Superseded by a more recent version

| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.691

TELECOMMUNICATION (04/95)
STANDARDIZATION SECTOR
OF ITU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI NETWORKING AND SYSTEM ASPECTS -
ABSTRACT SYNTAX NOTATION ONE (ASN.1)

INFORMATION TECHNOLOGY -
ASN.1 ENCODING RULES -
SPECIFICATION OF PACKED
ENCODING RULES (PER)

ITU-T Recommendation X.691
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Superseded by a more recent version

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.691 was approved on 10th of April 1995.
The identical text is also published as ISO/IEC International Standard 8825-2.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

O ITU 1996

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

ORGANIZATION OF X-SERIES RECOMMENDATIONS

(February 1994)

Subject area

Recommendation Series

PUBLIC DATA NETWORKS

Services and Facilities X.1-X.19
Interfaces X.20-X.49
Transmission, Signalling and Switching X.50-X.89
Network Aspects X.90-X.149
Maintenance X.150-X.179
Administrative Arrangements X.180-X.199
OPEN SYSTEMS INTERCONNECTION
Model and Notation X.200-X.209
Service Definitions X.210-X.219
Connection-mode Protocol Specifications X.220-X.229
Connectionless-mode Protocol Specifications X.230-X.239
PICS Proformas X.240-X.259
Protocol Identification X.260-X.269
Security Protocols X.270-X.279
Layer Managed Objects X.280-X.289
Conformance Testing X.290-X.299
INTERWORKING BETWEEN NETWORKS
General X.300-X.349
Mobile Data Transmission Systems X.350-X.369
Management X.370-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS
Networking X.600-X.649
Naming, Addressing and Registration X.650-X.679
Abstract Syntax Notation One (ASN.1) X.680-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OS| APPLICATIONS
Commitment, Concurrency and Recovery X.850-X.859
Transaction Processing X.860-X.879
Remote Operations X.880-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999

© 00 N o O b~

10

11
12
13
14
15
16
17
18
19

Superseded by a more recent version

CONTENTS

Page
o0 oL T TP USRS S PP PR PRTPPTON 1
NOIMALTIVE FEFEIENCES ...ttt e e seesbeseeseestesseeseeneenee enseseensenseseensesnennens 1
2.1 ldentical Recommendations | International Standards............coererininenieninieee e 1
2 o (o (1o 0 A= = 1= TSRS 2
[11 L (o OSSPSR 2
3.1 Basic Presentation Service DEfiNitioN........cccociriieieneise e 2
3.2 Specification Of BasiC NOLBLIONccoiiiiiiiiierieie et e e s ee e e 2
3.3 ASN.LEXENSIDIITY .ottt e 2
34 Information Object SPECITICAION.ccceiire e n e nes 2
35 CONSLrainNt SPECITICALION........ciuieeeiriieeiertei ettt bbbt b et a s s nan 2
3.6 Parameterization Of ASN.L SPECITICAIIONcoueiiiiiierieie et 3
3.7 BaSICENCOQING RUIES ... sttt et sr et e st e eneene e e ennenes 3
3.8 Additional dEfiNItIONSccceiieiiriieri et sre e e ne e neenes 3
F N oo =Y T o PSSP 5
N[0 1o o FO SRR 5
L@00] 011/ g 11T o SO SPSTSRN 6
Encoding rules defined in this Recommendation | International Standard............ccccovevvivverenievcenenceneseeneenes 6
L0001 010 7= 0TSSP 7
The approach to encoding USed fOr PER ...t s s 7
(S I R U E o) i (150 1Y/ 01 10 = 1 Lo o I 7
9.2 Useof tagsto provide acanOniCal OFTEScoiorireiririeeriiee st s 7
0.3 PER-VISIDIE CONSLIAINTS.ottt et et b b en e e ne e e e nes 7
9.4 Typeand value model used fOr @NCOOINGcooriiiriirieiere et 8
9.5 SHUCIUIE OF 8N ENMCOTING .. evivinietiieiieie ettt b e bbb e e st e ne s ntenenean 9
(S K T Y/ 1= S5 (o o 1= =010 [9
ENCOUING PrOCEAUIES.......c.eeeetiiteeete ettt sttt b ettt s e et b e st b bt b e s e bt b et eb b et ebene st sb e e e nens 10
10.1 Production of the complete ENCOAING.........coiririreeeee e e e 10
0 T2 @ o= a1 Y 1= 1= o (S 10
10.3 Encoding as a non-negative-binNary-iNtEOENc.cevireereierieneeseree et be s 10
10.4 Encoding as a 2's-complement-binary-iNtEgErooi i 1.
10.5 Encoding of a constrained Whole NUMDETuuviiiiiiiiiic e re e 11
10.6 Encoding of a normally small non-negative whole number ...,
10.7 Encoding of a semi-constrained Whole NUMDET ... 12.
10.8 Encoding of an unconstrained Whole NUMDET ... 13
10.9 General rules for encoding a length determinant ... e 13
Encoding the boolean type 15
ENCOAING the INTEGET TYP@....eeiiei ittt e e s bbb e e e s sanb e e e e e e s sanbreeeaeeaas 16
ENcoding the eNUMETAtEd tYPEottt ettt e e e e e e e e e e e e e s e emmmmneneeeaaaeae e e e s 16
[gTelolo [TaTo IRt a[cI (=T 1R £ 1= R SEEURRPR 17
ENcoding the DItStrNG tYPE ...coe oo r et e e e e e e e e s mm—— 11 17
ENcoding the OCIETSIING LYPEeiiieiiiiiiiie ettt e e s e s s e e e e nneee 18
ENCOAING the NUITEYPE ..ottt et e e e e e e s emmmmmmmmmmmm s s aseereee 19
ENCOdiNG the SEOUENCE LYPE ..oooi ittt ettt s sttt e e s ettt e e e s st e e e e s smmmeeeeemmmmnns e e e e s 19
Encoding the SEQUENCE-OF LYPEeeiiiiiiieiee ettt sn e s 19

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version i

Superseded by a more recent version

Page
20 ENCOOING thE SBE LY ... ettt ettt e et et et e s ae s bt ebe s st eaeeneen e enseseessenbeseeabesaesneas 20
21 ENCOUING the SEE-0f TYPB....e ettt sttt sttt st s e be e be st e e s be e sestns 21
22 ENCOdiNg the CROICE LYPE ...ttt e e e e e e teseestestesresrennennens 21
23 Encoding the 0bj eCt IdeNtifier TYPE ..o et bt 21
24 Encoding the eMbeddem-POV TYE ..ottt st b et 22
25 Encoding of avalue of the eXternal tyPe...........oii i e 23
26 Encoding the restricted CharaCter StHiNG tYPES.c.vcueiire et st e e e enen 24
27 Encoding the unrestricted charaCter StiNG TYPEovvcuiiirieereee e ebe 25
28 Object identifiers for tranSfar SYNEAXES ..ot b e e nne 27
ANNEX A — EXAmMPIE Of @NCOAINGS ...ttt ettt e e e e e e e e e e e e s s meeeeeeeeaaeam e e e e e e e e e e e s 28
A.1 Record that does not use subtype CONSIIAINTS..........ccccuiiiiiiiiiiir e vmmmm e 28
A.2 Record that uses SUDtYPe CONSIIAINTSccoiiiiiiiiiieiiiiiie e e e 31
A.3 Record that uses exXtensioN MArKEISooiiiiiiiii e e 34
Annex B — Observations on combining PER-VISIDIE CONSIIAINTSccoiiuiiiiiiiiiiiiiie e 38
Annex C — Support for the PER algorithmscoooiiiiiiie e e e e e e 39
Annex D — Support for the ASN.1 rules of extensibility ... 40
Annex E — Tutorial annex on concatenation of PER €NCOTINGScccoiiuiiiiiiaiiiiiiiiee s ere e e 41
Annex F — Assignment of object identifier ValUESuuuiiiiiiiii s s 42

ii ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version

Summary

This Recommendation | International Standard describes a set of encoding rules that can be applied to values of al
ASN.1 types to achieve a more compact representation than that achieved by the Basic Encoding Rules and its

derivatives (described in Recommendation X.690).

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version iii

Superseded by a more recent version

Introduction

The publications ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC 8824-4, ITU-T Rec. X.680/Amd. 1 | ISO/IEC 8824-1/Amd. 1,
ITU-T Rec. X.68L/Amd. 1 | ISO/IEC 8824-2/Amd. 1 together describe Abstract Syntax Notation One (ASN.1), a
notation for the definition of messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be applied to values of types defined
using the notation specified in ITU-T Rec. X.680 | ISO/IEC 8824-1. Application of these encoding rules produces a
transfer syntax for such values. It isimplicit in the specification of these encoding rules that they are also to be used for
decoding.

There are more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation |
International Standard defines a set of Packed Encoding Rules (PER), so called because they achieve a more compact
representation than that achieved by the Basic Encoding Rules (BER) and its derivatives described in ITU-T Rec. X.690
| ISO/IEC 8825-1 which is referenced for some parts of the specification of these Packed Encoding Rules.

iv ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY -
ASN.1 ENCODING RULES -
SPECIFICATION OF PACKED ENCODING RULES (PER)

1 Scope

This Recommendation | International Standard specifies a set of Packed Encoding Rules that may be used to derive a
transfer syntax for values of types defined in ITU-T Rec. X.680 | ISO/IEC 8824-1. These Packed Encoding Rules are
also to be applied for decoding such atransfer syntax in order to identify the data values being transferred.

The encoding rules specified in this Recommendation | International Standard
— are used at the time of communication;

— are intended for use in circumstances where minimizing the size of the representation of values is the
major concern in the choice of encoding rules;

— allow the extension of an abstract syntax by addition of extra values, preserving the encodings
of the existing values, for all forms of extension described in ITU-T Rec. X.680/Amd. 1 |
ISO/IEC 8824-1/Amd. 1.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunications Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

— ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:198/ymation technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model.

— ITU-T Recommendation X.216 (1994) | ISO/IEC 8822:19%grmation technology — Open Systems
Interconnection — Presentation service definition.

— ITU-T Recommendation X.226 (1994) | ISO/IEC 8823-1:198/ymation technology — Open Systems
Interconnection — Connection-oriented presentation protocol: Protocol specification.

— ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:198bymation technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.680 (1994)/Amd. 1 (1995) | ISO/IEC 8824-1:1995/Amd. 1:k885uation
technology — Abstract Syntax Notation One (ASN.1): Specification of basic notation — Amendment 1:
Rules of extensibility.

— ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:198ymation technology — Abstract Syntax
Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.681 (1994)/Amd. 1 (1995) | ISO/IEC 8824-2:1995/Amd. 1:k85nation
technology — Abstract Syntax Notation One (ASN.1): Information object specification — Amendment 1:
Rules of extensibility.

— ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:198bymation technology — Abstract Syntax
Notation One (ASN.1): Constraint specification.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 1

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:198bymation technology — Abstract Syntax
Notation One (ASN.1): Parameterization of ASN. 1 specifications.

ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1:198rmation technology — ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER).

2.2 Additional references

CCITT Rec. X.208 (1988¥pecification of Abstract Syntax Notation One (ASN.1).
ISO/IEC 2022:1994information technology — Character code structure and extension techniques.
ISO 2375:1985Data processing — Procedure for registration of escape sequences.

ISO 6093:1985/nformation processing — Representation of numerical values in character strings for
information interchange.

ISO/IEC 8824:1990information technology — Open Systems Interconnection — Specification of Abstract
Syntax Notation One (ASN.1).

ISO International Register of Coded Character Sets to be Used with Escape Sequences.

ISO/IEC 10646-1:1993,Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Basic Presentation Service Definition

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.216 |

ISO/IEC 8822:

a) defined context set;

b) presentation context identifier.
3.2 Specification of Basic Notation

For the purposes of this Recommendation | International Standard, all the definitions in ITU-T Rec. X.680 |

ISO/IEC 8824-1 apply.

33 ASN.1 Extensibility

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.680/Amd. 1 |

ISO/IEC 8824-1/Amd. 1:

a)
b)
<)
d)

extension marker;
extension series;
extension root;
extension addition.

34 Information Object Specification

For the purposes of this Recommendation | International Standard, all the definitions in ITU-T Rec. X.681 |

ISO/IEC 8824-2 apply.

3.5 Constraint Specification

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.682 |

ISO/IEC 8824-3:

a)
b)

component relation constraint;

table constraint.

2 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

3.6 Parameterization of ASN.1 Specification

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.683 |
I SO/IEC 8824-4:

— variable constraint.

3.7 Basic Encoding Rules

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.690 |
ISO/IEC 8825-1:

a) dynamic conformance;

b) static conformance;

c) datavalue;

d) encoding (of a data value);
e) sender;

f) receiver.

3.8 Additional definitions
In addition, the following definitions apply.

3.8.1 2’s-complement-binary-integer encoding: The encoding of a whole number into an octet-aligned-bit-field of

a specified length, or into the minimum number of octets that will accommodate that whole number encoded as a 2’s-
complement-integer, which provides representations for whole numbers that are equal to, greater than, or less than zero,
as specified in 10.4.

NOTES

1 The value of a two’s complement binary number is derived by numbering the bits in the contents octets, starting with
bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numeotal'ya
where N is its position in the above numbering sequence. The value of the two’s complement binary number is obtained by summing
the numerical values assigned to each bit for those bits which are set to one, excluding bit 8 of the first octet, anditigethied
value by the numerical value assigned to bit 8 of the first octet if that bit is set to one.

2 Whole number is a synonym for the mathematical tefimeger. It is used here to avoid confusion with the ASN.1
typeinteger.

3.8.2 abstract syntax value: A value of an abstract syntax (defined as the set of values of a single ASN.1 type),
which isto be encoded by PER, or which isto be generated by PER decoding.

NOTE — The single ASN.1 type associated with an abstract syntax is formally identified by an object of class
ABSTRACT-SYNTAX.

3.8.3 bit-field: The product of some part of the encoding mechanism that consists of an ordered set of bits that are
not necessarily a multiple of eight, and do not necessarily begin on an octet boundary in the complete encoding of the
abstract syntax value.

3.8.4 canonical encoding: A complete encoding of an abstract syntax value obtained by the application of encoding
rules that have no implementation-dependent options,; such rules result in the definition of a 1-1 mapping between
unambiguous and unique bitstrings in the transfer syntax and valuesin the abstract syntax.

3.8.5 composite type: A set, sequence, set-of, sequence-of, choice, embedded-pdv, external or unrestricted character
string type.

3.8.6 composite value: The value of a composite type.

3.8.7 constrained whole number: A whole number which is constrained by PER-visible constraints to lie within a
range from "Ib" to "ub" with the value "Ib" less than or equal to "ub", and the values of "Ib" and "ub" as permitted
values.

NOTE - Constrained whole numbers occur in the encoding which identifies the chosen alternative of a choice type, the
length of character, octet and bit string types whose length has been restricted by PER-visible constraints to a maxipthe length
count of the number of components in a sequence-of or set-of type that has been restricted by PER-visible constraimsto a maxi
number of components, the value of an integer type that has been constrained by PER-visible constraints to lie withimfimite mi
and maximum values, and the value that denotes an enumeration in an enumerated type.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 3

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

3.8.8 effective size constraint (for a constrained string type): A single finite size constraint that could be applied
to a built-in string type and whose effect would be to permit all and only those lengths that can be present in the
constrained string type.

NOTE — For example, the following has an effective size constraint:

A ::=TA5String (SIZE(1..4) | SIZE(10..15))
since it can be rewritten with a single size constraint that applies to all values:

A ::=1ASString (SIZE(1..4 | 10..15))
whereas the following has no effective size constraint since the string can be arbitrarily long if it does not containctaysabtaer
than 'a’, 'b' and 'c":

B ::=IA5String (SIZE(1..4) | FROM(""abc"))

3.8.9 effective PermittedAlphabet constraint (for a constrained restricted character string type): A single
PermittedAlphabet constraint that could be applied to a built-in known-multiplier character string type and whose effect
would be to permit al and only those characters that can be present in any character position of any of the values in the
constrained restricted character string type.

