International Telecommunication Union

ITU-T X.683

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — Abstract Syntax
Notation One (ASN.1): Parameterization of
ASN.1 specifications

ITU-T Recommendation X.683

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 8824-4
ITU-T RECOMMENDATION X.683

Information technology —
Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications

Summary

This Recommendation | International Standard defines the provisions for parameterized reference names and
parameterized assignments for data types which are useful for the designer when writing specifications where some
aspects are left undefined at certain stages of the development to be filled in at a later stage to produce a complete
definition of an abstract syntax.

Sour ce

ITU-T Recommendation X.683 was prepared by ITU-T Study Group 17 (2009-2012) and approved on 13 November
2008. Anidentical text is also published as |SO/IEC International Standard 8824-4.

ITU-T Rec. X.683 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T X.683 (11/2008)

CONTENTS

Page
g1 oo (0ot (o] o ISR iv
1 o0 0TSPTSRO 1
2 NOIMBLIVE FEFEIEINCES ...ttt sttt bbbtk st et s e et b e s e e st et e se bt s beseebenbeneenenbeneas 1
2.1 Identical Recommendations | International Standards............cccuevereneienenenenereseeese s 1
3 D= T o TH o] PSPPSR 1
G RS o' o 1= o g ol o= Lo 0o =1 [0 [T 1
3.2 Information ObjECt SPECITICALIONccvevueieieciese et e et sreseesrennens 1
3.3 CONSLraiNt SPECITICALION.cvieeeireieeiirtiet ettt bbbt bbb et s b bt b e e 1
34 Additional dEfINITIONScccoiiiiriie et ettt ae e bbb e b e e e e e e saenbesaesaen 1
W o] o] (=Y = 1o OSSR 2
5 (@0a] 0177 o 11T o [PPSR 2
6 NN o] 7= (o o TSP 2
N N [0 010 01T UR SRR 2
6.2 Parameterized defiNItIONS..........ccouiiieiiicies et enes 2
TG TV 0 00 S 3
7 ASN.LIEXICE ITBIMIS.....eceieeeece sttt sttt e st e e s tesbesbeeseese e e e teseesbesaesseeneeeenseseeneenes 3
ParameteriZed 8SSIGNIMENLS........oouiieiee ettt sttt et st e e e eese e be et s b e s beeaeeae e e enbeseeabesbeebesbesaeeneeseenbeseeseeneas 3
Referencing parameterized AefiNitiONS.........cccociii i e e e e e ens 6
O AN o 1S 1 = o Y 1= N 0= - 0L 6 S 8
ANNEX A — EXAIMPIES.....eeitiieeietee ettt b et b e e bt e s bt b et b e b e e e bt e e st e bt eb et e bt b et e bt s b e e b e e s 9
A.1 Example of the use of a parameterized type definition............coeii i 9
A.2 Example of use of parameterized definitions together with an information object class.................... 9
A.3 Example of parameterized type definition that iSfinite...........ccoeveeeeeceiescesse e 10
A.4 Example of aparameterized value definition...........cocooeiiiriininnee e 11
A5 Example of aparameterized value set definition ..o 11
A.6 Example of aparameterized class AefinitioN.........ccccccieieieie s s 11
A.7 Example of aparameterized object Set definitioNcceceveiirire s 12
A.8 Example of aparameterized object Set definition ..o 12
AnNnex B — SUMMAErY Of the NMOTATONccuiiiiiieie ettt e b e b st ae e e b e b e 13

ITU-T Rec. X.683 (11/2008) iii

I ntroduction

Application designers need to write specifications in which certain aspects are left undefined. Those aspects will later
be defined by one or more other groups (each in its own way), to produce a fully defined specification for use in the
definition of an abstract syntax (one for each group).

In some cases, aspects of the specification (for example, bounds) may be left undefined even at the time of abstract
syntax definition, being completed by the specification of International Standardized Profiles or functiona profiles
from some other body.

NOTE 1 — It is a requirement imposed by this Recommendation | International Standard that any aspect that is not solely
concerned with the application of constraints has to be completed prior to the definition of an abstract syntax.

In the extreme case, some aspects of the specification may be left for the implementor to complete, and would then be
specified as part of the Protocol |mplementation Conformance Statement.

While the provisions of ITU-T Rec. X.681 | ISO/IEC 8824-2 and ITU-T Rec. X.682 | ISO/IEC 8824-3 provide a
framework for the later completion of parts of a specification, they do not of themselves solve the above requirements.

Additionally, a single designer sometimes requires to define many types, or many information object classes, or many
information object sets, or many information objects, or many values, which have the same outer level structure, but
differ in the types, or information object classes, or information object sets, or information objects, or values, that are
used at an inner level. Instead of writing out the outer level structure for every such occurrence, it is useful to be able to
writeit out once, with parts left to be defined | ater, then to refer to it and provide the additional information.

All these requirements are met by the provision for parameterized reference names and parameterized assignments by
this Recommendation | International Standard.

