INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.634

TELECOMMUNICATION Addendum 1
STANDARDIZATION SECTOR
OF ITU (09/98)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI networking and system aspects — Efficiency

Information technology — Open Systems
Interconnection — Transport Fast Byte Protocol

Addendum 1: SDL specifications

ITU-T Recommendation X.634 — Addendum 1

(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quiality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.399
X.400-X.499
X.500-X.599

X.600-X.629

X.630-X.639

X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATION X.634

INFORMATION TECHNOLOGY — OPEN SYSTEMS
INTERCONNECTION — TRANSPORT FAST BYTE PROTOCOL

ADDENDUM 1
SDL specifications

Summary

This Addendum to Recommendation X.634 contains an SDL specification of the Transport Fast Byte Protocol
description. The Transport Fast Byte Protocol eliminates the roundtrip delay associated with the establishment and
release of atransport connection, and requires very low PCl overhead. The Transport Fast Byte Protocol is intended for
use in situations in which enhancements to the network QoS are not required, and efficiency of operation (e.g. reduction
of roundtrip delays on establishment and release) is of primary concern.

Source

Addendum to ITU-T Recommendation X.634, was prepared by ITU-T Study Group 7 (1997-2000) and was approved
under the WTSC Resolution No. 1 procedure on the 25th of september 1998.

Recommendation X.634/Add.1 (09/98) [

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommuni cations on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topicsfor study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation the temecognized operating agency (ROA) includes any individual, company, corporation or
governmental organization that operates a public correspondence service. ThaAdmimigration, ROA and public
correspondence are defined in th€onstitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

O ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ii Recommendation X.634/Add.1 (09/98)

C1
C2
C3

CONTENTS

The system and block structure of the Transport Fast Byte Protocol entity..........ccccocceveeveveeciennnnne.

Interaction with Management and Control Planes.....
Procedure of the Transport Fast Byte Protocol entity

Recommendation X.634/Add.1 (09/98)

Recommendation X.634

INFORMATION TECHNOLOGY — OPEN SYSTEMS
INTERCONNECTION — TRANSPORT FAST BYTE PROTOCOL

ADDENDUM 1
SDL specifications
(Geneva, 1998)

Annex C

SDL specification of the Transport Fast Byte Protocol entity

Cl The system and block structure of the Transport Fast Byte Protocol entity

The SDL system diagram of the Transport Fast Byte Protocol entity is shown in Figure C.1 and the SDL block structure
in Figure C.2.

Cc.2 Interaction with Management and Control Planes

C.21 Management Plane

No interactions with the Management Plane are specified.

Cc.22 Control Plane

No interactions with the Control Plane are specified.

C.3 Procedure of the Transport Fast Byte Protocol entity

The SDL diagrams of the procedure of the Transport Fast Byte Protocol entity are given in this subclause. If there exists
any difference between the prose description also given in this subclause and the SDL diagrams, the SDL diagrams take
precedence. On the other hand, if there exists differences between the specification in this Annex and the one in
clause 6/X.634, the specification in clause 6/X.634 take precedence.

NOTE - In the SDL diagrams of this subclause, the octets in all PDUs and SDUSs, i.e. the TSDU, are numbered from "1" to at most
"65535".

The operation of the Transport Fast Byte Protocol entity is modeled as a state machine consisting of the following states:

— Idle: Each Transport Fast Byte Protocol entity is conceptually initiated in the Idle state and returns to this state upon
the release of a connection.

— Outgoing Connection Pending A Transport Fast Byte Protocol entity requesting a connection with its peer is in
the Outgoing Connection Pending state until it receives acknowledgment from its peer.

— Incoming Connection Pending A Transport Fast Byte Protocol entity that has received a connection request from
its peer and is waiting for its user’s response is in the Incoming Connection Pending state.

— Data Transfer Ready Upon successful completion of the connection establishment, both peer Transport Fast Byte
Protocol entities will be in Data Transfer Ready state and data transfer can take place. No TSDU is currently
reassembl ed.

— Data Transfer RAS. Some but not al information for a TSDU currently being reassembled has arrived and is being
buffered.

— Data Transfer Abort: The maximum permissible length of a TSDU has been exceeded during reassembly. The
Transport Fast Byte Protocol entity remainsin this state until an end of a TSDU is received (EOT-hit).

The state transition diagram for the Transport Fast Byte Protocol entity is shown in Figure C.3.

Recommendation X.634/Add.1 (09/98) 1

-

Systemtfb

T(Toutsignals)]

[(Tlnsignals)}

TFB

T(Noutsignalsﬂ

[(Nlnsignalsﬂ

tfbs1(1)

Figure C.1/X.634 — Transport Fast Byte system

Recommendation X.634/Add.1

(09/98)

Bl

ock TFB

signal ‘A\
T-CO NNECT request,
T-CO NNECT .indi cation,
T-CONNECT confim,
T-DATA request,
T-DATA indication,
T-EXPEDITED-DATA request,
T-EXPEDITED-DATA indication
T-DISCONNECT request,
T-DISCONNECT .indication ;

signallist k

TInSignals =
T-00 NNECT request,
T-CONNECT resporse, [(FOUTSi gnals)]
T-DATA request,
T-EXPEDITED-DATA request,
T-DISCONNECT.request ;

signal list
TOutSignals = T
T-CO NNECT .indi cation,
T-CONNECT confim,
T-DATA.indi cation,
T-EXPEDITED-DATA indication,
T-DISCONNECT.indication ;

[(r InS ignalsﬂ

TFastByte

[(NOUISing S)J

signal
N-CONNECT.request,
N-CONNECT.indication,
N-CONNECT.response,
N-CONNECT. confirm,
N-DAT A.request,
N-DAT A.indication,
N-EXPEDIT ED-DATA request,
N-EXPEDIT ED-DATA .indication,
N-DISCONNECT.request,
N-DISCONNECT.indication ;

signallist B

NinSigrals =
N-CONNECT.request,
N-CONNECT.response,
N-DAT A.request,

N-EXPEDIT ED-DATA request,
N-DISCONNECTrequest ; N

signallist
NOutSignals =
N-CONNECT.indicati on,
N-CONNECT. confirm,
N-DAT A.indication,
N-EXPEDIT ED-DATA ind cation,
N-DISCONNE CT.indication ;

[(Nlnsignal S)J

tfbb1(1)

Figure C.2/X.634 — Transport Fast Byte block structure

Recommendation X.634/Add.1 (09/98)

