

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.683
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2008)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY
OSI networking and system aspects – Abstract Syntax
Notation One (ASN.1)

 Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of
ASN.1 specifications

ITU-T Recommendation X.683

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.889
Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999
INFORMATION AND NETWORK SECURITY X.1000–X.1099
SECURE APPLICATIONS AND SERVICES X.1100–X.1199
CYBERSPACE SECURITY X.1200–X.1299
SECURE APPLICATIONS AND SERVICES X.1300–X.1399

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. X.683 (11/2008) i

INTERNATIONAL STANDARD ISO/IEC 8824-4

ITU-T RECOMMENDATION X.683

Information technology –
Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications

Summary
This Recommendation | International Standard defines the provisions for parameterized reference names and
parameterized assignments for data types which are useful for the designer when writing specifications where some
aspects are left undefined at certain stages of the development to be filled in at a later stage to produce a complete
definition of an abstract syntax.

Source
ITU-T Recommendation X.683 was prepared by ITU-T Study Group 17 (2009-2012) and approved on 13 November
2008. An identical text is also published as ISO/IEC International Standard 8824-4.

ii Rec. ITU-T X.683 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. X.683 (11/2008) iii

CONTENTS
Page

Introduction ... iv
1 Scope .. 1
2 Normative references ... 1

2.1 Identical Recommendations | International Standards .. 1
3 Definitions.. 1

3.1 Specification of basic notation .. 1
3.2 Information object specification ... 1
3.3 Constraint specification... 1
3.4 Additional definitions ... 1

4 Abbreviations ... 2
5 Convention ... 2
6 Notation.. 2

6.1 Assignments .. 2
6.2 Parameterized definitions.. 2
6.3 Symbols... 3

7 ASN.1 lexical items.. 3
8 Parameterized assignments... 3
9 Referencing parameterized definitions... 6
10 Abstract syntax parameters .. 8
Annex A – Examples... 9

A.1 Example of the use of a parameterized type definition ... 9
A.2 Example of use of parameterized definitions together with an information object class.................... 9
A.3 Example of parameterized type definition that is finite .. 10
A.4 Example of a parameterized value definition.. 11
A.5 Example of a parameterized value set definition .. 11
A.6 Example of a parameterized class definition... 11
A.7 Example of a parameterized object set definition ... 12
A.8 Example of a parameterized object set definition ... 12

Annex B – Summary of the notation ... 13

iv ITU-T Rec. X.683 (11/2008)

Introduction
Application designers need to write specifications in which certain aspects are left undefined. Those aspects will later
be defined by one or more other groups (each in its own way), to produce a fully defined specification for use in the
definition of an abstract syntax (one for each group).

In some cases, aspects of the specification (for example, bounds) may be left undefined even at the time of abstract
syntax definition, being completed by the specification of International Standardized Profiles or functional profiles
from some other body.

NOTE 1 – It is a requirement imposed by this Recommendation | International Standard that any aspect that is not solely
concerned with the application of constraints has to be completed prior to the definition of an abstract syntax.

In the extreme case, some aspects of the specification may be left for the implementor to complete, and would then be
specified as part of the Protocol Implementation Conformance Statement.

While the provisions of ITU-T Rec. X.681 | ISO/IEC 8824-2 and ITU-T Rec. X.682 | ISO/IEC 8824-3 provide a
framework for the later completion of parts of a specification, they do not of themselves solve the above requirements.

Additionally, a single designer sometimes requires to define many types, or many information object classes, or many
information object sets, or many information objects, or many values, which have the same outer level structure, but
differ in the types, or information object classes, or information object sets, or information objects, or values, that are
used at an inner level. Instead of writing out the outer level structure for every such occurrence, it is useful to be able to
write it out once, with parts left to be defined later, then to refer to it and provide the additional information.

All these requirements are met by the provision for parameterized reference names and parameterized assignments by
this Recommendation | International Standard.

The syntactic form of a parameterized reference name is the same as that of the corresponding normal reference name,
but the following additional considerations apply:

– When it is assigned in a parameterized assignment statement, it is followed by a list of dummy reference
names in braces, each possibly accompanied by a governor; these reference names have a scope which is
the right-hand side of the assignment statement, and the parameter list itself.

NOTE 2 – This is what causes it to be recognized as a parameterized reference name.

– When it is exported or imported, it is followed by a pair of empty braces to distinguish it as a
parameterized reference name.

– When it is used in any construct, it is followed by a list of syntactic constructions, one for each dummy
reference name, that provide an assignment to the dummy reference name for the purposes of that use
only.

Dummy reference names have the same syntactic form as the corresponding normal reference name, and can be used
anywhere on the right-hand side of the assignment statement that the corresponding normal reference name could be
used. All such usages are required to be consistent.

