International Telecommunication Union

ITU-T X.680

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — Abstract Syntax

Notation One (ASN.1): Specification of basic
notation

ITU-T Recommendation X.680

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 8824-1
ITU-T RECOMMENDATION X.680

I nfor mation technology —
Abstract Syntax Notation One (ASN.1):
Specification of basic notation

Summary

This Recommendation | International Standard provides a notation called Abstract Syntax Notation One (ASN.1) for
defining the syntax of information data. It defines a number of simple data types and specifies a notation for referencing
these types and for specifying values of these types.

The ASN.1 notations can be applied whenever it is necessary to define the abstract syntax of information without
constraining in any way how the information is encoded for transmission.

Sour ce

ITU-T Recommendation X.680 was prepared by ITU-T Study Group 17 (2009-2012) and approved on 13 November
2008. Anidentical text is also published as |SO/IEC 8824-1.

ITU-T Rec. X.680 (11/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii Rec. ITU-T X.680 (11/2008)

CONTENTS

gL goe (0t (o] o [OOSR viii
Information technology — Abstract Syntax Notation One (ASN.1): Specification of basic notation..................... 1
1 S ol o TSP S PP 1
2 NOIMIBEIVE FEFEIENCES ...ttt s s e s be e be e ateeaeeebe e be e beeabesaeesaeesaeensesnnesaeesneanseenes 1
2.1 ldentica Recommendations | International Standards...........ccoceverererieeierere e 1
P o (o Lo g = = = = 0o OSSPSR 2
3 (D= T T (o] TSRS 2
3.1 International Object Identifier tree SPECITICALIONccoveiririririere s 2
3.2 Information ObjECt SPECITICALIONcc.eiviiieiiieieeeee et se e 2
TG TN 001> 1 =11 01 = o L=) {07 1 o o T 3
34 Parameterization Of ASN.L SPECITICAIONcceeeeeeecre e 3
3.5 Structure for identification Of OrganiZatIONS............ccuririeirinieire s 3
3.6 Universal Multiple-Octet Coded Character Set (UCS)coeoeiirereniriereee e 3
3.7 Representation of dafeS and tIMES.......c.cce i et e e e e e 3
3.8 Additional defiNItIONSc.eviieiiiie bbbt 4
4 ADDIEVIBLIONS ...ttt st e s b et e et e e et e e be e s be e be e be e beeatesaeesheebeenteearesaeeeaeenreanes 9
5 [N\ [o] 7= 1o o FO RSO 10
LTS 1= o7 - PSSP 10
5.2 PrOUUCLIONS ...ttt sttt et et b e et b e et b e se st et eseebeebeseeneebe e 10
5.3 Theaternative COIECIIONScceiiiierie e se e e seenreenis 10
Lo N N[0 B = o g o T 0 [o= (o] SO 10
LRSI =001 o] F=X 0= Y o) (0 To 1 1o g 10
L TR I o1 | 11
LI N = = o U1 ¢ o o O RRSRRTRRSRP 11
5.8 Referencesto permitted sequences of 1exiCal ITEMS.........ccooiieriiiiriie e 11
5.9 RefErencesSto alexiCal IteM ..ottt st st 11
5.10 Short-hand NOELIONScoiuiieiirieicie ettt sttt st enesbe e 11
511 Valuereferencesand the typing Of VAIUEScooiiiiiiiiiiicereee e 12
6 The ASN.1 MOdel Of tYPE EXLENSIONc.eiieiiiiiiiteetee ettt e sbesb et e e b e b enas 12
7 Extensibility requirements on enCOdING FUIESccviuiiieieieie et sre e 13
8 =SS 13
9 ENCOTING INSIFUCLIONS........citieeiiitisieieet ettt bbbttt b et b bbbt b et 14
10 USE Of the ASNL.L NOLBEION ...ttt e b e e e e se e be b e ebesaeeaeese e e eneeseesbesae e 15
O I 0 TC NS N B A = o = g SR 15
12 ASNLLIEXICE IEBMS.....ieieiiieecesie ettt b et b e e et b et et b et et bt e e bt e e e nentenes 17
12,1 GENETAI TUIESoecteetece ettt ettt ettt e s ae s e shee s aeebeeaseeaeeebeesbeenbeenbeesbesaeesreesbeesreeneennes 17
A Y/ oL £ = = 0SSR 17
2 T o 1= 1 1] T 6O 17
Y b N = = = g o= TSRS 18
12,5 MOQUIE FEFEIENCES......cceeieee ettt ettt be e te et e s ae e s beesbeenbeeabeeaeeebeesbeesteesreesneennas 18
12.6 COIMIMENLSteetieieeie ettt ettt ettt sae e be e be e b e e abe e aeesae e sheesae e et easeeaeeeaeeebe e b e enbeenbeeasesasesaeesseeaneannin 18
A A o)V L= (o= T (= o S 18
12,8 INUMDEIS..... ettt ae bbb et be b et s b et et s be e be et st 18
12,9 REA NUMDENS......coitieece ettt ettt et s ee s s he e s be e beeasesaeeebe e beenbeeabeeatesaeesbeesbeesreeseennas 18
1210 BiINAIY SITTNQS ... ueeuteieieieeetesteeieeie et et see st sbe b te st eaeeseeseesbesaesbesaeese e e e e e seeseeebesaeabeeaeenseneeseanseseesbensens 19
2250 R Y I o T 0 Y= 1 o 1 = S 19
B o 1=z o = o = S] T S 19

ITU-T Rec. X.680 (11/2008)

Page

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

iv

12.13 XML hexadeCimal StING itEM.....cc.ccie et e e e renne e 19

12,14 CREIACLEN SIFMNJS ..cueeveeieetirieeetest ettt sttt et s b s b e st b e st b et e st s b e et s b e e e st s b e e e b e be e b b 19
12.15 XML CharaCter StrNG ITEM......coeiiie ettt b e sb e e e e e e et e sbe e e 20
12.16 The simple character string [EXICal ITEM.........cccviie i e e 22
12.17 Time value CharaCler SIIINGSciiiiieieceireeeee e et se e st sresre s e e eneenaesrenresnenrenreens 22
12.18 XML time value charaCter StiNg iTeMooeiiirieree e 22
12.19 The property and Setting NAmMES [EXICal ITEM........cciriiiii i e e 22
12.20 ASSIGNMENT IEXICEI ITBM....c.viiiiciieecee e st s e e st e s reeaeesa e e e tesresrenre e 22
A R a0 S o = | o 22
I 111 SRS 23
12.23 Left VErSION DIFACKELS.ot ettt e e e 23
12.24 Right VErSION DIACKELS........cueceeeeiice st sttt st st st ae et e e e e et sr e beseenrenne e 23
12.25 ENCOAING FEFEIENCES. ...c.eeiiiie ittt see ettt sttt st st re e e e e e et e s teseesneese e e eneeneenrennenns 23
12.26 Integer-valued UniCOAE [ADEIS...... ..ot 23
12.27 Non-integer UNIiCOOE IEDEIScouiiiiiiie et et 23
2z I QY = g To R =oAL IS 23
222 I QY = T Te =0 =T =g o N o P 24
12.30 XML DOOIEEN trUE ITEMeeeeeieieeee sttt sttt st sbe e ere e e et e naeseentesreneense e 24
12.31 XML boolean extended-true itOMcoeiiriiee et e be e 24
12.32 XML DOOIEAN FlSE ITEIM. ...ttt 24
12.33 XML boolean extended-falSE item..... ..o e 24
12.34 XML real NOt-8-NUMDEE FTEIM ..ottt e e e et e seeseenee e 24
12.35 XML real INfINITY ITBM ...ciiiieicieiecieeses e ettt be st e st 25
12.36 XML tag NAamMES FOr ASNLL LYPES....cueiiciiiieciecieeeteste e st e st s te s r et sae et s e e e e aesr e besresrenneens 25
12.37 Single charaCter 1EXIiCal ITEIMS........viv e e e e e snesrenne e 26
12.38 RESEIVEI WOIS.......eeueeieriiieiie st eeeeeesees e see st sae e eeeesteseesbesaesseeseeneeneessenbeseesbesseeneeneeneenseseensensens 27
1Y KoTo (U1 =0 L= 1o TH 1 To o DU USSR 27
Referencing type and value defiNitiONS........c.cciiiii it s e s 31
Notation to support references to ASN.L COMPONENES........cuervereririeresereereeeeseese e e e seeneeseeseesseens 33
ASSIGNING tYPES BNA VBIUESccviiiitiiiiieterteet sttt ettt s bbb e s e s 34
Definition Of tYPES 8N VAIUES.coiiiieie ittt st b e et b et e e e b e e be e 35
Notation for the BOOIEAN TYPE.......ccue e e e b e et se et e e renre e 38
N [o) = (o T o g TR T 1= = g 1Y S 39
Notation for the ENUMEIGtEd TYPE.......c.ci it 40
NOatiON FOF ThE AL TYPB.......eeeeeeete et ettt b e bbbt st e e e e e b b 41
No1 2= (o gl o g i aT= oL 5 T a0 N1 < S 42
(N[o) = (o gl o g i T 0ot =S (1o)Y 0= 44
NOLEtiON FOF thE NUIT TYPE ... bbbt 45
N[0z 1o g o =0 (U1 0] A 1SRRI 45
NOtatiON fOr SEQUENCE-0f TYPES.....eiueiicieieiie sttt s te e st se et e s ee st e s besaeere e e eneeste e enteseesrenreans 48
N0 (o g T 0 = B Y o= PSS 51
NOLELI 0N FOF SEE-OF TYPES.. ..ttt bbbt bbbt a bbb 52
(N\[o17= 1o gl o ol g0 ot 1Y o= 52
N[0z (o gl o g = 1= e o Y 0= S 54
[N[o1 = (o g T o g 1= TG0 1Y/ 0= S 55
I R 7= 0 - TSRS 55
1 2 N 0 T= =0 o 1= o L LTSRS 55
31.3 Theencoding PrefiXe0 LY PE.....ci ettt s r e s re b ae e e e e se e besrenreens 56
Notation for the 0bjeCt IENtifier tYPE....civie e e 57
Notation for the relative object identifier YPEovo i e 58

ITU-T Rec. X.680 (11/2008)

34 Notation for the OID internationalized resource identifier tyPe.......cccoevvererieviesievece e 60

35 Notation for the relative OID internationalized resource identifier type.........cccovveeneneienennesesereseee 60
36 Notation for the embedded-PaV LYPE........co e bbb 61
37 NOtation fOr the EXIEINEAl LY PE.......e e st s et re e e e e e e eesresrenre e 63
1S T I 0 T= (141 64
1IN 1 0 - S 64
38.2 Time properties and settings of time abstract ValUESooeiiriricieiee e 64

38.3 Basic value notation and XML value notation for time abstract values with specified property
LSS 11 10 S 68
1S W E < U T = 1 - S 72
39 THhe CharaCter SIHNQ TYPES. ... ceeie ettt sttt ettt e b bt e heeae et e e e se e be s bt sbesbeeaeenee e e beseesbennas 74
40 Notation fOr CharaCter SIING tYPESuiee ettt sttt se et st be e e st 74
41 Definition of restricted CharaCter StriNg tYPEScvevererere et re s e se e sne e 75
42 Naming characters, collections and property CategOry SELS........oviiriiirerieereererese e e e e see e nee e 79
43 CanoniCal Order Of ChAIBCLEN'S........o ettt ettt be bbb sbesbe s e e neeseenbesaesneas 82
44 Definition of unrestricted charaCter StHNG LYPESccviieieierere s e sre s 83
45 Notation for types defined in ClaUSES 46 10 48ccvieeiererere st sne s 84
46 (€10 o T T74= o 0 1= USRS 84
47 @AV = I 1] 0= SO 86
I I 1Yo o T o 0 L= o (o g 1/ = S 86
L 0 1S 1 = 1= I - S 87
50 Element Set SPECITICALION.coe ittt ene e et seenaenre e 88
Bl SUBLYPE BIEIMENTS. ..ottt ettt h e bttt e bbbt eh e aeene e e e be e eaennin 90
Lo I R €= 0 - TP 90
L 2 T o | - 92
51.3 CONLAINED SUDLYPE.citiieiiitereeieete sttt sttt b et e et b e s e et et e b et e b e sae e ebe e enesre e 92
L Y [0 T= =g To USSR 92
LY TS = o a) g 1] | PSPPSR 92
Lo IO G T I/ X ot 1 - | 93
51.7 Permitted alPhabet........ccoiieiieeee ettt ne et e 93
LIS I 01 = =011 o1 oo [OSSR 93
51,9 PaterN CONSLIAINT.eueetireeieieiteiete sttt sttt ettt se st e st ebe st e seebesbeneebesbe e ebesee e nbeseenenteseas 95
51.10 Property SEINGS. ... ccveeereeresesiesieseseeseesesiestestessessesseesessessestessessesseessensessessessessessesseessessensessessensen 95
51,11 DUIBLION FBNGE ...eeeeeetereeteete sttt et e st se et sbe e st et ese e st e b e se e st e beseeseebeseebe e b e se e st ebeseeneebeseenesbeseenenbeneas 96
Lo I M 00 T= oo g A = L= TSR 96
51.13 RECUIMENCE FBINQE. .. et ittt itet ettt eteesteesatessbeesabeesteessbeesbeessbeesaeeesbeeesaeeeabeeeabeeeabeeeabeeebaeeseeenbbeenaneenens 97
52 ThEe EXIENSION MEIKES ...ttt b ettt b et sttt sbe st et nbe st 97
B3 The XCEPLiON IBNTIFIEN......c.iieieeeireeee e bbbttt 99
54 ENCOAING CONIOI SECLIONS ...ttt ettt st bt sb et et et e e e b seesbe e e 99
ANNEX A ASN.L regular EXPIrESSIONS......cc.ciiiteriiireeeeieeieesees e stesresse s e eaessesteseestesseessessessatestestessesssessessenseseessenses 101
F R = 1 11 (o o PSPPSRSO 101
F N AV [= o 7= o = £ ST 101
ANNEX B The defiNed tIME LY PES ..ottt ettt et bbbt ae e e et e sbesae e enes 105
2T R 7= 0= - SO 105
B.2 The ASN.1 defined time typeS MOUUIE.cveeeiererese e 105
Annex C Rulesfor type and value Compatibilityccoooeirinriniee e 110
C.1 Theneed for the value mapping concept (tutorial introduction)...........cccceeerenerenenenienereeenes 110
(O B 10 L= 110 7=1o o] oo P 112
C.3 ldentical type defiNitiONS.........cccveueeieeere et e et ne e e e snenrenne e 113
C.4 Specification of ValUE MEPPINGSco.iveiriiieirieieesieeee st 115

ITU-T Rec. X.680 (11/2008)

C.5 Additional value mappings defined for the character String types.......cocvvvvvvvvcevecescecseeereees 115

C.6 Specific type and value compatibility reqUuireMentsccvereieriineirinese e 116
O A - 0o =S SRS 117
Annex D Assigned object identifier and OID internationalized resource identifier values..........ccccceevevecennnee. 119
D.1 Vauesassigned in this Recommendation | International Standard...........cccceeeeveverivnencneneneenne. 119
D.2 Objectidentifiersin the ASN.1 and encoding rules standards.............coceoevereeieneneienieneienesees 119
ANNEX E ENCOOING FEFEIENCES ..ottt et sttt e e bbb e et e ae e ne e besee b e aeeneenes 121
Annex F Assignment and use of arcsin the International Object Identifier tree.........coevvvveveveeceve e, 122
N €1 1= OSSP S 122
F.2 Use of the International Object Identifier tree by the object identifier (OBJECT | DENTI FI ER)
137 LT OSSO PUPR 122
F.3 Use of the International Object Identifier tree by the OID internationalized resource identifier
(O T T I T Y/ o= 122
ANNEX G EXAMPIES @NO NINES ...ttt ettt 123
G.1 Example of apersonnel FECOIM.........cccoiiiiiriii ittt sb e e 123
G.1.1 Informal description of Personnel RECOIdcccvvicieiienene s st 123
G.1.2 ASN.1 description of the record StrUCIUIE..........ccvevverereie e 123
G.1.3 ASN.1description of @reCord VaIUE..........cccouireeeiriirieiriiieesiee e 124
G.2 Guidelinesfor use Of the NOLALIONiiiiiiie e e 124
LTt R = To o = o TSRS 125
LT 1 011 o T 125
LG T = 0114 41 (o [125
LT = TR 126
L0 T = 11 0= {1 oo TS 127
L2 S T © o (= 0= 1 1 o S 128
G.2.7 UniversaString, BMPString and UTF8SIINGcoeeririeerineinesieeseseese e 129
G.28 CHARACTER STRING......cccitieiriiieirtisteese et e st se e stesseneees 129
L0228 T U SRS 130
G.2.10 Sequence and SEQUENCE-OFcc.coerereierereceeeee e see e se e e et sae st sneene e eneenes 130
G211 SEL AN SEE-Of ..o nr s 132
LTt o o = o OSSR S 134
L0200 T O 1 o o= TSRS 135
LT S = [(o 1 Y 1= TS 137
G.2.16 EMDBEAdE0-PAVcccceieiiiieiisieei ettt 138
G217 EXEEING c..cueeiiiiieicie ettt sttt st sttt e et e et n e a e s nnenen 138
G218 INSEBNCE-OFcviieeiiiiieiirieie ettt sttt ne st e s nee 138
LCTHZ LS T © o 1= o: B To = 01 (1= S 139
G.2.20 OID internationalized resource identifier..........ccoovvvereneeeieeree e 139
G.221 Relative Object Identifiero e 139
G.3 Value notation and property settings (T1 ME type and useful timetypes)cccccvveveeececveveennne. 140
LT T I T (TSRO 140
G.3.2 TIME OF Y .ttt ettt b e s b e bbbt s be et be st eb e b e e 140
G.3.3 Dateand tiMe OF TaYceeeieeiere ittt e bttt s e e besne e 141
(R T 0N 1= A= ST 141
G.3.5 RECUITING INEIVEL ..o.eeuiitiieiieiirie sttt sttt ettt sttt sbe st 142
G.4 1dentifying aDSIraCt SYNLAXES.eierireiietiee ettt st st se e e e seseesee e e 142
(RIS T 0] o= SRS 143
Annex H Tutorial annex on ASN.L CharaCter StHNQS.......cvceieeeeieeiese s s eee e e e s st sse e ee s e e sreereens 147
H.1 Character string SUPPOIt iNASN.L.....ccocviiieeieeeeree e et sre e neeaeneesrenns 147
H.2 The UniversalString, UTF8String and BMPSENG tYPES.......covrueiriirieirineeresie e 147
H.3 OnISO/IEC 10646 conformance reqUirEMENTScoerererrerereeieeseesie e sie s saesaeseeeeseeseeseesresnes 148
H.4 Recommendationsfor ASN.1 userson ISO/IEC 10646 CONfOrMaNnCeccoevvrvereeerereeneseneenes 148
H.5 Adopted subsets as parameters of the abDStract SYNtaX........cccccevevievecenieeeceesere e 149
H.6 The CHARACTER STRING tYPE....cciciiiiieieisieise ettt e et e e sa et sa et sesaeneene 149
Annex | Tutorial annex on the ASN.1 model Of type EXIENSION.coeriiiieriiie e 150
0 @ = oY1= 1 S 150

Vi ITU-T Rec. X.680 (11/2008)

1.2 Meaning Of VErSION NUMDEIS........ccieieriie e s eeeee e e s e e e sreste e sre e e e eaeseensesnesrennes 151

1.3 Requirements on enCOING FUIEScoiiriiiriiereee e 152

.4 Combination of (possibly extensible) CONSLraNtS.........coooieiiiiie i 152

1.4.1 1Y e (= SO 152

1.4.2 Serial application Of CONSITAINES........ccvreeeererere e e 152

1.4.3 USe Of SEt @NthMELIC....c.eeieceecececee e e s 153

1.4.4 Use of the Contained SUbtype NOLELION.........co.eiererieeierierere e e 154

Annex J Tutorial aNNEX ONTE TI ME TP ...c.viiiiii ettt st s st ae e a e e sresbesneereeneenean 155
J1 Thecollectionsof ASN.1typesfor times and dateS........ccvveieverreriesenie e 155

J2 1SO 8601 KEY CONCEPLSeueevirteeetertereeiesie sttt sttt sttt ettt st b se bt b e se bt sbeseebesbeseebesbeneenenbeneas 155

J3 Abstract Values Of the T1 ME TYPE.....ccui ettt s s e 156

J4 Time properties of the time abStraCt ValUES............cceieiiiiiiiineceee e s 157

J5 VAU NOLALIONiiciiitieeieeie ettt sttt st b e st s e et et ese et e seeneebeseenenbenees 157

J6 Useof the ASN.1 SUBLYPE NOLALION.........eeuieeieieesese et s nne s 158

J.7 The property settings SUDLYPE NOLALTIONc.coiiiiriiiere et 158
Annex K Analyzing Tl ME type ValUE NOLELIONcceiiiieiiceeie sttt e ettt st e e et sr e e snesreens 160
N R €1 o 1= OSSP 160

K.2 ANalyzZing the fUll SIING ...oo.oeiieiceee e 160

K.3 Analysisof astring containing an iNtErVal........ ..o e e 161

K.4 Analysisof astring ContaiNiNg @dat...........cccueeeieriiesie i seesie e st sae et e s ens 161

K.5 Analysisof astring CONtAINING @YEaNcceeeereerierereseseseseseeseeseesaesrestessesresseseeseesesssessessesees 162

K.6 Analysisof astring containing & CENLUIYc.urueiririeirenieereiee st 162

K.7 Analysisof astring CONtaiNiNg @ tiMe..........eeerieiiiriiriere et 162

K.8 Analysisof astring containing asimpletimecccceoeviiieinecieciese e 163
Annex L Summary Of the ASN.L NOBLIONc.civirieiriiieiriee ettt 164

ITU-T Rec. X.680 (11/2008)

vii

I ntroduction

This Recommendation | International Standard presents a standard notation for the definition of data types and values.
A data type (or type for short) is a category of information (for example, numeric, textual, still image or video
information). A data value (or value for short) is an instance of such a type. This Recommendation | Internationa
Standard defines several basic types and their corresponding values, and rules for combining them into more complex
types and values.

In some protocol architectures, each message is specified as the binary value of a sequence of octets. However,
standards-writers need to define quite complex data types to carry their messages, without concern for their binary
representation. In order to specify these data types, they require a notation that does not necessarily determine the
representation of each value. ASN.1 is such a notation. This notation is supplemented by the specification of one or
more agorithms called encoding rules that determine the value of the octets that carry the application semantics (called
the transfer syntax). ITU-T Rec. X.690 | ISO/IEC 8825-1, ITU-T Rec. X.691 | ISO/IEC 8825-2 and ITU-T Rec. X.693
| ISO/EC 8825-4 specify three families of standardized encoding rules, called Basic Encoding Rules (BER), Packed
Encoding Rules (PER), and XML Encoding Rules (XER).

Some users wish to redefine their legacy protocols using ASN.1, but cannot use standardized encoding rules because
they need to retain their existing binary representations. Other users wish to have more complete control over the exact
layout of the bits on the wire (the transfer syntax). These requirements are addressed by ITU-T Rec. X.692 |
I SO/IEC 8825-3 which specifies an Encoding Control Notation (ECN) for ASN.1. ECN enables designers to formally
specify the abstract syntax of a protocol using ASN.1, but to then (if they so wish) take complete or partial control of
the bits on the wire by writing an accompanying ECN specification (which may reference standardized Encoding Rules
for some parts of the encoding).

A very genera technique for defining a complicated type at the abstract level is to define a small humber of simple
types by defining all possible values of the simple types, then combining these simple types in various ways. Some of
the ways of defining new types are as follows:

a) given an (ordered) list of existing types, a value can be formed as an (ordered) sequence of values, one
from each of the existing types; the collection of all possible values obtained in this way is anew type (if
the existing types in the list are al distinct, this mechanism can be extended to allow omission of some
values fromthelist);

b) given an unordered set of (distinct) existing types, a value can be formed as an (unordered) set of values,
one from each of the existing types; the collection of all possible unordered sets of values obtained in
thisway is anew type (the mechanism can again be extended to allow omission of some values);

c) given asingle existing type, a value can be formed as an (ordered) list or (unordered) set of zero, one or
more values of the existing type; the collection of all possible lists or sets of values obtained in this way
isanew type;

d) givenalist of (distinct) types, a value can be chosen from any one of them; the set of all possible values
obtained in thisway is a new type;

€) given atype, a new type can be formed as a subset of it by using some structure or order relationship
among the values.

An important aspect of combining types in this way is that encoding rules should recognize the combining constructs,
providing unambiguous encodings of the collection of values of the basic types. Thus, every basic type defined using
the notation specified in this Recommendation | International Standard is assigned a tag to aid in the unambiguous
encoding of values.

Tags are mainly intended for machine use, and are not essential for the human notation defined in this Recommendation
| International Standard. Where, however, it is necessary to require that certain types be distinct, this is expressed by
requiring that they have distinct tags. The allocation of tagsis therefore an important part of the use of this notation, but
(since 1994) it is possible to specify the automatic allocation of tags.

NOTE 1 — Within this Recommendation | International Standard, tag values are assigned to all simple types and construction

mechanisms. The restrictions placed on the use of the notation ensure that tags can be used in transfer for unambiguous
identification of values.

Itis also possible to assign encoding instructions to atype in order to affect the encoding of that type. This can be done
either by a type prefix placed before a type definition or use of a type reference, or by an encoding control section
placed at the end of an ASN.1 module. The generic syntax of type prefixes and encoding control sectionsis specified in
this Recommendation | International Standard, and includes an encoding reference to identify the encoding rules that

viii ITU-T Rec. X.680 (11/2008)

are modified by the encoding instruction. The semantics and detailed syntax of encoding instructions are specified in
the encoding rules Recommendation | International Standard identified by the encoding reference.

An ASN.1 specification will initially be produced with a set of fully defined ASN.1 types. At alater stage, however, it
may be necessary to change those types (usually by the addition of extra components in a sequence or set type). If this
isto be possible in such away that implementations using the old type definitions can interwork with implementations
using the new type definitions in a defined way, encoding rules need to provide appropriate support. The ASN.1
notation supports the inclusion of an extension marker on a number of types. This signals to encoding rules the
intention of the designer that this type is one of a series of related types (i.e., versions of the same initial type) called an
extension series, and that the encoding rules are required to enable information transfer between implementations using
different typesthat are related by being part of the same extension series.

Clauses 11 to 33 (inclusive) define the simple types supported by ASN.1, and specify the notation to be used for
referencing simple types and for defining new types using them. Clauses 11 to 33 also specify notations to be used for
specifying values of types defined using ASN.1. Two value notations are provided. Thefirst is called the basic ASN.1
value notation, and has been part of the ASN.1 notation since its first introduction. The second is called the XML
ASN.1 Value Notation, and provides a value notation using Extensible Markup Language (XML).

NOTE 2 — The XML Value Notation provides a means of representing ASN.1 values using XML. Thus, an ASN.1 type
definition also specifies the structure and content of an XML element. This makes ASN.1 a simple schema language for XML.

Clauses 36 to 37 (inclusive) define the types supported by ASN.1 for carrying within them the complete encoding
of ASN.1 types.

Clause 38 and Annex B define the types that provide support for SO 8601.
Clauses 39 to 44 (inclusive) define the character string types.

Clauses 45 to 48 (inclusive) define certain types which are considered to be of general utility, but which require no
additional encoding rules.

Clauses 49 to 51 (inclusive) define a notation which enables subtypes to be defined from the values of a parent type.

Clause 52 defines a notation which allows ASN.1 types specified in a"version 1" specification to be identified as likely
to be extended in "version 2", and for additions made in subsequent versions to be separately listed and identified with
their version number.

Clause 53 defines a notation which allows ASN.1 type definitions to contain an indication of the intended error
handling if encodings are received for values which lie outside those specified in the current standardized definition.

Annex A forms an integra part of this Recommendation | International Standard, and specifies ASN.1 regular
expressions.

Annex B forms an integral part of this Recommendation | International Standard, and defines an ASN.1 module
containing the definition of a set of time types providing the full functionality of 1SO 8601. These types can be
imported from this ASN.1 module by an application designer if the useful time types specified in clause 38 are not
adequate for the application.

Annex C forms an integral part of this Recommendation | International Standard, and specifies rules for type and value
compatibility.

Annex D forms an integral part of this Recommendation | International Standard, and records object identifier and
object descriptor values assigned in the ASN.1 series of Recommendations | International Standards.

Annex E forms an integral part of this Recommendation | International Standard and specifies the currently defined
encoding references and the Recommendation | International Standard that defines the semantics and detailed syntax of
encoding instructions with those encoding references.

Annex F does not form an integra part of this Recommendation | International Standard, and references the
specification of the top-level arcs of the International Object Identifier tree and the use of that tree to form an OID
internationalized resource identifier which can be used asan IRI or URI registered asthe "oid" scheme with IANA.

Annex G does not form an integral part of this Recommendation | International Standard, and provides examples and
hints on the use of the ASN.1 notation.

Annex H does not form an integral part of this Recommendation | International Standard, and provides a tutorial
on ASN.1 character strings.

Annex | does not form an integral part of this Recommendation | International Standard, and provides a tutorial on
the ASN.1 model of type extension.

ITU-T Rec. X.680 (11/2008) iX

Annex J does not form an integral part of this Recommendation | International Standard and provides a tutorial
introduction to 1SO 8601 and to the TI ME type. It is recommended that this be read before the normative text.

Annex K does not form an integral part of this Recommendation | International Standard and provides information on
how to identify the time properties of an abstract value from an instance of value notation.

Annex L does not form an integral part of this Recommendation | International Standard, and provides a summary
of ASN.1 using the notation of clause 5.

X ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

| nfor mation technology —
Abstract Syntax Notation One (ASN.1):
Specification of basic notation

1 Scope

This Recommendation | International Standard provides a standard notation called Abstract Syntax Notation One
(ASN.1) that is used for the definition of datatypes, values, and constraints on data types.

This Recommendation | International Standard:

— defines a number of simple types, with their tags, and specifies a nhotation for referencing these types and
for specifying values of these types;

— defines mechanisms for constructing new types from more basic types, and specifies a notation for
defining such types and assigning them tags, and for specifying values of these types;

— defines character sets (by reference to other Recommendations and/or International Standards) for use
within ASN.1.

The ASN.1 notation can be applied whenever it is necessary to define the abstract syntax of information.

The ASN.1 notation is referenced by other standards which define encoding rules for the ASN. 1 types.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | I nternational Sandards

— ITU-T Recommendation X.660 (2008) | | SO/IEC 9834-1:2008, Information technology — Open Systems
Interconnection — Procedures for the operation of OS Registration Authorities: General procedures and
top arcs of the ASN.1 International Object Identifier tree.

— ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (2008) | ISO/IEC 8825-1:2008, Information technology — ASN.1
encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

— ITU-T Recommendation X.691 (2008) | ISO/IEC 8825-2:2008, Information technology — ASN.1
encoding rules: Specification of Packed Encoding Rules (PER).

— ITU-T Recommendation X.692 (2008) | ISO/IEC 8825-3:2008, Information technology — ASN.1
encoding rules: Specification of Encoding Control Notation (ECN).

ITU-T Rec. X.680 (11/2008) 1

| SO/IEC 8824-1:2008 (E)

ITU-T Recommendation X.693 (2008) | ISO/IEC 8825-4:2008, Information technology — ASN.1
encoding rules: XML Encoding Rules (XER).

ITU-T Recommendation X.695 (2008) | ISO/IEC 8825-6:2008, Information technology — ASN.1
encoding rules: Registration and application of PER encoding instructions.

2.2 Additional references

ITU-R Recommendation TF.460-5 (1997), Sandard-frequency and time-signal emissions.

CCITT Recommendation T.100 (1988), International information exchange for interactive videotex.
ITU-T Recommendation T.101 (1994), International interworking for videotex services.

ISO International Register of Coded Character Setsto be used with Escape Sequences.

I SO/IEC 646:1991, Information technology — 1SO 7-bit coded character set for information interchange.
I SO/IEC 2022:1994, Information technology — Character code structure and extension techniques.

I SO/IEC 6523:1998, Data interchange — Structures for the identification of organizations.

ISO/IEC 7350:1991, Information technology — Registration of repertoires of graphic characters from
| SO/IEC 10367.

SO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times.

I SO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

The Unicode Standard, Version 3.2.0:2002. The Unicode Consortium. (Reading, MA, Addison-
Wesley)

NOTE 1 — The above reference is included because it provides names for control characters and specifies
categories of characters.

W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http: //mww.w3.or g/ TR/2000/REC-xml-20001006.

NOTE 2 — The reference to a document within this Recommendation | International Standard does not give it, as a stand-alone
document, the status of a Recommendation or International Standard.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

31 International Object |dentifier tree specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.660 | ISO/IEC

9834-1.
a)
b)
0)
d)
e
f)
9)
h)

integer-valued Unicode label;
international object identifier tree;

OID internationalized resource identifier;
long arc;

object identifier;

primary integer value;

secondary identifier;

Unicode |abel;

3.2 Infor mation object specification
This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-

2
a)
b)

information object;
information object class;

2 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

¢) information object set;
d) instance-of type;
€) object classfield type.

3.3 Constraint specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-
3

a) component relation constraint;
b) table constraint.

34 Parameterization of ASN.1 specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.683 | ISO/IEC 8824-
4:

a) parameterized type;
b) parameterized value.

35 Structurefor identification of organizations

This Recommendation | International Standard uses the following terms defined in | SO/IEC 6523:

a) issuing organization;
b) organization code;
¢) International Code Designator.

3.6 Universal Multiple-Octet Coded Character Set (UCYS)

This Recommendation | International Standard uses the following terms defined in 1SO/IEC 10646:

a) Basic Multilingual Plane (BMP);
b) cdl;

c) combining character;

d) graphic symbol;

€) group;

f) limited subset;

g) plane;
h) row;
i) selected subset.

3.7 Representation of datesand times

This Recommendation | International Standard uses the following terms defined in SO 8601.:
a) basic format;
b) calendar date;
C) common year;
d) duration;
€) extended format;
f) Gregorian calendar;

g) instant;

h) leap second;
i) leapyear;

j) local time;

k) ordinal date;
[) recurring timeinterval
m) timeaxis,

ITU-T Rec. X.680 (11/2008) 3

| SO/IEC 8824-1:2008 (E)

n) timeinterval,;
0) timepoint;

p) time-scale;
q UTC
r week date.

3.8 Additional definitions

381 abstract character: An abstract value which is used for the organization, control or representation of textual
data.

NOTE — Annex H provides a more complete description of the term abstract character.

3.8.2 abstract value: A value whose definition is based only on the type used to carry some semantics,
independently of how it is represented in any encoding.
NOTE — Examples of abstract values are the values of the integer type, the boolean type, a character string type, or of a type
which is a sequence (or achoice) of an integer and a boolean.

383 additional time type: A type defined as a subtype of the time type (see 3.8.83) by applying the property
setting subtype notation to the time type or to a useful or defined time type.

384 ASN.1 character set: The set of characters, specified in clause 11, used in the ASN.1 notation.
3.85 ASN.1 specification: A collection of one or more ASN.1 modules.

3.8.6 associated type: A typewhich isused only for defining the value and subtype notation for atype.
NOTE — Associated types are defined in this Recommendation | International Standard when it is necessary to make it clear that
there may be a significant difference between how the type is defined in ASN.1 and how it is encoded. Associated types do not
appear in user specifications.

3.8.7 bitstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more bits.

NOTE — Where there is a need to carry embedded encodings of an abstract value, the use of a bitstring (or an octetstring) type
without a contents constraint (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11) is deprecated. Otherwise, the use of the
embedded-pdv type (see clause 36) provides a more flexible mechanism, allowing the announcement of the abstract syntax and
of the encoding of the abstract value that is embedded.

3.8.8 boolean type: A simple type with two distinguished values.

3.8.9 character property: The set of information associated with a cell in atable defining a character repertoire.
NOTE — The information will normally include some or al of the following items:
a) agraphic symbol;
b) acharacter name;
c) the definition of functions associated with the character when used in particular environments;
d) whether it represents a digit;
e an associated character differing only in (upper/lower) case.

3.8.10 character abstract syntax: Any abstract syntax whose values are specified as the set of character strings of
zero, one or more characters from some specified collection of characters.

3.8.11 character repertoire; The characters in a character set without any implication on how such characters are
encoded.

3.8.12 character stringtypes. Simple types whose values are strings of characters from some defined character set.

3.8.13 character transfer syntax: Any transfer syntax for a character abstract syntax.

NOTE — ASN.1 does not support character transfer syntaxes which do not encode all character strings as an integral multiple
of 8 bits.

3.8.14 choice types: Types defined by referencing a list of distinct types; each value of the choice type is derived
from the value of one of the component types.

3.8.15 component type: One of the types referenced when defining a CHO CE, SET, SEQUENCE, SET CF, or
SEQUENCE CF.

3.8.16 constraint: A notation which can be used in association with atype, to define a subtype of that type.

4 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

3.8.17 contents constraint: A constraint on a bit string or octet string type that specifies either that the contents are
to be an encoding of a specified ASN.1 type, or that specified procedures are to be used to produce and process the
contents.

3.8.18 control characters. Characters appearing in some character repertoires that have been given a name (and
perhaps a defined function in relation to certain environments) but which have not been assigned a graphic symbol, and
which are not spacing characters.

NOTE — HORIZONTAL TABULATION (9) and LINE FEED (10) are examples of control characters that have been assigned a
formatting function in a printing environment. DATA LINK ESCAPE (16) is an example of a control character that has been
assigned a function in a communication environment.

3.8.19 Coordinated Universal Time (UTC): The time scale maintained by the Bureau International de I'Heure
(International Time Bureau) that forms the basis of a coordinated dissemination of standard frequencies and time
signals.
NOTE 1 — The source of this definition is I TU-R Rec. TF.460-5. 1TU-R has also defined the acronym for Coordinated Universal
TimeasUTC.

NOTE 2 — UTC and Greenwich Mean Time (GMT) are two alternative time standards which for most practical purposes
determine the same time.

3.8.20 default encoding reference (for a module): An encoding reference that is specified in the module header
and is assumed in all type prefixes which do not contain an encoding reference.

NOTE - If a default encoding reference is not specified in the module header, then all type prefixes which do not contain an
encoding reference are assigning tags.

3.8.21 defined time type: A type defined in Annex B as a subtype of the time type (see 3.8.83) that is intended for
importation by application designers when needed for their application.

3.8.22 eement: A value of a governing type or an information object of a governing information object class,
distinguable from all other values of the same type or information objects of the same class, respectively.

3.8.23 element set: A set of elements, all of which are values of a governing type, or information objects of a
governing class.
NOTE — Governing classis defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4.7.

3.8.24 embedded-pdv type: A type whose set of values is formally the union of the sets of values in all possible
abstract syntaxes. Thistype can be used in an ASN.1 specification that wishes to carry in its protocol an abstract value
whose type may be defined externally to that ASN.1 specification. It carries an identification of the abstract syntax (the
type) of the abstract value being carried, as well as an identification of the encoding rules used to encode that abstract
vaue.

3.8.25 encoding: The bit-pattern resulting from the application of a set of encoding rules to an abstract value.

3.8.26 encoding control section: Part of an ASN.1 module that enables encoding instructions to be assigned to
types defined or used within that ASN.1 module.

3.8.27 encoding instruction: Information which can be associated with a type using a type prefix or an encoding
control section, and which affects the encoding of that type by one or more ASN.1 encoding rules.

NOTE — An encoding instruction does not affect the abstract values of atype, and is not expected to be visible to an application.

3.8.28 encoding reference: A name (see Annex E) that identifies which encoding rules are affected by an encoding
instruction in atype prefix or an encoding control section.

NOTE — The encoding reference TAG can be used to specify that a type prefix is assigning a tag rather than an encoding
instruction (see 31.2).

3.8.29 (ASN.1) encoding rules: Rules which specify the representation during transfer of the values of ASN.1
types. Encoding rules also enable the values to be recovered from the representation, given knowledge of the type.

NOTE - For the purpose of specifying encoding rules, the various referenced type (and value) notations, which can provide
aternative notations for built-in types (and values), are not relevant.

3.8.30 enumerated types: Simple typeswhose values are given distinct identifiers as part of the type notation.

3.8.31 extension addition: One of the added notations in an extension series. For set, sequence and choice types, each

extension addition is the addition of either a single extension addition group or a single component type. For enumerated

typesit isthe addition of asingle further enumeration. For a constraint it is the addition of (only) one subtype element.
NOTE - Extension additions are both textually ordered (following the extension marker) and logically ordered (having
increasing enumeration values, and, in the case of CHQO CE alternatives, increasing tags).

ITU-T Rec. X.680 (11/2008) 5

| SO/IEC 8824-1:2008 (E)

3.8.32 extension addition group: One or more components of a set, sequence or choice type grouped within version
brackets. An extension addition group is used to clearly identify the components of a set, sequence or choice type that were
added in a particular version of an ASN.1 module, and can identify that version with asimple integer.

3.8.33 extension addition type: A type contained within an extension addition group or a single component type that
isitself an extension addition (in such a caseit is not contained within an extension addition group).

3.8.34 extensible constraint: A subtype constraint with an extension marker at the outer level, or that is extensible
through the use of set arithmetic with extensible sets of values.

3.8.35 extension insertion point (or insertion point): The location within atype definition where extension additions
areinserted. Thislocation isthe end of the type notation of the immediately preceding type in the extension series if there
isasingle dlipsisin the type definition, or immediately before the second ellipsisif there is an extension marker pair in the
definition of the type.

NOTE — There can be at most one insertion point within the components of any choice, sequence, or set type.

3.8.36 extension marker: A syntactic flag (an ellipsis) that is included in al types that form part of an extension
series.

3.8.37 extension marker pair: A pair of extension markers between which extension additions are inserted.

3.8.38 extension-related: Two types that have the same extension root, where one was created by adding zero or
more extension additions to the other.

3.8.39 extension root: An extensible type that is the first type in an extension series. It carries either the extension
marker with no additional notation other than comments and white-space between the extension marker and the matching
"}" or")", or an extension marker pair with no additional notation other than a single comma, comments and white-space
between the extension markers.

NOTE — Only an extension root can be the first type in an extension series.

3.840 extension series. A series of ASN.1 types which can be ordered in such away that each successive type in the
seriesisformed by the addition of text at the extension insertion point.

3841 extensibletype: A typewith an extension marker, or to which an extensible constraint has been applied.
NOTE — An extension marker can be textually present or can be inserted by an EXTENSIBILITY-IMPLIED (see 13.4).

3842 external reference: A type reference, value reference, information object class reference, information object
reference, or information object set reference (which may be parameterized), that is defined in some other module than
the one in which it is being referenced, and which is being referred to by prefixing the module name to the referenced
item.

EXAMPLE — Modul eNane. TypeRef er ence

3.843 external type: A type which is a part of an ASN.1 specification that carries a value whose type may be
defined externally to that ASN.1 specification. It aso carries an identification of the type of the value being carried.

3.8.44 false: One of the distinguished values of the boolean type (see also "true").

3.845 governing (type); governor: A type definition or reference which affects the interpretation of a part of the
ASN.1 syntax, requiring that part of the ASN.1 syntax to reference values in the governing type.

3.8.46 identical type definitions. Two instances of the ASN.1 "Type" production (see clause 17) are defined as
identical type definitions if, after performing the transformations specified in Annex C, they are identical ordered lists
of identical lexical items (see clause 12).

3.8.47 OID internationalized resource identifier type: The set of all OID internationalized resource identifiers.

NOTE 1 - Thisis asimple type whose values are a sequence of Unicode labels that identify a series of arcs leading from the root
to anode of the International Object Identifier tree, as specified by the ITU-T Rec. X.660 | ISO/IEC 9834-series.

NOTE 2 — The rules of ITU-T Rec. X.660 | ISO/IEC 9834-1 permit a wide range of authorities to independently associate
Unicode labels with an arc of the tree.

3.8.48 integer type: A simple type with distinguished values which are the positive and negative whole numbers,
including zero (as asingle value).
NOTE — When particular encoding rules limit the range of an integer, such limitations are chosen so as not to affect any user
of ASN.1.

3.849 lexical item: A named sequence of characters from the ASN.1 character set, specified in clause 12, which is
used in forming the ASN.1 notation.

6 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

3.850 module: One or more instances of the use of the ASN.1 notation for type, value, vaue set, information
object class, information object, and information object set (as well as the parameterized variant of those), encapsul ated
using the ASN.1 module notation (see clause 13).

NOTE — The terms information object class (etc.) are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, and parameterization is
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4.

3.851 nulltype: A simpletype consisting of asingle value, also called null.

3.852 object: A well-defined piece of information, definition, or specification which requires a name in order to
identify its use in an instance of communication.

NOTE — Such an object may be an information object as defined in ITU-T Rec. X.681 | ISO/IEC 8824-2.

3.8.53 object descriptor type: A type whose distinguished values are human-readable text providing a brief
description of an object (see 3.8.52).

NOTE — An object descriptor value is usualy associated with a single object. Only an object identifier value unambiguously
identifies an object.

3.8.54 object identifier type: A simple type whose values are a sequence of primary integer values that identify a
series of arcs leading from the root to a node of the International Object Identifier tree, as specified by the ITU-T Rec.
X.660 | ISO/IEC 9834 series.
NOTE 1 — The rules of ITU-T Rec. X.660 | ISO/IEC 9834-1 permit a wide range of authorities to independently associate a
primary integer value with an arc of the tree.

NOTE 2 — In the value notation for the object identifier type (and in XML encodings of that type) it is possible to include
secondary identifiersfor arcs.

3.855 octetstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more
octets, each octet being an ordered sequence of eight bits.

3.8.56 open systems interconnection: An architecture for computer communication which provides a number of
terms which are used in this Recommendation | International Standard preceded by the abbreviation "OSI".

NOTE — The meaning of such terms can be obtained from the ITU-T Rec. X.200 series and equivalent ISO/IEC Standards if
needed. Thetermsare only applicable if ASN.1isused in an OS| environment.

3.8.57 opentypenotation: An ASN.1 notation used to denote a set of values from more than one ASN.1 type.
NOTE 1 — The term "open type" is used synonymously with "open type notation" in the body of this Recommendation |
International Standard.

NOTE 2 — All ASN.1 encoding rules provide unambiguous encodings for the values of a single ASN.1 type. They do not
necessarily provide unambiguous encodings for "open type notation”, which carries values from ASN.1 types that are not
normally determined at specification time. Knowledge of the type of the value being encoded in the "open type notation" is
needed before the abstract value for that field can be unambiguously determined.

NOTE 3 — The only notation in this Recommendation | International Standard which is an open type notation is the
"ObjectClassFieldType" specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 14, where the "FieldName" denotes either a
typefield or avariable-type value field.

3.8.58 parent type (of a subtype): The type that is being constrained when defining a subtype, and which governs
the subtype notation.

NOTE — The parent type may itself be a subtype of some other type.

3.8.59 production: A part of the formal notation (also called grammar or Backus-Naur Form, BNF) used to specify
ASN.1.

3.8.60 real type: A simple type whose distinguished values (specified in clause 21) include the set of real numbers
(numerical real numbers) together with special values such as NOT- A- NUVBER.

3.8.61 recursive definition (of atype): A set of ASN.1 definitions which cannot be reordered so that all types used
in aconstruction are defined before the definition of the construction.

NOTE — Recursive definitions are allowed in ASN.1: the user of the notation has the responsibility for ensuring that those values
(of the resulting types) which are used have afinite representation and that the value set associated with the type contains at |least
one value.

3.8.62 relative OID internationalized resource identifier type: A value which identifies an object by its position
relative to some known OID internationalized resource identifier.

3.8.63 relative object identifier: A value which identifies an object by its position relative to some known object
identifier.
3.8.64 relative object identifier type: A simple type whose vaues are the set of all possible relative object
identifiers.

ITU-T Rec. X.680 (11/2008) 7

| SO/IEC 8824-1:2008 (E)

3.8.65 restricted character string type: A character string type whose characters are taken from a fixed character
repertoire identified in the type specification.

3.8.66 selection types: Types defined by reference to a component type of a choice type, and whose values are
precisely the values of that component type.

3.8.67 sequencetypes. Types defined by referencing a fixed, ordered list of types (some of which may be declared
to be optional); each value of the sequence typeis an ordered list of values, one from each component type.
NOTE — Where a component type is declared to be optional, a value of the sequence type need not contain a value of that
component type.

3.8.68 sequence-of types. Types defined by referencing a single component type; each value in the sequence-of
typeisan ordered list of zero, one or more values of the component type.

3.8.69 serial application (of constraints): The application of a constraint to a parent type which is aready
constrained.

3.8.70 set arithmetic: The formation of new sets of values or information objects using the operations of union,
intersection and set difference (use of EXCEPT) as specified in 50.2.

NOTE — The result of serial application of constraintsis not covered by the term "set arithmetic".

3.8.71 setting (of a time property): One of a number of values that can be associated with a given time property
(see 3.8.82 and the note in J.4.2).

NOTE — Any time property that applies to a particular time abstract value has only a single setting (see Table 6).

3.8.72 set types. Types defined by referencing a fixed, unordered, list of types (some of which may be declared to
be optional); each value in the set type is an unordered list of values, one from each component type.
NOTE — Where a component type is declared to be optional, a value of the set type need not contain a value of that component
type.

3.8.73 set-of types. Types defined by referencing a single component type; each value in the set-of type is an
unordered list of zero, one or more values of the component type.

3.8.74 simpletypes. Types defined by directly specifying the set of their values.

3.8.75 spacing character: A character in a character repertoire which is intended for inclusion with graphic
characters in the printing of a character string but which is represented in the physical rendition by empty space; it is
not normally considered to be a control character (see 3.8.18).
NOTE — There may be a single spacing character in the character repertoire, or there may be multiple spacing characters with
varying widths.

3.8.76 subtype (of a parent type): A type whose values are a subset (or the complete set) of the values of some
other type (the parent type).

3.8.77 tag: Additional information, separate from the abstract values of the type, which is associated with every
ASN.1 type and which can be changed or augmented by atype prefix.

NOTE - Tag information is used in some encoding rules to ensure that encodings are not ambiguous. Tag information differs
from encoding instructions because tag information is associated with all ASN.1 types, even if they do not have a type prefix.

3.8.78 tagged types. A type defined by referencing a single existing type and a tag; the new type is isomorphic to
the existing type, but is distinct from it.

3.8.79 tagging: Assigning anew tag to atype, replacing or adding to the existing (possibly the default) tag.
3.8.80 timeabstract value: An abstract value of the time type.

3.8.81 timecomponent: Part of the definition of atime abstract value that specifies a part of that abstract value.

NOTE — Examples of time components are a date component (that would have a year component), a time-of-day component, or
atime difference component.

3.8.82 time property (of a time abstract value): One of a number of terms used to describe a time abstract value
(see 3.8.80).

NOTE — The time properties that can be used to describe a time abstract value often depend on the setting of some other time
property of that abstract value. The time properties are listed in Table 6, column 1.

3.8.83 timetype: The Tl ME type that supports all the abstract values implicitly defined by 1SO 8601.

3.8.84 transfer syntax: The set of bit strings used to exchange the abstract values in an abstract syntax, usually
obtained by application of encoding rulesto an abstract syntax.

8 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE — The term "transfer syntax” is synonymous with "encoding".
3.8.85 true: One of the distinguished values of the boolean type (see also "false").
3.8.86 type: A named set of values.
3.8.87 typeprefix: Part of the ASN.1 notation that can be used to assign an encoding instruction or atag to atype.

3.8.88 typereferencename: A name associated uniquely with atype within some context.

NOTE — Reference names are assigned to the types defined in this Recommendation | International Standard; these are
universally available within ASN.1. Other reference names are defined in other Recommendations | International Standards, and
are applicable only in the context of that Recommendation | International Standard.

3.8.89 unrestricted character string type: A type whose abstract values are values from a character abstract
syntax, together with an identification of the character abstract syntax and of the character transfer syntax to be used in
its encoding.

3.8.90 useful timetype: A built-in type defined as a subtype of the time type (see 3.8.83) that is intended for direct
use by application designers.

3.8.91 user (of ASN.1): The individua or organization that defines the abstract syntax of a particular piece of
information using ASN.1.

3892 value mapping: A 1-1 relationship between values in two types that enables a reference to one of those
values to be used as a reference to the other value. This can, for example, be used in specifying subtypes and default
values (see Annex C).

3.8.93 valuereferencename: A name associated uniquely with a value within some context.
3.8.94 valueset: A collection of values of atype. Semantically equivalent to a subtype.

3.8.95 version brackets: A pair of adjacent left and right brackets ("[[" or "]] ") used to delineate the start and end of
an extension addition group. The pair of left brackets can optionally be followed by a number giving a version number for
the extension addition group.

3896 version number: A number which can be associated with aversion bracket (see1.1.8).

NOTE — A version number cannot be added to an extension addition which is not part of an extension addition group, nor to
extension additions to any type other than choice, sequence, or set.

3.8.97 white-space: Any formatting action that yields a space on a printed page, such as spaces or tabs.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
BMP Basic Multilingua Plane
DCC Data Country Code
DNIC DataNetwork Identification Code
ECN Encoding Control Notation of ASN.1

ICD International Code Designator

IRI Internationalized Resource |dentifier
OoID Object Identifier

oSl Open Systems Interconnection

PER Packed Encoding Rules of ASN.1

ROA Recognized Operating Agency

UCS Universal Multiple-Octet Coded Character Set
URI Universal Resource Identifier

UTC Coordinated Universal Time

XML Extensible Markup Language

ITU-T Rec. X.680 (11/2008) 9

| SO/I EC 8824-1:2008 (E)
5 Notation

51 General
511 The ASN.1 notation consists of a sequence of characters from the ASN.1 character set specified in clause 11.

51.2 Each use of the ASN.1 notation contains characters from the ASN.1 character set grouped into lexical items.
Clause 12 specifies al the sequences of characters forming lexical items, and names each item.

51.3 The ASN.1 notation is specified in clause 13 (and following clauses) by specifying and naming those
sequences of lexical items which form valid instances of the ASN.1 notation, and by specifying the ASN.1 semantics of
each sequence.

514 In order to specify the permitted sequences of lexical items, this Recommendation | International Standard
uses aformal notation defined in the following subclauses.

5.2 Productions
521 All lexical items are named (see clause 12), and permitted sequences of lexical items are named.

522 A new (more complex) permitted sequence of lexical items is defined by means of a production. This uses
the names of lexical items and of permitted sequences of lexical items and forms a new named permitted sequence of
lexical items.

523 Each production consists of the following parts, on one or several lines, in order:

a) aname for the new permitted sequence of lexical items;
b) thecharacters

c) oneor more aternative sequences of lexical items, as defined in 5.3, separated by the character

524 A sequence of lexical items is present in the new permitted sequence of lexical itemsiif it is present in one or
more of the aternatives. The new permitted sequence of lexical items is referenced in this Recommendation |
International Standard by the name in 5.2.3 a) above.

NOTE — If the same sequence of lexical items appears in more than one aternative, any semantic ambiguity in the resulting
notation is resolved by associated text.

53 The alter native collections

531 Each alternative in a production (see 5.2.3.c) is specified by alist of names. Each name is either the name of a
lexical item, or is the name of a permitted sequence of lexical items defined and named by some other production.

53.2 The permitted sequence of lexical items defined by each alternative consists of all sequences obtained by
taking any one of the sequences (or the lexical item) associated with the first name, in combination with (and followed
by) any one of the sequences (or lexical item) associated with the second name, in combination with (and followed by)
any one of the sequences (or lexical item) associated with the third name, and so on up to and including the last name
(or lexical item) in the aternative.

54 Non-spacing indicator

If the non-spacing indicator "&" (AMPERSAND) is inserted between these items in production sequences, then the
lexical item that precedesit and the lexical item that follows it shall not be separated by white-space.

NOTE — Thisindicator is only used in productions that describe the XML value notation. For example, it is used to specify that
the lexical item "<" isto be immediately followed by an XML tag name.

55 Example of a production

55.1 The production:

ExampleProduction ::=
bstring
| hstring

10 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

| "{" IdentifierList"}"
associates the name "ExampleProduction” with the following sequences of lexical items:
a) any "bstring” (alexical item); or
b) any "hstring" (alexical item); or
c) any sequence of lexical items associated with "ldentifierList”, preceded by a"{ " and followed by a"} ".

NOTE -"{" and "} " are the names of lexical items containing the single characters{ and} (see 12.37).

55.2 In this example, "IdentifierList" would be defined by a further production, either before or after the
production defining " ExampleProduction”.

5.6 L ayout

Each production used in this Recommendation | International Standard is preceded and followed by an empty line.
Empty lines do not appear within productions. The production may be on a single line, or may be spread over several
lines. Layout is not significant.

57 Recursion

The productions in this Recommendation | International Standard are frequently recursive. In this case the productions
are to be continuously reapplied until no new sequences are generated.

NOTE — In many cases, such reapplication results in an infinite set of permitted sequences of lexical items. Some or al of the
seguences in the set may themselves contain an unbounded number of lexical items. Thisis not an error.

5.8 Referencesto per mitted sequences of lexical items

This Recommendation | International Standard references a permitted sequence of lexical items (part of the ASN.1
notation) by referencing the name that appears before the "::=" in a production; the name is surrounded by the
QUOTATION MARK (34) character (") to distinguish it from natural language text, unless it appears as part of a
production.

59 Referencesto alexical item

This Recommendation | International Standard references alexical item by using the name of the lexical item; when the
name appears in natural language text, and could be confused with such text, then it is surrounded by the
QUOTATION MARK (34) character ().

5.10 Short-hand notations

In order to make productions more concise and more readable, the following short-hand notations are used in the
definition of permitted sequences of lexical items in this Recommendation | International Standard and aso in ITU-T
Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4:

a) Anasterisk (*) following two names, "A" and "B", denotes the "empty" lexical item (see 12.7), or one of
the permitted sequences of lexical items associated with "A", or an aternating series of one of the
sequences of lexical items associated with "A" and one of the sequences of lexical items associated with
"B", both starting and finishing with one associated with "A". Thus:

C..=AB*
isequivaent to:

C ::=D | empty
D::=A|ABD

"D" being an auxiliary name not appearing el sewhere in the productions.

ITU-T Rec. X.680 (11/2008) 11

| SO/IEC 8824-1:2008 (E)

EXAMPLE -"C ::= A B *" isthe shorthand notation for the following alternatives of C:

empty

A

ABA
ABABA
ABABABA

b) A plussign (+) issimilar to the asterisk in &), except that the "empty" lexical item is excluded. Thus:
E::=AB+
isequivaent to:
E::=A|ABE
EXAMPLE - "E ::= A B +" isthe shorthand notation for the following alternatives of E:

A

ABA
ABABA
ABABABA

¢) A question mark (?) following a name denotes either the "empty" lexical item (see 12.7) or a permitted
sequence of lexical items associated with "A". Thus:

Fi=A?
is equivaent to:
F::=empty | A

NOTE — These short-hand notations take precedence over the juxtaposition of lexical itemsin production sequences (see 5.2.2).

511 Value references and the typing of values

511.1 The ASN.1 value assignment notation enables a name to be given to a value of a specified type. This name
can be used wherever a reference to that value is needed. Annex C describes and specifies the value mapping
mechanism that allows a value reference name for a value of one type to identify a value of a second (similar) type.
Thus, areference to the first value can be used wherever areference to a value in the second typeis required.

5.11.2 Inthebody of the ASN.1 standards normal English text is used to specify legality (or otherwise) of constructs
where more than one type is involved. These legality specifications generally require that two or more types be
"compatible". For example, the type used in defining a value reference is required to be "compatible with" the
governing type when the value reference is used. The normative Annex C uses the value mapping concept to give a
precise statement about whether any given ASN.1 construct islegal or not.

6 The ASN.1 model of type extension

When decoding an extensible type, a decoder may detect:
a) the absence of expected extension additions in a sequence or set type; or

b) the presence of arbitrary unexpected extension additions above those defined (if any) in a sequence or
set type, or of an unknown alternative in a choice type, or an unknown enumeration in an enumerated
type, or of an unexpected length or value of atype whose constraint is extensible.

In formal terms, an abstract syntax defined by the extensible type X contains not only the values of type X, but also the
values of al types that are extension-related to X. Thus, the decoding process never signals an error when either of the
above situations (a or b) is detected. The action that istaken in each situation is determined by the ASN.1 specifier.

NOTE - Frequently the action will be to ignore the presence of unexpected additional extensions, and to use a default value or a
"missing" indicator for expected extension additions that are absent.

Unexpected extension additions detected by a decoder in an extensible type can later be included in a subsequent
encoding of that type (for transmission back to the sender, or to some third party), provided that the same transfer
syntax is used on the subsequent transmission.

12 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

7 Extensibility requirementson encoding rules

NOTE — These requirements apply to standardized encoding rules. They do not apply to encoding rules defined using ECN (see
ITU-T Rec. X.692 | ISO/IEC 8825-3).

7.1 All ASN.1 encoding rules shall allow the encoding of values of an extensible type X in such away that they
can be decoded using an extensible type Y that is extension-related to X. Further, the encoding rules shall allow the
values that were decoded using Y to be re-encoded (using Y) and decoded using a third extensible type Z that is
extension related to Y (and hence X also).

NOTE - Types X, Y and Z may appear in any order in the extension series.

If a value of an extensible type X is encoded and then relayed (directly or through a relaying application using
extension-related type Z) to another application that decodes the value using extensible type Y that is extension-related
to X, then the decoder using type Y obtains an abstract value composed of:

a) an abstract value of the extension root type;
b) an abstract value of each extension addition that is present in both X and Y;
¢) delimited encoding for each extension addition (if any) that isin X but notin'v.

The encodings in ¢) shall be capable of being included in a later encoding of a value of v, if so required by the
application. That encoding shall be avalid encoding of avalue of X.

Tutorial example: If system A is using an extensible root type (type X) that is a sequence type or a set type with an
extension addition of an optional integer type, while system B is using an extension-related type (type Y) that has two
extension additions where each is an optional integer type, then transmission by B of a value of Y which omits the
integer value of the first extension addition and includes the second must not be confused by A with the presence of the
first (only) extension addition of X that it knows about. Moreover, A must be able to re-encode the value of X with a
value present for the first integer type, followed by the second integer value received from B, if so required by the
application protocol.

7.2 All ASN.1 encoding rules shall specify the encoding and decoding of the value of an enumerated type and a
choice type in such away that if atransmitted value is in the set of extension additions held in common by the encoder
and the decoder, then it is successfully decoded; otherwise, it shall be possible for the decoder to delimit the encoding
of it and to identify it as avalue of an (unknown) extension addition.

7.3 All ASN.1 encoding rules shall specify the encoding and decoding of types with extensible constraints in
such a way that if a transmitted value is in the set of extension additions held in common by the encoder and the
decoder, then it is successfully decoded, otherwise it shall be possible for the decoder to delimit the encoding of and to
identify it as avalue of an (unknown) extension addition.

In al cases, the presence of extension additions shall not affect the ability to recognize later material when a type with
an extension marker is nested inside some other type.

NOTE 1 — All variants of the Basic Encoding Rules of ASN.1 and the Packed Encoding Rules of ASN.1 satisfy all these
requirements. Encoding rules defined using ECN do not necessarily satisfy all these requirements, but may do so.

NOTE 2 — PER and BER do not identify the version number in the encoding of an extension addition. Encodings specified using
ECN may or may not provide such identification.

8 Tags
8.1 A tag is specified (either within the text of this Recommendation | International Standard or by using a type
prefix) by giving a class and a number within the class. The classis one of:

— universd,

— application;

— private

— context-specific.
8.2 The number is a non-negative integer, specified in decimal notation.

8.3 Restrictions on tags assigned by the user of ASN.1 are specified in 31.2.

NOTE — Subclause 31.2 includes the restriction that users of this notation are not alowed to explicitly specify universal class
tags in their ASN.1 specifications. There is no formal difference between use of tags from the other three classes. Where
application class tags are employed, a private or context-specific class tag could generally be applied instead, as a matter of user
choice and style. The presence of the three classesis largely for historical reasons, but guidance is givenin G.2.12 on the way in
which the classes are usually employed.

ITU-T Rec. X.680 (11/2008) 13

| SO/IEC 8824-1:2008 (E)

8.4 8.5 Some encoding rules require a canonical order for tags. To provide uniformity, a canonical order for tags
isdefined in 8.6.
8.6 The canonical order for tagsis based on the outermost tag of each type and is defined as follows:

a) those elements or alternatives with universal class tags shall appear first, followed by those with
application class tags, followed by those with context-specific tags, followed by those with private class
tags;

b) within each class of tags, the elements or aternatives shall appear in ascending order of their tag
numbers.