K]
> Idle < =]
7Y
T-CONNECT.request N-DISCONNECT.indication T-DISCONNECT.request N-CONNECT .indication
N-CONNECT .request T-DISCONNECT.indication N-DISCONNECT.request T-CONNECT.indication
N-CONNECT.confirm T-DISCONNECT.request N-DISCONNECT.indication T-CONNECT.response ¢
T-CONNECT.confirm Outgoing N-DISCONNECT.request T-DISCONNECT.indication Incoming N-CONNECT .response QE) §
Connection > < Connection B %
Pending Pending r_.r:‘s 14
%2
> < s
T-DISCONNECT.request N-DISCONNECT.indication
N-DISCONNECT.request T-DISCONNECT.indication
from any from any
state below *ll state below
2 > Data f
— Transfer |~
— N-DATA.indication T-DATA.request i R
N-DATA.indication DATﬁ[r}dmann T-DATA.indication @ Ready N-DATA.request N-DATA.indication DATAi'Tfj}Cat'On
T-EXPEDITED-DATA.indication N-EXPEDITED-DATA.indicaton Q
N-EXPEDITED-DATA.indication T-EXPEDITED-DATA.indication g9
og
N-DATA.indication =
L T-DATA.indication
Data @ (3} Data
3/ I
TrgnAsSfer N-DATA.indication &% T;at:lsfter
@ N-DATA.indication - N-DATA.indication or
N-EXPEDITED-DATA.indication T-EXPEDITED-DATA.indication T0732440-99
T-EXPEDITED-DATA.indication N-EXPEDITED-DATA.indication
T-EXPEDITED-DATA.indication N-EXPEDITED-DATA.indication
N-EXPEDITED-DATA.indication T-EXPEDITED-DATA.indication
1) N-DATA.indication received and end of the TSDU detected.
2) N-DATA.indication received and no end of the TSDU detected.
3) ConnRcvTPDULength exceeded and end of the TSDU detected.
4) ConnRcvTPDULength exceeded and no end of the TSDU detected.

Figure C.3/X.634 — State transition diagram for the Transport Fast Byte Protocol entity

The description of the operations of the Transport Fast Byte Protocol entity make use of the following state variables:

CdAddr A character string holding the "Called Address' as extracted out of a TPDU.

CgAddr A character string holding the "Calling Address" as extracted out of a TPDU.

RsAddr A character string holding the "Responding Address" as extracted out of a TPDU.

TPDU An octet string holding the TPDU being constructed in the outgoing direction or the TPDU just
having been received.

TSDU An octet string holding the TSDU being reassembled in the incoming direction.

ptrRAS An index into the variable TSDU indicating where to place the next information during reas-
sembly.

ptrSEG Anindex into the parameter TSUserData indicating where to extract data during segmentation.

ptrPDU An index into the variable TPDU having been received indicating where to retrieve the next
information during interpretation of the received TPDU.

lenPDU The length of a TPDU having been received.

lenSDU The (remaining) length of a TSDU being segmented.

len Temporary variable holding the length of a character string.

EOThit A boolean variable being set to TRUE if the EOT-bit in the received TPDU has been set.

SndTPDULength A temporary integer variable during connection establishment used for negotiation of the
maximum size of a TPDU in the outgoing direction.

ConnSndTPDULength An integer variable indicating the maximum size of a TPDU in the outgoing direction.

4 Recommendation X.634/Add.1 (09/98)

RcvTPDULength A temporary integer variable during connection establishment used for negotiation of the
maximum size of aTPDU in the incoming direction.

ConnRcevTPDULength Aninteger variable indicating the maximum size of a TPDU in the incoming direction.

tmpNullPCI A temporary boolean variable during connection establishment used for negotiation of the
NullPCI capability.

ConnSndNullPCI A boolean variable indicating the NullPCI capability in the outgoing direction.

ConnRcvNullPCI A boolean variable indicating the NullPCI capability in the incoming direction.

Terminate A boolean variable being set to TRUE after leaving state "Idle" if the process should stop after
returnto "ldle".

The Transport Fast Byte Protocol entity maintains the following parameters:

NmaxRcvLength The maximum size of the NSUserData parameter in the incoming direction.
NmaxSndL ength The maximum size of the TSUserData parameter in the outgoing direction.
TmaxRevLength The maximum size of the TSUserData parameter in the incoming direction.
TmaxSndLength The maximum size of the TSUserData parameter in the outgoing direction.

CPlaneNegotiation A boolean value being set to TRUE if the parameter negotiation takes place outside the
Transport Fast Byte Protocol entity, e.g. in the C-plane.

NullPCI A boolean value being set to TRUE if NullPCI procedures are enabled.

Termination A boolean value being set to TRUE if if the Transport Fast Byte Protocol entity should stop
after return to the state "ldle".

The SDL definition of the Transport Fast Byte Protocol entity processis shown in Figure C.4.

C.31 Proceduresin the state" | dle"

1) Upon receipt of a T-CONNECT .request, a TPDU is constructed that is then transferred in the NS-User-Data of the
N-CONNECT.request; the process enters state " Outgoing Connection Pending"”.

If negotiation takes place outside the Transport Fast Byte Protocol entity, no TPDU is transmitted. Otherwise, the
TPDU constructed follows the specification in clause 7/X.634. The NullPCI capability is enabled as indicated in the
parameter "NullPCI", the TPDU lengths are taken from the parameter "TmaxSndLength” and "TmaxRcvLength”,
and the called and calling addresses were received as parameters of the T-CONNECT .request. If TS-User-Data was
also received with the primitive, thisis also copied into the TPDU.
NOTE 1 — The variable "Terminate" is set to TRUE after leaving state "Idle" if the parameter "Termination" has been set to
TRUE also.

2) If the TPDU constructed above exceeds the maximum permissible length of the NS-User-Data, a
T-DISCONNECT .indication is returned to the Transport Fast Byte Protocol entity user; the process remains in state
"Idle".

3) Upon receipt of an N-CONNECT .indication, the TPDU received in the NS-User-Data is verified and the data
extracted (if negotiation takes place outside the Transport Fast Byte Protocol entity, no TPDU is verified and no data
is extracted). The data items are then sent in the parameters of the T-CONNECT .indication to the Transport Fast
Byte Protocol entity user; the process enters state "Incoming Connection Pending".

The verification and extraction is specified in macro "Verify ICP TPDU" and is as follows:

a) If no TPDU has been received or the first octet does not contain the value "10100010," or the extension bit in
octet 2 is set, the connection establishment is rejected with an N-DISCONNECT .request.

b) If octet 3 contains the value "00000001,", the next 4 octets contain negotiation values for the maximum TPDU
length; otherwise, the negotiation starts with the default maximum TPDU length values (512 octets).

c) If the next octet contains the value "00000010,", the next octets contain the called and calling address (these
are temporarily stored in variables "CdAddr" and "CgAddr"); otherwise, both variables are set to the null
character string.

d) If the next octet contains the value "00000100;", the information in the remaining octets is copied into the
variable "TSDU" in preparation of sending it with the TS-User-Datain the T-CONNECT.indication primitive.

