ONAL- ENCODI NG i s-c-present{< a >},
d USE- SET OPTI ONAL- ENCCDI NG i s-d-present{< a >}}
W TH PER- BASI C- UNALI GNED}

is-c-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERM NED BY fi el d-t o- be-used
USI NG a
DECCDER- TRANSFORMS {{I NT-TO-BOOL TRUE-1S {0}}}}

i s-d-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERM NED BY fi el d-t o- be- used
USI NG a
DECODER- TRANSFORMS {{INT-TO-BOOL TRUE-IS {0 | 2 | 3 | 4}}}}

154 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

D.2.6.4 Herewe have asimple, formal, and clear specification of the presence conditions on “c" and "d" which can be
understood by encoder-decoder tools. The ASN.1 comments cannot be handled by tools. The provision of optionality
encoding for "c" and "d" means that the PER encoding for OPTI ONAL is not used in this case, and there are no auxiliary
bits.

D.2.6.5 The parameterized encoding objects "i s-c-present™ and "i s-d- present " specify how presence of the
components is determined during decoding. Note that no transformation is needed (nor permitted) for encoding because
the determinant has application semantics (i.e., it is visible in the ASN.1 type definition). However, a good encoding
tool will police the setting of "a" by the application, to ensure that its value is consistent with the presence or absence of
"c¢" and "d" that the application code has determined.

D.2.7 Thepresenceof an optional component depends on some external condition
D.2.7.1 The ASN.1 assignment is:

Condi ti onal PresenceOnExt ernal Condition ::= SEQUENCE {
a BOOLEAN OPTI ONAL
-- Condition: "a" is present if the external condition "C' holds,
-- otherwise "a" absent -- }

-- Note that the presence constraint can only be supplied in coment.

D.2.7.2 The application code for both a sender and a receiver can evaluate the condition "C" from some information
outside the message. The ECN specifier wishes tools to invoke such code to determine the presence of "a", rather than
using a bit in the encoding.

D.2.7.3 The encoding object assignment is:

condi ti onal PresenceOnExt er nal Condi ti onEncodi ng

#Condi ti onal PresenceOnExternal Condition ::= {
ENCCDE STRUCTURE {
a USE- SET OPTI ONAL- ENCODI NG i s- a- present }

W TH PER- BASI G UNALI GNED}

i s-a-present #OPTIONAL ::=
NON-ECN-BEG N {joint-iso-itu-t(2) asnl(1l) ecn(4) exanpl es(5) user-notation(7)}
extern C
extern channel ;
/* ais present only if channel is equal to sonme value “C */
int is_a present() {

if(channel == C) return 1;
else return 0; }
NON- ECN- END

D.2.7.4 Because the condition is external to the message, the encoding object for determining presence of the
component "a" can only be specified by a non-ECN definition of an encoding object. However, while this saves bits on
the line, many designers would consider it better to include the bit in the message to reduce the possibility of error, and
to make testing and monitoring easier. Such choices are for the ECN specifier.

D.28 Avariablelength list

D.2.8.1 The ASN.1 assignment is:

Encl osi ngSt ruct ureFor Li st ::= SEQUENCE {
list VariableLengthList}

Vari abl eLengt hLi st ::= SEQUENCE (S| ZE (0..1023)) OF INTEGER (1..2)
-- Normally the list contains only a few elements (0..31),
-- but it might contain many.

D.2.8.2 PER basic unaligned encodes the length of the list using 10 hits even if normally the length is in the range
0..31. We wish to minimize the size of the encoding of the length determinant in the normal case while still allowing
values which rarely occur.

D.2.8.3 The encoding object assignment is:

encl osi ngSt ruct ur eFor Li st Encodi ng #Encl osi ngStructureForList ::={
USE #Encl osi ngStruct ur eFor Li st Struct
MAPPI NG FI ELDS W TH {
ENCODE STRUCTURE {
aux-length 1ist-1engthEncodi ng,
list {
ENCODE STRUCTURE {

ITU-T Rec. X.692 (11/2008) 155

| SO/IEC 8825-3:2008 (E)

STRUCTURED W TH {
REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE
SI ZE vari abl e-w t h- det er m nant
MJULTI PLE OF repetitions
DETERM NED BY fi el d-t o- be- set
USI NG aux- | engt h}}}
W TH PER- BASI G- UNALI GNED }}
W TH PER- BASI C- UNALI GNED} }
-- First mapping: use of an encoding structure with an explicit length

-- determinant.
I'i st-1engthEncodi ng #AuxVari abl eLi stLength ::= {
USE #AuxVari abl eLi st Lengt hSt ruct -- See D.2.8.4.

MAPPI NG ORDERED VALUES

W TH PER- BASI G- UNALI GNED}
-- Second mapping: list length is encoded as a choi ce between
-- a short form"normally" and a long form "sonetinmes".

D.2.8.4 The encoding structure assignments are:

#Encl osi ngSt ruct ur eFor Li st Struct :: = #CONCATENATI ON {
aux- |l ength #AuxVari abl eLi st Lengt h,
list #Variabl eLengthLi st}

#AuxVari abl eLi st Length ::= #I NT (0..1023)

#AuxVari abl eLi st Lengt hStruct ::= #ALTERNATI VES {
normal |y #I NT (0..31),
sonetimes #INT (32..1023)}

D.2.8.,5 The length determinant for the component "l i st" is variable. The length determinant for short list values is
encoded using 1 bit for the selection determinant and 5 bits for the length determinant. The length determinant for long
list valuesis encoded using 1 bit for the selection determinant and 10 bits for the length determinant.

D.29 Equal length lists
D.2.9.1 The ASN.1 assignment is:

Equal Lengt hLi sts :: = SEQUENCE {
listl Listl,
list2 List2}
(CONSTRAI NED BY {
-- "list1l" and "list2" always have the sanme nunber of elenents. --
})
Listl ::= SEQUENCE (SIZE (0..1023)) OF BOOLEAN

List2 ::

SEQUENCE (Sl ZE (0..1023)) OF I NTEGER (1..2)

D.2.9.2 Both"l'ist1" and "l i st 2" have the same number of elements, and the ECN specifier wishes to use a single
length determinant for both lists. (PER would encode length fields for both components.)

D.2.9.3 The encoding object assignments are:

equal Lengt hLi st sEncodi ng #Equal Lengt hLists ::= {
USE #Equal Lengt hLi st sStruct
MAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
listllistlEncodi ng{< aux-length >},
list2 list2Encodi ng{< aux-length >}}
W TH PER- BASI C- UNAL| GNED} }

The first encoding object is defined with two parameterized encoding objects of classes #List1 and #List2
respectively using the length field as an actual parameter. Those two encoding objects use a common parameterized
encoding object of class #REPETI TI ON.

l'ist1Encodi ng {< REFERENCE : length >} #Listl ::= {
ENCODE STRUCTURE { USE- SET
STRUCTURED W TH |ist-w th-determn nant Encoding {< |l ength >}}
W TH PER- BASI G- UNAL| GNED}

| i st2Encodi ng {< REFERENCE : length >} #List2 ::= {
ENCCDE STRUCTURE { USE- SET

156 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

STRUCTURED W TH | i st-wi t h-det er mi nant Encodi ng {< |l ength >}}
W TH PER- BASI C- UNALI GNED}

list-with-determ nant Encodi ng {< REFERENCE : | ength-determ nant >} #REPETITION :: =

REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE
Sl ZE vari abl e- wi t h- det er m nant
MULTI PLE OF repetitions
DETERM NED BY fi el d-t o- be-set
USI NG | engt h-det er mi nant }}

D.2.9.4 The encoding structure assignments are:

#Equal Lengt hLi st sStruct ::= #CONCATENATI ON {
aux- |l ength #AuxLi st Lengt h,
listl #List1,
list2 #Li st 2}

#AuxLi stLength ::= #I NT (0..1023)
D.2.10 Uneven choice alter native probabilities
D.2.10.1The ASN.1 assignment is:

Encl osi ngSt r uct ur eFor Choi ce :: = SEQUENCE {
choi ce UnevenChoi ceProbability }
UnevenChoi ceProbability ::= CHO CE {

frequentl |INTEGER (1..2),
frequent2 BOOLEAN,

commonl I NTEGER (1..2),
comon2 BOOLEAN,
common3 BOCLEAN,
rarel BOOLEAN,
rare2 I NTEGER (1..2),
rare3 I NTEGER (1..2)}

D.2.10.2The alternatives of the choice type have different selection probabilities. There are alternatives which appear
very frequently ("f requent 1" and "f r equent 2"), or are fairly common ("common1", "conmon2" and "conmon3"), or
appear only rarely ("rarel”, "rare2" and "rar e3"). The encoding for the alternative determinant should be such that
those alternatives that appear frequently have shorter determinant fields than those appearing rarely.

D.2.10.3The encoding structure assignments are:

#Encl osi ngSt ruct ur eFor Choi ceStruct :: = #CONCATENATI ON {
aux- sel ect or #AuxSel ect or,
choi ce #UnevenChoi ceProbability }
-- Explicit auxiliary alternative determ nant for "choice".

#AuxSel ector ::= #INT (0..7)

D.2.10.4The encoding object assignments are:

encl osi ngSt r uct ur eFor Choi ceEncodi ng #Encl osi ngSt r uct ur eFor Choi ce :: = {
USE #Encl osi ngStruct ur eFor Choi ceSt ruct
MAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
aux- sel ector auxSel ect or Encodi ng,
choice {
ENCODE STRUCTURE {
STRUCTURED WTH {
ALTERNATI VE
DETERM NED BY fi el d-to- be-set
USI NG aux-sel ector}}
W TH PER- BASI G- UNALI GNED }}
W TH PER- BASI C- UNALI GNED} }
-- First mapping: inserts an explicit auxiliary alternative
-- determ nant.
-- This encodi ng object specifies that an auxiliary determnant is used
-- as an alternative determ nant.

auxSel ect or Encodi ng #AuxSel ector ::={
USE#BITS

ITU-T Rec. X.692 (11/2008) 157

| SO/IEC 8825-3:2008 (E)

-- ECN Huffman
-- RANGE (0..7)
-- (0..1) 1IS60%
- (2..4) 1IS30%
- (5..7) 1IS10%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffman encodings,
-- version 1"
-- (seeE.8)
MAPPING TO BITS{
0. 1TO'10B ..'11'B,
2. 4TO'001'B ..'011'B,
5 TO '0001'B,
6.. 7TO '00000'B ..'00001'B}
WITH bitStringEncoding }
-- Second mapping: Map determinant indexes to bitstrings

bi t StringEncoding #BITS ::= {
REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE }}

D.2.10.51n the above, we quantified "frequent”, "common", and "rare" as 60%, 30%, and 10%, respectively, and used
the public domain ECN Huffman generator (see E.8) to determine the optimal bit-patterns to be used for each range of
integer.