Table 1 summarizes the assignment of tags in the universal class which are specified in this Recommendation |
International Standard.

85 Some encoding rules require a canonical order for tags. To provide uniformity, a canonical order for tags is
defined in 8.6.
8.6 The canonical order for tagsis based on the outermost tag of each type and is defined as follows:

a) those elements or alternatives with universal class tags shal appear first, followed by those with
application class tags, followed by those with context-specific tags, followed by those with private class

tags;
b) within each class of tags, the elements or aternatives shall appear in ascending order of their tag
numbers.
Table 1 — Universal classtag assignments
UNIVERSAL 0 Reserved for use by the encoding rules
UNIVERSAL 1 Boolean type
UNIVERSAL 2 Integer type
UNIVERSAL 3 Bitstring type
UNIVERSAL 4 Octetstring type
UNIVERSAL 5 Null type
UNIVERSAL 6 Object identifier type
UNIVERSAL 7 Object descriptor type
UNIVERSAL 8 External type and Instance-of type
UNIVERSAL 9 Rea type
UNIVERSAL 10 Enumerated type
UNIVERSAL 11 Embedded-pdv type
UNIVERSAL 12 UTF8String type
UNIVERSAL 13 Relative object identifier type
UNIVERSAL 14 The time type
UNIVERSAL 15 Reserved for future editions of this Recommendation | International Standard
UNIVERSAL 16 Sequence and Seguence-of types
UNIVERSAL 17 Set and Set-of types
UNIVERSAL 18-22, 25-30 Character string types
UNIVERSAL 23-24 UTCTi ne and Gener al i zedTi ne
UNIVERSAL 31-34 DATE, Tl ME- OF- DAY, DATE- Tl ME and DURATI ON respectively
UNIVERSAL 35 OID internationalized resource identifier type
UNIVERSAL 36 Relative OID internationalized resource identifier type
UNIVERSAL 37-... Reserved for addenda to this Recommendation | International Standard
9 Encoding instructions
9.1 An encoding instruction is assigned to a type using either a type prefix (see 31.3) or an encoding control

section (see clause 54).

14 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

9.2 A type prefix may contain an encoding reference. If it does not, the encoding reference is determined by the
default encoding reference for the module (see 13.5).

9.3 An encoding control section always contains an encoding reference. There may be multiple encoding control
sections, but each encoding control section shall have adistinct encoding reference.

94 An encoding instruction consists of a sequence of lexica items specified in the Recommendation |
International Standard determined by the encoding reference (see Annex E).

9.5 Multiple encoding instructions with the same or with different encoding references may be assigned to a type
(using either or both of type prefixes and an encoding control section). Encoding instructions assigned with a given
encoding reference are independent from those assigned with a different encoding reference, and from any use of atype
prefix to perform tagging.

9.6 The effect of assigning several encoding instructions with the same encoding reference (using either or both
of type prefixes and an encoding control section) is specified in the Recommendation | International Standard
determined by the encoding reference (see Annex E), and is not specified in this Recommendation | International
Standard.

9.7 If an encoding instruction is assigned to the "Type" in a "TypeAssignment”, it becomes associated with the
type, and is applied wherever the "typereference” of the "TypeAssignment" is used. This includes use in other modules
through the export and import statements.

10 Use of the ASN.1 notation
10.1 The ASN.1 notation for atype definition shall be "Type" (see 17.1).

10.2 The ASN.1 notation for avalue of atype shall be"Vaue" (see 17.7).
NOTE — It isnot in general possible to interpret the value notation without knowledge of the type.

10.3 The ASN.1 notation for assigning a type to a type reference name shall be either "TypeAssignment” (see
16.1), "VaueSetTypeAssignment” (see 16.6), "ParameterizedTypeAssignment” (see ITU-T Rec. X.683 | ISO/IEC
8824-4, 8.2), or "ParameterizedVaueSetTypeAssignment” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

104 The ASN.1 notation for assigning a value to a value reference name shall be either "VaueAssignment”
(see 16.2) or "ParameterizedValueAssignment” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

105 The production alternatives of the notation "Assignment” shall only be used within the notation
"ModuleDefinition" (except as specified in NOTE 2 of 13.1).

1 TheASN.1 character set

111 A lexical item shall consist of a sequence of the characters listed in Table 2 except as specified in 11.2, 11.3
and 11.4. In Table 2, characters are identified by the names they are given in ISO/IEC 10646.

ITU-T Rec. X.680 (11/2008) 15

| SO/IEC 8824-1:2008 (E)

Table2 —ASN.1 characters

Ato Z (LATIN CAPITAL LETTERA to LATIN CAPITAL LETTER 2)
atoz (LATIN SMALL LETTER A to LATIN SMALL LETTER 2)
0to 9 (DIGIT ZERO to DIGIT 9)

! (EXCLAMATION MARK)
" (QUOTATION MARK)
& (AMPERSAND)
' (APOSTROPHE)
((LEFT PARENTHESIS)

) (RIGHT PARENTHESIS)
* (ASTERISK)
, (COMMA)
- (HYPHEN-MINUS)
. (FULL STOP)
/ (SOLIDUS)
(COLON)
(SEMICOLON)
(LESS-THAN SIGN)
(EQUALS SIGN)
(GREATER-THAN SIGN)
(COMMERCIAL AT)
(LEFT SQUARE BRACKET)
(RIGHT SQUARE BRACKET)
(CIRCUMFLEX ACCENT)
(LOW LINE)
(LEFT CURLY BRACKET)
(VERTICAL LINE)
(RIGHT CURLY BRACKET)

A -t

>‘—"_‘@V

— — o~

NOTE — Where equivalent derivative standards are developed by national standards bodies, additional characters may appear in
the following lexical items:

— typereference (see 12.2);
— identifier (see 12.3);
— valuereference (see 12.4);

— modulereference (see 12.5).

When additional characters are introduced to accommodate a language in which the distinction between upper-case and lower-
case letters is without meaning, the syntactic distinction achieved by dictating the case of the first character of certain of the
above lexical items has to be achieved in some other way. Thisisto allow valid ASN.1 specifications to be written in various
languages.

11.2 Where the notation is used to specify the value of a character string type, al characters for the defined
character set can appear in the ASN.1 notation, surrounded by the QUOTATION MARK (34) characters (") (see
12.14).

11.3 Additional (arbitrary) graphic symbols may appear in the "comment” lexical item (see 12.6).

114 Where the notation is used to specify the value of a Unicode label, all characters allowed in a Unicode label
can appear in ASN.1 notation.

115 There shall be no significance placed on the typographical style, size, colour, intensity, or other display
characteristics.

11.6 The upper-case and lower-case |etters shall be regarded as distinct.

11.7 ASN.1 definitions can also contain white-space characters (see 12.1.6) between lexical items.

16 ITU-T Rec. X.680 (11/2008)

| SO/I EC 8824-1:2008 (E)
12 ASN.1 |exical items

12.1 General rules

1211 The following subclauses specify the charactersin lexical items. In each case the name of the lexical item is
given, together with the definition of the character sequences which form the lexical item.

12.1.2 The lexica items specified in the subclauses of this clause 12 (except multiple-line "comment”, "bstring",
"hstring" and "cstring") shall not contain white-space (see 12.6, 12.10, 12.12 and 12.14).

12.1.3 Thelength of alineis not restricted.

12.1.4 Lexica items may be separated by one or more occurrences of white-space (see 12.1.6) or comments (see
12.6) except when the non-spacing indicator "&" (see 5.4) is used. Within an "XMLTypedValue" production (see
16.2), white-space may appear between lexical items, but the "comment” lexical item shall not be present.

NOTE — This is to avoid ambiguity resulting from the presence of adjacent hyphens or asterisk and solidus within an
"xmlcstring” lexical item. Such characters never indicate the start of a "comment” lexical item when they appear within an
"XMLTypedVaue" production.

12.1.5 A lexicd item shal be separated from a following lexical item by one or more instances of white-space or
comment if the initial character (or characters) of the following lexical item is a permitted character (or characters) for
inclusion at the end of the charactersin the earlier lexical item.

12.1.6 This Recommendation | International Standard uses the terms "newline", and "white-space”. In representing
white-space and newline (end of line) in machine-readable specifications, any one or more of the following characters
may be used in any combination (for each character, the character name and character code specified in The Unicode
Standard are given):
For white-space:

HORIZONTAL TABULATION (9)

LINE FEED (10)

VERTICAL TABULATION (11)

FORM FEED (12)

CARRIAGE RETURN (13)

SPACE (32)

For newline:
LINE FEED (10)
VERTICAL TABULATION (11)
FORM FEED (12)

CARRIAGE RETURN (13)
NOTE — Any character or character sequence that isavalid newline is also avalid white-space.

122 Typereferences
Name of lexical item — typereference

12.21 A "typereference" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial
character shall be an upper-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately
followed by another hyphen.

NOTE — The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

12.2.2 A "typereference" shall not be one of the reserved character sequenceslisted in 12.38.

12.3 | dentifiers
Name of lexical item —identifier

An "identifier" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial character
shall be alower-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately followed by
another hyphen.

NOTE — The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

ITU-T Rec. X.680 (11/2008) 17

| SO/IEC 8824-1:2008 (E)

12.4 Valuereferences
Name of lexical item — valuereference

A "valuereference” shall consist of the sequence of characters specified for an "identifier" in 12.3. In analyzing an
instance of use of this notation, a "valuereference" is distinguished from an "identifier" by the context in which it

appears.

12.5 M odule references
Name of lexical item — modulereference

A "modulereference” shall consist of the sequence of characters specified for a "typereference” in 12.2. In analyzing an
instance of use of this notation, a "modulereference” is distinguished from a "typereference” by the context in which it

appears.

12.6 Comments
Name of lexical item — comment

12.6.1 A "comment" is not referenced in the definition of the ASN.1 notation. It may, however, appear at any time
between other lexical items, and has no syntactic significance.
NOTE — Nonetheless, in the context of a Recommendation | International Standard that uses ASN.1, an ASN.1 comment may
contain normative text related to the application semantics, or constraints on the syntax.

12.6.2 Thelexical item "comment" can have two forms:

a) One-line comments which begin with "- - " as defined in 12.6.3;

b) Multiple-line comments which begin with "/ *" as defined in 12.6.4.
12.6.3 Whenever a "comment” begins with a pair of adjacent hyphens, it shall end with the next pair of adjacent
hyphens or at the end of the line, whichever occurs first. A comment shall not contain a pair of adjacent hyphens other
than the pair which starts it and the pair, if any, which endsit. If a comment beginning with "- - " includes the adjacent

characters "/ =" or "*/ ", these have no special meaning and are considered part of the comment. The comment may
include graphic symbols which are not in the character set specified in 11.1 (see 11.3).

12.6.4 Whenever a"comment" beginswith "/ *", it shall end with a corresponding "*/ ", whether this"*/ " is on the
same line or not. If another "/ *" isfound before a"*/ ", then the comment terminates when a matching "*/ " has been
found for each "/ *". If a comment beginning with "/ *" includes two adjacent hyphens "- - ", these hyphens have no
special meaning and are considered part of the comment. The comment may include graphic symbols which are not in
the character set specified in 11.1 (see 11.3).

NOTE — This alows the user to comment parts of an ASN.1 module that aready contain comments (whether they begin with -
-"or"/*") by simply inserting "/ *" at the beginning of the part to be commented and "*/ " at its end, provided there are no
character string values within the part to be commented out that contain "/ *" or "*/ ".

127 Empty lexical item

Name of lexical item — empty

The "empty" item contains no characters. It is used in the notation of clause 5 when aternative sets of production
sequences are specified, to indicate that absence of all alternativesis possible.

12.8 Numbers
Name of lexical item — number

A "number" shall consist of one or more digits. The first digit shall not be zero unless the "number" isasingle digit.
NOTE — The "number" lexical item is always mapped to an integer value by interpreting it as decimal notation.

12.9 Real numbers
Name of lexical item — real number

A "realnumber" shall consist of an integer part that is a series of one or more digits, and optionally a decimal point (.).
The decimal point can optionally be followed by a fractional part which is one or more digits. The integer part, decimal
point or fractional part (whichever is last present) can optionally be followed by an e or E and an optionally-signed

18 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

exponent which is one or more digits. The leading digit of the exponent shall not be zero unless the exponent is a
single digit.

12.10 Binary strings

Name of lexical item — bstring

A "bstring" shall consist of an arbitrary number (possibly zero) of the characters:
01

possibly intermixed with white-space, preceded by an APOSTROPHE (39) character (') and followed by the pair of
characters:

'B
EXAMPLE -' 01101100' B

Occurrences of white-space within a binary string lexical item have no significance.

1211 XML binary string item
Name of item —xmlbstring

An "xmlbstring" shall consist of an arbitrary number (possibly zero) of zeros, ones or white-space. Any white-space
characters that appear within a binary string item have no significance.

EXAMPLE - 01101100

This sequence of charactersis aso avalid instance of "xmlhstring" and "xmlcstring”. In analyzing an instance of use of
this notation, an "xmlbstring" is distinguished from an "xmlhstring" or "xmlcstring" by the context in which it appears.

1212 Hexadecimal strings
Name of lexical item — hstring

12.12.1 An"hstring" shall consist of an arbitrary number (possibly zero) of the characters:
ABCDEFO01234567829

possibly intermixed with white-space, preceded by an APOSTROPHE (39) character (') and followed by the pair of
characters:

"H
EXAMPLE -' AB0196' H
Occurrences of white-space within a hexadecimal string lexical item have no significance.

12.12.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

1213 XML hexadecimal stringitem
Name of item —xmlhstring

12.13.1 An"xmlhstring" shall consist of an arbitrary number (possibly zero) of the characters:
0123456789ABCDEFabcdef

or white-space. Any white-space characters that appear within a hexadecimal string item have no significance.
EXAMPLE — Ab0196

12.13.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

12.13.3 Some instances of "xmlhstring" are also valid instances of "xmlbstring" and "xmicstring". In analyzing an
instance of use of this notation, an "xmlhstring" is distinguished from an "xmlbstring" or "xmlcstring" by the context in
which it appears.

12.14 Character strings

Name of lexical item —cstring

ITU-T Rec. X.680 (11/2008) 19

| SO/IEC 8824-1:2008 (E)

12.14.1 A "cstring" shall consist of an arbitrary number (possibly zero) of graphic symbols and spacing characters
from the character set referenced by the character string type, preceded and followed by a QUOTATION MARK (34)
character (). If the character set includes a QUOTATION MARK (34) character, this character (if present in the
character string being represented by the "cstring") shall be represented in the "cstring" by a pair of QUOTATION
MARK (34) characters on the same line with no intervening spacing character. The "cstring" may span more than one
line of text, in which case the character string being represented shall not include spacing characters in the position
prior to or following the end of line in the "cstring”. Any spacing characters that appear immediately prior to or
following the end of linein the "cstring" have no significance.

NOTE 1 — The "cstring” can only be used to unambiguously represent (on a printed page) character strings for which every
character in the string being represented has either been assigned a graphic symbol, or is a spacing character. Where a character
string containing control characters needs to be denoted in a printed representation, alternative ASN.1 syntax is available (see
clause 39).

NOTE 2 — The character string represented by a "cstring" consists of the characters associated with the graphic symbols and
spacing characters. Spacing characters immediately preceding or following any end of line in the "cstring" are not part of the
character string being represented (they are ignored). Where spacing characters are included in the "cstring", or where the
graphic symbols in the character repertoire are not unambiguous in a printed representation, the character string denoted by
"cstring" may be ambiguous in that printed representation.

EXAMPLE 1+ B B8 ™ #-

EXAMPLE 2 —The"cstring":
" ABCDE FCGH
1 JK" " XYZ"

can be used to represent a character string value of type | A5St ri ng. The value represented consists of the characters:
ABCDE FGHI JK" XYZ

where the precise number of spaces intended between E and F can be ambiguous in a printed representation if a
proportional spacing font (such as is used above) is used in the printed specification, or if the character repertoire
contains multiple spacing characters of different widths.

12.14.2 When acharacter is a combining character (see Annex H) it shall be denoted in a printed representation of the
"cstring” as an individual character. It shall not be overprinted with the characters with which it combines. (This
ensures that the order of combining characters in the string value is unambiguously defined in the printed version.)

EXAMPLE — Lower-case "e" and the accent combining character are two characters in ISO/IEC 10646, and thus a
corresponding "cstring" should be printed as two characters and not as the single character é.

12.15 XML character string item
Name of item — xmlcstring
12.15.1 An "xmlcstring" shall consist of an arbitrary number (possibly zero) of the following ISO/IEC 10646
characters:
a) HORIZONTAL TABULATION (9);
b) LINE FEED (10);
¢) CARRIAGE RETURN (13);
d) any character whose I|SO/IEC 10646 character code is in the range 32 (20 hex) to 55295 (D7FF hex),
inclusive;
€) any character whose ISO/IEC 10646 character code is in the range 57344 (E000 hex) to 65533 (FFFD
hex), inclusive;

f) any character whose ISO/IEC 10646 character code is in the range 65536 (10000 hex) to 1114111
(10FFFF hex), inclusive.

NOTE — Additional restrictions are imposed by the requirement that the "xmlcstring”, in an instance of use, shall contain only
characters permitted by the governing character string type.

12.15.2 The characters "&" (AMPERSAND), "<" (LESS-THAN SIGN) or ">" (GREATER-THAN SIGN) shall
appear only as part of one of the character sequences specified in 12.15.4 or 12.15.5.

12.15.3 An "xmlcstring" is used to represent the value of a restricted character string (see 41.9), and can be used to
represent all combinations of ISO/IEC 10646 characters, either directly, or by using the escape sequences specified
below.

20 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE 1 — An "xmlcstring" cannot be used to represent characters that are not present in ISO/IEC 10646, such as some of the
control characters which can appear in Gener al St ri ng, nor can it represent characters which might be defined with ISO/IEC
10646 character codes above 10FFFF hex.

NOTE 2 — The characters LINE FEED (10) and CARRIAGE RETURN (13) and the pair CARRIAGE RETURN + LINE FEED
are not distinguished when processed by conforming XML processors.

12.15.4 If the characters "&" (AMPERSAND), "<" (LESS-THAN SIGN) or ">" (GREATER-THAN SIGN) are
present in an abstract character string value being represented by "xmlcstring” (see 41.9), they shall be represented in
the "xmlcstring" by either

a) the escape sequences specified in 12.15.8; or

b) the escape sequences "&"”, "&It;" or ">" respectively. These escape sequences shall not contain
white-space (see 12.1.6).

12.15.5 If a character with an ISO/IEC 10646 character code in column 1 of Table 3 is present in the abstract
character string value being represented by the "xmlcstring” (see 41.9), it shall be represented by the character sequence
in column 2 of Table 3. These character sequences shall not contain white-space (see 12.1.6).

NOTE - This does not include characters with decimal character codes 9, 10, and 13, and all the letters in these character
seguences are lower-case.

Table 3 — Escape sequencesfor control charactersin an " xmlcstring"

I SO/IEC 10646 "xmlcstring" 1 SO/IEC 10646 "xmlcstring"
character code representation character code representation
0 (0 hex) <nul/> 17 (11 hex) <dcl/>
1 (1 hex) <soh/> 18 (12 hex) <dc2/>
2 (2 hex) <stx/> 19 (13 hex) <dc3/>
3 (3 hex) <etx/> 20 (14 hex) <dc4/>
4 (4 hex) <eot/> 21 (15 hex) <nak/>
5 (5 hex) <eng/> 22 (16 hex) <syn/>
6 (6 hex) <ack/> 23 (17 hex) <etb/>
7 (7 hex) <bel/> 24 (18 hex) <can/>
8 (8 hex) <bs/> 25 (19 hex)
11 (B hex) <vt/> 26 (1A hex) <sub/>
12 (C hex) <ff/> 27 (1B hex) <esc/>
14 (E hex) <so/> 28 (1C hex) <isA/>
15 (F hex) <si/> 29 (1D hex) <is3/>
16 (10 hex) <dle/> 30 (1E hex) <is2/>
31 (1F hex) <isl/>

12.15.6 When "xmicstring" is used within an "XMLTypedVaue" (see 16.2) forming part of an XER encoding (see
ITU-T Rec. X.693 | ISO/IEC 8825-4), it may contain adjacent HY PHEN-MINUS (45) characters. When used within an
instance of XML value notation in an ASN.1 module, it shall not contain two adjacent HY PHEN-MINUS characters.
If this character sequence is present in an abstract character string value being represented by the "xmlcstring” in an
ASN.1 module, then at least one of the adjacent HY PHEN-MINUS characters shall be represented by the escape
sequences specified in 12.15.8.

12.15.7 When "xmlcstring" is used within an "XMLTypedValue" forming part of an XER encoding (see ITU-T Rec.
X.693 | ISO/IEC 8825-4), it may contain adjacent ASTERISK (42) and SOLIDUS (47) characters in any order. When
used within an instance of XML value notation in an ASN.1 module, it shall not contain adjacent ASTERISK and
SOLIDUS characters (in any order). If this character sequence is present in an abstract character string value being
represented by the "xmlcstring”, then at least one of the adjacent ASTERISK and SOLIDUS characters shall be
represented by the escape sequences specified in 12.15.8.

12.15.8 Any character that can appear directly in an "xmlcstring" can aso be represented in the "xmlcstring” by an
escape sequence of the form "&#n;" (where n is the ISO/IEC 10646 character code in decimal notation) or of the form
"&#xn;" (where n is the ISO/IEC 10646 character code in hexadecimal notation). These escape sequences shall not
contain white-space (see 12.1.6).

NOTE 1 — Leading zeros are permitted in the decimal and hexadecimal values of "n" and both lower-case and upper-case |etters
"A"-"F" can be used in the hexadecimal value.

ITU-T Rec. X.680 (11/2008) 21

| SO/IEC 8824-1:2008 (E)

NOTE 2 — If the escape sequences "&#n" and "&#xn" are used for ISO/IEC 10646 characters which are not in the Basic
Multilingua Plane (BMP), the value of "n" will be greater than 65535 (FFFF hex).

EXAMPLE — The "xmlcstring":
ABCDé, FGHîJK&XYZ

can be used to represent a character string value of type UTF8String. The value represented consists of the characters:
ABCDé FGHIK&XYZ

where the precise space characters between é and F can be ambiguous in print media if a proportional spacing font
(such as above) is used in the specification.

12.16 Thesimplecharacter string lexical item
Name of item — simplestring

A "simplestring" shall consist of one or more | SO/IEC 10646 characters whose character code isin the range 32 to 126,
preceded and followed by a QUOTATION MARK (34) character (). It shall not contain a QUOTATION MARK (34)
character (). The "simplestring" may span more than one line of text, in which case any characters representing end-of-
line shall be treated as spacing characters. In analyzing an instance of use of this notation, a "simplestring” is
distinguished from a"cstring" by the context in which it appears.

NOTE — The "simplestring” lexical item isonly used in the subtype notation of the time type.

12.17 Timevalue character strings
Name of item —tstring

A "tstring" shall consist of one or more of the characters:
0123456789+ -:.,] CDHMRPSTWYZ

preceded and followed by a QUOTATION MARK (34) character (").
NOTE — The "tstring" lexical item is only used in the value notation for the time type.

1218 XML timevalue character stringitem
Name of item — xmiltstring

An "xmltstring” shall consist of one or more of the characters:
0123456789+-:.,/ CDHMRPSTWYZ
NOTE — The "xmltstring" lexical item is only used in the XML value notation of the time type.

1219 The property and setting nameslexical item
Name of item — psname

A "psname" shall consist of an arbitrary number (one or more) of letters, digits and hyphens. The initial character shall
be an upper-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately followed by
another hyphen.
NOTE — The "psname" lexical item is only used in the contents of the "simplestring" used in the subtype notation for the time
type.

12.20 Assignment lexical item

Name of lexica item—":: =

Thislexical item shall consist of the sequence of characters:

NOTE — This sequence does not contain white-space (see 12.1.2).

12.21 Range separator

Name of lexica item—". ."

Thislexical item shall consist of the sequence of characters:

22 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE — This sequence does not contain white-space (see 12.1.2).

12.22 Ellipsis
Name of lexical item—". ..

Thislexical item shall consist of the sequence of characters:
NOTE — This sequence does not contain white-space (see 12.1.2).

12.23 Le€ft version brackets

Name of lexical item—"[[

Thislexical item shall consist of the sequence of characters:

[l
NOTE - This sequence does not contain white-space (see 12.1.2).

12.24 Right version brackets

Name of lexical item—"]]

Thislexical item shall consist of the sequence of characters:

1]
NOTE - This sequence does not contain white-space (see 12.1.2).

12.25 Encoding references
Name of item — encodingreference

An "encodingreference” shall consist of a sequence of characters as specified for a "typereference” in 12.2, except that
no lower-case letters shall be included.

NOTE - Currently defined encoding references are listed in Annex E with the Recommendation | International Standard that
specifies the syntax and semantics of the corresponding encoding instructions. The "encodingreference” shall consist only of the
sequences listed in Annex E in thisor in future versions of this Recommendation | International Standard.

12.26 Integer-valued Unicode labels
Name of lexical item — integerUnicodel abel

This lexical item shall consist of an arbitrarily long sequence of ISO/IEC 10646 characters in the range O (DIGIT
ZERO) to 9 (DIGIT NINE) that identify an arc of the International Object Identifier tree. It shall not commence with a
0 (DIGIT ZERO) character unless it has only a single character and the primary integer value of the associated arc of
the International Object Identifier treeis zero.

12.27 Non-integer Unicode labels
Name of lexical item — non-integerUnicodel abel

This lexical item shall consist of an arbitrarily long sequence of 1SO/IEC 10646 characters that satisfies the constraints
specified in ITU-T Rec. X.660 | 1ISO 9834-1, 7.2.5 and identifies and arc of the International Object Identifier tree. For
lexical parsing purposes, it shall not consist only of characters that would enable it to be identified as an
"integerUnicodelabel".

12.28 XML end tag start item

Name of item —"</"

Thisitem shall consist of the sequence of characters:
</
NOTE — This sequence does not contain any white-space characters (see 12.1.2).

ITU-T Rec. X.680 (11/2008) 23

| SO/IEC 8824-1:2008 (E)

1229 XML singletag end item
Name of item —"/>"

Thisitem shall consist of the sequence of characters:
/>
NOTE - This sequence does not contain any white-space characters (see 12.1.2).

12.30 XML boolean trueitem
Name of item — "true"

12.30.1 Thisitem shall consist of the sequence of characters:
true

12.30.2 In analyzing an instance of use of this notation, a "true" is distinguished from a "valuereference" or an
"identifier" or an instance of XML boolean "extended-true" by the context in which it appears.

NOTE - This sequence does not contain any white-space characters (see 12.1.2).

12.31 XML boolean extended-trueitem
Name of item — extended-true

12.31.1 Thisitem shall consist of either the sequence of characters:
true

or of the single character:
1 (DIGIT ONE)

12.31.2 In anayzing an instance of use of this notation, an "extended-true" is distinguished from a "valuereference”
or an "identifier" or an instance of XML boolean "true" by the context in which it appears.

NOTE - This sequence does not contain any white-space characters (see 12.1.2).

12.32 XML boolean falseitem
Name of item —"false"

12.32.1 Thisitem shall consist of the sequence of characters:
false

12.32.2 In anayzing an instance of use of this notation, a "false" is distinguished from a "valuereference” or an
"identifier" or an instance of XML boolean "extended-false" by the context in which it appears.

NOTE - This sequence does not contain any white-space characters (see 12.1.2).

12.33 XML boolean extended-falseitem
Name of item — extended-false

12.33.1 Thisitem shall consist of either the sequence of characters:
false

or of the single character:
0 (DIGIT ZERO)

12.33.2 In anayzing an instance of use of this notation, a "false" is distinguished from a "valuereference” or an
"identifier" or an instance of XML boolean "false" by the context in which it appears.

NOTE - This sequence does not contain any white-space characters (see 12.1.2).

12.34 XML real not-a-number item
Name of item —"NaN"

12.34.1 Thisitem shall consist of the sequence of characters:
NaN

24 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

12.34.2 In anadlyzing an instance of use of this notation, a "NaN" is distinguished from any other lexical item
commencing with an upper-case letter by the context in which it appears.
NOTE — This sequence does not contain any white-space characters (see 12.1.2).

12.35 XML real infinity item

Name of item —"INF"

12.35.1 Thisitem shall consist of the sequence of characters:
INF

12.35.2 In analyzing an instance of use of this notation, an "INF" is distinguished from any other lexica item
commencing with an upper-case letter by the context in which it appears.
NOTE — This sequence does not contain any white-space characters (see 12.1.2).

12.36 XML tag namesfor ASN.1types
Name of item — xmlasnltypename

12.36.1 This Recommendation | International Standard uses the item "xmlasnltypename" when ASN.1 built-in types
areto be used as XML tag names.

12.36.2 Table 4 lists the character sequences that are to form the "xmlasnltypename" for each of the ASN.1 built-in
types listed in 17.2. The ASN.1 built-in type is identified in column 1 of Table 4 by its production name. The
character sequence which shall be used for "xmlasnltypename' is identified in column 2 of Table 4, with no white-
space before or after these character sequences.

12.36.3 The "xmlasnltypename" for the "Useful Type"s (see 45.1) shall be the "typereference” used in their definition.

12.36.4 The character sequence in the "xmlasnltypename" item for the "ObjectClassFieldType" and for the
"InstanceOf Type" are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1 and Annex C.

12.36.5 If the ASN.1 built-in type is a " PrefixedType" then the type which determines the "xmlasnltypename" shall be
"Type" in the "PrefixedType" (see 31.1.5). If this is itself a "PrefixedType", then this subclause 12.36.5 shall be
recursively applied.

NOTE — The subclauses of 26.10 specify the "Type" to be used for a" SelectionType" and a"ConstrainedType".

Table 4 — Charactersin xmlasnltypename

ASN.1 type production name Charactersin xmlasnltypename
BitStringType BIT_STRING
BooleanType BOOLEAN
ChoiceType CHOICE
DateType DATE
DateTimeType DATE_TIME
DurationType DURATION
EmbeddedPDV Type SEQUENCE
EnumeratedType ENUMERATED
Externa Type SEQUENCE
InstanceOf Type SEQUENCE
IntegerType INTEGER
IRIType OID_IRI
Null Type NULL
ObjectClassFieldType See ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.10 and 14.11
ObjectldentifierType OBJECT_IDENTIFIER
OctetStringType OCTET_STRING
PrefixedType See 12.36.5
Real Type REAL
RelativelRIType RELATIVE_OID_IRI
RelativeOIDType RELATIVE_OID

ITU-T Rec. X.680 (11/2008)

25

| SO/IEC 8824-1:2008 (E)

RestrictedCharacterStringType Thetypename (e.g. | ASSt ri ng)
SequenceType SEQUENCE

SequenceOf Type SEQUENCE_OF

SetType SET

SetOfType SET_OF

TimeType TIME

TimeOfDay Type TIME_OF DAY
UnrestrictedCharacterStringType SEQUENCE

12.37 Single character lexical items

Names of lexical items—

Il{ll

Il}ll

e

wo

wy

II("

oy

T

" (HYPHEN-MINUS)
o (QUOTATION MARK)
" " (APOSTROPHE)
"" (SPACE)

-

npn

A lexical item with any of the names listed above shall consist of the single character without the quotation marks.

26 ITU-T Rec. X.680 (11/2008)

12.38 Reserved words

Names of reserved words —

ABSENT ENCODED | NTERSECTI ON
ABSTRACT- SYNTAX ENCODI NG CONTRCL | SC646String
ALL END MAX

APPLI CATI ON ENUVERATED M N

AUTOVATI C EXCEPT M NUS- | NFI NI TY
BEG N EXPLICT NOT- A- NUMBER

BI T EXPORTS NULL

BMPSt ri ng EXTENSI BI LI TY NunericString
BOOLEAN EXTERNAL OBJECT

BY FALSE Ohj ect Descri pt or
CHARACTER FROM OCTET

CHO CE CGener al i zedTi ne o

CLASS General String QD IR
COVPONENT G aphicString OPTI ONAL
COVPONENTS I A5String PATTERN
CONSTRAI NED | DENTI FI ER PDV

CONTAI NI NG IMPLICT PLUS- I NFI NI TY
DATE | MPLI ED PRESENT

DATE- TI ME | MPORTS PrintableString
DEFAULT I NCLUDES PRI VATE

DEFI NI TI ONS I NSTANCE REAL

DURATI ON I NSTRUCTI ONS RELATI VE- A D
EVMBEDDED | NTEGER RELATIVE-O D- I RI

| SO/IEC 8824-1:2008 (E)

SEQUENCE

SET

SETTI NGS

S| ZE

STRI NG

SYNTAX

T61Stri ng

TAGS

Tel etexString
TI MVE

Tl ME- OF- DAY
TRUE

TYPE- | DENTI FI ER
UNI ON

UNI QUE

UNI VERSAL

Uni versal String
UTCTi ne
UTF8Stri ng

Vi deot exStri ng
Vi sibleString
W TH

Lexical items with the above names shall consist of the sequence of characters in the name, and are reserved character

sequences.

NOTE 1 — White-space does not occur in these sequences.

NOTE 2 — The keywords CLASS, CONSTRAI NED, CONTAI NI NG, ENCODED, | NSTANCE, SYNTAX and UNI QUE are not used in this
Recommendation | International Standard; they are used in ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |

ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4.

13 Module definition
13.1 A "ModuleDefinition" is specified by the following productions:

M oduleDefinition ::=

M odulel dentifier
DEFI NI TI ONS

EncodingRefer enceDefault
TagDefault
ExtensionDefault

BEGI N
M oduleBody

EncodingContr ol Sections
END

Modulel dentifier ::=
moduler eference
Definitivel dentification

Definitivel dentification ::=
| DefinitiveOlD

ITU-T Rec. X.680 (11/2008) 27

| SO/IEC 8824-1:2008 (E)

| DefinitiveOl DandIRI
| empty

DefinitiveOID ::=
"{" DefinitiveObjldComponentList "}"

DefinitiveOlDandIRI ::=
DefinitiveOlD
IRIValue

DefinitiveObjldComponentList ::=
DefinitiveObjl dComponent
| DefinitiveObjldComponent DefinitiveObjldComponentList

DefinitiveObjldComponent ::=
NameForm
| DefinitiveNumber Form
| DefinitiveNameAndNumber Form

DefinitiveNumberForm ::= number
DefinitiveNameAndNumber Form ::= identifier " (" DefinitiveNumberForm ") "

EncodingRefer enceDefault ::=
encodingreference | NSTRUCTI ONS
| empty
TagDefault ::=
EXPLICI T TAGS
| IMPLICI T TAGS
| AUTOVATI C TAGS
| empty
ExtensionDefault ::=
EXTENSI Bl LI TY | MPLI ED
| empty

ModuleBody ::=
ExportsImports AssignmentList
| empty

Exports::=
EXPORTS SymbolsExported " ;"
| EXPORTS ALL";"
| empty

SymbolsExported ::=
SymbolList
| empty
Imports::=
| MPORTS Symbolslmported " ;"
| empty

Symbolslmported ::=
SymbolsFromModuleL ist
| empty

SymbolsFromModuleList ::=
SymbolsFromM odule
| SymbolsFromModulelist SymbolsFromM odule

SymbolsFromModule::=
SymbolList FROMGlobalM oduleReference

GlobalM oduleReference ::=
moduler efer ence Assigned| dentifier

28 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Assignedldentifier ::=
ObjectldentifierValue
| DefinedValue
| empty

SymbolList ::=
Symbol
| SymbolList"," Symbol

Symboal ::=
Reference
| ParameterizedReference

Reference ::=
typereference
| valuereference
| objectclassreference
| objectreference
| objectsetreference
AssignmentList ::=
Assignment
| AssignmentList Assignment

Assignment ::=
TypeAssignment
| ValueAssignment
| XMLValueAssignment
| ValueSetTypeAssignment
| ObjectClassAssignment
| ObjectAssignment
| ObjectSetAssignment
| ParameterizedAssignment

NOTE 1 — The use of a "ParameterizedReference" in the "Exports' and "Imports" lists is specified in ITU-T Rec. X.683 |
| SO/IEC 8824-4.

NOTE 2 — For examples (and for the definition in this Recommendation | International Standard of types with universal class
tags), the "ModuleBody" can be used outside of a"ModuleDefinition".

NOTE 3 — "TypeAssignment”, "VaueAssignment", "XMLValueAssignment" and "VaueSetTypeAssignment" productions are
specified in clause 16.

NOTE 4 — The value of "TagDefault" for the module definition affects only those types defined explicitly in the module. It does
not affect the interpretation of imported types.

NOTE 5 — The character semicolon does not appear in the assignment list specification or any of its subordinate productions, and
isreserved for use by ASN.1 tool developers.

13.2 The "TagDefault" istaken asEXPLI CI T TAGSif itis"empty".
NOTE — Subclause 31.2 gives the meaning of EXPLI CI T TAGS, | MPLI O T TAGS, and AUTOVATI C TAGS.

133 When the AUTOVATI C TAGS alternative of "TagDefault" is selected, automatic tagging is said to be selected
for the module, otherwise it is said to be not selected. Automatic tagging is a syntactical transformation which is
applied (with additional conditions) to the "ComponentTypelLists' and "AlternativeTypelLists" productions occurring
within the definition of the module. This transformation is formally specified by 25.8 to 25.10, 27.3 and 29.2 to 29.5
regarding the notations for sequence types, set types and choice types, respectively.

134 The EXTENSI BI LI TY | MPLI ED option is equivalent to the textual insertion of an extension marker (... ") in
the definition of each type in the module for which it is permitted. The location of the implied extension marker is the
last position in the type where an explicitly specified extension marker is alowed. The absence of EXTENSI BI LI TY
| MPLI ED means that extensibility is only provided for those types within the module where an extension marker is
explicitly present.

NOTE — EXTENSI Bl LI TY | MPLI ED affects only types. It has no effect on object sets and subtype constraints.

135 The "EncodingReferenceDefault” specifies that the "encodingreference” is the default encoding reference for
the module. If the "EncodingReferenceDefault” is"empty", then the default encoding reference for the moduleis TAG

NOTE — Annex E contains a list of allowed encoding references, together with the Recommendation | International Standard
which specifies the form and meaning of the corresponding encoding instructions.

13.6 The "modulereference” appearing in the "Modulel dentifier" production is called the module name.

ITU-T Rec. X.680 (11/2008) 29

| SO/IEC 8824-1:2008 (E)

NOTE — The possibility of defining a single ASN.1 module by the use of several occurrences of "ModuleBody" assigned the
same "modulereference” was (arguably) permitted in earlier specifications. It is not permitted by this Recommendation |
International Standard.

13.7 Module names shall be used only once (except as specified in 13.10) within the sphere of interest of the
definition of the module.

13.8 If the "Definitiveldentification" is not empty, the denoted object identifier, and any optiona "IRIValue",
value unambiguously and uniquely identify the same node of the OID tree that identifies the module being defined. No
defined value may be used in defining the object identifier value. The"IRIValue" production is specified in 34.3.

NOTE 1 — It is strongly recommended that at least an object identifier value (and preferably an object identifier value plus an
OID internationalized resource identifier value) be assigned to the module so that others can unambiguously refer to the module.

NOTE 2 — The question of what changes to a module require a new "Definitiveldentification” is not addressed in this
Recommendation | International Standard.

13.9 If the "Assignedidentifier" is not empty, the "ObjectldentifierValue' and the "DefinedVaue' alternatives
unambiguously and uniquely identify the module from which reference names are being imported. When the
"DefinedValue" dternative of "Assignedidentifier” is used, it shall be a vaue of type object identifier. Each
"valuereference" which textually appears within an "Assignedidentifier" shall satisfy one of the following rules:

a) It is defined in the "AssignmentList" of the module being defined, and al "valuereference's which
textually appear on the right side of the assignment statement also satisfy this rule (rule "a"') or the next
rule (rule"b").

b) It appears as a "Symbol" in a "SymbolsFromModule” whose "Assignedidentifier" does not textually
contain any "valuereference’s.

NOTE 1 — It isrecommended that an object identifier be assigned so that others can unambiguously refer to the module.

NOTE 2 — This syntax does not provide for the inclusion of an OID internationalized resource reference (if assigned) to the
referenced module, but it is recommended that this be included in an ASN.1 comment.

13.10 The "GlobalModuleReference” in a "SymbolsFromModul€e" shall appear in the "ModuleDefinition” of
another module, except that if it includes a non-empty "Definitiveldentification”, the "modul ereference” may differ in
the two cases.

NOTE — A different "modulereference” from that used in the other module should only be used when symbols are to be imported
from two modules with the same name (the modules being named in disregard of 13.7). The use of dternative distinct names
makes these names available for use in the body of the module (see 13.16).

13.11 When both a "modulereference” and a non-empty "Assignedidentifier" are used in referencing a module, the
latter shall be considered definitive.

13.12 When the referenced module has a non-empty "Definitiveldentification”, the "GlobalModuleReference”
referencing that module shall not have an empty "Assignedidentifier”.
13.13 When the "SymbolsExported" aternative of "Exports’ is selected:
a) each"Symbol" in"SymbolsExported” shall satisfy one and only one of the following conditions:
i) isonly defined in the module being constructed; or
ii) appears exactly oncein the"Symbolsimported" alternative of "Imports";

b) every "Symbol" to which reference from outside the module is appropriate shall be included in the
"SymbolsExported” and only these "Symbol"s may be referenced from outside the module (subject to
the relaxation specified in 13.14); and

¢) if thereare no such "Symbol"s, then the empty alternative of "SymbolsExported” (not of "Exports") shall
be selected.

13.14 When either the "empty" alternative or the EXPORTS ALL alternative of "Exports' is selected, every
"Symbol" defined in the module or imported by the module may be referenced from other modules subject to the
restriction specified in 13.13 a).

NOTE — The "empty" alternative of "Exports' isincluded for backwards compatibility.

13.15 Identifiers that appear in a"NamedNumberList”, "Enumeration” or "NamedBitList" are implicitly exported if
the typereference that defines them is exported or appears as a component (or subcomponent) within an exported type.

13.16 When the "Symbolslmported" aternative of "Imports" is selected:

a) Each "Symbol" in "SymbolsFromModule" shall either be defined in the module body, or be present in
the "Imports' clause, of the module denoted by the "GlobalModuleReference® in
"SymbolsFromModul€". Importing a " Symbol" present in the "Imports"' clause of the referenced module

30 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

is only allowed if there is only one occurrence of the "Symbol" in that clause, and the "Symbol" is not
defined in the referenced module.
NOTE 1 — This does not prohibit the same symbol name defined in two different modules from being imported

into another module. However, if the same "Symbol" name appears more than once in the "Imports’ clause of
module A, that "Symbol" name cannot be exported from A for import to another module B.

b) If the "SymbolsExported" alternative of "Exports" is selected in the definition of the module denoted by
the "GlobalModuleReference” in "SymbolsFromModule® the "Symbol" shall appear in its
"SymbolsExported".

c) Only those"Symbol"s that appear amongst the "SymbolList" of a"SymbolsFromModule" may appear as
the symbol in any "External<X>Reference" which has the "modulereference” denoted by the
"GlobalModuleReference” of that "SymbolsFromModule" (where <X> is "Vaue", "Type", "Object”,
"Objectclass’, or "Objectset").

d) If there are no such "Symbol"s, then the "empty" aternative of "Symbolsimported” shall be selected.

NOTE 2 — An effect of ¢) and d) is that the statement | MPORTS; implies that the module cannot contain an
"External<X>Reference".

e) All the "SymbolsFromModule' in the "SymbolsFromModuleList" shall include occurrences of
"GlobalModuleReference" such that:

i) the "modulereference” in them are al different from each other and from the "modulereference”
associated with the referencing module; and

ii) the "Assignedidentifier", when non-empty, denotes object identifier values which are al different
from each other and from the object identifier value (if any) associated with the referencing module.

13.17 When the "empty" aternative of "Imports" is selected, the module may still reference "Symbols® defined in
other modules by means of an "External<X>Reference".

NOTE — The "empty" aternative of "Imports" isincluded for backwards compatibility.

13.18 Identifiers that appear in a"NamedNumberList", "Enumeration” or "NamedBitList" are implicitly imported if
the typereference that defines them isimported or appears as a component (or subcomponent) within an imported type.

1319 A "Symbol" in a "SymbolsFromModule® may appear in "ModuleBody" as a "Reference'. The
meaning associated with the "Symbol" is that which it has in the module denoted by the corresponding
"GlobalModuleReference'”.

13.20 Where the "Symbol" aso appears in an "AssignmentList" (deprecated), or appears in one or more other
instances of "SymbolsFromModule”, it shall only be used in an "External<X>Reference". Where it does not so appear,
it shall be used directly as a"Reference”.

13.21 The various alternatives for "Assignment" are defined in the following clauses in this Recommendation |
International Standard, except as noted otherwise:

Assignment alternative Defining subclause

"TypeAssignment” 16.1

"V aueAssignment" 16.2

"XMLV aueAssignment” 16.2

"VaueSetTypeAssignment” 16.6

"ObjectClassAssignment” ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.1
"Obj ectAssignment” ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.1
"ObjectSetAssignment” ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.1
"ParameterizedAssignment” ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.1

The first symbol of every "Assignment” is one of the alternatives of "Reference”, denoting the reference name being
defined. In no two assignments within an "AssignmentList" shall the reference names be the same.

13.22 "EncodingControlSections' is specified in clause 54.

14 Referencing type and value definitions
14.1 The defined type and value productions;

ITU-T Rec. X.680 (11/2008) 31

| SO/IEC 8824-1:2008 (E)

DefinedType::=
External TypeReference
| typereference
| ParameterizedType
| ParameterizedValueSet Type

DefinedValue::=
ExternalValueReference
| valuereference
| ParameterizedValue

specify the sequences which shall be used to reference type and value definitions. The type identified by a
"ParameterizedType" and "ParameterizedValueSetType", and the value identified by a "ParameterizedvVaue' are
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4.

14.2 The "NonParameterizedTypeName" production:

NonParameterizedTypeName ::=
External TypeReference
| typereference
| xmlasnltypename

is used when an XML tag name is needed to represent an ASN.1 type. If the resulting XML tag name begins with the
letters"XML", then aLOW LINE (95) shall be pre-pended to form the "NonParameterizedTypeName".

14.3 The third alternative shall not be used as the "NonParameterizedTypeName" in the "XMLTypedValue" of
"XMLValueAssignment” (see 16.2) or of "XMLOpenTypeFieldvVal" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6)
when the XML value notation is used in an ASN.1 module if the "xmlasnltypename" is "CHOICE",
"ENUMERATED", "SEQUENCE", "SEQUENCE_OF", "SET" or "SET_OF".
NOTE — This restriction isimposed in XML value notation used in an ASN.1 module because these "xmlasnltypename's do not
define an ASN.1 type. The restriction is not present for use of this notation in encoding rules (such as XER, see ITU-T

Rec. X.693 | ISO/IEC 8825-4) because XML tag names formed from "xmlasnltypename's are not used to determine the types
that are being encoded.

144 Except as specified in 1319, the “typereference’, "vauereference’, "ParameterizedType',
"ParameterizedValueSetType" or "ParameterizedValue" aternatives shall not be used unless the reference is within the
"ModuleBody" in which atype or value is assigned (see 16.1 and 16.2) to the "typereference” or "valuereference”.

145 The "Externa TypeReference” and "ExternalValueReference" shall not be used unless the corresponding
"typereference” or "valuereference”:

a) hasbeen assigned atype or value respectively (see 16.1 and 16.2); or
b) arepresentinthe "Imports’ clause,

within the "ModuleBody" used to define the corresponding "modulereference”. Referencing a name in the "Imports”
clause of another module shall only be allowed if there is no more than one occurrence of the " Symbol" in that clause.
NOTE — This does not prohibit the same "Symbol" defined in two different modules from being imported into another module.

However, if the same "Symbol" appears more than once in the | MPORTS clause of a module A, then that "Symbol" cannot be
referenced using module A in an external reference.

14.6 An external reference shall be used in a module only to refer to a reference name which is defined in a
different module, and is specified by the following productions:

External TypeReference::=
moduler eference

typereference

ExternalValueReference ::=
moduler eference
valuer eference

NOTE — Additiona external reference productions ("ExternalClassReference”, "ExternalObjectReference” and
"External ObjectSetReference") are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2.

14.7 When the referencing module is defined using the "Symbolsimported" aternative of "Imports', the
"modulereference” in the external reference shall appear in the "GlobalModuleReference” of exactly one of the
"SymbolsFromModule" in the "Symbolsimported’. When the referencing module is defined using the "empty"

32 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

aternative of "Imports’, the "modulereference” in the external reference shall appear in the "ModuleDefinition" of the
module (different from the referencing module) where the "Reference” is defined.

14.8 Where a "DefinedType" is used as part of notation governed by a "Type' (for example, in a
"SubtypeConstraint") then the "DefinedType" shall be compatible with the governing "Type" as specified in clause
C.6.2.

14.9 Every occurrence within an ASN.1 specification of a "DefinedValue' is governed by a "Type", and that
"DefinedValue' shal reference a value of a type that is compatible with the governing "Type" as specified in
clause C.6.2.

15 Notation to support referencesto ASN.1 components

151 There is a requirement for formal reference to components of ASN.1 types, values, etc. for many purposes.
One such instance is the need to write text to identify a specific type within some ASN.1 module. This clause defines a
notation which can be used to provide such references.

15.2 The notation enables any component of a set or sequence type (which is either mandatorily or optionally
present in the type) to be identified.

15.3 Any part of any ASN.1 type definition can be referenced by use of the "AbsoluteReference" syntactic
construct:

AbsoluteReference ::=
"@ Moduleldentifier

ItemSpec

ItemSpec ::=
typereference
| Itemld"." Componentld

Itemld ::= ItemSpec

Componentld ::=
identifier
| number

| "yn

NOTE — The AbsoluteReference production is not used elsewhere in this Recommendation | International Standard. It is
provided for the purposes stated in 15.1.

154 The"Moduleldentifier" identifies an ASN.1 module (see 13.1).

155 When the first or second alternative of "Definitiveldentification” is used as part of the "Moduleldentifier", the
"Definitivel dentification" unambiguously and uniquely identifies the module from which a name is being referenced.

15.6 The "typereference” references any ASN.1 type defined in the module identified by "Modulel dentifier".

15.7 The "Componentld” in each "ItemSpec" identifies a component of the type which has been identified by the
"Itemid". It shall be the last "Componentld" if the component it identifies is not a set, sequence, set-of, sequence-of, or
choice type.

15.8 The "identifier" form of "Componentld" can be used if the parent "Itemld" is a set or sequence type, and is
required to be one of the "identifier"s of the "NamedType" in the "ComponentTypeL.ists" of that set or sequence. It can
also be used if the "ltemld" identifies a choice type, and is then required to be one of the "identifier's of a
"NamedType" in the "AlternativeTypeLists" of that choice type. It cannot be used in any other circumstance.

15.9 The number form of "Componentld" can be used only if the "Itemld" is a sequence-of or set-of type. The
value of the number identifies the instance of the type in the sequence-of or set-of, with the value "1" identifying the
first instance of the type. The value zero identifies a conceptual integer type component (not explicitly present in
transfer) that contains a count of the number of instances of the type in the sequence-of or set-of that are present in the
value of the enclosing type.

15.10 The"*" form of "Componentld" can be used only if the "Itemld" is a sequence-of or set-of. Any semantics
associated with the use of the "*" form of "Componentld" apply to all components of the sequence-of and set-of .

NOTE - In the following example:

ITU-T Rec. X.680 (11/2008) 33

| SO/IEC 8824-1:2008 (E)

M DEFINITIONS ::= BEG N
T ::= SEQUENCE {
a BOCOLEAN,
b SET OF | NTECER
}
END

the components of "T" could be referenced by text outside an ASN.1 module (or in acomment), such as:
-- if (@M T.b.0 is odd) then:
-- (@M T.b.* shall be an odd integer)

which is used to state that if the number of componentsin b isodd, all components of b must be odd.

16 Assigning types and values
16.1 A "typereference” shall be assigned atype by the notation specified by the "TypeAssignment" production:

TypeAssignment ::=
typereference
Type
The "typereference” shall not be an ASN.1 reserved word (see 12.38).

16.2 A "valuereference" shall be assigned a value by the notation specified by either the "VaueAssignment" or
"XMLValueAssignment” productions:

ValueAssignment ::=
valuer eference

XMLValueAssignment ::=
valuer eference

XML TypedValue

XMLTypedValue::=
"<" & NonParameterizedTypeName " >"
XMLValue
"</[" & NonParameterizedTypeName" >"
| "<" & NonParameterizedTypeName" />"

The value being assigned to the "valuereference" in the "VaueAssignment” is"Vaue", and is governed by "Type" and
shall be a notation for a value of the type defined by "Type" (as specified in 16.3). The value being assigned to the
"valuereference” in the "XMLVaueAssignment" is "XMLValue" (see 17.7), and shall be a notation for a value of the
type defined by "NonParameterizedTypeName' (as specified in 16.4). If this is the "xmlasnltypename" item, then it
identifies the ASN.1 built-in type in the corresponding row of Table 4 (see aso 14.3).

16.3 "Vaue' isanotation for avalue of atype as specified in 17.7.

16.4 "XMLVaue' is a notation for a value of a type if "XMLVaue" is an "XMLBUiltinvVaue' notation for the
type (see 17.10).

16.5 The second aternative of "XMLTypedVaue" (use of an XML empty-element tag) can be used only if an
instance of the "XMLValue" production is empty.
NOTE - If the "XMLValue" production was an "xmlcstring" containing only white-space, this would not be empty, and the
second alternative could not be used.

16.6 A "typereference” can be assigned a value set by the notation specified by the "VaueSetTypeAssignment"
production:

ValueSetTypeAssignment ::=
typer eference
Type

ValueSet

34 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

This notation assigns to "typereference” the type defined as a subtype of the type denoted by "Type" and which
contains exactly the values which are specified in or allowed by "VaueSet". The "typereference” shall not be an ASN.1
reserved word (see 12.38), and may be referenced as atype. "VaueSet" is defined in 16.7.

16.7 A value set governed by some type shall be specified by the notation "V alueSet":
ValueSet ::="{" ElementSetSpecs"}"

The value set comprises all of the values, of which there shall be at least one, specified by "ElementSetSpecs' (see
clause 50).

16.8 The "VaueSetTypeAssignment" production expands into:

typereference
Type

" { : ElementSetSpecs "} "

For all purposes, including the application of encoding rules, this is defined to be exactly equivalent to the use of the
production:

typereference
Type
n (n Elernmtw$&s n) "
with the same "Type" and "ElementSetSpecs' specifications.

17 Definition of types and values
17.1 A type shall be specified by the notation "Type":
Type ::= BuiltinType | ReferencedType | ConstrainedType
17.2 The built-in types of ASN.1 are specified by the notation "BuiltinType", defined as follows:

BuiltinType::=

BitStringType
| BooleanType
| Character StringType
| ChoiceType
| DateType
| DateTimeType
| DurationType
| EmbeddedPDVType
| EnumeratedType
| External Type
| InstanceOfType
| Integer Type
| IRIType
| NullType
| ObjectClassFieldType
| Objectldentifier Type
| OctetStringType
| RealType
| ReativelRIType
| RelativeOIDType
| SequenceType
| SequenceOfType
| SetType
| SetOfType
| PrefixedType
| TimeType
| TimeOfDayType

ITU-T Rec. X.680 (11/2008) 35

| SO/IEC 8824-1:2008 (E)

The various "BuiltinType" notations are defined in the following clauses (in this Recommendation | International
Standard unless otherwise stated):

BitStringType 22
BooleanType 18
CharacterStringType 40
ChoiceType 29
DateType 38.4.1
DateTimeType 38.4.3
DurationType 38.4.4
EmbeddedPDV Type 36
EnumeratedType 20
External Type 37
InstanceOf Type ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex C
IntegerType 19
IRIType 34
Null Type 24
ObjectClassFieldType ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1
ObjectidentifierType 32
OctetStringType 23
Real Type 21
Relativel RIType 35
RelativeOIDType 33
SequenceType 25
SequenceOf Type 26
SetType 27
SetOfType 28
PrefixedType 31
TimeType 38.1.1
TimeOfDayType 38.4.2

17.3 The referenced types of ASN.1 are specified by the notation "ReferencedType":

ReferencedType ::=
DefinedType

Useful Type
SelectionType
TypeFromObject
ValueSetFromObjects

The "ReferencedType" notation provides an alternative means of referring to some other type (and ultimately to a built-
in type). The various "ReferencedType" notations, and the way in which the type to which they refer is determined, are
specified in the following placesin this Recommendation | International Standard unless otherwise stated:

DefinedType 141

Useful Type 45.1

SelectionType 30

TypeFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

V alueSetFromObjects ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15
174 The "ConstrainedType" is defined in clause 49.

175 This Recommendation | International Standard requires the use of the notation "NamedType" in specifying
the components of the set types, sequence types and choice types. The notation for "NamedType" is:

NamedType ::= identifier Type

17.6 The "identifier" is used to unambiguously refer to components of a set type, sequence type or choice typein
the value notation, in inner subtype constraints and in component relation constraints (see ITU-T Rec. X.682 | ISO/IEC
8824-3). It is not part of the type, and has no effect on the type.

17.7 A value of some type shall be specified by the notation "Value" or by the notation "XMLValue":

Value::=
Builtinvalue
| ReferencedValue
| ObjectClassFieldValue

36 ITU-T Rec. X.680 (11/2008)

XMLValue::=

XMLBuiltinValue

XMLObjectClassFieldValue

| SO/IEC 8824-1:2008 (E)

NOTE 1 — "ObjectClassFieldValue" and "XMLObjectClassFieldValue" are defined in ITU-T Rec. X.681 |
ISO/IEC 8824-2, 14.6.

NOTE 2 -"XMLValue" isonly used in "XMLTypedVaue".

17.8 If any part of the "XMLValue" production resultsin an XML start-tag immediately followed by an XML end-
tag, possibly separated by white-space inserted as permitted by 12.1.4 (for example, <field1></field1>), these two

XML tags, and any intervening white-space, can be replaced by asingle XML empty-element tag (<field1/>).

NOTE - If any white-space character, except white-space inserted as permitted by 12.1.4, is present between the fina ">"
character of the start tag and theinitial "<" character of the end-tag, the condition above is not satisfied.

17.9 Values of the built-in types of ASN.1 can be specified by the notation "XMLBUiltinValue' (see 17.10) or
"BuiltinvValue", defined as follows:

BuiltinValue::=

BitStringValue
BooleanValue
Character StringValue
ChoiceValue
EmbeddedPDVValue
EnumeratedValue
ExternalValue
InstanceOfValue
Integer Value
IRIValue

NullValue
ObjectldentifierValue
OctetStringValue
RealValue

Relativel RIValue
RelativeOlDValue
SequenceValue
SequenceOfValue
SetValue
SetOfValue
PrefixedValue
TimeValue

Each of the various "BuiltinvValue' notations is defined in the same subclause as the corresponding "BuiltinType"
notation, aslisted in 17.2.

17.10 "XMLBUiltinvVaue" is defined as follows:

XMLBuiltinValue::=

XMLBItStringValue
XMLBooleanValue

XML Character StringValue
XML ChoiceValue
XMLEmbeddedPDVValue
XMLEnumeratedValue
XMLExternalValue
XMLInstanceOfValue
XMLIntegerValue
XMLIRIValue
XMLNullValue

XML ObjectldentifierValue
XMLOctetStringValue
XMLRealValue
XMLRé€ativelRIValue
XMLRé€ativeOlDValue
XML SequenceValue

XML SequenceOfValue

ITU-T Rec. X.680 (11/2008)

37

| SO/IEC 8824-1:2008 (E)

| XMLSetValue

| XMLSetOfValue

| XMLPrefixedValue
| XMLTimeValue

Each of the various "XMLBuiltinVaue" notations is defined in the same clause as the corresponding "BuiltinType"
notation, aslisted in 17.2 above.

17.11 Thereferenced values of ASN.1 are specified by the notation "ReferencedValue":

ReferencedValue::=
DefinedValue
| ValueFromObject

The "ReferencedValue"' notation provides an aternative means of referring to some other value (and ultimately to a
built-in value). The various "ReferencedValue" notations, and the way in which the value to which they refer is
determined, are specified in the following places (in this Recommendation | International Standard unless otherwise
stated):

DefinedValue 141
VaueFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

17.12 Regardless of whether or not a type is a "BuiltinType", "ReferencedType" or "ConstrainedType", its values
can be specified by either a"BuiltinvValue" or "ReferencedValue” of that type.

17.13 The value of a type referenced using the "NamedType" notation shall be defined by the notation
"NamedValue", or when used as part of an "XMLValue", by the notation "XMLNamedValue". These productions are;

NamedValue ::= identifier Value
XMLNamedValue::="<" & identifier ">" XMLValue"</" & identifier ">"

where the "identifier" is the same asthat used in the "NamedType" notation.
NOTE — The "identifier" is part of the notation, it does not form part of the value itself. It is used to unambiguously refer to the
components of a set type, sequence type or choice type.

17.14 The implied (see 13.4) or explicit presence of an extension marker (see clause 6) in the definition of a type
has no effect on the value notation. That is, the value notation for a type with an extension marker is exactly the same
asif the extension marker was absent.

NOTE — Subclause 50.8 prohibits value notation used in a subtype constraint from referencing a value that is not in the extension
root of the parent type.

18 Notation for the boolean type

18.1 The boolean type (see 3.8.8) shall be referenced by the notation "BooleanType":
BooleanType ::= BOOLEAN

18.2 The tag for types defined by this notation is universal class, number 1.

18.3 The value of aboolean type (see 3.8.85 and 3.8.44) shall be defined by the notation "BooleanValue", or when
used as an "XMLValue", by the notation "XMLBooleanValue". These productions are:

BooleanValue ::= TRUE | FALSE

XMLBooleanValue::=
EmptyElementBoolean
| TextBoolean

EmptyElementBoolean ::=
<" & "true' ">
| "<" & "false" "/>"

TextBoolean ::=
extended-true
| extended-false

184 If an "EmptyElementBoolean" appears in an "XMLVaueAssignment”, then there shall be no occurrence of
"TextBoolean" in that "XMLValueAssignment".

38 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

19 Notation for theinteger type

19.1 Theinteger type (see 3.8.48) shall be referenced by the notation "Integer Type'":
Integer Type::=
I NTEGER
| INTEGER"{" NamedNumberList"}"

NamedNumberList ::=
NamedNumber
| NamedNumberList"," NamedNumber

NamedNumber ::=
identifier " (" SignedNumber ") "
| identifier " (" DefinedValue")"
SignedNumber ::=

number
| "-" number

19.2 The second alternative of "SignedNumber” shall not be used if the "number" is zero.

19.3 The "NamedNumberList" is not significant in the definition of a type. It is used solely in the value notation
specified in 19.9.

194 The "vauereference” in "DefinedValue" shall be of type integer.

NOTE - Since an "identifier" cannot be used to specify the value associated with "NamedNumber", the "DefinedValue' can
never be misinterpreted as an "IntegerValue". Therefore in the following case

a INTEGER :: =1

Tl ::= INTEGER { a(2) }

T2 ::= INTEGER { a(3), b(a) }
cT2::=b

dT2 ::=a

¢ denotes the value 1, since it cannot be a reference to the second nor the third occurrence of a, and d denotes the value 3.

195 The value of each "SignedNumber" or "DefinedVaue" appearing in the "NamedNumberList" shall be
different, and represents a distinguished value of the integer type.

19.6 Each "identifier" appearing in the "NamedNumberList" shall be different.
19.7 The order of the "NamedNumber"s in the "NamedNumberList" is not significant.
19.8 The tag for types defined by this notation is universal class, number 2.

19.9 The value of an integer type shall be defined by the notation "IntegerValue', or when used as an
"XMLValue", by the notation "XMLIntegerValue". These productions are:

IntegerValue::=
SignedNumber
| identifier
XMLIntegerValue::=
XML SignedNumber

| EmptyElementlnteger
| TextInteger

XML SignedNumber ::=
number
| "-" & number

EmptyElementinteger ::=
"<" & identifier " />"
Textlnteger ::=
identifier
19.10 If an "EmptyElementinteger" appears in an "XMLVaueAssignment", then there shall be no occurrence of
"TextInteger" in that "XMLVaueAssignment”.