If during the data extraction an improper TPDU is detected (e.g. atruncated TPDU), the connection establishment is
rejected with an N-DISCONNECT .request and a T-DISCONNECT .request.

NOTE 2 — The variable "Terminate" is set to TRUE after leaving state "ldle" if the parameter "Termination" has been set to
TRUE also.

4) If upon return to state "ldl€" the variable "Terminate” is TRUE, the process stops.

Recommendation X.634/Add.1 (09/98) 5

Process TFastByte

l\— - - - -~ -~ o
‘fpar N
| TmaxSndLength NATURAL]
| TmaxRcviength NATURAL,
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
I NullPCI BOO LEAN, !
| Temination BOOLEAN ; J

syntype h

OCTETSTRING = CHARSTRING~
endsyntype

dcl
CdAddr CHARSTRING,
CgAddr CHARSTRING,
RsAddr CHARSTRING,
TPDU OCTETSTRING,
TSDU OCTETSTRING,
prRAS INTEGER,
prSEG INT EGER,
prPDU INT EGER,
lenPDU INTEGER,
lenSDU INT EGER,
len INTEGER,
EOTbit BOOLEAN,
SndT PDULength INTEGER,
ConnSndTPDULength INTEGER
RovTPDULength INT EGER,
ConnRovTPDULength INTEGER,
tmpNuIPCI BOOLEAN,

ConnSndNullPCI BOOLEAN,
ConnRcvNullPCl BOOLEAN,
Terminate BOOLEAN;

1

Terminate
= FALSE

=
@

tfb01(15)

Recommendation X.634/Add.1

Figure C.4/X.634 (Sheet 1/15) — Transport Fast Byte process

(09/98)

Process TFastByte

fpar N
TmaxSndLength NATURAL] “
TmaxRcwiength NATURAL) |

TmaxSndLength NATURAL) \
TmaxRcviength NATURAL)

tfb02(15)

NullPCI BOO LEAN, !
Temination BO OLEAN ;

Terminate =
Termination

Construct
ocpP
TPDU

TRUE

~ /pIrPDU>\ ~
~DNmaxLength —

\\‘//FALSE

T-CONNECTrequest
(CalledAddress,

CallingAddress,
ExpeditedDataSel,
QoSParameterSet,
TSUserData)
Terminate =
Termination
Verify
ICP
TPDU

N-CONNECT.indication
(CalledAddress, Terminate
CallingAddress,

ReceiptConfSel,
ExpeditedDataSel,
QoSParam eterSet,
TSUserData)

T-DISCONNEC
indication

(connection rejection -
permanent congition)

J

[Idle

Outgoing
Connection
Pending

N-CONNECT.request
(CalledAddress,
CallingAddress,
ReceiptConfSel := FALSE,

ExpeditedDataSel, A;
QoSParameterSet,
TSUserData:=TPDU) Incoming \
T Connection
Pending /

T-CO NNECT.ind cation
(CalledAddress = CdAddr,
CallingAddress := CgAddr,
ExpeditedDataSel,
QoSParam eterSet,
TSUserData:=TSDU)

Figure C.4/X.634 (Sheet 2/15) — Transport Fast Byte process

Recommendation X.634/Add.1 (09/98)

7

Process TFastByte

[P o /7,\
| fpar N / Outgoing \
TmaxSndLength NATURAL] “ Connection |
TmaxRcwiength NATURAL) | Pending /

TmaxSndLength NATURAL) /

tfb03(15)

|
|
|
| TmaxRcviength NATURAL)
|
|

NullPCI BOO LEAN, !
| Teminaion BOOLEAN; | N-CONNECT. confirm T-DISCONNECT request N-DISCONNECT.indication
(RespondingAddress, (RespondingAddress, ©iginator,
ReceiptConfSel, TSUserData, Reason,
ExpeditedDataSel, Reason) NSUserData)
‘ QoSPammeterSet, ‘ ‘
NLSUserData)
Verify Construct Verify
ocP OCPdisc OCPdisc
TPDU TPDU TPDU
T-CONNECT.confim T-DISCONNECT .indi cation
(RespondingAddress = RsAddr, (RespondingAddress,
ExpeditedDataSel, Originator := "TS user",
QoSParameterSet, Reason isconnection -
TSUserData) abrorman condition”
TSUserData)
/
Set /
Connection (Idle
Parameters \
\
TRUE N
_— pwPDU> ™~
“NmaxSndLength—
™ ~
~
‘ FALSE
N-DISCONNECT N-DISCONNECT.request
request (Reason, (Reason,
NSUseData :=null) NSUserData := TPDU)
\ A} V.
“/ Data \ “‘/ \ “/ \
Transfer | (Idle | | Idle |
\ Ready /o /A /
\ / \ / \ /
Set
Connection
aram eters
ConnRovTPDULength :=
—— min (recvTPDULength,
TmaxLength)
ConnSndTPDULength :=
L I min(SndTPDULengh,
TmaxLength)

ConnRovNullPCl :=

L | (tmpNullPCI AND

(ConnRcvTPDULength
<= NmaxRcwLength))

ConnSndNullPCI =
(tmpNul IPCI AND
(ConnSndTPDULength
<= NmaxSndLength))

Figure C.4/X.634 (Sheet 3/15) — Transport Fast Byte process

8 Recommendation X.634/Add.1

(09/98)

Process TFastByte

tfb04(15)

[7
| fpar T\ / Incoming
| TmaxSndLength NATURAL] [Connection
| TmaxRcviength NATURAL, \ Pending
| TmaxSndLength NATURAL) \
| TmaxRcwlength NATURAL) |
| NullPCI BOO LEAN, I |
| Temination BOOLEAN ; J
Set
Connection
Parameters
Construct
ICP
TPDU

T-CONNECTresponse
(RespondingAddress,
ExpeditedDataSel,
QoSPammeterSet,
TSUserData)

T-DISCONNECT request|
(RespondingAddress,
TSUserData,

Reason)

Verify
OCPdisc
TPDU

N-DISCONNECT.indication
©iginator,

Reason,

NSUserData)

Construct
OCPdisc
TPDU
N-CONNECT. confirm /
(RespondingAddress, “
ReceiptConfSel :=false, \
ExpeditedDataSel,
QoSPammeterSet,
NLSUserData)
TRUE —
" ptPDU>
“NmaxSndLength-~
™ ~
~
‘ FALSE
N-DISCONNECT N-DISCONNECT.equest

request (Reason,
NSUseData :=nuil)

(Reason,
NSUserData = TPDU)

T-DISCONNECT .indi cation
(RespondingAddress,
igi "TS user”,

Originator :

abrorman candition”
TSUserData)

Figure C.4/X.634 (Sheet 4/15) — Transport Fast Byte process

Recommendation X.634/Add.1

(09/98)

