

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.519
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2019)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

 Information technology – Open Systems
Interconnection – The Directory: Protocol
specifications

Recommendation ITU-T X.519

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES (1) X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES (2) X.1300–X.1499

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599

CLOUD COMPUTING SECURITY X.1600–X.1699

QUANTUM COMMUNICATION X.1700–X.1729

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.519 (10/2019) i

INTERNATIONAL STANDARD ISO/IEC 9594-5

RECOMMENDATION ITU-T X.519

Information technology – Open Systems Interconnection – The Directory: Protocol

specifications

Summary

Recommendation ITU-T X.519 | ISO/IEC 9594-5 specifies the Directory Access Protocol, the Directory System Protocol,

the Directory Information Shadowing Protocol and the Directory Operational Binding Management Protocol which fulfil

the abstract services specified in Recommendation ITU-T X.501 | ISO/IEC 9594-2, Recommendation ITU-T X.511 |

ISO/IEC 9594-3, Recommendation ITU-T X.518 | ISO/IEC 9594-4 and Recommendation ITU-T X.525 | ISO/IEC 9594-9.

It includes specifications for supporting underlying protocols to reduce the dependency on external specifications. The

protocols may be encoded using all standard ASN.1 encoding rules.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.519 1988-11-25 11.1002/1000/3007

2.0 ITU-T X.519 1993-11-16 7 11.1002/1000/3008

3.0 ITU-T X.519 1997-08-09 7 11.1002/1000/4126

3.1 ITU-T X.519 (1997) Technical Cor. 1 2000-03-31 7 11.1002/1000/5040

3.2 ITU-T X.519 (1997) Amd. 1 2000-03-31 7 11.1002/1000/5039

3.3 ITU-T X.519 (1997) Technical Cor. 2 2001-02-02 7 11.1002/1000/5319

4.0 ITU-T X.519 2001-02-02 7 11.1002/1000/5321

4.1 ITU-T X.519 (2001) Cor. 1 2008-05-29 17 11.1002/1000/9437

5.0 ITU-T X.519 2005-08-29 17 11.1002/1000/8507

5.1 ITU-T X.519 (2005) Cor. 1 2008-05-29 17 11.1002/1000/9438

5.2 ITU-T X.519 (2005) Cor. 2 2011-02-13 17 11.1002/1000/11048

5.3 ITU-T X.519 (2005) Cor. 3 2012-04-13 17 11.1002/1000/11588

6.0 ITU-T X.519 2008-11-13 17 11.1002/1000/9597

6.1 ITU-T X.519 (2008) Cor. 1 2011-02-13 17 11.1002/1000/11049

6.2 ITU-T X.519 (2008) Cor. 2 2012-04-13 17 11.1002/1000/11589

7.0 ITU-T X.519 2012-10-14 17 11.1002/1000/11741

8.0 ITU-T X.519 2016-10-14 17 11.1002/1000/13035

9.0 ITU-T X.519 2019-10-14 17 11.1002/1000/14036

Keywords

Attribute, chaining, directory, directory information tree, directory system agent, directory user agent, distinguished name,

referral.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/3007
http://handle.itu.int/11.1002/1000/3008
http://handle.itu.int/11.1002/1000/4126
http://handle.itu.int/11.1002/1000/5040
http://handle.itu.int/11.1002/1000/5039
http://handle.itu.int/11.1002/1000/5319
http://handle.itu.int/11.1002/1000/5321
http://handle.itu.int/11.1002/1000/9437
http://handle.itu.int/11.1002/1000/8507
http://handle.itu.int/11.1002/1000/9438
http://handle.itu.int/11.1002/1000/11048
http://handle.itu.int/11.1002/1000/11588
http://handle.itu.int/11.1002/1000/9597
http://handle.itu.int/11.1002/1000/11049
http://handle.itu.int/11.1002/1000/11589
http://handle.itu.int/11.1002/1000/11741
http://handle.itu.int/11.1002/1000/13035
http://handle.itu.int/11.1002/1000/14036
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.519 (10/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.519 (10/2019) iii

CONTENTS

 Page

1 Scope .. 1

2 References .. 1
2.1 Normative references .. 1
2.2 Non-normative references ... 2

3 Definitions .. 2
3.1 Basic Directory definitions .. 3
3.2 Distributed Operation Definitions ... 3
3.3 Protocol specification definitions .. 3

4 Abbreviations ... 4

5 Conventions .. 5

6 Common protocol specification.. 5
6.1 Directory associations and operations ... 5
6.2 Specification for Directory operations .. 6
6.3 Directory protocol overview ... 7
6.4 Operation codes ... 8
6.5 Error codes .. 8
6.6 Abstract syntaxes .. 9

7 Directory protocols using the OSI stack ... 9
7.1 OSI-PDUs ... 9
7.2 Directory PDU structure .. 9
7.3 Session PDUs .. 10
7.4 OSI addressing .. 11
7.5 Procedure and sequencing ... 11
7.6 Directory PDU specifications .. 11

8 Directory protocol mapping onto OSI services .. 26
8.1 Abstract syntaxes and transfer syntaxes .. 26
8.2 Application-context ... 26
8.3 Session Layer specification ... 28
8.4 Use of transport service ... 34
8.5 OSI Transport Layer on top of TCP .. 34

9 IDM protocol .. 48
9.1 IDM-PDUs .. 48
9.2 Sequencing requirements .. 50
9.3 Protocols .. 51
9.4 Reject reasons.. 51
9.5 Abort reasons .. 52
9.6 Mapping onto TCP/IP ... 52
9.7 Addressing .. 53
9.8 Use of TLS .. 53

10 Directory protocol mapping onto the IDM protocol ... 54
10.1 DAP-IP protocol .. 54
10.2 DSP-IP protocol .. 54
10.3 DISP-IP protocol ... 55
10.4 DOP-IP protocol .. 55

11 Protocol stack coexistence .. 55
11.1 Coexistence between OSI and IDM stacks ... 55
11.2 Coexistence in the presence of LDAP ... 56
11.3 Defining network addresses for Internet Protocol, version 4 support ... 56
11.4 Definition of NSAP-like address for long addressing information ... 57

12 Versions and the rules for extensibility .. 57
12.1 Use of extension markers .. 57

iv Rec. ITU-T X.519 (10/2019)

 Page

12.2 DUA to DSA ... 58
12.3 DSA to DSA .. 58
12.4 Rules of extensibility for NSAP addresses .. 59
12.5 Rules of extensibility for object classes .. 60
12.6 Rules of extensibility for user attribute types .. 60

13 Conformance .. 60
13.1 Conformance by DUAs ... 60
13.2 Conformance by DSAs.. 61
13.3 Conformance by a shadow supplier .. 64
13.4 Conformance by a shadow consumer .. 65

Annex A – Common protocol specifications in ASN.1 ... 66

Annex B – OSI Protocol in ASN.1 .. 68

Annex C – Directory OSI Protocols in ASN.1 .. 74

Annex D – IDM Protocol in ASN.1 .. 77

Annex E – Directory IDM Protocols in ASN.1 ... 80

Annex F – Directory operational binding types ... 82

Annex G – Amendments and corrigenda ... 83

 Rec. ITU-T X.519 (10/2019) v

Introduction

This Recommendation | International Standard, together with other Recommendations | International Standards, has been

produced to facilitate the interconnection of information processing systems to provide directory services. A set of such

systems, together with the directory information that they hold, can be viewed as an integrated whole, called the Directory.

The information held by the Directory, collectively known as the Directory Information Base (DIB), is typically used to

facilitate communication between, with or about objects such as application entities, people, terminals and distribution

lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of

technical agreement outside of the interconnection standards themselves, the interconnection of information processing

systems:

– from different manufacturers;

– under different managements;

– of different levels of complexity; and

– of different ages.

This Recommendation | International Standard specifies the application service elements and application contexts for two

protocols – the Directory Access Protocol (DAP) and the Directory System Protocol (DSP). The DAP provides for access

to the Directory to retrieve or modify Directory information. The DSP provides for the chaining of requests to retrieve or

modify Directory information to other parts of the distributed Directory System where the information may be held.

In addition, this Recommendation | International Standard specifies the application service elements and application

contexts for the Directory Information Shadowing Protocol (DISP) and the Directory Operational Binding Management

Protocol (DOP). The DISP provides for the shadowing of information held in one DSA to another DSA. The DOP

provides for the establishment, modification and termination of bindings between pairs of DSAs for the administration of

relationships between the DSAs (such as for shadowing or hierarchical relationships).

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be

defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks may

be mandated for use in certain environments through profiles. This ninth edition technically revises and enhances the

eighth edition of this Recommendation | International Standard.

This ninth edition specifies versions 1 and 2 of the Directory protocols.

Rec. ITU-T X.511 (1993) | ISO/IEC 9594-3 (1995), Rec. ITU-T X.518 (1993) | ISO/IEC 9594-4 (1995) and Rec. ITU-T

X.519 (1993) | ISO/IEC 9594-5 (1995) and their previous edition specified only version 1. Most of the services and

protocols specified in this edition are designed to function under version 1. However some enhanced services and

protocols, e.g., signed errors, will not function unless all Directory entities involved in the operation have negotiated

version 2. Whichever version has been negotiated, differences between the services and between the protocols defined in

the nine editions, except for those specifically assigned to version 2, are accommodated using the rules of extensibility

defined in this edition of Rec. ITU-T X.519 | ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

common specifications for the Directory protocols.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

OSI protocol specification.

Annex C, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

Directory OSI protocols.

Annex D, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

IDM protocol specification.

Annex E, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

Directory IDM protocols.

Annex F, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which

contains all the ASN.1 object identifiers assigned to identify operational binding types in this series of Recommendations |

International Standards.

Annex G, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect

reports that have been incorporated to form this edition of this Recommendation | International Standard.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 1

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology – Open Systems Interconnection – The Directory: Protocol

specifications

1 Scope

This Recommendation | International Standard specifies the Directory Access Protocol, the Directory System Protocol,

the Directory Information Shadowing Protocol, and the Directory Operational Binding Management Protocol which fulfil

the abstract services specified in Rec. ITU-T X.511 | ISO/IEC 9594-3, Rec. ITU-T X.518 | ISO/IEC 9594-4,

Rec. ITU-T X.525 | ISO/IEC 9594-9, and Rec. ITU-T X.501 | ISO/IEC 9594-2.

2 References

2.1 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid

ITU-T Recommendations.

2.1.1 Identical Recommendations | International Standards

– Recommendation ITU-T X.200 (1994) | ISO/IEC 7498-1:1994, Information technology – Open Systems

Interconnection – Basic Reference Model: The basic model.

– Recommendation ITU-T X.213 (2001) | ISO/IEC 8348:2002, Information technology – Open Systems

Interconnection – Network service definition.

– Recommendation ITU-T X.214 (1995) | ISO/IEC 8072:1996, Information technology – Open Systems

Interconnection – Transport service definition.

– Recommendation ITU-T X.500 (2019) | ISO/IEC 9594-1:2020, Information technology – Open Systems

Interconnection – The Directory: Overview of concepts, models and services.

– Recommendation ITU-T X.501 (2019) | ISO/IEC 9594-2:2020, Information technology – Open Systems

Interconnection – The Directory: Models.

– Recommendation ITU-T X.509 (2019) | ISO/IEC 9594-8:2020, Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate frameworks.

– Recommendation ITU-T X.511 (2019) | ISO/IEC 9594-3:2020, Information technology – Open Systems

Interconnection – The Directory: Abstract service definition.

– Recommendation ITU-T X.518 (2019) | ISO/IEC 9594-4:2020, Information technology – Open Systems

Interconnection – The Directory: Procedures for distributed operation.

– Recommendation ITU-T X.520 (2019) | ISO/IEC 9594-6:2020, Information technology – Open Systems

Interconnection – The Directory: Selected attribute types.

– Recommendation ITU-T X.521 (2019) | ISO/IEC 9594-7:2020, Information technology – Open Systems

Interconnection – The Directory: Selected object classes.

– Recommendation ITU-T X.525 (2019) | ISO/IEC 9594-9:2020, Information technology – Open Systems

Interconnection – The Directory: Replication.

– Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

– Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Information object specification.

– Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Constraint specification.

ISO/IEC 9594-5:2020 (E)

2 Rec. ITU-T X.519 (10/2019)

– Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

– Recommendation ITU-T X.690 (2015) | ISO/IEC 8825-1:2015, Information technology – ASN.1 encoding

rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER).

2.1.2 ISO/IEC Standards

– ISO/IEC 10646:2017, Information technology – Universal Coded Character Set (UCS).

2.1.3 Other references

– Recommendation ITU-T E.164 (2010), The international public telecommunication numbering plan.

– Recommendation ITU-T X.121 (2000), International numbering plan for public data networks.

– Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

– Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Information object specification.

– Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Constraint specification.

– Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

– IETF RFC 793 (1981), Transmission Control Protocol – DARPA Internet Program – Protocol

Specification.

– IETF RFC 1738 (1994), Uniform Resource Locators (URL).

– IETF RFC 2246 (1999), The TLS Protocol: Version 1.0.

– IETF RFC 3546 (2003), Transport Layer Security (TLS) Extensions.

– IETF RFC 3986 (2005), Uniform Resource Identifier (URI): Generic Syntax.

2.2 Non-normative references

– Recommendation ITU-T X.217 (1995) | ISO/IEC 8649:1996, Information technology – Open Systems

Interconnection – Service definition for the Association Control Service Element.

– Recommendation ITU-T X.224 (1995) | ISO/IEC 8073:1997, Information technology – Open Systems

Interconnection – Protocol for providing the connection-mode transport service.

– Recommendation ITU-T X.225 (1995) | ISO/IEC 8327-1:1996, Information technology – Open Systems

Interconnection – Connection-oriented Session protocol: Protocol specification.

– Recommendation ITU-T X.226 (1994) | ISO/IEC 8823-1:1994, Information technology – Open Systems

Interconnection – Connection-oriented Presentation protocol: Protocol specification.

– Recommendation ITU-T X.227 (1995) | ISO/IEC 8650-1:1996, Information technology – Open Systems

Interconnection – Connection-oriented protocol for the Association Control Service Element: Protocol

specification.

– Recommendation ITU-T X.650 (1996) | ISO/IEC 7498-3:1997, Information technology – Open Systems

Interconnection – Basic Reference Model: Naming and addressing.

– Recommendation ITU-T X.881 (1994) | ISO/IEC 13712-2:1995, Information technology – Remote

Operations: OSI realizations – Remote Operations Service Element (ROSE) service definition.

– IETF RFC 896 (1984), Congestion Control in IP/TCP Internetworks.

– IETF RFC 1006 (1987), ISO Transport Service on top of the TCP Version: 3.

– IETF RFC 1277 (1991), Encoding Network Addresses to Support Operation over Non-OSI Lower Layers.

– IETF RFC 2126 (1997), ISO Transport Service on top of TCP (ITOT).

– IETF RFC 4511 (2006), Lightweight Directory Access Protocol (LDAP): The Protocol.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply:

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 3

3.1 Basic Directory definitions

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a) the Directory;

b) (Directory) user;

c) Directory System Agent (DSA);

d) Directory User Agent (DUA).

3.2 Distributed Operation Definitions

The following terms are defined in Rec. ITU-T X.518 | ISO/IEC 9594-4:

a) chaining;

b) performer;

c) referral.

3.3 Protocol specification definitions

The following terms are defined in this Recommendation | International Standard.

NOTE – The terms defined in this clause are generalized definitions to cover both the OSI and the TCP/IP case, except where

exceptions are indicated.

3.3.1 abstract syntax: The specification of data types and/or data values by using notation rules which are

independent of the encoding technique used to represent them.

3.3.2 application-association: A cooperative relationship between two application-entities established by the Bind

operation.

3.3.3 application-context: (OSI only definition); a set of rules commonly shared by two application-entities in order

to support an application-association.

3.3.4 application-context-name: An ASN.1 object identifier that identifies (names) an application-context.

3.3.5 application layer: The top layer of the OSI seven layer model representing the semantics of the communication.

3.3.6 application-entity: A representation of the external behaviour of an application process in the form of its

communication capabilities.

3.3.7 application-entity title: The Directory distinguished name of an application-entity, and in particular, an

application-entity representing a Directory application process.

3.3.8 application process: A process within a system which performs information processing for a particular

purpose, in particular processing Directory operations.

3.3.9 Bind operation: An operation type used for establishing an application-association.

3.3.10 Directory operation: An operation type for the exchange of Directory information.

3.3.11 directory protocol-data-unit: A unit of data for a Directory protocol consisting of control information and in

general, also application data as specified by Directory operations.

NOTE 1 – A Directory PDU in the OSI environment includes all the protocol elements of the OSI Presentation Layer and if

relevant, protocol elements of ACSE in addition to the Directory-specific protocol elements.

NOTE 2 – The term "application-protocol-data-unit (APDU)" is a unit of data defined by an OSI application protocol. This term is

not used by Rec. ITU-T X.519 (2005) | ISO/IEC 9594-5:2005 and subsequent editions of these Directory Specifications. However,

the abbreviation may appear in certain ASN.1 elements.

3.3.12 initiator: The application process that initiates an application-association by issuing a Bind request.

3.3.13 local matter: A decision made by a system concerning its behaviour that is not subject to the requirements of

these Directory Specifications.

3.3.14 operation: An exchange between two application processes to perform a particular task. It consists of a request

from one application-process to the other one and the return of zero or more responses (result and/or errors). An operation

implies a certain process to be performed by the application process receiving the request.

3.3.15 protocol-data-unit: Comprised of the presentation protocol elements or the ACSE protocol elements of a

Directory protocol-data-unit.

ISO/IEC 9594-5:2020 (E)

4 Rec. ITU-T X.519 (10/2019)

3.3.16 presentation layer: The sixth layer of the OSI Reference Model.

3.3.17 protocol error: An unrecognized or unexpected protocol-data-unit or a protocol-data-unit with an unexpected

or invalid parameter is received.

3.3.18 responder: The application-process that receives a Bind request and either accepts or refuses the

application-association.

NOTE – Initiator and responder are defined with respect to a single transport-connection. The initiator is also the application

process that initiated the transport-connection (see clause 8.4). A DSA can be both an initiator and responder simultaneously.

3.3.19 session layer: The fifth layer of the OSI Reference Model.

3.3.20 session-protocol-data-unit: (OSI only definition); a unit of data at the OSI Session Layer consisting of control

information and in general, it also carries a Directory protocol-data-unit.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

AC Application Context

ACSE Association Control Service Element

AE Application-Entity

AFI Authority and Format Identifier

APDU Application-Protocol-Data-Unit

DAP Directory Access Protocol

DISP Directory Information Shadowing Protocol

DOP Directory Operational Binding Management Protocol

DSA Directory System Agent

DSP Directory System Protocol

DSP Domain Specific Part

DUA Directory User Agent

EOT End of TSDU

IDI Initial Domain Identifier

IDM Internet Directly Mapped

IPv4 Internet Protocol, Version 4

IPv6 Internet Protocol, Version 6

ITOT ISO Transport Service on top of TCP

LDAP Lightweight Directory Access Protocol

LI Length Indicator

NSAP Network-Service-Access-Point

PDU Protocol-Data-Unit

PGI Parameter Group Identifier

PI Parameter Identifier

PPDU Presentation-Protocol-Data-Unit

PV Parameter Value

SI SPDU Identifier

SPDU Session-Protocol-Data-Unit

TCP/IP Transmission Control Protocol/Internet Protocol

TPDU Transport-Protocol-Data-Unit

TPKT Transport Packet

TSDU Transport-Service-Data-Unit

URI Uniform Resource Identifier

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 5

5 Conventions

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean Rec. ITU-T X.519 |

ISO/IEC 9594-5. The term "Directory Specifications" shall be taken to mean the Rec. ITU-T X.500 | ISO/IEC 9594-1,

Rec. ITU-T X.501 | ISO/IEC 9594-2, Rec. ITU-T X.511 | ISO/IEC 9594-3, Rec. ITU-T X.518 | ISO/IEC 9594-4, Rec.

ITU-T X.519 | ISO/IEC 9594-5, Rec. ITU-T X.520 | ISO/IEC 9594-6, Rec ITU-T X.521 | ISO/IEC 9594-7 and Rec. ITU-

T X.525 | ISO/IEC 9594-9.

If an International Standard or ITU-T Recommendation is referenced within normal text without an indication of the

edition, the edition shall be taken to be the latest one as specified in the normative references clause.

Prior to year 2020, the parts making up the Directory Specifications progressed together and can therefore collectively be

identified as the Directory Specifications of a specific edition using the format: Rec. ITU-T X.5** (yyyy) | ISO/IEC 9594-

*:yyyy (e.g.; Rec ITU-T X.5** (1993) | ISO/IEC 9594-*:1995).

This Directory Specification makes extensive use of Abstract Syntax Notation One (ASN.1) for the formal specification

of data types and values, as it is specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, ITU-T X.681 | ISO/IEC 8824-2, ITU-

T X.682 | ISO/IEC 8824-3, ITU-T X.683 | ISO/IEC 8824-4 and Rec. ITU-T X.690 | ISO/IEC 8825-1.

This Directory Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values

are referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New

typeface. The names of procedures, typically referenced when specifying the semantics of processing, are differentiated

from normal text by displaying them in bold Times New Roman. Access control permissions are presented in italicized

Times New Roman.

If the items in a list are numbered (as opposed to using "–" or letters), then the items shall be considered steps in a

procedure.

The syntax of Open Systems Interconnection (OSI) addressing related terms follow the rules established by

Rec. ITU-T X.650 | ISO/IEC 7498-3. This syntax has been established to make a distinction between a term for a specific

purpose and a more general term. As an example, transport-address is hyphenated to signal it is a specific term used in an

OSI context, while transport address without a hyphen has a more general meaning.

6 Common protocol specification

6.1 Directory associations and operations

The protocols for these Directory Specifications are described as a set of operations. An operation is defined in terms of

a request sent from one system to another system expecting this other system to process the request, and if applicable, it

returns one or more replies constituting the result. An operation can either be a Bind operation or an operation invoked

to access Directory information (a Directory operation).

If exception conditions are encountered, one or more errors may be returned instead of or in addition to possible results.

NOTE 1 – The currently defined operations will return either one or more results or a single error.

Directory protocols defined by these Directory Specifications may use an OSI protocol stack, a TCP/IP protocol stack or

both. The specification provided by this clause is independent of the particular protocol stack. The OSI specific

specification is given in clauses 7 and 8, while the TCP/IP specific specification is given in clauses 9 and 10.

A process within a system that processes Directory operations is called an application process. An application-entity is

the reflection of the external behaviour of an application process.

Before Directory operations can be invoked between two Directory application processes, an application-association has

to be established between the corresponding application-entities. An application-association is a cooperative relationship

between two application-entities formed by the exchange of control information within the request and result of a Bind

operation and by the use of a common underlying service.

NOTE 2 – This is a modified definition of application-association as given by Rec. ITU-T X.217 | ISO/IEC 8649, and is intended

to cover both the use of an underlying OSI protocol stack and an underlying TCP/IP stack.

An application-association is terminated using an unbind exchange. The unbinding of an application-association is not

defined as an operation.

ISO/IEC 9594-5:2020 (E)

6 Rec. ITU-T X.519 (10/2019)

6.2 Specification for Directory operations

These Directory Specifications specify several operation types. An operation type is specified by the OPERATION ASN.1

information object class. Possible errors associated with an operation type are defined by the ERRORS ASN.1 information

object class.

OPERATION ::= CLASS {

 &ArgumentType OPTIONAL,

 &ResultType OPTIONAL,

 &Errors ERROR OPTIONAL,

 &operationCode Code UNIQUE OPTIONAL }

WITH SYNTAX {

 [ARGUMENT &ArgumentType]

 [RESULT &ResultType]

 [ERRORS &Errors]

 [CODE &operationCode] }

ERROR ::= CLASS {

 &ParameterType,

 &errorCode Code UNIQUE OPTIONAL }

WITH SYNTAX {

 PARAMETER &ParameterType

 [CODE &errorCode] }

Code ::= CHOICE {

 local INTEGER,

 global OBJECT IDENTIFIER,

 ... }

The OPERATION information object class is a convenient way to express the syntax of Directory requests, results and

errors for a particular operation type.

This ASN.1 information object class has the following fields:

a) The &ArgumentType field specifies an open data type for the request part of an operation.

b) The &ResultType field specifies an open data type for one or more replies constituting the result of the

request. If this field is absent, there is no result associated with the operation.

c) The &Errors field specifies one or more errors that can occur as the result of processing the request. If

this field is absent, there is no error associated with the operation.

d) The &operationCode field specifies the type of Directory operation to be performed. This field is absent

for the Bind operation. See clause 6.4 for currently defined operation codes.

Directory operations may in principle be performed in two different modes:

a) if a Directory operation shall be completed before a new Directory operation may be invoked, the mode of

operation is synchronous; or

b) if several operations may be in progress at the same time, the mode of operation is asynchronous.

If all Directory operations defined for a particular type of application-association:

a) consist of both a request and one or more results and/or errors; and

b) are allowed only to be invoked by a designated system,

such operation may be executed in either synchronous or asynchronous mode. Otherwise, the mode of operation is always

asynchronous.

The OPERATION information object class does not in itself imply any sequencing. A Directory request may have no result

and/or error, or a request may have several results and/or errors. However, it does tie together a request with possible

responses (results and errors) by carrying the same operation code and the same invoke id (see below). However,

specification of a particular operation type may dictate sequencing restrictions.

An error is a report of the unsuccessful performance of an operation. An error is represented by the ERROR ASN.1

Information Object Class. The different fields are described below:

a) the &ParameterType field specifies the data type of the parameter of the error specifying the nature of

the error; and

b) the &errorCode field specifies the code that identifies the error (see clause 6.5 for the defined error codes).

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 7

Although not reflected by the OPERATION or the ERRORS information object classes, each invocation of a Directory

operation is assigned an InvokeId, which is carried in the protocol. This makes it possible to indicate to what Directory

operation a particular request, result or error belongs. The definition of the InvokeId is as follows:

InvokeId ::= CHOICE {

 present INTEGER,

 absent NULL,

 ... }

If an operation type does not specify an &operationCode, operations of this type cannot have InvokeId assigned.

6.3 Directory protocol overview

6.3.1 Use of underlying services

When two application processes from different open systems interact, the application-association is realized as an

Application Layer protocol using either an OSI or a TCP/IP underlying service.

Details on the use of the OSI service are given in clause 8, while the details on the use of the TCP/IP service are given in

clause 10.

The OSI Transport Layer may either be supported using the service as defined in Rec. ITU-T X.214 | ISO/IEC 8072 or

by using the specification in clause 8.5. In this latter case, the OSI upper layer protocols stack are placed on top of a

TCP/IP protocol stack.

6.3.2 The Directory Access Protocol (DAP)

Before a DUA and a DSA from different open systems can interact, a Bind operation has to be invoked between them to

establish an application-association supporting a Directory protocol called the Directory Access Protocol (DAP).

The Bind operation (directoryBind) for establishing a DAP application-association is defined in clause 8 of

Rec. ITU-T X.511 | ISO/IEC 9594-3.

The Directory Specifications allow a DUA to invoke a Bind operation and to initiate subsequent Directory operations. If

the OSI underlying stack is used, Directory operations may be invoked either in synchronous mode or in asynchronous

mode. If the TCP/IP underlying stack is used, Directory operations are always invoked in asynchronous mode.

All Directory operations require either a single reply or a single error to be returned.

6.3.3 The Directory System Protocol (DSP)

Before a pair of DSAs from different open systems can interact, a Bind operation has to be invoked between them to

establish an application-association supporting a Directory protocol called the Directory System Protocol (DSP).

The Bind operation (dSABind) for establishing a DSP application-association is defined in clause 11 of Rec. ITU-T X.518

| ISO/IEC 9594-4.

Either DSA may invoke a Bind operation. Both the initiating and responding DSA may invoke subsequent Directory

operations. Directory operations are always invoked in asynchronous mode on the DSP.

All Directory operations require either a single reply or a single error to be returned.

6.3.4 The Directory Information Shadowing Protocol (DISP)

Before a pair of DSAs from different open systems can interact for the purpose of exchanging shadowing information, a

Bind operation has to be invoked between them to establish an application-association supporting a Directory protocol

called the Directory Information Shadowing Protocol (DISP).

The Bind operation (dSAShadowBind) for establishing a DISP application-association is defined in clause 7.4.1 of

Rec. ITU-T X.525 | ISO/IEC 9594-9.

If the OSI underlying stack is used, the mode of operation is synchronous or asynchronous depending on the application-

context selected for the Bind operation. If the TCP/IP underlying stack is used, Directory operations are always invoked

in asynchronous mode.

All Directory operations require either a single reply or a single error to be returned.

ISO/IEC 9594-5:2020 (E)

8 Rec. ITU-T X.519 (10/2019)

6.3.5 The Directory Operational Binding Management Protocol (DOP)

Before a pair of DSAs from different open systems can interact for the purpose of maintaining operational bindings, a

Bind operation has to be invoked to establish an application-association supporting a Directory protocol called the

Directory Operational Binding Management Protocol (DOP).

The DSA that may assume the role of initiator of the Bind operation depends on the DSA roles assigned for the operational

binding(s) to be managed using the Directory operations on the application-association. Only the initiator may invoke

Directory operations. More than one operational binding type may only be managed within this application-association if

the DSA roles for the distinct types are compatible (e.g., a DSA assumes Role A for each binding type).

All Directory operations require either a single reply or a single error to be returned.

6.4 Operation codes

6.4.1 Operation codes for DAP and DSP

The following operation codes are used in the DAP and the DSP:

id-opcode-read Code ::= local:1

id-opcode-compare Code ::= local:2

id-opcode-abandon Code ::= local:3

id-opcode-list Code ::= local:4

id-opcode-search Code ::= local:5

id-opcode-addEntry Code ::= local:6

id-opcode-removeEntry Code ::= local:7

id-opcode-modifyEntry Code ::= local:8

id-opcode-modifyDN Code ::= local:9

id-opcode-changePassword Code ::= local:10

id-opcode-administerPassword Code ::= local:11

id-opcode-ldapTransport Code ::= local:12

id-opcode-linkedLDAP Code ::= local:13

The use of these operation codes is specified in Rec. ITU-T X.511 | ISO/IEC 9594-3.

6.4.2 Operation codes for DISP

The following operation codes are used in the DISP.

id-opcode-requestShadowUpdate Code ::= local:1

id-opcode-updateShadow Code ::= local:2

id-opcode-coordinateShadowUpdate Code ::= local:3

The use of these operation codes is specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

6.4.3 Operation codes for DOP

The following operation codes are used in the DOP.

id-op-establishOperationalBinding Code ::= local:100

id-op-modifyOperationalBinding Code ::= local:102

id-op-terminateOperationalBinding Code ::= local:101

The use of these operation codes is specified in Rec. ITU-T X.501 | ISO/IEC 9594-2.