ITU-T Rec. X.680 (11/2008) 39

| SO/IEC 8824-1:2008 (E)

19.11 The"identifier" in "IntegerValue' and in the last two aternatives for "XMLIntegerValue" shall be one of the
"identifier"sin the "IntegerType" with which the value is associated, and shall represent the corresponding number.

NOTE — When referencing an integer value for which an "identifier" has been defined, use of the "identifier" form of
"IntegerVaue" and one of the "identifier" forms of "XMLIntegerValue" should be preferred.

19.12 Within an instance of value notation for an integer type with a "NamedNumberList", any occurrence of a
name that is both an "identifier" from the "NamedNumberList" and a reference name shall be interpreted as the
"identifier".

19.13 The second aternative of "XMLSignedNumber" shall not be used if the "number" is zero.

20 Notation for the enumerated type
20.1 The enumerated type (see 3.8.30) shall be referenced by the notation "EnumeratedType":

EnumeratedType::=
ENUMVERATED " {" Enumerations"}"

Enumerations::=
RootEnumer ation

| RootEnumeration ", ... " ExceptionSpec
| RootEnumeration "," "..." ExceptionSpec ", AdditionalEnumeration

RootEnumeration ::= Enumeration
AdditionalEnumeration ::= Enumer ation
Enumeration ::= Enumerationltem | Enumerationitem " ," Enumeration

Enumerationltem ::= identifier | NamedNumber

NOTE 1 — Each value of an "EnumeratedType" has an identifier which is associated with a distinct integer. However, the values
themselves are not expected to have any integer semantics. Specifying the "NamedNumber” alternative of "Enumerationltem"
provides control of the representation of the value in order to facilitate compatible extensions.

NOTE 2 — The numeric values inside the "NamedNumber"s in the "RootEnumeration” are not necessarily ordered or contiguous,
and the numeric values inside the "NamedNumber"s in the "Additional Enumeration” are ordered but not necessarily contiguous.

20.2 For each "NamedNumber", the "identifier" and the "SignedNumber" shall be distinct from al other
"identifier"s and "SignedNumber"s in the "Enumeration". Subclauses 19.2 and 19.4 also apply to each
"NamedNumber".

20.3 Each "Enumerationitem” (in an "EnumeratedType") which is an "identifier" is successively assigned a
distinct non-negative integer. For the "RootEnumeration”, the successive integers starting with 0, but excluding any
which are employed in "Enumerationltem"s which are "NamedNumber"s, are assigned.

NOTE — An integer value is associated with an "Enumerationitem” to assist in the definition of encoding rules. It is not
otherwise used in the ASN.1 specification.

20.4 The value of each new "Enumerationitem” shal be greater than al previousy defined
"Additional Enumeration”sin the type.

20.5 When a "NamedNumber" is used in defining an "Enumerationitem™ in the "Additiona Enumeration”, the
value associated with it shall be different from the value of al previously defined "Enumerationitem”s (in this type)
regardless of whether the previously defined " Enumerationltem™s occur in the enumeration root or not. For example:

A ::= ENUMERATED {a, b, ..., c(0)} -- invalid, since both 'a'" and 'c' equal O
B ::= ENUMERATED {a, b, ..., c, d(2)} -- invalid, since both 'c' and 'd" equal 2
C ::= ENUMERATED {a, b(3), ..., c(1)} -- valid, 'c' =1
D ::= ENUMERATED {a, b, ..., c(2)} --valid, 'c' =2

20.6 The value associated with the first "Enumerationltem” in the "Additiona Enumeration” alternative that is an
"identifier" (not a "NamedNumber") shall be the smallest value for which an "Enumerationltem” is not defined in the
"RootEnumeration” and al preceding "Enumerationltem”s in the "Additional Enumeration” (if any) are smaller. For
example, the following are all valid:

A ::= ENUVERATED {a, b, ..., c} - c=2
B ::= ENUMERATED {a, b, c(0), ..., d} -- d =3
C::= ENUMERATED {a, b, ..., ¢(3), d} --d=4
D ::= ENUMERATED {a, z(25), ..., d} - d=1

20.7 The enumerated type has atag which is universal class, number 10.

40 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

20.8 The value of an enumerated type shall be defined by the notation "EnumeratedValue”, or when used as an
"XMLValue", by the notation "XMLEnumeratedValue'. These productions are:

EnumeratedValue ::= identifier

XMLEnumeratedValue::=
EmptyElementEnumer ated
| TextEnumerated
EmptyElementEnumerated ::="<" & identifier " />"

TextEnumerated ::= identifier

20.9 If an "EmptyElementEnumerated” appears in an "XMLVaueAssignment", then there shall be no occurrence
of "TextEnumerated" in that "XMLVaueAssignment".

20.10 The"identifier" in "EnumeratedValue" and in the two alternatives of "XMLEnumeratedVaue" shall be equal
to that of an "identifier" in the "EnumeratedType" sequence with which the value is associated.

20.11 Within an instance of value notation for an enumerated type, any occurrence of a name that is both an
"identifier" from the "Enumeration" and a reference name shall be interpreted as the "identifier".

21 Notation for thereal type

21.1 Thereal type (see 3.8.60) shall be referenced by the notation "Real Type":
Real Type::= REAL

21.2 Thereal type has atag which is universal class, number 9.

21.3 The abstract values of the real type are the specia values PLUS- | NFI NI TY, M NUS- | NFI NI TY, and
NOT- A- NUMBER together with numeric real numbers consisting of either plus zero or minus zero, or capable of being
specified by the following formulainvolving three integers, M, B and E:

M x BE

where M (non-zero) is called the mantissa, B (either 2 or 10) the base, and E the exponent. Valueswith B =2 ("base"
2 abstract values) and B = 10 ("base" 10 abstract values) are defined as distinct abstract values. Otherwise, values of
M x BF which evaluate to the same numerical value are asingle abstract value.

NOTE — Minus zero and plus zero are two distinct abstract values for a mathematical zero, and the "base" 2 and "base" 10
abstract values are distinct abstract values for all other numeric real numbers.

21.4 The real type has an associated type which is used to support the value and subtype notations for numeric
values of the real type (in addition to the notation for the specia values of the real type and for plus zero and minus
Zero).
NOTE — Encoding rules may define a different type which is used to specify encodings, or may specify encodings without
reference to the associated type. In particular, the encoding in BER and PER provides a Binary-Coded Decimal (BCD) encoding
if "base" is 10, and an encoding which permits efficient transformation to and from hardware floating point representations if
"base" is 2.

215 The associated type for value definition (and for subtyping purposes) of the numeric values is (with
normative comments):

SEQUENCE {

mant i ssa | NTEGER,

base | NTECGER (2| 10),

exponent | NTEGER
-- The associated mat henatical real nunber is "nantissa"
-- multiplied by "base" raised to the power "exponent”

}

NOTE 1 — Values represented by "base" 2 and by "base" 10 are considered to be distinct abstract values even if they evaluate to
the same real number value, and may carry different application semantics.

NOTE 2 — The notation REAL (W TH COVPONENTS { ... , base (10)}) can be used to restrict the set of values to the
"base" 10 numeric values (and similarly for "base" 2 numeric values). This notation does not include the values (special real
values and plus and minus zero) that cannot be represented by the associated type. If required, these can be added using set
arithmetic.

NOTE 3 — This type is capable of carrying an exact finite representation of any number which can be stored in typical floating
point hardware, and of any number with afinite character-decimal representation.

ITU-T Rec. X.680 (11/2008) 41

| SO/IEC 8824-1:2008 (E)

21.6 The value of areal type shall be defined by the notation "RealVaue", or when used in an "XMLValue", by
the notation "XMLRea Value":

RealValue::=
NumericRealValue
| SpecialRealValue

NumericRealValue::=
realnumber
| "-" realnumber
| SequenceValue

SpecialRealValue::=
PLUS- I NFI NI TY

| M NUS- | NFI NI TY

| NOT- A- NUMBER
NOTE — The third alternative of "NumericRealVaue" cannot be used for plus zero or minus zero values. These abstract values
are specified using either the first or the second alternative respectively, with asingle "0" character for "realnumber”.

XMLRealValue::=
XMLNumericRealValue | XML SpecialRealValue

XMLNumericRealValue::=
realnumber
| "-" & realnumber

XML SpecialRealValue ::=
EmptyElementReal
| TextReal

EmptyElementReal ::=
"<" & PLUS- I NFINITY"/>"
| "<" & MNUS-INFINITY"/>"
| "<" & NOT- A- NUMBER"/>"

TextReal ::=
"I NF"
| " & INF
["NaN'
21.7 If an "EmptyElementReal" appears in an "XMLVaueAssignment", then there shall be no occurrence of
"TextReal" in that "XMLValueAssignment".

21.8 When the "realnumber” notation is used, it identifies the corresponding "base" 10 abstract value, or plus
zero. When a"realnumber” value is preceded by "- ", it identifies the corresponding "base" 10 abstract values that are
negative numbers, or minus zero. If the "Real Type" is constrained to "base" 2, the "realnumber” or "-" "realnumber”
identifies the "base" 2 abstract value corresponding either to the decimal value specified by the "realnumber” or to a
locally-defined precision if an exact representation is not possible.

22 Notation for the bitstring type
22.1 The bitstring type (see 3.8.7) shall be referenced by the notation "BitStringType'":

BitStringType ::=
BI T STRI NG
| BIT STRING"{" NamedBitList"}"

NamedBitList ::=
NamedBit
| NamedBitList " ," NamedBit
NamedBit ::=
identifier " (" number ") "
| identifier " (" DefinedValue")"

222 Thefirst bit in abit string is called the leading bit. The final bit in a bit string is called the trailing bit.

42 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE - This terminology is used in specifying the value notation and in defining encoding rules.
22.3 The "DefinedValue" shall be areference to a non-negative value of type integer.

22.4 The value of each "number" or "DefinedValue' appearing in the "NamedBitList" shall be different, and isthe
number of a distinguished bit in a bitstring value. The leading bit of the bit string is identified by the "number" zero,
with succeeding bits having successive values.

225 Each "identifier" appearing in the "NamedBitList" shall be different.
NOTE 1 — The order of the "NamedBit" production sequences in the "NamedBitList" is not significant.

NOTE 2 — Since an "identifier" that appears within the "NamedBitList" cannot be used to specify the value associated with a
"NamedBit", the "DefinedValue" can never be misinterpreted as an "IntegerVaue'. Therefore in the following case:

a INTEGER ::=1
Tl ::= INTECER { a(2) }
T2 ::=BIT STRRNG { a(3), b(a) }

the last occurrence of a denotes the value 1, as it cannot be a reference to the second nor the third occurrence of a.

22.6 The presence of a "NamedBitList" has no effect on the set of abstract values of this type. Values containing
1 bits other than the named bits are permitted.

22.7 When a "NamedBitList" is used in defining a bitstring type ASN.1 encoding rules are free to add (or remove)
arbitrarily any trailing O bits to (or from) values that are being encoded or decoded. Application designers should
therefore ensure that different semantics are not associated with such values which differ only in the number of trailing
0 hits.

22.8 Thistype has atag which is universal class, number 3.

22.9 The value of a bitstring type shall be defined by the notation "BitStringVaue', or when used as an
"XMLValue", by the notation "XMLBItStringValue". These productions are:

BitStringValue::=
bstring
| hstring
| "{" IdentifierList"}"
| "{" "
| OONTAI NINGValue
IdentifierList ::=
identifier
| IldentifierList"," identifier
XMLBItStringValue::=
XML TypedValue
| xmlbstring
| XMLIdentifierList
| empty

XML IdentifierList ::=
EmptyElementList
| TextList

EmptyElementList ::=
"<" & identifier " />"
| EmptyElementList " <" & identifier " />"
TextList ::=
identifier
| TextList identifier

2210 If an "EmptyElementList" appears in an "XMLVaueAssignment”, then there shall be no occurrence of
"TextList" in that "XMLValueAssignment”.

2211 The "XMLTypedValue" alternative shall not be used unless the bitstring has a contents constraint which
includes an ASN.1 type and does not include an ENCODED BY. If this alternative is used, the "XMLTypedValue' shall
be avalue of the ASN.1 type in the contents constraint.

22.12 The"XMLIdentifierList" alternative shall not be used unless the bitstring has a "NamedBitList".

ITU-T Rec. X.680 (11/2008) 43

| SO/IEC 8824-1:2008 (E)

2213 Each "identifier" in "BitStringVaue" or in the alternatives of "XMLBItStringValue" shall be the same as an
"identifier" in the "BitStringType" production sequence with which the value is associated.

22.14 The"empty" alternative denotes a bitstring with no hits.

22.15 If the hitstring has named bits, the "BitStringVaue" or "XMLBItStringVaue' notation denotes a bitstring
value with ones in the bit positions specified by the numbers corresponding to the "identifier"s, and with all other bits
zero.
NOTE - For a"BitStringType" that has a "NamedBitList", the "{" "}" production sequence in "BitStringValue" and the "empty"
in"XMLBItStringValue" are used to denote the bitstring which contains no one bits.

2216 When using the "bstring" or "xmlbstring" notation, the leading bit of the bitstring value is on the left, and the
trailing bit of the bitstring value is on the right.

22.17 When using the "hstring" notation, the most significant bit of each hexadecimal digit corresponds to the
leftmost bit in the bitstring.

NOTE — This notation does not, in any way, constrain the way encoding rules place a bitstring into octets for transfer.
22.18 The"hstring" notation shall not be used unless the bitstring value consists of a multiple of four bits.
EXAMPLE

" A98A' H
and
'1010100110001010' B

are aternative notations for the same hitstring value. If the type was defined using a "NamedBitList", the (single)
trailing zero does not form part of the value, which is thus 15 bits in length. If the type was defined without a
"NamedBitList", the trailing zero does form part of the value, which is thus 16 bitsin length.

2219 The CONTAI NI NG alternative can only be used if there is a contents constraint on the bitstring type which
includes CONTAI NI NG. The "Value" shall then be value notation for avalue of the "Type" in the "ContentsConstraint”
(see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11).

NOTE — This value notation can never appear in a subtype constraint because ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11.3
forbids further constraints after a "ContentsConstraint”, and the above text forbids its use unless the governor has a
"ContentsConstraint”.

2220 The CONTAI NI NGalternative shall be used if there is a contents constraint on the bitstring type which does not
contain ENCODED BY.

23 Notation for the octetstring type

231 The octetstring type (see 3.8.55) shall be referenced by the notation " OctetStringType":
OctetStringType::= OCTET STRI NG

23.2 Thistype has atag which is universal class, number 4.

233 The value of an octetstring type shall be defined by the notation "OctetStringValue', or when used as an
"XMLValue", by the notation "XML OctetStringValue". These productions are:

OctetStringValue ::=
bstring
| hstring
| CONTAI NI NG Value

XMLOctetStringValue::=
XMLTypedValue
| xmlhstring

234 The "XMLTypedVaue" aternative shall not be used unless the octetstring has a contents constraint which
includes an ASN.1 type and does not include an ENCODED BY. If this alternative is used, the "XMLTypedValue' shal
be avalue of the ASN.1 type in the contents constraint.

235 In specifying the encoding rules for an octetstring, the octets are referenced by the terms first octet and
trailing octet, and the bits within an octet are referenced by the terms most significant bit and least significant bit.

44 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

23.6 When using the "bstring" notation, the left-most bit of the "bstring" notation shall be the most significant bit
of the first octet of the octetstring value. If the "bstring” is not a multiple of eight bits, it shall be interpreted as if it
contained additional zero trailing bits to make it the next multiple of eight.

23.7 When using the "hstring" or "xmlhstring" notation, the left-most hexadecimal digit shall be the most
significant semi-octet of the first octet.

238 If the "hstring” is an odd number of hexadecimal digits, it shall be interpreted as if it contained a single
additiona trailing zero hexadecimal digit. The "xmlhstring" shall not be an odd number of hexadecimal digits.

23.9 The CONTAI NI NG alternative can only be used if there is a contents constraint on the octetstring type which
includes CONTAI NI NG, The "Value" shall then be value notation for a value of the "Type" in the "ContentsConstraint”
(see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11).

NOTE — This value notation can never appear in a subtype constraint because ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11.3
forbids further constraints after a "ContentsConstraint”, and the above text forbids its use unless the governor has a
"ContentsConstraint”.

23.10 The CONTAI NI NG alternative shall be used if there is a contents constraint on the octetstring type which does
not contain ENCODED BY.

24 Notation for the null type

24.1 The null type (see 3.8.51) shall be referenced by the notation "Null Type":
Null Type ::= NULL

24.2 Thistype has atag which is universal class, number 5.

24.3 The value of a null type shall be referenced by the notation "NullValue', or when used as an "XMLValue",
by the notation "XMLNullVaue'. These productions are:

NullValue ::= NULL
XMLNullValue ::= empty

25 Notation for sequencetypes
25.1 The notation for defining a sequence type (see 3.8.67) shall be the "SequenceType":

SequenceType::=
SEQUENCE"{" "}"
| SEQUENCE "{" ExtensionAndException OptionalExtensionMarker "}"
| SEQUENCE "{" ComponentTypeLists "}"

ExtensionAndException ::="..." | "..." ExceptionSpec

OptionalExtensionMarker ::="," "..." | empty
ComponentTypelists::=
RootComponentTypel ist
| RootComponentTypelList "," ExtensionAndException ExtensionAdditions
OptionalExtensionM arker
| RootComponentTypelList "," ExtensionAndException ExtensionAdditions
ExtensionEndMarker "," RootComponentTypelist
| ExtensionAndException ExtensionAdditions ExtensionEndMarker " "
RootComponentTypelL ist
| ExtensionAndException ExtensionAdditions OptionalExtensionMarker
RootComponentTypeList ::= ComponentTypeList

ExtensonEndMarker ::=",

ExtensionAdditions ::=
" " ExtensionAdditionList
| empty

ITU-T Rec. X.680 (11/2008) 45

| SO/IEC 8824-1:2008 (E)

ExtensionAdditionList ::=
ExtensionAddition
| ExtensionAdditionList "," ExtensionAddition

ExtensionAddition ::=
ComponentType
| ExtensionAdditionGroup

ExtensionAdditionGroup ::="[[" VersonNumber ComponentTypelList "]]

VersionNumber ::= empty | number

ComponentTypeList ::=
ComponentType
| ComponentTypeList "," ComponentType

ComponentType::=
NamedType
| NamedType OPTI ONAL
| NamedType DEFAULT Value
| COWPONENTS COF Type

25.2 For the purposes of the following clauses, a"PrefixedType" is defined to be atextually tagged type if either:
a) the"PrefixedType' isa"TaggedType"; or
b) the"Type" inthe"PrefixedType" isatextualy tagged type.

25.3 When the "ComponentTypelLists' production occurs within the definition of a module for which automatic
tagging is selected (see 13.3), and none of the occurrences of "NamedType" in any of the first three aternatives for
"ComponentType" is a textually tagged type (see 25.2), then the automatic tagging transformation is selected for the
entire "ComponentTypeLists', otherwiseit is not.

NOTE 1 — The use of the "TaggedType" notation within the definition of the list of components for a sequence type gives
control of tags to the specifier, as opposed to automatic assignment by the automatic tagging mechanism. Therefore, in the
following case:

T ::= SEQUENCE { a INTEGER b [1] BOOLEAN, c CCTET STRING }
no automatic tagging is applied to the list of components a, b, c, even if this definition of sequence type T occurs within a
module for which automatic tagging is selected.

NOTE 2 — Only those occurrences of the "ComponentTypeLists' production appearing within a module where automatic tagging
is selected are candidates for transformation by automatic tagging.

25.4 The decision to apply the automatic tagging transformation is taken individually for each occurrence of
"ComponentTypeLists' and prior to the COVPONENTS OF transformation specified by 25.5. However, as specified
in 25.8 to 25.10, the automatic tagging transformation (if applied) is applied after the COVPONENTS OF transformation.

NOTE — The effect of this is that the application of automatic tags is suppressed by tags textualy present in the
"ComponentTypelLists’, but not by tags present in the "Type" following COVPONENTS OF.

255 "Type" in the "COVPONENTS OF Type" notation shall be a sequence type. The "COMPONENTS COF Type'
notation shall be used to define the inclusion, at this point in the list of components, of all the component types (of
which there shall be at least one) of the referenced type, except for any extension marker and extension additions that
may be present in the "Type". (Only the "RootComponentTypeList" of the "Type" in the "COVPONENTS COF Type" is
included; extension markers and extension additions, if any, are ignored by the "COVPONENTS OF Type" notation.)
Any subtype constraint applied to the referenced type isignored by this transformation.

NOTE — This transformation is logically completed prior to the satisfaction of the requirementsin the following subclauses.

25.6 The following subclauses each identify a series of occurrences of "ComponentType" in either the root or the
extension additions or both. The rule of 25.6.1 shall apply to all such series.

25.6.1 Where there are one or more consecutive occurrences of "ComponentType" that are all marked OPTI QNAL or
DEFAULT, the tags of those "ComponentType's and of any immediately following component type in the series shall be
distinct (see 31.2). If automatic tagging was selected, the requirement that tags be distinct applies only after automatic
tagging has been performed, and will always be satisfied.

25.6.2 Subclause 25.6.1 shall apply to the series of "ComponentType'sin the root.

25.6.3 Subclause 25.6.1 shall apply to the complete series of "ComponentType's in the root or in the extension
additions, in the textual order of their occurrence in the type definition (ignoring all version brackets and ellipsis
notation). (Seeaso 52.7.)

46 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

25.7 When the third or fourth alternative of "ComponentTypelLists' is used, al "ComponentType's in extension
additions shall have tags which are distinct from the tags of the textually following "ComponentType's up to and
including the first such "ComponentType" that is not marked OPTIONAL or DEFAULT in the trailing
"RootComponentTypeList", if any. (Seeaso 52.7.)

25.8 The automatic tagging transformation of an occurrence of "ComponentTypeLists' islogically performed after
the transformation specified by 25.5, but only if 25.3 determines that it shall apply to that occurrence of
"ComponentTypelLists'. Automatic tagging transformation impacts each "ComponentType' of the
"ComponentTypelLists' by replacing the "Type" originaly in the "NamedType" production with a replacement
"TaggedType" occurrence specified in 25.10.

25.9 If automatic tagging is in effect and the "ComponentType's in the extension root have no tags, then no
"ComponentType" within the "ExtensionAdditionList" shall be a textually tagged type.

25.10 If automatic tagging isin effect, the replacement "TaggedType" is specified as follows:
a) thereplacement "TaggedType" notation usesthe "Tag Type" adternative;
b) the"Class" of the replacement "TaggedType" is empty (i.e., tagging is context-specific);

c) the"ClassNumber" in the replacement "TaggedType" is tag value zero for the first "ComponentType" in
the "RootComponentTypeL.ist”, one for the second, and so on, proceeding with increasing tag numbers;

d) the "ClassNumber" in the replacement "TaggedType' of the first "ComponentType' in the
"ExtensionAdditionList” is zero if the "RootComponentTypeList" is missing, else it is one greater than
the largest "ClassNumber” in the "RootComponentTypeList”, with the next "ComponentType" in the
"ExtensionAdditionList" having a "ClassNumber" one greater than the first, and so on, proceeding with
increasing tag numbers,

€) the"Type" inthereplacement "TaggedType" isthe origina "Type" being replaced.

NOTE 1 — The rules governing specification of implicit tagging or explicit tagging for replacement "TaggedType'"s are provided
by 31.2.7. Automatic tagging is aways implicit tagging unless the "Type" is a choice type or an open type notation, or a
"DummyReference” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3), in which caseit is explicit tagging.

NOTE 2 — Once 25.8 is satisfied, the tags of the components are completely determined, and are not modified even when the
seguence type is referenced in the definition of a component within another "ComponentTypeLists' for which automatic tagging
transformation applies. Thus, in the following case:

T::=SEQUEENCE{ a Ta, b Th, c Tc }
E::= SEQUENCE { f1 E1, f2 T, f3 E3}
automatic tagging applied to the components of E never affects the tags attached to components a, b and ¢ of T, whatever the

tagging environment of T. If T is defined in an automatic tagging environment and E is not in an automatic tagging environment,
automatic tagging is still applied to componentsa, b and ¢ of T.

NOTE 3 — When a sequence type appears as the "Type" in "COVPONENTS OF Type", each occurrence of "ComponentType" in it
is duplicated by the application of 25.5 prior to the possible application of automatic tagging to the referencing sequence type.
Thus, in the following case:

T::=SEQENCE{ a Ta, b SEQUENCE { b1 T1, b2 T2, b3 T3}, c Tc}
W::= SEQIEENCE { x W, COVPONENTS OF T, y W }

the tags of a, b, and ¢ within T need not be the same as the tags of a, b, and ¢ within wif Whas been defined in an automatic
tagging environment, but the tags of b1, b2 and b3 are the same in both T and W In other words, the automatic tagging
transformation is only applied once to a given "ComponentTypeLists'.

NOTE 4 — Subtyping has no impact on automatic tagging.

NOTE 5 — When automatic tagging is in place, insertion of new components at any location other than the extension insertion
point (see 3.8.35) may result in changes to other components due to the side effect of modifying the tags thus causing
interworking problems with an older version of the specification.

2511 If OPTI ONAL or DEFAULT are present, the corresponding value may be omitted from avalue of the new type.

25.12 If DEFAULT occurs, the omission of a value for that type shall be exactly equivalent to the insertion of the
value defined by "Vaue', which shal be a value notation for a value of the type defined by "Type' in the
"NamedType" production sequence.

25.13 The vaue corresponding to an "ExtensionAdditionGroup" (all components together) is optional. However, if
such a value is present, then the value corresponding to the components within the bracketed "ComponentTypeL ist"
that are not marked OPTI ONAL or DEFAULT shall be present.

25.14 The "identifier"s in all "NamedType" production sequences of the "ComponentTypelLists' (together with
those obtained by expansion of COMPONENTS OF) shall all be distinct.

ITU-T Rec. X.680 (11/2008) 47

| SO/IEC 8824-1:2008 (E)

25.15 A value for a given extension addition type shall not be specified unless there are values specified for all
extension addition types not marked OPTI ONAL or DEFAULT that lie logically between the extension addition type and
the extension root.

NOTE 1 — Where the type has grown from the extension root (version 1) through version 2 to version 3 by the addition of
extension additions, the presence in an encoding of any addition from version 3 requires the presence of an encoding of al
additionsin version 2 that are not marked OPTI ONAL or DEFAULT.

NOTE 2 — "ComponentType's that are extension additions but not contained within an "ExtensionAdditionGroup” should
always be encoded if they are not marked OPTI ONAL or DEFAULT, except when the abstract value is being relayed from a sender
that isusing an earlier version of the abstract syntax in which the "ComponentType" is not defined.

NOTE 3 — Use of the "ExtensionAdditionGroup" production is recommended because:
a) it canresult in more compact encodings depending on the encoding rules (e.g., PER);

b) the syntax is more precise in that it clearly indicates that a value of a type defined in the "ExtensionAdditionList"
and not marked OPTI ONAL or DEFAULT should always be present in an encoding if the extension addition group in
which it is defined is encoded (compare with Note 1);

c) thesyntax makesit clear which typesin an "ExtensionAdditionList" must as a group be supported by an application.

2516 A "VersonNumber" shall be used only if all "ExtensionAdditions's and "ExtensionAdditionAlternatives',
within the module are "ExtensionAdditionGroup"s or "ExtensionAdditionAlternativesGroup”s with "VersionNumber"s.
The "number" in each "VersionNumber" of an "ExtensionAdditionGroup" shall be greater than or equal to two, and
shall be greater than the "number" in any preceding "ExtensionAdditionGroup" within an insertion point.

NOTE 1 — The convention used here is that the specification with no extension addition groups is version 1, thus the first added
extension addition group will have a number greater than or equal to 2. Where a single "ExtensionAddition" is needed for an
"ExtensionAdditions’, an "ExtensionAdditionGroup" can be used with a single "ExtensionAddition".

NOTE 2 — The restrictions on use of "VersionNumber" apply only within a single module and impose no constraints on imported
types.

25.17 All sequence types have atag which is universal class, number 16.
NOTE - Sequence-of types have the same tag as sequence types (see 26.2).

25.18 The notation for defining a value of a sequence type shall be "SequenceVaue', or when used as an
"XMLVaue", "XMLSequenceValue". These productions are:

SequenceValue::=
"{" ComponentValuelList "}"
| n { " n } n
ComponentValuelList ::=

NamedValue
| ComponentValuelList"," NamedValue

XML SequenceValue::=
XML ComponentValuel ist
| empty

XML ComponentValuelist ::=
XMLNamedValue
| XMLComponentValueList XMLNamedValue

2519 The"{" "}" or "empty" notation shall only be used if:

a) al "ComponentType" sequences in the "SequenceType" are marked DEFAULT or OPTI ONAL, and all
values are omitted; or

b) thetype notation was SEQUENCE{ } .

2520 There shall be one "NamedValue" or "XMLNamedValue" for each "NamedType" in the "SequenceType"
which is not marked OPTI ONAL or DEFAULT, and the values shall be in the same order as the corresponding
"NamedType" sequences.

26 Notation for sequence-of types
26.1 The notation for defining a sequence-of type (see 3.8.68) from another type shall be the " SequenceOf Type".

SequenceOfType ::= SEQUENCE OF Type | SEQUENCE OF NamedType

NOTE — If an initia letter which is upper-case is needed for an XML tag name used in XML Value Notation for the
"SequenceOfType", then the first alternative should be used. (The XML tag nameis then formed from the name of the "Type".)

48 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

26.2 All sequence-of types have atag which is universal class, number 16.
NOTE — Sequence types have the same tag as sequence-of types (see 25.17).

26.3 The notation for defining a value of a sequence-of type shall be the "SequenceOfVaue", or when used as an
"XMLValue", "XML SequenceOfVaue'. These productions are:

SequenceOfValue::=
"{" ValueList"}"
| "{" NamedValueList"}"
| "
ValuelList ::=
Value
| ValueList"," Value

NamedValuelList ::=
NamedValue
| NamedValuelList"," NamedValue

XML SequenceOfValue::=
XMLValuelList
| XMLDdimitedltemList
| empty

XMLValuelList ::=
XMLValueOrEmpty
| XMLValueOrEmpty XMLValueList

XMLValueOrEmpty ::=
XMLValue
| "<" & NonParameterizedTypeName" />"

XMLDelimitedltemList ::=
XMLDeimitedltem
| XMLDelimitedltem XML DelimitedltemList

XMLDelimiteditem ::=
"<" & NonParameterizedTypeName" >" XMLValue
"</" & NonParameterizedTypeName" >"
| "<" & identifier ">" XMLValue"</" & identifier " >"
The"{" "}" or "empty" notation is used when the " SequenceOfValue" or "XML SequenceOfVaue" is an empty list.
NOTE — Semantic significance may be placed on the order of these values.

26.4 If the"XMLValue" for the component is "empty", then the second alternative of "XMLValueOrEmpty" shall
be chosen to represent that value of the component.

NOTE — This occurs only for SEQUENCE OF NULL.

26.5 The"XMLValueList" or "XMLDelimitedltemList" productions shall be used in accordance with column 2 of
Table 5, where the "Type" of the component islisted in column 1.

ITU-T Rec. X.680 (11/2008) 49

| SO/IEC 8824-1:2008 (E)

Table5-" XML SequenceOfValue" and " XML SetOfValue" notation for ASN.1 types

ASN.1type XML value notation
BitStringType XMLDelimitedltemList
BooleanType See 26.6
CharacterStringType XMLDelimitedltemList
ChoiceType XMLValuelist
EmbeddedPDV Type XMLDelimitedltemList
EnumeratedType See 26.7
External Type XMLDelimitedltemList
InstanceOf Type See ITU-T Rec. X.681 | ISO/IEC 8824-2, C.9
IntegerType XMLDelimitedltemList
IRIType XMLDelimitedltemList
Null Type XMLValuelist
ObjectClassFieldType See ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.10 and 14.11

ObjectldentifierType

XMLDelimiteditemList

OctetStringType

XMLDelimiteditemList

Real Type

XMLDelimitedltemList

RelativelRI Type

XMLDelimiteditemList

RelativeOIDType

XMLDelimiteditemList

SequenceType XMLDelimitedltemList
SequenceOfType XMLDelimitedltemList
SetType XMLDelimitedltemList
SetOf Type XMLDelimitedltemList
PrefixedType See 26.10.1

Useful Type (GeneralizedTime)

XMLDelimitedltemList

Useful Type (UTCTime) XMLDelimitedltemList
Useful Type (ObjectDescriptor) XMLDelimitedItemList
TypeFromObject See ITU-T Rec. X.681 | ISO/IEC 8824-2, 15.6
ValueSetFromObjects See ITU-T Rec. X.681 | ISO/IEC 8824-2, 15.6

26.6 If "EmptyElementBoolean” is used for the value of a boolean type, then "XMLValueList" shall be used;
otherwise, "XMLDelimitedltemList" shall be used.

26.7 If "EmptyElementEnumerated” is used for the value of an enumerated type, then "XMLValuelList" shal be
used; otherwise, "XMLDelimiteditemList" shall be used.

26.8 If the "Type" of the component is a "DefinedType' then the type which determines the
"XML SequenceOfValue" notation shall be the type referenced by the "DefinedType" (see 14.1).

26.9 The second alternative of "XMLDelimitedltem" shall be used if and only if the " SequenceOfType" contains
an "identifier", and the "identifier" in the "XMLDelimiteditem" shall be that "identifier".

26.10 If the first aternative of "XMLDelimitedltem" is used, then if the component of the sequence-of type (after
ignoring any occurrences of "TypePrefix") is a "typereference’ or an "ExternalTypeReference', then the
"NonParameterizedTypeName" shall be the "typereference’ or the "typereference” in the "External TypeReference”,
respectively; otherwise it shall be the "xmlasnltypename" specified in Table 4 corresponding to the built-in type of the
component.

26.10.1 If the "Type" of the component is a "PrefixedType', then the type which determines the
"XMLSequenceOfValue" dternative and the "xmlasnltypename" (if required) shall be the "Type' in the
"PrefixedType" (see 31.1.5). If thisis itself a "PrefixedType", a "ConstrainedType" or a "SelectionType", then these
subclauses of 26.10 shall be recursively applied.

26.10.2 If the "Type" of the component is a "ConstrainedType", then the type which determines the
"XMLSequenceOfValue" dternative and the "xmlasnltypename" (if required) shall be the "Type' in the
"ConstrainedType" (see 49.1). If thisisitself a"PrefixedType", a"ConstrainedType" or a "SelectionType", then these
subclauses of 26.10 shall be recursively applied.

50 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

26.10.3 If the "Type" of the component is a "SelectionType", then the type which determines the
"XML SequenceOfValue" aternative and the "xmlasnltypename" (if required) notation shall be the type referenced by
the "SelectionType" (see clause 30). If thisisitself a"PrefixedType", a"ConstrainedType" or a "SelectionType", then
these subclauses of 26.10 shall be recursively applied.

26.11 If thefirst alternative of "SequenceOfType" is used, then the first aternative of "SequenceOfVaue" shall be
used. Each "Value' in the "ValuelList" of "SeguenceOfValue', and each "XMLVaue" in the alternatives of
"XML SequenceOfValue" shall be of the type specified in the " SequenceOf Type'.

26.12 If the second aternative of "SequenceOfType" is used, then the second alternative of "SequenceOfVaue"
shall be used, and each "NamedValue" in the "NamedVaueList" shall contain a "Value" of the type specified in the
"NamedType" of the "SequenceOfType'. The "identifier" in the "NamedVaue's shall be the "identifier" in the
"NamedType" of the "SequenceOf Type".

27 Notation for set types
271 The notation for defining a set type (see 3.8.72) from other types shall be the " SetType":

SetType::=
SET "{" "}"
| SET"{" ExtensionAndException OptionalExtensionMarker "}"
| SET"{" ComponentTypelLists "}"

"ComponentTypeL.ists', "ExtensionAndException” and "Optional ExtensionMarker" are specified in 25.1.

27.2 "Type" in the "COVPONENTS OF Type' notation shall be a set type. The "COVWPONENTS OF Type' notation
shall be used to define the inclusion, at this point in the list of components, of all the component types of the referenced
type, except for any extension marker and extension additions that may be present in the "Type'. (Only the
"RootComponentTypeL.ist" of the "Type" in the "COVPONENTS OF Type" is included; extension markers and extension
additions, if any, are ignored by the "COMPONENTS OF Type" notation.) Any subtype constraint applied to the
referenced type isignored by this transformation.

NOTE — This transformation is logically completed prior to the satisfaction of the requirementsin the following subclauses.

27.3 The "ComponentType" types in a set type shall all have different tags (see 31.2). The tag of each new
"ComponentType" added to the "ExtensionAdditions" shall be canonically greater (see 8.6) than those of the other
componentsin the "ExtensionAdditions'.

NOTE — Where the "TagDefault" for the module in which this notation appears is AUTOVATI C TAGS, this is achieved
regardless of the actual "ComponentType"s, as aresult of the application of 25.8. (Seeaso 52.7.)

27.4 Subclauses 25.3 and 25.8 to 25.14 also apply to set types.

275 All set types have atag which is universal class, number 17.
NOTE — Set-of types have the same tag as set types (see 28.2).

27.6 There shall be no semantics associated with the order of valuesin a set type.

27.7 The notation for defining the value of a set type shall be "SetVaue", or when used as an "XMLValue",
"XMLSetVaue'. These productions are:

SetValue::=
"{" ComponentValueList "}"
S S
XML SetValue::=

XML ComponentValuel ist
| empty

"ComponentValueList" and "XMLComponentValuelList" are specified in 25.18.

27.8 The "SetValue" and "XMLSetValue" shall only be"{" "}" and "empty" respectively if:

a) all "ComponentType" sequences in the "SetType" are marked DEFAULT or OPTI ONAL, and all values are
omitted; or

b) thetype notation was SET{} .

27.9 There shall be one "NamedVaue" or "XMLNamedVaue' for each "NamedType" in the "SetType" which is
not marked OPTI ONAL or DEFAULT.

ITU-T Rec. X.680 (11/2008) 51

| SO/IEC 8824-1:2008 (E)

NOTE — These "NamedValue's or "XMLNamedValue's may appear in any order.

28 Notation for set-of types
28.1 The notation for defining a set-of type (see 3.8.73) from another type shall be the "SetOf Type":

SetOfType::=
SET OF Type
| SET OF NamedType

NOTE — If an initia letter which is upper-case is needed for an XML tag name used in XML Value Notation for the
"SetOf Type", then the first alternative should be used. (The XML tag name is then formed from the name of the "Type".)

28.2 All set-of types have atag which is universal class, number 17.
NOTE — Set types have the same tag as set-of types (see 27.5).

28.3 The notation for defining a value of a set-of type shall be the "SetOfVaue', or when used as an
"XMLValue", "XML SetOfValue". These productions are:

SetOfValue::=
"{" ValueList"}"
| "{" NamedValueList"}"
| "{" "
XMLSetOfValue::=
XMLValuelList

| XMLDelimitedltemList
| empty

"VauelList", "NamedVauelList" and the aternatives of "XMLSetOfValue" are specified in 26.3, and the choice of
aternative is the same as if "XML SequenceOfValue" had been used. The "{" "}" or "empty" notation is used when
the "SetOfValue" or "XML SetOfValue" isan empty list.

NOTE 1 — Semantic significance should not be placed on the order of these values.

NOTE 2 — Encoding rules are not required to preserve the order of these values.

NOTE 3 — The set-of type is not a mathematical set of values, thus, as an example, for SET OF | NTEGERthe values{ 1 } and
{ 1 1} aredidtinct.

28.4 If the first alternative of "SetOfType" is used, then the first aternative of "SetOfValue" shall be used. Each
"Vaue' in the "ValuelList" of "SetOfVaue', and each "XMLValue" in the alternatives of "XML SetOfValue" shall be
of the type specified in the " SetOf Type".

285 If the second alternative of "SetOf Type" is used, then the second alternative of "SetOfValue" shall be used,
and each "NamedValue" sequence in the "NamedValuelList" shall contain a "Value" of the type specified in the
"NamedType" of the "SetOfType". The "identifier" in the "NamedVaue's shall be the "identifier" in the "NamedType"
of the "SetOf Type".

29 Notation for choice types
29.1 The notation for defining a choice type (see 3.8.14) from other types shall be the "ChoiceType":
ChoiceType::= CHO CE"{" AlternativeTypeLists"}"

AlternativeTypelLists::=
RootAlternativeTypeList
| RootAlternativeTypeList " "
ExtensionAndException ExtensionAdditionAlternatives
OptionalExtensionM arker

RootAlternativeTypelist ::= AlternativeTypeList

ExtensionAdditionAlternatives ::=
" " ExtensionAdditionAlternativesList
| empty

ExtensionAdditionAlternativesList ::=
ExtensionAdditionAlter native

52 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

| ExtensionAdditionAlternativesList "," ExtensionAdditionAlternative

ExtensionAdditionAlternative ::=
ExtensionAdditionAlter nativesGroup
| NamedType

ExtensionAdditionAlter nativesGroup ::=
"[[" VersionNumber AlternativeTypeList "]]"

AlternativeTypeList ::=

NamedType
| AlternativeTypelList"," NamedType
NOTE-"T ::= CHOCE { a A }"andAarenot the sametype, and may be encoded differently by encoding rules.

29.2 When the "AlternativeTypeLists' production occurs within the definition of a module for which automatic
tagging is selected (see 13.3), and none of the occurrences of "NamedType" in any "AlternativeTypeList" is a textually
tagged type (see 25.2), the automatic tagging transformation is selected for the entire "AlternativeTypelLists', otherwise
it isnot.

29.3 The types defined in the "AlternativeTypeList" productions in an "AlternativeTypeLists' shall have distinct
tags (see 31.2, and 52.7). If automatic tagging was selected, the requirement that tags be distinct applies only after
automatic tagging has been performed, and will always be satisfied.

294 If automatic tagging is in effect and the "NamedType's in the extension root have no tags, then no
"NamedType" within the "ExtensionAdditionAlternativesList" shall be atextually tagged type.

29.5 The automatic tagging transformation impacts each "NamedType" of the "AlternativeTypeLists' by replacing
the "Type" originaly in the "NamedType' production with a replacement "TaggedType'. The replacement
"TaggedType" is specified as follows:

a) thereplacement "TaggedType" notation usesthe "Tag Type" adternative;
b) the"Class' of the replacement "TaggedType" is empty (i.e., tagging is context-specific);

c) the"ClassNumber" in the replacement "TaggedType" is tag value zero for the first "NamedType" in the
"RootAlternativeTypeList", one for the second, and so on, proceeding with increasing tag numbers;

d) the "ClassNumber" in the replacement "TaggedType' of the first "NamedType' in the
"ExtensionAdditionAlternativesList" is one greater than the largest "ClassNumber" in the
"RootAlternativeTypeList”, with the next "NamedType" in the "ExtensionAdditionAlternativesList"
having a"ClassNumber" one greater than the first, and so on, proceeding with increasing tag numbers;

e) the"Type" inthe replacement "TaggedType" isthe original "Type" being replaced.

NOTE 1 — The rules governing specification of implicit tagging or explicit tagging for replacement " TaggedType"s are provided
by 31.2.7. Automatic tagging is aways implicit tagging unless the "Type" is an untagged choice type or an untagged open type
notation, or an untagged "DummyReference” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3), in which caseit is explicit tagging.

NOTE 2 — Once automatic tagging has been applied, the tags of the components are completely determined, and are not
modified even when the choice type is referenced in the definition of an aternative within another "AlternativeTypelLists" for
which automatic tagging transformation applies. Thus, in the following case:

T::=CHOCE{ aTa, b Th, c Tc }

E::= CHOCE {f1 E1, f2 T, f3 E3}
automatic tagging applied to the components of E never affects the tags attached to components a, b and c¢ of T, whatever the
tagging environment of T. If T isdefined in an automatic tagging environment and E is not in an automatic tagging environment,
automatic tagging is still applied to componentsa, b and c of T.
NOTE 3 — Subtyping does not affect automatic tagging.
NOTE 4 — When automatic tagging is in place, insertion of new alternatives at any location other than the extension insertion

point (see 3.8.35) may result in changes to other aternatives due to the side effect of modifying the tags thus causing
interworking problems with an older version of the specification.

29.6 "VersionNumber" is defined in 25.1, and the restrictions on consistent use of "VersionNumber" throughout a
module that are specified in 25.16 shall apply to the use of "number"s within this production.

29.7 The tag of each new "NamedType" added to the "ExtensionAdditionAlternativesList" shall be canonically
greater (see 8.6) than those of the other alternatives in the "ExtensionAdditionAlternativesList”, and shall be the last
"NamedType" in the "ExtensionAdditionAlternativesList".

29.8 The choice type contains values which do not al have the same tag. (The tag depends on the alternative
which contributed the value to the choice type.)

ITU-T Rec. X.680 (11/2008) 53

| SO/IEC 8824-1:2008 (E)

29.9 When this type does not have an extension marker and is used in a place where this Recommendation |
International Standard reguires the use of types with distinct tags (see 29.3), al possible tags of values of the choice
type shall be considered in such requirement. The following examples which assume that the "TagDefault" is not
AUTOMATI C TAGS illustrate this requirement.

EXAMPLES

1 1= CHA CE {
B,

NULL}

1= CHA CE {
[0] NULL,
[1] NuLL}

;1= CHA CE {
B,
G

;.= CHO CE {
[0] NULL,
[1] NULL}

;1= CHA CE {
[2] NULL,
[3] NuULL}

I ncorrect)
A ::= CHO CE {
B,
G
B ::= CHAOCE {
[0] NULL,

e [1] NULL}

C::= CHO CE {
f [0] NULL,
g [1] NULL}

oD —~ @t 0OQmw OT>»> oW OO

o

Examples 1 and 2 are correct uses of the notation. Example 3 is incorrect without automatic tagging, as the tags for
typesd and f areidentical, aswell asfor e and g.

29.10 The "identifier"s of all "NamedType's in the "AlternativeTypeLists' shall differ from those of the other
"NamedType'sin that list.

29.11 The notation for defining the value of a choice type shall be the "ChoiceVaue', or when used as an
"XMLValue", "XMLChoiceVaue'. These productions are:

ChoiceValue::=identifier ": " Value
XMLChoiceValue::="<" & identifier ">" XMLValue"</" & identifier ">"

29.12 "Vaue' or "XMLValue" shall be a notation for a value of the type in the "AlternativeTypelLists' that is
named by the "identifier".

30 Notation for selection types
30.1 The notation for defining a selection type (see 3.8.66) shall be " SelectionType'":
SelectionType ::=identifier " <" Type

where "Type' denotes a choice type, and “identifier" is that of some "NamedType" appearing in the
"AlternativeTypelists" of the definition of that choice type.

30.2 When "Type" denotes a constrained type, the selection is performed on the parent type, ignoring any subtype
constraint on the parent type.

30.3 Where the "SelectionType" is used as a "NamedType", the "identifier" of the "NamedType" is present, as
well asthe "identifier" of the "SelectionType".

54 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

304 Where the "SelectionType" is used asa"Type", the "identifier" is retained and the type denoted is that of the
selected alternative.

30.5 The notation for a value of a selection type shall be the notation for a value of the type referenced by the
"SelectionType".

31 Notation for prefixed types

31.1 General

31.1.1 A prefixed type (see 3.8.78) is a new type which is isomorphic with an old type, but which has a different or
additional tag and may have a different or additional associated encoding instructions.

31.1.2 A prefixed typeis either a"TaggedType" or an "EncodingPrefixedType".

31.1.3 A prefixed type which is atagged type is mainly of use where this Recommendation | International Standard
requires the use of types with distinct tags (see 25.6 to 25.7, 27.3 and 29.3). The use of a"TagDefault" of AUTOVATI C
TAGS in amodule allows this to be accomplished without the explicit appearance of "TaggedType" in that module.

NOTE — Where a protocol determines that values from several data types may be transmitted at any moment in time, distinct
tags may be needed to enable the recipient to correctly decode the value.

31.1.4 The assignment of an encoding instruction using an "EncodingPrefixedType" is only relevant to the
encodings identified by the associated encoding reference and has no effect on the abstract values of the type.

31.1.5 Thenotation for a prefixed type shall be "PrefixedType":

PrefixedType ::=
TaggedType
| EncodingPrefixedType

NOTE — Specification of the syntax for "PrefixedType" would be simpler and clearer if tagging was described as the assignment
of an encoding instruction. However, historically, tagging was introduced in the earliest versions of the ASN.1 specifications,
and can affect the legality of a type definition. Minimum changes to the concepts of tagging (and the associated syntactic
descriptions) were made when encoding prefixed types were introduced. Tagging also differs syntactically from assignment of
encoding instructions: the specification that tagging is EXPLI C T or | MPLI O T occurs following the closing "] " of the tag, it is
not contained within the paired "[" and "] " asis the case with normal encoding instructions.

31.1.6 The notation for a value of a "PrefixedType" shall be "PrefixedVaue', or when used as an "XMLValue",
"XMLPrefixedValue". These productions are:

PrefixedValue::= Value
XMLPrefixedValue::= XMLValue

where "Value' or "XMLVaue' is a notation for a vaue of the "Type' in the "TaggedType" or the
"EncodingPrefixedType" of the "PrefixedType".
NOTE 1 — Neither the "Tag" nor any part of the "EncodingPrefix" appearsin this notation.

NOTE 2 — Encoding instructions can also be assigned to a type in an encoding control section (see clause 54). Such an
assignment has no effect on the value notation for atype.

31.2 Thetagged type
31.2.1 Thenotation for atagged type shall be "TaggedType":

TaggedType::=
Tag Type
| Tag!MPLIC T Type
| TagEXPLIC T Type

Tag ::="[" EncodingReference Class ClassNumber "]"

EncodingReference ::=
encodingreference” :"
| empty

ClassNumber ::=
number
| DefinedValue

ITU-T Rec. X.680 (11/2008) 55

| SO/IEC 8824-1:2008 (E)

Class::=
UNI VERSAL
| APPLI CATI ON
| PRI VATE
| empty

31.22 Whenusedin "Tag", the "encodingreference” shall be TAG The "EncodingReference" in "Tag" shall not be
"empty" unless the default encoding reference for the module is TAG (see 13.5).

31.2.3 The"vauereference" in "DefinedVaue' shal be of type integer, and assigned a non-negative value.

31.24 The new type is isomorphic with the old type, but has a tag with class "Class' and number "ClassNumber",
except when "Class" is"empty", in which case the tag is context-specific class and number is " ClassNumber".

31.25 The "Class' shall not be UNI VERSAL except for types defined in this Recommendation | International
Standard.

NOTE 1 - Use of universal class tags are agreed from time-to-time by ITU-T and ISO.

NOTE 2 — Subclause G.2.12 contains guidance and hints on stylistic use of tag classes.
31.2.6 All application of tags is either implicit tagging or explicit tagging. Implicit tagging indicates, for those
encoding rules which provide the option, that explicit identification of the origina tag of the "Type" in the
"TaggedType" is not needed during transfer.

NOTE — It can be useful to retain the old tag where this was universal class, and hence unambiguously identifies the old type
without knowledge of the ASN.1 definition of the new type. Minimum transfer octets is, however, normally achieved by the use
of I MPLI O T. An example of an encoding using | MPLI CI Tisgivenin ITU-T Rec. X.690 | 1SO/IEC 8825-1.

31.2.7 Thetagging construction specifies explicit tagging if any of the following holds:
a) the"TagEXPLI QT Type" aternativeis used;
b) the "Tag Type" aternative is used and the value of "TagDefault" for the module is either EXPLI QI T
TAGS or isempty;

c) the"Tag Type" dternative is used and the value of "TagDefault" for the moduleis| MPLI CI T TAGS or
AUTOMATI C TAGS, but the type defined by "Type" is an untagged choice type, an untagged open type, or
an untagged "DummyReference” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

The tagging construction specifies implicit tagging otherwise.

31.2.8 |If the "Class' is "empty", there are no restrictions on the use of "Tag", other than those implied by the
reguirement for distinct tagsin 25.6 to 25.7, 27.3 and 29.3.

31.29 ThelMPLI AT alternative shall not be used if the type defined by "Type" is an untagged choice type or an
untagged open type or an untagged "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

313 The encoding prefixed type
31.3.1 The notation for an encoding prefixed type shall be "EncodingPrefixedType":

EncodingPr efixedType ::=
EncodingPrefix Type

EncodingPrefix ::=
"[" EncodingReference Encodingl nstruction " 1"

"EncodingReference" is defined in 31.2.1.

31.3.2 The "Encodinglnstruction” production is specified in the Recommendation | International Standard identified
by the "EncodingReference” (see Annex E) and can consist of any sequence of ASN.1 lexical items (including
comment, cstring and white-space).

NOTE1-The"[" and "] " lexical items never appear in "Encodinglnstruction”.

NOTE 2 — Future versions of this Recommendation | International Standard may add further encoding references to Annex E. It
is recommended that ASN.1 tools provide (only) warnings if an "encodingreference” is not one of those specified in Annex E
and then ignore the whole "EncodingPrefix" using a"] " as the terminator (see Note 1 above).

31.3.3 If the "EncodingReference” is empty, then the encoding reference for the encoding prefix is the default
encoding reference for the module.

NOTE - If the default encoding reference for the module is TAG (see 31.2.2) and the "EncodingReference” is "empty", then the
"PrefixedType" isa"TaggedType", not an "EncodingPrefixedType".

56 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

31.3.4 There arein genera restrictions on the encoding instructions (with the same encoding reference) that can be
used in combination, and on the types to which particular instructions or combinations of instructions can be applied.
These restrictions are specified in the Recommendation | International Standard associated with the encoding reference
(see Annex E), and are not specified in this Recommendation | International Standard.

32 Notation for the object identifier type
321 The object identifier type (see 3.8.54) shall be referenced by the notation "ObjectldentifierType":

Objectldentifier Type ::=
OBJECT | DENTI FI ER

322 This type has atag which is universal class, number 6.

32.3 The value notation for an object identifier shall be "ObjectldentifierValue", or when used as an "XMLValue",
"XMLObjectldentifierValue". These productions are:

ObjectldentifierValue::=
"{" ObjldComponentsList"}"
| "{" DefinedValue ObjldComponentsList "}"

ObjldComponentsList ::=
ObjldComponents
| ObjldComponents ObjldComponentsList

ObjldComponents::=
NameForm
| Number Form
| NameAndNumber Form
| DefinedValue

NameForm ::= identifier
NumberForm ::= number | DefinedValue

NameAndNumberForm ::=
identifier " (" NumberForm™")"

XML ObjectldentifierValue::=
XML ObjldComponentList

XML ObjldComponentList ::=
XML ObjldComponent
| XMLObjldComponent & "." & XMLObjldComponentList

XML ObjldComponent ::=
NameForm
| XMLNumberForm
| XMLNameAndNumberForm

XMLNumberForm ::= number

XMLNameAndNumber Form ::=
identifier & " (" & XMLNumberForm & ") "

324 The "valuereference” in "DefinedValue" of "NumberForm" shall be of type integer, and assigned a non-
negative value.

325 The "valuereference” in "DefinedVaue" of "ObjectldentifierValue" shall be of type object identifier.

32.6 The "DefinedValue" of "ObjldComponents’ shall be of type relative object identifier, and shall identify an
ordered set of arcs from some starting node in the object identifier tree to some later node in the object identifier tree.
The starting node is identified by the earlier "ObjldComponents's, and later "ObjldComponents's (if any) identify arcs
from the later node. The starting node is required to be neither the root, nor a node immediately beneath the root.

NOTE — A relative object identifier value has to be associated with a specific object identifier value so as to unambiguously

identify an object. Object identifier values are required (see 32.11) to have at least two components. This is why there is a
restriction on the starting node.

ITU-T Rec. X.680 (11/2008) 57

| SO/IEC 8824-1:2008 (E)

32.7 The "NameForm" shall be used only for those object identifier components whose numeric value and
identifier are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annex A (see also Annex F of this Recommendation |
International Standard), and shall be one of the identifiers specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A
to C.

NOTE — Where the "NameForm" is allowed, the use of the "NameAndNumberForm" instead has been recommended in some
circumstances by ITU-T Rec. X.660 | ISO/IEC 9834-1, A.1.2.

32.8 Where ITU-T Rec. X.660 | ISO/IEC 9834-1 specifies synonymous identifiers, synonyms may be used under
conditions established when the synonym was registered in accordance with ITU-T Rec. X.660 | ISO/IEC 9834-1.
Where the same name is both an identifier specified in ITU-T Rec. X.660 | ISO/IEC 9834-1 and an ASN.1 value
reference within the module containing the "NameForm", the name within the object identifier value shall be treated as
an ITU-T Rec. X.660 | ISO/IEC 9834-1 identifier.

32.9 The "number” in the "NumberForm" and "XMLNumberForm" shall be the numeric value assigned to the
object identifier component.

3210 There is flexibility in the "identifier"s that can be used in the "NameAndNumberForm" and
"XMLNameAndNumberForm" beneath the three top-level arcs. These identifiers are not included in encodings, and
may change over time. This is in recognition that the names of organizations can change. Identifiers for arcs should
normally be agreed between the Registration Authority responsible for the node above an arc, and the Registration
Authority to which responsibility for subsequent arcs has been assigned.

NOTE — The Registration Authorities responsible for arcs beneath the three top-level arcs are identified in ITU-T Rec. X.660 |
ISO/IEC 9834-1.

32.11 The semantics associated with an object identifier value are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1.
NOTE — ITU-T Rec. X.660 | ISO/IEC 9834-1 requires that an object identifier value shall contain at least two arcs.

3212 The significant part of the object identifier component is the "NameForm" or "NumberForm" or
"XMLNumberForm" which it reduces to, and which provides the numeric value for the object identifier component.
Except for the arcs specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, AnnexesA to C (see aso Annex F of this
Recommendation | International Standard), the numeric value of the object identifier component is always present in an
instance of object identifier value notation.

3213 Where the "ObjectldentifierValue" includes a"DefinedVaue' for an object identifier value, the list of object
identifier componentsto which it refersis prefixed to the components explicitly present in the value.

NOTE — ITU-T Rec. X.660 | ISO/IEC 9834-1 recommends that whenever an object identifier value is assigned to identify an
object, an object descriptor value is also assigned.

EXAMPLES

With identifiers assigned as specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, the values:

{ iso standard 8571 application-context (1) }
and

{ 108571 1}

would each identify an object, appl i cat i on- cont ext , defined in 1SO 8571, as would

i so. standard. 8571. appl i cati on- cont ext (1)

and
1.0.8571.1

in an"XMLObjectldentifierVaue".

With the following additional definition:
ftam OBJECT IDENTIFIER ::= { iso standard 8571 }

the following value is equivalent to those above:

{ ftam application-context(1) }
33 Notation for therelative object identifier type
331 The relative object identifier type (see 3.8.64) shall be referenced by the notation "RelativeOIDType'":

RelativeOIDType ::= RELATI VE-Q D

58 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

33.2 This type has atag which is universal class, number 13.

333 The value notation for a relative object identifier shal be "RelativeOlDValue', or when used as
"XMLValue", "XMLRelativeOlIDValue'. These productions are;

RelativeOlDValue ::=
"{" RelativeOlDComponentsList "} "

RelativeOl DComponentsList ::=
RelativeOl DComponents
| RelativeOl DComponents RelativeOl DComponentsL ist

RelativeOlDComponents ::=
NumberForm
| NameAndNumber Form
| DefinedValue

XMLRelativeOlDValue::=
XML RelativeOl DComponentL ist

XMLReativeOlDComponentList ::=
XML RéeativeOl DComponent
| XMLRéativeOIDComponent & "." & XML RelativeOlDComponentList

XMLRelativeOlDComponent ::=
XMLNumberForm
| XMLNameAndNumberForm

334 The productions "NumberForm", "NameAndNumberForm", "XMLNumberForm",
"XMLNameAndNumberForm", and their semantics, are defined in subclauses 32.3 to 32.12.

335 The "DefinedValue' of "RelativeOlDComponents’ shall be of type relative object identifier, and shall
identify an ordered set of arcs from some starting node in the object identifier tree to some later node in the object
identifier tree. The starting node is identified by the earlier "RelativeOlDComponents's (if any), and later
"RelativeOlDComponents's (if any) identify arcs from the later nodes.

33.6 The first "RelativeOIDComponents' or "XMLRelativeOlDComponent” identifies one or more arcs from
some starting node in the object identifier tree to some later node in the object identifier tree. The starting point can be
defined by comments associated with the type definition. If there is no definition of the starting node within comments
associated with the type definition, then it needs to be transmitted as an object identifier value in an instance of
communication (see G.2.21). The starting node is required to be neither the root, nor a node immediately beneath the
root.

NOTE — A relative object identifier value has to be associated with a specific object identifier value so as to unambiguously
identify an object. Object identifier values are required (see 32.11) to have at least two components. This is why there is a
restriction on the starting node.

EXAMPLE

With the following definitions:

thi sUniversity OBJECT | DENTI FI ER =
{i so nmenber-body country(29) universities(56) thisuni(32)}

firstgroup RELATIVE-O D ::= {science-fac(4) maths-dept(3)}
or in XML value notation:
thisUniversity ::= <OCBJECT_I| DENTI FI ER>1. 2. 29. 56. 32</ OBJECT_| DENTI FI ER>
firstgroup ::= <RELATI VE_O D>4. 3</ RELATI VE_Q D>
the relative object identifier:
relOD RELATIVEEAQOD ::= {firstgroup roon(4) socket(6)}
or in XML value notation:

rel O D ::= <RELATI VE_Q D>4. 3. 4. 6</ RELATI VE_O D>

can be used instead of the OBJECT IDENTIFIERvalue{1 2 29 56 32 4 3 4 6} if thecurrent root
(known by the application or transmitted by the application) ist hi sUni versity.

ITU-T Rec. X.680 (11/2008) 59

| SO/IEC 8824-1:2008 (E)

34 Notation for the OID internationalized resource identifier type

341 The OID internationalized resource identifier type (see 3.8.47) shall be referenced by the notation "IRI Type":
IRIType::=Q D IR

34.2 This type has atag which is universal class, number 35.

34.3 The value notation for an OID internationalized resource identifier shall be "IRIValue", or when used as an
"XMLValue", "XMLIRIValue'. These productions are:

IRIValue::=

FirstArcldentifier
SubsequentArcldentifier

FirstArcldentifier ::=
"[" Arcldentifier

SubsequentArcldentifier ::=
"I" Arcldentifier SubsequentArcldentifier
| empty

Arcldentifier ::=
integer Unicodel abel
| non-integerUnicodel abel

XMLIRIValue::=
FirstArcldentifier
SubsequentArcldentifier

34.4 The "FirstArcldentifier” shall identify an arc (possibly along arc) from the root of the OID tree.
345 Each " SubsequentArcldentifier" shall identify an arc from the preceding "Arcldentifier".
EXAMPLES

With identifiers assigned as specified in ITU-T Rec. X.660 | ISO/IEC 9834-1 and ISO/IEC 19785 the object identified
by:

{iso registration-authority cbeff (19785) organi zations(0) jtcl-sc37(257) patron-
formats(1l) tlv-encoded (5)}

or in XML value notation:
<A D>1. 3.19785. 0. 257.1.5</ A D>

which identifies a TLV-encoded CBEFF Patron Format, could also have an ASN.1 OID-IRI identification of

"/1SO Regi strati on_Authority/19785. CBEFF/ O gani zati ons/ JTC1- SC37/ Pat r on-
f or mat s/ TLV- encoded"

Or, in XML value notation:

<O D IR >/1S0O Regi strati on_Authority/19785. CBEFF/ Or gani zat i ons/ JTC1- SC37/ Pat r on-
format s/ TLV- encoded</ A D- 1 Rl >

35 Notation for therelative OID inter nationalized resour ce identifier type

35.1 The relative OID internationalized resource identifier type (see 3.8.62) shall be referenced by the notation
"Relativel RIType":

RelativelRIType ::= RELATIVE-Q D-I Rl
35.2 Thistype has atag which is universal class, number 36.

35.3 The value notation for a relative OID internationalized resource identifier shal be "RelativelRIVaue', or
when used as an "XMLValue", "XMLRelativelRIVaue". These productions are:

60 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Relativel RIValue::=

FirstRelativeArcl dentifier
SubsequentArcl dentifier

FirstRelativeArcldentifier ::=
Arcldentifier

XMLRéativelRIValue::=
FirstRelativeArcldentifier
SubsequentAr cldentifier

354 The "FirstRelativeArcldentifier" shall identify an arc from some starting node in the object identifier tree to
some later node in the object identifier tree. The starting point can be defined by comments associated with the type
definition. If there is no definition of the starting node within comments associated with the type definition, then it
needs to be transmitted as an OID internationalized resource identifier value in an instance of communication.