9

Process TFastByte

l\— - - - -~ -~ o /7\
| fpar N / Data \
TmaxSndLength NATURAL] | Transfer \
TmaxRcwiength NATURAL) | Ready /

|

|

| TmaxSndLength NATURAL) \ /
| TmaxRcviength NATURAL)

I NullPCI BOO LEAN, !
| Temination BOOLEAN ; J

N-DATA
indication
(NSUserData)

TRUE _—
~ ~
<~ ConnRcWNUllPCT >
~ -

tfb05(15)

TRUE —~_TRUE
~ ~ e X ~
<~ lenPDU=3 < EOT Lt >
~ - ~ -
~ - - -
FALSE FALSE ‘
copy
"lenPDU -3" octets PURAS := 1
from TPDU(4)
to TSDU(1)
FALSE .
length (TSDUy>. Data \ / Data \
ConnRovPDULengtt Transfer | Transfer |
- — RAS /A Ready /
~_ /' /
TRUE ‘ '
_~ ~_FALSE
. ™ ~
< EOTbHit >
. S~
~ -
~
T RUE\I/
/ \ N
[Data \ Data \
| Transfer | Transfer |
\ Ready / Abort |
\ / /
_— ~__ TRUE
< EOTHt >
- -

PrRAS :=lenPDU - 2

~ -
‘ FALSE
TRUE fength~_ TPDU TS
< SNSUferDatz? > NSUserData < EOTbhit
~_" 0 S~ ~ S~
- ~
FALSE ‘ TRUE\I/
T-DATA. / Data
indicaton lenPDU := [Transfer
.= length (T PDU) |
(TSUserData: \ Ready
NSUseData) \
/ N
/ Daa \\‘ - ~TRUE
| Transfer | < lenPDU<2 >
\ Read / ™~ -
\\ Y / ~_
FALSE
_— ~_FALSE
- TPDU(1) =~
<..00000011(2) —
~ P
TRUE
_— ~_FALSE
ATPDU(2) AND~
~10000000(2)) = 0~
~ =
~
TRUE
/
‘/ Data
| Transfer
\ Ready
\\
EOThit =
(TPDU(2) AND
00000010(2)) /=0
TRUE
- ~
< lenPDU=2 ">
~ -
~ -
FALSE
_— ~_FALSE
_~TPDUB) =
~~.00000100(2)
~ P
~
TRUE
N
‘/ Data
(Transfer
\ Ready

\

(Data
| Transfer
\ RAS /

TSUserData:=TSDU ——

T-DAT Aindication
(TSUserData)

/
/

[

|

\
\

L

Data
Transfer
Ready /

Figure C.4/X.644 (Sheet 5/15) — Transport Fast Byte process

10

Recommendation X.634/Add.1

(09/98)

Process TFastByte

fpar N
| TmaxSndLength NATURAL]
| TmaxRcviength NATURAL,
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
I NullPCI BOO LEAN, !
|

—
/ Data \
| Transfer |
\ RAS /

tfb06(15)

o o A
| Teminafon BOOLEAN: | |\ pata TRUE™ ™
indication < lenPDU=3 >
(NSUserData) ~ _
~
‘ FALSE
/
/ Data copy
TPDU := [T “lenPDU -3" octets
| ransfer
NSUserData { RAS from TPDU(4)
\
\ to TSDU(ptrRAS)
lenPDU := prRAS :=ptiRAS +
length (T PDU) lenPDU - 3
"~ TRUE " ~_TRUE
/ ~ ~PURAS + 1>
~ P .
_fenPDU<2 > ConnRewP DULength
FALSE | T FALSE
_— ~_FALSE _— ~TRUE _~ ~_FALSE
_~TPDU(1) = _— N _ N
<00000011(2) ~_ EOTht P <_ EOTbit >
~ S~ ~~ S~ ~
N ~ N~
TRUE FALSE TRUE\I/
PR 7 \ / \ 7
P _FALSE / Data \ / Data \ / Data
__{TPDU(2) AND-__ [Trans [Transfe \ [Transt \
‘\IOOCDOOO(Z)): o ranster ransfer ranster
S s \ RAS / \ Ready Ji \ Abort /
~ \ / \ / \ /
TRUE
/ N
“‘/ Data - ~_TRUE
Transfer <Jlength(TPDU) = 0>
\ RAS ~ -
\ ~_~
FALSE‘
_~ ~_FALSE
-~ _o - T-DAT Aindicatio
< \IenPDU— 2/ > TSUserData:=TSDU || (TSUserData)
~ -
TRUE ¢
N / \
~TPDU(3) = FALSE it Data \ Data
< 000[1)100(_2) > | Transfer | | Transfer
N - \\ Ready I \ Ready)
~ \ / /
TRUE ‘
/
EOTHt = / Data
(TPDU(2) AND | Transfer
00000010(2)) /=0 \ RAS
\
Figure C.4/X.634 (Sheet 6/15) — Transport Fast Byte process
Recommendation X.634/Add.1 (09/98)

11

Process TFastByte

{fpar N
| TmaxSndLength NATURAL]
| TmaxRcviength NATURAL,
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
I NullPCI BOO LEAN, !
| Temination BO OLEAN ;

_—
/ Data \
| Transfer |
\ Abort /

N-DATA
indication
(NSUserData)

TPDU :=
NS UserData

lenPDU :=
length (T PDU)

" ~_TRUE

— lenPDU< 2

FALSE |

"~ FALSE
_TPDU(1) =
~~.00000011(2)

- >

~
TRUE

_~~_FALSE
__{TPDU(2) AND-__
<10000000(2)) = 0~

TRUE

TRUE _—
~_ lenPDU=2 >
~ _

~ -

~
FALSE

_~~_FALSE
_TPDU(3) =
<._00000100(2)

Data
Transfer
Ready /
/

EOTHht =
(TPDU(2) AND
00000010(2)) /=0

Data
Transfer
Ready /

_~~_FALSE
_ ~
~ EOTHt

TRUE\\/

/ Data
Transfer |

\ Ready /
/

Data
Transfer
Abortt /
/

tfb07(15)

Figure C.4/X.644 (Sheet 7/15) — Transport Fast Byte process

12 Recommendation X.634/Add.1 (09/98)

Process TFastByte tfb08(15)

[o /

| fpar I\ ‘/ \ Data T ransfer Ready
TmaxSndLength NATURAL] | +— DataTransfer RAS
TmaxRcwiength NATURAL) | / Data T ransfer Abort
TmaxSndLength NATURAL) \ /

