
3UPERSEDED�BY�A�MORE�RECENT�VERSION

INTERNATIONAL TELECOMMUNICATION UNION

)45
4 8����
TELECOMMUNICATION (07/94)
STANDARDIZATION SECTOR
OF ITU

$!4!��.%47/2+3��!.$��/0%.��3934%-
#/--5.)#!4)/.3��/3)��.%47/2+).'
!.$��3934%-��!30%#43�� ��!"342!#4��39.4!8

./4!4)/.��/.%���!3.��	

).&/2-!4)/.��4%#(./,/'9��
!3.����%.#/$).'��25,%3�
30%#)&)#!4)/.��/&��"!3)#��%.#/$).'
25,%3���"%2	���#!./.)#!,��%.#/$).'
25,%3���#%2	��!.$��$)34).'5)3(%$
%.#/$).'��25,%3���$%2	

)45
4��Recommendation��8����
Superseded by a more recent version
(Previously “CCITT Recommendation”)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

&/2%7/2$

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.690 was approved on 1st of July 1994. The
identical text is also published as ISO/IEC International Standard 8825-1.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

ITU-T X-SERIES RECOMMENDATIONS

$!4!��.%47/2+3��!.$��/0%.��3934%-��#/--5.)#!4)/.3

(February 1994)

/2'!.):!4)/.��/&��8
3%2)%3�2%#/--%.$!4)/.3

Subject area Recommendation Series

PUBLIC DATA NETWORKS

Services and Facilities X.1-X.19

Interfaces X.20-X.49

Transmission, Signalling and Switching X.50-X.89

Network Aspects X.90-X.149

Maintenance X.150-X.179

Administrative Arrangements X.180-X.199

OPEN SYSTEMS INTERCONNECTION

Model and Notation X.200-X.209

Service Definitions X.210-X.219

Connection-mode Protocol Specifications X.220-X.229

Connectionless-mode Protocol Specifications X.230-X.239

PICS Proformas X.240-X.259

Protocol Identification X.260-X.269

Security Protocols X.270-X.279

Layer Managed Objects X.280-X.289

Conformance Testing X.290-X.299

INTERWORKING BETWEEN NETWORKS

General X.300-X.349

Mobile Data Transmission Systems X.350-X.369

Management X.370-X.399

MESSAGE HANDLING SYSTEMS X.400-X.499

DIRECTORY X.500-X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600-X.649

Naming, Addressing and Registration X.650-X.679

Abstract Syntax Notation One (ASN.1) X.680-X.699

OSI MANAGEMENT X.700-X.799

SECURITY X.800-X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850-X.859

Transaction Processing X.860-X.879

Remote Operations X.880-X.899

OPEN DISTRIBUTED PROCESSING X.900-X.999

3UPERSEDED�BY�A�MORE�RECENT�VERSION

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION i

#/.4%.43

0AGE

1 Scope.. 1

2 Normative references ... 1

2.1 Identical Recommendations | International Standards .. 1

2.2 Additional references .. 1

3 Definitions.. 2

4 Abbreviations ... 2

5 Notation.. 2

6 Convention ... 3

7 Conformance .. 3

8 Basic encoding rules .. 3

8.1 General rules for encoding.. 3

8.2 Encoding of a boolean value... 7

8.3 Encoding of an integer value .. 7

8.4 Encoding of an enumerated value ... 7

8.5 Encoding of a real value ... 8

8.6 Encoding of a bitstring value .. 9

8.7 Encoding of an octetstring value... 10

8.8 Encoding of a null value ... 10

8.9 Encoding of a sequence value ... 11

8.10 Encoding of a sequence-of value .. 11

8.11 Encoding of a set value ... 11

8.12 Encoding of a set-of value .. 11

8.13 Encoding of a choice value ... 12

8.14 Encoding of a tagged value... 12

8.15 Encoding of an open type ... 12

8.16 Encoding of an instance-of value.. 13

8.17 Encoding of a value of the embedded-pdv type.. 13

8.18 Encoding of a value of the external type... 14

8.19 Encoding of an object identifier value .. 15

8.20 Encoding for values of the restricted character string types ... 16

8.21 Encoding for values of the unrestricted character string type ... 18

9 Canonical encoding rules ... 19

9.1 Length forms... 19

9.2 String encoding forms... 19

9.3 Set components ... 19

10 Distinguished encoding rules ... 19

10.1 Length forms... 20

10.2 String encoding forms... 20

10.3 Set components ... 20

3UPERSEDED�BY�A�MORE�RECENT�VERSION

ii)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

0AGE

11 Restrictions on BER employed by both CER and DER... 20

11.1 Boolean values .. 20

11.2 Unused bits ... 20

11.3 Real values .. 20

11.4 GeneralString values ... 21

11.5 Set and sequence components with default value ... 21

11.6 Set-of components .. 21

11.7 GeneralizedTime... 21

12 Use of BER, CER and DER in transfer syntax definition .. 21

Annex A – Example of encodings... 23

A.1 ASN.1 description of the record structure .. 23

A.2 ASN.1 description of a record value ... 23

A.3 Representation of this record value... 23

Annex B – Assignment of object identifier values.. 25

Annex C – Illustration of real value encoding... 26

Annex D – Use of the DER and CER in data origin authentication .. 28

D.1 The problem to be solved.. 28

D.2 The approach to a solution .. 29

D.3 The implementation optimization ... 29

3UPERSEDED�BY�A�MORE�RECENT�VERSION

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION iii

3UMMARY

This Recommendation | International Standard defines a set of basic encoding rules (BER) that may be applied to values
of types defined using the ASN.1 notation. Application of these encoding rules produces a transfer syntax for such
values. It is implicit in the specification of these encoding rules that they are also used for decoding. This
Recommendation | International Standard defines also a set of distinguished encoding rules (DER) and a set of canonical
rules (CER) both of which provide constraints on the basic encoding rules (BER). The key difference between them is
that DER uses the definite length form of encoding while CER uses the indefinite length form. DER is more suitable for
the small encoded values, while CER is more suitable for the large ones. It is implicit in the specification of these
encoding rules that they are also used for decoding.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

iv)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

)NTRODUCTION

ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3,
ITU-T Rec. X.683 | ISO/IEC 8824-4 (Abstract Syntax Notation One or ASN.1) together specify a notation for the
definition of abstract syntaxes, enabling application layer standards to define the types of information they need to
transfer using the presentation service. It also specifies a notation for the specification of values of a defined type.

This Recommendation | International Standard defines encoding rules that may be applied to values of types defined
using the ASN.1 notation. Application of these encoding rules produces a transfer syntax for such values. It is implicit in
the specification of these encoding rules that they are also to be used for decoding.

There may be more than one set of encoding rules that can be applied to values of types that are defined using the ASN.1
notation. This Recommendation | International Standard defines three sets of encoding rules, called BASIC� ENCODING
RULES, CANONICAL�ENCODING�RULES and DISTINGUISHED�ENCODING�RULES. Whereas the basic encoding rules gives the sender
of an encoding various choices as to how data values may be encoded, the canonical and distinguished encoding rules
select just one encoding from those allowed by the basic encoding rules, eliminating all of the sender’s options. The
canonical and distinguished encoding rules differ from each other in the set of restrictions that they place on the basic
encoding rules.

The distinguished encoding rules is more suitable than the canonical encoding rules if the encoded value is small enough
to fit into the available memory and there is a need to rapidly skip over some nested values. The canonical encoding
rules is more suitable than the distinguished encoding rules if there is a need to encode values that are so large that they
cannot readily fit into the available memory or it is necessary to encode and transmit a part of a value before the entire
value is available. The basic encoding rules is more suitable than the canonical or distinguished encoding rules if the
encoding contains a set value or set-of value and there is no need for the restrictions that the canonical and distinguished
encoding rules impose. This is due to the memory and CPU overhead that the latter encoding rules exact in order to
guarantee that set values and set-of values have just one possible encoding.

Annex A gives an example of the application of the basic encoding rules. It does not form an integral part of this
Recommendation | International Standard.

Annex B summarizes the assignment of object identifier values made in this Recommendation | International Standard. It
does not form an integral part of this Recommendation | International Standard.

Annex C gives examples of applying the basic encoding rules for encoding reals. It does not form an integral part of this
Recommendation | International Standard.

Annex D provides a tutorial on the use of the distinguished encoding rules to provide an integrity service for OSI
communications. It does not form an integral part of this Recommendation | International Standard.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 1

).4%2.!4)/.!,��34!.$!2$
3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

)45
4��2%#/--%.$!4)/.

INFORMATION TECHNOLOGY – ASN.1 ENCODING RULES:
SPECIFICATION OF BASIC ENCODING RULES (BER),

CANONICAL ENCODING RULES (CER)
AND DISTINGUISHED ENCODING RULES (DER)

� 3COPE

This Recommendation | International Standard specifies a set of basic encoding rules that may be used to derive the
specification of a transfer syntax for values of types defined using the notation specified in ITU-T Rec. X.680 (1994) |
ISO/IEC 8824-1:1995, ITU-T Rec. X.681 (1994) | ISO/IEC 8824-2:1995, ITU-T Rec. X.682 (1994) |
ISO/IEC 8824 3:1995, and ITU-T Rec. X.683 (1994) | ISO/IEC 8824-4:1995, collectively referred to as Abstract Syntax
Notation One or ASN.1. These basic encoding rules are also to be applied for decoding such a transfer syntax in order to
identify the data values being transferred. It also specifies a set of canonical and distinguished encoding rules that restrict
the encoding of values to just one of the alternatives provided by the basic encoding rules.

These encoding rules are used at the time of communication (by the presentation service provider when required by a
presentation context).

