

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.518
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(10/2019)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

 Information technology – Open Systems
Interconnection – The Directory: Procedures
for distributed operation

Recommendation ITU-T X.518

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES (1) X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES (2) X.1300–X.1499

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599

CLOUD COMPUTING SECURITY X.1600–X.1699

QUANTUM COMMUNICATION X.1700–X.1729

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.518 (10/2019) i

INTERNATIONAL STANDARD ISO/IEC 9594-4

RECOMMENDATION ITU-T X.518

Information technology – Open Systems Interconnection –

The Directory: Procedures for distributed operation

Summary

Recommendation ITU-T X.518 | ISO/IEC 9594-4 specifies the procedures required for a distributed directory consisting

of a mix of Directory System Agents (DSAs) and lightweight directory access protocol (LDAP) servers acting together to

provide a consistent service to its users, independent of the point of access. It also describes procedures for protocol

conversion between the directory access protocol/directory system protocol (DAP/DSP) protocols and the LDAP protocol.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.518 1988-11-25 11.1002/1000/3005

2.0 ITU-T X.518 1993-11-16 7 11.1002/1000/3006

3.0 ITU-T X.518 1997-08-09 7 11.1002/1000/4125

3.1 ITU-T X.518 (1997) Technical Cor. 1 2000-03-31 7 11.1002/1000/5038

3.2 ITU-T X.518 (1997) Amd. 1 2000-03-31 7 11.1002/1000/5037

3.3 ITU-T X.518 (1997) Technical Cor. 2 2001-02-02 7 11.1002/1000/5316

4.0 ITU-T X.518 2001-02-02 7 11.1002/1000/5318

4.1 ITU-T X.518 (2001) Technical Cor. 1 2005-05-14 17 11.1002/1000/8505

4.2 ITU-T X.518 (2001) Cor. 2 2008-05-29 17 11.1002/1000/9435

5.0 ITU-T X.518 2005-08-29 17 11.1002/1000/8506

5.1 ITU-T X.518 (2005) Cor. 1 2008-05-29 17 11.1002/1000/9436

5.2 ITU-T X.518 (2005) Cor. 2 2011-02-13 17 11.1002/1000/11046

6.0 ITU-T X.518 2008-11-13 17 11.1002/1000/9596

6.1 ITU-T X.518 (2008) Cor. 1 2011-02-13 17 11.1002/1000/11047

6.2 ITU-T X.518 (2008) Cor. 2 2012-10-14 17 11.1002/1000/11739

7.0 ITU-T X.518 2012-10-14 17 11.1002/1000/11740

8.0 ITU-T X.518 2016-10-14 17 11.1002/1000/13034

9.0 ITU-T X.518 2019-10-14 17 11.1002/1000/14035

Keywords

Attribute, chaining, directory, directory information tree, directory system agent, directory user agent, distinguished name,

referral.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/3005
http://handle.itu.int/11.1002/1000/3006
http://handle.itu.int/11.1002/1000/4125
http://handle.itu.int/11.1002/1000/5038
http://handle.itu.int/11.1002/1000/5037
http://handle.itu.int/11.1002/1000/5316
http://handle.itu.int/11.1002/1000/5318
http://handle.itu.int/11.1002/1000/8505
http://handle.itu.int/11.1002/1000/9435
http://handle.itu.int/11.1002/1000/8506
http://handle.itu.int/11.1002/1000/9436
http://handle.itu.int/11.1002/1000/11046
http://handle.itu.int/11.1002/1000/9596
http://handle.itu.int/11.1002/1000/11047
http://handle.itu.int/11.1002/1000/11739
http://handle.itu.int/11.1002/1000/11740
http://handle.itu.int/11.1002/1000/13034
http://handle.itu.int/11.1002/1000/14035
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.518 (10/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.518 (10/2019) iii

CONTENTS

 Page

1 Scope .. 1

2 References .. 1
2.1 Normative references .. 1
2.2 Non-normative reference ... 2

3 Definitions .. 2
3.1 Basic Directory definitions .. 2
3.2 Directory model definitions .. 2
3.3 DSA information model definitions .. 2
3.4 Abstract service definitions ... 3
3.5 Protocol definitions ... 3
3.6 Directory replication definitions ... 3
3.7 Distributed operation definitions ... 3

4 Abbreviations ... 5

5 Conventions .. 5

6 Overview .. 6

7 Distributed Directory system model ... 7

8 DSA interactions model ... 8
8.1 Decomposition of a request ... 8
8.2 Uni-chaining .. 8
8.3 Multi-chaining ... 9
8.4 Referral .. 10
8.5 Mode determination .. 11

9 Overview of DSA abstract service ... 12

10 Information types ... 12
10.1 Introduction ... 12
10.2 Information types defined elsewhere .. 12
10.3 Chaining arguments .. 13
10.4 Chaining results ... 15
10.5 Operation progress .. 16
10.6 Trace information .. 17
10.7 Reference type ... 17
10.8 Access point information .. 17
10.9 DIT bridge knowledge. ... 18
10.10 Exclusions ... 19
10.11 Continuation reference .. 19

11 Bind and Unbind .. 20
11.1 DSA Bind .. 20
11.2 DSA Unbind .. 21

12 Chained operations ... 21
12.1 Chained operations .. 22
12.2 Chained Abandon operation .. 22
12.3 Chained operations and protocol version .. 23

13 Chained errors .. 23
13.1 Introduction ... 23
13.2 DSA referral .. 23

14 Introduction .. 24
14.1 Scope and limits .. 24
14.2 Conformance ... 24
14.3 Conceptual model .. 24
14.4 Individual and cooperative operation of DSAs ... 24

iv Rec. ITU-T X.518 (10/2019)

Page

14.5 Cooperative agreements between DSAs ... 25

15 Distributed Directory behaviour ... 25
15.1 Cooperative fulfilment of operations .. 25
15.2 Phases of operation processing.. 25
15.3 Managing Distributed Operations ... 26
15.4 Loop handling ... 27
15.5 Other considerations for distributed operation .. 28
15.6 Authentication of Distributed operations .. 29

16 The Operation Dispatcher ... 30
16.1 General concepts ... 30
16.2 Procedures of the Operation Dispatcher .. 35
16.3 Overview of procedures .. 36

17 Request Validation procedure .. 37
17.1 Introduction ... 37
17.2 Procedure parameters .. 38
17.3 Procedure definition .. 39

18 Name Resolution procedure ... 42
18.1 Introduction ... 42
18.2 Find DSE procedure parameters .. 42
18.3 Procedures ... 43

19 Operation evaluation .. 52
19.1 Modification procedures ... 53
19.2 Single entry interrogation procedure ... 60
19.3 Multiple entry interrogation procedure ... 60

20 Continuation Reference procedures .. 74
20.1 Chaining strategy in the presence of shadowing ... 74
20.2 Issuing chained subrequests to a remote DSA or LDAP server .. 76
20.3 Procedures' parameters .. 76
20.4 Definition of the procedures .. 77
20.5 Abandon procedures .. 86
20.6 DAP request to LDAP request procedure ... 88
20.7 LDAP result to DAP reply procedure ... 92

21 Results Merging procedure ... 94

22 Procedures for distributed authentication ... 96
22.1 Requester authentication ... 96
22.2 Results authentication ... 97

23 Knowledge administration overview .. 98
23.1 Maintenance of knowledge references .. 98
23.2 Requesting cross reference .. 99
23.3 Knowledge inconsistencies ... 100

24 Hierarchical operational bindings ... 101
24.1 Operational binding type characteristics ... 101
24.2 Operational binding information object Class definition .. 103
24.3 DSA procedures for hierarchical operational binding management .. 104
24.4 Procedures for operations .. 107
24.5 Use of application contexts ... 108

25 Non-specific hierarchical operational binding .. 108
25.1 Operational binding type characteristics ... 108
25.2 Operational binding information object class definition ... 109
25.3 DSA procedures for non-specific hierarchical operational binding management 109
25.4 Procedures for operations .. 111
25.5 Use of application contexts ... 111

 Rec. ITU-T X.518 (10/2019) v

Page

Annex A – ASN.1 for Distributed Operations ... 112

Annex B – Specification of hierarchical and non-specific hierarchical operational binding types........................... 116

Annex C – Example of distributed name resolution .. 118

Annex D – Distributed use of authentication ... 120
D.1 Summary ... 120
D.2 Distributed protection model ... 120
D.3 Signed chained operations ... 120

Annex E – Knowledge maintenance example ... 122

Annex F – Amendments and corrigenda ... 125

vi Rec. ITU-T X.518 (10/2019)

Introduction

This Recommendation | International Standard, together with other Recommendations | International Standards, have

been produced to facilitate the interconnection of information processing systems to provide directory services. A set of

such systems, together with the directory information that they hold, can be viewed as an integrated whole, called the

Directory. The information held by the Directory, collectively known as the Directory information base (DIB), is typically

used to facilitate communication between, with or about objects such as application entities, people, terminals and

distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of

technical agreement outside of the interconnection standards themselves, the interconnection of information processing

systems:

– from different manufacturers;

– under different managements;

– of different levels of complexity; and

– of different ages.

This Recommendation | International Standard specifies the procedures by which the distributed components of the

Directory interwork in order to provide a consistent service to its users.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be

defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks may

be mandated for use in certain environments through profiles. This ninth edition technically revises and enhances the

eighth edition of this Recommendation | International Standard.

This nineth edition specifies versions 1 and 2 of the Directory protocols.

Rec. ITU-T X.511 (1993) | ISO/IEC 9594-3 (1995), Rec. ITU-T X.518 (1993) | ISO/IEC 9594-4 (1995) and Rec. ITU-T

X.519 (1993) | ISO/IEC 9594-5 (1995) and their previous edition specified only version 1. Most of the services and

protocols specified in this edition are designed to function under version 1. However, some enhanced services and

protocols, e.g., signed errors, will not function unless all Directory entities involved in the operation have negotiated

version 2. Whichever version has been negotiated, differences between the services and between the protocols defined in

the nine editions, except for those specifically assigned to version 2, are accommodated using the rules of extensibility

defined in Rec. ITU-T X.519 | ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for

directory distributed operations.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module providing

definitions for hierarchical operational bindings.

Annex C, which is not an integral part of this Recommendation | International Standard, describes an example of

distributed name resolution.

Annex D, which is not an integral part of this Recommendation | International Standard, describes authentication in the

distributed operations environment.

Annex E, which is not an integral part of this Recommendation | International Standard, illustrates knowledge

maintenance.

Annex F, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect

reports that have been incorporated to form this edition of this Recommendation | International Standard.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 1

INTERNATIONAL STANDARD ISO/IEC 9594-4

RECOMMENDATION ITU-T X.518

Information technology – Open Systems Interconnection – The Directory:

Procedures for distributed operation

SECTION 1 – GENERAL

1 Scope

This Recommendation | International Standard specifies the behaviour of DSAs taking part in a distributed directory

consisting of multiple Directory systems agents (DSAs) and/or LDAP servers with at least one DSA. The allowed

behaviour has been designed to ensure a consistent service given a wide distribution of the DIB across a distributed

directory. Only the behaviour of DSAs taking part in a distributed directory is specified. The behaviour of LDAP servers

are specified in relevant LDAP specifications. There are no special requirements on an LDAP server beyond those given

by the LDAP specifications.

The Directory is not intended to be a general purpose database system, although it may be built on such systems. It is

assumed that there is a considerably higher frequency of queries than of updates.

2 References

2.1 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid

ITU-T Recommendations.

2.1.1 Identical Recommendations | International Standards

– Recommendation ITU-T X.500 (2019 | ISO/IEC 9594-1:2020, Information technology – Open Systems

Interconnection – The Directory: Overview of concepts, models and services.

– Recommendation ITU-T X.501 (2019) | ISO/IEC 9594-2:2020, Information technology – Open Systems

Interconnection – The Directory: Models.

– Recommendation ITU-T X.509 (2019) | ISO/IEC 9594-8:2020, Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate frameworks.

– Recommendation ITU-T X.511 (2019) | ISO/IEC 9594-3:2020, Information technology – Open Systems

Interconnection – The Directory: Abstract service definition.

– Recommendation ITU-T X.519 (2019) | ISO/IEC 9594-5:2020, Information technology – Open Systems

Interconnection – The Directory: Protocol specifications.

– Recommendation ITU-T X.520 (2019) | ISO/IEC 9594-6:2020, Information technology – Open Systems

Interconnection – The Directory: Selected attribute types.

– Recommendation ITU-T X.521 (2019) | ISO/IEC 9594-7:2020, Information technology – Open Systems

Interconnection – The Directory: Selected object classes.

– Recommendation ITU-T X.525 (2019) | ISO/IEC 9594-9:2020, Information technology – Open Systems

Interconnection – The Directory: Replication.

– Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

ISO/IEC 9594-4:2020 (E)

2 Rec. ITU-T X.518 (10/2019)

2.1.2 Other references

– Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Information object specification.

– Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Constraint specification.

– Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

– IETF RFC 4511 (2006), Lightweight Directory Access Protocol (LDAP): The Protocol.

– IETF RFC 4514 (2006), Lightweight Directory Access Protocol (LDAP): String Representation of

Distinguished Names.

2.2 Non-normative reference

– IETF RFC 4510 (2006), Lightweight Directory Access Protocol (LDAP): Technical Specification Road

Map.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 Basic Directory definitions

The following terms are defined in Rec. ITU-T X.500 | ISO/IEC 9594-1:

a) (the) Directory;

b) Directory Information Base.

3.2 Directory model definitions

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a) access point;

b) alias;

c) Directory Information Tree ;

d) Directory System Agent (DSA);

e) Directory User Agent (DUA);

f) distinguished name;

g) relative distinguished name.

3.3 DSA information model definitions

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a) category;

b) commonly usable;

c) context prefix;

d) cross reference;

e) DIB fragment;

f) DSA information tree;

g) DSA-Specific Entry (DSE);

h) DSE type;

i) immediate superior reference;

j) knowledge information;

k) knowledge reference category;

l) knowledge reference type;

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 3

m) naming context;

n) non-specific knowledge;

o) non-specific subordinate reference;

p) operational attribute;

q) reference path;

r) specific knowledge;

s) subordinate reference;

t) superior reference.

3.4 Abstract service definitions

The following terms are defined in Rec. ITU-T X.511 | ISO/IEC 9594-3:

a) reply;

b) request;

c) requester.

3.5 Protocol definitions

The following terms are defined in Rec. ITU-T X.519 | ISO/IEC 9594-5:

a) application-association;

b) application-entity-title.

3.6 Directory replication definitions

The following terms are defined in Rec. ITU-T X.525 | ISO/IEC 9594-9:

a) attribute completeness;

b) shadowing operational binding;

c) subordinate completeness;

d) unit of replication.

3.7 Distributed operation definitions

The following terms are defined in this Recommendation | International Standard:

3.7.1 base object: The object or alias entry that is the target for an operation as issued by the requester.

3.7.2 bound DSA: The DSA to which the requesting DUA or LDAP client has bound, by having performed a Bind

operation with that DSA.

3.7.3 bound-DSA paged results: The paging is performed entirely by the DSA to which the DUA is bound.

NOTE – This is the only mode of paging supported by systems conforming to Rec. ITU-T X.518 (2001) | ISO/IEC 9594-4:2001

or prior editions.

3.7.4 chaining: The generic term for uni-chaining or multi-chaining.

3.7.5 context prefix information: Operational and user information supplied by the superior DSA to the subordinate

DSA in an RHOB regarding DIT vertices superior to the subordinate context prefix.

3.7.6 directory server: A DSA or an LDAP server.

3.7.7 distributed directory: An interconnected set of directory servers where at least one directory server shall be

a DSA.

3.7.8 distributed name resolution: The process by which name resolution starts in a DSA and continues in one or

more Directory servers.

3.7.9 DSP paged results: The DSP protocol provisions when a performing DSA is different from a bound DSA,

whereby paged results by the initial performer are accomplished.

3.7.10 error: Information sent from the performer to the requester conveying a negative outcome of a previously

received request.

ISO/IEC 9594-4:2020 (E)

4 Rec. ITU-T X.518 (10/2019)

3.7.11 hard error: A definite error which indicates that the operation cannot currently be performed without external

intervention.

3.7.12 hierarchical operational binding (HOB): Relationship between two master DSAs holding naming contexts,

one of which is immediately subordinate to the other, in which the superior DSA holds a subordinate reference to the

subordinate DSA.

3.7.13 initial performer: The first DSA or LDAP server to start performing on an operation, i.e., the first DSA or

LDAP server to enter the evaluation phase of the operation.

3.7.14 LDAP requester: A DSA that has the ability to access an LDAP server by using the LDAP protocol.

3.7.15 modification operations: These are the Directory Modify operations, i.e., Modify Entry, Add Entry, Remove

Entry, Modify DN, Change Password and Administer Password operations.

3.7.16 multi-chaining: A mode of interaction in which a DSA processing a request itself sends multiple requests either

in parallel or sequentially to a set of other DSAs.

3.7.17 multiple entry interrogation operations: These are the Directory Search operations, i.e., List and Search

operations.

3.7.18 name resolution: The process of locating an entry by sequentially matching each RDN in a purported name to

a vertex of the DIT.

3.7.19 non-specific hierarchical operational binding (NHOB): Relationship between two master DSAs holding

naming contexts, one of which is immediately subordinate to the other, in which the superior DSA holds a non-specific

subordinate reference to the subordinate DSA.

3.7.20 NSSR decomposition: Decomposition of non-specific knowledge references into subrequests for other DSAs

to pursue; these subrequests may be either chained to these DSAs by the DSA performing the decomposition, or a

continuation reference identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA

may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.7.21 operation progress: A set of values which denotes the extent to which name resolution has taken place.

3.7.22 paging: A search or list result is returned piecewise in the form of one or more pages that are comprised by

a limited number of entries.

3.7.23 performer: DSA receiving a request (i.e., to perform an operation).

NOTE – The performer is also the initial performer except possibly for operations that involve more than one DSA for their

evaluation.

3.7.24 procedure: An (informal) specification of how a DSA maps a given set of input arguments and its DSA

information tree into a result.

NOTE – Input arguments and results may correspond to information received in a requested operation and information sent in a

reply, or they may represent intermediate stages in the computation of a reply from a requested operation. In clause 14.2, the former

variety of input arguments and results are termed external.

3.7.25 relevant hierarchical operational binding (RHOB): Either an HOB or an NHOB, depending on the context.

3.7.26 referral: An outcome which can be returned by a DSA or LDAP server which cannot perform an operation

itself, and which identifies one or more other DSAs or LDAP servers more able to perform the operation.

3.7.27 request decomposition: Decomposition by a DSA of a request into subrequests for other Directory servers to

pursue; these subrequests may be either chained to these Directory servers by the DSA performing the decomposition, or

continuation references identifying the Directory servers may be returned to the requester for it to pursue, or the

decomposing DSA may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.7.28 single entry interrogation operations: These are the Directory Read operations, i.e., Read and Compare

operations.

3.7.29 soft error: An error which may be transient, or which may indicate a localized problem, in which case the use

of a different knowledge reference or access point may enable a result or hard error to be obtained.

3.7.30 subordinate DSA: Of the two DSAs sharing an HOB or an NHOB, the DSA holding the subordinate naming

context.

3.7.31 subrequest: A request generated by request decomposition.

3.7.32 superior DSA: Of the two DSAs sharing an HOB or an NHOB, the DSA holding the superior naming context.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 5

3.7.33 superior, subordinate DSA: Two master DSAs holding naming contexts, one of which is immediately

subordinate to the other; the relationship between the two DSAs is managed explicitly via an HOB (or NHOB), or exists

implicitly by virtue of the superior DSA holding a subordinate (or non-specific subordinate) reference to the

subordinate DSA.

3.7.34 target object name: The name of an entry either to which the operation is to be directed at a particular stage of

name resolution, or which is involved in the evaluation of the operation.

3.7.35 uni-chaining: A mode of interaction optionally used by a DSA which cannot perform an operation itself. The

DSA chains by invoking an operation of another DSA or LDAP server and then relaying the outcome to the original

requester.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

DAP Directory Access Protocol

DIB Directory Information Base

DISP Directory Information Shadowing Protocol

DMD Directory Management Domain

DOP Directory Operational Binding Management Protocol

DSA Directory System Agent

DSE DSA-Specific Entry

DSP Directory System Protocol

DUA Directory User Agent

HOB Hierarchical Operational Binding

LDAP Lightweight Directory Access Protocol

NHOB Non-specific Hierarchical Operational Binding

NSSR Non-Specific Subordinate Reference

RHOB Relevant Hierarchical Operational Binding

5 Conventions

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean Rec. ITU-T X.518 |

ISO/IEC 9594-4. The term "Directory Specifications" shall be taken to mean the Rec. ITU-T X.500-series | ISO/IEC

9594-1, Rec. ITU-T X.501 | IO/IEC 9594-2, Rec. ITU-T X.511 | ISO/IEC 9594-3, Rec. ITU-T X.518 | ISO/IEC 9594-4,

Rec. ITU-T X.519 | ISO/IEC 9594-5, Rec. ITU-T X.520 | ISO/IEC 9594-6, Rec ITU-T X.521 | ISO/IEC 9594-7 and Rec.

ITU-T X.525 | ISO/IEC 9594-9.

If an International Standard or ITU-T Recommendation is referenced within normal text without an indication of the

edition, the edition shall be taken to be the latest one as specified in the normative references clause.

Prior to year 2020, the parts making up the Directory Specifications progressed together and can therefore collectively be

identified as the Directory Specifications of a specific edition using the format: Rec. ITU-T X.5** (yyyy) | ISO/IEC

9594-*:yyyy (e.g.; Rec ITU-T X.5** (1993) | ISO/IEC 9594-*:1995).

This Directory Specification makes extensive use of Abstract Syntax Notation One (ASN.1) for the formal specification

of data types and values, as it is specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, ITU-T X.681 (2015) | ISO/IEC 8824-2,

ITU-T X.682 (2015) | ISO/IEC 8824-3, ITU-T X.683 (2015) | ISO/IEC 8824-4 and Rec. ITU-T X.690 | ISO/IEC 8825-1.

This Directory Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values

are referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New

typeface. The names of procedures, typically referenced when specifying the semantics of processing, are differentiated

from normal text by displaying them in bold Times New Roman. Access control permissions are presented in italicized

Times New Roman.

If the items in a list are numbered (as opposed to using "–" or letters), then the items shall be considered steps in a

procedure.

ISO/IEC 9594-4:2020 (E)

6 Rec. ITU-T X.518 (10/2019)

SECTION 2 – OVERVIEW

6 Overview

The Directory abstract service allows the interrogation, retrieval and modification of Directory information in the DIB.

This service is specified in in Rec. ITU-T X.511 | ISO/IEC 9594-3. Similarly, the lightweight directory access protocol

(LDAP) allows the interrogation, retrieval and modification of Directory information in the DIB. This protocol and the

services it enables are specified in IETF RFC 4511.

The abstract service as specified in Rec. ITU-T X.511 | ISO/IEC 9594-3 does not address the specification of Directory

system agents (DSA) within which the DIB is stored and managed, and through which the service is provided.

Furthermore, it does not consider whether the DIB is centralized, i.e., contained within a single DSA, or distributed over

a DSA and a number of additional DSAs and/or LDAP servers. Directory server is the common name for a DSA or an

LDAP server. Consequently, the requirements for DSAs to have knowledge of, navigate to and cooperate with other

DSAs and or LDAP servers, in order to support the abstract service in a distributed environment is also not covered by

the abstract service specification.

This Directory Specification specifies how a set of one or more DSAs and zero or more LDAP servers collectively

constitute the distributed directory service.

In addition, this Directory Specification specifies the permissible ways in which the DIB may be distributed over one or

more DSAs and zero or more LDAP servers. For the limiting case where the DIB is contained within a single DSA, the

Directory is in fact centralized; for the case where the DIB is distributed over two or more DSAs, knowledge and

navigation mechanisms are specified which ensure that the whole of the DIB is potentially accessible from all DSAs that

hold constituent entries.

Portions of the DIB may also be replicated in multiple DSAs. The protocols described in this Directory Specification

allow the use of replicated information to improve the availability, performance and efficiency of the distributed directory

service. The use of replicated information is, to some extent, under the user's control, through the use of service control

options. The procedures described in this Directory Specification also indicate some of the opportunities for design

optimizations when using the replicated information.

Additionally, request handling interactions are specified that enable particular operational characteristics of the Directory

to be controlled by its users. In particular, the user has control over whether a DSA, responding to a directory inquiry

pertaining to information held in other directory server(s), has the option of interrogating the other DSA(s) directly

(chaining) or, whether it should respond with information about other directory server(s) which could further progress the

inquiry (referral).

Generally, the decision by a DSA to chain or refer is determined by the service controls set by the user, and by the DSA's

own administrative, operational or technical circumstances.

Recognizing that, in general, the Directory will be distributed, and that directory inquiries will be satisfied by an arbitrary

number of cooperating DSAs which may arbitrarily chain or refer according to the above criteria, this Directory

Specification specifies the appropriate procedures to be effected by DSAs in responding to distributed directory inquiries.

These procedures will ensure that users of the distributed Directory service perceive it to be both user-friendly and

consistent.

NOTE – Although an LDAP server may participate in a distributed operation, it is not aware of this cooperation.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 7

SECTION 3 – DISTRIBUTED DIRECTORY MODELS

7 Distributed Directory system model

The Directory abstract service, as defined in Rec. ITU-T X.511 | ISO/IEC 9594-3, models the Directory as an entity which

provides a set of directory services to its users. Users of the Directory access its services through an access point.

Figure 1 illustrates the distributed directory model which will be used as the basis for specifying the distributed aspects

of the directory. It illustrates the Directory as comprising a set of one or more DSAs and zero or more LDAP servers.

X.518(12)_F01

Access point

DUA

DSA

LDAP
client

DSA

DUA

DUA

DSA

LDAP
server

DSA

LDAP
server

LDAP
client

Figure 1 – The distributed directory model

DSAs are specified in detail in the subsequent clauses of this Directory Specification. This clause merely states a number

of their characteristics, in order to serve as an introduction and to establish the relationship between this Directory

Specification and the other Directory Specifications.

DSAs are defined in order that distribution of the DIB can be accommodated and that a number of physically distributed

DSAs and LDAP servers can interact in a prescribed, cooperative manner to provide directory services to the users of the

directory (DUAs and/or LDAP clients).

Figure 1 illustrates the relationship between the directory abstract service and the DSA abstract service. The directory

abstract service defined in Rec. ITU-T X.511 | ISO/IEC 9594-3 is provided through a number of Directory operations. To

realize this service, the DSAs and LDAP servers that comprise the Directory interact with one another. The nature of this

interaction is defined in terms of the service that one DSA may provide to another DSA, the DSA abstract service. In

addition, a DSA may interact with an LDAP server using the LDAP protocol as defined by IETF RFC 4511. When doing

this, the DSA is called an LDAP requester and the DSA abstract service does not apply for this type of interaction. A

DSA that is directly bound to a DUA or LDAP client is called the bound DSA (for that DUA or LDAP client).

As indicated in Figure 1, each of two interacting DSAs may provide a DSA abstract service to the other DSA. However,

an LDAP server is not able to send requests to a DSA or to another LDAP server. LDAP servers are therefore always at

the edge of the infrastructure.

The DSA abstract service is provided through a number of operations, termed chained operations, each having a

counterpart in the Directory abstract service. Thus, a given operation in the directory abstract service, e.g., Read, may

require that the DSA providing the service interact with one or more other DSAs using chained operations, e.g., Chained

Read.

A DUA or LDAP client can only access the Directory by interacting with a DSA.

NOTE – An LDAP client interaction with an LDAP server is specified by IETF RFC 4510 and is outside the scope of these

Directory Specifications.

ISO/IEC 9594-4:2020 (E)

8 Rec. ITU-T X.518 (10/2019)

8 DSA interactions model

A basic characteristic of the Directory is that, given a distributed DIB, a requester should potentially be able to have any

service request satisfied (subject to security, access control, service restrictions and administrative policies) irrespective

of the access point at which the request originates. In accommodating this requirement, it is necessary that any DSA

involved in satisfying a particular service request has some knowledge (as specified in Rec. ITU-T X.501 |

ISO/IEC 9594-2) of where the requested information is located and either return this knowledge to the requester or attempt

to have the request satisfied on its behalf. (The requester may be a DUA, an LDAP client or another DSA (possibly on

behalf of bound LDAP clients). In the latter case, both DSAs shall support the DSP.

Three modes of DSA interaction are defined to meet these requirements, namely "uni-chaining", "multi-chaining", and

"referral". Throughout the remainder of this Directory Specification, the generic term chaining is used to refer to

uni-chaining and/or multi-chaining as appropriate to the particular situation. "Chaining" refers to the attempt by a DSA

to satisfy a request by sending one or more chained operations to other DSAs; "referral", refers to the return of knowledge

information to the requester, which may then itself interact with the DSA(s) identified in the knowledge information.

LDAP servers may be components of a Directory. A DSA may chain requests to an LDAP server using the LDAP protocol

as specified in IETF RFC 4511. A DSA able to chain requests in this way is called an LDAP requester.

Uni-chaining or a referral interaction may result from a single request. Alternatively, the request may be decomposed into

several subrequests prior to the interaction. Multi-chaining or referral interactions, or a mixture of the two, may result

from a decomposed request. Two types of decomposition are defined: NSSR decomposition and request decomposition.

8.1 Decomposition of a request

8.1.1 NSSR decomposition

NSSR decomposition is the process of preparing (semantically) identical requests ready for transfer (either sequentially

or in parallel) to several subordinate directory servers as a result of encountering an NSSR during name resolution.