D.2.10.6The above isin amathematical sense optimal, but how much difference it makes as a percentage of total traffic
depends on what the other parts of the protocol consist of. Whilst it costs nothing in implementation effort to produce
and use optimal encodings (because tools can be used), the ultimate gains may not be significant.

D.211 A version 1 message

D.2.11.1ASN.1 assignment:

Ver si onlMessage :: = SEQUENCE {
ie-1 BOCLEAN,
ie-2 I NTEGER (0. .20)}

We want to use PER basic unaligned, but intend to add further fields in version 2, and wish to specify that version 1
systems should accept and ignore any additional material in the PDU.

D.2.11.2We use two encoding structures to encode the message: one is the implicitly generated encoding structure
containing only the version 1 fields, and the second is a structure that we define containing the version 1 fields plus a
variable-length padding field that extends to the end of the PDU. The version 1 system uses the first structure for
encoding, and the second for decoding. Apart from this approach to extensibility, al encodings are PER basic
unaligned. The version 1 decoding structureis:

#Ver si onlDecodi ngStructure ::= #CONCATENATI ON {
ie-1 #BOCOL,
ie-2 #I NT (0..20),

future-additions #PAD}

D.2.11.3The encoding object assignments are:

ver si onlMessageEncodi ng #Versi onlMessage ::= {
ENCODE- DECODE
{ ENCCODE W TH PER- BASI C- UNALI GNED }
DECCDE AS | F decodi ngSpeci fi cati on}

decodi ngSpeci ficati on #Versi onlMessage ::= {
USE #Ver si onlDecodi ngStructure
MAPPI NG FI ELDS
W TH {
ENCCODE STRUCTURE {
future-additions addi ti onsEncodi ng{< QUTER >} }
W TH PER- BASI C- UNALI GNED} }

addi ti onsEncodi ng {< REFERENCE: det erm nant >} #PAD ::= {
ENCCDI NG SPACE
SI ZE encoder - opti on-wi t h- det er m nant
DETERM NED BY cont ai ner
USI NG det er mi nant }

158 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

D.2.12 Theencoding object set

This encoding object set contains encoding definitions for some of the types specified in the ASN.1 module named
"Exanpl e2- ASN1- Modul e" (the rest is encoded using PER basic unaligned).

Exanpl e2Encodi ngs #ENCODI NGS :: = {

nor mal | ySmal | Val uesEncodi ng- 1 [

spar seEvenl yDi stri but edVal ueSet Encodi ng |

spar seUnevenl yDi st ri but edVal ueSet Encodi ng|
condi ti onal PresenceOnVal ueEncodi ng |

condi ti onal PresenceOnExt er nal Condi ti onEncodi ng|
encl osi ngSt ruct ur eFor Li st Encodi ng [

equal Lengt hLi st sEncodi ng [

encl osi ngSt r uct ur eFor Choi ceEncodi ng [

ver si onlMessageEncodi ng }

D.2.13 ASN.1definitions

This module groups together all the ASN.1 definitions from D.2.1 to D.2.11 that will be encoded according to the
encoding objects defined in the EDM, and also lists the other ASN.1 definitions that will be encoded with the PER
basic unaligned encoding rules.

Exanpl e2- ASN1- Mbdul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanpl es(5) asnl-
nmodul e2(5)}

DEFINITIONSAUTOMATIC TAGS::=

BEGIN

Exanpl eMessages ::= CHO CE {
nor mal | ySmal | Val ues Nor mal | ySmal | Val ues,
spar seEvenl yDi st ri but edVal ueSet Spar seEvenl yDi st ri but edVal ueSet
-- etc.

}
Nor mal | ySmal | Val ues ::= | NTEGER (0..1000)
Spar seEvenl yDi stributedValueSet ::= INTEGER (2 | 4| 6| 8| 10| 12 | 14 | 16)

-- €tc.
END

D.2.14 EDM déefinitions

Exanpl e2- EDM {j oi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e2(6)}
ENCODING-DEFINITIONS::=
BEG N

EXPORTS Exanpl e2Encodi ngs;

| MPORTS #Nor mal | ySmal | Val ues, #Spar seEvenl yDi stri but edVal ueSet,
#Spar seUnevenl yDi st ri but edVal ueSet, #Conditional PresenceOnVal ue,
#Condi t i onal PresenceOnExt er nal Condi ti on,
#Encl osi ngSt ruct ur eFor Li st, #Equal Lengt hLi sts, #Encl osi ngStruct ur eFor Choi ce,
#\er si onlMessage, #List1, #List2, #Variabl eLength, #UnevenChoi ceProbability
FROM Exanpl e2- ASN1- Modul e
{joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e2(5)};

Exanpl e2Encodi ngs #ENCODI NGS :: = {
nor mal | ySmal | Val uesEncodi ng- 1 |
-- etc.
ver si onlMessageEncodi ng}

-- etc.

END

D.2.15 ELM definitions

The following ELM is associated with the ASN.1 module defined in D.2.13, and the EDM defined in D.2.14.

Exanpl e2- ELM {joi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul e2(4)}
LINK-DEFINITIONS ::=
BEGIN

I MPORTS
Exanpl e2Encodi ngs FROM Exanpl e2- EDM

ITU-T Rec. X.692 (11/2008) 159

| SO/IEC 8825-3:2008 (E)

{joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e2(6)}
#Exanpl eMessages FROM Exanpl e2- ASN1- Modul e
{joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e2(5)};

ENCODE #Exanpl eMessages W TH Exanpl e2Encodi ngs
COVPLETED BY PER- BASI C- UNALI GNED

END
D.3 Explicitly generated structure examples

The examples described in D.3.1 to D.3.4 show the use of explicitly generated structures to replace an encoding classin
an implicitly generated encoding structure with a synonymous class. We then produce specialized encodings by
including in the encoding object set an object of the synonymous class.

The examples are presented using the following format:
— The"ASN.1 type assignment". This givesthe original ASN.1 type definition.

— The requirement. This lists the required changes from the encodings provided by PER basic
unaligned.

Modification of the implicitly generated encoding structure to produce a new encoding structure.
The encoding class and encoding object assignments.

D.3.1 Sequencewith optional components defined by a pointer

D.3.1.1 The ASN.1 assignment is:

Sequencel ::= SEQUENCE {
conponent 1 | NTEGER OPTI ONAL,
conponent 2 | NTEGER OPTI ONAL,
conmponent 3 VisibleString }

D.3.1.2 Instead of using the PER bit-map for the two components of type integer marked OPTI ONAL, the presence and
the position of those components are determined by pointers at the beginning of the encoding of the sequence. Each
pointer contains 0 (component absent) or a relative offset to the encoding of the component which begins on an octet
boundary.

D.3.1.3 The encoding class #1 NTEGER is replaced with "#I nt eger - wi t h- poi nt er - concat " in the encoding object
of "sequencel- encodi ng". The class " #l nt eger - wi t h- poi nt er - concat " is defined as a concatenation structure
containing one element which is the replaced element combined with a class in the optionality category
"#l nt eger - optionality".

D.3.1.4 Then two encoding objects are defined. The first, "i nt eger - wi t h- poi nt er - concat - encodi ng" of class
#l nt eger - wi t h- poi nt er - concat receives three parameters. the replaced element, the pointer and the current
combined encoding object set (see 22.1.3.7). The second, "i nt eger - opt i onal i t y- encodi ng" of class "#I nt eger -
optional ity" receives one parameter, the pointer, which is used to determine the presence of the component. Since
PER- BASI C- UNALI GNED does not contain an encoding object of class #CONCATENATI ON with optional components, a
third encoding object of class #CONCATENATI ON needs to be defined. This object "concat” uses default settings.

D.3.1.5 The encoding class and encoding object assignments are:

sequencel-encodi ng #SEQUENCE :: = {

REPLACE OPTI ONALS

W TH #I nt eger - wi t h- poi nt er - concat
ENCODED BY i nt eger-wi t h- poi nt er - concat - encodi ng
| NSERT AT HEAD #Poi nt er

ENCODI NG- SPACE

S| ZE vari abl e-wi t h- det er m nant

DETERM NED BY cont ai ner

USI NG OUTER }

#Poi nter ::= # NTECER
#1 nteger-wi t h- poi nter-concat {< #El enent >} ::= #CONCATENATI ON {

el enent #El ement OPTI ONAL- ENCODI NG #| nt eger-optionality }
#l nteger-optionality ::= #OPTI ONAL

i nt eger-optionality-encodi ng{< REFERENCE: start-pointer >}
#l nteger-optionality ::={
ALI GNED TO ANY oct et

160 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

START- PO NTER st art-pointer
PRESENCE DETERM NED BY poi nter}

i nt eger -w t h- poi nt er - concat - encodi ng
{< #El ement, REFERENCE: poi nter, #ENCODI NGS: Encodi ngbj ect Set >}
#l nt eger-wi t h- poi nter-concat {< #E ement >} ::={
ENCODE STRUCTURE {
el enent USE- SET OPTI ONAL- ENCCDI NG
i nteger-optionality-encodi ng{< pointer >}
STRUCTURED W TH concat }
W TH Encodi ngbj ect Set }

concat #CONCATENATION :: = {
ENCCODI NG- SPACE }

D.3.2 Addition of a boolean type as a presence deter minant

D.3.2.1 The ASN.1 assignment is:

Sequence? ::= SEQUENCE {
conponent 1 BOOLEAN OPTI ONAL,
conmponent 2 | NTEGER,
conmponent3 VisibleString OPTI ONAL }

D.3.2.2 Instead of using the PER bit-map for components marked "OPTI ONAL", the presence of an optional component
is related to the value of a unique presence bit which is equal to 1 (component absent), or O (component present). In
that case, the presence bit isinverted.

D.3.2.3 The encoding structures and encoding objects are defined as follows:

The encoding class #0PTI ONAL is renamed as #Sequence2- opt i onal in the "RENAMVES" clause (see D.3.7). Therefore
the "#Sequence2" classisimplicitly replaced with:
#Sequence?2 :: = #SEQUENCE {
conmponent 1 #BOOL OPTI ONAL- ENCODI NG #Sequence2-opti onal ,

conponent 2 #| NTEGER,
conmponent 3 #Vi si bl eString OPTI ONAL- ENCODI NG #Sequence2- opti onal }

where:
#Sequence2-optional ::= #OPTI ONAL

Then an encoding object of class "#Sequence2- optional " is defined; that object, using the replacement group,
replaces the component encoding definition (see 23.11.3.2) with the class "Opt i onal - wi t h- det er mi nant ".
sequence2-opti onal - encodi ng #Sequence2-optional ::= {
REPLACE STRUCTURE

W TH #Opt i onal - wi t h- det er mi nant
ENCCODED BY opti onal - wi t h- det er mi nant - encodi ng}

That class, which is parameterized by the original component, belongs to the concatenation category and has two
components: the determinant (boolean) and the original component.