6.5 Error codes

6.5.1 Error codes for DAP and DSP

The following error codes are used in the DAP and the DSP. The code id-errcode-referral is only used in the DAP.

The code id-opcode-dsaReferral is only used in the DSP:

id-errcode-attributeError Code ::= local:1

id-errcode-nameError Code ::= local:2

id-errcode-serviceError Code ::= local:3

id-errcode-referral Code ::= local:4

id-errcode-abandoned Code ::= local:5

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 9

id-errcode-securityError Code ::= local:6

id-errcode-abandonFailed Code ::= local:7

id-errcode-updateError Code ::= local:8

id-errcode-dsaReferral Code ::= local:9

6.5.2 Error codes for DISP

The following error code is used in the DISP:

id-errcode-shadowError Code ::= local:1

6.5.3 Error codes for DOP

The following error code is used in the DOP:

id-err-operationalBindingError Code ::= local:100

6.6 Abstract syntaxes

A protocol specification includes a specification of the data types that may be transferred as part of the protocol exchanges.

The data types are defined using an abstract notation like the ASN.1 notation and constitute the abstract syntax for the

protocol. The abstract syntaxes are quite similar for OSI communication and for TCP/IP communication, although there

are differences. Four abstract syntaxes are defined for each of these types of communication corresponding to the four

different Directory protocols. Only for the OSI communication are the abstract syntaxes assigned object identifiers. When

establishing an OSI application-association the relevant object identifier for the abstract syntax is signalled in the Bind

(see clause 7.6.1).

7 Directory protocols using the OSI stack

This clause defines the Directory protocols and their mapping onto the OSI Session Protocol. It incorporates the relevant

elements of the OSI Presentation Protocol as defined by Rec. ITU-T X.226 | ISO/IEC 8823-1 and the Association Control

Service Element (ACSE) as defined by Rec. ITU-T X.227 | ISO/IEC 8650-1.

The relevant part of the OSI session protocol is defined in clause 8.3.

7.1 OSI-PDUs

The messages of OSI-based protocols are conveyed over an OSI application-association as Directory protocol-data-units

represented by the OSI-PDU data type as follows:

OSI-PDU{APPLICATION-CONTEXT:protocol} ::= TYPE-IDENTIFIER.&Type (

 OsiBind{{protocol}} |

 OsiBindResult{{protocol}} |

 OsiBindError{{protocol}} |

 OsiOperation{{protocol.&Operations}} |

 OsiUnbind |

 PresentationAbort)

7.2 Directory PDU structure

A Directory PDU in the OSI environment consists of protocol elements from the OSI Presentation Layer as defined by

Rec. ITU-T X.226 | ISO/IEC 8823-1, of ACSE protocol elements as defined by Rec. ITU-T X.227 | ISO/IEC 8650-1, if

relevant, and Directory specific protocol elements for the protocol in question.

The OsiBind, the OsiBindResult and the OsiBindError have presentation protocol elements and ACSE protocol

elements in addition to the Directory specific protocol elements, while the OsiOperation only has presentation protocol

elements in addition to the Directory specific protocol elements. The PresentationAbort has only presentation

protocol elements.

The Presentation Layer protocol elements included within a specific Directory PDU comprise a PPDU.

NOTE 1 – The term PPDU (presentation-protocol-data-unit) is introduced here, as it is referenced when discussing presentation

protocol errors and by the Abort-reason data type. The term is otherwise not relevant for these Directory Specifications.

The ACSE protocol elements included within a specific Directory PDU comprise an ACSE PDU.

ISO/IEC 9594-5:2020 (E)

10 Rec. ITU-T X.519 (10/2019)

NOTE 2 – Rec. ITU-T X.227 | ISO/IEC 8650-1 uses the term APDU (application-protocol-data-unit) for an ACSE PDU. As the

Directory specific protocol elements of a specific Directory PDU in principle also comprise an APDU, the term ACSE PDU is used

here to avoid confusion.

The following PPDUs are used by this Directory Specification:

a) CP PPDU, which is reflected by the CP-type data type defined by Rec. ITU-T X.226 | ISO/IEC 8823-1.

It is part of the OsiBind data type;

b) CPA PPDU, which is reflected by the CPA-PPDU data type defined by Rec. ITU-T X.226 | ISO/IEC 8823-

1. It is part of the OsiBindResult data type;

c) CPR PPDU, which is reflected by the CPR-PPDU data type defined by Rec. ITU-T X.226 | ISO/IEC 8823-

1. It is part of the OsiBindError data type;

d) TD PPDU, which is reflected by the User-data data type defined by Rec. ITU-T X.226 | ISO/IEC 8823-1.

It is part of the OsiOperation data type;

e) ARU PPDU, which is reflected by the ARU-PPDU defined by Rec. ITU-T X.226 | ISO/IEC 8823-1. It is

part of the ARU-PPDU data type as defined by this Directory specification; and

f) ARP PPDU, which is reflected by the ARP-PPDU defined by Rec. ITU-T X.226 | ISO/IEC 8823-1. It

constitutes the ARP-PPDU data type as defined by this Directory specification.

There is no PPDU defined for the release of an application-association (OsiUnbind and OsiUnbindResult). However,

the User-data data type defined by Rec. ITU-T X.226 | ISO/IEC 8823-1 is used to carry the OsiUnbind and

OsiUnbindResult.

The following ACSE PDUs are used by this Directory Specification:

a) AARQ-apdu is a part of the OsiBind data type;

b) AARE-apdu is part of the OsiBindResult data type and the OsiBindError data type;

c) RLRQ-apdu is part of the OsiUnbind data type;

d) RLRE-apdu is part of the OsiUnbindResult data type; and

e) ABRT-apdu is part of the ARU-PPDU data type.

7.3 Session PDUs

In addition to the Directory PDUs, this Directory Specification also defines session-protocol-data-units (SPDUs). All the

Directory PDUs are carried within an SPDU.

The following SPDUs are used by this Directory Specification:

a) CONNECT SPDU used to carry the OsiBind;

b) ACCEPT SPDU used to carry the OsiBindResult;

NOTE – The AARE ACSE PDU (as represented by AARE-apdu and AAREerr-apdu) is according to clause 8.1.3 of

Rec. ITU-T X.227 | ISO/IEC 8650-1 mapped onto the P-CONNECT response/confirm, where result is set as 'user rejection'.

According to clause 6.2.5.6 of Rec. ITU-T X.226 | ISO/IEC 8823-1, a CPR PPDU shall be issued at the Presentation Layer. Also,

according to clause 7.1.3 of Rec. ITU-T X.226 | ISO/IEC 8823-1, the CPR PPDU is conveyed in the S-CONNECT response and

confirm session primitives.

c) REFUSE SPDU is used to carry OsiBindError and it is used for rejecting an application-association due

to Session Layer conditions;

d) FINISH SPDU is used to carry the OsiUnbind to initiate termination of an application-association;

e) DISCONNECT SPDU is used to carry the OsiUnbindResult to complete termination of an application-

association;

f) ABORT SPDU is used to carry the ARU-PPDU and ARP-PPDU in addition to be used on its own when

aborting due to a Session Layer problem;

g) ABORT ACCEPT SPDU carries no upper layer information, but it does indicate that an abort has been

received by the peer system; and

h) DATA TRANSFER SPDU is used to carry OsiOperation.

Details of SPDUs are given in clause 8.3.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 11

7.4 OSI addressing

OSI defines addresses for the Network Layer and up to and including the Presentation Layer. The Address on the top of

the Network Layer is called the network-service-access-point (NSAP) address. The structure of an NSAP address is

defined in Rec. ITU-T X.213 | ISO/IEC 8348. A transport-address on top of the Transport Layer is defined as the NSAP

address plus an optional transport-selector. A session-address on top of the Session Layer is defined as the

transport-address plus an optional session-selector. A presentation-address is defined as a session-address plus an optional

presentation-selector. Only session-selector and presentation-selector are referenced by this Directory Specification.

7.5 Procedure and sequencing

An application-association between two application processes is initiated by one of the application processes issuing an

OsiBind as defined in clause 7.6.1. The initiating application process shall then wait for an OsiBindResult to confirm

the application-association establishment before sending any Directory PDU on that application-association.

Independent of any sequencing rule, the initiating application process may at any time issue an ARU-PPDU or ARP-PPDU

(see clause 7.6.7) after having issued an OsiBind. Likewise, the responding application may at any time issue an ARU-

PPDU or ARP-PPDU after having received an OsiBind.

If an OsiBindResult is received, the initiating application process may send OsiOperation containing OsiReq,

OsiRes, OsiErr and OsiRej as governed by the protocol in question.

An application-association is not established if an OsiBindError (see clause 7.6.3) is received in response to the

OsiBind, or if the application-association is refused at the session level (see clause 8.3.5).

Two application processes may almost simultaneously issue OsiBind to each other. This shall be considered as two

independent application-association establishment attempts. If they both succeed, the result will be two application-

associations.

Protocol errors can occur within the session protocol, within the presentation protocol elements, within the ACSE protocol

elements and within the Directory-specific protocol elements.

A protocol error can be caused by:

a) an unrecognized or unexpected PDU received; or

b) one or more parameters on a received PDU are invalid or unexpected.

NOTE 1 – According to the rules of extensibility specified in clause 12, unknown parameters shall be ignored. Clauses 8.5 of Rec.

ITU-T X.226 | ISO/IEC 8823-1 and 7.4 of Rec. ITU-T X.227 | ISO/IEC 8650-1 specify similar rules.

NOTE 2 – Clauses 6.4.4.2 and 6.4.4.3 of Rec. ITU-T X.226 | ISO/IEC 8823-1 make a distinction between a protocol error and an

invalid PPDU. As the two cases cause the same type of abort, this Directory Specification does not make that distinction.

Clause 7.3.3.4 of Rec. ITU-T X.227 | ISO/IEC 8650-1 does not make that distinction either.

In both cases, the application-association or an application-association under establishment/termination shall be aborted.

If the problem is detected within the session protocol, an ABORT SPDU shall be issued (see clause 8.3.8) with no User

Data.

If the problem is detected within the presentation protocol, an ARP-PPDU (see clause 7.6.7.2) shall be issued.

If the problem is detected within the ACSE protocol, an ARU-PPDU with abort-source set to acse-service-

provider (see clause 7.6.7.1) shall be issued.

If the problem is detected within a Directory protocol, an ARU-PPDU with abort-source set to acse-service-user

shall be issued.

7.6 Directory PDU specifications

7.6.1 OSI Bind request

OsiBind{APPLICATION-CONTEXT:Protocols} ::= SET {

 mode-selector [0] IMPLICIT SET {

 mode-value [0] IMPLICIT INTEGER(1)},

 normal-mode-parameters [2] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 calling-presentation-selector [1] IMPLICIT Presentation-selector OPTIONAL,

 called-presentation-selector [2] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-list

ISO/IEC 9594-5:2020 (E)

12 Rec. ITU-T X.519 (10/2019)

 [4] IMPLICIT Context-list,

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type

 (AARQ-apdu{{Protocols}})}}}}}

Presentation-selector ::= OCTET STRING(SIZE (1..4, ..., 5..MAX))

Context-list ::= SEQUENCE SIZE (2) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 abstract-syntax-name Abstract-syntax-name,

 transfer-syntax-name-list SEQUENCE OF Transfer-syntax-name }

Presentation-context-identifier ::= INTEGER(1..127, ..., 128..MAX)

Abstract-syntax-name ::= OBJECT IDENTIFIER

Transfer-syntax-name ::= OBJECT IDENTIFIER

AARQ-apdu{APPLICATION-CONTEXT:Protocols} ::= [APPLICATION 0] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version1(0)}

 DEFAULT {version1},

 application-context-name [1] Application-context-name,

 called-AP-title [2] Name OPTIONAL,

 called-AE-qualifier [3] RelativeDistinguishedName OPTIONAL,

 called-AP-invocation-identifier [4] AP-invocation-identifier OPTIONAL,

 called-AE-invocation-identifier [5] AE-invocation-identifier OPTIONAL,

 calling-AP-title [6] Name OPTIONAL,

 calling-AE-qualifier [7] RelativeDistinguishedName OPTIONAL,

 calling-AP-invocation-identifier [8] AP-invocation-identifier OPTIONAL,

 calling-AE-invocation-identifier [9] AE-invocation-identifier OPTIONAL,

 implementation-information [29] IMPLICIT Implementation-data OPTIONAL,

 user-information [30] IMPLICIT

 Association-informationBind{{Protocols}}}

Association-informationBind{APPLICATION-CONTEXT:Protocols} ::=

 SEQUENCE SIZE (1..MAX) OF

 EXTERNAL

 (WITH COMPONENTS {

 identification (WITH COMPONENTS {..., syntax ABSENT}),

 data-value-descriptor ABSENT,

 data-value (CONTAINING TheOsiBind{{Protocols}})})

Application-context-name ::= OBJECT IDENTIFIER

AP-invocation-identifier ::= INTEGER

AE-invocation-identifier ::= INTEGER

Implementation-data ::= GraphicString

TheOsiBind{APPLICATION-CONTEXT:Protocols} ::=

 [16] APPLICATION-CONTEXT.&bind-operation.&ArgumentType({Protocols})

The OsiBind is used for initiating an application-association. The OsiBind includes presentation protocol elements (see

clause 7.6.1.1), ACSE protocol elements (see clause 7.6.1.2) and the Directory Bind protocol elements (see

clause 7.6.1.3). The Bind request shall be formatted according to the specification given in the relevant clauses that are

mentioned.

The OsiBind is carried in the User Data parameter or the Extended User Data parameter of the session CONNECT SPDU

(see clause 8.3.3).

The responder of the application-association shall check the protocol elements in the following sequence:

1) The session protocol elements shall be checked. If one or more of these protocol elements are unacceptable,

a REFUSE SPDU (see clause 8.3.5) shall be returned. Otherwise, continue.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 13

2) The presentation protocol elements shall be checked. If one or more of these protocol elements are

unacceptable, an OsiBindError including a provider-reason component and excluding a user-data

component (see clause 7.6.3.1) shall be returned. Otherwise, continue.

3) The ACSE protocol elements shall be checked. If one or more of these protocol elements are unacceptable,

an OsiBindError shall be returned with result and result-source-diagnostic components of the

AAREerr-apdu present and with the user-information component absent as specified in clause

7.6.3.2. Otherwise, continue.

4) The Directory Bind shall be checked according to rules for the Directory protocol in question. An

OsiBindResult (see clause 7.6.2) shall be returned if the responder is able to accept the Directory Bind.

Otherwise, an OsiBindError shall be returned with the user-information component of the

AAREerr-apdu present.

If a protocol error is detected at any time during that sequence, the appropriate abort shall be issued as specified in

clause 7.5.

7.6.1.1 Presentation protocol elements

The presentation protocol elements constituting a CP PPDU are those defined by the OsiBind data type above except for

the embedded AARQ-apdu.

The mode-selector component shall always be set to 1.

NOTE 1 – Rec. ITU-T X.226 | ISO/IEC 8823-1 defines two modes of presentation-connection. These Directory Specifications

always use the normal-mode.

The normal-mode-parameters component has the following subcomponents:

a) The protocol-version subcomponent shall be omitted or set to version-1. If specified differently,

the responder shall return an OsiBindError with provider-reason set to

protocol-version-not-supported.

b) The value of the calling-presentation-selector subcomponent, if supplied, shall be obtained from

locally held information.

 For a definition of presentation-selector, see clause 7.4.

c) The value of the called-presentation-selector subcomponent, if supplied, shall be obtained from:

– information obtained from the AccessPoint value of a ContinuationReference as the result of

a previous Directory operation (see Rec. ITU-T X.518 | ISO/IEC 9594-4); or

– locally held information.

 If the responder does not use presentation-selector addressing or if the supplied presentation-selector is not

one for a Directory application-process, then the responder shall return an OsiBindError with

provider-reason set to called-presentation-address-unknown.

d) The presentation-context-definition-list subcomponent shall have two elements, each being

a sequence type with:

– a presentation-context-identifier that is selected by the initiator. It shall be an uneven

integer and shall be different for the two elements;

– an abstract-syntax-name, which

i) for one of the elements shall be an object identifier identifying the ACSE abstract syntax

(id-acseAS); and

ii) for the other element shall be an object identifier for a Directory abstract syntax corresponding

to the type of application-association to be established (id-as-directoryAccessAS,

id-as-directorySystemAS, id-as-directoryShadowAS or

id-as-directoryOperationalBindingManagementAS, as appropriate);

– a transfer-syntax-name-list, which shall consist of one or more elements being the object

identifier for ASN.1 encoding rules as listed below:

i) {joint-iso-itu-t asn1(1) basic-encoding(1)}, which is the object identifier for the basic encoding

rules (BER).

ii) {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}, which is the object identifier

for the distinguished encoding rules (DER).

iii) {joint-iso-itu-t asn1(1) packed-encoding(3) aligned(0)}, which is the object identifier for the

packed encoding rules (PER), basic aligned variant.

ISO/IEC 9594-5:2020 (E)

14 Rec. ITU-T X.519 (10/2019)

iv) {joint-iso-itu-t asn1(1) packed-encoding(3) unaligned(1)},which is the object identifier for the

packed encoding rules (PER), basic unaligned variant.

v) {joint-iso-itu-t asn1(1) xml-encoding(5) basic(0)}, which is the object identifier for the basic

XML encoding rules (XER).

See clause 8.1 for details on abstract syntaxes and transfer syntaxes.

e) The user-data subcomponent has the following elements:

NOTE 3 – The user-data subcomponent reflects the fully-encoded-data choice of the user-data of the CP PPDU defined

by Rec. ITU-T X.226 | ISO/IEC 8823-1. The fully-encoded-data consists of a sequence of PVD-list. This Directory

Specification requires exactly one PVD-list. Therefore, the sequence-of type specifies exactly one value.

– the transfer-syntax-name subcomponent, if present, shall be the object identifier for the basic

encoding rules (BER);

NOTE 4 – According to clause 8.4.2.7 of Rec. ITU-T X.226 | ISO/IEC 8823-1: "The transfer syntax name shall be

present when more than one transfer syntax name was proposed for the presentation context of the presentation data

values".

– the presentation-context-identifier subcomponent shall be given the same value as the

presentation-context-identifier of the element of the presentation-context-

definition-list that specifies the ACSE abstract syntax;

– the presentation-data-values subcomponent shall hold the ACSE protocol elements as

specified in clause 7.6.1.2.

7.6.1.2 ACSE protocol elements

The ACSE protocol elements are those defined by the AARQ-apdu data type above, except for the embedded

TheOsiBind.

NOTE 1 – The ACSE protocol elements are the relevant components of the AARQ-apdu as defined by Rec. ITU-T X.227 | ISO/IEC

8650-1. Only the kernel functional unit of ACSE is used by these Directory Specifications. According to clause 9.1 of

Rec. ITU-T X.227 | ISO/IEC 8650-1, the sender-acse-requirements, the mechanism-name, the calling-

authentication-value and the application-context-name-list components are not relevant.

The protocol-version component shall be omitted or set to version1, i.e., bit 0 set. If the component is present, the

initiator shall not include any bit after bit 0. If the responder receives a Bind request with this component present and bit 0

is set and one or more other bits are set, those bits shall be ignored. If bit 0 is not set, but some other bit is set, the

responding application process shall reply with an OsiBindError (see clause 7.6.3) with Associate-source-

diagnostic set to no-common-acse-version.

The application-context-name component shall:

a) for the DAP, be set to id-ac-directoryAccessAC;

b) for the DSP, be set to id-as-directorySystemAC;

c) for the DISP, be set to either:

– id-ac-shadowConsumerInitiatedAC;

– id-ac-shadowSupplierInitiatedAC;

– id-ac-shadowSupplierInitiatedAsynchronousAC; or

– id-ac-shadowConsumerInitiatedAsynchronousAC;

d) for the DOP, be set to id-ac-directoryOperationalBindingManagementAC.

If the responder does not support the specified application-context-name, it shall reply with an OsiBindError

(see clause 7.6.3) with Associate-source-diagnostic set to application-context-name-not-supported.

The called-AP-title component, if present, shall be obtained from:

– information returned in a ContinuationReference as the result of a previous Directory operation; or

– locally held information.

If the responder does not recognize the called-AP-title, it shall reply with an OsiBindError (see clause 7.6.3)

with Associate-source-diagnostic set to called-AP-title-not-recognized.

The called-AE-qualifier component, if present, shall be obtained from:

– information returned in a ContinuationReference as the result of a previous Directory operation; or

– locally held information.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 15

If the responder does not recognize the called-AE-qualifier, it shall reply with an OsiBindError (see clause 7.6.3)

with Associate-source-diagnostic set to called-AE-qualifier-not-recognized.

The called-AP-invocation-identifier component may optionally be supplied if information about its value is

retained from a previous application-association. If the responder does not recognize the called-AP-invocation-

identifier, it shall reply with an OsiBindError (see clause 7.6.3) with Associate-source-diagnostic set to

called-AP-invocation-identifier-not-recognized.

The called-AE-invocation-identifier component may optionally be supplied if information about its value is

retained from a previous application-association. If the responder does not recognize the called-AE-invocation-

identifier, it shall reply with an OsiBindError (see clause 7.6.3) with Associate-source-diagnostic set to

called-AE-invocation-identifier-not-recognized.

The calling-AP-title component, if supplied, shall be obtained from locally held information. If the responder wants

to ensure the identity of the initiator, but does not recognize the calling-AP-title, it may reject the application-

association with an OsiBindError (see clause 7.6.3) with Associate-source-diagnostic set to calling-AP-

title-not-recognized.

The calling-AE-qualifier component, if supplied, shall be obtained from locally held information. If the responder

wants to ensure the identity of the initiator, but does not recognize the calling-AE-qualifier, it may reject the

application-association with an OsiBindError (see clause 7.6.3) with Associate-source-diagnostic set to

calling-AE-qualifier-not-recognized.

The calling-AP-invocation-identifier component may optionally be supplied. A receiving system may ignore

this value, if present. If the responder wants to ensure the identity of the initiator, but does not recognize the calling-

AP-invocation-identifier, it may reject the application-association with an OsiBindError (see clause 7.6.3)

with Associate-source-diagnostic set to calling-AP-invocation-identifier-not-recognized.

The calling-AE-invocation-identifier component may optionally be supplied. A responding system may ignore

this value, if present. If the responder wants to ensure the identity of the initiator, but does not recognize the calling-

AE-invocation-identifier, it may reject the application-association with an OsiBindError (see clause 7.6.3)

with Associate-source-diagnostic set to calling-AE-invocation-identifier-not-recognized.

The implementation-information component may hold implementation-specific information. This information

does not affect the application-association establishment procedure.

The user-information component has the following subcomponents:

a) direct-reference, if present, shall hold the object identifier for the basic encoding rules (BER);

b) indirect-reference shall identify the Directory abstract syntax within the presentation-

context-definition-list as defined in clause 7.6.1.1 d); and

c) the single-ASN1-type shall hold the Bind protocol elements as specified in clause 7.6.1.3.

NOTE 2 – The user-information component corresponds to the user-information component of AARQ-apdu as defined

by Rec. ITU-T X.227 | ISO/IEC 8650-1. This component is a SEQUENCE OF EXTERNAL. These Directory Specifications require

exactly one occurrence of EXTERNAL (see NOTE in clause 7.6.1).

7.6.1.3 The Bind protocol elements

The TheOsiBind shall be the Bind request argument as defined for the Directory protocol in question.

NOTE – The Bind argument starts with the [16] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712-1.

7.6.2 OSI Bind result

An OsiBindResult is returned by the responder if the OsiBind is acceptable and the responder decides to engage in

the application-association.

OsiBindResult{APPLICATION-CONTEXT:Protocols} ::= SET {

 mode-selector [0] IMPLICIT SET {mode-value [0] IMPLICIT

INTEGER(1)},

 normal-mode-parameters [2] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 responding-presentation-selector [3] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-result-list

 [5] IMPLICIT SEQUENCE SIZE (2) OF SEQUENCE {

 result [0] IMPLICIT Result(acceptance),

 transfer-syntax-name [1] IMPLICIT Transfer-syntax-name },

ISO/IEC 9594-5:2020 (E)

16 Rec. ITU-T X.519 (10/2019)

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE(1) OF SEQUENCE {

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(AARE-apdu{{Protocols}}

)}}}}}

OsiBindResult{APPLICATION-CONTEXT:Protocols} ::= SET {

 mode-selector [0] IMPLICIT SET {mode-value [0] IMPLICIT

INTEGER(1)},

 normal-mode-parameters [2] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 responding-presentation-selector [3] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-result-list

 [5] IMPLICIT SEQUENCE SIZE (2) OF SEQUENCE {

 result [0] IMPLICIT Result(acceptance),

 transfer-syntax-name [1] IMPLICIT Transfer-syntax-name },

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE(1) OF SEQUENCE {

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(AARE-apdu{{Protocols}}

)}}}}}

Result ::= INTEGER {

 acceptance (0),

 user-rejection (1),

 provider-rejection (2)}

AARE-apdu{APPLICATION-CONTEXT:Protocols} ::= [APPLICATION 1] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version1(0)}

 DEFAULT {version1},

 application-context-name [1] Application-context-name,

 result [2] Associate-result(accepted),

 result-source-diagnostic [3] Associate-source-diagnostic,

 responding-AP-title [4] Name OPTIONAL,

 responding-AE-qualifier [5] RelativeDistinguishedName OPTIONAL,

 responding-AP-invocation-identifier [6] AP-invocation-identifier OPTIONAL,

 responding-AE-invocation-identifier [7] AE-invocation-identifier OPTIONAL,

 implementation-information [29] IMPLICIT Implementation-data OPTIONAL,

 user-information [30] IMPLICIT

 Association-informationBindRes{{Protocols}}}

Association-informationBindRes{APPLICATION-CONTEXT:Protocols} ::=

 SEQUENCE SIZE (1) OF

 EXTERNAL (

 WITH COMPONENTS {

 identification (WITH COMPONENTS {..., syntax ABSENT}),

 data-value-descriptor ABSENT,

 data-value (CONTAINING TheOsiBindRes{{Protocols}})})

Associate-result ::= INTEGER {

 accepted (0),

 rejected-permanent (1),

 rejected-transient (2)}(0..2, ...)

Associate-source-diagnostic ::= CHOICE {

 acse-service-user [1] INTEGER {

 null (0),

 no-reason-given (1),

 application-context-name-not-supported (2),

 calling-AP-title-not-recognized (3),

 calling-AP-invocation-identifier-not-recognized (4),

 calling-AE-qualifier-not-recognized (5),

 calling-AE-invocation-identifier-not-recognized (6),

 called-AP-title-not-recognized (7),

 called-AP-invocation-identifier-not-recognized (8),

 called-AE-qualifier-not-recognized (9),

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 17

 called-AE-invocation-identifier-not-recognized (10)}(0..10, ...),

 acse-service-provider [2] INTEGER {

 null (0),

 no-reason-given (1),

 no-common-acse-version (2)}(0..2, ...)}

TheOsiBindRes{APPLICATION-CONTEXT:Protocols} ::=

 [17] APPLICATION-CONTEXT.&bind-operation.&ResultType({Protocols})

The OsiBindResult is carried in the User Data parameter of the session ACCEPT SPDU (see clause 8.3.4).

7.6.2.1 Presentation protocol elements

The presentation protocol elements constituting a CPA PPDU are those defined by the OsiBindResult data type above,

except for the embedded AARE-apdu.

The mode-selector component shall always be set to 1.

The normal-mode-parameters component has the following subcomponents:

a) The protocol-version subcomponent shall be omitted or set to version-1.

b) The responding-presentation-selector subcomponent, if supplied, shall be obtained from locally

held information.

c) The presentation-context-definition-result-list subcomponent shall have two elements in

a sequence corresponding to the sequence of elements provided in the presentation-context-

definition-list of the Bind request, each providing the result of the context negotiation for the

corresponding element as follows:

– The result shall be present and set to acceptance.

– The transfer-syntax-name shall be present and specify the object identifier for the basic

encoding rules (BER).

d) The user-data subcomponent has the following elements:

– The transfer-syntax-name subcomponent, if present, shall be the object identifier for the

encoding rules elected by the responder.

– The presentation-context-identifier subcomponent shall be given the same value as the

presentation-context-identifier of the element of the presentation-context-

definition-list of the Bind request that specified the ACSE abstract syntax name.

– The presentation-data-values subcomponent shall hold the ACSE protocol elements as

specified in clause 7.6.2.2.

7.6.2.2 ACSE protocol elements

The protocol-version component shall be omitted or set to version1, i.e., bit 0 set. If the component is present, the

responder shall not include any bit after bit 0.

The result component shall be set to accepted by the responder.

The result-source-diagnostic component shall take the acse-service-user choice and take the value null or

no-reason-given.

The application-context-name component shall be present and set to the value of the corresponding component of

the Bind request.

The responding-AP-title component, if supplied, shall be obtained from locally held information.

The responding-AE-qualifier component, if supplied, shall be obtained from locally held information.

The responding-AP-invocation-identifier component may optionally be supplied. The initiator may ignore this

component, if present.

The responding-AE-invocation-identifier component may optionally be supplied. The initiator may ignore this

component, if present.

The implementation-information component may hold implementation-specific information. This information

does not affect the application-association establishment procedure.

The user-information component has the following subcomponents:

ISO/IEC 9594-5:2020 (E)

18 Rec. ITU-T X.519 (10/2019)

a) direct-reference, if present, shall hold the object identifier for the ASN.1 basic encoding rules (BER).

b) indirect-reference shall identify the Directory abstract syntax within the presentation-

context-definition-list as defined in clause 7.6.1.1 d).

c) The single-ASN1-type shall hold the Bind result protocol elements as specified in clause 7.6.2.3.

7.6.2.3 The Bind result protocol elements

The TheOsiBindRes shall be the Bind result type as defined for the Directory protocol in question.

NOTE – The Bind result starts with the [17] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712-1.