Non-specific subordinate references do not hold the RDNs of the referenced subordinate naming contexts, so the

referencing DSA is unable to tell which subordinate directory server holds which subordinate naming context(s). During

name resolution, a DSA encountering NSSRs shall send a semantically identical request to each subordinate directory

server (in the absence of shadowing). This may be done sequentially or in parallel. Typically, only one directory server

will be able to continue with name resolution; the other DSAs will return a serviceError with problem

unableToProceed, while other LDAP servers will return noSuchObject. In certain (rare) circumstances, it is possible

that more than one DSA will continue with name resolution, giving rise to duplicate results.

8.1.2 Request decomposition

Request decomposition, the other form of decomposing a request, is a process performed internally by a DSA prior to

communication with one or more other directory servers. A request is decomposed into several, possibly different,

subrequests such that each of the subrequests accomplishes a part of the original task. Request decomposition can be used

only during operation evaluation of a List, Search or LDAP Search operation. After request decomposition, each of the

subrequests may then be chained to other directory servers to continue the task, or a partial result (an embedded referral)

may be returned to the requester. An example of the same subrequest being generated to different directory servers is

when an entry has subordinate references and/or NSSRs that together reference more than one directory server. An

example of different subrequests being generated to the same or different directory servers is when two different entries

are encountered during a Search (subtree), and each has a subordinate reference.

8.2 Uni-chaining

This mode of interaction (depicted in Figure 2) may be used by one DSA to pass on a request to another directory server

when the former has knowledge about naming contexts held by the latter. Uni-chaining may be used to contact a single

DSA or LDAP server pointed to in a cross reference or a subordinate reference. In addition, a superior reference, supplier

reference or a master reference may be used to contact a single DSA.

NOTE – In Figure 2, the order of interactions is defined by the numbers associated with the interaction lines.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 9

X.518(12)_F02

DSA

DSA

DSA
3

6

52

1

47

8

Request Response

DUA or
LDAP
client

DSA or
LDAP
server

Figure 2 – Uni-chaining mode

8.3 Multi-chaining

This mode of interaction is used by a DSA for transferring several outgoing requests which have resulted from one

incoming request, as a result of either request decomposition or NSSR decomposition.

8.3.1 Parallel multi-chaining

With parallel multi-chaining, the DSA transfers several outgoing requests simultaneously (see Figure 3a). Whilst parallel

multi-chaining may give improved performance, it may under certain circumstances, e.g., in the presence of shadowing,

cause duplicate results to be received.

X.518(12)_F03a

Request Response

DSA

1

2 3

4

DUA or
LDAP
client

DSA or
LDAP
server

DSA or
LDAP
server

DSA or
LDAP
server

3 2

2 3

Figure 3a – Parallel multi-chaining

8.3.2 Sequential multi-chaining

With sequential multi-chaining, the DSA transfers one outgoing request at a time and waits for the result or error of one

request before sending the next (see Figure 3b). Whilst sequential multi-chaining may not be the quickest mode of

interaction, it is unlikely that duplicate results will be received.

NOTE – A DSA may use a combination of parallel multi-chaining and sequential multi-chaining.

ISO/IEC 9594-4:2020 (E)

10 Rec. ITU-T X.518 (10/2019)

X.518(12)_F03b

Request Response

DSA

1

4 5

6

DUA or
LDAP
client

DSA or
LDAP
server

DSA or
LDAP
server

DSA or
LDAP
server

3
a)

2

a)
Unable to proceed

Figure 3b – Sequential multi-chaining

(as a result of NSSR decomposition)

8.4 Referral

A referral (depicted in Figures 4a and 4b) is returned by a DSA in response to a request from a DUA, an LDAP client or

another DSA. The referral may constitute the whole response (in which case it is categorized as an error) or just part of

the response. An LDAP server may also return a referral as specified in IETF RFC 4511. A referral returned by a DSA

contains a knowledge reference, which may be either a superior, subordinate, cross, non-specific subordinate, supplier,

or master reference. A referral from an LDAP server is equivalent to a cross reference.

The DSA (Figure 4a) receiving the referral may use the knowledge reference contained therein, to subsequently chain or

multi-cast (depending upon the type of reference) the original request to other directory servers. Alternatively, a DSA

receiving a referral, may in turn pass the referral back in its response. A DUA or LDAP client (Figure 4b) receiving a

referral may use it to contact one or more other DSAs to progress the request.

NOTE 1 – In Figures 4a and 4b, the order of interactions is defined by the numbers associated with the interaction lines.

X.518(12)_F04a

3
a)

D E F

Request Response

DSA

1

4 5
b)

8

DUA or
LDAP
client

DSA or
LDAP
server

DSA or
LDAP
server

DSA or
LDAP
server

6

2 7

a)
 Referral to E

b)
 Referral to F

Figure 4a – Referral mode (DSA acts on referrals)

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 11

X.518(12)_F04b

DUA or
LDAP
client

a)
 Referral to E

b)
 Referral to F

64
b)

2
a)

53

1

DSA FDSA EDSA D

ResponseRequest

Figure 4b – Referral mode (DUA or LDAP client acts on referrals)

NOTE 2 – In Figure 4b, a referral to an LDAP client may be to an LDAP server. However, this situation is outside the scope of

this Directory Specification.

8.5 Mode determination

If a DSA cannot itself fully resolve a request, it shall chain the request (or a request formed by decomposing the original

one), to another DSA or LDAP server, unless:

a) chaining is prohibited by the requester or a bound DSA on behalf of an LDAP client via the

chainingProhibited service control, in which case the DSA shall return a referral or a serviceError

with problem chainingRequired; or

b) the DSA has administrative, operational, or technical reasons for preferring not to chain, in which case the

DSA shall return a referral.

NOTE 1 – A "technical reason" for not chaining is that the DSA identified in the knowledge reference does not support

the DSP.

NOTE 2 – If the localScope service control is set, then the DSA (or DMD) shall either resolve the request or return

an error.

NOTE 3 – If the user prefers referrals, the user should set chainingProhibited.

NOTE 4 – An LDAP server will always return a referral.

ISO/IEC 9594-4:2020 (E)

12 Rec. ITU-T X.518 (10/2019)

SECTION 4 – DSA ABSTRACT SERVICE

9 Overview of DSA abstract service

The service of the Directory is fully described in Rec. ITU-T X.511 | ISO/IEC 9594-3. When such a service is provided

in a distributed environment, as modelled in clause 7, it can be regarded as being provided by means of a set of DSAs and

zero or more LDAP servers. This is illustrated in Figure 1.

For each operation defined in the Directory service, a corresponding "chained" operation is defined in the DSA abstract

service for use between DSAs cooperating in the accomplishment of that Directory service operation. Thus, a DSA

receiving a Read operation from a DUA might require the assistance of another directory server (e.g., a DSA holding the

target entry or a copy of it) to satisfy it, and so send that DSA a Chained Read operation.

The information types exchanged in the DSA abstract service are defined in clause 10. The operations and errors of the

DSA abstract service are defined in clauses 11 to 13.

NOTE – Communication between a DSA (LDAP requester) and an LDAP server is outside the scope of DSA abstract service.

10 Information types

10.1 Introduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the

definition of the various operations of the DSA abstract service. The information types concerned are those which are

common to more than one operation or which are sufficiently complex or self-contained to merit being defined separately

from the operation which uses them.

Several of the information types used in the definition of the DSA abstract service are defined elsewhere. Clause 10.2

identifies these types and indicates the source of their definition. Clauses 10.3 to 10.10 each identifies and defines an

information type.

10.2 Information types defined elsewhere

The following information types are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

(Attributes)

– aliasedEntryName;

(Data types)

– DistinguishedName;

– Name;

– RelativeDistinguishedName.

The following information types are defined in Rec. ITU-T X.511 | ISO/IEC 9594-3:

(Operations)

– abandon;

(Errors)

– abandoned;

– attributeError;

– nameError;

– securityError;

– serviceError;

– updateError.

(Information Object Class)

– OPTIONALLY-PROTECTED;

(Data Type)

– SecurityParameters.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 13

The following information type is defined in Rec. ITU-T X.520 | ISO/IEC 9594-6:

(Data Type)

– PresentationAddress.

10.3 Chaining arguments

The ChainingArguments shall be present in each chained operation, to convey to a DSA the information needed to

successfully perform its part of the overall task:

ChainingArguments ::= SET {

 originator [0] DistinguishedName OPTIONAL,

 targetObject [1] DistinguishedName OPTIONAL,

 operationProgress [2] OperationProgress

 DEFAULT {nameResolutionPhase notStarted},

 traceInformation [3] TraceInformation,

 aliasDereferenced [4] BOOLEAN DEFAULT FALSE,

 aliasedRDNs [5] INTEGER OPTIONAL,

 returnCrossRefs [6] BOOLEAN DEFAULT FALSE,

 referenceType [7] ReferenceType DEFAULT superior,

 info [8] DomainInfo OPTIONAL,

 timeLimit [9] Time OPTIONAL,

 securityParameters [10] SecurityParameters DEFAULT {},

 entryOnly [11] BOOLEAN DEFAULT FALSE,

 uniqueIdentifier [12] UniqueIdentifier OPTIONAL,

 authenticationLevel [13] AuthenticationLevel OPTIONAL,

 exclusions [14] Exclusions OPTIONAL,

 excludeShadows [15] BOOLEAN DEFAULT FALSE,

 nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE,

 operationIdentifier [17] INTEGER OPTIONAL,

 searchRuleId [18] SearchRuleId OPTIONAL,

 chainedRelaxation [19] MRMapping OPTIONAL,

 relatedEntry [20] INTEGER OPTIONAL,

 dspPaging [21] BOOLEAN DEFAULT FALSE,

 -- [22] Not to be used

 -- [23] Not to be used

 excludeWriteableCopies [24] BOOLEAN DEFAULT FALSE,

 ... }

Time ::= CHOICE {

 utcTime UTCTime,

 generalizedTime GeneralizedTime,

 ... }

DomainInfo ::= ABSTRACT-SYNTAX.&Type

The various components have the following meaning:

a) The originator component need not be present if the requester component is present in

CommonArguments value, if the certification-path component is present in the

SecurityParameters value, or if requester information is only made available in the request, but not

during the Bind operation. It shall not be present if requester information is not available. It shall be present,

if requester information is only available as the result of the Bind operation.

b) The targetObject component shall convey the name of the object whose directory entry is being routed

to. The role of this object depends on the particular operation concerned: it may be the object whose entry

is to be operated on, or which is to be the base object for a request or subrequest involving multiple objects

(e.g., chainedList or chainedSearch). This component need not be present if it has the same value as

the object or base object parameter in the chained operation, in which case its implied value is that value.

Otherwise, it shall be present.

c) The operationProgress component is used to inform the DSA of the progress of the operation, and

hence of the role which it is expected to play in its overall performance. The information conveyed in this

component is specified in clause 10.5. The default value indicates that the name resolution has not started.

d) The traceInformation component shall be used to prevent looping among DSAs when chaining is in

operation. A DSA shall add a new element to trace information prior to chaining an operation to another

DSA. On being requested to perform an operation, a DSA shall check, by examination of the trace

information, that the operation has not formed a loop. The information conveyed in this component is

specified in clause 10.6.

ISO/IEC 9594-4:2020 (E)

14 Rec. ITU-T X.518 (10/2019)

e) The aliasDereferenced component is a BOOLEAN value which shall be used to indicate whether or not

one or more alias entries have so far been encountered and dereferenced during the course of distributed

name resolution. The default value of FALSE indicates that no alias entry has been dereferenced.

f) The aliasedRDNs component indicates how many of the RDNs of the targetObject component have

been generated from the aliasedEntryName attributes of one (or more) alias entries. The integer value

is set whenever an alias entry is encountered and dereferenced. This component shall be present if the

aliasDereferenced component is TRUE. Otherwise, it shall be absent.

NOTE – This component is provided for compatibility with implementations based on Rec. CCITT X.518 (1988) |

ISO/IEC 9594-4:1990. DUAs (and DSAs) implemented according to later editions of the Directory Specifications shall

always omit this parameter from the CommonArguments of a subsequent request. In this way, the Directory will not

signal an error if aliases dereference to further aliases.

g) The returnCrossRefs component is a Boolean value which indicates whether or not knowledge

references, used during the course of performing a distributed operation, are requested to be passed back

to the initial DSA as cross references, along with a result or referral. The default value of FALSE indicates

that such knowledge references shall not be returned.

h) The referenceType component, when present, shall indicate, to the DSA being asked to perform the

operation, what type of knowledge was used to route the request to it. The DSA may therefore be able to

detect errors in the knowledge held by the invoker. If such an error is detected, it shall be indicated by a

serviceError with problem invalidReference. ReferenceType is specified fully in clause 10.7. If

the referenceType is absent, then the value superior shall be assumed.

i) The info component is used to convey DMD-specific information among DSAs which are involved in

the processing of a common request. This component is of type DomainInfo, which is of unrestricted

type:

j) The timeLimit component, if present, shall indicate the time by which the operation is to be completed

(see clause 16.1.4.1). Before a value of Time is used in any comparison operation and if the syntax of Time

has been chosen as the UTCTime type, the value of the two-digit year field shall be rationalized into a four-

digit year value as follows:

– If the 2-digit value is 00 to 49 inclusive, the value shall have 2000 added to it.

– If the 2-digit value is 50 to 99 inclusive, the value shall have 1900 added to it.

NOTE 3 – The use of GeneralizedTime may prevent interworking with implementations unaware of the possibility

of choosing either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains in which this

Directory Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case

shall UTCTime be used for representing dates beyond 2049.

k) The SecurityParameters data type is specified in Rec. ITU-T X.511 | ISO/IEC 9594-3. Its absence is

deemed equivalent to there being an empty set of security parameters.

l) The entryOnly component shall be set to TRUE if the original operation was a Search with the subset

argument set to oneLevel, and an alias entry was encountered as an immediate subordinate of the

baseObject. The DSA which successfully performs name resolution on the targetObject name shall

perform object evaluation on only the named entry.

m) uniqueIdentifier component is optionally supplied when it is required to confirm the requester name.

The UniqueIdentifier data type is described in Rec. ITU-T X.501 | ISO/IEC 9594-2.

n) authenticationLevel component, when present, shall indicate the authentication level as established

during the Bind operation. If this component is absent, a performing DSA shall assume that there has been

no authentication (anonymous Bind). This component should be present whenever the requester has been

authenticated. The AuthenticationLevel data type is described in Rec. ITU-T X.501 | ISO/IEC 9594-

2.

o) The exclusions component has significance only for Search operations; it shall indicate, if present,

which subtrees of entries subordinate to the targetObject shall be excluded from the result of the Search

operation (see clause 10.10).

p) The excludeShadows component has significance only for Search, LDAP Search and List operations; it

indicates that the search shall be applied to entries and not to entry copies. If a request is received by an

LDAP requester for forwarding it to an LDAP server, the request shall not be forwarded if the referenced

naming context within the LDAP server is of category shadow (see clause 10.8). This optional

component may be used by a DSA as one way to avoid the receipt of duplicate results (see clause 20.1).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 15

q) The nameResolveOnMaster component only has significance during name resolution, and is only set if

NSSRs have been encountered. If set to TRUE, it signals that subsequent name resolution, i.e., matching

the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy information, including

writeable copies in a multi-master LDAP server implementation; subsequent resolution of each remaining

RDN shall be done in the master DSA for the entry identified by that RDN (see clause 20.1).

r) The operationIdentifier component facilitates the correlation of DAP operations with subsequent

related DSP operations as well as with results. It is assigned by the DSA that first receives a DAP request

or is copied from the chaining arguments of DSP requests that require further chaining. The DSA assigning

the operationIdentifier shall not reuse the assigned integer for a sufficiently long time period. The

correlation of related DAP and DSP requests and results are facilitated by DSA logging, for each operation

and result, the operationIdentifier together with the name of the DSA that assigned it (the first DSA

in traceInformation on a chained request). Such correlation may be useful for the purposes of logging,

auditing, charging and settlements, etc.

s) The searchRuleId component, when present, shall convey the unique identity of a search-rule. It is

included by the DSA performing the initial Search procedure (I) in case this procedure starts within a

service-specific administrative area and the search operation is progressed to other DSAs either when

progressing down the DIT, when following aliases or when following hierarchical group pointers.

t) The chainedRelaxation component enables relaxation to be carried out in a distributed manner for

chained Search operations. If a DSA received a chained search operation, and supports relaxation policies,

it can use the supplied chainedRelaxation component in place of any other relaxation policy that it

might implement, thereby enabling relaxation to be coordinated among the DSAs that potentially return

search results.

u) The relatedEntry element shall be present whenever the receiving DSA is required to resolve related

entries. When present, the receiving DSA shall respond only to the specific related entry element specified

by the relatedEntry value in joinAttributes of the SearchArgument. Thus, a relatedEntry

value of zero shall select the first element in the joinAttributes sequence the SearchArgument. The

value shall never exceed one less than the number of elements in the joinAttributes component of

SearchArgument. The absence of the relatedEntry element in the ChainingArguments of a DSP

operation specifying related entries shall indicate that the distributed operation being chained on is the

base search, and not the related entry part of the search.

 If a DSA to which chaining is being carried out is required to handle both normal search results and related-

entry results, this shall be done by sending the DSA two distinct DSP operations.

 When the relatedEntry element is present, the following special rules shall apply:

– in evaluating the infoTypes subcomponent of selection component of SearchArgument,

infoTypes shall be taken as having the value attributeTypesAndValues, whatever the

originally specified value;

– all attributes specified in any joinAtt component of JoinAttPair shall be included in the selection,

whether or not previously included there;

– the DSA coordinating related entry results shall omit values and unspecified arguments, so as to make

the result conform with the original user request.

 The relatedEntry argument shall be passed on in consequent outgoing ChainingArguments by a DSA

that supports related entries.

v) The dspPaging component may be used to request DSP paging. If the bound DSA is different from the

initial performer (see clause 15.5.4) and the bound DSA supports DSP paged results, it may set this

component to TRUE to instruct the initial performer to provide DSP paged results. If this component is

FALSE (default), the initial performer shall not perform DSP paged results. An initial performer that

supports DSP paged results shall not forward this component to DSA(s) to which it is sending subrequests.

w) The excludeWriteableCopies component has significance only for an LDAP requester receiving a

Search, LDAP search and List operation to be forwarded to an LDAP server. The request shall not be

forwarded if the referenced naming context within the LDAP server is of category writeableCopy

(see clause 10.8). This optional component may be used by a DSA as one way to avoid the receipt of

duplicate results (see clause 20.1).

10.4 Chaining results

The ChainingResults are present in the result of each operation and provide feedback to the DSA which invoked the

operation.

ISO/IEC 9594-4:2020 (E)

16 Rec. ITU-T X.518 (10/2019)

ChainingResults ::= SET {

 info [0] DomainInfo OPTIONAL,

 crossReferences [1] SEQUENCE SIZE (1..MAX) OF CrossReference OPTIONAL,

 securityParameters [2] SecurityParameters DEFAULT {},

 alreadySearched [3] Exclusions OPTIONAL,

 ... }

CrossReference ::= SET {

 contextPrefix [0] DistinguishedName,

 accessPoint [1] AccessPointInformation,

 ... }

The various components have the following meaning:

a) The info component, when present, shall be used to convey DMD-specific information among DSAs

which are involved in the processing of a common request. This component is of type DomainInfo, which

is of unrestricted type.

b) The crossReferences component shall not be present in the ChainingResults unless the

returnCrossRefs component of the corresponding request had the value TRUE. This component consists

of a sequence of CrossReference items, each of which contains a contextPrefix and an

accessPoint descriptor (see clause 10.8).

 A CrossReference may be added by a DSA when it matches part of the targetObject argument of

an operation with one of its context prefixes. The administrative authority of a DSA may have a policy not

to return such knowledge, and will, in this case, not add an item to the sequence.

c) The SecurityParameters data type is specified in Rec. ITU-T X.511 | ISO/IEC 9594-3. The absence

of the securityParameters component is deemed equivalent to there being an empty set of security

parameters.

d) The alreadySearched component, if present, shall indicate which subordinate RDNs subordinate to the

targetObject have been processed as part of a chained Search operation and therefore shall be excluded

in a subsequent subrequest.

10.5 Operation progress

An OperationProgress value describes the state of progress in the performance of an operation which several DSAs

shall participate in.

OperationProgress ::= SET {

 nameResolutionPhase [0] ENUMERATED {

 notStarted (1),

 proceeding (2),

 completed (3),

 ... },

 nextRDNToBeResolved [1] INTEGER OPTIONAL,

 ... }

The various components have the following meaning:

a) The nameResolutionPhase component shall indicate which phase has been reached in handling the

targetObject name of an operation. Where this indicates that name resolution has notStarted, then a

DSA has not hitherto been reached with a naming context containing the initial RDN(s) of the name. If

name resolution is proceeding, then the initial part of the name has been recognized, although the DSA

holding the target object has not yet been reached. The nextRDNToBeResolved indicates how much of

the name has already been recognized (see item b). If name resolution is completed, then the DSA holding

the target object has been reached, and performance of the operation proper is proceeding.

b) The nextRDNToBeResolved, when present, shall indicate to the DSA which of the RDNs in the

targetObject name is the next to be resolved. It takes the form of an integer in the range one to the

number of RDNs in the name. This component shall be absent if the nameResolutionPhase component

does not have the value proceeding.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 17

10.6 Trace information

A TraceInformation value carries forward a record of the DSAs that have been involved in the performance of an

operation. It is used to detect the existence of, or avoid, loops that might arise from inconsistent knowledge or from the

presence of alias loops in the DIT.

TraceInformation ::= SEQUENCE OF TraceItem

TraceItem ::= SET {

 dsa [0] Name,

 targetObject [1] Name OPTIONAL,

 operationProgress [2] OperationProgress,

 ... }

Each DSA, which is propagating an operation to another DSA, shall add a new TraceItem to the end of the

TraceInformation. Each such TraceItem value has the following components:

a) the dsa component shall hold the name of the DSA which is adding the item;

b) the targetObject component, when present, shall be the value received on the targetObject

component of the ChainingArguments value of the incoming request. This parameter shall be omitted

if:

– the request being chained came from a DUA, in which case its implied value is the object or

baseObject in the DAP operation;

– the request is received from an LDAP client, in which case its implied value is the object or

baseObject of the LDAP request; or

– if its value is the same as the (actual or implied) targetObject in the ChainingArgument of the

outgoing request;

c) the operationProgress component shall have a value determined as follows:

– If the incoming request is received from a DUA, the value shall be taken from the

operationProgress component of the CommonArguments of the DAP request. If this component

is absent on the DAP request, the default value notStarted shall be used.

– If the incoming request is received from an LDAP client, the value notStarted shall be used.

– If the incoming request is received from a DSA, the value shall be taken from the

operationProgress component of the ChainedArguments value. If this component is absent on

the request, the default value notStarted shall be used.

10.7 Reference type

A ReferenceType value indicates one of the various kinds of references defined in Rec. ITU-T X.501 | ISO/IEC 9594-2.

ReferenceType ::= ENUMERATED {

 superior (1),

 subordinate (2),

 cross (3),

 nonSpecificSubordinate (4),

 supplier (5),

 master (6),

 immediateSuperior (7),

 self (8),

 ditBridge (9),

 ... }

10.8 Access point information

There are three types of access points:

AccessPoint ::= SET {

 ae-title [0] Name,

 address [1] PresentationAddress,

 protocolInformation [2] SET SIZE (1..MAX) OF ProtocolInformation OPTIONAL,

 -- [6] Not to be used

 ... }

ISO/IEC 9594-4:2020 (E)

18 Rec. ITU-T X.518 (10/2019)

MasterOrShadowAccessPoint ::= SET {

 COMPONENTS OF AccessPoint,

 category [3] ENUMERATED {

 master (0),

 shadow (1),

 writeableCopy (2),

 ... } DEFAULT master,

 chainingRequired [5] BOOLEAN DEFAULT FALSE,

 ... }

MasterAndShadowAccessPoints ::= SET SIZE (1..MAX) OF MasterOrShadowAccessPoint

a) An AccessPoint value identifies a particular point at which access to the Directory, specifically to a DSA

or LDAP server, can occur. When referring to a DSA, the access point shall have a Name, that of the DSA

concerned. It shall have a PresentationAddress to be used in communications to that DSA or LDAP

server (see clause 11 of Rec. ITU-T X.519 | ISO/IEC9594-5 for additional information about NSAP

formats). When referring to a DSA using IDM protocol, pSelector, sSelector and tSelector

components shall be ignored. When referring to an LDAP server, the ae-title, protocolInformation

pSelector, sSelector and tSelector components shall be ignored (see clause 11.3 of

Rec. ITU-T X.519 | ISO/IEC 9594-5).

b) A MasterOrShadowAccessPoint value identifies an access point to the Directory. The category,

either master or shadow, of the access point is dependent upon whether it points to a naming context or

to a commonly usable replicated area. The category writeableCopy is only applicable if the access

point is for an LDAP server with writeable copy entries. The chainingRequired component indicates

whether chaining is required for that DSA, i.e., a referral shall not be returned for that DSA.

c) A MasterAndShadowAccessPoints value identifies a set of access points to the Directory, i.e., a set of

related Directory servers. These access points share the property that each refers to a DSA or LDAP server

holding entry information from a common naming context (or a common set of naming contexts mastered

in one DSA when the value is a value of the nonSpecificKnowledge attribute). A

MasterAndShadowAccessPoints value indicates the category of each AccessPoint value it

contains. The access point of the master DSA or LDAP server of the naming context need not be included

in the set.

NOTE – Implementors should recognize that it is possible for an LDAP server, even if identified as shadow, to update

entries in response to an LDAP update operation that it receives.

An AccessPointInformation value identifies one or more access points to the Directory.

AccessPointInformation ::= SET {

 COMPONENTS OF MasterOrShadowAccessPoint,

 additionalPoints [4] MasterAndShadowAccessPoints OPTIONAL,

 ... }

In the case of DSAs based on Rec. CCITT X.518 (1988) | ISO/IEC 9594-4:1990 producing an

AccessPointInformation value, the optional component of the set is absent. In the case of DSAs based on Rec.

CCITT X.518 (1988) | ISO/IEC 9594-4:1990 interpreting an AccessPointInformation value, any

MasterAndShadowAccessPoints value present is ignored.

In the case of DSAs based on Rec. ITU-T X.518 (1993) | ISO/IEC 9594-4:1995 or later editions, the

MasterOrShadowAccessPoint value component produced for an AccessPointInformation value may be of

category master or shadow, as determined by the knowledge selection procedure of the DSA producing the value. It may

be viewed as a suggested access point provided by the DSA generating the value to the DSA receiving it. A

MasterAndShadowAccessPoints value may optionally also be produced for an AccessPointInformation value.

This constitutes additional information which may be employed by the receiving DSA's knowledge selection procedure

to determine an alternative access point.

10.9 DIT bridge knowledge.

A DitBridgeKnowledge value identifies a particular point at which access to another DIT, specifically to a DSA or an

LDAP server, can occur. DitBridgeKnowledge specifies an access point at which that DSA or LDAP server may be

accessed.

DitBridgeKnowledge ::= SEQUENCE {

 domainLocalID UnboundedDirectoryString OPTIONAL,

 accessPoints MasterAndShadowAccessPoints,

 ... }

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 19

domainLocalID contains a readable description identifying the DIT included in the reference.

10.10 Exclusions

As defined in clause 10.3, the exclusions component of ChainingArguments is used to limit the scope of a Search

operation by identifying a number of entries subordinate to the target object which, together with all of their subordinates,

shall not be included in the processing of a Search operation. The exclusion component is defined as a value of the

ASN.1 type Exclusions.

Exclusions ::= SET SIZE (1..MAX) OF RDNSequence

Each RDNSequence value in the Exclusions set should identify the context prefix of a naming context subordinate to

the target object. If a DSA receives a search request with an RDNSequence value that does not conform to this constraint,

the DSA may ignore that value. The RDNSequence is relative to the target object, and is not the distinguished name of

the context prefix.

Exclusions can, besides being part of a user request, be used by DSAs to minimize duplicate information returned from

Search subrequests performed in the presence of shadowed information.

Figure 5 illustrates an example of the use of Exclusions. In this example, a DSA holds two replicated areas, one beneath

the other. One starts with context prefix X, the other with context prefix C. An entry copy at Y has three subordinate

references to naming contexts, A, B and C.

If, as an example, a subtree Search is performed in this DSA, starting with a base object within naming context X, the

DSA can provide information from replicated areas X and C. The information from naming contexts A and B has to be

provided via the subordinate references. When performing request decomposition, continuation references, to be used in

either partialResults or chaining, will specify Y as the target object and C as a single element of an Exclusions

set.

X.518(12)_F05

A B C

X

Y

Figure 5 – Exclusions

10.11 Continuation reference

A ContinuationReference describes how the performance of all or part of an operation can be continued at one or

more different directory servers. It is typically returned as a referral when the DSA involved is unable or unwilling to

propagate the request itself.

ContinuationReference ::= SET {

 targetObject [0] Name,

 aliasedRDNs [1] INTEGER OPTIONAL,

 operationProgress [2] OperationProgress,

 rdnsResolved [3] INTEGER OPTIONAL,

 referenceType [4] ReferenceType,

 accessPoints [5] SET OF AccessPointInformation,

 entryOnly [6] BOOLEAN DEFAULT FALSE,

 exclusions [7] Exclusions OPTIONAL,

 returnToDUA [8] BOOLEAN DEFAULT FALSE,

 nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE,

 ... }

ISO/IEC 9594-4:2020 (E)

20 Rec. ITU-T X.518 (10/2019)

The various components have the following meaning:

a) The targetObject component shall indicate the name which is proposed to be used in continuing the

operation. This might be different from the name received in targetObject of the incoming request if,

for example, an alias has been dereferenced, or the base object in a search has been located.

b) The aliasedRDNs component indicates how many (if any) of the RDNs in the target object name have

been produced by dereferencing an alias. The argument is only present if an alias has been dereferenced.