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 1

INTERNATIONAL STANDARD
ISO/IEC 8824-4 : 1995 (E)
ITU-T Rec. X.683 (1994 E)

ITU-T RECOMMENDATION

Information technology –
Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications

1 Scope
This Recommendation | International Standard is part of Abstract Syntax Notation One (ASN.1) and defines notation
for parameterization of ASN.1 specifications.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology – Abstract

Syntax Notation One (ASN.1): Specification of basic notation.
– ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology – Abstract

Syntax Notation One (ASN.1): Information object specification.
– ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology – Abstract

Syntax Notation One (ASN.1): Constraint specification.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Specification of basic notation

This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

3.2 Information object specification

This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2.

3.3 Constraint specification

This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3.

3.4 Additional definitions

3.4.1 normal reference name: A reference name defined, without parameters, by means of an "Assignment" other
than a "ParameterizedAssignment". Such a name references a complete definition and is not supplied with actual
parameters when used.

3.4.2 parameterized reference name: A reference name defined using a parameterized assignment, which
references an incomplete definition and which, therefore, must be supplied with actual parameters when used.

ISO/IEC 8824-4:2008 (E)

2 ITU-T Rec. X.683 (11/2008)

3.4.3 parameterized type: A type defined using a parameterized type assignment and thus whose components are
incomplete definitions which must be supplied with actual parameters when the type is used.

3.4.4 parameterized value: A value defined using a parameterized value assignment and thus whose value is
incompletely specified and must be supplied with actual parameters when used.

3.4.5 parameterized value set: A value set defined using a parameterized value set assignment and thus whose
values are incompletely specified and must be supplied with actual parameters when used.

3.4.6 parameterized object class: An information object class defined using a parameterized object class
assignment and thus whose field specifications are incompletely specified and must be supplied with actual parameters
when used.

3.4.7 parameterized object: An information object defined using a parameterized object assignment and thus
whose components are incompletely specified and must be supplied with actual parameters when used.

3.4.8 parameterized object set: An information object set defined using a parameterized object set assignment and
thus whose objects are incompletely specified and must be supplied with actual parameters when used.

3.4.9 variable constraint: A constraint employed in specifying a parameterized abstract syntax, and which
depends on some parameter of the abstract syntax.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviation applies:

ASN.1 Abstract Syntax Notation One

5 Convention
This Recommendation | International Standard employs the notational convention defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 5.

6 Notation
This clause summarizes the notation defined in this Recommendation | International Standard.

6.1 Assignments

The following notation which can be used as an alternative for "Assignment" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 13) is defined in this Recommendation | International Standard:

– ParameterizedAssignment (see 8.1).

6.2 Parameterized definitions

6.2.1 The following notation which can be used as an alternative for "DefinedType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) is defined in this Recommendation | International Standard:

– ParameterizedType (see 9.2).

6.2.2 The following notation which can be used as an alternative for "DefinedValue" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) is defined in this Recommendation | International Standard:

– ParameterizedValue (see 9.2).

6.2.3 The following notation which can be used as an alternative for "DefinedType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 14.1) is defined in this Recommendation | International Standard:

– ParameterizedValueSetType (see 9.2).

6.2.4 The following notation which can be used as an alternative for "ObjectClass" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 9.2) is defined in this Recommendation | International Standard:

– ParameterizedObjectClass (see 9.2).

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 3

6.2.5 The following notation which can be used as an alternative for "Object" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 11.3) is defined in this Recommendation | International Standard:

– ParameterizedObject (see 9.2).

6.2.6 The following notation which can be used as an alternative for "ObjectSet" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 12.3) is defined in this Recommendation | International Standard:

– ParameterizedObjectSet (see 9.2).

6.3 Symbols

The following notation which can be used as an alternative for "Symbol" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
13.1) is defined in this Recommendation | International Standard:

– ParameterizedReference (see 9.1).

7 ASN.1 lexical items
This Recommendation | International Standard makes use of the lexical items specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 12.

8 Parameterized assignments
8.1 There are parameterized assignment statements corresponding to each of the assignment statements specified
in ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2. The "ParameterizedAssignment"
construct is:

ParameterizedAssignment ::=
 ParameterizedTypeAssignment
| ParameterizedValueAssignment
| ParameterizedValueSetTypeAssignment
| ParameterizedObjectClassAssignment
| ParameterizedObjectAssignment
| ParameterizedObjectSetAssignment

8.2 Each "Parameterized<X>Assignment" has the same syntax as "<X>Assignment" except that following the
initial lexical item there is a "ParameterList". The initial item thereby becomes a parameterized reference name
(see 3.4.2):

NOTE 1 – ITU-T Rec. X.680 | ISO/IEC 8824-1 imposes the requirement that all reference names assigned within a module,
whether parameterized or not, must be distinct.
NOTE 2 – Where value notation is governed by a parameterized type (or a type that is a parameter) the validity of value notation
within the parameterized assignment can only be determined after instantiation of the parameterized type, and may be valid for
some instantiations and invalid for others.