NOTE — A relative OID internationalized resource identifier value has to be associated with a specific OID internationalized
reference identifier value so as to unambiguously identify aresource.

EXAMPLE

With the following identified node:
cbef f Pat r onFor mat s AODIR ::=
"/1 SO Regi stration_Aut hority/19785. CBEFF/ Pat r on-f or nat s"

the relative OID internationalized resource identifier:
tlv-encoded RELATIVE-Q D- IR ::= "TLV-encoded"

identifies the TLV-encoded Patron Format.

36 Notation for the embedded-pdv type
36.1 The embedded-pdv type (see 3.8.24) shall be referenced by the notation "EmbeddedPDV Type":

EmbeddedPDVType ::= EMBEDDED PDV

NOTE — The term "Embedded PDV" means an abstract value from a possibly different abstract syntax (essentialy, the value and
encoding of a message defined in a separate — and identified — protocol) that is embedded in a message. Historically, it meant
"Embedded Presentation Data Value' from its use in the OSI Presentation Layer, but this expansion is not used today, and it
should be interpreted as "embedded value".

36.2 Thistype hasatag which is universal class, number 11.

36.3 The type consists of values representing:
a) anencoding of asingle datavalue that may, but need not, be the value of an ASN.1 type; and
b) identification (separately or together) of:
1) anabstract syntax; and

2) thetransfer syntax.

NOTE 1 — The data value may be the value of an ASN.1 type, or may, for example, be the encoding of a still image or amoving
picture. The identification consists of either one or two object identifiers, or (in an OSl environment) references an OSI
presentation context identifier which specifies the abstract and transfer syntaxes.

NOTE 2 — The identification of the abstract syntax and/or the encoding may also be determined by the application designer as a
fixed value, in which case it is not encoded in an instance of communication.

36.4 The embedded-pdv type has an associated type. This associated type is used to support the value and subtype
notations of the embedded-pdv type.

36.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHO CE {
synt axes SEQUENCE {

ITU-T Rec. X.680 (11/2008) 61

| SO/IEC 8824-1:2008 (E)

abstract OBJECT | DENTI FI ER,
transfer CBJECT | DENTI FI ER }
-- Abstract and transfer syntax object identifiers --,

synt ax OBJECT | DENTI FI ER
-- A single object identifier for identification of the abstract
-- and transfer syntaxes --,

presentation-context-id | NTEGER

-- (Applicable only to OSI environments)

-- The negotiated OSlI presentation context identifies the
-- abstract and transfer syntaxes --,

cont ext - negoti ati on SEQUENCE {
presentati on-context-id | NTEGER,
transf er-synt ax CBJECT | DENTI FI ER }

-- (Applicable only to OSI environments)

-- Context-negotiation in progress, presentation-context-id
-- identifies only the abstract syntax

-- so the transfer syntax shall be specified --,

transf er-synt ax OBJECT | DENTI FI ER

-- The type of the value (for exanple, specification that it is
-- the value of an ASN. 1 type)

-- is fixed by the application designer (and hence known to both
-- sender and receiver). This

-- case is provided primarily to support

-- selective-field-encryption (or other encoding

-- transformations) of an ASN. 1 type --,

fixed NULL
-- The data value is the value of a fixed ASN. 1 type (and hence
-- known to both sender

-- and receiver) -- },
dat a- val ue- descri pt or Qbj ect Descri ptor OPTI ONAL
-- This provides human-readabl e identification of the class of the
-- value --,
dat a- val ue OCTET STRING }

(WTH COVPONENTS {

dat a- val ue-descri ptor ABSENT })

NOTE — The embedded-pdv type does not allow the inclusion of adat a- val ue- descri pt or value. However, the definition of
the associated type provided here underlies the commonalities which exist between the embedded-pdv type, the external type and
the unrestricted character string type.

36.6 The present ati on-cont ext -i d aternative is only applicable in an OSl environment, when the integer
value shall be an OSI presentation context identifier in the OS| defined context set. This alternative shall not be used
during OSI context negotiation.

36.7 The cont ext - negot i ati on aternative is only applicable in an OSI environment, and shall only be used
during OSI context negotiation. The integer value shall be an OSI| presentation context identifier proposed for addition
to the OSI defined context set. The object identifier t r ansf er - synt ax shall identify a proposed transfer syntax for
that OSI presentation context which is to be used to encode the value.

36.8 The notation for a value of the embedded-pdv type shall be the value notation for the associated type defined
in 36.5, where the value of the dat a- val ue component of type OCTET STRI NG represents an encoding using the
transfer syntax specifiedini denti fi cati on.

EmbeddedPDVValue ::= SequenceValue
XMLEmbeddedPDVValue ::= XML SequenceValue
EXAMPLE - If asingle option isto be enforced, such as use of synt axes, then this can be done by writing:

EMVBEDDED PDV (W TH COVPONENTS {

i dentification (WTH COMPONENTS {
syntaxes PRESENT }) })

62 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

37 Notation for the external type

371 The external type (see 3.8.43) shall be referenced by the notation "External Type":

External Type ::= EXTERNAL

37.2 This type has atag which is universal class, number 8.

373 The type consists of values representing:

a) anencoding of asingle datavalue that may, but need not, be the value of an ASN.1 type; and
b) identification of:
1) an abstract syntax; and

2) thetransfer syntax; and

¢) (optionally) an object descriptor which provides a human-readable description of the category of the data
value. The optional object descriptor shall not be present unless explicitly permitted by comment
associated with use of the "External Type" notation.

NOTE — Note 1 in 36.3 also applies to the external type.

374 The external type has an associated type. This type is used to give precision to the definition of the abstract
values of the external type and is also used to support the value and subtype notations of the external type.

NOTE — Encoding rules may define a different type which is used to derive encodings, or may specify encodings without

reference to any associated type. For example, the encoding in BER uses a different sequence type for historical reasons.

375 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with

normative comments):

SEQUENCE {
identification CHO CE {
synt axes SEQUENCE {
abst ract OBJECT | DENTI FI ER,
transfer OBJECT | DENTI FI ER }
-- Abstract and transfer syntax object identifiers --,
synt ax CBJECT | DENTI FI ER
-- Asingle object identifier for identification of the abstract
-- and transfer syntaxes --,
presentation-context-id | NTEGER
-- (Applicable only to OGSl environnents)
-- The negotiated OSl presentation context identifies the
-- abstract and transfer syntaxes --,
cont ext - negoti ati on SEQUENCE {
presentation-context-id | NTEGER,
transfer-syntax OBJECT | DENTI FI ER }
-- (Applicable only to OSI environnents)
-- Context-negotiation in progress, presentation-context-id
-- identifies only the abstract syntax
-- so the transfer syntax shall be specified --,
transf er-synt ax OBJECT | DENTI FI ER
-- The type of the value (for exanple, specification that it is
-- the value of an ASN 1 type)
-- is fixed by the application designer (and hence known to both
-- sender and receiver). This
-- case is provided primarily to support
-- selective-field-encryption (or other encoding
-- transformations) of an ASN. 1 type --,
fixed NULL
-- The data value is the value of a fixed ASN. 1 type (and hence
-- known to both sender
-- and receiver) -- },
dat a- val ue-descri pt or Chj ect Descri ptor OPTI ONAL

dat a- val ue

-- This provides human-readabl e identification of the class of
-- the value --,

OCTET STRING }

(W TH COVPONENTS {

ITU-T Rec. X.680 (11/2008)

63

| SO/IEC 8824-1:2008 (E)

identification (WTH COWONENTS {

synt ’axes ABSENT,
transf er-synt ax ABSENT,
fixed ABSENT }) })

NOTE - For historical reasons, the external type does not allow the synt axes, transfer-syntax or fi xed aternatives of
identification. Application designers requiring these options should use the embedded-pdv type. The definition of the
associated type provided here underlies the commonalities which exist between the external type, the unrestricted character
string type and the embedded-pdv type.

37.6 The text of 36.6 and 36.7 aso applies to the external type.

37.7 The notation for a value of the external type shall be the value notation for the associated type defined in
37.5, where the value of the dat a- val ue component of type OCTET STRI NG represents an encoding using the transfer
syntax specified ini denti fi cati on.

ExternalValue ::= SequenceValue

XMLExternalValue::= XML SequenceValue

NOTE - For historical reasons, encoding rules are able to transfer embedded values in EXTERNAL whose encodings are not an
exact multiple of eight bits. Such values cannot be represented in value notation using the above associated type.

38 Thetimetype

381 Generd

38.1.1 Thetimetype (see 3.8.83) shall be referenced by the notation "TimeType":
TimeType::=TI ME

38.1.2 Thetag for types defined by this notation is universal class, number 14.

38.1.3 Thevalue of atime type shall be defined by the notation "TimeValue", or when used as an "XMLValue', by
the notation "XMLTimeValue". The syntax of these notations is defined in 38.3 as the contents of a "simplestring”,
using notation defined in 1SO 8601, 3.4.

38.2 Time properties and settings of time abstract values

38.2.1 Table 6 specifies in column 1 the description and names of the time properties of time abstract values. In
column 2, it specifies the names of the possible time property settings for the column 1 time property. Column 3
specifies (generally by reference to 1SO 8601) the abstract values to which the time property is applicable, and that
have the corresponding time property settings.

NOTE 1 — ASN.1 does nhot specify abstract values that are not supported by 1SO 8601 representations.

NOTE 2 — The names of time properties and of their settings appear in the property assertions of the property settings subtype

notation (see clause 51).

NOTE 3 — ASN.1 recognizes an order relationship between TIME abstract values if they have the same properties and the same
settings of those properties. For those abstract values that include a time difference, an order relationship is only recognized
between abstract values with the same time difference.

Table 6 — Properties and settingsfor time abstract values

Abstract values that havethis

Time property

Names of property settings

property setting

Basic nature of the abstract value
Name: Basi ¢

Dat e

See 1SO 8601, 4.1.
All abstract values that are dates

Comment: The setting of this property identifies the only.

basic nature of the abstract value. All time abstract Ti me

values have this property.

See 1SO 8601, 4.2.

All abstract values that are atime-
of-day only.

Dat e-Ti me

See SO 8601, 4.3.

All abstract values that are a date
and a time-of-day.

64

ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Table 6 — Properties and settings for time abstract values

Time property

Names of property settings

Abstract valuesthat havethis
property setting

I nt erval

See 1SO 8601, 4.4.

All thetime interval abstract
values.

Rec- I nt erval

See SO 8601, 4.5.

All the recurring interval abstract
values.

Time-scale and accuracy for a date
Name: Dat e

Comment: This applies only to an abstract value that
includes identification of a date. It identifies the time-
scale and accuracy of that date.

NOTE — Any abstract value identifying more than
one date (for example, an interval) has a single setting
for Dat e that applies to both dates.

C (Century) See 1SO 8601, 4.1.2.3 ¢).
All abstract values containing a
date that represents only a century.
Y (Year only) See 1SO 8601, 4.1.2.3 b).

All abstract values containing a
date that represents only ayear.

YM(Y ear-Month)

See SO 8601, 4.1.2.3 a).

All abstract values containing a
date that uses the year-month time-
scale.

YNMD (Y ear-Month-Day)

See 1SO 8601, 4.1.2.2.

All abstract values containing a
date that uses the year-month-day
time-scale.

YD (Year-Day) See SO 8601, 4.1.3.2.
All abstract values containing a
date that uses the year-day time-
scale.

YW(Y ear-Week) See SO 8601, 4.1.4.3.

All abstract values containing a
date that uses the year-week time-
scale.

YWD (Y ear-Week-Day)

See 1SO 8601, 4.1.4.2.

All abstract values containing a
date that uses the year-week-day
time-scale.

Type of associated year
Name: Year

Comment: This applies only to an abstract value that
includes identification of one or more years or
centuries. Its setting identifies whether the year (or
century) identification isa"normal" year, ayear in
the proleptic Gregorian Calendar (see J.2.2), ayear
that is negative, or ayear that requires more than four
digitsto represent it.

NOTE — Any abstract value involving more than one
year (for example, an interval) has a single setting for
Year that appliesto both years.

Basi c

All abstract values containing a
year in the range 1582 to 9999 (or
acentury in the range 15 to 99).

Prol eptic

All abstract values containing a
year intherange 0 to 1581 (or a
century in the range 00 to 14).

NOTE — In the proleptic Gregorian
calendar, ayear value of zero hasa
meaning which roughly
corresponds to the year 1 BC (see
J2.2).

Negati ve

All abstract values containing a
year in the range —9999 to —0001
(or acentury in the range —99 to
-01).

L5,L6,L7, etc, toinfinity
(Large)

All abstract values containing a
year whose decimal representation
requires5, 6, 7, etc., digits (or a
century whose decimal
representation requires 3, 4, 5,
etc., digits) respectively, whether
positive or negative.

ITU-T Rec. X.680 (11/2008) 65

| SO/IEC 8824-1:2008 (E)

Table 6 — Properties and settings for time abstract values

Time property

Names of property settings

Abstract valuesthat havethis
property setting

Accuracy for atime
Name: Ti ne

Comment: This applies only to an abstract value that
includes identification of atime-of-day. It identifies
the accuracy of that time-of-day.

NOTE — Any abstract value identifying more than
one time-of-day (for example, an interval) has a
single setting for Ti e that applies to both the time-
of-days.

H (Hour)

See |SO 8601, 4.2.2.3 b).

All abstract values containing a
time-of-day to an accuracy of
hours.

HM(Hour-Minute)

See SO 8601, 4.2.2.3 a).

All abstract values containing a
time-of-day to an accuracy of
minutes.

HVS (Hour-Minute-Second)

See 1SO 8601, 4.2.2.2.

All abstract values containing a
time-of-day to an accuracy of
seconds.

HF1, HF2, HF3, etc., to infinity
(Hour-decimal-fraction)

See SO 8601, 4.2.2.4 c).

All abstract values containing a
time-of-day to an accuracy of
hoursto 1, 2, 3, etc., decima
places.

HWF1, HVF2, HVF3, etc., to
infinity (Hour-Minute-fraction)

See SO 8601, 4.2.2.4 b).

All abstract values containing a
time-of-day to an accuracy of
minutesto 1, 2, 3, etc., decimal
places.

HVBF1, HVBF2, HVBF3, etc., to
infinity
Hour-Minute-Second-Fraction

See SO 8601, 4.2.2.4 &).

All abstract values containing a
time-of-day to an accuracy of
secondsto 1, 2, 3, etc., decimal
places.

Local or UTC time-scale for atime
Name: Local - or- UTC

Comment: This applies only to an abstract value that
includes identification of atime. It identifies the time-
scale of that time (local time, UTC, or local time plus
the difference from UTC). Time differences are
determined by local administrations. ASN.1 supports
time differences in the range —15 hours to +15 hours.
The difference is positiveif the local time is ahead of
or equal to UTC (see 1SO 8601, 5.2.4.1). See also
J.2.11.

NOTE — Any abstract value identifying more than
onetime (for example, an interval) hasasingle
setting for Local - or - UTC that applies to both times.

L (Local time only)

See 38.2.2 and I SO 8601, 4.2.2 and
4.2.3.

All abstract values containing a
time-of-day that specifieslocal
time only.

Z (UTC only)

See 1SO 8601, 4.2.4.

All abstract values containing a
time-of-day that specifies UTC and
not local time.

LD (Local time and the difference
from UTC)

See ISO 8601, 4.2.5.

All abstract values containing a
time-of-day that specifieslocal
time and the time (which may be
negative) added to UTC to obtain
local time.

66 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (

Table 6 — Properties and settings for time abstract values

E)

Time property

Names of property settings

Abstract valuesthat havethis
property setting

Form of interval specification
Name: I nt erval -type

Comment: This applies only to an abstract value that
isaninterval or arecurring interval. It identifies the
form of interval specification (a start and an end
point, a duration, a start point and a duration, or a
duration with an end point).

SE (Start and end points) See SO 8601, 4.4.1 a).
All abstract values that specify an
interval using a start and an end
point.

D (Duration only) See 1SO 8601, 4.4.1 b) and 4.4.3.

All abstract values that specify an
interval using only a duration.

SD (Start point and duration)

See SO 8601, 4.4.1 ¢).

All abstract values that specify an
interval using a start point and a
duration.

DE (Duration and end point)

See 1S0 8601, 4.4.1 d).

All abstract values that specify an
interval using a duration and an
end point.

Nature of the start and/or end point specification
Name: SE- poi nt

Comment: This applies only to intervals or recurring
intervals using a start point or an end point or both.
The setting of this property identifies the nature of the
start point and/or end point that forms part of this
abstract value.

NOTE — All interval abstract values with both a start
point and an end point have a single setting for this
property, and for any associated properties related to
date or time-of-day.

There are no interval abstract values that have
different forms of start point and end point. Thus all
abstract values with both an interval start point and an
interval end point have the same set of time
components for the start point and the end point (but
see Table 7 for value notation for the end-point). This
isadifference from 1SO 8601.

Dat e

See 1SO 8601, 4.1.

All abstract values that specify
start and/or end points using dates
only.

Ti nme

See 1SO 8601, 4.2.

All abstract values that specify
start and/or end points using time-
of-day only.

Dat e- Ti me

See 1SO 8601, 4.3.

All abstract values that specify
start and/or end points using a date
and atime-of-day.

Recurrence specification
Name: Recurrence

Comment: This applies only to an abstract value that
isarecurring interval. It identifies the agreed limits
on the number of recurrences (or unlimited).

Unl i m t ed (No limit on the
number of recurrences, expressed
with an empty string for the
number of recurrences)

See SO 8601, 4.5.

All abstract values representing an
unlimited number of recurrences of
an interval.

R1, R2, R3, etc,, toinfinity
(Number of recurrence digits)

See SO 8601, 4.5.

All abstract values representing
recurrences of an interval that
require 1, 2, 3, etc. digits,
respectively, to express the number
of recurrences.

ITU-T Rec. X.680 (11/2008)

67

| SO/IEC 8824-1:2008 (E)

Table 6 — Properties and settings for time abstract values

Abstract valuesthat havethis

Time property Names of property settings property setting
Midnight start or end of a day Start (Start-of-day) See SO 8601, 4.2.3 a).
Name: M dni ght An abstract value containing atime

Comment: This applies only to an abstract value that that represents midnight at the start

contains atime that represents midnight. It identifies of aday.

whether this midnight valueis the start of aday (often | End (End-of-day) See |SO 8601, 4.2.3 b).

represented as 00:00:00) or the end of aday (often . .
represented as 24-00-00). An abstract value containing atime

that represents midnight at the end
of aday.

NOTE — ASN.1 does not support the use of start and end points of intervals that have different time properties, asthereisonly a
single SE- poi nt setting that governs the syntax of both the start point and the end-point. The start and end points are required to
use the same time format. Thisis a difference from SO 8601.

38.2.2 1SO 8601 provides two basic representations for midnight: "2400" for midnight at the end of a day and
"0000" for midnight at the start of a day (with any second or fractional part of a second containing only zero digits).
These are not considered different representations for a single abstract value, but as distinct abstract values.
NOTE 1 — This is because as a stand-alone time, they are clearly distinct and represent start of a day and end of a day. When
used in conjunction with a day, "2400" on day x should be considered less than "0000" on day x+1, despite having exactly the
same position on the time axis.
NOTE 2 — They have, respectively, the time property setting " M dni ght =End" and "M dni ght =Start".
NOTE 3 — As with other time points, there are infinitely many distinct abstract values that are midnight at the start and end of
any particular day, depending on the accuracy of the seconds and fractional part of seconds. There are also further infinite sets of
midnight abstract values based on the use of fractions of an hour or of a minute rather than of seconds. (All these fractional parts
will be zero to various different accuracies if the abstract value is amidnight value.)

38.2.3 SO 8601 provides two basic representations for duration (either weeks, or some combination of years,
months, days, hours, minutes and seconds) as a component of time intervals and recurring time intervals. Different
strings representing durations in 1SO 8601 are considered to represent different abstract valuesin ASN.1, except where
the only difference is the omission or inclusion of a zero time component that does not change the duration (including
the accuracy of the duration) being represented. Inclusion or omission of zero time components is fully specified in
canonical encoding rules, and in all the encoding rules of ITU-T Rec. X.691 | ISO/IEC 8825-2. There are no time
properties (other than " Basi c=I nterval Interval -type=D") associated with a duration, but restrictions can be
applied to the time components of a duration, requiring them to be absent or limiting their value (see 38.4.4).

NOTE 1 - Thereis an SO 8601 requirement for prior agreement on the size of components (and particularly of fractional parts).

This is normally handled by property settings for the different accuracies. However, in the case of DURATI ON, for simplicity,

property settings were not introduced to determine the accuracy of the components. Instead, inner subtyping constraints on the
equivalent sequence type can be applied, as specified in 38.4.4, to record prior agreements on the components of a DURATI ON.

NOTE 2 — 1SO 8601 requires that use of a weeks component shall not be combined with the use of any other date component
(years, months, days), nor with the use of an hours, minutes, or seconds time component. This restriction is also applied in
ASN.1 for consistency with 1SO 8601.

38.2.4 Thereis no defined order relation between the different DURATI ON abstract values unless they are expressed
using a single time element (for example, weeks or months or days only), as there is no agreed international definition
of aduration of one month or one year in terms of seconds.

38.3 Basic value notation and XML value notation for time abstract values with specified property
settings

38.3.1 All time abstract values with the same time property settings have the same value notation, varied only by the
values of year, month, week, day, hour, minute, second, etc. (on the associated time-scale) that are used to distinguish
that abstract value from others with the same property settings.

38.3.2 Thevalue notations for the time type shall be "TimeValue" and "XMLTimeValue":
TimeValue::=tstring
XMLTimeValue::=xmltstring

The content of the "tstring" and of the "xmltstring" is defined in 38.3.4 using the time component syntax that is defined
in column 3 of Table 7. Table 7 defines a number of possible notations for the different components (for example, the

68 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

year component). The precise notation to be used depends on the property settings of the abstract value specified in
column 2. Properties not listed in column 2 have no effect on the notation to be used for the component. These time
component notations are normally defined by reference to an 1SO 8601 representation (with which they are
conformant), but in order to avoid ambiguity in value notation, an additional C character is added to time components
that designate a century and not afull year, as specified in column 3 of Table 7.

38.3.3 Table 7 specifies (in column 3) the value notation and XML value notation for time components (listed in
column 1). Column 1 identifies a time component. Column 2 specifies the conditions in which a particular row is
applicable, in terms of the settings of properties associated with abstract values. Column 3 specifies the notation to be
used for that time component. The notation used in column 3 is that defined in 1SO 8601, 3.4, with the addition of C as

acentury designator.

NOTE 1 — The 1SO 8601 notation used in column 3 can be summarized as: Y is a year digit, M is a month digit or month
designator, D is a day digit, w is aweek digit, h is an hour digit, m is a minute digit, sis a second digit, nisany of 0t0 9, * is
plus or minus, and underline represents zero or more repetitions (for example "+YYYYY™"). The 1SO 8601 notation is used in
preference to any other notation used in this Recommendation | International Standard in order to make the linkage to 1SO 8601

clear.

NOTE 2 — Clause J.2 provides a tutorial on 1SO 8601 key concepts that will help in understanding this notation. See also
clause G.3 for examples of the resulting value notation.

Table 7 — Value notation for time abstract values with specific properties and settings

or
"Year =Pr ol epti c"

Time component Property Value notation syntax
Y ear component "Year =Basi c" SO 8601, 4.1.2.3 c) followed by the character LATIN
and " Dat e=C" CAPITAL LETTERC: [YY(C]

or
"Year =Ln" and" Dat e=C"

and " Dat e=C"
Y ear component "Year =Negat i ve" 1SO 8601, 4.1.2.4 d) followed by the character LATIN
and " Dat e=C" CAPITAL LETTERC: [£YYYC]

The number of repetitions of Y shall be zero for
"Year =Negat i ve" and equal to n-4 for " Year =Ln".

Y ear component

" Year =Basi c"
and Dat e isnotC

or

"Year =Prol eptic"
and Dat e isnot C

1SO 8601, 4.1.2.2: [YYYY]

Y ear component

"Year =Negat i ve" and Dat e
isnot C

or
"Year =Ln" andDat e isnot C

1SO 8601, 4.1.2.4 C): [+YYYYY]

The number of repetitions of Y shall be zero for
"Year =Negat i ve" and equal to n-4 for " Year =Ln" .

Month component

Any

1SO 8601, 4.1.2.3 a): [-MM]

or

Week component Any 1SO 8601, 4.1.4.3: [-Www]

Day component "Year =YMD' 1SO 8601, 4.1.2.2 Extended format: [-DD]
Day component "Year =YD' 1SO 8601, 4.1.3.2 Extended format: [-DDD]
Day component "Year =YWD' 1SO 8601, 4.1.4.2 Extended format: [-D]
Hours component " Basi c=Ti ne" 1SO 8601, 4.2.2.3 b): [hh]

"Basi c=I nterval " and
" SE- poi nt =Ti me"

The hours component value notation 24 shall always be used
for the abstract value "midnight at end of day" and the hours
component value notation 00 for "midnight at start of day".

or

"Basi c=Rec- I nterval " and
" SE- poi nt =Ti ne"

ITU-T Rec. X.680 (11/2008) 69

| SO/IEC 8824-1:2008 (E)

Table 7 —Value notation for time abstract values with specific properties and settings

Time component

Property

Value notation syntax

Hours component

" Basi c=Dat eTi ne"
or

"Basi c=I nterval " and
" SE- poi nt =Dat eTi ne"
or

"Basi c=Rec- | nterval "

and
" SE- poi nt =Dat eTi me"

SO 8601, 4.3.2 Extended format: [Thh]

The value notation T24 shall always be used for the hours
component of the abstract value "midnight at end of day" and
the value notation TOO for "midnight at start of day".

Minutes component

Any

1SO 8601, 4.3.2 Extended format: [:mm]

Seconds component

Any

1SO 8601, 4.3.2 Extended format: [:ss]

Decimal fraction
component of hour,
minute, or second

Any

1SO 8601, 4.2.2.4: [,hh] or [.hh], [,mm] or [.mm], or

[,ss] or [.ss]

NOTE — It is recommended that in any given ASN.1 module,
the commaor full stop be consistently used for the decimal
sign.

Decimal fraction
component of year, month,
week, or day in aduration
(see J.2.6, Note)

"Basi c=I nterval " and
"Interval -type=D'

or

"Basi c=l nterval " and
"Interval -type=SD’

or

"Basi c=I nterval " and
"I nterval -type=DE"

1SO 8601, 4.4.3.2: [,nn] or [.nn]

NOTE — It isrecommended that in any given ASN.1 module,
the commaor full stop be consistently used for the decimal
sign.

UTC designator
component

"Local - or - UTC=2"

1SO 8601, 4.2.4: [Z]

Time difference
component

"Local - or - UTC=LD"

1SO 8601, 4.2.5.2 Extended format: [£hh] or [£hh:mm]

The time difference component shall be the exact time
differencein minutesif it is not an exact multiple of hours.

NOTE — This means that the minutes component has to be
present unless the difference between local timeand UTC isan
integral number of hours.

Duration component

"I nterval -type=D'
or

"I nterval -type=SD'
or

"I nterval -type=DE"

1SO 8601, 4.4.3.2:
see 38.3.6

Timeinterval

"I nterval -type=SE"
or
"I nterval -type=SD'
or
"I nterval -type=DE"

1SO 8601, 4.4 Extended formats:

Start point component (" | nt er val -t ype=SE" or

"I nterval -type=SD") or duration component
("I'nterval -t ype=DE"), followed by [/], followed by
duration component (" I nt er val -t ype=SD") or end point
component (" I nt erval -t ype=SE" or"I nt erval -

t ype=DE").

Start point component

Depends on SE- poi nt setting

Thisis determined by the setting of SE- poi nt , which shall
be interpreted as a setting of the Basi ¢ property for
representing this component. The Dat e, Year , Ti ne, and
Local - or - UTC property settings shall then be used to
determine the format of the start point component.

70 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Table 7 —Value notation for time abstract values with specific properties and settings

Time component Property Value notation syntax

End point component Depends on SE- poi nt setting Thisis determined by the setting of SE- poi nt , which shall
be interpreted as a setting of the Basi ¢ property for
representing this component. The Dat e, Year, Ti ne, and
Local - or - UTC property settings shall then be used to
determine the format of the end point component. Itis
permissible (optionally) to omit the time difference component
if the difference between UTC and local time for the end point
isthe same as the difference for the start point.

NOTE - Thisis not as general as|SO 8601, but is restricted to
these cases for simplicity.

Recurring time intervals "Recurrence=Unlimted" SO 8601, 4.5 Extended format: [R/] followed by the time
interval component.

Recurring timeintervals "Recurrence=R1", SO 8601, 4.5 Extended format: [Rnn/] followed by the time
"Recurrence=R2", interval component.
"Recurrence=R3", etc.

38.3.4 The value of the "tstring" shall be the concatenation of the character encodings of the time components
(determined by the settings of their properties in accordance with Table 6), preceded and followed by a QUOTATION
MARK (34) character (") as specified in 12.17. The value of the "xmitstring" shall be the concatenation of the character
encodings of the time components (determined by the settings of their properties in accordance with Table 6), without
surrounding QUOTATION MARK characters.
NOTE 1 — The value notation and XML value notation are canonical except for:
a) the varying representations of duration; and
b) the varying use of comma or full stop for the decimal separator; and

¢) thevarying use of hours and minutes or hours only for time difference components that are an integral number of
hours; and

d) theinclusion or omission of atime difference component in the end point of an interval (with both a start point
and an end point) when the time difference in the end point is the same as the time difference in the start point.

NOTE 2 — Examples of the value notation are provided in G.3.

38.3.5 Thenotations for the time components shall be concatenated in the order specified in SO 8601.
NOTE — This means the most significant time component first and the zone designator (time difference component or z) last.

38.3.6 The basic value notation and the XML value notation for the duration component are specified in the
following subclauses.

38.3.6.1 The value notation shall be [P] (see |SO 8601, 4.4.3) followed by either:

a) a year-month-day designation (see 38.3.6.2) optionaly followed by an hours-mins-sec designation
(see 38.3.6.3); or

b) aweek designation (see 38.3.6.4); or
¢) an hours-mins-sec designation (see 38.3.6.3).

38.3.6.2 A year-month-day designation shall be one or more (in order) of:
a) ayear designation (see 38.3.6.5);
b) amonth designation (see 38.3.6.6);
C) aday designation (see 38.3.6.7).
38.3.6.3 An hours-mins-secs designation shall be [T] followed by one or more (in order) of:
a) an hoursdesignation (see 38.3.6.8); or
b) aminutes designation (see 38.3.6.9); or
Cc) aseconds designation (see 38.3.6.10).

38.3.6.4 A week designation shall consist of one or more digits optionally followed by afractional part (see 38.3.6.12)
followed by [W].

ITU-T Rec. X.680 (11/2008) 71

| SO/IEC 8824-1:2008 (E)

38.3.6.5 A year designation shall consist of one or more digits optionally followed by a fractional part (see 38.3.6.12)
followed by [Y].

38.3.6.6 A month designation shall consist of one or more digits optionaly followed by a fractional part
(see 38.3.6.12) followed by [M].

38.3.6.7 A day designation shall consist of one or more digits optionally followed by a fractional part (see 38.3.6.12)
followed by [D].

38.3.6.8 An hours designation shall consist of one or more digits optionally followed by a fractional part
(see 38.3.6.12) followed by [H].

38.3.6.9 A minutes designation shall consist of one or more digits optionally followed by a fractional part
(see 38.3.6.12) followed by [M].

38.3.6.10 A seconds designation shall consist of one or more digits optionally followed by a fractional part
(see 38.3.6.12) followed by [S].

38.3.6.11 The integral part of a designation shall not contain leading zeros unless it is the single digit zero, optionally
followed by afractional part. There shall be at least one digit in the integral part if thereisafollowing fractiona part.

38.3.6.12 A fractional part shall consist of a decimal separator (which shall be either a full stop or a comma), followed
by one or more decimal digits.

38.3.6.13 If adesignation contains a fractional part, there shall be no following designation.
38.3.6.14 Value notations expressing a duration to different accuracies represent different abstract values.

EXAMPLE 1. Thefollowing value notations all represent different abstract values:
a) P29M(or POY29M -- 0 years, 29 monthsto an accuracy of 1 month.
b) P29MOD (or POY29MOD) -- O years, 29 months, O days to an accuracy of 1 day.

c) P29MI0S (or POY29MODTOHOMDS) -- O years, 29 months, 0 days, O hours, 0 minutes, 0 seconds, to an
accuracy of 1 second.

d) P29Mr0. 00H (or POY29MODTO, 00H) -- O years, 29 months, O days, 0 hours, to an accuracy of one-
hundredth of an hour.

€) P29Mr0. 000S (or POY29MODTOHOM). 000S) -- O years, 29 months, 0 days, 0 hours, 0 minutes,
0 seconds, to an accuracy of 1 millisecond.

EXAMPLE 2: The following value notations al represent the same abstract value (0 years, 29 months, 0 days, 0 hours,
0 minutes) to an accuracy of one-hundredth of a minute:

a) POY29MDDTOHO. 0OM
b) POY29MDDTO. 0OM
c) POY29MIOHO. 0OM
d) POY29Mr0. 00M

€ P29MDDTOHO. OOM

f) P29MDDTO. 0OM

g) P29MIOHO. 00M

h) P29Mr0. 00M

38.4 Useful timetypes

The following useful time types are defined, and are expected to cover most normal requirements of application
designers.

NOTE — These definitions use the property setting subtype notation specified in clause 51. Where alternative time-scales are
required, for example, use of a Year and Day calendar, defined time types (see Annex B) can be used, or the property setting
subtype notation can be used to define additional subtypes of the TI ME type (see G.3 for examples of properties and settings that
can be used).

38.4.1 Thedatetype shal be referenced by the notation:
DateType::= DATE

72 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

and is defined as;

DATE ::= [UNIVERSAL 31] IMPLICIT TI ME
(SETTI NGS "Basi c=Dat e Dat e=YMD Year =Basi c")

38.4.2 Thetime-of-day type shall be referenced by the notation:
TimeOfDayType ::= Tl ME- OF- DAY
and is defined as:

TI ME-OF- DAY ::= [UNIVERSAL 32] IMPLICIT TIME
(SETTI NGS "Basi c=Ti ne Ti ne=HVMS Local - or - UTC=L")

NOTE - This type allows midnight at start of day (00: 00: 00) as well as midnight at end of day (24: 00: 00).
38.4.3 The date-time type shall be referenced by the notation:
DateTimeType::= DATE- TI ME

and is defined as;

DATE-TIME ::= [UNIVERSAL 33] IMPLICT TIME
(SETTI NGS " Basi c=Dat e- Ti e Dat e=YMD Year =Basi ¢ Ti me=HVB
Local - or - UTC=L")

NOTE — This type allows midnight at start of day (00: 00: 00) as well as midnight at end of day (24: 00: 00).
38.4.4 Theduration type shall be referenced by the notation:
DurationType ::= DURATI ON

and is defined as;

DURATION ::= [UNIVERSAL 34] IMPLICT TIME
(SETTINGS "Basic=Interval Interval-type=D")

Any subset of the TI MVE type, all of whose abstract values have the property settings " Basi c=I nterval Interval -
type=D' (whether UNI VERSAL 34 or UNI VERSAL 14), is called a duration subtype. This type can be constrained in
accordance with the following subclauses.

38.4.4.1 Inner subtyping constraints can be applied to any duration subtype using an equivalent sequence type
(see 38.4.4.2).

NOTE — The inner subtyping constraint applied to the equivalent sequence type can be used to forbid or to require particular
time components in the duration type, or to place range constraints on the values of some or all time components of the duration
type (seeadso 51.11.2).

38.4.4.2 The DURATI ON- EQUI VALENT equivalent sequence typeis:

DURATI ON- EQUI VALENT : : = SEQUENCE {
years I NTEGER (0..MAX) OPTI ONAL,
nont hs I NTEGER (0..MAX) OPTI ONAL,
weeks I NTEGER (0..MAX) OPTI ONAL,
days I NTEGER (0..MAX) OPTI ONAL,
hour s I NTEGER (0..MAX) OPTI ONAL,
m nut es I NTEGER (0..MAX) OPTI ONAL,
seconds I NTEGER (0..MAX) OPTI ONAL,

fractional -part SEQUENCE
nunber-of -di gits | NTEGER(1.. MAX),
fractional -val ue | NTEGER(O..NMAX) } OPTI ONAL }

where the years component of the equivalent sequence type corresponds to the years time component of the abstract
value of the duration type, and so on.

38.4.4.3 Constraints placed on the components of the equivalent sequence type are constraints on the corresponding
time components of the duration type.

NOTE 1 — The rules for duration types require that at least one of the time components be present (see 38.2.3), but that no other
time components be present when the week is present. Use of an inner subtyping constraint that violated these rules would be an
illegal specification.

NOTE 2 — The fractional -part always applies to the least significant time component that is present in the abstract value.

38.4.5 The basic value notation and the XML value notation for all the useful time types shall be the value notation
for the TI ME type (see 38.3.2), restricted to notation for those abstract values that are present in the useful time type.

ITU-T Rec. X.680 (11/2008) 73

| SO/IEC 8824-1:2008 (E)

39 The character string types

These types consist of strings of characters from some specified character repertoire. It is normal to define a character
repertoire and its encoding by use of cellsin one or more tables, each cell corresponding to a character in the repertoire.
A graphic symbol and a character name are also usualy assigned to each cell, although in some repertoires, cells are
left empty, or have names but no shapes (examples of cells with names but no shape include control characters such as
EOF in 1SO/IEC 646 and spacing characters such as THIN-SPACE and EN-SPACE in | SO/IEC 10646).

In general, the information associated with a cell denotes a distinct abstract character in the repertoire even if that
information is null (no graphic symbol or nameis assigned to that cell).

The ASN.1 basic value notation for character string types has three variants (which can be combined), specified
formally below:

a) A representation of the characters in the string using assigned graphic symbols, possibly including
spacing characters; thisisthe "cstring" notation.

NOTE 1 — Such a representation can be ambiguous in a printed representation when the same graphic symbol is
used for more than one character in the repertoire.

NOTE 2 — Such a representation can be ambiguous in a printed representation when spacing characters of
different widths are present in the repertoire or the specification is printed with a proportional-spacing font.

b) A listing of the characters in the character string value by giving a series of ASN.1 value references that
have been assigned the character; a set of such value references is defined in the module
ASN1- CHARACTER- MODULE in clause 42 for the ISO/IEC 10646 character repertoire and for the
| A5St ri ng character repertoire; this form is not available for other character repertoires unless the user
assigns to such value references using the val ue notation described in @) above or ¢) below.

¢) A ligting of the characters in the character string value by identifying each abstract character by the
position of its cell in the character repertoire table(s); this form is available only for |1 A5Stri ng,
Uni ver sal String, UTF8St ri ng and BMPSt ri ng.

The ASN.1 XML value notation for character string types uses the "xmlcstring" notation, which includes the ability to
use escape sequences for certain specia characters, and for specification of characters using decimal or hexadecimal
(see 12.15).

40 Notation for character string types
40.1 The notation for referencing a character string type (see 3.8.12) shall be:

CharacterStringType ::=
RestrictedCharacter StringType
| UnrestrictedCharacter StringType

"RestrictedCharacterStringType" is the notation for a restricted character string type and is defined in clause 41.
"UnrestrictedCharacterStringType" is the notation for the unrestricted character string type and is defined in 44.1.

40.2 The tag of each restricted character string type is specified in 41.1. The tag of the unrestricted character string
typeis specified in 44.2.

40.3 The notation for a character string value shall be:

CharacterStringValue::=
RestrictedChar acter StringValue
| UnrestrictedCharacter StringValue

XML Character StringValue ::=
XMLRestrictedCharacter StringValue
| XMLUnrestrictedCharacter StringValue

"RestrictedCharacterStringvValue” and "XMLRestrictedCharacterStringVaue' are defined in 41.8 and 41.9
respectively. "UnrestrictedCharacterStringValue" and "XMLUnrestrictedCharacterStringValue" are notations for an
unrestricted character string value and they are defined in 44.7.

74 ITU-T Rec. X.680 (11/2008)

41 Definition of restricted character string types

| SO/IEC 8824-1:2008 (E)

This clause defines types whose values are restricted to sequences of zero, one or more characters from some
specified collection of characters. The notation for referencing a restricted character string type shall be
"RestrictedCharacterStringType':

RestrictedChar acter StringType ::=
BMPSt ri ng

Ceneral String
G aphicString

| A5String

| SO646Stri ng
Nureri cString
Printabl eString

T61String

Uni versal String

UTF8Stri ng

Vi deot exStri ng

Vi si bl eString

I
I
I
I
I
I
| Tel etexString
I
I
I
I
I

Each "RestrictedCharacterStringType" aternative is defined by specifying:
a) thetag assigned to the type; and
b) aname (e.g., Nurreri ¢St ri ng) by which the type is referenced; and

¢) the charactersin the collection of characters used in defining the type, by reference to a table listing the
character graphics or by reference to a registration number in the 1SO International Register of Coded
Character Sets (see IO International Register of Coded Character Sets to be used with Escape
Sequences), or by reference to |SO/IEC 10646.

Table8—List of restricted character string types

Namefor referencingthetype | o | e pe b | Nots

UTF8Stri ng 12 Subclause 41.16

Nurreri cString 18 Table9 (Note 1)

PrintableString 19 Table 10 (Note 1)

Tel et exString (T61Stri ng) 20 6, 87, 102, 103, 106, 107, 126, 144, 150, 153, 156, (Note 2)
164, 165, 168 + SPACE + DELETE

Vi deot exStri ng 21 1, 13, 72, 73, 87, 89, 102, 108, 126, 128, 129, 144, (Note 3)
150, 153, 164, 165, 168 + SPACE + DELETE

I A5String 22 1,6+ SPACE + DELETE

G aphicString 25 All G sets+ SPACE

Vi si bl eString (I SC646Stri ng) 26 6 + SPACE

General String 27 All Gand all C sets+ SPACE + DELETE

Uni versal String 28 See 41.6

BMPSt ri ng 30 See 41.15

a) The defining registration numbers are listed in ISO International Register of Coded Character Sets to be used with Escape

Sequences.

NOTE 1 - The type-style, size, colour, intensity, or other display characteristics are not significant.
NOTE 2 — Register entries 6 and 156 can be used instead of 102 and 103.

NOTE 3 - The entries corresponding to these registration numbers provide the functionality of CCITT Rec. T.100 and ITU-T

Rec. T.101.

ITU-T Rec. X.680 (11/2008)

75

| SO/IEC 8824-1:2008 (E)

41.1 Table 8 lists the name by which each restricted character string type is referenced, the number of the universal
class tag assigned to the type, the defining registration number or table, or the defining text clause, and, where
necessary, identification of a Note relating to the entry in the table. Where a synonymous name is defined in the
notation, thisislisted in parentheses.

41.2 Table 9 lists the characters which can appear in the Nureri cString type and Nureri ¢St ri ng character
abstract syntax.

Table 9 —NumericString

Name Graphic
Digits 0,1,..9
Space (space)

41.3 The following object identifier, OID internationalized resource identifier and object descriptor values are
assigned to identify and describe the Nurrer i ¢St ri ng character abstract syntax:

{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l) nunericString(0) }
"/Joint-1SO 1 TU T/ ASN. 1/ Speci fi cati on/ Character _Strings/ Nurmeric_String"
and

"NunericString character abstract syntax"

NOTE 1 — This object identifier value can be used in CHARACTER STRI NG values and in other cases where there is a need to
carry the identification of the character string type separate from the value.

NOTE 2 — A value of aNuneri cSt ri ng character abstract syntax may be encoded by:

a) One of the rules given in ISO/IEC 10646 for encoding the abstract characters. In this case the character transfer
syntax isidentified by the object identifier associated with those rulesin ISO/IEC 10646, Annex N.

b) The ASN.1 encoding rules for the built-in type NumericString. In this case the character transfer syntax is
identified by the object identifier value{j oi nt-i so-itu-t asnl(1) basic-encoding(1l)}.

41.4 Table 10 lists the characters which can appear in the Printabl eString type and Printabl eString
character abstract syntax.

Table 10 — PrintableString

Name Graphic
Latin capital letters AB,..Z
Latin small letters a,b,..z
Digits 0,1,..9
SPACE (space)
APOSTROPHE '
LEFT PARENTHESIS (
RIGHT PARENTHESIS)
PLUSSIGN +
COMMA)
HYPHEN-MINUS -
FULL STOP
SOLIDUS /
COLON
EQUALS SIGN =
QUESTION MARK ?

415 The following object identifier, OID internationalized resource identifier and object descriptor values are
assigned to identify and describe the Pri nt abl eSt ri ng character abstract syntax:

76 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l) printableString(1l) }
"/Joint-1SO |1 TU T/ ASN. 1/ Speci fi cati on/ Character_Strings/Printable_String"

and

"Printabl eString character abstract syntax"
NOTE 1 — This object identifier value can be used in CHARACTER STRI NG values and in other cases where there is a need to
carry the identification of the character string type separate from the value.
NOTE 2—-A vaueof aPrint abl eSt ri ng character abstract syntax may be encoded by:

a) One of the rules given in ISO/IEC 10646 for encoding the abstract characters. In this case the character transfer
syntax isidentified by the object identifier associated with those rulesin ISO/IEC 10646, Annex N.

b) The ASN.1 encoding rules for the built-in type Pri nt abl eStri ng. In this case the character transfer syntax is
identified by the object identifier { j oi nt-iso-itu-t asnl(1l) basic-encoding(1l) }.

41.6 The characters which can appear in the Uni versal String type are any of the characters allowed by
I SO/IEC 10646.

417 Use of this type invokes the conformance requirements specified in ISO/IEC 10646.

NOTE - Clause 42 defines an ASN.1 module containing a number of subtypes of this type for the "Collections of graphics
characters for subsets' defined in |SO/IEC 10646, Annex A.

41.8 The "RestrictedCharacterStringValue" notation for the restricted character string types shall be "cstring" (see
12.14), "CharacterStringList", "Quadruple”, or "Tuple". "Quadruple" is only capable of defining a character string of
length one, and can only be used in value notation for Uni ver sal Stri ng, UTF8St ri ng or BMPSt ri ng types. "Tuple"
is only capable of defining a character string of length one, and can only be used in value notation for | A5Stri ng

types.

RestrictedCharacter StringValue ::=
cstring
| CharacterStringList
| Quadruple
| Tuple

Character StringList ::= "{" CharSyms"}"

CharSyms::=
Char sDefn
| CharSyms"," CharsDefn

CharsDefn ::=
cstring
| Quadruple
| Tuple
| DefinedValue

Quadruple::="{" Group ", Plane "," Row "," Cell"}"

Group ::=number
Plane ::=number
Row 1= number
Cell 2= number
Tuple ::="{" TableColumn"," TableRow "}"

TableColumn ::= number

TableRow ::= number

NOTE 1 — The "cstring" notation can only be used unambiguously on a medium capable of displaying the graphic symbols for
the characters which are present in the value. Conversely, if the medium has no such capability, the only means of
unambiguously specifying a character string value that uses such graphic symbols is by means of the "CharacterStringList"
notation, and only if the type is Uni versal String, UTF8String, BMPString or | A5String, and the "DefinedValue"
alternative of "CharsDefn" isused (see 42.1.2).

NOTE 2 — Clause 42 defines a number of "valuereference"s which denote single characters (strings of size 1) of type BMPSt ri ng
(and hence Uni ver sal String and UTF8Stri ng) and | A5Stri ng.

EXAMPLE — Suppose that one wishes to specify a value of "abcXdef" for a Uni ver sal St ri ng where the character "X"
is not representable on the available medium, this value can also be expressed as:

ITU-T Rec. X.680 (11/2008) 77

| SO/IEC 8824-1:2008 (E)

| MPORTS Basi cLatin, greekCapitalLetterSi gna FROM ASN1- CHARACTER- MODULE
{ joint-iso-itu-t asnl(1l) specification(0) nodul es(0) is010646(0) };

M/Al phabet ::= Universal String (FROM (BasicLatin | greekCapital LetterSigm))

nystring MyAl phabet ::= { "abc" , greekCapital LetterSigma , "def" }

NOTE 3 — When specifying the value of a Uni versal String, UTF8St ri ng or BMPSt ri ng type, the "cstring" notation should
not be used unless ambiguities arising from different graphic characters with similar shapes have been resolved.

EXAMPLE — The following "cstring" notation should not be used because the graphic symbols'H', 'O', ‘P and 'E' occur in
the BASIC LATIN, CYRILLIC and BASIC GREEK a phabets and thus are ambiguous.

| MPORTS Basi cLatin, Cyrillic, BasicG eek FROM ASNL- CHARACTER- MODULE
{ joint-iso-itu-t asnl(1l) specification(0) nodul es(0) is0l10646(0) };

M/Al phabet ::= Universal String (FROM (BasicLatin | Cyrillic | BasicGeek))
nystring MyAl phabet ::= "HOPE"

An alternative unambiguous definition of nyst ri ng would be:
nystring MA phabet (BasicLatin) ::= "HOPE"

Formally, nystri ng is avalue reference to a value of a subset of MyAl phabet , but it can, by the value mapping rules of Annex
C, be used wherever avalue reference is needed to this value within My Al phabet .

41.9 The "XMLRestrictedCharacter StringV alue'" notation is:
XMLRestrictedCharacter StringValue ::= xmlcstring

41.10 There are characters which cannot be directly represented in "xmlcstring". These shall be represented using the
escape sequences specified in 12.15.

NOTE - If the restricted character string value contains characters which are not 1SO/IEC 10646 characters specified in 12.15.1,
these cannot be represented in "xmicstring"”, and such values cannot be transferred using XML Encoding Rules (see ITU-T Rec.
X.693 | ISO/IEC 8825-4).

41.11 The"DefinedVaue' in"CharsDefn" shall be areference to avalue of that type.

41.12 The "number" in the "Plane", "Row" and "Cell" productions shall be less than 256, and in the "Group"
production it shall be lessthan 128.

41.13 The"Group" specifies a group in the coding space of the UCS, the "Plane" specifies a plane within the group,
the "Row" specifies a row within the plane, and the "Cell" specifies a cell within the row. The abstract character
identified by this notation is the abstract character for the cell specified by the "Group”, "Plane”, "Row", and "Cell"
values. In all cases, the set of permitted characters may be restricted by subtyping.

NOTE — Application designers should consider carefully the conformance implications when using open-ended character string
types such as Gener al Stri ng, G aphi cStri ng, and Uni ver sal Stri ng without the application of constraints. Careful text on
conformance is also needed for bounded but large character string types such as Tel et exStri ng.

41.14 The "number" in the "TableColumn" production shall be in the range zero to seven, and the "number” in the
"TableRow" production shall be in the range zero to fifteen. The "TableColumn" specifies a column and the
"TableRow" specifies arow of a character code table in accordance with Figure 1 of 1SO/IEC 2022. This notation is
used only for | A5St ri ng when the code table contains Register Entry 1 in columns O and 1 and Register Entry 6 in
columns 2 to 7 (see the IO International Register of Coded Character Sets to be used with Escape Sequences).

41.15 BMPStri ng isasubtype of Uni versal Stri ng that hasits own unique tag and contains only the charactersin
the Basic Multilingual Plane (those corresponding to the first 64K-2 cells, less cells whose encoding is used to address
characters outside the Basic Multilingual Plane) of 1SO/IEC 10646. It has an associated type defined as:

Uni versal String (Bmp)

where Bnp is defined in the ASN.1 module ASNL- CHARACTER- MODULE (see clause 42) as the subtype of
Uni ver sal St ri ng corresponding to the "BMP" collection name defined in |SO/IEC 10646, Annex A.
NOTE 1 - Since BVPSt ri ng isabuilt-in type, it is not defined in ASN1- CHARACTER- MODULE.

NOTE 2 — The purpose of defining BMPSt ri ng as a built-in type is to enable encoding rules (such as BER) that do not take
account of constraints to use 16-bit rather than 32-bit encodings.

NOTE 3 — In the value notation all BMPSt ri ng values are valid Uni ver sal St ri ng and UTF8St ri ng values.

41.16 UTF8String is synonymous with Uni versal String at the abstract level and can be used wherever
Uni versal String isused (subject to rules requiring distinct tags) but has a different tag and is a distinct type.

NOTE — The encoding of UTF8St ri ng used by BER and PER is different from that of Uni ver sal Stri ng, and for most text will
be less verbose.

78 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

42 Naming characters, collections and property category sets

This clause specifies an ASN.1 built-in module which contains the definition of a value reference name for each
character from 1SO/IEC 10646, where each name references a Uni ver sal Stri ng value of size 1. This module aso
contains the definition of a type reference name for each collection of characters from ISO/IEC 10646, where each
name references a subset of the Uni ver sal Stri ng type. Finaly, it contains the definition of a "typereference" name
for the set of characters in each general category of character properties that are listed in 4.5 of The Unicode Standard,
where each name references a subset of the Uni ver sal Stri ng type.

NOTE — These values are available for use in the value notation of the Uni ver sal St ri ng type and types derived fromit. All of

the value and type references defined in the module specified in 42.1 are exported and must be imported by any module that uses
them.

421 Specification of the ASN.1 Module" ASN1-CHARACTER-MODULE"
The module is not printed herein full. Instead, the means by which it is defined is specified.

42.1.1 Themodule begins as follows:

ASN1- CHARACTER- MODULE { joint-iso-itu-t asnl(1l) specification(0) nodul es(0)
i s010646(0) }
"/Joint-1SO 1 TU T/ ASN. 1/ Speci fi cati on/ Modul es/ | SO _10646"
DEFINITIONS ::= BEG N
-- Al of the value references and type references defined within this
-- nodule are inplicitly exported, and are available for inmport by any nodul e.
-- 1SO I EC 646 control characters:

nul I A5String ::= {0, 0}
soh IA5String ::= {0, 1}
stx IA5String ::= {0, 2}
etx [|A5String ::= {0, 3}
eot I A5String ::= {0, 4}
enq |A5String ::= {0, 5}
ack | A5String ::= {0, 6}
bel I ASString ::= {0, 7}
bs | A5String ::= {0, 8}
ht IASString ::= {0, 9}
| f | A5String ::= {0, 10}
vt IASString ::= {0, 11}
ff | A5String ::= {0, 12}
cr IASString ::= {0, 13}
SO | A5String ::= {0, 14}
Si I ASString ::= {0, 15}
dle [IA5String ::= {1, 0}
dcl IA5String ::= {1, 1}
dc2 IA5String ::= {1, 2}
dc3 IA5String ::= {1, 3}
dc4 IA5String ::= {1, 4}
nak 1A5String ::= {1, 5}
syn 1A5String ::= {1, 6}
etb IA5String ::= {1, 7}
can | A5String ::= {1, 8}
em I A5String ::= {1, 9}
sub I A5String ::= {1, 10}
esc IA5String ::= {1, 11}
is4d |ASString ::= {1,12}
is3 IA5String ::= {1, 13}
is2 IA5String ::= {1, 14}
isl [IA5String ::= {1, 15}
del I ASString ::= {7, 15}

42.1.2 For each entry in each list of character names for the graphic characters (glyphs) shown in clauses 24 and 25
of ISO/IEC 10646, the module includes a statement of the form:

<namedcharacter> BMPString ::= <tabl ecel | >
-- represents the character <isolO0646nane>, see |SQO |EC 10646

where:
a) <isolO646nane> isthe character name derived from onelisted in ISO/IEC 10646;

b) <nanedcharact er> is a string obtained by applying to <i so10646nane> the procedures specified in
42.2;

ITU-T Rec. X.680 (11/2008) 79

| SO/IEC 8824-1:2008 (E)

Cc) <tablecel | >istheglyphinthetable cell in ISO/IEC 10646 corresponding to the list entry.
EXAMPLE

latinCapital LetterA BWPString ::= {0, 0, 0, 65}
-- represents the character LATIN CAPI TAL LETTER A, see | SO | EC 10646

greekCapital LetterSigma BWString ::= {0, 0, 3, 163}
-- represents the character GREEK CAPI TAL LETTER SI GVA, see |SQ'| EC 10646

42.1.3 For each name for a collection of graphic characters specified in ISO/IEC 10646, Annex A, a statement is
included in the module of the form:

<namedcol | ectionstring> ::= BMPString
(FROM (<al ternativelist>))
-- represents the collection of characters <collectionstring>,
-- see | SO'| EC 10646.

where:
a) <col |l ectionstring>isthe namefor the collection of characters assigned in | SO/IEC 10646;
b) <nanedcol | ectionstring>isformed by applying to <col | ecti onst ri ng> the procedures of 42.3;

Cc) <alternativelist>isformed by using the <namedchar act er >s as generated in 42.2 for each of the
characters specified by 1 SO/IEC 10646.

The resulting type reference, <namedcol | ecti onst ri ng>, formsalimited subset. (See the tutorial in Annex H.)

NOTE — A limited subset is a list of characters in a specified subset. Contrast this to a selected subset, which is a collection of
characterslisted in ISO/IEC 10646, Annex A, plusthe BASIC LATIN collection.

EXAMPLE (partial)

space BMPStri ng = {0, 0, 0, 32}
excl amat i onMark BMPSt ri ng = {0, 0, 0, 33}
quot ati onMark BMPStri ng = {0, 0, 0, 34}
.. -- and so on
tilde BMPString = {0, 0, 0, 126}
BasicLatin ::= BMPString

(FROM (space

| excl amati onMark
quot at i onMar k
.. -- and so on

|

I

)
-- represents the collection of characters BASIC LATIN, see | SO | EC 10646.
-- The ellipsis inthis exanple is used for brevity and neans "and so on";
-- you cannot use this in an actual ASN. 1 nodul e.

42.1.4 ISO/NIEC 10646 defines three levels of implementation. By default all types defined in
ASNI1- CHARACTER- MODULE, except for Level 1 and Level 2 conform to implementation level 3, since such types have
no restriction on use of combining characters. Level 1 indicates that implementation level 1 is required, Level 2
indicates that implementation level 2 is required, and Level 3 indicates that implementation level 3 isrequired. Thus,
the following are defined in ASN1- CHARACTER- MODULE:

Level 1 ::= BMPString (FROM (BWPString(Sl ZE(1)) EXCEPT Conbi ni ngCharacters))
Level 2 ::= BMPString (FROM (BWPString(Sl ZE(1)) EXCEPT Conbi ni ngChar act ersType-2))
Level 3 ::= BMPString

NOTE 1 — Conbi ni ngChar acters and Combi ni ngChar act er sType-2 are the <namedcollectionstring>s corresponding to
"COMBINING CHARACTERS" and "COMBINING CHARACTERS B-2", respectively, defined in ISO/IEC 10646, Annex A.

NOTE 2 — Level 1 and Level 2 will be used either following an "IntersectionMark” (see clause 50) or as the only constraint in a
"ConstraintSpec”. (See G.2.7.1 for an example.)

NOTE 3 — See H.2.5 for more information on this topic.

42.1.5 For each abbreviation and each description listed in The Unicode Standard, Table 4-5, two statements are
included in the module of the form:

80 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

<cat egoryabbrevi ation> ::= Universal String (FROM (<al ternativelist>))
-- represents the set of characters with the property
-- category <categoryabbreviati on>.

<cat egorydescription> Universal String ::= <categoryabbreviation>

where:

a) <categoryabbreviation> is the abbreviation for the general category of character properties listed in The
Unicode Standard, Table 4-5 (for example, Lu or Nd or Pi);

b) <categorydescription> is the description for the same genera category of characters, with the initial
letter of all words uppercased, the comma and all spaces removed, and all description in parentheses
removed (for example, Let t er Upper case or Nurreri cDi git or Punct uationlnitial Quote);

¢) The <alternativelist> for each <categoryabbreviation> is alist of the <namedcharacter> names produced
by 42.2 for each of the characters listed in The Unicode Character Database (version 3.2.0) of The
Unicode Standard that have the corresponding <categoryabbreviation>.

NOTE — The Unicode name for a character is the same as the <iso10646name> for that character.

42.1.6 For the initia letter of each abbreviation listed in The Unicode Standard, Table 4-5, two statements are
included in the module of the form:

<cat egoryabbrevi ationletter> ::= Universal String (FROM (<al ternativelist>))
-- represents the set of characters with any category property
-- with the initial |etter <categoryabbreviationletter>.

<mai ncat egor ydescri ption> Universal String ::= <categoryabbreviationletter>

where;

a) <categoryabbreviationletter> is the first letter of the abbreviation for the general category of character
properties listed in The Unicode Standard, Table 4-5 (for example, L or N or P);

b) <categorydescription> isthe first word of the description for the same general category of characters (for
example, Let t er or Numer i ¢ or Punct uati on) ;

¢) The <alternativelist> for each <categoryabbreviationletter> is a list of the <namedcharacter> names
produced by 42.2 for each of the characters listed in The Unicode Character Database (version 3.2.0) of
The Unicode Standard that have the corresponding <categoryabbreviationletter>.

NOTE — The Unicode name for a character is the same as the <iso10646name> for that character.
42.1.7 Themoduleisterminated by the statement:
END

42.1.8 A user-defined equivalent of the examplein 42.1.3is:

BasicLatin ::= BWString (FROM (space..tilde))
-- represents the collection of characters BASIC LATIN,
-- see | SO'| EC 10646.

42.2 A <nanedchar act er > is the string obtained by taking an <i so10646nane> (see 42.1.2) and applying the
following algorithm:

a) each upper-case letter of the <i so10646nane> is transformed into the corresponding lower-case letter,
unless the upper-case letter is preceded by a SPACE, in which case the upper-case letter is kept
unchanged;

b) each digit and each HY PHEN-MINUS is kept unchanged;

c) each SPACE isdeleted.

NOTE — The above algorithm, taken in conjunction with the character naming guidelines in Annex K of ISO/IEC 10646 will
always result in unambiguous value notation for every character name listed in 1SO/IEC 10646.

EXAMPLE — The character from ISO/IEC 10646, row 0, cell 60, which is named "LESS-THAN SIGN" and has the
graphic representation "<" can be referenced using the "DefinedValue' of:

| ess-thanSi gn

42.3 A <namedcol | ecti onstring> is the string obtained by taking <col | ecti onstri ng> and applying the
following algorithm:

ITU-T Rec. X.680 (11/2008) 81

| SO/IEC 8824-1:2008 (E)

a) each upper-case letter of the ISO/IEC 10646 collection name is transformed into the corresponding
lower-case letter, unless the upper-case letter is preceded by a SPACE or it is the first letter of the name,
in which case the upper-case letter is kept unchanged;

b) each digit and each HY PHEN-MINUS is kept unchanged;
¢) each SPACE isdeleted.

EXAMPLES

1) The collection identified in Annex A of 1SO/IEC 10646 as:
BASIC LATIN

has the ASN.1 type reference:

BasicLatin

2) A character string type consisting of the charactersin the BASIC LATIN collection, together with the BASIC
ARABIC collection, could be defined as follows:

M- Character-String ::= BWPString (FROM (BasicLatin | BasicArabic))
NOTE — The above construction is necessary because the apparently simpler construction of:

M- Character-String ::= BWPString (BasiclLatin | BasicArabic)
would allow only strings which were entirely BASIC LATIN or BASIC ARABIC but not a mixture of both.

43 Canonical order of characters

43.1 For the purpose of "VaueRange" subtyping and for possible use by encoding rules, a canonical ordering of
characters is specified for Uni versal String, UTF8String, BMPString, NunericString, PrintableString,
Vi sibleString,and! A5String.

43.2 For the purpose of this clause only, a character is in one-to-one correspondence with a cell in a code table,
whether that cell has been assigned a character name or shape, and whether it is a control character or printing
character, combining or non-combining character.

43.3 The canonical order of an abstract character is defined by the canonical order of its value in the 32-bit
representation of |SO/IEC 10646, with low numbers appearing first and high numbers appearing last in the canonical
order.

43.4 Endpoints of "VaueRanges" within "PermittedAlphabet" notations (or individual characters) can be specified
using either the ASN.1 value reference defined in the module ASN1- CHARACTER- MCDULE or (where the graphic symbol
is unambiguous in the context of the specification and the medium used to represent it) by giving the graphic symbol in
a"cstring" (ASNL- CHARACTER- MODULE isdefined in 42.1) , or by use of the "Quadrupl€" or "Tupl€" notation of 41.8.