NOTE – This component is provided for backward compatibility with implementations based on Rec. CCITT X.5**

(1988) | ISO/IEC 9594-*:1990.

This component shall not be included in CommonArguments when implementing according to Rec. ITU-T X.5**

(1993) | ISO/IEC 9594-*:1995 or later editions of these Directory Specifications.

c) The operationProgress shall indicate the amount of name resolution which has been achieved, and

which will govern the further performance of the operation by the DSAs named, should the DSA or DUA

receiving the ContinuationReference wish to follow it up.

d) The rdnsResolved component value (which need only be present if some of the RDNs in the name have

not been the subject of full name resolution, but have been assumed to be correct from a cross reference)

shall indicate how many RDNs have actually been resolved, using internal references only.

e) The referenceType component shall indicate what type of knowledge was used in generating this

continuation.

f) The accessPoints component shall indicate the access points which are to be contacted to achieve this

continuation. Only where non-specific subordinate references are involved can there be more than one

AccessPointInformation item.

g) The entryOnly component shall be set to TRUE if the original operation was a search, with the subset

argument set to oneLevel, and an alias entry was encountered as an immediate subordinate of the

baseObject. The DSA which successfully performs name resolution on the targetObject name shall

perform object evaluation on only the named entry. If the original operation was not a search, with the

subset argument set to oneLevel, this component shall be absent or take the value FALSE.

h) The exclusions component, when present, shall identify a set of subordinate naming contexts that should

not be explored by the receiving DSA.

i) The returnToDUA element is optionally supplied when the DSA creating the continuation reference

wishes to indicate that it is unwilling to return information via an intermediate DSA (e.g., for security

reasons), and wishes to indicate that information may be directly available via an operation over a DAP or

LDAP between the originating DUA or LDAP client and the DSA. When returnToDUA is set to TRUE,

referenceType may be set to self.

j) The nameResolveOnMaster element is optionally supplied when the DSA creating the continuation

reference has encountered NSSRs. If set to TRUE, it signals that subsequent name resolution, i.e., matching

the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy information including

writeable copies in a multi-master LDAP server implementation; subsequent resolution of each remaining

RDN shall be done in the master DSA for the entry identified by that RDN (see clause 20.1).

11 Bind and Unbind

DSA Bind and DSA Unbind operations, respectively, are used by a DSA at the beginning and at the end of a period of

accessing another DSA. The binding or unbinding of a DSP application-association shall not, of itself, cause the loss of

any distributed paged results which were requested in the course of the application-association.

11.1 DSA Bind

11.1.1 DSA Bind syntax

A dSABind operation is used to begin a period of cooperation between two DSAs providing the directory service.

dSABind OPERATION ::= {

 ARGUMENT DSABindArgument

 RESULT DSABindResult

 ERRORS { directoryBindError } }

DSABindArgument ::= SET {

 credentials [0] DSACredentials OPTIONAL,

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 21

 versions [1] Versions DEFAULT {v1} }

DSACredentials ::= CHOICE {

 simple [0] SimpleCredentials,

 strong [1] StrongCredentials,

 externalProcedure [2] EXTERNAL,

 spkm [3] SpkmCredentials }

DSABindResult ::= DSABindArgument

11.1.2 DSA Bind arguments

The components of the DSABindArgument are identical to their counterparts in the DirectoryBind (see Rec. ITU-T X.511

| ISO/IEC 9594-3) with the following differences:

– The Credentials of the DirectoryBindArgument allows information identifying the AE-Title of the

initiating DSA to be sent to the responding DSA. The AE-Title shall be in the form of a Directory

Distinguished Name.

– The SaslCredentials shall not be included in the Credentials.

– The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the

responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished

Name.

11.1.3 DSA Bind results

The components of the DSABindResult are identical to their counterparts in the DirectoryBindResult

(see Rec. ITU-T X.511 | ISO/IEC 9594-3) with the following differences:

– The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the

responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished

Name.

– The SaslCredentials shall not be included in the Credentials.

11.1.4 DSA Bind errors

Should the Bind request fail, a Bind error shall be returned. If the Bind request was either using strong authentication or

SPKM credentials are supplied, then the Bind responder may sign the error parameters.

The versions parameter of the dSABindError indicates which versions are supported by the responding DSA.

The SecurityParameters components (see clause 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) shall be included if the

error is to be signed.

A securityError or serviceError shall be supplied as follows:

 securityError inappropriateAuthentication

 invalidCredentials

 blockedCredentials

 serviceError unavailable

11.2 DSA Unbind

The unbinding at the end of a period of cooperation between two DSAs providing the Directory service is for the OSI

environment specified in clauses 7.6.4 and 7.6.5 of Rec. ITU-T X.519 | ISO/IEC 9594-5 and for the TCP/IP environment

in clause 9.2.2 of Rec. ITU-T X.519 | ISO/IEC 9594-5.

12 Chained operations

For each of the operations used to access the directory abstract service, there is an operation used between cooperating

DSAs in a one-to-one correspondence. The names of the operations have been chosen to reflect that correspondence by

prefixing the names of operations used between cooperating DSAs with the term "Chained".

The arguments, results and errors of the chained operations are, with one exception, formed systematically from the

arguments, results and errors of the corresponding operations in the Directory abstract service (as specified in clause 12.1).

The one exception is the Chained Abandon operation, which is syntactically equivalent to its Directory service counterpart

(specified in clause 12.2).

ISO/IEC 9594-4:2020 (E)

22 Rec. ITU-T X.518 (10/2019)

12.1 Chained operations

A DSA, having received an operation from a DUA, having created an LDAP Transport operation resulting from a received

request from an LDAP client, or having created a Linked LDAP operation resulting from a partial result from an LDAP

server, shall construct a chained form of that operation if it is to be propagated to another DSA. A DSA, having received

a chained form of an operation, may also elect to chain it to another DSA. The DSA invoking a chained form of an

operation may sign the argument of the operation; the DSA performing the operation, if so requested, may sign the result

or error returned by the responder of the operation.

The chained form of an operation is specified using the parameterized type chained { }.

 chained{OPERATION:operation} OPERATION ::= {

 ARGUMENT OPTIONALLY-PROTECTED {SET {

 chainedArgument ChainingArguments,

 argument [0] operation.&ArgumentType } }

 RESULT OPTIONALLY-PROTECTED {SET {

 chainedResult ChainingResults,

 result [0] operation.&ResultType}}

 ERRORS

 {operation.&Errors EXCEPT referral | dsaReferral}

 CODE operation.&operationCode }

NOTE 1 – The operations of the Directory abstract service which may be used as the actual parameter of chained { } include

the abandoned error. The presence of this error among the set of possible errors of a chained operation reflects the possibility

discussed in clause 12.2, that a chainedAbandon can be generated for a chainedModify operation when a linked association

fails.

NOTE 2 – The definitive specification of the DSA abstract service in Annex A applies this parameterized type to construct all the

chained operations of the abstract service.

The argument of the derived operation has the components:

a) chainedArgument – This is a value of ChainingArguments that contains the information,

supplementing the information provided in the DAP argument. This additional information is needed in

order for the receiving DSA to handle the operation properly. This data type is defined in clause 10.3.

b) argument – This is a value operation.&Argument and consists of the original DAP argument, as

specified in the appropriate clause of Rec. ITU-T X.511 | ISO/IEC 9594-3.

Should the request succeed, the result of the derived operation has the components:

a) chainedResult – This is a value of ChainingResults which contains that information, over and above

that to be supplied in the DAP result, which may be needed by previous DSAs in a chain. This information

type is defined in clause 10.4.

b) result – This is a value operation.&Result and consists of the result which is being returned by the

performer of this operation, and which is intended to be passed back in the result to the requester. This

information is as specified in the appropriate clause of Rec. ITU-T X.511 | ISO/IEC 9594-3.

Should the request fail, one of the errors of the set operation.&Errors will be returned, except that dsaReferral is

returned instead of referral. The set of errors, which may be reported, is as described for the corresponding operation

in Rec. ITU-T X.511 | ISO/IEC 9594-3. The error dsaReferral is described in clause 13.2.

12.2 Chained Abandon operation

A chainedAbandon request is used by one DSA to indicate to another that it is no longer interested in having a previously

invoked distributed operation performed. This may be for any number of reasons, of which the following are examples:

– the operation which led to the DSA originally chaining has itself been abandoned, or has implicitly been

aborted by the breakdown of an application-association;

– the DSA has obtained the necessary information in another way, e.g., from a faster responding DSA

involved in the parallel multi-chaining.

A DSA is never obliged to issue a chainedAbandon request, or indeed to actually abandon an operation if requested to

do so.

If the Chained Abandon operation actually succeeds in stopping the performance of an operation, then a result will be

returned, and the subject operation will return an abandoned error. If the chainedAbandon does not succeed in stopping

the operation, then it will return an abandonFailed error itself.

A DSA may also issue an AbandonRequest to an LDAP server under the same conditions as above.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 23

12.3 Chained operations and protocol version

Operations which require a protocol version greater than v1 (such as the modifyEntry operation with certain arguments)

or which return different results when used with a protocol version greater than v1 (such as modifyEntry with a signed

argument) shall only be chained on application-associations with the same or a greater version number than that used to

convey the request.

13 Chained errors

13.1 Introduction

For the most part, the same errors can be returned in the DSA abstract service which can be returned in the directory

abstract service. The exceptions are that the dsaReferral "error" is returned (see clause 13.2), instead of referral,

and the following service problems have the same abstract syntax but different semantics:

a) serviceError with problem invalidReference – The DSA returning this error detected an error in

the calling DSA's knowledge as specified in the referenceType chaining argument.

b) serviceError with problem loopDetected – The DSA returning this error detected a loop in the

knowledge information in the Directory.

The precedence of the errors which may occur is as for their precedence in the directory abstract service, as specified in

Rec. ITU-T X.511 | ISO/IEC 9594-3.

If an error occurs during a chained operation, the responding DSA may sign the error returned.

13.2 DSA referral

The dsaReferral error shall be generated by a DSA when, for whatever reason, it does not wish to continue performing

an operation by chaining the operation to one or more other directory servers. The circumstances where it may return a

referral are described in clause 8.3.

dsaReferral ERROR ::= {

 PARAMETER OPTIONALLY-PROTECTED { DsaReferralData }

 CODE id-errcode-dsaReferral }

DsaReferralData ::= SET {

 reference [0] ContinuationReference,

 contextPrefix [1] DistinguishedName OPTIONAL,

 ...,

 ...,

 COMPONENTS OF CommonResults }

The various components of DsaReferralData data type have the following meaning:

a) The reference component contains the information needed by the invoker to propagate an appropriate

further request, perhaps to another DSA or to an LDAP server. The ContinuationReference data type is

specified in clause 10.11.

b) The contextPrefix component may optionally be included if the returnCrossRefs component of the

ChainingArguments for this operation had the value TRUE, and the referral is being based upon a

subordinate or cross-reference. Otherwise, it shall be absent. The administrative authority of any DSA will

decide which knowledge references, if any, can be returned in this manner (the others, for example, may

be confidential to that DSA).

The information provided can optionally be qualified by the use of the notification component of CommonResults.

ISO/IEC 9594-4:2020 (E)

24 Rec. ITU-T X.518 (10/2019)

SECTION 5 – DISTRIBUTED PROCEDURES

14 Introduction

14.1 Scope and limits

This clause specifies the procedures for distributed operation that are performed by DSAs. Each DSA individually

performs the procedures described below; the collective action of all DSAs produces the full set of services provided to

users of the Directory.

14.2 Conformance

The description of DSA procedures in this section is based on the models in clauses 8 and 9 of Rec. ITU-T X.501 |

ISO/IEC 9594-2 and clauses 7 and 8 of this Directory Specification. The flow charts and their corresponding textual

descriptions are one of the means of mapping a given set of external (DAP, LDAP and/or DSP) inputs to a DSA into one

or more external outputs (i.e., a result, error, referral, chained requests or LDAP request) produced by that DSA,

depending on the particular DSA information tree held by that DSA.

It is probable that the Directory will be distributed across DSAs implemented according to different editions of these

Directory Specifications. The DUA or LDAP client initiating the request will be unaware as to which edition the DSA or

DSAs satisfying the DUA's or LDAP client's request will have been implemented. Therefore to allow operation in such a

heterogeneous environment, a DSA shall be implemented according to the rules of extensibility defined in clause 12 of

Rec. ITU-T X.519 | ISO/IEC 9594-5.

A DSA implementation shall be functionally equivalent to the external behaviour specified by the procedures described

here. The algorithms used by a particular DSA implementation to derive the correct output(s) from the given inputs

and DSA information tree held are not standardized.

NOTE – The flowcharts which accompany the procedures are intended to be used as aids towards understanding the procedures.

They are not to be considered as being a precise alternative to the textual descriptions. Where there is a disparity between the

textual description and the flowchart for a particular procedure, it is intended that the textual description take precedence.

14.2.1 Interaction involving a DSA based on Rec. CCITT X.5** (1988) | ISO/IEC 9594-*:1990

If the modify operations evaluate across DSA boundaries (i.e., addEntry with TargetSystem, Remove or Rename a

context prefix), then this Directory Specification only specifies how two DSAs when implemented accordingly to Rec.

ITU-T X.5** (1993) | ISO/IEC 9594-*:1995 or later edition shall behave. The interaction between two DSAs based on

Rec. CCITT X.5** (1988) | ISO/IEC 9594-*:1990, or between a DSA based on Rec. CCITT X.5** (1988) | ISO/IEC

9594-*:1990 and a DSA based on Rec. ITU-T X.5** (1993) | ISO/IEC 9594-*:1995 or a later edition, is outside the scope

of these Directory Specifications. When mixed edition DSAs have a hierarchical operational binding, knowledge of each

other's edition may allow a consistent error to be given to the user.

14.3 Conceptual model

The complexity of the Directory's distributed operation gives rise to a need for conceptual modelling using both narrative

and pictorial descriptive techniques. However, neither the narrative nor the diagrams should be construed as a formal

description of distributed directory operation.

14.4 Individual and cooperative operation of DSAs

The model views DSA operation from two separate perspectives, which, taken together, provide a complete, operational

picture of the Directory.

a) DSA-centred perspective – In this perspective, the set of procedures that support the Directory is

described from the viewpoint of a single DSA. This makes it possible to provide a definitive specification

of each procedure and to fully account for their interrelationships and overall control structure. Clauses 16

to 22 describe the DSA procedures from a DSA-centred perspective.

b) operation-centred perspective – The DSA-centred view provides complete detail but makes it difficult

to understand the structure of individual operations, which may undergo processing by multiple DSAs.

Consequently, clause 15 adopts a primarily operation-centred view to introduce the processing phases

applicable to each.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 25

To support the distributed operation of the Directory, each DSA shall perform actions needed to realize the intent of each

operation and additional actions needed to distribute that realization across multiple DSAs. Clause 15 explores the

distinction between these two kinds of actions. In clauses 16 to 22, both kinds of actions are specified in detail.

14.5 Cooperative agreements between DSAs

All DSAs which are in a subordinate/superior relationship due to the naming contexts that they hold have hierarchical

and/or non-specific hierarchical operational bindings between them, depending upon the types of knowledge reference

held by those DSAs.

Hierarchical and non-specific hierarchical operational bindings between DSAs may be administered using the procedures

of clauses 24 and 25, or by off-line means.

A DSA holding entries which are within the administrative area of its superior DSA shall administer the subschema, shall

follow the governing-search-rule (if any) and shall control access to the entries, as required by the administrative authority.

The regulation of entries within an administrative area may be performed as defined in Rec. ITU-T X.501 | ISO/IEC 9594-

2 or may be performed by local mechanisms.

15 Distributed Directory behaviour

15.1 Cooperative fulfilment of operations

Each DSA is equipped with procedures capable of completely fulfilling all directory operations. In the case that a DSA

contains the entire DIB, all operations are completely carried out within that DSA. In the case that the DIB is distributed

across a distributed directory, the completion of a typical operation is fragmented, with just a portion of that operation

carried out in each of potentially many cooperating directory servers.

In the distributed environment, the typical DSA sees each operation as a transitory event: the operation is invoked by a

DUA, an LDAP client or some other DSA; the DSA carries out processing on the object and then directs it toward another

directory server for further processing.

An alternative view considers the total processing experienced by an operation during its fulfilment by possible multiple,

cooperating directory servers. This perspective reveals the common processing phases that apply to all operations.

15.2 Phases of operation processing

Every directory operation may be thought of as comprising three distinct phases:

a) the Name Resolution phase in which the name of the object on whose entry a particular operation is to be

performed is used to locate the DSA or LDAP server that holds the entry;

b) the Evaluation phase in which the operation specified by a particular directory request (e.g., a Read

operation) is actually performed;

c) the Results Merging phase in which the results of a specified operation are returned to the requesting DUA

or LDAP client. If a chaining mode of interaction was chosen, the Results Merging phase may involve

several DSAs, each of which chained the original request or subrequest (as defined in clause 15.3.1 –

Request decomposition) to other DSAs and LDAP servers during either or both of the preceding phases.

In the case of a Read, Compare, List, Search, Modify Entry, Modify DN, Remove Entry, LDAP Transport or Linked

LDAP operation, name resolution takes place on the object name provided in the argument of the operation. In the case

of an Add Entry operation, name resolution's target entry is the immediately superior entry of that provided in the

argument of the operation – it can be easily derived by removing the final RDN from the name provided in the operation

argument. (This is done via local argument m in the FindDSE procedure of clause 18.3.1.)

An operation on a particular entry may initially be directed at any DSA in a distributed directory. That DSA uses its

knowledge, possibly in conjunction with other Directory servers, to process the operation through the three phases.

15.2.1 Name Resolution phase

Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc (or vertex) of the DIT,

beginning logically at the Root and progressing downwards in the DIT. However, because the DIT is distributed among

arbitrarily many Directory servers, each DSA may only be able to perform a fraction of the Name Resolution process.

A given DSA performs its part of the Name Resolution process by traversing its local DSA information tree. This process

is described in clause 18 and the accompanying diagrams (see Figures 9 to 12). Based on its local DSA information tree,

ISO/IEC 9594-4:2020 (E)

26 Rec. ITU-T X.518 (10/2019)

and the knowledge information contained therein, a DSA is able to infer whether the resolution can be continued by one

or more other DSAs/LDAP servers, or whether the name is erroneous.

NOTE – Name Resolution within an LDAP server is outside the scope of this Directory Specification.

The Name Resolution phase is constrained to work within a DSA information tree if the manageDSAIT service control

option is set.

15.2.2 Evaluation phase

When the Name Resolution phase has completed, the actual operation required (e.g., Read or Search) is performed.

Operations that involve a single entry interrogation – Read, Search with subset set to baseObject and Compare – may

be carried out entirely within the DSA or LDAP server in which the entry is located.

Operations that involve multiple entries interrogation – List, Search and an LDAP search carried by an LDAP Transport

operation – need to locate subordinates of the target, which may or may not reside in the same DSA. If they do not all

reside in the same DSA, operations need to be directed to the DSAs specified in the subordinate, non-specific subordinate,

supplier, or master references (as appropriate) and/or LDAP servers specified in subordinate, non-specific subordinate or

cross references to complete the evaluation process.

The Evaluation phase is constrained to work within a DSA information tree if the manageDSAIT service control option

is set. Likewise, if the evaluation phase starts within a service-specific administrative area, the evaluation is constrained

to that administrative area.

15.2.3 Results Merging phase

The Results Merging phase is entered once some of the results of the Evaluation phase are available.

In those cases where the operation affected only a single entry, the result of the operation can simply be returned to the

requesting DUA or LDAP client. In those cases where the operation has affected multiple entries on multiple Directory

servers, results can be combined. If signing is performed on the results of an operation initiated by a DUA, the results

shall not be combined. The results should be returned to the DUA without performing merging.

The permissible responses returned to a requester after results merging include:

a) a complete result of the operation;

b) a result which is not complete because some parts of the DIT remain unexplored (applies to List, Search

and LDAP search only). Such a partial result may include continuation references for those parts of the

DIT not explored;

c) an error (a referral being a special case); and

d) if the requester was a DSA, a ChainingResults value.

15.3 Managing Distributed Operations

Information is included in the argument of each operation which a DSA may be asked to perform indicating the progress

of each operation as it traverses various DSAs of the Directory. This makes it possible for each DSA to perform the

appropriate aspect of the processing required, and to record the completion of that aspect before directing the operation

outward toward further directory servers.

Additional procedures are included in the DSA to physically distribute the operations and support other needs arising

from their distribution.

15.3.1 Request decomposition

Request decomposition is a process performed internally by a DSA prior to communication with one or more other

directory servers. A request is decomposed into several subrequests such that each of the latter accomplishes a part of the

original task. Request decomposition can be used, for example, in the search operation, after the base object has been

found. After decomposition, each of the subrequests may then be uni-chained or multi-chained to other directory servers,

to continue the task.

The argument of a chained request (see clause 12.1) or subrequest shall be the unmodified operation argument of the

original DAP operation. A DSA receiving a chained request shall not change argument of the DAP request when doing

request decomposition.

NOTE – The following subclauses specify this requirement for individual components of argument. This should not be interpreted

to mean that the component not explicitly mentioned can be changed.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 27

15.3.2 DSA as Request Responder

A DSA that receives a request can check the progress of that request as follows:

– if the request is received from a DUA then using the operationProgress component of the

CommonArguments value, or its default value;

– if the request is received from an LDAP client then assume that Name Resolution has not started; or

– if the request is received from a DSA then using the operationProgress component of the

ChainingArguments value, or its default value.

This will determine whether the operation is still in the Name Resolution phase or has reached the evaluation phase, and

what portion of the operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request, it shall either

pass (by uni-chaining or multi-chaining) the operation on to one or more Directory servers which can help to fulfil the

request, or return a referral to another DSA or LDAP server, or terminate the request with an error.

15.3.3 Completion of operations

Each DSA that has initiated an operation or propagated an operation to one or more other Directory servers shall keep

track of that operation's existence until each of the other Directory servers has returned a result or error, or the operation's

maximum time limit has expired. This requirement applies to all operations, propagation modes and processing phases,

except when an LDAP abandon request has been sent to an LDAP server (see clause 20.6.5). It ensures the orderly closing

down of distributed operations that have propagated out into the Directory.

15.4 Loop handling

The DIT may be in a state that can cause looping. As an example, looping can occur during name resolution where

dereferencing one or more aliases brings the resolution back to the same branch of the DIT. Another potential cause of

looping is through misconfigured knowledge references.

Within the context of a particular directory operation, a loop occurs if at any time the operation returns to a previous state,

where state is defined by the following components:

– the name of the DSA currently processing the operation;

– the name of the targetObject as contained within the ChainingArguments value of the operation;

– the operationProgress as contained within the ChainingArguments value of the operation and as

defined in clause 10.5.

This does not mean that an operation cannot be processed multiple times by a particular DSA. However, it does mean

that the DSA will not process the same operation in the same state multiple times.

Looping is controlled using the TraceInformation value of the ChainingArguments value as defined in clause 10.6,

which records the sequence of states a particular operation has gone through. Two strategies are defined to determine

whether looping has occurred, or is about to occur. These are loop detection and loop avoidance, and they are described

in clauses 15.4.1 and 15.4.2, respectively.

Loop detection is mandatory and loop avoidance is optional.

NOTE – An LDAP server cannot perform loop detection. Loop detection has to be performed by the DSA acting as LDAP

requester. Detection of a loop may be delayed if more than one LDAP requester is forwarding requests to the same LDAP server

for the same operation.

15.4.1 Loop detection

On receipt of a directory operation, a DSA shall initially validate the operation to ensure that it can be progressed. An

important task of validation is to check for loops, by determining whether the current state of the operation appears in the

sequence of previous states recorded in the TraceInformation value for that operation. This step of loop checking is

loop detection.

15.4.2 Loop avoidance

Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA as part of a chaining

procedure, determines whether the consequential state of the operation (which is the TraceItem value that the receiving

DSA will add to the TraceInformation value when it receives it) appears on the sequence of previous states recorded

in the traceInformation argument for the original incoming operation.

ISO/IEC 9594-4:2020 (E)

28 Rec. ITU-T X.518 (10/2019)

In the case where referrals are received or acted upon, loop avoidance and loop detection cannot be achieved purely by

examining traceInformation. In this case, each time a DSA acts on a referral, it needs to store the consequential state

of the operation (i.e., the TraceItem value that the receiving DSA is going to add when it receives the request) along

with a record of the incoming request. Before acting on or returning a referral, a DSA needs to check through this list, in

order to check that an identical request has not been previously sent whilst trying to service the incoming operation.

15.5 Other considerations for distributed operation

15.5.1 Service controls

Some service controls need special consideration in the distributed environment in order that the operation is processed

the way that was requested.

a) chainingProhibited – A DSA consults this service control when determining the mode of propagation

of an operation. If it is set, then the DSA shall always use referral mode. If, however, it is not set, the DSA

can choose whether to use chaining or referral depending on its capabilities.

b) timeLimit – A DSA shall take account of this service control to ensure that the time limit is not exceeded

in that DSA. A DSA requested to perform an operation by a DUA, initially heeds the timeLimit

expressed by the DUA as the available elapsed time in seconds for completion of the operation. If chaining

is required, the timeLimit is included in the chaining arguments to be passed to the next DSA(s). In this

case, the same value of the limit is used for each chained request, and is the (UTC) time by which the

operation shall complete to meet the originally specified constraint. On receiving ChainingArguments

with a timeLimit specified, the receiving DSA respects this limit.

c) sizeLimit – A DSA shall take account of this service control for List, Search and LDAP Search

operations to ensure that the list of results does not exceed the size specified. The limit, as included in the

common argument of the original request, is conveyed unchanged as the request is chained. If request

decomposition is required, the same value is included in the argument to be passed to the next DSA, the

full limit is used for each subrequest. When the results are returned, the requester DSA resolves the multiple

results and applies the limit to the total to ensure that only the requested number is returned. If the limit

had been exceeded, this is indicated in the reply.

d) priority – In all modes of propagation, each DSA is responsible for ensuring that the processing of

operations is ordered so as to support this service control, if present.

e) localScope – The operation is limited to a locally defined scope and each DSA shall not propagate the

request outside of this.

f) scopeOfReferral – If the DSA returns a referral or partial result to a List or Search operation, then the

embedded continuation references shall be within the requested scope.

All other service controls need to be respected, but their use does not require any special consideration in the distributed

environment.

15.5.2 Extensions

If a DSA encounters an extended operation in the Name Resolution phase of processing and determines that the operation

should be chained to one or more DSAs, it shall include unchanged in the chained operation any extensions present.

NOTE – An administrative authority may determine that it is appropriate to return a serviceError with problem

unwillingToPerform if it does not wish to propagate an extension.

If a DSA encounters an extension it does not support in the evaluation phase of processing, two possibilities may arise. If

the extension is not critical, the DSA shall ignore the extension. If the extension is critical, the DSA shall return a

serviceError with problem unavailableCriticalExtension. A critical extension to a multiple object operation

may result in both results and service errors of this variety. A DSA merging such results and errors shall discard these

service errors and employ the unavailableCriticalExtension component of PartialOutcomeQualifier as

described in Rec. ITU-T X.511 | ISO/IEC 9594-3.

If an LDAP requester is about to chain a request initiated by a DUA to an LDAP server and it does not have knowledge

of an LDAP control corresponding to each critical extension, it shall return an unavailableCriticalExtensions as

specified above. However, if this is not the case and there are no other reasons for not chaining the request, it shall in the

chained request add all known LDAP controls corresponding to the extensions signalled in the received request.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 29

15.5.3 Alias dereferencing

Alias dereferencing is the process of creating a new target object name, by replacing the alias entry distinguished name

part of the original target object name with the AliasedEntryName attribute value from the alias entry. The object

name in the operation shall not be affected by alias dereferencing.

15.5.4 Paged results

When a DUA includes the PagedResultsRequest in the search or list request (see clause 7.9 of Rec. ITU-T X.511

| ISO/IEC 9594-3), the paging may be performed by the bound DSA, or it can be performed by the DSA that holds the

baseObject/object entry of the search or list request (possible after one or more alias dereferencings), also called

the initial performer. If the paging is performed by the bound DSA, which could also be the initial performer, the paging

is called bound-DSA paged results. If the paging is performed by the initial performer, and the initial performer is different

from the bound DSA, then the paging is called DSP paged results.

A DSA that supports DSP paged results shall:

– support DSA-bound paged results;

– support DSP paged results as bound DSA;

– support DSP paged results as an initial performer; and

– support the entryCount subcomponent of the PartialOutcomeQualifier.

When a bound DSA receives a search or list request with the PagedResultsRequest included, and the bound DSA

is not the initial performer for that request, then the bound DSA may elect to include the dspPaging component in the

ChainingArguments value. The initial performer may elect to do DSP paged results. This is signalled to the bound

DSA by including a queryReference in the PartialOutcomeQualifier. This is the queryReference returned to

the DUA to be used for retrieval of the next page.

If the initial performer either does not support DSP paged results or chooses not to perform it, the bound DSA may

perform normal bound-DSA paging.

A DSA that is a performer, but is not the initial performer, shall ignore a possible dspPaging component in the

ChainingArguments value, and it shall honour the sizeLimit service control if present.

15.5.5 Handling requests from LDAP client

When an LDAP client sends a request into a boundary DSA, the request is formatted according to IETF RFC 4511. How

the request is handled by the boundary DSA depends on the initial destination of the request:

a) If the bound DSA and/or the LDAP servers for which the bound DSA is an LDAP responder complete the

operation, then the procedure is outside the scope of this Directory specification.

b) If the request is initially handled as in a) but it becomes necessary to chain one or more subrequests to

other DSAs, then such subrequests shall be chained wrapped as LDAP Transport operations.

c) If the original request is chained to another DSA, it shall be chained wrapped as an LDAP Transport

operation.