ParameterizedTypeAssignment ::=
 typereference
 ParameterList
 "::="
 Type

ParameterizedValueAssignment ::=
 valuereference
 ParameterList
 Type
 "::="
 Value

ParameterizedValueSetTypeAssignment ::=
 typereference
 ParameterList
 Type
 "::="
 ValueSet

ISO/IEC 8824-4:2008 (E)

4 ITU-T Rec. X.683 (11/2008)

ParameterizedObjectClassAssignment ::=
 objectclassreference
 ParameterList
 "::="
 ObjectClass

ParameterizedObjectAssignment ::=
 objectreference
 ParameterList
 DefinedObjectClass
 "::="
 Object

ParameterizedObjectSetAssignment ::=
 objectsetreference
 ParameterList
 DefinedObjectClass
 "::="
 ObjectSet

8.3 A "ParameterList" is a list of "Parameter"s between braces:

ParameterList ::= "{" Parameter "," + "}"

Each "Parameter" consists of a "DummyReference" and possibly a "ParamGovernor":

Parameter ::= ParamGovernor ":" DummyReference | DummyReference

ParamGovernor ::= Governor | DummyGovernor

Governor ::= Type | DefinedObjectClass

DummyGovernor ::= DummyReference

DummyReference ::= Reference

A "DummyReference" in "Parameter" may stand for:
a) a "Type" or "DefinedObjectClass", in which case there shall be no "ParamGovernor";
b) a "Value" or "ValueSet", in which case the "ParamGovernor" shall be present, and in case

"ParamGovernor" is a "Governor" it shall be a "Type", and in case "ParamGovernor" is a
"DummyGovernor" the actual parameter for the "ParamGovernor" shall be a "Type";

c) an "Object" or "ObjectSet", in which case the "ParamGovernor" shall be present, and in case
"ParamGovernor" is a "Governor" it shall be a "DefinedObjectClass", and in case "ParamGovernor" is a
"DummyGovernor" the actual parameter for the "ParamGovernor" shall be a "DefinedObjectClass".

A "DummyGovernor" shall be a "DummyReference" that has no "Governor".

8.4 The scope of a "DummyReference" appearing in a "ParameterList" is the "ParameterList" itself, together with
that part of the "ParameterizedAssignment" which follows the "::=". The "DummyReference" hides any other
"Reference" with the same name in that scope in any given instantiation.

NOTE – This subclause does not apply to "identifier"s defined in "NamedNumberList"s, "Enumeration"s and "NamedBitList"s,
since they are not "Reference"s. The "DummyReference" does not hide these "identifier"s (see ITU-T Rec. X.680 | ISO/IEC
8824-1, 19.12 and 20.11).

8.5 The usage of a "DummyReference" within its scope shall be consistent with its syntactic form, and, where
applicable, governor, and all usages of the same "DummyReference" shall be consistent with one another.

NOTE – Where the syntactic form of a dummy reference name is ambiguous (for example, between whether it is an
"objectclassreference" or "typereference"), the ambiguity can normally be resolved on the first use of the dummy reference name
on the right-hand side of the assignment statement. Thereafter, the nature of the dummy reference name is known. The nature of
the dummy reference is, however, not determined solely by the right-hand side of the assignment statement when it is in turn
used only as an actual parameter in a parameterized reference; in this case, the nature of the dummy reference must be
determined by examining the definition of this parameterized reference. Users of the notation are warned that such a practice can
make ASN.1 specifications less clear, and it is suggested that adequate comments are provided to explain this for human readers.

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 5

Example
Consider the following parameterized object class assignment:

PARAMETERIZED-OBJECT-CLASS { TypeParam, INTEGER:valueParam, INTEGER:ValueSetParam }
::=

 CLASS {
 &valueField1 TypeParam,
 &valueField2 INTEGER DEFAULT valueParam,
 &valueField3 INTEGER (ValueSetParam),
 &ValueSetField INTEGER DEFAULT { ValueSetParam }
 }

For the purpose of determining proper usage of the "DummyReference"s in the scope of the "Parameterized
Assignment", and for that purpose only, the "DummyReference"s can be regarded to be defined as follows:

TypeParam ::= UnspecifiedType

valueParam INTEGER ::= unspecifiedIntegerValue

ValueSetParam INTEGER ::= { UnspecifiedIntegerValueSet }

where:
a) TypeParam is a "DummyReference" which stands for a "Type". Therefore TypeParam can be used

wherever a "typereference" can be used, e.g. as a "Type" for the fixed-type value field valueField1.

b) valueParam is a "DummyReference" which stands for a value of an integer type. Therefore
valueParam can be used wherever a "valuereference" of an integer value can be used, e.g. as a default
value for the fixed-type value field valueField2.

c) ValueSetParam is a "DummyReference" which stands for a value set of an integer type. Therefore
ValueSetParam can be used wherever a "typereference" of an integer value can be used, e.g. as a
"Type" in the "ContainedSubtype" notation for valueField3 and ValueSetField.