The syntactic form of a parameterized reference name is the same as that of the corresponding normal reference name,
but the following additional considerations apply:

— Whenitisassigned in a parameterized assignment statement, it is followed by alist of dummy reference
names in braces, each possibly accompanied by a governor; these reference names have a scope which is
the right-hand side of the assignment statement, and the parameter list itself.

NOTE 2 — Thisiswhat causes it to be recognized as a parameterized reference name.

— When it is exported or imported, it is followed by a pair of empty braces to distinguish it as a
parameterized reference name.

— Whenitisusedin any construct, it is followed by alist of syntactic constructions, one for each dummy
reference name, that provide an assignment to the dummy reference name for the purposes of that use
only.

Dummy reference names have the same syntactic form as the corresponding normal reference name, and can be used
anywhere on the right-hand side of the assignment statement that the corresponding normal reference name could be
used. All such usages are required to be consistent.

iv ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology —
Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications

1 Scope

This Recommendation | International Standard is part of Abstract Syntax Notation One (ASN.1) and defines notation
for parameterization of ASN.1 specifications.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | I nternational Standards

— ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Specification of basic notation
This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

3.2 Information object specification
This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2.

3.3 Constraint specification
This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3.

34 Additional definitions

341 normal reference name: A reference name defined, without parameters, by means of an "Assignment” other
than a "ParameterizedAssignment”. Such a name references a complete definition and is not supplied with actual
parameters when used.

34.2 parameterized reference name: A reference name defined using a parameterized assignment, which
references an incomplete definition and which, therefore, must be supplied with actual parameters when used.

ITU-T Rec. X.683 (11/2008) 1

| SO/IEC 8824-4:2008 (E)
34.3 parameterized type: A type defined using a parameterized type assignment and thus whose components are
incomplete definitions which must be supplied with actual parameters when the type is used.

344 parameterized value: A value defined using a parameterized value assignment and thus whose value is
incompletely specified and must be supplied with actual parameters when used.

345 parameterized value set: A value set defined using a parameterized value set assignment and thus whose
values are incompletely specified and must be supplied with actual parameters when used.

3.4.6 parameterized object class. An information object class defined using a parameterized object class
assignment and thus whose field specifications are incompletely specified and must be supplied with actual parameters
when used.

34.7 parameterized object: An information object defined using a parameterized object assignment and thus
whose components are incompletely specified and must be supplied with actual parameters when used.

3.4.8 parameterized object set: Aninformation object set defined using a parameterized object set assignment and
thus whose objects are incompl etely specified and must be supplied with actual parameters when used.

34.9 variable constraint: A constraint employed in specifying a parameterized abstract syntax, and which
depends on some parameter of the abstract syntax.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviation applies:
ASN.1 Abstract Syntax Notation One

5 Convention

This Recommendation | International Standard employs the notational convention defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 5.

6 Notation

This clause summarizes the notation defined in this Recommendation | International Standard.

6.1 Assignments

The following notation which can be used as an alternative for "Assignment” (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 13) is defined in this Recommendation | International Standard:

— ParameterizedAssignment (see 8.1).

6.2 Parameterized definitions

6.2.1 The following notation which can be used as an aternative for "DefinedType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) is defined in this Recommendation | International Standard:

— ParameterizedType (see 9.2).

6.2.2 The following notation which can be used as an aternative for "DefinedVaue" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) is defined in this Recommendation | International Standard:

— ParameterizedVaue (see 9.2).

6.2.3 The following notation which can be used as an aternative for "DefinedType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) is defined in this Recommendation | International Standard:

— ParameterizedVaueSetType (see 9.2).

6.24 The following notation which can be used as an aternative for "ObjectClass' (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 9.2) is defined in this Recommendation | International Standard:

— ParameterizedObjectClass (see 9.2).

2 ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

6.2.5 The following notation which can be used as an aternative for "Object" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 11.3) is defined in this Recommendation | International Standard:

— ParameterizedObject (see 9.2).

6.2.6 The following notation which can be used as an aternative for "ObjectSet" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 12.3) is defined in this Recommendation | International Standard:

— ParameterizedObjectSet (see 9.2).

6.3 Symbols

The following notation which can be used as an alternative for "Symbol" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
13.1) isdefined in this Recommendation | International Standard:

— ParameterizedReference (see 9.1).

7 ASN.1 lexical items

This Recommendation | International Standard makes use of the lexical items specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 12.

8 Parameterized assignments

8.1 There are parameterized assignment statements corresponding to each of the assignment statements specified
in ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2. The "ParameterizedAssignment”
construct is:

ParameterizedAssignment ::=
ParameterizedTypeAssignment
| ParameterizedValueAssignment
| ParameterizedValueSetTypeAssignment
| Par ameterizedObj ectClassAssignment
| Par ameterizedObj ectAssignment
| Par ameterizedObj ect SetAssignment

8.2 Each "Parameterized<X>Assignment" has the same syntax as "<X>Assignment" except that following the
initial lexical item there is a "ParameterList". The initia item thereby becomes a parameterized reference name
(see 3.4.2):
NOTE 1 — ITU-T Rec. X.680 | ISO/IEC 8824-1 imposes the requirement that all reference names assigned within a module,
whether parameterized or not, must be distinct.