15.6 Authentication of Distributed operations

Users of the Directory together with the administrative authorities that provide directory services may, at their discretion,

require that directory operations be authenticated. For any particular directory operation, the nature of the authentication

process will depend upon the security policy in force.

Two sets of authentication procedures are available which collectively enable a range of authentication requirements to

be met. One set of procedures are those provided by the Bind operation: these facilitate authentication between two

directory application-entities for the purposes of establishing an application-association. The Bind procedures

accommodate a range of authentication exchanges from a simple exchange of identities to strong authentication.

In addition to the peer entity authentication of an association as provided by the Bind operation, additional procedures are

defined within the directory to enable individual operations to be authenticated. Two distinct sets of directory

authentication procedures are defined. One facilitates requester authentication services, which address the authentication,

by a DSA, of the requester of the original service request. The second set facilitates results authentication services which

address the authentication, by a requester, of any results that are returned.

ISO/IEC 9594-4:2020 (E)

30 Rec. ITU-T X.518 (10/2019)

For requester authentication, two procedures are defined, one based upon a simple exchange of identities, termed identity

based authentication, and one based upon digital signature techniques, termed signature based authentication. The former

of these procedures is rudimentary in nature since the identity exchange is based upon the exchange of distinguished

names which are transmitted in the clear.

For authentication of results a single results authentication procedure is defined, based upon digital signature techniques;

due to the generally complex nature of results collation, a simpler, identity-based procedure is not defined.

Authentication of error responses may be supported by these procedures.

The services described below are to be considered as augmenting those provided by the Bind service; Bind procedures

are assumed to have been effected successfully prior to authentication of directory operations.

The procedures to be effected by a DSA in providing requester and results authentication are specified in clause 22.

16 The Operation Dispatcher

The Operation Dispatcher is the main controlling procedure in a DSA. It guides each operation through the three phases

of processing a request. The Operation Dispatcher therefore makes use of a set of procedures to fully process the request

as shown in Figure 6.

16.1 General concepts

16.1.1 Procedures

Each of the procedures employed by the Operation Dispatcher consists of a definition of its conceptual interface in terms

of its parameters, i.e., arguments, results and errors, and a description of the procedure steps themselves. The behaviour

of the procedures is described by flowcharts and text. Within a flow chart, the used symbols have the semantics shown in

Figure 7.

16.1.2 Use of common data structures

All procedures make use of some data structures that are available during the processing of an operation within

the Operation Dispatcher. These data structures serve to coordinate the data flow within the Operation Dispatcher. Most

of these structures are directly associated with the argument of the operation and the result to be created for the operation.

Components of the argument and result are referred to using their names within the associated ASN.1 definition

(e.g., the operationProgress component of the chaining arguments). If any of these structures is a compound

structure, a component of this structure may be referred to as compound.component

(e.g., operationProgress.nameResolutionPhase).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 31

X.518(12)_F06

Local
request

DAP/LDAP/DSP
request

DSP
request

DAP/DSP
reply

DSP
reply

Local
reply

Local
reply

DAP/LDAP/DSP
reply

Request
validation
procedure

Abandon
procedure

Result merging

Result
merging

procedure

Abandon

Abandon error

Other error

Find
procedure

DSE
Name resolution

continuation reference
procedure

Name resolution

Return with error

Return with
entry unsuitable

Error

Return with
entry suitable

Evaluation

Modification
Single object
interrogation

Multiple object
interrogation

Modification
evaluation
procedures

Single object
evaluation
procedures

name-
ResolutionPhase

= completed?

Yes

No

No

reference-
type is supplier

or master?

List (II)
procedure

List (I)
procedure

Search (II)
procedure

Search (I)
procedure

DOP/
DISP

request

DOP/
DISP
reply

Local
reply

DAP/LDAP/DSP
reply

DSP
request

DSP
reply

DSP
reply

List continuation
reference procedure

Search continuation
reference procedure

search?
Related entry

procedure

Yes

No

Search-
rule check

procedure (II)

Search-
rule check

procedure (I)

Figure 6 – Operation Dispatcher

ISO/IEC 9594-4:2020 (E)

32 Rec. ITU-T X.518 (10/2019)

Figure 7 – Symbols used in flow charts

The following data structures are defined within the Operation Dispatcher:

– NRcontinuationList – A list of continuation references created for use in the Name Resolution Continuation

Reference procedure.

– SRcontinuationList – A list of continuation references created for use in the List or Search Continuation

Reference procedure.

– admPoints – A list of references to DSEs of type administrative point that is collected during Name

Resolution.

– referralRequests – A list of the requests or subrequests which have been chained as a result of executing

referrals. Each such request/subrequest is summarised in the form of a TraceItem. This list is used by the

Loop Avoidance procedure of clause 15.4.2.

– emptyHierarchySelect – A Boolean type variable that can be set in the Hierarchy Selection procedure. The

variable is assumed to be reset when entering Hierarchy Selection procedure the first time during a Search

operation.

Furthermore, a procedure may use a set of locally defined variables.

16.1.3 Errors

At each stage of the processing, an error may be detected during the execution of any sub-procedure. The error identified

within this sub-procedure is normally returned to the requester as a corresponding protocol error. In this case, the

Operation Dispatcher is terminated immediately. In the case that multiple errors are received, one shall be selected to be

returned (see clause 13.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3).

Alternatively, a procedure may choose to process errors (e.g., if a serviceError with problem busy is returned to a

chained search subrequest) at certain points of operation processing. In this case, the procedure continues with its

execution and no error is returned to the requester.

The conditions under which a DSA may sign the errors returned are specified in clause 13 of Rec. ITU-T X.511 |

ISO/IEC 9594-3.

16.1.4 Asynchronous events

During the processing of an operation request within the Operation Dispatcher, several asynchronous events may occur.

The following subclauses specify how to handle an exceeded time limit or size limit or administrative limit, a loss of

association and an abandon request for an operation that is being processed. The handling of all other asynchronous

events, e.g., local policy decisions, etc., is outside the scope of this Directory Specification.

16.1.4.1 Time limit

A timeLimit, as specified in the CommonArguments value, can expire at any point in time during the operation. In this

case, normally a serviceError with problem timeLimitExceeded is returned to the requesting DUA or DSA and the

Operation Dispatcher is terminated. If the requester is an LDAP client, the bound DSA shall convert the error to a

timeLimitExceeded LDAP result code. Alternatively, a procedure may choose to handle this event in a different way

(e.g., during processing of a search request).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 33

If a DSA receives a request from another DSA with the time limit exceeded, it shall send a serviceError with problem

timeLimitExceeded without any further processing of the request.

If a DSA has outstanding (sub)requests, when the timeLimit expires, and there are no results available, it shall return a

serviceError with problem timeLimitExceeded to the requester.

If the request was not an ldapTransport request, and if a DSA has outstanding subrequests, when the timeLimit

expires, and there are results available, it shall return a result to the requester with the following contents:

a) all the collected results, up to the timeLimit expiring;

b) the limitProblem subcomponent of the partialOutcomeQualifier component shall be set to

timeLimitExceeded; and

c) the unexplored subcomponent of the partialOutcomeQualifier component shall contain a

continuation reference value for each set of directory servers to which subrequests were sent but the result

of which is not included in the result to the requester, in addition to continuation references to DSAs to

which this DSA did not attempt to send subrequests.

If the request was an ldapTransport request, and if a DSA has outstanding subrequests, when the timeLimit expires:

a) if there are retained results, these results shall be returned in a linkedLDAP request;

b) if the embedded LDAP request in the ldapTransport request was a SearchRequest, then return an

SearchResultDone with resultCode equal to timeLimitExceeded embedded in an

ldapTransport result;

c) if the embedded LDAP request in the ldapTransport request was not a SearchRequest, then return a

result for the type operation with resultCode set to timeLimitExceeded embedded in an

ldapTransport result.

16.1.4.2 Loss of an application-association

If the application-association to the requester is lost, the possibility of returning results is lost. The DSA may optionally

for each outstanding interrogation (sub)request to DSAs send a chainedAbandon request, unless the application-

association to the DSA in question has also been lost. All replies to such chainedAbandon requests and all replies to

outstanding (sub)requests shall be discarded. In the case of DSP paged results, the bound DSA should cancel outstanding

paged results by generating a new paged result request by taking the abandonQuery alternative of the

PagedResultsRequest value. The DSA may also for each outstanding interrogation (sub)request to LDAP servers send

an LDAP AbandonRequest and all results to outstanding (sub)requests shall be discarded.

If the application-association to one of the outstanding chained subrequests is lost and the application-association with

the requester is not lost, the DSA may, for interrogation operations only, optionally try any alternative reference to another

directory server of the same type that is able to process the chained request (e.g., a reference to a shadow DSA, after loss

of the association to the master DSA). If this does not succeed, the DSA shall act as follows:

1) If operationProgress.nameResolution is set to notStarted or proceeding, return either:

– if the reply is to be returned to a DUA (or DSA), a serviceError with problem unavailable to

the requester or a referral error whose continuation reference contains the set of directory servers that

are able to continue the operation.

– if the reply is to be returned to an LDAP client, an LDAP result with resultCode equal to

unavailable or with resultCode set to referral and with referrals (URIs) to the set of directory

servers that are able to continue the operation.

 If non-specific subordinate references are used during the Name Resolution phase and not all the

application-associations in question are lost, optionally attempt to do the name resolution without the

directory servers to which the associations are lost. If this fails:

– if the reply is to be returned to a DUA (or DSA), return either a serviceError with problem

unavailable, or a referral error containing the complete set of NSSRs.

– if the reply is to be returned to an LDAP client, return either an LDAP result with resultCode set

to unavailable or with resultCode equal to referral and with referrals (URIs) corresponding

to the complete set of NSSRs.

 If the DSA using local knowledge knows, possibly reflected in the appropriate

MasterOrShadowAccessPoint value, that chaining is required to a DSA to which an application-

association is lost, it shall elect to send a serviceError with problem unavailable. The

notification component of the CommonResults data type may be included and shall then contain:

ISO/IEC 9594-4:2020 (E)

34 Rec. ITU-T X.518 (10/2019)

– a dSAProblem notification attribute with the value id-pr-targetDsaUnavailable; and

– a distinguishedName attribute having as value the distinguished name of the DSA.

2) If operationProgress.nameResolution is set to completed and the request is a single object

operation:

– if the reply is to be returned to a DUA (or DSA), return a serviceError with problem

unavailable to the requester.

– if the reply is to be returned to an LDAP client, return an LDAP result with resultCode set to

unavailable.

3) If operationProgress.nameResolution is set to completed and the request is a multiple entry

interrogation operation, the DSA shall add a continuation reference to

partialOutcomeQualifier.unexplored of the operation result, with AccessPointInformation

identifying the set of directory servers that are able to continue the operation, including directory servers

to which application-associations have been lost.

16.1.4.3 Abandoning the operation

During the processing of an operation, an abandon request can be received for this operation. In this case, during the

processing of the abandon request, the Abandon procedure is called for the operation to be abandoned.

16.1.4.4 Administrative Limits

There may be limits imposed by the local directory server administrator or by the directory server implementation itself,

e.g., the amount of time to spend on processing a request, or the maximum size of data to be returned, etc. If any of these

limits is exceeded, a DSA shall:

– if the reply is to be returned to a DUA (or DSA), return either a serviceError with problem

administrativeLimitExceeded or a partial result (taken from the set of already collected results) with

limitProblem set to administrativeLimitExceeded;

– if the reply is to be returned to an LDAP client, return possible retained results collected before the

administrative limit was exceeded and LDAP result with resultCode set to adminLimitExceeded.

If the reply is to be returned to a DUA (or DSA), additional information may be returned by a DSA in a dSAProblem

notification attribute as follows:

a) if the limit is imposed by the administrator, the dSAProblem notification attribute shall take the value

id-pr-administratorImposedLimit;

NOTE – This does not imply that an implementation is required to have customization capabilities for an administrator

to implant administrative limits.

b) if the limit caused by an implementation restriction and the problem is perceived to be of permanent nature,

the dSAProblem notification attribute shall take the value id-pr-permanentRestriction;

c) if the limit caused by an implementation restriction and the problem is perceived to be of a temporary

nature, e.g., temporary congestion, the dSAProblem notification attribute shall take the value

id-pr-temporaryRestriction.

16.1.4.5 Size limit

A size limit, as specified in CommonArguments, can be exceeded at any point in time during processing of a List, Search

or LDAP Search operation. In this case, a partial result (taken from the set of already collected results) shall be returned

to the requester with limitProblem set to sizeLimitExceeded. In addition, the unexplored component may be used

for returning Continuation References of unaccessed directory servers.

If it is a DAP Search operation and the entryCount search control option is set, the DSA shall make a best estimate on

how many entries would potentially have been returned had there been no size limit by taking into account access control

but not hierarchical selections, and then return that figure in the entryCount component of the

PartialOutcomeQualifier using the bestEstimate alternative if there are no unaccessed directory servers,

otherwise, it shall make the lowEstimate alternative.

Operation Dispatcher is then terminated.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 35

16.2 Procedures of the Operation Dispatcher

The procedure that is performed by the Operation Dispatcher for processing each received request (over DAP, LDAP or

DSP) is defined by the following steps. Due to alias dereferencing, this procedure may also call itself (a local request), in

which case a local reply (rather than a DAP or DSP reply) is returned.

1) Validate several aspects of the operation arguments (Request Validation procedures). If an error is

encountered during validation, return this error locally or over a DAP/DSP.

2) If the request received was a DAP abandon request, call the DAP/DSP Abandon procedure and return a

reply afterwards.

3) If the request received was an ldapTransport request with an embedded AbandonRequest, call the

LDAP abandon procedure.

3) Resolve the name of the target object by executing the Find DSE procedure (which includes the Target

Found and Target Not Found sub-procedures). If the requested entry was found and is suitable (according

to the setting of the service controls, chaining arguments and local policy decisions), continue with the

Evaluation Phase at step 6). If during Name Resolution an error was encountered, it is returned. If the entry

was found not to be suitable, continue at step 4).

4) The Name Resolution Continuation Reference procedure is called to process the list of Continuation

References as stored in the NRcontinuationList. In order to process these Continuation References, chained

requests may be issued to other DSAs (if service controls and local policy decision allow it).

 In case of an error, this error is directly returned either locally or via a DAP/DSP. If the chained request

generated a result, then continue with step 5).

5) The Results Merging procedure is called to merge the local results with the received Chained Results. If

the Chained Results contain embedded Continuation References, these may first be resolved if the service

controls and local policy allow or require it.

 This may cause additional Chained Requests to be issued (whose Chained Results may also contain

embedded Continuation References).

The merged results are returned to the caller, and processing of the request ceases.

If protection is performed on the results, the merging of results shall not be performed.

6) If the operation is a modification operation, continue at step 7).

If the operation is a single entry interrogation operation, continue at step 8).

If the operation is a multiple entry interrogation operation, continue at step 9).

7) When carrying out a modification procedure, Operational Bindings may need to be established, modified

or terminated, or shadows may need to be updated as a consequence of performing the operation. Whether

these are done synchronously or asynchronously with the performance of the original operation depends

on the respective modification operations (and on local policy). A local or a DAP/LDAP/DSP result or

error is returned to the caller.

8) The result of a single entry interrogation operation is directly returned to the caller as a local or a DAP/DSP

result.

9) If the operation is a multiple entry interrogation operation, then check the nameResolutionPhase of the

operation. If it is not completed, then call the List(I) or Search(I) procedure, otherwise, call the List(II) or

Search(II) procedure, respectively.

10) The outcome of a call to the List(II) procedure (result or error) and the outcome of a call to the List(I)

procedure (in case that the outcome is an error) can directly be returned to the caller (as a local or a

DAP/DSP result).

 If the procedure called was the List(I) procedure, the result might contain Continuation References that

have to be dereferenced (depending on service controls and local policy). This may result in chained List

operations being sent off to the respective DSAs. To merge the results continue at step 5) with the call to

the Results Merging procedure.

11) If the operation was a Search operation, any Continuation References are resolved by the Search

Continuation Reference procedure (if required and allowed). This may cause chainedSearch requests to

be sent off to the respective DSAs and/or LDAP SearchRequest to be sent to the respective adjacent

LDAP servers. The Results Merging procedure [see step 5)] is called to merge the search results and

possibly to dereference contained Continuation References, if any.

ISO/IEC 9594-4:2020 (E)

36 Rec. ITU-T X.518 (10/2019)

16.3 Overview of procedures

This clause gives an overview of the basic functionality of the procedures employed by the Operation Dispatcher which

are defined in clauses 17 to 22.

16.3.1 Request Validation procedure

This procedure, described in clause 17, is called to perform loop checking, limit checking, and security checking prior to

performing local name resolution. This procedure also provides default settings for those parameters of the

ChainingArguments that are not provided by the DAP in the case that the request came from a DUA. Furthermore, this

procedure singles out any abandon request and notifies this to Operation Dispatcher.

16.3.2 Abandon procedures

The DAP/DSP abandon procedure, described in clause 20.5.1, tries to find the operation that is to be abandoned and

terminate it. If there are any outstanding subrequests, Chained Abandon operations may be sent after them. The procedure

either returns an empty result to the caller, or an error indication (e.g., abandonError with problem tooLate).

The LDAP abandon request, described in clause 20.5.2, forwards the abandon to the appropriate LDAP server and returns

an empty ldapTransport result.

16.3.3 Find DSE procedure

This procedure, described in clauses 18.2 and 18.3, matches the components of the name of the target object against the

locally held DSEs to resolve the target object name. If an alias DSE is encountered, the alias is dereferenced (if permitted)

and the procedure is restarted to resolve the new name.

If the target was not found, the procedure is continued at the Target Not Found sub-procedure. If the target was found, the

procedure is continued at the Target Found sub-procedure.

NOTE – Target Not Found and Target Found are continuations of the Find DSE procedure.

The procedure may result in various errors, in which case, the associated protocol DAP error or LDAP result with

associated resultCode is returned to the requester and the Operation Dispatcher is terminated.

16.3.3.1 Target Not Found sub-procedure

This procedure, described in clause 18.3.2, performs an evaluation of the located intermediate DSEs and creates a set of

Continuation References in NRcontinuationList, based on the set of knowledge references that have been detected during

the Find DSE procedure. This set of references is then further processed within the Name Resolution Continuation Reference

procedure.

The procedure may result in various errors, in which case the associated DAP error or LDAP result with associated

resultCode is returned to the requester and the Operation Dispatcher is terminated.

16.3.3.2 Target Found sub-procedure

This procedure, defined in clause 18.3.3, checks if the found DSE is suitable for the requested operation, i.e., in the case

where it is shadowed information. This may include checking the suitability of the whole subtree of shadowed information

below the target object in the case of a multiple object operation (e.g., subtree search).

If the located entry is suitable, the appropriate operation evaluation procedure is invoked. Otherwise, a

ContinuationReference pointing to the supplier (or master) of the information is created in NRcontinuationList and

the Name Resolution Continuation Reference procedure is invoked.

16.3.4 Single entry interrogation procedure

This procedure, described in clause 19.2, is invoked to actually execute those operations that only affect a single entry,

i.e., Read and Compare operations. After completion, a reply (result or error) created by the procedure is returned to the

requesting DSA/DUA/LDAP client.

16.3.5 Modification procedures

These procedures, described in clause 19.1, are executed to process the modification operations, i.e., Add Entry, Remove

Entry, Modify Entry, Modify DN, Change Password and Administer Password. This is done by executing a specific sub-

procedure defined for each of these operations. During (or after) these sub-procedures, DOP and DISP requests may be

issued to other DSAs. After successful completion, a result (created by the sub-procedures) is returned to the requesting

DSA/DUA/LDAP client.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 37

16.3.6 Multiple entry interrogation procedures

These procedures, described in clause 19.3, are executed to process operations that affect multiple entries which may or

may not be located in the same DSA or LDAP server. This is done by executing specific sub-procedures defined for each

of the Search and List operations to accomplish request decomposition. These procedures create a local result of the

operation evaluation and optionally a set of continuation references in SRcontinuationList. If SRcontinuationList is empty

at the end of this procedure, the created result is directly returned to the requesting DSA/DUA/LDAP client.

If it is a DAP Search operation, if the result is empty and if the variable emptyHierarchySelect is set, then return in the

notification component of the PartialOutcomeQualifier:

– a searchServiceProblem notification attribute with the value id-pr-emptyHierarchySelection.

If SRcontinuationList is not empty, these continuation references are processed by invoking List or Search Continuation

Reference procedure, according to the operation type.

16.3.7 Name Resolution Continuation Reference procedure

This procedure, described in clause 20.4.1, processes the continuation references in NRcontinuationList created during the

Name Resolution phase. These continuation references are either used to issue chained subrequests or returned in a

referral. In the case of chaining, the results or errors returned from the chained request are returned for further processing

by the Results Merging procedure.

16.3.8 List and Search Continuation Reference procedure

These procedures, described in clauses 20.4.2 and 20.4.3, process the continuation references in SRcontinuationList

created by the multiple entry interrogation procedures and either resolve them by issuing chained subrequests or by

creating continuation reference(s) within the partialOutcomeQualifier.unexplored. When results or errors for all

outstanding subrequests have been received, they are returned for further processing by the Results Merging procedure.

16.3.9 Results Merging procedure

This procedure, described in clause 21, either examines the result from a chained request or combines the local operation

results with the results received from the chained subrequests. If a subrequest had returned an error, this procedure

determines how this error has to be handled.

If there are any continuation references left in the result, they will (if local policy allows it and service controls require it)

be dereferenced by the Name Resolution, List, or Search Continuation Reference procedures, accordingly. Duplicates are

removed from the result if it is unsigned.

The merged result (with all merged results and unresolved continuation references) is returned to the requesting

DUA/DSA.

If the results are signed, the merging of results shall not be performed.

17 Request Validation procedure

17.1 Introduction

The Request Validation procedure is the entry point of the Operation Dispatcher for inputs from DUAs, LDAP clients and

DSAs, preparing such inputs for Name Resolution processing. The function of this procedure is to detect Abandon

operations, to perform security checks, to adjust input received from DUAs or LDAP clients so that it may be processed

in the same way as input received from DSAs, to check the arguments of the request for valid syntax and semantics, to

perform loop detection, and to perform other miscellaneous checks. The flow of Request Validation is depicted in Figure 8.

ISO/IEC 9594-4:2020 (E)

38 Rec. ITU-T X.518 (10/2019)

Figure 8 – Request Validation procedure

17.2 Procedure parameters

17.2.1 Arguments

The input argument to Request Validation consists of the ChainingArguments value (except in the case of

chainedAbandon request), if the request is received from a DSA, and the argument issued by the requester.

17.2.2 Results

The output result of Request Validation consists of the following possibilities.

a) If the security check fails, an error is returned to the requester.

b) If the input is an abandon or chainedAbandon operation, the output is the argument of the operation.

c) If the arguments of the request are invalid, then an error is returned to the requester. Depending on local

policy, the DSA may choose whether to return a serviceError or a securityError.

d) If a loop is detected, a serviceError with problem loopDetected is returned to the requester.

e) If, based on resource problems or policy considerations, the DSA is unable or unwilling to perform the

operation, a serviceError (with problem busy, unavailable, or unwillingToPerform) is returned

to the requester. If relevant, a serviceError with problem dataSourceUnavailable may be returned.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 39

f) In all other cases, the validated input, transformed by the addition of ChainingArguments if received

from a DUA or LDAP client or the update of ChainingArguments.traceInformation if received

from a DSA, is the output of the procedure and subsequently the input to the Name Resolution procedure.

17.3 Procedure definition

The security check described in clause 17.3.2 is performed. This may result in the return of an error and the termination

of the Operation Dispatcher.

If the input is an abandon or chainedAbandon operation, only the steps in clause 17.3.1 are subsequently performed,

otherwise, the steps in clauses 17.3.3-17.3.5 are performed. Clause 17.3.5 describes the loop detection procedure which

may result in the return of an error and the termination of the Operation Dispatcher.

Next, the checks in clause 17.3.6 are performed. They may result in the return of an error and the termination of the

Operation Dispatcher.

If the checks in clauses 17.3.2-17.3.6 do not result in the termination of the Operation Dispatcher, the steps in clause 17.3.7

are performed and the procedure terminates with the transfer of its output to the Name Resolution procedure.

17.3.1 Abandon processing

The argument of an abandon or chainedAbandon request is passed to the Abandon procedure, (see clause 20.5), to

process the abandon request.

17.3.2 Security checks

If the argument to the operation is signed, the signature may be checked. Should the signature be invalid, or be absent in

a case when it should be present, an error may be returned to the requester. Alternatively, a DSA may perform any other

locally defined action.

17.3.3 Input preparation

17.3.3.1 DUA request

If the operation is received from a DUA client, a ChainingArguments value is created as follows:

a) ChainingArguments.originator shall be set as described in clause 10.3.

b) ChainingArguments.operationProgress is set to the value of

CommonArguments.operationProgress.

c) ChainingArguments.traceInformation is set to a sequence containing a single TraceItem value.

This value is constructed as follows. TraceItem.dsa is set to the name of the DSA executing Request

Validation. TraceItem.targetObject shall be omitted. TraceItem.operationProgress is set to

the incoming value.

d) If the service control of the operation specifies a time limit (the available elapsed time in seconds for

completion of the operation), ChainingArguments.timeLimit is set to the (UTC) time by which the

operation shall complete to meet the user's specified time limit.

e) ChainingArguments.AuthenticationLevel and ChainingArguments.UniqueIdentifier are

set according to the local security policy.

f) ChainingArguments.nameResolveOnMaster is copied from

CommonArguments.nameResolveOnMaster.

g) ChainingArguments.exclusions, ChainingArguments.entryOnly and

ChainingArguments.referenceType are copied from CommonArguments.exclusions,

CommonArguments.entryOnly and CommonArguments.referenceType if they are present,

otherwise, they are omitted.

h) If the manageDSAIT option is set in the ServiceControls, then:

– the nameResolutionPhase component of operationProgress shall be set to completed;

– the nextRDNToBeResolved component of the operationProgress shall be omitted;

– referenceType shall take the value self;

– entryOnly shall take the value FALSE;

– nameResolveOnMaster shall take the value FALSE; and

– the chainingProhibited option in ServiceControls shall be set;

ISO/IEC 9594-4:2020 (E)

40 Rec. ITU-T X.518 (10/2019)

– the remaining optional elements of ChainingArguments are omitted, with default values being

assumed where specified.

i) If the manageDSAIT option is not set in the ServiceControls, then the remaining optional elements of

ChainingArguments are omitted, with default values being assumed where specified.

j) ChainingArguments.SecurityParameters.ProtectionRequest is used to indicate the level of

protection (no signing or signing) to be applied to the results.

17.3.3.2 LDAP request

A request received from an LDAP client is validated according to the procedure specified in IETF RFC 4511. If an error

is returned, the procedure is complete.

If the request includes a Control value with the criticality component set to TRUE and this Control value is not

supported, then an LDAP result with resultCode set to unavailableCriticalExtension shall be returned and the

procedure is complete.

If the request includes a Control value that is recognised and supported, this Control value shall be processed as

specified.

If the request is evaluated entirely within the bound DSA, the procedure defined by IETF RFC 4511 shall be followed.

If the operation is received from an LDAP client and the next destination is an adjacent LDAP server, then the DSA acting

as an LDAP requester forwards the request according to IETF RFC 4511, except that the MessageId is changed according

to the procedures for the LDAP server. If the request is an LDAP abandon request, the procedure is complete. Otherwise,

on the return of the reply, the reply is forwarded to the LDAP client with the original MessageId.

If the LDAP client request is to be forwarded to or beyond an adjacent DSA, it is wrapped in an ldapTransport request

argument together with some additional information as specified in clause 12.1.2 of ITU Rec. X.511 | ISO/IEC 9594-3.

A ChainingArguments value shall be created as follows:

a) The ChainingArguments.originator component shall be set as described in clause 10.3.

b) The ChainingArguments.targetObject component need not be present.

c) The ChainingArguments.operationProgress shall be absent or take the value notStarted if the

bound DSA has not performed any name resolution. Otherwise, it shall take the value proceeding.

d) The ChainingArguments.traceInformation is set to a sequence containing a single TraceItem

value. This value shall be constructed as follows. TraceItem.dsa is set to the name of the DSA executing

Request Validation. TraceItem.targetObject shall be omitted. TraceItem.operationProgress

shall be set to notStarted.

e) The ChainingArguments.aliasDereferenced shall be TRUE if an alias has been dereferenced within

the bound DSA. Otherwise, it shall be absent or shall have the value FALSE.

f) The ChainingArguments.aliasedRDNs shall be absent.

g) The ChainingArguments.returnCrossRefs, ChainingArguments.referenceType and

ChainingArguments.info components shall be set as described in clause 10.3.

h) The ChainingArguments.timelimit component shall be present if the LDAP request includes a

timeLimit component different from zero. Otherwise, it shall be absent.

i) The ChainingArguments.entryOnly component shall be absent.

j) The ChainingArguments.uniqueIdentifier component shall be absent.

k) ChainingArguments.AuthenticationLevel component shall be set as described in clause 10.3.

l) The ChainingArguments.exclusions component shall be absent.

m) The ChainingArguments.excludeShadows component shall be set as described in clause 10.3.

n) The ChainingArguments.nameResolutionOnMasters component shall be set as described in

clause 10.3.

o) The ChainingArguments.operationIdentifier component shall be set as described in clause 10.3.

p) The ChainingArguments.searchRuleId component shall be absent.

q) The ChainingArguments.chainedRelaxation component shall be absent.

r) The ChainingArguments.relatedEntry component shall be absent.

s) The ChainingArguments.dspPaging component shall be absent.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 41

17.3.3.3 DSA request

If the operation is received from a DSA, ChainingArguments.traceInformation is updated by appending a value

at the end of sequence TraceItem. This value is constructed as follows:

a) TraceItem.dsa is set to the name of the DSA executing Request Validation.

b) TraceItem.targetObject is set to the value of ChainingArguments.targetObject unless the

object (or baseObject in the case of a Search operation) of the request argument is identical to

ChainingArguments.targetObject, in which case TraceItem.targetObject shall be omitted.

c) TraceItem.operationProgress is set to the value of

ChainingArguments.operationProgress.