� .ORMATIVE�REFERENCES

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunications Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

���)DENTICAL�2ECOMMENDATIONS�\�)NTERNATIONAL�3TANDARDS

– ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994,)NFORMATION� TECHNOLOGY� �/PEN�3YSTEMS
)NTERCONNECTION� �"ASIC�2EFERENCE�-ODEL��4HE�BASIC�MODEL�

– ITU-T Recommendation X.226 (1994) | ISO/IEC 8823-1:1994,)NFORMATION� TECHNOLOGY� �/PEN�3YSTEMS
)NTERCONNECTION� �#ONNECTION
ORIENTED�PRESENTATION�PROTOCOL��0ROTOCOL�SPECIFICATION�

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995,)NFORMATION�TECHNOLOGY� �!BSTRACT�3YNTAX
.OTATION�/NE��!3.��	��3PECIFICATION�OF�BASIC�NOTATION�

– ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1995,)NFORMATION�TECHNOLOGY� �!BSTRACT�3YNTAX
.OTATION�/NE��!3.��	��)NFORMATION�OBJECT�SPECIFICATION�

– ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1995,)NFORMATION�TECHNOLOGY� �!BSTRACT�3YNTAX
.OTATION�/NE��!3.��	��#ONSTRAINT�SPECIFICATION�

– ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1995,)NFORMATION�TECHNOLOGY� �!BSTRACT�3YNTAX
.OTATION�/NE��!3.��	��0ARAMETERIZATION�OF�!3.���SPECIFICATIONS�

��� !DDITIONAL�REFERENCES

– ISO)NTERNATIONAL�2EGISTER�OF�#ODED�#HARACTER�3ETS�TO�BE�USED�WITH�%SCAPE�3EQUENCE�

– ISO/IEC 2022:1994,)NFORMATION�PROCESSING� �)3/��
BIT�AND��
BIT�CODED�CHARACTER�SETS� �#ODE�EXTENSION
TECHNIQUES�

– ISO 6093:1985,�)NFORMATION� PROCESSING� � 2EPRESENTATION� OF� NUMERICAL� VALUES� IN� CHARACTER� STRINGS� FOR
INFORMATION�INTERCHANGE�

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

2)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

– ISO 6429:1992,)NFORMATION�TECHNOLOGY� �#ONTROL�FUNCTIONS�FOR�CODED�CHARACTER�SETS�

– CCITT Recommendation X.208 (1988), 3PECIFICATION�OF�!BSTRACT�3YNTAX�.OTATION�/NE��!3.��	�

– ISO/IEC 8824-1 to 8824:1990,)NFORMATION�TECHNOLOGY� �/PEN�3YSTEMS�)NTERCONNECTION� �3PECIFICATION�OF
!BSTRACT�3YNTAX�.OTATION�/NE��!3.��	�

– ISO/IEC 10646-1:1993,)NFORMATION�TECHNOLOGY� �5NIVERSAL�-ULTIPLE
/CTET�#ODED�#HARACTER�3ET��5#3	�
�!RCHITECTURE�AND�"ASIC�-ULTILINGUAL�0LANE�

� $EFINITIONS

For the purposes of this Recommendation | International Standard the definitions of ISO 7498 and ITU-T Rec. X.680 |
ISO/IEC 8824-1 and the following definitions apply.

��� DYNAMIC� CONFORMANCE: A statement of the requirement for an implementation to adhere to the behavior
prescribed by this Recommendation | International Standard in an instance of communication.

��� STATIC�CONFORMANCE: A statement of the requirement for support by an implementation of a valid set of features
from among those defined by this Recommendation | International Standard.

��� DATA�VALUE: Information specified as the value of a type; the type and the value are defined using ASN.1.

��� ENCODING��OF�A�DATA�VALUE	: The complete sequence of octets used to represent the data value.

��� IDENTIFIER�OCTETS: Part of a data value encoding which is used to identify the type of the value.

NOTE – Some ITU-T Recommendations use the term "data element" for this sequence of octets, but the term is not used in
this Recommendation | International Standard, as other Recommendations | International Standards use it to mean "data value".

��� LENGTH�OCTETS: Part of a data value encoding following the identifier octets which is used to determine the end
of the encoding.

��� CONTENTS�OCTETS: That part of a data value encoding which represents a particular value, to distinguish it from
other values of the same type.

��� END
OF
CONTENTS�OCTETS: Part of a data value encoding, occurring at its end, which is used to determine the end
of the encoding.

NOTE – Not all encodings require end-of-contents octets.

��� PRIMITIVE�ENCODING: A data value encoding in which the contents octets directly represent the value.

���� CONSTRUCTED�ENCODING: A data value encoding in which the contents octets are the complete encoding of one
or more data values.

���� RECEIVER: An implementation decoding the octets produced by a sender, in order to identify the data value
which was encoded.

���� SENDER: An implementation encoding a data value for transfer.

���� TRAILING���BIT: A 0 in the last position of a bitstring value.

NOTE – The 0 in a bitstring value consisting of a single 0 bit is a trailing 0 bit. Its removal produces an empty bitstring.

� !BBREVIATIONS

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules of ASN.1

CER Canonical Encoding Rules of ASN.1

DER Distinguished Encoding Rules of ASN.1

ULA Upper Layer Architecture

� .OTATION

This Recommendation | International Standard references the notation defined by ITU-T Rec. X.680 | ISO/IEC 8824-1.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 3

� #ONVENTION

��� This Recommendation | International Standard specifies the value of each octet in an encoding by use of the
terms "most significant bit" and "least significant bit".

NOTE – Lower layer specifications use the same notation to define the order of bit transmission on a serial line, or the
assignment of bits to parallel channels.

��� For the purposes of this Recommendation | International Standard only, the bits of an octet are numbered from
8 to 1, where bit 8 is the "most significant bit", and bit 1 is the "least significant bit".

��� For the purpose of this Recommendation | International Standard, two octet strings can be compared. One octet
string is equal to another if they are of the same length and are the same at each octet position. An octet string, S1, is
greater than another, S2, if and only if either:

a) S1 and S2 have identical octets in every position up to and including the final octet in S2, but S1 is longer;
or

b) S1 and S2 have different octets in one or more positions, and in the first such position, the octet in S1 is
greater than that in S2, considering the octets as unsigned binary numbers whose bit n has weight 2n–1.

� #ONFORMANCE

��� Dynamic conformance is specified by clause to clause inclusive.

��� Static conformance is specified by those standards which specify the application of one or more of these
encoding rules.

��� Alternative encodings are permitted by the basic encoding rules as a sender’s option. Receivers who claim
conformance to the basic encoding rules shall support all alternatives.

NOTE – Examples of such alternative encodings appear in 8.1.3.2 b) and Table 3.

��� No alternative encodings are permitted by the Canonical Encoding Rules or Distinguished Encoding Rules.

� "ASIC�ENCODING�RULES

��� 'ENERAL�RULES�FOR�ENCODING

����� 3TRUCTURE�OF�AN�ENCODING

������� The encoding of a data value shall consist of four components which shall appear in the following order:

a) identifier octets (see 8.1.2);

b) length octets (see 8.1.3);

c) contents octets (see 8.1.4);

d) end-of-contents octets (see 8.1.5).

������� The end-of-contents octets shall not be present unless the value of the length octets requires them to be present
(see 8.1.3).

������� Figure 1 illustrates the structure of an encoding (primitive or constructed). Figure 2 illustrates an alternative
constructed encoding.

�����)DENTIFIER�OCTETS

������� The identifier octets shall encode the ASN.1 tag (class and number) of the type of the data value.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

4)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TISO4830-94/d01

Identifier octets Length octets Contents octets

The number of octets
in the contents octets

(see 8.1.3.2)

&IGURE��� �3TRUCTURE�OF�AN�ENCODING

FIGURE 1/X.690...[D01] = 4 CM

TISO4840-94/d02

Identifier octets Length octets Contents octets End of contents octets

Indicates that the contents
octets are terminated by
end of contents octets

(see 8.1.3.6)

Indicates that there are
no further encodings
in the contents octets

&IGURE��� �!N�ALTERNATIVE�CONSTRUCTED�ENCODING

FIGURE 2/X.690...[D02] = 4.5 CM

������� For tags with a number ranging from zero to 30 (inclusive), the identifier octets shall comprise a single octet
encoded as follows:

a) bits 8 and 7 shall be encoded to represent the class of the tag as specified in Table 1;

b) bit 6 shall be a zero or a one according to the rules of 8.1.2.5;

c) bits 5 to 1 shall encode the number of the tag as a binary integer with bit 5 as the most significant bit.

4ABLE��� �%NCODING�OF�CLASS�OF�TAG

������� Figure 3 illustrates the form of an identifier octet for a type with a tag whose number is in the range zero to
30 (inclusive).

Class Bit 8 Bit 7

Universal 0 0

Application 0 1

Context-specific 1 0

Private 1 1

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 5

8 7 6 5 4 3 2 1

TISO4850-94/d03

Class P/C Number of tag

0 = Primitive
1 = Constructed

Identifier octet

Bits

&IGURE��� �)DENTIFIER�OCTET��LOW�TAG�NUMBER	

FIGURE 3/X.690...[D03] = 4.5 CM

������� For tags with a number greater than or equal to 31, the identifier shall comprise a leading octet followed by
one or more subsequent octets.

��������� The leading octet shall be encoded as follows:

a) bits 8 and 7 shall be encoded to represent the class of the tag as listed in Table 1;

b) bit 6 shall be a zero or a one according to the rules of 8.1.2.5;

c) bits 5 to 1 shall be encoded as 111112.

��������� The subsequent octets shall encode the number of the tag as follows:

a) bit 8 of each octet shall be set to one unless it is the last octet of the identifier octets;

b) bits 7 to 1 of the first subsequent octet, followed by bits 7 to 1 of the second subsequent octet, followed in
turn by bits 7 to 1 of each further octet, up to and including the last subsequent octet in the identifier
octets shall be the encoding of an unsigned binary integer equal to the tag number, with bit 7 of the first
subsequent octet as the most significant bit;

c) bits 7 to 1 of the first subsequent octet shall not all be zero.

��������� Figure 4 illustrates the form of the identifier octets for a type with a tag whose number is greater than 30.

TISO4860-94/d04

1 1 1 1 1 1 1 1 0

++ ++

Class P/C

Subsequent octets

Leading octet 2nd octet Last octet

= Number of tag

&IGURE��� �)DENTIFIER�OCTETS��HIGH�TAG�NUMBER	

FIGURE 4/X.690...[D04] = 6 CM

������� Bit 6 shall be set to zero if the encoding is primitive, and shall be set to one if the encoding is constructed.

NOTE – Subsequent clauses specify whether the encoding is primitive or constructed for each type.