NOTE 2 — Where value notation is governed by a parameterized type (or atype that is a parameter) the validity of value notation
within the parameterized assignment can only be determined after instantiation of the parameterized type, and may be valid for
some instantiations and invalid for others.

ParameterizedTypeAssignment ::=
typereference
ParameterList

Type
ParameterizedValueAssignment ::=

valuer eference
ParameterList

ParameterizedValueSet TypeAssignment ::=
typereference
ParameterList

Type

ValueSet

ITU-T Rec. X.683 (11/2008) 3

| SO/IEC 8824-4:2008 (E)

ParameterizedObjectClassAssignment ::=
objectclassreference
ParameterList

ObjectClass
Par ameterizedObjectAssignment ::=
objectreference

ParameterList
DefinedObjectClass
Object

Par ameterizedObjectSetAssignment ::=
objectsetreference

ParameterList
DefinedObjectClass

ObjectSet

8.3 A "ParameterList" isalist of "Parameter”s between braces:
ParameterList ::="{" Parameter "," +"}"

Each "Parameter” consists of a"DummyReference" and possibly a " ParamGovernor":
Parameter ::= ParamGovernor ": " DummyRefer ence | DummyRefer ence
ParamGovernor ::= Governor | DummyGover nor
Governor ::= Type | DefinedObjectClass
DummyGovernor ::= DummyReference
DummyReference ::= Reference

A "DummyReference" in "Parameter" may stand for:
a) a"Type' or "DefinedObjectClass’, in which case there shall be no "ParamGovernor";

b) a "Vaue' or "VaueSet", in which case the "ParamGovernor" shall be present, and in case
"ParamGovernor" is a "Governor" it shall be a "Type", and in case "ParamGovernor" is a
"DummyGovernor" the actual parameter for the "ParamGovernor" shall be a"Type";

c) an "Object" or "ObjectSet", in which case the "ParamGovernor" shall be present, and in case
"ParamGovernor" is a"Governor" it shall be a"DefinedObjectClass’, and in case "ParamGovernor" is a
"DummyGovernor" the actual parameter for the "ParamGovernor" shall be a"DefinedObjectClass'.

A "DummyGovernor" shall be a"DummyReference” that has no "Governor".

8.4 The scope of a"DummyReference” appearing in a"ParameterList" is the "ParameterList” itself, together with
that part of the "ParameterizedAssignment” which follows the ":: =". The "DummyReference” hides any other
"Reference” with the same name in that scope in any given instantiation.

NOTE — This subclause does not apply to "identifier"s defined in "NamedNumberList"s, "Enumeration”s and "NamedBitList"s,

since they are not "Reference’s. The "DummyReference” does not hide these "identifier"s (see ITU-T Rec. X.680 | ISO/IEC
8824-1, 19.12 and 20.11).

8.5 The usage of a "DummyReference” within its scope shall be consistent with its syntactic form, and, where
applicable, governor, and all usages of the same "DummyReference" shall be consistent with one ancther.

NOTE — Where the syntactic form of a dummy reference name is ambiguous (for example, between whether it is an
"objectclassreference” or "typereference"), the ambiguity can normally be resolved on the first use of the dummy reference name
on the right-hand side of the assignment statement. Thereafter, the nature of the dummy reference name is known. The nature of
the dummy reference is, however, not determined solely by the right-hand side of the assignment statement when it is in turn
used only as an actual parameter in a parameterized reference; in this case, the nature of the dummy reference must be
determined by examining the definition of this parameterized reference. Users of the notation are warned that such a practice can
make ASN.1 specifications less clear, and it is suggested that adequate comments are provided to explain this for human readers.

4 ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

Example

Consider the following parameterized object class assignment:
PARAMETERI ZED- OBJECT- CLASS { TypeParam | NTEGER val ueParam | NTEGER Val ueSet Par am }

CLASS {

&val ueFi el d1 TypePar am

&val ueFi el d2 | NTEGER DEFAULT val uePar am
&val ueFi el d3 I NTEGER (Val ueSet Paran),
&Val ueSet Fi el d | NTEGER DEFAULT { Val ueSet Param }
}

For the purpose of determining proper usage of the "DummyReference's in the scope of the "Parameterized
Assignment"”, and for that purpose only, the "DummyReference"s can be regarded to be defined as follows:

TypeParam : : = Unspeci fi edType

val uePar am | NTEGER : : = unspeci fi edl nt eger Val ue

Val ueSet Param | NTEGER : : = { Unspeci fi edl nt eger Val ueSet }

where:

a) TypeParamis a "DummyReference" which stands for a "Type". Therefore TypePar am can be used
wherever a"typereference” can be used, e.g. asa"Type" for the fixed-type value field val ueFi el d1.

b) val ueParam is a "DummyReference” which stands for a value of an integer type. Therefore
val uePar amcan be used wherever a "valuereference” of an integer value can be used, e.g. as a default
value for the fixed-type valuefield val ueFi el d2.