NOTE — An effective PermittedAlphabet constraint is either the entire alphabet of the unconstrained character string type
or a PermittedAlphabet specification that happens to be a superset of all PermittedAlphabet constraints imposed on the type. Fo
example, in

Ax ::=IASString (FROM("AB") | FROM("CD"))

Bx ::=1ASString (SIZE(1..4) | FROM("abc"))

"Ax" has an effective PermittedAlphabet constraints that consist of the entire IA5String alphabet since there is no PehnatitsedAl

constraint that applies to all values of "Ax". The same is true for "Bx". On the other hand, the following has an effective
PermittedAlphabet constraint of "ABCDE" since there is a PermittedAlphabet constraint specified that applies to all values:

A ::= IA5String (FROM("AB") | FROM("CD") | FROM("ABCDE"))

3.8.10 enumeration index: The non-negative whole number associated with an "Enumerationltem" in an enumerated
type. The enumeration indices are determined by sorting the "Enumerationltem"s into ascending order by their
enumeration value, then by assigning an enumeration index starting with zero for the first "Enumerationltem", one for
the second, and so on up to the last "Enumerationltem" in the sorted list.
NOTE - "Enumerationltem"s in the "RootEnumeration” are sorted separately from those in the "AdditionalEnumeration".

3.8.11 extensible for PER encoding: A property of atype whose definition contains an extension marker that affects
the PER encoding.

3.8.12 field-list: An ordered set of bit-field and/or octet-aligned-bit-field values that is produced as a result of
applying these encoding rules to components of avalue.

NOTE - (Tutorial) The model employed in this Recommendation | International Standard uses the term "field-list" to
indicate a linked list of buffers each containing an encoding, a length in bits, and an octet alignment indicator of ‘tnit*Gietdt-
aligned-bit-field". Each encoding is that of a value of an ASN.1 type. The octet alignment indicator says whether theiehchding
aligned on an octet boundary when used to form the complete encoding of the abstract syntax value, or if it should be added
immediately after the last bit of the previous encoding in the complete encoding. The notion of "field-list" is for degchiptises
only and does not suggest an implementation method.

3.8.13 indefinite-length: An encoding whose length is greater than 64K-1 or whose maximum length cannot be
determined from the ASN.1 notation.

3.8.14 fixed-length type: A type such that the value of the outermost length determinant in an encoding of this type
can be determined (using the mechanisms specified in this Recommendation | International Standard) from the type
notation (after the application of PER-visible constraints only) and is the same for al possible values of the type.

3.8.15 fixed value: A value such that it can be determined (using the mechanisms specified in this Recommendation |
International Standard) that this is the only permitted value (after the application of PER-visible constraints only) of the
type governing it.

3.8.16 known-multiplier character string type: A restricted character string type where the number of octets in the
encoding is a known fixed multiple of the number of characters in the character string for all permitted character string
values. The known-multiplier character string types are 1A5String, PrintableString, VisibleString, NumericString,
Universal String and BMPString.

3.8.17 length determinant: A count (of bits, octets, characters, or components) determining the length of part or all
of a PER encoding.

3.8.18 normally small non-negative whole number: A part of an encoding which represents values of an
unbounded non-negative integer, but where small values are more likely to occur than large ones.

3.8.19 normally small length: A length encoding which represents values of an unbounded length, but where small
lengths are more likely to occur than large ones.

4 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

3.8.20 octet-aligned-bit-field: The product of some part of the encoding mechanism that consists of an ordered set of
bits that are not necessarily a multiple of eight, but which are required to begin on an octet boundary in the complete
encoding of the abstract syntax value.

3.8.21 non-negative-binary-integer encoding: The encoding of a constrained or semi-constrained whole number
into either a bit-field of a specified length, or into an octet-aligned-bit-field of a specified length, or into the minimum
number of octets that will accommodate that whole number encoded as a non-negative-binary-integer which provides
representations for whole numbers greater than or equal to zero, as specified in 10.3.

NOTE — The value of a two’s complement binary number is derived by numbering the bits in the contents octets, starting
with bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned & naleraf
2N, where N is its position in the above numbering sequence. The value of the two’s complement binary number is obtained by
summing the numerical values assigned to each bit for those bits which are set to one.

3.8.22 PER-visible constraint: An instance of use of the ASN.1 constraint notation which affects the PER encoding
of avaue.

3.8.23 relay-safe encoding: A complete encoding of an abstract syntax value which can be decoded (including any
embedded encodings) without knowledge of the presentation layer defined context set that formed the environment in
which the encoding was performed.

3.8.24 semi-constrained whole number: A whole number which is constrained by PER-visible constraints to exceed
or equal some value "Ib" with the value "Ib" as a permitted value, and which is not a constrained whole number.

NOTE — Semi-constrained whole numbers occur in the encoding of the length of unconstrained (and in some cases
constrained) character, octet and bit string types, the count of the number of components in unconstrained (and in some cases
constrained) sequence-of and set-of types, and the value of an integer type that has been constrained to exceed somkieinimum va

3.8.25 simple type: A typethat is not a composite type.

3.8.26 textually dependent: A term used to identify the case where if some reference name is used in evaluating an
element set, the value of the element set is considered to be dependent on that reference name, regardless of whether the
actua set arithmetic being performed is such that the final value of the element set is independent of the actual element
set value assigned to the reference name.

NOTE - For example, the following definition of "Foo" is textually dependent on "Bar" even though "Bar" has no effect on
"Foo"s set of values (thus, according to 9.3.4 the constraint on "Foo" is not PER-visible since "Bar" is constrained by a table
constraint and "Foo" is textually dependent on "Bar").

MY-CLASS ::= CLASS { &name PrintableString, &age INTEGER } WITH SYNTAX{&name , &age}
MyObjectSet MY-CLASS ::= { {""Jack", 7} | {"Jill", 5} }

Bar ::= MY-CLASS.&age ({MyObjectSet})

Foo ::= INTEGER (Bar | 1..100)

3.8.27 unconstrained whole number: A whole number which is not constrained by PER-visible constraints.
NOTE - Unconstrained whole numbers occur only in the encoding of a value of the integer type.

4 Abbreviations
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
PER Packed Encoding Rules of ASN.1
CER Canonical Encoding Rules of ASN.1

16K 16384

32K 32768

48K 49152

64K 65536
5 Notation

This Recommendation | International Standard references the notation defined by ITU-T Rec. X.680 | ISO/IEC 8824-1.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 5

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

6 Convention

6.1 This Recommendation | International Standard defines the value of each octet in an encoding by use of the
terms "most significant bit" and "least significant bit".

NOTE — Lower layer specifications use the same notation to define the order of bit transmission on a serial line, or the
assignment of bits to parallel channels.

6.2 For the purpose of this Recommendation | International Standard, the bits of an octet are numbered from 8 to 1,
where bit 8 isthe "most significant bit" and bit 1 the "least significant bit".

6.3 The term "octet" is frequently used in this Recommendation | International Standard to stand for "eight bits".
The use of thisterm in place of "eight bits' does not carry any implications of alignment. Where alignment is intended it
is explicitly stated in this Recommendation | International Standard.

7 Encoding rules defined in this Recommendation | International Standard

71 This Recommendation | International Standard specifies four encoding rules (together with their associated
object identifiers) which can be used to encode and decode the values of an abstract syntax defined as the values of a
single (known) ASN.1 type. This clause describes their applicability and properties.

7.2 Without knowledge of the type of the value encoded, it is not possible to determine the structure of the
encoding (under any of the PER encoding rule algorithms). In particular, the end of the encoding cannot be determined
from the encoding itself without knowledge of the type being encoded.

7.3 PER encodings are always relay-safe provided the abstract values of the types EXTERNAL, EMBEDDED
PDV and CHARACTER STRING are constrained to prevent the carriage of presentation context identifiers.

7.4 The most general encoding rule agorithm specified in this Recommendation | International Standard is
BASIC-PER, which does not in general produce a canonical encoding.

7.5 A second encoding rule algorithm specified in this Recommendation | International Standard is CANONICAL-
PER, which produces encodings that are canonical. Thisis defined as a restriction of implementation-dependent choices
in the BASIC-PER encoding. CANONICAL-PER produces canonical encodings that have applications when
authenticators need to be applied to abstract values, as described in ITU-T Rec. X.690 | ISO/IEC 8825-1, Annex D.
NOTE — Any implementation conforming to CANONICAL-PER for encoding is conformant to BASIC-PER for encoding.

Any implementation conforming to BASIC-PER for decoding is conformant to CANONICAL-PER for decoding. Thus, encodings
made according to CANONICAL-PER are encodings that are permitted by BASIC-PER.

7.6 If a type encoded with BASIC-PER or CANONICAL-PER contains EMBEDDED PDV, CHARACTER
STRING or EXTERNAL types, then the outer encoding ceases to be relay-safe unless the transfer syntax used for all the
EMBEDDED PDV, CHARACTER STRING and EXTERNAL typesisrelay safe. If atype encoded with BASIC-PER
or CANONICAL-PER contains EMBEDDED PDV, EXTERNAL or CHARACTER STRING types, then the outer
encoding ceases to be canonical unless the transfer syntax used for al the EMBEDDED PDV, EXTERNAL and
CHARACTER STRING typesis canonical.

NOTE — The character transfer syntaxes supporting all character abstract syntaxes of the form {iso standard 10646 level-1

(1)} are canonical. Those supporting {iso standard 10646 level-2 (2)} and {iso standard 10646 level-3 (3) ot Alauays
canonical. All the above character transfer syntaxes are relay-safe.

7.7 Both BASIC-PER and CANONICAL-PER come in two variants, the ALIGNED variant, and the
UNALIGNED variant. In the ALIGNED variant, padding bits are inserted from time to time to restore octet alignment.
In the UNALIGNED variant, no padding bits are ever inserted.

7.8 There are no interworking possihilities between the ALIGNED variant and the UNALIGNED variant.

7.9 PER encodings are self-delimiting only with knowledge of the type of the encoded value. Encodings are
always a multiple of eight bits. When carried in an EXTERNAL type they shall be carried in the OCTET STRING
choice alternative, unless the EXTERNAL type itself is encoded in PER, in which case the value may be encoded as a
single ASN.1 type (i.e. an open type). When carried in OSI presentation protocol, the "full encoding” (as defined in ITU-
T Rec. X.226 | ISO/IEC 8823-1) with the OCTET STRING choice alternative shall be used.

7.10 The rules of this Recommendation | International Standard apply to both algorithms and to both variants unless
otherwise stated.

7.11 Annex C is informative, and gives recommendations on which combinations of PER to implement in order to
maximize the chances of interworking.

6 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

8 Conformance

8.1 Dynamic conformance is specified by clause 9 onwards.

8.2 Static conformance is specified by those standards which specify the application of these Packed Encoding
Rules.

NOTE — Annex C of this Recommendation | International Standard provides guidance on static conformance in relation to
support for the two variants of the two encoding rule algorithms. This guidance is designed to ensure interworking, wiidi@gecog
the benefits to some applications of encodings that are neither relay-safe nor canonical.

8.3 The rules in this Recommendation | International Standard are specified in terms of an encoding procedure.
Implementations are not required to mirror the procedure specified, provided the bit string produced as the complete
encoding of an abstract syntax value is identical to one of those specified in this Recommendation | International
Standard for the applicable transfer syntax.

8.4 Implementations performing decoding are required to produce the abstract syntax value corresponding to any
received bit string which could be produced by a sender conforming to the encoding rules identified in the transfer
syntax associated with the material being decoded.

NOTES

1 In general there are no alternative encodings defined for the BASIC-PER explicitly stated in this Recommendation |
International Standard. The BASIC-PER becomes canonical by specifying relay-safe operation and by restricting some of the
encoding options of other ISO/IEC Standards that are referenced. CANONICAL-PER provides an alternative to both the
Distinguished Encoding Rules and Canonical Encoding Rules (see ITU-T Rec. X.690 | ISO/IEC 8825-1) where a canonical and relay-
safe encoding is required.

2 When CANONICAL-PER is used to provide a canonical encoding, it is recommended that any resulting encrypted
hash value that is derived from it should have associated with it an algorithm identifier that identifies CANONICAL-PER as the
transformation from the abstract syntax value to an initial bitstring (which is then hashed).

9 The approach to encoding used for PER

9.1 Use of the type notation

9.1.1 These encoding rules make specific use of the ASN.1 type notation as specified in ITU-T Rec. X.680 |
I SO/IEC 8824-1, and can only be applied to encode the values of asingle ASN.1 type specified using that notation.

9.1.2 In particular, but not exclusively, they are dependent on the following information being retained in the ASN.1
type and value model underlying the use of the notation:

a) thenesting of choice types within choice types;

b) the tags placed on the components in a set type, and on the alternatives in a choice type, and the values
given to an enumeration;

¢) whether aset or sequence type component is optional or not;
d) whether aset or sequence type component has a DEFAULT value or not;

€) the restricted range of values of a type which arise through the application of PER-visible constraints
(only);
f) whether acomponent is an open type;

g) Wwhether an extension marker is present.

9.2 Use of tags to provide a canonical order

This Recommendation | International Standard requires components of a set type and a choice type to be canonically
ordered independent of the textual ordering of the components. The canonical order is determined by sorting the tags of
the components, as specified in 6.4 of ITU-T Rec. X.680 | ISO/IEC 8824-1.

9.3 PER-visible constraints

NOTE — The fact that some ASN.1 constraints may not be PER-visible for the purposes of encoding and decoding does not
in any way affect the use of such constraints in the handling of errors detected during decoding, nor does it imply thatatalges
such constraints are allowed to be transmitted by a conforming sender.

9.3.1 Constraints that are expressed in human-readabl e text or in ASN.1 comment are not PER-visible.
9.3.2 Variable constraints are not PER-visible (see 10.4 and 10.5 of ITU-T Rec. X.683 | ISO/IEC 8824-4).
9.3.3 Table constraints are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 7

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

934 Constraints whose evaluation is textually dependent on atable constraint or a component relation constraint are
not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

9.3.5 Component relation constraints are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

9.3.6 Congtraints on restricted character string types which are not (see clause 34 of ITU-T Rec. X.680 |
| SO/IEC 8824-1) known-multiplier character string types are not PER-visible (see 3.8.16).

9.3.7 Subject to the above, all size constraints are PER-visible.

9.3.8 The effective size constraint for a constrained type is a single size constraint such that a size is permitted if and
only if there is some value of the constrained type that has that (permitted) size. If the constrained type has values of a
size that does not satisfy the constraint there is no effective size constraint.

9.3.9 PermittedAlphabet constraints on known-multiplier character string types are PER-visible.

9.3.10 The effective PermittedAlphabet constraint for a constrained type is a single PermittedAlphabet constraint such
that a character is allowed if and only if there is some value of the constrained type that contains that character. If all
characters of the type being constrained can be present in some value of the constrained type, then the effective
PermittedAlphabet constraint is the set of characters defined for the unconstrained type.

NOTES

1 Inthe definition of a constrained type, multiple PER-visible constraints may be applied either directly or through the
use of "ContainedSubtype's.

2 See Annex B for observations on the effect of combining constraints that individually are PER-visible.
9.3.11 Aninner type constraint applied to areal typeis PER-visible.

9.3.12 Aninner type constraint applied to an unrestricted character string or embedded-pdv type is PER-visible only
when it is used to restrict the value of the "syntaxes' component to a single value, or when it is used to restrict
"identification" to the "fixed" alternative (see clauses 24 and 27).

9.3.13 Constraints on the useful types are not PER-visible.

9.3.14 Subject to the above, &l other constraints are PER-visible if and only if they are applied to an integer type or,
single value constraints excluded, to a known-multiplier character string type.

9.3.15 If a PER-visible constraint other than PermittedAlphabet has an extension marker, then the type is defined to
be extensible for PER encodings.
NOTES

1 If an extension marker is present in a ConstraintSpec which is not PER-visible, and there is no other extension marker
present in the constraint, then the type is encoded by PER asif it has no extension marker.

2 If there are multiple SizeConstraint specifications applied to a type and one of them is extensible, then the type is
encoded in PER asif the extension marker was present on all the SizeConstraint specifications.

93.16 A typeisasoextensible for PER encodingsif any of the following occurs:

a) it isderived from an ENUMERATED type (by subtyping, type referencing, or tagging) and there is an
extension marker in the "Enumerations" production; or

b) it is derived from a SEQUENCE type (by subtyping, type referencing, or tagging) and there is an
extension marker in the "ComponentTypeLists" or in the " SequenceType" productions; or

c) itisderived fromaSET type (by subtyping, type referencing, or tagging) and there is an extension marker
in the "ComponentTypeLists' or in the "SetType" productions; or

d) itisderived from a CHOICE type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "AlternativeTypeLists' production.