������� ITU-T Rec. X.680 | ISO/IEC 8824-1 specifies that the tag of a type defined using the "CHOICE" keyword
takes the value of the tag of the type from which the chosen data value is taken.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

6)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� ITU-T Rec. X.681 | ISO/IEC 8824-2, subclauses 14.2 and 14.4 specifies that the tag of a type defined using
"ObjectClassFieldType" is indeterminate if it is a type field, a variable-type value field, or a variable-type value set field.
This type is subsequently defined to be an ASN.1 type, and the complete encoding is then identical to that of a value of
the assigned type (including the identifier octets).

����� ,ENGTH�OCTETS

������� Two forms of length octets are specified. These are:

a) the definite form (see 8.1.3.3); and

b) the indefinite form (see 8.1.3.6).

������� A sender shall:

a) use the definite form (see 8.1.3.3) if the encoding is primitive;

b) use either the definite form (see 8.1.3.3) or the indefinite form (see 8.1.3.6), a sender’s option, if the
encoding is constructed and all immediately available;

c) use the indefinite form (see 8.1.3.6) if the encoding is constructed and is not all immediately available.

������� For the definite form, the length octets shall consist of one or more octets, and shall represent the number of
octets in the contents octets using either the short form (see 8.1.3.4) or the long form (see 8.1.3.5) as a sender’s option.

NOTE – The short form can only be used if the number of octets in the contents octets is less than or equal to 127.

������� In the short form, the length octets shall consist of a single octet in which bit 8 is zero and bits 7 to 1 encode
the number of octets in the contents octets (which may be zero), as an unsigned binary integer with bit 7 as the most
significant bit.

%XAMPLE

L = 38 can be encoded as 001001102.

������� In the long form, the length octets shall consist of an initial octet and one or more subsequent octets. The initial
octet shall be encoded as follows:

a) bit 8 shall be one;

b) bits 7 to 1 shall encode the number of subsequent octets in the length octets, as an unsigned binary integer
with bit 7 as the most significant bit;

c) the value 111111112 shall not be used.

NOTE 1 – This restriction is introduced for possible future extension.

Bits 8 to 1 of the first subsequent octet, followed by bits 8 to 1 of the second subsequent octet, followed in turn by bits 8
to 1 of each further octet up to and including the last subsequent octet, shall be the encoding of an unsigned binary
integer equal to the number of octets in the contents octets, with bit 8 of the first subsequent octet as the most
significant bit.

%XAMPLE

L = 201 can be encoded as:

100000012

110010012

NOTE 2 – In the long form, it is a sender’s option whether to use more length octets than the minimum necessary.

������� For the indefinite form, the length octets indicate that the contents octets are terminated by end-of-contents
octets (see 8.1.5), and shall consist of a single octet.

��������� The single octet shall have bit 8 set to one, and bits 7 to 1 set to zero.

��������� If this form of length is used, then end-of-contents octets (see 8.1.5) shall be present in the encoding following
the contents octets.

����� #ONTENTS�OCTETS

The contents octets shall consist of zero, one or more octets, and shall encode the data value as specified in subsequent
clauses.

NOTE – The contents octets depend on the type of the data value; subsequent clauses follow the same sequence as the
definition of types in ASN.1.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 7

����� %ND
OF
CONTENTS�OCTETS

The end-of-contents octets shall be present if the length is encoded as specified in 8.1.3.6, otherwise they shall not be
present.

The end-of-contents octets shall consist of two zero octets.
NOTE – The end-of-contents octets can be considered as the encoding of a value whose tag is universal class, whose form

is primitive, whose number of the tag is zero, and whose contents are absent, thus:

��� %NCODING�OF�A�BOOLEAN�VALUE

����� The encoding of a boolean value shall be primitive. The contents octets shall consist of a single octet.

����� If the boolean value is

FALSE

the octet shall be zero.

If the boolean value is

TRUE

the octet shall have any non-zero value, as a sender’s option.

%XAMPLE – If of type BOOLEAN, the value TRUE can be encoded as:

��� %NCODING�OF�AN�INTEGER�VALUE

����� The encoding of an integer value shall be primitive. The contents octets shall consist of one or more octets.

����� If the contents octets of an integer value encoding consist of more than one octet, then the bits of the first octet
and bit 8 of the second octet

a) shall not all be ones; and

b) shall not all be zero.
NOTE – These rules ensure that an integer value is always encoded in the smallest possible number of octets.

����� The contents octets shall be a two’s complement binary number equal to the integer value, and consisting of
bits 8 to 1 of the first octet, followed by bits 8 to 1 of the second octet, followed by bits 8 to 1 of each octet in turn up to
and including the last octet of the contents octets.

NOTE – The value of a two’s complement binary number is derived by numbering the bits in the contents octets, starting
with bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numerical value
of 2N, where N is its position in the above numbering sequence. The value of the two’s complement binary number is obtained by
summing the numerical values assigned to each bit for those bits which are set to one, excluding bit 8 of the first octet, and then
reducing this value by the numerical value assigned to bit 8 of the first octet if that bit is set to one.

��� %NCODING�OF�AN�ENUMERATED�VALUE

The encoding of an enumerated value shall be that of the integer value with which it is associated.
NOTE – It is primitive.

End-of-contents Length Contents

0016 0016 Absent

Boolean Length Contents

0116 0116 FF16

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

8)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

��� %NCODING�OF�A�REAL�VALUE

����� The encoding of a real value shall be primitive.

����� If the real value is the value zero, there shall be no contents octets in the encoding.

����� If the real value is non-zero, then the base used for the encoding shall be B’, chosen by the sender. If B’ is 2, 8
or 16, a binary encoding, specified in 8.5.5, shall be used. If B’ is 10, a character encoding, specified in 8.5.6, shall be
used.

NOTE – The form of storage, generation, or processing by senders and receivers, and the form used in the ASN.1 value
notation are all independent of the base used for transfer.

����� Bit 8 of the first contents octet shall be set as follows:

a) if bit 8 = 1, then the binary encoding specified in 8.5.5 applies;

b) if bit 8 = 0 and bit 7 = 0, then the decimal encoding specified in 8.5.6 applies;

c) if bit 8 = 0 and bit 7 = 1, then a "SpecialRealValue" (see ITU-T Rec. X.680 | ISO/IEC 8824-1) is encoded
as specified in 8.5.7.

����� When binary encoding is used (bit 8 = 1), then if the mantissa, M is non-zero, it shall be represented by a
sign S, a non-negative integer value N and a binary scaling factor F, such that

M = S × N × 2F

0 ≤ F < 4

S = +1 or –1
NOTE – The binary scaling factor F is required under certain circumstances in order to align the implied point of the

mantissa to the position required by the encoding rules of this clause. This alignment can not always be achieved by modification of
the exponent E. If the base B’ used for encoding is 8 or 16, the implied point can only be moved in steps of 3 or 4 bits, respectively,
by changing the component E. Therefore, values of the binary scaling factor F other than zero may be required in order to move the
implied point to the required position.

������� Bit 7 of the first contents octets shall be 1 if S is –1 and 0 otherwise.

������� Bits 6 to 5 of the first contents octets shall encode the value of the base B’ as follows:

"ITS���TO�� "ASE

00 base 2
01 base 8
10 base 16
11 Reserved for further editions of this Recommendation | International Standard.

������� Bits 4 to 3 of the first contents octet shall encode the value of the binary scaling factor F as an unsigned binary
integer.

������� Bits 2 to 1 of the first contents octet shall encode the format of the exponent as follows:

a) if bits 2 to 1 are 00, then the second contents octet encodes the value of the exponent as a two’s
complement binary number;

b) if bits 2 to 1 are 01, then the second and third contents octets encode the value of the exponent as a two’s
complement binary number;

c) if bits 2 to 1 are 10, then the second, third and fourth contents octets encode the value of the exponent as a
two’s complement binary number;

d) if bits 2 to 1 are 11, then the second contents octet encodes the number of octets, X say, (as an unsigned
binary number) used to encode the value of the exponent, and the third up to the (X plus 3)th (inclusive)
contents octets encode the value of the exponent as a two’s complement binary number; the value of X
shall be at least one; the first nine bits of the transmitted exponent shall not be all zeros or all ones.

������� The remaining contents octets encode the value of the integer N (see 8.5.5) as an unsigned binary number.
NOTES

1 For non-canonical BER there is no requirement for floating point normalization of the mantissa. This allows an
implementor to transmit octets containing the mantissa without performing shift functions on the mantissa in memory. In the
Canonical Encoding Rules and the Distinguished Encoding Rules normalization is specified and the mantissa (unless it is 0) needs to
be repeatedly shifted until the least significant bit is a 1.

2 This representation of real numbers is very different from the formats normally used in floating point hardware, but
has been designed to be easily converted to and from such formats (see annex C).

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 9

����� When decimal encoding is used (bits 8 to 7 = 00), all the contents octets following the first contents octet form
a field, as the term is used in ISO 6093, of a length chosen by the sender, and encoded according to ISO 6093. The
choice of ISO 6093 number representation is specified by bits 6 to 1 of the first contents octet as follows:

"ITS���TO�� .UMBER�REPRESENTATION

00 0001 ISO 6093 NR1 form
00 0010 ISO 6093 NR2 form
00 0011 ISO 6093 NR3 form

The remaining values of bits 6 to 1 are reserved for to this Recommendation | International Standard.

There shall be no use of scaling factors specified in accompanying documentation (see ISO 6093).

NOTES

1 The recommendations in ISO 6093 concerning the use of at least one digit to the left of the decimal mark are also
recommended in this Recommendation | International Standard, but are not mandatory.

2 Use of the normalized form (see ISO 6093) is a sender’s option, and has no significance.

����� When "SpecialRealValues" are to be encoded (bits 8 to 7 = 01), there shall be only one contents octet, with
values as follows:

01000000 Value is PLUS-INFINITY

01000001 Value is MINUS-INFINITY

All other values having bits 8 and 7 equal to 0 and 1 respectively are reserved for addenda to this Recommendation |
International Standard.

��� %NCODING�OF�A�BITSTRING�VALUE

����� The encoding of a bitstring value shall be either primitive or constructed at the option of the sender.

NOTE – Where it is necessary to transfer part of a bit string before the entire bitstring is available, the constructed
encoding is used.