NullPCI BOO LEAN,
Temination BOOLEAN; !
1

|

|

|

| TmaxRcviength NATURAL)
|

|

TDATA
request
(TSUserData)

lensSDU :=
length (T SUseData)|

TRUE _—
~_ lenSDU=0 >

~ -
~ -
~
FALSE
TRUE _—
~ConnSndNUIPCI™~
Ty FALSE
TRUE —
é/ " lenSDU > ™ < TPDU(2) :=
ConnSndP DULength 00000000(2)
~__—
FALSE
NLDATA.
request TPDU(1) :=
(NSUserData := 00000011(2)
TSUserData)
/ \ -
/ \ lenSDU :=1enSDU -
[. \ TPDU(3) :=
\\ 00000100(2) ConnSndf?I?ULengm
\ /
\ /
prSEG :=ptrSEG +
prSEG:=1 ConnSndPDULength
-3
k
— ~ TRUE
- enSDU + 3>~
ConnSndPDULength
~ -
~
FALSE ‘
TPDU(2) :=
TPDU(2) OR
00000010(2)
copy copy
"lenSDU" octets I— | "ConnSndPDULength3" octets
from TSUserData(ptrSEG) from TSUserData(ptrSEG)
to TPDW(4) to TPDU(4)
N-DATA NDATA.
request request
(NSUserData:= (NSUserData =
TPDU) TPDU)

Figure C.4/X.634 (Sheet 8/15) — Transport Fast Byte process

Recommendation X.634/Add.1 (09/98)

13

Process TFastByte

{fpar N
| TmaxSndLength NATURAL]
| TmaxRcviength NATURAL,
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
I NullPCI BOO LEAN, !
| Temination BOOLEAN ; J

\ Data Transfer Ready
+—| Data Transfer RAS
/ Data Transfer Abott

——

T-EXPEDITED- N-EXPEDITED-
DATA request DATA. indicati
(TSUSemata) (NSUSerData)
- N-EXPEDITED- T-EXPEDITED- -
?Ssﬂgsrgz:aaﬁ || DATArequest DATA.indication Lg%ssz:%::ﬁ
(TSUSemata) (TSUSerData)

tfb09(15)

Figure C.4/X.634 (Sheet 9/15) — Transport Fast Byte process

14 Recommendation X.634/Add.1

(09/98)

Process TFastByte

[
|

fpar |

\
TmaxSndLength NATURAL]
TmaxRcviength NATURAL)
TmaxSndLength NATURAL)
TmaxRcviength NATURAL)
NullPCI BOO LEAN,
Temination BO OLEAN ; J

N-DISCONNEC
request (Reason,
NSUsemData:=n

Data T ransfer Ready
Data Transfer RAS
Data T ransfer Abort

Construct
OCPdisc
NPDU

TRUE _—
" prPDU>
“NmaxSndLength—~

‘/ FALSE

T-DISCONNECT request
(RespondingAddress,
TSUserData,

Reason)

Verify
OCPdisc
TPDU

N-DISCONNECT. equest
(Reason,
NSUserData = TPDU)

(Idle

=
@

Idle

N-DISCONNECT.indication
(Oiiginator,

Reason,

NSUserData)

T-DISCONNECT .indi cation

(RespondingAddress,
Originator = "TS user”,
Reason :="disconnection -
abrorman condition”
TSUserData)

tfb10(15)

Figure C.4/X.634 (Sheet 10/15) — Transport Fast Byte process

Recommendation X.634/Add.1

(09/98)

15

Process TFastByte

[Y
| fpar | Construct

\
| TmaxSndLength NATURAL] ocP
| TmaxRcviength NATURAL, TPDU
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
|
|

NullPCI BOO LEAN, !
Teminaton BOOLEAN; ! — ~_ TRUE
1

<CPlaneNegoti aion>
~ -
~ -

~
FALSE ‘

TPDU(1) :=
101(010(2)

" ~_TRUE
< NikCl >
- e

~ -

~
FALSE ‘

cocp_o1

rPDU :=ptrPDU + 1
length
(CalledAddress)

i

TPDU(ptrPDU) :=
length
(CallingAddress)

TPDU(2) :=
000(0000(2)

TPDUQ) =
00100000(2)

copy
"CallingAddress"
to NPDU(ptiPDU+1)

e

TPDUR) =

prPDU :=ptrPDU + 1

i

=

[maxRcviength // 25

length
00000001(2) (CallingAddress)
TPDU@) = P |gng\,h\TRUE

TPDUG) =
axRcviength mod 256

~
< (TSUsemData)

1

=

maxSndLength// 25

TPDUG) =

TPDUQ) =
axSndLength mod 256

TPDU(ptrPDU) :=
00000100(2)

TRUE

length(CallingAddress) = 0

cocp_o02

length (CalledAddress) = 0

< AND >

‘ FALSE

copy
“TSUserData"
to TPDU(ptrPDU+1)

TPDU@) =
00000010(2)

prPDU :=ptrPDU + 1

length
(T SUserData)

i

ptPDU = 9

TPDU@trPDU) =
length
(CalledAddress)

copy
"CalledAddress"
to TPDU(ptPDU+1)

TRUE

Construct
OCPdisc
TPDU

’\CﬁlaneNegoﬁ aion>
-

~ -

tfbm1(15)

PrPDU :=ptrPDU + 2

~ ‘/
TPDU(L) :=
10100010(2) ¢OCPd_o1
TPDU(2) := TPDU@trPDU) =
00000000(2) 00000100(2)
__~length JRUE copy
RespondingAddress) "TSUserDa@"
T~ =0 to TPDUY(ptiPDU+1)
FALSE\‘/ ‘
TPDU(3) := PDU :Terp]);tF;]DU+l H
00000010(2) (TSUserData)
prPDU :=4
TPDU(ptrPDU) :=
length

[RespondingAddress)

copy
'RespondingAddress]
to TPDU(ptrPDU+1)

length
[RespondingAddress)

TPDU(ptrPDU-1) :=0

 —~ TRUE
_—length
< (TSUsemData) >
~_ =0 -
~

-

-
FALSE

O CPd_01

Figure C.4/X.634 (Sheet 11/15) — Transport Fast Byte process

16 Recommendation X.634/Add.1

(09/98)

Process TFastByte tftbm2(15)

[o

| fpar i Construct
TmaxSndLength NATURAL] IcP
TmaxRcviength NATURAL) TPDU
TmaxSndLength NATURAL)

NullPCI BOO LEAN,
Teminaton BOOLEAN; ! _—~ ~_TRUE
1

<CPlaneNegoti aion>
~ -

|
|
|
| TmaxRcviength NATURAL)
|
|

~ -

~
FALSE ‘

TPDU(1) :=
101(010(2)

_— ~_TRUE
< nalPcl >

Z
~ -
~ _
~
FALSE ‘
TPDU(2) := TPDUQR) =
00000000(2) 00100000(2)
TPDUR) =
00000001(2)
TPDU@) = HrPDU :=ptrPDU + 2 fr
ConnRovTPDULength//|256 length
TPDUG) = [RespondingAddress)