17.3.4 Validity assertion

The operation shall be checked for valid syntax and semantics of its arguments according to the rules contained in the

clauses defining each operation (e.g., it should be checked that the nextRDNToBeResolved does not provide a number

exceeding the number of RDNs in the targetObject). If the request is detected to contain invalid arguments, the

operation is terminated and an error is returned to the user, depending on the kind of invalidity detected.

17.3.5 Loop detection

If any two TraceItem values of ChainingArguments.traceInformation (as prepared in clause 17.3.3) are

identical, processing of the operation has returned to a previous state, i.e., a loop has been detected. In this case,

a) if the reply is to be returned to a DUA (or DSA), a serviceError (with problem loopDetected) shall

be returned to the requester and the Operation Dispatcher terminates;

b) if the reply is to be returned to an LDAP client, an LDAP result with resultCode set to loopDetected

shall be returned to the requester and the Operation Dispatcher terminates.

17.3.6 Unable or unwilling to perform

Request Validation may assess available resources and determine that the operation cannot be performed. It may also

determine, based on policy considerations, that the operation should not be performed. In these cases,

a) If the reply is to be returned to a DUA (or DSA), a serviceError (with problem busy, unavailable,

or unwillingToPerform) may be returned to the requester and the Operation Dispatcher terminates.

b) If the reply is to be returned to an LDAP client, an LDAP result with resultCode set to busy,

unavailable or unwillingToPerform shall be returned to the requester and the Operation Dispatcher

terminates.

If a DSA by local means can determine that the problem is related to the unavailability of local DIB resources, it shall

a) If the reply is to be returned to a DUA (or DSA), send a serviceError with problem unavailable, and

the optional notification component of the CommonResults value, if present, shall contain:

– a dSAProblem notification attribute with the value id-pr-dataSourceUnavailable; and

– a distinguishedName attribute having as value the distinguished name of the DSA.

b) If the reply is to be returned to an LDAP client, an LDAP result with resultCode set to unavailable

shall be returned to the requester.

17.3.7 Output processing

In the final phase of Request Validation the validated input, transformed by addition of ChainingArguments if received

from a DUA or an LDAP client, or the update of ChainingArguments.traceInformation if received from a DSA,

is returned and employed as input to the Name Resolution procedure.

ISO/IEC 9594-4:2020 (E)

42 Rec. ITU-T X.518 (10/2019)

18 Name Resolution procedure

18.1 Introduction

This clause describes the Name Resolution procedure, its Arguments, Results, and its possible Error conditions. As shown

in Figure 6 (Operation Dispatcher), the Name Resolution procedure consists of two procedures:

– Find DSE procedure;

– Name Resolution Continuation Reference procedure.

The Find DSE procedure is described in three flow charts, namely Find DSE, Target Found, and Target Not Found. The

Find DSE procedure matches the target entry name to locally stored DSEs, component by component. If the target entry

is found locally, then Find DSE continues with the Target Found sub-procedure, which then calls the Check Suitability

procedure to check the suitability of the found DSE for evaluation. If the target entry is not found locally, then Find DSE

continues with the Target Not Found sub-procedure prepares Continuation Reference(s) to be added to the

NRcontinuationList for the Name Resolution Continuation Reference procedure to dispatch it.

18.2 Find DSE procedure parameters

18.2.1 Arguments

The procedure uses the following arguments:

a) ChainingArguments.aliasDereferenced;

b) ChainingArguments.aliasedRDNs;

c) ChainingArguments.excludeShadows;

d) ChainingArguments.nameResolveOnMaster;

e) ChainingArguments.operationProgress (nameResolutionPhase, nextRDNToBeResolved);

f) ChainingArguments.referenceType;

g) ChainingArguments.targetObject;

h) ChainingArguments.relatedEntry;

i) the operation type;

j) the operation argument.

NOTE – Where no actual values exist, default or implied values are used, as specified in clause 10.3.

18.2.2 Results

There are two cases of a successful outcome from Find DSE (indicated by entry suitable or entry unsuitable):

The first successful case returns (from the Target Not Found sub-procedure) Continuation Reference(s) in

NRcontinuationList which is then passed on to the Name Resolution Continuation Reference procedure to continue the

Name Resolution phase.

The second successful case returns (from the Target Found sub-procedure) a (reference to a) DSE, which is passed to one

of the Evaluation procedures.

18.2.3 Errors

The following errors may be returned to a DUA (or DSA):

a) serviceError with problems: unableToProceed, invalidReference,

unavailableCriticalExtension, requestedServiceNotAvailable;

b) nameError with problems: noSuchObject, aliasDereferencingProblem.

LDAP results with the following resultCode may be returned to an LDAP client:

a) noSuchObject;

b) unavailableCriticalExtension;

c) aliasDereferencingProblem.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 43

18.2.4 Global variables

The procedure uses the following global variables:

– NRcontinuationList list to store the Continuation Reference(s) needed to continue name resolution in the

Name Resolution Continuation Reference procedure.

18.2.5 Local and shared variables

The procedure uses the following local variables:

a) i Index used to identify the component of the target name being worked on.

b) m The length of the target object name to be used in name resolution. For operations that name resolve

to the parent entry, i.e., Add Entry, m is set to (the number of RDNs in the target object) – 1. For all other

operations, m is set to the number of RDNs in the target object.

c) lastEntryFound Index, so that DSE(lastEntryFound) is the last matched DSE that is of type entry.

d) lastCP Index, so that DSE(lastCP) is the last shadowed context prefix encountered.

e) candidateRefs A set of continuation references.

The shared variable admPoints (defined in Operation Dispatcher) is also used. For convenience, component i of the target

object name is denoted as N(i).

18.3 Procedures

NOTE – Some of the text in the flow charts is only relevant to specific operations. This is not shown in the flow charts, but is

described in the accompanying text.

ISO/IEC 9594-4:2020 (E)

44 Rec. ITU-T X.518 (10/2019)

18.3.1 Find DSE procedure

See Figure 9.

Figure 9 – Find DSE procedure

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 45

The target object name is determined as follows:

a) If the targetObject component is present in the ChainingArguments, the value of that component is

used.

b) If the relatedEntry, but not the targetObject, is present in the ChainingArguments, the

baseObject component of the JoinArgument identified by the relatedEntry is used.

NOTE 1 – This is only relevant for a protected search request.

c) If neither the relatedEntry nor the targetObject is present in the ChainingArguments, the base

(baseObject) component of the operation argument is used.

This procedure attempts to resolve the target object name locally.

1) Initialize the local variables lastEntryFound and lastCP to 0; admPoints and candidateRefs to an empty set,

and initialize i to 0.

2) Compare i and m. If they are not equal, then continue at step 5).

3) If they are equal, check if nameResolutionPhase is completed. If not completed, continue at Target

Not Found sub-procedure.

 If the nameResolutionPhase is completed and the manageDSAIT critical extension is set, then return

with entry suitable.

4) If nameResolutionPhase is completed, then check if any immediate subordinate of DSE(i) is a context

prefix (of type cp).

– If one (or more) immediate subordinate DSE(s) is of type cp, then return with entry suitable.

NOTE 2 – This case is for List (II) and Search (II) subrequests.

– If no immediate subordinates of DSE(i) are of type cp, then continue at Target Not Found

sub-procedure.

5) Try to find a match for the (i + 1)-th component of the target object name with the name of a subordinate

of the last matched DSE. In the case of i = 0, try to match one of the DSEs immediately subordinate to the

root DSE. If no match can be found, continue at Target Not Found sub-procedure. If a match is found,

increment i, and store the matched DSE as the i-th element in the vector of found DSEs.

6) If i equals nextRDNToBeResolved, then check if the following two conditions are both met:

– the ChainingArgument.nameResolveOnMaster is TRUE;

– DSE(i) is not a master entry.

 If both conditions are met, then return serviceError with problem unableToProceed.

NOTE 3 – This indicates the use of nameResolveOnMaster to avoid multiple paths to the same target object.

7) Check all the DSE type bits of DSE(i). For each type bit, some processing is potentially required. The

action to take for each type found is given below:

– If both the cp and shadow bits are set, then remember the index i in lastCP.

– If the admPoint bit is set, check the administrativeRole operational attribute. If this is the start

of an autonomous administrative area, then empty the admPoints list. If this is the start of one or more

specific administrative areas, then check the admPoints list and remove any existing points that are

no longer relevant (i.e., their roles have been superseded by the new administrative point). Store

DSE (i) in the list.

– If one of the subr, xr, immSupr, or ditBridge bits is set, then generate a continuation reference

using the specificKnowledge attribute with operationProgress.nameResolutionPhase set

to proceeding, nextRDNToBeResolved set to i, and accessPoints and referenceType set as

appropriate. Add the continuation reference to the list of continuation references in candidateRefs.

– If the entry bit is set, then test for i equal to m (and therefore the target object name being completely

matched). If i does not equal m, then remember the found entry by setting lastEntryFound to i and

continue processing the type bits of DSE(i). If i and m are equal, continue at step 8).

– If the subentry bit is set, then test for i equal to m (and therefore the target object name being

completely matched). If they are equal, then continue at Target Found procedure; if they are not equal,

then return a nameError with problem noSuchObject.

– If the alias bit is set, test if dontDereferenceAliases is set.

ISO/IEC 9594-4:2020 (E)

46 Rec. ITU-T X.518 (10/2019)

– If dontDereferenceAliases is not set, the alias can be dereferenced. Therefore, set

chainingArguments.aliasDereferenced to TRUE, nameResolutionPhase to notStarted,

the name of the target object to the aliasedEntryName as supplied in the alias entry concatenated

with the remaining unmatched components of the previous target object name (i.e., concatenate with

the (i + 1)-th to m-th component of the previous target object name). DSAs do not set aliasedRDNs

(whereas DSAs based on Rec. CCITT X.518 (1988) | ISO/IEC 9594-4:1990 set aliasedRDNs to the

number of RDNs in aliasedEntryName). Start Name Resolution again by continuing at step 1).

– If dontDereferenceAliases is set, then the alias cannot be dereferenced. Check if the target object

name has been processed completely by comparing i and m for equality. If they are equal (and the

name therefore fully matched), then continue at Target Found sub-procedure. If they are not equal

(and the name therefore not fully matched), then return nameError with problem

aliasDereferencingProblem.

– For all other possible DSE types, no action is needed. Internally mark that DSE type as processed and

continue processing the still unprocessed DSE type bits of the DSE(i).

– If all type bits of DSE(i) are processed, then continue at step 2).

8) Check if nameResolutionPhase is completed. If it is not, then continue at Target Found sub-procedure.

9) If the nameResolutionPhase is already completed and the manageDSAIT critical extension is set, then

return with entry suitable.

10) Otherwise, check if any of the DSEs immediately subordinate to DSE(i) is a Context Prefix (and therefore

of type cp). If there is (one or more), return entry suitable. If none of the immediate subordinate entries is

of type Context Prefix, then return a serviceError with problem invalidReference.

NOTE 6 – This case is for List (II) and Search (II) subrequests.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 47

18.3.2 Target Not Found sub-procedure

See Figure 10.

Figure 10 – Target Not Found sub-procedure

ISO/IEC 9594-4:2020 (E)

48 Rec. ITU-T X.518 (10/2019)

This sub-procedure is called when the target object name is not found in the local DSA. This sub-procedure determines

the best type of knowledge reference to use to continue name resolution, unless an error is detected in which case the

error is returned.

1) When continuing from Find DSE procedure, distinguish between the three possible phases of the Name

Resolution phase.

– If nameResolutionPhase is notStarted, continue at step 2).

– If nameResolutionPhase is proceeding, continue at step 8).

– If nameResolutionPhase is completed, continue at step 12).

2) If an entry was found (lastEntryFound not equal to 0), set nameResolutionPhase to proceeding and

continue at step 9).

3) If no entry was found (lastEntryFound=0), then check if the DSA is a First Level DSA.

 If it is a First Level DSA, then the root DSE does not contain a Superior Reference and therefore is not of

type supr. In this case, continue at step 4).

 If the DSA is not a First Level DSA, then the root DSE contains a Superior Reference and therefore is of

type supr. In this case, generate a Continuation Reference using the superior knowledge as found in the

root DSE. Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to notStarted;

– referenceType to superior; and

– accessPoints as appropriate.

 Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at

step 6).

4) Check if the operation was directed to the root entry (m = 0?). If it was, continue at step 5). If it was not,

generate a Continuation Reference using any NSSR knowledge found in the root DSE. Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to 1;

– referenceType to nonSpecificSubordinate; and

– accessPoints as appropriate.

 Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at

step 6).

5) At a First Level DSA, only List or Search operations may be performed with the root entry as base object.

Therefore, if the operation was not a List or Search operation, return nameError with problem

noSuchObject. If it was a List or Search operation, set nameResolutionPhase to completed and

return with entry suitable.

6) Check if there are any Continuation References in candidateRefs. If candidateRefs is empty and

partialNameResolution is FALSE, return nameError with problem noSuchObject. If candidateRefs

is empty and partialNameResolution is TRUE, then in the result set partialName to TRUE,

nameResolutionPhase to completed, and return with entry suitable. Otherwise, continue at step 7).

7) Use a local selection function to choose a Continuation Reference from the list of Continuation References

in candidateRefs, add it to the list of Continuation References in NRcontinuationList and return with entry

unsuitable.

8) If the DSA was unable to proceed with Name Resolution (in which case lastEntryFound is less than

nextRDNToBeResolved), continue at step 11). Otherwise, continue with next step.

9) If DSE(i) is a shadow DSE with incomplete subordinate knowledge (subordinateCompletenessFlag

is FALSE), then generate a Continuation Reference from the supplierKnowledge attribute found in

DSE(lastCP). Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to lastEntryFound;

– referenceType to supplier; and

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 49

– accessPoints as appropriate.

 Add the Continuation Reference to the list of Continuation References in NRcontinuationList, and return

with entry unsuitable.

10) If the last entry found contains an NSSR (DSE(lastEntryFound) is of type nssr), then generate a

Continuation Reference from the NSSR knowledge found in DSE(lastEntryFound). Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to lastEntryFound+1;

– referenceType to nonSpecificSubordinate; and

– accessPoints as appropriate.

 Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at

step 7).

 If DSE(lastEntryFound) is not of type nssr, then continue at step 6).

11) If chainingArguments.referenceType is of type nssr, then continue at step 13), otherwise at

step 12).

12) Return serviceError with problem invalidReference.

13) If i + 1 is equal to nextRDNToBeResolved, then the request was routed here due to an NSSR and the DSA

is unable to proceed with name resolution; in this case, return serviceError with problem

unableToProceed; otherwise, continue at step 12).

18.3.3 Target Found sub-procedure

This sub-procedure is entered when the target object name matches with an entry DSE locally. This sub-procedure checks

if the found entry is suitable for processing the request locally (it is shown in Figure 11):

1) Call the Check Suitability procedure.

2) If the entry is suitable (entry suitable), then do the following:

– set nameResolutionPhase to completed;

– return entry suitable.

3) If the entry is not suitable (entry unsuitable), then generate a Continuation Reference using the

supplierKnowledge attribute found in DSE(lastCP). Set:

– targetObject to the name of the target object;

– operationProgress.nameResolutionPhase to proceeding;

– operationProgress.nextRDNToBeResolved to m;

– referenceType to supplier; and

– accessPoints as appropriate.

 Add the Continuation Reference to the list of Continuation References in NRcontinuationList. Return entry

unsuitable.

NOTE – If the localScope service control is set, however, the DSA could, based on local policies, decide to consider this entry

as suitable and proceed as in step 2).

4) If a critical extension is not supported (unsupported critical extension), then return serviceError with

problem unavailableCriticalExtension.

ISO/IEC 9594-4:2020 (E)

50 Rec. ITU-T X.518 (10/2019)

Figure 11 – Target Found sub-procedure

18.3.4 Check Suitability procedure

This procedure is called to decide whether a found DSE is suitable for performing the requested operation (see Figure 12).

It takes into account the ChainingArguments, the ServiceControls, the arguments as supplied by the user, the

operation type and the characteristics of the DSE (shadow, subordinate knowledge, attributes present, etc.).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 51

X.518(12)_F12

Enter

DSE of type
shadow?

All critical
extensions
supported?

Return
unsupported

critical extensions

Return
entry suitable

All necessary entries,
attributes are present

Check current shadowing
agreement unit of
replication against
operation filter and

selection
Entrries or
attributes

absent

Yes
(search oneLevel

or subtree)

Is operation
matching rule
supported by

the DSA?

Return
entry

unsuitable

Yes
(compare, search

baseObject)

Requested
attributes not held
by the supplier?

Return
entry suitable

All necessary
attributes present

in DSE?

Full subordinate
knowledge and
ACI for each?

Operation
type?

Read

Search,

Compare

Search operation
and

seachAliases =
TRUE and DSE

of type alias

Return
entry

unsuitable

copyShallDo
set?

dontUseCopy
set?

Modify
operation?

Return
entry unsuitable

No

No

No

No

No

No

No

YesYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

excludeShadows
=TRUE?

excludeShadows
=TRUE?

No

No

List

No

No

No

Figure 12 – Check Suitability procedure

18.3.4.1 Procedure parameters

The input argument to this procedure is:

– a reference to a DSE;

– the operation type for which the suitability of the DSE is to be checked;

– the ChainingArguments;

– the DAP operation argument; and

– the request components, if an LDAP request.

ISO/IEC 9594-4:2020 (E)

52 Rec. ITU-T X.518 (10/2019)

18.3.4.2 Procedure definition

The output is either entry suitable, entry unsuitable, or unsupported critical extension.

1) If the DSE is not of type shadow, then check if all criticalExtensions are supported. If they are, then

return entry suitable, else return unsupported critical extension.

2) The DSE is of type shadow. Return entry unsuitable, if any of the following is true:

– The requested operation type is a modification operation.

– The service control dontUseCopy is set.

Otherwise, continue with the next step.

3) If the service control copyShallDo is set, then check if all criticalExtensions are supported. If they

are, then return entry suitable, else return unsupported critical extension.

4) If the service control copyShallDo is not set, then check if all criticalExtensions are supported. If

they are, then go to step 5) else return entry unsuitable.

5) Distinguish between operation types:

If List operation, continue at step 6).

If Read operation, continue at step 7).

If Search or Compare operation, continue at step 8).

6) If the entry has full subordinate knowledge, the List operation can be performed. In this case, return entry

suitable, otherwise, return entry unsuitable.

7) If all the requested attributes are present in the DSE, then return entry suitable. If some attributes are

missing, then determine by local means whether the shadow copy holds all the attributes held by the master

(e.g., by reference to the shadowing agreement). If they are, the entry is suitable (return entry suitable).

Otherwise, the supplier may hold the requested attributes which are not present at the shadow; in this case,

the request has to be chained (return entry unsuitable).

8) If it is a DAP search request with searchAliases set to TRUE or it is an LDAP SearchRequest with

derefInSearching or derefAlways set and the DSE is of type alias then if

chainingArguments.excludeShadows is FALSE return entry suitable, if it is TRUE return entry

unsuitable.

9) If the DSA supports the matching rule for comparing or searching as requested and the operation is

compare or search operation with subset of baseObject, then continue at step 7). If the DSA supports

the matching rule and the operation is search with subset oneLevel or subtree, then continue at step

10). Otherwise, return entry unsuitable.

10) If chainingArguments.excludeShadows is TRUE, then return entry unsuitable. Otherwise, check the

local understanding of the shadowed information specification against the operation filter and selection. If

all necessary entries and attributes are present, then return entry suitable. If any entry or attribute is missing,

then return entry unsuitable.

19 Operation evaluation

This clause defines the procedure that a DSA shall follow if the target entry of an operation has been found locally (during

Name Resolution). According to the type of operation, one of the following procedures is invoked:

– For an addEntry, chainedAddEntry, removeEntry, chainedRemoveEntry, modifyEntry,

chainedModifyEntry, modifyDN, chainedModifyDN, changePassword, chainedChangePassword,

administerPassword or chainedAdministerPassword operation, the procedures in clause 19.1

shall be followed.

– For a read, chainedRead, compare or chainedCompare operation, the procedures in clause 19.2 shall

be followed.

– For a search, chainedSearch, list or chainedList operation, the procedures in clause 19.3 shall be

followed.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 53

19.1 Modification procedures

According to the type of modification operation, the corresponding procedures defined in clauses 19.1.1 to 19.1.4 shall

be followed for DAP requests. Clause 19.1.5 specifies special procedures for how DAP modify operations affect NSSRs.

An LDAP request embedded in an ldapTransport request shall be handled as specified in clause 19.1.6.

19.1.1 Add Entry operation

1) The DSA shall check that the initiator has sufficient access rights, e.g., as defined, in clause 11.1.5 of

Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall assure that an entry with the name of the entry to be added does not already exist. Otherwise,

it shall return an updateError with problem entryAlreadyExists. If the superior DSE is of additional

type nssr, the DSA shall follow the procedure defined in clause 19.1.5 (Modify Operations and NSSRs)

to ensure that the name of the new entry is unambiguous.

3) If targetSystem component of the AddEntryArgumentData value is present, and the AccessPoint

is not that of the current DSA, go to step 4). If targetSystem component of a DAP request is not present,

or it is present and the AccessPoint is that of the current DSA, go to step 5).

4) If the entry is a subentry, the DSA shall return updateError with problem affectsMultipleDSAs. If

the entry is not a subentry, the DSA has a local choice as to whether or not it wishes to establish an HOB

with the specified DSA. If it does not, the DSA shall return serviceError with problem

unwillingToPerform; otherwise, the DSA shall establish a hierarchical operational binding (HOB) with

the specified subordinate DSA. If the DOP is supported, the procedure in clause 24.3.1.1 shall be followed.

Otherwise, local means are used to establish the HOB. If the subordinate DSA is unwilling to establish the

operational binding, a serviceError with problem unwillingToPerform is returned for the

addEntry operation. If the HOB is successfully established, continue at step 7).

NOTE 1 – This step of the procedure does not apply to the creation of autonomous administrative areas in a

subordinate DSA.

5) The DSA shall ensure that the new entry conforms to the sub-schema, or that the new subentry or DSE of

other types conform to the system schema (e.g., that the immediate superior DSE of a subentry is of type

admPoint). If not, it shall return an appropriate updateError or attributeError, else it shall add the

new DSE. If entry, continue at step 7). If subentry, continue at step 6). Otherwise, appropriate knowledge

management procedures for the other types of DSE are executed. See Section 6.

6) The DSA shall forward, at an appropriate time, a modify operational binding to all relevant subordinate

DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant

bindings are those which are associated with naming contexts that are subordinate to the superior DSE.

Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.

If the DOP is supported, the procedures in clauses 24.3.2.1 and 25.3.2 shall be followed. If the DOP is not

supported, local means shall be used to modify the RHOBs.

NOTE 2 – An appropriate time is specified by the DSA administrator, and might range from immediately after (or

even before) the operation result is returned to a periodic strategy (e.g., at an appointed hour). The time may vary

depending upon the reason for the modification, e.g., updates to ACI taking immediate effect and changes to

schema being done periodically.

7) If the added entry or subentry is within the UnitOfReplication of one or more shadowing agreements,

then the shadow consumers shall be updated using the procedures of the Directory information shadow

service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

ISO/IEC 9594-4:2020 (E)

54 Rec. ITU-T X.518 (10/2019)

Figure 13 – DAP Add Entry procedure

19.1.2 Remove Entry operation

1) The DSA shall check that the initiator has sufficient access rights, e.g., as defined, in clause 11.2.5 of

Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall ensure that the entry to be removed is a leaf entry. Otherwise, the DSA shall return an

updateError with problem notAllowedOnNonLeaf.

3) The DSE type of the entry to be removed is checked. If subentry, continue at step 5). If cp, continue at

step 6). If entry or alias, continue at step 4). Otherwise, appropriate knowledge management procedures

for the other types of DSE are executed. See Section 6.

4) Remove the entry or alias entry and continue at step 7).

5) Remove the subentry. At an appropriate time, modify the operational bindings of all relevant subordinate

DSAs with which the current DSA has hierarchical or non-specific hierarchical operational bindings. The

relevant bindings are those which are associated with naming contexts subordinate to the superior DSE.

 Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.

If the DOP is supported, the procedures in clauses 24.3.2.1 and 25.3.2 shall be followed. Otherwise, local

means shall be used. Continue at step 7).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 55

6) Remove the naming context. If the DSA has a hierarchical operational binding for this naming context, it

shall terminate the hierarchical operational binding with its immediately superior DSA. If the DSA has a

non-specific hierarchical operational binding for this naming context, and this is the last naming context

of the non-specific hierarchical operational binding, then it shall terminate the non-specific hierarchical

operational binding with its immediately superior DSA. If the DOP is supported, the procedures in

clauses 24.3.3.2 and 25.3.3.2 shall be followed. Otherwise, local means are used to terminate the RHOB.

7) If the removed naming context, entry, alias entry or subentry was within the UnitOfReplication of one

or more shadowing agreements, then the shadow consumers shall be updated using the procedures of the

Directory information shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

 If the removed subordinate or non-specific subordinate reference in the immediately superior DSA (whose

RHOB was terminated), was within the UnitOfReplication of one or more shadowing agreements,

then the shadow consumers shall be updated using the procedures of the Directory information shadow

service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

Figure 14 – DAP Remove Entry procedure

19.1.3 Modify Entry, Change Password and Administer Password operations

1) The DSA shall check that the initiator has access rights, e.g., as defined, in clause 11.3.5 of

Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The modifications to the entry or alias shall conform to the sub-schema. The modification to a DSE of

other types, including subentry, shall conform to the system schema. Otherwise, the DSA shall return an

appropriate updateError or attributeError. After performing the modifications, if the target DSE is

of type subentry, continue at step 3); if the target DSE is of type entry or alias, continue at step 4);

otherwise, appropriate knowledge management procedures for the other types of DSE are executed.

See Section 6.

ISO/IEC 9594-4:2020 (E)

56 Rec. ITU-T X.518 (10/2019)

3) The DSA shall, at an appropriate time, modify the operational bindings with all relevant subordinate DSAs

with which it has hierarchical or non-specific hierarchical operational bindings. The relevant bindings are

those which are associated with naming contexts that are subordinate to the administrative point that the

modified subentry is located below. Naming contexts whose context prefixes correspond to autonomous

administrative points are not relevant. If the DOP is supported, the procedure in clauses 24.3.2.1 and 25.3.2

shall be followed. Otherwise, local means are used.

4) If the modified entry, alias entry or subentry was within the UnitOfReplication of one or more

shadowing agreements, then the shadow consumers shall be updated using the procedures of the Directory

information shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

Figure 15 – DAP Modify Entry procedure

19.1.4 Modify DN operation

1) The DSA shall check that the initiator has sufficient access rights, e.g., as defined in clause 11.4.5 of

Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) If the operation is either to move an entry or to both move an entry and change its Relative Distinguished

Name, go to step 3). If the operation is to only change the Relative Distinguished Name of an entry, go to

step 4).

3) The operation shall be performed according to the definition in clause 11.4.1 of Rec. ITU-T X.511 |

ISO/IEC 9594-3. If either the old superior, the new superior, the entry or any of its subordinates are not in

this DSA, or if the new superior has NSSRs, then the operation shall be rejected with updateError with

problem affectsMultipleDSAs. The DSA shall ensure that no other entry with the new name already

exists. Otherwise, it shall return an updateError with problem entryAlreadyExists. The DSA shall

ensure that the new name of the entry conforms to the subschema. Otherwise, it shall return an appropriate

attributeError or updateError. If none of these problems arise, then move the entry (changing the

RDN if required) and go to step 9).

4) The following text is applicable to changing the relative distinguished name of an entry, which may or

may not be a leaf entry, and which may or may not have one or more subordinates in one or more DSAs.

The DSE type of the entry to be renamed is checked. If subentry, continue at step 7). If cp, continue at

step 6). If entry or alias, continue at step 5).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 57

5) The DSA shall ensure that no other entry with the new name already exists. Otherwise, it shall return an

updateError with problem entryAlreadyExists. If the superior DSE of the entry to be renamed is of

additional type nssr, the DSA shall follow the procedure defined in clause 19.1.5 (Modify Operations and

NSSRs) to ensure that the new name of the entry is unambiguous. The DSA shall ensure that the new name

of the entry conforms to the subschema. Otherwise, it shall return an appropriate attributeError or

updateError. Rename the entry or alias entry. If the entry is a non-leaf entry and has subordinates in

other DSAs, continue at step 8), otherwise, continue at step 9).

6) The DSA shall ensure that the new name of the naming context conforms to the subschema; otherwise, it

shall return an appropriate attributeError or updateError.

 If the DSA has an HOB with the superior DSA, then the subordinate DSA shall attempt to modify the HOB

before responding to the Modify DN operation. The superior DSA shall ensure that no other entry with the

new name already exists, before accepting the modification. If the DOP is supported, the procedure in

clauses 24.3.2.2 shall be followed. If the DOP is not supported, it is a local matter how the HOB is modified

and the new name is checked for uniqueness. If the HOB is successfully modified, and the naming context

has subordinate naming contexts in other DSAs, go to step 8); otherwise, go to step 9). If the HOB cannot

be modified, return updateError with problem affectsMultipleDSAs.