#Opti onal -w th-det erm nant { < #El ement >} ::= #CONCATENATI ON {
det er m nant #BOCOLEAN,
conponent #El enent OPTI ONAL- ENCODI NG #Pr esence- det er mi nant }
where:
#Presence-determ nant ::= #OPTI ONAL

Then an encoding object of class "#Optional -with-deterninant” is defined; that object has two dummy
parameters:; the class of the component and an encoding object set used to encode everything except determinant and
component optionality:

optional -wi t h-det er m nant - encodi ng
{< #El ement, #ENCODI NGS: Sequence2- conbi ned- encodi ng- obj ect -set >}
#Optional -wi th-determ nant {< #El enent >}::= {
ENCODE STRUCTURE {

det er m nant det er mi nant - encodi ng,

component USE- SET
OPTI ONAL- ENCODI NG i f - conmponent - present - encodi ng{< determ nant >} }
W TH Sequence2- conbi ned- encodi ng- obj ect - set }

ITU-T Rec. X.692 (11/2008) 161

| SO/IEC 8825-3:2008 (E)

The encoding is completely specified by the definition of encoding objects"i f - conponent - pr esent - encodi ng" and
"det er mi nant - encodi ng":

i f- conponent - present - encodi ng { <REFERENCE: pr esence- bi t >} #Presence-determ nant ::=

PRESENCE
DETERM NED BY fi el d-t o- be-set
USI NG pr esence-bi t}

det er m nant - encodi ng #BOOLEAN :: = {
ENCCDI NG SPACE
SIZE 1
MULTI PLE OF bit
TRUE- PATTERN bits:'0'B
FALSE- PATTERN bits:'1' B}

D.3.3 Sequencewith optional componentsidentified by a unique tag and delimited by a length field

D.3.3.1 The ASN.1 assignments are:
Cctet3 ::= OCTET STRI NG (CONTAI NI NG Sequence3)

Sequence3 ::=SEQUENCE {
conponent1l [0] BIT STRING (Sl ZE(O..2047)) OPTI ONAL,
conmponent2 [1] OCTET STRI NG (S| ZE(0..2047)) OPTI ONAL,
conmponent3 [2] VisibleString (SIZE(O..2047)) OPTI ONAL }

D.3.3.2 Each component isidentified by atag on four bits and the total length of the sequence is specified with a field
of eleven bits which precedes the encoding of the first component.

D.3.3.3 The encoding classes #OCTETS, #OPTIONAL and #TAG are renamed respectively as #Cctets3,
#Sequence3- opti onal and #TAG 4- bi ts in the "RENAMES" clause (see D.3.7). Then encoding objects of the new
encoding classes are defined.

D.3.3.4 The encoding class and encoding object assignments for the octet string are:
#COctets3 :: = #OCTET- STRI NG

octets3-encodi ng #Cctets3 ::={
REPETI TI ON- ENCODI NG {
REPLACE STRUCTURE
W TH #Cctets-with-1ength
ENCODED BY oct et s-wi t h-1engt h-encodi ng}}

#CQctets-wi th-1ength{< #E ement >} ::= #CONCATENATI ON {
I ength #I NT(O..2047),
octets #El ement }
octets-wi th-Iength-encodi ng{< #El enent >} #CQctets-with-length{< #E ement >} ::={

ENCODE STRUCTURE {
octets octets-encoding{< length >}}
W TH PER- BASI G- UNALI GNED}

oct et s- encodi ng{ < REFERENCE: | ength >} #COCTETS :: = {
REPETI TI ON- ENCODI NG {
REPETI TI ON- SPACE
S| ZE vari abl e-w t h- det er m nant
MULTI PLE OF oct et
DETERM NED BY fi el d-t o- be-set
USI NG | engt h} }

D.3.3.5 The encoding class and encoding object assignments for the sequence are:

sequence3- encodi ng #Sequence3 ::= {
ENCODE STRUCTURE {
STRUCTURED W TH sequence3St ruct ur e- encodi ng }
W TH Sequence3- encodi ngs
COVPLETED BY PER- BASI C- UNALI GNED }

Sequence3- encodi ngs #ENCODI NGS :: = {
sequence3-opti onal - encodi ng |
tag- 4-bi ts-encoding }

162 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

#Sequence3-optional ::= #OPTI ONAL
sequence3-optional -encodi ng #Sequence3-optional ::={
PRESENCE
DETERM NED BY cont ai ner
USI NG QUTER}
#TAG 4-bits ::= #TAG
tag-4-bits-encoding #TAG 4-bits ::={
ENCODI NG- SPACE
Sl ZE 4}

The following encoding object of class #OUTER specifies that the decoder shall ignore the bits following the encoding
of the sequence added to have a multiple of octets.

out er - encodi ng #QUTER :: = {
ADDED BI TS DECODI NG sil ently-ignore }

D.3.4 Sequence-of typewith a count

D.3.4.1 The ASN.1 assignment is:
SequenceX I ntegers ::= SEQUENCE(SI ZE(O0..63)) OF | NTEGER(O..1023)

D.3.4.2 The number of elementsis encoded in a six-hit field preceding the encoding of the first element.

D.3.4.3 The encoding class #SEQUENCE- OF is renamed as #Sequenced in the "RENAMES" clause (see D.3.7). An
encoding object of the new encoding classis defined. The encoding class and encoding object assignments are:

#SequenceCr ::= #REPETI TI ON

sequenced - encodi ng #Sequence ::= {
REPETI TI ON- ENCODI NG {
REPLACE STRUCTURE
W TH #Sequenced - wi t h- count
ENCODED BY sequenced -wi t h- count - encodi ng}}

#Sequence -wi t h-count {< #El ement >} ::= #CONCATENATI ON {
count #l NT(O..63),
el enent s #El emrent }

sequenced - wi t h- count - encodi ng{< #El enent >}
#Sequence -wi t h-count {< #El enent >} ::={
ENCODE STRUCTURE {
el enents {
ENCODE STRUCTURE {
STRUCTURED W TH el enent s- encodi ng{< count >}}

W TH PER- BASI C- UNALI GNED} }

W TH PER- BASI C- UNALI GNED}

el ement s- encodi ng{ < REFERENCE: count >} #REPETITION :: = {
REPETI T ON- ENCODI NG {
REPETI TI ON- SPACE
S| ZE vari abl e- wi t h- det er ni nant
MULTI PLE OF repetitions
DETERM NED BY fi el d-t o- be-set
USI NG count }}

D.3.4.4 The count field is encoded using the PER encoding rules for an integer type with the value range constraint
(0..63), which gives a six-hit field.

D.3.5 Encoding object sets

The encoding object sets contains encoding objects of classes defined in the EDM module (only the first one contains
the encoding object of class #SEQUENCE)

Exanpl e3Encodi ngs- 1 #ENCODI NGS :: = {
sequencel-encoding }

Exanpl e3Encodi ngs- 2 #ENCODI NGS :: = {
concat

I
sequence2-optional-encoding |
octets3-encoding [
sequenceOf-encoding |
sequence3-encoding |

ITU-T Rec. X.692 (11/2008) 163

| SO/IEC 8825-3:2008 (E)

outer-encoding }
D.3.6 ASN.1definitions

This module groups together the ASN.1 definitions from D.3.1 to D.3.4 that will be encoded according to the encoding
objects defined in the EDM of D.3.7.

Exanpl e3- ASN1- Mbdul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-

nmodul e3(9) }
DEFI NI TI ONS
AUTOVATI C TAGS :: =
BEGA N
Sequencel ::= SEQUENCE {
conponent 1 BOOLEAN OPTI ONAL,
conponent 2 | NTEGER OPTI ONAL,
conmponent 3 Vi sibleString OPTI ONAL }
-- etc.
END

D.3.7 EDM definitions

Exanpl e3-EDM {j oi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm nodul e3(10)}
ENCODI NG DEFINI TIONS :: =
BEG N

EXPORTS Exanpl e3Encodi ngs-1, Exanpl e3Encodi ngs- 2;

RENAMES

#OPTIONAL AS#Sequence2-optional
IN #Sequence2

#OCTET-STRING AS#Octets3
INALL

#OPTIONAL AS#Sequence3-optional
IN #Sequence3

#TAG AS#TAG-4-bits
IN #Sequence3

FROM Example3-ASN1-Module
{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module3(9)};

Exanpl e3Encodi ngs- 1 #ENCCDI NGS =
sequencel- encodi ng }

Exanpl e3Encodi ngs- 2 #ENCODI NGS =
concat |
-- etc.
sequenced - encodi ng }

-- etc.
END

D.3.8 ELM definitions

The following ELM is associated with the ASN.1 module defined in D.3.6 and the EDM defined in D.3.7.

Exanpl e3-ELM {joi nt-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) el mnodul e3(8)}
LI NK- DEFI NI TIONS :: =
BEG N

| MPORTS Exanpl e3Encodi ngs-1, Exanpl e3Encodi ngs-2, #Sequencel, #Sequencez,
#Cctet 3, #Sequence3, #SequenceO | ntegers
FROM Exanpl e3- EDM
{ joint-iso-itu-t(2) asnl(1l) ecn(4) exanpl es(5) edm nodul e3(10) };

ENCODE #Sequencel
W TH Exanpl e3Encodi ngs- 1
COVPLETED BY PER- BASI C- UNALI GNED

164 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

ENCODE #Sequence2, #Qctet3, #Sequence3, #SequenceOf|ntegers
W TH Exanpl e3Encodi ngs- 2
COVPLETED BY PER- BAS| C- UNALI GNED

END
D.4 A more-bit encoding example
D.4.1 Description of the problem
D.4.1.1 Thisexampleistaken from ITU-T Rec. Q.763 (Sgnalling System No. 7 —SDN User Part formats and codes).

D.4.1.2 Thereisarequirement to produce the following encoding as a series of octets:

8 7 6 5 4 3 2 1
extension Spare protocol profile
indicator

D.4.1.3 Bit8isan"extensionindicator”. If itisO, thereisafollowing octet in the same format. If itis 1, thisisthelast
octet of the series.

NOTE — The PER encoding of boolean is 1 for TRUE and O for FALSE, and ECN requires that the last element returns FALSE,
earlier elements TRUE. Thusif we use a PER-encoded boolean for the more-bit, we need to apply the "not " transform.