8.6 Each "DummyReference" shall be employed at least once within its scope.
NOTE – If the "DummyReference" did not so appear, then the corresponding "ActualParameter" would have no effect on the
definition, and would simply be "discarded", while to the user it might seem that some specification was taking place.

"ParameterizedValueAssignment"s, "ParameterizedValueSetTypeAssignment"s, "ParameterizedObjectAssignment"s
and "ParameterizedObjectSetAssignment"s that contain either a direct or indirect reference to themselves are illegal.

8.7 In the definition of a "ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass", a
"DummyReference" shall not be passed as a tagged type (as an actual parameter) to a recursive reference to that
"ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass" (see A.3).

8.8 In the definition of a "ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass", a
circular reference to the item being defined shall not be made, unless such reference is directly or indirectly marked
OPTIONAL or, in the case of "ParameterizedType" and "ParameterizedValueSet", made through a reference to a choice
type, at least one of whose alternatives is non-circular in definition.

8.9 The governor of a "DummyReference" shall not include a reference to another "DummyReference" if that
other "DummyReference" also has a governor.

8.10 In a parameterized assignment the right side of the "::=" shall not consist solely of a "DummyReference".

8.11 The governor of a "DummyReference" shall not require knowledge of either the "DummyReference" or of the
parameterized reference name being defined.

8.12 When a value or value set is supplied to a parameterized type as an actual parameter, the type of the actual
parameter is required to be compatible with the governor of the corresponding dummy parameter. (See ITU-T
Rec. X.680 | ISO/IEC 8824-1, C.6.2 and C.6.3 for details.)

8.13 In defining a parameterized type with a value or a value set dummy parameter, the type used to govern that
dummy parameter shall be a type, all of whose values are valid for use in all places to the right of the assignment where
the dummy parameter is used. (See ITU-T Rec. X.680 | ISO/IEC 8824-1, C.6.5 for details.)

ISO/IEC 8824-4:2008 (E)

6 ITU-T Rec. X.683 (11/2008)

9 Referencing parameterized definitions
9.1 Within a "SymbolList" (in "Exports" or "Imports") a parameterized definition shall be referenced by a
"ParameterizedReference":

ParameterizedReference ::= Reference | Reference "{" "}"

where "Reference" is the first lexical item in the "ParameterizedAssignment", as specified in 8.2 above.
NOTE – The first alternative of "ParameterizedReference" is provided solely as an aid to human understanding. Both alternatives
have the same meaning.

9.2 Other than in "Exports" or "Imports", a parameterized definition shall be referenced by a "Parameterized<X>"
construct, which can be used as an alternative for the corresponding "<X>":

ParameterizedType ::=
 SimpleDefinedType
 ActualParameterList

SimpleDefinedType ::=
 ExternalTypeReference |
 typereference

ParameterizedValue ::=
 SimpleDefinedValue
 ActualParameterList

SimpleDefinedValue ::=
 ExternalValueReference |
 valuereference

ParameterizedValueSetType ::=
 SimpleDefinedType
 ActualParameterList

ParameterizedObjectClass ::=
 DefinedObjectClass
 ActualParameterList

ParameterizedObjectSet ::=
 DefinedObjectSet
 ActualParameterList

ParameterizedObject ::=
 DefinedObject
 ActualParameterList

9.3 The reference name in the "Defined<X>" shall be a reference name to which an assignment is made in a
"ParameterizedAssignment".

9.4 The restrictions on the "Defined<X>" alternative to be used, which are specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2 as normal reference names, apply equally to the
corresponding parameterized reference names.

NOTE – In essence, the restrictions are as follows: each "Defined<X>" has two alternatives, "<x>reference" and
"External<x>Reference". The former is used within the module of definition or if the definition has been imported and there is
no name conflict; the latter is used where there is no imports listed (deprecated), or if there is a conflict between the imported
name and a local definition (also deprecated) or between imports.

9.5 The "ActualParameterList" is:

ActualParameterList ::=
 "{" ActualParameter "," + "}"

ActualParameter ::=
 Type
| Value
| ValueSet
| DefinedObjectClass
| Object
| ObjectSet

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 7

9.6 There shall be exactly one "ActualParameter" for each "Parameter" in the corresponding
"ParameterizedAssignment" and they shall appear in the same order. The particular choice of "ActualParameter", and
the governor (if any) shall be determined by examination of the syntactic form of the "Parameter" and the environment
in which it occurs in the "ParameterizedAssignment". The form of the "ActualParameter" shall be the form required to
replace the "DummyReference" everywhere in its scope (see 8.4).