9.4 Type and value model used for encoding

9.4.1 An ASN.1 typeis either asimple type or is atype built using other types. The notation permits the use of type
references and tagging of types. For the purpose of these encoding rules the use of type references and tagging have no
effect on the encoding and are invisible in the model, except as stated in 9.2. The notation aso permits the application of
constraints and of error specifications. PER-visible constraints are present in the model as a restriction of the values of a
type. Other constraints and error specifications do not affect encoding and are invisible in the PER type and value model.

9.4.2 A value to be encoded can be considered as either a simple value or as a composite value built using the
structuring mechanisms from components which are either ssimple or composite values, paraleling the structure of the
ASN.1 type definition.

8 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

9.5 Structure of an encoding

9.5.1 These encoding rules specify:
a) theencoding of asimple value into afield-list; and

b) the encoding of a composite value into a field-list, using the field-lists generated by application of these
encoding rules to the components of the composite value; and

¢) the transformation of the field-list of the outermost value into the complete encoding of the abstract
syntax value (see 10.1).

Preamble Length Preamble Length Contents Preamble Length Contents

Contents

NOTE — The preamble, length, and contents are all “fields” which, concatenated together, form a “field-list”. The
field-list of a composite type other than the choice type may consist of the fields of several values concatenated thgettier. Ei
preamble, length and/or contents of any value may be missing.

Figure 1 — Encoding of a composite value into a field-list

9.5.2 The encoding of a component of a data value either:
a) consists of three parts, as shown in Figure 1, which appear in the following order:
1) apreamble (seeclauses 18, 20 and 22);
2) alength determinant (see 10.9);
3) contents; or

b) (wherethe contents are large) consists of an arbitrary number of parts, as shown in Figure 2, of which the
first is a preamble (see clauses 18, 20 and 22) and the following parts are pairs of octet-aligned-bit-fields,
the first being a length determinant for a fragment of the contents, and the second that fragment of the
contents; the last pair of fieldsisidentified by the length determinant part, as specified in 10.9.

Contents
Preamble Length Contents Length Contents e Length (may be
missing)

Figure 2 — Encoding of a long data value

9.5.3 Each of the parts mentioned in 9.5.2 generates either:
a) anull field (nothing); or
b) abit-field; or
C) an octet-aligned-bit-field; or
d) afied-list which may contain either bit-fields, octet-aligned-bit-fields, or both.

9.6 Types to be encoded

9.6.1 The following clauses specify the encoding of the following types into a field-list: boolean, integer,
enumerated, real, bitstring, octetstring, null, sequence, sequence-of, set, set-of, choice, open, object identifier, embedded-
pdv, external, restricted character string and unrestricted character string types.

9.6.2 The ANY type, defined in CCITT Rec. X.208 (1988) | I1SO/IEC 8824:1990, shall be encoded as an open type.
9.6.3 The selection type shall be encoded as an encoding of the selected type.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 9

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

9.6.4 Encoding of tagged types is not included in this Recommendation | International Standard as, except as stated
in 9.2, tagging is not visible in the type and value model used for these encoding rules. Tagged types are thus encoded
according to the encoding of the type which has been tagged.

9.6.5 The following "useful types' of clause 38 of ITU-T Rec. X.680 | ISO/IEC 8824-1 shall be encoded as if they
had been replaced by their definitionsgivenin ITU-T Rec. X.680 | ISO/IEC 8824-1:

— generalized time;
— universal time;
— object descriptor.

Constraints on the useful types are not PER-visible.

10 Encoding procedures

10.1 Production of the complete encoding

10.1.1 The field-list produced as a result of applying this Recommendation | International Standard to the outermost
value shall be used to produce the complete encoding of the abstract syntax value as follows: each field in the field-list
shall be taken in turn and concatenated to the end of the bit string which is to form the complete encoding of the abstract
syntax value preceded by additional zero bits for padding as specified below.

10.1.2 In the UNALIGNED variant of these encoding rules, all fields shall be concatenated without padding. If the
result of encoding the outermost value is an empty bit string, the bit string shall be replaced with a single octet with all
bits set to 0. If it is a non-empty bit string and it is not a multiple of eight bits, (zero to seven) zero bits shall dedappen

to it to produce a multiple of eight bits.

10.1.3 In the ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without
padding, and any octet-aligned-bit-fields shall be concatenated after (zero to seven) zero bits have been concatenated tc
make the length of the encoding produced so far a multiple of eight bits. If the result of encoding the outermost value is
an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empiyg bit stri

and it is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.

NOTE — The encoding of the outermost value is the empty bit string if, for example, the abstract syntax value is of the null
type or of an integer type constrained to a single value.

10.1.4 Theresulting hit string is the complete encoding of the abstract syntax value.

10.2 Open type fields

10.2.1 In order to encode an open type field, the value of the actual type occupying the field shall be encoded to a
field-list which shall then be converted to a complete encoding of an abstract syntax value as specified in 10.1 to produce
an octet string of length "n" (say).

10.2.2 Thefield-list for the value in which the open type is to be embedded shall then have added to it (as specified
in 10.9) an unconstrained length of "n" (in units of octets) and an associated octet-aligned-bit-field containing the bits
produced in 10.2.1.
NOTE — Where the number of octets in the open type encoding is large, the fragmentation procedures of 10.9 will be used,

and the encoding of the open type will be broken without regard to the position of the fragment boundary in the encoding of the
occupying the open type field.

10.3 Encoding as a non-negative-binary-integer

NOTE — (Tutorial) This subclause gives precision to the term "non-negative-binary-integer encoding", putting the integer
into a field which is a fixed number of bits, a field which is a fixed number of octets, or a field that is the minimumaofunotets
needed to hold it.

10.3.1 Subsequent clauses refer to the generation of a non-negative-binary-integer encoding of a non-negative whole
number into either a bit-field of specified length, a single octet, a double octet, or the minimum number of octets for the
value. This clause specifies the precise encoding to be applied when such references are made.

10.3.2 Theleading bit of thefield is defined as the most significant bit of the first octet, and the trailing bit of the field
is defined as the least significant bit of the last octet.

10.3.3 For the following definition only, the bits shall be nhumbered zero for the trailing bit of the field, one for the
next bit, and so on up to the leading bit of the field.

10 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

10.3.4 In anon-negative-binary-integer encoding, the value of the whole number represented by the encoding shall be
the sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n" which is set to
"1" has the value 2".

10.3.5 The encoding which sums (as defined above) to the value being encoded is an encoding of that value.

NOTE — Where the size of the encoded field is fixed (a bit-field of specified length, a single octet, or a double octet), then
there is a unique encoding which sums to the value being encoded.

10.3.6 A minimum octet non-negative-binary-integer encoding of the whole number (which does not predetermine
the number of octets to be used for the encoding) has a field which is a multiple of eight bits and also satisfies the
condition that the leading eight bits of the field shall not al be zero unlessthe field is precisely eight bits long.

NOTE — This is a necessary and sufficient condition to produce a unique encoding.

104 Encoding as a 2’s-complement-binary-integer

NOTE - (Tutorial) This subclause gives precision to the term "2’'s-complement-binary-integer encoding”, putting a signed
integer into a field that is the minimum number of octets needed to hold it. These procedures are referenced in later encoding
specifications.

10.4.1 Subsequent clauses refer to the generation of a 2’s-complement-binary-integer encoding of a whole number
(which may be negative, zero, or positive) into the minimum number of octets for the value. This subclause specifies the
precise encoding to be applied when such references are made.

10.4.2 The leading bit of the field is defined as the most significant bit of the first octet, and the trailing bit of the field
is defined as the least significant bit of the last octet.

10.4.3 For the following definition only, the bits shall be numbered zero for the trailing bit of the field, one for the
next bit, and so on up to the leading bit of the field.

10.4.4 In a 2's-complement-binary-integer encoding, the value of the whole number represented by the encoding shall
be the sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n" which is
set to "1" has the valué Bnless it is the leading bit, in which case it has the (negative) velue —2

10.4.5 Any encoding which sums (as defined above) to the value being encoded is an encoding of that value.

10.4.6 A minimum octet 2's-complement-binary-integer encoding of the whole number has a field-width that is a
multiple of eight bits and also satisfies the condition that the leading nine bits of the field shall not all be zero and shall
not all be ones.

NOTE — This is a necessary and sufficient condition to produce a unique encoding.

10.5 Encoding of a constrained whole number

NOTE — (Tutorial) This subclause is referenced by other clauses, and itself references earlier clauses for the production of
a non-negative-binary-integer or a 2's-complement-binary-integer encoding. For the UNALIGNED variant the value is always
encoded in the minimum number of bits necessary to represent the range (defined in 10.5.3). The rest of this note addresses the
ALIGNED variant. Where the range is less than or equal to 255, the value encodes into a bit-field of the minimum siznéw. the r
Where the range is exactly 256, the value encodes into a single octet octet-aligned-bit-field. Where the range is 25é sk, t
encodes into a two octet octet-aligned-bit-field. Where the range is greater than 64K, the range is ignored and the ealit@ncod
an octet-aligned-bit-field which is the minimum number of octets for the value. In this latter case, later procedures) @se 10.9
encode a length field (usually a single octet) to indicate the length of the encoding. For the other cases, the lengtivdihthéese
independent of the value being encoded, and is not explicitly encoded.

10.5.1 This subclause specifies a mapping from a constrained whole number into either a bit-field or an octet-aligned-
bit-field, and isinvoked by later clauses in this Recommendation | International Standard.

10.5.2 The procedures of this subclause are invoked only if a constrained whole number to be encoded is available,
and the values of the lower bound, "Ib", and the upper bound, "ub", have been determined from the type notation (after
the application of PER-visible constraints).

NOTE — A lower bound cannot be determined if MIN evaluates to an infinite nhumber, nor can an upper bound be
determined if MAX evaluates to an infinite number. For example, no upper or lower bound can be determined for
INTEGER(MIN..MAX).

10.5.3 Let"range" be defined astheinteger value ("ub" — "Ib* 1), and let the value to be encoded be "n".
10.5.4 If "range" has the value 1, then the result of the encoding shall be an empty bit-field (no bits).

10.5.5 There are five other cases (leading to different encodings) to consider, where one applies to the UNALIGNED
variant and four to the ALIGNED variant.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 11

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

10.5.6 In the case of the UNALIGNED variant the value ("'n" — "Ib") shall be encoded as a non-
negative-binary-integer in a bit-field as specified in 10.3 with the minimum number of bits necessary to represent the
range.

NOTE - If "range" satisfies the inequalitf’% "range" <= 2*1, then the number of bits = m1.
10.5.7 Inthecase of the ALIGNED variant the encoding depends on whether:
a) "range'islessthan or equal to 255 (the bit-field case);
b) "range" isexactly 256 (the one-octet case);
c) ‘"range'isgreater than 256 and less than or equal to 64K (the two-octet case);
d) ‘"range' isgreater than 64K (the indefinite length case).
10.5.7.1 (The bit-field case) If "range" is less than or equal to 255, then invocation of this clause requires the

generation of a bit-field with a number of bits as specified in the table below, and containing the value ("n" — "Ib") as a
non-negative-binary-integer encoding in a bit-field as specified in 10.3.

""Range" Bit-field size (in bits)
2

3,4 2
56,7,8 3

9to 16 4

17to 32 5

33 to 64 6

65to 128 7

129 to 255 8

10.5.7.2 (The one-octet case.) If the range has a value of 256, then the value ("n" — "Ib") shall be encoded in a one-octet
octet-aligned-bit-field as a non-negative-binary-integer as specified in 10.3.

10.5.7.3 (The two-octet case.) If the "range" has a value greater than or equal to 257 and less than or equal to 64K, then
the value ("n" — "Ib") shall be encoded in a two-octet octet-aligned-bit-field as a non-negative-binary-integer encoding as
specified in 10.3

10.5.7.4 (The indefinite length case.) Otherwise, the value ("n" — "Ib") shall be encoded as a non-negative-binary-
integer in an octet-aligned-bit-field with the minimum number of octets as specified in 10.3, and the number of octets
“len" used in the encoding is used by other clauses that reference this subclause to specify an encoding of the length.

10.6 Encoding of a normally small non-negative whole number

NOTE — (Tutorial) This procedure is used when encoding a non-negative whole number that is expected to be small, but
whose size is potentially unlimited due to the presence of an extension marker. An example is a choice index.

10.6.1 If the non-negative whole number, "n", is less than or equal to 63 then a single-bit bit-field shall be appended
to the field-list with the bit set to 0, and "n" shall be encoded as a non-negative-binary-integer into a 6-bit bit-field.

10.6.2 If "n" isgreater than or equal to 64, a single-bit bit-field with the bit set to 1 shall be appended to the field-list.
The value "n" shall then be encoded as a semi-constrained whole number with "Ib" equal to 0 and the procedures of
10.9 shall beinvoked to add it to the field-list preceded by alength determinant.

10.7 Encoding of a semi-constrained whole number

NOTE — (Tutorial) This procedure is used when a lower bound can be identified but not an upper bound. The encoding
procedure places the offset from the lower bound into the minimum number of octets as a non-negative-binary-integeresuash requir
explicit length encoding (typically a single octet) as specified in later procedures.

10.7.1 This subclause specifies a mapping from a semi-constrained whole number into an octet-aligned-bit-field, and
isinvoked by later clauses in this Recommendation | International Standard.

10.7.2 The procedures of this clause are invoked only if a semi-constrained whole number ("n" say) to be encoded is
available, and the value of "Ib" has been determined from the type notation (after the application of PER-visible
constraints).

NOTE — A lower bound cannot be determined if MIN evaluates to an infinite number. For example, no lower bound can be
determined for INTEGER(MIN..MAX).

12 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

10.7.3 The procedures of this subclause always produce the indefinite length case.

10.7.4 (The indefinite length case.) The value ("n" — "Ib") shall be encoded as a non-negative-binary-integer in an
octet-aligned-bit-field with the minimum number of octets as specified in 10.3, and the number of octets "len" used in
the encoding is used by other clauses that reference this clause to specify an encoding of the length.

10.8 Encoding of an unconstrained whole number

NOTE - (Tutorial) This case only arises in the encoding of the value of an integer type with no lower bound. The
procedure encodes the value as a 2’'s-complement-binary-integer into the minimum number of octets required to accommodate the
encoding, and requires an explicit length encoding (typically a single octet) as specified in later procedures.

10.8.1 This subclause specifies a mapping from an unconstrained whole number ("n" say) into an octet-aligned-bit-
field, and isinvoked by later clauses in this Recommendation | International Standard.

10.8.2 The procedures of this subclause always produce the indefinite length case.

10.8.3 (The indefinite length case.) The value "n" shall be encoded as a 2’s-complement-binary-integer in an octet-
aligned-bit-field with the minimum number of octets as specified in 10.4, and the number of octets "len" used in the
encoding is used by other clauses that reference this subclause to specify an encoding of the length.

10.9 General rules for encoding a length determinant
NOTES

1 (Tutoria) The procedures of this subclause are invoked when an explicit length field is needed for some part of the
encoding regardless of whether the length count is bounded above (by PER-visible constraints) or not. The part of the encoding to
which the length applies may be a bit string (with the length count in bits), an octet string (with the length count in octets), a known-
multiplier character string (with the length count in characters), or alist of fields (with the length count in components of a sequence-
of or set-of).

2 (Tutorid) In the case of the ALIGNED variant if the length count is bounded above by an upper bound that is less
than 64K, then the constrained whole number encoding is used for the length. For sufficiently small ranges the result is a bit-field,
otherwise the unconstrained length ("n" say) is encoded into an octet-aligned-bit-field in one of three ways (in order of increasing
size):

a) ("n"lessthan 128) asingle octet containing "n" with bit 8 set to zero;

b) ("n"lessthan 16K) two octets containing "n" with bit 8 of the first octet set to 1 and bit 7 set to zero;

c) (large"n") asingle octet containing a count "m" with bit 8 set to 1 and hit 7 set to 1. The count "m" is one to four, and
the length indicates that a fragment of the material follows (a multiple "m" of 16K items). For all values of "m" the
fragment is then followed by another length encoding for the remainder of the material.

3 (Tutorial) Inthe UNALIGNED variant, if the length count is bounded above by an upper bound that is less than 64K,
then the constrained whole number encoding is used to encode the length in the minimum number of bits necessary to represent the
range. Otherwise, the unconstrained length ("n" say) is encoded into a bit-field in the manner described above in Note 2.

10.9.1 This subclause is not invoked if, in accordance with the specification of later clauses, the value of the length
determinant, "n", is fixed by the type definition (constrained by PER-visible constraints) to a value less than 64K.