D.4.1.4 This is the traditional use of a "more hit", although with the perhaps unusual zero for "more" and one for
"last".

D.4.1.5 The example would be simplified if the use of the "extension indicator" had zero and one interchanged, and if
there were no "spare” bits, but use of the real example was preferred here.

D.4.1.6 There are four approaches to solving this problem.

D.4.1.7 The first approach is to include a component in the ASN.1 specification to provide the more-bit determinant
(see D.4.2). This approach is deprecated for two reasons. The first is that the ASN.1 type definition contains a
component which does not carry application semantics. The second is that it requires the application to (redundantly)
set thisfield correctly in each element of the more-bit repetition.

D.4.1.8 The second approach is to use value mappings from an implicitly generated structure to a user-defined
encoding structure which includes the more-bit determinant (see D.4.3).

D.4.1.9 Thethird approach isto use the replacement mechanism to include the more-bit determinant (see D.4.4).
D.4.1.10The fourth approach is to use head-end insertion of the more-bit determinant. (Thisisnot illustrated here.)

D.4.1.11All of the last three approaches have their own advantages, and choosing between them is largely a matter of
style.

D.4.2 Useof ASN.1to providethe more-bit deter minant

D.4.2.1 In this approach, the ASN.1 reflects al fields in the encoding. This is generally considered "dirty", as fields
which should be visible only in the encoding are visible to the application, reducing the "information hiding" that is the
strength of ASN.1. Inthiscasethe ASN.1is:

Profilelndication ::= SEQJENCE OF
SEQUENCE {
nor e-bi t BOOLEAN,
reserved BIT STRING (SIZE (2)),
protocol -Profile-1D I NTEGER (0..31) }

D.4.2.2 Theimplicitly generated encoding structureis:

#Profil el ndi cation ::= #SEQUENCE- OF {
#SEQUENCE {
nor e- bi t #BOOLEAN,
reserved #BI T- STRING (SI ZE (2)),
protocol -Profile-1D #I NTECER (0..31) } }

D.4.2.3 First, we produce a generic encoding object for #SEQUENCE- OF that uses a more-bit in a field identified as a
parameter of the encoding object, and with BOOLEAN TRUE (encoded asasingle "1" bit by PER) for the last el ement:

nor e- bit-encodi ng {< REFERENCE: nore-bit >} #SEQUENCE-COF ::= {
REPETI TI ON- ENCODI NG {

ITU-T Rec. X.692 (11/2008) 165

| SO/IEC 8825-3:2008 (E)

REPETI TI O\ SPACE
SI ZE vari abl e-wi t h- det er m nant
DETERM NED BY fl ag-t o- be-set
USI NG nore-bi t
ENCODER- TRANSFORMS { { BOOL-TO-BOCOL AS logical:not } } } }

D.4.2.4 This encoding object is also used in D.4.3 and D.4.4, as it provides the fundamental description of the
encoding needed for the repetition.

D.4.2.5 With thefirst (ssmple but dirty!) approach, we can now define our encoding object for #Pr of i | el ndi cati on
by using ENCODE STRUCTURE, and apply that encoding object in the ELM, completing the example. The encoding
object is defined as:

profil el ndi cati onEncodi ng #Profilelndication ::= {
ENCCDE STRUCTURE {
STRUCTURED W TH nore-bit-encoding {< nore-bit >} }
W TH PER- BASI G- UNAL| GNED }

D.4.3 Useof value mappingsto provide the more-bit deter minant

D.4.3.1 In this approach, we hide the encoding structure in an ECN definition of a user-defined encoding structure,
and use value mapping by matching fields to enable an encoding of the user-defined encoding structure to encode a
simplified ASN.1 type definition.

D.4.3.2 The ASN.1 type definition is now:

Profilelndication2 ::= SEQUENCE OF
protocol -Profile-1D | NTEGER (0..31)

D.4.3.3 Thishas an implicitly-generated encoding structure (to which we apply our encodings in the EL M) of:

#Profilelndication2 ::= #SEQUENCE- OF {
protocol -Profile-1D #I NTEGER (0..31) }

D.4.3.4 We define an encoding structure for the encoding we require, similar to the ASN.1 we wrote in the first
approach (see D.4.2.1), except that we use #PAD for the reserved bits:

#Profil el ndi cationStruct ::= #SEQUENCE- OF {
#SEQUENCE {
nore-bit-field #BOOLEAN,
reserved #PAD,
protocol -Profile-1D #I NTEGER (0..31) } }

D.4.3.5 We now need an encoding object for the two-bit #PAD, before we can compl ete the encoding:

pad- encodi ng #PAD :: = {
ENCODI NG- SPACE S| ZE 2
PAD- PATTERN bits:'00'B }

NOTE — Subclause 23.12.4.2 specifies that decoders should accept any value for #PAD bits, which is what we require here, so
we do not need a differential encode/decode.

D.4.3.6 We define an encoding object for our structure, much as in the first approach (see D.4.2.5):

profil el ndi cationStruct Encodi ng #Profil elndi cationStruct ::= {
ENCODE STRUCTURE {
STRUCTURED W TH nor e-bit-encoding {< nore-bit-field >} }
W TH {pad- encodi ng} COVWPLETED BY PER- BASI G- UNALI GNED }

D.4.3.7 Finally, we use value mapping from the implicitly generated structure to our explicitly generated structure to
define our final encoding:

profil el ndi cati on2Encodi ng #Profilelndication2 ::= {
USE #Profil el ndi cati onStruct
MAPPI NG FI ELDS W TH profil el ndi cati onSt ruct Encodi ng }

D.44 Useof thereplacement mechanism to provide the more-bit deter minant

D.4.4.1 In our fina approach, we define a generic sequence-of encoding that can apply to any sequence of. For this
we need a parameterised encoding structure:

#SequenceOf Struct {< #Conponent >} ::=

#SEQUENCE {
more-bit-field #BOOLEAN,
reserved #PAD,

166 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

sequence- of - conponent #Conponent }

D.4.4.2 We define our sequence-of encoding to perform areplacement of the component with this structure, specifying
more-bit-encoding and using the defined pad-encoding:
sequence- of - encodi ng #SEQUENCE- OF :: = {
REPETI TI ON- ENCODI NG {
REPLACE COVPONENT W TH #SequenceO Struct
REPETI TI ON- SPACE
S| ZE vari abl e-wi t h- det er m nant
DETERM NED BY fl ag-t o- be- set
USING nore-bit-field
ENCODER- TRANSFORMS { { BOOL-TO-BOOL AS logical:not } } } }

D.4.4.3 When this is applied in the ELM, "COWLETED BY PER-BASI G- UNALI GNED" is used as the combined
encoding object set to complete the encoding, giving the desired effect.

D.5 Legacy protocol specified with tabular notation
D.5.1 Introduction

D.5.1.1 The purpose of the example in this clause is to show how to construct ECN definitions for a protocol whose
message encodings have been specified using "bits and bytes' pictures and tabular notation. The following tables
contain the contents of the messages (only "Messagel1" has been shown completely):

Message 1.
8 | 7 [6 [5 | 4 | 3 [2 | 1
Octet 1 Message id
Octet 2 A b-flag c-len | reserved
Octet 3 bl b2 reserved b3 reserved
Octet Y cl c2
Octet Y+1 c3 reserved
OC.t.elt Z dl | d2 | d3 | reserved
Message 2:
8 | 7 [6 [5 | 4 | 3 [2 | 1
Octet 1 Message id
Octet 2... Something —1
Message 3:
8 | 7 | 6 | 5 | 4 | 3 [2 | 1
Octet 1 Message id
Octet 2... Something — 2

D.5.1.2 All the messages have a common heading part (shown in [in the tables). In this example it is used only for
message identification.
D.5.1.3 Message 1 hasthree kinds of fields:
— mandatory fields ("a");
— mandatory fields that are determinants for other fields ("b-flag", "c-len");
— optiona fields ("b", "c", and "d").
D.5.1.4 Thefields"b", "c" and "d" are all required to start on an octet boundary.

D.5.1.5 Thefields"b", "c" and "d" are composed of sub-fields ("b1", "b2", "b3", "c1", etc.) of fixed length. In addition
fields "c" and "d" may appear multiple times (but only one occurrence is shown above). The field "b2" is required to
start on a nibble boundary.

D.5.1.6 Presence of an optional component is indicated using different methods:;
— Thefield"b" is present if the value of the "b-flag" field is 1.
— Thefield"d" is present if there are octets |eft in the message.

D.5.1.7 Thelength of afield that can appear multiple timesis determined using different methods:
— The number of repetitions of thefield "c" is governed by the determinant field "c-len".

ITU-T Rec. X.692 (11/2008) 167

| SO/IEC 8825-3:2008 (E)

— Thenumber of repetitions of the field "d" is determined by the end of message.

D.5.1.8 The following ASN.1 module contains definitions for the message structures presented above. The following
design decisions have been made:

— Thereisone encapsulating type which contains the common definitions for all the messages.

— Auxiliary determinant fields in messages are visible at the ASN.1 level. Note, thisis done for simplicity
of exposition in this example, but it should be normal practice to keep such fields out of the ASN.1
definition unless they carry real application semantics.

— Extensibility isexpressed in the form of comments.
— Paddingisnot visible.

D.5.1.9 The ASN.1 moduleis:

LegacyProt ocol - ASN1- Mbdul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-
nmodul e4(11)}

DEFI NI TI ONS AUTQVATI C TAGS :: =

BEG N

LegacyProt ocol Messages :: = SEQUENCE {
nmessage-id ENUVERATED {nmessagel, message2, nessage3},
nessages CHO CE {

nmessagel Messagel,
message2 Messagez,
message3 Message3}}
-- The CHOICE is constrained by the value of message-id.
Messagel ::= SEQUENCE {
a A
b-fl ag BOOLEAN,
c-len I NTEGER (O..nax-c-len),
b B CPTI ONAL, -- determned by "b-flag"
c C, -- determned by "c-len"
d D CPTIONAL} -- determned by end of PDU
A ::= INTEGER (0..7)

-- Values 5..7 are reserved for future use.
-- Version 1 systens should treat 5 to 7 as 4.