����� The contents octets for the primitive encoding shall contain an initial octet followed by zero, one or more
subsequent octets.

������� The bits in the bitstring, commencing with the first bit and proceeding to the last bit, shall be placed in bits 8
to 1 of the first subsequent octet, followed by bits 8 to 1 of the second subsequent octet, followed by bits 8 to 1 of each
octet in turn, followed by as many bits as are needed of the final subsequent octet, commencing with bit 8.

NOTE – The terms "first bit" and "trailing bit" are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

������� The initial octet shall encode, as an unsigned binary integer with bit 1 as the least significant bit, the number of
unused bits in the final subsequent octet. The number shall be in the range zero to seven.

������� If the bitstring is empty, there shall be no subsequent octets, and the initial octet shall be zero.

������� Where ITU-T Rec. X.680 | ISO/IEC 8824-1, subclause 19.7 applies, a BER encoder/decoder can add or
remove trailing 0 bits from the value.

NOTE – If a bitstring value has no 1 bits then an encoder (as a sender’s option) may encode the value with an initial octet
set to 0 or may encode it as a bit string with one or more 0 bits following the initial octet.

����� The contents octets for the constructed encoding shall consist of zero, one, or more nested encodings.

NOTE – Each such encoding includes identifier, length, and contents octets, and may include end-of-contents octets if it is
constructed.

����� To encode a bitstring value in this way, it is segmented. Each segment shall consist of a series of consecutive
bits of the value, and with the possible exception of the last, shall contain a number of bits which is a multiple of eight.
Each bit in the overall value shall be in precisely one segment, but there shall be no significance placed on the segment
boundaries.

NOTE – A segment may be of size zero, i.e. contain no bits.

������� Each encoding in the contents octets shall represent a segment of the overall bitstring, the encoding arising
from a recursive application of this clause. In this recursive application, each segment is treated as if it were a bitstring
value. The encodings of the segments shall appear in the contents octets in the order in which their bits appear in the
overall value.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

10)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

NOTES

1 As a consequence of this recursion, each encoding in the contents octets may itself be primitive or constructed.
However, such encodings will usually be primitive.

2 In particular, the tags in the contents octets are always universal class, number 3.

������� %XAMPLE – If of type BIT STRING, the value ’0A3B5F291CD’H can be encoded as shown below. In this
example, the Bit String is represented as a primitive:

The value shown above can also be encoded as shown below. In this example, the Bit String is represented as a
constructor:

��� %NCODING�OF�AN�OCTETSTRING�VALUE

����� The encoding of an octetstring value shall be either primitive or constructed at the option of the sender.
NOTE – Where it is necessary to transfer part of an octet string before the entire octetstring is available, the constructed

encoding is used.

����� The primitive encoding contains zero, one or more contents octets equal in value to the octets in the data value,
in the order they appear in the data value, and with the most significant bit of an octet of the data value aligned with the
most significant bit of an octet of the contents octets.

����� The contents octets for the constructed encoding shall consist of zero, one, or more encodings.
NOTE – Each such encoding includes identifier, length, and contents octets, and may include end-of-contents octets if it is

constructed.

������� To encode an octetstring value in this way, it is segmented. Each segment shall consist of a series of
consecutive octets of the value. There shall be no significance placed on the segment boundaries.

NOTE – A segment may be of size zero, i.e. contain no octets.

������� Each encoding in the contents octets shall represent a segment of the overall octetstring, the encoding arising
from a recursive application of this subclause. In this recursive application, each segment is treated as if it were a
octetstring value. The encodings of the segments shall appear in the contents octets in the order in which their octets
appear in the overall value.

NOTES

1 As a consequence of this recursion, each encoding in the contents octets may itself be primitive or constructed.
However, such encodings will usually be primitive.

2 In particular, the tags in the contents octets are always universal class, number 4.

��� %NCODING�OF�A�NULL�VALUE

����� The encoding of a null value shall be primitive.

BitString Length Contents

0316 0716 040A3B5F291CD016

BitString Length Contents

2316 8016

BitString Length Contents

0316 0316 000A3B16
0316 0516 045F291CD016

EOC Length

0016 0016

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 11

����� The contents octets shall not contain any octets.

NOTE – The length octet is zero.

%XAMPLE�– If of type NULL, the NULL can be encoded as:

.ULL ,ENGTH

0516 0016

��� %NCODING�OF�A�SEQUENCE�VALUE

����� The encoding of a sequence value shall be constructed.

����� The contents octets shall consist of the complete encoding of one data value from each of the types listed in the
ASN.1 definition of the sequence type, in the order of their appearance in the definition, unless the type was referenced
with the keyword "OPTIONAL" or the keyword "DEFAULT".

����� The encoding of a data value may, but need not, be present for a type which was referenced with the keyword
"OPTIONAL" or the keyword "DEFAULT". If present, it shall appear in the encoding at the point corresponding to the
appearance of the type in the ASN.1 definition.

%XAMPLE – If of type

3%15%.#%�[NAME��)!�3TRING���OK��"//,%!.]

the value

{name "Smith", ok TRUE}

can be encoded as:

Sequence Length Contents
3016 0A16

IA5String Length Contents
1616 0516 "Smith"
Boolean Length Contents
0116 0116 FF16

���� %NCODING�OF�A�SEQUENCE
OF�VALUE

������ The encoding of a sequence-of value shall be constructed.

������ The contents octets shall consist of zero, one or more complete encodings of data values from the type listed in
the ASN.1 definition.

������ The order of the encodings of the data values shall be the same as the order of the data values in the sequence-
of value to be encoded.

���� %NCODING�OF�A�SET�VALUE

������ The encoding of a set value shall be constructed.

������ The contents octets shall consist of the complete encoding of a data value from each of the types listed in the
ASN.1 definition of the set type, in an order chosen by the sender, unless the type was referenced with the keyword
"OPTIONAL" or the keyword "DEFAULT".

������ The encoding of a data value may, but need not, be present for a type which was referenced with the keyword
"OPTIONAL" or the keyword "DEFAULT".

NOTE – The order of data values in a set value is not significant, and places no constraints on the order during transfer.

���� %NCODING�OF�A�SET
OF�VALUE

������ The encoding of a set-of value shall be constructed.

������ The text of 8.10.2 applies.

������ The order of data values need not be preserved by the encoding and subsequent decoding.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

12)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

���� %NCODING�OF�A�CHOICE�VALUE

The encoding of a choice value shall be the same as the encoding of a value of the chosen type.
NOTES

1 The encoding may be primitive or constructed depending on the chosen type.

2 The tag used in the identifier octets is the tag of the chosen type, as specified in the ASN.1 definition of the choice
type.

���� %NCODING�OF�A�TAGGED�VALUE

������ The encoding of a tagged value shall be derived from the complete encoding of the corresponding data value
of the type appearing in the "TaggedType" notation (called the base encoding) as specified in 8.14.2 and 8.14.3.

������ If implicit tagging (see ITU-T Rec. X.680 | ISO/IEC 8824-1, subclause 28.6) was not used in the definition of
the type, the encoding shall be constructed and the contents octets shall be the complete base encoding.

������ If implicit tagging was used in the definition of the type, then:

a) the encoding shall be constructed if the base encoding is constructed, and shall be primitive otherwise;
and

b) the contents octets shall be the same as the contents octets of the base encoding.

%XAMPLE – With ASN.1 type definitions (in an explicit tagging environment) of

4YPE������6ISIBLE3TRING

4YPE������;!00,)#!4)/.��=�)-0,)#)4�4YPE�

4YPE������;�=�4YPE�

4YPE������;!00,)#!4)/.��=�)-0,)#)4�4YPE�

4YPE������;�=�)-0,)#)4�4YPE�

a value of

"Jones"

is encoded as follows:

For Type1:

VisibleString Length Contents
1A16 0516 4A6F6E657316

For Type2:

[Application 3] Length Contents
4316 0516 4A6F6E657316

For Type3:

[2] Length Contents
A216 0716

[Application 3] Length Contents
4316 0516 4A6F6E657316

For Type4:

[Application 7] Length Contents
6716 0716

[Application 3] Length Contents
4316 0516 4A6F6E657316

For Type5:

[2] Length Contents
8216 0516 4A6F6E657316

���� %NCODING�OF�AN�OPEN�TYPE

The value of an open type is also a value of some (other) ASN.1 type. The encoding of such a value shall be the
complete encoding herein specified for the value considered as being of that other type.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 13

���� %NCODING�OF�AN�INSTANCE
OF�VALUE

������ The encoding of the instance-of type shall be the BER encoding of the following sequence type with the value
as specified in 8.16.2:

;5.)6%23!,��=�)-0,)#)4�3%15%.#%
[

TYPE
ID �$EFINED/BJECT#LASS���ID�
VALUE ;�=�%80,)#)4��$EFINED/BJECT#LASS���4YPE

]

where "<DefinedObjectClass>" is replaced by the particular "DefinedObjectClass" used in the "InstanceOfType"
notation.

NOTE – When the value is a value of a single ASN.1 type and BER encoding is used for it, the encoding of this type is
identical to an encoding of a corresponding value of the external type, where the "syntax" alternative is in use for representing the
abstract value.

������ The value of the components of the sequence type in 8.16.1 shall be the same as the values of the
corresponding components of the associated type in ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause C.7.

���� %NCODING�OF�A�VALUE�OF�THE�EMBEDDED
PDV�TYPE

������ There are two sub-rules used for encoding the embedded-pdv type, called EP-A (the index-setting sub-rule)
and EP-B (the index-using sub-rule). For any given value of "identification" in the abstract value, the first occurrence
(within the encoding of an entire pdv) of a value of the embedded-pdv type with this value of "identification" shall be
encoded using sub-rule EP-A.

������ Subject to certain restrictions listed below, subsequent values with the same value of "identification" shall be
encoded using sub-rule EP-B with the "index" set to the same value as the "index" in the corresponding EP-A encoding.

������ The conditions for use of sub-rule EP-B are listed below. If any condition is not satisfied, then sub-rule EP-A
shall be used instead. The conditions for use of sub-rule EP-B are:

a) the "index" value is in the range 0 to 255;

b) the encoding of this instance of a value of the embedded-pdv type is an integral multiple of eight bits;

c) the length of the encoding is not greater than the maximum length that can be identified by a long-form
length encoding.