 If the DSA has an NHOB for this naming context with the superior DSA, then how duplicate entries are

detected is outside the scope of this Directory Specification. Rename the entry. If the naming context has

subordinate naming contexts in other DSAs, go to step 8); otherwise, go to step 9).

7) The DSA shall ensure that the new name of the subentry conforms to the system schema. Otherwise, it

shall return an appropriate attributeError or updateError. The DSA shall ensure that no other

subentry with the new name already exists. Otherwise, it shall return an updateError with problem

entryAlreadyExists.

8) The DSA shall, at an appropriate time, modify the operational bindings of all relevant subordinate DSAs

with which it has hierarchical or non-specific hierarchical operational bindings. The relevant bindings are

those which are associated with all naming contexts that are subordinate to the entry being renamed, or

relevant naming contexts that are subordinate to the administrative point whose subentry was renamed.

Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.

If the DOP is supported, the procedures in clauses 24.3.2.1 and 25.3.2 shall be followed. Otherwise, local

means shall be used to update the RHOBs.

9) If the renamed naming context, entry or any of its subordinates, alias entry or subentry is within the

UnitOfReplication of one or more shadowing agreements held by the DSA, then the shadow

consumers shall be updated using the procedures of the Directory information shadow service specified in

Rec. ITU-T X.525 | ISO/IEC 9594-9.

 If the entry, alias entry or subentry was within the UnitOfReplication of one or more shadowing

agreements held by the DSA, and the superior of the renamed entry, alias entry or subentry is not within

this UnitOfReplication, the shadow consumers shall be updated using the procedures of the Directory

shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9; in this case the shadowed entry and all

its subordinates shall be removed.

 If the entry, alias entry or subentry was not within the UnitOfReplication of one or more shadowing

agreements held by the DSA, and the renamed entry, alias entry or subentry is now within this

UnitOfReplication, the shadow consumers shall be updated using the procedures of the Directory

shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9; in this case the shadowed entry and all

its subordinates shall be shadowed.

 If the renamed subordinate reference in the immediately superior DSA [whose HOB was modified in

step 6) above] is within the UnitOfReplication of one or more of its shadowing agreements, then the

shadow consumers shall be updated using the procedures of the Directory information shadow service

specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

 If components of an RHOB with a subordinate DSA [as modified in step 8) above] are within the

UnitOfReplication of one or more shadowing agreements held by the subordinate DSA, then the

shadow consumers shall be updated using the procedures of the Directory information shadow service

specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

ISO/IEC 9594-4:2020 (E)

58 Rec. ITU-T X.518 (10/2019)

Figure 16 – DAP Modify DN procedure

19.1.5 Modify operations and non-specific subordinate references

If a DSA has NSSRs and does not know the complete set of names of the subordinates of an entry, to which either:

a) an addEntry operation has been directed, or

b) a modifyDN operation has been directed;

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 59

then the DSA may perform the following set of procedures prior to performing the operation.

1) If the chainingProhibited service control option is set on the addEntry or modifyDN operation,

return updateError with problem affectsMultipleDSAs.

2) If the DSA is unwilling or unable to multi-chain outgoing requests, return serviceError with problem

unwillingToPerform or unavailable, respectively.

3) The DSA shall multi-chain a chainedReadEntry operation to each master DSA in the set of

accessPointInformation of the NSSR. (The DSA shall only use the master DSA from each

MasterAndShadowAccessPoints due to transient inconsistency caused by shadowing.)

a) The components of the ReadArgument shall be set as follows:

– object component: to either the name of the entry to be added (in the case of addEntry), or to

the proposed name of an existing entry (in the case of modifyDN);

– selection component: to the object class attribute.

b) The parameters of CommonArguments shall be set as follows:

– set the dontDereferenceAliases service control option;

– set OperationProgress.nameResolutionPhase to completed.

c) The parameters of ChainingArguments shall be set as follows:

– set originator to the name of the requester;

– targetObject is omitted;

– set OperationProgress.nameResolutionPhase to proceeding and

nextRDNToBeResolved to (number of RDNs in the object name) – 1;

– set traceInformation to an empty sequence;

– set referenceType to nonSpecificSubordinate;

– timeLimit, as appropriate according to the incoming request.

d) Other parameters, e.g., SecurityParameters, may be set as appropriate, e.g., by local policy.

4) The DSA waits for the complete set of responses. If any of the response is a ReadResult, then an error

shall be returned as in 6) below.

5) If all responses are serviceError with problem unableToProceed, operation evaluation may proceed.

6) If a ReadResult is returned, an updateError with problem entryAlreadyExists shall be returned

for the original operation.

7) If any other error is returned to the readEntry request, a serviceError with problem

unwillingToPerform shall be returned.

The DSA receiving the chainedRead request shall give a response according to the presence or not of the entry, and its

access control policy.

19.1.6 LDAP Modify operations

This procedure shall be executed when an ldapTransport request holding an LDAP update request has reached the

evaluation phase.

NOTE – An LDAP modify operation handled by the bound DSA is specified fully by the LDAP specifications and therefore outside

the scope of this Directory Specification,

An LDAP request carried by an ldapTransport request is unpacked and processed according to the LDAP

specifications. However, there are some additional considerations depending on the setting of the CommomArguments

value and the ChainingArguments value.

a) If the target component of the SecurityParameters (see clause 7.10 of Rec. ITU-T X.511 |

ISO/IEC 9594-3) in the request is set to signed and a result is to be returned, the result may be signed.

Otherwise, the result shall not be signed.

b) The DSA shall ensure that the requester has sufficient access according to the type of operation. If not,

return an LDAP response with resultCode equal to insufficientAccessRights.

ISO/IEC 9594-4:2020 (E)

60 Rec. ITU-T X.518 (10/2019)

19.2 Single entry interrogation procedure

The operations read, chainedRead, compare, and chainedCompare fall into the group of single entry interrogation

procedures. These procedures contain only the following three steps:

1) Check access control, as described in clause 9 of Rec. ITU-T X.511 | ISO/IEC 9594-3. If the operation is

disallowed, return the appropriate security error.

2) Perform the operation on the found DSE as described in clause 9 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

3) Prepare the reply, and return.

19.3 Multiple entry interrogation procedure

According to the type of interrogation operation (list or search), the corresponding procedures defined in

clauses 19.3.1 and 19.3.2 shall be followed.

19.3.1 List procedures

This clause specifies the evaluation procedure specific to list and chainedList operations.

The List (I) procedure shall be followed when the List request's operationProgress.nameResolutionPhase

component is set to notStarted or proceeding and when the DSA, after performing Name Resolution, finds that it

holds the base object. The List (II) procedure shall be followed when the List request's nameResolutionPhase

component is set to completed.

19.3.1.1 Procedure parameters

19.3.1.1.1 Arguments

The arguments that are used by this procedure are:

– the ListArgument;

– the target DSE e;

– operationProgress of the chainingArgument.

19.3.1.1.2 Results

If this procedure is successfully executed, it returns:

– a set of subordinates of e in listInfo.subordinates;

– limitProblem indicated in partialOutcomeQualifier;

– a set of continuation references in SRcontinuationList.

19.3.1.2 Procedure definition

19.3.1.2.1 List (I) procedure

The List (I) procedure consists of the following steps as depicted in Figure 17:

1) If the service control subentry is set, then go to step 5); otherwise, go to step 2).

2) If DSE e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following

components:

– targetObject shall be set to the DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and

nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to nonSpecificSubordinate;

– accessPoints set to a set of accessPointInformation each derived from a value of the

nonSpecificKnowledge attribute of DSE e.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 61

3) For each DSE e' immediately subordinate to DSE e execute the following steps:

a) Check the ACI in e' if available. If the ACI disallows listing the RDN of e', then skip this DSE. If the

ACI is not available (for example in the case of subordinate references and glue), then it is a local

policy whether to proceed.

b) Check all the DSE types of e'.

i) If e' is of type subr, then there are two cases. In the first case, the subordinate entry's ACI and

object class is available locally, in which case, based on local policy and the ACI's permission,

add the RDN of e' to listInfo.subordinates with aliasEntry set to TRUE if e' is of type

sa, and fromEntry set FALSE. The other case is when the ACI of the entry is not available in

e', in which case add a Continuation Reference to SRcontinuationList with the following

components:

 – targetObject to the distinguished name of the DSE e;

 – aliasedRDNs absent;

 – operationProgress with nameResolutionPhase set to completed and

nextRDNtoBeResolved absent;

 – rdnsResolved absent;

 – referenceType set to subordinate;

 – accessPoints set to the value contained in the specificKnowledge attribute of DSE e'.

ii) If the DSE e' is of type entry or glue, then add the RDN of e' to listInfo.subordinates

with aliasEntry set to FALSE and fromEntry set according to whether e' is a copy.

NOTE – In the case that e' is glue, it must have one or more subordinates which implies it cannot be an

alias in the master DSA. Also, any ACI relevant to the List operation is stored in this DSE, supplied via

the shadowing protocol.

iii) If the DSE e' is of type alias, then add the RDN of e' to listInfo.subordinates with

aliasEntry set to TRUE, and fromEntry set according to whether e' is a copy.

c) Check if time, size or administrative limit is exceeded. If so, set limitProblem accordingly in

partialOutcomeQualifier and return.

d) Continue from step 3) a) until all subordinate DSEs have been processed.

4) If all subordinate DSEs have been processed, return to the Operation Dispatcher.

5) For each subentry e' immediately subordinate to DSE e, execute the following steps:

a) Check the ACI in e'. If the ACI disallows listing the RDN of e', then skip this DSE. Otherwise, add

the RDN of e' to listInfo.subordinates with aliasEntry set to FALSE and fromEntry set

according to whether e' is a copy.

b) Check if time, size or administrative limit is exceeded. If so, set limitProblem accordingly in

partialOutcomeQualifier and return.

6) Return to the Operation Dispatcher.

ISO/IEC 9594-4:2020 (E)

62 Rec. ITU-T X.518 (10/2019)

Figure 17 – List (I) procedure

19.3.1.2.2 List (II) procedure

The List (II) procedure consists of the following steps as depicted in Figure 18:

1) For each DSE e' immediately subordinate to DSE e, execute steps 1 a) to 1 d):

a) If e' is not an entry or alias, continue with the next immediate subordinate.

b) Check ACI in e'. If the operation is disallowed by the ACI, continue with the next immediate

subordinate of e.

c) Add the RDN of DSE e' to listInfo.subordinates, with the aliasEntry component of

listInfo.subordinates according to whether e' is an alias, and the fromEntry component set

depending on whether e' is a copy or not. Ignore those DSEs of type shadow or writableCopy, if

excludeShadows is TRUE.

d) Check if time, size or administrative limit is exceeded. If so, set the limitProblem of

partialOutcomeQualifier accordingly and return.

e) Continue from step 1) a) until all subordinate DSEs have been processed.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 63

2) If all subordinate DSEs have been processed, check if this subrequest came from a DAP or DSP. In case

this subrequest is submitted via a DAP, and the ListResult is empty, then return a serviceError with

problem invalidReference to the Operation Dispatcher. Otherwise, the ListResult is returned.

NOTE – invalidReference is used as a security precaution in case the user does not have access to the

superior entry. If the superior's entry ACI is available (provided by the RHOB), then a null result may be

returned if allowed.

Figure 18 – List (II) procedure

19.3.2 Search procedures

This clause specifies the evaluation procedures specific to chainedLdapTransport requests with an embedded LDAP

SearchRequest, search requests and chainedSearch requests.

The Search-rule-check (I) procedure, when relevant, shall be followed when the search request's

operationProgress.nameResolutionPhase component is set to notStarted or proceeding and when the DSA,

after performing Name Resolution, finds that it holds the target object. If this procedure returns an error, return with that

error. If the Search-rule-check (I) procedure was not followed or was followed without returning an error, then the Search

(I) procedure shall be followed for a search or chainedSearch request, while the LDAP Search (I) procedure shall be

followed for a chainedLdapTransport request.

The Search-rule-check (II) procedure, when relevant, shall be followed when the search request's

nameResolutionPhase component is set to completed. If this procedure returns an error, return with that error. If the

Search-rule-check (II) procedure was not followed or was followed without returning an error, then the Search (II)

procedure shall be followed for a search or chainedSearch request, while the LDAP Search (II) procedure shall be

followed for a chainedLdapTransport request.

NOTE – When nameResolutionPhase is completed, the target object is expected to be the immediate superior of a context

prefix.

19.3.2.1 Procedure parameters

19.3.2.1.1 Arguments

The arguments that are used by this procedure are:

– the SearchArgument;

ISO/IEC 9594-4:2020 (E)

64 Rec. ITU-T X.518 (10/2019)

– the target DSE e;

– operationProgress of the ChainingArguments;

– exclusions of the ChainingArguments (a list of RDNs to exclude from search);

– traceInformation of the ChainingArguments;

– searchRuleId of the ChainingArguments;

– chainedRelaxation of the ChainingArguments; and

– relatedEntry of the ChainingArguments.

19.3.2.1.2 Results

If this procedure is successfully executed, it returns:

– a set of matched entries in searchResult.entryInformation;

– alreadySearched in ChainingResults;

– dependent on conditions, a count in the partialOutcomeQualifier.entryCount; and

– a set of continuation references in SRcontinuationList.

19.3.2.2 Procedure definition

19.3.2.2.1 Related Entry Argument procedure

This procedure is only relevant if the search request has a joinArguments component and ChainingArguments (if

any) does not have a relatedEntry component.

1) If the search request is protected, generate a DSP request for each element of the joinArguments

component each including the original DAP request. The ChainingArguments shall be as follows:

– if the incoming request has a ChainingArguments with component originator, the value of this

component is copied into the originator component of generated requests; otherwise, the use of

this component is determined by local security policy.

NOTE – The receiving DSA may not be able to make use of the name given in this component, as it is from a

separate DIT.

– the operationProgress component shall be omitted or set to default value;

– the traceInformation, aliasDereferenced, aliasedRDNs, returnCrossRefs, entryOnly,

exclusions, nameResolutionOnMaster, searchRuleId, chainedRelaxation components

shall be omitted; and

– the relatedEntry component is set to a value corresponding to the relative position of the

JoinArgument that applies to the DSA to which the request is forwarded; where the first

JoinArgument is given the value 0, the next one the value 1, etc.

2) If the incoming search request is not protected, generate a DSP request for each element of the

jointArguments component where the SearchArgument shall be generated as follows:

– the baseObject component shall be copied from the joinBaseObject component of the

corresponding JoinArgument;

– the subset component shall be copied from the joinSubset component of the corresponding

JoinArgument;

– the filter component shall be copied from the filter component of the corresponding

JoinArgument; and

– the remaining components shall be as in the original request, except that the joinArguments and

joinType components shall be omitted.

 The ChainingArguments shall be as above for protected requests, except that the relatedEntry

component shall be omitted.

3) Call the Operation Dispatcher for each request to be locally continued.

4) If the Operation Dispatcher returns a referral error, or busy, or unavailable errors then add (or make and

add) the continuation reference to partialOutcomeQualifier of SearchResult, and return.

5) If the Operation Dispatcher returns other errors, discard it and return.

6) If the Operation Dispatcher returns a SearchResult, then:

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 65

i) If the result is signed, add it to uncorrelatedSearchInfo in SearchResult.

ii) If the result is not signed, perform the join process as specified in Rec. ITU-T X.511 | ISO/IEC 9594-3.

19.3.2.2.2 Search-rule check procedure (I)

This procedure is only relevant, if the DSA supports service-specific administration areas.

If the searchRuleId component is present in the ChainingArguments, the operation is the result of an alias

dereferencing procedure during a previous evaluation phase. Then, if the target DSE is within a service-specific

administrative area having a different dmdId, or if the target DSE is outside a service-specific administrative area, return

with an unwillingToPerform service error. Otherwise, select the appropriate search-rule based on information in

searchRuleId and return.

NOTE 1 – Service administration has been defined as a critical extension. When a DSA, which does not support service

administration, receives a chained search request with a searchRuleId component, it will return a serviceError with problem

unavailableCriticalExtension.

If the searchRuleId is not present and the target DSE is outside a service-specific administrative area; or if it is within

such an area, but no subentries are associated with that area, return.

If the target DSE is within a service-specific administrative area and the traceInformation reveals that the operation

has been in a previous evaluation phase, return with an unwillingToPerform service error.

NOTE 2 – This is the situation where a search has started its initial evaluation outside a service-specific administrative area and

now attempts to spread into a different service-specific administrative area.

Otherwise, the following procedure is followed:

1) Locate all search-rules associated with the target DSE, i.e., all search-rules in service subentries having the

target DSE within its subtree specifications (e.g., by use of the searchRulesSubentry operational

attribute). These search-rules are in the following called candidate-search-rules. If there are no such

search-rules, generate a service error with problem requestedServiceNotAvailable, include into the

notification component of the CommonResults a searchServiceProblem attribute with the value

id-pr-unidentifiedOperation, and return.

2) If the serviceType and/or the userClass service controls are included in the search request, eliminate

all search-rules not complying with those service controls from the candidate-search-rules. If that leaves

the list empty, generate a service error with problem requestedServiceNotAvailable; include in the

notification component of the CommonResults the information as detailed below and return:

– a searchServiceProblem attribute with the value id-pr-unidentifiedOperation;

– if the serviceType service control was included in the search request, a serviceType attribute

with the value of that service control.

3) Split the candidate-search-rule list up into four lists (some of which may be empty):

– a GoodPermittedSR list containing all the candidate-search-rules to which the requester has invoke

permission and with which the search request complies according to the search-validation procedure

specified in clause 14 of Rec. ITU-T X.511 | ISO/IEC 9594-3;

NOTE 3 – If this list is not empty, there is no reason to create the other lists.

– a MatchProblemSR list containing all the candidate search-rules to which the requester has invoke

permission and with which the search request complies except for matchingUse in one or more

request-attribute-profiles;

– a BadPermittedSR list containing all the candidate-search-rules to which the requester has invoke

permission but with which the search request does not comply;

– a DeniedSR list containing all the candidate-search-rules to which the requester does not have invoke

permission.

4) If the GoodPermittedSR list contains one or more empty search-rule, select using a local algorithm one

of these empty search-rules as the governing search-rule and return.

5) If the GoodPermittedSR list is not empty, discard all search-rules except those with the highest

userClass indication.

6) Select one of the remaining search-rule in the GoodPermittedSR list as the governing-search-rule, using

a local algorithm, and return.

NOTE 4 – If in the list above there are several search-rules to select from, the implementation should log the incident

for administrative attention, as the search-rule definitions probably need re-working.

ISO/IEC 9594-4:2020 (E)

66 Rec. ITU-T X.518 (10/2019)

7) If the MatchProblemSR list is not empty, select one of its search-rules following an algorithm similar to

the one specified in 5) and 6) above; generate a service error and associated information as detailed in

clause 14.4 of Rec. ITU-T X.511 | ISO/IEC 9594-3, and then return.

8) If the DeniedSR list is empty, continue with 10); otherwise, discard any search-rule from the list with

which the search request does not comply and discard any empty search-rule. If the list is now empty,

continue with 10); otherwise, generate a service error with problem requestedServiceNotAvailable;

include in the notification component of the CommonResults the subcomponents detailed below, and

return:

– a searchServiceProblem attribute with the value id-pr-unavailableOperation;

– if all the remaining search-rules in the DeniedSR list have the same value in the serviceType

component, a serviceType attribute with that value.

9) If the BadPermittedSR is empty, generate a service error with problem

requestedServiceNotAvailable; include into the notification component of the

CommonResults the subcomponents detailed below and return:

– a searchServiceProblem attribute with the value id-pr-unidentifiedOperation.

10) For each numbered item in the procedure in clause 14.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3 taken in

order, check the search request against the remaining search-rules in BadPermittedSR, and then for each

item:

– if the search complies with the item for some search-rules, but not for all search-rules, discard the

search rules with which it does not comply;

– if the BadPermittedSR now only holds one search-rule, perform the procedure specified in clause 14

of Rec. ITU-T X.511 | ISO/IEC 9594-3, and return;

– otherwise, the next item is checked.

11) If the BadPermittedSR now only holds search-rules with which the search does not comply according to

the procedure so far, generate a service error with problem requestedServiceNotAvailable; include

in the notification component of the CommonResults the subcomponents detailed below and return:

– a searchServiceProblem attribute with the value id-pr-unidentifiedOperation;

– if all the search-rules in BadPermittedSR specifies the same service-type, a serviceType attribute

with that service-type as value.

12) For each numbered item in clause 14.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3 taken in order, check the

search request against the remaining search-rules in BadPermittedSR, and then for each item:

– if the search complies with the item for some search-rules, but not for all search-rules, discard the

search rules with which it does not comply;

– if the BadPermittedSR now only holds one search-rule, perform the procedure specified in clause 14

of Rec. ITU-T X.511 | ISO/IEC 9594-3, and return;

– otherwise, the next item is checked.

13) For each numbered item in clause 14.3 of Rec. ITU-T X.511 | ISO/IEC 9594-3 taken in order, check the

search request against the remaining search-rules in BadPermittedSR, and then for each item:

– if the search complies with the item for some search-rules, but not for all search-rules, discard the

search rules with which it does not comply;

– if the BadPermittedSR now only holds one search-rule, perform the procedure specified in clause 14

of Rec. ITU-T X.511 | ISO/IEC 9594-3, and return;

– otherwise, the next item is checked.

14) Generate a service error with problem requestedServiceNotAvailable; include in the

notification component of the CommonResults the subcomponents detailed below and return:

– a searchServiceProblem attribute with the value id-pr-unidentifiedOperation;

– if all the search-rules in BadPermittedSR specifies the same service-type, a serviceType attribute

with that service-type as value.

19.3.2.2.3 Search-rule check procedure (II)

This procedure is only relevant, if the DSA supports service-specific administrative areas.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 67

If the searchRuleId is not present, and all the immediate subordinate entries (context prefixes) of the target DSE are

service-specific administrative points, then return with a serviceError with problem unwillingToPerform. If,

however, some of the subordinate entries are not service-specific administrative points, then select the corresponding

naming contexts for the search evaluation and return.

If the searchRuleId is present, each subordinate entry of the target DSE is checked to verify that it is within the same

service-specific administration area as the target DSE. If not, the corresponding naming context is excluded from the

search. If there are remaining naming contexts (including ones in the performing DSA) in which the search can continue,

select the search-rule identified in searchRuleId and return. If there are no remaining naming contexts in which the

search can continue, generate a serviceError with problem unwillingToPerform and return.

NOTE – The latter should not occur if knowledge information is consistent between the DSA and the DSA holding the superior

naming context.

19.3.2.2.4 Entry information selection

For matched entries and for entry selected as part of hierarchy selection, attribute information is selected as the intersection

of:

a) what is specified by the searchArgument.selection, possible modified by the default context

specifications, and for matched entries also by the searchArgument.matchedValuesOnly;

b) what is determined by the governing-search-rule (if any).

This entry information is added to the list of entries in searchResult.entryInformation.

Only add attributes whose size (type and all values) is not greater than the attributeSizeLimit.

19.3.2.2.5 Search (I) procedure

This is a recursive procedure that applies to a search request that starts at a given target entry e. It searches the target

entry e and then processes the DSEs immediately subordinate to e. The procedure is invoked by itself recursively in the

case that a whole subtree is to be searched. The procedure consists of the following steps as shown in Figure 19:

1) If the type of DSE e is of type cp (a DSE at a context prefix), check if any element of the exclusions

argument is a prefix of the DN of e.

a) If so, return.

b) Else, call Check Suitability.

i) If e is unsuitable, make a continuationReference as follows and add it to

SRContinuationList:

 – targetObject set to the distinguished name of the immediate superior of DSE e;

 – operationProgress with nameResolutionPhase set to proceeding and

nextRDNtoBeResolved set to the number of RDNs in e;

 – all other components of continuationReference are unchanged.

 Then return.

 NOTE 1 – This is the only place when a search subrequest is chained to a shadow's supplier. In other

words, the target object for such a chained subrequest is always a context prefix.

ii) Else, add the Distinguished Name of e to alreadySearched in ChainingResults.

 NOTE 2 – alreadySearched only contains context prefixes.

2) If e is of type alias and searchAliases in SearchArgument is TRUE, then call Search Alias procedure

and then return.

3) If subset is oneLevel, then proceed to step 6).

NOTE 3 – The e cannot be subordinate incomplete at this point since the Check Suitability at the context prefix should

have ascertained that this cannot happen.

4) If subset is baseObject, or if entryOnly is TRUE then continue with this step; otherwise, go to step 5).

 If one of the following is true:

a) e is of type subentry and the service control subentry is set; or

b) e is not of type subentry and the service control subentry is not set, then do the following steps:

i) Check ACI. If the operation is disallowed, return.

ii) Apply the filter argument specified in the SearchArgument.filter to the DSE e. Ensure that

access to all attributes used in the filter is permitted as defined in Rec. ITU-T X.501 |

ISO/IEC 9594-4:2020 (E)

68 Rec. ITU-T X.518 (10/2019)

ISO/IEC 9594-2. If the filter matches, and if the entry is not excluded due to hierarchy selection,

add the attribute information as specified in clause 19.3.2.2.3.

iii) If the hierarchySelection search control is included in the search request (possibly

modified by a search-rule specification), the entry is part of a hierarchical group having more

than one member, and more than the self indication is set, then call the Hierarchy Selection (I)

procedure.

Then return.

5) If subset is subtree (and entryOnly is not TRUE), and in addition one of the following is true:

a) e is of type subentry and the service control subentry is set; or

b) e is not of type subentry and the service control subentry is not set, then do the following steps:

i) Check ACI. If the operation is disallowed, go to step 6).

ii) Apply the filter argument specified in the SearchArgument.filter to the DSE e. Ensure that

access to all attributes used in the filter is permitted as defined in Rec. ITU-T X.501 |

ISO/IEC 9594-2. If the filter matches, and if the entry is not excluded due to hierarchy selection,

add the attribute information as specified in clause 19.3.2.2.3.

iii) If the hierarchySelection search control is included in the search request (possibly

modified by a search-rule specification), the entry is part of a hierarchical group having more

than one member, and more than the self indication is set, then call the Hierarchy Selection (I)

procedure.

iv) Proceed to step 6).

6) If e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following

components:

– targetObject to the distinguished name of the DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and

nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to nssr;

– accessPoints set to AccessPointInformation derived from the value(s) found in the

nonSpecificKnowledge attribute.

7) Process all DSEs e' that are located immediately subordinate to the target DSE e until all subordinate DSEs

have been processed. If e is within a service-specific administrative area, only those immediately

subordinate DSEs that are part of the same service-specific administrative area shall be processed. If e is

outside a service-specific administrative area, those immediately subordinate DSEs that are part of a

service-specific administrative area shall not be processed. During this loop, if the list of matched entries

in searchResult.entryInformation exceeds the size limit, or time or administrative limit is exceeded

then set limitProblem accordingly in partialOutcomeQualifier and return.

NOTE 4 – The check for size limit is also implicitly applied every time searchResult is updated.

a) If the DSE e' is of type subr, is not of type cp, and is not representing a subordinate entry that is a

service-specific administrative point, then add a Continuation Reference to SRcontinuationList with

the following components:

– targetObject to the distinguished name of the DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and

nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to subr;

– accessPoints set to the access point information contained in the specificKnowledge

attribute of DSE e'.

NOTE 5 – If e' is of both type cp and subr, a search subrequest can be generated potentially from either the

subordinate reference or the supplier knowledge, but not both. This procedure uses the latter (supplier references

found in cp).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 69

b) For all cases:

i) If subset is oneLevel, set entryOnly to TRUE.

ii) Recursively execute Search (I) procedure for target DSE e'.

8) If all subordinates have been processed, return to the Operation Dispatcher for further processing.

Figure 19 – Search (I) procedure

ISO/IEC 9594-4:2020 (E)

70 Rec. ITU-T X.518 (10/2019)

19.3.2.2.6 Search (II) procedure

This procedure applies if a search request is processed that originated from a request decomposition at the DSA from

which the request was received. The procedure processes the DSEs below the target DSE e and calls the Search (I)

procedure for each object entry:

1) Process all DSEs e' that are located immediately subordinate to the target DSE e until all subordinate DSEs

have been processed. When all subordinates have been processed, return to the Operation Dispatcher for

further processing.

2) If the DSE is not of type cp then ignore it. Return to step 1).

3) Call Check Suitability. If suitable go to step 4); otherwise, ignore it and return to step 1).

4) Execute the Search Procedure (I) for the DSE e' as described in clause 19.3.2.2. If the DSE is of type alias

and the value of the subset parameter is set to oneLevel, set ChainingArguments.entryOnly to

TRUE when calling Search (I) procedure. Return to step 1).

Figure 20 – Search (II) procedure

19.3.2.2.7 LDAP Search (I) procedure

This is a recursive procedure that applies to a chainedLdapTransport request with embedded LDAP SearchRequest that

starts at a given target entry e. It searches the target entry e and then processes the DSEs immediately subordinate to e.

The procedure is invoked by itself recursively in the case that a whole subtree is to be searched. The procedure consists

of the following steps as shown in Figure 19:

1) If the type of DSE e is of type cp (a DSE at a context prefix), call Check Suitability.

a) If e is unsuitable, make a continuationReference as follows and add it to SRContinuationList:

– targetObject set to the distinguished name of the immediate superior of DSE e;

– operationProgress with nameResolutionPhase set to proceeding and

nextRDNtoBeResolved set to the number of RDNs in e;

– all other components of continuationReference are unchanged.

Then return.

NOTE 1 – This is the only place when a search subrequest is chained to a shadow's supplier. In other words, the

target object for such a chained subrequest is always a context prefix.

b) Else, add the Distinguished Name of e to alreadySearched in ChainingResults.