10.9.2 This subclause is invoked for addition to the field-list of a field, or list of fields, preceded by a length
determinant "n" which determines either:

a) the length in octets of an associated field (units are octets); or

b) the length in bits of an associated field (units are bits); or

c) the number of component encodings in an associated list of fields (units are components of a set-of or
sequence-of); or

d) the number of characters in the value of an associated known-multiplier character string type (units are
characters).

10.9.3 (ALIGNED variant) The procedures for the ALIGNED variant are specified in 10.9.3.1-10.9.3.8.4. (The
procedures for the UNALIGNED variant are specified in 10.9.4.)

10.9.3.1 As a result of the analysis of the type definition (specified in later clauses) the length determinant (a whole
number "n") will have been determined to be either:

a) anormally small length with a lower bound "Ib" equal to one; or

b) a constrained whole number with a lower bound "Ib" (greater than or equal to zero), and an upper bound
"ub" less than 64K; or

c) a semi-constrained whole number with a lower bound "Ib" (greater than or equal to zero), or a constrained
whole number with a lower bound "Ib" (greater than or equal to zero) and an upper bound "ub" greater
than or equal to 64K.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 13

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

10.9.3.2 The subclauses invoking the procedures of this subclause will have determined a value for "Ib", the lower
bound of the length (thisis zero if the length is unconstrained), and for "ub", the upper bound of the length. "ub" is unset
if there is no upper bound determinable from PER-visible constraints.

10.9.3.3 Where the length determinant is a constrained whole number with "ub" less than 64K, then the field-list shall
have appended to it the encoding of the constrained whole number for the length determinant as specified in 10.5. If "n"
is non-zero, this shall be followed by the associated field or list of fields, completing these procedures. If "n" is zero
there shall be no further addition to the field-list, completing these procedures.

NOTES
1 Forexample:
A ::=Foo (SIZE (3..6)) -- Length is encoded in 2-bit bit-field
B ::= Foo (SIZE (40000..40254)) -- Length is encoded in 8-bit bit-field
C ::=Foo (SIZE (0..32000)) -- Length is encoded in 2-octet octet-aligned bit-field
D ::=Foo (SIZE (64000)) -- Length is not encoded

2 The effect of making no addition in the case of "n" equals zero is that padding to an octet boundary does not occur
when these procedures are invoked to add an octet-aligned-bit-field of zero length, unless required by 10.5.

10.9.3.4 Where the length determinant is a normally small length and "n" is less than or equal to 64, a single-bit bit-

field shall be appended to the field-list with the bit set to 0, and the value "n-1" shall be encoded as a non-negative-
binary-integer into a 6-bit bit-field. This shall be followed by the associated field, completing these procedures. If "n" is

greater than 64, a single-bit bit-field shall be appended to the field-list with the bit set to 1, followed by the encoding of

"n" as an unconstrained length determinant followed by the associated field, according to the procedures

of 10.9.3.5-10.9.3.8.4.

NOTE — Normally small lengths are only used to indicate the length of the bitmap that prefixes the extension addition

values of a set or sequence type.

10.9.3.5 Otherwise (unconstrained, or large "ub"), "n" is encoded and appended to the field-list followed by the
associated fields as specified below.

NOTE - The lower bound, "Ib", does not affect the length encodings specified in 10.9.3.6-10.9.3.8.4.

10.9.3.6 If "n" is less than or equal to 127, then "n" shall be encoded as a non-negative-binary-integer (using the
procedures of 10.3) into bits 7 (most significant) to 1 (least significant) of a single octet and bit 8 shall be set to zero.
This shall be appended to the field-list as an octet-aligned-bit-field followed by the associated field or list of fields,
completing these procedures.

NOTE — For example, if in the following a value of "A" is 4 characters long, and that of "B" is 4 items long,

A ::=JASString

B ::= Foo (SIZE (4..123456))

both values are encoded with the length octet occupying one octet, and with the first bit set to 0 to indicate thatithke snidizin
or equal to 127:

0 0000100 4 characters/items

length value

10.9.3.7 If "n" is greater than 127 and less than 16K, then "n" shall be encoded as a non-negative-binary-integer (using
the procedures of 10.3) into bit 6 of octet one (most significant) to bit 1 of octet two (least significant) of a two-octet
octet-aligned-bit-field with bit 8 of the first octet set to 1 and bit 7 of the first octet set to zero. This shall be appended to
the field-list followed by the associated field or list of fields, completing these procedures.
NOTE - If in the example of 10.9.3.6 a value of "A" is 130 characters long, and a value of "B" is 130 items long, both

values are encoded with the length component occupying 2-octets, and with the first two bits set to 10 to indicate tithtithe len
greater than 127 but less than 16K.

10 000000 10000019 130 characters/items

length value

14 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
10.9.3.8 If "n" is greater than or equal to 16K, then there shall be appended to the field-list a single octet in an octet-
aligned-hit-field with bit 8 set to 1 and bit 7 set to 1, and bits 6 to 1 encoding the value 1, 2, 3 or 4 as a non-negative-
binary-integer (using the procedures of 10.8). This single octet shall be followed by part of the associated field or list of
fields, as specified below.

NOTE - The value of bits 6 to 1 is restricted to 1-4 (instead of the theoretical limits of 0-63) so as to limit the number of
items that an implementation has to have knowledge of to a more manageable number (64K instead of 1024K).

10.9.3.8.1 The value of bits 6 to 1 (1 to 4) shall be multiplied by 16K giving a count ("m" say). The choice of the
integer in bits 6 to 1 shall be the maximum allowed value such that the associated field or list of fields contains more
than or exactly "m" octets, bits, components or characters, as appropriate.

NOTES

1 The unfragmented form handles lengths up to 16K. The fragmentation therefore provides for lengths up to 64K with a
granularity of 16K.

2 If in the example of 10.9.3.6 a value of "B" is 144Kl (i.e. 64K+ 64K + 16K + 1) items long, the value is
fragmented, with the first two bits of the first three fragments set to 11 to indicate that one to four blocks each ofslf@iatem
and that another length component will follow the last block of each fragment:

| | | |
11 000100 64K items 11 00010(64K items 11 000091 16K items 0 0000001 1 itgm
| | | |
length value length value length value length value
10.9.3.8.2 That part of the contents specified by "m" shall then be appended to the field-list as either:

a) asingle octet-aligned-hit-field of "m" octets containing the first "m" octets of the associated field, for
units which are octets; or

b) asingle octet-aligned-bit-field of "m" bits containing the first "m" bits of the associated field, for units
which are bits; or

c) thelist of fields encoding the first "m" components in the associated list of fields, for units which are
components of a set-of or sequence-of types; or

d) asingle octet-aligned-bit-field of "m" characters containing the first *m" characters of the associated field,
for units which are characters.

10.9.3.8.3 The procedures of 10.9 shall then be reapplied to add the remaining part of the associated field or list of
fields to the field-list with a length which is a semi-constrained whole number equal to ("n" — "m") with a lower bound
of zero.

NOTE - If the last fragment that contains part of the encoded value has a length that is an exact multiple of 16K it is
followed by a final fragment that consists only of a single octet length component set to 0.

10.9.3.8.4 The addition of only a part of the associated field(s) to the field-list with reapplication of these procedures
is called the fragmentation procedure.

10.9.4 (UNALIGNED variant) The procedures for the UNALIGNED variant are specified in 10.9.4.1 to 10.9.4.2
(The procedures for the ALIGNED variant are specified in 10.9.3):

10.9.4.1 If thelength determinant "n" to be encoded is a constrained whole number with "range" ("ub"-"Ib"+1) less than
64K, then "n" shall be encoded as a non-negative-binary-integer (as specified in 10.3) using the minimum number of bits
necessary to encode the "range”. If "n" is non-zero this shall be followed by an associated field or list of fields,
completing these procedures. If "n" is zero there shal be no further addition to the field-list, completing these
procedures.

NOTE - If "range" satisfies the inequality" % "range" <= 2'*1, then the number of bits in the length determinant
ism+1.

10.9.4.2 If the length determinant "n" to be encoded is a constrained whole number greater than or equal to 64K, or isa
semi-constrained whole number, then "n" shall be encoded as specified in 10.9.3.4-10.9.3.8.4.

11 Encoding the boolean type

11.1 A value of the boolean type shall be encoded as a bit-field consisting of asingle bit.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 15

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

11.2 The bit shall be set to 1 for TRUE and O for FALSE.
113 The bit-field shall be appended to the field-list with no length determinant.

12 Encoding the integer type
NOTES

1 (Tutoria ALIGNED variant) Ranges which alow the encoding of all values into one octet or less go into a minimum-
sized bit-field with no length count. Ranges which allow encoding of all values into two octets go into two octets in an octet-aligned-
bit-field with no length count. Otherwise, the value is encoded into the minimum number of octets (using non-negative-binary-integer
or 2's-complement-binary-integer encoding as appropriate) and a length determinant is added. In this case, if the intageb&alue
encoded in less than 127 octets (as an offset from any lower bound that might be determined), and there is no finitéowgrer and
bound, there is a one-octet length determinant, else the length is encoded in the fewest number of bits needed. Othestaafses are
any practical interest, but are specified for completeness.

2 (Tutorial UNALIGNED variant) Constrained integers are encoded in the fewest number of bits necessary to represent
the range regardless of its size. Unconstrained integers are encoded as in Note 1.

12.1 If an extension marker is present in the constraint specification of the integer type, then a single bit shall be
added to the field-list in a bit-field of length one. The bit shall be set to 1 if the value to be encoded is not within the
range of the extension root, and zero otherwise. In the former case, the value shall be added to the field-list as an
unconstrained integer value, as specified in 12.2.4-12.2.6, completing this procedure. In the latter case, the value shall be
encoded asif the extension marker is not present.

12.2 If an extension marker is not present in the constraint specification of the integer type, then the following
applies:

12.2.1 If PER-visible constraints restrict the integer value to a single value then there shall be no addition to the field-
list, completing these procedures.

12.2.2 If PER-visible constraints restrict the integer value to be a constrained whole number, then it shall be
converted to a field according to the procedures of 10.5 (encoding of a constrained whole number), and the procedures
of 12.2.5-12.2.6 shall then be applied.

12.2.3 If PER-visible constraints restrict the integer value to be a semi-constrained whole number, then it shall be
converted to a field according to the procedures of 10.7 (encoding of a semi-constrained whole number), and the
procedures of 12.2.6 shall then be applied.

12.2.4 If PER-visible constraints do not restrict the integer to be either a constrained or a semi-constrained whole
number, then it shall be converted to a field according to the procedures of 10.8 (encoding of an unconstrained whole
number), and the procedures of 12.2.6 shall then be applied.

12.2.5 If the proceduresinvoked to encode the integer value into afield did not produce the indefinite length case (see
10.5.7.4, and 10.8.2) then that field shall be appended to the field-list completing these procedures.

12.2.6 Otherwise, (the indefinite length case) the procedures of 10.9 shall be invoked to append the field to the field-
list preceded by one of the following:

a) A constrained length determinant "len" (as determined by 10.5.7.4) if PER-visible constraints restrict the
type with finite upper and lower bounds and, if the type is extensible, the value lies within the range of the
extension root. The lower bound "Ib" used in the length determinant shall be 1, and the upper bound "ub"
shall be the count of the number of octets required to hold the range of the integer value.
NOTE — The encoding of the value "foo INTEGER (256..1234567) := 256" would thus be encoded
as 00xxxxxx00000000, where each X' represents a zero pad bit that may or may not be present depending on where within

the octet the length occurs (e.g. the encoding is 00 xxxxxx 00000000 if the length starts on an octet boundary, and
00 00000000 if it starts in the 2nd from the last bit of an octet).

b) An unconstrained length determinant equal to "len" (as determined by 10.7 and 10.8) if PER-visible
constraints do not restrict the type with finite upper and lower bounds, or if the type is extensible and the
value does not lie within the range of the extension root.

13 Encoding the enumerated type

NOTE — (Tutorial) An enumerated type without an extension marker is encoded as if it were a constrained integer whose
subtype constraint does not contain an extension marker. This means that an enumerated type will almost always in practice be
encoded as a bit-field in the smallest number of bits needed to express every enumeration. In the presence of an ex¢éengisn mark
encoded as a normally small non-negative whole number if the value is not in the extension root.

16 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

13.1 The enumerations in the enumeration root shall be sorted into ascending order by their enumeration value, and
shall then be assigned an enumeration index starting with zero for the first enumeration, one for the second, and so on up
to the last enumeration in the sorted list. The extension additions (which are always defined in ascending order) shall be
assigned an enumeration index starting with zero for the first enumeration, one for the second, and so on up to the last
enumeration in the extension additions.

NOTE - ITU-T Rec. X.680/Amd. 1 | ISO/IEC 8824-1/Amd. 1 requires that each successive extension addition shall have a
greater enumeration value than the last.

13.2 If the extension marker is absent in the definition of the enumerated type, then the enumeration index shall be
encoded. Its encoding shall be as though it were a value of a constrained integer type for which there is no extension
marker present, where the lower bound is 0 and the upper bound is the largest enumeration index associated with the
type, completing this procedure.

13.3 If the extension marker is present, then a single bit shall be added to the field-list in a bit-field of length one.
The bit shall be set to 1 if the value to be encoded is not within the extension root, and zero otherwise. In the former
case, the enumeration additions shall be sorted according to and the value shall be added to the field-list as a normally
small non-negative whole number whose value is the enumeration index of the additional enumeration and with "Ib" set
to 0, completing this procedure. In the latter case, the value shall be encoded asif the extension marker is not present, as
specified in 13.2.

NOTE — There are no PER-visible constraints that can be applied to an enumerated type that are visible to these encoding
rules.

14 Encoding the real type

NOTE — (Tutorial) A real uses the contents octets of CER/DER preceded by a length determinant that will in practice be a
single octet.

14.1 If the base of the abstract value is 10, then the base of the encoded value shall be 10, and if the base of the
abstract value is 2 the base of the encoded value shall be 2.

14.2 The encoding of REAL specified for the Canonical Encoding Rules and Distinguished Encoding Rules in
ITU-T Rec. X.690 | ISO/IEC 8825-1 shall be applied to give an octet-aligned-bit-field which is the contents octets of the
CER/DER encoding. The contents octets of this encoding consists of "n" (say) octets and is placed in an octet-aligned
field of "n" octets. The procedures of 10.9 shall be invoked to append this octet-aligned-bit-field of "n" octets to the
field-list, preceded by an unconstrained length determinant equal to "n".

15 Encoding the bitstring type

NOTE — (Tutorial) Bitstrings with a constrained length less than or equal to two octets do not cause octet alignment. Larger
bitstrings are octet-aligned. If the length is fixed by constraints and the upper bound is less than 64K, there is nengtiplicit
encoding, otherwise a length encoding is included which can take any of the forms specified earlier for length encodlirgg, inclu
fragmentation for large bit strings.

15.1 PER-visible constraints can only constrain the length of the bitstring.

15.2 Where there are no PER-visible constraints and 19.7 of ITU-T Rec. X.680 | ISO/IEC 8824-1 applies, the value
shall be encoded with no trailing O bits (note that this means that a value with no 1 bitsis always encoded as an empty bit
string).

15.3 Where there is a PER-visible constraint and 19.7 of ITU-T Rec. X.680 | ISO/IEC 8824-1 applies (i.e. the
bitstring type is defined with a "NamedBitList", the value shall be encoded with trailing O bits added or removed as
necessary to ensure that the size of the transmitted value is the smallest size capable of carrying this value and satisfies
the effective size constraint.

15.4 Let the maximum number of bits in the bitstring (as determined by PER-visible constraints on the length) be
"ub" and the minimum number of bits be "Ib". If there is no finite maximum we say that "ub” is unset. If there is no
constraint on the minimum then "Ib" has the value zero. Let the length of the actual bit string value to be encoded be
"n" bits.

15.5 If an extension marker is present in the size constraint specification of the bitstring type, a single bit shall be
added to the field-list in a bit-field of length one. The bit shall be set to 1 if the length of this encoding is not within the
range of the extension root, and zero otherwise. In the former case, 15.10 shall be invoked to add the length as a semi-
constrained whole number to the field-list, followed by the bitstring value. In the latter case the length and value shall be
encoded asiif the extension marker is not present.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 17

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
15.6 If an extension marker is not present in the constraint specification of the bitstring type, then 15.7-15.10 apply.

15.7 If the bitstring is constrained to be of zero length ("ub" equals zero), then it shall not be encoded (no additions
to the field-list), completing the procedures of this clause.