NOTE – The last condition is not likely to prove a restriction in practice.

������ For the first occurrence of an EP-A encoding the "index" shall have the value zero, and for each subsequent
occurrence it shall be incremented by one.

������ TUTORIAL – Thus, for any given "identification" value there is a (relatively inefficient) EP-A encoding with
both a unique index value and the full "identification" value, followed by arbitrarily many (efficient) EP-B encodings
linked to the EP-A encoding by the index value. Because the EP-B encoding uses a single octet for the index, and a
count in octets for the encoding, it cannot be used if the index value exceeds 255 (256 different "identifications" are in
use), or if the encoding is not a multiple of eight bits. In these cases the EP-A encoding is used for all such occurrences.

������ The EP-A encoding shall be the BER encoding of the following sequence type after the application of the
AUTOMATIC TAGS as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, subclauses 22.6 and 26.3:

;5.)6%23!,���=�)-0,)#)4�3%15%.#%�[
INDEX).4%'%2�
IDENTIFICATION #(/)#%�[

SYNTAXES 3%15%.#%�[
ABSTRACT /"*%#4�)$%.4)&)%2�
TRANSFER /"*%#4�)$%.4)&)%2�]�

SYNTAX /"*%#4�)$%.4)&)%2�
PRESENTATION
CONTEXT
ID).4%'%2�
CONTEXT
NEGOTIATION 3%15%.#%�[

PRESENTATION
CONTEXT
ID).4%'%2�
TRANSFER
SYNTAX /"*%#4�)$%.4)&)%2�]�

TRANSFER
SYNTAX /"*%#4�)$%.4)&)%2�
FIXED .5,,�]�

DATA
VALUE ")4�342).'�]

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

14)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������ The value of "data-value" shall be the encoding of the abstract data value using the identified transfer syntax,
the value of "index" shall be as determined above, and the value of all other fields shall be the same as the values
appearing in the abstract value.

NOTES

1 The component "index" is not defined in the abstract syntax because this is meant to be supplied strictly at the
encoding rule level (in the same sense that end-of-contents octets are meant to be applied at the encoding rule level).

2 Both alternatives of "data-value" in the abstract syntax are encoded identically – as a bitstring – in the transfer syntax.

������ The EP-B encoding shall be the BER encoding of the following ASN.1 type:

;5.)6%23!,���=�)-0,)#)4�/#4%4�342).'

where

a) the encoding is primitive;

b) the length octets is the short or long definite form as a sender’s option;

c) the contents octets encode the "index" in the first octet of the octet string value as an integer that ranges in
value from 0 through 255, followed by the encoding of the "data-value".

NOTE – A receiver can distinguish the EP-A encoding from the EP-B encoding by the setting of the primitive/constructor
bit.

���� %NCODING�OF�A�VALUE�OF�THE�EXTERNAL�TYPE

������ The encoding of a value of the external type shall be the BER encoding of the following sequence type,
assumed to be defined in an environment of EXPLICIT TAGS, with a value as specified in the subclauses below:

;5.)6%23!,��=�)-0,)#)4�3%15%.#%�[
DIRECT
REFERENCE /"*%#4�)$%.4)&)%2�/04)/.!,�
INDIRECT
REFERENCE).4%'%2�/04)/.!,�
DATA
VALUE
DESCRIPTOR /BJECT$ESCRIPTOR�/04)/.!,�
ENCODING #(/)#%�[

SINGLE
!3.�
TYPE ;�=�!"342!#4
39.4!8��4YPE�
OCTET
ALIGNED ;�=�)-0,)#)4�/#4%4�342).'�
ARBITRARY ;�=�)-0,)#)4�")4�342).'�]�]

NOTE – This sequence type is the same as that specified in CCITT Rec. X.208 (1988) | ISO/IEC 8824 (1990), and the
resulting encoding of a value of an external type is unchanged from those specifications.

������ The value of the fields depends on the abstract values being transmitted, which is a value of the type specified
in 30.5 of ITU-T Rec. X.680 | ISO/IEC 8824-1.

������ The "data-value-descriptor" above shall be present if and only if the "data-value-descriptor" is present in the
abstract value, and shall have the same value.

������ Values of "direct-reference" and "indirect-reference" above shall be present or absent in accordance with
Table 2. Table 2 maps the external type alternatives of "identification" defined in ITU-T Rec. X.680 | ISO/IEC 8824-1,
subclause 30.5 to the external type components "direct-reference" and "indirect-reference" defined in.

4ABLE��� �!LTERNATIVE�ENCODINGS�FOR��IDENTIFICATION�

identification direct-reference indirect-reference

syntaxes *** CANNOT OCCUR *** *** CANNOT OCCUR ***

syntax syntax ABSENT

presentation-context-id ABSENT presentation-context-id

context-negotiation transfer-syntax presentation-context-id

transfer-syntax *** CANNOT OCCUR *** *** CANNOT OCCUR ***

fixed *** CANNOT OCCUR *** *** CANNOT OCCUR ***

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 15

������ The data value shall be encoded according to the transfer syntax identified by the encoding, and shall be placed
in an alternative of the "encoding" choice as specified below.

������ If the data value is the value of a single ASN.1 data type, and if the encoding rules for this data value are the
same as those for the complete "EXTERNAL" data type, then the sending implementation shall use any of the
"Encoding" choices:

single-ASN1-type

octet-aligned

arbitrary

as an implementation option.

������ If the encoding of the data value, using the agreed or negotiated encoding, is an integral number of octets, then
the sending implementation shall use any of the "Encoding" choices:

– octet-aligned,

– arbitrary,

as an implementation option.

NOTE – A data value which is a series of ASN.1 types, and for which the transfer syntax specifies simple concatenation of
the octet strings produced by applying the ASN.1 Basic Encoding Rules to each ASN.1 type, falls into this category, not that of.

������ If the encoding of the data value, using the agreed or negotiated encoding, is not an integral number of octets,
the "Encoding" choice shall be

– arbitrary

������ If the "Encoding" choice is chosen as "single-ASN1-type", then the ASN.1 type shall replace the open type,
with a value equal to the data value to be encoded.

NOTE – The range of values which might occur in the open type is determined by the registration of the object identifier
value associated with the "direct-reference", and/or the integer value associated with the "indirect-reference".

������� If the "Encoding" choice is chosen as "octet-aligned", then the data value shall be encoded according to the
agreed or negotiated transfer syntax, and the resulting octets shall form the value of the octetstring.

������� If the "Encoding" choice is chosen as "arbitrary", then the data value shall be encoded according to the agreed
or negotiated transfer syntax, and the result shall form the value of the bitstring.

���� %NCODING�OF�AN�OBJECT�IDENTIFIER�VALUE

������ The encoding of an object identifier value shall be primitive.

������ The contents octets shall be an (ordered) list of encodings of subidentifiers (see 8.19.3 and 8.19.4)
concatenated together.

Each subidentifier is represented as a series of (one or more) octets. Bit 8 of each octet indicates whether it is the last in
the series: bit 8 of the last octet is zero; bit 8 of each preceding octet is one. Bits 7-1 of the octets in the series
collectively encode the subidentifier. Conceptually, these groups of bits are concatenated to form an unsigned binary
number whose most significant bit is bit 7 of the first octet and whose least significant bit is bit 1 of the last octet. The
subidentifier shall be encoded in the fewest possible octets, that is, the leading octet of the subidentifier shall not have
the value 8016.

������ The number of subidentifiers (N) shall be one less than the number of object identifier components in the
object identifier value being encoded.

������ The numerical value of the first subidentifier is derived from the values of the first TWO object identifier
components in the object identifier value being encoded, using the formula

(X*40) + Y

where X is the value of the first object identifier component and Y is the value of the second object identifier
component.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

16)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

NOTE – This packing of the first two object identifier components recognizes that only three values are allocated from the
root node, and at most 39 subsequent values from nodes reached by X = 0 and X = 1.

������ The numerical value of the i’th subidentifier, (2 ≤ i ≤ N) is that of the (i + 1)’th object identifier component.

%XAMPLE�– An OBJECT IDENTIFIER value of

{joint-iso-ccitt 100 3}

which is the same as

{2 100 3}

has a first subidentifier of 180 and a second subidentifier of 3. The resulting encoding is

���� %NCODING�FOR�VALUES�OF�THE�RESTRICTED�CHARACTER�STRING�TYPES

������ The data value consists of a string of characters from the character set specified in the ASN.1 type definition.

������ Each data value shall be encoded independently of other data values of the same type.

������ Each character string type shall be encoded as if it had been declared

;5.)6%23!,�X=�)-0,)#)4�/#4%4�342).'

where x is the number of the universal class tag assigned to the character string type in ITU-T Rec. X.680 |
ISO/IEC 8824-1. The value of the octet string is specified in 8.20.4 and 8.20.5.

������ Where a character string type is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1 by direct reference to an
enumerating table (NumericString and PrintableString), the value of the octet string shall be that specified in 8.20.5 for a
VisibleString type with the same character string value.

������ For restricted character strings apart from UniversalString and BMPString the octet string shall contain the
octets specified in ISO 2022 for encodings in an 8-bit environment, using the escape sequence and character codings
registered in accordance with ISO 2375.

�������� An escape sequence shall not be used unless it is one of those specified by one of the registration numbers used
to define the character string type in ITU-T Rec. X.680 | ISO/IEC 8824-1.

�������� At the start of each string, certain registration numbers shall be assumed to be designated as G0 and/or C0
and/or C1, and invoked (using the terminology of ISO 2022). These are specified for each type in Table 3, together with
the assumed escape sequence they imply.

�������� Certain character string types shall not contain explicit escape sequences in their encodings; in all other cases,
any escape sequence allowed by 8.20.5.1 can appear at any time, including at the start of the encoding. Table 3 lists the
types for which explicit escape sequences are allowed.

�������� Announcers shall not be used unless explicitly permitted by the user of ASN.1.

NOTE – The choice of ASN.1 type provides a limited form of announcer functionality. Specific application protocols may
choose to carry announcers in other protocol elements, or to specify in detail the manner of use of announcers.