NOTE 2 – alreadySearched only contains context prefixes.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 71

2) If e is of type alias and the derefAliases component of the embedded LDAP SearchRequest is

either derefInSearching or derefAlways, then call Search Alias procedure and then return.

3) If scope of the embedded LDAP SearchRequest is singleLevel, then proceed to step 6).

NOTE 3 – The e cannot be subordinate incomplete at this point since the Check Suitability at the context prefix should

have ascertained that this cannot happen.

4) If scope is baseObject, or if entryOnly is TRUE then continue with this step; otherwise, go to step 5).

 If one of the following is true:

a) e is of type subentry and the LDAP subentries control is included, is recognised and has the

value TRUE; or

b) e is not of type subentry and the LDAP subentries control is absent, has the value FALSE or is

not recognised, then do the following steps:

NOTE 4 – As specified in clause 17.3.3.2, if a Control value has the criticality component set to TRUE and is not

recognised, the request has been rejected.

i) Check ACI. If the operation is disallowed, return.

ii) Apply the filter argument specified in the filter component of the SearchRequest to the

DSE e. Ensure that access to all attributes used in the filter is permitted as defined in

Rec. ITU-T X.501 | ISO/IEC 9594-2. If the filter matches, add the attribute information as

specified in clause 19.3.2.2.3.

Then return.

5) If scope is wholeSubtree (and entryOnly is not TRUE), and in addition one of the following is true:

a) e is of type subentry and the LDAP subentries control is included, is recognised and has the

value TRUE; or

b) e is not of type subentry and the LDAP subentries control is absent, has the value FALSE or is

not recognised, then do the following steps:

i) Check ACI. If the operation is disallowed, go to step 6).

ii) Apply the filter argument specified in the filter component of the SearchRequest to the

DSE e. Ensure that access to all attributes used in the filter is permitted as defined in Rec. ITU-T

X.501 | ISO/IEC 9594-2. If the filter matches, add the attribute information as specified in clause

19.3.2.2.3.

iii) Proceed to step 6).

6) If e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following

components:

– targetObject to the distinguished name of the DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and

nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to nssr;

– accessPoints set to AccessPointInformation derived from the value(s) found in the

nonSpecificKnowledge attribute.

7) Process all DSEs e' that are located immediately subordinate to the target DSE e until all subordinate DSEs

have been processed. If e is within a service-specific administrative area, only those immediately

subordinate DSEs that are part of the same service-specific administrative area shall be processed. If e is

outside a service-specific administrative area, those immediately subordinate DSEs that are part of a

service-specific administrative area shall not be processed. During this loop, if the list of matched entries

in searchResult.entryInformation exceeds the size limit, or time or administrative limit is exceeded

then set limitProblem accordingly in partialOutcomeQualifier and return.

NOTE 4 – The check for size limit is also implicitly applied every time searchResult is updated.

ISO/IEC 9594-4:2020 (E)

72 Rec. ITU-T X.518 (10/2019)

a) If the DSE e' is of type subr, is not of type cp, and is not representing a subordinate entry that is a

service-specific administrative point, then add a Continuation Reference to SRcontinuationList with

the following components:

– targetObject to the distinguished name of the DSE e;

– aliasedRDNs absent;

– operationProgress with nameResolutionPhase set to completed and

nextRDNtoBeResolved absent;

– rdnsResolved absent;

– referenceType set to subr;

– accessPoints set to the access point information contained in the specificKnowledge

attribute of DSE e'.

NOTE 5 – If e' is of both type cp and subr, a search subrequest can be generated potentially from either
the subordinate reference or the supplier knowledge, but not both. This procedure uses the latter (supplier
references found in cp).

b) For all cases:

i) If subset is oneLevel, set entryOnly to TRUE.

ii) Recursively execute Search (I) procedure for target DSE e'.

8) If all subordinates have been processed, return to the Operation Dispatcher for further processing.

19.3.2.2.8 LDAP Search (II) procedure

19.3.2.2.9 Search Alias procedure

This procedure is executed if a DSE of type alias has been encountered during the processing of a search request

(see Figure 21):

1) If subset is baseObject or oneLevel, go to step 4).

2) If aliasedEntryName is a prefix of targetObject or baseObject or any of the previous values of the

targetObject in ChainingArguments.traceInformation, then the alias is excluded from the

Search because this would cause a recursive search with duplicate results.

3) If targetObject or baseObject or any of the previous values of the targetObject in

ChainingArguments.traceInformation is a prefix of aliasedEntryName, then no specific

processing of the alias is required because the aliased subtree will be searched anyway.

NOTE – For both of the above cases, baseObject may not be a prefix of targetObject, due to alias dereferencing.

4) If the search is performed within a service-specific administrative area and if the service-specific

administrative point is not a prefix of aliasedEntryName, then no specific processing of the alias is

required, as the aliased entry is outside the service-specific administrative area.

5) Build a DSP request with the targetObject set to the aliasedEntryName. If subset is oneLevel,

set entryOnly to TRUE. Call the Operation Dispatcher for the request to be locally continued.

6) If the Operation Dispatcher returns a referral error, or busy, or unavailable errors then add (or make and

add) the continuation reference to partialOutcomeQualifier of SearchResult, and return.

7) If the Operation Dispatcher returns other errors, discard it and return.

8) If the Operation Dispatcher returns a SearchResult, then:

i) If the result is signed, add it to uncorrelatedSearchInfo in SearchResult.

ii) If the result is not signed, add it to searchInfo in SearchResult.

And return.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 73

Figure 21 – Search Alias procedure

19.3.2.2.10 Hierarchy Selection procedure (I)

This procedure is executed if a member of a hierarchical group is encountered during the processing of a search request

specifying hierarchy selection.

a) If a hierarchy selection that is not supported by the DSA is present, then return with:

– a serviceError with problem requestedServiceNotAvailable;

– a searchServiceProblem notification attribute with the value id-pr-

unavailableHierarchySelect;

– a serviceType notification attribute having as value the serviceType component of the search-

rule; and

– a hierarchySelectList notification attribute indicating the invalid selection(s).

b) Otherwise, add all the entries defined by the hierarchical selection as defined in clause 19.3.2.2.4. If that

results in no entry being added, i.e., the hierarchy selections only specify non-existing entries, then set the

emptyHierarchySelect global variable.

ISO/IEC 9594-4:2020 (E)

74 Rec. ITU-T X.518 (10/2019)

20 Continuation Reference procedures

The procedures in this clause are called to process the list of continuation references (NRcontinuationList or

SRcontinuationList) created by other procedures.

The Continuation Reference procedures consist of the steps shown in Figures 24, 25 and 26. The first stage is to identify

sets of continuation references from the continuation list that have a common target object component. These have been

created from a set of subordinate or non-specific subordinate references associated with the same entry in the DIT. Within

each of these sets there may be continuation references which occur more than once. The sets should be scanned and any

duplicates found should be discarded.

These sets (each with a different targetObject component) may be processed independently, either sequentially or in

parallel by the DSA, since there is no risk that the same results will be returned from any two sets. However, the processing

of each continuation reference within one set, and of each AccessPointInformation within one continuation

reference, and of each access point within one AccessPointInformation, has to be controlled, or duplicate results

may occur, as described in clause 20.1.

NOTE – Some continuation references may be unusable if the AccessPoint contains a PresentationAddress where all the

NSAP addresses have an unknown structure (see clause 12.3 of Rec. ITU-T X.519 | ISO/IEC 9594-5).

The procedure adopted in the APInfo procedure is to process one by one the set of access points contained in a single

AccessPointInformation. These all point to (copies of) the same naming context (or possibly a set of naming contexts

held in one DSA, in the case of NSSRs). If the first access point produces a result or a hard error, further access points do

not need to be processed. However, if the error is a soft error, i.e., a serviceError (with problem busy, unavailable,

unwillingToPerform, invalidReference, or administrativeLimitExceeded), then the DSA may choose, as

a local option, to process another access point from the set.

Processing of the AccessPointInformation values within one set of continuation references is handled in a uniform

way, irrespective of which continuation reference they originated from. (This is because two DSEs of type subr below a

single entry would produce two continuation references, each containing one AccessPointInformation value,

whereas one DSE of type nssr to the same two subordinates (assuming that they are held in different DSAs) would

produce one continuation reference containing a set of two AccessPointInformation values.)

The accessPointInformation values may be processed either sequentially or in parallel, as described in clause 20.1.

The parallel strategy is more likely to produce duplicate results. Duplicates shall always be discarded.

20.1 Chaining strategy in the presence of shadowing

In the presence of shadowing, a DSA may choose between different strategies when it has to multi-chain a request to

more than one DSA. This choice always occurs if the DSA has to process more than one continuation reference with the

same targetObject. This situation can occur from multi-chaining caused by NSSR decomposition during Name

Resolution (as shown in Figure 22) or from request decomposition during the evaluation of a multiple object operation

(see Figure 23).

The goal of these strategies is to deal with the problem of duplicate results and duplicate processing when shadowed

information is used in multi-chaining of requests (caused by either NSSR or request decomposition). For example, in

Figure 22, DSA 1 multi-chains a request to both DSAs 2 and 3 because of the NSSR held in DSE B. If the use of shadowed

information is allowed, both DSAs 2 and 3 may apply the chained operation to both subtrees starting at X and Y.

Similarly, in Figure 23, DSA 1 multi-chains (as a result of request decomposition) to the two subordinate references held

in DSEs X and Y. Again, if the use of shadowed information is allowed, both DSAs 2 and 3 may apply the chained

operation to both subtrees starting at X and Y.

To deal with this problem of duplication, a DSA may choose one of the following strategies when multi-chaining to

multiple DSA requests with the same targetObject.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 75

Figure 22 – Multi-chaining caused by NSSR during Name Resolution

Figure 23 – Multi-chaining request decomposition using subordinate references

ISO/IEC 9594-4:2020 (E)

76 Rec. ITU-T X.518 (10/2019)

20.1.1 Master only strategy

A DSA may choose this strategy to prevent the usage of shadowed information when performing a parallel or sequential

multi-chaining caused by NSSR decomposition, or request decomposition during a Search or List evaluation. For this

strategy, during a Search or List operation evaluation, the excludeShadows component of the ChainingArguments is

set to TRUE. If NSSRs are encountered during Name Resolution, a DSA may set nameResolveOnMaster to TRUE to

ensure that only a single path is followed. nameResolveOnMaster shall be set to TRUE if NSSRs are encountered and

the operation is one of the Directory modification operations. In either case, only the DSA(s) that hold the master entry

(or entries) relevant to the operation shall perform the operation. This master only strategy can be used during both

parallel, as well as sequential multi-chaining.

NOTE – Setting nameResolveOnMaster to TRUE eliminates the possibility of multiple paths during name resolution by:

1) ignoring shadow entries; and

2) by ensuring that only one DSA may proceed with name resolution in situations where a complex DIT distribution would

otherwise permit more than one to proceed.

This is achieved by allowing only the DSA holding the master entry corresponding to the first nextRDNToBeResolved RDNs of

the target object name to continue with name resolution. Any other DSAs will not be able to proceed even though they may hold

master entries which match more of the target object name.

20.1.2 Parallel strategy

Using this strategy, a DSA sends out all chained requests by parallel multi-chaining. This strategy may be used during

Search or List evaluation, and name resolution of the NSSRs. This will allow the use of shadowed information for

processing of the chained requests, but may result in duplicate executions and duplicate results for the operation. If a DSA

selects this strategy, it shall remove duplicate results from the operation result that it returns.

Because the removal of duplicate results is not possible if a signed result has been requested, a DSA shall not choose this

strategy if signed results are requested during Search evaluation, unless excludeShadows is also set.

20.1.3 Sequential strategy

This strategy avoids duplicate results by using sequential multi-chaining to process the chained (sub)requests of a Search

decomposition or of an NSSR decomposition. Each chained request is processed one after the other.

In the case of NSSR decomposition, if a result or a hard error is returned to a request, further requests do not need to be

chained. If a soft error is returned, a further request may be chained, or the soft error returned to the requester, depending

upon local policy.

In the case of Search evaluation, the exclusions component of the ChainingArguments is set to the set of RDNs that

have already been processed. This is done by incorporating the elements in ChainingResults.alreadySearched to

the exclusions argument of the next chained request. This is the only strategy that completely avoids duplication during

Search evaluation.

A sequential strategy is not defined for List evaluation (although sequential multi-chaining may be used), since a superior

DSA has no way of excluding specific subordinates from being returned in further List subrequests (note that

excludeShadows does not exclude specific subordinates, but rather is a coarse way of excluding all shadow copies).

20.2 Issuing chained subrequests to a remote DSA or LDAP server

Prior to issuing a subrequest, a DSA has to execute a dSABind operation when the DSA has to establish an association

to the remote DSA. Management of associations is outside the scope of the Directory Specifications. An association to

another DSA is considered unavailable if the association cannot be established or the DSA for local reasons decides not

to establish one. In this case, the dSABind has failed. It is a local decision when to stop trying to establish an association

and declare an association as unavailable.

When a DSA tries dSABind to another DSA and receives a directoryBindError, the issuing of the subrequest failed.

20.3 Procedures' parameters

20.3.1 Arguments

These procedures make use of the following arguments:

– the list of continuation references to process in NRcontinuationList (for the Name Resolution Continuation

Reference procedure), and SRcontinuationList (for the List Continuation Reference and Search Continuation

Reference procedures, respectively);

– the CommonArguments of the operation argument;

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 77

– the ChainingArguments.

20.3.2 Results

These procedures create the following results:

– a list of received results/errors of issued chained requests if chaining has been selected;

– an updated list of unprocessed continuation references in continuationList.

20.3.3 Errors

These procedures can return one of the following errors:

– a serviceError with problem outOfScope in the case that a referral would have been created which is

not within scopeOfReferral;

– a serviceError with problem ditError in the case that an invalid knowledge reference has been

detected;

– a nameError with problem noSuchObject in the case that all subrequests from NSSR decomposition

returned unableToProceed;

– any other error that is returned by a chained subrequest;

– a referral in the case that chaining was not selected and operationProgress.nameResolutionPhase

is set to notStarted or proceeding.

20.4 Definition of the procedures

If operationProgress.nameResolutionPhase is set to notStarted or proceeding, the procedure in

clause 20.4.1 (Name Resolution Continuation Reference procedure) shall be followed. The multiple entry interrogation

operations List and Search respectively call the procedures in clauses 20.4.2 and 20.4.3.

20.4.1 Name Resolution Continuation Reference procedure

The Name Resolution Continuation Reference procedure consists of the steps as shown in Figure 24. The basic principle

of this procedure is to sequentially process the set of continuation references created during Name Resolution. The

following steps shall be executed for each continuation reference C contained in NRcontinuationList in a selected order

until all references have been processed or an error or result has been returned. If all references have been processed,

return to the Operation Dispatcher to continue with the Results Merging procedure to process the received result or referral.

1) Check whether chainingProhibited is set. If it is set the DSA is not allowed to chain, then

– if the request is not an ldapTransport request, then according to local policy, either a

serviceError with problem chainingRequired or a referral shall be returned to the Operation

Dispatcher; or

– if the request is an ldapTransport request, then an LDAP referral shall be included in the

ldapTransport result.

2) If chainingProhibited is not set, then check if local policy allows chaining. If chaining is not allowed,

then

– if the request is not an ldapTransport request, return a referral; or

– if the request is an ldapTransport request, then an LDAP referral shall be included in the

ldapTransport result.

 If local policy allows chaining, then continue with the next step.

3) Process each of the Continuation References of the list of Continuation References found in

NRcontinuationList. If there are no more unprocessed Continuation References, then return with

serviceError.

4) Process the next Continuation Reference from NRcontinuationList. If it is an NSSR, then continue at

step 5). If it is not an NSSR, then call the APInfo procedure to process it. Distinguish between the possible

returns of the APInfo procedure:

– If the APInfo procedure returns a null result, continue at step 3) with processing the next Continuation

Reference.

– If the APInfo procedure returns an error, referral or result, then return it.

ISO/IEC 9594-4:2020 (E)

78 Rec. ITU-T X.518 (10/2019)

5) In this case, the Continuation Reference is of type NSSR and the DSA has the choice of doing sequential

or parallel chaining, depending on the local choice of strategy. If the NSSR is to be processed sequentially,

then continue at step 6). If it is to be processed in parallel, then for each of the AccessPointInformation

(API) in the NSSR, the APInfo procedure is called so that they are processed in parallel. Wait for all the

API to be processed, i.e., wait for all the calls to the APInfo procedure to return. Check all the results

received from the call to the APInfo procedure in the following order:

– If all the calls return a serviceError with problem unableToProceed and

partialNameResolution is FALSE, then return nameError.

– If all the calls return a serviceError with problem unableToProceed and

partialNameResolution is TRUE, then in the result set partialName to TRUE,

nameResolutionPhase to completed, set entry suitable (this will be for the lastEntryFound), and

go to the appropriate operation evaluation.

– If one or more results are received, then discard possible duplicates and return the result.

– If an error is received that is not a serviceError (e.g., a nameError), then return an error.

– Otherwise return a referral or serviceError to the Operation Dispatcher, according to local

choice.

6) Choose the next unprocessed API from the set of APIs in the NSSR and continue at step 7). If all the APIs

have been processed, then check if all the calls to the APInfo procedure returned a serviceError with

problem unableToProceed.

– If they did and partialNameResolution is FALSE, then the entry cannot be found and a

nameError is returned. If they did and partialnameResolution is TRUE, then in the result set

partialName to TRUE, nameResolutionPhase to completed, set entry suitable (this will be for

the lastEntryFound), and go to the appropriate operation evaluation. If they did not, then according to

local choice, return a referral or serviceError.

7) Call the APInfo procedure. Distinguish between the possible results from the call to APInfo procedure:

– If a serviceError with problem unableToProceed is received, try another access point. Continue

at step 6).

– If a serviceError with problem busy, unavailable, unwillingToPerform or

invalidReference is received, then the indicated problem may be of a transient nature and it is a

local choice to try and chain the request on to another DSA. If it is chosen to try another DSA, then

continue at step 6); otherwise, return a referral or serviceError, according to local choice.

– If an error other than serviceError with problem busy, unavailable, unwillingToPerform,

invalidReference or unableToProceed is received, that error should be returned to the

Operation Dispatcher. If the serviceError is invalidReference, this shall be converted into

ditError before being returned to the requester.

– If a result or referral is received, return it to the Operation Dispatcher.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 79

Figure 24 – Name Resolution Continuation Reference procedure

ISO/IEC 9594-4:2020 (E)

80 Rec. ITU-T X.518 (10/2019)

20.4.2 List Continuation Reference procedure

The List Continuation Reference procedure consists of the steps shown in Figure 25. This procedure is invoked when a

List request cannot be satisfied in the local DSA and a set of continuation references have been added to

SRcontinuationList for chaining or referral. All these continuation references (CR) have the same targetObject. Those

CRs with referenceType nssr have one or more AccessPointInformation values (APIs), whereas other type CRs

have only one API in them. Each of these APIs is extracted and considered for chaining or referral.

Figure 25 – List Continuation Reference procedure

The following steps shall be executed:

1) If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to continue

with the Results Merging procedure.

2) If the chainingProhibited flag in CommonArguments.serviceControls is set or the DSA decides

not to do any chaining because of its local operational policy, then the DSA shall directly return to the

Operation Dispatcher to continue with the Results Merging procedure.

3) Create a set of AccessPointInformation values from the accessPoints component of every

continuation references in the SRcontinuationList.

Use either a parallel or sequential strategy to process each API as follows:

i) Call the APInfo procedure with the next API in the set.

ii) If a result is returned then add it to listInfo if it is not signed, or add it to uncorrelatedListInfo

if it is signed.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 81

iii) If the return is an error or null, it means that APInfo has already tried all access points in the API

without success. Based on local operational and security policy, either ignore and proceed to the next

API, or add a continuation reference based on this API to the partialOutcomeQualifier.

NOTE – It is not plausible to get a referral back from APInfo. Any "referral" should come in the form of

unexplored in partialOutcomeQualifier.

4) When all APIs are processed, return to the Operation Dispatcher.

20.4.3 Search Continuation Reference procedure

The Search Continuation Reference procedure consists of the steps shown in Figure 26. This procedure is invoked when a

Search request cannot be satisfied in the local DSA and a set of continuation references have been added to

SRcontinuationList for chaining or referral. The procedure is very similar to the List Continuation Reference procedure.

The difference is that, in this case, the continuation references in SRcontinuationList may have different targetObject

values. Thus, the continuation references are sorted into sets of continuation references with the same targetObject.

Also, the use of exclusions in chaining arguments and of alreadySearched in chaining results is defined, as this is

an important strategy for search. The use of exclusions and alreadySearched is applied to processing each set of

continuation references with the same targetObject.

ISO/IEC 9594-4:2020 (E)

82 Rec. ITU-T X.518 (10/2019)

Figure 26 – Search Continuation Reference procedure

The following steps shall be executed:

1) If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to continue

with the Results Merging procedure.

2) If the chainingProhibited flag in CommonArguments.serviceControls is set or the DSA decides

not to do any chaining because of its local operational policy, then the DSA shall directly return to the

Operation Dispatcher to continue with the Results Merging procedure.

3) Sort the continuation references in SRcontinuationList into sets that have the same targetObject.

Continuation references of type ditBridge are not included in such sets, but each such continuation

reference constitutes a set of its own. Within each set, remove any duplicates.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 83

4) For each subset of continuation references, create a set of AccessPointInformation values from the

accessPoints component of every continuation reference in the subset, and choose either the sequential

or parallel strategy for further processing. If the parallel strategy is chosen, then skip the steps below that

are indicated only applicable to the sequential strategy.

a) If the sequential strategy is chosen, maintain a local variable localExclusions for each set of

continuation references that have the same targetObject. Initially, localExclusions is set to the

exclusions of the incoming chaining request (if it exists), and all locally searched subtrees directly

under targetObject.

b) If the sequential strategy is used, compare the targetObject to all the elements of localExclusions, and

remove those elements which do not contain targetObject as a prefix. These are the relevant

exclusions for the current target object.

c) Extract all the APIs from all the continuation references of the current target object's set.

d) Loop through each API. For each API:

i) Call APInfo.

ii) If a result is returned, then add the result to searchInfo if it is not signed, or add it to

uncorrelatedSearchInfo if it is signed. If the sequential strategy is used, update

localExclusions using alreadySearched in the incoming reply, and also merge the

alreadySearched in the incoming reply to this DSA's

ChainingResults.alreadySearched. Then proceed to the next API.

iii) If an error or null is returned, it means that APInfo has already tried all access points in the API

without success. Based on the local operational and security policy, either ignore and proceed to

the next API, or add a continuation reference based on this API to the

partialOutcomeQualifier.

NOTE – It is not plausible to get a referral back from APInfo. Any "referral" should come in the form of
unexplored in partialOutcomeQualifier.

e) When all APIs are processed, proceed to the next set of continuation references with the same

targetObject.

5) When all the continuation references are processed, return to the Operation Dispatcher.

20.4.4 APInfo procedure

This procedure is called to process an AccessPointInformation, which contains one or more access points

(see Figure 27). They are processed one by one until either a result or error is returned. If the error is a service error such

that trying another access point may succeed, then additional access points are tried as long as local operational policy

permits:

1) Perform loop detection. If a loop is detected, then:

– if the request is not an ldapTransport request, return serviceError with problem

loopDetected; or

– if the request is an ldapTransport request, an ldapTransport result with an embedded LDAP

result with resultCode set to loopDetected.

 Otherwise, continue at step 2).

2) Process each of the access points from the access point information. If all have been processed, return a

null result. If there is any access point to process, continue at step 3).

3) Check whether local policy allows chaining to this access point. This check should take into account the

settings of the service controls and chaining arguments (e.g., chainingProhibited, preferChaining,

whether the access point is within the localScope or not, excludeShadows). If the local policy or the

setting of the respective service controls do not allow the use of this particular access point, then ignore

the access point and continue at step 2). If the access point can be used, continue at step 4).

4) If local policy selected the master only strategy, then set the chaining argument excludeShadows to

TRUE.

 If nameResolutionPhase is not completed and the strategy is to continue name resolution on master

entries, then set nameResolveOnMaster to TRUE.

 The chaining argument nameResolveOnMaster shall be set to TRUE if either of the following is true:

– in the incoming chaining argument nameResolutionPhase is proceeding and

nameResolveOnMaster is TRUE; or

ISO/IEC 9594-4:2020 (E)

84 Rec. ITU-T X.518 (10/2019)

– the operation is one of the modification operations, the referenceType of the chaining request to be

issued is NSSR, and a parallel strategy is used.

NOTE – This method of using nameResolveOnMaster is to prevent modification operations being applied

multiple times due to the presence of NSSR.

5) Build a chained request and try to issue it:

a) Perform loop avoidance by checking if an item with the same targetObject and

operationProgress occurs in traceInformation of the received ChainingArguments. If the

resulting request [(as described in step 5), c)] would result in a loop, then the DSA shall either return

a serviceError with problem loopDetected to the requesting DUA/LDAP client/DSA or ignore

the access point and try the next access point by continuing at step 2).

b) If the request or subrequest to be chained is the result of executing a referral, then an extra check for

loop avoidance is required. Check if an item with the same targetObject, operationProgress

and target DSA occurs in referralRequests. If so, then take the action specified in a). If not, then add

a new TraceItem to referralRequests with the following components:

– targetObject and operationProgress set to the value of the chained request/subrequest;

– dsa set to the name of the DSA to which the request/subrequest is to be chained.

c) If the AccessPointInformation point to an LDAP server, then continue at step 9). Otherwise,

after a successful Bind, the DSA shall issue a chained operation of the same operation type as the

operation that is processed with the following parameters:

– the operation argument within the chained operation is set as for the operation argument

received;

– ChainingArguments.originator set as received;

– ChainingArguments.targetObject set to the targetObject of the continuation

reference;

– ChainingArguments.operationProgress set to the value of operationProgress of the

continuation reference;

– ChainingArguments.traceInformation set to trace information as updated by the Request

Validation procedure if the continuation reference is not of type ditBridge, otherwise, the

component shall be absent;

– ChainingArguments.aliasDereferenced to the updated value of the locally updated

aliasDereferenced;

– ChainingArguments.returnCrossRefs to a local choice;

– ChainingArguments.referenceType to the value of referenceType of the continuation

reference;

– ChainingArguments.timeLimit to the value of the received timeLimit;

– chainingArguments.exclusions is set to either the relevant exclusions for the current target

object if called by the Search Continuation Reference procedure, or absent if the APInfo

procedure was called by the Name Resolution or the List Continuation procedures;

– SecurityParameters set to the value of the received SecurityParameters.

6) If the request could not be issued successfully, then continue at step 7). If it could be issued successfully,

continue at step 8).

7) It is a local choice whether or not to continue. If the DSA chooses to continue, then the error is ignored

and the next access point will be tried. Continue at step 2). If the DSA decides not to try another access

point, then it is a choice of local policy whether to return a respective referral or a serviceError to

the caller of the procedure.

8) If the request could be issued successfully, then the DSA shall wait for the reply and process it:

a) If a result is received, the result is returned to the caller of the procedure.

b) If a serviceError with problem busy, unavailable, unwillingToPerform or

invalidReference is received, continue at step 7).

c) If referral is received and returnToDUA is set to TRUE, then the receiving DSA shall not act on

the Referral, but shall return the Referral to the requester.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 85

d) If a referral is received and returnToDUA is set to FALSE, then the same local policy

considerations apply as in step 3) (taking into account service controls, chaining arguments, chaining

strategy, etc.). If it is decided not to dereference the referral, then return the referral to the

caller. If it is decided to dereference the referral, then empty the NRcontinuationList, place the

Continuation Reference as received in the Referral in NRcontinuationList and call the Name Resolution

Continuation Reference procedure. This may produce a result, referral, serviceError or another

error. Whatever is received from the call of the Name Resolution Continuation Reference procedure

shall be given back to the caller.

e) If any other error occurs, it shall be given back to the caller.

9) If the incoming request is an ldapTransport request, the embedded LDAP request shall be unpacked

and forwarded unchanged to the LDAP server with the following exceptions:

a) The messageID component shall be replaced with a value valid for the LDAP connection in question.

b) If the incoming request has the entryOnly component set to TRUE in the ChainingArguments or

if the operation is a Search operation with the scope component set to singleLevel and an alias

entry within this DSA was encountered as an immediate subordinate to the baseObject, then the

scope component shall be set to baseObject.

10) If the incoming request has originated from a DUA, the DAP request shall be converted to a corresponding

LDAP request as specified in clause 20.6 and then forwarded to the LDAP server.

ISO/IEC 9594-4:2020 (E)

86 Rec. ITU-T X.518 (10/2019)

Figure 27 – APInfo procedure

20.5 Abandon procedures

20.5.1 DAP/DSP Abandon procedure

This procedure is invoked if an abandon or chainedAbandon request is received either to be handled locally or chained

to another DSA. It consists of the following steps as shown in Figure 28:

1) When an abandon or chainedAbandon request is received, which references an unknown operation, an

abandonFailed with problem noSuchOperation shall be returned to the requester.

2) If the request to be abandoned has already been replied to, and the DSA has retained information to know

so, an abandonError with problem tooLate may be returned to the requester.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 87

3) If the Abandon request is not valid, i.e., asks to abandon a request that is not an interrogation request, an

abandonFailed with problem cannotAbandon shall be returned to the requester.

4) If a DSA has outstanding chained (sub)requests when receiving a valid Abandon request for the original

request, and the DSA decides to attempt abandoning, it may send Abandon requests for none, some or all

outstanding (sub)requests for the operation in question, and then wait for the replies to Abandon request

and the outstanding (sub)requests. At any time during this operation, the DSA may send an Abandon result

and an abandonFailed to the requester and then discard replies to the issued Abandon requests and the

outstanding (sub)requests as they arrive.