B ::= SEQUENCE {
bl ENUMERATED { €0, el, e2, e3 },
b2 BOOLEAN,
b3 I NTEGER (0..3) }

C ::= SEQUENCE (SIZE (0..nmax-c-len)) OF Celem

C-elem::= SEQUENCE {
cl BIT STRING (S| ZE (4)),
c2 INTEGER (0..1024) }

D ::= SEQUENCE (Sl ZE (0..max-d-len)) OF D-elem

D-el em :: = SEQUENCE {
dl BOCLEAN,
d2 ENUMERATED { fO, f1, f2, 3, f4, f5, f6, f7 },
d3 I NTEGER (0..7) }

max-c-len INTEGER ::= 7
max-d-len INTEGER ::= 20

Message2 ::= SEQUENCE {
-- sonething 1 -- }

Message3 ::= SEQUENCE {
-- something 2 -- }

END

D.5.1.10The EDM module in D.5.7 contains encoding definitions for the messages specified in the
"LegacyPr ot ocol - ASN1- Modul e" ASN.1 module. The following design decisions have been made;

— Padding within octets is explicitly specified as padding fields.
— Alignment padding is not specified as explicit padding fields.

168 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

D.5.2 Encoding definition for the top-level message structure

D.5.2.1 The encoding object "I egacyPr ot ocol MessagesEncodi ng" specifies how the common parts of the legacy
protocol messages are encoded. The message identifier is specified in ASN.1 as an enumerated type. PER basic
unaligned encodes "nessage- i d" using the minimum number of hits (i.e., 2) but here we would like to have it encoded
using 8 bits. In addition, we haveto specify that "message-i d" isto be used as a determinant for "messages”.

D.5.2.2 The encoding object "I egacyPr ot ocol MessagesEncodi ng" is:

| egacyPr ot ocol MessagesEncodi ng #LegacyPr ot ocol Messages ::= {
ENCCDE STRUCTURE {
message-id {
ENCCDI NG {
ENCODI NG- SPACE
S| ZE 8}},
nmessages {
ENCODE STRUCTURE {
STRUCTURED W TH {
ALTERNATI VE
DETERM NED BY fi el d-t o- be-used
USI NG nessage-i d}}
W TH PER- BASI C- UNAL| GNED} }
W TH PER- BASI C- UNALI GNED}

D.5.3 Encoding definition for a message structure

D.5.3.1 The encoding object "nessagelEncodi ng" specifies how values of "Messagel" are to be encoded:
— Thefield"b" ispresent if thefield "b- f | ag" contains value TRUE.

— Thefield "c" is present if the field "c- | en" does not contain value 0. "c- | en" also governs the number
of elementsin"c".

— Thefield"d" ispresent if there are till octets in an encoding for the message.

D.5.3.2 The encoding object for "Messagel" is:

nmessagelEncodi ng #Messagel :: = {
ENCCDE STRUCTURE {
b b- encodi ng
OPTI ONAL- ENCODI NG {

PRESENCE
DETERM NED BY fi el d-t o- be-used
USI NG b-fl ag},
c octet-aligned-seqg-of-wth-ext-determnant{< c-len >},
d octet-al i gned-seqg-of -until-end- of -cont ai ner

OPTI ONAL- ENCCDI NG USE- SET}
W TH PER- BASI G- UNAL| GNED}

D.5.4 Encoding for the sequencetype " B"

D.5.4.1 Padding of one bit is inserted between the fields "b2" and "b3" ("aux-reserved"). The encoding of "B" is
octet-aligned.

D.5.4.2 Theencoding for "B" is:

b-encoding #B ::= {
ENCODE STRUCTURE {
-- Conponents
b3 {
ENCODI NG {
ALI GNED TO NEXT ni bbl e
ENCODI NG- SPACE
SI ZE 2
MULTI PLE OF bit }}
-- Structure
STRUCTURED W TH {
ALI GNED TO NEXT oct et
ENCODI NG- SPACE
S| ZE sel f-delimting-val ues
MIULTI PLE OF bit }}
-- The rest
W TH PER- BASI G- UNAL| GNED}

ITU-T Rec. X.692 (11/2008) 169

| SO/IEC 8825-3:2008 (E)

D.5.5 Encoding for an octet-aligned sequence-of type with a length deter minant
D.5.5.1 One of the sequence-of types used in the legacy protocol has an explicit length determinant.
D.5.5.2 The encoding is octet-aligned. The number of elements count is determined by the field "l en".

octet-aligned-seq-of-wth-ext-determ nant{< REFERENCE : |en >} #REPETITION ::

REPETI TI ON- ENCODI NG {
ALI GNED TO NEXT oct et
REPETI TI ON- SPACE
SI ZE vari abl e-wi t h- det er m nant
MULTI PLE OF repetitions
DETERM NED BY fi el d-to- be-used
USI NG | en}}

D.5.6 Encoding for an octet-aligned sequence-of type which continuesto the end of the PDU
D.5.6.1 Theencoding is octet-aligned. The number of elementsis determined by the end of the PDU.

D.5.6.2 The encoding object is:

octet-aligned-seq-of-until-end-of-container #REPETI TION :: = {
REPETI TI ON- ENCODI NG {
ALI GNED TO NEXT oct et
REPETI TI ON- SPACE
S| ZE vari abl e-wi t h- det er mi nant
DETERM NED BY cont ai ner
USI NG OUTER}}

D.5.7 EDM definitions
The EDM definitions are:

LegacyProt ocol - EDM Modul e {joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) edm

nmodul e4(13)}
ENCODI NG DEFINITIONS :: =
BEG N

EXPORTS LegacyPr ot ocol Encodi ngs;

| MPORTS #B, #LegacyProtocol Messages, #Messagel
FROM LegacyPr ot ocol - ASNL- Modul e
{ joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e4(11l) };

LegacyPr ot ocol Encodi ngs #ENCODI NGS :: = {
| egacyPr ot ocol MessagesEncodi ng [
nmessagelEncodi ng }

-- efC.
END

D.5.8 ELM definitions

The ELM for the legacy protocol is:

LegacyProtocol -ELM Modul e { joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) elm

nmodul e4(12) }
LINK-DEFINITIONS :: =
BEG N

| MPORTS
LegacyPr ot ocol Encodi ngs FROM LegacyPr ot ocol - EDM Modul e

{ joint-iso-itu-t(2) asnl(1l) ecn(4) exanpl es(5) edm nodul e4(13) }

#LegacyPr ot ocol Messages FROM LegacyPr ot ocol - ASN1- Modul e

{ joint-iso-itu-t(2) asnl(1l) ecn(4) exanples(5) asnl-nodul e4(11) };

ENCCODE #LegacyPr ot ocol Messages W TH LegacyPr ot ocol Encodi ngs
COVPLETED BY PER- BASI C- UNALI GNED

END

170 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Annex E

Support for Huffman encodings

(This annex does not form an integral part of this Recommendation | International Standard)

E.1 Huffman encodings are the optimum encodings for afinite set of integer values, where the frequency with which
each value will be transmitted is known.

E.2 The encodings are self-delimiting (no length-determinant is needed) and use a small number of bits for frequent
values and alarger number of bits for less frequent values.

E.3 There are many possible Huffman encodings. For example, given any such encoding, simply change all "1"sto
"0"s and vice versa, and you have a different (but just as efficient) Huffman encoding. More subtle changes can
also be made to produce other Huffman encodings that are equally efficient.

E.4 For Huffman encodings to be efficient for decoders, it is desirable that where successive integer values encode
into the same number of bits, those bits should define successive integer values when interpreted as a positive
integer encoding.

E.5 An ECN Huffman encoding has been defined that has this property, and a Microsoft Word 97 macro has been
produced that will generate the syntax for a "MappinglntToBits" mapping (see 19.7) which is both optimal and
easy to decode.

E.6 A version of this annex is available which contains a macro button that will take a specification of the integer
values to be encoded and their frequency, and will generate in-line the formal mapping specification conforming
to the ECN notation. (The version of this Annex with the associated macro is freely available from ITU website
at http://www.itu.int/rec/T-REC-X.692-200203-S!AnnE, and from |SO website at
http://standards.iso.org/ittf/PubliclyAvailableStandards/c034390 1SO_8825-3 2003(E)_Annex_E.zip) .

E.7 Thefollowing text contains three examples of ECN Huffman specification.

E.8 Inthe version with the macro, double clicking the button below:

will add the ECN Huffman mapping specifications to the text.

E.9 The user of the version with the macro may wish to modify the specification of the values to be mapped and
their frequencies to see the encodings that are produced in different cases.

NOTE — In the version with macros, once encoding specifications have been produced, they can be deleted, the ECN Huffman
specification changed, and the macro button again clicked.

E.10 Theinformal syntax for an ECN Huffman specification should be clear from the following examples. All lines
start with an ASN.1 comment marker ("--").

E.11 Thefirst line (if the macro is to be used) must contain exactly "ECN Huffman" preceded by two hyphens and a
space, but following lines are not case sensitive and may contain more or |ess spaces.

E.12 The second lineisrequired, and specifies the lowest and highest values that are to be mapped. The range (upper
bound minus lower bound) is limited to 1000, but can include negative values. Not all values in the range need
to be mapped.

E.13 Percentages are given for either single values or for ranges of values. It is not necessary for percentages to add
up to 100%, but awarning is given if they do not.

E.14 The "REST" line is optional, and provides frequencies for any values in the range not explicitly listed. If
missing, then the mapped vaues will only be those explicitly specified.

E.15 Thefina lineis mandatory, and must contain "End Definition" (in upper-case or lower-case). The formal ECN
encoding specification isinserted (by the macro) after thisline.