€) Val ueSet Paramis a "DummyReference" which stands for a value set of an integer type. Therefore
Val ueSet Par am can be used wherever a "typereference’ of an integer value can be used, eg. as a
"Type" in the "ContainedSubtype" notation for val ueFi el d3 and Val ueSet Fi el d.

8.6 Each "DummyReference" shall be employed at least once within its scope.

NOTE - If the "DummyReference" did not so appear, then the corresponding "ActualParameter" would have no effect on the
definition, and would simply be "discarded”, while to the user it might seem that some specification was taking place.

"ParameterizedValueAssignment”s, "ParameterizedVaueSetTypeAssignment”s, "ParameterizedObjectAssignment”s
and "ParameterizedObjectSetAssignment”s that contain either adirect or indirect reference to themselves are illegal .

8.7 In the definition of a "ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass’, a
"DummyReference” shall not be passed as a tagged type (as an actual parameter) to a recursive reference to that
"ParameterizedType", "ParameterizedV alueSet", or "ParameterizedObjectClass' (see A.3).

8.8 In the definition of a "ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass’, a
circular reference to the item being defined shall not be made, unless such reference is directly or indirectly marked
OPTI ONAL or, in the case of "ParameterizedType" and "ParameterizedVaueSet", made through a reference to a choice
type, at least one of whose aternatives is non-circular in definition.

8.9 The governor of a "DummyReference” shall not include a reference to another "DummyReference” if that
other "DummyReference" also has a governor.

8.10 In a parameterized assignment the right side of the ": : =" shall not consist solely of a"DummyReference”.

8.11 The governor of a"DummyReference” shall not require knowledge of either the "DummyReference” or of the
parameterized reference name being defined.

8.12 When a value or value set is supplied to a parameterized type as an actual parameter, the type of the actual
parameter is required to be compatible with the governor of the corresponding dummy parameter. (See ITU-T
Rec. X.680 | ISO/IEC 8824-1, C.6.2 and C.6.3 for details.)

8.13 In defining a parameterized type with a value or a value set dummy parameter, the type used to govern that
dummy parameter shall be atype, al of whose values are valid for use in all placesto the right of the assignment where
the dummy parameter is used. (See ITU-T Rec. X.680 | ISO/IEC 8824-1, C.6.5 for details.)

ITU-T Rec. X.683 (11/2008) 5

| SO/IEC 8824-4:2008 (E)

9 Referencing parameterized definitions

9.1 Within a "SymbolList" (in "Exports’ or "Imports') a parameterized definition shall be referenced by a
"ParameterizedReference’:

ParameterizedReference ::= Reference | Reference " {" "}

where "Reference” isthefirst lexical item in the "ParameterizedAssignment”, as specified in 8.2 above.

NOTE — Thefirst alternative of "ParameterizedReference” is provided solely as an aid to human understanding. Both alternatives
have the same meaning.

9.2 Other than in "Exports" or "Imports’, a parameterized definition shall be referenced by a " Parameterized<X>"
construct, which can be used as an alternative for the corresponding "<X>":

ParameterizedType::=
SimpleDefinedType
ActualParameterList

SimpleDefinedType ::=
External TypeReference |
typer eference

ParameterizedValue::=
SimpleDefinedValue
ActualParameter List

SimpleDefinedValue::=
ExternalVValueReference |
valuer eference

ParameterizedValueSetType ::=
SimpleDefinedType
ActualParameterList

ParameterizedObjectClass ::=
DefinedObjectClass
ActualParameterList

ParameterizedObjectSet ::=
DefinedObj ect Set
ActualParameterList

ParameterizedObject ::=
DefinedObj ect
ActualParameterList

9.3 The reference name in the "Defined<X>" shall be a reference name to which an assignment is made in a
"ParameterizedA ssignment”.

94 The restrictions on the "Defined<X>" alternative to be used, which are specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2 as norma reference names, apply equally to the
corresponding parameterized reference names.
NOTE - In essence, the restrictions are as follows: each "Defined<X>" has two alternatives, "<x>reference” and
"External<x>Reference”. The former is used within the module of definition or if the definition has been imported and there is
no name conflict; the latter is used where there is no imports listed (deprecated), or if there is a conflict between the imported
name and alocal definition (also deprecated) or between imports.

95 The "Actual ParameterList" is:

ActualParameterList ::=
"{" ActualParameter " " +"}"

ActualParameter ::=
Type
| Value
| ValueSet
| DefinedObjectClass
| Object
| ObjectSet

6 ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

9.6 There shall be exactly one "ActuaParameter" for each "Parameter" in the corresponding
"ParameterizedAssignment” and they shall appear in the same order. The particular choice of "Actual Parameter”, and
the governor (if any) shall be determined by examination of the syntactic form of the "Parameter" and the environment
in which it occurs in the "ParameterizedAssignment”. The form of the "Actua Parameter” shall be the form required to
replace the "DummyReference” everywhere in its scope (see 8.4).