Example
The parameterized object class definition of the previous example (see 8.5) can be referenced, for instance, as follows:

MY-OBJECT-CLASS ::= PARAMETERIZED-OBJECT-CLASS { BIT STRING, 123, {4 | 5 | 6} }

9.7 The actual parameter takes the place of the dummy reference name in determining the actual type, value,
value set, object class, object, or object set that is being referenced by this instance of use of the parameterized
reference name.

9.8 The meaning of any references which appear in the "ActualParameter", and the tag default applicable to any
tags which so appear, are determined according to the tagging environment of the "ActualParameter" rather than that of
the corresponding "DummyReference".

NOTE – Thus, parameterization, like referencing, selection types, and COMPONENTS OF, among others, is not exactly textual
substitution.

Example
Consider the following modules:

M1 DEFINITIONS AUTOMATIC TAGS ::= BEGIN
 EXPORTS T1;

 T1 ::= SET {
 f1 INTEGER,
 f2 BOOLEAN
}

END

M2 DEFINITIONS EXPLICIT TAGS ::= BEGIN
 IMPORTS T1 FROM M1;

 T3 ::= T2{T1}

 T2{X} ::= SEQUENCE {
 a INTEGER,
 b X
}

END

Application of 9.8 implies that the tag for the component f1 of T3 (i.e. @T3.b.f1) will be implicitly tagged because the
tagging environment of the dummy parameter X, namely explicit tagging, does not affect the tagging of the components
of the actual parameter T1.

Consider the module M3:

M3 DEFINITIONS AUTOMATIC TAGS ::= BEGIN
 IMPORTS T1 FROM M1;

 T5 ::= T4{T1}

 T4{Y} ::= SEQUENCE {
 a INTEGER,
 b Y
}

END

Application of ITU-T Rec. X.680 | ISO/IEC 8824-1, 31.2.7, implies that the tag for the component b of T5 (i.e. @T5.b)
will be explicitly tagged because the dummy parameter Y is always explicitly tagged, hence T5 is equivalent to:

ISO/IEC 8824-4:2008 (E)

8 ITU-T Rec. X.683 (11/2008)

T5 ::= SEQUENCE {
 a [0] IMPLICIT INTEGER,
 b [1] EXPLICIT SET {
 f1 [0] INTEGER,
 f2 [1] BOOLEAN
 }
}

while T3 is equivalent to:

T3 ::= SEQUENCE {
 a INTEGER,
 b SET {
 f1 [0] IMPLICIT INTEGER,
 f2 [1] IMPLICIT BOOLEAN
 }
}

10 Abstract syntax parameters
10.1 ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex B, provides the ABSTRACT-SYNTAX information object class and
recommends its use to define abstract syntaxes, using as an example an abstract syntax defined as the set of values of a
single ASN.1 type which was not parameterized at the outer level.

10.2 Where the ASN.1 type used to define the abstract syntax is parameterized, some parameters may be supplied
as actual parameters when the abstract syntax is defined, while others may be left as parameters of the abstract syntax
itself.

Example
If a parameterized type has been defined called YYY-PDU with two dummy references (the first an object set of some
defined object class, and the second an integer value for a bound, say), then:

yyy-Abstract-Syntax { INTEGER:bound } ABSTRACT-SYNTAX ::=
 { YYY-PDU { {ValidObjects} , bound } IDENTIFIED BY {yyy 5} }

defines a parameterized abstract syntax in which the object set has been resolved, but bound remains as a parameter of
the abstract syntax.

An abstract syntax parameter shall be used:
a) directly or indirectly in the context of a constraint;
b) directly or indirectly as actual parameters that eventually are used in the context of a constraint.

NOTE – See the example in A.2, and the example in ITU-T Rec. X.680 | ISO/IEC 8824-1, H.5.

10.3 A constraint whose value set depends on one or more parameters of the abstract syntax is a variable
constraint. Such constraints are determined after the definition of the abstract syntax (perhaps by International
Standardized Profiles or in Protocol Implementation Conformance Statements).

NOTE – If somewhere in the chain of definitions involved in the specification of the constraint values a parameter of the abstract
syntax appears, the constraint is a variable constraint. It is a variable constraint even if the value set of the resulting constraint is
independent of the actual value of the parameter of the abstract syntax.

Example
The value of (((1..3) EXCEPT a) UNION (1 .. 3)) is always 1..3 no matter what the value of a is, nonetheless it
is still a variable constraint if a is a parameter of the abstract syntax.

10.4 Formally, a variable constraint does not constrain the set of values in the abstract syntax.
NOTE – It is strongly recommended that constraints that are expected to remain as variable constraints in an abstract syntax have
an exception specification using the notation provided by ITU-T Rec. X.680 | ISO/IEC 8824-1, 53.4.