435 For Nureri cStri ng, the canonical ordering, increasing from left to right, is defined (see Table 9 of 41.1

Table 8 lists the name by which each restricted character string type is referenced, the number of the universal
class tag assigned to the type, the defining registration number or table, or the defining text clause, and, where
necessary, identification of a Note relating to the entry in the table. Where a synonymous name is defined in the
notation, thisislisted in parentheses.

41.2) as:
(Space)0 1 2 3 4 5 6 7 8 9

The entire character set contains precisely 11 characters. The endpoint of a"ValueRange" (or individual characters) can
be specified using the graphic symbol in a"cstring".
NOTE - This order is the same as the order of the corresponding charactersin the BASIC LATIN collection of ISO/IEC 10646.

43.6 For Printabl eStri ng, the canonical ordering, increasing from left to right and top to bottom, is defined
(see Table 10 of 41.4) as:

(SPACE) (APOSTROPHE) (LEFT PARENTHESIS) (RIGHT PARENTHESIS) (PLUS SIGN)
(COMMA) (HYPHEN-MINUS) (FULL STOP) (SOLIDUS) 0123456789 (COLON) (EQUAL SIGN)
(QUESTION MARK) ABCDEFGHI JKLMNOPQRSTUWAKYZabcdef ghi j kI mmopqr st uvwyz

The entire character set contains precisely 74 characters. The endpoint of a"ValueRange" (or individual characters) can
be specified using the graphic symbol in a"cstring".

82 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE - This order is the same as the order of the corresponding charactersin the BASIC LATIN collection of ISO/IEC 10646.

43.7 For Vi si bl eStri ng, the canonical order of the cells is defined from the ISO/IEC 646 encoding (called
SO 646 ENCODING) asfollows:

(1SO 646 ENCODING) - 32
NOTE —That is, the canonical order is the same as the charactersin cells 2/0-7/14 of the |SO/IEC 646 code table.

The entire character set contains precisely 95 characters. The endpoint of a"VaueRange" (or individual characters) can
be specified using the graphic symbol in a"cstring”.

43.8 For | A5St ri ng, the canonical order of the cellsis defined from the 1SO/IEC 646 encoding as follows:
(ISO 646 ENCODING)

The entire character set contains precisely 128 characters. The endpoint of a "VaueRange" (or individual characters)
can be specified using the graphic symbol in a "cstring" or an 1SO 646 control character value reference defined in
42.1.1.

44 Definition of unrestricted character string types

This clause defines a type whose values are the values of any character abstract syntax. In an OSI environment, this
abstract syntax may be part of the OSI defined context set. Otherwise, it is referenced directly for each instance of use
of the unrestricted character string type.

NOTE 1 — A character abstract syntax (and one or more corresponding character transfer syntaxes) can be defined by any
organization able to allocate ASN.1 OBJECT | DENTI FI ERs.

NOTE 2 — Profiles produced by a community of interest will normally determine the character abstract syntaxes and character
transfer syntaxes that are to be supported for specific instances or groups of instances of CHARACTER STRI NG. It will be usua in
OSl applications to include reference to supported syntaxesin an OSI Protocol Implementation Conformance Statement.

441 The unrestricted character string type (see 3.8.89) shall be referenced by the notation
"UnrestrictedCharacterStringType'":

UnrestrictedCharacter StringType ::= CHARACTER STRI NG
44.2 Thistype has atag which is universal class, number 29.

443 The type consists of values representing:
a) acharacter string value that may, but need not, be the value of an ASN.1 character string type; and
b) identification (separately or together) of:
1) acharacter abstract syntax; and
2) the character transfer syntax.

44.4 The unrestricted character string type has an associated type. This associated type is used to support its value
and subtype notations.

445 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHA CE {
synt axes SEQUENCE {
abst ract OBJECT | DENTI FI ER,
transfer OBJECT | DENTI FI ER }
-- Abstract and transfer syntax object identifiers --,
synt ax CBJECT | DENTI FI ER

-- A single object identifier for identification of the

-- abstract and transfer syntaxes --,
presentation-context-id | NTEGER

-- (Applicable only to OSI environnents)

-- The negotiated OSl presentation context identifies the

-- abstract and transfer syntaxes --,

cont ext - negoti ati on SEQUENCE {
presentation-context-id I NTECER,
transf er-synt ax OBJECT | DENTI FI ER }

ITU-T Rec. X.680 (11/2008) 83

| SO/IEC 8824-1:2008 (E)

-- (Applicable only to OSI environments)

-- Context-negotiation in progress, presentation-context-id

-- identifies only the

-- abstract-syntax, so the transfer syntax shall be specified --,

transf er-synt ax OBJECT | DENTI FI ER

-- The type of the value (for exanple, specification that it is
-- the value of an ASN. 1 type) is fixed by the application

-- designer (and hence known to both sender and receiver). This
-- case is provided prinmarily to support

-- selective-field-encryption (or other encoding

-- transformations) of an ASN.1 type --,

fixed NULL
-- The data value is the value of a fixed ASN. 1 type (and hence
-- known to both sender and receiver) -- },

dat a- val ue-descri ptor Obj ect Descri ptor OPTI ONAL
-- This provides human-readabl e identification of the class of
-- the value --,

string-val ue CCTET STRI NG }

(W TH COVPONENTS {

dat a- val ue-descri ptor ABSENT })

NOTE — The unrestricted character string type does not allow the inclusion of adat a- val ue- descri pt or value together with
the i denti fication. However, the definition of the associated type provided here underlies the commonalities which exist
between the embedded-pdv type, the external type and the unrestricted character string type.

44.6 The text of 36.6 and 36.7 also applies to the unrestricted character string type.

4.7 The value notation shall be the value notation for the associated type defined in 44.5, where the value of the
string-val ue component of type OCTET STRI NG represents an encoding using the transfer syntax specified in
i dentification.

UnrestrictedCharacter StringValue ::= SequenceValue
XMLUnrestrictedChar acter StringValue ::= XML SequenceValue
44.8 An example of the unrestricted character string typeisgivenin G.2.8.

45 Notation for typesdefined in clauses 46 to 48
45.1 The notation for referencing atype defined in clauses 46 to 48 shall be:
Useful Type ::= typereference
where "typereference” is one of those defined in clauses 46 to 48 using the ASN.1 notation.

45.2 Thetag of each "Useful Type" is specified in clauses 46 to 48.

46 Generalized time

NOTE — Earlier versions of this Recommendation | International Standard used different text (due to the evolution of the 1SO
time standards), but the technical content is unchanged from the first version of this Recommendation | International Standard.

46.1 This type shall be referenced by the name:

Ceneral i zedTi ne

46.2 The type consists of acalendar date, together with:

a) alocal time of day, including midnight at the start of a day, but excluding midnight at the end of a day,
to an accuracy of:

1) hours, minutes, and seconds (or seconds and fractions of a second to any number of decimal
places); or

2) hours and minutes (or minutes and fractions of a minute to any number of decimal places); or
3) hours (or hours and fractions of an hour to any number of decimal places); or

b) aUTC time of day, including midnight at the start of a day, but excluding midnight at the end of a day,
to any of the accuracieslisted in @) above; or

84 ITU-T Rec. X.680 (11/2008)

0)

| SO/IEC 8824-1:2008 (E)

alocal time of day as specified in &) above, together with the difference between local time and UTC.

NOTE — The time difference component is positive if the local time is ahead of UTC.

46.3 Thetypeis defined, using ASN.1, asfollows:

CGeneralizedTime ::= [UNIVERSAL 24] IMPLICIT VisibleString

with the values of the Vi si bl eSt ri ng restricted to strings of characters which are either:

a)

b)

0)

a specification of acalendar date followed by alocal time, consisting of:

1) astring representing the calendar date, as specified in 1SO 8601, 4.1.2.2 — Basic format); followed
by:
NOTE 1 — This specifies a four-digit representation of the year, a two-digit representation of the month and
atwo-digit representation of the day, without use of separators.

2) a string representing the time of day to an accuracy of one hour, one minute, one second, or
fractions of a second (to any degree of accuracy), using either comma or full stop as the decimal sign (as
specified in 1SO 8601, 4.2.2.2 and 4.2.2.3 — Basic format); optionally followed by:

3) adecima fraction of a minute if seconds are omitted, or a decimal fraction of an hour if minutes
and seconds are omitted (as specified in 1SO 8601, 4.2.2.4); or

NOTE 2 — ISO 8601 specifies the use of either a comma or a full stop as the decimal sign. There are no
other separators present. It is recommended that in any given ASN.1 specification, either commaor full stop
be consistently used as the decimal sign.

a specification of a calendar date and a UTC time consisting of the charactersin a) above followed by an
upper-case letter Z; or

a specification of a calendar date, the local time, and the exact difference between local timeand UTC as
specified in 1SO 8601, with the minutes component optionally omitted if the difference is an integral
number of hours.

NOTE 3 — Early work on ASN.1 canonical encoding rules assumed that there was no actual concept of
accuracy, so that an abstract value that might be represented with a seconds component of 3.000 was
regarded as the same abstract value as one that was represented with a seconds component of 3, and forbade
the use of trailing zeros in canonical encoding fractiona parts, and forbade the omission of seconds or
minutes and seconds. It also supported only the use of UTC time, not local time or local time with a time
difference component. This has not been changed in later editions of the ASN.1 standards, for backwards
compatibility. The TI ME type (introduced into ASN.1 in 2004) recognizes that abstract values can have an
associated accuracy, and that (e.g.) the representations of seconds as 3.000 and 3 produces different abstract
values, and that local time and UTC specifications represent different abstract values. The canonical
encoding rules for TI ME encode the full range of its abstract values, so use of TI ME may be preferred in new
specifications to the use of Gener al i zedTi ne.

In case c), the part of the string formed as in case a) represents the local time (t1), and the (signed) time difference (t)
enables UTC to be determined. If tois positive, local timeis ahead of UTC. We can thus determine UTC as.

UTCist; -ty

EXAMPLES

Casea)

"19851106210627. 3"
Local time 6 minutes, 27.3 seconds after 9 pm on 6 November 1985.

Caseb)

"19851106210627. 37"
Coordinated universal time as above.

Casec)

"19851106210627. 3- 0500"
Local time as in example &), with a coordinated universal time of 6 minutes, 27.3 seconds after 2 am on 7
November 1985.

Cased)

"198511062106. 456"
Local time 6.456 minutes after 9 pm on 6 November 1985.

Casee)

ITU-T Rec. X.680 (11/2008) 85

| SO/IEC 8824-1:2008 (E)

"1985110621. 14159"
Local time 0.14159 hours after 9 pm on 6 November 1985.

46.4 The tag shall be as defined in 46.3.
46.5 The value notation shall be the value notation for the Vi si bl eSt ri ng defined in 46.3.

47 Universal time

47.1 Thistype shall be referenced by the name:
UTCTi ne
47.2 The type consists of values representing:
a) calendar date; and
b) timeto aprecision of one minute or one second; and
c) (optionaly) alocal time differential from coordinated universal time.
47.3 Thetypeis defined, using ASN.1, asfollows:
UTCTinme ::= [UNIVERSAL 23] IMPLICIT VisibleString

with the values of the Vi si bl eSt ri ng restricted to strings of characters which are the juxtaposition of

a) thesix digits YYMMDD where YY isthe two low-order digits of the Christian year, MM is the month
(counting January as 01), and DD isthe day of the month (01 to 31); and

b) either:

1) thefour digits hhmm where hhis hour (00 to 23) and mm is minutes (00 to 59); or

2) thesix digits hhmmss where hh and mm are asin 1) above, and ssis seconds (00 to 59); and
C) either:

1) thecharacter Z; or

2) oneof the characters + or -, followed by hhmm, where hh is hour and mm is minutes.

The dternativesin b) above allow varying precisions in the specification of the time.

In alternative) 1), the time is coordinated universal time. In aternative c) 2), the time (t;) specified by a) and b) above
is the local time; the time differential (tp) specified by ¢) 2) above enables the coordinated universal time to be
determined as follows:

Coordinated universal timeist; — to

EXAMPLE 1 —If local timeis 7am on 2 January 1982 and coordinated universal time is 12 noon on 2 January 1982,
the value of UTCTi e is either of:

— "8201021200Z"; or
— "8201020700- 0500".

EXAMPLE 2 —If local time is 7am on 2 January 2001 and coordinated universal time is 12 noon on 2 January 2001,
the value of UTCTi ne is either of:

— "0101021200Z"; or
— "0101020700- 0500".

47.4 The tag shall be as defined in 47.3.
475 The value notation shall be the value notation for the Vi si bl eSt ri ng defined in 47.3.

48 The object descriptor type

48.1 Thistype shall be referenced by the name:
bj ect Descri pt or

48.2 The type consists of human-readable text which serves to describe an object. The text is not an unambiguous
identification of the object, but identical text for different objectsisintended to be uncommon.

86 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE - It is recommended that an authority assigning values of type OBJECT | DENTI FI ER to an object should also assign
values of type Obj ect Descr i pt or to that object.

48.3 Thetypeis defined, using ASN.1, asfollows:
oj ect Descriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

The Gr aphi ¢St ri ng contains the text describing the object.
48.4 The tag shall be as defined in 48.3.
485 The value notation shall be the value notation for the G- aphi ¢St ri ng defined in 48.3.

49 Constrained types

49.1 The "ConstrainedType" notation allows a constraint to be applied to a (parent) type, either to restrict its set of
values to some subtype of the parent or (within a set or sequence type) to specify that component relations apply to
values of the parent type and to values of some other component in the same set or sequence value. It also alows an
exception identifier to be associated with a constraint.

ConstrainedType ::=
Type Constraint
| TypeWithConstraint

In the first aternative, the parent typeis "Type", and the constraint is specified by "Constraint”" as defined in 49.6. The
second alternative is defined in 49.5.

49.2 When the "Constraint" notation follows a set-of or sequence-of type notation, it applies to the "Type" in the
(innermost) set-of or sequence-of notation, not to the set-of or sequence-of type.

NOTE - For example, in the following the constraint (SI ZE(1. . 64)) appliesto the Vi si bl eSt ri ng, not the SEQUENCE CF:
NanmesOf Menber Nati ons ::= SEQUENCE OF VisibleString (SIZE(1..64))

49.3 When the "Constraint”" notation follows the selection type notation, it applies to the choice type, and not to the
type of the selected aternative. Such aconstraint isignored (see 30.2).

NOTE — In the following example, the constraint (W TH COVPONENTS {..., a ABSENT}) appliesto the CHO CE type T, not to
the selected SEQUENCE type, and has no effect on the values of V.
T ::= CHO CE {
a SEQUENCE {
a | NTEGER OPTI ONAL,
b BOOLEAN
I
b NULL
}
V::=a<T(WTH COWONENTS {..., a ABSENT})

49.4 When the "Constraint” notation follows a " PrefixedType" notation, the interpretation of the overall notation is
the same regardless of whether the "PrefixedType" or the "Type" is considered as the parent type.

49.5 As a consequence of the interpretation specified in 49.2, special notation is provided to alow a constraint to
be applied to a set-of or sequence-of type. Thisis"TypeWithConstraint":

TypeWithConstraint ::=
SET Constraint OF Type
| SET SizeConstraint OF Type
| SEQUENCE Constraint OF Type
| SEQUENCE SizeConstraint OF Type
| SET Constraint OF NamedType
| SET SizeConstraint OF NamedType
| SEQUENCE Constraint OF NamedType
| SEQUENCE SizeConstraint OF NamedType

In the first and second alternatives the parent type is "SET COF Type', while in the third and fourth it is "SEQUENCE CF
Type". In the fifth and sixth alternatives the parent type is "SET OF NamedType", and in the seventh and eighth is
"SEQUENCE OF NamedType". In the first, third, fifth and seventh alternatives, the constraint is "Constraint” (see 49.6),

while in the second, fourth, sixth and eighth it is"SizeConstraint" (see 51.5).

ITU-T Rec. X.680 (11/2008) 87

| SO/IEC 8824-1:2008 (E)

NOTE - Although the "Constraint" aternatives encompass the corresponding "SizeConstraint" alternatives, the "SizeConstraint"
alternatives are provided for historical reasons.

49.6 A constraint is specified by the notation "Constraint":
Constraint ::=" (" ConstraintSpec ExceptionSpec")"

ConstraintSpec::=
SubtypeConstraint
| GeneralConstraint

"ExceptionSpec” is defined in clause 53. Unlessiit is used in conjunction with an "extension marker" (see clause 52), it
shall only be present if the "ConstraintSpec" includes an occurrence of "DummyReference” (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.3) or is a "UserDefinedConstraint" (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 9). The
"GeneralConstraint" is defined in ITU-T Rec. X.682 | ISO/IEC 8824-3, 8.1.

49.7 The notation " SubtypeConstraint" is the general-purpose "ElementSetSpecs' notation (see clause 50):
SubtypeConstraint ::= Element SetSpecs

In this context, the elements are values of the parent type (the governor of the element set is the parent type). There
shall be at least one element in the set.

50 Element set specification

50.1 In some notations a set of elements of some identified type or information object class (the governor) can be
specified. In such cases, the notation "ElementSetSpec” is used:

ElementSetSpecs::=
RootElementSetSpec
| RootElementSetSpec ", "..."
| RootElementSetSpec "," "..." "," AdditionalElementSetSpec

RootElementSetSpec ::= ElementSetSpec
Additional ElementSet Spec :: = ElementSet Spec

ElementSetSpec ::= Unions
| ALL Exclusions

Unions::= Intersections
| UElemsUnionMark Intersections

UElems::= Unions

Intersections ::= Inter sectionElements
| | Elems IntersectionMark I nter sectionElements

|Elems::= Intersections

I nter sectionElements ::= Elements | Elems Exclusions
Elems::= Elements

Exclusions ::= EXCEPT Elements

UnionMark ::="|" | UNNON

IntersectionMark ::= "~" | | NTERSECTI ON

NOTE 1 — The caret character "" and the word | NTERSECTI ON are synonymous. The character "|" and the word UNI ON are
synonymous. It is recommended that, as a stylistic matter, either the characters or the words be used throughout a user
Specification. EXCEPT can be used with either style.

NOTE 2 — The order of precedence from highest to lowest is: EXCEPT, "~", "|". Notice that ALL EXCEPT is specified so that it
cannot be interspersed with the other constraints without the use of parentheses around "ALL EXCEPT xxX".

NOTE 3 — Anywhere that "Elements" occurs, either a constraint without parentheses [e.g., | NTEGER (1. . 4)] or a parenthesized
subtype constraint [e.g., | NTEGER ((1..4 | 9))] can appear.

NOTE 4 — Note that two EXCEPT operators must have either "[*, "A", "(" or ")" separating them, so (A EXCEPT B EXCEPT
O isnot permitted. This must be changedto ((A EXCEPT B) EXCEPT C) or (A EXCEPT (B EXCEPT Q)).

NOTE 5— Notethat ((A EXCEPT B) EXCEPT C) isthesameas(A EXCEPT (B | Q).

NOTE 6—The elements that are referenced by "ElementSetSpecs' is the union of the elements referenced by the
"RootElementSetSpec” and "Additional ElementSetSpec" (when present).

88 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

NOTE 7 — When the elements are information objects (i.e., the governor is an information object class), the notation
"ObjectSetElements” as defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.3 is used.

50.2 The elements forming the set are:

a) if the first dternative of the "ElementSetSpec" is selected, those specified in the "Unions' [see b)],
otherwise al elements of the governor except those specified in the "Elements' notation of the
"Exclusions’;

b) if the first aternative of "Unions' is selected, then those specified in the "Intersections' [see c)],
otherwise those specified at |east once either in the "UElems" or "Intersections”;

c) if thefirst aternative of "Intersections” is selected, those specified in the "IntersectionElements” [see d)],
otherwise those specified by "IElems" which also are specified by "IntersectionElements”;

d) if thefirst alternative of "IntersectionElements’ is selected, those specified in the "Elements’, otherwise
those specified in the "Elems" except those specified in the "Exclusions”.

50.3 The set of valuesis defined to be extensible if the following conditions hold:

a) for "ElementsSetSpecs': thereis an extension marker at the outer level;
NOTE - This applies even if all values of the parent are included in the root of the new constrained type.

b) for"Unions': at least one of the "UElems" is extensible;
c¢) for"Intersections': at least one of the "IElems" is extensible;
d) for"Exclusions': the set of elements preceding EXCEPT is extensible.

Otherwise, the set of valuesis not extensible (see also 1.4).

50.4 If the set of values is extensible, the root values can be determined by performing the set arithmetic using
only root values of the sets of values involved in the set arithmetic, as specified in 50.2. The extension additions can be
determined by performing the set arithmetic using the root values augmented by the extension additions, for each set of
valuesinvolved in the set arithmetic, and then excluding values that were determined to be root values.

50.5 The "Elements' notation is defined as follows:

Elements ::=
SubtypeElements
| ObjectSetElements
| "(" ElementSetSpec")"

The elements specified by this notation are:

a) Asdescribed in clause 51 below if the " SubtypeElements® aternative is used. This notation shall only be
used when the governor is a type, and the actual type involved will further constrain the notational
possibilities. In this context, the governor is referred to as the parent type.

b) Asdescribedin ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.10, if the " ObjectSetElements" notation is used.
This notation shall only be used when the governor is an information object class.

¢) Those specified by the "ElementSetSpec” if the third alternative is used.

50.6 When performing set arithmetic within a subtype constraint or a value set when the governing type is
extensible, only abstract values that are in the extension root of the governing type are used in the set arithmetic. In this
case, al instances of value notation (including value references) used in set arithmetic are required to reference an
abstract value of the extension root of the governing type. The end-points of a range constraint are required to
reference values that are present in the extension root of the governing type, and the range specification as a whole
references al (and only) those values in the range that are within the extension root of the governing type.

50.7 When performing set arithmetic involving information object sets, all information objects are used in the set
arithmetic. If any of the information object sets contributing to the set arithmetic are extensible, or if there is an
extension marker at the outermost level of an "ElementSetSpecs', the result of the set arithmetic is extensible.

50.8 If a subtype constraint is serialy applied to a parent type which is extensible through the application of an
extensible constraint, value notation used within it shall not reference values that are not in the extension root of the
parent type. The result of the second (serially applied) constraint is defined to be the same as if the constraint had been
applied to the parent type without its extension marker and possible extension additions.

ITU-T Rec. X.680 (11/2008) 89

| SO/IEC 8824-1:2008 (E)

EXAMPLE
Foo ::= INTEGER (1..6, ..., 73..80)
Bar ::= Foo (73) -- illegal
foo Foo ::= 73 -- legal since it is value notation for Foo, not part of a
constraint

Bar isillegal since 73 is not in the extension root of Foo. If 73 had been in the extension root of Foo, the example
would have been legal, and Bar would have contained the single value of 73.

NOTE — This subclause applies only to "SubtypeConstraint". If a"GeneralConstraint" (see ITU-T Rec. X.682 | ISO/IEC 8824-3,
8.1) isapplied to a parent type, then extensibility of that parent type is not affected.

51 Subtype elements

511 General

A number of different forms of notation for "SubtypeElements' are provided. They are identified below, and their
syntax and semantics are defined in the following subclauses. Table 11 and Table 12 summarize which notations can be
applied to which parent types. " SubtypeElements" not present in one of the tables means that the corresponding subtype
element cannot be applied to any of the parent types listed in that table.

SubtypeElements::=
SingleValue
| ContainedSubtype
| ValueRange
| PermittedAlphabet
| SizeConstraint
| TypeConstraint
| InnerTypeConstraints
| Patter nConstraint
| PropertySettings
| DurationRange
| TimePointRange
| RecurrenceRange

90 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Table 11 — Applicability of " SubtypeElements' to typesother than the Timetype

Type (or derived Single | Contained | Value Size Permitted Type Inner Pattern
from such atype by value subtype range | constraint | alphabet | constraint | subtyping | constraint
tagging or subtyping)
Bit string Yes Yes No Yes No No No No
Boolean Yes Yes No No No No No No
Choice Yes Yes No No No No Yes No
Embedded-pdv Yes No No No No No Yes No
Enumerated Yes Yes No No No No No No
External Yes No No No No No Yes No
Instance-of Yes Yes No No No No Yes No
Integer Yes Yes Yes No No No No No
Null Yes Yes No No No No No No
Object classfield type Yes Yes No No No No No No
Object descriptor Yes Yes No Yes Yes No No No
Object identifier Yes Yes No No No No No No
Octet string Yes Yes No Yes No No No No
OID internationalized Yes Yes No No No No No No
resource identifier
open type No No No No No Yes No No
Real Yes Yes Yes No No No Yes No
Relative object YesP) Yed) No No No No No No
identifier
Relative OID Yes” Yes” No No No No No No
internationalized
resource identifier
Restricted character Yes Yes Yes?d Yes Yes No No Yes
string types
Sequence Yes Yes No No No No Yes No
Sequence-of Yes Yes No Yes No No Yes No
Set Yes Yes No No No No Yes No
Set-of Yes Yes No Yes No No Yes No
GeneralizedTime and Yes Yes No No No No No No
UTCTimetypes
Unrestricted character Yes No No Yes No No Yes No
string type
3 Allowed only within the "PermittedAlphabet” of BMPString, |A5String, NumericString, PrintableString,

Vi si bl eSt ri ng, UTF8St ri ng and Uni ver sal Stri ng.

b) The starting node for all relative object identifier and relative OID internationalized resource identifier types or values in

constraints or valuesets shall be the same as the starting node for the governor.

Table 12 — Applicability of " SubtypeElements' tothe Timetype

Type (or
derived from Single Contained Property Duration Tlme Recurrence .
such atype by . point Inner subtyping
. value subtype settings range range
tagging or range
subtyping)
Timetype Yes Yes Yes Yes Yes Yes (Note)

NOTE - Only allowed if all the abstract values of the parent type have the property settings
"Basi c=Interval Interval-type=D' (see38.4.4).

ITU-T Rec. X.680 (11/2008)

91

| SO/IEC 8824-1:2008 (E)

51.2 Singlevalue

51.21 The"SingleValue" notation shall be:
SingleValue::=Value

where "Value' is the value notation for the parent type.

51.2.2 A "SingleVaue" specifiesthe single value of the parent type specified by "Value".

51.3 Contained subtype

51.3.1 The"ContainedSubtype" notation shall be:
ContainedSubtype ::= Includes Type
Includes ::= | NCLUDES | empty

The "empty" alternative of the "Includes' production shall not be used when "Type" in "ContainedSubtype” is the
notation for the null type.

51.3.2 A "ContainedSubtype" specifies all of the values in the root of the parent type that are aso in the root of
"Type". "Type" isrequired to be derived from the same built-in type as the parent type.

51.3.3 The set of values referenced by an extensible "Type" used in a contained subtype constraint does not inherit
the extension marker from the "Type". Any valuesin "Type" that are not in the extension root of that type are ignored,
and do not contribute to the values of the constrained type.

NOTE — The use of an extensible "Type" does not in itself make the constrained type extensible.

514 Valuerange
51.41 The"VaueRange" notation shall be:
ValueRange ::= Lower Endpoint ". . " Upper Endpoint

51.42 A "VaueRange" specifiesthe valuesin arange of values which are designated by specifying the values of the
endpoints of the range. This notation can only be applied to integer types, the "PermittedAlphabet” of certain restricted
character string types (1A5String, NumericString, PrintableString, VisibleString, BMPString,
Uni versal String and UTF8St ri ng only) and real types. All values specified in the "ValueRange" are required to be
in the root of the parent type.

NOTE - For the purpose of subtyping, NOT- A- NUMBER exceeds all real values, PLUS- | NFI NI TY exceeds all real values except
NOT- A- NUMBER, minus zero exceeds all negative real values and is less than plus zero, and M NUS- | NFI NI TY is less than all real
values. Otherwise, norma mathematical ordering is applied.

51.4.3 Each endpoint of the range is either closed (in which case that endpoint is specified) or open (in which case
the endpoint is not specified). When open, the specification of the endpoint includes aless-than symbol ("<"):

LowerEndValue | LowerEndValue” <"
UpperEndValue | " <" UpperEndValue

L ower Endpoint ::

Upper Endpoint ::

51.4.4 An endpoint may also be unspecified, in which case the range extends in that direction as far as the parent
type alows:

LowerEndValue::=Value|M N

UpperEndValue ::= Value | MAX
NOTE — When a"ValueRange" is used as a "PermittedAlphabet” constraint, "LowerEndValue" and "UpperEndVaue' shall be

of size 1.
515 Size constraint
51.5.1 The"SizeConstraint" notation shall be:
SizeConstraint ::= Sl ZE Constraint

5152 A "SizeConstraint" can only be applied to bit string types, octet string types, character string types, set-of
types or sequence-of types.

92 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

5153 The "Constraint" specifies the permitted integer values for the length of the specified values, and takes the
form of any constraint which can be applied to the following parent type:

INTEGER (0 .. MAX)
The"Constraint" shall use the "SubtypeConstraint" alternative of "ConstraintSpec”.

51.5.4 The unit of measure depends on the parent type, as follows:

Type Unit of measure
bit string bit

octet string octet

character string character

set-of component value
seguence-of component value

NOTE — The count of the number of characters specified in this subclause for determining the size of a character string value
shall be clearly distinguished from a count of octets. The count of characters shall be interpreted according to the definition of
the collection of characters used in the type, in particular, in relation to references to the standards, tables or registration numbers
in aregister which can appear in such a definition.

51.6 Typeconstraint
51.6.1 The"TypeConstraint" notation shall be:
TypeConstraint ::= Type
51.6.2 Thisnotation is only applied to an open type notation and restricts the open type to values of "Type".

51.7 Permitted alphabet
51.7.1 The"PermittedAlphabet" notation shall be:
PermittedAlphabet ::= FROMConstraint

51.7.2 A "PermittedAlphabet" specifies all values which can be constructed using a sub-alphabet of the parent string.
This notation can only be applied to restricted character string types.

51.7.3 The"Constraint" shall use the "SubtypeConstraint" alternative of "ConstraintSpec". Each "SubtypeElements"
within that "SubtypeConstraint” shall be one of the four alternatives "SingleValue', "ContainedSubtype”,
"VaueRange', and "SizeConstraint". The sub-alphabet includes precisely those characters which appear in one or
more of the values of the parent string type which are allowed by the "Constraint".

51.7.4 If "Constraint” is extensible, then the set of values selected by the permitted alphabet constraint is extensible.
The set of valuesin the root are those permitted by the root of "Constraint”, and the extension additions are those values
permitted by the root together with the extension-additions of "Constraint”, excluding those values aready in the root.

51.8 Inner subtyping
51.8.1 The"InnerTypeConstraints' notation shall be:

Inner TypeConstraints::=
W TH COVMPONENT SingleTypeConstraint
| WTH COVWPONENTS MultipleTypeConstraints

51.8.2 An "InnerTypeConstraints’ specifies only those values which satisfy a collection of constraints on the
presence and/or values of the components of the parent type. A value of the parent type is not specified unless it
satisfies all of the constraints expressed or implied (see 51.8.7). This notation can be applied to the set-of, sequence-of,
set, sequence and choice types.

NOTE — An "InnerTypeConstraints’ applied to a set or sequence type is ignored by the COVPONENTS OF transformation (see
25.5 and 27.2).

51.8.3 If an"InnerTypeConstraints' contains a"GeneralConstraint” (see 49.6), then it shall only be used (directly or
indirectly) as part of the first alternative of the productions, "ElementSetSpecs' (see clause 50) and/or " ObjectSetSpec”

ITU-T Rec. X.680 (11/2008) 93

| SO/IEC 8824-1:2008 (E)
(see ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.3) and of the first adternative of the productions "ElementSetSpec”,
"Unions’, "Intersections’, and "IntersectionElements’ (see clause 50).

51.8.4 For the types which are defined in terms of a single other (inner) type (set-of and sequence-of), a constraint
taking the form of a subtype value specification is provided. The notation for thisis"SingleTypeConstraint";

SingleTypeConstraint ::= Constraint

The "Constraint" defines a subtype of the single other (inner) type. A value of the parent type is specified if and only if
each inner value belongs to the subtype obtained by applying the "Constraint” to the inner type.

51.8.5 For the types which are defined in terms of multiple other (inner) types (choice, set, and sequence), a number
of constraints on these inner types can be provided. The notation for thisis"MultipleTypeConstraints':

MultipleTypeConstraints::=
Full Specification
| Partial Specification

FullSpecification ::="{" TypeConstraints"}"
PartialSpecification ::="{" "..." " TypeConstraints"}"
TypeConstraints::=

NamedConstraint

| NamedConstraint " ," TypeConstraints

NamedConstraint ::=
identifier ComponentConstraint

51.8.6 The "TypeConstraints' contains a list of constraints on the component types of the parent type. For a
sequence type, the constraints must appear in order. The inner type to which the constraint applies is identified by
means of itsidentifier. For a given component, there shall be at most one "NamedConstraint".

51.8.7 The "MultipleTypeConstraints' comprises either a "FullSpecification" or a "Partial Specification". When
"FullSpecification” is used, there is an implied presence constraint of ABSENT on all inner types which can be
constrained to be absent (see 51.8.10) and which is not explicitly listed. Where "Partia Specification" is employed,
there are no implied constraints, and any inner type can be omitted from the list.

51.8.8 A particular inner type may be constrained in terms of its presence (in values of the parent type), its value, or
both. The notation is "ComponentConstraint”:

ComponentConstraint ::= ValueConstraint PresenceConstraint
51.8.9 A constraint on the value of an inner typeis expressed by the notation "ValueConstraint":
ValueConstraint ::= Constraint | empty

The constraint is satisfied by a value of the parent type if and only if the inner value belongs to the subtype specified by
the "Constraint" applied to the inner type.

51.8.10 A constraint on the presence of an inner type shall be expressed by the notation "PresenceConstraint”:
PresenceConstraint ::= PRESENT | ABSENT | OPTI ONAL | empty
The meaning of these alternatives, and the situations in which they are permitted are defined in 51.8.10.1 t0 51.8.10.3.

51.8.10.11f the parent type is a sequence or set, a component type marked OPTI ONAL may be constrained to be
PRESENT (in which case the constraint is satisfied if and only if the corresponding component value is present) or to be
ABSENT (in which case the constraint is satisfied if and only if the corresponding component value is absent) or to be
OPTI ONAL (in which case no constraint is placed upon the presence of the corresponding component value).

51.8.10.2 If the parent type is a choice, a component type can be constrained to be ABSENT (in which case the constraint
is satisfied if and only if the corresponding component type is not used in the value), or PRESENT (in which case the
congtraint is satisfied if and only if the corresponding component type is used in the value); there shall be at most one
PRESENT keyword in a"MultipleTypeConstraints’.

NOTE - See G.5.6 for aclarifying example.

51.8.10.3The meaning of an empty "PresenceConstraint” depends on whether a "FullSpecification" or a
"Partia Specification" is being employed:

94 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

a) in a"FullSpecification", this is equivalent to a constraint of PRESENT for a set or sequence component
marked OPTI ONAL and imposes no further constraint otherwise;

b) ina"PartialSpecification", no constraint isimposed.

51.9 Pattern constraint
51.9.1 The"PatternConstraint” notation shall be:
PatternConstraint ::= PATTERN Value

51.9.2 "Value' shal be a "cstring” of type Uni versal String (or a reference to such a character string) which
contains an ASN.1 regular expression as defined in Annex A. The "PatternConstraint" selects those values of the
parent type that satisfy the ASN.1 regular expression. The entire value shall satisfy the entire ASN.1 regular expression,
i.e, the "PatternConstraint" does not select values whose leading characters match the (entire) ASN.1 regular
expression but which contain further trailing characters.

NOTE - "Vadue" isformally defined as a value of type Uni ver sal St ri ng, but the sets of values of type Uni ver sal Stri ng and
UTF8St ri ng are the same (see 41.16). Thus atotally equivalent definition could have been to say that "Value" is a value of
type UTF8St ri ng.

51.10 Property settings
51.10.1 The "PropertySettings' notation shall be:
PropertySettings::= SETTI NGS simplestring
51.10.2 The contents of the "simplestring" shall be "PropertySettingsList":

PropertySettingsList ::=
PropertyAndSettingPair
| PropertySettingsList PropertyAndSettingPair

PropertyAndSettingPair ::= PropertyName" =" SettingName
PropertyName ::= psname
SettingName ::= psname

51.10.3 The "PropertyName" shall be one of the time property names listed in column 1 of Table 6, and shall appear
at most once in the "PropertySettingsList".

51.10.4 The "SettingName" of a"PropertyAndSettingPair" shall be one of the property setting names that are listed in
column 2 of Table 6 in the row that contains (in column 1) the "PropertyName" of that "PropertyAndSettingPair".

51.10.5 An abstract value shall be included in the subtype if, and only if, it satisfies the following condition for all of
the "PropertyAndSettingPair"s. Either:
a) the abstract value does not have a property setting for the "PropertyName" (see columns 2 and 3 of
Table 6 for the abstract values that have a property setting for a given "PropertyName"); or

b) the abstract value has a property setting that is the same as the " SettingName".

NOTE — To assist with human readability, it is recommended, but not required, that the setting of the Basi c time property be
aways included as the first "Property AndSettingPair”.

EXAMPLE: TIME(SETTINGS "M dnight=Start") would produce a subset of the TI ME type in which all abstract
values are present (including those that represent dates only) except those that have the property setting
"M dni ght =End" .

51.10.6 All abstract values of the TI ME type have settings for the Basi ¢ time property (this is not true for other time
properties). In order to prevent misleading notation in which a "PropertyAndSettingPair" has no effect on the resulting
set of abstract values, some restrictions are placed on the "PropertyName's that can be used with a specific setting of
the Basi ¢ time property. Therestrictions are listed in Table 13.

NOTE — Table 13 is not an exhaustive set of rules for preventing the use of "PropertyAndSetting” pairs, some of which are
redundant (which is not in general illegal).

ITU-T Rec. X.680 (11/2008) 95

| SO/IEC 8824-1:2008 (E)

Table 13 — Restrictions on use of property nameswith Basi ¢ property settings

Basi ¢ property setting Prohibited property nameswith this Basi ¢ property setting
Dat e Ti ne, Local - or- UTC, M dni ght, Interval -type,
SE- poi nt, Recur r ence
Ti e Dat e, Year, I nt erval -t ype, SE- poi nt, Recurrence
Dat e- Ti ne Interval -type, SE- poi nt, Recurrence
I nterval Recurrence
Rec- I nterval No restriction

51.11 Duration range
51.11.1 The"DurationRange" subtype notation shall be:
DurationRange ::= ValueRange

51.11.2 Both the "Value's in the "ValueRange" shall identify a time abstract value (either by value notation or by a
value reference) that is present in the subtype:

TI ME(SETTI NGS "Basi c=I nterval Interval-type=D")

51.11.3 Boththe"Value'sin the"VaueRange' shal specify the duration using either:

a) the same single time component to the same accuracy (no fractional part, or the same number of digitsin
the fractional part); or

b) multiple time components that have identical values apart from the least significant time component
(which may have different values, but shall have the same accuracy).
51.11.4 The selected duration abstract values are those that:
a) havethe same valuesfor the identical time components of the two "Value'sin the "VaueRange"; and

b) are within the specified range for the least significant time component of the two "Vaue's in the
"VaueRange'; and
c¢) have the same accuracy as the least significant time component of the two "Value's in the
"VaueRange'.
NOTE — This provides an aternative to the use of inner subtyping (see 38.4.4) as a means of specifying a duration that uses only
asingle time component to a specified accuracy.

EXAMPLE: TI ME("PT2M. 000S". . " PT2Mb9. 000S") defines a Tl ME subtype that consists only of abstract values
representing durations of 2 minutes and zero to 59 seconds, to an accuracy of one millisecond.

51.12 Time point range
51.12.1 The"TimePointRange" notation shall be:
TimePointRange ::= ValueRange

51.12.2 Both the "Vaue's in the "VaueRange" shall identify a time abstract value (either value notation or a value
reference) that is present in the subtype:

TIME ((SETTINGS "Basi c=Date")
| (SETTI NGS " Basi c=Ti ne")
| (SETTI NGS "Basi c=Dat eTi me"))

51.12.3 The two "Value's in the "VaueRange' shall have identical settings for al time properties except the
M dni ght time property.

51.12.4 If the two "Value's in the "VaueRange" have the property setting " Local - or - UTC=LD" then the time
difference in the two "Value's shall be the same.
NOTE - This allows subtyping using, for example:
TIME ("00: 00".."09: 00")
or:
TIME ("21:00".."24:00").

96 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

51.12.5 This subtype notation selects from the parent type those abstract values that have identical settings for all time
properties (except the M dni ght time property) to those of the "Value's in the "ValueRange" (and the same time
difference, if there is a property setting of Local - or - UTC=LD in the "Vaue's), and that have values within the
specified "ValueRange" (see 51.4).

NOTE — The requirement for all relevant abstract values to have identical settings for all time properties (except the M dni ght

time property), and that if they have a time differential it is the same time differential, ensures that they are all using the same
time-scale, and hence that an order relationship exists among them.

51.13 Recurrencerange
51.13.1 The"RecurrenceRange" notation shall be:
RecurrenceRange ::= ValueRange
51.13.2 Boththe"Vaue'sinthe"VaueRange" shall be integer values.

51.13.3 For the purposes of ordering only, a time value with a property setting of " Recurr ence=Unl i ni t ed" shall
be treated as specifying an infinite number of repetitions (an integer value of MAX).

51.13.4 This subtype notation selects from the parent type those abstract values that are also present in the subtype:
TI ME(SETTI NGS "Basi c=Rec-interval")

and that have a number of recurrence digits that is within the specified "VaueRange" (see 51.4).

52 The extension marker

NOTE - Like the constraint notation in general, the extension marker has no effect on some encoding rules of ASN.1, such as
the Basic Encoding Rules, but does on others, such as the Packed Encoding Rules. Its effect on encodings defined using ECN is
determined by the ECN specification.

52.1 The extension marker, ellipsis, is an indication that extension additions are expected. It makes no statement as
to how such additions should be handled other than that they shall not be treated as an error during the decoding
process.

52.2 The joint use of the extension marker and an exception identifier (see clause 53) is both an indication that
extension additions are expected and also provides a means for identifying the action to be taken by the application if
there is a constraint violation. It is recommended that this notation be used in those situations where store and forward
or any other form of relaying isin use, so asto indicate (for example) that any unrecognized extension additions are to
be returned to the application for possible re-encoding and relaying.

52.3 The result of set arithmetic involving subtype constraints, value sets or information object sets that are
extensible is specified in clause 50.

52.4 If atype defined with an extensible constraint is referenced in a " ContainedSubtype”, the newly defined type
does not inherit the extension marker or any of its extension additions (see 51.3.3). The newly defined type can be
made extensible by including an extension marker at the outermost level in its "ElementSetSpecs' (see also 50.3). For
example:

A ::= INTECER (0..10, ..., 12) -- Ais extensible.

B ::= INTEGER (A -- Bis inextensible and is constrained to O-
10.

C ::= INTEGER (A .) -- Cis extensible and is constrained to 0-10.

52.5 If atype defined with an extensible constraint is further constrained with an "ElementSetSpecs”, the resulting
type does not inherit the extension marker nor any extension additions that may be present in the former constraint (see
50.8). For example:

A ::= INTEGER (0..10, ...) -- Ais extensible.
B::= A (2..5) -- Bis inextensible.
C::= A -- Cis extensible.

52.6 Components of a set, sequence or choice type that are constrained to be absent shall not be present, regardliess
of whether the set, sequence or choice typeis an extensible type.
NOTE — Inner type constraints have no effect on extensibility.

ITU-T Rec. X.680 (11/2008) 97

| SO/IEC 8824-1:2008 (E)

For example:
A = SEQUENCE {
a | NTEGER
b BOCOLEAN OPTI ONAL,
}
B::= A (WTH COVPONENTS {b ABSENT})

-- Bis extensible, but 'b'" shall not be
-- present in any of its val ues.

52.7 Where this Recommendation | International Standard requires distinct tags (see 25.6 to 25.7, 27.3 and 29.3),
the following transformation shall conceptually be applied before performing the check for tag uniqueness:

52.7.1 A new element or alternative (called the conceptually-added element, see 52.7.2) is conceptually added at the
extension insertion point if:

a) there are no extension markers but extensibility is implied in the module header, and then an extension
marker is added and the new element is added as the first addition after that extension marker; or

b) thereisasingle extension marker in a CHO CE or SEQUENCE or SET, and then the new element is added
at the end of the CHO CE or SEQUENCE or SET immediately prior to the closing brace; or

c) there are two extension markers in a CHO CE or SEQUENCE or SET, and then the new element is added
immediately before the second extension marker.

52.7.2 This conceptually-added element is solely for the purposes of checking legality through the application of
rules requiring distinct tags (see 25.6 to 25.7, 27.3 and 29.3). It is conceptually-added after the application of automatic
tagging (if applicable) and the expansion of COVPONENTS CF.

52.7.3 The conceptually-added element is defined to have a tag which is distinct from the tag of all normal ASN.1
types, but which matches the tag of all such conceptualy-added elements and matches the indeterminate tag of the
open type, as specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.2, Note 2.

NOTE — The rules concerning tag uniqueness relating to the conceptually added element and to the open type, together with the
rules requiring distinct tags (see 25.6 to 25.7, 27.3 and 29.3) are necessary and sufficient to ensure that:

a) any unknown extension addition can be unambiguously attributed to a single insertion point when a BER encoding is
decoded; and

b) unknown extension additions can never be confused with OPTI ONAL elements.

In PER the above rules are sufficient but are not necessary to ensure these properties. They are nonetheless imposed as rules
of ASN.1 to ensure independence of the notation from encoding rules.

52.7.4 If, with these conceptually-added elements, the rules requiring distinct types are violated, then the
specification has madeillegal use of the extensibility notation.

NOTE — The purpose of the above rules is to make precise restrictions arising from the use of insertion points (particularly those
which are not at the end of SEQUENCES or SETS or CHOl CES). The restrictions are designed to ensure that in BER, DER and CER
it is possible to attribute an unknown element received by a version 1 system unambiguously to a specific insertion point. This
would be important if the exception handling of such added elements was different for different insertion points.

52.8 Examples
52.8.1 Examplel

A = SET {
a A,
b CHO CE {
C C,
d D,
}
}

islegal, for there is no ambiguity as any added material must be part of b.
52.8.2 Example?2

A = SET {
a A
b CHA CE {
c C,
d D,

98 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

isillegal, for added material may be part of b, or may be at the outer level of A, and a version 1 system cannot tell
which.

52.8.3 Example3

A = SET {
a A
b CHOCE {
c C
d CHOCE {
e E,
}
}

isasoillegal, for added material may be part of b or d.

52.8.4 More complex examples can be constructed, with extensible choices inside extensible choices, or extensible
choices within elements of a sequence marked OPTI ONAL or DEFAULT, but the above rules are necessary and sufficient
to ensure that an element not present in version 1 can be unambiguously attributed by a version 1 system to precisely
one insertion point.

53 The exception identifier

531 In a complex ASN.1 specification, there are a number of places where it is specifically recognized that
decoders have to handle material that is not completely specified in it. These cases arise in particular from use of a
congtraint that is defined using a parameter of the abstract syntax (see ITU-T Rec. X.683 | ISO/IEC 8824-4, clause 10).

53.2 In such cases, the application designer needs to identify the actions to be taken when some implementation-
dependent constraint is violated. The exception identifier is provided as an unambiguous means of referring to parts of
an ASN.1 specification in order to indicate the actions to be taken. The identifier consists of a"! " character, followed
by an optional ASN.1 type and a value of that type. In the absence of the type, | NTEGER is assumed as the type of the
value.

53.3 If an "ExceptionSpec" is present, it indicates that there is text in the body of the standard saying how to
handle the constraint violation associated with the "!' " character. If it is absent, then the implementors will either need
to identify text that describes the action that they are to take, or will take implementation-dependent action when a
constraint violation occurs.

53.4 The "ExceptionSpec" notation is defined as follows:
ExceptionSpec::="1" Exceptionldentification | empty

Exceptionl dentification ::=
SignedNumber
| DefinedValue
| Type":" Value

The first two aternatives denote exception identifiers of type integer. The third alternative denotes an exception
identifier ("Vaue") of arbitrary type ("Type").

535 Where a type is constrained by multiple constraints, more than one of which has an exception identifier, the
exception identifier in the outermost constraint shall be regarded as the exception identifier for that type.

53.6 Where an exception marker is present on types that are used in set arithmetic, the exception identifier is
ignored and is not inherited by the type being constrained as a result of the set arithmetic.

54 Encoding control sections
54.1 The "EncodingControl Sections" is specified by the following productions:

ITU-T Rec. X.680 (11/2008) 99

| SO/IEC 8824-1:2008 (E)

EncodingContr ol Sections ::=
EncodingControl Section EncodingContr ol Sections
lempty

EncodingControlSection ::=
ENCODI NG CONTRCL

encodingreference
Encodingl nstructionAssignmentL ist

54.2 Each "EncodingControl Section” within an ASN.1 module shall have a different "encodingreference”, and
assigns encoding instructions for that encoding reference to one or more typesin the module.

54.3 The "encodingreference” shall not be TAG

54.4 The "EncodinglnstructionAssignmentList" production and the associated semantics is specified in the
Recommendation | International Standard identified by the "encodingreference” (see Annex E) and can consist of any
sequence of ASN.1 lexical items (including comment, cstring and white-space) except the lexical items END and
ENCODI NG CONTRCL, which will not appear in an "Encodingl nstructionAssignmentList".
NOTE 1 — Future versions of this Recommendation | International Standard may add further encoding references to Annex E. It
is recommended that ASN.1 tools provide (only) warnings if the "encodingreference” in an "EncodingControl Section” is not one

of those specified in Annex E and then ignore the "EncodingControlSection” until the next occurrence of END or
ENCCDI NG- CONTRQOL, whichever comes first.

NOTE 2 — The "encodingreference” in an "EncodingControl Section” cannot be omitted. The default encoding reference for the
module has no effect on an "EncodingControl Section”.

54,5 There are interactions and restrictions on the assignment of encoding instructions (with the same encoding
reference) to a type using a type prefix and using an "EncodingControlSection". It is aways possible (as a matter of
style) to use only "EncodingControl Section's, but there are in general some encoding instructions (particularly those
that apply to all types in a module) that can only be assigned in an "EncodingControlSection”. There are also
restrictions on the types to which particular instructions or combinations of instructions can be applied. These
interactions and restrictions are specified in the Recommendation | International Standard associated with the encoding
reference (see Annex E), and are not specified in this Recommendation | International Standard.

100 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Annex A
ASN.1regular expressions
(Thisannex forms an integral part of this Recommendation | International Standard)

A.l Definition

A.11 AnASN.lregular expression is a pattern that describes a set of strings whose format conforms to this pattern.
A regular expression isitself a string; it is constructed analogously to arithmetic expressions, by using various operators
to combine smaller expressions. The smallest expressions, which are (usually) made of one or two characters, are
placeholders that stand for a set of characters.

The regular expressions presented here are very similar to those of scripting languages like Perl and to those of XML
Schema, where some other examples of use can be found.

A.12 Most characters, including al letters and digits, are regular expressions that match themselves.
EXAMPLE
Theregular expression " f r ed” matchesonly the string"fred".

A.1.3 Two regular expressions may be concatenated; the resulting regular expression matches any string formed by
concatenating two substrings that respectively match the concatenated subexpressions.

A2 M etachar acters

A.21 A metacharacter sequence (or metacharacter) isaset of one or more contiguous characters that have a special
meaning in the context of a regular expression. The following list contains all of the metacharacter sequences. Their
meaning is explained in the following clauses.

[] Match any character in the set where ranges are denoted by "- ".
A """ gfter the opening bracket complements the set which followsit.
{g9,p,r,c} Quadruple which identifies a character of 1SO/IEC 10646 (see 41.8)
\ N{ nane} Match the named character (or any character of the named character set) A.2.4
. Match any character (unlessit is one of the newline characters defined in 12.1.6)
\d Match any digit (equivalentto [0- 9] ")
\w Match any alphanumeric character (equivalent to "[a- zA- Z0- 9] ")
\t Match the HORIZONTAL TABULATION (9) character (see 12.1.6)
\n Match any one of the newline characters defined in 12.1.6
\r Match the CARRIAGE RETURN (13) character (see 12.1.6)
\'s Match any one of the white-space characters (see 12.1.6)
\b Match aword boundary
\ (prefix) Quote the next metacharacter and cause it to be interpreted literally

\\ Match the REVERSE SOLIDUS (92) character "\ "
" Match the QUOTATION MARK (34) character (")
| (infix) Alternative between two expressions

() Grouping of the enclosed expression
(postfix) Match the previous expression zero, one or severa times
+ (postfix) Match the previous expression one or several times
? (postfix) Match the previous expression once or not at all
#n (postfix) Match the previous expression exactly n times (where nis asingle digit)
#(n) (postfix) Match the previous expression exactly n times
#(n,) (postfix) Match the previous expression at least n times
#(n, m (postfix) Match the previous expression at least n but not more than m times
#(, M (postfix) Match the previous expression not more than m times

NOTE 1 — The characters CIRCUMFLEX ACCENT (94) "»" and HYPHEN-MINUS (45) "- " are additional metacharactersin
certain positions of the string defined in A.2.2.

NOTE 2 — The value in round brackets after a character name in this annex is the decimal value of the character in ISO/IEC
10646.

ITU-T Rec. X.680 (11/2008) 101

| SO/IEC 8824-1:2008 (E)

NOTE 3 — This notation does not provide the metacharacters "»" and "$" to match the beginning and the end of a string
respectively. Hence a string shall match a regular expression in its entirety except if the latter includes”. *" at its beginning, at
itsend or at both sides.

NOTE 4 — The following metacharacter sequences cannot contain white-space (see 12.1.6) unless the white-space appears
immediately prior to or following a newline:

{g.prc

\ N{ name}

#n

#(n)

#(n,)

#(n, m)

#(, m)

If aregular expression contains a newline, any spacing characters that appear immediately prior to or following the newline have
no significance and match nothing (see 12.14.1).

A.2.2 Alist of characters enclosed by "[" and "] " matches any single character in that list. If the first character of
the list isthe caret "~", then it matches any character which isnot in the list. A range of characters may be specified by
giving the first and last characters, separated by a hyphen (according to the order relation defined in 43.3). All
metacharacter sequences, except "1" and "\", lose their special meaning inside a list. To include a litera
CIRCUMFLEX ACCENT (94) "~", place it anywhere except in the first position or precede it with a backslash. To
include aliteral HY PHEN-MINUS (45) "- ", placeit first or last in the list, or precede it with abackslash. To include a
literal CLOSING SQUARE BRACKET (93) "1 ", place it first. If the first character in the list is the caret "+", then the
characters "-" and "] " also match themselves when they immediately follow that caret. The metacharacter sequences
defined in A.2.3, A.2.4, A.2.6 and A.2.7 can be used between the square brackets where they keep their meaning.

EXAMPLES
Theregular expression " [0123456789] ", or equivalently " [0- 9] ", matches any single digit.
Theregular expression " [~0] " matches any single character except 0.
Theregular expression"[\ d”. -1 " matches any single digit, a caret, a hyphen or a period.

A.23 To avoid any ambiguity between two ISO/IEC 10646 characters which have the same glyph, two notations
are provided. A notation of the form " {group, plane, row, cell}" references a (single) character according to the
"Quadruple" production defined in 41.8.

A.24 A notation of the form "\ N{ valuereference} " matches the referenced character if "vauereference” is a
reference to a restricted character string value of size 1 (see clause 41) which is defined or imported in the current
module. A notation of the form "\ N{ typereference} " matches any character of the referenced character set if
"typereference” is a reference to a subtype of a "RestrictedCharacterStringType" which is defined in the current
module, or is one of the "RestrictedCharacterStringType's defined in clause 41. The regular expressions
"\ N{ Let t er Upper case}" and "\ N{Lu}" match any (single) character of the general category "Letter, uppercase”
(abbreviated as "L u") as defined by The Unicode Standard.

NOTE - In particular, "valuereference" or "typereference" can be one of the references defined in the module
ASNL- CHARACTER- MODULE (see 42.1) and imported into the current module (see 41.8).
EXAMPLES

Theregular expression "\ N{ gr eekCapi t al Let t er Si gna} " matches GREEK CAPITAL LETTER SIGMA.

The regular expression "\ N{ Basi cLat i n}" matches any (single) character of the BASIC LATIN character
Set.

"[\N{BasicLati n}\N{Cyrillic}\N{Basi cGeek}]+", or equivaently "(\N{Basiclatin} |
\N{CQyrillic} | \N{BasicG eek})+", areregular expressions that match a string made of any (non null)
number of characters from the three character sets specified.

A.25 Theperiod". " matches any single character, unlessit is one of the newline characters defined in 12.1.6.

A.26 Thesymbol "\ d" isasynonym for "[0- 9] ", i.e, it matches any single digit. The symbol "\t " matches the
HORIZONTAL TABULATION (9) character. The symbol "\ W' isasynonym for "[a- zA- Z0- 9] ", i.e., it matches any
single (lower-case or upper-case) character or any single digit.

102 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

EXAMPLE

The regular expression "\ w+(\ s\ w+) *\ . " matches a sentence made of at least one (alphanumeric) word.
The words are separated by one white-space character as defined in 12.1.6. There is no white-space character
before the ending period.

A.27 The symbol "\ r" matches the CARRIAGE RETURN (13) character. The symbol "\ n" matches any one of
the newline characters defined in 12.1.6. The symbol "\ s" matches any one of the white-space characters defined in
12.1.6. The symbol "\ b" matches the empty string at the beginning or at the end of aword.

EXAMPLE

The regular expression " . *\ bf r ed\ b. *" matches any string which includes the word " f red" (thisword is
not only a series of four characters; it is delimited). Hence it matches strings like "fred” or "1 am fred
the first", but not strings like "My name is freddy" or "I am afred | don't know how to
spell *afraid !".

A.2.8 A character that normally functions as a metacharacter can be interpreted literally by prefixing it with a™\ ".
If the regular expression includes a QUOTATION MARK (34), this character shall be represented by a pair of
QUOTATION MARK characters.

EXAMPLES
Theregular expression "\ . " matchesthe (single) string . ", but not any string of any single character.
The regular expression" """ matches the string which contains a single QUOTATION MARK.
Theregular expression"\) " matchesthe string") " .

Theregular expression "\ a" matches the character "a" .

NOTE — The fourth example shows that the backslash is allowed to precede characters that are not metacharacters, but this useis
deprecated (because other metacharacters could be allowed in future versions of this Recommendation | International Standard).

A.29 Two or more regular expressions may be joined by the infix operator "| ". The resulting regular expression
matches any string matching either subexpression.

A.2.10 A regular expression may be followed by a repetition operator. If the operator is "?", the preceding item is
optional and matched at most once. If the operator is "*", the preceding item will be matched zero or more times. If
the operator is "+", the preceding item will be matched one or more times. If the operator is of the form "#(n) ", the
preceding item is matched exactly n times; in this particular case, the parentheses can be omitted if n consists of one
digit. If it is of the form "#(n,)", the item is matched n or more times. If it is of the form "#(, m)", the item is
optional and is matched at most m times. Finaly, if it isof the form "#(n, m) ", the item is matched at least n times, but
not more than m times.

NOTE — It isillegal to use the metacharacters "*", "+", "?" or "#" as the first character of aregular expression. Itisasoillegal
to use the metacharacters "#" or "| " as the last character of aregular expression.

EXAMPLES

A phone number like "555-1212" is matched by the regular expression "\ d#3-\ d#4", or equivaently
"\ d#(3)-\d#(4)".

A price in dollars like " $12345. 90" is matched by the regular expression "$\ d#(1,) (\.\d#(1,2))?".
Note that parentheses are requested after the "#" symbol when it is followed by arange.

A social security number like" 123- 45- 5678" is matched by the regular expression "\ d#3- ?\ d#2- 2\ d#4" .

A.2.11 Repetition (see A.2.10) takes precedence over concatenation (see A.1.3), which in turn takes precedence over
aternation (see A.2.9). A whole subexpression may be enclosed in parentheses to override these precedence rules.

A.2.12 When aregular expression contains subexpressions in parentheses, each (hon-quoted) opening parenthesisis
successively assigned a distinct (strictly positive) integer from the left to the right of the regular expression. Each
subexpression can then be referenced inside a comment with a notation like "\ 1", "\ 2" which uses the associated
integer. The empty subexpression "() " is not permitted.

ITU-T Rec. X.680 (11/2008) 103

| SO/IEC 8824-1:2008 (E)

EXAMPLE
"((\d#2) (\d#2) (\d#4))" -- \1 is a date in which \2 is the nonth, \3 the day
-- and \4 the year.

NOTE — There is a requirement for formal reference to subexpressions of a regular expression for many purposes. One such
instance is the need to write text to document the regular expression within the ASN.1 module. Thisis a notation which can be
used to provide such references. This notation is not used elsewhere in this Recommendation | International Standard.

104 ITU-T Rec. X.680 (11/2008)

B.1

B.1.1

B.1.2

| SO/IEC 8824-1:2008 (E)

Annex B
The defined timetypes
(Thisannex forms an integral part of this Recommendation | International Standard)

General

This annex contains an ASN.1 module that specifies the defined time types. These types can be imported into
an ASN.1 specification and used in that specification, or can be used as a model for the definition of additional time
types. They cannot be used without importation.

In some cases, the defined time types are only useful if subtyped with one of the date or time-of-day subsets
(or both) specified in this module. Where thisis the casg, it is clearly stated in the definition of the type.

EXAMPLE: Use

APPLI CATI ON- DATE- TI ME : : = DATE- TI ME(YEAR- MONTH- DAY- SUBSET) (SECONDS- SUBSET)

to define a date-time that is a year, month, day, hours, minutes, seconds. To use this, the type and the two subtypes have
to be imported.

B.2

The ASN.1 defined time types module

Def i nedTi meTypes {joint-iso-itu-t asnl(1l) specification(0) nodul es(0) defined-
types- modul e(3)}
DEFI NI TI ONS AUTOVATI C TAGS ::= BEA N

EXPORTS ALL;
-- Date types

CENTURY ::= TI ME((SETTI NGS "Basi c=Dat e Dat e=C Year =Basi c") |
(SETTI NGS "Basi c=Dat e Dat e=C Year=Prol eptic"))

ANY- CENTURY ::= TI ME((SETTI NGS "Basi c=Dat e Dat e=C Year =Negati ve") |
(SETTI NGS "Basi c=Dat e Dat e=C Year =L5"))
-- This allows only a 3-digit century if positive.
-- Atype with a greater nunber of digits can be
-- defined as an additional tine type.
-- Note that L5 is used for century if the specification
-- of the year would require 5 digits. See Table 6.

YEAR ::= TI ME((SETTI NGS "Basi c=Dat e Date=Y Year=Basic") |
(SETTI NGS "Basi c=Dat e Date=Y Year=Prol eptic"))

ANY- YEAR ::= TI ME((SETTI NGS "Basi c=Dat e Date=Y Year =Negati ve") |
(SETTI NGS "Basi c=Dat e Date=Y Year=L5"))
-- This allows only a 5-digit year if positive.
-- Atype with a greater nunber of digits can be
-- defined as an additional time type.

YEAR- MONTH : : = TI ME((SETTI NGS " Basi c=Dat e Dat e=YM Year =Basi c") |
(SETTI NGS "Basi c=Dat e Dat e=YM Year =Pr ol eptic"))

TI ME((SETTI NGS " Basi c=Dat e Dat e=YM Year =Negat i ve") |
(SETTI NGS " Basi c=Dat e Dat e=YM Year =L5"))
-- This allows only a 5-digit year if positive.
-- Atype with a greater nunber of digits can be
-- defined as an additional tinme type.

TI ME((SETTI NGS " Basi c=Dat e Dat e=YMD Year =Basi c") |
(SETTI NGS "Basi c=Dat e Dat e=YMD Year =Prol eptic"))

ANY- YEAR- MONTH- DAY :: = TI ME((SETTI NGS "Basi c=Dat e Dat e=YMD Year =Negati ve") |
(SETTI NGS "Basi c=Dat e Dat e=YMD Year =L5"))
-- This allows only a 5-digit year if positive.
-- Atype with a greater nunber of digits can be
-- defined as an additional tinme type.