E.15.1 Thefirst exampleis:

my-int-encodingl #My-Special-1 ::=
{USE #BITS

ITU-T Rec. X.692 (11/2008) 171

| SO/IEC 8825-3:2008 (E)

-- ECN Huffman

-- RANGE (-1..10)

---11S20%

- 11S25%

- 01S15%

--(3..6) IS10%

-- Rest 1IS2%

-- End Definition

-- Mappings produced by "ECN Public Domain Software for Huffman encodings, version 1"
MAPPING TO BITS{

-1TO'11'B,

0. 1TO'01'B.."10'B,

2T0O '0000001'B ,

3. 5TO'0001'B ..'0011'B,

6 TO '00001'B,

7 .. 8 TO'0000010'B .. '0000011'B,
9.. 10 TO '00000000'B .. '00000001'B

}
WITH my-self-delim-bits-encoding }

E.15.2 The second exampleis:

my-int-encoding2 #My-Special-2 ::=
{ USE #BITS
-- ECN Huffman
-- RANGE (-10..10)
---101S20%
- 11S25%
- 51S15%
--(7..10) is 10%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffman encodings, version 1"
MAPPING TO BITS{
-10TO'11'B,
1TO'10B,
5TO'01'B,
7..10TO'0000'B ..'0011'B

WITH my-self-delim-bits-encoding }
E.15.3 Thethird exampleis:

my-int-encoding3 #My-Special-3 ::=
{ USE #BITS
-- ECN Huffman
-- RANGE (0..1000)
-- (0..63) 1S100%
-- REST IS0%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffman encodings"
MAPPING TO BITS{
0.. 62TO'000001'B ..'111111'B,
63 TO '0000001'B ,
64 .. 150 TO '0000000110101001'B .. '0000000111111111'B,
151 .. 1000 T O '00000000000000000'B .. '00000001101010001'B

}
WITH my-self-delim-bits-encoding }

172 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

Annex F

Additional information on the Encoding Control Notation (ECN)

(This annex does not form an integral part of this Recommendation | International Standard)

Additional information and links on the Encoding Control Notation can be found on the following Web site:

. http://www.itu.int/itu-t/asnl/ecn

ITU-T Rec. X.692 (11/2008) 173

| SO/IEC 8825-3:2008 (E)

G.1

Summary of the ECN notation

(This annex does not form an integral part of this Recommendation | International Standard)

Terminal symbols

The following terminal symbols are used in this Recommendation | International Standard

G.1l1

G.12

G.13

174

The following items are defined in clause 8:

anystringexceptnonecend
encodingobj ectr eference
encodingobjectsetr eference
encodingclassr eference

"
ALL

AS

BEGIN

BER

BITS

BY

CER

COMPLETED
DECODE

DER
DISTRIBUTION
ENCODE
ENCODE-DECODE
ENCODING-CLASS
ENCODING-DEFINITIONS
END

EXCEPT

EXPORTS

FALSE

FIELDS

FROM
GENERATES

The following item is defined in Annex A:

REFERENCE

IF

IMPORTS

IN

LINK-DEFINITIONS
MAPPING

MAX

MIN

MINUS-INFINITY
NON-ECN-BEGIN
NON-ECN-END

NULL
OPTIONAL-ENCODING
OPTIONS

ORDERED

OUTER
PER-BASIC-ALIGNED
PER-BASIC-UNALIGNED
PER-CANONICAL-ALIGNED

PER-CANONICAL-UNALIGNED

PLUSINFINITY
REFERENCE
REMAINDER
RENAMES
SIZE
STRUCTURE
STRUCTURED
TO
TRANSFORMS
TRUE

UNION

USE

USE-SET
VALUES
WITH

The following items are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1:

bstring

cstring

hstring

identifier
moduler eference
number
realnumber

ITU-T Rec. X.692 (11/2008)

typer eference FALSE

FROM

IMPORTS
MINUS-INFINITY
ALL NULL
EXCEPT PLUS-INFINITY
EXPORTS TRUE

G.14 Thefollowing itemsare defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 :

word
valuefieldr eference
valuesetfieldr eference

The following items are defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:

G.15

"<

">y
G.2 Productions
G.21

| SO/IEC 8825-3:2008 (E)

The following productions are used in this Recommendation | International Standard, with the items defined
in G.1 asterminal symbols:

EL M Definition ::=
Modulel dentifier
LINK-DEFINITIONS

BEGIN
ELMM oduleBody
END

ELMModuleBody ::=
Imports ?
EncodingApplicationList

EncodingApplicationList ::=
EncodingApplication
EncodingApplicationList ?

EncodingApplication ::=
ENCODE

SimpleDefinedEncodingClass™” " +

CombinedEncodings

CombinedEncodings::=
WITH
PrimaryEncodings
CompletionClause ?

CompletionClause ::=
COMPLETED BY
Secondar yEncodings

PrimaryEncodings ::= EncodingObj ect Set
SecondaryEncodings ::= EncodingObj ect Set

EDM Definition ::=
Modulel dentifier
ENCODING-DEFINITIONS
BEGIN
EDM M oduleBody
END

EDMM oduleBody ::=
Exports ?
RenamesAndExports ?
Imports ?
EDM AssignmentList ?

EDMAssignmentList ::=
EDM Assignment
EDMAssignmentList ?

EDMAssignment ::=
EncodingClassAssignment
|EncodingObjectAssignment
|EncodingObj ect SetAssignment

ITU-T Rec. X.692 (11/2008) 175

| SO/IEC 8825-3:2008 (E)

176

|ParameterizedAssignment

RenamesAndExports::=
RENAMES
ExplicitGenerationList " ;"

ExplicitGenerationList ::=
ExplicitGeneration
ExplicitGenerationList ?

ExplicitGeneration ::=
OptionalNameChanges
FROM GlobalM oduleReference

OptionalNameChanges ::=
NameChanges| GENERATES

NameChanges ::= NameChange NameChanges ?

NameChange ::=
OriginalClassName
AS
NewClassName
IN
NameChangeDomain

OriginalClassName ::= SimpleDefinedEncodingClass | BuiltinEncodingClassReference

NewClassName ::= encodingclassr eference

NameChangeDomain ::=
IncludedRegions
Exception ?

Exception ::=
EXCEPT
ExcludedRegions

IncludedRegions::=
ALL | RegionList

ExcludedRegions ::= RegionList

RegionList ::=
Region"," +

Region ::=
SimpleDefinedEncodingClass |
ComponentReference

ComponentReference ::=
SimpleDefinedEncodingClass

ComponentldList

ComponentldList ::=
identifier "." +

EncodingClassAssignment ::=
encodingclassr eference

E.rllcodingCIass

EncodingClass ::=
BuiltinEncodingClassRefer ence|
EncodingStructure

EncodingObjectAssignment ::=
encodingobj ectr eference
DefinedOr BuiltinEncodingClass

EncodingObject

EncodingObjectSetAssignment ::=
encodingobj ectsetr eference

ITU-T Rec. X.692 (11/2008)

#ENCODINGS

EncodingObject Set
CompletionClause ?

EncodingObjectSet ::=

DefinedOr BuiltinEncodingObjectSet |

EncodingObject SetSpec

EncodingStructure ::=
TaggedStructure|
UntaggedStructure

TaggedStructure::=

TagClass

TagValue?
n]II
UntaggedStructure

UntaggedStructure::=
DefinedEncodingClass
|[EncodingStructureField
|[EncodingStructureDefn

TagClass::=
DefinedEncodingClass
[TagClassReference

TagValue::=
" (ll number ")II

EncodingStructureDefn ::=
AlternativesStructure
|RepetitionStructure
|ConcatenationStructure

AlternativesStructure::=
AlternativesClass

{
NamedFields
"y
AlternativesClass ::=

DefinedEncodingClass
|Alter nativesClassReference

NamedFields ::= NamedField " " +

NamedField ::=
identifier
EncodingStructure
RepetitionStructure ::=
RepetitionClass
"
identifier ?
EncodingStructure

}

Size?

RepetitionClass ::=
DefinedEncodingClass
|RepetitionClassRefer ence

ConcatenationStructure ::=
ConcatenationClass
" {!I
ConcatComponents
" }!I

ConcatenationClass ::=
DefinedEncodingClass
|ConcatenationClassReference

| SO/IEC 8825-3:2008 (E)

ITU-T Rec. X.692 (11/2008)

177

| SO/IEC 8825-3:2008 (E)

ConcatComponents ;.=
ConcatComponent " " *

ConcatComponent ::=
NamedField
ConcatComponentPresence ?

ConcatComponentPresence ::=
OPTIONAL-ENCODING
OptionalClass

OptionalClass ::=
DefinedEncodingClass
|OptionalityClassRefer ence

DefinedEncodingClass ::=
encodingclassr eference
|Exter nalEncodingClassRefer ence
|ParameterizedEncodingClass

DefinedOr BuiltinEncodingClass ::=
DefinedEncodingClass
[BuiltinEncodingClassRefer ence

DefinedEncodingObject ::=
encodingobj ectr eference
|Exter nal EncodingObj ectReference
|Par ameterizedEncodingObj ect

DefinedEncodingObjectSet ::=
encodingobj ectsetr efer ence
|[Exter nalEncodingObj ect SetRefer ence
|Par ameterizedEncodingObj ect Set

DefinedOr BuiltinEncodingObjectSet ::=
DefinedEncodingObj ect Set
[BuiltinEncodingObj ect SetRefer ence

BuiltinEncodingObj ectSetReference ::=
PER-BASIC-ALIGNED
|PER-BASIC-UNALIGNED
|[PER-CANONICAL-ALIGNED
|PER-CANONICAL-UNALIGNED
|BER
|CER
IDER

Exter nalEncodingClassReference ::=
modulereference™." encodingclassr eference
|[modulereference™." BuiltinEncodingClassReference

Exter nalEncodingObjectReference ::=
modulereference”." encodingobjectreference

Exter nalEncodingObjectSetReference ::=

modulereference”." encodingobjectsetreference
EncodingObjectSetSpec ::=

n {ll
EncodingObjects UnionMark *
n }ll

EncodingObjects::=
DefinedEncodingObj ect
|DefinedEncodingObj ect Set

UnionMark ::=
I
UNION
EncodingObject ::=
DefinedEncodingObj ect

|DefinedSyntax
|[EncodeWith

178 ITU-T Rec. X.692 (11/2008)

|EncodeByValueM apping
|[EncodeStructure

|Differential EncodeDecodeObj ect
|EncodingOptionsEncodingObj ect
[INonECNENcodingObject

EncodeWith ::=
"{" ENCODE CombinedEncodings"}"

EncodeByValueMapping ::=
n {ll

USE
DefinedOr BuiltinEncodingClass
MAPPING
ValueM apping
WITH
ValueM appingEncodingObjects
" }II
ValueM appingEncodingObjects::=
EncodingObject
|DefinedOr BuiltinEncodingObj ect Set

Differential EncodeDecodeObject ::=

{
ENCODE-DECODE
SpecFor Encoding
DECODE ASIF
SpecFor Decoders

}
SpecFor Encoding ::= EncodingObj ect
SpecFor Decoder s ::= EncodingObj ect

EncodingOptionsEncodingObject ::=
n {ll
OPTIONS
EncodingOptionsList
WITH
Alter nativesEncodingObj ect
n }ll

EncodingOptionsList ::= OrderedEncodingObjectList

AlternativesEncodingObject ::= EncodingObj ect

NonECNEnNcodingObject::=
NON-ECN-BEGIN
Assignedl dentifier
anystringexceptnonecnend
NON-ECN-END

EncodeStructure ::=

E{NCODE STRUCTURE
C{omponentEncodingList
StructureEncoding ?
CiombinedEncodings?