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 9

Annex A

Examples
(This annex does not form an integral part of this Recommendation | International Standard)

A.1 Example of the use of a parameterized type definition

Suppose that a protocol designer frequently needs to carry an authenticator with one or more of the fields of the
protocol. This will be carried as a BIT STRING, alongside the field. Without parameterization, Authenticator would
need to be defined as a BIT STRING, then authenticator would need to be added wherever it was to appear, with
text to identify what it applied to. Alternatively, the designer could adopt the discipline of turning any field that has an
authenticator into a SEQUENCE of that field and authenticator. The parameterization mechanism provides a
convenient short-hand for doing this task.

First we define the parameterized type SIGNED{}:

SIGNED { ToBeSigned } ::= SEQUENCE
{
 authenticated-data ToBeSigned,
 authenticator BIT STRING
}

then, in the body of the protocol, the notation (for example):

SIGNED { OrderInformation }

is a type notation standing for:

SEQUENCE
{
 authenticated-data OrderInformation,
 authenticator BIT STRING
}

Suppose further that for some fields, the sender is to have the option of adding the authenticator or not. This could be
achieved by making the BIT STRING optional, but a more elegant solution (less bits on the line) would be to define
another parameterized type:

OPTIONALLY-SIGNED {ToBeSigned} ::= CHOICE
{
 unsigned-data [0] ToBeSigned,
 signed-data [1] SIGNED { ToBeSigned }
}

NOTE – The tagging in the CHOICE is not necessary if the writer ensures that none of the uses of the parameterized type produce
an actual argument which is a BIT STRING (the type of SIGNED), but is useful in preventing errors in other parts of the
specification.

A.2 Example of use of parameterized definitions together with an information object class

Use information object classes to collect all the parameters for an abstract syntax. In that way the number of parameters
for an abstract syntax can be reduced to one which is an instance of the collection class. The "InformationFromObject"
production can be used to extract information from the parameter object.

Example
-- An instance of this class contains all the parameters for the abstract
-- syntax, Message-PDU.

MESSAGE-PARAMETERS ::= CLASS {
 &maximum-priority-level INTEGER,
 &maximum-message-buffer-size INTEGER,
 &maximum-reference-buffer-size INTEGER
}
WITH SYNTAX {
 THE MAXIMUM PRIORITY LEVEL IS &maximum-priority-level
 THE MAXIMUM MESSAGE BUFFER SIZE IS &maximum-message-buffer-size
 THE MAXIMUM REFERENCE BUFFER SIZE IS &maximum-reference-buffer-size
}

ISO/IEC 8824-4:2008 (E)

10 ITU-T Rec. X.683 (11/2008)

 -- The "ValueFromObject" production is used to extract values
 -- from the abstract syntax parameter, "param". The values can be
 -- used only in constraints. In addition the parameter is passed
 -- through to another parameterized type.

Message-PDU { MESSAGE-PARAMETERS : param } ::= SEQUENCE {
priority-level INTEGER (0..param.&maximum-priority-level),
message BMPString (SIZE (0..param.&maximum-message-buffer-size)),
reference Reference { param }
}

Reference { MESSAGE-PARAMETERS : param } ::=
 SEQUENCE OF IA5String (SIZE (0..param.&maximum-reference-buffer-size))

 -- Definition of a parameterized abstract syntax information object.
 -- The abstract syntax parameter is used only in constraints.

message-Abstract-Syntax { MESSAGE-PARAMETERS : param }
ABSTRACT-SYNTAX ::=
{
 Message-PDU { param }
 IDENTIFIED BY { joint-iso-ccitt asn1(1) examples(123) 0 }
}

The class MESSAGE-PARAMETERS and the parameterized abstract syntax object, message-Abstract-Syntax, are used
as follows:

-- This instance of MESSAGE-PARAMETERS defines parameter values
 -- for the abstract syntax.

my-message-parameters MESSAGE-PARAMETERS ::= {
 THE MAXIMUM PRIORITY LEVEL IS 10
 THE MAXIMUM MESSAGE BUFFER SIZE IS 2000
 THE MAXIMUM REFERENCE BUFFER SIZE IS 100
}

-- The abstract syntax can now be defined with all variable constraints specified.

my-message-Abstract-Syntax ABSTRACT-SYNTAX ::=
 message-Abstract-Syntax { my-message-parameters }

A.3 Example of parameterized type definition that is finite

When specifying a parameterized type which represents a generic list, specify the type so that the resulting ASN.1
notation is finite. For example, we may specify:

List1 { ElementTypeParam } ::= SEQUENCE {
 elem ElementTypeParam,
 next List1 { ElementTypeParam } OPTIONAL
}

which is finite, for when it is used:

IntegerList1 ::= List1 { INTEGER }

the resulting ASN.1 notation is as you would normally define it:

IntegerList1 ::= SEQUENCE {
 elem INTEGER,
 next IntegerList1 OPTIONAL
}

Contrast this to the following:

List2 { ElementTypeParam } ::= SEQUENCE {
 elem ElementTypeParam,
 next List2 { [0] ElementTypeParam } OPTIONAL
}

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 11

IntegerList2 ::= List2 { INTEGER }

where the resulting ASN.1 notation is infinite:

IntegerList2 ::= SEQUENCE {
elem INTEGER,
next SEQUENCE {
 elem [0] INTEGER,
 next SEQUENCE {
 elem [0][0] INTEGER,
 next SEQUENCE {
 elem [0][0][0] INTEGER,
 next SEQUENCE {

 -- and so on
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
} OPTIONAL
 }

A.4 Example of a parameterized value definition

If a parameterized string value is defined as follows:

genericBirthdayGreeting { IA5String : name } IA5String ::= { "Happy birthday, ",
name, "!!" }

then the following two string values are the same:

greeting1 IA5String ::= genericBirthdayGreeting { "John" }
greeting2 IA5String ::= "Happy birthday, John!!"

A.5 Example of a parameterized value set definition

If two parameterized value sets are defined as follows:

QuestList1 {IA5String : extraQuest} IA5String ::= { "Jack" | "John" | extraQuest }
QuestList2 {IA5String : ExtraQuests} IA5String ::= { "Jack" | "John" |
ExtraQuests }

then the following value sets denote the same value set:

SetOfQuests1 IA5String ::= { QuestList1 { "Jill" } }
SetOfQuests2 IA5String ::= { QuestList2 { {"Jill"} } }
SetOfQuests3 IA5String ::= { "Jack" | "John" | "Jill" }

and the following value sets denote the same value set:

SetOfQuests4 IA5String ::= { QuestList2 { {"Jill" | "Mary"} } }
SetOfQuests5 IA5String ::= { "Jack" | "John" | "Jill" | "Mary"}

Notice that a value set is always specified within braces, even when it is a parameterized value set reference. By
omitting the braces from a reference to an "identifier" that was created in a value set assignment or from a reference to a
"ParameterizedValueSetType" the notation is that of a "Type", not a value set.

A.6 Example of a parameterized class definition

The following parameterized class can be used to define error classes which contain error codes of different types. Note
that the ErrorCodeType parameter is used only as a "DummyGovernor" for the ValidErrorCodes parameter:

GENERIC-ERROR { ErrorCodeType, ErrorCodeType : ValidErrorCodes } ::= CLASS {
 &errorCode ValidErrorCodes
}
WITH SYNTAX {
 CODE &errorCode
}

The parameterized class definition can be used as follows to define different classes which share some characteristics
like the same defined syntax:

ISO/IEC 8824-4:2008 (E)

12 ITU-T Rec. X.683 (11/2008)

ERROR-1 ::= GENERIC-ERROR { INTEGER, { 1 | 2 | 3 } }

ERROR-2 ::= GENERIC-ERROR { ErrorCodeString, { StringErrorCodes } }

ERROR-3 ::= GENERIC-ERROR { EnumeratedErrorCode, { fatal | error } }

ErrorCodeString ::= IA5String (SIZE (4))

StringErrorCodes ErrorCodeString ::= { "E001" | "E002" | "E003" }

EnumeratedErrorCode ::= ENUMERATED { fatal, error, warning }

The defined classes can then be used as follows:

My-Errors ERROR-2 ::= { { CODE "E001" } | { CODE "E002" } }

fatalError ERROR-3 ::= { CODE fatal }

A.7 Example of a parameterized object set definition

The parameterized object set definition AllTypes forms an object set which contains a basic set of objects,
BaseTypes, and a set of additional objects which are supplied as a parameter, AdditionalTypes:

AllTypes { TYPE-IDENTIFIER : AdditionalTypes } TYPE-IDENTIFIER ::= { BaseTypes |
AdditionalTypes }

BaseTypes TYPE-IDENTIFIER ::= {
 { BasicType-1 IDENTIFIED BY basic-type-obj-id-value-1 } |
 { BasicType-2 IDENTIFIED BY basic-type-obj-id-value-2 } |
 { BasicType-3 IDENTIFIED BY basic-type-obj-id-value-3 }
}

The parameterized object set definition, AllTypes, can be used as follows:

My-All-Types TYPE-IDENTIFIER ::= { AllTypes { {
 { My-Type-1 IDENTIFIED BY my-obj-id-value-1 } |
 { My-Type-2 IDENTIFIED BY my-obj-id-value-2 } |
 { My-Type-3 IDENTIFIED BY my-obj-id-value-3 }
} } }

A.8 Example of a parameterized object set definition

The type defined in ITU-T Rec. X.682 | ISO/IEC 8824-3, A.4, can be used in a parameterized abstract syntax definition
as follows:

-- PossibleBodyTypes is a parameter for an abstract syntax.

message-abstract-syntax { MHS-BODY-CLASS : PossibleBodyTypes } ABSTRACT-SYNTAX ::=
{

 INSTANCE OF MHS-BODY-CLASS ({PossibleBodyTypes})
 IDENTIFIED BY { joint-iso-itu asn1(1) examples(1) 123 }
}

-- This object set lists all the possible pairs of values and type-ids
 -- for the instance-of type. The object set is used as an actual parameter
 -- for the parameterized abstract syntax definition.

