International Telecommunication Union

ITU-T X.681

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — Abstract Syntax
Notation One (ASN.1): Information object
specification

ITU-T Recommendation X.681

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 8824-2
ITU-T RECOMMENDATION X.681

Information technology —
Abstract Syntax Notation One (ASN.1):
Information object specification

Summary

This Recommendation | International Standard provides the ASN.1 notation which allows information object classes as
well as individual information objects and sets thereof to be defined and given reference names. An information object
class defines the form of a conceptual table (an information object set) with one column for each field in the
information abject class, and with each complete row defining an information object.

Sour ce

ITU-T Recommendation X.681 was prepared by ITU-T Study Group 17 (2009-2012) and approved on 13 November
2008. Anidentical text is also published as | SO/IEC 8824-2.

ITU-T Rec. X.681 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T X.681 (11/2008)

CONTENTS

Page
0o o o) o SRS iv
1 1S oo o TP UP PP 1
2 N0 a0 YN = 1= = 1= PSPPSR 1
2.1 ldentica Recommendations | International Standards..........cccoevveeverereeierere e 1
3 D=, T 0] OSSP 1
3.1 Specification Of DASIC NOLALIONco.eiiiie e sae 1
I AN 00 01> 1 v T 01 = o 1=) o= 1 o o TR 1
3.3 Parameterization of ASN.L SPECITICAIONcceeuereeeeesese e nne e 1
00 0 X (o] 1o T= I L= T 1 13RS 2
F N o o= YT o] 0TSSP 3
5 (@00] 1Y/ 011 To o [PPSR 3
6 N0 = o] o ST PSRRI 3
B.1 ASSIONIMENES. ...ttt ettt ettt b et s bt h bt e s e bt e e R e bR e R £ R R R Rt R R AR R b et b b ne e s 3
L 1Y/ o= TSP U R URTUR 3
LT Y 11 =~ ST 4
O 1 0 1= 01 £SO PP RRPR 4
7 F NS N 1o R = 0 1SS 4
7.1 Information ObjECt ClasS FEFEIENCES..........oiiiiieirieeee ettt 4
7.2 INfOrmMation ODJECE FEFEIENCEScueeeceiece et st e e s ae e e e e tesresrenne e 4
7.3 Information ObjECt SEt FEfEIENCES.cceiiee e e resre e 4
T4 TYPETIEld FEfEIENCES.oe e bbbttt b 4
75 VaAlUETIE A FEFEIENCES ...t ettt b e bbb e e b b e nae e 5
7.6 VaAlUE SEL FIEld FEFEIENCES.oveeceeeeee ettt ettt e s seenes 5
FATAR® o 1= vl 1= o I (= = 0= S 5
7.8 ODject SEt fiEld rEfEIENCES.....c.eiieeeee bbbttt e s 5
A0S VL o (o TR 5
7.10 Additional KEYWOITS.cceiuiiieiieeieiececte sttt e e e te et e s aesreese e e esaese e besaesbesaeeneeneenseneeseesrenrens 5
8 RefErenCing AefiNItIONSoii i e et r e resre e e e e e ne e eesrenrennn 5
9 Information object class definition and 8SSIGNMENTccoi i 6
O Y o = G I PSSR 10
11 Information object definition and aSSIGNMENL..........cccieeirieiere e e e e e e ens 12
12 Information object set definition and aSSIgNMENT.........cccoieririere e e s ens 14
G T N o o= =0 = o S 15
14 Notation for the 0bject Class flald tYPe......o.e i s e 16
15 INfOrMEtioN frOM OBJECES.......ecieiie e e e st e e se et e s beereere e e eneeseenteseesreern 18
Annex A —The TYPE-IDENTIFIER information ODJECt ClaSS........cccvviviiirerinecereese st 21
ANnex B — Abstract Syntax defiNitiONS.........ccoeieiriiiririee bbb 22
ANNEX C — The INSEANCE-Of 1Y ettt ettt st bbbt b he e ae e e e e e seesbesbeeaeese e e anbeseesbeseeene 23
F N 10 I - 1 4o =SSP 25
D.1 Example usage of smplified OPERATION ClaSS......ccccoiviirieieririciereereesesee e seeseeseesse e sneenes 25
D.2 Example usage of "ObjeCtClassFiel ATYPE"ccciiiirereeee ettt 26
D.3 Illustrate usage of ObjECtS aNd ODJECE SELSccueiuiiiriieieie ettt et s 26
Annex E — Tutorial annex on the ASN.1 model of object SEt EXIENSIONcc.eceeicieriece e 28
ANNeX F — SUMMary Of the NOELION.ccoiiiire e s sr e s sae e e ne e tesrenrenns 29

ITU-T Rec. X.681 (11/2008) iii

I ntroduction

An application designer frequently needs to design a protocol which will work with any of a number of instances of
some class of information objects, where instances of the class may be defined by a variety of other bodies, and may be
added to over time. Examples of such information object classes are the "operations' of Remote Operations Service
(ROS) and the "attributes' of the OSI Directory.

This Recommendation | International Standard provides notation which allows information object classes as well as
individual information objects and information object sets thereof to be defined and given reference names.

An information object class is characterized by the kinds of fields possessed by itsinstances. A field may contain:
— anarbitrary type (atype field); or
— asingle value of a specified type (afixed-type value field); or
— asinglevalue of atype specified in a (named) type field (a variable-type value field);
— anon-empty set of values of a specified type (afixed-type value set field); or
— anon-empty set of values of atype specified in a (named) type field (a variable-type value set field); or
— asingle information object from a specified information object class (an object field);
— aninformation object set from a specified information object class (an object set field).

A fixed-type value field of an information object class may be selected to provide unique identification of information
objects in that class. This is caled the identifier field for that class. Vaues of the identifier field, if supplied, are
reguired to be unique within any information object set that is defined for that class. They may, but need not, serve to
unambiguously identify information objects of that class within some broader scope, particularly by the use of object
identifier asthe type of the identifier field.

An information object class is defined by specifying:
— the names of the fields;

— for each field, the form of that field (type, fixed-type value, variable-type value, fixed-type value set,
variable-type value set, object, or object set);

— optionality and default settings of fields;
— whichfidd, if any, isthe identifier field.

Anindividua information object in the class is defined by providing the necessary information for each field.

The notation defined herein permits an ASN.1 type to be specified by reference to a field of some information object
class — the object class field type. In ITU-T Rec. X.682 | ISO/IEC 8824-3, notation is provided to enable this type to be
restricted by reference to some specific information object set.

It can be useful to consider the definition of an information object class as defining the form of an underlying
conceptual table (the associated table) with one column for each field, and with a completed row defining an
information object. The form of the table (determined by the information object class specification) determines the sort
of information to be collected and used to complete some protocol specification. The underlying conceptual table
provides the link between those specifying information objects of that class and the protocol which needs that
information to complete its specification. Typically, the actua information object set used to complete a particular
protocol specification will be a parameter of that protocol (see ITU-T Rec. X.683 | ISO/IEC 8824-4).

The "InformationFromObjects' notation referencing a specific object or object set (probably a parameter) can be used
to extract information from cells of conceptua tables.

This Recommendation | International Standard:

— Specifies anotation for defining an information object class, and for identifying it with a reference name
(seeclause 9).

— Specifies a notation by which the definer of an information object class can provide a defined syntax for
the definition of information objects of that class; a default notation is provided for classes for which no
defined syntax has been defined (see clause 10).

— Specifies a notation for defining an information object, and for assigning it to a reference name
(see clause 11), and provides analogous notation for an object set (see clause 12).

— Definesthe "associated table" for an object or object set of a class (see clause 13).

iv ITU-T Rec. X.681 (11/2008)

— Specifies notation for the object class field type and its values (see clause 14).

NOTE — These constructs enable an ASN.1 type to be specified using a named field of a named information
object class. Constraints on that type to restrict it to values related to a specific information object set appear in
ITU-T Rec. X.682 | ISO/IEC 8824-3.

— Specifies notation for extracting information from objects (see clause 15).

The set of information objects used in defining an object set may be partialy or entirely unknown at the time of
definition of an ASN.1 specification. Such cases occur, for example, in network management where the set of managed
objects varies while the network manager is executing. This Recommendation | International Standard specifies the
rules for inclusion of an extension marker in the definition of object sets to signal to implementors the intention of the
designer that the contents of the object set is not fully defined in the ASN.1 specification. When an object set is defined
with an extension marker, the implementor must provide means, possibly outside the scope of ASN.1, for dynamically
adding objects to the object set and removing previously added objects from the object set.

Annex A, which is an integral part of this Recommendation | International Standard, specifies the information object
class whose object class reference is TYPE- | DENTI FI ER. This is the simplest useful class, with just two fields, an
identifier field of type object identifier, and a single type field which defines the ASN.1 type for carrying all
information concerning any particular object in the class. It is defined herein because of the widespread use of
information objects of this form.

Annex B, which is an integral part of this Recommendation | International Standard, specifies the notation for defining
an abstract syntax (composed of the set of values of a single ASN.1 type) by the definition of an appropriate
information object.

Annex C, which is an integral part of this Recommendation | International Standard, specifies the notation for the
instance-of type (the | NSTANCE OF notation).

Annex D, which is not an integral part of this Recommendation | International Standard, provides examples on how to
use the notation described in this Recommendation | International Standard.

Annex E, which is not an integral part of this Recommendation | International Standard, provides a summary of the
ASN.1 model of object set extension.

Annex F, which is not an integral part of this Recommendation | International Standard, provides a summary of the
notation defined herein.

ITU-T Rec. X.681 (11/2008) v

| SO/IEC 8824-2:2008 (E)

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology —
Abstract Syntax Notation One (ASN.1):
Information object specification

1 Scope

This Recommendation | International Standard is part of Abstract Syntax Notation One (ASN.1) and provides notation
for specifying information object classes, information objects and information object sets.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | I nternational Standards

— ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Specification of basic notation
This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

3.2 Constraint specification

This Recommendation | International Standard uses the following term defined in ITU-T Rec. X.682 | ISO/IEC 8824-3:
— table constraint.

3.3 Parameterization of ASN.1 specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.683 | ISO/IEC 8824-
4.

a) parameterized type;
b) parameterized value.

ITU-T Rec. X.681 (11/2008) 1

| SO/IEC 8824-2:2008 (E)

34 Additional definitions

34.1 associated table: (For some information object or information object set) an abstract table, derivable from
the object or object set by flattening the hierarchical structure resulting from the presence of link fields (see 3.4.15).

NOTE — An associated table can be used to determine the precise nature of some constraint (see ITU-T Rec. X.682 |
| SO/IEC 8824-3) which has been applied using an object set.

34.2 default syntax: The notation which shall be used for defining information objects of classes whose definers
have not provided a defined syntax (see example 11.10).