7.6.3 OSI Bind error

OsiBindError{APPLICATION-CONTEXT:Protocols} ::= CHOICE {

 normal-mode-parameters SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 responding-presentation-selector

 [3] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-result-list

 [5] IMPLICIT Result-list OPTIONAL,

 provider-reason [10] IMPLICIT Provider-reason OPTIONAL,

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0]

 ABSTRACT-SYNTAX.&Type(AAREerr-apdu{{Protocols}})}}} OPTIONAL}}

Result-list ::=

 SEQUENCE SIZE (2) OF SEQUENCE {

 result [0] IMPLICIT Result,

 transfer-syntax-name [1] IMPLICIT Transfer-syntax-name OPTIONAL,

 provider-reason [2] IMPLICIT INTEGER {

 reason-not-specified (0),

 abstract-syntax-not-supported (1),

 proposed-transfer-syntaxes-not-supported (2)} OPTIONAL}

Provider-reason ::= INTEGER {

 reason-not-specified (0),

 temporary-congestion (1),

 local-limit-exceeded (2),

 called-presentation-address-unknown (3),

 protocol-version-not-supported (4),

 default-context-not-supported (5),

 user-data-not-readable (6),

 no-PSAP-available (7)}

AAREerr-apdu{APPLICATION-CONTEXT:Protocols} ::= [APPLICATION 1] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version1(0)}

 DEFAULT {version1},

 application-context-name [1] Application-context-name,

 result [2] Associate-result

 (rejected-permanent..rejected-transient),

 result-source-diagnostic [3] Associate-source-diagnostic,

 responding-AP-title [4] Name OPTIONAL,

 responding-AE-qualifier [5] RelativeDistinguishedName OPTIONAL,

 responding-AP-invocation-identifier [6] AP-invocation-identifier OPTIONAL,

 responding-AE-invocation-identifier [7] AE-invocation-identifier OPTIONAL,

 implementation-information [29] IMPLICIT Implementation-data OPTIONAL,

 user-information [30] IMPLICIT

 Association-informationBindErr{{Protocols}} OPTIONAL }

Association-informationBindErr{APPLICATION-CONTEXT:Protocols} ::=

 SEQUENCE SIZE (1) OF

 EXTERNAL (

 WITH COMPONENTS {

 identification (WITH COMPONENTS {..., syntax ABSENT}),

 data-value-descriptor ABSENT,

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 19

 data-value (CONTAINING TheOsiBindErr{{Protocols}})})

TheOsiBindErr{APPLICATION-CONTEXT:Protocols} ::=

 [18] APPLICATION-CONTEXT.&bind-operation.&Errors.&ParameterType ({Protocols})

The OsiBindError is carried in the Reason Code field of the session REFUSE SPDU (see clause 8.3.5).

7.6.3.1 Presentation protocol elements

The presentation protocol elements constituting a CPR PPDU are those defined by the OsiBindError data type above

except for the embedded AAREerr-apdu.

The normal-mode-parameters component has the following subcomponents:

NOTE 1 – The CPR-PPDU is a choice between X.410 mode and normal mode. These Directory Specifications only use the normal

mode. The CHOICE statement is retained to ensure bitwise backward compatibility when using other than BER or similar encoding.

a) The protocol-version subcomponent shall be as specified in clause 7.6.2.1.

b) The responding-presentation-selector subcomponent, if supplied, shall be as specified in

clause 7.6.2.1.

c) The presentation-context-definition-result-list subcomponent shall be specified as

follows:

– if the rejection is not related to presentation context negotiation, the result element shall be set to

acceptance, transfer-syntax-name shall be present specifying the object identifier for the

encoding rules by the responder, and provider-reason element shall be absent;

– if the abstract syntax in question is not supported by any of the proposed transfer syntaxes, the result

element shall set to provider-rejection and the provider-reason element shall be present

with the appropriate value; or

– if the abstract syntax in question is not supported at all and the previous bullet does not apply, the

result element shall set to user-rejection and the provider-reason element shall be present

with the appropriate value.

d) The provider-reason subcomponent shall be present if the application-association is rejected due to

problems detected within the presentation protocol elements of the Bind request. Otherwise it shall be

absent.

NOTE 2 – Clause 6.2.4.9 of Rec. ITU-T X.226 | ISO/IEC 8823-1 states for provider-reason: "If present, this shall indicate that

the rejection is by the responding presentation-service-provider; if absent this shall indicate that the rejection is by the responding

PS-user."

e) The user-data subcomponent shall be absent if provider-reason subcomponent is present.

Otherwise, it shall be present with the following elements:

– The transfer-syntax-name subcomponent, if present, shall be the object identifier for the ASN.1

basic encoding rules (BER).

– The presentation-context-identifier subcomponent shall be given the same value as the

presentation-context-identifier of the element of the presentation-context-

definition-list of the Bind request that specified the ACSE abstract syntax name.

– The presentation-data-values subcomponent shall hold the ACSE protocol elements as

specified in clause 7.6.3.2.

7.6.3.2 ACSE protocol elements

The protocol-version component shall be as specified in clause 7.6.2.2.

The application-context-name component shall be present and set to the value of the corresponding component of

the Bind request.

The result component shall be set to rejected-permanent or rejected-transient based on local considerations.

NOTE – According to clause 11.1.1 of Rec. ITU-T X.881 | ISO/IEC 13712-2, a Bind Error is carried in the A-ASSOCIATE

response/confirm with the Result parameter value of the A-ASSOCIATE service primitives set to "rejected (permanent)" or

"rejected (transient)", and the error value of the Bind operation is mapped on the User Information parameter of these service

primitives. At the protocol level, that translates to the result component being set to either rejected-permanent or rejected-

transient. Most of the Bind errors reflect a permanent condition. However, the serviceError with problem unavailable

might be considered as being transient.

The result-source-diagnostic component shall take values as follows depending on the condition:

ISO/IEC 9594-5:2020 (E)

20 Rec. ITU-T X.519 (10/2019)

a) if the rejection is within a directory protocol, the acse-service-user choice shall be taken with the

value null or no-reason-given; or

b) if the rejection is ACSE related or due to errors in a specified application process title, application-entity

title or application-context, the acse-service-user choice shall be taken with the appropriate value.

The value of the responding-AP-title component, if present, shall be obtained from locally held information.

The responding-AE-qualifier component, if present, shall be obtained from locally held information.

The responding-AP-invocation-identifier component, if present, may be ignored or retained for a future

association with that DSA.

The responding-AE-invocation-identifier component, if present, may be ignored or retained for a future

association with that DSA.

The implementation-information component may hold implementation-specific information.

The user-information component has the following subcomponents:

a) direct-reference, if present, shall hold the object identifier for the ASN.1 basic encoding rules (BER);

b) indirect-reference shall identify the Directory abstract syntax within the presentation-

context-definition-list as defined in clause 7.6.1.1 d);

c) the single-ASN1-type shall hold the Bind error protocol elements as specified in clause 7.6.3.3.

7.6.3.3 The Bind error protocol elements

The TheOsiBindErr shall be the Bind error type as relevant for the type of error.

NOTE – The Bind error starts with the [18] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712-1.

7.6.4 OSI unbind request

TheOsiBindErr{APPLICATION-CONTEXT:Protocols} ::=

 [18] APPLICATION-CONTEXT.&bind-operation.&Errors.&ParameterType ({Protocols})

OsiUnbind ::= CHOICE {

 fully-encoded-data

 [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(TheOsiUnbind)}}}

TheOsiUnbind ::= [APPLICATION 2] IMPLICIT SEQUENCE {

 reason [0] IMPLICIT Release-request-reason OPTIONAL}

Release-request-reason ::= INTEGER {normal(0)}

The OsiUnbind is carried in the User Data of the session FINISH SPDU (see clause 8.3.6).

Only the initiator of an application-association may invoke an unbind request.

NOTE 1 – Clause 8.5 of Rec. ITU-T X.880 | ISO/IEC 13712-1 defines a CONNECTION-PACKAGE information object class, where

the field &responderCanUnbind specifies whether the responder may issue an unbind or not. It defaults to FALSE. Rec. ITU-T

X.519 (2001) | ISO/IEC 9594-5:2001 did not add the &responderCanUnbind for any of the protocols. The IDM protocol allows

the responder to issue an unbind, except for the DAP protocol (see clause 9.2.2).

NOTE 2 – Clause 8.5 of Rec. ITU-T X.880 | ISO/IEC 13712-1 also defines an &unbindCanFail field of the

CONNECTION-PACKAGE information object class with default equal FALSE. Rec. ITU-T X.519 (2001) | ISO/IEC 9594-5:2001 did

not add the &unbindCanFail for any of the protocols.

7.6.4.1 Presentation protocol elements

The presentation protocol elements are only those defined by the User-data data type defined by Rec. ITU-T X.226 |

ISO/IEC 8823-1.

The presentation-context-identifier component shall be given the same value as the presentation-

context-identifier of the element of the presentation-context-definition-list of the Bind request that

specified the ACSE abstract syntax.

The presentation-data-values component shall hold the ACSE protocol elements as specified in clause 7.6.4.2.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 21

7.6.4.2 ACSE protocol elements

The reason component shall be set to normal or be absent. The absence of reason component indicates normal release.

NOTE 1 – According to clause 11.1.2 of Rec. ITU-T X.881 | ISO/IEC 13712-2, the reason shall always be set to normal.

NOTE 2 – According to Rec. ITU-T X.226 | ISO/IEC 8823-1, there are no presentation protocol elements for the normal release

of a connection. Normal release is accomplished by the normal release of the underlying session connection.

7.6.5 OSI unbind result

OsiUnbindResult ::= CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(TheOsiUnbindRes)}}}

TheOsiUnbindRes ::= [APPLICATION 3] IMPLICIT SEQUENCE {

 reason [0] IMPLICIT Release-response-reason OPTIONAL }

Release-response-reason ::= INTEGER {normal(0)}

NOTE – Editions before Rec. ITU-T X.5** (2005) | ISO/IEC 9594-*:2005 specify that the Result parameter of the A-RELEASE

service as defined by Rec. ITU-T X.217 | ISO/IEC 8649 shall be set to 'affirmative'.

The OsiUnbindResult is carried in the User Data of the session DISCONNECT SPDU (see clause 8.3.7).

7.6.5.1 Presentation protocol elements

The presentation protocol elements are only those defined by the User-data data type defined by Rec. ITU-T X.226 |

ISO/IEC 8823-1.

The presentation-context-identifier component shall be given the same value as the presentation-

context-identifier of the element of the presentation-context-definition-list of the Bind request that

specified the ACSE abstract syntax.

The presentation-data-values component shall hold the ACSE release request.

7.6.5.2 ACSE protocol elements

The absence of a reason component indicates normal release.

7.6.6 OSI operations

OsiOperation{OPERATION:Operations} ::= CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0]

 ABSTRACT-SYNTAX.&Type(OsiDirectoryOperation {{Operations}})}}}

OsiDirectoryOperation{OPERATION:Operations} ::= CHOICE {

 request OsiReq{{Operations}},

 result OsiRes{{Operations}},

 error OsiErr{{Operations}},

 reject OsiRej}

The OsiOperation is carried in the User Information field of the session DATA TRANSFER SPDU (see clause 8.3.10).

7.6.6.1 Presentation protocol elements

The presentation-context-identifier component shall be given the same value as the presentation-

context-identifier of the element of the presentation-context-definition-list of the Bind request that

specified the Directory abstract syntax name for the Directory protocol in question.

The presentation-data-values component shall hold the Directory request, result, error or reject.

7.6.6.2 OSI Request

OsiReq{OPERATION:Operations} ::= [1] IMPLICIT SEQUENCE {

 invokeId InvokeId,

 opcode OPERATION.&operationCode({Operations}),

 argument OPERATION.&ArgumentType({Operations}{@opcode}) }

ISO/IEC 9594-5:2020 (E)

22 Rec. ITU-T X.519 (10/2019)

NOTE 1 – The Request starts with the [1] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712-1.

The invokeId component identifies the particular invocation. It shall not be a value that has been used for a previous

request that requires a response (result and/or error) and which is still in progress. If this is violated, the receiver shall

issue an OsiReject with an InvokeProblem set to duplicateInvocation. If the request does not necessarily result

in a response, it is a local option as to the time passed before reusing an invokeId.

NOTE 2 – All currently defined Directory operations require a response.

The opcode component shall hold the operation code for the particular type of operation. If an unknown operation code

is specified and if the receiver is a performer, the receiver shall issue an OSIReject with an InvokeProblem set to

unrecognizedOperation. If the receiver is a chaining-only DSA, the procedure in clause 12.2.3 shall be followed.

The argument component shall hold the argument formed in accordance with the &ArgumentType field of the operation

type identified by the opcode component for the protocol in question.

7.6.6.3 OSI result

OsiRes{OPERATION:Operations} ::= [2] IMPLICIT SEQUENCE {

 invokeId InvokeId,

 result SEQUENCE {

 opcode OPERATION.&operationCode({Operations}),

 result OPERATION.&ResultType({Operations}{@.opcode}) }}

NOTE – The Result starts with the [2] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712-1.

The invokeID component shall be equal to the one specified in the corresponding request.

The opcode component shall be equal to the one specified in the corresponding request.

The result component shall hold the result formed in accordance with the &ResultType field of the operation type

identified by the opcode component for the protocol in question.

7.6.6.4 OSI error

OsiErr{OPERATION:Operations} ::= [3] IMPLICIT SEQUENCE {

 invokeID InvokeId,

 errcode OPERATION.&Errors.&errorCode({Operations}),

 error OPERATION.&Errors.&ParameterType({Operations}{@.errcode}) }

NOTE – The Error starts with the [3] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712-1.

The invokeID component shall be equal to the one specified in the corresponding OsiRequest.

The errcode component shall be set to the code for one of the errors identified by the ERRORS field of the OPERATION

information object identified by the opcode of the corresponding OsiRequest.

The error component shall hold the parameters as identified by the errcode component.

7.6.6.5 OSI reject

The type OsiRej is used for reporting erroneous use of the other Directory PDUs. It is specified as follows:

OsiRej ::= [4] IMPLICIT SEQUENCE {

 invokeId InvokeId,

 problem CHOICE {

 general [0] IMPLICIT GeneralProblem,

 invoke [1] IMPLICIT InvokeProblem,

 returnResult [2] IMPLICIT ReturnResultProblem,

 returnError [3] IMPLICIT ReturnErrorProblem,

 ... },

 ... }

NOTE – The Reject starts with the [4] tag as defined in Rec. ITU-T X.880 | ISO/IEC 13712.

The invokeId component shall be equal to the one specified in the PDU to be rejected, except if the invokeId cannot

be determined, it shall take the absent choice instead (see clause 6.2).

The problem component shall hold the Reject problem as defined by clause 7.6.6.6.

7.6.6.6 Reject problems

GeneralProblem ::= INTEGER {

 unrecognizedPDU (0),

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 23

 mistypedPDU (1),

 badlyStructuredPDU (2) }

A GeneralProblem is a fundamental problem with the form or structure of a Directory PDU. The possibilities are

specified as follows:

a) unrecognizedPDU – The leading tag of the PDU indicates that it is not an OsiRequest, an OsiResult,

an OsiError or an OsiReject.

b) mistypedPDU – The structure of the PDU does not conform to the appropriate definition.

c) badlyStructuredPDU – The structure of the PDU cannot be determined based on the expected abstract

syntax.

InvokeProblem ::= INTEGER {

 duplicateInvocation (0),

 unrecognizedOperation (1),

 mistypedArgument (2),

 resourceLimitation (3),

 releaseInProgress (4)}

An InvokeProblem indicates that a component of an OsiRequest was erroneous. The possibilities are specified as

follows:

a) duplicateInvocation – See clause 7.6.6.2.

b) unrecognizedOperation – The operation code is not one of those defined for the Directory protocol in

question.

c) mistypedArgument – The argument is not formed according to the &ArgumentType field of the

operation identified by the opcode component.

d) resourceLimitation – The intended performer is not willing to perform the operation due to a resource

limitation.

e) releaseInProgress – The intended performer is not willing to perform the operation because it is about

to release the application-association.

ReturnResultProblem ::= INTEGER {

 unrecognizedInvocation (0),

 resultResponseUnexpected (1),

 mistypedResult (2)}

A ReturnResultProblem indicates that a component of an OsiResult was erroneous. The possibilities are specified

as follows:

a) unrecognizedInvocation – The InvokeId was not one that identifies an outstanding request.

b) resultResponseUnexpected – A result was received for an operation for which no result is defined.

NOTE 1 – All the currently defined Directory operation types specify a result.

c) mistypedResult – The result is not formed according to the &ResultType field of the operation

identified by the opcode component.

ReturnErrorProblem ::= INTEGER {

 unrecognizedInvocation (0),

 errorResponseUnexpected (1),

 unrecognizedError (2),

 unexpectedError (3),

 mistypedParameter (4)}

A ReturnErrorProblem indicates that a component of an OsiError was erroneous. The possibilities are specified as

follows:

a) unrecognizedInvocation – The InvokeId was not one that identifies an outstanding request.

b) errorResponseUnexpected – An error was received for an operation for which no error is defined.

NOTE 2 – All the currently defined Directory operation types specify one or more errors.

c) unrecognizedError – An error was received that was not one of those specified by these Directory

Specifications.

d) unexpectedError – An error was received that was not one of those identified by the &Errors field of

the operation identified by the opcode component; or

ISO/IEC 9594-5:2020 (E)

24 Rec. ITU-T X.519 (10/2019)

e) mistypedParameter – The parameter of the error result is not formed according to the

&ParameterType field of the error identified by the errcode component.

7.6.7 Presentation abort

Abort can be caused by an application problem (ARU-PPDU) or a Presentation Layer problem (ARP-PPDU).

PresentationAbort ::= CHOICE {

 aru-ppdu ARU-PPDU,

 arp-ppdu ARP-PPDU }

7.6.7.1 OSI application abort

ARU-PPDU ::= CHOICE {

 normal-mode-parameters [0] IMPLICIT SEQUENCE {

 presentation-context-identifier-list

 [0] IMPLICIT Presentation-context-identifier-list,

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE(1..MAX) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(ABRT-apdu)}}}}}

Presentation-context-identifier-list ::= SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 transfer-syntax-name Transfer-syntax-name}

ABRT-apdu ::= [APPLICATION 4] IMPLICIT SEQUENCE {

 abort-source [0] IMPLICIT ABRT-source }

ABRT-source ::= INTEGER {

 acse-service-user (0),

 acse-service-provider (1) }

The ABRT-PPDU is used if the abort is caused by problems at the Directory Protocol level or within ACSE rather than

within the presentation protocol elements.

The ABRT-PPDU is carried in the User Data of the session ABORT SPDU and the Transport Disconnect field bit 2 shall

be set and bit 3 shall be reset (see clause 8.3.8).

The ABRT-PPDU may cause loss of information in transfer.

The receipt of an ABRT-PPDU on an association supporting the DAP terminates all request processing. Except for certain

conditions described in Rec. ITU-T X.518 | ISO/IEC 9594-4, this is also true for the DSP. It is a Directory user's

responsibility to confirm if requested modifications to the DIB occurred.

The receipt of an ABRT-PPDU on an association supporting the DISP is described in Rec. ITU-T X.525 | ISO/IEC 9594-9.

The receipt of an ABRT-PPDU on an association supporting the DOP is described in Rec. ITU-T X.518 | ISO/IEC 9594-4.

7.6.7.1.1 Presentation protocol elements

The normal-mode-parameters component has the following subcomponents:

a) The presentation-context-identifier-list subcomponent indicates which transfer syntax is

used for the user data. Only ACSE information is included in the user data. It shall have one element which

is a sequence type with:

– the presentation-context-identifier subcomponent shall be given the same value as the

presentation-context-identifier of the element of the presentation-context-

definition-list of the Bind request that specified the ACSE abstract syntax name;

– the transfer-syntax-name shall be the object identifier for the basic encoding rules (BER).

b) The user-data subcomponent has the following elements:

– the presentation-context-identifier subcomponent shall be given the same value as the

presentation-context-identifier of the element of the presentation-context-

definition-list that specifies the ACSE abstract syntax;

– the presentation-data-values subcomponent shall hold the ACSE protocol elements as defined

in clause 7.6.7.1.2.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 25

7.6.7.1.2 ACSE protocol elements

If the abort is caused at the Directory Protocol level, the ABRT-source shall be set to acse-service-user. If the abort

is caused at the ACSE level, the ABRT-source shall be set to acse-service-provider.

NOTE – ABRT-apdu as defined by Rec. ITU-T X.227 | ISO/IEC 8650-1 have two additional parameters. The

abort-diagnostics shall not be present if only the Kernel is used, which implies that the abort is only used for signalling a

protocol error. The user-information is not used, as these Directory Specifications provide no abort information.

7.6.7.2 OSI Presentation abort

ARP-PPDU ::= SEQUENCE {

 provider-reason [0] IMPLICIT Abort-reason OPTIONAL,

 event-identifier [1] IMPLICIT Event-identifier OPTIONAL }

Abort-reason ::= INTEGER {

 reason-not-specified (0),

 unrecognized-ppdu (1),

 unexpected-ppdu (2),

 unexpected-session-service-primitive (3),

 unrecognized-ppdu-parameter (4),

 unexpected-ppdu-parameter (5),

 invalid-ppdu-parameter-value (6)}

Event-identifier ::= INTEGER {

 cp-PPDU (0),

 cpa-PPDU (1),

 cpr-PPDU (2),

 aru-PPDU (3),

 arp-PPDU (4),

 td-PPDU (7),

 s-release-indication (14),

 s-release-confirm (15) }

The ARP-PDU is used if the abort is caused by problems within the presentation protocol level.

The ARP-PDU is carried in the User Data of the session ABORT SPDU, and the Transport Disconnect field bit 2 shall be

set and bit 3 shall be reset (see clause 8.3.8).

The ARP-PDU may cause loss of information in transfer.

The receipt of an ARP-PDU shall be treated as specified for ARU-PDU in clause 7.6.7.1.

The provider-reason component may take one of the following values:

a) reason-not-specified;

b) unrecognized-ppdu indicating that an unknown PPDU was received;

NOTE – This may be a PPDU as defined by Rec. ITU-T X.226 | ISO/IEC 8823-1, but not used by this Directory

Specification. Some implementations may signal this as being an unexpected-ppdu. However, it is not a requirement

that an implementation shall recognize PPDUs not defined by this Directory Specification.

c) unexpected-ppdu indicating that a PPDU identified by the Event-identifier was received out of

sequence;

d) unexpected-session-service-primitive as indicated by the Event-identifier;

e) unrecognized-ppdu-parameter – should not be used according to the rules of extensibility (see

Note 1 in clause 7.5);

f) unexpected-ppdu-parameter indicating that even a parameter was recognized, but it was not expected

at this particular time or place in a PPDU as identified by the Event-identifier;

g) invalid-ppdu-parameter-value indicating that a parameter had an invalid value in a PPDU as

identified by the Event-identifier.

The Event-identifier shall be present when referenced above. Otherwise, it shall be absent.

a) s-release-indication indicates the application-association has been terminated unexpectedly by the

Session Layer function of the peer system;

b) s-release-confirm indicates the application-association has been terminated unexpectedly by the local

Session Layer function.

ISO/IEC 9594-5:2020 (E)

26 Rec. ITU-T X.519 (10/2019)

8 Directory protocol mapping onto OSI services

8.1 Abstract syntaxes and transfer syntaxes

As part of an application-association the protocol elements of the supporting protocol have to be agreed between the two

parties. This is done by signalling the relevant abstract syntaxes as part of the Bind operation. An abstract syntax is

assigned an object identifier, which is then carried in the Bind.

Each of the directory protocols requires two abstract syntaxes, one reflecting the protocol element of the ACSE protocol

and one reflecting the actual Directory protocol (Directory abstract syntax).

NOTE – The protocol elements of ACSE are part of the Directory Specifications for Rec. ITU-T X.5** (2005) | ISO/IEC 9594-*:2005

and subsequent editions. However, for backward compatibility, it is still necessary to signal two abstract syntaxes in the Bind

operation.

The object identifiers for Directory abstract syntaxes are:

id-as-directoryAccessAS OBJECT IDENTIFIER ::= {id-as 1}

id-as-directorySystemAS OBJECT IDENTIFIER ::= {id-as 2}

id-as-directoryShadowAS OBJECT IDENTIFIER ::= {id-as 3}

id-as-directoryOperationalBindingManagementAS OBJECT IDENTIFIER ::= {id-as 4}

The ACSE abstract syntax is identified by:

id-acseAS OBJECT IDENTIFIER ::=

 {joint-iso-itu-t association-control(2) abstract-syntax(1) apdus(0) version(1)}

The ASN.1 encoding rules for an abstract syntax are signalled by an object identifier.

The object identifiers for the ASN.1 encoding rules are defined in Rec. ITU-T X.690 | ISO/IEC 8825-1. For convenience,

the object identifier for BER is supplied here:

{ joint-iso-itu-t asn1(1) basic-encoding(1) }

8.2 Application-context

An application-context is a set of common rules shared by two application-entities in order to support an

application-association. An application-context is identified by an application-context-name in the form of an object

identifier. The application-context-name is signalled by the Bind operation.

An application-context is defined using the following ASN.1 information object class:

APPLICATION-CONTEXT ::= CLASS {

 &bind-operation OPERATION,

 &Operations OPERATION,

 &applicationContextName OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 BIND-OPERATION &bind-operation

 OPERATIONS &Operations

 APPLICATION CONTEXT NAME &applicationContextName }

The &bind-operation field is used for specifying the type of Bind operation corresponding to the specified application-

context name.

The &Operations field is used for listing all the Directory operations relevant to the application-context.

The &applicationContextName field is used for supplying the object identifier for the application-context.

NOTE – This ASN.1 information object class is an abbreviated version of the one defined by Rec. ITU-T X.881 | ISO/IEC 13712-2

and is provided here as certain specifications use the ASN.1 information object reference rather than the assigned object identifier.

8.2.1 Application-context for DAP

directoryAccessAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION directoryBind

 OPERATIONS {read |

 compare |

 abandon |

 list |

 search |

 addEntry |

 removeEntry |

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 27

 modifyEntry |

 modifyDN |

 administerPassword |

 changePassword }

 APPLICATION CONTEXT NAME id-ac-directoryAccessAC }

The directoryAccessAC application-context is the one defining the DAP. Support of this application-context requires

support of the id-acseAS and the id-as-directoryAccessAS abstract syntaxes.

For a DUA it implies support for at least one DAP operation type, beyond possibly the Abandon operation type. For a

DSA it implies support of all the DAP operations.

8.2.2 Application-context for DSP

directorySystemAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSABind

 OPERATIONS {chainedRead |

 chainedCompare |

 chainedAbandon |

 chainedList |

 chainedSearch |

 chainedAddEntry |

 chainedRemoveEntry |

 chainedModifyEntry |

 chainedModifyDN |

 chainedAdministerPassword |

 chainedChangePassword |

 chainedLdapTransport |

 chainedLinkedLDAP }

 APPLICATION CONTEXT NAME id-ac-directorySystemAC }

The directorySystemAC application-context is the one defining the DSP. Support of this application-context requires

support of the id-acseAS and the id-as-directorySystemAS abstract syntaxes.

It implies support of all the DSP operations as listed above.

8.2.3 Application-context for DISP

shadowSupplierInitiatedAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {updateShadow |

 coordinateShadowUpdate}

 APPLICATION CONTEXT NAME id-ac-shadowSupplierInitiatedAC }

The shadowSupplierInitiatedAC application-context is a DISP application-context for an application-association

where shadow updating is initiated by the supplier and the operation mode is synchronous.

NOTE – The terms "consumer" and "supplier" are used to designate two roles. These roles correspond to the two terms "shadow

consumer" and "shadow supplier", respectively, used in Rec. ITU-T X.525 | ISO/IEC 9594-9.

shadowConsumerInitiatedAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {requestShadowUpdate |

 updateShadow}

 APPLICATION CONTEXT NAME id-ac-shadowConsumerInitiatedAC }

The shadowConsumerInitiatedAC application-context is a DISP application-context for an application-association

where shadow updating is initiated by the consumer and the operation mode is synchronous.

shadowSupplierInitiatedAsynchronousAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {updateShadow |

 coordinateShadowUpdate}

 APPLICATION CONTEXT NAME id-ac-shadowSupplierInitiatedAsynchronousAC }

The shadowSupplierInitiatedAsynchronousAC application-context is a DISP application-context for an

application-association where shadow updating is initiated by the supplier and the operation mode is asynchronous.

shadowConsumerInitiatedAsynchronousAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {requestShadowUpdate |

 updateShadow}

ISO/IEC 9594-5:2020 (E)

28 Rec. ITU-T X.519 (10/2019)

 APPLICATION CONTEXT NAME id-ac-shadowConsumerInitiatedAsynchronousAC }

The shadowConsumerInitiatedAsynchronousAC application-context is a DISP application-context for an

application-association where shadow updating is initiated by the consumer and the operation mode is asynchronous.

8.2.4 Application-context for DOP

directoryOperationalBindingManagementAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAOperationalBindingManagementBind

 OPERATIONS {establishOperationalBinding |

 modifyOperationalBinding |

 terminateOperationalBinding}

 APPLICATION CONTEXT NAME id-ac-directoryOperationalBindingManagementAC }

The directoryOperationalBindingManagementAC application-context is the one defining the DOP.

8.3 Session Layer specification

8.3.1 Structure of session-protocol-data-unit (SPDU)

A session-protocol-data-unit (SPDU) consists of an SPDU identifier (SI), zero or more parameters each identified by a

parameter identifier (PI) and possibly, a parameter value (PV) field. Related parameters can be grouped and then be

identified by a parameter group identifier (PGI).

The first part of an SPDU is the SPDU identifier (SI) field. It consists of a single octet. The value is a binary number.

A length indicator (LI) is used to indicate the length of an SPDU, the length of a parameter or the length of a group of

parameters. LI fields indicating lengths within the range 0-254 shall comprise one octet. LI fields indicating lengths within

the range 255-65.535 shall comprise three octets. The first octet shall then be coded 1111 1111 and the second and third

octets shall contain the length of the associated parameter field with the high order bits in the first of these two octets.

The value of the LI field does not include either itself or any subsequent User Information field.

NOTE – Of the SPDU used by this Directory Specification, only the DATA TRANSFER SPDU has a User Information field.

The bits of an octet are numbered from 1 to 8, where bit 1 is the least significant bit.

Figure 1 illustrates the case where an SPDU has no parameters. The ABORT ACCEPT SPDU is an example. The LI field

then has the value 0.

X.519(12)_F01

S
I

L
I

Figure 1 – SPDU without parameters

Figure 2 illustrates the case where an SPDU has two separate parameters, each identified by a PI. The first LI field

indicates the length of the SPDU, excluding the SI field and the LI field itself. The two other LI fields indicate the length

of the parameters.

As an example: If the first PV is 3 octets and the second PV is 4 octets, then the first LI field has the value 11, the second

LI field has the value 3 and the third LI field has the value 4.

X.519(12)_F02

S
I

L
I

P
I

L
I

P
V

P
I

L
I

P
V

Figure 2 – SPDU with parameters – Not grouped

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 29

Figure 3 illustrates the case where an SPDU has two parameters grouped together, each identified by a PI. The group is

identified by a PGI field. The first LI field indicates the length of the SPDU, excluding the SI field and the LI field itself.

The next LI field indicates the length of the group excluding the PGI field and the LI field itself. The two other LI fields

indicate the length of the parameters.

