TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

X.54

PUBLIC DATA NETWORKS TRANSMISSION, SIGNALLING AND SWITCHING

ALLOCATION OF CHANNELS ON INTERNATIONAL MULTIPLEX LINKS AT 64 kbit/s

ITU-T Recommendation X.54

(Extract from the Blue Book)

NOTES

1	ITU-T Recommendation X.54 was published in Fascicle VIII.3 of the Blue Book. This file is an extract from
the Blue	Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents	f the file are identical to the <i>Blue Book</i> version and copyright conditions remain unchanged (see below).

2	In	this	Recommendation,	the	expression	"Administration"	is	used	for	conciseness	to	indicate	both	a
telecomn	nuni	catio	n administration and	d a re	ecognized or	perating agency.								

© ITU 1988, 1993

Recommendation X.54

ALLOCATION OF CHANNELS ON INTERNATIONAL MULTIPLEX LINKS AT 64 kbit/s

(Geneva, 1980; amended at Malaga-Torremolinos, 1984)

The CCITT,

considering that

Recommendations X.50 and X.51 define multiplexing schemes for international links at 64 kbit/s,

unanimously declares

the following view on the allocation of the tributary channels.

On international links carrying data channels multiplexed at 64 kbit/s according to Recommendations X.50 and X.51, the allocation of tributary channels at rates of 0.6, 2.4, 4.8 and 9.6 kbit/s within the multiplex frame, should be chosen, by bilateral agreement, among the configurations listed in Table 1/X.54.

Note 1 - If, on bilateral agreement, a single 48 kbit/s channel is transmitted, optionally permissible within an X.51 multiplex frame, this configuration is numbered 00.

Note 2 - The phase number i ($i=1,\ldots,5$) corresponds to the set of envelopes i+5j ($j=0,\ldots,15$ for 80 envelope frames; $j=0,\ldots,3$ for 20 envelope frames) of each frame. Each phase contains either one 9.6-kbit/s or two 4.8-kbit/s or four 2.4-kbit/s or sixteen 0.6-kbit/s channels.

TABLE 1/X.54

Allocation of tributary channels in the 64-kbit/s multiplex frame

Configuration	Phase number								
number	1	2	3	4	5				
00									
01	9.6	9.6	9.6	9.6	9.6				
02	9.6	9.6	9.6	9.6	4.8				
03 04	9.6 9.6	9.6 9.6	9.6 9.6	9.6 9.6	2.4 0.6				
05	9.6	9.6	9.6	4.8	4.8				
06 07	9.6 9.6	9.6 9.6	9.6 9.6	4.8 4.8	2.4 0.6				
08	9.6	9.6	9.6	2.4	2.4				
09 10	9.6 9.6	9.6 9.6	9.6 9.6	2.4 0.6	0.6 0.6				
11	9.6	9.6	4.8	4.8	4.8				
12	9.6	9.6	4.8	4.8	2.4				
13 14	9.6 9.6	9.6 9.6	4.8 4.8	4.8 2.4	0.6 2.4				
15	9.6	9.6	4.8	2.4	0.6				
16 17	9.6 9.6	9.6 9.6	4.8 2.4	0.6 2.4	0.6 2.4				
18	9.6	9.6	2.4	2.4	0.6				
19	9.6	9.6	2.4	0.6	0.6				
20 21	9.6 9.6	9.6 4.8	0.6 4.8	0.6 4.8	0.6 4.8				
22	9.6	4.8	4.8	4.8	2.4				
23 24	9.6	4.8	4.8	4.8 2.4	0.6 2.4				
25	9.6 9.6	4.8 4.8	4.8 4.8	2.4	0.6				
26	9.6	4.8	4.8	0.6	0.6				
27 28	9.6 9.6	4.8 4.8	2.4 2.4	2.4 2.4	2.4 0.6				
29	9.6	4.8	2.4	0.6	0.6				
30 31	9.6 9.6	4.8 2.4	0.6 2.4	0.6 2.4	0.6 2.4				
32	9.6	2.4	2.4	2.4	0.6				
33	9.6	2.4	2.4	0.6	0.6				
34 35	9.6 9.6	2.4 0.6	0.6 0.6	0.6 0.6	0.6 0.6				
36	4.8	4.8	4.8	4.8	4.8				
37 38	4.8 4.8	4.8 4.8	4.8 4.8	4.8 4.8	2.4 0.6				
39	4.8	4.8	4.8	2.4	2.4				
40	4.8	4.8	4.8	2.4	0.6				
41 42	4.8 4.8	4.8 4.8	4.8 2.4	0.6 2.4	0.6 2.4				
43	4.8	4.8	2.4	2.4	0.6				
44 45	4.8	4.8	2.4	0.6	0.6				
46	4.8 4.8	4.8 2.4	0.6 2.4	0.6 2.4	0.6 2.4				
47	4.8	2.4	2.4	2.4	0.6				
48 49	4.8 4.8	2.4 2.4	2.4 0.6	0.6 0.6	0.6 0.6				
50	4.8	0.6	0.6	0.6	0.6				
51 52	2.4 2.4	2.4 2.4	2.4 2.4	2.4 2.4	2.4 0.6				
53	2.4	2.4	2.4	0.6	0.6				
54	2.4	2.4	0.6	0.6	0.6				
55 56	2.4 0.6	0.6 0.6	0.6 0.6	0.6 0.6	0.6 0.6				