34.3 defined syntax: A notation, provided by the definer of a class, which allows information objects of that class
to be defined in a user-friendly manner.
NOTE — For example, the defined syntax for the class OPERATI ON might allow instances of the class to be defined by the word

ARGUMENT followed by &Ar gunent Type, then the word RESULT followed by the &Resul t Type, then the word CODE
followed by &oper at i onCode (see example 11.11).

344 extensible object set: An object set with an extension marker or which has been defined using set arithmetic
with object setsthat are extensible.

345 field: A component of an information object class. Each field is a type field, a fixed-type value field, a
variable-type value field, a fixed-type value set field, a variable-type value set field, an information object field or an
information object set field.

34.6 field name: A name which identifies a field of some class; either the class which specifies the field directly,
in which case the name is a primitive field name, or a class which has a chain of link fields to that in which the field is
actually specified (see 9.13 and 9.14).

347 governing (class); governor: An information object class definition or reference which affects the
interpretation of a part of the ASN.1 syntax, requiring it to reference or to specify information objects of the governing
class.

34.8 identifier field: A fixed-type value field of a class, selected to provide unique identification of information
objects in that class. Values of the identifier field, if supplied, are required to be unambiguous within any information
object set that is defined for that class. They may, but need not, serve to unambiguously identify information objects of
that class within some broader scope.
NOTE 1 — The identifier field has a fixed ASN.1 type, and values of that type can be carried in protocol to identify information
objects within the class.

NOTE 2 — The scope within which the identifier is unambiguous is that of an information object set. It could, however, also be
made unambiguous within any given abstract syntax, or within an entire application context, or could even be global across all
classes and al application contexts by use of the object identifier type for the identifier field.

34.9 information aobject: An instance of some information object class, being composed of a set of fields which
conform to the field specifications of the class.
NOTE — For example, one specific instance of the information object class OPERATI ON (mentioned in the example in 3.4.10)

might bei nver t Mat ri x, which has an &Ar gunent Type field containing the type Mat ri x, a &Resul t Type field also containing
thetype Mat ri x, and an &oper at i onCode field containing the value 7 (see example in 10.13).

3.4.10 information object class (class): A set of fields, forming a template for the definition of a potentially
unbounded collection of information objects, the instances of the class.

NOTE - For example, an information object class OPERATI ON might be defined to correspond to the oper at i on concept of
Remote Operations Service (ROS). Each of the various named field specifications would then correspond to some aspect which
can vary from one operation instance to another. Thus, there could be &Ar gunent Type, &Resul t Type, and &oper at i onCode
fields, the first two specifying type fields and the third specifying avalue field.

3.4.11 information object field: A field which contains an information object of some specified class.

3.4.12 information object set: A non-empty set of information objects, all defined using the same information
object class reference name.

NOTE — For example, one information object set, Mat ri xQper at i ons, of the class OPERATI ON (used in the example in 3.4.10)
might contain invertMatrix (mentioned in 3.4.9) together with other related operations, such as addMatri ces,
mul ti pl yMatri ces, etc. Such an object set might be used in defining an abstract syntax that makes provision for the invocation
and result reporting of all of these operations (see example in 12.11).

3.4.13 information object set field: A field which contains an information object set of some specified class.

3.4.14 ingtance-of type: A type, defined by referencing an information object class which associates object
identifiers with types.

3.4.15 link field: An object or object set field.

2 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

34.16 object classfield type: A type specified by reference to some field of an information object class. In ITU-T
Rec. X.682 | ISO/IEC 8824-3, notation is provided to enable this type to be restricted by reference to an information
object set of the class.

3.4.17 primitive field name: The name specified directly in an information object class definition without use of a
link field.

3.4.18 recursive definition (of a reference name): A reference name for which resolution of the reference name,
or of the governor of the definition of the reference name, requires resolution of the original reference name.

NOTE — Recursive definition of an information object class is permitted. Recursive definition of an information object or an
information object set is forbidden by 11.2 and 12.2 respectively.

34.19 recursiveingtantiation (of a parameterized reference name): An instantiation of a reference name, where
resolution of the actual parameters requires resolution of the original reference name.

NOTE - Recursive instantiation of an information object class (including an encoding structure) is permitted. Recursive
instantiation of an information object or an information object set isforbidden by 11.2 and 12.2 respectively.

3.4.20 typefield: A field which contains an arbitrary type.

3.4.21 value fidd: A field which contains a value. Such a field is either of fixed-type or of variable-type. In the
former case the type of the valueis fixed by the field specification. In the latter case the type of the value is contained in
some (specific) type field of the same information object.

3.4.22 value set field: A field which contains a non-empty set of values of some type. Such a field is either of
fixed-type or of variable-type. In the former case the type of the values is fixed by the field specification. In the latter
case the type of the values is contained in some (specific) type field of the same information object.

NOTE — The set of valuesin avalue set field for an information object constitutes a subtype of the specified type.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviation applies:
ASN.1 Abstract Syntax Notation One

5 Convention

This Recommendation | International Standard employs the notational convention defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 5.

6 Notation

This clause summarizes the notation defined in this Recommendation | Internationa Standard.

6.1 Assignments

The following notations which can be used as aternatives for "Assignment" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
clause 13) are defined in this Recommendation | International Standard:

— ObjectClassAssignment (see 9.1);
— ObjectAssignment (see 11.1);
— ObjectSetAssignment (see 12.1).

6.2 Types

6.2.1 The following notations which can be used as aternatives for "BuiltinType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 17.2) are defined in this Recommendation | International Standard:

— ObjectClassFieldType (see 14.1);
— InstanceOfType (see Annex C).

6.2.2 The following notations which can be used as alternatives for "ReferencedType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 17.3) are defined in this Recommendation | International Standard:

ITU-T Rec. X.681 (11/2008) 3

| SO/IEC 8824-2:2008 (E)

— TypeFromObject (see clause 15);
— VaueSetFromObjects (see clause 15).

6.3 Values

6.3.1 The following notation which can be used as an alternative for "Value' (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 17.7) is defined in this Recommendation | International Standard:

— ObjectClassFieldVaue (see 14.6);

6.3.2 The following notation which can be used as an aternative for "BuiltinvValue" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 17.9) is defined in this Recommendation | International Standard:

— InstanceOfVaue (see Annex C).

6.3.3 The following notation which can be used as an alternative for "ReferencedValue" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 17.11) is defined in this Recommendation | International Standard:

— VaueFromObject (see clause 15).

6.4 Elements

6.4.1 The following notation which can be used as an dternative for "Elements' (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, 50.5) is defined in this Recommendation | International Standard:

— ObjectSetElements (see 12.10).

7 ASN.1 lexical items

In addition to the lexical items specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 12, this Recommendation |
International Standard makes use of the lexical items specified in the following subclauses. The general rules applicable
to these lexical items are as defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1. These new lexical items make use of
the ASN.1 character set, as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 11, and in addition the character
ampersand ("&").

NOTE — The Notein ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.1, also appliesto the lexical items specified in 7.1 to 7.9 below.

7.1 Information object classreferences
Name of lexical item — objectclassreference

An "objectclassreference” shall consist of a sequence of characters as specified for a "typereference” in ITU-T
Rec. X.680 | ISO/IEC 8824-1, 12.2, except that no lower-case letters shall be included.

7.2 Information object references
Name of lexical item — objectreference

An "objectreference” shall consist of a sequence of characters as specified for a"valuereference" in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 12.4.

7.3 Information object set references
Name of lexical item — objectsetreference

An "objectsetreference” shall consist of a sequence of characters as specified for a "typereference” in ITU-T
Rec. X.680 | ISO/IEC 8824-1, 12.2.

7.4 Typefield references
Name of lexical item — typefieldreference

A "typefieldreference’ shall consist of an ampersand ("&") immediately followed by a sequence of characters as
specified for a "typereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.2.

4 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

75 Valuefield references
Name of lexical item — valuefieldreference

A "valuefieldreference” shall consist of an ampersand ("&") immediately followed by a sequence of characters as
specified for a "valuereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.4.

7.6 Value set field references
Name of lexical item — valuesetfieldreference

A "valuesetfieldreference" shall consist of an ampersand ("&") immediately followed by a sequence of characters as
specified for a "typereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.2.

7.7 Object field references
Name of lexical item — objectfieldreference

An "objectfieldreference” shall consist of an ampersand ("&") immediately followed by a sequence of characters as
specified for an "objectreference” in 7.2.

7.8 Object set field references
Name of lexical item — objectsetfieldreference

An "objectsetfieldreference” shall consist of an ampersand ("&") immediately followed by a sequence of characters as
specified for an "objectsetreference” in 7.3.

7.9 Word
Name of lexical item —word

A "word" shall consist of a sequence of characters as specified for a "typereference' in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 12.2.1, except that no lower-case letters or digits shall be included.

7.10 Additional keywords

The names CLASS, | NSTANCE, SYNTAX and UNI QUE are listed in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.38, as
reserved words.

8 Referencing definitions
8.1 The constructs:

DefinedObjectClass::=
Exter nalObj ectClassReference
| objectclassreference
| UsefulObjectClassReference

DefinedObject ::=
ExternalObjectReference
| objectreference

DefinedObjectSet ::=
Exter nalObj ect SetReference
| objectsetreference

are used to reference class, information object, and information object set definitions, respectively.

8.2 References to information objects and information object sets have a governing class. It is arequirement that
the referenced information object and the information objects in the referenced information object set shall be of the
governing class or one obtained from it by simple reference assignment. There is no equivaent of "value mappings"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, Annex C) specified for information objects, so the above statement means
that the information object or information object set shall be defined using the same information object class reference
as is used as the governor (or one obtained from it by simple reference assignment). Two identical (but textually

ITU-T Rec. X.681 (11/2008) 5

| SO/IEC 8824-2:2008 (E)

distinct) instances of the information object class notation do not identify the same information object class for the
purposes of this requirement.

8.3 Except as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 13.16, the "objectclassreference”,
"objectreference”, and "objectsetreference” alternatives shall only be used within the module in which a class or
information object or information object set isassigned (see 9.1, 11.1 and 12.1) to that reference.

The "Externa ObjectClassReference”, "ExternalObjectReference”, and "External ObjectSetReference” alternatives are
defined as follows:

ExternalObjectClassReference ::=
moduler eference

objectclassreference

ExternalObjectReference ::=
moduler eference

objectreference

ExternalObjectSetReference ::=
moduler eference

obj ectsetr eference

These alternatives shall not be used unless the corresponding "objectclassreference”, "objectreference”, or
"objectsetreference” has been assigned a class or information object or information object set (see 9.1, 11.1 and 12.1)
within the module (different from the referencing module) identified by the corresponding "modulereference”. It is that
class or information object or information object set respectively which is referenced.