YEAR- VEEK : : = TI ME((SETTI NGS "Basi c=Dat e Dat e=YW Year =Basi c") |
(SETTI NGS "Basi c=Dat e Dat e=YW Year =Prol eptic"))

ANY- YEAR- MONTH : :

YEAR- MONTH- DAY : :

ITU-T Rec. X.680 (11/2008)

105

| SO/IEC 8824-1:2008 (E)

106

ANY- YEAR- WEEK :: = TI ME((SETTI NGS "Basi c=Dat e Dat e=YW Year =Negati ve") |
(SETTI NGS " Basi c=Dat e Dat e=YW Year =L5"))
-- This allows only a 5-digit year if positive.
-- Atype with a greater nunber of digits can be
-- defined as an additional time type.

YEAR- EEK- DAY :: = TI ME((SETTI NGS "Basi c=Dat e Dat e=YWD Year =Basi c") |
(SETTI NGS "Basi c=Dat e Dat e=YWD Year =Pr ol eptic"))
ANY- YEAR- EEK- DAY :: = TI ME((SETTI NGS "Basi c=Dat e Dat e=YWD Year =Negati ve") |

(SETTI NGS " Basi c=Dat e Dat e=YWD Year =L5"))
-- This allows only a 5-digit year if positive.
-- Atype with a greater nunber of digits can be
-- defined as an additional tine type.

-- Types related to time-of-day

HOURS ::= TI ME(SETTI NGS "Basi c=Ti me Ti me=H Local - or- UTC=L")

HOURS- UTC :: = TI ME(SETTI NGS "Basi c=Ti me Ti ne=H Local - or - UTC=Z")

HOURS- AND- DI FF :: = TI ME(SETTI NGS "Basi c=Ti ne Ti me=H Local - or - UTC=LD")

M NUTES :: = TI ME(SETTI NGS "Basi c=Ti ne Ti me=HM Local - or- UTC=L")

M NUTES- UTC :: = TI ME(SETTI NGS "Basi c=Ti me Ti me=HM Local - or - UTC=2")

M NUTES- AND- DI FF :: = TI ME(SETTI NGS " Basi c=Ti ne Ti ne=HM Local - or - UTC=LD")
SECONDS :: = TI ME(SETTI NGS "Basi c=Ti me Ti me=HV5 Local - or - UTC=L")

SECONDS- UTC : : = TI ME(SETTI NGS "Basi c=Ti me Ti me=HV5 Local - or - UTC=Z")
SECONDS- AND- DI FF :: = TI ME(SETTI NGS "Basi c=Ti me Ti me=HV5 Local - or - UTC=LD")

HOURS- AND- FRACTI ON :: = TI ME(SETTI NGS "Basi c=Ti ne Ti ne=HF3 Local - or - UTC=L")
-- 3 digit fraction

HOURS- UTC- AND- FRACTI ON :: = TI ME(SETTI NGS " Basi c=Ti ne Ti ne=HF3 Local - or- UTC=Z")
-- 3-digit fraction

HOURS- AND- DI FF- AND- FRACTI ON : : = TI ME(SETTI NGS " Basi c=Ti me Ti me=HF3
Local - or- UTC=LD")
-- 3-digit fraction

M NUTES- AND- FRACTI ON : : = TI ME(SETTI NGS "Basi c=Ti me Ti me=HWF3 Local - or - UTC=L")
-- 3-digit fraction

M NUTES- UTC- AND- FRACTI ON : : = TI ME(SETTI NGS "Basi c=Ti ne Ti me=HMF3 Local - or - UTC=Z")
-- 3-digit fraction

M NUTES- AND- DI FF- AND- FRACTI ON :: = TI ME(SETTI NGS "Basi c=Ti me Ti me=HWF3
Local - or- UTC=LD")
-- 3-digit fraction

SECONDS- AND- FRACTI ON : : = TI ME(SETTI NGS "Basi ¢c=Ti ne Ti ne=HVSF3 Local - or - UTC=L")
-- 3-digit fraction

SECONDS- UTC- AND- FRACTI ON : : = TI ME(SETTI NGS " Basi c=Ti ne Ti me=HVBF3 Local - or - UTC=Z")
-- 3-digit fraction

SECONDS- AND- DI FF- AND- FRACTI ON : : = TI ME(SETTI NGS " Basi c=Ti me Ti me=HV5F3
Local - or - UTC=LD")
-- 3-digit fraction

-- Interval types (DURATION is not included as this is a useful type).

START- END- DATE- | NTERVAL ::= TI ME(SETTI NGS "Basi c=Interval |nterval-type=SE
SE- poi nt =Dat e")
-- This is only useful if subtyped with a DATE subset (see bel ow).

START- END- TI ME- | NTERVAL ::= TI ME(SETTI NGS "Basi c=Interval |nterval-type=SE
SE- poi nt =Ti ne")
-- This is only useful if subtyped with a Tl ME- OF- DAY subset
-- (see bel ow).

START- END- DATE- TI ME- | NTERVAL :: = TI ME(SETTI NGS "Basi c=I nterval Interval-type=SE
SE- poi nt =Dat e- Ti ne")
-- This is only useful if subtyped with a DATE subset and a
-- TI ME- OF- DAY subset (see bel ow).

ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

START- DATE- DURATI ON- | NTERVAL :: = TI ME(SETTI NGS "Basi c=I nterval Interval-type=SD
SE- poi nt =Dat e")
-- This is only useful if subtyped with a DATE subset (see bel ow).

START- Tl ME- DURATI ON- | NTERVAL :: = TI ME(SETTI NGS "Basi c=I nterval Interval-type=SD
SE- poi nt =Ti ne")
-- This is only useful if subtyped with a Tl ME- OF- DAY subset
-- (see bel ow).

START- DATE- Tl ME- DURATI ON- I NTERVAL :: = TI ME(SETTI NGS " Basi c=I nt erval
I nterval -type=SD
SE- poi nt =Dat e- Ti nme")
-- This is only useful if subtyped with a DATE subset and a
-- TI ME- OF- DAY subset (see bel ow).

DURATI ON- END- DATE- | NTERVAL :: = TI ME(SETTI NGS "Basi c=I nterval |nterval-type=DE
SE- poi nt =Dat e")
-- This is only useful if subtyped with a DATE subset (see bel ow).

DURATI ON- END- TI ME- | NTERVAL :: = TI ME(SETTI NGS "Basi c=I nterval |nterval-type=DE
SE- poi nt =Ti me")
-- This is only useful if subtyped with a Tl ME- OF- DAY subset
-- (see bel ow).

DURATI ON- END- DATE- Tl ME- | NTERVAL :: = TI ME(SETTI NGS "Basi c=I nterval Interval-type=DE
SE- poi nt =Dat e- Ti me")
-- This is only useful if subtyped with a DATE subset and a
-- TI ME- OF- DAY subset (see bel ow).

-- Recurring interval types.

REC- START- END- DATE- | NTERVAL ::= TI ME(SETTI NGS "Basi c=Rec-Interval Interval-type=SE
SE- poi nt =Dat e")
-- This is only useful if subtyped with a DATE subset (see bel ow).

REC- START- END- TI ME- | NTERVAL ::= TI ME(SETTI NGS "Basi c=Rec-Interval Interval-type=SE
SE- poi nt =Ti ne")
-- This is only useful if subtyped with a Tl ME- OF- DAY subset
-- (see bel ow).

REC- START- END- DATE- Tl ME- | NTERVAL :: = TI ME(SETTI NGS "Basi c=Rec- | nt erval
Interval -type=SE
SE- poi nt =Dat e- Ti me")
-- This is only useful if subtyped with a DATE subset and a
-- TI ME- OF- DAY subset (see bel ow).

REC- DURATI ON- | NTERVAL :: = TI ME(SETTI NGS "Basi c=Rec-Interval Interval-type=D")

REC- START- DATE- DURATI ON- | NTERVAL : : = TI ME(SETTI NGS " Basi c=Rec- I nt er val
Interval -type=SD
SE- poi nt =Dat e")
-- This is only useful if subtyped with a DATE subset (see bel ow).

REC- START- Tl ME- DURATI ON- | NTERVAL :: = TI ME(SETTI NGS "Basi c=Rec- | nt erval
Interval -type=SD
SE- poi nt =Ti ne")
-- This is only useful if subtyped with a Tl ME- OF- DAY subset
-- (see bel ow).

REC- START- DATE- Tl ME- DURATI ON- | NTERVAL :: = TI ME(SETTI NGS " Basi c=Rec- | nt erval
I nterval -type=SD
SE- poi nt =Dat e- Ti me")
-- This is only useful if subtyped with a DATE subset and a
-- TI ME- OF- DAY subset (see bel ow).

REC- DURATI ON- END- DATE- | NTERVAL : : = TI ME(SETTI NGS " Basi c=Rec- | nt er val
I nterval -type=DE
SE- poi nt =Dat e")
-- This is only useful if subtyped with a DATE subset (see bel ow).

REC- DURATI ON- END- TI ME- | NTERVAL : : = TI ME(SETTI NGS " Basi c=Rec- | nt er val
I nterval -type=DE
SE- poi nt =Ti ne")
-- This is only useful if subtyped with a Tl ME- OF- DAY subset
-- (see bel ow).

ITU-T Rec. X.680 (11/2008) 107

| SO/IEC 8824-1:2008 (E)

REC- DURATI ON- END- DATE- TI ME- | NTERVAL :: = TI ME(SETTI NGS " Basi c=Rec- | nt er val
I nterval -type=DE
SE- poi nt =Dat e- Ti ne")
-- This is only useful if subtyped with a DATE subset and a
-- TI ME- OF- DAY subset (see bel ow).

-- Date subsets

CENTURY- SUBSET :: = TI ME((SETTI NGS "Dat e=C Year =Basi c") |
(SETTI NGS " Dat e=C Year =Prol eptic"))
ANY- CENTURY- SUBSET ::= TI ME((SETTI NGS " Dat e=C Year =Negati ve") |
(SETTI NGS "Dat e=C Year =L5"))
YEAR- SUBSET ::= TI ME((SETTINGS "Dat e=Y Year =Basi c") |
(SETTI NGS " Dat e=Y Year=Prol eptic"))
ANY- YEAR- SUBSET ::= TI ME((SETTI NGS "Dat e=Y Year =Negati ve") |
(SETTI NGS "Dat e=Y Year =L5"))
YEAR- MONTH- SUBSET :: = TI ME((SETTI NGS " Dat e=YM Year =Basi c") |
(SETTI NGS " Dat e=YM Year =Prol eptic"))
ANY- YEAR- MONTH SUBSET :: = Tl ME((SETTI NGS " Dat e=YM Year =Negat i ve") |

(SETTI NGS " Dat e=YM Year =L5"))

TI ME((SETTI NGS " Dat e=YMD Year =Basi c") |
(SETTI NGS " Dat e=YMD Year =Prol eptic"))

YEAR- MONTH- DAY- SUBSET : :

ANY- YEAR- MONTH- DAY- SUBSET : : = TI ME((SETTI NGS " Dat e=YMD Year =Negat i ve") |
(SETTI NGS " Dat e=YMD Year =L5"))
YEAR- WEEK- SUBSET : : = TI ME((SETTI NGS " Dat e=YW Year =Basi c") |

(SETTI NGS " Dat e=YW Year =Prol eptic"))

TI ME((SETTI NGS " Dat e=YW Year =Negat i ve") |
(SETTI NGS " Dat e=YW Year =L5"))

TI ME((SETTI NGS " Dat e=YWD Year =Basi c") |
(SETTI NGS " Dat e=YWD Year =Prol eptic"))

ANY- YEAR- WEEK- DAY- SUBSET : : = TI ME((SETTI NGS " Dat e=YWD Year =Negat i ve") |
(SETTI NGS " Dat e=YWD Year =L5"))

ANY- YEAR- \EEK- SUBSET : :

YEAR- VEEEK- DAY- SUBSET : :

108 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

-- Time subsets
HOURS- SUBSET :: = TI ME(SETTI NGS "Ti ne=H Local - or - UTC=L")
HOURS- UTC- SUBSET :: = TI ME(SETTI NGS "Ti ne=H Local - or - UTC=Z")
HOURS- AND- DI FF- SUBSET :: = TI ME(SETTI NGS "Ti ne=H Local - or - UTC=LD")
M NUTES- SUBSET :: = TI ME(SETTI NGS " Ti ne=HM Local - or - UTC=L")
M NUTES- UTC- SUBSET :: = TI ME(SETTI NGS " Ti ne=HM Local - or - UTC=Z")
M NUTES- AND- DI FF- SUBSET :: = TI ME(SETTI NGS " Ti me=HM Local - or - UTC=LD")
SECONDS- SUBSET :: = TI ME(SETTI NGS " Ti me=HM5 Local - or - UTC=L")
SECONDS- UTCG- SUBSET :: = TI ME(SETTI NGS " Ti ne=HVS Local - or - UTC=Z")
SECONDS- AND- DI FF- SUBSET : : = TI ME(SETTI NGS " Ti me=HVB Local - or - UTC=LD")
HOURS- AND- FRACTI ON- SUBSET :: = TI ME(SETTI NGS " Ti ne=HF3 Local - or - UTC=L")

HOURS- UTC- AND- FRACTI ON- SUBSET :: = TI ME(SETTI NGS " Ti me=HF3
Local - or - UTC=Z")

HOURS- AND- DI FF- AND- FRACTI ON- SUBSET @ : = TI ME(SETTI NGS " Ti ne=HF3
Local - or- UTC=LD")

M NUTES- AND- FRACTI ON- SUBSET : : = TI ME(SETTI NGS " Ti ne=HWF3
Local - or - UTC=L")

M NUTES- UTC- AND- FRACTI ON- SUBSET :: = TI ME(SETTI NGS " Ti me=HVF3
Local - or - UTC=2")

M NUTES- AND- DI FF- AND- FRACTI ON- SUBSET : : = TI ME(SETTI NGS " Ti me=HWF3
Local - or- UTC=LD")

SECONDS- AND- FRACTI ON- SUBSET : : = Tl ME(SETTI NGS " Ti ne=HVBF3
Local - or - UTC=L")

SECONDS- UTC- AND- FRACTI ON- SUBSET : : = TI ME(SETTI NGS " Ti ne=HVBF3
Local - or - UTC=2")

SECONDS- AND- DI FF- AND- FRACTI ON- SUBSET : : = Tl ME(SETTI NGS " Ti me=HVSF3
Local - or- UTC=LD")

END

ITU-T Rec. X.680 (11/2008) 109

| SO/IEC 8824-1:2008 (E)

Annex C

Rulesfor type and value Compatibility
(This annex forms an integral part of this Recommendation | International Standard)

This annex is expected to be mainly of use to tool builders to ensure that they interpret the language identically. It is
present in order to clearly specify what islegal ASN.1 and what is not, and to be able to specify the precise value that
any value reference name identifies, and the precise set of values that any type or value set reference name identifies. It
is not intended to provide a definition of valid transformations of ASN.1 notations for any purpose other than those
stated above.

Cl The need for the value mapping concept (tutorial introduction)
C.1.1 Consider thefollowing ASN.1 definitions:
A ::= | NTEGER
B ::= [1] | NTEGER
C::=[2] INTEGER (0..6,...)
D
E
F

[2] INTEGER (0..6,...,7)

I NTEGER (7. . 20)

I NTEGER {red(0), white(l), blue(2), green(3), purple(4)}
1= 3

o o
m m O O W >
I

4
C 5
d 6
e 7
f 1= green
C.1.2 Itisclear that the value referencesa, b, c, d, e, and f can be used in value notation governed by A, B, C, D, E,
and F, respectively. For example:

W::= SEQUENCE {wl A DEFAULT a}

and:

and:
Y ::= A(l..a)
are al valid given the definitions in C.1.1. If, however, A above were replaced by B, or C, or D, or E, or F, would the

resulting statements be illegal? Similarly, if the value reference a above were replaced in each of these cases by b, or c,
ord,ore, or f, are the resulting statements legal ?

C.1.3 A more sophisticated question would be to consider in each case replacement of the type reference by the
explicit text to the right of its assignment. Consider for example:

f INTEGER {red(0), white(1l), blue(2), green(3), purple(4)} ::= green
W :: = SEQUENCE {
wl I NTEGER {red(0), white(1l), blue(2), green(3), purple(4)}
DEFAULT f}
X I NTEGER {red(0), white(l), blue(2), green(3), purple(4)} ::=f
Y ::= I NTEGER {red(0), white(1), blue(2), green(3), purple(4)}(1..f)

Would the above be legal ASN.1?

C.1.4 Some of the above examples are cases which, even if legal (as most of them are — see later text), users would
be ill-advised to write similar text, as they are at the least obscure and at worst confusing. However, there are frequent
uses of a value reference to a value of some type (not necessarily just an | NTEGER type) as the default value for that

110 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

type with tagging or subtyping applied in the governor. The value mapping concept is introduced in order to provide a
clear and precise means of determining which constructs such as the above are legal .

C.15 Again, consider:
C::=[2] INTEGER (0..6,...)
E ::= INTEGER (7..20)
F ::= INTEGER {red(0), white(l), blue(2), green(3), purple(4)}

In each case a new type is being created. For F we can clearly identify a 1-1 correspondence between the valuesiin it
and the values in the universal type | NTEGER. In the case of C and E, we can clearly identify a 1-1 correspondence
between the values in them and a subset of the values in the universal type | NTEGER. We call this relationship a value
mapping between values in the two types. Moreover, because valuesin F, C, and E al have (1-1) mappings to values of
| NTEGER, we can use these mappings to provide mappings between the values of F, C, and E themselves. This is
illustrated for F and Cin Figure C.1.

Integer

M appings

M appings

o red(0) o[21

O blue(2) 020

O[22 O[2]3

O white(1) o Derived ____»
Ogreen(3) | mappings o4 OIS
O purple(4) o218

T0732160-99

F /
FigureC.1

C.1.6 Now when we have avalue reference such as:

cC::=5
to avauein Cwhich isrequired in some context to identify avalue in F, then, provided a value mapping exists between
that value in C and a (single) value in F, we can (and do) define ¢ to be a legal reference to the value inF. This is

illustrated in Figure C.2, where the value reference ¢ is used to identify avalue in F, and can be used in place of adirect
reference f 1 where we would otherwise have to define:

fl1F::=5

ITU-T Rec. X.680 (11/2008) 111

| SO/IEC 8824-1:2008 (E)

o red(0)
O blue(2)
o White(1)

e green(.s;). .

O purple(4)

05 O [21 |5 0

f1 O[22 O[2]3

A

51205
o 1216

T0732170-99

FigureC.2

C.1.7 It should be noted that in some cases there will be values in one type (7 to 20 in A of C.1.1 for example) that
have value mappings to values in another type (7 to 20 in E of C.1.1 for example), but other values (21 upwards of A)
that have no such mapping. A reference to such valuesin A would not provide avalid referenceto avalueinE. (Inthis
example, the whole of E has a value mapping to a subset of A. In the general case, there may be a subset of valuesin
both types that have mappings, with other values in both types that are unmapped.)

C.1.8 Inthe body of the ASN.1 standards, norma English text is used to specify legality in the above and similar

cases. Subclause C.6 gives the precise requirements for legality and should be referenced whenever there is doubt about

a complex construction.
NOTE — The fact that value mappings are defined to exist between two occurrences of the "Type" construct permits the use of
value references established using one "Type" construct to identify values in another "Type" construct which is sufficiently
similar. It allows dummy and actual parameters to be typed using two textually separate "Type" constructs without violating the
rules for compatibility of dummy and actual parameters. It also allows fields of information object classes to be specified using
one "Type" construct and the corresponding value in an information object to be specified using a distinct "Type" construct
which is sufficiently similar. (These examples are not intended to be exhaustive.) It is, however, recommended that advantage be
taken of this freedom only for simple cases such as SEQUENCE OF | NTEGER, or CHO CE {int INTEGER id OBJECT
| DENTI FI ER}, and not for more complex "Type" constructs.

C.2 Value mappings

C.21 The underlying model is of types, as non-overlapping containers, that contain values, with every occurrence
of the ASN.1 "Type" construct defining a distinct new type (see Figures C.1 and C.2). This annex specifies when value
mappings exist between such types, enabling a reference to a value in one type to be used where a reference to avalue
in some other typeis needed.

EXAMPLE: Consider:
X 1= | NTEGER
Y ::= | NTEGER

X and Y are type reference names (pointers) to two distinct types, but value mappings exist between these types, so any
value reference to a value of X can be used when governed by Y (for example, following DEFAULT).

C.22 Inthe set of all possible ASN.1 values, a vaue mapping relates a pair of values. The whole set of value
mappings is a mathematical relation. This relation possesses the following properties: it is reflexive (each ASN.1 value
is related to itself), it is symmetric (if a value mapping is defined to exist from a value x1 to a value x2, then there
automatically exists a value mapping from x2 to x1), and it is transitive (if there is a value mapping from a value x1
to x2, and a value mapping from x2 to x3, then there automatically exists a value mapping from x1 to x3).

C.2.3 Furthermore, given any two types X1 and X2, seen as sets of values, the set of value mappings from values
in X1 to valuesin X2 is a one-to-one relation, that is, for al values x1 in X1, and x2 in X2, if there is a value mapping
from x1 to x2, then:

112 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

a) thereisno value mapping from x1 to another value in X2 different from x2; and
b) thereisno value mapping from any value in X1 (other than x1) to x2.

C.24 Where a value mapping exists between a value x1 and a value x2, a value reference to either one can
automatically be used to reference the other if so required by some governing type.

NOTE — The fact that value mappings are defined to exist between valuesin some "Type" constructsis solely for the purpose of
providing flexibility in the use of the ASN.1 notation. The existence of such mappings carries no implications whatsoever that
the two types carry the same application semantics, but it is recommended that ASN.1 constructs which would be illegal without
value mappings are used only if the corresponding types do indeed carry the same application semantics. Note that value
mappings will frequently exist in any large specification between two types that are identical ASN.1 constructs, but which carry
totally different application semantics, and where the existence of these value mappings is never used in determining the legality
of the total specification.

C.3 Identical type definitions

C.3.1 The concept of identical type definitions is used to enable value mappings to be defined between two
instances of "Type" which are either identical or sufficiently similar that one would normally expect their use to be
interchangeable. In order to give precision to the meaning of "sufficiently similar”, this subclause specifies a series of
transformations which are applied to each of the instances of "Type" to produce a normal form for those instances of
"Type". The two instances of "Type" are defined to be identical type definitions if, and only if, their normal forms are
identical ordered lists of the same lexical items (see clause 12).

C.3.2 Each occurrence of "Type" in an ASN.1 specification is an ordered list of the lexical items defined in clause
12. The normal form is obtained by applying the transformations defined in C.3.2.1 to C.3.2.6 in that order.

C.3.21 All the comments (see 12.6) are removed.

C.3.2.2 Thefollowing transformations are not recursive and hence need only to be applied once, in any order:

a) For atype defined by a "VaueSetTypeAssignment", its definition is replaced by a "TypeAssignment”
using the same "Type" and a subtype constraint which is the contents of the "ValueSet" as specified in
16.6.

b) For each integer type: the "NamedNumberList" (see 19.1), if any, is reordered so that the "identifier's
arein alphabetical order ("a" first, "z" last).

¢) For each enumerated type: numbers are added, as specified in 20.3, to any "Enumerationltem” (see 20.1)
that is an "identifier" (without a number); then the "RootEnumeration” is reordered so that the
"identifiers" arein alphabetical order ("a" first, "z" last).

d) For each bitstring type: the "NamedBitList" (see 22.1), if any, is reordered so that the "identifiers' arein
alphabetical order ("a" first, "z" last).

e) For each object identifier value: each "ObjldComponents’ is transformed into its corresponding
"NumberForm" in accordance with the semantics of clause 32 (see the example in 32.13).

f) For each relative object identifier value (see 33.3): each "RelativeOlDComponents" is transformed into
its corresponding "NumberForm" in accordance with the semantics of clause 33.

g) For sequence types (see clause 25) and set types (see clause 27): any extension of the form
"ExtensionAndException”, "ExtensionAdditions', is cut and pasted to the end of the
"ComponentTypeLists'; "Optional ExtensionMarker", if present, is removed.

If "TagDefault" is1 MPLI CI T TAGS, the keyword | MPLI CI T is added to all instances of "Tag" (see 31.2)
unless either:

e itisaready present; or

e thereserved word EXPLI QI T is present; or
e thetypebeing tagged isaCHO CE typeor;
e itisanopentype.

If "TagDefault" is AUTOMATI C TAGS, the decision on whether to apply automatic tagging is taken
according to 25.3 (the automatic tagging will be performed later on).

NOTE — Subclauses 25.4 and 27.2 specify that the presence of a "Tag" in a "ComponentType" which was
inserted as a result of the replacement of "Components of Type" does not in itself prevent the automatic tagging
transformation.

If "ExtensionDefault" is EXTENSIBILITY |MPLIED, an dlipsis (*...") is added after the
"ComponentTypeLists" if it is not present.

ITU-T Rec. X.680 (11/2008) 113

| SO/IEC 8824-1:2008 (E)

h)

For choice type (see clause 29): "RootAlternativeTypelist" is reordered so that the identifiers of the
"NameType's are in alphabetical order ("a" first, "z" last). "Optiona ExtensionMarker”, if present, is
removed. If "TagDefault" is | MPLICI T TAGS, the keyword | MPLI CI T is added to all instances of
"Tags' (see 31.2) unless either:

e itisaready present; or

e thereserved word EXPLI QI T is present; or

e thetypebeing tagged is a CHO CE type; or

e itisanopentype.

If "TagDefault" is AUTOVATI C TAGS, the decision on whether to apply automatic tagging is taken
according to 29.5 (the automatic tagging will be performed later on). If "ExtensionDefault" is
EXTENSI BI LI TY | MPLI ED, an ellipsis ("...") is added after the "AlternativeTypelists" if it is not
present.

C.3.2.3 Thefollowing transformations shall be applied recursively in the specified order, until afix-point is reached:

a)
b)
c)
d)

€)

f)

0)

For each object identifier value (see 32.3): if the value definition begins with a "DefinedValue", the
"DefinedValue" isreplaced by its definition.

For each relative object identifier value (see 33.3): if the value definition contains "DefinedValue's, the
"DefinedValue's are replaced by their definition.

For sequence types and set types: all instances of "COMPONENTS OF Type' (see clause 25) are
transformed according to clauses 25 and 27.

For sequence, set and choice types: if it has earlier been decided to tag automatically (see C.3.2.2 g) and
h)), the automatic tagging is applied according to clauses 25, 27 and 29.

For selection type: the construction is replaced by the selected aternative according to clause 30.
All type references are replaced by their definitions according to the following rules:

o |f thereplacing typeis areference to the type being transformed, the type reference is replaced by a
special item that matches no other item than itself.

o |f the replacing type is a sequence-of type or a set-of type, the constraints following the replaced
type, if any, are moved in front of the keyword OF.

o |f the replaced type is a parameterized type or a parameterized value set (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.2), every "DummyReference" is replaced by the corresponding
"Actual Parameter".

All value references are replaced by their definitions; if the replaced value is a parameterized value (see
ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2), every "DummyReference” is replaced by the corresponding
"Actual Parameter".

NOTE — Before replacing any value reference, the procedures of this annex shall be applied to ensure that the
value reference identifies, through value mappings or directly, avaluein its governing type.

C.3.24 For set type: the "RootComponentTypeList” is reordered so that the "ComponentType's are in aphabetical
order ("a" first, "z" last).

C.3.25 Thefollowing transformations shall be applied to value definitions:

114

a)
b)

©)

d)
e

f)

If an integer value is defined with an identifier, that identifier is replaced by the associated number.

If a bitstring value is defined using identifiers, it is replaced by the corresponding "bstring" with all
trailing zero bits removed.

All white-space immediately before and after each newline (including the newline) in a "cstring" is
removed.

All white-space in "bstring" and "hstring" is removed.

Each real value defined with base 2 is normalized so that the mantissais odd, and each real value defined
with base 10 is normalized so that the last digit of the mantissaisnot O.

Each Gener al i zedTi me, UTCTi e, TI ME, TI ME- OF- DAY, DATE, DATE- TI ME, and DURATI ON value is
replaced by a string which conforms to the rules used when encoding in DER and CER (see ITU-T Rec.
X.690 | ISO/IEC 8825-1, 11.7, 11.8, and 11.9).

ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

g) After applying ¢), each UTF8String, NunericString, PrintableString, 1A5String,
VisibleString (I SO646String), BMPString and Universal String vaue is replaced by the
equivalent value of type Uni ver sal St ri ng written using the "Quadruple" notation (see clause 41.8).

C.3.2.6 Any occurrence of "realnumber” shall be transformed to a "base" 10 associated "SequenceVaue'. Any
occurrence of the "ReaValue' associated with "SequenceValue' shall be transformed to the associated
"SequenceValue" of the same "base", such that the last digit of the mantissais not zero.

C.3.3 If two instances of "Type", when transformed to their normal form, are identical lists of lexical items (see
clause 12), then the two instances of "Type" are defined to be identical type definitions with the following exception: if
an "objectclassreference” (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.1), an "objectreference” (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 7.2) or an "objectsetreference” (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.3) appears within the
normalized form of the "Type", then the two types are not defined to be identical type definitions, and value mappings
(see C.4 below) will not exist between them.
NOTE — This exception was inserted to avoid the need to provide transformation rules to normal form for elements of syntax
concerned with information object class, information object, and information object set notation. Similarly, specification for the
normalization of all value notation and of set arithmetic notation has not been included at this time. Should there prove to be a
requirement for such specification, this could be provided in a future version of this Recommendation | International Standard.
The concept of identical type definitions and of value mappings was introduced to ensure that simple ASN.1 constructs could be
used either by using reference names or by copying text. It was felt unnecessary to provide this functionality for more complex
instances of "Type" that included information object classes, etc.

C4 Specification of value mappings

C.4.1 If two occurrences of "Type" are identical type definitions under the rules of C.3, then value mappings exist
between every value of one type and the corresponding value of the other type.

C.42 For atype, X1, created from any type, X2, by tagging (see 31.2), value mappings are defined to exist between
all the members of X1 and the corresponding members of X2.
NOTE — Whilst value mappings are defined to exist between the values of X1 and X2 in C.4.2 above, and between the values
of X3 and X4 in C.4.3, if such types are embedded in otherwise identical but distinct type definitions (such as SEQUENCE or

CHO CE type definitions), the resulting type definitions (the SEQUENCE or CHO CE types) will not be identical type definitions,
and there will be no value mappings between them.

C.43 For atype, X3, created by selecting values from any governing type, X4, by the element set construct or by
subtyping, value mappings are defined to exist between the members of the new type and those members of the
governing type that were selected by the element set or subtyping construct. The presence or absence of an extension
marker has no effect on thisrule.

C.4.4 Additiona value mappings are specified in C.5 between some of the character string types.

C.45 A vaue mapping is defined to exist between al the values of any type defined as an integer type with named
values and any integer type defined without named values, or with different named values, or with different names for
named values, or both.
NOTE — The existence of the value mapping does not affect any scope rule requirements on the use of the names of named
values. They can only be used in a scope governed by the type in which they are defined, or by a typereference name to that
type.

C.46 A vauemapping is defined to exist between all the values of any type defined as a bit string type with named
bits and any bit string type defined without named bits, or with different named bits, or with different names for named
bits, or both.

NOTE — The existence of the value mapping does not affect any scope rule requirements on the use of the names of named bits.
They can only be used in a scope governed by the type in which they are defined, or by atypereference name to that type.

C5 Additional value mappings defined for the character string types

C.5.1 There are two groups of restricted character string types, group A (see C.5.2) and group B (see C.5.3). Value
mappings are defined to exist between all types in group A, and value references to values of these types can be used
when governed by one of the other types. For the types in group B, value mappings never exist between these different
types, nor between any typein group A and any typein group B.

C.5.2 Group A consists of:

UTF8Stri ng
Nurmeri cString
Printabl eString
I A5String

ITU-T Rec. X.680 (11/2008) 115

| SO/IEC 8824-1:2008 (E)

Vi si bl eString (I SO646Stri ng)
Uni versal String
BMPSt ri ng

C.53 Group B consists of:

Tel etexString (T61Stri ng)
Vi deot exStri ng

G aphicString

CGeneral String

C.5.4 The value mappings in group A are specified by mapping the character string values of each type to
Uni ver sal Stri ng, then using the transitivity property of value mappings. To map values from one of the group A
types to Uni ver sal Stri ng, the string is replaced by a Uni versal Stri ng of the same length with each character
mapped as specified below.

C.55 Formaly, the set of abstract values in UTF8String is the same set of abstract values that occur in
Uni ver sal St ri ng but with a different tag (see 41.16), and each abstract valuein UTF8St ri ng is defined to map to the
corresponding abstract valuein Uni ver sal Stri ng.

C.5.6 The glyphs (printed character shapes) for characters used to form the types NumericString and
Pri ntabl eSt ri ng have recognizable and unambiguous mappings to a subset of the glyphs assigned to the first 128
characters of ISO/IEC 10646. The mapping for these typesis defined using this mapping of glyphs.

C.5.7 1A5String and Visi bl eString are mapped into Uni ver sal Stri ng by mapping each character into the
Uni ver sal Stri ng character that has the identical (32-bit) value in the BER encoding of Uni ver sal St ri ng asthe (8-
bit) value of the BER encoding of | A5St ri ng and Vi si bl eStri ng.

C.58 BWPString is formally a subset of Universal String, and corresponding abstract values have vaue
mappings.

C.6 Specific type and value compatibility requirements

This subclause uses the value mapping concept to provide precise text for the legality of certain ASN.1 constructs.

C.6.1 Any "Vaue" occurrence, x-notation, with a governing type, v, identifies the value, y-val, in the governing
type Y that has a value mapping to the value x-val specified by x-notation. It is arequirement that such avalue exists.

For example, consider the occurrence of x in the last line of the following:

X ::=[0] INTEGER (O0..30)
Xx X::= 29

Y = [1] I NTEGER (25..35)
Z1 = Y (x| 30)

These ASN.1 constructs are legal, and in the last assignment the x-notation x is referencing the x-val 29 in X and,
through value mapping, identifies the y-val 29 in Y. The x-notation 30 is referencing the y-val 30in Y, and Z1 is the set
of values 29 and 30. On the other hand, the assignment:

Z2 ::=Y (x| 20)
isillegal because thereis no y-val to which the x-notation 20 can refer.

C.6.2 Any "Type" occurrence, t-notation, that has a governing type, V, identifies the complete set of values in the
root of the governing type V that have value mappings to any of the values in the root of the "Type" t-notation. This set
isrequired to contain at least one value.

For example, consider the occurrence of Win the last line of the following:

116 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

V ::=[0] INTEGER (0..30)
W ::= [1] INTEGER (25..35)
Y ::=[2] INTEGER (31..35)
Z1 1= V (W] 24)

W contributes values 25-30 to the set arithmetic resulting in z1 having the values 24-30. On the other hand, the
assignment:

22 = V(Y| 24)
isillegal because there are no valuesin Y which map to avaluein V.

C.6.3 Thetype of any value supplied as an actual parameter is required to have a value mapping from that value to
one of the values in the type governing the dummy parameter, and it is a value of that governing type which is
identified.

C.6.4 Ifa"Type" issupplied as an actual parameter for a dummy parameter which is a value set dummy parameter,

then al values of that "Type" are required to have value mappings to values in the governor of the value set dummy
parameter. The actual parameter selects the total set of values in the governor which have mappings to the "Type".

C.6.5 In specifying the type, A, of a dummy parameter that is a value or a value set parameter, it is an illegd
specification unless for all values of A, and for every instance of use of A on the right-hand side of the assignment, that
value of A can legally be applied in place of the dummy parameter.

Cc.7 Examples
C.7.1 Thissubclause provides examplesto illustrate C.3 and C.4.

C.7.2 Examplel

X :: = SEQUENCE X1 ::= SEQUENCE
{nane VisibleString, {nane VisibleString,
age | NTECER} -- coment --

age | NTEGER}

X2 ::=[8] SEQUENCE X3 ::= SEQUENCE
{nane VisibleString, {nane VisibleString,
age | NTECER} age AgeType}

AgeType ::= | NTECER

X, X1, X2, and X3 are al identical type definitions. Differences of white-space and comment are not visible, nor does the
use of the AgeType type reference in X3 affect the type definition. Note, however, that if any of the identifiers for the
elements of the sequence were changed, the types would cease to be identical definitions, and there would be no value
mappings between them.

C.7.3 Example2

B ::=SET Bl ::=SET
{nane VisibleString, {age | NTEGER,
age | NTECER} name VisibleString}

are identical type definitions provided neither is in a module with AUTOVATI C TAGS in the module header, otherwise
they are not identical type definitions, and value mappings will not exist between them. Similar examples can be written
using CHO CE and ENUVERATED (using the "identifier" form of "Enumerationitem").

C.74 Example3

C::=SET Cl ::=SET
{nane [0] Vi sibleString, {nane VisibleString,
age | NTECER} age | NTEGER (1..64)}

are not identical type definitions, nor are either of them identical type definitions to either of B or B1, and there are no
value mappings between any of the values of C and C1, nor between either of them and either of B or B1.

ITU-T Rec. X.680 (11/2008) 117

| SO/IEC 8824-1:2008 (E)

C.75 Example4

X INTEGER { vy (2) } ::=3

z INTEGER ::= x
islegal, and assigns the value 3 to z through the value mapping defined in C.4.5.
C.7.6 Example5

bl BIT STRING ::="'101'B

b2 BIT STRING {version1(0), version2(1), version3(2)} ::= bl
islegal, and assignsthe value { ver si on1, version3} tob2.
C.7.7 Example6
With the definitions of C.1.1, SEQUENCE elements of the form:

X DEFAULT y

are legal, where X isany of A, B, C, D, E, or F, or any of the text to the right of the type assignments to these names, and
y isany of a, b, c, d, e, or f, with the following exceptions: E DEFAULT vy isillegal for dl of a, b, c, d, f, and
C DEFAULT e is illegal, because in these cases there are no value mappings available from the defaulting value
reference into the type being defaulted.

118 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Annex D

Assigned object identifier and OID internationalized resour ce identifier values
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex records object identifier, OID internationalized resource identifier and object descriptor values assigned in
the ASN.1 series of Recommendations | International Standards, and provides an ASN.1 module for use in referencing
those values.

D.1 Values assigned in this Recommendation | Inter national Standard
The following values are assigned in this Recommendation | International Standard:
Subclause 41.3

Object Identifier Vaue:
{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l) nunericString(0) }

OID internationalized Resource | dentifier Vaue:
"/Joint-1SO | TU- T/ ASN. 1/ Speci fi cation/ Character_Strings/ Numeric_String"

Object Descriptor Value: " Nurreri ¢String ASN. 1 type"
Subclause 41.5

Object Identifier Vaue:
{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l) printableString(1l) }

OID Internationalized Resource |dentifier Value:
"/Joint-1SO | TU T/ ASN. 1/ Speci fi cation/ Character_Strings/Printable_String"

Object Descriptor Value: " Pri nt abl eString ASN. 1 type"
Subclause 42.1

Object Identifier Vaue:
{ joint-iso-itu-t asnl(1l) specification(0) nodules(0) iso0l0646(0) }

OID Internationalized Resource |dentifier Value:
"/Joint-1SO | TU T/ ASN. 1/ Speci fi cati on/ Modul es/ | SO _10646"

Object Descriptor Value: " ASN. 1 Char act er Mdul e"
Subclause D.2

Object Identifier Vaue:
{ joint-iso-itu-t asnl(1l) specification(0) nodules(0) object-identifiers(1l) }

OID Internationalized Resource I dentifier Value:
"/Joint-1SO I TU T/ ASN. 1/ Speci fi cati on/ Modul es/ Cbj ect _I dentifiers"

Object Descriptor Value: "ASN. 1 Obj ect Identifier Mdule"

D.2 Object identifiersin the ASN.1 and encoding rules standar ds

This clause specifies an ASN.1 module which contains the definition of a value reference name for each object
identifier value defined in the ASN.1 standards (ITU-T Rec. X.680 | ISO/IEC 8824-1 to ITU-T Rec. X.693 | ISO/IEC
8825-4).

NOTE — These values are available for use in the value notation of the OBJECT IDENTIFIER type and types derived from it.

All of the value references defined in the module specified in this clause are exported and have to be imported by any module
that wishes to use them.

ASNL- Coj ect-ldentifier-Mddule { joint-iso-itu-t asnl(1l) specification(0) nodul es(0)
object-identifiers(l) }

"/ Joint-1SO 1 TU T/ ASN. 1/ Speci fi cati on/ Modul es/ Cbj ect _Identifiers"

DEFINITIONS ::= BEG N

ITU-T Rec. X.680 (11/2008) 119

| SO/IEC 8824-1:2008 (E)

-- NunericString ASN. 1 type (see 41.3) --
nunericString OBJECT I DENTIFIER :: =

{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1)
nunericString(0) }

-- PrintableString ASN. 1 type (see 41.5) --
printabl eString OBJECT IDENTIFIER :: =

{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l)
printableString(1) }

-- ASN. 1 Character Mdule (see 42.1) --
asnlChar act er Modul e OBJECT | DENTI FIER : : =
{ joint-iso-itu-t asnl(1l) specification(0) nmodul es(0) is010646(0) }

-- ASN.1 hject Identifier Mddule (this nodule) --
asnlCbjectldentifierMdul e OBJECT | DENTIFIER :: =

{ joint-iso-itu-t asnl(1l) specification(0) nodul es(0)
object-identifiers(1l) }

-- BER encoding of a single ASN.1 type --
ber OBJECT IDENTIFIER :: =
{ joint-iso-itu-t asnl(1l) basic-encoding(l) }

-- CER encoding of a single ASN.1 type --
cer OBJECT IDENTIFIER :: =
{ joint-iso-itu-t asnl(1l) ber-derived(2) canonical-encoding(0) }

-- DER encoding of a single ASN. 1 type --
der OBJECT IDENTIFIER :: =
{ joint-iso-itu-t asnl(1) ber-derived(2) distinguished-encoding(l) }

-- PER encoding of a single ASN.1 type (basic aligned) --
per Basi cAl i gned OBJECT I DENTIFIER :: =
{ joint-iso-itu-t asnl(1l) packed-encoding(3) basic(0) aligned(0) }

-- PER encoding of a single ASN.1 type (basic unaligned) --
per Basi cUnal i gned OBJECT | DENTI FIER : : =
{ joint-iso-itu-t asnl(1l) packed-encoding(3) basic(0) unaligned(l) }

-- PER encoding of a single ASN.1 type (canonical aligned) --
per Canoni cal Al i gned OBJECT | DENTIFIER :: =
{ joint-iso-itu-t asnl(1l) packed-encoding(3) canonical (1) aligned(0) }
-- PER encoding of a single ASN.1 type (canonical unaligned) --
per Canoni cal Unal i gned OBJECT | DENTI FIER :: =
{ joint-iso-itu-t asnl(1l) packed-encodi ng(3) canonical (1) unaligned(1) }

-- XER encoding of a single ASN. 1 type (basic) --
xerBasi ¢ OBJECT IDENTIFIER :: =
{joint-iso-itu-t asnl(1l) xm -encodi ng(5) basic(0) }

-- XER encoding of a single ASN.1 type (canonical) --
xer Canoni cal OBJECT IDENTIFIER :: =
{joint-iso-itu-t asnl(1) xnl-encoding(5) canonical (1) }

END -- ASNLl- (hject-ldentifier-Mdule --

120 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Annex E

Encoding references
(Thisannex forms an integral part of this Recommendation | International Standard)

El This annex specifies the currently defined encoding references and the Recommendation | International
Standard that specifies the syntactic form (and semantics) of encoding instructions with that encoding reference (except
for the TAG encoding reference, which has no associated encoding instructions).

NOTE - It is recommended that, if an encoding reference that is not specified here appears in an ASN.1 specification, the
associated encoding instructions be ignored with (only) awarning diagnostic.

E.2 The encoding references in column 1 of Table E.1 are currently defined. The syntax and semantics of the

associated encoding instructions (where applicable) are defined in the Recommendation | International Standard
referenced in column 2 of Table E.1.

Table E.1 — Standar ds defining the semantics associated with a given encoding reference

Encoding reference Refer to standard
TAG This Recommendation | International Standard
XER ITU-T Rec. X.693 (2008) | ISO/IEC 8825-4 (2008)
PER ITU-T Rec. X.695 (2008) | ISO/IEC 8825-6 (2008)

ITU-T Rec. X.680 (11/2008) 121

| SO/IEC 8824-1:2008 (E)

Annex F

Assignment and use of arcsin the International Object Identifier tree
(This annex does not form an integral part of this Recommendation | International Standard)

F.1 General

F.1.1 The International Object Identifier tree is specified in ITU-T Rec. X.660 | ISO/IEC 9834-1 Annex A. It
defines a hierarchy of registration authorities, each of which assigns:

a) a primary integer identifier (unambiguous and unique) to each subordinate arc to identify the nodes
beneath the node it is responsible for;

b) (optionaly) secondary identifiers to each subordinate arc that can aid human-readability of the
subordinate arc identification, but are not necessarily unambiguous;

c) an integer-valued Unicode label (unambiguous) that is the character encoding of the primary integer
vaue of the arc;

d) (optionally) further Unicode labels (unambiguous) that provide alternative identifications of subordinate
arcs.
F.1.2 Unicode labels are (with minor restrictions) any sequence of Unicode characters.

F.1.3 ITU-T Rec. X.660 | ISO/IEC 9834-1, Annex A (and the Recommendations | International Standards and
procedures it references) defines the international object identifier tree.

NOTE — An informal repository of information about OID allocationsis available at http://www.oid-info.com.

F.2 Use of the International Object Identifier tree by the object identifier (0BJECT | DENTI FI ER)
type

F.21 Thistype (and its value notations and encodings) provides a means of identifying a node of the International
Object Identifier tree using only the primary integer values of each arc (with the optional inclusion of secondary
identifiersin value notation, XML value notation, and XML encodings).

F.2.2 It has been in long-term use, and provides a compact means of identifying a node of the International Object
Identifier tree in binary-encoded computer communication.

F.3 Use of the International Object I dentifier tree by the OID internationalized resource identifier
(D IR)type

F.3.1 Thistype (and its value notations and encodings) provides a means of identifying a node of the International
Object Identifier tree using only the Unicode labels of each arc.

F.32 The same syntax aso forms the main body of the "oid" IRl and URI schemes registered with IANA (see
Annex F of ITU-T Rec. X.660 | ISO/IEC 9834-1).

122 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Annex G

Examplesand hints
(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. It also contains
hints, or guidelines, for the use of the various features of ASN.1. Unless otherwise stated, an environment of
AUTOVATI C TAGS is assumed.

Gl Example of a personnel record
The use of ASN.1 isillustrated by means of asimple, hypothetical personnel record.
G.11 Informal description of Personnel Record

The structure of the personnel record and its value for a particular individual are shown below.

Name: John P Smith

Title: Director

Employee Number: 51

Date of Hire: 17 September 1971
Name of Spouse: Mary T Smith

Number of Children: 2
Child Information
Name: Ralph T Smith
Date of Birth 11 November 1957
Child Information
Name: Susan B Jones
Date of Birth 17 July 1959

G.12 ASN.ldescription of therecord structure

The structure of every personnel record is formally described below using the standard notation for data types.

Per sonnel Record ::= [APPLI CATI ON 0] SET

{ nane Nane,
title Vi si bl eString,
nunber Enpl oyeeNunber,
dateCOHre Dat e,
name Spouse Nare,
chil dren SEQUENCE COF Chi |l dI nformati on DEFAULT {}

}

Childinformation ::= SET

{ nane Nane,
dateOBirth Dat e

}

Nane ::= [APPLI CATI ON 1] SEQUENCE

{ gi venNane Vi si bl eString,
initial Vi si bl eString,
fam | yNane Vi si bl eString

}

ITU-T Rec. X.680 (11/2008) 123

| SO/IEC 8824-1:2008 (E)

Enpl oyeeNunber ::= [APPLI CATI ON 2] | NTEGER
Date ::= [APPLICATION 3] VisibleString -- YYYY MVDD

This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct DEFAULT can only be
applied to a component of a SEQUENCE or a SET, it cannot be applied to an element of a SEQUENCE COF. Thus, the
DEFAULT { } inPersonnel Record appliesto chi | dr en, not to Chi | dI nf or mat i on.

G.13 ASN.1description of arecord value
The value of John Smith's personnel record is formally described below using the standard notation for data values.

{ name {givenNane "John", initial "P', famlyName "Snith"},
title "Director",
nunber 51,
dateCHre "19710917",
namef Spouse {givenNane "Mary", initial "T", famlyName "Snith"},
children

{ {nane {givenNane "Ral ph", initial "T", fam|lyNane "Smth"} ,
dateOBirth "19571111"},
{nane {givenNane "Susan", initial "B", fam|yNane "Jones"} ,
dateO Birth "19590717" }

}
or in XML value notation:

person ::=
<Per sonnel Recor d>
<nane>
<gi venName>John</ gi venNane>
<initial>P</initial>
<fam | yName>Smi t h</f am | yNanme>
</ nane>
<title>Director</title>
<nunber >51</ nunber >
<dat eOf Hi re>19710917</ dat eCf Hi r e>
<nane Spouse>
<gi venName>MNar y</ gi venNane>
<initial >T</initial>
<fam | yName>Smi t h</f am | yNanme>
</ nane Spouse>
<chi | dren>
<Chi | dI nf or mat i on>
<nane>
<gi venNane>Ral ph</ gi venNane>
<initial >T</initial>
<f am | yName>Sm t h</ f am | yNane>
</ nane>
<dateOF Birt h>19571111</dateO Birt h>
</ Chi | dI nf or mat i on>
<Chi | dI nf or mat i on>
<nane>
<gi venNanme>Susan</ gi venNane>
<initial >B</initial>
<f am | yName>Jones</ f am | yNane>
</ nane>
<dat eOF Bi rt h>19590717</ dateO Birt h>
</ Chi | dI nf or mat i on>
</ chil dren>
</ Per sonnel Recor d>

G.2 Guidelinesfor use of the notation

The data types and formal notation defined by this Recommendation | International Standard are flexible, allowing a
wide range of protocols to be designed using them. This flexibility, however, can sometimes lead to confusion,
especialy when the notation is approached for the first time. This annex attempts to minimize confusion by giving
guidelines for, and examples of, the use of the notation. For each of the built-in data types, one or more usage
guidelines are offered. The character string types (for example, Vi si bl eSt ri ng) and the types defined in clauses 46 to
48 are not dealt with here.

124 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

G21 Boolean

G.2.1.1 Use ahoolean type to model the values of alogical (that is, two-state) variable, for example, the answer to a
yes-or-no question.

EXAMPLE
Enpl oyed ::= BOOLEAN

G.2.1.2 When assigning a reference name to a boolean type, choose one that describes the true state.

EXAMPLE
Married ::= BOOLEAN
not
Marital Status ::= BOOLEAN
G22 Integer

G.2.21 Use an integer type to model the values (for all practical purposes, unlimited in magnitude) of a cardinal or
integer variable.

EXAMPLE
Checki ngAccount Bal ance ::= INTEGER-- in cents; negative means overdrawn.
bal ance Checki ngAccount Bal ance ::= 0

or using XML value notation:

bal ance ::= <Checki ngAccount Bal ance>0</ Checki ngAccount Bal ance>

G.2.2.2 Define the minimum and maximum allowed values of an integer type as named numbers.

EXAMPLE
DayOf TheMonth ::= | NTEGER {first(1), last(31)}
t oday DayCOf TheMonth ::= first
unknown DayCOf TheMonth ::= 0

or using XML value notation:
today ::= <DayCf TheMont h><fir st/ ></ DayOf TheMont h>
unknown :: = <DayCOf TheMont h>0</ DayOf TheMont h>

Note that the named numbers first and | ast were chosen because of their semantic significance to the reader, and
does not exclude the possibility of DayOf TheMont h having other values which may be less than 1, greater than 31 or
between 1 and 31.

To restrict the value of Dayf TheMont h to just fi rst and | ast , one would write:
DayOf TheMonth ::= I NTEGER {first(1), last(31)} (first | last)

and to restrict the value of the Day Of TheMbnt h to al values between 1 and 31, inclusive, one would write:
DayOf TheMonth ::= | NTEGER {first(1), last(31)} (first .. last)
dayf TheMont h DayOf TheMonth ::= 4

or using XML value notation:
dayOf TheMont h :: = <DayO TheMont h>4</ Dayf TheMont h>

G.2.3 Enumer ated

G.2.3.1 Use an enumerated type to model the values of a variable with three or more states. Assign values starting
with zero if their only constraint is distinctness.

ITU-T Rec. X.680 (11/2008) 125

| SO/IEC 8824-1:2008 (E)

EXAMPLE

DayOf TheWeek ::= ENUMERATED {sunday(0), nonday(1l), tuesday(2),
wednesday(3), thursday(4), friday(5), saturday(6)}

firstbDay DayOf TheWeek ::= sunday

or using XML value notation:
firstDay ::= <DayO TheWeek><sunday/ ></ Day(f TheWeek>

Note that while the enumerations sunday, nonday, etc., were chosen because of their semantic significance to the
reader, DayOf TheWeek is restricted to assuming one of these values and no other. Further, only the name sunday,
nmonday, €etc., can be assigned to a value; the equivalent integer values are not allowed.

G.2.3.2 Usean extensible enumerated type to model the values of a variable that has just two states now, but that may
have additional statesin afuture version of the protocol.

EXAMPLE

Marital Status ::= ENUVERATED {single, narried}
-- First version of Marital Status

in anticipation of:

Marital Status ::= ENUMERATED {single, married, .., w dowed}
-- Second version of Marital Status

and later yet:

Marital Status ::= ENUMERATED {single, married, .., w dowed, divorced}
-- Third version of Marital Status

G24 Rea
G.24.1 Usearea typeto model an approximate number.

EXAMPLE
Angl el nRadi ans ::= REAL
pi REAL ::= {mantissa 3141592653589793238462643383279, base 10, exponent -30}

or using the alternate value notation for REAL;

pi REAL ::= 3.14159265358979323846264338327
or using XML value notation:

pi =
<REAL>

3.14159265358979323846264338327
</ REAL>

G.2.4.2 Application designers may wish to ensure full interworking with real values despite differences in floating
point hardware, and in implementation decisions to use (for example) single or double length floating point for an
application. This can be achieved by the following:

App- X- Real ::= REAL (W TH COVPONENTS {
manti ssa (-16777215..16777215),
base (2),
exponent (-125..128) })
/*
Senders shall not transmt val ues outside these ranges
and conform ng receivers shall be capable of receiving
and processing all values in these ranges.
*/

girth App-X-Real ::= {mantissa 16, base 2, exponent 1}
or using XML value notation:
girth ::=
<App- X- Real >

32
</ App- X- Real >

126 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

G25 Bitdtring

G.25.1 Use ahit string type to model binary data whose format and length are unspecified, or specified elsewhere,
and whose length in bitsis not necessarily a multiple of eight.

EXAMPLE
G3Facsim | ePage ::= BIT STRING
-- a sequence of bits conforming to ITUT Rec. T.4.
i mmge G3Facsim|ePage ::= '100110100100001110110' B
trailer BIT STRING :: = "'0123456789ABCDEF H
bodyl G3Facsim|lePage ::= "'1101'B
body2 G3Facsim | ePage ::= '1101000'B

or using XML value notation:
image ::= <G3FacSinil e>100110100100001110110</ G3FacSi ni | e>

trailer ::=
<BlI T_STRI NG>
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
1100 1101 1110 1111
</ BI T_STR NG

bodyl ::= <G3FacSinil e>1101</ GBFacSi m | e>
body2 ::= <G3FacSi m | e>1101000</ G3FacSi m | e>

Note that body1 and body2 are distinct abstract values because trailing 0 bits are significant (due to there being no
"NamedBitList" in the definition of G3Facsi mi | ePage).

G.25.2 Useabhit string type with a size constraint to model the values of afixed sized hit field.
EXAMPLE
BitField ::= BIT STRING (Sl ZE (12))
mapl BitField ::="'100110100100' B
map2 BitField ::="'9M'H

map3 BitField ::='1001101001' B -- Illegal - violates size constraint.
or using XML value notation:
mapl ::= <BitFiel d>100110100100</Bi tFi el d>

Note that map1 and map2 are the same abstract value, for the four trailing bits of map2 are not significant.

G.25.3 Use abit string type to model the values of a bit map, an ordered collection of logical variables indicating
whether a particular condition holds for each of a correspondingly ordered collection of objects.

DaysOf TheWeek ::= BI T STRI NG {
sunday(0), nonday (1), tuesday(2),
wednesday(3), thursday(4), friday(5),
saturday(6) } (SIZE (0..7))

sunnyDaysLast Week1l DaysOf TheWeek :: = {sunday, nonday, wednesday}
sunnyDaysLast Week2 DaysOf TheWeek ::= '1101'B
sunnyDaysLast Week3 DaysOf TheWeek ::= '1101000'B

sunnyDayslLast Week4 DaysOf TheWeek ::= '11010000'B -- |11 egal

or using XML value notation:

sunnyDaysLast ekl :: =
<DaysCOf TheWek>
<sunday/ ><nonday/ ><wednesday/ >
</ DaysOf TheWeek>

ITU-T Rec. X.680 (11/2008) 127

| SO/IEC 8824-1:2008 (E)

sunnyDaysLast Week2 :: = <DaysOf TheWeek>1101</ DaysOf TheWeek>

<DaysOf TheWeek>1101000</ DaysCOf TheWeek>

sunnyDaysLast W\eek3 ::

Note that if the bit string value is less than 7 bits long, then the missing bits indicate a cloudy day for those days, hence
the first three values above have the same abstract value.

G.25.4 Use a bit string type to model the values of a bit map, a fixed-size ordered collection of logical variables
indicating whether a particular condition holds for each of a correspondingly ordered collection of objects.

DaysOf TheWeek ::= BI T STRI NG {
sunday(0), nonday (1), tuesday(2),
wednesday(3), thursday(4), friday(5),
saturday(6) } (SIZE (7))

sunnyDaysLast Week1l DaysOf TheWeek : {sunday, nonday, wednesday}

sunnyDayslLast Week2 DaysOf TheWeek ::= '1101'B -- Il egal

-- violates size constraint.
sunnyDaysLast Week3 DaysCOf TheWeek ::= '1101000'B
sunnyDayslLast Week4 DaysOf TheWeek ::= '11010000'B -- Il egal

-- violates size constraint.
Note that the first and third values have the same abstract value.
G.25.5 Useabit string type with named bits to model the values of a collection of related logical variables.

EXAMPLE
Personal Status ::= BIT STRING
{married(0), enployed(1l), veteran(2), collegeG aduate(3)}
billdinton Personal Status ::= {narried, enployed, collegeG aduate}
hillarydinton Personal Status ::="'110100'B

or using XML value notation:

billCdinton ::=
<Per sonal St at us>
<married/ >
<enpl oyed/ >
<col | egeG aduat e/ >
</ Per sonal St at us>

hillarydinton ::= <Personal St atus>110100</ Per sonal St at us>

Notethat bi I 1 A intonandhillaryd inton havethe same abstract values.

G26 Octet string

G.2.6.1 Use an octet string type to model binary data whose format and length are unspecified, or specified
elsewhere, and whose length in bitsis amultiple of eight.

EXAMPLE

AFacsim | el mage :: = OCTET STRI NG
-- a sequence of octets conforming to ITUT Rec. T.5 and COTT Rec. T.6

i mge GAFacsim|elnage ::= ' 3FE2EBAD471005' H

or using XML value notation:
image ::= <&FacSi nil el mage>3FE2EBAD471005</ AFacSi mi | el mage>

G.2.6.2 Use a restricted character string type in preference to an octet string type, where an appropriate one is
available.

EXAMPLE

128 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Surnane ::= PrintableString
president Surnane ::= "dinton"
or using XML value notation:

president ::= <Surname>d inton</ Surnanme>

G27 UniversalSring, BMPSring and UTF83ring

Use the BMPSt ri ng type or the UTF8String type to model any string of information which consists solely of
characters from the | SO/IEC 10646 Basic Multilingual Plane (BMP), and Uni ver sal Stri ng or UTF8St ri ng to model
any string which consists of 1SO/IEC 10646 characters not confined to the BMP.

G.2.7.1 UseLevel 1 or Level 2 to denote that the implementation level places restrictions on the use of combining
characters.

EXAMPLE
Russi anName ::= Cyrillic (Level1)
-- Russi anName uses no conbi ni ng characters.
Saudi Name ::= BasicArabic (SIZE (1..100) ~ Level 2)

-- Saudi Nane uses a subset of conbining characters.

Representation of letter X:
greekCapital LetterSigma BWString ::= {0, 0, 3, 163}
or using XML value notation:
greekCapital LetterSigma ::= <BWPStri ng>Σ </ BMPSt ri ng>

Representation of string "f — o<™:

ri ghtwardsArrow UTF8String ::= {0, 0, 33, 146}
infinity UTF8String ::= {0, 0, 34, 30}
property UTF8String ::={"f ", rightwardsArrow, " ", infinity}

or using XML value notation:
property ::= <UTF8String>f → ∞ </ UTF8Stri ng>

G.2.7.2 A collection can be expanded to be a selected subset (i.e., include al characters in the BASIC LATIN
collection) by use of the "UnionMark" (see clause 50).

EXAMPLE
Kat akanaAndBasi cLatin ::= Universal String (FROM (Katakana | BasicLatin))

G28 CHARACTER STRING

Use the unrestricted character string type to model any string of information which cannot be modelled using one of the
restricted character string types. Be sure to specify the repertoire of characters and their coding into octets.

EXAMPLE

PackedBCDString ::= CHARACTER STRI NG (W TH COVPONENTS {
identification (WTH COWONENTS {
fixed PRESENT })
/* The abstract and transfer syntaxes shall be
packedBCDSt ri ng- Abst ract Synt axl d and
packedBCDSt ri ng- Tr ansf er Synt axl d defi ned bel ow.

1)

/* object identifier value for a character abstract syntax
(character set) whose al phabet
is the digits O through 9.

*/

*
/
packedBCDSt ri ng- Abstract Syntaxld OBJECT |DENTIFIER ::=
{ joint-iso-itu-t asnl(1l) exanpl es(123) packedBCD(2) charSet(0) }

ITU-T Rec. X.680 (11/2008) 129

| SO/IEC 8824-1:2008 (E)

/* object identifier value for a character transfer syntax that
packs two digits per octet, each digit encoded as 0000 to
1001, 1111, used for paddi ng.

*/

packedBCDSt ri ng- Transfer Syntaxld OBJECT IDENTIFIER :: =

{ joint-iso-itu-t asnl(1l) exanpl es(123) packedBCD(2)
character Transfer Syntax(1) }

/* The encodi ng of PackedBCDString will contain only the defined
encodi ng of the characters, with any necessary length field, and in
the case of BERwith a field carrying the tag. The obj ect
identifier values are not carried, as "fixed" has been specifi ed.

*/

or using XML value notation:

packedBCDSt ri ng- Abstract Syntaxld ::=
<OBJECT_| DENTI FI ER>
joint-iso-itu-t.asnl(1l).exanpl es(123). packedBCD(2). char Set (0)
</ OBJECT_| DENTI FI ER>

packedBCDSt ri ng- Transfer Syntaxld ::=
<OBJECT_I DENTI FI ER>
joint-iso-itu-t.asnl(1l).exanpl es(123). packedBCD(2). character Transfer Syntax(1)
</ OBJECT_I| DENTI FI ER>

or:
packedBCDSt ri ng- Abstract Syntaxld ::=
<OBJECT_| DENTI FI ER>2. 1. 123. 2. 0</ OBJECT_| DENTI FI ER>
PackedBCDSt ri ng- TransferSyntaxld :: =
<OBJECT_| DENTI FI ER>2. 1. 123. 2. 1</ OBJECT_| DENTI FI ER>
NOTE — Encoding rules do not necessarily encode values of the type CHARACTER STRI NG in a form that always includes the
object identifier values, although they do guarantee that the abstract value is preserved in the encoding.
G.29 Null
Use anull type to indicate the effective absence of a component of a sequence.
EXAMPLE
Patientldentifier ::= SEQUENCE {
nane Vi si bl eString,
r oomN\unber CHO CE {
room | NTECER,
outPatient NULL -- if an out-patient --
}
}
| astPatient Patientldentifier ::= {
nane "Jane Doe",
roomN\unber outPatient : NULL
}

or using XML value notation:

lastPatient ::=
<Patientldentifier>
<nane>Jane Doe</ nanme>
<r oomNunber ><out Pat i ent / ></ r oomN\unber >
</Patientldentifier>

G.2.10 Sequenceand sequence-of

(G.2.10.1 Use a sequence-of type to model a collection of variables whose types are the same, whose number islarge or
unpredictable, and whose order is significant.