15.8 If all values of the hitstring are constrained to be of the same length ("ub" equals "Ib") and that length is less
than or equal to sixteen hits, then the bitstring shall be placed in a bit-field of the constrained length "ub" which shall be
appended to the field-list with no length determinant, completing the procedures of this clause.

15.9 If all values of the bitstring are constrained to be of the same length ("ub" equals "Ib") and that length is greater
than sixteen bhits but less than 64K bits, then the bitstring shall be placed in an octet-aligned-bit-field of length "ub"
(which is not necessarily a multiple of eight bits) and shall be appended to the field-list with no length determinant,
completing the procedures of this clause.

15.10 If 15.7-15.9 do not apply, the hitstring shall be placed in an octet-aligned-hit-field of length "n" bits and the
procedures of 10.9 shall be invoked to add this octet-aligned-bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" bits as a constrained whole number if "ub" is set and is less than 64K or as a semi-constrained
whole number if "ub" isunset. "Ib" is as determined above.

NOTE — Fragmentation applies for unconstrained or large "ub" after 16K, 32K, 48K or 64K bits.

16 Encoding the octetstring type

NOTE — Octet strings of fixed length less than or equal to two octets are not octet-aligned. All other octet strings are octet-
aligned. Fixed length octet strings encode with no length octets if they are shorter than 64K. For unconstrained otthet Istnijitys
is explicitly encoded (with fragmentation if necessary).

16.1 PER-visible constraints can only constrain the length of the octetstring.

16.2 L et the maximum number of octets in the octetstring (as determined by PER-visible constraints on the length)
be "ub" and the minimum number of octets be "Ib". If thereis no finite maximum we say that "ub” is unset. If thereisno
constraint on the minimum then "1b" has the value zero. Let the length of the actual octetstring value to be encoded be
"n" octets.

16.3 If there is a PER-visible size constraint and an extension marker is present in it, a single bit shall be added to
the field-list in a bit-field of length one. The bit shall be set to 1 if the length of this encoding is not within the range of
the extension root, and zero otherwise. In the former case 16.8 shall be invoked to add the length as a semi-constrained
whole number to the field-list, followed by the octetstring value. In the latter case the length and value shall be encoded
asif the extension marker is not present.

16.4 If an extension marker is not present in the constraint specification of the octetstring type, then 16.5-16.8
apply.

16.5 If the octetstring is constrained to be of zero length ("ub" equals zero), then it shall not be encoded (no
additionsto the field-list), completing the procedures of this clause.

16.6 If all values of the octetstring are constrained to be of the same length ("ub” equals "1b") and that length is less
than or equal to two octets, the octetstring shall be placed in a bit-field with a number of bits equal to the constrained
length "ub" multiplied by eight which shall be appended to the field-list with no length determinant, completing the
procedures of this clause.

16.7 If al values of the octetstring are constrained to be of the same length ("ub" equals "Ib") and that length is
greater than two octets but less than 64K, then the octetstring shall be placed in an octet-aligned-bit-field with the
constrained length "ub" octets which shall be appended to the field-list with no length determinant, completing the
procedures of this clause.

16.8 If 16.5-16.7 do not apply, the octetstring shall be placed in an octet-aligned-bit-field of length "n" octets and
the procedures of 10.9 shall be invoked to add this octet-aligned-bit-field of "n" octets to the field-list, preceded by a
length determinant equal to "n" octets as a constrained whole number if "ub” is set, and as a semi-constrained whole
number if "ub" isunset. "1b" is as determined above.

NOTE — The fragmentation procedures may apply after 16K, 32K, 48K, or 64K octets.

18 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

17 Encoding the null type

NOTE - (Tutorial) The null type is essentially a place holder, with practical meaning only in the case of a choice or an
optional set or sequence component. Identification of the null in a choice, or its presence as an optional element, dsipéniesme
encoding rules without the need to have octets representing the null. Null values therefore never contribute to the roctets of a
encoding.

There shall be no addition to the field-list for anull value.

18 Encoding the sequence type

NOTE - (Tutorial) A sequence type begins with a preamble which is a bit-map. If the sequence type has no extension
marker, then the bit-map merely records the presence or absence of default and optional components in the type, enceded as a fi
length bit-field. If the sequence type does have an extension marker, then the bit-map is preceded by a single bit thtiesays wh
values of extension additions are actually present in the encoding. The preamble is encoded without any length deteriaétiant prov
it is less than 64K bits long, otherwise a length determinant is encoded to obtain fragmentation. The preambile is folleViiettby t
that encode each of the components, taken in turn. If there are extension additions, then immediately before the firsbdee is e
there is the encoding (as a semi-constrained whole number) of a count of the number of extension additions in the tyqmalbding en
followed by a bit-map equal in length to this count which records the presence or absence of values of each extensidiniaddition.
followed by the encodings of the extension additions as if each one was the value of an open type field.

18.1 If the sequence type has an extension marker, then a single bit shall first be added to the field-list in a bit-field
of length one. The bit shall be one if values of extension additions are present in this encoding, and zero otherwise. (This
bit is called the "extension bit" in the following text.) If there is no extension marker, there shall be no extension bit
added.

18.2 If the sequence type has "n" components in the extension root that are marked OPTIONAL or DEFAULT, then
asingle bit-field with "n" bits shall be produced for addition to the field-list. The bits of the bit-field shall, taken in order,
encode the presence or absence of an encoding of each optional or default component in the sequence type. A bit value
of 1 shall encode the presence of the encoding of the component, and a bit value of 0 shall encode the absence of the
encoding of the component. The leading bit in the preamble shall encode the presence or absence of the first optional or
default component, and the trailing bit shall encode the presence or absence of the last optional or default component.

18.3 If "n" is less than 64K, the bit-field shall be appended to the field-list. If "n" is greater than or equal to 64K,
then the procedures of 10.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" bits as a constrained whole number with "ub" and "Ib" both set to "n".

NOTE — In this case, "ub" and "Ib" will be ignored by the length procedures. These procedures are invoked here in order to
provide fragmentation of a large preamble. The situation is expected to arise only rarely.

18.4 The preamble shall be followed by the field-lists of each of the components of the sequence value which are
present, taken in turn.

18.5 For CANONICAL-PER encodings of components marked DEFAULT shall always be absent if the value to be
encoded is the default value. For BASIC-PER encodings of components marked DEFAULT shall always be absent if the
value to be encoded is the default value of a simple type (see 3.8.25), otherwise it shall be encoded if and only if it is
explicitly present in the abstract sequence value.

18.6 This completes the encoding if the extension hit is absent or is zero. If the extension bit is present and set to
one, then the following procedures apply.

18.7 Let the number of extension additions in the type being encoded be "n", then a bit-field with "n" bits shall be
produced for addition to the field-list. The bits of the bit-field shall, taken in order, encode the presence or absence of an
encoding of each extension addition in the type being encoded. A bit value of 1 shall encode the presence of the
encoding of the extension addition, and a bit value of O shall encode the absence of the encoding of the extension
addition. The leading bit in the bit-field shall encode the presence or absence of the first extension addition, and the
trailing bit shall encode the presence or absence of the last extension addition.

18.8 The procedures of 10.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" as anormally small length.

NOTE - "n" cannot be zero, as this procedure is only invoked if there is at least one extension addition being encoded.

18.9 This shall be followed by field-lists containing the encodings of each extension addition that is present, taken
in turn, with each extension addition encoded asiif it were the value of an open type field as specified in 10.2.1.

19 Encoding the sequence-of type

19.1 PER-visible constraints can constrain the number of components of the sequence-of type.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 19

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

19.2

Let the maximum number of components in the sequence-of (as determined by PER-visible constraints) be

"ub" components and the minimum number of components be "Ib". If there is no finite maximum or "ub" is greater than
or equal to 64K we say that "ub" is unset. If there is no constraint on the minimum then "Ib" has the value zero. Let the
number of components in the actual sequence-of value to be encoded be "n" components.

19.3

The encoding of each component of the sequence-of will generate a number of fields to be appended to the

field-list for the sequence-of type.

194

If there is a PER-visible constraint and an extension marker is present in it, a single bit shall be added to the

field-list in a bit-field of length one. The bit shall be set to 1 if the number of components in this encoding is not within
the range of the extension root, and zero otherwise. In the former case clause 19.7 shall be invoked to add the length as a
semi-constrained whole number to the field-list, followed by the component values. In the latter case the length and
value shall be encoded asif the extension marker is not present.

19.5

If the number of componentsisfixed ("ub" equals"Ib") and "ub" is less than 64K, then there shall be no length

determinant for the sequence-of, and the fields of each component shall be appended in turn to the field-list of the
sequence-of.

19.6

Otherwise, the procedures of 10.9 shall be invoked to add the list of fields generated by the "n" components to

the field-list, preceded by a length determinant equal to "n" components as a constrained whole number if "ub" is set,
and as a semi-constrained whole number if "ub" isunset. "Ib" is as determined above.

NOTES
1 Thefragmentation procedures may apply after 16K, 32K, 48K, or 64K components.
2 The break-points for fragmentation are between fields. The number of bits prior to a break-point are not necessarily a

multiple of eight.

20

Encoding the set type

The set type shall have the elements in its "RootComponentTypeList" sorted into the canonical order specified in 6.4 of
ITU-T Rec. X.680 | ISO/IEC 8824-1 and additionally for the purposes of determining the order in which components are
encoded when one or more component is an untagged choice type, each untagged choice type is ordered as though it has
atag equd to that of the smallest tag in the "RootAlternativeTypeList" of that choice type or any untagged choice types
nested within. The set elements that occur in the "Additional ComponentTypeList" shall be sorted into the canonical
order specified in 6.4 of ITU-T Rec. X.680 | ISO/IEC 8824-1 independent of how the NamedTypes in the
RootComponentTypeList were sorted. The set value shall then be encoded asif it had been declared a sequence type.

EXAMPLE - In the following which assumes a tagging environment of IMPLICIT TAGS

A ::=SET

{
a [3] INTEGER,
b [1] CHOICE

¢ [2] INTEGER,
d [4] INTEGER

e CHOICE

f CHOICE

{
g [5] INTEGER,

h [6] INTEGER
CHOICE

i [0] INTEGER

}

the order in which the components of the set are encoded will always be e, b, a, since the tag [0] sorts lowest,
then [1], then [3].
NOTE - ITU-T Rec. X.680/Amd. 1 | ISO/IEC 8824-1/Amd. 1 requires that each successive extension addition shall have a

greater tag value than the last added to the "AdditionalComponentTypeList".

20

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

21 Encoding the set-of type

21.1 For CANONICAL-PER the encoding of the component values of the set-of type shall appear in ascending
order, the component encodings being compared as bit strings padded with as many as seven 0 bits to an octet boundary.

NOTE — Any pad bits added to achieve octet alignment for the sort do not appear in the actual encoding.

21.2 For BASIC-PER the set-of shall be encoded as if it had been declared a sequence-of type.

22 Encoding the choice type

NOTE — (Tutorial) A choice type is encoded by encoding an index specifying the chosen alternative. This is encoded as for
a constrained integer (unless the extension marker is present in the choice type, in which case it is a normally smaileon-nega
whole number) and would therefore typically occupy a fixed length bit-field of the minimum number of bits needed to encode the
index. (Although it could in principle be arbitrarily large.) This is followed by the encoding of the chosen alternatiaéewitiives
that are extension additions encoded as if they were the value of an open type field. Where the choice has only onethiegriative
no encoding for the index.

22.1 Encoding of choice types are not affected by PER-visible constraints.

22.2 Each component of a choice has an index associated with it which has the value zero for the first aternative in
the root of the choice (taking the aternatives in the canonical order specified in ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 6.4), one for the second, and so on up to the last component in the extension root of the choice. An index valueis
similarly assigned to each extension addition, starting with O just as with the components of the extension root. Let "n"
be the value of the largest index in the root.

NOTE - ITU-T Rec. X.680/Amd. 1 | ISO/IEC 8824-1/Amd. 1 requires that each successive extension addition shall have a
greater tag value than the last added to the "AdditionalAlternativeTypeList".

22.3 For the purposes of canonical ordering of choice aternatives that contain an untagged choice each untagged
choice type shall be ordered as though it has a tag equal to that of the smallest tag in the extension root of either that
choice type or any untagged choice types nested within.

224 If the choice has only one alternative in the extension root there shall be no encoding for the index if that
aternativeis chosen.

22.5 If the choice type has an extension marker, then a single bit shall first be added to the field-list in a bit-field of
length one. The bit shall be 1 if a value of an extension addition is present in the encoding, and zero otherwise. (This bit
is caled the "extension bit" in the following text.) If there is no extension marker, there shall be no extension bit added.

22.6 If the extension bit is absent, then the choice index of the chosen aternative shall be encoded into a field
according to the procedures of clause 12 asiif it were a value of an integer type (with no extension marker in its subtype
constraint) constrained to the range 0 to "n", and that field shall be appended to the field-list. This shall then be followed
by the fields of the chosen aternative, completing the procedures of this clause.

22.7 If the extension bit is present and the chosen aternative lies within the extension root, the choice index of the
chosen alternative shall be encoded as if the extension marker is absent, according to the procedure of , completing the
procedures of this clause.

22.8 If the extension bit is present and the chosen alternative does not lie within the extension root, the choice index
of the chosen alternative shall be encoded as a normally small non-negative whole number with "Ib" set to 0 and that
field shall be appended to the field-list. This shall then be followed by a field-list containing the encoding of the chosen
alternative encoded as if it were the value of an open type field as specified in 10.2, completing the procedures of this
clause.

23 Encoding the object identifier type

NOTE - (Tutorial) An object identifier type encoding uses the contents octets of BER preceded by a length determinant
that will in practice be a single octet.

The encoding specified for BER shall be applied to give an octet-aligned-bit-field which is the contents octets of the
BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is placed in an octet-aligned-
bit-field of "n" octets. The procedures of 10.9 shall be invoked to append this octet-aligned-bit-field to the field-list,
preceded by a length determinant equal to "n" as a semi-constrained whole number octet count.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 21

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

24 Encoding the embedded-pdv type

NOTE - (Tutorial) The embedded-pdv type is typically encoded with a single flag bit at its head, followed by a normally
small non-negative whole number that encodes an "index", optionally followed by the "identification" and finally followed by th
"data-value". The single flag bit determines which of two sub-rules is in use in the remainder of the embedded-pdv Vaituis. This
set to 1 to indicate that the "index-setting” rule EP-A is in use, and it is set to O to indicate that the "index-using'isib-uge.

The "index-setting" sub-rule is used upon the first occurrence of a given "identification" in the abstract syntax valde. For al
subsequent occurrences of that "identification" value within the abstract syntax value in which the embedded-pdv typktteedefine
"index-using" sub-rule is used. When the "index-setting" sub-rule is used the full "identification" value is encoded. Awvdindex
which appears with the flag set to 0 in an embedded-pdv encoding is required to appear precisely once as an "index'thvalue with
flag set to 1. For CANONICAL-PER, only the "syntaxes" alternative of "identification" is allowed (explicitly or via ASN.1
constraints on the embedded-pdv type). There is one additional optimization: if both the abstract and transfer syntastesirzed con

by PER-visible constraints to be a single value, or if "identification" is constrained to the "fixed" alternative, thes ribesmgle

flag bit, "index" nor "identification" present in the encoding.

24.1 There are three ways in which an embedded-pdv type can be encoded:

a) the"syntaxes' aternative of the embedded-pdv type is constrained to a single value or "identification" is
constrained to the "fixed" aternative, in which case only the data-value shall be encoded; this alternative
is called the "predefined” option;

b) thefirst bit of the embedded-pdv value is set to 1, in which case an "index" value shall be prefixed to the
"identification" which shall be present, followed by the "data-value"; this aternative is called the "index-
setting” sub-rule, or EP-A;

c) thefirst bit of the embedded-pdv value is set to 0, in which case an "index" value and "data-value" shall
be present but the "identification" shall be absent; this aternative is called the "index-using" sub-rule,
or EP-B.

24.2 The "predefined" option shall be used when either "identification” is constrained to the "fixed" aternative or
when the "syntaxes" alternative of "identification” is constrained to a single value. When the "predefined” option is used
the complete encoding of the "data-value"' shall be added to an octet-aligned-bit-field and 10.9.3.5 shall be invoked to
append it to the field-list, prefixed with the length as a semi-constrained whole number. This completes the procedures
for this clause.