Example

The parameterized object class definition of the previous example (see 8.5) can be referenced, for instance, as follows:
MY- OBJECT- CLASS :: = PARAMETERI ZED- OBJECT- CLASS { BIT STRING 123, {4 | 5| 6} }

9.7 The actual parameter takes the place of the dummy reference name in determining the actual type, value,
value set, object class, object, or object set that is being referenced by this instance of use of the parameterized
reference name.

9.8 The meaning of any references which appear in the "Actual Parameter”, and the tag default applicable to any
tags which so appear, are determined according to the tagging environment of the "Actual Parameter” rather than that of
the corresponding "DummyReference”.

NOTE — Thus, parameterization, like referencing, selection types, and COVPONENTS OF, among others, is not exactly textual
substitution.

Example
Consider the following modules:
ML DEFI NI TI ONS AUTOVATI C TAGS ::= BEG N
EXPORTS T1;
Tl ::= SET {
fl I NTEGER,
f2 BOOLEAN
}
END
M2 DEFINITIONS EXPLICI T TAGS ::= BEGA N
| MPORTS T1 FROM ML,
T3 ::= T2{T1}
T2{X} ::= SEQUENCE {
a I NTEGER,
b X
}
END

Application of 9.8 implies that the tag for the component f 1 of T3 (i.e. @T3.b.f1) will be implicitly tagged because the
tagging environment of the dummy parameter X, namely explicit tagging, does not affect the tagging of the components
of the actual parameter T1.

Consider the module VB:

MB DEFI NI TI ONS AUTOMATI C TAGS :: = BEG N
| MPORTS T1 FROM ML;
T5 1= T4{T1}
TA{Y} ::= SEQUENCE {
a | NTEGER,
b Y
}
END

Application of ITU-T Rec. X.680 | ISO/IEC 8824-1, 31.2.7, implies that the tag for the component b of T5 (i.e. @T5.b)
will be explicitly tagged because the dummy parameter Y is always explicitly tagged, hence T5 is equivalent to:

ITU-T Rec. X.683 (11/2008) 7

| SO/IEC 8824-4:2008 (E)

T5 ::= SEQUENCE {
a [0] IMPLICIT I NTEGER,
b [1] EXPLICT SET {

f1 [0] |NTEGER
f2 [1] BOOLEAN

}

}

while T3 is equivalent to:
T3 ::= SEQUENCE ({

a I NTEGER,
b SET {
f1 [0] IMPLICIT I NTEGER,
f2 [1] I'MPLICI T BOOLEAN
}

}

10 Abstract syntax parameters

101 ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex B, provides the ABSTRACT- SYNTAX information object class and
recommends its use to define abstract syntaxes, using as an example an abstract syntax defined as the set of values of a
single ASN.1 type which was not parameterized at the outer level.

10.2 Where the ASN.1 type used to define the abstract syntax is parameterized, some parameters may be supplied
as actual parameters when the abstract syntax is defined, while others may be left as parameters of the abstract syntax
itself.

Example

If a parameterized type has been defined called YYY- PDU with two dummy references (the first an object set of some
defined object class, and the second an integer value for a bound, say), then:

yyy- Abstract - Syntax { | NTEGER bound } ABSTRACT- SYNTAX :: =
{ YYY-PDU { {ValidObjects} , bound } |DENTIFIED BY {yyy 5} }

defines a parameterized abstract syntax in which the object set has been resolved, but bound remains as a parameter of
the abstract syntax.

An abstract syntax parameter shall be used:
a) directly or indirectly in the context of a constraint;

b) directly or indirectly as actual parameters that eventually are used in the context of a constraint.
NOTE — See the examplein A.2, and the example in ITU-T Rec. X.680 | ISO/IEC 8824-1, H.5.

10.3 A constraint whose value set depends on one or more parameters of the abstract syntax is a variable
constraint. Such constraints are determined after the definition of the abstract syntax (perhaps by International
Standardized Profiles or in Protocol Implementation Conformance Statements).

NOTE - If somewhere in the chain of definitionsinvolved in the specification of the constraint values a parameter of the abstract
syntax appears, the constraint is a variable constraint. It is a variable constraint even if the value set of the resulting constraint is
independent of the actual value of the parameter of the abstract syntax.

Example

Thevalueof (((1..3) EXCEPT a) UNION (1 .. 3)) isaways1..3 no matter what the value of a is, nonetheless it
istill avariable constraint if a is aparameter of the abstract syntax.

104 Formally, a variable constraint does not constrain the set of values in the abstract syntax.

NOTE - It is strongly recommended that constraints that are expected to remain as variable constraints in an abstract syntax have
an exception specification using the notation provided by ITU-T Rec. X.680 | ISO/IEC 8824-1, 53.4.