130 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

EXAMPLE
NanmesOf Menber Nations ::= SEQUENCE OF VisibleString
-- in al phabetical order
firstTwo NamesOf MenberNations ::= {"Australia", "Austria"}

or, using the optional identifier:

NamesOf Menber Nat i ons2 :: = SEQUENCE OF menber Nation VisibleString
-- in al phabetical order

firstTwo2 NanesOf MenberNations2 :: =
{menber Nati on "Australia", nenberNation "Austria"}

Using XML value notation, the above two values are as follows:

firstTwo ::=
<NamesOf Menber Nat i ons>
<Vi si bl eString>Australia</VisibleString>
<Vi si bl eString>Austria</VisibleString>
</ NamesOF Menber Nat i ons>

firstTwo2 ::=
<NanmesOf Menber Nat i ons2>
<nmenber Nat i on>Aust r al i a</ nenber Nat i on>
<menber Nat i on>Aust ri a</ nenber Nat i on>
</ NamesOf Menber Nat i ons2>

(G.2.10.2 Use asequence type to model a collection of variables whose types are the same, whose number is known and
modest, and whose order is significant, provided that the make-up of the collection is unlikely to change from one
version of the protocol to the next.

EXAMPLE

NanmesOf Of ficers ::= SEQUENCE {
pr esi dent Vi si bl eString,
vi cePr esi dent Vi si bl eString,
secretary Vi si bl eString}

acmeCorp NanesO Officers ::= {
pr esi dent "Jane Doe",
vi cePresi dent "John Doe",
secretary "Joe Doe"}

or using XML value notation:

acnmeCorp ::=
<NamesOr O fi cers>
<pr esi dent >Jane Doe</ presi dent >
<vi cePresi dent >John Doe</vi cePresi dent >
<secret ary>Joe Doe</secretary>
</ NamesOf O f i cer s>

G.2.10.3 Use an inextensible sequence type to model a collection of variables whose types differ, whose number is
known and modest, and whose order is significant, provided that the make-up of the collection is unlikely to change
from one version of the protocol to the next.

EXAMPLE
Credentials ::= SEQUENCE {
user Nane Vi si bl eString,
password Vi si bl eString,
account Nunber | NTEGER}

G.2.10.4 Use an extensible sequence type to model a collection of variables whose order is significant, whose number
currently isknown and is modest, but which is expected to be increased:

EXAMPLE
Record ::= SEQUENCE { -- First version of protocol containing "Record"
user Nane Vi si bl eString,
password Vi si bl eString,

account Nunber | NTEGER,

ITU-T Rec. X.680 (11/2008) 131

| SO/IEC 8824-1:2008 (E)

}
in anticipation of
Record ::= SEQUENCE { -- Second version of protocol containing "Record"
user Nane Vi si bl eString,
password Vi si bl eString,
account Nunber | NTEGER,
[[2: -- Extension addition added in protocol version 2
| ast Loggedl n General i zedTi me OPTI ONAL,
m nut esLast LoggedI| n | NTEGER
11,
}
and later yet (version 3 of the protocol made no additionsto Recor d):
Record ::= SEQUENCE { -- Third version of protocol containing "Record"
user Nane Vi si bl eString,
password Vi si bl eString,
account Nunber | NTEGER,
[[2: -- Extension addition added in protocol version 2
| ast Loggedl n General i zedTi me OPTI ONAL,
m nut esLast LoggedI| n | NTEGER
11,
[[4: -- Extension addition added in protocol version 3
certificate Certificate,
t hurmb ThunbPri nt OPTI ONAL

11,
}
G211 Set and set-of

G.2.11.1 Use a set type to model a collection of variables whose number is known and modest and whose order is
insignificant. 1f automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown
below. (With automatic tagging, the tags are not needed.)

EXAMPLE

User Nane ::= SET {
per sonal Nane [0] VisibleString,
organi zat i onNanme [1] VisibleString,
count r yNane [2] VisibleString}

user UserNane ::= {
count r yNane "N geria",
per sonal Nane "Jonas Maruba",
organi zati onName “Met eorol ogy, Ltd."}

or using XML value notation:

user ::=
<User Nanme>
<count r yNane>Ni geri a</ count r yName>
<per sonal Nane>Jonas Mar uba</ per sonal Nanme>
<or gani zat i onNarme>Met eor ol ogy, Ltd. </organi zati onName>
</ User Nane>

G.2.11.2 Use a set type with OPTI ONAL to model a collection of variables that is a (proper or improper) subset of
another collection of variables whose number is known and reasonably small and whose order is insignificant. If
automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown below. (With
automati ¢ tagging, the tags are not needed.)

EXAMPLE
User Nane ::= SET {
per sonal Nane [0] VisibleString,
or gani zati onNane [1] VisibleString OPTI ONAL

132 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

-- defaults to that of the |ocal organization -- |,
count r yName [2] VisibleString OPTI ONAL
-- defaults to that of the local country -- '}

G.2.11.3 Use an extensible set type to model a collection of variables whose make-up is likely to change from one
version of the protocol to the next. The following assumes AUTOVATI C TAGS was specified in the module definition.

EXAMPLE
User Nane ::= SET {
per sonal Nane VisibleString,-- First version of "UserNane"
organi zat i onName Vi sibl eString OPTI ONAL ,
count r yNane Vi si bl eString OPTI ONAL,
}
user UserNane ::= { personal Name "Jonas Maruba" }

or using XML value notation:

user ::=
<User Nanme>
<per sonal Nane>Jonas Mar uba</ per sonal Nanme>
</ User Nanme>

in anticipation of:

User Nane ::= SET { -- Second version of "UserNane"

per sonal Nane
or gani zati onNane
count r yName

[[2:

i nt er net Enmi | Addr ess

f axNunber
11,

user UserNane ::= {
per sonal Nane
i nt ernet Emai | Addr ess

}
or using XML value notation:

user ::.=
<User Nane>

Vi si bl eString,
Vi si bl eString OPTI ONAL,
Vi si bl eString OPTI ONAL,

Ext ensi on addition added in protocol version 2

Vi si bl eString,
Vi si bl eString OPTI ONAL

"Jonas Maruba",
"j onas@ret eor . ngo. cont’

<per sonal Nane>Jonas Mar uba</ per sonal Nane>
<i nt er net Enai | Addr ess>j onas@ret eor . ngo. conx/ i nt er net Enai | Addr ess>
</ User Nane>

and later yet (versions 3 and 4 of the protocol made no additions to User Nare):

User Nane ::= SET { -- Fifth version of protocol containing "User Nane"
per sonal Nane Vi si bl eString,
or gani zat i onNane Vi si bl eString OPTI ONAL,
count r yNane Vi si bl eString OPTI ONAL,
[[2: -- Extension addition added in version 2
i nt er net Enai | Addr ess Vi si bl eString,

f axNunber Vi si bl eString OPTI ONAL
11,
[[5: -- Extension addition added in version 5
phoneNunber Vi si bl eString OPTI ONAL
11,
}
user UserNane ::= {
per sonal Nane "Jonas Mar uba",
i nt er net Enmai | Addr ess "j onas@ret eor . ngo. cont’
}

ITU-T Rec. X.680 (11/2008) 133

| SO/IEC 8824-1:2008 (E)

or using XML value notation:

user ::=
<User Name>
<per sonal Nane>Jonas Mar uba</ per sonal Nane>
<i nt er net Enai | Addr ess>j onas@ret eor . ngo. conx/ i nt er net Enai | Addr ess>
</ User Name>

G.2.11.4 Use aset-of type to model a collection of variables whose types are the same and whose order is insignificant.

EXAMPLE
Keywords ::= SET OF VisibleString -- in arbitrary order
soneASN1Keywor ds Keywords ::= {"I NTEGER', "BOOLEAN', "REAL"}

or, using the optiona identifier:
Keywords2 ::= SET OF keyword VisibleString -- in arbitrary order

soneASN1Keywor ds2 Keywords2 ::= {keyword "I NTEGER', keyword "BOCOLEAN',
keyword "REAL"}

Using XML value notation, the above two values are as follows:

soneASNlKeywords :: =
<Keywor ds>
<Vi si bl eStri ng>l NTEGER</ Vi si bl eStri ng>
<Vi si bl eStri ng>BOOLEAN</ Vi si bl eStri ng>
<Vi si bl eStri ng>REAL</ Vi si bl eStri ng>
</ Keywor ds>

someASN1Keywor ds2 :: =
<Keywor ds2>
<keywor d>I NTEGER</ keywor d>
<keywor d>BOOLEAN</ keywor d>
<keywor d>REAL</ keywor d>
</ Keywor ds2>

G212 Tagged

Prior to the introduction of the AUTQVATI C TAGS construct, ASN.1 specifications frequently contained tags. The
following subclauses describe the way in which tagging was typically applied. With the introduction of AUTOVATI C
TAGS, new ASN.1 specifications need make no use of the tag notation, although those modifying old notation may have
to concern themselves with tags. New users of the ASN.1 notation are encouraged to use AUTOVATI C TAGS as this
makes the notation more readable.

G.2.12.1 Universal class tags are used only within this Recommendation | International Standard. The notation
[UNI VERSAL 30] (for example) is provided solely to enable precision in the definition of the "Useful Types' (see
45.1). It should not be used elsewhere.

G.2.12.2 A frequently encountered style for the use of tags is to assign an application class tag precisely once in the
entire specification, using it to identify a type that finds wide, scattered, use within the specification. An application
class tag is aso frequently used (once only) to tag the types in the outermost CHO CE of an application, providing
identification of individual messages by the application class tag. The following is an example use in the former case:

EXAMPLE

Fil eNane ::= [APPLI CATI ON 8] SEQUENCE {
di rect oryNanme Vi si bl eString,
directoryRel ati veFi | eNane Vi si bl eString}

The above exampl e assumes that the default encoding referenceis either "empty" or TAG. Otherwise, the above example
would be written:

FileNane ::= [TAG APPLI CATI ON 8] SEQUENCE ({
di rect oryNane Vi si bl eString,
directoryRel ati veFi | eNanme Vi si bl eString}
A similar change would be needed in subsequent examples.

G.2.12.3 Context-specific tagging is frequently applied in an algorithmic manner to all components of a SET,
SEQUENCE, or CHO CE. Note, however, that the AUTOVATI C TAGS facility doesthis easily for you.

134 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

EXAMPLE
Cust oner Record ::= SET {
name [0] VisibleString,
mai | i ngAddr ess [1] VisibleString,
account Nunber [2] | NTEGER,
bal anceDue [3] INTEGER -- in cents --}
CustomerAttribute ::= CHO CE {
nane [0] VisibleString,
mai | i ngAddr ess [1] VisibleString,
account Nunber [2] I NTEGER
bal anceDue [3] INTEGER -- in cents --}

G.2.12.4 Private class tagging should normally not be used in internationally standardized specifications (although this
cannot be prohibited). Applications produced by an enterprise will normally use application and context-specific tag
classes. There may be occasional cases, however, where an enterprise-specific specification seeks to extend an
internationally standardized specification, and in this case use of private class tags may give some benefits in partially
protecting the enterprise-specific specification from changes to the internationally standardized specification.

EXAMPLE
AcmeBadgeNunber ::= [PRIVATE 2] | NTEGER
badgeNunber AcneBadgeNunber ::= 2345

or using XML value notation:
badgeNunmber ::= <AcneBadgeNunber >2345</ AcneBadgeNunber >

G.2.12.5 Textua use of | MPLI CI T with every tag is generally found only in older specifications. BER produces a less
compact representation when explicit tagging is used than when implicit tagging is used. PER produces the same
compact encoding in both cases. With BER and explicit tagging, there is more visibility of the underlying type
(I NTEGER, REAL, BOOLEAN, €tc.) in the encoded data. These guidelines use implicit tagging in the examples whenever it
is lega to do so. This may, depending on the encoding rules, result in a compact representation, which is highly
desirable in some applications. In other applications, compactness may be less important than, for example, the ability
to carry out strong type-checking. In the latter case, explicit tagging can be used.

EXAMPLE
Cust oner Record ::= SET {
name [0] IMPLICIT VisibleString,
mai | i ngAddr ess [1] IMPLICT VisibleString,
account Nurber [2] IMPLICIT | NTEGER,
bal anceDue [3] IMPLICIT INTEGER -- in cents -
-}
CustonerAttribute ::= CHO CE {
nane [0] IMPLICIT VisibleString,
mai | i ngAddr ess [1] IMPLICIT VisibleString,
account Nurber [2] IMPLICT | NTEGER,
bal anceDue [3] IMPLICIT INTEGER -- in cents -
-}

G.2.12.6 Guidance on use of tags in new ASN.1 specifications referencing this Recommendation | International
Standard is quite simple; DON'T USE TAGS. Put AUTOVATI C TAGS in the module header, then forget about tags. If
you need to add new components to the SET, SEQUENCE or CHO CE in alater version, add them to the end.

G.2.13 Choice

G.2.13.1 Use aCHO CE to model avariable that is selected from a collection of variables whose number are known and
modest.

EXAMPLE
Fileldentifier ::= CHO CE {
rel ati veNane Vi si bl eString,
-- name of file (for exanple, "MarchProgressReport")
absol ut eNane Vi sibleString,

-- name of file and containing directory
-- (for exanple, "<WIIians>MarchProgressReport")
seri al Nunber I NTEGER

ITU-T Rec. X.680 (11/2008) 135

| SO/IEC 8824-1:2008 (E)

-- systemassigned identifier for file --}
file Fileldentifier ::= serial Nunmber : 106448503
or using XML value notation:

fileldentifier ::=
<Fileldentifier>

<seri al Nunber >106448503</ seri al Nunber >
</Fileldentifier>

(G.2.13.2 Use an extensible CHO CE to model a variable that is selected from a collection of variables whose make-up is
likely to change from one version of the protocol to the next.

EXAMPLE
Fileldentifier ::= CHO CE { -- First version of Fileldentifier
rel ati veName Vi sibleString,
absol ut eNane Vi sibleString,
}
fileldl Fileldentifier ::=relativeName : "MarchProgressReport. doc"

or using XML value notation:

fileldl ::=
<Fileldentifier>
<rel ati veName>Mar chPr ogr essReport. doc</rel ati veNanme>
</Fileldentifier>

in anticipation of:

Fileldentifier ::= CHO CE { -- Second version of Fileldentifier
rel ati veNanme Vi si bl eString,
absol ut eNane Vi si bl eString,
serl al Nurber | NTEGER, -- Extension addition added in version 2
}
fileldl Fileldentifier ::=relativeName : "MarchProgressReport. doc"
fileld2 Fileldentifier ::= serial Nunber : 214
or using XML value notation:
fileldl ::=

<Fileldentifier>
<rel ati veName>Mar chPr ogr essReport. doc</rel ati veNanme>
</Fileldentifier>
fileld2 ::=
<Fileldentifier>

<seri al Nunber >214</ seri al Nunber >
</Fileldentifier>

and later yet:
Fileldentifier ::= CHO CE { -- Third version of Fileldentifier
rel ati veName Vi si bl eString,
absol ut eNane Vi si bl eString,
serl al Nunmber | NTEGER, -- Extension addition added in version 2
[T -- Extension addition added in version 3

vendor Speci fi ¢ Vendor Ext ,
uni dentified NULL
11,

136 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

rel ati veNane : "MarchProgressReport. doc”
seri al Nunber : 214
unidentified : NULL

fileldl Fileldentifier ::
fileld2 Fileldentifier ::
fileld3 Fileldentifier ::

or using XML value notation:

fileldl ::=
<Fileldentifier>
<r el ati veNane>Mar chPr ogr essReport . doc</rel ati veNanme>
</Fileldentifier>

fileld2 ::=
<Fileldentifier>
<seri al Nunber >214</ seri al Nunber >
</Fileldentifier>

fileld3 ::=
<Fileldentifier>
<uni dentified/ >
</Fileldentifier>

(G.2.13.3 Use an extensible CHO CE of only one type where the possibility is envisaged of more than one type being
permitted in the future.

EXAMPLE
Geeting ::= CHO CE { -- First version of "Geeting"
post Card Vi si bl eString,
}
in anticipation of:
Geeting ::= CHO CE { -- Second version of "Greeting"
post Card Vi sibleString,
[[2 -- Extension addition added in version 2
audi o Audi o,
vi deo Vi deo
11,
}
G.2.13.4 Multiple colons are required when a choice value is nested within another choice value.
EXAMPLE
Geeting ::= [APPLI CATI ON 12] CHA CE {
post Card Vi si bl eString,
recording Voi ce }
Voice ::= CHA CE {
engl i sh OCTET STRI NG
swahi | i OCTET STRI NG }
nyGeeting Greeting ::= recording : english : '019838547E0' H

or using XML value notation:
nyGeeting ::=
<G eeting>

<r ecor di ng><engl i sh>019838547E0</ engl i sh></r ecor di ng>
</ Greeting>

G214 Sdection type

G.2.14.1 Use a selection type to model a variable whose type is that of some particular alternatives of a previously
defined CHO CE.

ITU-T Rec. X.680 (11/2008) 137

| SO/IEC 8824-1:2008 (E)

G.2.14.2 Consider the definition:

FileAttribute ::= CHO CE {
dat e-| ast - used | NTEGER,
file-name Vi si bl eString}

then the following definition is possible:

Attributelist ::= SEQUENCE {
first-attribute date-last-used < FileAttribute,
second-attribute file-name < FileAttribute }

with a possible value notation of:

listOFAttributes AttributeList ::= {
first-attribute 27,
second-attribute "PROGRAM }

or using XML value notation:

listOfAttributes ::=
<Attri buteLi st >
<first-attribute>27</first-attribute>
<second- at tri but e>PROGRAM</ second- attri but e>
</ AttributelList>

G.2.15 Object classfield type

G.2.15.1 Use an object class field type to identify a type defined by means of an information object class (see ITU-T
Rec. X.681 | ISO/IEC 8824-2). For example, fields of the information object class ATTRI BUTE may be used in defining
atype, Attribute.

EXAMPLE
ATTRI BUTE ::= CLASS {
&Attri but eType,
&attributeld OBJECT | DENTI FI ER UNI QUE
}
Attribute ::= SEQUENCE {
attributel D ATTRI BUTE. &attributeld,-- this is normally constrained.
attri buteVval ue ATTRI BUTE. &Attri buteType-- this is normally constrained.
}

Both ATTRI BUTE. &at t ri but el d and ATTRI BUTE. &At t ri but eType are object class field types, in that they are types
defined by reference to an information object class (ATTRI BUTE). The type ATTRI BUTE. &ttributeld is fixed
because it is explicitly defined in ATTRIBUTE as an OBJECT | DENTIFIER However, the type
ATTRI BUTE. &At t ri but eType can carry a value of any type defined using ASN.1, since its type is not fixed in the
definition of the information object class ATTRI BUTE. Notations that possess this property of being able to carry a
value of any type are termed "open type notation”, hence ATTRI BUTE. &At t ri but eType iSan open type.

G216 Embedded-pdv

G.2.16.1 Use an embedded-pdv type to model a variable whose type is unspecified, or specified elsewhere with no
restriction on the notation used to specify the type.

EXAMPLE
Fil eContents ::= EMBEDDED PDV
Docunent Li st ::= SEQUENCE OF docunment EMBEDDED PDV

G.2.17 External

The external type is similar to the embedded-pdv type, but has fewer identification options. New specifications will
generally prefer to use embedded-pdv because of its greater flexibility and the fact that some encoding rules encode its
values more efficiently.

G.2.18 Instance-of

G.2.18.1 Use an instance-of to specify atype containing an object identifier field and an open type value whose typeis
determined by the object identifier. The instance-of type can only be used if the association between the object

138 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

identifier value and the type is specified using an information object of a class derived from TYPE- | DENTI FI ER (see
ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex A and Annex C).

EXAMPLE
ACCESS- CONTROL- CLASS : : = TYPE- | DENTI FI ER
Get - I nvoke ::= SEQUENCE {
obj ectd ass oj ect d ass,
obj ect | nst ance Qoj ect | nst ance,
accessControl | NSTANCE OF ACCESS- CONTROL- CLASS, -- this is normally
-- constrai ned.
attributel D ATTRI BUTE. &t tri butel d
}
Get-Invokeis then equivalent to:
Get - I nvoke ::= SEQUENCE {
obj ectd ass oj ect d ass,
obj ect | nst ance Obj ect | nst ance,
accessControl [UNI VERSAL 8] | MPLICI T SEQUENCE {
type-id ACCESS- CONTROL- CLASS. & d,-- this is nornally
-- constrai ned.
val ue [0] ACCESS- CONTROL- CLASS. &Type-- this is normally
-- constrained.
I
attributel DATTRI BUTE. &attributeld
}

The true utility of the instance-of type is not seen until it is constrained using an information object set, but such an
example goes beyond the scope of this Recommendation | International Standard. See ITU-T Rec. X.682 |
| SO/IEC 8824-3 for the definition of information object set, and Annex A of ITU-T Rec. X.682 | ISO/IEC 8824-3 for
how to use an information object set to constrain an instance-of type.

G.2.19 Object identifier

Use an OBJECT | DENTI FI ER when a compact numerical identification of a node of the OID tree is needed in binary
encodings.

G.2.20 OID internationalized resourceidentifier

Use an O D-I R when the use of names that include all most Unicode characters is desired, and where character
encodings are acceptable. A D-1 Rl values can also be used asan IRI or URI using the "oid" IRI/URI scheme (see
ITU-T Rec X.660 | ISO/IEC 9834-1 Annex F).

G221 Réative object identifier

G.2.21.1 Use a relative object identifier type to transmit object identifier values in a more compact form in contexts
where the early part of the object identifier value isknown. There are three situations that can arise:

a) The early part of the object identifier value is fixed for a given specification (it is an industry-specific
standard, and all OlDs are relative to an OID allocated to the standardizing body. In thiscase, use:

RELATI VE- O D -- The relative object identifier value is
-- relative to {iso identified-organization set(22)}

b) The early part of the object identifier value is frequently a value that is known at specification time, but
may occasionally be amore general value. In this case, use:

CHO CE
{a RELATI VE- O D -- The value is relative to {1 3 22}--,
b OBJECT I DENTIFIER -- Any object identifier value--}

c) Theearly part of the object identifier value is not known until communications time, but will frequently
be common to many values that need to be sent, and quite often will be a value known at specification
time. In thiscase use (for example):

SEQUENCE
{oi d-root COBJECT | DENTI FI ER DEFAULT {1 3 22},
rel oi ds SEQUENCE OF RELATIVE-A D --rel ative to oid-root--}

ITU-T Rec. X.680 (11/2008) 139

| SO/IEC 8824-1:2008 (E)

G.3 Value notation and property settings (T1 ME type and useful time types)

This subclause provides examples of value notation for the time type. The same value notation is used for the useful
time types, but is restricted to denotation of abstract values that are present in those types. Each example gives a time
abstract value in normal human notation, then a value assignment for that value, using a useful time type if there is one
that contains it, otherwise using the TI ME type. The following comment gives the settings needed to define a subtype of
the TI ME type that contains all similar abstract values.

G3.1 Date
EXAMPLES
Calendar date — 12 April 1985:

datel DATE ::= "1985-04-12" -- Basic=Date Date=YMD Year =Basic
Ordinal date— 12 April 1985:

date2 TIME ::= "1985-102" -- Basic=Date Date=YD Year=Basi c
Week date — Friday 12 April 1985:

date3 TIMeE ::= "1985-W5-5" -- Basic=Date Date=YWD Year =Basi c
Calendar week — 15th week of 1985:

dated4 TIME ::= "1985-W5" -- Basic=Date Date=YW Year=Basi c
Calendar month — April 1985:

date5 TIME ::= "1985-04" -- Basic=Date Date=YM Year =Basic
Caendar year — 1985:

date6 TIME ::= "1985" -- Basic=Date Date=Y Year=Basic
Calendar date— 12 April 11985:

date7 TIME ::= "+11985-04-12" -- Basi c=Date Date=YMD Year=L5
The 12th April in the 2nd year before the year 0000:

date8 TIME ::= "-0002-04-12" -- Basi c=Date Date=YMD Year =Negati ve
The 20th century:

date9 TIME ::= "19C' -- Basic=Date Date=C Year=Basic

G3.2 Timeof day
EXAMPLES

27 minutes and 46 seconds past 15 hours:

tinmel TIMe-OF- DAY ::= "15:27: 46"
-- Basic=Tine Time=HMS Local - or- UTC=L

To the nearest minute:

tinme2 TIME ::= "15: 28"
-- Basic=Tine Ti me=HM Local - or - UTC=L

Local time with decimal fractions using comma— 27 minutes and 35 and a half second past 15 hours:

time3 TIME ::= "15:27:35,5"
-- Basic=Tine Ti me=HVSF1 Local - or- UTC=L

UTC — 20 minutes and 30 seconds past 23 hours:

timed4 TIME ::= "23:20:30Z"
-- Basic=Tinme Ti me=HM5 Local - or-UTC=Z

To the nearest hour:

time5 TIME ::= "23Z"
-- Basic=Tine Tinme=H Local -or-UTC=Z

140 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Local time of the day and the difference from UTC — 27 minutes 46 seconds past 15 hours locally in Geneva (one hour
ahead of UTC):

tinme6 TIME ::= "15:27:46+01: 00"
-- Basic=Tine Ti me=HM5 Local - or- UTC=LD

Alternative value notation for the same abstract value:

time7 TIME ::= "15:27: 46+01"
-- Basic=Ti nme Ti ne=HVB Local - or- UTC=LD

27 minutes 46 seconds past 15 hourslocally in New Y ork (five hours behind UTC):

tinme8 TIME ::= "15:27: 46- 05: 00"
-- Basic=Tine Ti me=HM5 Local - or- UTC=LD

G.3.3 Dateand time of day
EXAMPLES

Combination of calendar date and local time of day:

date-tinel DATE-TIME ::= "1985-04-12T10: 15: 30"
-- Basi c=Dat e- Ti ne Dat e=YMD Year =Basi ¢ Ti ne=HVS
-- Local -or-UuUrcC=L

Combination of calendar date and local time of day with time differential; the local time is 01:30 on the 1% of April
1985; the UTC time at that location is 23:30 on the 31% of March 1985:

date-tinme2 TIME ::= "1985-04-01T01: 30: 00+02. 00"
-- Basic=Date-Ti ne Dat e=YMD Ti me=HMS Local - or - UTC=LD

Combination of ordinal date and UTC:

date-time3 TIME ::= "1985-102T23: 50: 302"
-- Basic=Date-Ti me Dat e=YD Year=Basi ¢ Ti ne=HVS Local - or- UTC=Z

Combinations of week date and local time of the day:

date-time4 TIME ::= "1985-W4-5T23: 50: 30"
-- Basi c=Dat e- Ti ne Dat e=YWD Year =Basi ¢ Ti ne=HVS
-- Local -or-uUrc=L

G.34 Timeinterval
EXAMPLES

A timeinterval starting at 20 minutes and 50 seconds past 23 hours on 12 April 1985 and ending at 30 minutes past 10
hours on 25 June 1985:

intervall TIME ::= "1985-04-12T23: 20: 50/ 1985- 06- 25T10: 30: 00"
-- Basic=Interval Interval-type=SE SE-poi nt=Date-Ti e
-- Dat e=YMD Year =Basi ¢ Ti ne=HVS Local - or- UTC=L

A time interval starting at local time 30 minutes past 12 hours (UTC time 30 minutes past 10 hours) on 12 April 1985
and ending at 30 minutes past 13 hours on 12 April with the same time difference (which is not a regquirement):

interval 2 TIME ::= "1985-04-12T12: 30: 00+02: 00/ 1985- 04- 12T13: 30: 00+02: 00"
-- Basic=Interval Interval-type=SE SE-poi nt =Dat e-Ti e
-- Dat e=YMD Year =Basi ¢ Ti ne=HVS Local - or- UTC=L

Alternative value notation for the same abstract value, omitting the second time difference:

interval 3 TIME ::= "1985-04-12T12: 30: 00+02: 00/ 1985- 04- 12T13: 30: 00"
-- Basic=Interval Interval-type=SE SE-poi nt=Date-Ti e
-- Dat e=YMD Year =Basi ¢ Ti me=HVS Local - or- UTC=L

A timeinterval starting at 12 April 1985 and ending on 25 June 1985;
interval 4 TIME ::= "1985-04-12/1985-06- 25"

-- Basic=Interval Interval-type=SE SE-poi nt =Dat e
-- Date=YMD Year =Basi c

ITU-T Rec. X.680 (11/2008) 141

| SO/IEC 8824-1:2008 (E)

A timeinterval of 2 years, 10 months, 15 days, 10 hours, 20 minutes and 30 seconds:

durati onl DURATION ::= "P2Y10ML5DT10H20MB0S"
-- Basic=Interval Interval-type=D

A timeinterval of 1 year and 6 months:

duration2 DURATION ::= "P1Y6M
-- Basic=Interval Interval-type=D

A time interval of seventy-two hours:

duration3 DURATION ::= "PT72H'
-- Basic=Interval Interval-type=D

A timeinterval of 1 year, 2 months, 15 days and 12 hours, beginning on 12 April 1985 at 20 minutes past 23 hours:

interval 5 TIME ::= "1985-04-12T23: 20: 00/ PLY2ML5DT12H'
-- Basic=Interval Interval-type=SD SE-poi nt =Dat e- Ti ne
-- Date=YMD Year =Basi ¢ Ti ne=HV5S Local - or - UTC=L

A timeinterval of 1 year, 2 months, 15 days and 12 hours, ending on 12 April 1985 at 20 minutes past 23 hours:

interval 6 TIME ::= "P1Y2ML5DT12H 1985- 04- 12T23: 20: 00"
-- Basic=Interval Interval-type=DE SE-point=Date-Tine
-- Dat e=YMD Year =Basi ¢ Ti ne=HVS Local - or- UTC=L

G.3.5 Recurringinterval
EXAMPLES
Fifteen recurrences of atime interval of 2 years, 10 months, 15 days, 10 hours, 20 minutes and 30 seconds:

rec-intl TIME ::= "R15/ P2Y10ML5DT10H20MB0S"
-- Basic=Rec-Interval Recurrence=R2 Interval-type=D

An unbounded number of recurrences of atime interval of 2 years, 15 days, 10 hours, 20 minutes and 30 seconds:

rec-int2 TIME ::= "R P2Y15DT10H20M30S"
-- Basic=Rec-Interval Recurrence=Unlimted Interval-type=D

Two recurrences of atime interval of 1 year and 6 months:

rec-int3 TIME ::= "R2/ PLY6BM
-- Basic=Rec-Interval Recurrence=Rl Interval-type=D

An unbounded number of occurrences of atime interval of 1 year, 2 months, 15 days and 12 hours of which the last
occurrence ends at 12 April 1985 at 20 minutes and 50 seconds past 23 hours:

rec-int4 TIME ::= "R P1Y2ML5DT12H 1985- 04- 12T23: 20: 50"
-- Basic=Rec-Interval Recurrence=Unlimted |Interval-type=DE
-- SE-poi nt =Dat e- Ti ne Dat e=YMD Year =Basi ¢ Ti mne=HV5
-- Local -or-UTC=L

G4 I dentifying abstract syntaxes

G.41 Itiscommon for protocols to be defined by associating semantics with each of the values of a single ASN.1
type, typically a choice type. (This ASN.1 type is sometimes referred to informally as "the top-level type for the
application".) This set of abstract values is formally called the abstract syntax for the application. An abstract syntax
can beidentified by giving it an abstract syntax name of ASN.1 type object identifier.

G.4.2 Theassignment of an object identifier to an abstract syntax can be done using the built-in information object
class ABSTRACT- SYNTAX which is defined in ITU-T Rec. X.681 | ISO/IEC 8824-2. This also servesto clearly identify
the top-level type for the application.

142 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

G.43 Thefollowing isan example of text which might appear in an application specification:

EXAMPLE
Application-ASNL DEFINITIONS :: =

BEG N

EXPORTS Appl i cati on- PDU;

Appl i cation-PDU ::= CHO CE {
connect-pdu ,
dat a- pdu CHA CE {

},
}
oo

Abstract - Synt ax- Modul e DEFINITIONS :: =
BEG N
| MPORTS Appl i cati on- PDU FROM Appl i cati on- ASNL;

-- This application defines the follow ng abstract syntax:

Abstract - Synt ax ABSTRACT- SYNTAX :: =
{ Application-PDU |DENTIFIED BY
appl i cati on-abstract-syntax-object-id }

appl i cati on-abstract - syntax-obj ect-id OBJECT | DENTI FIER ::
{joint-iso-itu-t asnl(1l) exanpl es(123)
appl i cati on-abstract-syntax(3) }
-- The correspondi ng obj ect descriptor is:

appl i cati on-abstract-synt ax-descri ptor CbjectDescri ptor
"Exanpl e Application Abstract Syntax"

-- The ASN. 1 object identifier and object descriptor val ues:

-- encoding rul e object identifier

-- encoding rul e object descriptor
-- assigned to encoding rules in ITUT Rec. X. 690 | ISQOIEC 8825-1
-- and ITUT Rec. X.691 | I1SOIEC 8825-2 can be used as the transfer
-- syntax identifier in conjunction with this transfer syntax.

END

G.4.4 In order to ensure interworking, the standard may additionally identify a mandatory transfer syntax (typically
one of those defined in the encoding rules of ITU-T Rec. X.690 | ISO/IEC 8825-1 or ITU-T Rec. X.691 | ISO/IEC
8825-2 or ITU-T Rec. X.692 | ISO/IEC 8825-3).

G5 Subtypes

G.5.1 Usesubtypesto limit the values of an existing type which are to be permitted in a particular situation.

EXAMPLES
At om cNunber = I NTEGER (1..104)
TouchToneString ::= |A5String
(FROM ("0123456789" | "*" | "#")) (SIZE (1..63))
Par anet er Li st ;.= SET SIZE (1..63) OF Paraneter
Smal | Prine ::= |INTEGER (2| 3]|5]7]11] 13| 17| 19] 23| 29)

G.5.2 Use an extensible subtype constraint to model an | NTEGER type whose set of permitted values is small and
well defined, but which is expected to increase.

ITU-T Rec. X.680 (11/2008) 143

| SO/IEC 8824-1:2008 (E)

EXAMPLE
Smal I Prime ::= INTEGER (2 | 3, ...) -- First version of SnallPrine

in anticipation of:

Smal | Prinme ::= INTEGER (2 | 3, ..., 5| 7| 11)
-- Second version of SmallPrine

and later yet:

Smal Il Prime ::= INTEGER (2 | 3, ..., 5| 7] 11| 13| 17| 19

-- Third version of Small Prine
NOTE - For certain types, some encoding rules (e.g., PER) provide a highly optimized encoding for subtype constraint
extension root values (i.e., values appearing before the ". . . ") and a less optimized encoding for subtype constraint extension
addition values (i.e., values appearing after the ". . . "), while in some other encoding rules (e.g., BER) subtype constraints have
no effect on the encoding.

G.5.3 Where two or more related types have significant commonality, consider explicitly defining their common
parent as a type and use subtyping for the individual types. This approach makes clear the relationship and the
commonality, and encourages (though does not force) this to continue as the types evolve. It thus facilitates the use of
common implementation approaches to the handling of values of these types.

EXAMPLE
Envel ope i= SET {
typeA TypeA
typeB TypeB OPTI ONAL,
typeC TypeC OPTI ONAL}
-- the conmon parent
ABEnvel ope ::= Envelope (WTH COVPONENTS
{...,
typeB PRESENT, typeC ABSENT})
-- where typeB nust al ways appear and typeC nust not
ACEnvel ope ::= Envelope (WTH COWONENTS

{...,
typeB ABSENT, typeC PRESENT})
-- where typeC nust always appear and typeB nust not

The latter definitions could alternatively be expressed as:
ABEnvel ope ::= Envel ope (W TH COVWONENTS {typeA, typeB})
ACEnvel ope ::= Envel ope (WTH COWONENTS {typeA, typeC})

The choice between the alternatives would be made upon such factors as the number of components in the parent type,
and the number of those which are optional, the extent of the difference between the individual types, and the likely
evolution strategy.

G.54 Use subtyping to partially define a value, for example, a protocol data unit to be tested for in a conformance
test, where the test is concerned only with some components of the PDU.

EXAMPLE
Given:
PDU ::= SET
{al pha | NTEGER,
bet a | A5String OPTI ONAL,
gama SEQUENCE OF Par anet er,
delta BOCOLEAN}

then in composing atest which requires the Boolean to be false and the integer to be negative, write:
TestPDU ::= PDU (WTH COVPONENTS

{...,
delta (FALSE),
al pha (MN..<0)})

144 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

and if, further, the | A5St ri ng, bet a, isto be present and either 5 or 12 charactersin length, write:

Further Test PDU : : = Test PDU (W TH COVPONENTS {... , beta (S| ZE (5| 12)) PRESENT
})

G.55 If a genera-purpose data type has been defined as a SEQUENCE OF, use subtyping to define a restricted
subtype of the general type.

EXAMPLE
Text-block ::= SEQUENCE OF VisibleString
Addr ess ::= Text-block (SIZE (1..6)) (WTH COWONENT (SIZE (1..32)))

G.5.6 If ageneral-purpose data type had been defined as a CHO CE, use subtyping to define a restricted subtype of
the general type.

EXAMPLE
Z ::= CHO CE {
a A,
b B,
c C,
d D,
e E
}
V:i:=Z (WTH COWPONENTS { ..., a ABSENT, b ABSENT })
-- 'a'" and 'b' mnmust be absent,
-- either 'c', 'd or 'e' may be present in a value.
W::=Z (WTH COWONENTS { ..., a PRESENT })-- only 'a" can be present
-- (see 51.8.10.2).
X::=Z (WTH COWONENTS { a PRESENT })-- only '"a' can be present
-- (see 51.8.10.2).
Y ::=Z (WTH COWONENTS { a ABSENT, b, c })

-- a', 'd and 'e' nust be absent,
-- either 'b'" or 'c¢' may be present in a val ue.

NOTE —wand X are semantically identical.

G.5.7 Usecontained subtypes to form new subtypes from existing subtypes.

EXAMPLE
Mont hs 11 = ENUMERATED ({

j anuary (1),
february (2),
mar ch (3),
april (4),
may (5),
j une (6),
july (7),
august (8),
sept enber (9),
oct ober (10),
novenber (11),
decenber (12) }

ITU-T Rec. X.680 (11/2008) 145

| SO/IEC 8824-1:2008 (E)

G.58

First-quarter Months (january | february | march)

Second-quarter ::= Mnths (april | may | june)
Third-quarter ::= Months (july | august | septenber)
Fourth-quarter ::= Months (october | novenber | decenber)
First-half ::= Months (First-quarter | Second-quarter)
Second-half ::= Months (Third-quarter | Fourth-quarter)

Examples of subtyping the time type are present in 38.4, and several useful settings are given in the

comments in G.3. Additional examples follow, with comments. Note that all examples of subtyping can aso be applied
to the useful time types, but will only select abstract values that are already present in those types. The main use of this

notation is to provide variations on the useful time types.

EXAMPLES
M/-Date ::= TIM
(SETTI NGS "Basi c=Dat e Year=Basi ¢ Dat e=YD")
-- A date type that uses years and days
M/-Datel ::= TI M
(SETTI NGS "Basi c=Dat e Year=Basi ¢ Dat e=YD")
("2000-001" .. < "2011-001")
-- A date type that uses years and days restricted to the
-- period fromthe 1st Jan. AD 2000 to Dec. 31st AD 2010, inclusive.
M/-Date2 ::= TI M
("2000-001" .. < "2011-001")
-- The sanme date type as My-Datel, but this is probably |ess
-- clear to a human user. It relies on the property settings
-- being deduced fromthe value notation (see Annex K).
M-Il legal -Date ::= TIME
("1500-01" .. < "2011-01")
-- The lower bound is a proleptic date, and the upper bound
-- is a basic date, so they do not have the sane properties,
-- and this is illegal.
M/-tine-of-day-1 ::= TIME

(SETTI NGS "Basi c=Ti me Ti me=HV5 Local - or - UTC=L

M dni ght=Start")

-- This is the sane as TI ME- OF- DAY, but mdnight at the end of
-- the day is excluded, with the only m dni ght being represented
-- by the value notation "00:00: 00".

M/-tine-of-day-2 ::= TIME
(SETTI NGS "Basi c=Ti me Ti me=HV5 Local - or - UTC=L
M dni ght =End")
-- This is the sane as TI ME- OF- DAY, but midnight at the start of
-- the day is excluded, with the only m dni ght being represented
-- by the value notation "24:00: 00".

M/-tine-of-day-3 ::= TIME
(SETTI NGS "Basi c=Ti ne Ti ne=HVMS Local - or - UTC=2")
-- This is the sane as TI Me-OF- DAY, but the tine is UTC, not
-- local tine.

146 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Annex H

Tutorial annex on ASN.1 character strings
(This annex does not form an integral part of this Recommendation | International Standard)

H.1 Character string support in ASN.1

H.1.1 Therearefour groups of character string support in ASN.1. The four groups are:

a) Character string types based on 1SO International Register of Coded Character Sets to be used with
Escape Sequences (that is, based on the structure of ISO/IEC 646) and the associated International
Register of Coded Character Sets, and provided by the types VisibleString, 1A5String,
Tel etexString, Vi deot exStri ng, G aphi cString, and General String.

b) Character string types based on ISO/IEC 10646, and provided by subsetting the type
Uni versal String, UTF8Stri ng or BMPSt ri ng with subsets defined in 1ISO/IEC 10646 or by using
named characters.

¢) Character string types providing a simple small collection of characters specified in this Recommen-
dation | International Standard, and intended for specialized use; these are the NunericString and
Printabl eString types.

d) Use of the type CHARACTER STRI NG, with negotiation of the character set to be used (or announcement
of the set being used); this permits an implementation to use any collection of characters and encodings
for which OBJECT | DENTI FI ERs have been assigned, including those of 1SO International Register of
Coded Character Sets to be used with Escape Sequences, 1SO/IEC 7350, 1SO/IEC 10646, and private
collections of characters and encodings (profiles may impose requirements or restrictions on the
character sets— the character abstract syntaxes —to be used).

H.2 The UniversalString, UTF8Sring and BMPString types

H.2.1 The Universal String and UTF8Stri ng types carry any character from ISO/IEC 10646. The set of
characters in ISO/IEC 10646 is generally too large for meaningful conformance to be required, and should normally be
subsetted to a combination of the standard collections of charactersin Annex A of |SO/IEC 10646.

H.22 The BWPStri ng type carries any character from the Basic Multilingual Plan of ISO/IEC 10646. The Basic
Multilingual Plane is normally subsetted to a combination of the standard collections of characters in Annex A of
ISO/IEC 10646.

H.2.3 For the collections defined in Annex A of 1SO/IEC 10646, there are type references defined in the built-in
ASN.1 module ASN1- CHARACTER- MODULE (see clause 42). The "subtype constraint” mechanism allows new subtypes
of Uni ver sal St ri ng that are combinations of existing subtypes to be defined.

H.2.4 Examples of type references defined in ASNL- CHARACTER- MODULE and their corresponding |1SO/IEC 10646
collection names are:

Basi cLatin BASIC LATIN

Lati n- 1Suppl enent LATIN-1 SUPPLEMENT
Lat i nExt ended- a LATIN EXTENDED-A
Lat i nExt ended- b LATIN EXTENDED-B

| paExt ensi ons IPA EXTENSIONS

Spaci ngModi fi erLetters SPACING MODIFIER LETTERS
Conbi ni ngDi acritical Marks COMBINING DIACRITICAL MARKS

H.25 ISO/IEC 10646 specifies three "levels of implementation”, and requires that all uses of ISO/IEC 10646
specify the implementation level.

The implementation level relates to the extent to which support is given for combining characters in the character
repertoire, and hence, in ASN.1 terms, defines a subset of the Uni ver sal Stri ng and BMPSt ri ng restricted character
string types.

In implementation level 1, combining characters are not allowed, and there is normally a one-to-one correspondence
between abstract charactersin ASN.1 character strings and printed charactersin a physical rendition of the string.

ITU-T Rec. X.680 (11/2008) 147

| SO/IEC 8824-1:2008 (E)

In implementation level 2, certain combining characters (listed in ISO/IEC 10646, Annex B) are available for use, but
there are others whose use is prohibited.

In implementation level 3, there are no restrictions on the use of combining characters.

H.26 A BMPString or Uni versal String can be restricted to exclude all control functions by use of the subtype
notation as follows:

Vani |l aBMPString ::= BWMPString (FROM (BMPString(Sl ZE(1)) EXCEPT

({0,0,0,0}..{0,0,0,31} |
{0,0,0,128}..{0,0, 0, 159})))

or equivalently:
C0 ::= BWString (FROM ({0,0,0,0} .. {0,0,0,31})) -- Q0 control functions
Cl ::= BWString (FROM ({0,0,0,128} .. {0,0,0,159}))-- Cl control functions
Vani |l aBMPString ::= BWPString (FROM (BMPString(SlZE(1)) EXCEPT (Q0 | Cl)))

H.3 On | SO/IEC 10646 confor mance requirements

Use of Universal String, BMPString or UTF8Stri ng (or subtypes of these) in an ASN.1 type definition requires
that the conformance requirements of 1SO/IEC 10646 be addressed.

These conformance requirements demand that implementors of a standard (X say) using such ASN.1 types provide (in
the Protocol Implementation Conformance Statement) a statement of the adopted subset of 1SO/IEC 10646 for their
implementation of standard X, and of the level (support for combining characters) of the implementation.

The use of an ASN.1 subtype of Uni versal String, UTF8Stri ng or BMPSt ri ng in a specification requires that an
implementation support al the ISO/IEC 10646 characters that are included in that ASN.1 subtype, and hence that (at
least) those characters be present in the adopted subset for the implementation. It is also a requirement that the stated
level be supported for all such ASN.1 subtypes.

NOTE — An ASN.1 specification (in the absence of parameters of the abstract syntax and exception specifications) determines
both the (maximum) set of characters that can be transmitted and the (minimum) set of characters that have to be handled on
receipt. The adopted set of ISO/IEC 10646 requires that characters beyond this set not be transmitted, and that al characters
within this set be supported on receipt. The adopted set therefore needs to be precisely the set of all characters permitted by the
ASN.1 specification. The case where a parameter of the abstract syntax is present is discussed below.

H.4 Recommendations for ASN.1 userson | SO/I EC 10646 confor mance

Users of ASN.1 should make clear the set of ISO/IEC 10646 characters that will form the adopted subset of
implementations (and the required implementation level) if the requirements of their standard are to be met.

This can conveniently be done by defining an ASN.1 subtype of Uni ver sal String, UTF8Stri ng or BMPSt ri ng that
contains all the characters needed for the standard, and by restricting it to Level 1 or Level 2 if appropriate. A
convenient name for this type might be 1 SO 10646- St ri ng.

EXAMPLE

| SO 10646-String ::= BWMPString
(FROM (Level 2 | NTERSECTI ON (Basi cLatin UNI ON Hebr ewExt ended UNI ON Hi ragana)))
-- This is the type that defines the mninmmset of characters in
-- the adopted subset for an inplenmentation of this standard. The
-- inplementation level is required to be at |east |evel 2.

In an OSl environment, the OSI Protocol Implementation Conformance Statement would then contain a simple
statement that the adopted subset of 1SO/IEC 10646 is the limited subset (and the level) defined by | SO 10646-
String, and | SO 10646- St ri ng (possibly subtyped) would be used throughout the standard where 1SO/IEC 10646
strings were to be included.

EXAMPLE CONFORMANCE STATEMENT

The adopted subset of 1SO/IEC 10646 is the limited subset consisting of all the characters in the ASN.1 type
| SO 10646- St ri ng defined in module <your module name goes here>, with an implementation level of 2.

EXAMPLE USE IN PROTOCOL

Message ::= SEQUENCE {
first-field | SO 10646-String, -- all characters in the adopted
-- subset can appear
second-field | SO 10646-String
(FROM (latinSnal | LetterA .. latinSnalllLetterz)),-- |ower-case

148 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

-- latin letters only
third-field | SO 10646-String
(FROM (digitZero .. digitNine))-- digits only

H.5 Adopted subsets as parameters of the abstract syntax

I SO/IEC 10646 requires that the adopted subset and level of an implementation be explicitly defined. Where an ASN.1
user does not wish to constrain the range of ISO/IEC 10646 characters in some part of the standard being defined, this
can be expressed by defining | SO 10646- St ri ng (for example) as a subtype of Uni versal String, BMPStri ng or
UTF8St ri ng with a subtype constraint consisting of (or including) | npl ement or sSubset which is left as a parameter
of the abstract syntax.

Users of ASN.1 are warned that in this case a conforming sender may transmit to a conforming receiver characters that
cannot be handled by the receiver because they fall outside the (implementation-dependent) adopted subset or level of
the receiver, and it is recommended that an exception-handling specification be included in the definition of
| SO 10646- St ri ng inthiscase.

EXAMPLE

1 SO 10646-String {Universal String : |nplenentorsSubset, |nplenentationLevel} ::=
Uni versal String (FROM (I mpl ement or sSubset UNI ON Basi cLati n)
I NTERSECTI ON | npl enrent at i onLevel) !charact er Set Probl em
-- The adopted subset of 1SQ|EC 10646 shall include "BasiclLatin", but
-- may al so include any additional characters specified in
-- "lnmpl enentorsSubset”, which is a paraneter of the abstract syntax.
-- "Inplenentati onLevel ", which is a paraneter of the abstract
-- syntax defines the inplenentation |evel. A conforning receiver nust be
-- prepared to recieve characters outside of its adopted subset and
-- inplementation level. 1In this case the exception handling specified in
-- clause <add your clause nunber here> for "characterSetProblent is
-- invoked. Note that this can never be invoked by a conforning
-- receiver if the actual characters used in an instance of communication
-- are restricted to "BasiclLatin".

M- Level 2-String ::= 1S0O 10646-String { { HebrewExtended UNION H ragana }, Level 2 }

H.6 The CHARACTER STRING type

H.6.1 The CHARACTER STRI NGtype gives complete flexibility in the choice of character set and encoding method.

NOTE — Where a single connection provides end-to-end data transfer (no relaying), and the OSl protocols are in use, then
negotiation of the character sets to be used and their encoding can be accomplished as part of the definition of the OSI
presentation contexts for character abstract syntaxes. Otherwise, the abstract and transfer character syntaxes (character
repertoire and encodings) are announced by a pair of object identifier values.

H.6.2 In formal terms, a character abstract syntax is an ordinary abstract syntax with some restrictions on the
possible values (they are al character strings, and indeed are all the character strings formed from some collection of
characters). Thus allocation of object identifier values for character abstract and transfer syntaxes is performed in the
normal way.

H.6.3 Theencoding of CHARACTER STRI NG announces the abstract and transfer syntax of the character repertoirein
use (that is, character set and encoding). In OSI environments, negotiation of both these syntaxesis possible.

H.6.4 Character abstract syntaxes (and corresponding character transfer syntaxes) have been defined in a number of
ITU-T Recommendations and International Standards, and additional character abstract syntaxes (and/or character
transfer syntaxes) can be defined by any organization able to allocate object identifiers.

H.6.5 InISO/IEC 10646, there is a character abstract syntax defined (and object identifiers assigned) for the entire
collection of characters, for each of the defined collection of characters for subsets (BASIC LATIN, BASIC
SYMBOLS, etc.), and for every possible combination of the defined collections of characters. There are also two
character transfer syntaxes defined to identify the various options (particularly 16-bit and 32-bit) in 1SO/IEC 10646.

ITU-T Rec. X.680 (11/2008) 149

| SO/IEC 8824-1:2008 (E)

Annex |

Tutorial annex on the ASN.1 model of type extension
(This annex does not form an integral part of this Recommendation | International Standard)

1.1 Overview

.11 It can happen that an ASN.1 type evolves over time from an extension root type by means of a series of
extensions called extension additions.

1.1.2 An ASN.1 type available to a particular implementation may be the extension root type, or may be the
extension root type plus one or more extension additions. Each such ASN.1 type that contains an extension addition
also contains al previously defined extension additions.

1.1.3 The ASN.1 type definitions in this series are said to be extension-related (see 3.8.38 for a more precise
definition of "extension-related"), and encoding rules are required to encode extension-related types in a such a way
that if two systems are using two different types which are extension-related, transmissions between the two systems
will successfully transfer the information content of those parts of the extension-related types that are common to the
two systems. It is also required that those parts that are not common to both systems can be delimited and retransmitted
(perhaps to athird party) on a subsequent transmission, provided the same transfer syntax is used.

NOTE — The sender may be using atype that is either earlier or later in the series of extension additions.

1.1.4 The series of types obtained by progressively adding to a root type is called an extension series. In order for
encoding rules to make appropriate provision for transmissions of extension-related types (which may require more bits
on theline), such types (including the extension root type) need to be syntactically flagged. Theflagisan dlipsis(. . .),
and is called an extension marker.

EXAMPLE
Ext ensi on root type 15t extension 2" ext ensi on 3rd extension
A ::= SEQUENCE { A ::= SEQUENCE { A ::= SEQUENCE { A ::= SEQUENCE {
a | NTEGER, a | NTEGER, a | NTEGER, a | NTEGER,
. b BOOLEAN, b BOOLEAN, b BOOLEAN,
c | NTEGER c | NTEGER, c | NTEGER,
} d SEQUENCE { d SEQUENCE {
e | NTEGER, e | NTEGER,
. g BOOLEAN CPTI ONAL,
f I A5String h BMPStri ng,
} R
} f IASString
}
}

1.1.5 All extension additions in sequence, set, and choice types are inserted between pairs of extension markers. A
single extension marker is allowed if (in the extension root type) it appears as the last item in the type, in which case a
matching extension marker is assumed to exist just before the closing brace of the type; in such cases all extension
additions are inserted at the end of the type.

1.1.6 A type that has an extension marker can be nested inside a type that has none, or it can be nested within a
type in an extension root, or it can be nested in an extension addition type. In such cases the extension series are treated
independently, and the nested type with the extension marker has no impact on the type within which it is nested. Only
one extension insertion point (the end of the type if a single extension marker is used, or just before the second
extension marker if apair of extension markersis used) can appear in any specific construct.

1.1.7 A new extension addition in the extension series is defined in terms of a single extension addition group
(one or more types nested within "[[" "]]") or asingle type added at the extension insertion point. In the following
example the first extension defines an extension addition group where b and ¢ must either be both present or both
absent in avalue of type A. The second extension defines a single component type, d, which may be absent in avalue of
type A. The third extension defines an extension addition group in which h must be present in a value of type A
whenever the newly added extension addition group is present in avalue.

150 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

EXAMPLE
Ext ensi on root type 1% ext ensi on 2" ext ensi on 3'¢ extension
A = SEQUENCE { A = SEQUENCE { A = SEQUENCE { A = SEQUENCE {
a | NTEGER, a | NTEGER, a | NTEGER, a | NTEGER,
} [l [l [l
b BOOLEAN, b BOOLEAN, b BOOLEAN,
c | NTEGER c | NTEGER c | NTEGER
11 11, 11,
} d SEQUENCE { d SEQUENCE {
e | NTEGER e | NTEGER
ce, [l
f IASString g BOOLEAN OPTI ONAL,
} h BMPString
} 1T,
f I ASSt ring
}
}
1.1.8 It is also possible to add the version number to version brackets, but only if it is present on all brackets within

amodule, and only if al extensions in the module are within version brackets. It is recommended that version numbers
be used. The ability to omit numbers and version brackets is for historical reasons. (Version brackets and version
numbers were not allowed in earlier versions of this Recommendation | International Standard.) (Seeasol.3.)

1.1.9 While the normal practice will be for extension additions to be added over time, the underlying ASN.1 model
and specification does not involve time. Two types are extension-related if one can be "grown" from the other by
extension additions. That is, one contains all the components of the other. There may be types that have to be "grown"
in the opposite direction (although thisis unlikely). It could even be that, over time, atype starts with alot of extension
additions which were progressively removed! All that ASN.1 and its encoding rules care about is whether a pair of
type specifications are extension-related or not. If they are, then all ASN.1 encoding rules will ensure interworking
between their users.

1.1.10 We start with a type and then decide whether we are going to want interworking with implementations of
earlier versions if we later have to extend it. If so, we include the extension marker now. We can then add later
extension additions to the type with defined handling of the extended values by earlier systems. It is, however,
important to note that adding an extension marker to a type that was previously without one (or removing an extension
marker) may prevent interworking.

NOTE — When ECN is used, it can be possible to add extensions in version 2 at places that did not have extension markers in
version 1, and still retain interworking between versions 1 and 2.

1.1.11 Tablel.1 shows the ASN.1 types that can form the extension root type of an ASN.1 extension series, and the
nature of the single extension addition that is permitted for that type (multiple extension additions can of course be
made in succession, or together as an extension group).

Tablel.1 - Extension additions

Extension root type Nature of extension addition

ENUVMERATED Addition of a single further enumeration at the end of the "Additiona Enumerations, with an
enumeration value greater than that of any enumeration already added.

SEQUENCE and SET Addition of a single type or extension addition group to the end of the "ExtensionAdditionList".
"ComponentType's that are extension additions (not contained in an extension addition group) are not
required to be marked OPTI ONAL or DEFAULT, although thiswill often be the case.

CHO CE Addition of asingle "NamedType" to the end of the "ExtensionAdditionAlternativesList".
Constraint notation Addition of asingle "Additional ElementSetSpec" to the "ElementSetSpecs" notation.
1.2 Meaning of version numbers

1.2.1 Version numbers are not used in BER or PER encodings. Their use (if any) in ECN encodings is determined
by the ECN specification.

1.2.2 Version numbers are most useful when they relate to the means of decoding a complete PDU, not to an
individual type. Where a type which is used as a component of several protocols and hence contributes to different

ITU-T Rec. X.680 (11/2008) 151

| SO/IEC 8824-1:2008 (E)

complete PDUs, an addition to that type will normally require that the version number for all the PDUs to which it
contributes be incremented.

1.2.3 When used to provide interworking between deployed systems, version numbers should be used on extension
addition groups in such a way that deployed systems have knowledge of the syntax and semantics for all extension
addition groups with a given version number (no matter where they appear within the protocol), and of all extension
addition groups with an earlier version number. ECN specifiers will normally assume that version numbers have been
allocated (to all parts of typesto which ECN is applied) in accordance with this principle.

1.3 Requirements on encoding rules

1.3.1 An abstract syntax can be defined as the values of a single ASN.1 type that is an extensible type. It then
contains all the values that can be obtained by the addition or removal of extension-additions. Such an abstract syntax is
called an extension-related abstract syntax.

1.3.2 A set of well-formed encoding rules for an extension-related abstract syntax satisfies the additional
requirements stated in 1.3.3to 1.3.5.
NOTE — All ASN.1 encoding rules satisfy these requirements.

1.3.3 The definition of the procedures for transforming an abstract value into an encoding for transfer, and for
transforming a received encoding into an abstract value shall recognize the possibility that the sender and receiver are
using abstract syntaxes that are not identical, but are extension-rel ated.

.34 In this case, the encoding rules shall ensure that where the sender has a type specification that is earlier in the
extension series than that of the receiver, values of the sender shall be transferred in such a way that the receiver can
determine that extension additions are not present.

.35 The encoding rules shall ensure that where the sender has a type specification that is later in the extension
series than that of the receiver, transfer of values of that type to the receiver shall be possible.

1.4 Combination of (possibly extensible) constraints

1.4.1 Model

1.41.1 Thebasic ASN.1 model for applying constraintsis simple: A typeis aset of abstract values, and a constraint
applied to it selects a subset of those abstract values. If the unconstrained type was not extensible, then the resulting
typeis defined to be extensible if and only if the applied constraint is defined to be extensible.

1.4.1.2 Eveninthissimple case, there is one feature to clarify: A type may be formally extensible, even though there
can never be any extension additions. Consider:

A::= INTEGER (MN .. MAX, ... , 1..10)
As with many examples in this annex, this is something that nobody would ever write, but which tool vendors have to
write code for because the ASN.1 standard has been left simple and general, and this example is therefore legal ASN.1.
In this example, A isformally an extensible | NTEGER, with the full range of integer valuesin the root.
1.4.1.3 Complexities arise from three main sources:

— Theapplication of a constraint to a type that has already had an extensible constraint applied to it (serial
application of constraints —see 1.4.2).

— The combination of extensible constraints using UNI ON and | NTERSECTI ON and EXCEPT (set arithmetic
—seel.4.3).

— The use of a typereference (a contained subtype) in the set arithmetic of a constraint, when the
typereference de-references to an extensible type (perhaps with actual extension additions — see 1.4.4).

1.4.2 Serial application of constraints

1.4.2.1 Seriad application of constraints occurs when a type is constrained (in an assignment to a typereference) and
the typereference is subsequently used with a further constraint applied to it.

1.4.2.2 It can aso, but less commonly, occur when a type has multiple constraints directly applied to it in a serial
fashion. This latter form is used for many of the examples in this annex (for simplicity of exposition), but the case
where a typereference links the two (or more) constraints is the form in which serial application normally occursin real
specifications.

152 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

1.4.2.3 There aretwo key pointsin the seria application of constraints:

— If a congtrained type is extensible (and perhaps extended), the "extensible" flag and all extension
additions are discarded if a further constraint is subsequently serially applied. The extensibility of a
constrained type (and any extension additions) depends solely on the last constraint that is applied,
which can reference only values in the root of the type that is being further constrained (the parent type).
Valuesincluded in the root or the extension additions of the resulting type can only be values that are in
the root of the parent type.

— The serial application of constraints is (for complex cases) not the same as a set arithmetic intersection,
even when there is no extensibility involved. Firstly, the environment in which M N and MAX are
interpreted, and secondly the abstract values that can be referenced in the second constraint are very
different in serial application from the situation where the two constraints are specified as an intersection
of values from a common parent.

NOTE — Use of arange such as 20. . 28 in a constraint on an integer typeislegal if (and only if) both 20 and 28 are in the (root

of the) parent type, but the values referenced by this range specification are only those in (the root of) the parent. So if the parent
has already been constrained to exclude the values 24 and 25, the range 20. . 28 isreferencing only 20 to 23 and 26 to 28.

Here are some examples:

Al ::= INTEGER (1..32, ... , 33..128)
-- Al is extensible, and contains values 1 to 128 with 1 to 32
-- in the root and 33 to 128 as extension additions.
Bl ::= Al (1..128)
-- or equivalently
Bl ::= INTEGER (1..32, ... , 33..128) (1..128)
-- These are illegal, as 128 is not in the parent, which
-- lost its extension additions when it was further constrained
B2 ::= Al (1..16)
-- This is legal. B2 is not extensible, and contains 1 to 16.
A2 ::= INTEGER (1..32) (MN .. 63)
-- MNis 1, and 63 is illegal
A3 ::= INTEGER ((1..32) INTERSECTION (MN..63))

-- Thisis legal. MNis nmnus infinity and A3 contains 1 to 32

1.4.3 Use of set arithmetic

1.43.1 The results are largely intuitive, and obey the normal mathematical rules for intersection, union and set
difference (EXCEPT). In particular, both intersection and union are commutative, that is:

(<sone set 1 of values> | NTERSECTI ON <sone set 2 of val ues>)

isthe same as
(<sone set 2 of val ues> | NTERSECTI ON <sone set 1 of val ues>)

similarly for UNI ON.

1.4.3.2 The commutativity is true, no matter what sets of values are extensible, and no matter what extension
additions are present.

1.4.3.3 Misunderstandings can arise if an intersection makes it impossible for extension addition values ever to occur.
Thisissimilar to the case of | NTEGER (M N. . MAX, ...).

1.4.3.4 For example:

A ::= INTEGER (1..256, ... , B) (1..256)
-- A always contains (only) the values 1..256, no matter what val ues
-- B contains

1.4.35 It is dso important to remember that while parents lose their extensibility and extension additions when
further constrained, and contained subtypes lose their extensibility and extension additions, sets of values directly
specified in set arithmetic lose neither their extensibility nor their extension additions.

1.4.3.6 Therulesfor extensibility of sets of values produced by set arithmetic are clearly stated in 50.3 and 50.4, and
do not depend on whether the set arithmetic makes actual extension additions possible or not.

ITU-T Rec. X.680 (11/2008) 153

| SO/IEC 8824-1:2008 (E)

1.4.3.7 The rules are summarized here for completeness, using E to denote a set of values with the "extensible" flag
set and N to denote a set values which are formally non-extensible. The valuesin the root of each set are denoted by R,
and the extension additions (if any) by X, and the contents of the result are shown for each case.