As an example: If the first PV is 5 octets and the second PV is 3 octets, then the first LI field has the value 14, the second

LI field has the value 12, the third LI field has the value 5 and the fourth LI field has the value 3.

X.519(12)_F03

S
I

L
I

P
G
I

L
I

P
I

L
I

P
V

P
I

L
I

P
V

Figure 3 – SPDU with parameters – Grouped

8.3.2 TSDU size and segmenting

The maximum transport-service-data-unit (TSDU) size expresses the maximum number of octets to be presented to the

Transport Layer for transmission. The maximum TSDU size is negotiated during application-association establishment

for each direction of transmission (see clauses 8.3.3 and 8.3.4). If a Directory PDU including the session protocol overhead

exceeds that maximum, it is necessary to segment the Directory PDU into multiple SPDUs.

Each application process proposes a maximum TSDU size that the initiator is permitted to send. The lesser of the two

numbers is used. A zero value is interpreted to mean an unlimited TSDU size. If either application process proposes zero,

the initiator shall not send segmented data on the application-association.

Each application process also proposes a maximum TSDU size that the responder is permitted to send. The lesser of the

two numbers is used. A zero value is interpreted to mean an unlimited TSDU size. If either application process proposes

zero, the responder shall not send segmented data on the application-association.

8.3.3 Session CONNECT SPDU

Table 1 – Parameters of the CONNECT SPDU

PGI M/O Code PI M/O Code Length

Connection Identifier O 1

Calling SS-user Reference O 10 64 octets maximum

Common reference O 11 64 octets maximum

Additional Reference
Information

O 12 4 octets maximum

Connect/Accept Item M 5

Protocol options M 19 1 octet

TSDU Maximum Size O 21 4 octets

Version Number M 22 1 octet

 Session User Requirements M 20 2 octets

 Calling Session Selector O 51 16 octets maximum

 Called Session Selector O 52 16 octets maximum

User data M 193 512 octets maximum

Extended User Data M 194 10 240 octets maximum

The SI field shall be given the value 13 ('0D'H).

The Connection Identifier is an optional parameter group that is filled with locally generated data that allows identification

of this session connection. It may have the following optional parameters:

a) The Calling SS-user Reference, i.e., a reference selected by the initiator;

NOTE 1 – An SS-user or session-service-user is according to Rec. ITU-T X.200 | ISO/IEC 7498-1 a Presentation Layer function

using the Session Service.

b) Common Reference; and

c) Additional Reference Information.

ISO/IEC 9594-5:2020 (E)

30 Rec. ITU-T X.519 (10/2019)

Connect/Accept Item is a mandatory parameter group with the following parameters:

a) Protocol Options – Extended concatenation, as defined by Rec. ITU-T X.225 | ISO/IEC 8327-1, is not

relevant for this Directory Specification. This field shall be absent or the value shall be set to '00'H (default

value). However, an implementation should accept the value '01'H.

b) The TSDU Maximum Size PV field shall be present if a TSDU Maximum Size is proposed. If the TSDU

Maximum Size PV field is present:

i) the first two octets of the PV field shall contain the proposed maximum TSDU size, expressed in

octets, in the direction from the initiator to the responder, encoded as a binary number, where the first

of the two octets is the high order part of the number;

ii) the second two octets of the PV field shall contain the proposed maximum TSDU size, expressed in

octets, in the direction from the responder to the initiator, encoded as a binary number, where the first

of the two octets is the high order part of the number.

 If this parameter is absent, the TSDU Maximum Size is not limited. If either pair of octets has the

value zero, the TSDU size is not limited in the direction of transfer associated with that pair of octets.

c) Version Number – This field shall be given the value '02'H.

Session User Requirements field shall be set to '0002'H.

NOTE 2 – Only the session duplex functional unit is used by the Directory.

Calling Session Selector field shall hold the value of the initiator's session-selector, if one is assigned, and shall have a

value obtained from locally held information. If the initiator does not have a session-selector within its presentation-

address, this field shall be absent.

Called Session Selector field shall be present if it is known to be part of the addressing for the receiving system. Otherwise,

it shall be absent. If present, the value shall be obtained from:

– information returned in a ContinuationReference as the result of a previous Directory operation; or

– locally held information.

Both the User Data parameter and the Extended User Data parameter shall be supported, but only one of these two

parameters may be used for an instance of communication. If the user data to be included is 512 octets or less, the User

Data Parameter shall be used. If user data is larger than 512 octets, the Extended User Data parameter shall be used and

the User Data parameter shall not be used.

The OSI Bind request is carried as user data of the session CONNECT SPDU (see clause 7.6.1). The OSI Bind Request

shall not exceed 10240 octets.

8.3.4 Session ACCEPT SPDU

Table 2 – Parameters of the ACCEPT SPDU

PGI M/O Code PI M/O Code Length

Connection Identifier O 1

Called SS-user Reference O 9 64 octets maximum

Common Reference O 11 64 octets maximum

Additional Reference Information O 12 4 octets maximum

Connect/Accept Item O 5

Protocol options M 19 1 octet

TSDU maximum size O 21 4 octets

Version number M 22 1 octet

 Session User Requirements M 20 2 octets

 Calling Session Selector O 51 16 octets maximum

 Responding Session Selector O 52 16 octets maximum

User data M 193

The SI field shall be given the value 14 ('0E'H).

The Connection Identifier is an optional parameter group that is filled with locally generated data that allows identification

of this session connection. It may have the following optional parameters:

a) the Called SS-user Reference;

b) Common Reference; and

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 31

c) Additional Reference Information.

Connect/Accept Item is a mandatory parameter group with the following parameters:

a) Protocol Options – This field shall be absent or the value shall be set to '00'H (default value). However, an

implementation should accept the value '01'H.

b) TSDU Maximum Size – This field shall be present if a TSDU Maximum Size is proposed by the responder.

The encoding and default for this field is as for the CONNECT SPDU (see clause 8.3.3).

c) Version Number – This field shall be given the value '02'H.

Session User Requirements field shall be set to '0002'H.

Calling Session Selector field shall be present if the corresponding field was present in the CONNECT SPDU and shall

then hold the same value as that field. Otherwise, this field shall be absent.

Responding Session Selector field, if supplied, shall have a value obtained from locally held information.

The User Data parameter shall be supported. It shall be used to carry the OsiBindResult (see clause 7.6.2).

The length of the ACCEPT SPDU shall not exceed 65 539 octets.

8.3.5 Session REFUSE SPDU

The session REFUSE SPDU is used by the responder to refuse an application-association.

Table 3 – Parameters of the REFUSE SPDU

PGI M/O Code PI M/O Code Length

Connection Identifier O 1

Called SS-user Reference O 9 64 octets maximum

Common Reference O 11 64 octets maximum

Additional Reference Information O 12 4 octets maximum

 Transport Disconnect O 17 1 octet

 Session User Requirements O 20 2 octets

 Version Number O 22 1 octet

 Reason Code M 50 See below.

The SI field shall be given the value 12 ('0C'H).

The Connection Identifier is an optional parameter group that is filled with locally generated data that allows identification

of this session connection. It may have the following optional parameters:

a) the Called SS-user Reference;

b) Common Reference; and

c) Additional Reference Information.

The Transport Disconnect field indicates whether the underlying transport-connection shall be released or kept. The

encoding for this field shall be

a) bit 1 = 0: Transport connection is kept;

b) bit 1 = 1: Transport connection is released.

Bits 2-8 are reserved.

If this field is absent, the transport connection is released.

The Session User Requirements field shall not be present if the Reason Code field is not set to 2. If the Reason Code field

is set to 2, this field shall be present and be set to '0002'H.

The Reason Code field shall contain a reason code in the first octet. Depending on the value of this first octet, additional

octets may be used. The following values are defined for the first octet:

a) 0: Rejection by called SS-user; reason not specified.

b) 1: Rejection by called SS-user due to temporary congestion.

c) 2: Rejection by called SS-user. Subsequent octets may be used for user data up to a length of 512 octets

if Protocol Version 1 has been selected, and up to a length where the total length (including SI and

LI) of the SPDU does not exceed 65 539 octets if Protocol Version 2 has been selected.

ISO/IEC 9594-5:2020 (E)

32 Rec. ITU-T X.519 (10/2019)

d) * 128 + 1: Session Selector unknown.

e) * 128 + 2: SS-user not attached to SSAP.

f) 128 + 3: Session Protocol Machine congestion at connect time.

g) * 128 + 4: Proposed protocol versions not supported.

h) * 128 + 5: Rejection by the Session Protocol Machine, reason not specified.

i) * 128 + 6: Rejection by the Session Protocol Machine; implementation restriction stated in the Protocol

Implementation Conformance Statement.

NOTE – Reasons marked with an asterisk (*) may be considered persistent, others may be considered as transient.

All other values are reserved.

8.3.6 Session FINISH SPDU

Table 4 – Parameters of the FINISH SPDU

PGI M/O Code PI M/O Code Length

 Transport Disconnect O 17

User Data M 193

The SI field shall be given the value 9.

The Transport Disconnect field indicates whether the underlying transport-connection shall be released or kept. The

encoding for this field shall be:

a) bit 1 = 0: Transport connection is kept; or

b) bit 1 = 1: Transport connection is released.

If this field is absent, the transport connection is released.

The User Data field shall hold the OsiUnbind (see clause 7.6.4). The length of the User Data parameter is limited so that

the total length (including SI and LI) of the SPDU does not exceed 65 539 octets.

NOTE – The Enclosure Item parameter as defined for the FINISH SPDU by Rec. ITU-T X.225 | ISO/IEC 8327-1 is not relevant,

as only a limited amount of user data will be passed.

8.3.7 Session DISCONNECT SPDU

Table 5 – Parameters of the DISCONNECT SPDU

PGI M/O Code PI M/O Code Length

User Data M 193

The SI field shall be given the value 10.

The User Data field shall hold the OsiUnbindResult (see clause 7.6.5). The length of the User Data parameter is limited

so that the total length (including SI and LI) of the SPDU does not exceed 65 539 octets.

NOTE – The Enclosure Item parameter as defined for the DISCONNECT SPDU by Rec. ITU-T X.225 | ISO/IEC 8327-1 is not

relevant, as only a limited amount of user data will be passed.

8.3.8 Session ABORT SPDU

Table 6 – Parameters of the ABORT SPDU

PGI M/O Code PI M/O Code Length

 Transport Disconnect M 17

 Reflect Parameter Value O 49 9 octets maximum

User Data O 193

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 33

The SI field shall be given the value 25.

The Transport Disconnect field shall indicate whether or not the transport connection is to be kept, together with an

optional reason code. The encoding for this field shall be:

a) bit 1 = 0: Transport connection is kept;

b) bit 1 = 1: Transport connection is released;

c) bit 2 = 1: User abort;

d) bit 3 = 1: Protocol error;

e) bit 4 = 1: No reason;

f) bit 5 = 1: Implementation restriction stated in the Protocol Implementation Conformance Statement.

Bits 6-8 are reserved.

The Reflect Parameter Values field shall only be present if the Transport Disconnect field indicates protocol error and

shall contain an implementation-defined value and the semantics.

The User Data field shall only be present if the Transport Disconnect field indicates user abort and shall contain the ARU-

PPDU (see clause 7.6.7.1) or ARP-PPDU (see clause 7.6.7.2). The length of the User Data parameter is limited so that the

total length (including SI and LI) of the SPDU does not exceed 65 539 octets.

NOTE – The Enclosure Item parameter as defined for the ABORT SPDU by Rec. ITU-T X.225 | ISO/IEC 8327-1 is not relevant,

as only a limited amount of user data will be passed.

8.3.9 Session ABORT ACCEPT SPDU

The SI field shall be given the value 26.

There is no parameter field associated with this SPDU.

8.3.10 Session DATA TRANSFER SPDU

The Session DATA TRANSFER SPDU consists in principle of two concatenated SPDUs, where the first one is a so-

called GIVE TOKEN SPDU. It consists in the form used by this Directory Specification only of the SI field, which has

the value 1, and a length field with the value zero.

NOTE – Rec. ITU-T X.225 | ISO/IEC 8327-1 defines basic and extended concatenation. Extended concatenation is not used by

this Directory Specification. Basic concatenation is only relevant for the DATA TRANSFER SPDU and Table 7 of Rec. ITU-

T X.225 | ISO/IEC 8327-1 specifies that the DATA TRANSFER SPDU shall be concatenated with the GIVE TOKEN SPDU. As

we are only using the full duplex functional unit, the Token item is not needed and neither is the User data.

Table 7 – Parameters of the DATA TRANSFER SPDU

PGI M/O Code PI M/O Code Length

 Enclosure Item O 25 1 octet

User Information field

The SI field for the DATA TRANSFER SPDU shall also be given the value 1.

User Information field holds the complete or part of a Directory PDU. The LI field following the SI field does not include

the User Information field.

The Enclosure Item PV field, if present, shall indicate whether or not this SPDU is the beginning or end of the Directory

PDU. This field shall be present if segmenting may be used. This field shall not be present if segmenting shall not be

used. The encoding for this field shall be:

a) bit 1 = 1: Beginning of Directory PDU;

 bit 1 = 0: Not beginning of Directory PDU;

b) bit 2 = 1: End of Directory PDU;

 bit 2 = 0: Not end of Directory PDU.

Bits 3-8 are reserved.

If this field is not present, segmenting is not allowed and this SPDU contains a complete Directory PDU.

Example of encoding:

ISO/IEC 9594-5:2020 (E)

34 Rec. ITU-T X.519 (10/2019)

 If the Enclose Item is not included, the encoding of the concatenated SPDUs would be: '01 00 01 00'H.

 If the Enclose is included and the SPDU holds the complete Directory PDU, the encoding of the concatenated

SPDUs would be: '01 00 01 03 19 01 03'H.

8.4 Use of transport service

Before an application-association can be established, a transport-connection, as defined by Rec. ITU-T X.214 |

ISO/IEC 8072, has to be established.

Only the initiator of a transport-connection is allowed to initiate an application-association.

NOTE – This restriction is specified in clause 6.1.4 of Rec. ITU-T X.225 | ISO/IEC 8327-1.

A transport-connection may be established by mapping onto the service as defined by Rec. ITU-T X.214 | ISO/IEC 8072

or by establishing a transport-connection according to the specification in clause 8.5. In the former case, all the session

SPDUs are mapped onto T-DATA request and T-DATA indication. In the latter case, all session SPDUs are carried by

the User parameter of the DT TPDU.

When an application-association is refused, or has been successfully connected and subsequently disconnected, by abort

or normal release, the supporting transport connection may be either disconnected or reused.

The transport connection may be kept for reuse provided that:

a) the application process that established the transport connection requests retention of the transport

connection by parameter in an ABORT SPDU or a FINISH SPDU; or

b) the application process that established the transport connection receives a REFUSE SPDU or an ABORT

SPDU which indicates by parameter that the transport connection is to be retained.

To avoid contention for a retained transport connection, only the transport connection initiator may reuse the transport

connection by issuing a Bind request to establish a new application-association.

The Transport expedited flow is not used.

8.5 OSI Transport Layer on top of TCP

8.5.1 Scope and limitation

This clause defines ISO Transport Service on top of TCP (ITOT).

NOTE 1 – This includes specifying those functions of Rec. ITU-T X.224 | ISO/IEC 8073 together with the enhancements defined

by IETF RFC 2126 that are relevant for these Directory Specifications.

NOTE 2 – Rec. ITU-T X.224 | ISO/IEC 8073 defines several protocol classes to cope with different qualities of network

connections. Protocol classes 0 and 2 are the only protocol classes considered here. These protocol classes have been designed to

be used over a type A network connection. A type A network connection is according to Rec. ITU-T X.224 | ISO/IEC 8073 defined

as: "Network connection with acceptable residual error rate (for example, not signalled by disconnect or reset) and acceptable rate

of signalled errors".

NOTE 3 – A TCP connection enhanced by IETF RFC 2126 is assumed to correspond to a type A network connection.

NOTE 4 – Rec. ITU-T X.224 | ISO/IEC 8073 specifies mandatory features not needed by these Directory Specifications. That

means that an implementation only supporting the OSI Transport Layer on top of TCP as defined here does not conform to

Rec. ITU-T X.224 | ISO/IEC 8073.

Network address structure is specified in clauses 11.3 and 11.4.

Direct use of the OSI Network Layer, e.g., direct use of an OSI connectionless-mode network protocol, is not considered

here. If that is required, the relevant OSI documentation has to be consulted.

8.5.2 Overview of the transport-protocol

8.5.2.1 Functions of the transport-protocol

The functions of the transport-protocol are those necessary to bridge the gap between the service available from the TCP

and what is required for supporting the session-protocol as specified in clause 8.3.

The transport-protocol specified here is a connection mode protocol, i.e., a formal transport-connection has to be

established before transfer of data may take place.

A message transmitted between two systems at the transport level is called a transport-protocol-data-unit (TPDU).

Data transfer is in full duplex mode by means of a two-way simultaneous communication.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 35

The transport-connection is released when it is not needed anymore or as the result of an error condition.

8.5.3 Protocol classes and options

8.5.3.1 General

The functions of the Transport Layer are organized into classes and options.

A class defines a set of functions. Optional functions defined within a class may or may not be implemented.

This Directory Specification specifies two classes, class 0 and class 2, for OSI transport over TCP.

NOTE – These two classes correspond to class 0 and class 2 as specified by Rec. ITU-T X.224 | ISO/IEC 8073.

During the connection establishment the characteristics of the connection are determined as follows:

– selection of protocol class; and

– the maximum TPDU size.

8.5.3.2 Characteristics of class 0

Class 0 gives basic capabilities and shall be supported by an implementation claiming conformance to OSI transport over

TCP. It includes the following capabilities:

– connection establishment over an already existing TCP connection;

– data transfer with segmentation;

– flow control as provided by underlying TCP;

– error reporting; and

– implicit disconnect by TCP disconnection.

Class 0 provides the simplest type of transport-connection.

8.5.3.3 Characteristics of class 2

Class 2 may optionally be supported by implementations claiming conformance to OSI transport over TCP. It includes

the following additional capabilities:

– explicit disconnect instead of implicit disconnect.

NOTE – According to clause 4.2.1 of IETF RFC 2126, multiplexing of multiple transport-connections over a TCP connection is

not supported by ITOT.

A transport-connection may be terminated either with a Disruptive Disconnect or a Non-Disruptive Disconnect. A DR

TPDU and a DC TPDU are exchanged in both cases.

Non-Disruptive Disconnect is performed when there is no application-association using this transport-connection, which

is not to be kept for reuse.

A Disruptive Disconnect is performed when there is an application-association under establishment, established or under

termination on this transport-connection at the time the disconnection of the transport-connection is initiated.

In both cases, the DR TPDU Reason code is set to 128+0 ('80'H). In case of Non-Disruptive Disconnect, the Additional

Information parameter is set to '80'H.

8.5.4 TPDU types

The following TPDU types are relevant for this Directory Specification.

TPDU type
Validity within classes

See clause Code
Class 0 Class 2

CR TPDU (connection request) x x 8.5.6.1 1110 0000

CC TPDU (connection confirm) x x 8.5.6.2 1101 0000

DR TPDU (disconnect request) x x 8.5.6.3 1000 0000

DC TPDU (disconnect confirm) x 8.5.6.4 1100 0000

DT TPDU (data) x x 8.5.6.5 1111 0000

ER TPDU (TPDU error) x x 8.5.6.6 0111 0000

ISO/IEC 9594-5:2020 (E)

36 Rec. ITU-T X.519 (10/2019)

NOTE – Class 0 only uses the DR TPDU to reject a suggested transport-connection establishment, not to initiate a release of an

existing transport-connection.

8.5.5 General TPKT structure

The TCP does not have the concept of a delimited protocol-data-unit, but manages a continuous stream of octets.

Delimitation has to be performed by the overlying protocol. When a TPDU is exchanged using the TCP support, it is

prefixed with additional header fields, which together with the TPDU constitute a transport packet (TPKT). This TPKT

provides the needed delimitation. The structure of a TPKT with the embedded TPDU is shown in Figure 4. The TPKT

header fields are identical for all TPDU types.

Clauses 8.5.5.1-8.5.5.3 describe the TPKT header fields, while clauses 8.5.5.4-8.5.5.7 describe the TPDU parameters.

The TPKT special header fields and the TPDU shall each consist of an integral number of octets. The octets in a TPDU

are numbered starting from 1 and increasing in the order they are presented to TCP or received from TCP. The bits in an

octet are numbered from 1 to 8, where bit 1 is the lowest order bit. When consecutive octets are used to represent a binary

number, the lower octet number has the most significant value.

The encoding of TPDUs is shown as follows:

a) octets are shown with the lowest numbered octet to the left; higher numbered octets being further to the

right;

b) within an octet, bits are shown with bit 8 to the left and bit 1 to the right, where bit 8 is the most significant

bit.

X.519(12)_F04

TPDU

ReservedVersion
Packet
length LI Variable partFixed part Data field

TPDU code

TPKT

Figure 4 – TPKT structure

8.5.5.1 Version field

This is an 8-bit field that signals the version of the TPKT. It is an unsigned binary encoded integer and it shall have the

value 3.

NOTE – This is the value specified by IETF RFC 1006 (version 3). This value is kept to allow compatibility with current IETF RFC

1006 implementations. Also, for the same reason, it is the value specified by IETF RFC 2126.

8.5.5.2 Reserved field

This is an 8-bit field. It shall be set to binary zeroes. A receiving system should not try to interpret this field, but should

ignore its content.

8.5.5.3 Packet length

This is a 16-bit field. It is an unsigned binary encoded integer that gives the total length in octets of the TPKT, including

all the TPKT special headers.

8.5.5.4 Length indicator field

This field is contained in the first octet of the TPDU. The value shall be an unsigned binary number indicating the length

in octets of the TPDU, excluding the length indicator field itself and excluding the user data, if any. The maximum value

shall be 254 (1111 1110).

8.5.5.5 Fixed part

The fixed part contains frequently occurring parameters including the TPDU code. The length and the structure of the

fixed part depend on the TPDU type and in certain cases on the protocol class. If any of the parameters of the fixed part

have an invalid value, or if the fixed part cannot be contained within the header (as defined by LI), this is a protocol error.

The TPDU code field is contained in octet 2 of the TPDU. It is used to signal the type of TPDU.

8.5.5.6 Variable part

The variable part is used to define less frequently used parameters. If the variable part is present, it shall contain one or

more parameters.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 37

Each parameter contained within the variable part is structured as follows:

Octets\Bits 8 7 6 5 4 3 2 1

1 Parameter code

2 Parameter length (for example m)

3 Parameter value

2+m

Figure 5 – Structure of parameter within variable part

The parameter code is an unsigned binary encoded integer.

The parameter length is an unsigned binary integer that shall hold the length in octets of the parameter value.

The parameters defined in the variable part may be in any order. If any parameter is duplicated, then the last value shall

be used. A parameter not defined in this Directory Specification shall be treated as a protocol error in any received TPDU

except in a CR TPDU; in a CR TPDU such a parameter shall be ignored.

If the responder selects a class for which a parameter of the CR TPDU is not defined, it may ignore this parameter, except

for the alternative protocol class parameter, which shall always be interpreted.

A parameter defined in this Directory Specification but having an invalid value shall be treated as a protocol error in any

received TPDU.

8.5.5.7 User data field

This field contains transparent user data. Only the DT TPDU has a data field.

NOTE – Rec. ITU-T X.224 | ISO/IEC 8073 also defines user data for the CR TPDU, the CC TPDU and the DR TPDU. However,

all SPDUs defined in clause 8.3 are mapped onto the user data field of the DT TPDU. These Directory Specifications have no

further use of the user data field.

8.5.6 Structure and encoding of TPDUs

8.5.6.1 Connection request (CR TPDU)

8.5.6.1.1 Structure

The procedure for connection establishment is used in both classes to create a new transport-connection.

The initiator initiates a transport-connection by transmitting a CR TPDU to the responder, which replies with a CC TPDU

if the connection is accepted. Otherwise, a DR TPDU is returned.

Before sending the CR TPDU, the initiator assigns the transport-connection being created to a TCP connection.

During the connection exchange, all information and parameters needed for the operation shall be exchanged or

negotiated.

NOTE – It is recommended that the initiator start a timer at the time the CR TPDU is sent. This timer should be stopped when the

connection is considered as accepted or refused. If the timer expires, the initiator should disconnect the TCP connection.

The format of the CR TPDU is shown in Figure 6. The fixed part parameters are specified in clauses 8.5.6.1.2 to 8.5.6.1.6,

while the parameters within the variable part field are specified in clauses 8.5.6.1.7 to 8.5.6.1.13.

CR
1110 0000

LI Variable part
CLASS

OPTION
DST-REF

0000 0000 0000 0000
SRC-REF

1 2 3 4 5 6 7 8 p

Figure 6 – Connection request (CR TPDU)

8.5.6.1.2 Length indicator (LI) parameter

See clause 8.5.5.4.

ISO/IEC 9594-5:2020 (E)

38 Rec. ITU-T X.519 (10/2019)

8.5.6.1.3 TPDU code field

This is the CR TPDU code parameter and shall take the value '1110 0000'B.

8.5.6.1.4 DST-REF parameter

The DST-REF parameter shall be set to binary zeroes by the initiator.

8.5.6.1.5 SRC-REF parameter

SRC-REF parameter shall hold the reference identification of the requested transport-connection as seen by the initiator.

This value shall not be zero and it shall not be a value already in use for an existing transport-connection.

This mechanism is symmetrical and provides identification of the transport-connection independent of the network

connection. The range of references used for transport-connections, in a given system, is a local matter.

8.5.6.1.6 CLASS OPTION parameter

This parameter is used by the initiator to specify the preferred transport protocol class.

Bits 8 to 5 of octet 7 are used to negotiate the transport protocol class to be operated over the requested transport-

connection. This parameter shall take the value:

– '0000'B for class 0; or

– '0010'B for class 2.

The initiator may specify class 0 as an alternative protocol class in the variable part of the CR TPDU if it has specified

class 2 as the preferred protocol class.

Bits 4 to 1 of octet 7 shall be set to 0001. If the bits are not set as indicated, the responder shall refuse the connection with

Reason 128+2 ('82'H).

NOTE – Rec. ITU-T X.224 | ISO/IEC 8073 specifies that bit 4 and 3 shall always be set to 0. Bit 1 shall be set to 1, if non use of

explicit flow control is selected, as it is specified by IETF RFC 2126. Rec. ITU-T X.224 | ISO/IEC 8073 specifies that extended

format shall not be selected if the non-use of explicit flow control is selected, which requires bit 2 to be set to 0.

8.5.6.1.7 Transport-selector parameters

The CR TPDU may hold two transport-selectors, one for the initiator (calling transport-selector) and one for the responder

(called transport-selector).

The parameter codes are:

1100 0001 for the calling transport-selector

1100 0010 for the called transport-selector

A parameter length is the length in octets of the corresponding transport-selector.

NOTE – The maximum length for a transport-selector is not defined. However, the length is restricted by the 254 octets maximum

CR TPDU size.

8.5.6.1.8 TPDU size parameter

This parameter defines the proposed maximum TPDU size (in octets including the header) to be used over the requested

transport-connection. The coding of this parameter is:

Parameter code: 1100 0000

Parameter length: 1 octet

Parameter value: 0000 1101 8192 octets

 0000 1100 4096 octets

 0000 1011 2048 octets

 0000 1010 1024 octets

 0000 1001 512 octets

 0000 1000 256 octets

 0000 0111 128 octets

Default value: 65531 octets.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 39

8.5.6.1.9 Preferred TPDU size parameter

This parameter defines the proposed maximum TPDU size (in octets including the header) to be used over the requested

transport-connection.

The coding of this parameter is:

Parameter code: 1111 0000

Parameter length: Up to 3

Parameter value: A binary value. The binary value indicates the maximum TPDU size, expressed as a multiple of

128 octets. This binary value shall be greater than or equal to 1.

Maximum value 65531 octets

NOTE 1 – Rec. ITU-T X.224 | ISO/IEC 8073 allows the parameter length to be up to 4 octets. However, as the maximum TPDU

size is 65531, the maximum value this parameter may take is 511.

NOTE 2 – The maximum value is determined by having a TPKT length of 'FFFF'H minus 4 octets for the TPKT header fields.

8.5.6.1.10 Version number parameter

This field shall not be included if class 0 is the preferred class.

This field may be included if the preferred class is 2. If included, it shall have the following format.

Parameter code: 1100 0100

Parameter length: 1 octet

Parameter value: 0000 0001

Default value: 0000 0001

8.5.6.1.11 Protection parameter

The use of this parameter is not defined by this Directory Specification. A receiving system may ignore this parameter if

it is present. This parameter shall not be present if class 0 is the preferred class.

Parameter code: 1100 0101

Parameter length: Not defined by this Directory Specification

Parameter value: Not defined by this Directory Specification

8.5.6.1.12 Additional option selection parameter

This parameter shall not be present if class 0 is the preferred class.

Parameter code: 1100 0110

Parameter length: 1

Parameter value: Bit Option

 8-2 Not applicable

 1 Always set to 0

Not applicable bits may take any value and shall not be checked by the responder. The default for bit 1 is 0, which is

identical to the required setting. If this parameter is present, the responder is only required to check bit 1 for the correct

setting. If bit 1 is set to 1, the responder shall refuse the connection with Reason 128+2.

8.5.6.1.13 Alternative protocol class parameter

This parameter shall not be present if class 0 is the preferred class. It is optional if class 2 is the preferred class.

The coding of this parameter is:

Parameter code: 1100 0111

Parameter length: 1

Parameter value: 0000 0000 indicating that class 0 is an alternative protocol class.

ISO/IEC 9594-5:2020 (E)

40 Rec. ITU-T X.519 (10/2019)

8.5.6.2 Connection confirm (CC TPDU)

8.5.6.2.1 Structure

CC
1101 0000

LI Variable part
CLASS

OPTION
SRC-REF

1 2 3 4 5 6 7 8 p

DST-REF

Figure 7 – Connection confirm (CC TPDU)

8.5.6.2.2 Length indicator (LI) field

See clause 8.5.5.4.

8.5.6.2.3 TPDU code parameter

This is the CC TPDU code parameter and shall take the binary value 1101 0000.

8.5.6.2.4 DST-REF parameter

DST-REF parameter shall hold the reference of the initiator, i.e., it shall echo the value of the SCR-REF parameter of the

corresponding CR TPDU.

8.5.6.2.5 SRC-REF parameter

SRC-REF parameter shall hold the identification reference of the transport-connection as seen by the responder. This

value shall not be zero and it shall not be a value already in use by the responder.

8.5.6.2.6 CLASS OPTION parameter

Bits 8 to 5 of octet 7 are used by the responder to specify the selected transport protocol class. These bits shall take the

value:

– 0000 for class 0; or

– 0010 for class 2.