My-Body-Types MHS-BODY-CLASS ::= {
 { My-First-Type IDENTIFIED BY my-first-obj-id } |
 { My-Second-Type IDENTIFIED BY my-second-obj-id }
}

my-message-abstract-syntax ABSTRACT-SYNTAX ::=
 message-abstract-syntax { { My-Body-Types } }

 ISO/IEC 8824-4:2008 (E)

 ITU-T Rec. X.683 (11/2008) 13

Annex B

Summary of the notation
(This annex does not form an integral part of this Recommendation | International Standard)

The following lexical items are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and used in this Recommendation |
International Standard:

 typereference
valuereference
"::="
"{"
"}"
","

The following lexical items are defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 and used in this Recommendation |
International Standard:

 objectclassreference
objectreference
objectsetreference

The following productions are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and used in this Recommendation |
International Standard:

 DefinedType
DefinedValue
Reference
Type
Value
ValueSet

The following productions are defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 and used in this Recommendation |
International Standard:

 DefinedObjectClass
DefinedObject
DefinedObjectSet
ObjectClass
Object
ObjectSet

The following productions are defined in this Recommendation | International Standard:

ParameterizedAssignment ::=
 ParameterizedTypeAssignment
| ParameterizedValueAssignment
| ParameterizedValueSetTypeAssignment
| ParameterizedObjectClassAssignment
| ParameterizedObjectAssignment
| ParameterizedObjectSetAssignment

ParameterizedTypeAssignment ::=
 typereference ParameterList "::=" Type

ParameterizedValueAssignment ::=
 valuereference ParameterList Type "::=" Value

ParameterizedValueSetTypeAssignment ::=
 typereference ParameterList Type "::=" ValueSet

ParameterizedObjectClassAssignment ::=
 objectclassreference ParameterList "::=" ObjectClass

ISO/IEC 8824-4:2008 (E)

14 ITU-T Rec. X.683 (11/2008)

ParameterizedObjectAssignment ::=
 objectreference ParameterList DefinedObjectClass "::=" Object

ParameterizedObjectSetAssignment ::=
 objectsetreference ParameterList DefinedObjectClass "::=" ObjectSet

ParameterList ::= "{" Parameter "," + "}"

Parameter ::= ParamGovernor ":" DummyReference | DummyReference

ParamGovernor ::= Governor | DummyGovernor

Governor ::= Type | DefinedObjectClass

DummyGovernor ::= DummyReference

DummyReference ::= Reference

ParameterizedReference ::=
 Reference | Reference "{" "}"

SimpleDefinedType ::= ExternalTypeReference | typereference

SimpleDefinedValue ::= ExternalValueReference | valuereference

ParameterizedType ::= SimpleDefinedType ActualParameterList

ParameterizedValue ::= SimpleDefinedValue ActualParameterList

ParameterizedValueSetType ::= SimpleDefinedType ActualParameterList

ParameterizedObjectClass ::= DefinedObjectClass ActualParameterList

ParameterizedObjectSet ::= DefinedObjectSet ActualParameterList

ParameterizedObject ::= DefinedObject ActualParameterList

ActualParameterList ::= "{" ActualParameter "," + "}"

ActualParameter ::= Type | Value | ValueSet | DefinedObjectClass | Object | ObjectSet

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T RECOMMENDATION X.683 (11/2008) – Information technology – Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards

	3 Definitions
	3.1 Specification of basic notation
	3.2 Information object specification
	3.3 Constraint specification
	3.4 Additional definitions

	4 Abbreviations
	5 Convention
	6 Notation
	6.1 Assignments
	6.2 Parameterized definitions
	6.3 Symbols

	7 ASN.1 lexical items
	8 Parameterized assignments
	9 Referencing parameterized definitions
	10 Abstract syntax parameters
	Annex A
	Examples
	A.1 Example of the use of a parameterized type definition
	A.2 Example of use of parameterized definitions together with an information object class
	A.3 Example of parameterized type definition that is finite
	A.4 Example of a parameterized value definition
	A.5 Example of a parameterized value set definition
	A.6 Example of a parameterized class definition
	A.7 Example of a parameterized object set definition
	A.8 Example of a parameterized object set definition

	Annex B
	Summary of the notation