NOTE 1 - For the purposes of this annex and for simplicity of exposition, if a set of valuesis not extensible, we describe al its
values as root values.

NOTE 2-ltisanillegal specification if the root of any resulting set of values used in a serially applied constraint is empty.
NOTE 3-To avoid verbosity below, "Extensions' is used in place of the more correct "Extension additions’.

1.4.3.8 Therulesare
N1 | NTERSECTION N2 => N

Root

: R1 I NTERSECTI ON R2

NL | NTERSECTION E2 => E

E1l

N1

N1

E1l

N1

N1

El

El

NL ...

El ...

NL ...

El ...

Root
| NTERSECT
Root

UNI ON N2
Root
UNI ON E2
Root
UNI ON E2
Root

EXCEPT N2

Root :

EXCEPT E2

Root :

EXCEPT N2

Root :

EXCEPT E2

Root :

N2 =>

Root :

N2 =>

Root :

E2 =>

Root :

E2 =>
Root

. R1 | NTERSECTI ON R2, Extensions: Rl | NTERSECTI ON X2

ION E2 => E
: Rl I NTERSECTI ON R2, Extensions: ((RL UNI ON X1)
| NTERSECTI ON
(R2 UNION X2))
EXCEPT
(R1 | NTERSECTI ON R2)
=> N
: RL UNNON R2
== E
: RL UNTON R2, Extensions: X2
== E
: R1L UNTON R2, Extensions: (RL UNTON X1 UNION R2 UNI ON X2)
EXCEPT
(R1 UNION R2)
=> N
R1 EXCEPT R2
=> N
R1 EXCEPT R2
== E
Rl EXCEPT R2, Extensions: (X1 EXCEPT R2)
EXCEPT
(RL EXCEPT R2)
== E
Rl EXCEPT R2, Extensions: (X1 EXCEPT (R2 UNION X2))
EXCEPT
(Rl EXCEPT R2)
E
R1, Extensions: R2 EXCEPT Rl
E
R1, Extensions: X1 UNION R2
EXCEPT
R1
E
R1, Extensions: R2 UNION X2
EXCEPT
R1
E
. R1, Extensions: X1 UNTION R2 UNI ON E2
EXCEPT
R1

NOTE - If the result of set arithmetic on extensible sets of values does not have actual extension additions, or even can never
have actual extension additions (no matter what extension additions are added to the extensible inputs), the result is still formally
defined to be extensible for results E above.

1.4.4 Use of the Contained Subtype notation

A contained subtype may or may not be extensible, but when it is used in set arithmetic it is always treated as not
extensible, and all its extension additions are discarded.

154 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

Annex J
Tutorial annex on the Tl ME type
(This annex does not form an integral part of this Recommendation | International Standard)

N The collections of ASN.1 typesfor timesand dates

J1l1 Historically, ASN.1 defined its own time type, UTCTi ne, as a "Useful Type", because it was based on
specifying the contents of a Vi si bl eSt ri ng type. Later, Gener al i zedTi me was added, allowing a four-digit year,
and defined by reference to a set of standards that were the predecessors of the first (1988) version of 1SO 8601, to
specify the contents of a VisibleString. (The other "UsefulType", defined by specifying the contents of a
G aphi cStri ng, was Qbj ect Descri ptor.) Traditionally, the so-called "Useful Type"'s have used mixed upper-case
and lower-case letters for their type reference names, with the other built-in ASN.1 types using only upper-case letters.
The useful types have, however, their own UNI VERSAL class tags, and can be referenced independently in Encoding
Rules specifications.

J.1.2 While these types (UTCTi me, General i zedTi me and bj ect Descri ptor) are undoubtedly useful, the
separation of them from other types by the term "Useful Type's (simply because they are defined in terms of other —
character string — types), and the use of mixed upper-case and lower-case in their type reference names has been
increasingly recognized as a historical accident.

J.1.3 With the introduction of time types to support the 2004 version of SO 8601, it was recognized that a primary
time type (TI ME) was needed, but that a number of commonly useful time types (DATE, Tl ME- OF- DAY, DATE- TI ME and
DURATI ON), defined as subsets of the basic TI M type (using the ASN.1 subtype notation), were needed. A decision
was taken to call these "Useful time types’, and to give them names that were al upper-case, in order to minimize
backwards compatibility problems, as they are new reserved words. They all have distinct UNI VERSAL class tags that
are distinct from the tag of the TI ME type (to enable optimized BER encodings), and are all listed under the production
"BuiltinType" (see 17.2).

J.2 I SO 8601 key concepts

J.21 ISO 8601 provides the definitive reference for identification of instants of time and for their character
representation. It forms the basis for the specification of the ASN.1 TI ME type, both in terms of time-related concepts
and in terms of actual representations used in ASN.1 value notation and in the Basic Encoding Rules (BER).

J.2.2 SO 8601 is based entirely on the Gregorian calendar introduced in 1582, together with the so-called proleptic
Gregorian calendar that extends the Gregorian calendar sequentially backwards in time from 1582, using the normal
rules for the definition of common (non-leap) years and leap years. There isin general no easy way to determine a date
AD or BC using the Julian calendar from a date specified using the proleptic Gregorian calendar, but in particular the
year 1 AD isroughly (but not exactly) in aignment with year 1 proleptic Gregorian, and the year 1 BC (the preceding
year) isroughly (but not exactly) in alignment with year O proleptic Gregorian.

J.2.3 Key definitions and concepts in 1SO 8601 include the concept of multiple time-scales for the time axis. Each
time-scale consists of an ordered set of marks on the time axis. Each mark represents atime point (an instant of time).

J.24 Three main time-scales are defined in 1SO 8601.

J.24.1 The first is called the calendar date time-scale. This has marks corresponding to calendar years, calendar
months, and the ordinal number of a day within its calendar month (days are numbered 01 to 28, 29, 30 or 31,
depending on the month).

J.2.4.2 The second is called the ordina date time-scale. This has marks corresponding to calendar years, and the
ordinal number of a day within its calendar year (days are numbered 001 for Jan. 1st to 365 or 366, depending on the
year).

J.2.4.3 The third is called the week date time-scale. This has marks corresponding to calendar years, the ordinal
number of a week within that calendar year, and the ordinal number of a day within that week (with day 1 being
Monday). Weeks are numbered 01 to 52 or 53 (depending on the year), with week 01 being defined as the week
containing Jan. 4th, and the last week of the previous year being defined as the previous week to that (which is why
some years contain 53 weeks).

ITU-T Rec. X.680 (11/2008) 155

| SO/IEC 8824-1:2008 (E)

J.25 Between the day marks on each time-scale are hour, minute, and second marks. However, the time axisis a
continuum of instants of time, and all three of the time-scales also contain marks that are everywhere dense on the time
axis.

NOTE — Another way of expressing this is to say that between any two marks there are infinitely more other marks, each
identifying adecimal fraction of a second to arbitrarily large accuracy.

J.2.6 A variation on the calendar date time-scale is a time-scale in which seconds are not represented, but between
each minute time point are infinitely more other marks representing decimal fractions of that minute to arbitrarily large
accuracy. The sameistrue for decimal fractions of an hour.

NOTE — There is no concept in ISO 8601 of specifying atime point using decimal fractions of a day or any larger unit of time,
although decimal fractions of ayear, amonth, aweek or a day can be used in specifying a duration.

J.2.7 Because the rational number 1/60 does not have a terminating decimal representation, there are some time
points on the time-scale using seconds that cannot be expressed as time points on the time-scale using fractions of a
minute, in any finite representation.

J.28 Similarly, it is not possible to identify which mark for a day on one time-scale corresponds to the mark for a
day on a different time-scale, without knowledge of which years are leap years. A similar problem arises with leap
seconds with the identification of time intervals using scales based on a start point and an end point, or on a start point
and aduration (in seconds, say), or on aduration and an end point.

J.2.9 SO 8601 also recognizes the concept of identification of marks with varying accuracy. Thus on any given
time-scal e there can be different marks at the same time point, one specifying it as (for example) 3.100 seconds and the
other specifying it as 3.1 seconds.
NOTE — In earlier ASN.1 work on time types (UTCTi me and Gener al i zedTi ne), the issue of having separate abstract values for
the same time point expressed with different accuracies was not addressed. In the case of the TI VE type, marks on the time axis
that have different accuracy, but that are placed at the same time point, are firmly identified as distinct abstract values. Thus an
abstract value that might be represented by 3.100 is distinct from one that might be represented by 3.1, and may carry different
application semantics.

J.2.10 Control of the accuracy used, and of some other aspects of 1SO 8601, is stated in SO 8601 to be "by mutual
agreement”. In general, where SO 8601 identifies areas requiring mutual agreement, notations are provided in ASN.1
for an application designer to specify in the ASN.1 type definition the mutual agreements that are to be assumed. This
is done by selecting subsets of the multiple infinities of abstract values in the TI ME type, using time properties
associated with each time abstract value.

J.2.11 1SO 8601 recognizes the concept of time difference. This is the difference between local time and UTC for a
particular World Time Zone. There is no international authority for agreement on or recording of time differences for
different World Time Zones. This is a matter for local administrations, although HM Nautical Almanac Office (UK)
attempts to maintain an authoritative record of currently assigned time differences for al parts of the world. As at 2005,
time differences in the range —12 to +14 have been defined by various local administrations. To alow for possible
future changes, ASN.1 supports time differences in the range —15 to +16 (only).

J.3 Abstract values of the TI ME type

J.31 Each mark on each time-scale, with each accuracy, is identified as a distinct abstract value of the Tl ME type,
and thus has a distinct ASN.1 value notation and distinct encodingsin all ASN.1 Encoding Rules.

J.3.2 ISO 8601 is predominantly concerned with the identification of time points, but distinguishes between
identification of date only, of time of day only, and of date and time. These different identifications also produce
distinct abstract valuesin the TI ME type.

J.33 Within the identification of time of day, local time or UTC or both can be used. Again, these different
identifications produce distinct and unrelated abstract values because of the different time-scales that are being used
(and will generally carry different application semantics).

J.34 Another feature of 1SO 8601 is the identification of time intervals using either a start and end point (which
can be identified using any of the various time-scales), a duration, or a duration with either a start or an end point.
Again, these provide four main sets of abstract values that are distinct from abstract values representing time points, but
with many subsets of those main sets of time interval's, depending on the abstract values used in the specification of the
start and end point of the time interval, or the time components used in specifying a duration.

NOTE — In ASN.1, it is not possible to use different time-scales for the start point and end point of atime interval. Thisis for
simplicity of specification, and is not expected to be a problem for application designers.

J.35 Finally, 1SO 8601 has the concept of specifying a recurring time interval. Recurring time intervals map into
abstract values that are distinct from those representing time intervals and time points.

156 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

JA4 Time properties of the time abstract values

Jal It is possible to identify sets of time abstract values that have common time properties. Some time properties
(such as whether it is a time point, atime interval, or a recurring time interval) apply to all time abstract values. Other
time properties, such as whether atime interval is expressed as a start point and a duration, or by a duration and an end
point (for example), apply only to time abstract values that are time intervals. Similarly, the time property indicating
whether a time abstract value represents local time, UTC or both, applies only to time abstract values with at least one
component related to time-of-day.

JA4.2 Clause 38.2 and Table 6 specify the complete set of time properties that can be associated with atime abstract
value, and the possible settings for each of those time properties. The setting of a time property can be used in the
subtype notation to select subsets of the TI ME type, al of whose abstract values have the same setting for a given time
property.
NOTE — The term "setting of a time property"” rather than "value of a time property" is used to avoid confusion with the use of
"value" in the term "abstract value".

JA43 The presence of some time properties on a time abstract value is dependent on the setting of other time
properties, as outlined above.

J4a4 In the subtype notation, abstract values of the TI ME type are specified using alist of time property and setting
pairs. There are restrictions on the combinations of time properties and settings that can be specified (see 51.10.6), but
the order of the property and setting pairs does not matter (but see J.4.5). An abstract value of the TI VE typeisincluded
in the subtype if and only if it has the specified setting for all the listed properties that are applicable to it. Asusudl, itis
an illegal ASN.1 specification if the resulting set of abstract values assigned to a type reference is empty (although
empty sets are not prohibited in set arithmetic).

J.45 To provide clarity for human readers, and to avoid errors, it is recommended, but not required, that the order
of specification of property and setting pairs proceeds from major properties (such as " Basi c=Dat e- Ti me") to more
detailed properties (such as" TI ME=HVB"). This would generally mean a specification of time property and setting pairs
in the order of Table 6. This convention is used in al examples in this Recommendation | International Standard (see
38.4, G.3 and G.5.8).

J.4.6 It is important for interval specification, and for subtyping using value ranges, to have an order relationship
on the abstract values of the TI ME type. In general, there is an order relationship between abstract values representing
time points (based on their position on the time axis) if, and only if, they all have the same time property settings.
Similarly, the number of seconds between two time point abstract values can in general only be determined if they have
the same property settings. This means that time points used in some of the subtype notations and in interval
specification are required to have the same property settings. An order relationship is defined for durations only if they
have the same accuracy and differ only in a single time component (see 51.11).

J.5 Value notation

Jb.1 The value notation (and encoding) for an abstract value depends on its associated time properties and their
settings. The value notation is specified in 38.3.

J5.2 ISO 8601 in general specifies two separate (character-based) representations, called a basic format and an
extended format, for identifying marksin atime-scale.

J5.3 In general, the basic format is a simple string of digits, with non-digit separators (such as a decimal separator)
only where needed to provide unambiguous representations within commonly useful subsets of the abstract values
implied by 1SO 8601. Thisformat is not used by ASN.1 value notation.

NOTE - For example, in the basic format, the string 2020 represents both the year 2020 and also the time 8:20 pm.

J54 The extended format contains additional non-digit separators designed to make the representation more
readable for human users, and is generally (but with one exception — see Note 1 below) unambiguous over al the
abstract values implied by SO 8601. The extended format is recommended by 1SO 8601 for use in plain text.

NOTE 1 — The exception is the representation of a date that is four digits representing a century, which can be confused with

four digits representing a year. In the ASN.1 value notation, a C is added to the century notation, for all century representations,
including two-digit representations, to resolve the ambiguity.

NOTE 2 — For example, in the extended format, the year 2020 would be represented by 2020, but the time 8:20 pm would be
represented by 20: 20.

J.55 The use of the extended format (with the added upper-case C for centuries) enables the property settings of
the abstract value being represented to be determined from the value notation, and that notation unambiguously
identifies an abstract value, knowing only that its typeisthe TI ME type.

ITU-T Rec. X.680 (11/2008) 157

| SO/IEC 8824-1:2008 (E)

J.5.6 The basic format requires knowledge of some of the property settings of the abstract value that is being
represented, in order to resolve ambiguity in the representations, and is not used in ASN.1.

J.5.7 The basic ASN.1 value notation and the XML value notation (specified in 38.3), and the XML Encoding
Rules specified in ITU-T Rec. X.693 | ISO/IEC 8825-4, use the | SO 8601 extended format. The Basic Encoding Rules
specified in ITU-T Rec. X.690 | ISO/IEC 8825-1 use the 1SO 8601 extended format (but with the removal of some
designators and separators — such as P for duration, colons in time-of-day, and hyphens in dates). Different ASN.1 tags
are assigned to the useful types to enable BER to identify property settings that are needed to resolve what would
otherwise be ambiguity in the encoding of the useful time types. The Packed Encoding Rules specified in ITU-T Rec.
X.691 | ISO/IEC 8825-2 use a binary encoding that is unrelated to (and out of the scope of) 1SO 8601. PER encodings
provide very compact representations of date, time and duration (typically 17 bits for a date, 15 bits for a time, 32 bits
(4 octets) for adate-time, and often less than 16 bits for a duration).

J.6 Use of the ASN.1 subtype notation

J.6.1 Six forms of subtype notation (plus inner subtyping in restricted cases — see J.6.8) are permitted for this type
(see clause 51 and Table 12).

NOTE — Examples of subtype notation for the TI ME type and the useful time types can be found in 38.4, G.3 and G.5.8.

J.6.2 A property settings subtype notation allows the selection of all abstract values with a given setting for one or
more listed time properties. This is the normal means of producing additional customized time types for applications,
and is discussed more fully in J.7.

J.6.3 Single value subtypes are permitted, but are not expected to be generally useful.

J.64 Contained subtypes are permitted, and are expected to be commonly used in the specification of customized
time types by application designers.

J.6.5 Duration range subtypes (containing an ordered pair of durations) can be applied. They select from the parent
type only those abstract values that are time intervals specified as a duration, and constrain the duration to the specified
range (see 51.11).

J.6.6 Time point range subtypes (containing an ordered pair of time points) can be applied. They select from the
parent type only those abstract values that are time points with the same property settings as the two ends of the time
point range (which are required to have the same property settings), and constrain the time point to be within the
specified range.
NOTE — This subtype constraint restricts the range of values of atime point and is totally separate from the direct use of value
notation to identify a single time abstract value that is atime interval.

J.6.7 Recurrence range subtypes (containing an ordered pair of integers) can be applied. They select from the
parent type only those abstract values that are recurring time intervals and constrain the number of digits that can be
used to specify the number of recurrences.

J.6.8 Inner subtyping can be applied if the time type has already been restricted to a duration (typically by use of
the DURATI ON useful time type). This enables restrictions to be placed on the form of a duration specification.

J.6.9 No other forms of subtype constraint are permitted.

J.7 The property settings subtype notation

J.7.1 Time abstract values that have the same setting for a given time property form natural subsets of the time
type. The property settings subtype notation enables the selection of abstract values by listing the setting of one or more
time properties. An abstract value is included in the resulting subtype if, and only if, it has the specified setting for al
the listed properties that are applicableto it.

EXAMPLE: The following notation can be used to define a time subtype that contains all abstract values that are a date
only, specified using afour-digit year, week-of-the-year, and day:

M/-tinme ::= TIME (SETTINGS "Basi c=Dat e Dat e=YWD Year =Basi c")
A more extensive set of examples of the subtype notation is givenin 38.4, G.3 and G.5.8.

J.7.2 ASN.1 set arithmetic (or simply application of multiple constraints) can be used in the normal way to define
combinations (using | NTERSECTI ON, UNI ON and EXCEPT) of time subtypes, to produce types that are appropriate for
usein aparticular application.

158 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

J.7.3 The time properties, their names, possible settings, and the abstract values that have this setting are specified
in Table 6.

J.74 A small number of useful time subtypes are specified using the property settings subtype notation (see 38.4),
and are given human-friendly names. It is expected that these useful subtypes (DATE, TI ME- OF- DAY, DATE- Tl ME, and
DURATI ON) will be sufficient for many applications. A more extensive set of defined time types of genera utility are
specified in the ASN.1 defined time types module in Annex B. These types can be imported and used, either directly, or
to define application-specific time types. They support the full functionality of 1SO 8601. Additionaly, where
necessary, designers can define additional types as subtypes of the Tl ME type or the useful or defined time types using
the property setting subtype notation. These types can be further combined using ASN.1 set arithmetic.

NOTE — The useful time types have been given ASN.1 UNI VERSAL class tags that are different from the TI ME type in order to

permit efficient encodings in BER. They should be regarded as independent types rather than as subtypes, but can also be used in
a contained subtype constraint if the parent type is TI ME.

ITU-T Rec. X.680 (11/2008) 159

| SO/IEC 8824-1:2008 (E)

Annex K
Analyzing Tl ME type value notation
(This annex does not form an integral part of this Recommendation | International Standard)

K.1 General

K.1.1 The body of this Recommendation | International Standard specifies the value notation for abstract values
with given time properties.

K.1.2 Every instance of this value notation unambiguously identifies a single abstract value of the time type, and its
properties.

K.1.3 This informative annex describes one possible algorithm for determining the time property settings of the
abstract value that is represented by an instance of the value notation. There are many alternative (and probably better)
algorithms, and this annex is provided simply as a demonstration that such algorithms exist.

NOTE - If this algorithm is applied to a random string, it will identify that the string can only represent an abstract value with a
given set of time property settings. It is then necessary to check that the syntax of the string conforms to that required for an
abstract value with those property settings before the notation can be accepted and the abstract value identified.

K.1.4 If two abstract values have the same property settings, then their value notation differs only in the values of
the digits present in the notation, with the following exceptions:

a) there are several different representations of duration abstract values, depending on which time units are
being used, and on whether decimal fractions are being used;

b) either commaor full stop can be used as decimal separators;

c) atime difference component that is an integral number of hours may be expressed with hours only or
with hours and minutes,

d) the end point of an interval expressing UTC may omit the time difference component if the time
difference is the same as the time difference on the start point;

e) abstract values that differ only by having a plus or a minus for the time difference component
nonetheless have the same time properties.

K.15 If two strings differ only in the actual value of the digits present in the strings, then they have the same
property settings with the exceptions that the use of year dates in the range 0000 to 1581 means that the date has the
property setting " Year =Pr ol epti ¢c" and not " Year =Basi c" (similarly for century notation).

K.2 Analyzing thefull string

K.2.1 If the string commences with an LATIN CAPITAL LETTER R, then it has the property setting
"Basi c=Rec- I nterval ". The "R"' will be followed by a number of recurrences (empty string for unbounded), then a
SOLIDUS ("/"). If the portion of the string after "R' and before "/" is empty, then it has the property setting
"Recur rence=Unli nited". Otherwise, if the number of digitsin the portion of the string after "R" and before "/" is 1,
2, 3, etc., then it has the property setting " Recurrence=Rl", "Recurrence=R2", "Recurrence=R3", etc. The
remainder of the string can be analyzed as a string containing an interval (see K.3) to determine additional property
settings.

K.2.2 Otherwise, if the string contains a solidus ("/"), then it has the property setting " Basi c=I nt erval ", and can
be analyzed as a string containing an interval (see K.3) to determine additional property settings.

K.2.3 Otherwise, if the string commences with a LATIN CAPITAL LETTER P, then it has the settings
"Basi c=Interval " and"I nterval -type=D', completing the analysis of properties.

K.24 Otherwise, if the string contains a LATIN CAPITAL LETTER T, then it has the property setting
" Basi c=Dat e- Ti me", and the portion of the string before the "T" can be analyzed as a string containing a date (see
K.4) and the portion following the "T" can be analyzed as a string containing a time (see K.7) to determine further
property settings.

160 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

K.25 Otherwise, if the string ends in a LATIN CAPITAL LETTER C, then it has the property setting
"Basi c=Dat e" and "Dat e=C' and can be analyzed as a string containing a century (see K.6) to determine further
property settings.

K.2.6 Otherwise, if the string contains a COLON (":"), or has less than four characters, then it has the property
setting " Basi ¢c=Ti me" and can be analyzed as a string containing a time (see K.7) to determine further property
settings.

K.2.7 Otherwise, it has the property setting " Basi c=Dat e" and can be analyzed as a string containing a date
(see K.4) to determine further property settings.

K.3 Analysis of a string containing an interval

K.3.1 If the string begins with a LATIN CAPITAL LETTER P and does not contain a SOLIDUS ("/"), then it has
the property setting " I nt er val - t ype=D", completing the analysis of properties.

K.3.2 If the string contains a SOLIDUS, then either the portion of the string before the solidus or the portion after
the solidus will commence with a LATIN CAPITAL LETTER P, or neither will commence with a"P" (but not both).
If:

a) the portion before the SOLIDUS begins with a "P" then it has the property setting "I nterval -
t ype=DE", and may have further properties by analyzing the portion after the SOLIDUS as specified in
subsequent subclauses of thisK.3;

b) the portion after the SOLIDUS beginswith a"P" then it has the property setting "I nt er val - t ype=SD",
and may have further properties by analyzing the portion before the SOLIDUS as specified in
subsequent subclauses of thisK.3;

c) if neither portion begins with a "P" then it has the property setting "I nt erval -t ype=SE", and may
have further properties by analyzing the portion before the SOLIDUS as specified in subsequent
subclauses of thisK.3.

NOTE — There is arequirement in ASN.1 (but not in 1SO 8601) that the end point have the same time property
settings as the start point. This means that the end point portion of the string does not need to be analyzed in the
determination of property settings. It should, however, be noted that there are permitted representations of the
end point that omit the time difference component if it is the same as the time difference in the start point. This
needs to be considered when determining the abstract value of the end point.

K.3.3 If the portion contains a LATIN CAPITAL LETTER T, then it has the property setting
"SE- poi nt =Dat eTi me", and the part of the portion before the "T" can be analyzed as a string containing a date (see
K.4) and the part following the "T" can be analyzed as a string containing atime (see K.7) to determine further property
settings.

K.3.4 If the portion ends in a LATIN CAPITAL LETTER C, then it has the property settings " SE- poi nt =Dat e
Dat e=C' and can be analyzed as a string containing a century (see K.6) to determine further property settings.

K.3.5 Otherwise, if the portion contains a COLON (":"), then it has the property setting "SE- poi nt =Ti ne", and it
can be analyzed as a string containing atime (see K.7) to determine further property settings.

K.3.6 Otherwise, it has the property setting "SE- poi nt =Dat e", and it can be analyzed as a string containing a date
(see K.4) to determine further property settings.

K.4 Analysis of a string containing a date

K.41 If thestringendsin aLATIN CAPITAL LETTER C, then it has the property setting " Dat e=C' and the rest
of the string can be analyzed as a string containing a century (see K.6).

K.4.2 If the string begins with a HY PHEN-MINUS ("-"), this should be ignored for the analysis in the rest of this
subclause K .4.

NOTE — In this case, the hyphen represents a minus sign, not a separator.

K.4.3 Otherwise, the string will contain zero, one, or two HYPHEN-MINUS ("-") characters, and in the last two
cases may or may not contain aLATIN CAPITAL LETTERW.

K.4.4 If the string does not contain aLATIN CAPITAL LETTER W, theniif:

a) the string contains no HYPHEN-MINUS characters, it has the property setting " Dat e=Y" and can be
analyzed as a string containing a year (see K.5) to determine further property settings;

ITU-T Rec. X.680 (11/2008) 161

| SO/IEC 8824-1:2008 (E)

b) the string contains one HY PHEN-MINUS character, it has the property setting " Dat e=YM'; two digits
for the month will follow the HY PHEN-MINUS and the portion before the HY PHEN-MINUS can be
analyzed as a string containing a year (see K.5) to determine further property settings;

¢) thestring contains two HY PHEN-MINUS characters, it has the property setting " Dat e=YMD" ; two digits
for the month will follow the first HY PHEN-MINUS, two digits for the day will follow the second
HYPHEN-MINUS, and the portion of the string before the first HY PHEN-MINUS can be analyzed as a
string containing a year (see K.5) to determine further property settings.

K.45 If the string containsa LATIN CAPITAL LETTER W, then if:

a) the string contains one HY PHEN-MINUS character, it has the property setting " Dat e=YW ; two digits
for the week will follow the HY PHEN-MINUS and the portion before the HY PHEN-MINUS can be
analyzed as a string containing a year (see K.5) to determine further property settings.

b) If the string contains two HY PHEN-MINUS characters, it has the property setting " Dat e=YWD' ; two
digits for the week will follow the first HY PHEN-MINUS, one digit for the day will follow the second
HYPHEN-MINUS, and the portion of the string before the first HY PHEN-MINUS can be analyzed as a
string containing ayear (see K.5) to determine further property settings.

K.5 Analysis of a string containing a year

K.5.1 If the string commences with a HYPHEN-MINUS ("-") character, and is five characters, then it has the
property setting " Year =Negat i ve" , completing the analysis of properties.

K.5.2 Otherwise, if the string is more than four characters and does not commence with a HY PHEN-MINUS (*-")
character, it has the property setting " Year =L5", " Year =L6", " Year =L7", etc., for a number of characters equal to 5,
6, 7, etc., respectively.

K.53 Otherwise, if the string is more than four characters and commences with a HYPHEN-MINUS ("-")
character, it has the property setting " Year =L5", " Year =L6", " Year =L7", etc., for a number of characters equal to 6,
7,8, etc., respectively.

K.54 Otherwise, if the value of the four-digit string is less than 1582, then it has the property setting
"Year =Pr ol epti c", completing the analysis of properties.

K.55 Otherwise, it hasthe property setting " Year =Basi ¢", completing the analysis of properties.

K.6 Analysis of a string containing a century

K.6.1 If the string commences with a HY PHEN-MINUS ("-") character, and is three characters, it has the property
setting " Year =Negat i ve" , completing the analysis of properties.

K.6.2 Otherwise, if the string is more than two characters and does not commence with a HY PHEN-MINUS ("-")
character, it has the property setting " Year =L5", " Year =L6", " Year =L7", etc., for a number of characters equal to 3,
4,5, etc., respectively.

K.6.3 Otherwise, if the string is more than two characters and commences with aHY PHEN-MINUS ("-") character,
it has the property setting " Year =L5", " Year =L6", " Year =L7", etc., for a number of characters equal to 4, 5, 6, etc.,
respectively.

K.6.4 Otherwise, if the value of the two-digit string is less than 15, it has the property setting " Year =Pr ol epti c",
completing the analysis of properties.

K.6.5 Otherwise, it hasthe property setting " Year =Basi ¢", completing the analysis of properties.

K.7 Analysis of a string containing a time

K.7.1 IfthestringendsinaLATIN CAPITAL LETTER Z then it has the property setting " Local - or - UTC=Z", and
the portion of the string before the "Z" can be analyzed as a string containing a simple time (see K.8) to determine
further property settings.

K.7.2 Otherwise, if the string contains a plus ("+") or aminus ("-") then it has the property
"Local - or - UTC=LD", and the portion of the string before the plus or minus can be analyzed as a simple time (see K.8)
to determine further property settings.

NOTE — Analysis of the portion of the string following the plus or minus (atime differential) is not needed for the determination
of property settings.

162 ITU-T Rec. X.680 (11/2008)

K.7.3

K.8
K.8.1
comma (",").
K.8.2
a)
b)
0)
K.8.3
a)
b)
0)

| SO/IEC 8824-1:2008 (E)

Otherwise, it has the property "Local - or- UTC=L" and can be analyzed as a simple time (seeK.8) to
determine further property settings.

Analysis of a string containing a smpletime

The string will contain zero, one or two colons (;) and may contain adecimal sign, which isafull stop (".") or

If the string does not contain a decimal sign, then if:

the string does not contain a colon, it has the property setting " Ti me=H', completing the analysis of
properties,
the string contains one colon, it has the property setting " Ti me=HM', completing the analysis of
properties,
the string contains two colons, it has the property setting " Ti ne=HVS", completing the analysis of
properties.

If the string contains a decimal sign, then if:

the string does not contain a colon, it has the property setting " Ti ne=HF1", " Ti me=HF2", " Ti me=HF3",
etc., if the number of digits after the decimal signis 1, 2, 3, etc., respectively, completing the analysis of
properties,

the string contains one colon, it has the property setting " Ti ne=HMFL", " Ti ne=HMF2", " Ti ne=HVF3" ,
etc., if the number of digits after the decimal signis 1, 2, 3, etc., respectively, completing the analysis of
properties;

the string contains two colons, then it has the property setting " Ti me=HVBF1", " Ti me=HVBF2",
" Ti me=HVBF3", etc., if the number of digits after the decimal sign is 1, 2, 3, etc., respectively,
completing the analysis of properties.

ITU-T Rec. X.680 (11/2008) 163

| SO/IEC 8824-1:2008 (E)

Annex L

Summary of the ASN.1 notation

(This annex does not form an integral part of this Recommendation | International Standard)

The following lexical items are defined in clause 12:

typereference
identifier
valuereference
modul ereference
comment
empty

number
realnumber
bstring
xmlbstring
hstring
xmlhstring
cstring
xmlcstring
simplestring
tstring
xmltstring

psname

N

"1
encodingreference
integerUnicodel abel
non-integerUnicodel abel
ngf

"o

"true"

extended-true
"false"
extended-false
"NaN"

"INF"

164 ITU-T Rec. X.680 (11/2008)

xmlasnltypename
nn
m
"

N

ny

(
X
[

]

"-" (HYPHEN-MINUS)

""" (QUOTATION MARK)

" " (APOSTROPHE)
"nn (yACE)

'@
n |ll

npn
nan

ABSENT
ABSTRACT- SYNTAX
ALL

APPLI CATI ON
AUTOVATI C
BEG N

BIT

BMPSt ri ng
BOOLEAN

BY
CHARACTER

CHO CE

CLASS
COVPONENT
COVPONENTS
CONSTRAI NED
CONTAI NI NG
DATE

DATE- TI ME
DEFAULT

DEFI NI TI ONS
DURATI ON
EMBEDDED
ENCODED
ENCODI NG CONTROL
END
ENUVERATED
EXCEPT
EXPLICIT
EXPORTS
EXTENSI Bl LI TY
EXTERNAL
FALSE

FROM

General i zedTi me
General String
G aphicString
| A5String

| DENTI FI ER
IMPLICT

| MPLI ED

| MPORTS

I NCLUDES

I NSTANCE

I NSTRUCTI ONS
| NTEGER

| NTERSECTI ON

| SO646Stri ng
MAX

M N

M NUS- I NFINITY
NOT- A- NUMBER
NULL

Nurreri cString
CBJECT

Ohj ect Descri pt or
CCTET

OoF

AdbDIR

OPTIl ONAL
PATTERN

PDV
PLUS-I NFI NI TY
PRESENT

Printabl eString

PRI VATE
REAL
RELATI VE- O D

RELATIVE-Q D-I RI

SEQUENCE
SET

SETTI NGS
Sl ZE

STRI NG
SYNTAX
T61String

| SO/IEC 8824-1:2008 (E)

TAGS

Tel et exString
TI ME

Tl ME- OF- DAY
TRUE

TYPE- | DENTI FI ER
UNI ON

UNI QUE

UNI VERSAL

Uni versal String
UTCTi e
UTF8Stri ng

Vi deot exStri ng
VisibleString
WTH

The following productions are used in this Recommendation | International Standard, with the above lexical items as

terminal symboals:

M oduleDefinition ::=

M odulel dentifier
DEFI NI TI ONS

EncodingRefer enceDefault

TagDefault

ExtensionDefault

BEGI N
M oduleBody

EncodingContr ol Sections
END

Modulel dentifier ::=

moduler eference
Definitivel dentification

Definitivel dentification ::=

DefinitiveOl D
DefinitiveOl DandIRI
empty

DefinitiveOID ::=

"{" DefinitiveObjldComponentList "}"

DefinitiveOlDandIRI ::=

DefinitiveOlD
IRIValue

DefinitiveObjldComponentList ::=

DefinitiveObjldComponent

DefinitiveObjl dComponent DefinitiveObjl dComponentList

DefinitiveObjldComponent ::=

NameForm
DefinitiveNumber Form
DefinitiveNameAndNumber Form

DefinitiveNumber Form 1= number

DefinitiveNameAndNumber Form ;= identifier " (" DefinitiveNumberForm ") "

ITU-T Rec. X.680 (11/2008) 165

| SO/IEC 8824-1:2008 (E)

EncodingRefer enceDefault ::=
encodingreference | NSTRUCTI ONS
| empty
TagDefault ::=
EXPLICI T TAGS
| IMPLICI T TAGS
| AUTOWATI C TAGS
| empty
ExtensionDefault ::=
EXTENSI BI LI TY | MPLI ED
| empty

ModuleBody ::=
Exports Imports AssignmentList
| empty

Exports::=
EXPORTS SymbolsExported " ;"
| EXPORTS ALL ";"
| empty

SymbolsExported ::=
SymbolList
| empty

Imports::=
| MPORTS Symbolsimported " ;"
| empty

Symbolslmported ::=
SymbolsFromModuleL ist
| empty

SymbolsFromModuleList ::=
SymbolsFromModule
| SymbolsFromModuleList SymbolsFromM odule

SymbolsFromModule ::=
SymbolList FROMGlobalM oduleRefer ence

GlobalM oduleReference ::=
moduler efer ence Assigned| dentifier

Assignedl dentifier ::=
ObjectldentifierValue
| DefinedValue
| empty

SymbolList ::=
Symbol
| SymbolList"," Symboaol

Symbol ::=
Reference
| ParameterizedReference

Reference ::=
typereference
| valuereference
| objectclassreference
| objectreference
| objectsetreference

AssignmentList ::=
Assignment
| AssignmentList Assignment

166 ITU-T Rec. X.680 (11/2008)

Assignment ::=
TypeAssignment
| ValueAssignment
| XMLValueAssignment
| ValueSetTypeAssignment
| ObjectClassAssignment
| ObjectAssignment
| ObjectSetAssignment
| ParameterizedAssignment

DefinedType ::=
External TypeReference
| typereference
| ParameterizedType
| ParameterizedValueSet Type

DefinedValue::=
ExternalValueReference
| valuereference
| ParameterizedValue

NonParameterizedTypeName ::=
External TypeReference
| typereference
| xmlasnltypename

External TypeReference::=
moduler eference

typereference

ExternalValueReference ::=
moduler eference

valuer eference

AbsoluteReference ::=
"@ Moduleldentifier

ItemSpec

ItemSpec ::=
typereference
| Itemld"." Componentld

Itemld ::= ItemSpec

Componentld ::=
identifier
| number

| "yn

TypeAssignment ::=
typereference

Type
ValueAssignment ::=
valuer eference

Type

Value

| SO/IEC 8824-1:2008 (E)

ITU-T Rec. X.680 (11/2008) 167

| SO/IEC 8824-1:2008 (E)

XMLValueAssignment ::=
valuer eference

XML TypedValue

XMLTypedValue::=
"<" & NonParameterizedTypeName " >"
XMLValue
"</[" & NonParameterizedTypeName" >"
| "<" & NonParameterizedTypeName" />"

ValueSetTypeAssignment ::=
typereference
Type
ValueSet
ValueSet ::="{" ElementSetSpecs"}"
Type ::= BuiltinType | ReferencedType | ConstrainedType

BuiltinType::=

BitStringType
| BooleanType
| Character StringType
| ChoiceType
| DateType
| DateTimeType
| DurationType
| EmbeddedPDVType
| EnumeratedType
| External Type
| InstanceOfType
| Integer Type
| IRIType
| NullType
| ObjectClassFieldType
| Objectldentifier Type
| OctetStringType
| Real Type
| Relativel RIType
| RelativeOIDType
| SequenceType
| SequenceOfType
| SetType
| SetOfType
| PrefixedType
| TimeType
| TimeOfDayType

ReferencedType ::=
DefinedType
| Useful Type
| SelectionType
| TypeFromObject
| ValueSetFromObjects

NamedType ::= identifier Type

Value::=
Builtinvalue
| ReferencedValue
| ObjectClassFieldValue

168 ITU-T Rec. X.680 (11/2008)

| SO/IEC 8824-1:2008 (E)

XMLValue::=
XMLBuiltinvValue
| XMLODbjectClassFieldValue

BuiltinvValue ::=
BitStringValue
| BooleanValue
| Character StringvValue
| Choicevalue
| EmbeddedPDVValue
| EnumeratedValue
| ExternalValue
| InstanceOfValue
| IntegerValue
| IRIValue
| Nullvalue
| ObjectldentifierValue
| OctetStringValue
| RealValue
| RelativelRIValue
| RelativeOlDValue
| SequenceValue
| SequenceOfValue
| SetValue
| SetOfValue
| PrefixedValue
| TimeValue

XMLBuiltinvalue::=
XMLBItStringValue
| XMLBooleanValue
| XMLCharacter StringValue
| XMLChoiceValue
| XMLEmbeddedPDVValue
| XMLEnumeratedValue
| XMLExternalValue
| XMLInstanceOfValue
| XMLIntegerValue
| XMLIRIValue
| XMLNullvalue
| XMLODbjectldentifierValue
| XMLOctetStringValue
| XMLRealValue
| XMLRdativelRIValue
| XMLRéativeOlDValue
| XMLSequenceValue
| XMLSequenceOfValue
| XMLSetValue
| XMLSetOfValue
| XMLPrefixedValue
| XMLTimeValue

ReferencedValue::=
DefinedValue
| ValueFromObject

NamedValue::= identifier Value
XMLNamedValue::="<" & identifier ">" XMLValue"</" & identifier ">"
BooleanType ::=BOOLEAN

BooleanValue::= TRUE | FALSE

ITU-T Rec. X.680 (11/2008) 169

| SO/IEC 8824-1:2008 (E)

170

XMLBooleanValue::=
EmptyElementBoolean
| TextBoolean

EmptyElementBoolean ::=
<" & "truet ">
| "<" & "false" "/>"

TextBoolean ::=
extended-true
| extended-false

Integer Type::=
| NTEGER

| | NTEGER" {" NamedNumberList "}"

NamedNumberList ::=
NamedNumber

| NamedNumberList "," NamedNumber

NamedNumber ::=

identifier " (" SignedNumber ") "
| identifier " (" DefinedValue")"

SignedNumber ::=
number
| "-" number

IntegerValue::=
SignedNumber
| identifier
XMLIntegerValue::=
XML SignedNumber

| EmptyElement|nteger
| Textlnteger

XML SignedNumber ::=
number
| "-" & number

EmptyElementinteger ::=
| "<" & identifier " />"
Textinteger ::=
identifier

EnumeratedType::=

ENUMVERATED " {" Enumerations"}"

Enumerations::=
RootEnumer ation

| RootEnumeration ",

| RootEnumeration ",

RootEnumer ation ::= Enumeration

... " ExceptionSpec
..." ExceptionSpec

AdditionalEnumer ation ::= Enumeration

AdditionalEnumeration

Enumeration ::= Enumerationltem | Enumerationitem " ," Enumeration

Enumerationltem ::=identifier | NamedNumber

EnumeratedValue ::=identifier

XMLEnumeratedValue::=

EmptyElementEnumer ated

| TextEnumerated

EmptyElementEnumerated ::="<" & identifier " />"

ITU-T Rec. X.680 (11/2008)

TextEnumerated ::= identifier
Real Type::= REAL

RealValue::=
NumericRealValue
| SpecialRealValue

NumericRealValue::=
realnumber
| "-" realnumber
| SequenceValue

SpecialRealValue::=
PLUS- I NFI NI TY

| MNUS-INFINETY
| NOT- A- NUMBER

XMLRealValue::=
XMLNumericRealValue | XML SpecialRealValue

XMLNumericRealValue::=
realnumber
| "." & realnumber

XML SpecialRealValue::=
EmptyElementReal
| TextReal

EmptyElementReal ::=
"<" & PLUS-I NFINITY"/>"
| "<" & MNUS-INFINITY"/>"
| "<" & NOT- A- NUMBER" />"

TextReal ::=
"I NF"
| """ & "IN
| "NaN'
BitStringType::=
BI T STRI NG
| BIT STRING"{" NamedBitList"}"

NamedBitList ::=
NamedBit
| NamedBitList "," NamedBit

NamedBit ::=
identifier " (" number ")"
| identifier " (" DefinedValue™)"

BitStringValue::=
bstring
| hstring
| "{" IdentifierList"}"
I S
| CONTAI Nl NG Value
IdentifierList ::=
identifier
| IdentifierList"," identifier
XMLBItStringValue::=
XML TypedValue
| xmlbstring
| XMLIdentifierList
| empty

| SO/IEC 8824-1:2008 (E)

ITU-T Rec. X.680 (11/2008)

171

| SO/IEC 8824-1:2008 (E)

172

XML IdentifierList ::=
EmptyElementList
| TextList

EmptyElementList ::=
"<" & identifier " />"
| EmptyElementList " <" & identifier " />"

TextList ::=
identifier
| TextList identifier
OctetStringType::= OCTET STRI NG

OctetStringValue ::=
bstring
| hstring
| CONTAI NI NGValue

XMLOctetStringValue::=
XML TypedValue
| xmlhstring

NullType ::= NULL
NullValue::= NULL
XMLNullValue ::= empty

SequenceType::=
SEQUENCE " {" "}"
| SEQUENCE "{" ExtensionAndException OptionalExtensionMarker "}"
| SEQUENCE "{" ComponentTypelists "}"

ExtensionAndException::= "..." | "..." ExceptionSpec

OptionalExtensionMarker ::= " " "..." | empty
ComponentTypeLists::=
RootComponentTypelL ist
| RootComponentTypeList "," ExtensionAndException ExtensionAdditions
OptionalExtensionM arker
| RootComponentTypeList "," ExtensionAndException ExtensionAdditions
ExtensionEndMarker "," RootComponentTypelList
| ExtensionAndException ExtensionAdditions ExensionEndMarker " "
RootComponentTypeL ist
| ExtensionAndException ExtensionAdditions OptionalExtensionMarker

RootComponentTypeList ::= ComponentTypeList

ExtensonEndMarker ::= ",

ExtensionAdditions ::=
" " ExtensionAdditionList
| empty

ExtensionAdditionList ::=
ExtensionAddition
| ExtensionAdditionList "," ExtensionAddition

ExtensionAddition ::=
ComponentType
| ExtensionAdditionGroup

ExtensionAdditionGroup ::= "[[" VersionNumber ComponentTypeList "]1"

VersionNumber ::= empty | number

ITU-T Rec. X.680 (11/2008)

ComponentTypeList ::=
ComponentType
| ComponentTypeList "," ComponentType

ComponentType ::=
NamedType
| NamedType OPTI ONAL
| NamedType DEFAULT Value
| COVPONENTS CF Type

SequenceValue::=
"{" ComponentValuelList "}"

| o
ComponentValuelist ::=

NamedValue
| ComponentValuelList"," NamedValue
XML SequenceValue::=
XML ComponentValueList
| empty

XML ComponentValueList ::=
XMLNamedValue
| XMLComponentValuelList XMLNamedValue

SequenceOfType ::

SequenceOfValue ::=
Il{ll ValueLISt ll}ll
| "{" NamedValueList"}"
| Il{ll II}II

ValuelList ::=
Value
| ValueList"," Value

NamedValuelList ::=
NamedValue
| NamedValuelList"," NamedValue

XML SequenceOfValue::=
XMLValuelList
| XMLDdimitedltemList
| empty

XMLValuelList ::=
XMLValueOrEmpty
| XMLValueOrEmpty XMLValueList

XMLValueOrEmpty ::=
XMLValue
| "<" & NonParameterizedTypeName" />"

XMLDelimitedltemList ::=
XMLDeimitedltem
| XMLDelimitedltem XML DelimitedltemList

XMLDelimiteditem ::=
"<" & NonParameterizedTypeName" >" XMLValue
"</" & NonParameterizedTypeName" >"
| "<" & identifier ">" XMLValue"</" & identifier ">"

SetType::=
SEI— " { " n } n

SEQUENCE OF Type| SEQUENCE OF NamedType

| SO/IEC 8824-1:2008 (E)

| SET"{" ExtensionAndException OptionalExtensionMarker "}"

| SET"{" ComponentTypelLists "}"

ITU-T Rec. X.680 (11/2008) 173

| SO/IEC 8824-1:2008 (E)

SetValue::=
"{" ComponentValuelList "}"
S G
XML SetValue::=

XML ComponentValuel ist
| empty

SetOfType::=
SET OF Type
| SET OF NamedType

SetOfValue::=
"{" ValueList"}"
| "{" NamedValuelList "}"
[S
XML SetOfValue::=
XMLValuelist

| XMLDeimitedltemList
| empty

ChoiceType ::=CHO CE"{" AlternativeTypeLists"}"

AlternativeTypelLists::=
RootAlternativeTypeList
| RootAlternativeTypeList " "
ExtensionAndException ExtensionAdditionAlternatives
OptionalExtensionM ar ker

RootAlternativeTypelist ::= AlternativeTypeL ist

ExtensionAdditionAlternatives ::=
" " ExtensionAdditionAlternativesList
| empty

ExtensionAdditionAlternativesList ::=
ExtensionAdditionAlter native
| ExtensionAdditionAlternativesList "," ExtensionAdditionAlternative

ExtensionAdditionAlternative ::=
ExtensionAdditionAlter nativesGroup
| NamedType

ExtensionAdditionAlter nativesGroup ::=
"[[" VersionNumber AlternativeTypelList "]]"

AlternativeTypelist ::=
NamedType
| AlternativeTypelList"," NamedType

ChoiceValue::=identifier ": " Value
XMLChoiceValue::="<" & identifier ">" XMLValue"</" & identifier ">"
SelectionType ::=identifier " <" Type

PrefixedType::=
TaggedType
| EncodingPr efixedType

PrefixedValue::= Value
XMLPrefixedValue::= XMLValue

EncodingPrefixedType ::=
EncodingPrefix Type

174 ITU-T Rec. X.680 (11/2008)

EncodingPrefix ::=
"[" EncodingReference Encodingl nstruction "]"

TaggedType::=
Tag Type
| TaglwmPLICIT Type
| TagEXPLIC T Type

Tag::="[" EncodingReference Class ClassNumber "]"

EncodingReference ::=
encodingreference” :"
| empty

ClassNumber ::=
number
| DefinedValue
Class::=
UNI VERSAL
| APPLI CATI ON
| PRIVATE
| empty

EncodingPr efixedType ::=
EncodingPrefix Type

EncodingPrefix ::=
"[" EncodingReference Encodingl nstruction "]"

Objectldentifier Type::=
OBJECT | DENTI FI ER

ObjectldentifierValue::=
"{" ObjldComponentsList"}"
| "{" DefinedValue ObjldComponentsList "}"

ObjldComponentsList ::=
ObjldComponents
| ObjldComponents ObjldComponentsList

ObjldComponents::=
NameForm
| Number Form
| NameAndNumber Form
| DefinedValue

NameForm ::= identifier
NumberForm ::= number | DefinedValue

NameAndNumberForm ::=
identifier " (" NumberForm™")"

XML ObjectldentifierValue::=
XML ObjldComponentList

XML ObjldComponentList ::=
XML ObjldComponent
| XMLObjldComponent & "." & XMLObjldComponentList

XML ObjldComponent ::=
NameForm
| XMLNumberForm
| XMLNameAndNumberForm

XMLNumberForm ::= number

| SO/IEC 8824-1:2008 (E)

ITU-T Rec. X.680 (11/2008) 175

| SO/IEC 8824-1:2008 (E)

XMLNameAndNumberForm ::=
identifier & "(" & XMLNumberForm & ")"

RelativeOIDType::= RELATI VE-Q D

RelativeOlDValue::=
"{" RelativeOlDComponentsList "}"

RelativeOlDComponentsList ::=
RelativeOl DComponents
| RelativeOl DComponents RelativeOl DComponentsL ist

RelativeOl DComponents::=
NumberForm
| NameAndNumber Form
| DefinedValue

XMLR€ativeOlDValue::=
XML RelativeOl DComponentL ist

XML RelativeOlDComponentList ::=
XML RelativeOl DComponent
| XMLRelativeOIDComponent & "." & XMLRelativeOlDComponentList

XML RelativeOlDComponent ::=
XMLNumberForm
| XMLNameAndNumberForm

IRIType::=QDIR
IRIValue::=

FirstArcldentifier
SubsequentArcldentifier

FirstArcldentifier ::=
"/" Arcldentifier

SubsequentArcldentifier ::=
"I" Arcldentifier SubsequentArcldentifier
| empty

Arcldentifier ::=
integer Unicodel abel
| non-integer Unicodel abel

XMLIRIValue::=
FirstArcldentifier
SubsequentAr cldentifier

RelativelRIType ::= RELATIVE-Q D- I R
Relativel RIValue ::=

FirstRelativeArcldentifier
SubsequentArcldentifier

FirstRelativeArcldentifier ::=
Arcldentifier

XMLRéativelRIValue::=
FirstRelativeArcldentifier
SubsequentArcldentifier

EmbeddedPDV Type ::= EMBEDDED PDV

176 ITU-T Rec. X.680 (11/2008)

EmbeddedPDVValue ::= SequenceValue
XMLEmbeddedPDVValue ::= XML SequenceValue
External Type ::= EXTERNAL

ExternalValue ::= SequenceValue
XMLExternalValue::= XML SequenceValue
TimeType::=TI ME

TimeValue::=tstring

XMLTimeValue::= xmltstring

DateType::= DATE

TimeOfDayType ::= TI ME- OF- DAY
DateTimeType::= DATE- TI ME
DurationType ::= DURATI ON

CharacterStringType ::=
RestrictedCharacter StringType
| UnrestrictedCharacter StringType

CharacterStringValue::=
RestrictedChar acter StringValue
| UnrestrictedCharacter StringValue

XML Character StringValue ::=
XML RestrictedCharacter StringValue
| XMLUnrestrictedCharacter StringValue

RestrictedChar acter StringType ::=
BMPSt ri ng

| General String
| GaphicString
| | A5String

| 1S0646String
| NurericString
| Printabl eString
| TeletexString
| T61String

| Universal String
| UTF8String

| VideotexString
| VisibleString

RestrictedCharacter StringValue ::=
cstring
| CharacterStringList
| Quadruple
| Tuple

CharacterStringList ::= "{" CharSyms"}"

CharSyms::=
CharsDefn
| CharSyms"," CharsDefn

CharsDefn ::=
cstring
| Quadruple
| Tuple
| DefinedValue

| SO/IEC 8824-1:2008 (E)

ITU-T Rec. X.680 (11/2008) 177

| SO/IEC 8824-1:2008 (E)

Quadruple::="{" Group "," Plane "," Row "," Cel"}"

Group ::=number
Plane ::=number
Row 1= number
Cdll 2= number
Tuple ::="{" TableColumn"," TableRow "}"

TableColumn ::= number
TableRow ::= number
XMLRestrictedCharacter StringValue ::= xmlcstring
UnrestrictedCharacter StringType ::= CHARACTER STRI NG
UnrestrictedCharacter StringValue ::= SequenceValue
XMLUnrestrictedChar acter StringValue ::= XML SequenceValue
UsefulType ::=typereference

The following character string types are defined in 41.1:

UTF8Stri ng G aphicString
NunericString Vi sibleString
PrintableString |1S0646String
Tel et exString General String
T61String Uni versal String

Vi deot exStri ng BMPSt ri ng
I A5String
The following useful types are defined in clauses 46 to 48:
Ceneral i zedTi me
UTCTi ne
Obj ect Descri pt or
The following productions are used in clauses 49 to 51:

ConstrainedType ::=
Type Constraint
| TypeWithConstraint

TypeWithConstraint ::=
SET Constraint OF Type
| SET SizeConstraint OF Type
| SEQUENCE Constraint OF Type
| SEQUENCE SizeConstraint OF Type
| SET Constraint OF NamedType
| SET SizeConstraint OF NamedType
| SEQUENCE Constraint OF NamedType
| SEQUENCE SizeConstraint OF NamedType

Constraint ::=" (" ConstraintSpec ExceptionSpec")"

ConstraintSpec::= SubtypeConstraint
| GeneralConstraint

SubtypeConstraint ::= Element SetSpecs

ElementSetSpecs ::=
RootElementSetSpec

178 ITU-T Rec. X.680 (11/2008)

| ROOtE|em%tSetSpeC " 1" n o "
| RootElementSetSpec ", "..." " "

RootElementSetSpec ::= ElementSetSpec
AdditionalElementSet Spec :: = ElementSet Spec

ElementSetSpec ::= Unions
| ALL Exclusions

Unions::= Intersections
| UElemsUnionMark Intersections

UElems::= Unions

Intersections ::= IntersectionElements
| | Elems I ntersectionMark I nter sectionElements

|Elems::= Intersections

I nter sectionElements ::= Elements | Elems Exclusions
Elems::= Elements

Exclusions ::= EXCEPT Elements

UnionMark ::="["* | UNON

IntersectionMark ::=

nan |

| NTERSECTI ON

Elements ::=
SubtypeElements
| ObjectSetElements
| "(" ElementSetSpec")"

SubtypeElements::=
SingleValue
| ContainedSubtype
| ValueRange
| PermittedAlphabet
| SizeConstraint
| TypeConstraint
| Inner TypeConstraints
| PatternConstraint
| PropertySettings
| DurationRange
| TimePointRange
| RecurrenceRange

SingleValue ::= Value

ContainedSubtype ::= Includes Type

Includes ::= | NCLUDES | empty

ValueRange ::= Lower Endpoint ". . " Upper Endpoint

LowerEndpoint ::= LowerEndValue|LowerEndValue" <"

Upper Endpoint ::
L ower EndValue :

UpperEndValue | " <" UpperEndValue

Value| M N
UpperEndValue::= Value| MAX
SizeConstraint ::= SI ZE Constraint
TypeConstraint ::= Type
PermittedAlphabet ::= FROMConstraint

| SO/IEC 8824-1:2008 (E)

Additional Element Set Spec

ITU-T Rec. X.680 (11/2008) 179

| SO/IEC 8824-1:2008 (E)

180

Inner TypeConstraints::=
W TH COVPONENT SingleTypeConstraint
| WTH COVPONENTS MultipleTypeConstraints

SingleTypeConstraint::= Constraint

MultipleTypeConstraints::=
FullSpecification
| PartialSpecification

FullSpecification ::="{" TypeConstraints"}"
PartialSpecification ::="{" "..." " TypeConstraints"}"
TypeConstraints::=

NamedConstraint

| NamedConstraint " ," TypeConstraints

NamedConstraint ::=
identifier ComponentConstraint

ComponentConstraint ::= ValueConstraint PresenceConstraint
ValueConstraint ::= Constraint | empty

PresenceConstraint ::= PRESENT | ABSENT | OPTI ONAL | empty
PatternConstraint ::= PATTERN Value

PropertySettings::= SETTI NGS simplestring

PropertySettingsList ::=
PropertyAndSettingPair
| PropertySettingsList PropertyAndSettingPair

PropertyAndSettingPair ::= PropertyName" =" SettingName
PropertyName ::= psname

SettingName ::= psname

DurationRange ::= ValueRange

TimePointRange ::= ValueRange

RecurrenceRange ::= ValueRange

ExceptionSpec ::="1" Exceptionldentification | empty

Exceptionl dentification ::=
SignedNumber
| DefinedValue
| Type":" Value

ITU-T Rec. X.680 (11/2008)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T RECOMMENDATION X.680 (11/2008) – Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 International Object Identifier tree specification
	3.2 Information object specification
	3.3 Constraint specification
	3.4 Parameterization of ASN.1 specification
	3.5 Structure for identification of organizations
	3.6 Universal Multiple-Octet Coded Character Set (UCS)
	3.7 Representation of dates and times
	3.8 Additional definitions

	4 Abbreviations
	5 Notation
	5.1 General
	5.2 Productions
	5.3 The alternative collections
	5.4 Non-spacing indicator
	5.5 Example of a production
	5.6 Layout
	5.7 Recursion
	5.8 References to permitted sequences of lexical items
	5.9 References to a lexical item
	5.10 Short-hand notations
	5.11 Value references and the typing of values

	6 The ASN.1 model of type extension
	7 Extensibility requirements on encoding rules
	8 Tags
	9 Encoding instructions
	10 Use of the ASN.1 notation
	11 The ASN.1 character set
	12 ASN.1 lexical items
	12.1 General rules
	12.2 Type references
	12.3 Identifiers
	12.4 Value references
	12.5 Module references
	12.6 Comments
	12.7 Empty lexical item
	12.8 Numbers
	12.9 Real numbers
	12.10 Binary strings
	12.11 XML binary string item
	12.12 Hexadecimal strings
	12.13 XML hexadecimal string item
	12.14 Character strings
	12.15 XML character string item
	12.16 The simple character string lexical item
	12.17 Time value character strings
	12.18 XML time value character string item
	12.19 The property and setting names lexical item
	12.20 Assignment lexical item
	12.21 Range separator
	12.22 Ellipsis
	12.23 Left version brackets
	12.24 Right version brackets
	12.25 Encoding references
	12.26 Integer-valued Unicode labels
	12.27 Non-integer Unicode labels
	12.28 XML end tag start item
	12.29 XML single tag end item
	12.30 XML boolean true item
	12.31 XML boolean extended-true item
	12.32 XML boolean false item
	12.33 XML boolean extended-false item
	12.34 XML real not-a-number item
	12.35 XML real infinity item
	12.36 XML tag names for ASN.1 types
	12.37 Single character lexical items
	12.38 Reserved words

	13 Module definition
	14 Referencing type and value definitions
	15 Notation to support references to ASN.1 components
	16 Assigning types and values
	17 Definition of types and values
	18 Notation for the boolean type
	19 Notation for the integer type
	20 Notation for the enumerated type
	21 Notation for the real type
	22 Notation for the bitstring type
	23 Notation for the octetstring type
	24 Notation for the null type
	25 Notation for sequence types
	26 Notation for sequence-of types
	27 Notation for set types
	28 Notation for set-of types
	29 Notation for choice types
	30 Notation for selection types
	31 Notation for prefixed types
	31.1 General
	31.2 The tagged type
	31.3 The encoding prefixed type

	32 Notation for the object identifier type
	33 Notation for the relative object identifier type
	34 Notation for the OID internationalized resource identifier type
	35 Notation for the relative OID internationalized resource identifier type
	36 Notation for the embedded-pdv type
	37 Notation for the external type
	38 The time type
	38.1 General
	38.2 Time properties and settings of time abstract values
	38.3 Basic value notation and XML value notation for time abstract values with specified property
	settings
	38.4 Useful time types

	39 The character string types
	40 Notation for character string types
	41 Definition of restricted character string types
	42 Naming characters, collections and property category sets
	42.1 Specification of the ASN.1 Module "ASN1-CHARACTER-MODULE"

	43 Canonical order of characters
	44 Definition of unrestricted character string types
	45 Notation for types defined in clauses 46 to 48
	46 Generalized time
	47 Universal time
	48 The object descriptor type
	49 Constrained types
	50 Element set specification
	51 Subtype elements
	51.1 General
	51.2 Single value
	51.3 Contained subtype
	51.4 Value range
	51.5 Size constraint
	51.6 Type constraint
	51.7 Permitted alphabet
	51.8 Inner subtyping
	51.9 Pattern constraint
	51.10 Property settings
	51.11 Duration range
	51.12 Time point range
	51.13 Recurrence range

	52 The extension marker
	53 The exception identifier
	54 Encoding control sections
	Annex A
	ASN.1 regular expressions
	A.1 Definition
	A.2 Metacharacters

	Annex B
	The defined time types
	B.1 General
	B.2 The ASN.1 defined time types module

	Annex C
	Rules for type and value Compatibility
	C.1 The need for the value mapping concept (tutorial introduction)
	C.2 Value mappings
	C.3 Identical type definitions
	C.4 Specification of value mappings
	C.5 Additional value mappings defined for the character string types
	C.6 Specific type and value compatibility requirements
	C.7 Examples

	Annex D
	Assigned object identifier and OID internationalized resource identifier values
	D.1 Values assigned in this Recommendation | International Standard
	D.2 Object identifiers in the ASN.1 and encoding rules standards

	Annex E
	Encoding references
	Annex F
	Assignment and use of arcs in the International Object Identifier tree
	F.1 General
	F.2 Use of the International Object Identifier tree by the object identifier (
	type
	F.3 Use of the International Object Identifier tree by the OID internationalized resource identifier
	(

	Annex G
	Examples and hints
	G.1 Example of a personnel record
	G.2 Guidelines for use of the notation
	G.3 Value notation and property settings (
	type and useful time types)
	G.3.1 Date
	G.3.2 Time of day
	G.3.3 Date and time of day
	G.3.4 Time interval
	G.3.5 Recurring interval
	G.4 Identifying abstract syntaxes
	G.5 Subtypes

	Annex H
	Tutorial annex on ASN.1 character strings
	H.1 Character string support in ASN.1
	H.2 The UniversalString, UTF8String and BMPString types
	H.3 On ISO/IEC 10646 conformance requirements
	H.4 Recommendations for ASN.1 users on ISO/IEC 10646 conformance
	H.5 Adopted subsets as parameters of the abstract syntax
	H.6 The CHARACTER STRING type

	Annex I
	Tutorial annex on the ASN.1 model of type extension
	I.1 Overview
	I.2 Meaning of version numbers
	I.3 Requirements on encoding rules
	I.4 Combination of (possibly extensible) constraints

	Annex J
	Tutorial annex on the
	type
	J.1 The collections of ASN.1 types for times and dates
	J.2 ISO 8601 key concepts
	J.3 Abstract values of the
	type
	J.4 Time properties of the time abstract values
	J.5 Value notation
	J.6 Use of the ASN.1 subtype notation
	J.7 The property settings subtype notation

	Annex K
	Analyzing
	type value notation
	K.1 General
	K.2 Analyzing the full string
	K.3 Analysis of a string containing an interval
	K.4 Analysis of a string containing a date
	K.5 Analysis of a string containing a year
	K.6 Analysis of a string containing a century
	K.7 Analysis of a string containing a time
	K.8 Analysis of a string containing a simple time

	Annex L
	Summary of the ASN.1 notation
	Series X Data networks, open system communications and security