8.4 The "Useful ObjectClassReference” alternative of "DefinedObjectClass' is defined as follows:
UsefulObjectClassReference ::= TYPE- | DENTI FI ER | ABSTRACT- SYNTAX

of which thefirst alternative is specified in Annex A, and the second in Annex B.

NOTE — The names TYPE- | DENTI FI ER and ABSTRACT- SYNTAX are listed in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.38, as
reserved words.

9 Information object class definition and assignment

9.1 The construct "ObjectClassAssignment” is used to assign an information object class to a reference name
("objectclassreference”). This construct is one of the aternatives for "Assignment” in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 13, and is defined as follows:

ObjectClassAssignment ::=
objectclassreference

ObjectClass
9.2 Theinformation object classis that defined by the construct "ObjectClass":
ObjectClass::=
DefinedObjectClass

| ObjectClassDefn
| Par ameterizedObjectClass

If the "ObjectClass’ isa:
a) "DefinedObjectClass’, then the class definition is the same as that of the classreferred to;
b) "ObjectClassDefn", then the class is defined as described in 9.3;

c) "ParameterizedObjectClass', then the class is defined as described in ITU-T Rec. X.683|
ISO/IEC 8824-4, 9.2.

9.3 Every classis ultimately defined by an "ObjectClassDefn":

6 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

ObjectClassDefn ::=
CLASS

"{" FieldSpec",* +"}"
WithSyntaxSpec?

WithSyntaxSpec ::= W TH SYNTAX SyntaxL ist

This notation allows the definer of a class to provide the named field specifications, each of which is a"FieldSpec”, as
defined in 9.4. Optionally, the definer can provide an information object definition syntax ("SyntaxList"), as defined
in 10.5. The definer of the class may also specify semantics associated with the definition of the class.

94 Each "FieldSpec" specifies and names one of the fields which shall or may be associated with instances of the
class:
FieldSpec ::=
TypeFieldSpec
FixedTypeValueFieldSpec

|

| VariableTypeValueFieldSpec

| FixedTypeValueSetFieldSpec

| VariableTypeValueSetFieldSpec
| ObjectFieldSpec

| ObjectSetFieldSpec

The various aternatives for "FieldSpec" are specified in the following subclauses.
9.5 A "TypeFieldSpec" specifies that the field is atype field (see 3.4.20):

TypeFieldSpec ::=
typefieldreference
TypeOptionalitySpec?

TypeOptionalitySpec ::= OPTI ONAL | DEFAULT Type

The name of the field is "typefieldreference”. If the "TypeOptionalitySpec” is absent, all information object definitions
for that class are required to include a specification of atype for that field. If OPTI ONAL is present, then the field can be
left undefined. If DEFAULT is present, then the following "Type" provides the default setting for the field if it is omitted
in adefinition.

9.6 A "FixedTypeVaueFieldSpec" specifiesthat the field is a fixed-type value field (see 3.4.21):

FixedTypeValueFieldSpec ::=
valuefieldr eference
Type
UNI QUE ?
ValueOptionalitySpec ?

ValueOptionalitySpec ::= OPTI ONAL | DEFAULT Value

The name of the field is "valuefieldreference”. The "Type" construct specifies the type of the value contained in the
field. The "VaueOptionalitySpec”, if present, specifies that the value may be omitted in an information object
definition, or, in the DEFAULT case, that omission produces the following "Value', which shall be of that type. The
presence of the keyword UNI QUE specifies that this field is an identifier field as defined in 3.4.8 (see dso ITU-T Rec.
X.682 | ISO/IEC 8824-3, 10.20). If the keyword is present, the "V aueOptionalitySpec" shall not be "DEFAULT Value".

9.7 Where avaue is assigned for an identifier field, that value is required to be unambiguous within any defined
information object set.

9.8 A "VariableTypeVaueFieldSpec" specifiesthat thefield is avariable-type value field (see 3.4.21):

VariableTypeValueFieldSpec ::=
valuefieldreference
FieldName
ValueOptionalitySpec?

The name of the field is "valuefieldreference”. The "FieldName" (see 9.14), which is relative to the class being
specified, shall be that of atype field; the type field which is either in the same information object as the value field, or
is linked by the chain of object fields whose references appear in the "FieldName", will contain the type of the value.
(All link fields whose field references appear in the "FieldName" shall be object fields.) The "VaueOptionalitySpec”, if

ITU-T Rec. X.681 (11/2008) 7

| SO/IEC 8824-2:2008 (E)

present, specifies that the value may be omitted in an information object definition, or, in the DEFAULT case, that
omission produces the following "Value'. The "VaueOptionalitySpec" shall be such that:

a) if the type field denoted by the "FieldName" has a "TypeOptionalitySpec" of OPTI ONAL, then the
"VaueOptionalitySpec" shall also be OPTI ONAL; and

b) if the "VaueOptionalitySpec" is "DEFAULT Value", then the type field denoted by the "FieldName" shall
have a"TypeOptionalitySpec" of "DEFAULT Type", and "Value" shall be avalue of that type.

9.9 A "FixedTypeVaueSetFieldSpec" specifies that the field is afixed-type value set field (see 3.4.22):

FixedTypeValueSetFieldSpec::=
valuesetfieldreference
Type
ValueSetOptionalitySpec ?

ValueSetOptionalitySpec ::= OPTI ONAL | DEFAULT ValueSet

NOTE — "ValueSet" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.6 and 16.7, and allows the explicit listing (in curly
braces) of the set of values, or the use of a"typereference” for a subtype of the "Type".

The name of the field is "valuesetfieldreference”. The "Type" construct specifies the type of the values contained in the
field. The "ValueSetOptionalitySpec”, if present, specifies that the field may be unspecified in information object
definition, or, in the DEFAULT case, that omission produces the following "ValueSet", which shall be a subtype of that

type.
9.10 A "VariableTypeVaueSetFieldSpec" specifiesthat the field is a variable-type value set field (see 3.4.22):

VariableTypeValueSetFieldSpec ::=
valuesetfieldreference
FiedldName
ValueSetOptionalitySpec?

The name of the field is "valuesetfieldreference’. The "FieldName" (see 9.14), which is relative to the class being
specified, shal be that of atype field; the type field which is either in the same information object as the value set field,
or is linked by the chain of object fields whose references appear in the "FieldName", will contain the type of the
values. (All link fields whose field references appear in the "FieldName" shall be object fields.) The
"ValueSetOptionalitySpec”, if present, specifies that the value set may be omitted in an information object definition,
or, in the DEFAULT case, that omission produces the following "ValueSet". The "VaueSetOptionalitySpec" shall be
such that:

a) if the type field denoted by the "FieldName" has a "TypeOptionalitySpec" of OPTI ONAL, then the
"VaueSetOptionalitySpec" shall al'so be OPTI ONAL; and

b) if the "VaueSetOptionalitySpec" is "DEFAULT ValueSet", then the type field denoted by the
"FieldName" shall have a" TypeOptionalitySpec" of "DEFAULT Type", and "ValueSet" shall be a subtype
of that type.

9.11 An "ObjectFieldSpec" specifiesthat thefield is an information object field (see 3.4.11):

ObjectFieldSpec ::=
objectfieldreference
DefinedObjectClass
ObjectOptionalitySpec ?

ObjectOptionalitySpec ::= OPTI ONAL | DEFAULT Object

The name of the field is "objectfieldreference”. The "DefinedObjectClass' references the class of the object contained
in the field (which may be the "ObjectClass’ currently being defined). The "ObjectOptionalitySpec”, if present,
specifies that the field may be unspecified in an information object definition, or, in the DEFAULT case, that omission
produces the following "Object" (see 11.3) which shall be of the "DefinedObjectClass".

9.12 An "ObjectSetFieldSpec" specifies that the field is an information object set field (see 3.4.13):

ObjectSetFieldSpec ::=
objectsetfieldreference
DefinedObjectClass
ObjectSetOptionalitySpec ?

ObjectSetOptionalitySpec ::= OPTI ONAL | DEFAULT ObjectSet

8 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

The name of the field is "objectsetfieldreference”’. The "DefinedObjectClass' references the class of the objects
contained in the field. The "ObjectSetOptionalitySpec”, if present, specifies that the field may be unspecified in an
information object definition, or, in the DEFAULT case, that omission produces the following "ObjectSet" (see 12.3), all
of whose objects shall be of "DefinedObjectClass’.

9.13 The construct "PrimitiveFieldName" is used to identify afield relative to the class containing its specification:

PrimitiveFieldName ::=
typefieldreference
| valuefieldreference
| valuesetfieldreference
| objectfieldreference
| objectsetfieldreference

The names of all of the fields specified in the class definition shall be distinct.

9.14 The construct "FieldName" is used to identify a field relative to some class which either contains the field
specification directly or which has a chain of link fields to the containing class. The chain is indicated by a list of
"PrimitiveFieldName"s separated by periods.

FieldName ::= PrimitiveFieldName" . " +
9.15 If thereis any chain (of length one or more) of specifications of link fields (see 3.4.15) such that:
a) thefirstisinthe classwhich isbeing defined and is not the field being defined; and
b) each subsequent oneisafield of the class used in defining the previous; and
c) thelastisdefined using the class which is being defined,
then at least one of the field specifications shall have an "ObjectOptionalitySpec" or "ObjectSetOptionalitySpec” (as
appropriate).

NOTE — This is to prevent recursive information object class definitions (which are in general permitted) with no finite
representation for an information object of that recursive class.

9.16 Examples

An expanded version of the information object class described informally as an example in 3.4.10 could be defined as
follows:

OPERATI ON :: = CLASS
{
&Ar gunent Type OPTI ONAL,
&Resul t Type OPTI ONAL,
&Errors ERROR OPTI ONAL,
&Li nked OPERATI ON OPTI ONAL,
&r esul t Ret ur ned BOOLEAN DEFAULT TRUE,
&oper at i onCode | NTEGER UNI QUE
}
ERROR ::= CLASS
{

&Par anet er Type OPTI ONAL,
&er r or Code I NTEGER UNI QUE

}
NOTE 1 — This example is based upon the operation and error concepts of the Remote Operations standard, but simplified for the
present purposes.
NOTE 2 — The fields specified for this class include two type fields (&Ar gument Type and &Resul t Type), two object set fields
(&Errors and &Li nked) and two value fields (& esul t Ret ur ned and &oper at i onCode) the latter being an identifier field.
NOTE 3 — Any information object set made up of OPERATI ONs must be such that no two objects in the set have the same value
for the &oper at i onCode field. (The same applies to object sets of ERRORS.)

NOTE 4 — The OPERATI ON information object class includes a chain of link fields as described in 9.15 above. The chain is of
length one and is formed by the &Li nked field, which is specified (recursively) by means of OPERATI ON. However, thisis quite
valid, because the field is designated OPTI ONAL (see 9.15).