OBJECT
IDENTIFIER Length Contents
0616 0316 81340316

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 17

4ABLE��� �5SE�OF�ESCAPE�SEQUENCES

%XAMPLE�– With the ASN.1 type definition

.AME�����6ISIBLE3TRING

a value

"Jones"

can be encoded (primitive form) as

VisibleString Length Contents
1A16 0516 4A6F6E657316

or (constructor form, definite length) as

VisibleString Length Contents
3A16 0916

OctetString Length Contents
0416 0316 4A6F6E16
OctetString Length Contents
0416 0216 657316

or (constructor form, indefinite length) as

VisibleString Length Contents
3A16 8016

OctetString Length Contents
0416 0316 4A6F6E16
OctetString Length Contents
0416 0216 657316
EOC Length
0016 0016

������ The above example illustrates three of the (many) possible forms available as a sender’s option. Receivers are
required to handle all permitted forms (see 7.3).

Type
Assumed G0
(Registration

number)

Assumed C0 & C1
(Registration

number)

Assumed escape sequence(s)
and locking shift

(where applicable)
Explicit escape

sequences allowed?

NumericString 6 710None ESC 2/8 4/2 LS0 No

PrintableString 6 710None ESC 2/8 4/2 LS0 No

TeletexString
(T61String)

102 106 (C0)
107 (C1)

ESC 2/8 7/5 LS0
ESC 2/1 4/5
ESC 2/2 4/8

Yes

VideotexString 2 7101 (C0)
1173 (C1)

ESC 2/8 7/5 LS0
ESC 2/1 4/0
ESC 2/2 4/1

Yes

VisibleString
(ISO646String)

6 710None ESC 2/8 4/2 LS0 No

IA5String 6 101 (C0) ESC 2/8 4/2 LS0
ESC 2/1 4/0

No

GraphicString 6 710None ESC 2/8 4/2 LS0 Yes

GeneralString 6 Yw

101 (C0)

ESC 2/8 4/2 LS0
ESC 2/1 4/0

Yes

NOTE – Many of the commonly used characters (for example, A-Z) appear in a number of character repertoires with individual
registration numbers and escape sequences. Where ASN.1 types allow escape sequences, a number of encodings may be possible
for a particular character string (see also 7.3).

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

18)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������ For the "UniversalString" type, the octet string shall contain the octets specified in ISO/IEC 10646-1, using the
4-octet canonical form (see 14.2 of ISO/IEC 10646-1). Control functions and signatures shall not be used.

������ For the "BMPString" type, the octet string shall contain the octets specified in ISO/IEC 10646-1, using the
2-octet BMP form (see 14.1 of ISO/IEC 10646-1). Control functions and signatures shall not be used.

���� %NCODING�FOR�VALUES�OF�THE�UNRESTRICTED�CHARACTER�STRING�TYPE

������ There are two sub-rules used for encoding the unrestricted character type, called CH-A (the index-setting rule)
and CH-B (the index-using rule). For any given value of "identification" in the abstract value, the first occurrence
(within the encoding of an entire pdv) of a value of the unrestricted character string type with this value of
"identification" shall be encoded using sub-rule CH-A.

������ Subject to certain restrictions listed below, subsequent values with the same value of "identification" shall be
encoded using sub-rule CH-B with the "index" set to the same value as the "index" in the corresponding CH-A encoding.

������ The conditions for use of sub-rule CH-B are listed below. If any condition is not satisfied, then sub-rule CH-A
shall be used instead. The conditions for use of sub-rule CH-B are:

a) the "index" value is in the range 0 to 255;

b) the length of the encoding is not greater than the maximum length that can be identified by a long-form
length encoding.

NOTE – The last condition is not likely to prove a restriction in practice.

������ For the first occurrence of a CH-A encoding the "index" shall have the value zero, and for each subsequent
occurrence it shall be incremented by one.

������ TUTORIAL – Thus, for any given "identification" value there is a (relatively inefficient) CH-A encoding with
a unique index value and carries the full "identification" value, followed by arbitrarily many (efficient) CH-B encodings
linked to the CH-A encoding by the index value. Because the CH-B encoding uses a single octet for the index, and a
count in octets for the encoding, it cannot be used if the index value exceeds 255 (256 different "identifications" are in
use). In this case the CH-A encoding is used for all such occurrences.

������ The CH-A encoding shall be the BER encoding of the following sequence type after the application of the
AUTOMATIC TAGS as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, subclauses 22.6 and 26.3:

;5.)6%23!,���=�)-0,)#)4�3%15%.#%�[
INDEX).4%'%2�
IDENTIFICATION #(/)#%�[
SYNTAXES 3%15%.#%�[

ABSTRACT /"*%#4�)$%.4)&)%2�
TRANSFER /"*%#4�)$%.4)&)%2�]�

SYNTAX /"*%#4�)$%.4)&)%2�
PRESENTATION
CONTEXT
ID).4%'%2�
CONTEXT
NEGOTIATION 3%15%.#%�[

PRESENTATION
CONTEXT
ID).4%'%2�
TRANSFER
SYNTAX /"*%#4�)$%.4)&)%2�]�

TRANSFER
SYNTAX /"*%#4�)$%.4)&)%2�
FIXED .5,,�]�

STRING
VALUE /#4%4�342).'�]

������ The value of "string-value" shall be the encoding of the abstract character string value using the identified
character transfer syntax, the value of "index" shall be as determined above, and the value of all other fields shall be the
same as the values appearing in the abstract value.

NOTES

1 The component "index" is not defined in the abstract syntax because this is meant to be supplied strictly at the
encoding rule level (in the same sense that end-of-contents octets are meant to be applied at the encoding rule level).

2 Both alternatives of "string-value" in the abstract syntax are encoded identically – as a bitstring – in the transfer
syntax.

������ The CH-B encoding shall be the BER encoding of the following ASN.1 type:

;5.)6%23!,���=�)-0,)#)4�/#4%4�342).'

where

a) the encoding is primitive;

b) the length octets shall be the short or long definite form as a sender’s option;

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 19

c) the contents octets shall encode the "index" in the first octet of the octet string value as an integer that
ranges in value from 0 through 255, followed by the encoding of the "string-value".

NOTE – A receiver can distinguish the CH-A encoding from the CH-B encoding by the setting of the primitive/constructor
bit.

� #ANONICAL�ENCODING�RULES

The encoding of a data values employed by the canonical encoding rules is the basic encoding described in clause 8,
together with the following restrictions and those also listed in clause.

��� ,ENGTH�FORMS

If the encoding is constructed, it shall employ the indefinite length form. If the encoding is primitive, it shall include the
fewest length octets necessary. (Contrast with 8.1.3.2 b).)

��� 3TRING�ENCODING�FORMS

Bitstring, octetstring, and restricted character string values shall be encoded with a primitive encoding if they would
require no more than 1000 contents octets, and as a constructed encoding otherwise. The string fragments contained in
the constructed encoding shall be encoded with a primitive encoding. The encoding of each fragment, except possibly
the last, shall have 1000 contents octets. (Contrast with 8.20.6.)

��� 3ET�COMPONENTS

The encodings of the component values of a set value shall appear in an order determined by their tags as specified in 6.4
of ITU-T Rec. X.680 | ISO/IEC 8824-1. Additionally, for the purposes of determining the order in which components
are encoded when one or more component is an untagged choice type, each untagged choice type is ordered as though it
has a tag equal to that of the smallest tag in that choice type or any untagged choice types nested within.

%XAMPLE – In the following which assumes a tagging environment of IMPLICIT TAGS

!�����3%4
[

A ;�=�).4%'%2�
B ;�=�#(/)#%
[

C ;�=�).4%'%2�
D ;�=�).4%'%2

]�
E #(/)#%
[

F #(/)#%
[

G ;�=�).4%'%2�
H ;�=�).4%'%2

]�
I #(/)#%
[

J ;�=�).4%'%2
]

]
]

othe order in which the components of the set are encoded will always be e, b, a, since the tag [0] sorts lowest, then [1],
then [3].

�� $ISTINGUISHED�ENCODING�RULES

The encoding of a data values employed by the distinguished encoding rules is the basic encoding described in clause 8,
together with the following restrictions and those also listed in clause.

NOTE – Recommendation X.509 | ISO/IEC 9594-8 forbids the use of base 10 abstract values in the Directories
applications

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

20)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

���� ,ENGTH�FORMS

The definite form of length encoding shall be used, encoded in the minimum number of octets. (Contrast
with 8.1.3.2 b).)

���� 3TRING�ENCODING�FORMS

For bitstring, octetstring and restricted character string types, the constructed form of encoding shall not be used.
(Contrast with 8.20.6.)

���� 3ET�COMPONENTS

The encodings of the component values of a set value shall appear in an order determined by their tags as specified in 6.4
of ITU-T Rec. X.680 | ISO/IEC 8824-1.

NOTE – Where a component of the set is an untagged choice type, the location of that component in the ordering will
depend on the tag of the choice component being encoded.

�� 2ESTRICTIONS�ON�"%2�EMPLOYED�BY�BOTH�#%2�AND�$%2

References in clause 8 and its subclauses to "shall be the BER encoding" shall be interpreted as "shall be the CER or
DER encoding, as appropriate". (See 8.16.1, 8.17.6, 8.17.8, 8.18.1, 8.21.8 and 8.21.6.)

���� "OOLEAN�VALUES

If the encoding represents the boolean value TRUE, its single contents octet shall have all eight bits set to one. (Contrast
with 8.2.2.)

���� 5NUSED�BITS

������ Each unused bit in the final octet of the encoding of a bit string value shall be set to zero.

������ Where ITU-T Rec. X.680 | ISO/IEC 8824-1, subclause 19.7 applies, the bitstring shall have all trailing 0 bits
removed before it is encoded.

NOTES

1 In the case where a size constraint has been applied, the abstract value delivered by a decoder to the application will
be one of those satisfying the size constraint and differing from the transmitted value only in the number of trailing 0 bits.

2 If a bitstring value has no 1 bits then an encoder shall encode the value with a length of 1 and an initial octet set to 0.

���� 2EAL�VALUES

������ If the encoding represents a real value whose base B is 2, then binary encoding employing base 2 shall be used.
Before encoding, the mantissa M and exponent E are chosen so that M is either 0 or is odd.