ConnRovTPDULength mod 256

TPDUGE) =
ConnsndTPDULergth // 256 (rppy (prpDU-1) =0

TPDUQ) =
SndT PDULength m ofd 256

o
o
S

/‘\
- ~
_~length™~__ TRUE

(RespondingAddress) ————
— =0 -

‘ FALSE
. _TRUE
—length ™
TPDUG@) = - N
00000010(2) <_(TSUseata)
=0 _
~_
FALSE ‘
_ TPDU(ptrPDU) :=
ptPDU =9 00000100(2)
TPDU(@ptrPDU) = copy
length "TSUserData"
RespondingAddress to TPDU(prPDU+1)
copy rPDU :=ptrPDU + 1
TRespondingAddress] length
to TPDU(ptPDU+1) (T SUseData)

Figure C.4/X.634 (Sheet 12/15) — Transport Fast Byte process

Recommendation X.634/Add.1 (09/98) 17

Process TFastByte

fpar N
TmaxSndLength NATURAL]
TmaxRcviength NATURAL)
TmaxSndLength NATURAL)
TmaxRcviength NATURAL)
NullPCI BOO LEAN, !

Temination BOOLEAN; FALSE _— ~__
1

_ ~
<CPlaneNegoti ati
~ -

~ -
~

_~ ~_FALSE

_TPDUWUDP) =

~.00000010(2)
~ P

~
FALSE

.

tfbm3(15)

/ 4\@\\

\ - |
\ /
\ /

~_
‘ TRUE TRUTE
-1 /7 - - - -~ a
rcvTPDULength = |
TPDU = TmaxRcvLength _ len = CdAddr :=null
NSUserData $dTPDULength := ptPDU =3 lenma bezewo F =] TPDURLPDU) CgAddr ;= nul
TmaxSndLength | | | |
R copy - FALSE
lenPDU = tmpNullPCI = _—TPDUE) =~ “len” odets _TPDU(UDptr) =-_
length (TPDU) NulIPCI ~~.00000001(2) firom TPDU(ptP DU+1) ~-.00000100(2)
~__ to CdAddr ~_—
‘ TRUE ‘ TRUE ‘
VICP 04 S?_g-ergg)Lfgg‘g+: rcvTPDULength = ptiPDU = len:=
= TPDUG) 512 ptPDU +1 +len lenPDU - ptrPDU -1
" ~_TRUE _ copy
— lenPDU=0 r?r\g—sgg)l'f;gstg+ sndFPDULength := len = “len” octets
< - TPOU 512 TPDU@trPDU) om TPDU(prPDU+1
~ - @
~ to TSDU
FALSE‘ ‘ ‘
= ~~_FALSE copy
_ =~ -~
< 00000081(2) > ptPDU = v
£ (2. firom TPDW(ptiP DU+1)
~_ to CgAddr
TRUE ‘ ‘ ‘
_— ~_FALSE TRUE —
A(TPDU(2) AND- T S ptiPDU =
<10000000(2) =0~ {enPDU <ptrPDU-1 ptPDU +1 +len
~ - ~ -
~ _
TRUE ‘ FALSE ‘
"~ TRUE "~ TRUE
_ ~ _ ~.
VICP_RJ 4enPDU =ptrPDU-1. JenPDU <ptrPDU -L
~ P ~ _
~ - ~ -
FALSE FALSE‘
~~_TRUE
tmpNullPCl := - ~JF B
((TPDU(2) AND VICP_04 46nPDU = ptrPDU—, 'C"TPDgleerg‘h =
00100000(2)) /= 0) ~ ~
~
FALSE
"~ TRUE
- ~ -
< lenPDU<2 > sndTPDULength :
~ _
~ -
FALSE
N
~ ~_TRUE N-DISCONNEC 5
e Y Reaosn = "undefined" TSDU
< lenPDU=2 request Origiator : = "undefined" Sl
~ ~ (Originator, Reas NLSUserData :=null =nu
NSUsemData)

18

Figure C.4/X.634 (Sheet 13/15) — Transport Fast Byte process

Recommendation X.634/Add.1

(09/98)

Process TFastByte

fpar N
| TmaxSndLength NATURAL]
| TmaxRcviength NATURAL,
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
I NullPCI BOO LEAN, !
|

Temination BOOLEAN; FALSE _— ~__
1

_— ~_FALSE

tfbm4(15)

ffffffffffff 5 e _TPDUptrPDUY=_
<PlaneNegotitic <..00000010(2)
~ - ~ ~
~ ~
‘ TRUE TRUE ‘
P T e a
rcvTPDULength =
TPDU = TmaxRevLength ptPDU = 3 lenmay be zer L len = RsAdd := null
NSUserData sndTPDULength := : | - TPDUptrPDU) :
TmaxSndLength | | | |
R copy - FALSE
lenPDU = mpNull PCI = _—TPDUE) =~ "len" octets _TPDU(ptrPDUY =
length (TPDU) NulIPCI ~-.00000001(2) flom TPDUptPDU+Y) ~-.00000100(2)
~__ to RsAddr ~
‘ TRUE ‘ TRUE ‘
\VOCP 04 r?g;gg;f?;gi rcvTPDULength = ptiPDU = len:=
= TPDUG) 512 ptiPDU +2 +len lenPDU - ptrPDU -1
" ~_TRUE _ @
P = sndTPDULength = - . opy
< lenPDU=0 > TPDUG) *256+ sdTPDULength := len” octets
h - TPDUQ) om TPDU(prPDU+1
~__ o TSDU
FALSE‘ ‘
= ~ (\)\ FALSE
~TPDU@) =~ ,_
<__00000011(2) ptbU =
~ -
TRUE ‘ ‘
_—~~ ~_FALSE TRUE™ _—~ ~_FALSE
A(TPDU(2) AND- e U IFD 1=
<10000000(2) =0~ .knf’ DU< ptrPDt/J T (PBU(ptrPDU 1)/—:0
~_ T FALSE ~_
TRUE ‘ TRUE ‘
_~~_TRUE "~ TRUE
_ ~ _ ~
VocP RJ JenPDU = ptrPDUL. JeNPDU <ptrPDUL
~ P ~ P
~ - ~ -
FALSE FALSE‘
{mpNullPQl := TR revIPDULergth :=
((TPDU(2) AND VOCP_04 46nPDU = ptrPDU-1— \VOCP_RJ o1 gth==
00100000(2)) /= 0) ~ ~
~
FALSE
_—~~_TRUE
P /IenPDU<2\ - sndTPDULength =
<_ P
~ -
FALSE
N-DISCONNEC Reaosn = "undefined”
request Origirator : = "undefined" RsAddr :=null
(Originator, Reas NLSUserData:=null
NSUsemData)
A
_ N T\RUE T-DISCONNEC Reaosn = "connection
" lenPDU=2 - indication rejection - transient TSDU
~ _— (Reaosn, Originat, condition" =null
- TSUserData) Origirator :