NOTE 5 — Neither of these examples includes a "WithSyntaxSpec". However, corresponding examples which do are provided
in10.13.

ITU-T Rec. X.681 (11/2008) 9

| SO/IEC 8824-2:2008 (E)

10 Syntax List

101 It is frequently the case that a single specification defines an information object class, for which many other
independent specifications separately define information objects. It can be appropriate for the definer of the class to
provide a user-friendly notation for the definition of information objectsin that class.

10.2 This clause specifies a notation by which the specifier of an information object class defines the class-specific
defined syntax for the specification of information objects of that class.

10.3 The notation is the syntactic construct "SyntaxList", which occurs in the syntactic construct
"ObjectClassDefn" (see 9.3).

104 A "SyntaxList" specifies the syntax for the definition of a single information object of the class being defined.
The syntax appears as the "DefinedSyntax" in the following subclause.

NOTE — It is a property of this specification that the end of any syntactic construct defined by a "SyntaxList" (an instance of
"DefinedSyntax™) can be determined by:

a) ignoring ASN.1 comments;
b) treating character string values aslexical tokens;
Cc) expecting aninitial "{", matching nested "{" and "} ", and terminating on an unmatched "} ".

105 The "SyntaxList" specifies the sequence of "DefinedSyntaxToken" that is to appear in the "DefinedSyntax”
(see 11.6):

SyntaxList ::="{" TokenOrGroupSpec empty +"}"
TokenOrGroupSpec ::= RequiredToken | OptionalGroup
OptionalGroup ::="[" TokenOrGroupSpec empty +"]"

RequiredToken ::=
Literal
| PrimitiveFieldName

NOTE 1 — The writer of "SyntaxList" is not given the full power of BNF. Roughly, the notational power is equivaent to that
commonly used in specifying command line syntaxes for command interpreters. The list of possible "RequiredToken"s are given
in the order they are permitted; one or more consecutive tokens can be made optional by enclosing them in square brackets.

NOTE 2 — When parsing a "SyntaxList", any occurrence of "[[" (or "]]1") is not interpreted as the lexical items"[[" (or "]]1"
respectively) defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.23 and 12.24, but as two lexica items"[" and "[" (or "] " and
"1" respectively).

10.6 A "word" token used as a "Literal" shall not be one of the following:

BIT
BOOLEAN
CHARACTER

CHOI CE

DATE

DATE- TI VE
DURATI ON
EMBEDDED

END
ENUMVERATED
EXTERNAL
FALSE

| NSTANCE

| NTEGER

| NTERSECTI ON
M NUS- | NFI NI TY
NULL

OBJECT

OCTET

PLUS- | NFI NI TY
REAL

RELATI VE- O D
SEQUENCE

SET

TI VE

TI ME- OF- DAY
TRUE

UNI ON

10 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

NOTE — This list comprises only and all those ASN.1 reserved words which can appear as the first lexical item of a "Type",
"Value", "VaueSet", "Object” or "ObjectSet", and also the reserved word END. Use of other ASN.1 reserved words does not
cause ambiguity and is permitted. Where the defined syntax is used in an environment in which a "word" is aso a
"typereference” or "objectsetreference”, the use as a "word" takes precedence.

10.7 A "Litera" specifies the actual inclusion of that "Literal", which is either a "word" or a comma (","), at that
position in the defined syntax:

Literal ::=
word

10.8 Each "PrimitiveFieldName" specifies the inclusion (at that position in the new syntax) of a "Setting" (see
11.7) for the corresponding field.

10.9 Each "PrimitiveFieldName" of the information object class shall appear precisely once.

10.10 When, in the parse process, an "OptionalGroup" is encountered, and the following lexical itemis syntactically
acceptable as the first lexical item in the optiona group, then that group is assumed to be present. If it is not
syntactically acceptable asthe first lexical item in the optional group, then that group is assumed to be absent.
NOTE — In order to avoid unexpected effects, designers should normally make the first lexical item in an optiona group
a"Literal".
10.11 An instance of use of the "DefinedSyntax" is invalid unless it specifies al mandatory fields for the
information object class.

10.12 In order to ensure easy parsing of the new syntax and to prevent abuses, the following additional restrictions
are placed on the definer of new syntax:
a) Every "OptionalGroup" is required to have at least one "PrimitiveFieldName" or "Optiona Group”
within it.
NOTE 1 - Thisisto help prevent the apparent collection of information which is not reflected in any field of the
information object.

b) The use of "OptionalGroup"s shall be such that at no time in the parsing process can a " Setting" appear
that could potentially be a setting for more than one "FieldName".

¢) If an"OptionalGroup" starts with a "Literal”, then the first token following the "Optional Group" shall
aso be a "Litera" and shall be different from the first "Litera" of al immediately preceding
"Optiona Group"s,

while the following restriction is placed upon the user of the "DefinedSyntax":
d) Whenever a"Literal" is present in a"DefinedSyntax” that occursin an "Optional Group" a " Setting" for a
"PrimitiveFieldName" in that "Optiona Group" shall also be present.

NOTE 2 — Thisisto help prevent the apparent collection of information which is not reflected in any field of the
information object.

NOTE 3 — The following example is a legal syntax but restriction d) prevents the user from writing LI TERAL
without following it by one or both of the optional groups:

[LITERAL [A &ield] [B &ield2]]

10.13 Examples

The examples of class definitions from 9.16 above can be equipped with defined syntax to provide a "user-friendly”
way of defining instances of the classes (this defined syntax is used in the examplein 11.11):

OPERATI ON :: = CLASS

{
&Ar gunent Type OPTI ONAL,
&Resul t Type OPTI ONAL,
&Errors ERROR OPTI ONAL,
&Li nked OPERATI ON OPTI ONAL,
& esul t Ret ur ned BOCOLEAN DEFAULT TRUE,
&oper at i onCode I NTEGER UNI QUE

}

W TH SYNTAX

{
[ARGUVENT &Ar gurrent Type]
[RESULT &Resul t Type]
[RETURN RESULT &r esul t Ret ur ned]
[ERRORS &Err or s]

ITU-T Rec. X.681 (11/2008) 11

| SO/IEC 8824-2:2008 (E)

[LI NKED &Li nked]
CCDE &oper at i onCode
}
ERROR : : = CLASS
&Par anet er Type OPTI ONAL,
&er r or Code I NTEGER UNI QUE
}
W TH SYNTAX
[PARAVETER &Par anet er Type]
CODE &er r or Code
}
1 Information object definition and assignment

111 The syntactic construct "ObjectAssignment” is used to assign an information object of a specified classto a
reference name ("objectreference”). This construct is one of the aternatives for "Assignment” in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 13, and is defined as follows:

ObjectAssignment ::=
objectreference
DefinedObjectClass
Object
11.2 There shall be no recursive definition (see 3.4.18) of an "objectreference”, and there shall be no recursive
instantiation (see 3.4.19) of an "objectreference”.

11.3 The information object, which shall be of the class referenced by "DefinedObjectClass’, is that defined by the
construct "Object":

Object ::=
DefinedObject
| ObjectDefn
| ObjectFromObject
| Par ameterizedObj ect

If the "Object" isa
a) "DefinedObject”, then the object is the same as that referred to;
b) "ObjectDefn", then the object is as specified in 11.4;
c) "ObjectFromObject”, then the object is as specified in clause 15;

d) "ParameterizedObject”, then the object is defined as specified in ITU-T Rec. X.683 | ISO/IEC 8824-4,
9.2.

114 Every information object is ultimately defined by an "ObjectDefn":

ObjectDefn ::=
DefaultSyntax
| DefinedSyntax

The "ObjectDefn" shall be "DefaultSyntax” (see 11.5) if the class definition does not include a "WithSyntaxSpec" and
shall be "DefinedSyntax" (see 11.6) if it does include one.

115 The "DefaultSyntax™ construct is defined as follows:
DefaultSyntax ::="{" FieldSetting",” * "}"
FieldSetting ::= PrimitiveFieldName Setting

There shall be precisely one "FieldSetting” for each "FieldSpec” in the class definition which is not OPTI ONAL and does
not have a DEFAULT, and at most one "FieldSetting" for each other "FieldSpec". The "FieldSetting"s can appear in any
order. The "PrimitiveFieldName" in each "FieldSetting" shall be the name of the corresponding "FieldSpec". The
construct "Setting" is specified in 11.7.

11.6 The "DefinedSyntax" construct is defined as follows:

12 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

DefinedSyntax ::="{ " DefinedSyntaxToken empty * *}"

DefinedSyntaxToken ::=
Literal
| Setting

The "SyntaxList" in the "WithSyntaxSpec" (see clause 10) determines the sequence of "DefinedSyntaxToken"s that are
to appear in the "DefinedSyntax". The construct "Setting” is specified in 11.7; each occurrence specifies the setting for
some field of the information object. The construct "Literal" is defined in 10.7; "Literal"s are present for human
readability.

11.7 A "Setting" specifies the setting of some field within an information object being defined:
Setting ::=
Type
| Value
| ValueSet
| Object
| ObjectSet
If thefieldis:
a) atypefield, the"Type" dternative;
b) avauefield, the"Value" dternative;
c) avauesetfied, the"VaueSet" alternative;
d) aninformation object field, the "Object" aternative;
€) aninformation object set field, the "ObjectSet" alternative,

shall be selected.
NOTE — The setting is further restricted as described in the appropriate subclause of 9.5 t0 9.12 above, and 11.8 to 11.9.

11.8 A setting of a variable-type value field shall be a value of the type specified by the appropriate type field of
the same or linked object (that is, the value notation for an open typeis not employed).

11.9 A setting of a variable-type value set field shall be a value set of the type specified by the appropriate type
field of the same or linked object (that is, the value notation for an open type is not employed).

11.10 Examples (Default Syntax)

Given the information object class definitions of 9.16 above (which do not include a "WithSyntaxSpec") instances of
the classes are defined using the "DefaultSyntax". For example (an expanded version of the example given in 3.4.9):

invertMatrix OPERATION :: =

{
&Ar gurrent Type Mat ri x,
&Resul t Type Matri x,
&Errors {det ermi nant | sZer o},
&oper at i onCode 7

}

determ nantlsZero ERROR :: =

{
&er r or Code 1

}

11.11 Examples (Defined Syntax)

In 10.13, the example classes are provided "WithSyntaxSpec" and thus, instances of the classes are defined using the
"DefinedSyntax". The examples of 11.10 would be written thus;

invertMatrix OPERATION :: =

{
ARGUMENT Matri x
RESULT Mat ri x
ERRORS {det erm nant | sZer o}
CCDE 7
}

ITU-T Rec. X.681 (11/2008) 13

| SO/IEC 8824-2:2008 (E)

determ nantlsZero ERRCOR :: =

{
CODE 1
}
12 Information object set definition and assignment

121 The syntactic construct "ObjectSetAssignment” is used to assign a set of information objects of a specified
class to a reference name ("objectsetreference”). This construct is one of the aternatives for "Assignment” in ITU-T
Rec. X.680 | ISO/IEC 8824-1, clause 13, and is defined as follows:

ObjectSetAssignment ::=
obj ectsetr eference
DefinedObjectClass

ObjectSet
12.2 There shall be no recursive definition (see 3.4.18) of an "objectsetreference”, and there shall be no recursive
instantiation (see 3.4.19) of an "objectsetreference”.