NOTE – This is necessary because the same real value can be regarded as both {M, 2, E} and {M’, 2, E’} with M ≠ M’ if,
for some non-zero integer n:

M’ = M × 2–n

E’ = E + n

In encoding the value, the binary scaling factor F shall be zero, and M and E shall each be represented in the fewest
octets necessary.

������ If the encoding represents a real value whose base B is 10, then decimal encoding shall be used. In forming the
encoding, the following applies:

�������� The ISO 6093 NR3 form shall be used (see 8.5.6).

�������� SPACE shall not be used within the encoding.

�������� If the real value is negative, then it shall begin with a MINUS SIGN (–), otherwise, it shall begin with a digit.

�������� Neither the first nor the last digit of the mantissa may be a 0.

�������� The last digit in the mantissa shall be immediately followed by FULL STOP (.), followed by the exponent-
mark "E".

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 21

�������� If the exponent has the value 0, it shall be written "+0", otherwise the exponent’s first digit shall not be zero,
and PLUS SIGN shall not be used.

���� 'ENERAL3TRING�VALUES

The encoding of values of the GeneralString type (and its subtypes) shall generate escape sequences to designate and
invoke a new register entry only when the register entry for the character is different from that currently designated as
G0, C0, or C1. All designations and invocations shall be into the G0 set or the C0 set.

NOTE – It is assumed that each character in a character string value is associated with a particular entry in the International
Register of Coded Character Sets.

���� 3ET�AND�SEQUENCE�COMPONENTS�WITH�DEFAULT�VALUE

The encoding of a set value or sequence value shall not include an encoding for any component value which is equal to
its default value.

���� 3ET
OF�COMPONENTS

The encodings of the component values of a set-of value shall appear in ascending order, the encodings being compared
as octet strings.

���� 'ENERALIZED4IME

������ The encoding shall terminate with a "Z", as described in the CCITT X.208-1 | ISO/IEC 8824-1 clause on
GeneralizedTime.

������ The fractional-seconds elements, if present, shall omit all trailing ’0’s; if the elements correspond to 0, they
shall be wholly omitted, and the decimal point element also shall be omitted.

%XAMPLE� – A seconds element of "26.000" shall be represented as "26"; a seconds element of "26.5200" shall be
represented as "26.52".

������ The decimal point element, if present, shall be the point option ".".

������ Midnight (GMT) shall be represented in the form:

"YYYYMMDD000000Z"

where "YYYYMMDD" represents the day following the midnight in question.

������ %XAMPLES�OF�VALID�REPRESENTATIONS

"19920521000000Z"

"19920622123421Z"

"19920722132100.3Z"

������ %XAMPLES�OF�INVALID�REPRESENTATIONS

"19920520240000Z" (midnight represented incorrectly)

"19920622123421.0Z" (spurious trailing 0’s)

"19920722132100.30Z" (spurious trailing 0’s)

�� 5SE�OF�"%2��#%2�AND�$%2�IN�TRANSFER�SYNTAX�DEFINITION

���� The encoding rules specified in this Recommendation | International Standard can be referenced and applied
whenever there is a need to specify an unambiguous, undivided and self-delimiting octet string representation for all of
the values of a single ASN.1 type.

NOTE – All such octet strings are unambiguous within the scope of the single ASN.1 type. They would not necessarily be
unambiguous if mixed with encodings of a different ASN.1 type.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

22)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

���� The following object identifier and object descriptor values are assigned to identify and describe the basic
encoding rules specified in the Recommendation | International Standard:

{joint-iso-ccitt asn1 (1) basic-encoding (1)}

and

"Basic Encoding of a single ASN.1 type"

���� The following object identifier and object descriptor values are assigned to identify and describe the canonical
encoding rules specified in the Recommendation | International Standard:

{joint-iso-ccitt asn1(1) ber-derived(2) canonical-encoding(0)}

and

"Canonical encoding of a single ASN.1 type"

���� The following object identifier and object descriptor values are assigned to identify and describe the
distinguished encoding rules specified in the Recommendation | International Standard:

{joint-iso-ccitt asn1(1) ber-derived(2) distinguished-encoding(1)}

and

"Distinguished encoding of a single ASN.1 type"

���� Where an unambiguous specification defines an abstract syntax as a set of presentation data values, each of
which is a value of some specifically named ASN.1 type, usually (but not necessarily) a choice type, then one of the
object identifier values specified in 12.1, 12.3 or 12.4 may be used with the abstract syntax name to identify the basic
encoding rules, canonical encoding rules or distinguished encoding rules, respectively, to the specifically named ASN.1
type used in defining the abstract syntax.

���� The names specified in 12.1, 12.3 and 12.4 shall not be used with an abstract syntax name to identify a transfer
syntax unless the conditions of 12.5 for the definition of the abstract syntax (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
subclause D.3) are met.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 23

!NNEX��!

%XAMPLE�OF�ENCODINGS
(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates the basic encoding rules specified in this Recommendation | International Standard by showing the
representation in octets of a (hypothetical) personnel record which is defined using ASN.1

!�� !3.���DESCRIPTION�OF�THE�RECORD�STRUCTURE

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in
ITU-T Rec. X.680 | ISO/IEC 8824-1 for defining types.

0ERSONNEL2ECORD�����;!00,)#!4)/.��=�)-0,)#)4�3%4�[
NAME .AME�
TITLE ;�=�6ISIBLE3TRING�
NUMBER %MPLOYEE.UMBER�
DATE/F(IRE ;�=�$ATE�
NAME/F3POUSE ;�=�.AME�
CHILDREN ;�=�)-0,)#)4

3%15%.#%�/&�#HILD)NFORMATION��$%&!5,4��[]�]

#HILD)NFORMATION�����3%4
[�NAME .AME�
[�DATE/F"IRTH ;�=�$ATE]

.AME�����;!00,)#!4)/.��=�)-0,)#)4�3%15%.#%
[GIVEN.AME 6ISIBLE3TRING�
INITIAL 6ISIBLE3TRING�
FAMILY.AME 6ISIBLE3TRING]

%MPLOYEE.UMBER�����;!00,)#!4)/.��=�)-0,)#)4�).4%'%2

$ATE�����;!00,)#!4)/.��=�)-0,)#)4�6ISIBLE3TRING��

�9999--$$

!�� !3.���DESCRIPTION�OF�A�RECORD�VALUE

The value of John Smith’s personnel record is formally described below using ASN.1.

[�NAME�[GIVEN.AME��*OHN��INITIAL��0��FAMILY.AME��3MITH�]�
[�TITLE �$IRECTOR��
[�NUMBER ���
[�DATE/F(IRE �����������
[�NAME/F3POUSE [GIVEN.AME��-ARY��INITIAL��4��FAMILY.AME��3MITH�]�
[�CHILDREN

[[[GIVEN.AME��2ALPH��INITIAL��4��FAMILY.AME��3MITH�]�
DATE/F"IRTH�����������]�

[[GIVEN.AME��3USAN��INITIAL��"��FAMILY.AME��*ONES�]�
DATE/F"IRTH�����������]]]

!�� 2EPRESENTATION�OF�THIS�RECORD�VALUE

The representation in octets of the record value given above (after applying the basic encoding rules defined in this
Recommendation | International Standard) is shown below. The values of identifiers, lengths, and the contents of
integers are shown in hexadecimal, two hexadecimal digits per octet. The values of the contents of character strings are
shown as text, one character per octet.

Personnel
Record Length Contents
60 8185

Name Length Contents
61 10

VisibleString Length Contents
1A 04 "John"
VisibleString Length Contents
1A 01 "P"

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

24)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

VisibleString Length Contents
1A 05 "Smith"

Title Length Contents
A0 0A

VisibleString Length Contents
1A 08 "Director"

Employee
Number Length Contents
42 01 33

Date of
Hire Length Contents
A1 0A

Date Length Contents
43 08 "19710917"

Name of
Spouse Length Contents
A2 12

Name Length Contents
61 10

VisibleString Length Contents
1A 04 "Mary"
VisibleString Length Contents
1A 01 "T"
VisibleString Length Contents
1A 05 "Smith"

[3] Length Contents
A3 42

Set Length Contents
31 1F

Name Length Contents
61 11

VisibleString Length Contents
1A 05 "Ralph"
VisibleString Length Contents
1A 01 "T"
VisibleString Length Contents
1A 05 "Smith"

Date of
Birth Length Contents
A0 0A

Date Length Contents
43 08 "19571111"

Set Length Contents
31 1F

Name Length Contents
61 11

VisibleString Length Contents
1A 05 "Susan"
VisibleString Length Contents
1A 01 "B"
VisibleString Length Contents
1 05 "Jones"

Date of
Birth Length Contents
A0 0A

Date Length Contents
43 08 "19590717"

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 25

!NNEX��"

!SSIGNMENT�OF�OBJECT�IDENTIFIER�VALUES
(This annex does not form an integral part of this Recommendation | International Standard)

The following values are assigned in this Recommendation | International Standard:

#LAUSE /BJECT�)DENTIFIER�6ALUE

12.2 {joint-iso-ccitt asn1 (1) basic-encoding (1)}

/BJECT�$ESCRIPTOR�6ALUE

"Basic Encoding of a single ASN.1 type"

#LAUSE /BJECT�)DENTIFIER�6ALUE

12.3 {joint-iso-ccitt asn1(1) ber-derived(2) canonical-encoding(0)}

/BJECT�$ESCRIPTOR�6ALUE

"Canonical encoding of a single ASN.1 type"

#LAUSE /BJECT�)DENTIFIER�6ALUE

12.4 {joint-iso-ccitt asn1(1) ber-derived(2) distinguished-encoding(1)}

/BJECT�$ESCRIPTOR�6ALUE

"Distinguished encoding of a single ASN.1 type"

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

26)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

!NNEX��#

)LLUSTRATION�OF�REAL�VALUE�ENCODING
(This annex does not form an integral part of this Recommendation | International Standard)

C.1 A sender will normally examine his own hardware floating point representation to determine the (value-
independent) algorithms to be used to transfer values between this floating-point representation and the length and
contents octets of the encoding of an ASN.1 real value. This annex illustrates the steps which could be taken in such a
process by using the (artificial) hardware floating point representation of the mantissa shown in Figure C-1.