Bits 4 to 1 of octet 7 shall be set to 0001. If the bits are not set as indicated, the initiator shall consider it a protocol error.

If class 2 is the only class proposed by the initiator and class 2 is not supported by the responder, a DR TPDU shall be

returned with REASON 128+2 and the SRC-REF parameter set to zero to indicate an unassigned reference.

NOTE – An implementation based on IETF RFC 1006 may not recognize the above situation and might accept the transport-

connection specifying class 0 as the selected class.

8.5.6.2.7 Transport-selector parameters in the variable part parameter

The CR TPDU may hold two transport-selectors, one for the initiator and one for the responder.

The parameter codes are:

1100 0001 for the calling transport-selector

1100 0010 for the responding transport-selector

A parameter length is the length in octets of the corresponding transport-selector.

8.5.6.2.8 TPDU size parameter

This parameter defines the selected maximum TPDU size (in octets including the header) to be used over the accepted

transport-connection. The coding of this parameter is as in clause 8.5.6.1.8.

8.5.6.2.9 Preferred TPDU size parameter

This parameter defines the selected maximum TPDU size (in octets including the header) to be used over the accepted

transport-connection.

The coding of this parameter is as in clause 8.5.6.1.9.

8.5.6.2.10 Protection parameter

The use of this parameter is not defined by this Directory Specification. A receiving system may ignore this parameter if

it is present. This parameter shall not be present if class 0 is the preferred class. For the encoding, see clause 8.5.6.1.11.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 41

8.5.6.2.11 Additional option selection parameter

This parameter shall not be present if class 0 is the preferred class.

If present, this parameter shall be encoded as specified in clause 8.5.6.1.12. If bit 1 is not set correctly, the initiator shall

consider it a protocol error.

8.5.6.3 Disconnect request (DR TPDU)

8.5.6.3.1 Structure

The disconnect request (DR TPDU) is used for refusal of a connection request for both protocol classes.

For class 2, the DR TPDU is also used for initiating an explicit release of a transport-connection without necessarily

releasing the underlying TCP connection. Either one of the two sides may issue a DR TPDU to initiate release (see

clause 14.1 of Rec. ITU-T X.214 | ISO/IEC 8072).

DR
1000 0000

LI Variable part SRC-REF

1 2 3 4 5 6 7 8 p

DST-REF REASON

Figure 8 – Disconnect request

8.5.6.3.2 Length indicator (LI) parameter

See clause 8.5.5.4.

8.5.6.3.3 TPDU code parameter

This is the DR TPDU code parameter and shall take the binary value 1000 0000.

8.5.6.3.4 DST-REF parameter

This parameter shall hold the transport-protocol reference of the receiver.

8.5.6.3.5 SRC-REF parameters

If the DR TPDU is sent to reject a requested transport-connection, this parameter shall be filled with binary zeroes to

indicate that no reference has been allocated by the responder.

If the DR TPDU is sent to initiate the release of an existing transport-connection, this parameter shall hold the transport-

protocol reference of the sender.

8.5.6.3.6 REASON parameter

The Reason parameter defines the reason for disconnecting the transport-connection. This parameter shall take one of the

following values.

The following values may be used for class 2:

1) 1280 Normal disconnect initiated by session entity.

2) 1281 Responder congestion at connect request time.

3) *1282 Connection negotiation failed (i.e. proposed class 2 not supported).

4) 1283 Duplicate source reference detected for the same pair of NSAPs.

5) 1284 Mismatched references.

6) 1285 Protocol error.

7) 1286 Not used.

8) 1287 Reference overflow.

9) 1288 Connection request refused on this TCP connection.

10) 1289 Not used.

11) 12810 Header or parameter length invalid.

The following values can be used for both classes:

12) 0 Reason not specified.

ISO/IEC 9594-5:2020 (E)

42 Rec. ITU-T X.519 (10/2019)

13) 1 Congestion.

14) *2 No session functionality associated with the transport-address.

15) *3 Address unknown.

NOTE – Reasons marked with an asterisk may be considered as persistent, other reasons as transient.

8.5.6.3.7 Additional clearing information parameter (variable part)

This parameter allows additional information related to the clearing of the connection.

The coding of this parameter is:

Parameter code: 1110 0000

Parameter length: Any value provided that the length of the DR TPDU does not exceed the maximum agreed TPDU

size or 128 when the DR TPDU is used during the connection refusal procedure.

Parameter value: Additional information. The content of this parameter is not defined by this Directory

Specification.

8.5.6.4 Disconnect confirm (DC TPDU)

8.5.6.4.1 Structure

DC
1100 0000

LI SRC-REF

1 2 3 4 5 6

DST-REF

Figure 9 – Disconnect confirm

8.5.6.4.2 Length indicator (LI) parameter

See clause 8.5.5.4.

8.5.6.4.3 TPDU code parameter

This is the DC TPDU code parameter and shall take the binary value 1100 0000.

8.5.6.4.4 DST-REF parameter

DST-REF parameter holds the identification reference of the transport connection at the remote transport entity and shall

be set to the SRC-REF parameter of the DR TPDU received (it may be equal to zero).

8.5.6.4.5 SRC-REF parameter

SRC-REF parameter holds the identification reference of the transport connection at the local transport entity and shall

be set to the DST-REF parameter of the DR TPDU received (it may be equal to zero).

8.5.6.5 Data (DT TPDU)

8.5.6.5.1 Structures

DT
1111 0000

LI User data

1 2 3 4 p

TPDU-NR

and EOT

Figure 10 – Data TPDU for class 0

DT
1111 0000

LI User data

1 2 3 4 5 6 p

DST-REF
TPDU-NR

and EOT

Figure 11 – Data TPDU for class 2

NOTE – Extended format as defined in Rec. ITU-T X.224 | ISO/IEC 8073 is not used, as it has no meaning if explicit flow control

at the transport level is not used. Clause 6.5.4 of Rec. ITU-T X.224 | ISO/IEC 8073 specifies: In class 2, whenever a transport entity

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 43

requests or agrees to the transport expedited data transfer service or to the use of extended formats, it shall also request or agree

(respectively) to the use of explicit flow control.

8.5.6.5.2 Length indicator (LI) parameter

See clause 8.5.5.4.

8.5.6.5.3 TPDU code parameter

This is the DT TPDU code parameter and shall take the binary value 1111 0000.

8.5.6.5.4 DST-REF parameter

This parameter shall hold the transport-protocol reference of the receiver (only if class 2 has been negotiated).

8.5.6.5.5 TPDU-NR and EOT parameter

EOT – When set to ONE, it indicates that the current DT TPDU is the last data unit of a complete DT TPDU sequence

(end of TSDU). EOT is bit 8 of octet 3 in class 0 and bit 8 of octet 5 for class 2.

TPDU-NR – TPDU send sequence number (zero in class 0). It may take any value in class 2 without explicit flow control.

TPDU-NR is bits 7 to 1 of octet 3 for class 0, bits 7 to 1 of octet 5 for normal formats in class 2.

8.5.6.5.6 User data field

This field contains (part of) the SPDU or SPDU segment being transmitted.

NOTE – The length of this field is limited to the negotiated TPDU size minus 3 octets in class 0 and minus 5 octets in class 2.

8.5.6.6 TPDU error (ER TPDU)

8.5.6.6.1 Structure

ER
0111 0000

LI Variable part

1 2 3 4 5 6 p

DST-REF
REJECT

CAUSE

Figure 12 – Error TPDU

8.5.6.6.2 Length indicator (LI) parameter

See clause 8.5.5.4.

8.5.6.6.3 TPDU code parameter

This is the ER TPDU code parameter and shall take the binary value 0111 0000.

8.5.6.6.4 DST-REF parameter

DST-REF parameter holds the identification reference of the transport connection at the remote transport entity and shall

be set to the SRC-REF parameter of the rejected TPDU.

8.5.6.6.5 REJECT CAUSE parameter

0000 0000 Reason not specified

0000 0001 Invalid parameter code

0000 0010 Invalid TPDU type

0000 0011 Invalid parameter value

8.5.6.6.6 Invalid TPDU parameter

Parameter code: 1100 0001

Parameter length: Number of octets of the value parameter

Parameter value: Contains the bit pattern of the rejected TPDU header up to and including the octet which caused

the rejection. This parameter is mandatory in class 0.

ISO/IEC 9594-5:2020 (E)

44 Rec. ITU-T X.519 (10/2019)

8.5.7 Use of the service provided by TCP

The use of the service provided by TCP is expressed by reference to the conceptual calls as defined in clause 3.8 of

IETF RFC 793.

8.5.7.1 TCP connection establishment (socket connection)

A connection is established by the DUA or DSA issuing an active OPEN call and by the replying system having an

outstanding passive OPEN call (see clause 3.4 of IETF RFC 793).

When issuing an active OPEN, the initiator shall:

a) Specify the socket (IP address and TCP port number) of the responder as determined from:

– information returned in a ContinuationReference as the result of a previous communication; or

– locally held information.

b) Set the active flag.

NOTE 1 – Because many operating systems do not support fixed outgoing TCP ports, only the dynamic allocation of local port

numbers is assumed here, but it is not an error to specify a local port number if support is provided for that.

An active OPEN will fail if the responder has not issued a passive OPEN.

When issuing a passive OPEN, the responder shall:

a) Specify the local port number to be used. The "well known" TCP port number 102 is reserved for ITOT.

It is allowed to use another port number.

NOTE 2 – It is suggested that the TCP keep alive mechanism be selected, as this ensures the reporting of network connection loss.

8.5.7.2 Data transfer

When a DUA or DSA issues a SEND call to send a TPDU:

– the PUSH flag shall be set to ensure immediate delivery; and

– the URGENT flag shall not be set.

NOTE – For performance reason it is suggested that the Nagle algorithm (IETF RFC 896) be disabled (using the TCP_NODELAY

socket option). This feature allows TPKT data to be sent without delay.

8.5.7.3 TCP connection release

The connection can be released by either:

– closing the connection, which leads to terminating gracefully the message flow; or

– aborting the connection, which leads to the deletion of ongoing messages.

8.5.7.3.1 Orderly release

An orderly release ensures that data in transit is not lost (see clause 3.8 of IETF RFC 793).

Either side may at any time initiate an orderly release by issuing a CLOSE.

An orderly release is disruptive under the following conditions:

– when supporting a transport-protocol class 0 class and the overlying application-association has not been

terminated; and

– when supporting a transport-protocol class 2 class and the overlying transport-connection has not been

terminated.

8.5.7.3.2 TCP abort

A system should only issue an ABORT whenever it detects a serious exception, such as an abnormally functioning

communication partner.

8.5.8 Elements of procedures for the transport-protocol

8.5.8.1 Segmenting and reassembling

The segmenting and reassembling procedure is used in both classes to map an SPDU onto TPDUs.

A system shall map an SPDU onto an ordered sequence of one or more DT TPDUs. This sequence shall not be interrupted

by other DT TPDUs on the same transport-connection.

All DT TPDUs except the last DT TPDU in a sequence greater than one shall have a length of data greater than zero.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 45

The EOT parameter of a DT TPDU indicates whether or not there are subsequent DT TPDUs in the sequence.

8.5.8.2 Connection establishment

A transport-connection is established by means of the initiator transmitting a CR TPDU to the responder, which replies

with a CC TPDU.

Before sending the CR TPDU, the initiator assigns the transport-connection being created to one TCP connection. It is

this TCP connection over which the TPDUs are sent.

Only the initiator of a TCP connection may initiate a transport-connection on that TCP connection.

During this exchange, all information and parameters needed for the two parties to operate shall be exchanged or

negotiated.

8.5.8.2.1 References

Each system chooses a reference for the transport connection to be used by the peer system in the DST-REF parameter

when sending TPDUs to that system.

This mechanism is symmetrical and provides identification of the transport-connection independent of the TCP

connection. The range of references used for transport-connections for a given system is a local matter.

8.5.8.2.2 Transport selectors

Calling, Called and Responding Transport-Selectors (optional) – When the TCP/IP addressing (IP address and Port

Number) unambiguously defines the transport address, this information may be omitted.

A transport-selector parameter with a length indicator set to zero shall be treated as having the "nil selector value".

NOTE – This requirement is as specified in clause 9.5.2 of Rec. ITU-T X.650 | ISO/IEC 7498-3 for the calling and called transport-

selector. For the responding transport-selector, this requirement is specified in clause 13.2.3 of Rec. ITU-T X.224 | ISO/IEC 8073.

8.5.8.2.3 Protection parameter

This parameter and its semantics are not defined by this Directory Specification. A system shall be able to receive this

parameter, but may ignore its content.

8.5.8.2.4 Protocol class negotiation

Protocol class negotiation is optional. If the initiator does not support protocol class negotiation, it shall specify class 0

as the preferred protocol class.

If the initiator supports protocol class negotiation, it may specify either class 0 or 2 as the preferred protocol class. If the

preferred class is class 2, it may propose class 0 as an alternative class. If the preferred class is class 0, it shall not propose

an alternative class. The initiator should assume when it sends the CR TPDU that its preferred class will be agreed to, and

commence the procedures associated with that class.

If the initiator does not specify the class options according to the above, it shall by the responder be considered as a

protocol error.

If the responder does not support protocol class negotiation, it may return class 0 as the selected protocol class independent

of what the initiator specifies.

When the responder supports protocol class negotiation, it shall select one class according to the following:

– if the preferred transport protocol class in the CR TPDU is class 0, then class 0 shall be returned in the CC

TPDU:

– if the preferred transport protocol class in the CR TPDU is class 2, and the alternative class is class 0, then

class 0 or class 2 shall be returned; and

– if the preferred transport protocol class in the CR TPDU is class 2, and no alternative class is specified,

then class 2 shall be returned. If class 2 is not supported by the responder, a DR TPDU shall be returned

with REASON 128+2 and the SRC-REF parameter set to zero to indicate an unassigned reference.

The responder shall indicate the selected class in the CC TPDU and shall follow the procedures for the selected class.

If the preferred class is not selected, then on receipt of the CC TPDU, the initiator shall adjust its operation according to

the procedures of the selected class.

The initiator shall terminate the transport connection if:

– the initiator specifies the preferred class as class 2 and does not specify class 0 as an alternative class; and

ISO/IEC 9594-5:2020 (E)

46 Rec. ITU-T X.519 (10/2019)

– the responder accepts the connection specifying class 0 as the selected class.

8.5.8.2.5 TPDU size negotiation

There are two mechanisms for negotiating the maximum TPDU size as specified by clauses 8.5.6.1.8 and 8.5.6.1.9 and

further developed under a) and b) below.

a) TPDU size can be considered as the primary mechanism. It is optional and does not have to be supported

by the initiator or responder. However, in its absence it has the default value of 65531 octets.

NOTE 1 – Rec. ITU-T X.224 | ISO/IEC 8073 specifies a default of 128 octets, which is also the minimum TPDU size.

IETF RFC 1006 and IETF RFC 2126 (and this Directory Specification) specify a default of 65531 octets, which is the maximum

TPDU size. This means that the maximum TPDU size is used when no TPDU size negotiation is performed.

 The initiator may propose a maximum size for TPDUs, and the responder may accept this value or respond

with any value between 128 and the proposed value in the set of values available (see clause 8.5.6.1.8).

 If this parameter is absent, the TPDU size defaults to 65531 octets (unless the preferred maximum TPDU

size parameter is included in the CR TPDU and supported by the responder).

 An initiator shall support all the listed values for the maximum TPDU size as given in clause 8.5.6.1.8 up

to and including the maximum TPDU size proposed in the CR TPDU.

b) Preferred maximum TPDU size – The value of this parameter, multiplied by 128, yields the proposed or

accepted maximum TPDU size in octets. The initiator may propose a preferred maximum size for TPDUs

and the responder may accept this value or respond with a smaller value.

NOTE 2 – If this parameter is used in a CR TPDU without also including the TPDU size parameter, this will result in a maximum

TPDU size of 65531 octets being selected if the responder does not recognize the preferred TPDU size parameter. Therefore, it is

recommended that both parameters be included in the CR TPDU.

 If the preferred maximum TPDU size parameter is present in a CR TPDU, the responder shall either:

 – ignore the preferred maximum TPDU size parameter and follow TPDU size negotiation as defined in

a) above; or

 – use the preferred maximum TPDU size parameter to determine the maximum TPDU size requested

by the initiator and ignore the TPDU size parameter or its default value. In this case, the responder

shall use the preferred maximum TPDU size parameter in the CC TPDU and shall not include the

TPDU size parameter in the CC TPDU.

If the preferred maximum TPDU size parameter is not present in the CR TPDU, it shall not be included in the

corresponding CC TPDU. In this case, TPDU size negotiation is as defined in a) above.

NOTE 3 – If the resulting suggested maximum TPDU size based on the considerations above is not the default maximum TPDU

size of 65531 octets, then the responder should include a selected TPDU size in the CC TPDU, as omission of this will result in an

implied selected value of 65531 octets, which would violate a) or b) above.

8.5.8.2.6 Option negotiation

There is no option negotiation.

NOTE – Rec. ITU-T X.224 | ISO/IEC 8073 and IETF RFC 2126 define protocol options to be set according to the communications

requirements. However, these Directory Specifications require all the options to be fixed (see clauses 8.5.6.1.6 and 8.5.6.1.12).

8.5.8.2.7 Version number

This parameter is only used in the CR TPDU and only for class 2 (see clause 8.5.6.1.10).

8.5.8.3 Connection refusal

The connection refusal procedure is used in both classes when the responder refuses a transport-connection in response

to a CR TPDU.

If a transport-connection cannot be accepted, the responder shall respond to the CR TPDU with a DR TPDU. The Reason

shall indicate why the connection was not accepted. The source reference parameter in the DR TPDU shall be set to zero

to indicate an unassigned reference.

If a DR TPDU is received, the initiator shall regard the connection as released.

The responder shall respond to an invalid CR TPDU by sending an ER or DR TPDU. If an ER TPDU is received in

response to a CR TPDU, the initiator shall regard the connection as released.

NOTE 1 – When the invalid CR TPDU can be identified as having class 0 as the preferred class, it is recommended to respond

with an ER TPDU. For class 2 either an ER TPDU or DR TPDU may be sent.

NOTE 2 – If the optional supervisory timer TS1 has been set for this connection, then the initiator should stop the timer on receipt

of the DR or ER TPDU.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 47

NOTE 3 – It is a local matter whether the initiator releases the network connection if no transport-connections are currently assigned

to it.

8.5.8.4 Normal release

The release procedure is used to terminate a transport-connection. The implicit variant is used only in class 0. The explicit

variant is used only in class 2.

NOTE – When the implicit variant is used for class 0, the lifetime of the transport-connection is directly correlated with the lifetime

of the TCP connection. The use of the explicit variant of the release procedure for class 2 enables the transport-connection to be

released independently of the underlying TCP connection.

8.5.8.4.1 Procedure for implicit variant

In the implicit variant, both the initiator and the responder disconnect a transport-connection by disconnecting the TCP

connection to which it is assigned. See also clause 8.5.7.3.1.

8.5.8.4.2 Procedure for explicit variant

When the release of a transport-connection is to be initiated, a transport entity:

a) If it has previously sent or received a CC TPDU shall:

1) send a DR TPDU;

2) discard all subsequently received TPDUs other than a DR, DC or ER TPDU;

3) consider the transport-connection released on receipt of a DR, DC or ER TPDU.

b) If a) is not applicable and if there is an outstanding CR TPDU, it shall wait for the acknowledgement of

the outstanding CR TPDU; if it receives a CC TPDU, it shall follow the procedures in item a) above.

NOTE 1 – This requirement ensures that the transport entity is aware of the remote reference for the transport-connection.

A transport entity that receives a DR TPDU shall:

c) If it has previously sent a DR TPDU for the same transport-connection, consider the transport-connection

released.

d) If it has previously sent a CR TPDU that has not been acknowledged by a CC TPDU, consider the

connection refused. If the SRC-REF is not zero, a DC TPDU shall be sent using the SRC-REF as the DST-

REF.

NOTE 2 – In this case, the DR is associated to that connection regardless of the SRC-REF parameter.

e) If c) and d) are not applicable, send a DC TPDU and consider the transport-connection released. If the

received DR has the DST-REF parameter set to zero, then a DC with SRC-REF set to zero shall be sent,

regardless of the local reference.

NOTE 3 – If the entity receiving such a DR TPDU has previously decided to negotiate down the class, this entity is always entitled

to consider such a DR TPDU as spurious. Since no association has been made the transport-connection is not released at the

responder side but the CC TPDU, when sent, will be answered by a DR TPDU (spurious CC TPDU).

NOTE 4 – When the transport-connection is considered as released, the local reference is available for re-use.

NOTE 5 – After the release of a transport-connection, the network connection can be released or retained to enable its re-use for

the assignment of other transport-connections.

NOTE 6 – When a transport entity is waiting for a CC TPDU before sending a DR TPDU and the TCP connection is released, it

should consider the transport-connection released.

8.5.8.5 Error release

This procedure is used only in classes 0 and 2 to release a transport-connection when either the local system is issuing a

TCP abort or a TCP abort is received from the peer system.

When either a TCP abort is issued or a TCP abort is received for a TCP connection, a transport-connection using this TCP

connection, the system shall consider that the transport-connection is released and so inform the TS-users.

On receipt of an N-RESET indication:

– In class 0, an N-DISCONNECT request shall be issued.

– In class 2, it is a local choice to issue an N-RESET response or an N-DISCONNECT request; one of these

primitives shall be issued.

ISO/IEC 9594-5:2020 (E)

48 Rec. ITU-T X.519 (10/2019)

9 IDM protocol

This clause defines the Internet Directly Mapped Protocol (IDM), a mapping of request-response service elements directly

onto the Internet TCP/IP protocol, bypassing the ACSE, Presentation, Session and Transport layers of the OSI model.

The protocol is deliberately minimal and is designed for simplicity of implementation. It is connection-oriented and is

fully asynchronous.

The protocol makes use of a number of protocol-data-units to transfer bind, request, response and error messages.

9.1 IDM-PDUs

The messages of the Internet Directly Mapped protocol are conveyed over a TCP/IP connection as protocol-data-units

called IDM-PDUs and are mapped onto TCP/IP as specified in clause 9.6. The TCP/IP connection may optionally be

protected using TLS, as specified in clause 9.8. TLS is specified in IETF RFC 2246 and IETF RFC 3546. The ASN.1

definition for an IDM-PDU follows.

IDM-PDU{IDM-PROTOCOL:protocol} ::= CHOICE {

 bind [0] IdmBind{{protocol}},

 bindResult [1] IdmBindResult{{protocol}},

 bindError [2] IdmBindError{{protocol}},

 request [3] Request{{protocol.&Operations}},

 result [4] IdmResult{{protocol.&Operations}},

 error [5] Error{{protocol.&Operations}},

 reject [6] IdmReject,

 unbind [7] Unbind,

 abort [8] Abort,

 startTLS [9] StartTLS,

 tLSResponse [10] TLSResponse,

 ... }

IdmBind{IDM-PROTOCOL:Protocols} ::= SEQUENCE {

 protocolID IDM-PROTOCOL.&id({Protocols}),

 callingAETitle [0] GeneralName OPTIONAL,

 calledAETitle [1] GeneralName OPTIONAL,

 argument [2] IDM-PROTOCOL.&bind-operation.&ArgumentType

 ({Protocols}{@protocolID}),

 ... }

IdmBindResult{IDM-PROTOCOL:Protocols} ::= SEQUENCE {

 protocolID IDM-PROTOCOL.&id({Protocols}),

 respondingAETitle [0] GeneralName OPTIONAL,

 result [1] IDM-PROTOCOL.&bind-operation.&ResultType

 ({Protocols}{@protocolID}),

 ... }

IdmBindError{IDM-PROTOCOL:Protocols} ::= SEQUENCE {

 protocolID IDM-PROTOCOL.&id({Protocols}),

--errcode IDM-PROTOCOL.&bind-operation.&Errors.&errorCode OPTIONAL

 respondingAETitle [0] GeneralName OPTIONAL,

 aETitleError ENUMERATED {

 callingAETitleNotAccepted (0),

 calledAETitleNotRecognized (1),

 ...} OPTIONAL,

 error [1] IDM-PROTOCOL.&bind-operation.&Errors.&ParameterType

 ({Protocols}{@protocolID}),

 ... }

Request{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 opcode OPERATION.&operationCode({Operations}),

 argument OPERATION.&ArgumentType({Operations}{@opcode}),

 ... }

IdmResult{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 opcode OPERATION.&operationCode({Operations}),

 result OPERATION.&ResultType({Operations}{@opcode}),

 ... }

Error{OPERATION:Operations} ::= SEQUENCE {

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 49

 invokeID INTEGER,

 errcode OPERATION.&Errors.&errorCode({Operations}),

 error OPERATION.&Errors.&ParameterType({Operations}{@errcode}),

 ... }

IdmResult{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 opcode OPERATION.&operationCode({Operations}),

 result OPERATION.&ResultType({Operations}{@opcode}),

 ... }

Error{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 errcode OPERATION.&Errors.&errorCode({Operations}),

 error OPERATION.&Errors.&ParameterType({Operations}{@errcode}),

 ... }

IdmReject ::= SEQUENCE {

 invokeID INTEGER,

 reason ENUMERATED {

 mistypedPDU (0),

 duplicateInvokeIDRequest (1),

 unsupportedOperationRequest (2),

 unknownOperationRequest (3),

 mistypedArgumentRequest (4),

 resourceLimitationRequest (5),

 unknownInvokeIDResult (6),

 mistypedResultRequest (7),

 unknownInvokeIDError (8),

 unknownError (9),

 mistypedParameterError (10),

 unsupportedIdmVersion (11),

 unsuitableIdmVersion (12),

 invalidIdmVersion (13),

 ...},

 ... }

Unbind ::= NULL

Abort ::= ENUMERATED {

 mistypedPDU (0),

 unboundRequest (1),

 invalidPDU (2),

 resourceLimitation (3),

 connectionFailed (4),

 invalidProtocol (5),

 reasonNotSpecified (6),

 ...}

StartTLS ::= NULL

TLSResponse ::= ENUMERATED {

 success (0),

 operationsError (1),

 protocolError (2),

 unavailable (3),

 ...}

A bind PDU is sent to request a binding between the sender and the responder. protocolID identifies the IDM-

PROTOCOL protocol to be used (see clause 9.4). argument is a value for the ARGUMENT field of the BIND-OPERATION of

the identified protocol. callingAETitle is the name of the local application entity sending the bind PDU.

calledAETitle is the name of the remote application entity to which the bind PDU is being sent.

A bindResult PDU is returned in response to a successful bind request. protocolID is the same value sent in the

corresponding bind PDU. result is a value for the RESULT field of the BIND-OPERATION of the identified protocol.

respondingAETitle is the name of the remote application entity which sent the bindResult.

An IdmBindError PDU is returned in response to an unsuccessful bind request. protocolID is the same value sent in

the corresponding bind PDU. error is a value for the PARAMETER field of the ERROR. respondingAETitle is the

name of the remote application entity which sent the IdmbindError. aETitleError is set to

ISO/IEC 9594-5:2020 (E)

50 Rec. ITU-T X.519 (10/2019)

callingAETitleNotAccepted if an Idmbind PDU is received and the supplied callingAETitle is not acceptable

to the called system. aETitleError is set to calledAETitleNotRecognized if an IdmBind PDU is received and the

remote application entity knows the application entity which is binding, but does not accept the calledAETitle sent in

the IdmBind PDU as its own name.

A request PDU is sent to request an operation. invokeID identifies a particular request and its associated responses,

and is a positive integer chosen to be different to the value sent in any previous request over that TCP/IP connection.

opcode is the code for one of the operations listed against the OPERATIONS field of the chosen protocol. argument is a

value for the ARGUMENT field of the OPERATION identified by opcode.

NOTE – InvokeId in ITU-T X.500 systems is semantically equivalent to messageID in LDAP systems, as defined in

clause 4.1.1.1 of IETF RFC 4511.

A result PDU is returned in response to a successful operation request. invokeID and opcode are the same values as

sent in the request PDU to which this PDU is a reply. result is a value for the RESULT field of the OPERATION identified

by opcode.

An error PDU is returned in response to an unsuccessful operation request. invokeID has the same value as sent in the

request PDU to which this PDU is a reply. errcode is the code for one of the errors listed against the ERRORS field of

the operation in the request PDU. error is a value for the PARAMETER field of the ERROR identified by errcode.

A reject PDU is returned in response to a protocol error detected in a received request, result or error PDU from

which an invoke ID can be recovered. invokeID is the invoke ID of the received PDU that was in error. reason is an

integer code for the error, as described in clause 9.4.

An unbind PDU is sent to close a binding in an orderly manner, as described in clause 9.2. It has no parameters.

A startTLS PDU is sent by the TCP/IP initiator to request TLS establishment.

A tLSResponse PDU is sent by the TCP/IP responder following receipt of a startTLS PDU. A tLSResponse of

success indicates that the responder is willing and able to negotiate TLS. A tLSResponse other than success indicates

that the responder is either unwilling or unable to negotiate TLS. The responder shall return an operationsError if it

detects any incorrect operations sequencing, such as receipt of a startTLS PDU after TLS has already been established.

The responder shall return a protocolError if it does not support TLS, either by design or current configuration. The

responder shall return unavailable if it supports TLS but is unable to establish TLS at the time of the startTLS

request.

9.2 Sequencing requirements

9.2.1 Binding

The initiator of the TCP/IP connection shall send the bind PDU to the responder. The responder shall reply by sending

either a bindResponse or a bindError PDU. Once the bindResponse PDU has been received, an association is said

to be in place between the initiator and the responder.

The initiator shall send a bind PDU before sending request PDUs. It may send request PDUs after sending the bind

PDU but before receiving a bindResponse or bindError. The responder shall process and reply to a received bind

PDU before processing and replying to received request PDUs.

If the protocol permits the responder to initiate requests, the responder may initiate such requests as soon as it has sent a

bindResponse PDU. The initiator shall process the bindResponse before replying to received request PDUs.

If a bindError is received, the initiator may choose whether to attempt another bind by sending a new bind PDU or

whether to close the TCP/IP connection.

If both application entities use the AETitle information of the bind PDU, a bindError PDU with aETitleError set

to callingAETitleNotAccepted or calledAETitleNotRecognized can be received as a response to a bind PDU.

9.2.2 Unbinding

When the DAP protocol is being used, only the initiator of the bind shall send an unbind PDU. For any other protocol,

either the initiator or responder may send an unbind PDU. An unbind is destructive in that the results of any outstanding

operations are lost (undefined). To avoid loss of data, the initiator should only unbind when all requests have been

responded to.

Either the initiator or responder may close the underlying TCP/IP connection at any time. Any outstanding requests are

lost.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 51

9.2.3 Requests and responses

A request PDU may be sent at any time after sending a bind PDU or bindResult PDU, and requests the recipient of

the PDU to perform the indicated operation. The recipient of the request PDU shall reply with a result, error, or

reject PDU.