12.3 The information object set, which shall be of the class referenced by "DefinedObjectClass’, is defined by the
construct "ObjectSet":

ObjectSet ::="{" ObjectSetSpec"}"

ObjectSetSpec ::=
RootElementSetSpec
| RootElementSetSpec™" " ". .. "
| "..." """ AdditionalElementSetSpec
| RootElementSetSpec™,” "..." "," AdditionalElementSetSpec

"RootElementSetSpec” and "Additional ElementSetSpec" are specified in ITU-T Rec. X.680 | ISO/IEC 8824-1 and
enable an information object set to be specified in terms of information objects or sets thereof of the governing class.
There shall be at least one information object in the set unless the third aternative (. .. ") of "ObjectSetSpec” is
specified. In the latter case, the presence of the ellipses is an indication that the object set isinitially empty but will have
objects dynamically added to it by the application program.
NOTE 1 — The elements that are referenced by "ObjectSetSpec” are the union of the elements referenced by the
"RootElementSetSpec” and " Additional ElementSetSpec”.

NOTE 2 — Unlike extensible types such as SET or SEQUENCE, or extensible subtype constraints, which are static in respect to the
set of "understood” values being set for each version of the ASN.1 specification, an extensible object set can grow and contract
dynamically within a given version. Indeed, it may expand and contract within a given instance of use of an application program
asit dynamically defines or undefines objects (see Annex E for further discussion).

124 The result of set arithmetic involving information object sets that are extensible is specified in ITU-T
Rec. X.680 | ISO/IEC 8824-1, clause 50.

125 If an extensible information object set, A, is referenced in the definition of another object set, B, its extension
marker and its extensions are inherited by B.

12.6 If a"ValueSetFromObjects' (see clause 15) is defined using an extensible information object set, the resulting
value set does not inherit the extension marker from that information object set.

12.7 If atypeisconstrained by atable constraint (see ITU-T Rec. X.682 | ISO/IEC 8824-3, 10.3) and the object set
referenced in the table constraint is extensible, the type does not inherit the extension marker from the object set. If the
type is meant to be extensible, then an extension marker shall be explicitly added to its "ElementSetSpecs’.

12.8 If atypeis constrained by an information object set that is not extensible, then a conforming implementation
shall support al the information objects in that set, and shall not generate encodings using information objects not in
the set.

12.9 If atypeis constrained by an information object set that is extensible, then a conforming implementation may
choose to support an information object in either the root or the extensions as a local decision on each instance of the
constrained type. It shall not generate encodings using other information objects with values for any UNI QUE field
which are those of objects in either the root or the extensions of the extensible information object set, but may
otherwise generate encodings for any information object of the required class.

14 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

NOTE - In order to avoid clashes with possible future extensions or with extensions added by other implementations, the
freedom to add arbitrary encodings should only be exercised if there is a UNIQUE field of type OBJECT IDENTIFIER and the
encoding contains a value of that object identifier that has been alocated for such use.

12.10 Thenotation for "ObjectSetElements’ is as follows:

ObjectSetElements::=
Object
| DefinedObjectSet
| ObjectSetFromObjects
| ParameterizedObjectSet

The elements specified by this notation are determined by which aternative is employed, as follows:

a) If the"Object" alternative is used, then only the object so designated is specified. That object shall be of
the governing class.

b) If any of the remaining alternatives is used, then all of the objects of the set so designated are specified.
The objects shall be of the governing class. If the "DefinedObjectSet" alternative is used, the object set is
that referred to. If the "ObjectSetFromObjects' alternative is used then the object set is as specified
in clause 15. If the "ParameterizedObjectSet” alternative is used, then the object set is as specified in
ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.2.

1211 Example

The information object set described informally in the Notein 3.4.12 can be specified as follows:
Mat ri xOperati ons OPERATION :: =

{

invertMatrix
| addmatri ces
| subtractMatrices
| mul tiplyMatrices
}

13 Associated tables

13.1 Every information object or information object set can be viewed as atable: its associated table. Each cell of
the associated table corresponds to the setting of some field of an information object, or is empty. The set of columns of
the associated table is determined by the class to which the abject or objects belong; the set of rows, however, is
determined by the object or objects involved.

13.2 Given the definition of aclass, the set of columnsis determined as follows:

a) Thereis one column for each field specification in the class definition. Each such column is named by
the corresponding "PrimitiveFieldName".

b) Thereisan additional set of columns corresponding to each link field specification. This set of columns
is that determined by the application of these rules for the governing class of the link field, except that
their names are prefixed by the "PrimitiveFieldName" of the link field, and aperiod (. ").

NOTE — These rules are recursive, and are such that if a class is directly or indirectly self-referential the set of
columnsis not finite. Thisis not prohibited.

13.3 Given an information object of some class, the associated table is that which would result from applying 13.4
to the object set containing just that object.

134 Given an information object set of some class, the set of rows in the associated table are those which would
result from performing the following recursive procedure:

a) Start with one row for each object in the object set. In each such row, the cells in the columns named by
"PrimitiveFieldName"s will correspond to the setting of the appropriate field in the object, while all
other cellswill be empty.

b) For each link field appearing in some row in the set:
1) Generate the (subordinate) associated table of the contents of the link field.

2) Next, replace the row in which the link field appears by a collection of rows, one for each row of
the subordinate associated table. Each of the rows in this collection is the same as that being
replaced, except that the cells from the selected row of the subordinate associated table are used to

ITU-T Rec. X.681 (11/2008) 15

| SO/IEC 8824-2:2008 (E)

fill the corresponding cells, hitherto empty, whose "FieldName's are prefixed by the link field's
"PrimitiveFieldName".
NOTE — These rules are recursive, and are such that if an information object is directly or indirectly

self-referential, the procedure will not terminate. Thisis not prohibited. In practice it is only necessary to
know the contents of cells with names of afinite length, and a bounded procedure can be devised for this.

135 Examples of valid " FieldName" s

The following "FieldName's are among those which are valid for the associated table for information objects or
information object sets of class OPERATI ON (as defined in 10.13):

&Ar gunent Type

&Errors. &Par amnet er

&FErrors. &error Code

&Li nked. &Ar gunent Type

&Li nked. &Li nked. &oper at i onCode

&Li nked. &Li nked. &Li nked. &Li nked. &Li nked. &Errors. &err or Code

Because the class OPERATI ONis self-referential (through the &Li nked field), the number of columnsis not finite.

14 Notation for the object classfield type

The type that is referenced by this notation depends on the category of the field name. For the different categories of
field names, 14.2 to 14.5 specify the type that is referenced.

14.1 The notation for an object class field type (see 3.4.16) shall be "ObjectClassFieldType":

ObjectClassFieldType::=
DefinedObjectClass

FieldName
where the "FieldName" is as specified in 9.14 relative to the class identified by the "DefinedObjectClass’.

14.2 For a type field, the notation defines an open type, that is, one whose set of values is the complete set of all
possible values that can be specified using ASN.1. The specification of constraints using a corresponding information
object set (see ITU-T Rec. X.682 | ISO/IEC 8824-3) may restrict this type to a specific type. The following constraints
on the use of this notation apply when the "FieldName" references atype field:

a) This notation shall not be used directly or indirectly in the definition of the type of a value or value set
field of an information object class.

b) This notation has an indeterminate tag and thus cannot be used where a tag distinct from that of some
other typeisrequired.
NOTE 1 - Thisrestriction can normally be avoided by (explicitly) tagging the type.
NOTE 2 — Notwithstanding the statement in ITU-T Rec. X.680 | ISO/IEC 8824-1, 52.7.3, that the conceptually
added element for an extension marker has atag that is distinct from the tag of all known ASN.1 types, the open

type shall not be used where it is required to have a tag that is distinct from that of the conceptually added
element.

¢) Thisnotation shall not be implicitly tagged.

NOTE 3 — The reason for this is that when this open type is restricted to a particular type that type may be a
choice type.

d) Encoding rules are required to encode the value assigned to a component defined in this way in such a
way that a receiver can successfully determine the abstract values corresponding to all other parts of the
construction in which the component is embedded without any knowledge of the actual type of this
component.

NOTE 4 — This "Type" construct will commonly be constrained by use of an information object set and the
"AtNotation", as specified in ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 10. Users of ASN.1 are, however,

cautioned that use of this notation without the application of a constraint can lead to ambiguity in
implementation requirements, and should normally be avoided.

14.3 For a fixed-type value or a fixed type value set field, the notation denotes the "Type" that appears in the
specification of that field in the definition of the information object class. With particular choices of names for objects,
identifiers, or vauereferences, a "SimpleTableConstraint” (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 10.3),
following this production, can also be avalid "SingleVaue" subtype constraint (see ITU-T Rec. X.680 | |SO/IEC 8824-
1, clause 51.2). In this case it shall be interpreted as the " SimpleTableConstraint".

16 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

144 For avariable-type value or a variable-type value set field, the notation defines an open type. Its use is subject
to the same restrictions as specified in 14.2.

145 This notation is not permitted if thefield is an object field or an object set field.

14.6 The notation for defining a value of this type shall be "ObjectClassFieldvValue”, or when used in an
"XMLTypedVaue', an "XMLObjectClassFieldValue":

ObjectClassFieldValue::=
OpenTypeFieldval
| FixedTypeFiedVval

OpenTypeFieldVval ::=Type": " Value
FixedTypeFieldVal ::= BuiltinValue | ReferencedValue

XML ObjectClassFiedValue ::=
XML OpenTypeFieldVal
| XMLFixedTypeFieldVal

XMLOpenTypeFiedVal ::= XML TypedValue | xmlhstring
XMLFixedTypeFiedVal ::= XMLBuiltinValue

14.7 For a fixed-type value or value set field defined by an "ObjectClassFieldType", the "FixedTypeFieldva" or
"XMLFixedTypeFieldval" shall be used, and shall be a value of the "Type" specified in the definition of the
information object class.

14.8 For a type field or a variable-type value or value set field defined by an "ObjectClassFieldType", the
"OpenTypeFieldvVal" shall be used in any "Vaue'. The "Type" in the "OpenTypeFieldva" shall be any ASN.1 type,
and the "Value" shall be any value of that type.