StructureEncoding ::=
STRUCTURED WITH
TagEncoding ?
EncodingOr UseSet

ComponentEncodingList ::=
ComponentEncoding " ," *

ComponentEncoding ::=
NonOptional ComponentEncodingSpec
|Optional ComponentEncodingSpec

| SO/IEC 8825-3:2008 (E)

ITU-T Rec. X.692 (11/2008)

179

| SO/IEC 8825-3:2008 (E)

NonOptional ComponentEncodingSpec ::=
identifier ?
TagAndElementEncoding

OptionalComponentEncodingSpec ::=
identifier
TagAndElementEncoding
OPTIONAL-ENCODING
OptionalEncoding

TagAndElementEncoding ::=
TagEncoding ?
EncodingOr UseSet

TagEncoding ::="[" EncodingOrUseSet " 1"
OptionalEncoding ::= EncodingOr UseSet

EncodingOrUseSet ::=
EncodingObject
|USE-SET

BuiltinEncodingClassReference ::=
BitfieldClassReference
|Alter nativesClassReference
|ConcatenationClassReference
|RepetitionClassRefer ence
|OptionalityClassRefer ence
|[TagClassReference
|EncodingPr ocedur eClassReference

BitfieldClassReference ::=
#NUL
[#BOOL
[#INT
[#BITS
[#FOCTETS
[#CHARS
[#PAD
[#BIT-STRING
[#BOOLEAN
[#CHARACTER-STRING
|[#EM BEDDED-PDV
[#ENUMERATED
[#EXTERNAL
[#INTEGER
[#NUL L
[#fOBJECT-IDENTIFIER
[#FOCTET-STRING
[#FOPEN-TYPE
[#REAL
[#RELATIVE-OID
[#TIME
[#DATE
[#DATE-TIME
[#TIME-OF-DAY
[#{DURATION
[#GeneralizedTime
[HUTCTime
[#ObjectDescriptor
[#BM PString
[#GeneralString
[#GraphicString
[#1 A5String
[#NumericString
[#PrintableString
[#TeletexString
[#UniversalString
[#UTF8String
[#VideotexString
[#VisibleString

180 ITU-T Rec. X.692 (11/2008)

AlternativesClassReference ;=
#ALTERNATIVES
[#CHOICE

ConcatenationClassReference ::=
#CONCATENATION
[#SEQUENCE
[#SET

RepetitionClassReference ::=
#REPETITION
[#SEQUENCE-OF
[#SET-OF

OptionalityClassReference ::=
#OPTIONAL

TagClassReference ::=
#TAG

EncodingProcedur eClassReference ::=
#TRANSFORM
[#CONDITIONAL-INT
[#CONDITIONAL-REPETITION
[#OUTER

EncodingStructureField ::=
#NUL

| #BOOL

| #INT Bounds?

| #BITS Size?

| #OCTETS Size?

| #CHARS Size?

| #PAD

| #BIT-STRING Size?

| #BOOLEAN
| #CHARACTER-STRING
| #EMBEDDED-PDV
I
I
I
I
I
I
I
I

#ENUMERATED Bounds?
H#EXTERNAL
#INTEGER Bounds?
#NUL L
#OBJECT-IDENTIFIER
#OCTET-STRING Size?
#OPEN-TYPE
#REAL
| #RELATIVE-OID
[#TIME
[#DATE
[#DATE-TIME
[#TIME-OF-DAY
[#DURATION
| #GeneralizedTime
| #UTCTime
| #ObjectDescriptor Size?
| #BMPString Size?
| #GeneralString Size?
| #GraphicString Size?
| #A5String Size?
| #NumericString Size?
| #PrintableString Size?
| #TeletexString Size?
| #UniversalString Size?
| #UTF8String Size?
| #VideotexString Size?
| #VisibleString Size?

Bounds::=" (" EffectiveRange")"

EffectiveRange ::=
MinM ax

| SO/IEC 8825-3:2008 (E)

ITU-T Rec. X.692 (11/2008)

181

| SO/IEC 8825-3:2008 (E)

182

|Fixed
Size ::="(" SIZE SizeEffectiveRange")"

SizeEffectiveRange ::=
" (" EffectiveRange")"

MinMax ::=
ValueOrMin
ValueOrMax

ValueOrMin ::=
SignedNumber
[MIN

ValueOrMax ::=
SignedNumber
[IMAX

Fixed ::= SignedNumber

ValueMapping ::=
MappingByExplicitValues
[MappingByM atchingFields
[MappingByTransfor mEncodingObj ects
[MappingByAbstractValueOrdering
[MappingByValueDistribution
[MappinglntToBits

MappingByExplicitValues ::=
VALUES
" {ll
MappedValues" " +
" }ll
MappedValues::=
M appedValuel
TO
M appedValue2

MappedValuel ::= Value
MappedValue2 ::= Value

MappingByMatchingFields::=
FIELDS

M appingByTransformEncodingObjects::=
TRANSFORMS

OrderedTransformList
n }ll

OrderedTransformList ::= Transform " ," +
Transform ::= EncodingObj ect

MappingByAbstractValueOrdering ::=
ORDERED VALUES

MappingByValueDistribution ::=
DISTRIBUTION
n {ll
Distribution " ," +
n }ll
Distribution ::=
SelectedValues
TO
identifier
SelectedValues::=
SelectedValue
|DistributionRange

ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

[REMAINDER

DistributionRange ::=
DistributionRangeValuel

D.i-stributionRangeValueZ
SelectedValue ::= SignedNumber
DistributionRangeValuel ::= SignedNumber
DistributionRangeValue? ::= SignedNumber

MappinglntToBits::=
TOBITS

MappedIntToBits"," +
" }!l
MappedintToBits ::=

SinglelntValM ap
[IntValRangeM ap

SinglelntValMap ::=
IntValue
TO
BitValue

IntValue ::= SignedNumber

BitValue::=
bstring|
hstring

IntValRangeMap ::=
IntRange
TO
BitRange

IntRange::=
IntRangeValuel
IntRangeValue2
BitRange::=
BitRangeValuel
BitRangeValue?
IntRangeValuel ::= SignedNumber
IntRangeValue2 ::= SignedNumber

BitRangeValuel ::=
bstring |
hstring

BitRangeValue2 ::=
bstring |
hstring

G.2.2 The following productions are defined ITU-T Rec. X.680 | ISO/IEC 8824-1, as modified by Annex A, with
theitems defined in G.1 as terminal symbols:

NOTE — Struck productions are not allowed in ECN.
Modulel dentifier ::=
moduler eference
Definitivel dentifier ?

Definitivel dentifier ::=
"{" DefinitiveObjldComponentList "}"

DefinitiveObjldComponentList ::=
DefinitiveObjl dComponent

ITU-T Rec. X.692 (11/2008) 183

| SO/IEC 8825-3:2008 (E)

|DefinitiveObjl dComponent DefinitiveObjldComponentList

DefinitiveObjldComponent ::=
NameForm
|DefinitiveNumber Form
|DefinitiveNameAndNumber Form

NameForm ::=identifier
DefinitiveNumber Form ::= number
DefinitiveNameAndNumber Form ::=identifier " (" DefinitiveNumber Form ")"

Exports::=
EXPORTS SymbolsExported?";" |
EXPORTSALL ";"

SymbolsExported ::= SymbolList
Imports::= IMPORTS Symbolsl mported? " ;"
Symbolsimported ::= SymbolsFromM oduleL ist

SymbolsFromModulelist ::=
SymbolsFromModule]
SymbolsFromModuleList SymbolsFromM odule

SymbolsFromModule ::=
SymbolList

FROM

GlobalM oduleReference

GlobalM oduleReference ::=
moduler efer ence Assignedl dentifier

Assignedidentifier ::=
Definitivel dentifier
lempty

SymbolList ::=
Symbol|
SymbolList *," Symbol

Symbol ::=

Reference

|Par ameterizedReference
[BuiltinEncodingClassRefer ence

Reference::=

encodingclassr eference

|Exter nalEncodingClassRefer ence
|encodingobjectr eference
|encodingobj ectsetr eference

Value::=
BuiltinvValue
|ReferencedValue
biectC . |
BuiltinValue ::=

BitStringValue
|BooleanValue
|Character StringValue
|ChoiceValue
{EmbeddedPD\A/atue
|[EnumeratedValue
{ExternalMalue
fastanecOffatue

184 ITU-T Rec. X.692 (11/2008)

[IntegerValue
[NullValue
|ObjectldentifierValue
|[OctetStringValue
|RealValue
|RelativeOlDValue
{Sequeneevatue
{SequeneeOfalue
{SetMatae
{Setoffatue
{Faggedalue

BitStringValue ::=
bstring
|hstring
" [II I E’E qtifi EF 'a ll}ll
DI

BooleanValue::=
TRUE
|FALSE

Character StringValue ::=
RestrictedCharacter StringValue

{UnrestrictedCharacter StringValue

RestrictedCharacter StringValue ::=
cstring
|Character StringList
|Quadruple
[Tuple

Character StringList ::= "{" CharSyms"}"

CharSyms ::=
CharsDefn
[CharSyms" " CharsDefn

CharsDefn ::=
cstring
|Quadruple
[Tuple
|AbsoluteChar Reference

Quadruple::="{" Group "," Plane "," Row "," Cdl"}"
Group::= number

Plane::= number

Row::= number

Céll::= number

Tuple::="{" TableColumn"," TableRow "}"
TableColumn ::= number

TableRow ::= number

AbsoluteChar Reference ::=
M odulel dentifier

v.aJuereference
ChoiceValue::=identifier ":" Value
EnumeratedValue ::= identifier

| SO/IEC 8825-3:2008 (E)

ITU-T Rec. X.692 (11/2008)

185

| SO/IEC 8825-3:2008 (E)

IntegerValue ::=
SignedNumber
denti

SignedNumber ::=
number |
"-" number

NullValue::= NULL

ObjectldentifierValue::=
"{" ObjldComponentsList"}"

ObjldComponentsList ::=
ObjldComponents|
ObjldComponents ObjldComponentsList

ObjldComponents::=
NameForm|
Number Form|
NameAndNumber Form

NameForm ::=identifier

NumberForm ::=
number

|DefinedValue

NameAndNumber Form ::=identifier " (* NumberForm ")"

OctetStringValue ::=
bstring|
hstring

RealValue::=
NumericRealValue
|SpecialRealValue

NumericRealValue ::=
0
{realnumber
[*-" realnumber
|SequenceValue

SpecialRealValue ::=
PLUSINFINITY
[IMINUSINFINITY

RelativeOlDValue::="{" RelativeOidComponentsList "}"

RelativeOidComponentsList ::=
RelativeOidComponents
|RelativeOidComponents RelativeOidComponentsL ist

RelativeOidComponents::=
Number Form
[NameAndNumber Form

|DefinedValue

SequenceValue::=
"{" ComponentValueList "}"|
n {ll " }ll

ComponentValuelist ::=
NamedValue
|ComponentValuelList " ," NamedValue

186 ITU-T Rec. X.692 (11/2008)

| SO/IEC 8825-3:2008 (E)

NamedValue::=
identifier Value

ValueSet ::="{" ElementSetSpecs"}"

ElementSetSpecs ::=
RootElementSetSpec
RoGtE SetSpecttt_n

RootElementSetSpec :: = Element Set Spec

ElementSetSpec ::=
Unions
|[ALL Exclusions

Exclusions::= EXCEPT Elements

Unions::=
I nter sections
|[UElems UnionMark I nter sections

UElems::= Unions

Intersections::=
Inter sectionElements

{HElemstntersectionMark-tntersectionElements
I nter sectionElements :: = Elements } Elems-Exelusions
UnionMark ::=
"]
UNION

Elements ::=
SubtypeElements

ObjectSetElements
' (" ElementSetSpec")"

SubtypeElements ::=
SingleValue
{ContainedSubtype
fvalueRange
{PermittedAlphabet
{SizeConstraint
{FypeConstraint
{anerTypeConstraints

SingleValue::=Value

ITU-T Rec. X.692 (11/2008) 187

| SO/IEC 8825-3:2008 (E)

G.23 The following productions are defined ITU-T Rec. X.681 | ISO/IEC 8824-2, as modified by Annex B, with
theitems defined in G.1 as terminal symbols:

DefinedSyntax ::="{" DefinedSyntaxList ?"}"
DefinedSyntaxList ::= DefinedSyntaxToken DefinedSyntaxList ?