It is assumed that the exponent can easily be obtained from the floating point hardware as an integer value E.

b8 b1 b8 b1

TISO4870-94/d05Mantissa

Octet 1 Octet 5 Octet 6

&IGURE�#
�� �&LOATING�POINT�REPRESENTATION

FIGURE C-1/X.690...[D05] = 4 CM

#�� The contents octets which need to be generated for sending a non-zero value using binary encoding (as
specified in the body of this Recommendation | International Standard) are:

1 S bb ff ee Octets for E Octets for N

where S (the mantissa sign) is dependent on the value to be converted, bb is a fixed value (say 10) to represent the base
(in this case let us assume base 16), ff is the fixed F value calculated as described in C.3, and ee is a fixed length of
exponent value calculated as described in C.4. (This annex does not treat the case where E needs to exceed three octets.)

#�� The algorithm will transmit octets 1 to 5 of the hardware representation as the value of N, after forcing bits 8
to 3 of octet 1 and bits 4 to 1 of octet 5 to zero. The implied decimal point is assumed to be positioned between bits 2
and 1 of octet 1 in the hardware representation which delivers the value of E. Its implied position can be shifted to the
nearest point after the end of octet 5 by reducing the value of E before transmission. In our example system we can shift
by four bits for every exponent decrement (because we are assuming base 16), so a decrement of 9 will position the
implied point between bits 6 and 5 of octet 6. Thus the value of M is N multiplied by 23 to position the point correctly in
M. (The implied position in N, the octets transferred, is after bit 1 of octet 5.) Thus we have the crucial parameters:

F = 3 (so ff is 11)

exponent decrement = 9

#�� The length needed for the exponent is now calculated by working out the maximum number of octets needed
to represent the values

Emin – excess – exponent decrement

Emax – excess – exponent decrement

where Emin and Emax are minimum and maximum integer values of the exponent representation, excess is any value
which needs subtracting to produce the true exponent value, and the exponent decrement is as calculated in C.3. Let us
assume this gives a length of 3 octets. Then ee is 10. Let us also assume excess is zero.

#�� The transmission algorithm is now:

a) Transmit the basic encoding rules identifier octets field with a tag for ASN.1 type real.

b) Test for zero, and if so, transmit an ASN.1 basic encoding rules length field with value of zero (no
contents octets), and end the algorithm.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 27

c) Test and remember the mantissa sign, and negate the mantissa if negative.

d) Transmit an ASN.1 basic encoding rules length field with value of 9, then:

– 11101110, if negative; or

– 10101110, if positive.

e) Produce and transmit the 3 octet exponent with value

– E – 9

f) Zero bits 8 to 3 of octet 1 and bits 4 to 1 of octet 5, then transmit the 5 octet mantissa.

#�� The receiving algorithm has to be prepared to handle any ASN.1 basic encoding, but here the floating point
unit can be directly used. We proceed as follows:

a) Check octet 1 of the contents; if it is 1x101110 we have a transmission compatible with ours, and can
simply reverse the sending algorithm.

b) Otherwise, for character encoding, invoke standard character decimal to floating point conversion
software, and deal with a "SpecialRealValue" according to the application semantics (perhaps setting the
largest and smallest number the hardware floating point can handle).

c) For a binary transmission, put N into the floating point unit, losing octets at the least significant end if
necessary, multiply by 2F, and by BE, then negate if necessary. Implementors may find optimization
possible in special cases, but may find (apart from the optimization relating to transmissions from a
compatible machine) that testing for them loses more than they gain.

#�� The above algorithms are illustrative only. Implementors will, of course, determine their own best strategies.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

28)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

!NNEX��$

5SE�OF�THE�$%2�AND�#%2�IN�DATA�ORIGIN�AUTHENTICATION
(This annex does not form an integral part of this Recommendation | International Standard)

$�� 4HE�PROBLEM�TO�BE�SOLVED

$���� The distinguished encoding rules and canonical encoding rules have been provided to assist in the provision of
integrity security mechanisms using authenticators for material to be transferred.

NOTE – Throughout the rest of this annex only DER is mentioned for purposes of simplicity. However, the text applies
just as well to CER.

$���� The concept of an authenticator is well understood, and involves taking the bit pattern to be transferred,
applying some form of hashing function to it to reduce it to a few octets, encrypting those octets to authenticate the
authenticator, then transmitting the authenticator with the original material (the original material being sent in clear). On
receipt, the authenticator is recalculated from the received clear text and compared with the received authenticator. If
they are equal, the text was not tampered with, otherwise it was.

$���� This simple concept becomes more difficult when the ISO model, and particularly the presentation layer, is
in use.

$���� Two problems arise, one of which is a question of modelling and so-called layer independence, and the second
of which relates to the use of application layer relays, such as are used in Recommendation X.400.

$���� On the modelling issue, the hash function and the encryption algorithm are part of the application’s operation,
but the application has no knowledge or control of the actual encoding which the presentation layer will use. Similarly
on receipt, decoding, and hence destruction of the bit string on receipt is a presentation layer matter. There are four
solutions that have been proposed to overcome this problem:

a) Rule out of order the use of the actual octets produced by the presentation layer for use in the
authenticator; (the current philosophy being adopted by presentation and ULA experts).

b) Put the hashing and authenticator mechanisms into the presentation layer itself (this solution was rejected
as part of the broad question of putting support for encryption into ASN.1. At the time of rejection, the
reason for the rejection was that work on security was still immature, and that one did not want to
prejudice the eventual result).

c) Model a complex interaction with the presentation layer where, on transmission, a value is presented for
encoding, the encoding is produced and returned to the application layer which calculates the
authenticator, then the whole is transmitted. On receipt, as well as producing the abstract value, the
received encodings are passed to the application layer for authenticator checking (this model was rejected
by the ULA group).

d) Do the entire encoding in the application layer, and make no use of presentation services for transfer
syntax negotiation (this is really a rejection of the OSI reference model, and would not be acceptable as a
wide-spread solution).

$���� It might be argued that failure to agree on a model to describe an apparently simple and workable process
(produce the encoding, then the authenticator, and transmit both, check against the authenticator on receipt) is not
something which should be accepted as a long-term position. Such a remark would have strong validity if it were not for
the second problem of application relays, and if there were no other workable solution. (This annex is outlining an
alternative solution which is used in CCITT Rec. X.509 | ISO/IEC 9594-8 and is considered to be free from modelling
and relay-system problems and workable.)

$���� The second problem is that, if an application relay is in place, the transfer syntax used for the second
transmission may be different from that agreed for the first (for example, use of PER on one of them, and BER on the
other). This would defeat the authenticator, unless the authenticator was opened up and recalculated at the relay, which
would imply security exchanges with the relay, whereas what is required is end-to-end security.

NOTE – There have been suggestions that one might want to flag a presentation context as "do not decode/re-encode at
application relays", but this also provides modelling and other problems.

$���� Thus, we are led to try to work with a model in which the presentation layer (together with any intervening
application relays) provides for the transfer of the abstract syntax and semantics of the information, but makes no
guarantees that the actual bit-pattern encoding (the transfer syntax) will be retained end-to-end.

$���� The challenge is therefore to provide an authenticator mechanism that can operate on the abstract data type,
rather than on the transmitted bit string.

3UPERSEDED�BY�A�MORE�RECENT�VERSION������)3/�)%#�����
����������%	

)45
4�2EC��8�����������%	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 29

$����� The Directories group were the first to attempt to produce a solution to this problem, and it is their model that
is described below.

$�� 4HE�APPROACH�TO�A�SOLUTION

$���� The following text describes first a conceptual model of what is being done, followed by an implementation
optimization that eliminates the double encoding/decoding implied in the conceptual model.

$���� The conceptual model works as follows:

a) The sender, in the application layer, converts the abstract value into a bitstring using the DER, and
produces the authenticator from that bitstring, which is added to the abstract value, and both values are
transmitted using normal presentation layer mechanisms, and any transfer syntax. Conceptually, the
sender is encoding twice – once for the authenticator (using the DER) in the application layer, and once
for the actual transfer (using the negotiated transfer syntax) in the presentation layer.

NOTE – The important property of the bitstring produced by the DER is that it is in one-to-one correspondence
with the abstract value. Thus, end-to-end transfer without loss of information at the abstract syntax level is equivalent
to end-to-end transfer of the bitstring on which the authenticator is based.

b) The receiver will decode the received bitstring in the presentation layer, using the negotiated transfer
syntax (which may differ from that used by the sender if an application relay is in place), and will pass the
abstract value to the application. In the application layer, the abstract value is re-encoded using the DER
to produce the bitstring to be authenticated.

$���� Thus, conceptually, we encode twice at the sending end, and decode once and then encode at the receiving
end. Implementors may choose to actually do this if the code supporting presentation layer operation is from a supplier
different from that producing the code to support the application. How significant an overhead this would be is not clear
at this stage. Where an integrated implementation is used, however, there is the option of the optimization described
below. It should also be noted that the DER are no harder to apply than the BER except in relation to use of set-of. If a
large set-of is to be processed, the implementation may need to invoke a disk-based sorting routine. Application
designers should be aware of this, and try to use sequence-of instead of set-of when use of the DER is envisaged.

$�� 4HE�IMPLEMENTATION�OPTIMIZATION

$���� The OSI model and protocol standards specify required behavior, but they do not, in any way, seek to
constrain the architecture and structure of actual implementation code. Thus an implementor can produce the desired
effect in whatever way she chooses.

$���� At the sending end, the bitstring which is produced (conceptually in the application layer) can be kept, and
used to provide the encoding that is conceptually performed in the presentation layer. This is suitable for sending if the
negotiated transfer syntax is either the ASN.1 BER or DER. If it is neither of these, then double encoding is necessary.

$���� Similarly, at the receiving end, the received bitstring can be retained (for any transfer syntax), and the
implementation can use this to check the authenticator. If it matches, end of problem. If it does not match, then it may be
a transfer syntax problem, and recoding from the abstract value is necessary to determine whether there was tampering
or not.

$���� In order to maximize the chances of not having to do double encoding/decoding, systems using this mechanism
are advised to try to negotiate a transfer syntax of DER (using the appropriate object identifier) as their first preference,
falling back onto BER or some other encoding rules.