14.9 For a type field or a variable-type value or value set field defined by an "ObjectClassFieldType", the
"XMLOpenTypeFieldva" shall be used in any "XMLValue".

14.9.1 When used in an ASN.1 module, the type identified by the "XMLTypedValue" shall be any ASN.1 type (but
see ITU-T Rec. X.680 | ISO/IEC 8824-1, 14.3) and the "XMLValue" in the "XMLTypedVaue"' shal be any value of
that type.

NOTE — When the notation is used as specified in ITU-T Rec. X.693 | ISO/IEC 8825-4, 8.5, the type of the "XMLTypedValue"

in an "XMLOpenTypeFieldva" is identified by the protocol (for example, by a component relation constraint), the
"NonParameterizedTypeName" in the "XMLTypedVaue" is derived from this, and the "XMLVaue" isavalue of thistype.

14.9.2 The "xmlhstring” aternative of "XMLOpenTypeFieldvVa" shall not be used in an ASN.1 module. This
alternative can be used only as specified in ITU-T Rec. X.693 | ISO/IEC 8825-4, 8.5, when the type is identified by the
protocol and the "xmlhstring" is the hexadecima value for the encoding of that type, using some (unspecified)
encoding rules.

1410 The character sequence in the "xmlasnltypename" item for the XML value notation (for an
"ObjectClassFieldType") which isa"XMLFixedTypeFieldvVal" shal be the character sequence for the "Type" specified
in the information object class. The XML vaue notation for sequence-of and set-of (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, Table 5) shall be determined by the "Type" specified in the information object class.

1411 The character sequence in the "xmlasnltypename" item for the XML value notation (for an
"ObjectClassFieldType") which is an "XMLOpenTypeFieldVal" shall be "OPEN_TYPE". The XML value notation for
sequence-of and set-of (see ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 5) shall be "XMLDelimitedltemList".

14.12 For an "XMLOpenTypeFieldva", if the "Type" specified in the information object (after ignoring any tags)
is a "typereference” or an "ExternalTypeReference', then the "NonParameterizedTypeName" shal be that
"typereference” or "Externa TypeReference”, otherwise it shall be the "xmlasnltypename" specified in ITU-T Rec.
X.680 | ISO/IEC 8824-1, Table 4, corresponding to the built-in type specified in the information object, after
application of the subclauses of ITU-T Rec. X.680 | ISO/IEC 8824-1, 26.10, if applicable.

14.13 Example usage of " ObjectClassFieldType"

Each of the following examples is based on the example in 10.13 and shows (a) a possible "ObjectClassFieldType",
(b) the type to which the example type (a) is equivalent (when used unconstrained), and (c) the notation for an example
value of that type.

ITU-T Rec. X.681 (11/2008) 17

| SO/IEC 8824-2:2008 (E)

1 (@) OPERATI ON. &oper ati onCode
(b) | NTEGER
(© 7

2 (a) OPERATI ON. &Ar gunent Type
(b) open type

(c) Matrix:
{{1, o0, 0, 0},
{o, 1, o, 0},
{0, o, 1, 0},
{0, 0, 0, 1}}
3 (a) OPERATI ON. &Li nked. &Li nked. &Err or s. &er r or Code
(b) | NTEGER
(© 1

4 (a) OPERATI ON. &Li nked. &Ar gurrent Type
(b) open type

(c) Universal String: {pl anckConstant, " and ", haniltonQperator}
15 Information from objects
15.1 Information from the column of the associated table for an object or an object set can be referenced by the

various cases of the "InformationFromObjects" notation:

InformationFromObjects::=
ValueFromObj ect
| ValueSetFromObjects
| TypeFromObject
| ObjectFromObject
| ObjectSetFromObjects

ValueFromObject ::=
ReferencedObjects

FieldName

ValueSetFromObjects::=
ReferencedObj ects

FieldName

TypeFromObject ::=
ReferencedObjects

FieldName

ObjectFromObject ::=
ReferencedObj ects

FieldName

ObjectSetFromObjects::=
ReferencedObjects

FieldName

ReferencedObjects::=
DefinedObject
| ParameterizedObject
| DefinedObjectSet
| ParameterizedObjectSet

NOTE — The production "InformationFromObjects' is provided to aid understanding and for use in the English text. It is not
referenced el sewhere in this Recommendation | International Standard.

18 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

15.2 This notation references the total contents of the referenced column of the associated table for the
"ReferencedObjects’.

15.3 Depending on the form of the "ReferencedObjects’ and the "FieldName", this notation can denote a value, a
value set, a type, an object, or an object set. These five cases are denoted by the constructs "V alueFromObject",
"VaueSetFromObjects', "TypeFromObject”, "ObjectFromObject”, and "ObjectSetFromObjects' respectively. Each of
these constructsis a specia case of "InformationFromObjects’.

154 The "InformationFromObjects’ production can be divided into two parts. The first part is formed by deleting
the final (or only) "PrimitiveFieldName" and its preceding period. If the first part denotes an object or an object set,
then 15.5 to 15.13 apply. Otherwise the notation isillegal. The second part is the final (or only) "PrimitiveFieldName".
NOTE — (Tutorial) Given the following definition:
obj . &a. &b. &c. &d
the first part in the definition isobj . &a. &b. & and the second part is &d.

155 The first column of Table 1 indicates the first part defined in 15.4. The second column indicates the second
part defined in 15.4. The third column indicates which (if any) of the five cases of "InformationFromObjects’ (listed
in 15.3) applies.

Table 1 — Permissable cases of " I nformationFr omObj ects"

| nformei{(l);ilp (?rzwtootf)j ects I nf;kﬁaﬁgggfsrﬁgtgfects Construct
fixed-type value field "V alueFromObject"
variable-type value field "V alueFromObject"
fixed-type value set field "V alueSetFromObjects”
object variable-type value set field not permitted
typefield "TypeFromObject”
object field " ObjectFromObject"”
object set field "' ObjectSetFromObject”
fixed-type value field "V alueSetFromObjects"
variable-type value field not permitted
fixed-type value set field "V alueSetFromObjects”
object set variable-type value set field not permitted
typefield not permitted
object field " ObjectSetFromObjects”
object set field " ObjectSetFromObjects”

15.6 For a "TypeFromObject" and a "VaueSetFromObjects’, the XML value notation for sequence-of and set-of

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 5) and the "xmlasnltypename" (if required) shall be determined by the
"Type" specified in the information object(s), after application of the subclauses of ITU-T Rec. X.680 | ISO/IEC 8824-
1, 26.10, if applicable.

15.7 If the first part references an object and the second part references a fixed-type value set field, the
"VaueSetFromObjects' is equivalent to a type with a SimpleTableConstraint. The type is
"<d assName>.<Fi el dNanme>" where "<d assName>" is the Information Object Class of the object, and
"<Fi el dName>" is the field referenced by the second part. The SimpleTableConstraint consists of an object set
containing only the object referenced by the first part. The object set is hot extensible.

15.8 If the first part references an object set and the second part references a fixed-type value field or a fixed-type
value set field, the "VaueSetFromObjects' is equivalent to a type with a "SimpleTableConstraint". The type is
"<d assName>.<Fi el dName>" where "<d assName>" is the information object class of the object set referenced by
the first part, and "<Fi el dName>" is the field referenced by the second part. The "SimpleTableConstraint” consists of
the object set referenced by the first part.

15.9 A "VaueSetFromObjects' can be defined using an information object set that is initially empty but
extensible. Such an information object set shall have at |east one object in it whenever avalue set defined in terms of it
is used by an application. The one or more objects present in the information object set shall be sufficient to satisfy the
requirements of ITU-T Rec. X.682 | ISO/IEC 8824-3, 10.6.

ITU-T Rec. X.681 (11/2008) 19

| SO/IEC 8824-2:2008 (E)

1510 If object sets are involved and the final "PrimitiveFieldName" identifies an object set field, then
"ObjectSetFromObjects’ is the union of the selected object sets.

1511 As shown in Table 1, the notation is not permitted if an object set is involved and the final
"PrimitiveFieldName" identifies a variable-type value or value set field or atype field.

15.12 Use of the "ObjectSetFromObjects’ notation when al cellsin the column being referenced are empty denotes
an empty inextensible object set. Empty inextensible object sets are alowed in general (such asin set arithmetic) but
shall not be used directly in atable constraint.

NOTE - Subclause 15.13 implies that a"ValueSetFromObjects' may not be extracted from an empty inextensible object set.

15.13 Use of the "InformationFromObjects’ notation (except when it is an "ObjectSetFromObjects’) is not
permitted if all cells in the column being referenced are empty, except when it is used to directly define a field of an
information object which is OPTI ONAL (or DEFAULT), which resultsin the field becoming empty (or default).

15.14 Exampleinformation from objects

Given the definitions in the examples of 11.10, 11.11 and 12.11, the following constructs (in the left column) are valid,
and can be used as equivalent to the expression in the right column.

"ValueFromObject"

i nvert Mat ri x. &oper ati onCode 7
det er mi nant | sZer 0. &er r or Code 1
" TypeFromObject”
i nvert Matri x. &Ar gunent Type Mat ri x

"ValueSetFromObjects'

invertMatrix. &rrors. &error Code {1}

Mat ri xQper ati ons. &per ati onCode {7 | andothers}

" Obj ectSetFromObj ects"

invertMvatrix. & rrors {det er m nant | sZer o}

Mat ri xQOper ati ons. &rrors {determ nant| sZero | andothers}

20 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

Annex A

The TYPE-IDENTIFIER information object class
(Thisannex forms an integral part of this Recommendation | International Standard)

Al This annex specifies a useful information object class, with class reference TYPE- | DENTI FI ER.

NOTE - This information object class is the simplest useful class, having just two fields, an identifier field of type OBJECT
| DENTI FI ER, and a type field which defines the ASN.1 type for carrying all information concerning any particular object in the
class. It is defined in this Recommendation | International Standard because of the widespread use of information objects of this
form.

A2 The TYPE- | DENTI FI ERinformation object classis defined as:
TYPE- | DENTI FI ER :: = CLASS

& d OBJECT | DENTI FI ER UNI QUE,
&Type

}

W TH SYNTAX { &Type | DENTI FI ED BY &i d}
A3 This class is defined as a "useful” information object class, and is available in any module without the
necessity for importing it.
A4 Example

The body of a Message Handling System (MHS) communication can be defined as:
IVHS- BODY- CLASS : : = TYPE- | DENTI FI ER

g4FaxBody MHS-BODY-CLASS :: =
{BI'T STRI NG | DENTI FI ED BY {nmhsbody 3}}

A protocol designer would typicaly define a component to carry an MHS- BODY- CLASS by specifying the type
| NSTANCE OF MHS- BODY- CLASS defined in C.10.