DefinedSyntaxToken ::=
Literal
|Setting
Literal ::
word
Setting ::
Value
|[ValueSet

|OrderedValuel ist

|EncodingObj ect
|EncodingObject Set
|OrderedEncodingObjectL ist
|DefinedOr BuiltinEncodingClass
|OUTER

OrderedValuelList ::="{" Value" " +"}"
OrderedEncodingObjectList ::="{" EncodingObject " ," +"}"
InstanceOfValue ::= Value

EncodingClassFieldType ::=
DefinedEncodingClass

FieldName
FieldName ::= PrimitiveFieldName " ." +

PrimitiveFieldName ::=
valuefieldreference
[valuesetfieldr eference

|order edvaluelistfieldr eference

G.24 The following productions are defined ITU-T Rec. X.683 | ISO/IEC 8824-4, as modified by Annex C, with
the items defined in G.1 as terminal symbols:

ParameterizedAssignment ::=

Par ameterizedEncodingObj ectAssignment
|Par ameterizedEncodingClassAssignment

|Par ameterizedEncodingObj ect SetAssignment

Par ameterizedEncodingObjectAssignment ::=
encodingobj ectr eference

ParameterList

DefinedOr BuiltinEncodingClass

EncodingObject

ParameterizedEncodingClassAssignment ::=
encodingclassr eference
ParameterList

EncodingClass

Par ameterizedEncodingObjectSetAssignment ::=
encodingobj ectsetr efer ence

ParameterList

#ENCODINGS

E'ﬁcodi ngObj ect Set

188 ITU-T Rec. X.692 (11/2008)

ParameterList ::="{<" Parameter "," +">}"

Parameter ::=
ParamGovernor ":" DummyReference
[DummyReference

ParamGovernor ::=
Governor

{BummyGoverner

Governor ::=
EncodingClassFieldType
|REFERENCE

|DefinedOr BuiltinEncodingClass
[#ENCODINGS

[Type

DummyReference ::=
encodingclassr eference
[valuer eference

[typer eference

lidentifier

|encodingobjectr eference
|encodingobj ectsetr eference

ParameterizedReference ::=
Reference
|Reference” {<" " >}"

ParameterizedEncodingObject ::=
SimpleDefinedEncodingObj ect
ActualParameter List

SimpleDefinedEncodingObject ::=
Exter nalEncodingObjectReference
|encodingobj ectr eference

ParameterizedEncodingObjectSet ::=
SimpleDefinedEncodingObj ect Set
ActualParameterList

SimpleDefinedEncodingObjectSet ::=
Exter nalEncodingObjectSetReference
|encodingobj ectsetr eference

ParameterizedEncodingClass ::=
SimpleDefinedEncodingClass
ActualParameterList

SimpleDefinedEncodingClass ::=
Exter nalEncodingClassRefer ence
|encodingclassr eference

ActualParameterList ::="{<" ActualParameter "," +">}"

ActualParameter ::=

Value

[ValueSet

|[OrderedValuel ist
|DefinedOr BuiltinEncodingClass
|EncodingObj ect
|EncodingObj ectSet
|OrderedEncodingObjectList
lidentifier

|STRUCTURE

|ou

| SO/IEC 8825-3:2008 (E)

ITU-T Rec. X.692 (11/2008)

189

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T RECOMMENDATION X.692 (11/2008) – Information technology – ASN.1 encoding rules: Specification of Encoding Control Notation (ECN)
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 ASN.1 definitions
	3.2 ECN-specific definitions

	4 Abbreviations
	5 Definition of ECN syntax
	6 Encoding conventions and notation
	7 The ECN character set
	8 ECN lexical items
	8.1 Encoding object references
	8.2 Encoding object set references
	8.3 Encoding class references
	8.4 Reserved word items
	8.5 Reserved encoding class name items
	8.6 Non-ECN item

	9 ECN Concepts
	9.1 Encoding Control Notation (ECN) specifications
	9.2 Encoding classes
	9.3 Encoding structures
	9.4 Encoding objects
	9.5 Encoding object sets
	9.6 Defining new encoding classes
	9.7 Defining encoding objects
	9.8 Differential encoding-decoding
	9.9 Encoders options in encodings
	9.10 Properties of encoding objects
	9.11 Parameterization
	9.12 Governors
	9.13 General aspects of encodings
	9.14 Identification of information elements
	9.15 Reference fields and determinants
	9.16 Replacement classes and structures
	9.17 Mapping abstract values onto fields of encoding structures
	9.18 Transforms and transform composites
	9.19 Contents of Encoding Definition Modules
	9.20 Contents of the Encoding Link Module
	9.21 Defining encodings for primitive encoding classes
	9.22 Application of encodings
	9.23 Combined encoding object set
	9.24 Application point
	9.25 Conditional encodings
	9.26 Other conditions for applying encodings
	9.27 Encoding control for the open type
	9.28 Changes to ASN.1 Recommendations | International Standards

	10 Identifying encoding classes, encoding objects, and encoding object sets
	11 Encoding ASN.1 types
	11.1 General
	11.2 Built-in encoding classes used for implicitly generated encoding structures
	11.3 Simplification and expansion of ASN.1 notation for encoding purposes
	11.4 The implicitly generated encoding structure

	12 The Encoding Link Module (ELM)
	12.1 Structure of the ELM
	12.2 Encoding types

	13 Application of encodings
	13.1 General
	13.2 The combined encoding object set and its application

	14 The Encoding Definition Module (EDM)
	15 The renames clause
	15.1 Explicitly generated and exported structures
	15.2 Name changes
	15.3 Specifying the region for name changes

	16 Encoding class assignments
	16.1 General
	16.2 Encoding structure definition
	16.3 Alternative encoding structure
	16.4 Repetition encoding structure
	16.5 Concatenation encoding structure

	17 Encoding object assignments
	17.1 General
	17.2 Encoding with a defined syntax
	17.3 Encoding with encoding object sets
	17.4 Encoding using value mappings
	17.5 Encoding an encoding structure
	17.6 Differential encoding-decoding
	17.7 Encoding options
	17.8 Non-ECN definition of encoding objects

	18 Encoding object set assignments
	18.1 General
	18.2 Built-in encoding object sets

	19 Mapping values
	19.1 General
	19.2 Mapping by explicit values
	19.3 Mapping by matching fields
	19.4 Mapping by
	19.5 Mapping by abstract value ordering
	19.6 Mapping by value distribution
	19.7 Mapping integer values to bits

	20 Defining encoding objects using defined syntax
	21 Types used in defined syntax specification
	22 Commonly used encoding property groups
	22.1 Replacement specification
	22.2 Pre-alignment and padding specification
	22.3 Start pointer specification
	22.4 Encoding space specification
	22.5 Optionality determination
	22.6 Alternative determination
	22.7 Repetition space specification
	22.8 Value padding and justification
	22.9 Identification handle specification
	22.10 Concatenation specification
	22.11 Contained type encoding specification
	22.12 Bit reversal specification

	23 Defined syntax specification for bit-field and constructor classes
	23.1 Defining encoding objects for classes in the alternatives category
	23.2 Defining encoding objects for classes in the bitstring category
	23.3 Defining encoding objects for classes in the boolean category
	23.4 Defining encoding objects for classes in the characterstring category
	23.5 Defining encoding objects for classes in the concatenation category
	23.6 Defining encoding objects for classes in the integer category
	23.7 Defining encoding objects for the
	23.8 Defining encoding objects for classes in the null category
	23.9 Defining encoding objects for classes in the octetstring category
	23.10 Defining encoding objects for classes in the open type category
	23.11 Defining encoding objects for classes in the optionality category
	23.12 Defining encoding objects for classes in the pad category
	23.13 Defining encoding objects for classes in the repetition category
	23.14 Defining encoding objects for the
	23.15 Defining encoding objects for classes in the tag category
	23.16 Defining encoding objects for classes in the other categories

	24 Defined syntax specification for the
	25 Complete encodings and the
	Annex A
	Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1
	A.1 Exports and imports clauses
	A.2 Addition of
	A.3 Notation for character string values

	Annex B
	Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2
	B.1 Definitions
	B.2 Additional lexical items
	B.3 Addition of "ENCODING-CLASS"
	B.4 FieldSpec additions
	B.5 Fixed-type ordered value list field spec
	B.6 Fixed-class encoding object field spec
	B.7 Variable-class encoding object field spec
	B.8 Fixed-class encoding object set field spec
	B.9 Fixed-class ordered encoding object list field spec
	B.10 Encoding class field spec
	B.11 Ordered value list notation
	B.12 Ordered encoding object list notation
	B.13 Primitive field names
	B.14 Additional reserved words
	B.15 Definition of encoding objects
	B.16 Additions to "Setting"
	B.17 Encoding class field type

	Annex C
	Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4
	C.1 Parameterized assignments
	C.2 Parameterized encoding assignments
	C.3 Referencing parameterized definitions
	C.4 Actual parameter list

	Annex D
	Examples
	D.1 General examples
	D.2 Specialization examples
	D.3 Explicitly generated structure examples
	D.4 A more-bit encoding example
	D.5 Legacy protocol specified with tabular notation

	Annex E
	Support for Huffman encodings
	Annex F
	Additional information on the Encoding Control Notation (ECN)
	Annex G
	Summary of the ECN notation
	G.1 Terminal symbols
	G.2 Productions