Requests are asynchronous and the order of the responses is not guaranteed to be the same as that of the requests.

The receiver of a response shall use the invoke ID as the primary indicator of the request to which the response belongs,

and shall reject the response if the invoke ID is in error.

9.2.4 Rejects

The reject PDU shall be used to indicate that a problem was encountered in processing a request, result, or error

PDU.

If any other protocol error occurs or if the invoke ID cannot be determined, the connection shall be closed.

9.3 Protocols

Protocols for use within the IDM protocol are defined through the use of the IDM-PROTOCOL information object class,

defined as follows:

IDM-PROTOCOL ::= CLASS {

 &bind-operation OPERATION,

 &Operations OPERATION,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 BIND-OPERATION &bind-operation

 OPERATIONS &Operations

 ID &id }

Each instance of an IDM-PROTOCOL class defines the Bind operation and request/response operations for use within the

IDM protocol. The bindOperation field defines the operation to be used for binding; the ARGUMENT field of this

operation is used with the bind PDU that signals the protocol, the RESULT field is used with the bindResult PDU, and

one of the errors given in the ERRORS field of this operation is used with the bindError PDU. The Operations field

defines the operations that may be used within the request, result and error PDUs of the IDM protocol. The id field

is the protocol identifier. It also implicitly determines the application context for a Bind operation. As a consequence, a

separate IDM-PROTOCOL is defined for each required application context.

9.4 Reject reasons

A reject PDU is returned in response to various error conditions. The error conditions and the reason code with which

they are signalled are described below:

A mistypedPDU reason is returned if the PDU is invalidly constructed.

A duplicateInvokeIDRequest reason is returned if a request PDU is received and the invokeID has previously

been used since the connection was established.

An unsupportedOperationRequest reason is returned if a request PDU is received and the requested operation is

not supported.

An unknownOperationRequest reason is returned if a request PDU is received and the requested operation is

unknown.

A mistypedArgumentRequest reason is returned if a request PDU is received and the argument is invalidly

constructed.

A resourceLimitationRequest reason is returned if a request PDU is received and no operations can be performed

because of resource limitations.

An unknownInvokeIDResult reason is returned if a result PDU is received and the invokeID does not match that

of an operation to which a response is expected.

A mistypedResultRequest reason is returned if a result PDU is received and the result is invalidly constructed,

or the opcode does not match that of the corresponding request PDU.

ISO/IEC 9594-5:2020 (E)

52 Rec. ITU-T X.519 (10/2019)

An unknownInvokeIDError reason is returned if an error PDU is received and the invokeID does not match that of

an operation to which a response is expected.

An unknownError reason is returned if an error PDU is received and the indicated error does not belong to the

indicated protocol or is not permitted as a response to the operation.

A mistypedParameterError reason is returned if an error PDU is received and the parameter is invalidly

constructed, or the opcode does not match that of the corresponding request PDU.

9.5 Abort reasons

An Abort PDU is returned in response to various error conditions which are not covered by the Reject or the

BindError PDU. The error conditions and the reason code with which they are signalled are described below:

A mistypedPDU reason is returned if the PDU received has an invalid construction.

An unboundRequest reason is returned if a request PDU request is received before an association has been

established.

An invalidPDU reason is returned if a DSA gets a PDU which is not an IDM-PDU.

A resourceLimitation reason is returned if a Bind PDU is received and no operations can be performed because of

resource limitations, e.g., maximum number of connections exceeded.

A connectionFailed reason is returned if the DSA was not able to create the TCP/IP connection in order to send a

Bind PDU.

An invalidProtocol reason is returned if a resultBind, a BindResult or a BindError PDU is received and the

protocolID is unknown or not supported.

A reasonNotSpecified reason is returned if the initiator or the responder wants to close the association for any other

reason.

NOTE – An abort may be generated by the underlying service of the initiator, resulting in protocol that will not flow across the

connection, e.g., returning an abort with unboundRequest would be initiated by the underlying service as opposed to the target

system which cannot be reached.

9.6 Mapping onto TCP/IP

Binary data resulting from encoding is partitioned and placed in one or more segments to be sent over the TCP/IP

connection. Each segment has a header and carries the next fragment or portion of the encoded data. The division of an

IDM-PDU into fragments and the size of any fragment are the choice of the sender and carry no significance. All

fragments of an IDM-PDU shall be sent before another IDM-PDU is sent.

The format of a segment is determined by the version of the segment. New versions are introduced as additional

information is required in the header. The first octet is the version field.

The version number shall be the same for all IDM-PDUs within an application-association. If a request or response is

received violating this rule, the receiver shall return an IdmReject with reason code invalideIdmVersion. This reject

shall be transferred using the version agreed for the application-association.

If the version field indicates an unsupported version, the receiving DSA shall return an IdmReject with reason code

unsupportedIdmVersion. This reject shall be transferred using a version 1 format.

An implementation shall support the version 1 format in the response to an IdmBind.

A DSA may also reject an IdmBind if existing application-associations are using a version different from the one

suggested in the format suggested by the IdmBind. In this case, an IdmReject with reason code

unsuitableIdmVersion shall be returned. This reject shall be transferred using the same version as used for the request.

The format for a version 1 segment (header plus fragment of an IDM-PDU) is as follows:

version
(1 octet)

final
(1 octet)

length
(4 octets)

data
(length octets)

version indicates the version of the IDM-PDU and its mapping onto TCP/IP. The version described in this Directory

Specification shall be indicated with the value 1. All packets on a connection shall have the same value of version.

For version 1, each IDM-PDU is encoded using the ASN.1 basic encoding rules without restriction.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 53

The format for a version 2 segment is as follows:

version
(1 octet)

final
(1 octet)

encoding
(2 octets)

length
(4 octets)

data
(length octets)

encoding indicates which transfer syntax(es) other than basic encoding rules (BER) are supported. This field is

considered as a bit string containing 16 bits defined as follows:

i. bit 1: distinguished encoding rules (DER);

ii. bit 2: packed encoding rules (PER), basic aligned variant;

iii. bit 3: packed encoding rules (PER), basic unaligned variant;

iv. bit 4: XML encoding rules (XER).

The other bits are reserved for future use.

The encoding field of IdmBind request specifies all the supported encoding rules. In the IdmBind response, at most,

one of the bits set in the IdmBind request can be set. If the encoding field of the IdmBind response is not zero, the

corresponding encoding rules shall be used; otherwise basic encoding rules shall be used. The encoding field is not used

in other PDUs and shall contain zero.

final indicates whether data holds a non-final IDM-PDU fragment (value 0), or the whole value or final fragment

(value 1).

length is the length of data field in octets. It is sent in 'network octet order' with more significant octets preceding

less significant octets. The minimum value of length is 1. For performance reasons, it is recommended that the whole

IDM-PDU be contained in one segment if the length can be expressed in the 4 octets of the length field; IDM

fragmentation should only be used if the length of the IDM-PDU cannot be expressed in 4 octets.

data holds the next fragment of the IDM-PDU being conveyed, or the whole IDM-PDU if the whole value is conveyed

in one fragment.

9.7 Addressing

An IDM-style communications endpoint is defined by its IP address and its port number, and can be written in the notation

of IETF RFC 1738 as:

idm://host:port

An OSI Network address format for an IDM access point is specified in clause 11.3.2. Alternatively, the URI format as

specified in clause 11.4 may be used.

9.8 Use of TLS

9.8.1 TLS establishment

The initiator of the TCP/IP connection may at any time request the establishment of TLS by sending a StartTLS PDU.

The initiator shall not send any PDUs following this request until it has received a TLSResponse PDU.

9.8.2 TLS closure

Two forms of TLS closure are supported: graceful and abrupt.

9.8.2.1 Graceful closure

Either the TCP/IP initiator or responder may terminate the TLS connection by sending a TLS closure alert. Upon sending

this alert, it shall cease sending any further TLS Record Protocol PDUs and shall ignore any received TLS Record Layer

PDUs until it receives a TLS closure alert from the other party. Once it has received the TLS closure alert, it may continue

to send and receive IDM PDUs.

Upon receipt of a TLS closure alert that it did not solicit, a party may choose whether to leave the underlying TCP/IP

connection intact. If it chooses to leave the connection intact, it shall immediately respond with a TLS closure alert, after

which it may send and receive IDM PDUs. After a TLS connection has been closed, a DSA shall not respond to any

requests that were received prior to closure of the TLS connection.

Either party may choose to drop the underlying TCP/IP connection after sending or receiving a TLS closure alert.

ISO/IEC 9594-5:2020 (E)

54 Rec. ITU-T X.519 (10/2019)

9.8.2.2 Abrupt closure

Either the TCP/IP initiator or responder may abruptly close a TLS connection by closing the underlying TCP/IP

connection.

10 Directory protocol mapping onto the IDM protocol

This clause gives definitions for mapping the Directory protocols onto the IDM protocol. The complete

DirectoryIDMProtocols module is given in Annex E. The components are repeated in this clause for clarity.

10.1 DAP-IP protocol

The DAP-IP protocol dap-ip (Directory Access Protocol over TCP/IP) is used to invoke operations of the

DirectoryAbstractService abstract service. It is defined as:

DAP-IDM-PDUs ::= IDM-PDU{dap-ip}

dap-ip IDM-PROTOCOL ::= {

 BIND-OPERATION directoryBind

 OPERATIONS {read |

 compare |

 abandon |

 list |

 search |

 addEntry |

 removeEntry |

 modifyEntry |

 modifyDN |

 administerPassword |

 changePassword }

 ID id-idm-dap }

The operation and error codes for this protocol are the same as those given in clauses 6.4.1 and 6.5.1.

Only DUAs shall initiate connections using this protocol. Only the initiator of a connection shall request operations of

the protocol.

10.2 DSP-IP protocol

The DSP-IP protocol dsp-ip (Directory System Protocol over TCP/IP) is used to invoke operations of the

DistributedOperations abstract service. It is defined as:

DSP-IDM-PDUs ::= IDM-PDU{dsp-ip}

dsp-ip IDM-PROTOCOL ::= {

 BIND-OPERATION dSABind

 OPERATIONS {chainedRead |

 chainedCompare |

 chainedAbandon |

 chainedList |

 chainedSearch |

 chainedAddEntry |

 chainedRemoveEntry |

 chainedModifyEntry |

 chainedModifyDN |

 chainedAdministerPassword |

 chainedChangePassword |

 chainedLdapTransport |

 chainedLinkedLDAP }

 ID id-idm-dsp }

The operation and error codes for this protocol are the same as those given in clauses 6.4.1 and 6.5.1.

DSAs may use this protocol, and both the initiator and the acceptor of a connection may request operations of the protocol.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 55

10.3 DISP-IP protocol

The DISP-IP protocol disp-ip (Directory Information Shadowing Protocol over TCP/IP) is used to invoke operations

of the DirectoryShadowAbstractService abstract service. It is defined as:

DISP-IDM-PDUs ::= IDM-PDU{disp-ip}

disp-ip IDM-PROTOCOL ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {requestShadowUpdate |

 updateShadow |

 coordinateShadowUpdate}

 ID id-idm-disp }

The operation and error codes for this protocol are the same as those given in clauses 6.4.2 and 6.5.2.

DSAs may use this protocol, and both the initiator and the acceptor of a connection may request operations of the protocol.

10.4 DOP-IP protocol

The DOP-IP protocol dop-ip (Directory Operational Binding Protocol over TCP/IP) is used to invoke operations of the

OperationalBindingManagement abstract service. It is defined as:

DOP-IDM-PDUs ::= IDM-PDU{dop-ip}

dop-ip IDM-PROTOCOL ::= {

 BIND-OPERATION dSAOperationalBindingManagementBind

 OPERATIONS {establishOperationalBinding |

 modifyOperationalBinding |

 terminateOperationalBinding}

 ID id-idm-dop }

The operation and error codes for this protocol are the same as those given in clauses 6.4.3 and 6.5.3.

DSAs may use this protocol, and both the initiator and the acceptor of a connection may request operations of the protocol.

11 Protocol stack coexistence

Clause 9.7 defined an OSI network address format for an IDM communications endpoint. This clause recommends an

approach for coexistence between DSAs supporting different protocol stacks, such as OSI, IDM and LDAP. In order to

allow referrals to contain LDAP access points, this clause also specifies an OSI network address format for an LDAP

communications endpoint. In order to allow referrals to contain Uniform Resource Identifiers (URIs), this clause also

defines an NSAP address-like format that does not have the length restriction imposed on NSAP addresses (see

clause 11.4).

11.1 Coexistence between OSI and IDM stacks

A conformant implementation shall implement either the OSI stack as defined by clauses 7 and 8, the IDM stack as

defined by clauses 9 and 10, or both.

If a chaining DSA needs to forward a request to a target DSA and if the two DSAs do not support a protocol stack in

common, then the chaining DSA shall return instead a referral. That referral will be returned through each DSA that

chained the request. If any one of these DSAs supports the target DSA's protocol stack, it may choose to send the request

directly to the target DSA identified in the referral.

If none of the chaining DSAs support the target DSA's protocol stack, the referral shall be returned to the DUA. That

DUA may be able to send the request directly to the target DSA.

If deploying within a domain a mixture of DSA products, some of which support only one protocol stack, it is

recommended that either:

a) DSAs holding knowledge of DSAs that support only one protocol stack should support that protocol stack;

or

b) the DSA to which the DUA binds should support both protocol stacks.

ISO/IEC 9594-5:2020 (E)

56 Rec. ITU-T X.519 (10/2019)

11.2 Coexistence in the presence of LDAP

DSAs supporting either the OSI upper layer protocol stack or the IDM protocol stack may also choose to support an

LDAP. Interoperability between such DSAs may be accomplished through the use of chaining or referrals. Interoperability

between such DSAs and DUAs may be accomplished through the use of an LDAP or DAP.

In order for a DSA to be able to provide useful referrals for DUAs supporting only LDAP, it is necessary to represent the

LDAP access point of a potential target DSA in an OSI presentation address. Clause 11.3 defines an NSAP format for

LDAP. A DSA getting a referral containing an NSAP of this type can convert it to an LDAP referral and send it back to

the connected LDAP client.

11.3 Defining network addresses for Internet Protocol, version 4 support

The Directory addressing format as it is transferred in referrals and cross-reference information is in the OSI presentation

addressing format as defined in clause 6.9.1 of Rec. ITU-T X.520 | ISO/IEC 9594-6. For consistency, the same format is

used for non-OSI addressing.

Systems that simultaneously support a combination of OSI, OSI over TCP/IP, IDM and LDAP stacks can have a single

OSI presentation address containing multiple network addresses for those protocol stacks. If an NSAP address is for an

OSI stack, possibly on top of TCP/IP, pSelector, sSelector and the tSelector components, if present, shall be

recognized. Otherwise, they shall be ignored.

The OSI network address (NSAP address) format is specified in Rec. ITU-T X.213 | ISO/IEC 8348. It consists of three

parts:

a) the Authority and Format Identifier (AFI), which is a value allocated within Rec. ITU-T X.213 |

ISO/IEC 8348 and specifies the IDI format, the authority for allocating IDI values and the DSP format (see

below);

b) the Initial Domain Identifier (IDI) identifies the authority for allocating DSP values (see below); and

c) the Domain Specific Part (DSP) holds the actual network address information.

An NSAP address holding IPv4 and possibly a TCP port number is encoded as a sequence of hexadecimal and decimal

digits each occupying a semi-octet (4 bits). A hexadecimal digit is encoded in the range from '0000'B to '1111'B. A

decimal digit is encoded in the range from '0000'B to '1001'B.

Clauses 11.3.1 to 11.3.3 specify NSAP address structures for communication over the Internet Protocol, version 4 (IPv4)

for different types of communication. They all have a common structure:

a) the AFI has the value 54, which according to Rec. ITU-T X.213 | ISO/IEC 8348 is the F.69 format;

b) the IDI is a telex number encoded as 8 decimal digits (4 octets), where the value shall be 00 72 87 22;

c) The DSP has a substructure as follows:

– the first octet is a prefix indicating the type of communication over IPv4;

– the next 6 octets hold the IPv4 address which is encoded according to the 4-component dotted address.

It is encoded in 12 decimal digits with three digits per component (without the dots);

– a 5 decimal digit TCP port number, that may be absent if a default value is available; and

– a trailing semi-octet with the value 'F' to pack out the DSP to a full octet if the TCP port number is

present.

NOTE – The structures of the IDI and DSP are in accordance with IETF RFC 1277.

11.3.1 Definition of NSAP address for LDAP

An NSAP address for an LDAP access point is encoded as follows:

– the DSP prefix shall have the value '11';

– the TCP port number shall be present; and

– a trailing hex 'F' shall be added.

11.3.2 Definition of NSAP address for IDM over IPv4

An NSAP address for an IDM endpoint is encoded as follows:

– the DSP prefix shall have the value '10';

– the TCP port number shall be present; and

– a trailing hex 'F' shall be added.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 57

11.3.3 Definition of NSAP address for ITOP over IPv4

An NSAP address for an ISO Transport on top of TCP (ITOT) access point is encoded as follows:

– the DSP prefix shall have the value '03';

– the TCP port number may be absent and then defaults to 102; and

– a trailing hex 'F' shall be added if the port number is present.

11.4 Definition of NSAP-like address for long addressing information

NOTE 1 – An OSI Network address (NSAP address) is restricted to 20 octets in length, while the nAddress component in

PresentationAddress data type does not have a length restriction (see Rec. ITU-T X.520 | ISO/IEC 9594-6). It is therefore

possible to define NSAP address-like addresses with no length restriction. Such an address can also be part of an instance of a

PresentationAddress data type.

NOTE 2 – The format defined in this clause may be used in all situations where a URI may be expressed and it allows for IPv6

support.

Octets 0-2 AFI = FF IDI (octets 1-2)

Octets 3-n DSP=Address information

An NSAP-like address with no inherent length restriction is encoded as follows:

a) the AFI has the value FF, which is a value that will never be allocated by Rec. ITU-T X.213 |

ISO/IEC 8348;

b) the following values are defined for IDI:

– 0000: The DSP is a Uniform Resource Identifier (URI) as defined by IETF RFC 3986 for an ITOT

access point; and

– 0001: The DSP is a Uniform Resource Identifier (URI) for non-OSI access points (LDAP, IDM, etc.)

NOTE 3 – Other values may be defined in the future.

12 Versions and the rules for extensibility

This clause describes version negotiation rules and rules for extensibility for the OSI-mapped protocols defined in

clause 7, and the IDM-mapped protocols defined in clause 10.

The Directory may be distributed and more than two Directory application-entities (AEs) may interoperate to service a

request. The Directory AEs may be implemented conforming to different editions of the Directory specification of the

Directory service which may or may not be represented by different protocol version numbers. The version number is

negotiated to the highest common version number between two directly binding Directory AEs.

NOTE 1 – There are currently two versions of each Directory protocol. Rec. ITU-T X.511 (1993) | ISO/IEC 9594-3 (1995),

Rec. ITU-T X.518 (1993) | ISO/IEC 9594-4 (1995) and Rec. ITU-T X.519 (1993) | ISO/IEC 9594-5 (1995) and their previous

edition specified only version 1. Most features added in subsequent editions are also available in version 1. However, some

enhanced services and protocols, e.g., signed errors, require that version 2 has been negotiated among all involved parties.

A DUA may issue a request as specified in the latest edition of the Directory specification to which the DUA was

implemented. Using the rules of extensibility defined below, that request shall be forwarded to the appropriate DSA that

will respond to that request, regardless of the edition of the intervening DSAs. The responding DSA shall function as

defined below.

NOTE 2 – An intermediate DSA only chaining the request may choose to examine selected elements of the Directory PDU that is

needed to perform its function, e.g., name resolution.

12.1 Use of extension markers

From the Rec. ITU-T X.5** (2012) | ISO/IEC 9594-*:2014 of these Directory Specifications ASN.1 extensions markers

are used as defined in ASN.1 specifications.

A DSA system implementing PER shall recognise all ASN.1 up to and including the

Rec. ITU-T X.5** (2008) | ISO/IEC 9594-*:2008 edition of these Directory Specifications.

ISO/IEC 9594-5:2020 (E)

58 Rec. ITU-T X.519 (10/2019)

12.2 DUA to DSA

12.2.1 Version negotiation

When accepting an association, i.e., binding, utilizing the DAP, the version negotiated shall only affect the point-to-point

aspects of the protocol exchanged between the DUA and the DSA to which it is connected. Subsequent requests or

responses on the association shall not be constrained by the version negotiated.

NOTE – There are no point-to-point aspects of the DAP that are currently indicated by different protocol versions.

12.2.2 Request and response processing

The DUA may initiate requests using the highest edition of the specification of that request it supports. If one or more

elements of the request are critical, it shall indicate the extension number(s) in the criticalExtensions parameter.

NOTE 1 – If a value defined by an extension is encoded in a CHOICE, ENUMERATED, or INTEGER (used as ENUMERATED) type and

if that type is essential for proper operation in a DSA implemented according to an earlier edition of these Directory Specifications,

it is recommended that the extension be marked critical.

When processing a request from a DUA, a DSA shall follow the rules defined in clause 12.2.2.

When processing a response, a DUA shall:

a) ignore all unknown bit name assignments within a bit string;

b) ignore all unknown named numbers in an ENUMERATED type or INTEGER type that is being used in the

enumerated style, provided the number occurs as an optional element of a SET or SEQUENCE;

c) ignore all unknown elements in SETs, at the end of SEQUENCEs, or in CHOICEs where the CHOICE is itself

an optional element of a SET or SEQUENCE.

NOTE 2 – Implementations may as a local option ignore certain additional elements in a Directory PDU. In particular, some

unknown named numbers and unknown CHOICEs in mandatory elements of SETs and SEQUENCEs can be ignored without

invalidating the operation. The identification of such elements is for further study.

d) not consider the receipt of unknown attribute types and attribute values as a protocol violation; and

e) optionally report the unknown attribute types and attribute values to the user.

12.2.3 Extensibility rules for error handling

When processing a known error type with unknown indicated problems and parameters, a DUA shall:

a) not consider the receipt of unknown indicated problems and parameters as a protocol violation (i.e., it shall

not issue an OsiReject or a Reject, as appropriate, or abort the application-association); and

b) optionally report the additional error information to the user.

When processing an unknown error type, a DUA shall:

a) not consider the receipt of unknown error type as a protocol violation (i.e., it shall not issue an OsiReject

or a Reject, as appropriate, or abort the application-association); and

b) optionally report the error to the user.

12.3 DSA to DSA

12.3.1 Version negotiation

When establishing or accepting an association, i.e., binding, utilizing the DSP, the version negotiated shall only affect the

point-to-point aspects of the protocol exchanged between the DSAs. Subsequent requests or responses on the association

shall not be constrained by the version negotiated.

NOTE 1 – There are no point-to-point aspects of the DSP that are currently indicated by different protocol versions.

When establishing or accepting an association, i.e., binding, utilizing the DISP, the version negotiated shall define all

aspects of the protocol exchanged between the DSAs. Subsequent requests or responses on the association shall be

constrained by the version negotiated.

NOTE 2 – There is currently only one version of the DISP protocol.

When establishing or accepting an association, i.e., binding, utilizing the DOP, the version negotiated shall define all

aspects of the protocol exchanged between the DSAs. Subsequent requests or responses on the association shall be

constrained by the version negotiated.

NOTE 3 – There is currently only one version of the DOP protocol.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 59

12.3.2 Rules of extensibility for operation processing

If any DSA performing an operation (after name resolution is completed) detects an element of criticalExtensions

whose semantic is unknown, it shall return an unavailableCriticalExtension indication as a serviceError or in

a PartialOutcomeQualifier.

NOTE 1 – If a criticalExtensions string with one or more zero values is received, this indicates either that the extensions

corresponding to the values are not present in the operation or are not critical. The presence of a zero value in a

criticalExtensions string shall not be inferred as either the presence or absence of the corresponding extension in the Directory

PDU.

Otherwise, when processing a Directory PDU, a DSA shall:

a) ignore all unknown bit name assignments within a bit string; and

b) ignore all unknown named numbers in an ENUMERATED type or INTEGER type that is being used in the

enumerated style, provided the number occurs as an optional element of a SET or SEQUENCE; and

NOTE 2 – For ENUMERATED, systems implementing PER cannot ignore named numbers before the extension

marker.

c) ignore all unknown components in SETs, at the end of SEQUENCEs, or in CHOICEs where the CHOICE is

itself an optional element of a SET or SEQUENCE.

NOTE 3 – Systems implementing PER cannot ignore components/alternatives before the extension marker.

12.3.3 Rules of extensibility for chaining

If the PDU is a request, the DSA shall forward the request containing the unknown types and values to any additional

DSAs determined by the name resolution process.

If the PDU is a response, the DSA shall process the unknown types and values as it would process known types and values

(see clause on results merging in the Directory Specification on Distributed Operations) and forward to the initiating DSA

or DUA.

A DSA implementing Rec. ITU-T X.5** (2005) | ISO/IEC 9594-*:2005 or subsequent editions acting as an intermediate

DSA that is only chaining a request shall forward a request with an unknown operation. A DSA implementing

Rec. ITU-T X.5** (2001 | ISO/IEC 9594-*:2001 or earlier editions may optionally forward a request containing an

unknown operation.

NOTE – This latter extension rule requires that any new operation that might be chained must have its argument defined as a

sequence type where the first component shall be the name of the object to which the operation is addressed.

12.3.4 Rules of extensibility for error handling

When processing a known error type with unknown indicated problems and parameters, a DSA:

a) shall not consider the receipt of unknown indicated problems and parameters as a protocol violation (i.e., it

shall not issue an OsiReject, or a Reject, as appropriate, or abort the application-association); and

b) may attempt to recover, as appropriate to its understanding of just the error type, or may just return the

error (and its unknown indicated problems and parameters) to the next appropriate DSA or DUA.

When processing an unknown error type, a DSA which is only involved in chaining the request shall:

a) not consider the unknown error type as a protocol violation (i.e., it shall not issue an OsiReject or a

Reject, as appropriate, or abort the application-association); and

b) not attempt to correct or recover from the error and its indicated problems and parameters; and

c) return the unknown error type to the next appropriate DSA or DUA.

When processing an unknown error, a DSA which is correlating multiple responses shall:

a) not consider the unknown error type as a protocol violation (i.e., it shall not issue an OsiReject or a

Reject, as appropriate, or abort the application-association); and

b) not attempt to correct or recover from the error and its indicated problems and parameters; and

c) put the unknown error in PartialOutcomeQualifier; and

d) continue correlating results as usual.

12.4 Rules of extensibility for NSAP addresses

A DUA or a DSA may receive a reference that has one or more NSAP addresses with an unknown format. If this is the

case, then the DUA or DSA shall:

ISO/IEC 9594-5:2020 (E)

60 Rec. ITU-T X.519 (10/2019)

– not consider this an error;

– not attempt to use an NSAP address with an unknown structure; and

– ignore the reference if all contained NSAP addresses have an unknown structure.

12.5 Rules of extensibility for object classes

Optional user attributes may be added to an existing object class without assigning a new object identifier.

A DSA not supporting an object class extension may reject any operation that attempts to create or modify an entry

resulting in an extension attribute to be present in the entry.

12.6 Rules of extensibility for user attribute types

A user attribute type definition may be extended in such a way that its matching characteristics are not changed. This may

include:

– adding values to ENUMERATED and INTEGER types that are being used in the enumerated style;

– adding bits to a bit string.

A DSA is not required to handle an attribute value that includes such extensions.

A DUA shall not consider the receipt of an extended attribute value as an error.

13 Conformance

This clause defines the requirements for conformance to this Directory Specification.

13.1 Conformance by DUAs

A DUA implementation claiming conformance to this Directory Specification shall satisfy the requirements specified

in clauses 13.1.1 to 13.1.3.

13.1.1 Statement requirements

The following shall be stated:

a) the operations of the directoryAccessAC application-context and/or dap-ip protocol that the DUA is

capable of invoking for which conformance is claimed;

b) The bind security level(s) for which conformance is claimed (none, simple, strong – and if simple, then

whether without password, with password or with protected-password or if the userPwd is supported for

password policy); and whether the DUA can generate signed arguments or validate signed results;

c) the extensions listed in Table 1 of Rec. ITU-T X.511 | ISO/IEC 9594-3, that the DUA is capable of

initiating for which conformance is claimed;

d) whether conformance is claimed to Rule-based Access Control; and

e) if conformance is claimed for strong authentication, or signed operations, identification of the Certificate

and CRL extensions for which conformance is claimed.

13.1.2 Static requirements

A DUA shall:

a) have the capability of supporting the directoryAccessAC application-context as defined by its abstract

syntax in clause 7; and/or the dap-ip protocol defined in clause 10;

b) conform to the extensions for which conformance was claimed in clause 13.1.1 c);

c) if conformance is claimed to Rule-based Access Control, have the capability of supporting security labels

as identified in clause 19.4 of Rec. ITU-T X.501 | ISO/IEC 9594-2; and

d) conform to clauses 8 and 15 of Rec. ITU-T X.509 | ISO/IEC 9594-8 for the Certificate and CRL extensions

for which conformance was claimed in clause 13.1.1 e).

13.1.3 Dynamic requirements

A DUA shall:

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 61

a) conform to the mapping onto the used service defined in clauses 8 or 10, or both; and

b) conform to the rules of extensibility procedures defined in clause 12.1.

13.2 Conformance by DSAs

A DSA implementation claiming conformance to this Directory Specification shall satisfy the requirements specified

in clauses 13.2.1 to 13.2.3.

13.2.1 Statement requirements

The following shall be stated:

a) The application-contexts and IDM protocols for which conformance is claimed: directoryAccessAC,

directorySystemAC, directoryOperationalBindingManagementAC, dap-ip, dsp-ip, dop-ip,

or a combination of these. A DSA that claims conformance to the directoryOperationalBinding

ManagementAC or to the dop-ip in support of hierarchical operational bindings shall also support the

directorySystemAC or dsp-ip. If a DSA is such that knowledge of it has been disseminated, causing

knowledge references to the DSA to be held in other DSAs outside of its own DMD, then it shall claim

conformance to the directorySystemAC or dsp-ip.

NOTE 1 – An application context shall not be divided except as stated herein; in particular, conformance shall not be claimed to

particular operations.

b) The operational binding types for which conformance is claimed: shadowOperationalBindingID,

specificHierarchicalBindingID, non-specificHierarchicalBindingID, or a combination of

these. A DSA that claims conformance to the shadowOperationalBindingID shall support one or more

of the application contexts for shadow suppliers and/or shadow consumers indicated in clauses 13.3

and 13.4.

c) Whether or not the DSA is capable of acting as a first level DSA, as defined in Rec. ITU-T X.518 |

ISO/IEC 9594-4.

d) If conformance is claimed to the application-context specified by directorySystemAC and/or associated

with the dap-ip protocol, whether or not the chained mode of operation is supported, as defined in Rec.