ITU-T Rec. X.681 (11/2008) 21

| SO/IEC 8824-2:2008 (E)

Annex B

Abstract syntax definitions
(Thisannex forms an integral part of this Recommendation | International Standard)

B.1 This annex specifies a useful information object class, ABSTRACT- SYNTAX, for defining abstract syntaxes.

NOTE — It is recommended that an instance of this information object class be defined whenever an abstract syntax is defined as
the values of asingle ASN.1 type.

B.2 The ABSTRACT- SYNTAX information object classis defined as:
ABSTRACT- SYNTAX ::= CLASS
& d OBJECT | DENTI FI ER UNI QUE,
&Type,

&roperty BIT STRING {handl es-invalid-encodi ngs(0)} DEFAULT {}

}
W TH SYNTAX {
&Type |IDENTIFIED BY & d [HAS PROPERTY &property]

The &i d field of each ABSTRACT- SYNTAX is the abstract syntax name, while the &Type field contains the single ASN.1
type whose values make up the abstract syntax. The property handl es- i nval i d- encodi ngs indicates that the invalid
encodings are not to be treated as an error during the decoding process, and the decision on how to treat such invalid
encodings is left up to the application.

B.3 This information object class is defined as being "useful” because it is of general utility, and is available in
any modul e without the necessity for importing it.

B.4 Example

If an ASN.1 type has been defined called XXX- PDU, then an abstract syntax can be specified which contains al the
values of XXX- PDU by the notation:

xxX- Abst ract - Synt ax ABSTRACT- SYNTAX :: =
{ XXX-PDU | DENTI FI ED BY {xxx 5} }

See ITU-T Rec. X.680 | ISO/IEC 8824-1, G.4, for a detailed example of use of the ABSTRACT- SYNTAX information
object class.

B.5 It will frequently be the case that an abstract syntax will be defined in terms of a parameterized type (as
defined in ITU-T Rec. X.683 | ISO/IEC 8824-4), for example with parameters providing bounds on some components
of the protocol. Such parameters, subject to restrictions specified in ITU-T Rec. X.683 | ISO/IEC 8824-4, clause 10,
may be resolved at the time of abstract syntax definition, or may be carried forward as parameters of the abstract
syntax.

22 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

Annex C

Theinstance-of type
(Thisannex forms an integral part of this Recommendation | International Standard)

ci1 This annex specifies type and value notation for the instance-of types (see 3.4.14). Such types are capable of
carrying any value from any information object in an information object class defined to be of class TYPE- | DENTI FI ER
(see Annex A) using an information object class assignment (the information object class reference is specified as part
of this notation).

Cc.2 The "InstanceOfType" notation is referenced in ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.2, as one of the
notations that produce a"Type", and is defined as:

InstanceOfType ::= | NSTANCE OF DefinedObjectClass

NOTE — ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 10, specifies the way in which this type can be constrained by applying a
"table constraint", restricting the values of the type to those representing some specific information object set of the class.

C3 This notation specifies atype which carriesthe & d field (an OBJECT | DENTI FI ER) and avalue of the &Type
field from any instance of the "DefinedObjectClass’.

NOTE — This construct will normally be constrained by an object set which will usually be (but is not necessarily) a dummy
reference name as defined in ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3-8.11, with the actual object set defined elsewhere.

(o] All instance-of types have atag which is universal class, number 8.

NOTE — This is the same universal tag as for external type, and use of the instance-of type can be bit-compatible with the
external type when the basic encoding rulesfor ASN.1 arein use.

C5 The instance-of type has an associated sequence type which is used for defining values and subtypes of the
instance-of type.

NOTE — Where this type is constrained by the constraint notation of ITU-T Rec. X.682 | ISO/IEC 8824-3, the associated
seguence type is also constrained. The constraints on the associated sequence type resulting from a constraint on the instance-of
type are specified in ITU-T Rec. X.682 | ISO/IEC 8824-3, Annex A.

C.6 The associated sequence type is assumed to be defined within an environment in which EXPLI O T TAGSisin
force.

Cc.7 The associated sequence type shall be:

SEQUENCE {

type-id <Def i nedObj ect Cl ass>. & d,

val ue [0] <DefinedOhjectd ass>. &Type
}

where "<Def i nedCbj ect d ass>" is replaced by the particular "DefinedObjectClass" used in the "InstanceOf Type'
notation.

(0%} The value notation "InstanceOfValue" and "XMLInstanceOfValue' for an "InstanceOf Type" notation shall be
the value notation for the associated sequence type.

InstanceOfValue::= Value
XMLInstanceOfValue ::= XMLValue

(OR°] The XML value notation for sequence-of and set-of (see ITU-T Rec. X.680 | ISO/IEC 8824-1, Table 5) shall
be "XMLDélimitedltemList".

C.10 Example
An example, building on the example given in A .4, isas follows:

Thetype:

ITU-T Rec. X.681 (11/2008) 23

| SO/IEC 8824-2:2008 (E)

I NSTANCE OF MHS- BODY- CLASS

has an associated sequence type of:

SEQUENCE

{
type-id MHS- BODY- CLASS. & d,
val ue [0] MHS- BODY- CLASS. &Type

}

An example of the application of a table constraint to this type can be found in ITU-T Rec. X.682 | ISO/IEC 8824-3,
Annex A.

24 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

Annex D

Examples
(This annex does not form an integral part of this Recommendation | International Standard)

D.1 Example usage of simplified OPERATION class

Given the following simple definition of the OPERATI ON and ERROR information object classes:

OPERATI ON :: = CLASS
{
&Ar gunent Type OPTI ONAL,
&Resul t Type OPTI ONAL,
&Errors ERROR OPTI ONAL,
&Li nked OPERATI ON OPTI ONAL,
&r esul t Ret ur ned BOOLEAN DEFAULT TRUE,
&oper at i onCode I NTEGER UNI QUE
}
W TH SYNTAX
{
[ARGUVENT &Ar gurrent Type]
[RESULT &Resul t Type]
[RETURN RESULT &r esul t Ret ur ned]
[ERRORS &Error s]
[LI NKED &Li nked]
CCDE &oper at i onCode
}
ERRCR :: = CLASS
{
&Par anet er Type OPTI ONAL,
&er r or Code I NTEGER UNI QUE
}
W TH SYNTAX
[PARAVETER &Par anet er Type]
CCDE &error Code

}
We can define the following object set that contains two OPERATI ON objects:

M- Qperati ons OPERATION ::= { operationA | operationB }

operati onA OPERATION :: = {
ARGUMENT | NTEGER
ERRORS { { PARAMETER | NTEGER CCDE 1000 } | { CODE 1001 } }
CCDE 1

}

operationB OPERATION :: = {
ARGUMENT | A5String
RESULT BOOLEAN
ERRORS { { CODE 1002 } | { PARAVMETER | A5String CODE 1003 } }
CCODE 2

}
Extraction of the set of the ERROR objects from the object set above is done as follows:
M/- QperationErrors ERROR ::= { My-Qperations. & rrors }
The resulting object set is:

M- QperationErrors ERROR :: = {
{ PARAMETER | NTEGER CODE 1000 } |
{ CODE 1001 } |
{ CODE 1002 } |
{ PARAMETER | A5String CODE 1003 }

ITU-T Rec. X.681 (11/2008) 25

| SO/IEC 8824-2:2008 (E)

Extraction of the set of error codes of the errors of the operations is done as follows:

M- Qper ati onError Codes | NTEGER ::= { My-Qperations. &rrors. &rror Code }
Theresulting value set is:

M- Qperati onError Codes | NTEGER ::= { 1000 | 1001 | 1002 | 1003}

D.2 Example usage of " ObjectClassFieldType"

The "ObjectClassFieldType" can be used in specification of types, for example:
-- "(bjectd assFi el dType"s are extracted fromthis class.
-- Only the first five fields can be used in the extraction.

EXAMPLE- CLASS :: = CLASS {
&TypeFi el d OPTI ONAL,
&f i xedTypeVal ueFi el d I NTEGER OPTI ONAL,
&vari abl eTypeVal ueFi el d &TypeFi el d OPTI ONAL,
&Fi xedTypeVal ueSet Fi el d I NTEGER OPTI ONAL,
&Vari abl eTypeVal ueSet Field &TypeField OPTI ONAL,
&obj ectField SI MPLE- CLASS CPTI ONAL,
&bj ect Set Fi el d S| MPLE- CLASS OPTI ONAL

}

W TH SYNTAX {
[TYPE- FI ELD &TypeFi el d]
[FI XED- TYPE- VALUE- FI ELD &f i xedTypeVal ueFi el d]

[VARI ABLE- TYPE- VALUE- FI ELD &var i abl eTypeVal ueFi el d]
[FI XED- TYPE- VALUE- SET- FI ELD &Fi xedTypeVal ueSet Fi el d]
[VARI ABLE- TYPE- VALUE- SET- FI ELD&Var i abl eTypeVal ueSet Fi el d]

[OBJECT- FI ELD &obj ect Fi el d]
[OBJECT- SET- FI ELD &0bj ect Set Fi el d]
}
S| MPLE- CLASS :: = CLASS {
&val ue | NTEGER
}
W TH SYNTAX {
&val ue
}
-- This type contains conponents which are specified using
-- "(bjectd assFi el dType" notation. |In case of type fields and

-- variable-type value and value set fields the resulting

-- conponent type is an open type. In case of fixed-type value and
-- value set fields the resulting conponent type is "I NTEGER'.

-- NOTE — Constraints are onmtted fromall the following uses of

-- "(bjectd assFi el dType"; you normally will use constraints when

-- referencing an "Obj ectd assFi el dType".