8 ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

Annex A

Examples
(This annex does not form an integral part of this Recommendation | International Standard)

Al Example of the use of a parameterized type definition

Suppose that a protocol designer frequently needs to carry an authenticator with one or more of the fields of the
protocol. Thiswill be carried asaBI T STRI NG, alongside the field. Without parameterization, Aut hent i cat or would
need to be defined as a BI T STRI NG, then aut hent i cat or would need to be added wherever it was to appear, with
text to identify what it applied to. Alternatively, the designer could adopt the discipline of turning any field that has an
authenticator into a SEQUENCE of that field and aut henti cat or. The parameterization mechanism provides a
convenient short-hand for doing this task.

First we define the parameterized type SI GNEDY{ } :

SIGNED { ToBeSi gned } ::= SEQUENCE
{
aut henti cat ed- dat a ToBeSi gned,
aut henti cat or BI T STRI NG
}

then, in the body of the protocol, the notation (for example):
SIGNED { Orderlnfornmation }

is atype notation standing for:
SEQUENCE

aut hent i cat ed- dat a O der | nformati on,
aut henti cat or BI T STRI NG

}

Suppose further that for some fields, the sender is to have the option of adding the authenticator or not. This could be
achieved by making the BI T STRI NG optional, but a more elegant solution (less bits on the line) would be to define
another parameterized type:

OPTI ONALLY- SI GNED { ToBeSi gned} ::= CHO CE

{
unsi gned- dat a [0] ToBeSi gned,

si gned- dat a [1] S| GNED { ToBeSi gned }
}

NOTE — The tagging in the CHO CE is not necessary if the writer ensures that none of the uses of the parameterized type produce
an actual argument which is a BI T STRI NG (the type of SI GNED), but is useful in preventing errors in other parts of the
specification.

A2 Example of use of parameterized definitionstogether with an information object class

Use information object classes to collect all the parameters for an abstract syntax. In that way the number of parameters
for an abstract syntax can be reduced to one which is an instance of the collection class. The "InformationFromObject"
production can be used to extract information from the parameter object.

Example
-- An instance of this class contains all the paraneters for the abstract
-- syntax, Message- PDU.
MESSAGE- PARAMETERS :: = CLASS {
&maxi mum priority-1evel | NTEGER,
&maxi mum nessage- buf f er - si ze | NTEGER,
&maxi mum r ef er ence- buf f er - si ze | NTEGER

}

W TH SYNTAX {
THE MAXIMM PRICRITY LEVEL | S &maxi mum priority-1|evel
THE MAXI MUM MESSAGE BUFFER SI ZE | S &raxi mum nessage- buf fer-si ze
THE MAXI MUM REFERENCE BUFFER SI ZE | S&mexi mum r ef er ence- buf fer-si ze

ITU-T Rec. X.683 (11/2008) 9

| SO/IEC 8824-4:2008 (E)

-- The "Val ueFrontbj ect” production is used to extract val ues

-- fromthe abstract syntax paraneter, "paranf. The val ues can be
-- used only in constraints. In addition the paraneter is passed
-- through to another paraneterized type.

Message- PDU { MESSACE- PARAMETERS : param} ::= SEQUENCE {
priority-1level I NTEGER (0. . param &vaxi numpriority-I|evel),
nmessage BWPString (SIZE (0..param &raxi mum nessage- buff er-si ze)),
ref erence Ref erence { param}
}

Ref erence { MESSAGE- PARAMETERS : param} ::=
SEQUENCE COF 1 A5String (SIZE (0..param &raxi mum r ef er ence- buf f er - si ze))
-- Definition of a paranmeterized abstract syntax information object.
-- The abstract syntax paraneter is used only in constraints.

message- Abstract - Synt ax { MESSAGE- PARAMETERS : param }
ABSTRACT- SYNTAX :: =

{
Message- PDU { param }

| DENTI FIED BY { joint-iso-ccitt asnl(1l) exanples(123) 0 }
}

The class MESSAGE- PARAMETERS and the parameterized abstract syntax object, mnessage- Abst r act - Synt ax, are used
asfollows:

-- This instance of MESSAGE-PARAMETERS defines parameter values
-- for the abstract syntax.

ny- message- par anet ers MESSAGE- PARAVETERS :: = {
THE MAXIMUM PRICRITY LEVEL IS 10
THE MAXI MUM MESSACGE BUFFER SIZE IS 2000
THE MAXI MUM REFERENCE BUFFER SIZE IS 100

}
-- The abstract syntax can now be defined with all variable constraints specified.

nmy- message- Abst ract - Synt ax ABSTRACT- SYNTAX :: =
nmessage- Abstract - Syntax { ny-nmessage-paraneters }

A.3 Example of parameterized type definition that isfinite

When specifying a parameterized type which represents a generic list, specify the type so that the resulting ASN.1
notation is finite. For example, we may specify:

Listl { El ement TypeParam} ::= SEQUENCE {
el em El enent TypePar am
next Listl { El enent TypeParam} OPTI ONAL