ITU-T X.518 | ISO/IEC 9594-4.

e) If conformance is claimed to the application-context specified by directoryAccessAC and/or associated

with the dap-ip protocol, the bind security level(s) for which conformance is claimed (none, simple,

strong, SPKM, SASL – and if simple, then whether without password, with password, with protected

password or the userPwd is supported for password policy); whether the DSA can perform originator

authentication as defined in clause 22.1 of Rec. ITU-T X.518 | ISO/IEC 9594-4 and if so, whether identity-

based or signature-based; and whether the DSA can perform result authentication as defined in clause 22.2

of Rec. ITU-T. X.518 | ISO/IEC 9594-4.

f) If conformance is claimed to the application-context specified by directorySystemAC and/or associated

with the dsp-ip protocol, the bind security level(s) for which conformance is claimed (none, simple,

strong, SPKM, SASL – and if simple, then whether without password, with password, or with protected

password); whether the DSA can perform originator authentication as defined in clause 22.1 of Rec. ITU-

T X.518 | ISO/IEC 9594-4 and if so, whether identity-based or signature-based; and whether the DSA can

perform result authentication as defined in clause 22.2 of Rec. ITU-T X.518 | ISO/IEC 9594-4.

g) The selected attribute types defined in Rec. ITU-T X.520 | ISO/IEC 9594-6, and any other attribute types,

for which conformance is claimed and whether for attributes based on the syntax DirectoryString,

conformance is claimed for the UniversalString, BMPString, or UTF8String choices.

h) The selected object classes defined in Rec. ITU-T X.521 | ISO/IEC 9594-7, and any other object classes,

for which conformance is claimed.

i) The extensions listed in Table 1 of Rec. ITU-T X.511 | ISO/IEC 9594-3, that the DSA is capable of

responding to, for which conformance is claimed.

j) Whether conformance is claimed for collective attributes as defined in clause 8.9 of Rec. ITU-T X.501 |

ISO/IEC 9594-2 and clauses 7.6, 7.8.2 and 9.2.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

k) Whether conformance is claimed for hierarchical attributes as defined in clauses 7.6, 7.8.2 and 9.2.2 of

Rec. ITU-T X.511 | ISO/IEC 9594-3.

l) The operational attribute types defined in Rec. ITU-T X.501 | ISO/IEC 9594-2 and any other operational

attribute types for which conformance is claimed.

ISO/IEC 9594-5:2020 (E)

62 Rec. ITU-T X.519 (10/2019)

m) Whether conformance is claimed for the return of alias names as described in clause 7.7.1 of

Rec. ITU-T X.511 | ISO/IEC 9594-3.

n) Whether conformance is claimed for indicating that returned entry information is complete, as described

in clause 7.7.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

o) Whether conformance is claimed for modifying the object class attribute to add and/or remove values

identifying auxiliary object classes, as described in clause 11.3.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

p) Whether conformance is claimed to Basic Access Control.

q) Whether conformance is claimed to Simplified Access Control.

r) Whether the DSA is capable of administering the subschema for its portion of the DIT, as defined in Rec.

ITU-T X.501 | ISO/IEC 9594-2.

NOTE 2 – The capability to administer a subschema shall not be divided; specifically, the capability to administer

particular subschema definitions shall not be claimed.

s) The selected name bindings defined in Rec. ITU-T X.521 | ISO/IEC 9594-7 and any other name bindings,

for which conformance is claimed.

t) Whether the DSA is capable of administering collective attributes, as defined in Rec. ITU-T X.501 |

ISO/IEC 9594-2.

u) The selected context types defined in Rec. ITU-T X.520 | ISO/IEC 9594-6, and any other context types,

for which conformance is claimed.

v) Whether conformance is claimed for contexts as defined in clauses 8.8, 8.9 and 12.8 of Rec. ITU-T X.501

| ISO/IEC 9594-2, and in clauses 7.3 and 7.6 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

w) Whether conformance is claimed for the management of the DSA Information Tree, as defined in

clause 7.12 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

x) Whether conformance is claimed to Rule-based Access Control.

NOTE 3 – The support of security labels requires the following minimal support of contexts: Context lists as per

clause 8.8 of Rec. ITU-T X.501 | ISO/IEC 9594-2 and returnContexts as per clause 7.6 of Rec. ITU-T X.511 |

ISO/IEC 9594-3.

y) Whether conformance is claimed to integrity of Directory operations.

z) Whether conformance is claimed that the DSA can hold and provide access to encrypted and digitally

signed information.

aa) If conformance is claimed for strong authentication, signed operations, identification of the Certificate and

CRL extensions for which conformance is claimed.

13.2.2 Static requirements

A DSA shall:

a) have the capability of supporting the application-contexts whose abstract syntaxes are defined in clause 7,

and the IDM protocols defined in clause 10, for which conformance is claimed;

b) have the capability of supporting the information framework defined by its abstract syntax in

Rec. ITU-T X.501 | ISO/IEC 9594-2;

c) conform to the minimal knowledge requirements defined in Rec. ITU-T X.518 | ISO/IEC 9594-4;

d) if conformance is claimed as a first-level DSA, conform to the requirements support of the root naming

context, as defined in Rec. ITU-T X.501 | ISO/IEC 9594-2;

e) have the capability of supporting the attribute types for which conformance is claimed, as defined by their

abstract syntaxes;

f) have the capability of supporting the object classes for which conformance is claimed, as defined by their

abstract syntaxes;

g) conform to the extensions for which conformance was claimed in clause 13.2.1 i);

h) if the capability to administer subschema as defined in Rec. ITU-T X.501 | ISO/IEC 9594-2 is claimed, the

DSA shall be able to do this administration;

i) if conformance is claimed for collective attributes, have the capability of performing the related procedures

defined in clauses 7.6, 7.8.2 and 9.2.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3;

j) if conformance is claimed for hierarchical attributes, have the capability of performing the related

procedures defined in clauses 7.6, 7.8.2 and 9.2.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3;

k) have the capability of supporting the operational attribute types for which conformance is claimed;

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 63

l) if conformance is claimed to Basic Access Control, have the capability of holding ACI items that conform

to the definitions of Basic Access Control;

m) if conformance is claimed to Simplified Access Control, have the capability of holding ACI items that

conform to the definitions of Simplified Access Control;

n) have the capability of supporting the context types for which conformance is claimed, as defined by their

abstract syntaxes;

o) if conformance is claimed for contexts, have the capability of performing the related procedures defined

in Rec. ITU-T X.511 | ISO/IEC 9594-3;

p) if conformance is claimed for the support of the families of entries feature, have the capabilities as defined

in clauses 7.3.2, 7.6.4 and 7.8.3 of Rec. ITU-T X.511 | ISO/IEC 9594-3;

q) if conformance is claimed to the search relaxation feature, have the capabilities as defined in clause 13.6.2

of Rec. ITU-T X.501 | ISO/IEC 9594-2 and in clause 10.2.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3. In

particular an implementation shall specify:

– whether it supports the inclusion of the RelaxationPolicy construct in a search request;

– whether it supports mapping-based matching, matching rule substitution, or both; and

– if it supports mapping-based matching, what mappings are supported;

r) if conformance is claimed to the hierarchical group feature, have the capabilities as defined in clause 7.5

of Rec. ITU-T X.511 | ISO/IEC 9594-3;

in addition, the implementation shall declare:

– what hierarchy options are supported;

s) if conformance is claimed to the basic administration of services, have the capabilities as defined in

clause 16 of Rec. ITU-T X.501 | ISO/IEC 9594-2, and the basic checking procedures as defined in

clause 13 of Rec. ITU-T X.511 | ISO/IEC 9594-3. This support includes:

– support for entry count;

– support of the service controls options entryCount and performExactly;

– support of the notification extension defined in clause 7.4 of Rec. ITU-T X.511 | ISO/IEC 9594-

3;

in addition, the implementation shall declare whether it supports:

– service-specific administrative points different from autonomous administrative points;

– the context feature within search-rules;

– the families of entries facility within search-rules, which also requires general conformance to that

feature;

– the search relaxation feature within search-rules detailed as above in q), which also requires that the

implementation claims general conformance to the search relaxation feature;

– hierarchical groups within search-rules;

t) if conformance is claimed to Rule-Based Access Control, have the capability of holding ACI items that

conform to the definition of Rule-Based Access Control;

u) if conformance is claimed to integrity of Directory operations, be capable of signing all Directory

operations supported;

v) if conformance is claimed to the integrity of directory information in storage, be capable of supporting the

attributeValueIntegrityInfoContext to protect directory information;

w) conform to clause 8 of Rec. ITU-T X.509 | ISO/IEC 9594-8 for the Certificate and CRL extensions for

which conformance was claimed in clause 13.2.1 aa).

13.2.3 Dynamic requirements

A DSA shall:

a) if claiming conformance to any application-contexts defined in clauses 8.2.2, 8.2.3 and 8.2.4, conform to

the mapping onto used OSI services defined in clause 8;

b) conform to the procedures for distributed operation of the Directory related to referrals, as defined in Rec.

ITU-T X.518 | ISO/IEC 9594-4;

ISO/IEC 9594-5:2020 (E)

64 Rec. ITU-T X.519 (10/2019)

c) if conformance is claimed to the application-context specified by directoryAccessAC and/or associated

with the dap-ip protocol, conform to the procedures of Rec. ITU-T X.518 | ISO/IEC 9594-4 as they relate

to the referral mode of the DAP;

d) if conformance is claimed to the application-context specified by directorySystemAC and/or associated

with the dsp-ip protocol, conform to the referral mode of interaction, as defined in Rec. ITU-T X.518 |

ISO/IEC 9594-4;

e) if conformance is claimed to the chained mode of interaction, conform to the chained mode of interaction,

as defined in Rec. ITU-T X.518 | ISO/IEC 9594-4;

NOTE – Only in this case is it necessary for a DSA to be capable of invoking operations of the directorySystemAC

and/or dsp-ip.

f) conform to the rules of extensibility procedures defined in clause 12.2;

g) if conformance is claimed to Basic Access Control, have the capability of protecting information within

the DSA in accordance with the procedures of Basic Access Control;

h) if conformance is claimed to Simplified Access Control, have the capability of protecting information

within the DSA in accordance with the procedures of Simplified Access Control;

i) if conformance is claimed for the shadowOperationalBindingID, conform to the procedures of

Rec. ITU-T X.525 | ISO/IEC 9594-9 and Rec. ITU-T X.501 | ISO/IEC 9594-2 as they relate to the DOP;

j) if conformance is claimed for the specificHierarchicalBindingID, conform to the procedures of

Rec. ITU-T X.518 | ISO/IEC 9594-4 and Rec. ITU-T X.501 | ISO/IEC 9594-2 as they relate to specific

hierarchical operational bindings;

k) if conformance is claimed for the non-specificHierarchicalBindingID, conform to the procedures

of Rec. ITU-T X.518 | ISO/IEC 9594-4 and Rec. ITU-T X.501 | ISO/IEC 9594-2 as they relate to

non-specific hierarchical operational bindings;

l) if conformance is claimed to Rule-based Access Control, have the capability of protecting information

within the DSA in accordance with the procedures of Rule-based Access Control;

m) if conformance is claimed to the basic administration of services, have the capability of handling the

search-rules as specified in clause 19.3.2 of Rec. ITU-T X.518 | ISO/IEC 9594-4.

13.3 Conformance by a shadow supplier

A DSA implementation claiming conformance to this Directory Specification in the role of shadow supplier shall satisfy

the requirements specified in clauses 13.3.1 to 13.3.3.

13.3.1 Statement requirements

The following shall be stated:

a) The application context(s) for which conformance is claimed as a shadow supplier:

shadowSupplierInitiatedAC, shadowConsumerInitiatedAC,

shadowSupplierInitiatedAsynchronousAC, shadowConsumerInitiatedAsynchronousAC,

and disp-ip.

 A DSA implementation claiming conformance as a shadow supplier and not supporting disp-ip shall, at

a minimum, support either the shadowSupplierInitiatedAC or the shadowConsumerInitiatedAC.

If the DSA supports the shadowSupplierInitiatedAC, it may optionally support the

shadowSupplierInitiatedAsynchronousAC. If the DSA supports the

shadowConsumerInitiatedAC, it may optionally support the shadowConsumerInitiatedAsynchronousAC. If

claiming conformance to disp-ip, it shall be stated whether the implementation is capable of invoking

the requestShadowUpdate operation, responding to a coordinateShadowUpdate, or both.

b) The security-level(s) for which conformance is claimed (none, simple, strong).

c) To which degree the UnitOfReplication is supported. Specifically, which (if any) of the following

optional features are supported:

– entry filtering on objectClass;

– selection/Exclusion of attributes via AttributeSelection;

– the inclusion of subordinate knowledge in the replicated area;

– the inclusion of extended knowledge in addition to subordinate knowledge;

– selection/Exclusion of attribute values based on contexts.

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 65

13.3.2 Static requirements

A DSA shall:

a) have the capability of supporting the application-contexts whose abstract syntaxes are defined in clause 7,

and the IDM protocols defined in clause 10, for which conformance is claimed;

b) provide support for modifyTimestamp and createTimestamp operational attributes.

13.3.3 Dynamic requirements

A DSA shall:

a) if claiming conformance to any application-contexts defined in clause 8.2.3, conform to the mapping onto

used OSI services defined in clause 8;

b) conform to the procedures of Rec. ITU-T X.525 | ISO/IEC 9594-9 as they relate to the DISP.

13.4 Conformance by a shadow consumer

A DSA implementation claiming conformance to this Directory Specification as a shadow consumer shall satisfy the

requirements specified in clauses 13.4.1 to 13.4.3.

13.4.1 Statement requirements

The following shall be stated:

a) The application context(s) for which conformance is claimed as a shadow consumer:

shadowSupplierInitiatedAC, shadowConsumerInitiatedAC,

shadowSupplierInitiatedAsynchronousAC, shadowConsumerInitiatedAsynchronousAC,

and disp-ip.

 A DSA implementation claiming conformance as a shadow consumer and not supporting disp-ip shall,

at a minimum, support either the shadowSupplierInitiatedAC or the

shadowConsumerInitiatedAC. If the DSA supports the shadowSupplierInitiatedAC, it may

optionally support the shadowSupplierInitiatedAsynchronousAC. If the DSA supports the

shadowConsumerInitiatedAC it may optionally support the

shadowConsumerInitiatedAsynchronousAC. If claiming conformance to disp-ip, it shall be stated

whether the implementation is capable of responding to the requestShadowUpdate operation, requesting

a coordinateShadowUpdate, or both.

b) The security-level(s) for which conformance is claimed (none, simple, strong).

c) Whether the DSA can act as a secondary shadow supplier (i.e., participate in secondary shadowing as an

intermediate DSA).

d) Whether the DSA supports shadowing of overlapping units of replication.

13.4.2 Static requirements

A DSA shall:

a) have the capability of supporting the application-contexts whose abstract syntaxes are defined in clause 7,

and the IDM protocols defined in clause 10, for which conformance is claimed;

b) provide support for modifyTimestamp and createTimestamp operational attributes if overlapping

units of replication is supported;

c) provide support for the copyShallDo service control.

13.4.3 Dynamic requirements

A DSA shall:

a) if claiming conformance to any application-contexts, conform to the mapping onto used OSI services

defined in clause 8;

b) conform to the procedures of Rec. ITU-T X.525 | ISO/IEC 9594-9 as they relate to the DISP.

ISO/IEC 9594-5:2020 (E)

66 Rec. ITU-T X.519 (10/2019)

Annex A

Common protocol specifications in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type, value and information object definitions contained in this Directory

Specification in the form of the ASN.1 module CommonProtocolSpecification.

CommonProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) commonProtocolSpecification(35) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the

other ASN.1 modules contained within the Directory Specifications, and for

the use of other applications which will use them to access Directory

services. Other applications may use them for their own purposes, but this

will not constrain extensions and modifications needed to maintain or

improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 establishOperationalBinding, modifyOperationalBinding,

 terminateOperationalBinding

 FROM OperationalBindingManagement

 {joint-iso-itu-t ds(5) module(1) opBindingManagement(18) 9} WITH SUCCESSORS ;

OPERATION ::= CLASS {

 &ArgumentType OPTIONAL,

 &ResultType OPTIONAL,

 &Errors ERROR OPTIONAL,

 &operationCode Code UNIQUE OPTIONAL }

WITH SYNTAX {

 [ARGUMENT &ArgumentType]

 [RESULT &ResultType]

 [ERRORS &Errors]

 [CODE &operationCode] }

ERROR ::= CLASS {

 &ParameterType,

 &errorCode Code UNIQUE OPTIONAL }

WITH SYNTAX {

 PARAMETER &ParameterType

 [CODE &errorCode] }

Code ::= CHOICE {

 local INTEGER,

 global OBJECT IDENTIFIER,

 ... }

InvokeId ::= CHOICE {

 present INTEGER,

 absent NULL,

 ... }

-- operation codes for DAP and DSP

id-opcode-read Code ::= local:1

id-opcode-compare Code ::= local:2

id-opcode-abandon Code ::= local:3

id-opcode-list Code ::= local:4

id-opcode-search Code ::= local:5

id-opcode-addEntry Code ::= local:6

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 67

id-opcode-removeEntry Code ::= local:7

id-opcode-modifyEntry Code ::= local:8

id-opcode-modifyDN Code ::= local:9

id-opcode-changePassword Code ::= local:10

id-opcode-administerPassword Code ::= local:11

id-opcode-ldapTransport Code ::= local:12

id-opcode-linkedLDAP Code ::= local:13

-- operation codes for DISP

id-opcode-requestShadowUpdate Code ::= local:1

id-opcode-updateShadow Code ::= local:2

id-opcode-coordinateShadowUpdate Code ::= local:3

-- operation codes for DOP

id-op-establishOperationalBinding Code ::= local:100

id-op-modifyOperationalBinding Code ::= local:102

id-op-terminateOperationalBinding Code ::= local:101

-- error codes for DAP and DSP

id-errcode-attributeError Code ::= local:1

id-errcode-nameError Code ::= local:2

id-errcode-serviceError Code ::= local:3

id-errcode-referral Code ::= local:4

id-errcode-abandoned Code ::= local:5

id-errcode-securityError Code ::= local:6

id-errcode-abandonFailed Code ::= local:7

id-errcode-updateError Code ::= local:8

id-errcode-dsaReferral Code ::= local:9

-- error code for DISP

id-errcode-shadowError Code ::= local:1

-- error code for DOP

id-err-operationalBindingError Code ::= local:100

DOP-Invokable OPERATION ::=

 {establishOperationalBinding |

 modifyOperationalBinding |

 terminateOperationalBinding}

DOP-Returnable OPERATION ::=

 {establishOperationalBinding |

 modifyOperationalBinding |

 terminateOperationalBinding}

END -- CommonProtocolSpecification

ISO/IEC 9594-5:2020 (E)

68 Rec. ITU-T X.519 (10/2019)

Annex B

OSI Protocol in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type, value and information object definitions contained in this Directory

Specification in the form of the ASN.1 module OSIProtocolSpecification.

OSIProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) oSIProtocolSpecification(36) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within the Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications may

use them for their own purposes, but this will not constrain extensions and

modifications needed to maintain or improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 Name, RelativeDistinguishedName

 FROM InformationFramework

 {joint-iso-itu-t ds(5) module(1) informationFramework(1) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.511 | ISO/IEC 9594-3

 SecurityProblem, ServiceProblem, Versions

 FROM DirectoryAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.519 | ISO/IEC 9594-5

 InvokeId, OPERATION

 FROM CommonProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) commonProtocolSpecification(35) 9} WITH SUCCESSORS

 APPLICATION-CONTEXT

 FROM DirectoryOSIProtocols

 {joint-iso-itu-t ds(5) module(1) directoryOSIProtocols(37) 9} WITH SUCCESSORS ;

-- OSI protocol

OSI-PDU{APPLICATION-CONTEXT:protocol} ::= TYPE-IDENTIFIER.&Type (

 OsiBind{{protocol}} |

 OsiBindResult{{protocol}} |

 OsiBindError{{protocol}} |

 OsiOperation{{protocol.&Operations}} |

 OsiUnbind |

 PresentationAbort)

OsiBind{APPLICATION-CONTEXT:Protocols} ::= SET {

 mode-selector [0] IMPLICIT SET {

 mode-value [0] IMPLICIT INTEGER(1)},

 normal-mode-parameters [2] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 calling-presentation-selector [1] IMPLICIT Presentation-selector OPTIONAL,

 called-presentation-selector [2] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-list

 [4] IMPLICIT Context-list,

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 69

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type

 (AARQ-apdu{{Protocols}})}}}}}

Presentation-selector ::= OCTET STRING(SIZE (1..4, ..., 5..MAX))

Context-list ::= SEQUENCE SIZE (2) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 abstract-syntax-name Abstract-syntax-name,

 transfer-syntax-name-list SEQUENCE OF Transfer-syntax-name }

Presentation-context-identifier ::= INTEGER(1..127, ..., 128..MAX)

Abstract-syntax-name ::= OBJECT IDENTIFIER

Transfer-syntax-name ::= OBJECT IDENTIFIER

AARQ-apdu{APPLICATION-CONTEXT:Protocols} ::= [APPLICATION 0] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version1(0)}

 DEFAULT {version1},

 application-context-name [1] Application-context-name,

 called-AP-title [2] Name OPTIONAL,

 called-AE-qualifier [3] RelativeDistinguishedName OPTIONAL,

 called-AP-invocation-identifier [4] AP-invocation-identifier OPTIONAL,

 called-AE-invocation-identifier [5] AE-invocation-identifier OPTIONAL,

 calling-AP-title [6] Name OPTIONAL,

 calling-AE-qualifier [7] RelativeDistinguishedName OPTIONAL,

 calling-AP-invocation-identifier [8] AP-invocation-identifier OPTIONAL,

 calling-AE-invocation-identifier [9] AE-invocation-identifier OPTIONAL,

 implementation-information [29] IMPLICIT Implementation-data OPTIONAL,

 user-information [30] IMPLICIT

 Association-informationBind{{Protocols}}}

Association-informationBind{APPLICATION-CONTEXT:Protocols} ::=

 SEQUENCE SIZE (1..MAX) OF

 EXTERNAL

 (WITH COMPONENTS {

 identification (WITH COMPONENTS {..., syntax ABSENT}),

 data-value-descriptor ABSENT,

 data-value (CONTAINING TheOsiBind{{Protocols}})})

Application-context-name ::= OBJECT IDENTIFIER

AP-invocation-identifier ::= INTEGER

AE-invocation-identifier ::= INTEGER

Implementation-data ::= GraphicString

TheOsiBind{APPLICATION-CONTEXT:Protocols} ::=

 [16] APPLICATION-CONTEXT.&bind-operation.&ArgumentType({Protocols})

OsiBindResult{APPLICATION-CONTEXT:Protocols} ::= SET {

 mode-selector [0] IMPLICIT SET {mode-value [0] IMPLICIT

INTEGER(1)},

 normal-mode-parameters [2] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 responding-presentation-selector [3] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-result-list

 [5] IMPLICIT SEQUENCE SIZE (2) OF SEQUENCE {

 result [0] IMPLICIT Result(acceptance),

 transfer-syntax-name [1] IMPLICIT Transfer-syntax-name },

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE(1) OF SEQUENCE {

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

ISO/IEC 9594-5:2020 (E)

70 Rec. ITU-T X.519 (10/2019)

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(AARE-apdu{{Protocols}}

)}}}}}

Result ::= INTEGER {

 acceptance (0),

 user-rejection (1),

 provider-rejection (2)}

AARE-apdu{APPLICATION-CONTEXT:Protocols} ::= [APPLICATION 1] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version1(0)}

 DEFAULT {version1},

 application-context-name [1] Application-context-name,

 result [2] Associate-result(accepted),

 result-source-diagnostic [3] Associate-source-diagnostic,

 responding-AP-title [4] Name OPTIONAL,

 responding-AE-qualifier [5] RelativeDistinguishedName OPTIONAL,

 responding-AP-invocation-identifier [6] AP-invocation-identifier OPTIONAL,

 responding-AE-invocation-identifier [7] AE-invocation-identifier OPTIONAL,

 implementation-information [29] IMPLICIT Implementation-data OPTIONAL,

 user-information [30] IMPLICIT

 Association-informationBindRes{{Protocols}}}

Association-informationBindRes{APPLICATION-CONTEXT:Protocols} ::=

 SEQUENCE SIZE (1) OF

 EXTERNAL (

 WITH COMPONENTS {

 identification (WITH COMPONENTS {..., syntax ABSENT}),

 data-value-descriptor ABSENT,

 data-value (CONTAINING TheOsiBindRes{{Protocols}})})

Associate-result ::= INTEGER {

 accepted (0),

 rejected-permanent (1),

 rejected-transient (2)}(0..2, ...)

Associate-source-diagnostic ::= CHOICE {

 acse-service-user [1] INTEGER {

 null (0),

 no-reason-given (1),

 application-context-name-not-supported (2),

 calling-AP-title-not-recognized (3),

 calling-AP-invocation-identifier-not-recognized (4),

 calling-AE-qualifier-not-recognized (5),

 calling-AE-invocation-identifier-not-recognized (6),

 called-AP-title-not-recognized (7),

 called-AP-invocation-identifier-not-recognized (8),

 called-AE-qualifier-not-recognized (9),

 called-AE-invocation-identifier-not-recognized (10)}(0..10, ...),

 acse-service-provider [2] INTEGER {

 null (0),

 no-reason-given (1),

 no-common-acse-version (2)}(0..2, ...)}

TheOsiBindRes{APPLICATION-CONTEXT:Protocols} ::=

 [17] APPLICATION-CONTEXT.&bind-operation.&ResultType({Protocols})

OsiBindError{APPLICATION-CONTEXT:Protocols} ::= CHOICE {

 normal-mode-parameters SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version-1(0)}

 DEFAULT {version-1},

 responding-presentation-selector

 [3] IMPLICIT Presentation-selector OPTIONAL,

 presentation-context-definition-result-list

 [5] IMPLICIT Result-list OPTIONAL,

 provider-reason [10] IMPLICIT Provider-reason OPTIONAL,

 user-data CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 transfer-syntax-name Transfer-syntax-name OPTIONAL,

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0]

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 71

 ABSTRACT-SYNTAX.&Type(AAREerr-apdu{{Protocols}})}}} OPTIONAL}}

Result-list ::=

 SEQUENCE SIZE (2) OF SEQUENCE {

 result [0] IMPLICIT Result,

 transfer-syntax-name [1] IMPLICIT Transfer-syntax-name OPTIONAL,

 provider-reason [2] IMPLICIT INTEGER {

 reason-not-specified (0),

 abstract-syntax-not-supported (1),

 proposed-transfer-syntaxes-not-supported (2)} OPTIONAL}

Provider-reason ::= INTEGER {

 reason-not-specified (0),

 temporary-congestion (1),

 local-limit-exceeded (2),

 called-presentation-address-unknown (3),

 protocol-version-not-supported (4),

 default-context-not-supported (5),

 user-data-not-readable (6),

 no-PSAP-available (7)}

AAREerr-apdu{APPLICATION-CONTEXT:Protocols} ::= [APPLICATION 1] IMPLICIT SEQUENCE {

 protocol-version [0] IMPLICIT BIT STRING {version1(0)}

 DEFAULT {version1},

 application-context-name [1] Application-context-name,

 result [2] Associate-result

 (rejected-permanent..rejected-transient),

 result-source-diagnostic [3] Associate-source-diagnostic,

 responding-AP-title [4] Name OPTIONAL,

 responding-AE-qualifier [5] RelativeDistinguishedName OPTIONAL,

 responding-AP-invocation-identifier [6] AP-invocation-identifier OPTIONAL,

 responding-AE-invocation-identifier [7] AE-invocation-identifier OPTIONAL,

 implementation-information [29] IMPLICIT Implementation-data OPTIONAL,

 user-information [30] IMPLICIT

 Association-informationBindErr{{Protocols}} OPTIONAL }

Association-informationBindErr{APPLICATION-CONTEXT:Protocols} ::=

 SEQUENCE SIZE (1) OF

 EXTERNAL (

 WITH COMPONENTS {

 identification (WITH COMPONENTS {..., syntax ABSENT}),

 data-value-descriptor ABSENT,

 data-value (CONTAINING TheOsiBindErr{{Protocols}})})

TheOsiBindErr{APPLICATION-CONTEXT:Protocols} ::=

 [18] APPLICATION-CONTEXT.&bind-operation.&Errors.&ParameterType ({Protocols})

OsiUnbind ::= CHOICE {

 fully-encoded-data

 [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(TheOsiUnbind)}}}

TheOsiUnbind ::= [APPLICATION 2] IMPLICIT SEQUENCE {

 reason [0] IMPLICIT Release-request-reason OPTIONAL}

Release-request-reason ::= INTEGER {normal(0)}

OsiUnbindResult ::= CHOICE {

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(TheOsiUnbindRes)}}}

TheOsiUnbindRes ::= [APPLICATION 3] IMPLICIT SEQUENCE {

 reason [0] IMPLICIT Release-response-reason OPTIONAL }

Release-response-reason ::= INTEGER {normal(0)}

OsiOperation{OPERATION:Operations} ::= CHOICE {

ISO/IEC 9594-5:2020 (E)

72 Rec. ITU-T X.519 (10/2019)

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0]

 ABSTRACT-SYNTAX.&Type(OsiDirectoryOperation {{Operations}})}}}

OsiDirectoryOperation{OPERATION:Operations} ::= CHOICE {

 request OsiReq{{Operations}},

 result OsiRes{{Operations}},

 error OsiErr{{Operations}},

 reject OsiRej}

OsiReq{OPERATION:Operations} ::= [1] IMPLICIT SEQUENCE {

 invokeId InvokeId,

 opcode OPERATION.&operationCode({Operations}),

 argument OPERATION.&ArgumentType({Operations}{@opcode}) }

OsiRes{OPERATION:Operations} ::= [2] IMPLICIT SEQUENCE {

 invokeId InvokeId,

 result SEQUENCE {

 opcode OPERATION.&operationCode({Operations}),

 result OPERATION.&ResultType({Operations}{@.opcode}) }}

OsiErr{OPERATION:Operations} ::= [3] IMPLICIT SEQUENCE {

 invokeID InvokeId,

 errcode OPERATION.&Errors.&errorCode({Operations}),

 error OPERATION.&Errors.&ParameterType({Operations}{@.errcode}) }

OsiRej ::= [4] IMPLICIT SEQUENCE {

 invokeId InvokeId,

 problem CHOICE {

 general [0] IMPLICIT GeneralProblem,

 invoke [1] IMPLICIT InvokeProblem,

 returnResult [2] IMPLICIT ReturnResultProblem,

 returnError [3] IMPLICIT ReturnErrorProblem,

 ... },

 ... }

GeneralProblem ::= INTEGER {

 unrecognizedPDU (0),

 mistypedPDU (1),

 badlyStructuredPDU (2) }

InvokeProblem ::= INTEGER {

 duplicateInvocation (0),

 unrecognizedOperation (1),

 mistypedArgument (2),

 resourceLimitation (3),

 releaseInProgress (4)}

ReturnResultProblem ::= INTEGER {

 unrecognizedInvocation (0),

 resultResponseUnexpected (1),

 mistypedResult (2)}

ReturnErrorProblem ::= INTEGER {

 unrecognizedInvocation (0),

 errorResponseUnexpected (1),

 unrecognizedError (2),

 unexpectedError (3),

 mistypedParameter (4)}

PresentationAbort ::= CHOICE {

 aru-ppdu ARU-PPDU,

 arp-ppdu ARP-PPDU }

ARU-PPDU ::= CHOICE {

 normal-mode-parameters [0] IMPLICIT SEQUENCE {

 presentation-context-identifier-list

 [0] IMPLICIT Presentation-context-identifier-list,

 user-data CHOICE {

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 73

 fully-encoded-data [APPLICATION 1] IMPLICIT SEQUENCE SIZE(1..MAX) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 presentation-data-values CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type(ABRT-apdu)}}}}}

Presentation-context-identifier-list ::= SEQUENCE SIZE (1) OF SEQUENCE {

 presentation-context-identifier Presentation-context-identifier,

 transfer-syntax-name Transfer-syntax-name}

ABRT-apdu ::= [APPLICATION 4] IMPLICIT SEQUENCE {

 abort-source [0] IMPLICIT ABRT-source }

ABRT-source ::= INTEGER {

 acse-service-user (0),

 acse-service-provider (1) }

ARP-PPDU ::= SEQUENCE {

 provider-reason [0] IMPLICIT Abort-reason OPTIONAL,

 event-identifier [1] IMPLICIT Event-identifier OPTIONAL }

Abort-reason ::= INTEGER {

 reason-not-specified (0),

 unrecognized-ppdu (1),

 unexpected-ppdu (2),

 unexpected-session-service-primitive (3),

 unrecognized-ppdu-parameter (4),

 unexpected-ppdu-parameter (5),

 invalid-ppdu-parameter-value (6)}

Event-identifier ::= INTEGER {

 cp-PPDU (0),

 cpa-PPDU (1),

 cpr-PPDU (2),

 aru-PPDU (3),

 arp-PPDU (4),

 td-PPDU (7),

 s-release-indication (14),

 s-release-confirm (15) }

END -- OSIProtocolSpecification

ISO/IEC 9594-5:2020 (E)

74 Rec. ITU-T X.519 (10/2019)

Annex C

Directory OSI Protocols in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type, value and information object definitions contained in this Directory

Specification in the form of the ASN.1 module DirectoryOSIProtocols.