Exanpl eType ::= SEQUENCE {
openTypeConponent 1 EXAMPLE- CLASS. &TypeFi el d,
i nt eger Conponent 1 EXAMPLE- CLASS. &f i xedTypeVal ueFi el d,
openTypeConponent 2 EXAMPLE- CLASS. &vari abl eTypeVal ueFi el d,
i nt eger Conponent 2 EXAMPLE- CLASS. &Fi xedTypeVal ueSet Fi el d,
openTypeConponent 3 EXAMPLE- CLASS. &Vari abl eTypeVal ueSet Fi el d
}
exanpl eVal ue Exanpl eType ::= {
openTypeConponent 1 BOOLEAN : TRUE,
i nt eger Coponent 1 123,
openTypeConponent 2 | A5String : "abcdef",
i nt eger Corponent 2 456,
openTypeConponent 3 BIT STRING : '0101010101'B
}
D.3 [llustrate usage of objects and object sets
The following uses the object class defined in D.2:
obj ect A EXAMPLE- CLASS :: = {
FI XED- TYPE- VALUE- FI ELD 123

FI XED- TYPE- VALUE-SET-FIELD { 1] 2| 3}

26 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

OBJECT- FI ELD {1}
OBJECT- SET- FI ELD { {2}y {31}}
}

obj ect B EXAMPLE- CLASS :: = {
TYPE- FI ELD | A5String
FI XED- TYPE- VALUE- FI ELD 456
VARl ABLE- TYPE- VALUE- FI ELD "abc"
VARl ABLE- TYPE- VALUE- SET- FI ELD{ "d" | "e" | "f" }

-- The follow ng object set contains tw defined objects and one
-- builtin object.

hj ect Set EXAMPLE- CLASS :: = {
obj ectA |
obj ectB |

TYPE- FI ELD | NTEGER

FI XED- TYPE- VALUE- FI ELD 789

VAR ABLE- TYPE- VALUE- SET-FIELD{ 4 | 5| 6 }
}

-- The following definitions extract information fromthe objects and
-- the object set.

i nt eger Val ue | NTEGER :: = obj ect A & i xedTypeVal ueFi el d
stringVal ue 1 A5String ::= objectB. &ari abl eTypeVal ueFi el d
| nt eger Val ueSet Fronthj ect A | NTEGER :: = { object A &Fi xedTypeVal ueSet Fiel d }

StringType ::= objectB. &TypeFi el d
obj ect FronObj ect A S| MPLE- CLASS : : = obj ect A &obj ectFiel d
hj ect Set FronObj ect A SI MPLE- CLASS :: = { objectA &jectSetField }

Set O Val uesl nChj ect Set | NTEGER ::= { (bjectSet. & i xedTypeVal ueFi el d }

Set O Val ueSet sl nCbj ect Set | NTEGER :: = { Obj ect Set. & xedTypeVal ueSet Fiel d }
Set OF Obj ect sl nObj ect Set S| MPLE- CLASS :: = { bjectSet. &bjectField }

Set OF (bj ect Set sl nCbj ect Set S| MPLE-CLASS ::= { (bjectSet.&jectSetField }

ITU-T Rec. X.681 (11/2008) 27

| SO/IEC 8824-2:2008 (E)

Annex E

Tutorial annex on the ASN.1 model of object set extension
(This annex does not form an integral part of this Recommendation | International Standard)

El An ASN.1 specification can define information object sets and such object sets can be marked extensible by
means of an extension marker or by the inclusion of extensible object sets using set arithmetic. Use of an extension
marker with object sets differs from such use with types in that it specifies that an application can dynamically
add/remove objects to/from the object set in an instance of communication.

E.2 Table and component relation constraints which are not satisfied are not in themselves considered errorsif the
constraining object set is extensible. In such cases, it is not an error if a value of a UNI QUE field is not found in the
object set, but if itisfound, then it isan error if the constraint imposed on the referencing type is not satisfied.

28 ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

Annex F

Summary of the notation
(This annex does not form an integral part of this Recommendation | International Standard)

Thefollowing lexical items are defined in clause 7:

objectclassreference
objectreference

obj ectsetreference
typefieldreference
valuefieldreference
valuesetfieldr eference
objectfieldreference
obj ectsetfieldr eference

word
CLASS

| NSTANCE
SYNTAX
UNI QUE

The following lexical items are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and used in this Recommendation |
International Standard:

empty
moduler eference
xmlasnltypename

DEFAULT
COF

OPTI ONAL
WTH

The following productions are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and are used in this Recommendation |
International Standard:

BuiltinvValue

ElementSetSpec
NonParameterizedTypeName
ReferencedValue

Type

Value

ValueSet

XMLBuiltinvalue

XML TypedValue
XMLValue

The following productions are defined in ITU-T Rec. X.683 | ISO/IEC 8824-4 and are used in this Recommendation |
International Standard:

ParameterizedObjectClass
Par ameterizedObj ect Set
Par ameterizedODbj ect

ITU-T Rec. X.681 (11/2008) 29

| SO/IEC 8824-2:2008 (E)

The following productions are defined in this Recommendation | International Standard:

30

DefinedObjectClass ::=
Exter nal ObjectClassReference | objectclassr efer ence | Useful ObjectClassReference

Exter nalObjectClassReference ::= modulereference” . " objectclassr eference

UsefulObjectClassReference ::=
TYPE- | DENTI FI ER

| ABSTRACT- SYNTAX
ObjectClassAssignment ::= objectclassreference ™ ::=" ObjectClass
ObjectClass ::= DefinedObjectClass | ObjectClassDefn | ParameterizedObjectClass
ObjectClassDefn ::= CLASS "{" FieldSpec "," + "}" WithSyntaxSpec?

FieldSpec ::=
TypeFieldSpec

| FixedTypeValueFieldSpec

| VariableTypeValueFieldSpec

| FixedTypeValueSetFieldSpec

| VariableTypeValueSetFieldSpec
| ObjectFieldSpec
| ObjectSetFieldSpec

PrimitiveFieldName ::=
typefieldreference
valuefieldreference
valuesetfieldreference
objectfieldreference
objectsetfieldreference

I
I
I
I

FieldName ::= PrimitiveFieldName" . " +

TypeFieldSpec ::= typefieldr eference TypeOptionalitySpec?

TypeOptionalitySpec ::= OPTI ONAL | DEFAULT Type

FixedTypeValueFieldSpec ::= valuefieldr eference Type UNI QUE ? ValueOptionalitySpec ?

ValueOptionalitySpec ::= OPTI ONAL | DEFAULT Value

VariableTypeValueFieldSpec ::= valuefieldr eference FieldName ValueOptionalitySpec ?

FixedTypeValueSetFieldSpec ::= valuesetfieldr eference Type ValueSetOptionalitySpec ?

ValueSetOptionalitySpec ::= OPTI ONAL | DEFAULT ValueSet

VariableTypeValueSetFieldSpec ::= valuesetfieldr efer ence FieldName ValueSetOptionalitySpec?

ObjectFieldSpec ::= objectfieldr efer ence DefinedObjectClass ObjectOptionalitySpec?

ObjectOptionalitySpec ::= OPTI ONAL | DEFAULT Object

ObjectSetFieldSpec :: = obj ectsetfieldr efer ence DefinedObj ectClass Obj ect SetOptionalitySpec ?

ObjectSetOptionalitySpec ::= OPTI ONAL | DEFAULT Object Set

WithSyntaxSpec ::= W TH SYNTAX SyntaxL ist

SyntaxList ::="{" TokenOrGroupSpec empty +"}"

TokenOrGroupSpec ::= RequiredToken | OptionalGroup

OptionalGroup ::="[" TokenOrGroupSpec empty +"]"

RequiredToken ::=Literal | PrimitiveFieldName

Literal ::=word |" "

DefinedObject ::= ExternalObjectRefer ence | objectreference

ITU-T Rec. X.681 (11/2008)

| SO/IEC 8824-2:2008 (E)

ExternalObjectReference ::= modulereference ™. " objectreference
ObjectAssignment ::= objectreference DefinedObjectClass " : : =" Object

Object ::= DefinedObject | ObjectDefn | ObjectFromObject | ParameterizedObject
ObjectDefn ::= DefaultSyntax | DefinedSyntax

DefaultSyntax ::="{" FieldSetting"," * "}"

FieldSetting ::= PrimitiveFieldName Setting

DefinedSyntax ::="{" DefinedSyntaxToken empty * "}"

DefinedSyntaxToken ::= Literal | Setting

Setting ::= Type | Value | ValueSet | Object | Object Set

DefinedObjectSet ::= ExternalObj ect SetRefer ence | objectsetreference

ExternalObjectSetReference ::= modulereference” . " objectsetreference

ObjectSetAssignment ::= objectsetr eference DefinedObjectClass " ::=" ObjectSet
ObjectSet ::="{" ObjectSetSpec"}"
ObjectSetSpec ::=

RootElementSetSpec
RootElementSetSpec™ " " ... "

|

|

["..."" " AdditionalElementSetSpec

| RootElementSetSpec™ " "..." "," AdditionalElementSetSpec

ObjectSetElements::=
Object | DefinedObjectSet | ObjectSetFromObjects | ParameterizedObject Set

ObjectClassFieldType::= DefinedObjectClass". " FieldName
ObjectClassFieldValue ::= OpenTypeFieldVal | FixedTypeFieldVal
OpenTypeFieldVal ::=Type": " Value

FixedTypeFieldVal ::= BuiltinValue | ReferencedValue

XMLObjectClassFieldValue ::=
XML OpenTypeFieldVal
| XMLFixedTypeFieldVval

XMLOpenTypeFiedVal ::= XML TypedValue | xmlhstring
XMLFixedTypeFiedVal ::= XMLBuiltinValue

I nformationFromObjects ::= ValueFromObject | ValueSetFromObjects |
TypeFromObject | ObjectFromObject | ObjectSetFromObjects

ReferencedObjects::=
DefinedObject | ParameterizedObject |
DefinedObjectSet | ParameterizedObj ect Set

ValueFromObject ::= ReferencedObjects”. " FieldName
ValueSetFromObjects ::= ReferencedObjects” . " FieldName
TypeFromObject ::= ReferencedObjects”. " FieldName
ObjectFromObject ::= ReferencedObjects”. " FieldName
ObjectSetFromObjects ::= ReferencedObjects”. " FieldName
InstanceOfType ::= 1 NSTANCE OF DefinedObjectClass
InstanceOfValue ::= Value

XMLInstanceOfValue::= XML Value

ITU-T Rec. X.681 (11/2008)

31

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T RECOMMENDATION X.681 (11/2008) – Information technology – Abstract Syntax Notation One (ASN.1): Information object specification
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards

	3 Definitions
	3.1 Specification of basic notation
	3.2 Constraint specification
	3.3 Parameterization of ASN.1 specification
	3.4 Additional definitions

	4 Abbreviations
	5 Convention
	6 Notation
	6.1 Assignments
	6.2 Types
	6.3 Values
	6.4 Elements

	7 ASN.1 lexical items
	7.1 Information object class references
	7.2 Information object references
	7.3 Information object set references
	7.4 Type field references
	7.5 Value field references
	7.6 Value set field references
	7.7 Object field references
	7.8 Object set field references
	7.9 Word
	7.10 Additional keywords

	8 Referencing definitions
	9 Information object class definition and assignment
	10 Syntax List
	11 Information object definition and assignment
	12 Information object set definition and assignment
	13 Associated tables
	14 Notation for the object class field type
	15 Information from objects
	Annex A
	The TYPE-IDENTIFIER information object class
	Annex B
	Abstract syntax definitions
	Annex C
	The instance-of type
	C.10 Example
	Annex D
	Examples
	D.1 Example usage of simplified OPERATION class
	D.2 Example usage of "ObjectClassFieldType"
	D.3 Illustrate usage of objects and object sets

	Annex E
	Tutorial annex on the ASN.1 model of object set extension
	Annex F
	Summary of the notation