}
which isfinite, for when it is used:
IntegerListl ::= Listl { | NTEGER }

the resulting ASN.1 notation is as you would normally define it:

IntegerListl ::= SEQUENCE {
el em | NTEGER
next |ntegerListl OPTI ONAL

}

Contrast thisto the following:

List2 { El enent TypeParam} ::= SEQUENCE {
el em El enment TypePar am
next List2 { [0] El ement TypeParam} OPTI ONAL

10 ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

IntegerList2 ::= List2 { | NTEGER }

where the resulting ASN.1 notation isinfinite:

IntegerList2 ::= SEQUENCE {
el em | NTEGER
next SEQUENCE {
el em [0] | NTEGER,
next SEQUENCE {
el em [0][0] I NTEGER
next SEQUENCE {
elem[0][0][0] | NTECGER,
next SEQUENCE {
-- and so on
} OPTI ONAL
} OPTI ONAL
} OPTI ONAL
} OPTI ONAL

}

A4 Example of a parameterized value definition

If aparameterized string value is defined as follows:

genericBirthdayGeeting { 1ASString : name } IA5SString ::= { "Happy birthday, ",
narme, "!!" }

then the following two string values are the same:

greetingl I A5String ::= genericBirthdayGeeting { "John" }
greeting2 IASString ::= "Happy birthday, John!!"

A5 Example of a parameterized value set definition

If two parameterized value sets are defined as follows:

QuestListl {IASString : extraQuest} IA5String ::={ "Jack" | "John" | extraQuest }
QuestList2 {IASString : ExtraQuests} IA5String ::={ "Jack" | "John" |
ExtraQuests }

then the following value sets denote the same value set:

Set Of Questsl | A5String ::= { QuestListl { "Jill" } }
Set Of Quests2 1 A5String ::= { QuestList2 { {"Jill"} } }
Set Of Quests3 | A5String ::= { "Jack" | "John" | "Jill" }

and the following value sets denote the same value set:

Set Of Quests4 1 A5String ::= { QuestList2 { {"Jill" | "Mary"} } }
Set Of Quests5 1 A5String ::= { "Jack" | "John" | "Jill" | "Mary"}

Notice that a value set is always specified within braces, even when it is a parameterized value set reference. By
omitting the braces from areference to an "identifier" that was created in a value set assignment or from areferenceto a
"ParameterizedVaueSetType" the notation isthat of a"Type", not avalue set.

A.6 Example of a parameterized class definition

The following parameterized class can be used to define error classes which contain error codes of different types. Note
that the Er r or CodeType parameter is used only as a"DummyGovernor” for the Val i dEr r or Codes parameter:

GENERI G- ERROR { Error CodeType, ErrorCodeType : ValidErrorCodes } ::= CLASS {
&er r or Code Val i dEr r or Codes

}
W TH SYNTAX {

CODE &error Code
}

The parameterized class definition can be used as follows to define different classes which share some characteristics
like the same defined syntax:

ITU-T Rec. X.683 (11/2008) 11

| SO/IEC 8824-4:2008 (E)

ERROR-1 ::= GENERIGERROR { INTEGER, { 1| 2| 31} }

ERROR-2 ::= CGENERI C-ERROR { ErrorCodeString, { StringErrorCodes } }
ERROR- 3 ::= CGENER C ERROR { Enurmerat edErrorCode, { fatal | error } }
ErrorCodeString ::= I A5String (Sl ZE (4))

StringErrorCodes ErrorCodeString ::= { "E001" | "E002" | "EO003" }
Enuner at edError Code ::= ENUMERATED { fatal, error, warning }

The defined classes can then be used as follows:
M/-Errors ERROR-2 ::= { { CODE "E001" } | { CODE "E002" } }
fatal Error ERROR-3 ::= { CCDE fatal }

A7 Example of a parameterized object set definition

The parameterized object set definition Al | Types forms an object set which contains a basic set of objects,
BaseTypes, and a set of additional objects which are supplied as a parameter, Addi t i onal Types:

Al Types { TYPE-1DENTIFIER : Additional Types } TYPE-1DENTIFIER ::= { BaseTypes |
Addi ti onal Types }

BaseTypes TYPE-1DENTIFIER ::= {
{ Basi cType-1 | DENTI FI ED BY basi c-type-obj-id-value-1} |
{ Basi cType-2 | DENTI FI ED BY basi c-type-obj-id-value-2 } |
{ Basi cType-3 | DENTI FI ED BY basi c-type-obj-id-val ue-3 }
}

The parameterized object set definition, Al | Types, can be used asfollows:

M/-Al | - Types TYPE-IDENTIFIER ::= { Al Types { {
{ My-Type-1 | DENTI FI ED BY ny-obj-id-value-1} |
{ My-Type-2 | DENTI FI ED BY ny-obj-id-value-2 } |
{ M/-Type-3 | DENTI FI ED BY ny-obj -id-val ue-3 }
P}

A.8 Example of a parameterized object set definition

Thetype defined in ITU-T Rec. X.682 | ISO/IEC 8824-3, A.4, can be used in a parameterized abstract syntax definition
asfollows:
-- PossibleBodyTypesis a parameter for an abstract syntax.

message- abstract-syntax { MHS-BODY- CLASS : Possi bl eBodyTypes } ABSTRACT- SYNTAX :: =
{
| NSTANCE OF MHS- BODY- CLASS ({ Possi bl eBodyTypes})
I DENTI FIED BY { joint-iso-itu asnl(1l) exanples(1) 123 }
}
-- This object set lists all the possible pairs of values and type-ids
-- for the instance-of type. The object set is used as an actual paraneter
-- for the paraneterized abstract syntax definition.