DirectoryOSIProtocols

 {joint-iso-itu-t ds(5) module(1) directoryOSIProtocols(37) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within these Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications may

use them for their own purposes, but this will not constrain extensions and

modifications needed to maintain or improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 id-ac, id-as, id-idm

 FROM UsefulDefinitions

 {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 9} WITH SUCCESSORS

 dSAOperationalBindingManagementBind, establishOperationalBinding,

 modifyOperationalBinding, terminateOperationalBinding

 FROM OperationalBindingManagement

 {joint-iso-itu-t ds(5) module(1) opBindingManagement(18) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.511 | ISO/IEC 9594-3

 abandon, addEntry, administerPassword, changePassword, compare, directoryBind,

 list, modifyDN, modifyEntry, read, removeEntry, search

 FROM DirectoryAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 9} WITH SUCCESSORS

 -- from ITU-T Rec. X.518 | ISO/IEC 9594-4

 chainedAbandon, chainedAddEntry, chainedAdministerPassword, chainedChangePassword,

 chainedCompare, chainedLdapTransport, chainedLinkedLDAP, chainedList,

 chainedModifyDN, chainedModifyEntry, chainedRead, chainedRemoveEntry, chainedSearch,

 dSABind

 FROM DistributedOperations

 {joint-iso-itu-t ds(5) module(1) distributedOperations(3) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.519 | ISO/IEC 9594-5

 OPERATION

 FROM CommonProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) commonProtocolSpecification(35) 9} WITH SUCCESSORS

 OSI-PDU{}

 FROM OSIProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) oSIProtocolSpecification(36) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.525 | ISO/IEC 9594-9

 coordinateShadowUpdate, dSAShadowBind, requestShadowUpdate, updateShadow

 FROM DirectoryShadowAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryShadowAbstractService(15) 9}

 WITH SUCCESSORS ;

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 75

-- OSI protocols

DAP-OSI-PDUs ::= OSI-PDU{directoryAccessAC}

DSP-OSI-PDUs ::= OSI-PDU{directorySystemAC}

DOP-OSI-PDUs ::= OSI-PDU{directoryOperationalBindingManagementAC}

ShadowSupplierInitiatedDISP-OSI-PDUs ::= OSI-PDU{shadowSupplierInitiatedAC}

ShadowSupplierInitiatedAsynchronousDISP-OSI-PDUs ::=

 OSI-PDU{shadowSupplierInitiatedAsynchronousAC}

ShadowConsumerInitiatedDISP-OSI-PDUs ::= OSI-PDU{shadowConsumerInitiatedAC}

ShadowConsumerInitiatedAsynchronousDISP-OSI-PDUs ::=

 OSI-PDU{shadowConsumerInitiatedAsynchronousAC}

APPLICATION-CONTEXT ::= CLASS {

 &bind-operation OPERATION,

 &Operations OPERATION,

 &applicationContextName OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 BIND-OPERATION &bind-operation

 OPERATIONS &Operations

 APPLICATION CONTEXT NAME &applicationContextName }

directoryAccessAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION directoryBind

 OPERATIONS {read |

 compare |

 abandon |

 list |

 search |

 addEntry |

 removeEntry |

 modifyEntry |

 modifyDN |

 administerPassword |

 changePassword }

 APPLICATION CONTEXT NAME id-ac-directoryAccessAC }

directorySystemAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSABind

 OPERATIONS {chainedRead |

 chainedCompare |

 chainedAbandon |

 chainedList |

 chainedSearch |

 chainedAddEntry |

 chainedRemoveEntry |

 chainedModifyEntry |

 chainedModifyDN |

 chainedAdministerPassword |

 chainedChangePassword |

 chainedLdapTransport |

 chainedLinkedLDAP }

 APPLICATION CONTEXT NAME id-ac-directorySystemAC }

shadowSupplierInitiatedAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {updateShadow |

 coordinateShadowUpdate}

 APPLICATION CONTEXT NAME id-ac-shadowSupplierInitiatedAC }

shadowConsumerInitiatedAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {requestShadowUpdate |

 updateShadow}

 APPLICATION CONTEXT NAME id-ac-shadowConsumerInitiatedAC }

ISO/IEC 9594-5:2020 (E)

76 Rec. ITU-T X.519 (10/2019)

shadowSupplierInitiatedAsynchronousAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {updateShadow |

 coordinateShadowUpdate}

 APPLICATION CONTEXT NAME id-ac-shadowSupplierInitiatedAsynchronousAC }

shadowConsumerInitiatedAsynchronousAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {requestShadowUpdate |

 updateShadow}

 APPLICATION CONTEXT NAME id-ac-shadowConsumerInitiatedAsynchronousAC }

directoryOperationalBindingManagementAC APPLICATION-CONTEXT ::= {

 BIND-OPERATION dSAOperationalBindingManagementBind

 OPERATIONS {establishOperationalBinding |

 modifyOperationalBinding |

 terminateOperationalBinding}

 APPLICATION CONTEXT NAME id-ac-directoryOperationalBindingManagementAC }

-- abstract syntaxes

id-as-directoryAccessAS OBJECT IDENTIFIER ::= {id-as 1}

id-as-directorySystemAS OBJECT IDENTIFIER ::= {id-as 2}

id-as-directoryShadowAS OBJECT IDENTIFIER ::= {id-as 3}

id-as-directoryOperationalBindingManagementAS OBJECT IDENTIFIER ::= {id-as 4}

-- id-as-directoryReliableShadowAS OBJECT IDENTIFIER ::= {id-as 5}

-- id-as-reliableShadowBindingAS OBJECT IDENTIFIER ::= {id-as 6}

-- id-as-2or3se OBJECT IDENTIFIER ::= {id-as 7}

id-acseAS OBJECT IDENTIFIER ::=

 {joint-iso-itu-t association-control(2) abstract-syntax(1) apdus(0) version(1)}

-- application context object identifiers

id-ac-directoryAccessAC OBJECT IDENTIFIER ::= {id-ac 1}

id-ac-directorySystemAC OBJECT IDENTIFIER ::= {id-ac 2}

id-ac-directoryOperationalBindingManagementAC OBJECT IDENTIFIER ::= {id-ac 3}

id-ac-shadowConsumerInitiatedAC OBJECT IDENTIFIER ::= {id-ac 4}

id-ac-shadowSupplierInitiatedAC OBJECT IDENTIFIER ::= {id-ac 5}

-- id-ac-reliableShadowSupplierInitiatedAC OBJECT IDENTIFIER ::= {id-ac 6}

-- id-ac-reliableShadowConsumerInitiatedAC OBJECT IDENTIFIER ::= {id-ac 7}

id-ac-shadowSupplierInitiatedAsynchronousAC OBJECT IDENTIFIER ::= {id-ac 8}

id-ac-shadowConsumerInitiatedAsynchronousAC OBJECT IDENTIFIER ::= {id-ac 9}

-- id-ac-directoryAccessWith2or3seAC OBJECT IDENTIFIER ::= {id-ac 10}

-- id-ac-directorySystemWith2or3seAC OBJECT IDENTIFIER ::= {id-ac 11}

-- id-ac-shadowSupplierInitiatedWith2or3seAC OBJECT IDENTIFIER ::= {id-ac 12}

-- id-ac-shadowConsumerInitiatedWith2or3seAC OBJECT IDENTIFIER ::= {id-ac 13}

-- id-ac-reliableShadowSupplierInitiatedWith2or3seAC

-- OBJECT IDENTIFIER ::= {id-ac 14}

-- id-ac-reliableShadowConsumerInitiatedWith2or3seAC

-- OBJECT IDENTIFIER ::= {id-ac 15}

-- id-ac-directoryOperationalBindingManagementWith2or3seAC

-- OBJECT IDENTIFIER ::= {id-ac 16}

END -- DirectoryOSIProtocols

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 77

Annex D

IDM Protocol in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the relevant ASN.1 type and value definitions contained in this Directory Specification in the

form of the ASN.1 module, IDMProtocolSpecification.

IDMProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) iDMProtocolSpecification(30) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within these Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications may

use them for their own purposes, but this will not constrain extensions and

modifications needed to maintain or improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 GeneralName

 FROM CertificateExtensions

 {joint-iso-itu-t ds(5) module(1) certificateExtensions(26) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.511 | ISO/IEC 9594-3

 SecurityProblem, ServiceProblem, Versions

 FROM DirectoryAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.519 | ISO/IEC 9594-5

 OPERATION

 FROM CommonProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) commonProtocolSpecification(35) 9}

 WITH SUCCESSORS ;

-- IDM protocol

IDM-PDU{IDM-PROTOCOL:protocol} ::= CHOICE {

 bind [0] IdmBind{{protocol}},

 bindResult [1] IdmBindResult{{protocol}},

 bindError [2] IdmBindError{{protocol}},

 request [3] Request{{protocol.&Operations}},

 result [4] IdmResult{{protocol.&Operations}},

 error [5] Error{{protocol.&Operations}},

 reject [6] IdmReject,

 unbind [7] Unbind,

 abort [8] Abort,

 startTLS [9] StartTLS,

 tLSResponse [10] TLSResponse,

 ... }

IdmBind{IDM-PROTOCOL:Protocols} ::= SEQUENCE {

 protocolID IDM-PROTOCOL.&id({Protocols}),

 callingAETitle [0] GeneralName OPTIONAL,

 calledAETitle [1] GeneralName OPTIONAL,

 argument [2] IDM-PROTOCOL.&bind-operation.&ArgumentType

 ({Protocols}{@protocolID}),

 ... }

IdmBindResult{IDM-PROTOCOL:Protocols} ::= SEQUENCE {

ISO/IEC 9594-5:2020 (E)

78 Rec. ITU-T X.519 (10/2019)

 protocolID IDM-PROTOCOL.&id({Protocols}),

 respondingAETitle [0] GeneralName OPTIONAL,

 result [1] IDM-PROTOCOL.&bind-operation.&ResultType

 ({Protocols}{@protocolID}),

 ... }

IdmBindError{IDM-PROTOCOL:Protocols} ::= SEQUENCE {

 protocolID IDM-PROTOCOL.&id({Protocols}),

--errcode IDM-PROTOCOL.&bind-operation.&Errors.&errorCode OPTIONAL

 respondingAETitle [0] GeneralName OPTIONAL,

 aETitleError ENUMERATED {

 callingAETitleNotAccepted (0),

 calledAETitleNotRecognized (1),

 ...} OPTIONAL,

 error [1] IDM-PROTOCOL.&bind-operation.&Errors.&ParameterType

 ({Protocols}{@protocolID}),

 ... }

Request{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 opcode OPERATION.&operationCode({Operations}),

 argument OPERATION.&ArgumentType({Operations}{@opcode}),

 ... }

IdmResult{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 opcode OPERATION.&operationCode({Operations}),

 result OPERATION.&ResultType({Operations}{@opcode}),

 ... }

Error{OPERATION:Operations} ::= SEQUENCE {

 invokeID INTEGER,

 errcode OPERATION.&Errors.&errorCode({Operations}),

 error OPERATION.&Errors.&ParameterType({Operations}{@errcode}),

 ... }

IdmReject ::= SEQUENCE {

 invokeID INTEGER,

 reason ENUMERATED {

 mistypedPDU (0),

 duplicateInvokeIDRequest (1),

 unsupportedOperationRequest (2),

 unknownOperationRequest (3),

 mistypedArgumentRequest (4),

 resourceLimitationRequest (5),

 unknownInvokeIDResult (6),

 mistypedResultRequest (7),

 unknownInvokeIDError (8),

 unknownError (9),

 mistypedParameterError (10),

 unsupportedIdmVersion (11),

 unsuitableIdmVersion (12),

 invalidIdmVersion (13),

 ...},

 ... }

Unbind ::= NULL

Abort ::= ENUMERATED {

 mistypedPDU (0),

 unboundRequest (1),

 invalidPDU (2),

 resourceLimitation (3),

 connectionFailed (4),

 invalidProtocol (5),

 reasonNotSpecified (6),

 ...}

StartTLS ::= NULL

TLSResponse ::= ENUMERATED {

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 79

 success (0),

 operationsError (1),

 protocolError (2),

 unavailable (3),

 ...}

-- IDM-protocol information object class

IDM-PROTOCOL ::= CLASS {

 &bind-operation OPERATION,

 &Operations OPERATION,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 BIND-OPERATION &bind-operation

 OPERATIONS &Operations

 ID &id }

END -- IDMProtocolSpecification

ISO/IEC 9594-5:2020 (E)

80 Rec. ITU-T X.519 (10/2019)

Annex E

Directory IDM Protocols in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the relevant ASN.1 type and value definitions contained in this Directory Specification in the

form of the ASN.1 module, DirectoryIDMProtocols.

DirectoryIDMProtocols

 {joint-iso-itu-t ds(5) module(1) directoryIDMProtocols(31) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within these Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications may

use them for their own purposes, but this will not constrain extensions and

modifications needed to maintain or improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 id-idm

 FROM UsefulDefinitions

 {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 dSAOperationalBindingManagementBind, establishOperationalBinding,

 modifyOperationalBinding, terminateOperationalBinding

 FROM OperationalBindingManagement

 {joint-iso-itu-t ds(5) module(1) opBindingManagement(18) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.511 | ISO/IEC 9594-3

 abandon, addEntry, administerPassword, changePassword, compare, directoryBind, list,

 modifyDN, modifyEntry, read, removeEntry, search

 FROM DirectoryAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.518 | ISO/IEC 9594-4

 chainedAbandon, chainedAddEntry, chainedAdministerPassword, chainedChangePassword,

 chainedCompare, chainedLdapTransport, chainedLinkedLDAP, chainedList, chainedModifyDN,

 chainedModifyEntry, chainedRead, chainedRemoveEntry, chainedSearch, dSABind

 FROM DistributedOperations

 {joint-iso-itu-t ds(5) module(1) distributedOperations(3) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.519 | ISO/IEC 9594-5

 IDM-PDU, IDM-PROTOCOL

 FROM IDMProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) iDMProtocolSpecification(30) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.525 | ISO/IEC 9594-9

 coordinateShadowUpdate, dSAShadowBind, requestShadowUpdate, updateShadow

 FROM DirectoryShadowAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryShadowAbstractService(15) 9}

 WITH SUCCESSORS ;

-- IDM protocols

DAP-IDM-PDUs ::= IDM-PDU{dap-ip}

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 81

dap-ip IDM-PROTOCOL ::= {

 BIND-OPERATION directoryBind

 OPERATIONS {read |

 compare |

 abandon |

 list |

 search |

 addEntry |

 removeEntry |

 modifyEntry |

 modifyDN |

 administerPassword |

 changePassword }

 ID id-idm-dap }

DSP-IDM-PDUs ::= IDM-PDU{dsp-ip}

dsp-ip IDM-PROTOCOL ::= {

 BIND-OPERATION dSABind

 OPERATIONS {chainedRead |

 chainedCompare |

 chainedAbandon |

 chainedList |

 chainedSearch |

 chainedAddEntry |

 chainedRemoveEntry |

 chainedModifyEntry |

 chainedModifyDN |

 chainedAdministerPassword |

 chainedChangePassword |

 chainedLdapTransport |

 chainedLinkedLDAP }

 ID id-idm-dsp }

DISP-IDM-PDUs ::= IDM-PDU{disp-ip}

disp-ip IDM-PROTOCOL ::= {

 BIND-OPERATION dSAShadowBind

 OPERATIONS {requestShadowUpdate |

 updateShadow |

 coordinateShadowUpdate}

 ID id-idm-disp }

DOP-IDM-PDUs ::= IDM-PDU{dop-ip}

dop-ip IDM-PROTOCOL ::= {

 BIND-OPERATION dSAOperationalBindingManagementBind

 OPERATIONS {establishOperationalBinding |

 modifyOperationalBinding |

 terminateOperationalBinding}

 ID id-idm-dop }

-- protocol object identifiers

id-idm-dap OBJECT IDENTIFIER ::= {id-idm 0}

id-idm-dsp OBJECT IDENTIFIER ::= {id-idm 1}

id-idm-disp OBJECT IDENTIFIER ::= {id-idm 2}

id-idm-dop OBJECT IDENTIFIER ::= {id-idm 3}

END -- DirectoryIDMProtocols

ISO/IEC 9594-5:2020 (E)

82 Rec. ITU-T X.519 (10/2019)

Annex F

Directory operational binding types

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 Object Identifiers assigned to identify operational binding types employed in these

Directory Specifications, in the form of the ASN.1 module, DirectoryOperationalBindingTypes.

DirectoryOperationalBindingTypes

 {joint-iso-itu-t ds(5) module(1) directoryOperationalBindingTypes(25) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within the Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications

may use them for their own purposes, but this will not constrain extensions and

modifications

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 id-ob

 FROM UsefulDefinitions

 {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 9} WITH SUCCESSORS ;

id-op-binding-shadow OBJECT IDENTIFIER ::= {id-ob 1}

id-op-binding-hierarchical OBJECT IDENTIFIER ::= {id-ob 2}

id-op-binding-non-specific-hierarchical OBJECT IDENTIFIER ::= {id-ob 3}

END -- DirectoryOperationalBindingTypes

ISO/IEC 9594-5:2020 (E)

 Rec. ITU-T X.519 (10/2019) 83

Annex G

Amendments and corrigenda

(This annex does not form an integral part of this Recommendation | International Standard.)

This edition of this Directory Specification includes the following amendment to the previous edition that were balloted

and approved by ISO/IEC:

– Amendment 1 for General updates.

This edition of this Directory Specification does not include any technical corrigenda, as there were no accepted defect

reports against the previous edition of this Directory Specification.

 Rec. ITU-T X.519 (10/2019) 85

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T X.519 (10/2019) Information technology – Open Systems Interconnection – The Directory: Protocol specifications
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.1.1 Identical Recommendations | International Standards
	2.1.2 ISO/IEC Standards
	2.1.3 Other references

	2.2 Non-normative references

	3 Definitions
	3.1 Basic Directory definitions
	3.2 Distributed Operation Definitions
	3.3 Protocol specification definitions

	4 Abbreviations
	5 Conventions
	6 Common protocol specification
	6.1 Directory associations and operations
	6.2 Specification for Directory operations
	6.3 Directory protocol overview
	6.3.1 Use of underlying services
	6.3.2 The Directory Access Protocol (DAP)
	6.3.3 The Directory System Protocol (DSP)
	6.3.4 The Directory Information Shadowing Protocol (DISP)
	6.3.5 The Directory Operational Binding Management Protocol (DOP)

	6.4 Operation codes
	6.4.1 Operation codes for DAP and DSP
	6.4.2 Operation codes for DISP
	6.4.3 Operation codes for DOP

	6.5 Error codes
	6.5.1 Error codes for DAP and DSP
	6.5.2 Error codes for DISP
	6.5.3 Error codes for DOP

	6.6 Abstract syntaxes

	7 Directory protocols using the OSI stack
	7.1 OSI-PDUs
	7.2 Directory PDU structure
	7.3 Session PDUs
	7.4 OSI addressing
	7.5 Procedure and sequencing
	7.6 Directory PDU specifications
	7.6.1 OSI Bind request
	7.6.1.1 Presentation protocol elements
	7.6.1.2 ACSE protocol elements
	7.6.1.3 The Bind protocol elements

	7.6.2 OSI Bind result
	7.6.2.1 Presentation protocol elements
	7.6.2.2 ACSE protocol elements
	7.6.2.3 The Bind result protocol elements

	7.6.3 OSI Bind error
	7.6.3.1 Presentation protocol elements
	7.6.3.2 ACSE protocol elements
	7.6.3.3 The Bind error protocol elements

	7.6.4 OSI unbind request
	7.6.4.1 Presentation protocol elements
	7.6.4.2 ACSE protocol elements

	7.6.5 OSI unbind result
	7.6.5.1 Presentation protocol elements
	7.6.5.2 ACSE protocol elements

	7.6.6 OSI operations
	7.6.6.1 Presentation protocol elements
	7.6.6.2 OSI Request
	7.6.6.3 OSI result
	7.6.6.4 OSI error
	7.6.6.5 OSI reject
	7.6.6.6 Reject problems

	7.6.7 Presentation abort
	7.6.7.1 OSI application abort
	7.6.7.1.1 Presentation protocol elements
	7.6.7.1.2 ACSE protocol elements

	7.6.7.2 OSI Presentation abort

	8 Directory protocol mapping onto OSI services
	8.1 Abstract syntaxes and transfer syntaxes
	8.2 Application-context
	8.2.1 Application-context for DAP
	8.2.2 Application-context for DSP
	8.2.3 Application-context for DISP
	8.2.4 Application-context for DOP

	8.3 Session Layer specification
	8.3.1 Structure of session-protocol-data-unit (SPDU)
	8.3.2 TSDU size and segmenting
	8.3.3 Session CONNECT SPDU
	8.3.4 Session ACCEPT SPDU
	8.3.5 Session REFUSE SPDU
	8.3.6 Session FINISH SPDU
	8.3.7 Session DISCONNECT SPDU
	8.3.8 Session ABORT SPDU
	8.3.9 Session ABORT ACCEPT SPDU
	8.3.10 Session DATA TRANSFER SPDU

	8.4 Use of transport service
	8.5 OSI Transport Layer on top of TCP
	8.5.1 Scope and limitation
	8.5.2 Overview of the transport-protocol
	8.5.2.1 Functions of the transport-protocol

	8.5.3 Protocol classes and options
	8.5.3.1 General
	8.5.3.2 Characteristics of class 0
	8.5.3.3 Characteristics of class 2

	8.5.4 TPDU types
	8.5.5 General TPKT structure
	8.5.5.1 Version field
	8.5.5.2 Reserved field
	8.5.5.3 Packet length
	8.5.5.4 Length indicator field
	8.5.5.5 Fixed part
	8.5.5.6 Variable part
	8.5.5.7 User data field

	8.5.6 Structure and encoding of TPDUs
	8.5.6.1 Connection request (CR TPDU)
	8.5.6.1.1 Structure
	8.5.6.1.2 Length indicator (LI) parameter
	8.5.6.1.3 TPDU code field
	8.5.6.1.4 DST-REF parameter
	8.5.6.1.5 SRC-REF parameter
	8.5.6.1.6 CLASS OPTION parameter
	8.5.6.1.7 Transport-selector parameters
	8.5.6.1.8 TPDU size parameter
	8.5.6.1.9 Preferred TPDU size parameter
	8.5.6.1.10 Version number parameter
	8.5.6.1.11 Protection parameter
	8.5.6.1.12 Additional option selection parameter
	8.5.6.1.13 Alternative protocol class parameter

	8.5.6.2 Connection confirm (CC TPDU)
	8.5.6.2.1 Structure
	8.5.6.2.2 Length indicator (LI) field
	8.5.6.2.3 TPDU code parameter
	8.5.6.2.4 DST-REF parameter
	8.5.6.2.5 SRC-REF parameter
	8.5.6.2.6 CLASS OPTION parameter
	8.5.6.2.7 Transport-selector parameters in the variable part parameter
	8.5.6.2.8 TPDU size parameter
	8.5.6.2.9 Preferred TPDU size parameter
	8.5.6.2.10 Protection parameter
	8.5.6.2.11 Additional option selection parameter

	8.5.6.3 Disconnect request (DR TPDU)
	8.5.6.3.1 Structure
	8.5.6.3.2 Length indicator (LI) parameter
	8.5.6.3.3 TPDU code parameter
	8.5.6.3.4 DST-REF parameter
	8.5.6.3.5 SRC-REF parameters
	8.5.6.3.6 REASON parameter
	8.5.6.3.7 Additional clearing information parameter (variable part)

	8.5.6.4 Disconnect confirm (DC TPDU)
	8.5.6.4.1 Structure
	8.5.6.4.2 Length indicator (LI) parameter
	8.5.6.4.3 TPDU code parameter
	8.5.6.4.4 DST-REF parameter
	8.5.6.4.5 SRC-REF parameter

	8.5.6.5 Data (DT TPDU)
	8.5.6.5.1 Structures
	8.5.6.5.2 Length indicator (LI) parameter
	8.5.6.5.3 TPDU code parameter
	8.5.6.5.4 DST-REF parameter
	8.5.6.5.5 TPDU-NR and EOT parameter
	8.5.6.5.6 User data field

	8.5.6.6 TPDU error (ER TPDU)
	8.5.6.6.1 Structure
	8.5.6.6.2 Length indicator (LI) parameter
	8.5.6.6.3 TPDU code parameter
	8.5.6.6.4 DST-REF parameter
	8.5.6.6.5 REJECT CAUSE parameter
	8.5.6.6.6 Invalid TPDU parameter

	8.5.7 Use of the service provided by TCP
	8.5.7.1 TCP connection establishment (socket connection)
	8.5.7.2 Data transfer
	8.5.7.3 TCP connection release
	8.5.7.3.1 Orderly release
	8.5.7.3.2 TCP abort

	8.5.8 Elements of procedures for the transport-protocol
	8.5.8.1 Segmenting and reassembling
	8.5.8.2 Connection establishment
	8.5.8.2.1 References
	8.5.8.2.2 Transport selectors
	8.5.8.2.3 Protection parameter
	8.5.8.2.4 Protocol class negotiation
	8.5.8.2.5 TPDU size negotiation
	8.5.8.2.6 Option negotiation
	8.5.8.2.7 Version number

	8.5.8.3 Connection refusal
	8.5.8.4 Normal release
	8.5.8.4.1 Procedure for implicit variant
	8.5.8.4.2 Procedure for explicit variant

	8.5.8.5 Error release

	9 IDM protocol
	9.1 IDM-PDUs
	9.2 Sequencing requirements
	9.2.1 Binding
	9.2.2 Unbinding
	9.2.3 Requests and responses
	9.2.4 Rejects

	9.3 Protocols
	9.4 Reject reasons
	9.5 Abort reasons
	9.6 Mapping onto TCP/IP
	9.7 Addressing
	9.8 Use of TLS
	9.8.1 TLS establishment
	9.8.2 TLS closure
	9.8.2.1 Graceful closure
	9.8.2.2 Abrupt closure

	10 Directory protocol mapping onto the IDM protocol
	10.1 DAP-IP protocol
	10.2 DSP-IP protocol
	10.3 DISP-IP protocol
	10.4 DOP-IP protocol

	11 Protocol stack coexistence
	11.1 Coexistence between OSI and IDM stacks
	11.2 Coexistence in the presence of LDAP
	11.3 Defining network addresses for Internet Protocol, version 4 support
	11.3.1 Definition of NSAP address for LDAP
	11.3.2 Definition of NSAP address for IDM over IPv4
	11.3.3 Definition of NSAP address for ITOP over IPv4

	11.4 Definition of NSAP-like address for long addressing information

	12 Versions and the rules for extensibility
	12.1 Use of extension markers
	12.2 DUA to DSA
	12.2.1 Version negotiation
	12.2.2 Request and response processing
	12.2.3 Extensibility rules for error handling

	12.3 DSA to DSA
	12.3.1 Version negotiation
	12.3.2 Rules of extensibility for operation processing
	12.3.3 Rules of extensibility for chaining
	12.3.4 Rules of extensibility for error handling

	12.4 Rules of extensibility for NSAP addresses
	12.5 Rules of extensibility for object classes
	12.6 Rules of extensibility for user attribute types

	13 Conformance
	13.1 Conformance by DUAs
	13.1.1 Statement requirements
	13.1.2 Static requirements
	13.1.3 Dynamic requirements

	13.2 Conformance by DSAs
	13.2.1 Statement requirements
	13.2.2 Static requirements
	13.2.3 Dynamic requirements

	13.3 Conformance by a shadow supplier
	13.3.1 Statement requirements
	13.3.2 Static requirements
	13.3.3 Dynamic requirements

	13.4 Conformance by a shadow consumer
	13.4.1 Statement requirements
	13.4.2 Static requirements
	13.4.3 Dynamic requirements