~
FALSE

Idle |

TSUserData

Figure C.4/X.634 (Sheet 14/15) — Transport Fast Byte process

Recommendation X.634/Add.1

(09/98)

19

Process TFastByte

tfbm5(15)

[™
| fpar i
| TmaxSndLength NATURAL] OCPd_01] OCPd_03|
| TmaxRcviength NATURAL,
| TmaxSndLength NATURAL)
| TmaxRcviength NATURAL)
I NullPCI BOO LEAN,
| Teminaton BOOLEAN; FALSE — ~__ T~ FALSE
- - - - - - - - - - =) - ~.
e FPDUptrPDU)=
“CPlaneNegoti ai < p
<L gondic ~..00000010(2) —
~ - ~ —
~ ~
TRUE TRUE ‘
******** A
_ ! len = _
ptPDU =3 lenmay be zero [E— TPDUpLPDU) RsAdd = null
|
,,,,,,,,, |
_—~ ~_FALSE copy _— _FALSE
TPDU = _—TPDU@) = _ "len" octets _TPDU(ptrPDU)=-_
NSUserData ~~.00000001(2) flom TPDU(ptP DU+1)) ~~.00000100(2)
O - to RsAddr S
~ -
‘ TRUE ‘ TRUE ‘
lenPDU = ptiPDU = len:= OCPd_R
length (TPDU) ptiPDU +2 +len lenPDU - ptrPDU -1
_—~ _TRUE copy
- ~ wan®
< lenPDU=0 > len" octets
~ - om TPDU(ptrPDU+1
~_ to TSDU
FALSE‘
= ~ (\)\ FALSE
~TPDUQ) = _
<_00000011(2) ptDU =
~ -
TRUE ‘
_—~~ ~_FALSE TRUE™ _—~ ~_FALSE
A(TPDU(2) AND- < e IFD 1=
<10000000(2) =0~ .knf' DU< ptrPDl/J T (PEU(ptrPDU 1)/—:0
~ P ~ - ~ -
~ - -
TRUE ‘ FALSE TRUE ‘
" ~_TRUE " ~_TRUE
_ ~ - ~.
OCPd_R 4enPDU =ptrPDU-1. 4enPDU <ptrPDU-1.
~ - ~ -
~ - ~ -
FALSE FALSE‘
" ~_TRUE
- ~
OCPd_03 OCPd 02 4enPDU =ptrPDU-1— VOCP_RJ
~ P
~_~
FALSE
"~ TRUE
- ~
< lenPDU<2 ™ OCPd_05 OCPd_02]
~ -
~ -
FALSE
/OCPd R OCPd_R RsAddr :=null
N
-~ ~_TRUE 2
_ U T-DISCONNEC Reaosn = "connection
" lenPDU=2 - indication rejection - transient TSDU
~— // (Reaosn, Originat, condition” =null
~_ TSUserData) Origimator :
FALSE TSUserData :
/ \
OCPd_01] OCPd 02 | Idle |
\ |
\ //f
Figure C.4/X.634 (Sheet 15/15) — Transport Fast Byte process
20 Recommendation X.634/Add.1 (09/98)

C.3.2 Proceduresin the state" Outgoing Connection Pending"

1)

2)

3

4)

Upon receipt of an N-CONNECT.confirm, the TPDU received in the NS-User-Data is verified and the data
extracted (if negotiation takes place outside the Transport Fast Byte Protocol entity, no TPDU is verified and no data
is extracted). These data items are then sent in the parameters of the T-CONNECT .confirm to the Transport Fast
Byte Protocol entity user. The connection parameters are set before the process enters state "Data Transfer Ready".

The verification and extraction is specified in macro "OCP TPDU" and is as follows:

a) If no TPDU has been received or the first octet does not contain the value "10100010," or the extension bit in
octet 2 is set, the connection establishment is rejected with an N-DISCONNECT.request and a
T-DISCONNECT .request.

b) If octet 3 contains the value "00000001,", the next 4 octets contain negotiation values for the maximum TPDU
length; otherwise, the negotiation starts with the default maximum TPDU length values (512 octets).

c) If the next octet contains the value "00000010,", the next octets contain the responding address (this is
temporarily stored in variable "RsAddr"); otherwise, "RsAddr" is set to the null character string.

d) If the next octet contains the value "00000100;", the information in the remaining octets is copied into the
variable "TSDU" in preparation of sending it with the TS-User-Datain the T-CONNECT .indication primitive.

If during the data extraction an improper TPDU is detected (e.g. atruncated TPDU), the connection establishment is
rejected with an N-DISCONNECT .request and a T-DISCONNECT .request.

The following connection parameters are set:
e ConnSndTPDULength

e ConnRcvTPDULength

* ConnSndNullPCI

e ConnRcvNullPCI

If a T-DISCONNECT .request primitive is received, the Transport Fast Byte Protocol entity user abandons the
connection establishment. A TPDU is constructed that is then transferred in the NS-User-Data of the
N-DISCONNECT .request; the process returns to state "ldle".

If negotiation takes place outside the Transport Fast Byte Protocol entity, no TPDU is transmitted. Otherwise, the
TPDU constructed follows the specification in clause 7/X.634. The second octet of the header is set to zero. If a
responding address has been communicated in a parameter, the corresponding control part is constructed (no calling
addressisincluded). If TS-User-Data was also received with the primitive, thisis also copied into the TPDU.

If the TPDU constructed above exceeds the maximum permissible length of the NS-User-Data, an N-DISCON-
NECT.regquest without NS-User-Date is sent to the Network layer; the process returns to state "ldle".

Upon receipt of an N-DISCONNECT .indication, connection establishment is rejected. The TPDU received in the
NS-User-Datais verified and the data extracted (if negotiation takes place outside the Transport Fast Byte Protocol
entity, no TPDU is verified and no data is extracted). These data items are then sent in the parameters of the T-
DISCONNECT .indication to the Transport Fast Byte Protocol entity user; the process returnsto state "ldle".

The verification and extraction is specified in macro "Verify OCPdisc TPDU" and is asfollows:

a) If no TPDU has been received or the first octet does not contain the value "10100010," or the extension bit in
octet 2 is set, the connection establishment rejection is notified with a standard T-DISCONNECT .request.

b) If octet 3 contains the value "00000001,", the next 4 octets are skipped.

c) If the next octet contains the value "00000010,", the next octets contain the responding address (this is
temporarily stored in variable "RsAddr"); otherwise, "RsAddr" is set to the null character string.

d) If the next octet contains the value "00000100,", the information in the remaining octets is copied into the
variable "TSDU" in preparation of sending it with the TS-User-Data in the T-DISCONNECT.indication
primitive.