M/- Body- Types MHS- BODY- CLASS :: = {
{ My-First-Type | DENTI FI ED BY ny-first-obj-id } |
{ M- Second- Type | DENTI FI ED BY ny-second-obj-id }
}

nmy- message- abst ract - synt ax ABSTRACT- SYNTAX :: =
nmessage- abstract-syntax { { M/-Body-Types } }

12 ITU-T Rec. X.683 (11/2008)

| SO/IEC 8824-4:2008 (E)

Annex B

Summary of the notation
(This annex does not form an integral part of this Recommendation | International Standard)

The following lexical items are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and used in this Recommendation |
International Standard:

typer eference
valuer eference

The following lexical items are defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 and used in this Recommendation |
International Standard:

objectclassreference
objectreference
obj ectsetreference

The following productions are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and used in this Recommendation |
International Standard:

DefinedType
DefinedValue
Reference
Type

Value
ValueSet

The following productions are defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 and used in this Recommendation |
International Standard:

DefinedObjectClass
DefinedObj ect
DefinedObj ect Set
ObjectClass

Object

ObjectSet

The following productions are defined in this Recommendation | International Standard:

ParameterizedAssignment ::=
ParameterizedTypeAssignment
| Par ameterizedValueAssignment
| ParameterizedValueSetTypeAssignment
| Par ameterizedObj ect ClassAssignment
| Par ameterizedObj ectAssignment
| Par ameterizedODbj ect SetAssignment

ParameterizedTypeAssignment ::=
typereference ParameterList ": : =" Type

ParameterizedValueAssignment ::=
valuer eference ParameterList Type": : =" Value

ParameterizedValueSetTypeAssignment ::=
typer eference ParameterList Type™: : =" ValueSet

Par ameterizedObjectClassAssignment ::=
objectclassreference ParameterList ": : =" ObjectClass

ITU-T Rec. X.683 (11/2008) 13

| SO/IEC 8824-4:2008 (E)

14

ParameterizedObjectAssignment ::=

objectreference ParameterList DefinedObjectClass”: : =" Object
Par ameterizedObjectSetAssignment ::=

obj ectsetreference Parameter List DefinedObjectClass”: : =" ObjectSet
ParameterList ::="{" Parameter "," +"}"
Parameter ::= ParamGovernor ": " DummyReference | DummyReference

ParamGovernor ::= Governor | DummyGovernor
Governor ::=Type | DefinedObjectClass
DummyGovernor ::= DummyReference
DummyReference ::= Reference

ParameterizedReference ::=
Reference | Referencen { non } n

SimpleDefinedType ::= ExternalTypeReference | typer eference

SimpleDefinedValue ::= Exter nalValueReference | valuer eference
ParameterizedType ::= SimpleDefinedType ActualParameterList
ParameterizedValue ::= SimpleDefinedValue ActualParameter List
ParameterizedValueSet Type ::= SimpleDefinedType ActualParameter List
ParameterizedObjectClass ::= DefinedObjectClass Actual Par ameter List

Par ameterizedObjectSet ::= DefinedObjectSet ActualParameterList
ParameterizedObject ::= DefinedObject ActualParameterList

ActualParameterList ::="{" ActualParameter "," +"}"

ActualParameter ::=Type| Value | ValueSet | DefinedObjectClass | Object | ObjectSet

ITU-T Rec. X.683 (11/2008)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T RECOMMENDATION X.683 (11/2008) – Information technology – Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards

	3 Definitions
	3.1 Specification of basic notation
	3.2 Information object specification
	3.3 Constraint specification
	3.4 Additional definitions

	4 Abbreviations
	5 Convention
	6 Notation
	6.1 Assignments
	6.2 Parameterized definitions
	6.3 Symbols

	7 ASN.1 lexical items
	8 Parameterized assignments
	9 Referencing parameterized definitions
	10 Abstract syntax parameters
	Annex A
	Examples
	A.1 Example of the use of a parameterized type definition
	A.2 Example of use of parameterized definitions together with an information object class
	A.3 Example of parameterized type definition that is finite
	A.4 Example of a parameterized value definition
	A.5 Example of a parameterized value set definition
	A.6 Example of a parameterized class definition
	A.7 Example of a parameterized object set definition
	A.8 Example of a parameterized object set definition

	Annex B
	Summary of the notation