24.3 When the "predefined" option is not selected a single bit shall be added to the field-list in a bit-field of length 1
and set to 1. Thisbit shall be set to 1 if the "index-setting" sub-rule is being employed, otherwise it shall be set to 0.

24.4 The "index-setting" sub-rule shall be used the first time that a given abstract value for "identification" is
specified. When the "index-setting" sub-ruleis used, 10.6 is invoked to add an index value to the field-list as a normally
small non-negative whole number. The first index value shall be 0, and it shall be incremented by 1 for each distinct
"identification" value that is encountered. Clause 22 shall then be invoked to add the "identification” to the field-list. The
complete encoding of the "data-value" shall then be added to an octet-aligned-bit-field and 10.9 shall be invoked to
append it to the field-list, prefixed with the length as a semi-constrained whole number. This completes the procedures
for this clause.

24.5 The "index-using” sub-rule shall be used on all subsequent occurrences of a given abstract value for
"identification". When the "index-using" sub-rule is used, 10.6 is invoked to add an index value to the field-list as a
normally small non-negative whole number. Thisindex value shall correspond to the one which was previously added to
the field-list for this given "identification" abstract value. The complete encoding of the "data-value" shall then be added
to an octet-aligned-bit-field and 10.9 shall be invoked to append it to the field-list, prefixed with the length as a semi-
constrained whole number. This completes the procedures for this clause.

24.6 TUTORIAL: Thus for any given "identification" value there is a (relatively inefficient) EP-A encoding with
both a unique index value and the full "identification" value, followed by arbitrarily many (efficient) EP-B encodings
linked to the EP-A encoding by the index value.

24.7 The EP-A encoding shall be the PER encoding of the single index-setting/index-using bit, followed by the
index, followed by the following sequence type for which AUTOMATIC TAGS is specified (see 22.6 and 26.3 of
ITU-T Rec. X.680 | ISO/IEC 8824-1):

SEQUENCE {
identification CHOICE {
syntaxes SEQUENCE {
abstract OBJECT IDENTIFIER,
transfer OBJECT IDENTIFIER },
syntax OBJECT IDENTIFIER,

22 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

presentation-context-id INTEGER,
context-negotiation SEQUENCE {
presentation-context-id INTEGER,
transfer-syntax OBJECT IDENTIFIER },
transfer-syntax OBJECT IDENTIFIER,
fixed NULL },
data-value BIT STRING }

24.8 The value of "data-value" shall be the encoding of the abstract data value using the identified transfer syntax,
and the value of al other fields shall be encoded using the same transfer syntax as the other values appearing in the
abstract syntax value.

NOTE - Both alternatives of "data-value" in the abstract syntax are encoded identically — as a bit string — in the transfer
syntax.

25 Encoding of a value of the external type

25.1 The encoding of a value of the external type shall be the PER encoding of the following sequence type,
assumed to be defined in an environment of EXPLICIT TAGS, with avalue as specified in the subclauses bel ow:

[UNIVERSAL 8] IMPLICIT SEQUENCE {
direct-reference OBJECT IDENTIFIER OPTIONAL,

indirect-reference INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE {

single-ASN1-type [0] ABSTRACT-SYNTAX.&Type,

octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING } }

NOTE — This sequence type is the same as that specified in CCITT Rec. X.208 (1988) | ISO/IEC 8824 (1990).

25.2 The value of the components depends on the abstract value being transmitted, which is a value of the type
specified in 30.5 of ITU-T Rec. X.680 | ISO/IEC 8824-1.

25.3 The "data-value-descriptor" above shall be present if and only if the "data-value-descriptor” is present in the
abstract value, and shall have the same value.

25.4 Vaues of "direct-reference” and "indirect-reference” above shall be present or absent in accordance with
Table 1. Table 1 maps the external type alternatives of "identification" defined in ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 30.5, to the externa type components "direct-reference” and "indirect-reference” defined in 8.18.1.

Table 1 — Alternative encodings for “identification”

identification direct-reference indirect-reference
syntaxes *** CANNOT OCCUR *** ** CANNOT OCCUR ***
syntax syntax ABSENT
presentation-context-id ABSENT presentation-context-id

context-negotiation

transfer-syntax

presentation-context-id

transfer-syntax

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

fixed

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

25.5 The data value shall be encoded according to the transfer syntax identified by the encoding, and shall be placed
in an alternative of the "encoding" choice as specified below.

25.6 If the data value is the value of a single ASN.1 data type, and if the encoding rules for this data value are the
same as those for the complete "EXTERNAL" data type, then the sending implementation shall be "single-ASN1-type".

25.7 If the encoding of the data value, using the agreed or negotiated encoding, is an integral number of octets, then
the sending implementation shall be "octet-aligned"”.

NOTE — A data value which is a series of ASN.1 types, and for which the transfer syntax specifies simple concatenation of
the octet strings produced by applying the ASN.1 Basic Encoding Rules to each ASN.1 type, falls into this category, 28 @hat of

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 23

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

25.8 If the encoding of the data value, using the agreed or negotiated encoding, is not an integral number of octets,
the "Encoding” choice shall be "arhitrary”.

25.9 If the "Encoding” choice is chosen as "single-ASN1-type", then the ASN.1 type shall replace the open type,
with avalue equal to the data value to be encoded.

NOTE - The range of values which might occur in the open type is determined by the registration of the object identifier
value associated with the "direct-reference”, and/or the integer value associated with the "indirect-reference".

25.10 If the "Encoding" choice is "octet-aligned”, then the data value shall be encoded according to the agreed or
negotiated transfer syntax, and the resulting octets shall form the value of the octetstring.

25.11 If the "Encoding" choice is "arbitrary”, then the data value shall be encoded according to the agreed or
negotiated transfer syntax, and the result shall form the value of the bitstring.

26 Encoding the restricted character string types
NOTES

1 (Tutorial ALIGNED variant) Character strings of fixed length less than or equal to two octets are not octet-aligned.
Character strings of variable length that are constrained to have a maximum length of less than two octets are notdcfdt-aligne
other character strings are octet-aligned. Fixed length character strings encode with no length octets if they are shdKer than
characters. For unconstrained character strings or constrained character strings longer than 64K-1 the length is eggkdtly enc
(with fragmentation if necessary). Each NumericString, PrintableString, VisibleString (1ISO646String), IA5String, BMPString and
UniversalString character is encoded into the number of bits that is the smallest power of two that can accommodatesl charact
allowed by the effective PermittedAlphabet constraint.

2 (Tutorial UNALIGNED variant) Character strings are not octet-aligned. If there is only one possible length value
there is no length encoding if they are shorter than 64K characters. For unconstrained character strings or constragnestricigsract
longer than 64K-1 the length is explicitly encoded (with fragmentation if necessary). Each NumericString, PrintableString,
VisibleString (ISO646String), IA5String, BMPString and UniversalString character is encoded into the number of bits that is the
smallest that can accommodate all characters allowed by the effective PermittedAlphabet constraint.

3 (Tutorial on size of each encoded character) Encoding of each character depends on the effective PermittedAlphabet
constraint (see 9.3.10), which defines the alphabet in use for the type. Suppose this alphabet consists of a set cAlcRetActers
(say). For each of the known-multiplier character string types (see 3.8.16), there is an integer value associated withctach cha
obtained by reference to some code table associated with the restricted character string type. The set of values BETA (say)
corresponding to the set of characters ALPHA is used to determine the encoding to be used, as follows: The numberh# bits for t
encoding of each character is determined solely by the number of elements, N, in the set BETA (or ALPHA). For the UNALIGNED
variant is the smallest number of bits that can encode the value N-1 as a non-negative binary integer. For the ALIGNE&3 v&riant
the smallest number of bits that is a power of two and that can encode the value N-1. Suppose the selected numberTdfdrits is B.
every value in the set BETA can be encoded (with no transformation) in B bits, then the value in set BETA is used tothepresent
corresponding characters in the set ALPHA. Otherwise, the values in set BETA are taken in ascending order and replase@, by value
1, 2, and so on up to N-1, and it is these values that are used to represent the corresponding character. In summarytsminimum b
(taken to the next power of two for the ALIGNED variant) are always used. Preference is then given to using the value normally
associated with the character, but if any of these values cannot be encoded in the minimum number of bits a compaetibn is appli

26.1 The following restricted character string types are known-multiplier character string types: NumericString,
PrintableString, VisibleString (1S0646String), IA5String, BMPString, UniversalString. Effective PermittedAlphabet
constraints are PER-visible only for these types.

26.2 The effective size constraint notation may determine an upper bound "aub" for the length of the abstract
character string. Otherwise, "aub" is unset.

26.3 The effective size constraint notation may determine a non-zero lower bound "alb" for the length of the
abstract character string. Otherwise, "alb" is zero.

NOTE — PER-visible constraints only apply to known-multiplier character string types. For other restricted character string
types "aub" will be unset and "alb" will be zero.

26.4 If the type is extensible for PER encodings (see 9.3.15), then a bit-field consisting of a single bit shall be added
to the field-list. The single bit shall be set to zero if the value is within the range of the extension root, and to one
otherwise. If the value is outside the range of the extension root, then the following encoding shall be as if there was
neither an effective size constraint nor an effective PermittedAlphabet constraint.

NOTE — Only the known-multiplier character string types can be extensible for PER encodings. Extensibility markers on
other character string types do not affect the PER encoding.

26.5 This subclause applies to known-multiplier character strings. Encoding of the other restricted character string
typesis specified in 26.6.

26.5.1 The effective permitted alphabet is defined to be that alphabet permitted by the PermittedAlphabet constraint,
or the entire alphabet of the built-in typeif there is no PermittedAlphabet constraint.

24 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

26.5.2 Let N bethe number of characters in the effective permitted a phabet. Let B be the smallest integer such that 2
to the power B is greater than or equal to N. Let B2 be the smallest power of 2 that is greater than or equal to B. Thenin
the ALIGNED variant, each character shall encode into B2 bits, and in the UNALIGNED variant into B bits. Let the
number of bitsidentified by thisrule be"b".

26.5.3 A numerica value "v" is associated with each character by reference to clause 36 of ITU-T Rec. X.680 |

ISO/IEC 8824-1 as follows. For UniversalString, the value is that used to determine the canonical order in 36.4 (The
valueisin the range 0 to 232 — 1). For BMPString, the value is that used to determine the canonical order in 36.5 (The
value is in the range 0 td®— 1). For NumericString and PrintableString and VisibleString and IA5String the value is
that defined for the 1ISO 646 encoding of the corresponding character. (For 1A5String the range is 0 to 127, for
VisibleString it is 32 to 126, for NumericString it is 32 to 57, and for PrintableString it is 32 to 122. For IA5String and
VisibleString all values in the range are present, but for NumericString and PrintableString not all values in the range are
in use.)

26.5.4 Let the smallest value in the range for the set of characters in the permitted alphabet be "Ib" and the largest
value be "ub". Then the encoding of a character into "b" bits is the non-negative-binary-integer encoding of the value "v"
identified as follows:

a) if"ub"is less than or equal t& 2 1, then "v" is the value specified in above; otherwise

b) the characters are placed in the canonical order defined in clause 36 of ITU-T Rec. X.680 | ISO/IEC
8824-1. The first is assigned the value zero and the next in canonical order is assigned a value that is one
greater than the value assigned to the previous character in the canonical order. These are the values "v".

NOTE - Item a) above can never apply to a constrained or unconstrained NumericString character, which always
encodes into four bits or less using b).

26.5.5 The encoding of the entire character string shall be obtained by encoding each character (using an appropriate
value "v") as a non-negative-binary-integer into "b" bits which shall be concatenated to form a bit-field that is a multiple
of "b" bits.

26.5.6 If "aub" equals"ab" and is less than 64K, then the bit-field shall be added to the field-list as an octet-aligned
field if "aub" times "b" is greater than 16, but shall otherwise be added as a bit-field that is not octet-aligned. This
completes the procedures of this subclause.

26.5.7 If "aub" does not equal "alb" or is greater than or equal to 64K, then 10.9 shall be invoked to add a length
determinant with "n" as a count of the charactersin the character string with alower bound for the length determinant of
"alb" and an upper bound of "aub". The bit-field of shall then be added as an octet-aligned field if "aub" times "b" is
greater than or equal to 16, but shall otherwise be added as a bit-field that is not octet-aligned. This completes the
procedures of this subclause.

26.6 This subclause applies to character strings that are not known-multiplier character strings. In this case,
constraints are never PER-visible, and the type can never be extensible for PER encoding.

26.6.1 For BASIC-PER, reference below to "base encoding” means BER. For CANONICAL-PER it means
CANONICAL-BER.

26.6.2 The "base encoding" shall be applied to the character string to give afield of "n" octets.

26.6.3 Subclause 10.9 shall be invoked to add an unconstrained length determinant with "n" as a count in octets and
thefield of "n" octets shall be added as an octet-aligned bit-field, completing the procedures of this subclause.

27 Encoding the unrestricted character string type

NOTE — (Tutorial) The unrestricted character string type is typically encoded with a single flag bit at its head, followed by
a normally small non-negative whole number that encodes an "index", optionally followed by the "identification" and fioaiydfol
by the "string-value”. The single flag bit determines which of two sub-rules is in use in the remainder of the unrestacted cha
string value. This bit is set to 1 to indicate that the "index-setting" rule EP-A is in use, and it is set to 0 to inditede"itidex-
using" sub-rule is in use. The "index-setting” sub-rule is used upon the first occurrence of a given "identification" strabie ab
syntax value. For all subsequent occurrences of that "identification" value within the abstract syntax value in whichribeedinres
character string type is defined the "index-using" sub-rule is used. When the "index-setting" sub-rule is used the figthti@enti
value is encoded. An "index" value which appears with the flag set to 0 in an unrestricted character string encodingl i require
appear precisely once as an "index" value with the flag set to 1. For CANONICAL-PER, only the "syntaxes" alternative of
"identification” is allowed (explicitly or via ASN.1 constraints on the unrestricted character string type). There is dopaaddit
optimization: if both the abstract and transfer syntaxes are constrained by PER-visible constraints to be a single value, or if
"identification" is constrained to the "fixed" alternative, then there is no single flag bit, "index" nor "identificatioettpreshe
encoding.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 25

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

27.1 There are three ways in which an unrestricted character string type can be encoded:

a) the "syntaxes' alternative of the unrestricted character string type is constrained to a single value or
"identification" is constrained to the "fixed" alternative, in which case only the "string-value" shall be
encoded; this alternativeis called the "predefined” option;

b) the first bit of the unrestricted character string value is set to 1, in which case an "index" value shall be
prefixed to the "identification" which shall be present, followed by the "string-value”; this alternative is
called the "index-setting" sub-rule, or EP-A;

c) the first bit of the unrestricted character string value is set to O, in which case an "index" value and
"string-value" shall be present but the "identification™ shall be absent; this alternative is called the "index-
using" sub-rule, or EP-B.

27.2 The "predefined” option shall be used when either "identification" is constrained to the "fixed" aternative or
when the "syntaxes" aternative of "identification” is constrained to a single value. When the "predefined" option is used
the complete encoding of the "string-value" shall be added to an octet-aligned-bit-field and 10.9.3.5 shall be invoked to
append it to the field-list, prefixed with the length as a semi-constrained whole number. This completes the procedures
for this subclause.

27.3 When the "predefined” option is not selected a single bit shall be added to the field-list in a bit-field of length
1. Thisbit shall be set to 1 if the "index-setting" sub-rule is being employed, otherwise it shall be set to 0.

27.4 The "index-setting” sub-rule shall be used the first time that a given abstract value for "identification" is
specified. When the "index-setting" sub-rule is used 10.6 is invoked to add an index value to the field-list as a normally
small non-negative whole number. The first index value shall be O, and it shall be incremented by 1 for each distinct
"identification" value that is encountered. Clause 22 shall then be invoked to add the "identification” to the field-list. The
complete encoding of the "string-value" shall then be added to an octet-aligned-bit-field and 10.9 shall be invoked to
append it to the field-list, prefixed with the length as a semi-constrained whole number. This completes the procedures
for this subclause.

27.5 The "index-using” sub-rule shall be used on all subsequent occurrences of a given abstract value for
"identification". When the "index-using" sub-rule is used 10.6 is invoked to add an index value to the field-list as a
normally small non-negative whole number. Thisindex value shall correspond to the one which was previously added to
the field-list for this given "identification" abstract value. The complete encoding of the "string-value" shall then be
added to an octet-aligned-bit-field and 10.9 shall be invoked to append it to the field-list, prefixed with the length as a
semi-constrained whole number. This completes the procedures for this subclause.