If during the data extraction an improper TPDU is detected (e.g. a truncated TPDU), the connection establishment
rejection is notified with a standard T-DISCONNECT .request.

Recommendation X.634/Add.1 (09/98) 21

C.3.3 Proceduresin the state" Incoming Connection Pending"

1

4)
3

Upon receipt of a T-CONNECT .response, the connection parameters are set and a TPDU is constructed that is then
transferred in the NS-User-Data of the N-CONNECT. response; the process enters state "Data Transfer Ready".

The following connection parameters are set:
e ConnSndTPDULength

* ConnRcvTPDULength

* ConnSndNullPCI

* ConnRcvNullPCI

If negotiation takes place outside the Transport Fast Byte Protocol entity, no TPDU is transmitted. Otherwise, the
TPDU constructed follows the specification in clause 7/X.634. The NullPCI capability is enabled as indicated in the
parameter "NullPCI", the TPDU lengths are taken from the connection parameters above, and the responding
address was received as parameters of the T-CONNECT .response. If TS-User-Data was aso received with the
primitive, thisis aso copied into the TPDU.

The procedures upon receipt of a T-DISCONNECT .request are described in C.3.2 items 2) and 3).
The procedures upon receipt of an N-DISCONNECT .indication are described in C.3.2 item 4).

C.34 Proceduresin thestate" Data Transfer Ready"

1

2)

3

4)

5)

6)
7)
8)

9

The Transport Fast Byte Protocol entity user submits data for transmission with the TS-User-Data parameter of a
T-DATA.request. If no TS-User-Data is present, the primitive is ignored. If the NullPCI capability has been
negotiated in the outgoing direction, the TS-User-Data is copied to the NS-User-Data of the N-DATA. .request
primitive; the process remains in the same state.

If the NullPCI capability in the outgoing direction is not enabled, a TPDU header is constructed (octets 1 and 2) and
octet 3 introduces the data part. If this header and the complete TS-User-Data fits into a single TPDU, this is
transmitted in asingle N-DATA .request; the process remains in the same state.

If the header and the complete TS-User-Data does not fit into a single TPDU, a segmentation process is executed
whereby as many maximum size TPDUs (with the EOT-hit set to zero) as necessary are sent before the last TPDU
with the remainder of the TSDU, and the EOT-hit set is submitted with the N-DATA.request primitive for
transmission. The process remains in the same state.

If the NullPCI capability has been negotiated in the incoming direction and an N-DATA.indication is received, the
NS-User-Data is communicated in its entirety in the TS-User-Data parameter of a T-DATA.indication primitive to
the Transport Fast Byte Protocol entity user. The process remainsin state "Data Transfer Ready".

If the NullPCI capability in the incoming direction is not enabled, the header is verified (improper TPDUs are
discarded and the process remains in state "Data Transfer Ready") and the EOT-bit is extracted. The remaining data
is copied to the beginning of the variable "TSDU". If the EOT-hit is set, the TSDU is delivered to the Transport Fast
Byte Protocol entity user in the TS-User-Data parameter of a T-DATA.indication primitive. If on the other hand the
EOT-bit is not set, the variable "ptrRAS" is set to indicate the place where reassembly continues in the TSDU and
the process enters state "Data Transfer RAS".

The procedures upon receipt of a T-DISCONNECT .request are described in C.3.2 items 2) and 3).
The procedures upon receipt of an N-DISCONNECT .indication are described in C.3.2 item 4).

Upon receipt of a T-EXPEDITED-DATA .request, the process issues an N-EXPEDITED-DATA.request primitive;
the TS-User-Data is copied into the NS-User-Data. The process remains in the same state.

Upon receipt of an N-EXPEDITED-DATA.indication, the process issues a T-EXPEDITED-DATA.indication
primitive; the NS-User-Datais copied into the TS-User-Data. The process remains in the same state.

C.35 Proceduresin the state " Data Transfer RAS"

1)

2)

22

If an N-DATA.indication is received, the header is verified (improper TPDUs are discarded and the process returns
to state "Data Transfer RAS") and the EOT-bit is extracted. The remaining data is copied to the variable "TSDU"
(indicated by the variable "ptrRAS"). If the EOT-hit is set, the reassembled TSDU is delivered to the Transport Fast
Byte Protocol entity user in the TS-User-Data parameter of a T-DATA.indication primitive. If on the other hand the
EOT-hit is not set, the variable "ptrRAS" is set to indicate the place where reassembly continues in the TSDU and
the process remainsin state "Data Transfer RAS".

The procedures upon receipt of a T-DATA.request are described in C.3.4 items 1), 2), and 3).

Recommendation X.634/Add.1 (09/98)

3
4)
5)
6)

The procedures upon receipt of a T-DISCONNECT .request are described in C.3.2 items 2) and 3).
The procedures upon receipt of an N-DISCONNECT .indication are described in C.3.2 item 4).
The procedures upon receipt of a T-EXPEDITED-DATA . .request are described in C.3.4 item 8).

The procedures upon receipt of an N-EXPEDITED-DATA.indication are described in C.3.4 item 9).

C.3.6 Proceduresin the state " Data Transfer Abort"

1)

2)
3
4)
5)
6)

If an N-DATA.indication is received, the header is verified (improper TPDUs are discarded and the process returns
to state "Data Transfer Ready") and the EOT-bit is extracted. If the EOT-bit is set, the process returns to state "Data
Transfer Ready". If on the other hand the EOT-bit is not set, the process remainsin state "Data Transfer Abort".

The procedures upon receipt of a T-DATA.request are described in C.3.4 items 1), 2), and 3).

The procedures upon receipt of a T-DISCONNECT .request are described in C.3.2 items 2) and 3).
The procedures upon receipt of an N-DISCONNECT.indication are described in C.3.2 item 4).
The procedures upon receipt of a T-EXPEDITED-DATA .request are described in C.3.4 item 8).

The procedures upon receipt of an N-EXPEDITED-DATA.indication are described in C.3.4 item 9).

Recommendation X.634/Add.1 (09/98) 23

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

Series J
SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
SeriesT
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

ITU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overal network operation, telephone service, service operation and human factors
Non-tel ephone tel ecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services termina equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networ ks and open system communications

Global information infrastructure

Programming languages

	ITU-T Rec. X.634 Addendum 1 (09/98) INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION - TRANSPORT FAST BYTE PROTOCOL
	Summary
	Source
	FOREWORD
	CONTENTS
	INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION - TRANSPORT FAST BYTE PROTOCOL
	ADDENDUM 1 - SDL specifications
	Annex C - SDL specification of the Transport Fast Byte Protocol entity
	C.1 The system and block structure of the Transport Fast Byte Protocol entity
	C.2 Interaction with Management and Control Planes
	C.3 Procedure of the Transport Fast Byte Protocol entity