27.6 TUTORIAL: Thus for any given "identification" value there is a (relatively inefficient) EP-A encoding with
both a unique index value and the full "identification" value, followed by arbitrarily many (efficient) EP-B encodings
linked to the EP-A encoding by the index value.

27.7 The EP-A encoding shall be the PER encoding of the single index-setting/index-using bit, followed by the
index, followed by the following sequence type for which AUTOMATIC TAGS is specified (see 22.6 and 26.3 of
ITU-T Rec. X.680 | ISO/IEC 8824-1):

SEQUENCE {
identification CHOICE {
syntaxes SEQUENCE {
abstract OBJECT IDENTIFIER,
transfer OBJECT IDENTIFIER },
syntax OBJECT IDENTIFIER,
presentation-context-id INTEGER,
context-negotiation SEQUENCE {
presentation-context-id INTEGER,
transfer-syntax OBJECT IDENTIFIER },
transfer-syntax OBJECT IDENTIFIER,
fixed NULL },
string-value OCTET STRING }

27.8 The value of "string-value" shall be the encoding of the abstract data value using the identified transfer syntax,
and the value of al other fields shall be encoded using the same transfer syntax as the other values appearing in the
abstract syntax value.

NOTE — Both alternatives of "string-value" in the abstract syntax are encoded identically — as an octet string — in the
transfer syntax.

26 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

28 Object identifiers for transfer syntaxes

28.1 The encoding rules specified in this Recommendation | International Standard can be referenced and applied
whenever thereis a need to specify an unambiguous bit string representation for all of the values of asingle ASN.1 type.

28.2 The following object identifiers and object descriptor values are assigned to identify and describe the encoding
rules specified in this Recommendation | International Standard:

For BASIC-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) aligned (0)}
"Packed encoding of asingle ASN.1 type (basic aligned)"

For BASIC-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) unaligned (1)}
"Packed encoding of asingle ASN.1 type (basic unaligned)"

For CANONICAL-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) aligned (0)}
"Packed encoding of asingle ASN.1 type (canonical aligned)"

For CANONICAL-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) unaligned (1)}
"Packed encoding of asingle ASN.1 type (canonical unaligned)”

28.3 Where an application standard defines an abstract syntax as a set of abstract values, each of which is a value of
some specifically named ASN.1 type defined using the ASN.1 notation, then the object identifier values specified in 28.2
may be used with the abstract syntax name to identify those transfer syntaxes which result from the application of the
encoding rules specified in this Recommendation | International Standard to the specifically named ASN.1 type used in
defining the abstract syntax.

NOTE - In particular, these identifications of the encoding rules can appear in the "transfer syntax name" field of the
presentation protocol (ITU-T Rec. X.226 | ISO/IEC 8823-1).

28.4 The names specified in 28.2 shall not be used with an abstract syntax name to identify a transfer syntax if the
conditions of 28.3 for the definition of the abstract syntax are not met.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 27

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
Annex A

Example of encodings

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates use of the Packed Encoding Rules specified in this Recommendation | International Standard by
showing representations in octets of a (hypothetical) personnel record which is defined using ASN. 1.

Al Record that does not use subtype constraints

A.1.1 ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1 for defining types. This is identical to the example defined in Annex A of ITU-T
Rec. X.690 | ISO/IEC 8825-1.

PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {

name Name,

title [0] VisibleString,
number EmployeeNumber,
dateOfHire [1] Date,
nameOfSpouse [2] Name,
children [3] IMPLICIT

SEQUENCE OF ChildInformation DEFAULT {} }

ChildInformation ::= SET
{ name Name,
dateOfBirth [0] Date}

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE

{givenName VisibleString,
initial VisibleString,
familyName VisibleString}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMMDD
A.1.2 ASN.1 description of a record value
The value of John Smith’s personnel record is formally described below using ASN.1.

{ name {givenName "John" initial "P" ,familyName ""Smith'"},

title "Director"',

number 51,

dateOfHire "19710917",

nameQOfSpouse {givenName "Mary" initial "T" ,familyName "Smith"},
children

{{name {givenName "Ralph" initial "T" ,familyName "Smith"},
dateOfBirth "19571111"},

{name {givenName ""Susan",initial "B" ,familyName "Jones"},
dateOfBirth ""19590717"}}}

A.1.3 ALIGNED PER representation of this record value

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding Rules
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary.

The length of this encoding is 94 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 84 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

28 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

A.1.3.1 Hexadecimal view

80044A6F 686E0150 05536D69 74680133 08446972 6563746F 72083139 37313039
3137044D 61727901 5405536D 69746802 0552616C 70680154 05536D69 74680831
39353731 31313105 53757361 6E014205 4A6F6E65 73083139 35393037 3137

A.1.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; and an ’x’ represents a zero pad bit that is used from time to time to align fields on an octet boundary.

IXXXXXXX Bitmap bit = 1 indicates "children” is present
00000100 Length of name.givenName = 4
01001010 01101111 01101000 01101110 name.givenName = "John"

00000001 Length of name.initial = 1

01010000 name.initial = "P"

00000101 Length of name.familyName =5
01010011 01101101 01101001 01110100 01101000 name.familyName = "Smith"
00000001 Length of (employee) number = 1
00110011 (employee) number =51

00001000 Length of title=8

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010 title ="Director"

00001000 Length of dateOfHire=8

00110001 00111001 00110111 00110001 00110000 00111001 00110001 00111111 dateOfHire ="19590717"

00000100 Length of nameOfSpouse.givenName = 4
01001101 01100001 01110010 01111001 nameOf Spouse.givenName = "Mary"
00000001 Length of nameOfSpouse.initial = 1
01010100 nameOfSpouse.initial ="T"

00000101 Length of nameOfSpouse.familyName =5
01010011 01101101 01101001 01110100 01101000 nameOf Spouse.familyName = " Smith"
00000010 Number of children

00000101 Length of children[0].givenName =5
01010010 01100001 01101100 01110000 01101000 children[0] .givenName = "Ralph"
00000001 Length of children[O].initial = 1
01010100 children[0].initial ="T"

00000101 Length of children[0].familyName =5
01010011 01101101 01101001 01110100 01101000 children[0].familyName = "Smith"
00001000 Length of children[0].dateOfBirth = 8
00110001 00111001 00110101 00110111 00110001 00110001 00110001 00110001 children[0].dateOfBirth = "19571111"
00000101 Length of children[1].givenName =5
01010011 01110101 01110011 01100001 01101110 children[1].givenName = "Susan"
00000001 Length of children[1].initial = 1
01000010 children[1].initial ="B"

00000101 Length of children[1].familyName =5
01001010 01101111 01101110 01100101 01110011 children[1].familyName = "Jones"
00001000 Length of children[1].dateOfBirth = 8

00110001 00111001 00110101 00111001 00110000 00110111 00110001 00110111 children[1].dateOfBirth = "19590717"

A.1.4 UNALIGNED PER representation of this record value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 29

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

The length of this encoding is 84 octets. For comparison, the same Personnel Record value encoded using the ALIGNED
variant of PER is 94 octets, BER with the definite length form is at least 136 octets, and BER with the indefinite length
formisat least 161 octets.

A.1.4.1 Hexadecimal view

824ADFA3 700DO05A 7B74F4D0 02661113 4F2CB8FA 6FE410C5 CB762C1C B16E0937
OF2F2035 0169EDD3 D340102D 2C3B3868 01A80B4F G6E9E9A02 18B96ADD 8B162C41
69F5E787 700C2059 5BF765E6 10C5CB57 2C1BB16E

A.1.4.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; aperiod (.) is used to mark octet boundaries; and an X’ represents a zero-bit used to pad the final octet to
an octet boundary.

1 Bitmap bit = 1 indicates "children” is present
0000010.0 Length of name.givenName = 4
1001010.1101111 1.101000 11.01110 name.givenName = "John"

000.00001 Length of name.initial =1

101.0000 name.initial ="P"

0000.0101 Length of name.familyName=5
1010.011 11011.01 110100.1 1110100 .1101000 name.familyName = "Smith"
0.0000001 Length of (employee) number =1
0.0110011 (employee) number = 51

0.0001000 Length of title=8

1.000100 11.01001 111.0010 1100.101 11000.11 111010.0 1101111 .1110010 title = "Director"

0.0001000 Length of dateOfHire=8

0.110001 01.11001 011.0111 0110.001 01100.00 011100.1 0110001 .0111111 dateOfHire="19590717"

0.0000100 Length of nameOf Spouse.givenName = 4
1.001101 11.00001 111.0010 1111.001 nameOf Spouse.givenName = "Mary"
00000.001 Length of nameOfSpouse.initial = 1
10101.00 nameOfSpouse.initial ="T"
000001.01 Length of nameOfSpouse.familyName=5
101001.1 1101101 .1101001 1.110100 11.01000 nameOf Spouse.familyName = " Smith"
000.00010 Number of children

000.00101 Length of children[0].givenName =5
101.0010 1100.001 11011.00 111000.0 1101000 children[0] .givenName = "Ralph"
.00000001 Length of children[0].initial =1
.1010100 children[0].initial ="T"

0.0000101 Length of children[0].familyName =5
1.010011 11.01101 110.1001 1110.100 11010.00 children[0].familyName = "Smith"
000010.00 Length of children[0].dateOfBirth = 8
011000.1 0111001 .0110101 0.110111 01.10001 011.0001 0110.001 01100.01 children[0].dateOfBirth = "19571111"
000001.01 Length of children[1].givenName =5
101001.1 1110101 .1110011 1.100001 11.01110 children[1].givenName = "Susan"
000.00001 Length of children[1].initial =1
100.0010 children[1].initial ="B"

0000.0101 Length of children[1].familyName =5
1001.100 11011.11 110111.0 1100101 .1110011 children[1].familyName = "Jones"
0.0001000 Length of children[1].dateOfBirth = 8

0.110001 01.11001 011.0101 0111.001 01100.00 011011.1 0110001 .0110111x children[1].dateOfBirth = "19590717"

30 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
A2 Record that uses subtype constraints

This example is the same as that shown in clause A.1, except that it makes use of the subtype notation to impose
constraints on some items.

A2.1 ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1 for defining types.

PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {

name Name,

title [0] VisibleString,
number EmployeeNumber,
dateOfHire [1] Date,
nameOfSpouse [2] Name,

children [3] IMPLICIT

SEQUENCE OF ChildInformation DEFAULT {} }

ChildInformation ::= SET
{ name Name,
dateOfBirth [0] Date}

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE

{givenName NameString,
initial NameString (SIZE(1)),
familyName NameString}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString (FROM("0".."9") ~ SIZE(8)) -- YYYYMMDD
NameString ::= VisibleString (FROM("a".."z" | "A".."Z" | "-."") * SIZE(1..64))

A.2.2 ASN.1 description of a record value

The value of John Smith’s personnel record is formally described below using ASN.1.

{ name {givenName "John"initial "P" ,familyName "Smith"},

title "Director",

number 51,

dateOfHire "19710917",

nameQOfSpouse {givenName "Mary",initial "T" ,familyName "Smith"},
children

{{name {givenName ""Ralph",initial "T" ,familyName "Smith"},
dateOfBirth "19571111"},

{name {givenName ""Susan"initial "B" ,familyName "Jones"},
dateOfBirth '"19590717"}}}

A.2.3 ALIGNED PER representation of this record value

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding Rules
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. In the binary view an X' is used to represent pad
bits that are encoded as zero-bits; they are used to align the fields from time to time.

The length of this encoding is 74 octets. For comparison, the same PersonnelRecord value encoded using the

UNALIGNED variant of PER is 61 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 31

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

A.2.3.1 Hexadecimal view

864A6F68 6E501053 6D697468 01330844 69726563 746F7219 7109170C 4D617279
5410536D 69746802 1052616C 70685410 536D6974 68195711 11105375 73616E42

104A6F6E 65731959 0717

A.2.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; and an ' X’ represents a zero pad bit that is used from time to time to aign fields on an octet boundary.

1

000011x
01001010 01101111 01101000 01101110

01010000

000100xx
01010011 01101101 01101001 01110100 01101000

00000001
00110011

00001000
01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010

0001 1001 0111 0001 0000 1001 0001 O111

000011xx
01001101 01100001 01110010 01111001

01010100

000100xx
01010011 01101101 01101001 01110100 01101000

00000010

000100xx
01010010 01100001 01101100 01110000 01101000

01010100

000100xx
01010011 01101101 01101001 01110100 01101000

0001 1001 0101 0111 0001 0001 0001 0OO1

000100xx
01010011 01110101 01110011 01100001 01101110

01000010

000100xx
01001010 01101111 01101110 01100101 01110011

0001 1001 0101 1001 0000 0111 0001 O111

A.2.4 UNALIGNED PER representation of this record value

Bitmap bit = 1 indicates "children” is present

Length of name.givenName = 4
name.givenName = "John"

name.initial ="P"

Length of name.familyName =5
name.familyName = "Smith"

Length of (employee) number = 1
(employee) number =51

Length of title=8
title = "Director”

dateOfHire = "19590717"

Length of nameOfSpouse.givenName = 4
nameOf Spouse.givenName = "Mary"

nameOfSpouse.initial ="T"

Length of nameOfSpouse.familyName=5
nameOf Spouse.familyName = "Smith"

Number of children

Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[0].initial ="T"

Length of children[0].familyName =5
children[0].familyName = "Smith"

children[0].dateOfBirth = "19571111"

Length of children[1].givenName =5
children[1].givenName = " Susan"

children[1].initial ="B"

Length of children[1].familyName =5
children[1].familyName = "Jones"

children[1] .dateOfBirth = "19590717"

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

The length of this encoding is 61 octets. For comparison, the same Personnel Record value encoded using the ALIGNED
variant of PER is 74 octets, BER with the definite length form is at least 136 octets, and BER with the indefinite length
formisat least 161 octets.

32 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

A.2.4.1 Hexadecimal view

865D51D2 888A5125 F1809984 44D3CB2E 3E9BFO0C B8848B86 7396E8A8 8A5125F1
81089B93 D71AA229 4497C632 AE222222 985CE521 885D54C1 70CAC838 B8

A.2.4.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); anewline is used to delineate fields; space is used to delineate characters within a
character string; a period (.) is used to mark octet boundaries; and an ’x’ represents a zero-bit used to pad the final octet to

an octet boundary.
1

000011
0.01011 101.010 10001.1 101001

0.10001

000.100
01010.0 101000 1.00100 101.111 10001.1

0000000.1
0011001.1

0000100.0

1000100 .1101001 1.110010 11.00101 110.0011 1110.100 11011.11 111001.0

0001 100.1 0111 000.1 0000 100.1 0001 O11.1

000011
0.01110 011.100 10110.1 110100

0.10101

000.100
01010.0 101000 1.00100 101.111 10001.1

0000001.0

000100
0.10011 011.100 10011.1 101011 1.00011

010.101

00010.0

010100 1.01000 100.100 10111.1 100011
0.001 1001 0.101 0111 0.001 0001 0001 0001
0.001 1001 0.101 0111 0.001 0001 0.001 0001

0.00100
010.100 11000.0 101110 0.11100 101.001

00001.1

000100
0.01011 101.010 10100.1 100000 1.01110

000.1 1001 010.1 1001 000.0 0111 000.1 0111xxx

ITU-T Rec. X.691 (1995 E)

Bitmap bit = 1 indicates "children” is present

Length of name.givenName = 4
name.givenName = "John"

name.initial ="P"

Length of name.familyName=5
name.familyName = "Smith"

Length of (employee) number = 1
(employee) number = 51

Length of title=8
title = "Director”

dateOfHire = "19590717"

Length of nameOf Spouse.givenName = 4
nameOf Spouse.givenName = "Mary"

nameOfSpouse.initial ="T"

Length of nameOfSpouse.familyName=5
nameOf Spouse.familyName = "Smith"

Number of children

Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[0].initial ="T"

Length of children[0].familyName =5
children[0] .familyName = " Smith"
children[0].dateOfBirth = "19571111"

Length of children[1].givenName =5
children[1] .givenName = " Susan"

children[1].initial ="B"

Length of children[1].familyName =5
children[1].familyName = "Jones"

children[1] .dateOfBirth = "19590717"

Superseded by a more recent version 33

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
A3 Record that uses extension markers

A3.1 ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in
ITU-T Rec. X.680 | ISO/IEC 8824-1 for defining types that are not extensible, and ITU-T Rec. X.680/Amd. 1 |
ISO/IEC 8824-1/Amd. 1 for defining extensible types.

PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {

name Name,
title [0] VisibleString,
number EmployeeNumber,
dateOfHire [1] Date,
nameOfSpouse [2] Name,
children [3] IMPLICIT
SEQUENCE (SIZE(2, ...)) OF ChildInformation OPTIONAL {},
“}
ChildInformation ::= SET
{ name Name,
dateOfBirth [0] Date,
.
sex [1] IMPLICIT ENUMERATED {male(1), female(2), unknown(3)} OPTIONAL
}
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{givenName NameString,
initial NameString (SIZE(1)),
familyName NameString,
e}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER (0..9999, ...)
Date ::= [APPLICATION 3] IMPLICIT VisibleString (FROM("0".."9") ~ SIZE(S, ..., 9..20)) -- YYYYMMDD
NameString ::= VisibleString (FROM("a".."z" | "A".."Z" | "-."") ~ SIZE(1..64, ...))

A.3.2 ASN.1 description of a record value

The value of John Smith’s personnel record is formally described below using ASN.1.

{ name {givenName "John",initial ""P",familyName '"Smith"},

title "Director",

number 51,

dateOfHire "19710917",

nameOfSpouse {givenName "Mary",initial "T" ,familyName "Smith"},
children

{{name {givenName ""Ralph",initial "T" ,familyName "Smith"},
dateOfBirth "19571111"},

{name {givenName "'Susan",initial "B" ,familyName "Jones"},
dateOfBirth ""19590717", sex female}}}

A.3.3 ALIGNED PER representation of this record value

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding Rules
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. In the binary view an X' is used to represent pad
bits that are encoded as zero-bits; they are used to align the fields from time to time.

The length of this encoding is 83 octets. For comparison, the same PersonnelRecord value encoded using the

UNALIGNED variant of PER is 65 octets, BER with the definite length form is at least 139 octets, and BER with the
indefinite length form is at least 164 octets.

34 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

A.3.3.1 Hexadecimal view

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

40C04A6F 686E5008 536D6974 68000033 08446972 6563746F 72001971 0917034D
61727954 08536D69 74680100 52616C70 68540853 6D697468 00195711 11820053

7573616E 42084A6F 6E657300 19590717 010140

A.3.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a
character string; and an ’x’ represents a zero pad bit that is used from time to time to align fields on an octet boundary.

0
1

0

0
0000 1IXXXXXX
01001010 01101111 01101000 01101110

01010000

0
000100x
01010011 01101101 01101001 01110100 01101000

OXXXXXXX
00000000 00110011

00001000

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010

OXXXXXXX
0001 1001 0111 0001 0000 1001 0001 0111

0

0
000011
01001101 01100001 01110010 01111001

01010100

0
000100x
01010011 01101101 01101001 01110100 01101000

0

0
0

0
000100XX XXXX
01010010 01100001 01101100 01110000 01101000

01010100

0
000100x
01010011 01101101 01101001 01110100 01101000

OXXXXXXX
0001 1001 0101 0111 0001 0001 0001 0001

1
0

0
00010 OXXXXXXX
01010011 01110101 01110011 01100001 01101110

ITU-T Rec. X.691 (1995 E)

No extension values present in Personnel Record
Bitmap bit = 1 indicates "children" is present

No extension values present in "name"

Length iswithin range of extension root
Length of name.givenName = 4
name.givenName = "John"

name.initial ="P"

Length iswithin range of extension root
Length of name.familyName=5
name.familyName = "Smith"

Value iswithin range of extension root
(employee) number = 51

Length of title=8
title = "Director"

Length is within range of extension root
dateOfHire = "19590717"

No extension values present in nameOf Spouse

Length iswithin range of extension root
Length of nameOfSpouse.givenName = 4
nameOf Spouse.givenName = "Mary"

nameOf Spouse.initial ="T"

Length iswithin range of extension root
Length of nameOfSpouse.familyName =5
nameOf Spouse.familyName = "Smith"

Number of "children” is within the range of the
extension root

No extension values present in children[0Q]
No extension values present in children[0].name

Length iswithin range of extension root
Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[O].initial ="T"

Length iswithin range of extension root
Length of children[0].familyName =5
children[0].familyName = "Smith"

Length is within range of extension root
children[0] .dateOfBirth = "19571111"

Extension value(s) present in children[1]
No extension values present in children[0].name

Length iswithin range of extension root
Length of children[1].givenName =5
children[1].givenName = "Susan"

Superseded by a more recent version 35

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

01000010 children[1].initial ="B"
0 Length iswithin range of extension root
000100x Length of children[1].familyName =5

01001010 01101111 01101110 01100101 01110011 children[1].familyName = "Jones"

OXXXXXXX
0001 1001 0101 1001 0000 0111 0001 0111

Length iswithin range of extension root
children[1].dateOfBirth = "19590717"

0000000 Length of extension addition bitmap

for children[1] =1
1 Indicate extension value for "sex" is present
00000001 Length of the complete encoding of "sex"
OLXXXXXX Complete encoding of "sex" = female
A34 UNALIGNED PER representation of this record value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

The length of this encoding is 65 octets. For comparison, the same Personnel Record value encoded using the ALIGNED
variant of PER is 83 octets, BER with the definite length form is at least 139 octets, and BER with the indefinite length
formisat least 164 octets.

A.3.4.1 Hexadecimal view

40CBAA3A 5108A512 5F180330 889A7965 C7D37F20 CB8848B8 19CES5BA2 Al114A24B
E3011372 7AE35422 94497C61 95711118 22985CE5 21842EAA 60B832B2 0OE2E0202
80

A.3.4.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong
together (typically length/value pairs); anewline is used to delineate fields; space is used to delineate characters within a
character string; aperiod (.) is used to mark octet boundaries; and an ’x’ represents a zero-bit used to pad the final octet to

an octet boundary.

o O O

0000.11
001011 .101010 10.0011 1010.01

010001

.0
000100
0.10100 101.000 10010.0 101111 1.00011

0
00.00000011.0011

0000.1000
1000.100 11010.01 111001.0 1100101 1100011 1.110100 11.01111 111.0010

0
000.1 1001 011.1 0001 000.0 1001 000.1 0111

0

0
0.00011
001.110 01110.0 101101 1.10100

010.101

36 ITU-T Rec. X.691 (1995 E)

No extension values present in Personnel Record
Bitmap bit = 1 indicates "children” is present

No extension values present in "name"

Length iswithin range of extension root
Length of name.givenName = 4
name.givenName = "John"

name.initial ="P"

Length iswithin range of extension root
Length of name.familyName=5
name.familyName = "Smith"

Value iswithin range of extension root
(employee) number = 51

Length of title=8
title = "Director"

Length iswithin range of extension root
dateOfHire = "19590717"

No extension values present in nameOf Spouse

Length iswithin range of extension root
Length of nameOfSpouse.givenName = 4
nameOfSpouse.givenName = "Mary"

nameOfSpouse.initial ="T"

Superseded by a more recent version

0
0001.00
010100 .101000 10.0100 1011.11 100011

.0

0
0001.00
010011 .011100 10.0111 1010.11 100011

.010101

0
0.00100
010.100 10100.0 100100 1.01111 100.011

0

0001 .1001 0101 .0111 0001 .0001 0001 .0001

1

0

0
0.00100
010.100 11000.0 101110 0.11100 101.001

00001.1

0
000100
.001011 10.1010 1010.01 100000 .101110

0

0.001 1001 0.101 1001 0.000 0111 0.001 0111

0.000000

1

0.0000001
0. IXXXXXX
X

ITU-T Rec. X.691 (1995 E)

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

Length iswithin range of extension root
Length of nameOfSpouse.familyName=5
nameOf Spouse.familyName = "Smith"

Number of "children” is within the range of the
extension root

No extension values present in children[0]

No extension values present in
children[0].name

Length iswithin range of extension root
Length of children[0].givenName =5
children[0].givenName = "Ralph"

children[0].initial ="T"

Length iswithin range of extension root
Length of children[0].familyName =5
children[0] .familyName = "Smith"

Length is within range of extension root
children[0] .dateOfBirth = "19571111"

Extension value(s) present in children[1]

No extension values present in
children[0].name

Length iswithin range of extension root
Length of children[1].givenName =5
children[1].givenName = " Susan"

children[1].initial ="B"

Length iswithin range of extension root
Length of children[1].familyName =5
children[1].familyName = "Jones"

Length iswithin range of extension root
children[1].dateOfBirth = "19590717"

Length of extension addition bitmap for
children[1] =1

Indicate extension value for "sex" is present

Length of the complete encoding of "sex"
Complete encoding of "sex" = female

Pad hit to create compl ete encoding of
Personnel Record

Superseded by a more recent version 37

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
Annex B

Observations on combining PER-visible constraints

(This annex does not form an integral part of this Recommendation | International Standard)

Certain properties can be observed when subtype elements, each of which separately may be PER visible, are combined.
The following describes by means of examples such properties:

B.1 The effective size constraint for

A ::= IASString (SIZE(1..4) | SIZE(9..10))

A ::=TAS5String (SIZE(1..4 | 9..10))

B.2 When a PermittedAlphabet constraint is combined in the same subtype specification with other
PermittedAlphabet constraints, there is no effective PermittedAlphabet constraint containing fewer than all charactersin
the unconstrained type unless there is a single PermittedAlphabet specification that is a superset of all other
PermittedAlphabet specifications in that subtype specification. Also, if size constraints are included in that constraint
specification the superset PermittedAlphabet specification must have an effective size constraint combined with it by
means of the INTERSECTION operation such that the effective size constraint is a superset of al other size constraints
imposed on the type. For example,

B ::= IA5String (FROM ("AB") * SIZE(1..2) |
FROM ("DE") ~ SIZE(3) |
FROM ("ABCDE") * (SIZE(1..5))

has an effective size constraint and effective PermittedAlphabet constraint of
B ::=1A5String (FROM ("ABCDE") * SIZE(1..5))

because this is a superset of the more complex expression above — thus it is PER-visible. On the other hand, in the
following the effective PermittedAlphabet constraint is the entire set of characters allowed for IA5String, since there is
no single equivalent PermittedAlphabet constraint that can be written. Thus, the constraint on the following is not
PER-visible:

C ::= IASString (FROM("AB'") | FROM("'CD")) -- This is not equivalent to (FROM("ABCD"))

B.3 Size constraints can be freely combined as long as there is no PermittedAlphabet involved. For example, with
E ::= IA5String (SIZE(1..4) | SIZE(5..10) * FROM("ABCD") | SIZE(6..10))

there is no PER-visible size constraint (since size 5 cannot occur for all possible characters), while if we had
E ::= IA5String (SIZE(1..4) | SIZE(6..10) * FROM("ABCD") | SIZE(6..10))

there would be a PER-visible size constraint of SIZE(1..4 | 6..10) though the effective PermittedAlphabet constraint
would be the set of all IA5String characters. FROM("ABCD") in this case does not form a PER-visible constraint
because this constraint does not apply to all possible values of E (e.qg. if the string length is 1 then the character is not
restricted to one of "ABCD".)

38 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
Annex C
Support for the PER algorithms

(This annex does not form an integral part of this Recommendation | International Standard)

An application standard, or an International Standardized Profile, may specify which of the Packed Encoding Rules are
to be supported, and the corresponding transfer syntaxes to be offered or accepted in negotiation.

Where it has requirements for the use of relay safe and/or canonical encodings within EMBEDDED PDVs (or
EXTERNALS) or CHARACTER STRINGsS, this should be clearly stated.

The following text provides guidelines that can be used in the production of normative text.

C.1 A canonica encoding is intended for use when security features are being applied to the encoding (see
Annex D of ITU-T Rec. X.690 | ISO/IEC 8825-1). Use of CANONICAL-PER can involve significant additional CPU
utilization cost when the vaue to be encoded includes a set-of type, and is generally not recommended for protocols
unless security features are required.

C.2 Where an abstract syntax value contains embedded material that is encoded using a transfer or abstract syntax
different from that associated with the abstract syntax value, it is strongly recommended that the embedded material be
encoded in a relay-safe manner. A canonical encoding rule will be required if security features are important. In this
context, particular attention should be placed on the level of ISO/IEC 10646-1 which is to be used for the type
BMPString or Universal String, as only 1SO/IEC 10646-1 implementation level 1 is guaranteed to be canonical.

CJ3 Where a presentation context is established for the one-way flow of data, it is strongly recommended that the
data be encoded in arelay-safe manner.

C4 Where a presentation context is established for the two-way flow of data, there may be significant gains of
flexibility and economy if BASIC-PER is employed.

Cs It is strongly recommended that all implementations supporting decoding of any PER ALIGNED variant
transfer syntax should support decoding of the BASIC-PER ALIGNED variant (and hence of the CANONICAL-PER
ALIGNED variant), and should accept presentation contexts identified with any of those two encoding rules provided
the contexts are being established for the receipt of data by that implementation. Similarly for the UNALIGNED variant.

C.6 It is recommended, in the interests of interworking, that al implementations of PER support both the
ALIGNED and the UNALIGNED variant (the added implementation complexity is small). Which is offered in an
instance of communication (either or both) is a local management matter, and which is accepted if both are offered is
also alocal management matter. If only oneis offered, it should be accepted.

C.7 Acceptance of these recommendations is particularly important for the vendors of general-purpose tools.

Where an implementation is specific to some particular application, support of a single PER transfer syntax (perhaps
specified by that application designer) may be fully acceptable.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 39

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)

Annex D

Support for the ASN.1 rules of extensibility

(This annex does not form an integral part of this Recommendation | International Standard)

D.1 These Packed Encoding Rules are dependent on the total definition of the type to which they are applied. In
general, if any changes other than those of a purely syntactic nature are made to the type definition then the encoding for
all values using that part of the specification will be affected. In particular, addition of further optional components to a
sequence, converting a component to a CHOICE of that component and some other type, or relaxing or tightening
constraints on some component are all likely to change the encoding of values of the type.

D.2 Nonetheless, these encoding rules have been designed to ensure that the requirements on encoding rules
specified in the ASN.1 model of type extension (see ITU-T Rec. X.680/Amd. 1 | ISO/IEC 8824-1/Amd. 1) are satisfied.

D.3 Where atype is not part of an extension sequence (no extension marker present), then the text earlier in this
annex applies: PER provides no support for extensibility of that type. Where a sequence or set type has an extension
marker, but no extension additions, then there is a one-bit overhead (which may become one octet due to padding in the
ALIGNED variants), compared with the same type without an extension marker. Where additions are present in the type
and are actually transmitted in an instance of communication, there is a further overhead of about one octet, plus an
additional length field for each extension addition that is transmitted, compared with the same type with the extension
marker removed.

D.4 It is important to note that both the addition and removal of an extension marker changes the bits on the line,
and will in general require aversion number change for the protocol.

D.5 There are no changes to the encoding from the inclusion of an extension marker in an information object set, or

from the addition or removal of exception specifications, but these may of course represent changes in the required
behavior of an implementation and could still require a version number change for the protocol.

40 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
Annex E

Tutorial annex on concatenation of PER encodings

(This annex does not form an integral part of this Recommendation | International Standard)

E.l PER encodings are self-delimiting given knowledge of the encoding rules and the type of the encoding. The
complete encodings for the ALIGNED and UNALIGNED variant are always a multiple of 8 hits.

E.2 For the purposes of carrying PER encodings in the OSI presentation layer protocol, encodings of the
ALIGNED and UNALIGNED variants can be concatenated in the octet string option.

ITU-T Rec. X.691 (1995 E) Superseded by a more recent version 41

Superseded by a more recent version ISO/IEC 8825-2 : 1995 (E)
Annex F

Assignment of object identifier values

(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifier and object descriptor values are assigned in this Recommendation | International
Standard:

For BASIC-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) aligned (0)}
"Packed encoding of asingle ASN.1 type (basic aligned)”

For BASIC-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) basic (0) unaligned (1)}
"Packed encoding of asingle ASN.1 type (basic unaligned)"

For CANONICAL-PER, ALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) aligned (0)}
"Packed encoding of asingle ASN.1 type (canonical aligned)"

For CANONICAL-PER, UNALIGNED variant:
{joint-iso-itu-t asnl (1) packed-encoding (3) canonica (1) unaligned (1)}

"Packed encoding of asingle ASN.1 type (canonical unaligned)”

42 ITU-T Rec. X.691 (1995 E) Superseded by a more recent version