 If the DSA decides not to send replies to the requester until there are no more outstanding (sub)requests, it

may optionally send an abandonedFailed error to the requester if all the issued abandon requests were

replied to with abandonedFailed errors and if no local abandon operation has been performed.

 If an AbandonedFailed error is returned to the requester, the original request shall be treated as if the

Abandon request had never been received.

Figure 28 – DAP/DSP Abandon procedure

20.5.2 LDAP Abandon procedure

When an LDAP abandon request is to be handled by a DSA functioning as both the boundary DSA for the LDAP client

issuing the request and the LDAP requester against an LDAP server serving the request, it shall forward the

AbandonRequest to the LDAP server in question.

When an LDAP abandon request received by a boundary DSA is to be forwarded to or beyond an adjacent DSA, it shall

be wrapped into an ldapTransport request and chained to the DSA in question.

A DSA acting as LDAP requester receiving a DSP request with an embedded LDAP AbandonRequest, shall forward

the request unchanged to the LDAP server, except that the MessageID has to be changed to have a legal value for the

LDAP application-association in question.

ISO/IEC 9594-4:2020 (E)

88 Rec. ITU-T X.518 (10/2019)

20.6 DAP request to LDAP request procedure

20.6.1 Introduction

The DAP request to LDAP request procedure is used when a DAP request that is not an ldapTransport request is to

be converted to an LDAP request. This happens if the name resolution is not completed by the LDAP requester and the

name resolution is to be continued in an LDAP server. If the name resolution is completed by the LDAP requester for an

addEntry request, but the new entry is to be added to an LDAP server (see clause 20.6.8), then this procedure also

applies.

20.6.2 General on conversion

a) If the DSA des not support a critical extension or if it is not able to reflect a critical extension in the LDAP

protocol, it shall return a serviceError with problem unavailableCriticalExtension.

b) Attribute values of certain attributes requires a binary encoding (see IETF RFC 4522).

c) The MessageID of an LDAP request shall set as required on the LDAP connection. The DSA shall

maintain information about the relationship between this MessageID and the DAP InvokeId in the

incoming DAP request until the result of the LDAP request is returned or a time-out has occurred

(see clause 20.7.1).

d) An attribute received on the DAP shall be converted to an LDAP attribute. The LDAP information needed

for the conversion is provided as part of the of the attribute type specification for the type of attribute. If

such information or similar information is not available, the conversion is not possible. The behaviour in

this situation is dependent on the type of operation to be converted.

e) An attribute type specification received on the DAP shall be converted to an LDAP counterpart with syntax

OID, as described in clause 9.2.25 of Rec. ITU-T X.520 | ISO/IEC 9594-6 and which may either be an

object identifier in dot-decimal format or a descriptor. The LDAP information needed for the conversion

is provided as part of the attribute type specification for the attribute type. If such information or similar

information is not available, the conversion is not possible. The behaviour in this situation is dependent on

the type of operation to be converted.

f) An EntryInfomationSelection (see clause 7.6 of Rec. ITU-T X.511 | ISO/IEC 9594-3) received in a

request on the DAP shall be converted to LDAP AttributeSelection and typesOnly LDAP

SearchRequest components as follows:

– The typesOnly component of the LDAP SearchRequest shall be set to TRUE if the infoTypes

component of EntryInfomationSelection of the DAP request is set to attributeTypesOnly.

Otherwise, it shall be set to FALSE.

– If the EntryInformationSelection.contextSelection and/or

EntryInformationSelection.returnContext are present and are defined as non-critical, they

shall be ignored. Otherwise, an error is returned as specified b) above.

– If the EntryInformationSelection.familyReturn is present and is defined as non-critical, it

shall be ignored. Otherwise, an error is returned as specified b) above.

– Other components of EntryInfomationSelection of the DAP request shall be converted as

specified by clause 4.5.1.8 of IETF RFC 4511.

g) The pagedResults component of a list or search request does not affect a resulting LDAP

SearchRequest, but shall be retained to allow proper handling of the LDAP results.

20.6.3 Converting a DAP read request

A DAP read request shall be converted to an LDAP SearchRequest.

The baseObject component of the LDAP search request shall be the distinguished name given in the object

component of the DAP read request converted as specified in IETF RFC 4514.

The scope component of the LDAP search request shall be set to baseObject.

The derefAliases component of the LDAP search request shall be set to neverDerefAliases if the

dontDereferenceAliases service control option is set in the DAP read request. Otherwise, it shall be set to

derefFindingBaseObj.

The sizeLimit component of the LDAP search request shall be set to zero.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 89

The timeLimit component of the LDAP search request shall,

– if the DAP request has not been chained, be set to zero if the timeLimit service control of the DAP

request is not present, or, if this service control is present, be set to its value; or

– if the DAP request has been chained, be set to zero if the timeLimit component of the

ChainedArguments is not present, or, if this component is present, be set to its value minus the current

time with the result rounded up to the nearest integer.

The typesOnly component of the LDAP search request shall be set as specified in clause 20.6.2 item f).

The filter component of the LDAP search request shall consist of a single element by taking the present alternative

with the value of objectClass.

The attributes component of the LDAP search request shall be set as specified in clause 20.6.2 item f).

20.6.4 Converting a DAP compare request

The DAP compare request shall be converted to an LDAP CompareRequest.

The entry component of the LDAP CompareRequest shall be the distinguished name given in the object component

of the DAP compare request converted as specified in IETF RFC 4514.

The ava component of the LDAP CompareRequest shall be the AttributeValueAssertion data of the DAP

compare request converted to LDAP format as specified in clause 4.1.6 of IETF RFC 4511

The CommonArguments of the DAP request shall be ignored, except for the noSubtypeMatch service control option. If

this service control option is set, then a serviceError with problem notSupportedByLDAP required shall be returned.

20.6.5 Handling and converting a DAP abandon request

Based on the retained information about outstanding operation for the LDAP server in question, an LDAP requester shall

check the validity according to the procedures in clause 20.5.1, steps 1) to 3) and if any of the steps apply, return the

appropriated reply.

If the above does not apply an LDAP AbandonRequest shall be forwarded to the LDAP server. The MessageID of the

LDAP AbandonRequest shall be the MessageID corresponding to the InvokeId component of the DAP request to be

abandoned.

When forwarding an LDAP AbandonRequest to an LDAP server, a timer shall be started with a locally defined time

value. If an LDAPResult is returned from the LDAP server for the operation to be abandoned before the timer expires, it

shall discard possible result(s) for that operation and return:

– an abandoned error with the problem component absent shall be returned for the abandoned operation;

and

– an abandon result shall be returned for the Abandon operation.

20.6.6 Converting a DAP list request

A DAP list request shall be converted to an LDAP SearchRequest.

The baseObject component of the LDAP search request shall be the distinguished name given in the object

component of the DAP list request.

The scope component of the LDAP search request shall be set to singleLevel.

The derefAliases component of the LDAP search request shall be set to neverDerefAliases if the

dontDereferenceAliases service control option is set in the DAP read request. Otherwise, it shall be set to

derefFindingBaseObj.

The sizeLimit component of the LDAP search request shall be set to zero if the sizeLimit service control is not

present in the DAP request. Otherwise, it shall be set to the value specified in the sizeLimit service control in the DAP

request.

The timeLimit component of the LDAP search request shall,

– if the DAP request has not been chained, be set to zero if the timeLimit service control of the DAP

request is not present or, if this service control is present, be set to its value; or

ISO/IEC 9594-4:2020 (E)

90 Rec. ITU-T X.518 (10/2019)

– if the DAP request has been chained, be set to zero if the timeLimit component of the

ChainedArguments is not present or, if this component is present, be set to its value minus the current

time with the result rounded up to the nearest integer.

The typesOnly component of the LDAP search request shall be set to FALSE.

The filter component of the LDAP search request shall consist of a single element by taking the present alternative

with the value of objectClass.

The attributes component of the LDAP search request shall be set to noattrs as specified in clause 4.5.1.8 of IETF

RFC 4511.

20.6.7 Converting a DAP search request

A DAP search request shall be converted to an LDAP SearchRequest.

The baseObject component of the LDAP search request shall be the converted distinguished name given in the

baseObject component of the DAP search request.

The scope component of the LDAP search request shall be set according to subset component of the DAP request.

The derefAliases component of the LDAP search request shall be set to:

– neverDerefAliases if the dontDereferenceAliases service control option is set in the DAP read

request and the searchAliases component of the DAP search request is set to FALSE.

– derefInSearching if the dontDereferenceAliases service control option is set in the DAP read

request and the searchAliases component of the DAP search request is set to TRUE.

– derefFindingBaseObj if the dontDereferenceAliases service control option is not set in the DAP

read request and the searchAliases component of the DAP search request is set to FALSE.

– derefAlways if the dontDereferenceAliases service control option is not set in the DAP read

request and the searchAliases component of the DAP search request is set to TRUE.

The sizeLimit component of the LDAP search request shall be set to zero if the sizeLimit service control is not

present in the DAP request. Otherwise, it shall be set to the value specified in the sizeLimit service control in the DAP

request.

The timeLimit component of the LDAP search request shall,

– if the DAP request has not been chained, be set to zero if the timeLimit service control of the DAP

request is not present, or, if this service control is present, be set to its value; or

– if the DAP request has been chained, be set to zero if the timeLimit component of the

ChainedArguments is not present, or, if this component is present, be set to its value minus the current

time with the result rounded up to the nearest integer.

The typesOnly component of the LDAP search request shall be set as specified in clause 20.6.2 item f)

The filter component of the LDAP search request shall be set as follows:

– If the filter component is absent in the DAP request or has the value and:{}, then the filter

component of the LDAP request shall consist of a single element by taking the present alternative with

the value of objectClass.

– If the filter component is present in the DAP request, then the LDAP filter component shall be

constructed to have the same effect. Possible context information in the DAP filter shall be ignored, unless

it is marked critical (see clause 20.6.2 item a)).

The attributes component of the LDAP search request shall be set as specified in clause 20.6.2 item f).

20.6.8 Converting a DAP addEntry request

A DAP addEntry request shall be converted to an LDAP AddRequest if

– the targetSystem component is not present in the DAP addEntry request; or

– the targetSystem component is present in the DAP addEntry request, the immediate superior entry of

the new entry is located within the LDAP requester, the targetSystem component is an LDAP access

point and the DSA supports the targetSystem extension.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 91

The entry component of the LDAP AddRequest shall be the converted distinguished name given in the object

component of the DAP addEntry request.

The attributes component of the LDAP AddRequest shall be the set of attributes as given in the entry component of

the DAP addEntry request converted as specified in clause 20.6.2 d).

If the targetSystem component is present in the DAP addEntry request and the immediate superior entry of the new

entry is not located within the LDAP requester, then a serviceError with problem

unavailableCriticalExtension shall be returned.

20.6.9 Converting a DAP removeEntry request

A DAP removeEntry request shall be converted to an LDAP DelRequest with a value being the converted

distinguished name given in the object component of the DAP list request.

20.6.10 Converting a DAP modifyEntry request

A DAP modifyEntry request shall be converted to an LDAP ModifyRequest.

The object component of the LDAP ModifyRequest shall be the converted distinguished name given in the object

component of the DAP modifyEntry request.

If the EntryModification data type of the DAP request includes an alter alternative and the LDAP server is not

known to support the LDAP extended feature specified in IETF RFC 4525, it shall return a serviceError with problem

notSupportedByLDAP.

If the EntryModification data type of the DAP request includes a resetValue alternative, it shall return a

serviceError with problem notSupportedByLDAP.

The changes component of the LDAP ModifyRequest shall be converted to the changes component of the DAP

modifyEntry as shown below:

– An addAttribute or addValues alternative of the DAP request shall be converted to a change

component of the LDAP ModifyRequest where the operation subcomponent shall take the value add

and the modification subcomponent shall hold the converted attributes specified by the DAP request.

– A removeAttribute alternative of the DAP request shall be converted to a change component of the

LDAP ModifyRequest where the operation subcomponent shall take the value delete and with an

empty modification subcomponent shall hold the converted attributes specified by the DAP request.

– A removeValues alternative of the DAP request shall be converted to a change component of the LDAP

ModifyRequest where the operation subcomponent shall take the value delete and the

modification subcomponent shall hold the converted attributes specified by the DAP request.

– A replaceValues alternative of the DAP request shall be converted to a change component of the

LDAP ModifyRequest where the operation subcomponent shall take the value replace and the

modification subcomponent shall hold the converted attributes specified by the DAP request.

If the selection component included in the DAP modifyEntry request is present, it shall be ignored unless

selectionOnModify extension is marked as critical (see clause 20.6.2, item a).

20.6.11 Converting a DAP modifyDN request

A DAP modifyDN request shall be converted to an LDAP ModifyDNRequest

The entry component of the LDAP modifyDN request shall be the converted distinguished name given in the object

component of the DAP search request.

The newrdn component of the LDAP modifyDN request shall be the RDN given in the newRDN component of the DAP

request converted according to IETF RFC 4514.

The deleteoldrdn component of the LDAP modifyDN request shall be set to false, if the deleteOldRDN component

of the DAP request is absent. Otherwise, it shall be set to the same value as in the deleteOldRDN component of the DAP

request.

The newSuperior component of the LDAP request shall not be present if the newSuperior component is not present

in the DAP request. Otherwise, the newSuperior component of the LDAP request shall be the converted distinguished

name of the DAP request. This conversion may be performed in the case where the LDAP requester does not support the

newSuperior extension.

ISO/IEC 9594-4:2020 (E)

92 Rec. ITU-T X.518 (10/2019)

20.7 LDAP result to DAP reply procedure

20.7.1 Introduction

The LDAP result to DAP reply procedure is used when the result of a converted DAP request is received with a non-error

result code included.

20.7.2 General on conversion

An LDAP reference is converted to a ContinuationReference value, where

a) The targetObject component shall hold the converted distinguished name held in the LDAP referral. If

this name is not included in the referral, then this component shall be an empty sequence.

b) The aliasedRDNs component shall be absent.

c) the operationProgress component shall have an OperationProgress value as follows:

– the nameResolutionPhase component shall be set to notStarted; and

– the nextRDNToBeResolved component shall be absent.

d) The rdnsResolved component shall be absent.

e) The referenceType component shall be set to cross.

f) The accessPoint component shall hold a single AccessPointInformation value with a single

MasterOrShadowAccessPoint value with the following:

– The AccessPoint value shall have the following components:

i) the ae-title component shall be an empty distinguished name;

ii) the address component shall have the pSelector, sSelector and the tSelector

subcomponents absent; and

– The category component shall take the value master or be absent.

– The chainingRequired component shall take the value FALSE or be absent.

g) The entryOnly components.

h) The exclusions component shall be absent.

i) The returnToDUA component shall have the value FALSE or be absent.

20.7.3 Converting LDAP search results to DAP read result

The DAP read result shall be created on the receipt of the final SearchResultDone if it is a reply to a DAP read

request and an error was not encountered.

If an LDAP SearchResultEntry is the result of a DAP read request, this result is converted to a DAP read result

after the receipt of the final SearchResultDone:

– the entry component of the read result shall be the converted attributes in the attributes component

of the LDAP result.

– the modifyRights component of the read result shall not be included.

– the objectName component of the LDAP result shall be ignored.

20.7.4 Converting LDAP compare result to a DAP compare result

The DAP compare result shall be created on the receipt of the final SearchResultDone if an error was not encountered.

The CompareResultData value shall have the following component:

– The name component, when present, shall take the value in the targetObject component of the

ChainingArguments value. If that value is equal to the object component of the ListArgumentData

value, it may be absent. Otherwise, it shall be present.

– The matched component shall have the value TRUE if the resultCode of the LDAPResult has the value

compareTrue. If resultCode of the LDAPResult has the value compareFalse, this component shall

have the value FALSE.

– The fromEntry component shall be absent or has the default value.

– The matchedSubtype component shall be absent.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 93

– The CommonResults value shall be present with the securityParameters component included, if the

result is to be signed (see clauses 9.2.1 and 9.2.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3.

20.7.5 Converting LDAP search results to DAP list result

The DAP list result shall be created on the receipt of the final SearchResultDone if it is a reply to a DAP list

request and an error was not encountered. The listInfo alternative of the ListResultData value shall be taken.

The name component, when present, shall take the value in the targetObject component of the ChainingArguments

value. If that value is equal to the object component of the ListArgumentData value, it may be absent. Otherwise, it

shall be present.

NOTE – An LDAP server does not report if an alias has been dereferenced within the LDAP server.

Each LDAP SearchResultEntry is converted to an element of the subordinates component as follows:

a) The rdn subcomponent shall be the first RDN component of the objectName of the LDAP result.

b) The aliasEntry and fromEntry subcomponents shall be absent or encoded with their default values.

c) The partialOutcomeQualifier value shall be set as follows:

– The limitProblem component shall be present if the LDAP SearchResultDone has a

resultCode equal to either timeLimitExceeded, sizeLimitExceeded and

adminLimitExceeded and shall encode accordingly.

– The unexplored component shall be present if one or more SearcResultReference are received

and shall then hold the set of converted references.

– The unavailableCriticalExtensions component shall be present and have the value TRUE if

the LDAP SearchResultDone has a resultCode equal to unavailableCriticalExtensions.

Otherwise, it shall be absent or take the value FALSE.

– The unknownErrors components shall be absent.

– The queryReference component shall be coded according to the DSP paging requirements.

– The overspecFilter component shall be absent.

– The notification component shall be absent.

– The entryCount component shall be absent

d) The CommonResults value shall set as specified in clause 7.4 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

20.7.6 Converting LDAP search results to DAP search result

The DAP search result shall be created on the receipt of the final SearchResultDone if it is a reply to a DAP search

request and an error was not encountered. The searchInfo alternative of the SearchResultData value shall be taken.

The name component, when present, shall take the value in the targetObject component of the ChainingArguments

value. If that value is equal to the object component of the SearchArgumentData value, it may be absent. Otherwise, it

shall be present.

NOTE – An LDAP server does not report if an alias has been dereferenced within the LDAP server.

Each LDAP SearchResultEntry is converted to an element of the entries component as follows:

a) The name subcomponent shall be the converted objectName of the LDAP result.

b) The fromEntry subcomponent shall be absent or encoded with its default value.

c) The information subcomponent shall take the attributeType alternative if the LDAP

SearchRequest had the typeOnly component set to true and shall then hold the converted attribute

type of the LDAP SearchResultEntry. Otherwise, the attribute alternative shall be taken and shall

then hold the converted attribute of the LDAP SearchResultEntry.

d) The incompleteEntry, partialName and derivedEntry components shall be absent or encoded with

their default values.

e) The partialOutcomeQualifier value shall be filled as specified in item c) of clause 20.7.5.

f) The CommonResults value shall set as specified in clause 7.4 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

20.7.7 Converting LDAP AddResponse to DAP addEntry result

The DAP addEntry result shall be created on the receipt of the SearchResultDone if an error was not encountered.

ISO/IEC 9594-4:2020 (E)

94 Rec. ITU-T X.518 (10/2019)

The information component of the AddEntryResult value shall be taken if the result is to be signed (see

clauses 11.1.1 and 11.1.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the null alternative shall be taken.

20.7.8 Converting LDAP DelResponse to DAP removeEntry result

The DAP removeEntry result shall be created on receipt of the SearchResultDone if an error was not encountered.

The information component of the RemoveEntryResult value shall be taken if the result is to be signed (see

clauses 11.2.1 and 11.2.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the null alternative shall be taken.

20.7.9 Converting LDAP ModifyResponse to DAP modifyEntry result

The DAP modifyEntry result shall be created on receipt of the SearchResultDone if an error was not encountered.

The information component of the ModifyEntryResult value shall be taken if the result is to be signed with the

entry component absent (see clauses 11.3.1 and 11.3.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the null

alternative shall be taken.

20.7.10 Converting LDAP ModifyDNResponse to DAP modifyDN result

The DAP modifyDN result shall be created on receipt of the SearchResultDone if an error was not encountered.

The information alternative of the ModifyDNResult value shall be taken if the result is to be signed. The newRDN

component shall have the value given in the corresponding DAP request (see clauses 11.4.1 and 11.4.3) of

Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the null alternative shall be taken.

21 Results Merging procedure

The Results Merging procedure in Figure 29 is called following one of the Continuation Reference procedures. This

procedure removes duplicates if the result is not signed, and if there are additional continuation references in

partialOutcomeQualifier.unexplored. Then the relevant Continuation Reference procedure(s) is called, if local

operational policy permits:

1) If the operation is a List operation, continue at step 2); if the operation is a Search operation, then continue

at step 3); otherwise, return the result that was supplied as the input parameter to the Results Merging

procedure.

2) The operation is a List operation. Remove all duplicates, giving preference to master information over

shadow information.

 If the operation result was generated locally and it contains Continuation References, then these will not

be used for chaining but returned to the user. In this case, continue at step 6).

 If the operation result was received as the result of a Chained List operation, then the result might contain

Continuation References. In this case, check if the preferChaining service control was set. If TRUE, the

Continuation References should be used for chaining by the DSA. Continue at step 4).

3) The operation is a Search operation. Remove all duplicates, giving preference to master information over

shadow information. If there is a limit problem, then return the result. Otherwise, continue at step 4).

4) Process each Continuation Reference that is in the partialOutcomeQualifier.unexplored of the

result of any chained operation. If the local policy decides not to use it for chaining, then ignore it and

choose another Continuation Reference. If the local policy allows the use of the Continuation Reference

for chaining, then perform the following:

 Check nameResolutionPhase that is supplied in the Continuation Reference. If it is notStarted or

proceeding, then add it to the list of Continuation References that will be supplied to the Name Resolution

Continuation procedure (NRcontinuationList). If nameResolutionPhase is completed, then add the

Continuation Reference to the list of Continuation References that is supplied to the subrequest

Continuation procedure (SRcontinuationList).

 Proceed until all Continuation References have been processed.

5) If there are Continuation References to be processed in SRcontinuationList, check the operation type. If the

operation is a List operation, call the List Continuation Reference procedure and continue at step 2). If the

operation is a Search operation, call the Search Continuation Reference procedure and continue at step 3).

 If SRcontinuationList is empty, then check if there are Continuation References in NRcontinuationList. If

so, call the Name Resolution Continuation Reference procedure and continue at step 3).

 If both continuation lists are empty, continue at step 6).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 95

6) Check whether the result is empty. If it is not empty, then return it. If it is empty, either return a null result

if the access control and local policy allows, or return an appropriate error.

In case a DSA receives search or list results from other DSAs and such results have parameters unknown to the DSA, the

uncorrelated results shall be returned. Otherwise, the DSA shall perform merging, if the search results are not signed, or

if the DSA is an initial performer that is allowed to remove the signatures (see clause 7.9 of Rec. ITU-T X.511 |

ISO/IEC 9594-3).

A DSA which has received unsigned, uncorrelated results from a DSA that was not able to perform consolidation, shall

perform merging, if it has the proper knowledge of all parameters of the uncorrelated results.

If a DSA receives unsigned results from other DSAs, and possibly also has a local result and when generating an entry

count to be returned in the entryCount of the PartialOutcomeQualifier generated by the DSA, the DSA shall take

the sum of all entryCount values received, the local result and the number of entries received from DSAs that did not

return an entryCount value and then compensate for duplicate entries. If the DSA is the initial performer and paged

results have been requested, then it shall also include the entry counts for signed results from other DSAs.

If paged results are requested and no limit problem has been encountered by any DSA, then the DSA shall take the exact

choice for the entryCount parameter. The same value shall be given for each returned page.

If one or more DSAs have encountered a limit problem, then:

– if all the DSAs that have encountered a limit problem have returned an entryCount with the exact or

bestEstimate choice, it shall take the bestEstimate choice if just one DSA had taken that choice;

otherwise, it shall take the exact choice;

– if just one DSA that has encountered a limit problem and has returned an entryCount with the choice

lowEstimate or did not return an entryCount, it shall take the lowEstimate choice.

ISO/IEC 9594-4:2020 (E)

96 Rec. ITU-T X.518 (10/2019)

Figure 29 – Results Merging procedure

22 Procedures for distributed authentication

This clause specifies the procedures necessary to support the directory distributed authentication services. These services,

and hence the procedures, are categorized as:

– requester authentication, which is supported in either an unprotected (simple identity based) or secure

(based upon digital signatures) form; and

– results authentication which is similarly protected (again based upon digital signatures).

22.1 Requester authentication

22.1.1 Identity-based authentication

The identity-based authentication service enables DSAs to authenticate the original requester of information for the

purpose of effecting local access controls. DSAs wishing to exploit this service shall adopt the following procedure:

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 97

– For a DSA requiring to authenticate a DAP or LDAP request, the DSA acquires the distinguished name of

the requester through the Bind procedures at the time a DUA association (DUA to DSA) or LDAP client

association (LDAP client to DSA) is established. Successful conclusion of these procedures does not in

any way prejudice the level of authentication that may subsequently be required for processing operations

using that association.

– The DSA with which the DUA association exists shall insert the requester's distinguished name in the

initiator field of the ChainingArguments for all subsequent chained operations to other DSAs.

– A DSA, on receiving a chained operation, may satisfy that operation, or not, depending upon the

determination of access rights (a locally defined mechanism). If the outcome is not satisfactory, a

securityError with problem insufficientAccessRights may be returned.

22.1.2 Signature-based requester authentication

This signature-based requester authentication service enables a DSA to authenticate (in a secure manner) the requester of

a particular service request. The procedures to be effected by a DSA in realizing this service are described in this clause.

A DSA, on receiving a signed request from another DSA, shall remove that DSA's signature prior to processing the

operation. Assuming the result of any signature verification proves to be satisfactory, the DSA will continue to progress

the operation. If, during processing, the DSA needs to perform chaining, the argument set for each associated chained

operation shall be constructed as follows:

– the DSA forms an argument set which may be optionally signed; the argument set comprises the incoming

signed argument set together with a modified ChainingArguments.

In the event that the DSA is able to contribute information to the response, requester authentication, based upon the signed

service request, may be used for the determination of access rights to that information.

If a DSA receives an unsigned service request for information which will only be released subject to requester

authentication, a securityError with problem protectionRequired shall be returned.

22.2 Results authentication

This service is provided to enable requesters of directory operations (DUAs or DSAs) to verify (in a secure manner using

digital signature techniques) the source of results. The results authentication service may be requested irrespective of

whether requester authentication is to be used.

The results authentication service is initiated using the signed value of the protectionRequest component as contained

within the argument set of directory operations; a DSA receiving an operation with this option selected may then

optionally sign any subsequent results. The signed option in the protection request serves as an indication, to the DSA, of

the requester's preference; the DSA may, or may not, actually sign any subsequent results.

In the case where a DSA performs chaining, the DSA has a number of options in terms of the form of results sent back to

the requester, namely:

a) return a composite response (signed or unsigned) to the requester;

b) return a set of two or more uncollated partial responses (signed or unsigned) to the requester; within this

set zero or more members may be signed and zero or one unsigned. In the event that an unsigned partial

result is present, this member may in fact be a collation of one or more unsigned partial responses which

have been received from other DSAs, contributed by this DSA, or both.

In the case where a DSA performs a join of related entries, then the DSA performing the join may sign the result.

ISO/IEC 9594-4:2020 (E)

98 Rec. ITU-T X.518 (10/2019)

SECTION 6 – KNOWLEDGE ADMINISTRATION

23 Knowledge administration overview

To operate a widely distributed Directory with an acceptable degree of consistency and performance, procedures are

required to create, maintain and extend the knowledge held by each DSA. The following mechanisms together are used

to administer a DSA's knowledge.

a) Hierarchical and non-specific hierarchical operational bindings – These procedures and protocols are

defined in clauses 24 and 25. They are used to create and maintain subordinate references, non-specific

subordinate references, and immediate superior references, as well as the context prefix information for

naming contexts. These operational bindings are established between master DSAs holding naming

contexts that are hierarchically related to each other as immediate subordinate to immediate superior. The

procedures may be triggered as a side effect of modifying the RDN of, or adding or removing an entry,

whose immediate superior is not held in the same DSA that holds the entry.

b) Shadowing operational bindings – These procedures and protocols are defined in Rec. ITU-T X.525 |

ISO/IEC 9594-9. They are used to create and maintain knowledge references in two ways. First, as a side

effect of establishing (or terminating) shadowing agreements, access points are added (or removed) from

the consumerKnowledge and optionally the secondaryShadow operational attributes. This information

may then be used by the procedures and protocols discussed above to update the subordinate reference in

the superior master DSA and the immediate superior reference in the subordinate master DSA. Second,

the DISP propagates the knowledge references held by master DSAs to shadow consumer DSAs.

c) Cross-references – Cross-reference distribution is a feature of the DSP. Its use to create and maintain cross-

references is summarized in clause 23.2.

NOTE – Mechanisms for initializing and maintaining the superior reference and myAccessPoint are outside the

scope of this Directory Specification.

23.1 Maintenance of knowledge references

This clause describes how the DOP is used to maintain DSA operational attributes that express knowledge. A simple

example of the relationship between knowledge attributes and the protocols employed to maintain them is described in

Annex E.

23.1.1 Maintenance of consumer knowledge by supplier and master DSAs

A consumer reference is expressed through a value of the consumerKnowledge attribute, held by a shadow supplier

DSA and associated with the context prefix for a naming context; a supplier reference, through a value of the

supplierKnowledge attribute, held by a shadow consumer DSA and also associated with the context prefix for a naming

context. Both attributes are held in DSEs of type cp. A value of each one of these attributes is created on establishment

of the Shadow Operational Binding, and updated on modification of the Shadow Operational Binding.

A supplier DSA may obtain the information to construct values of the secondaryShadows attribute if the optional

secondaryShadows component of its ShadowingAgreementInfo with a consumer is TRUE. In this case, whenever

the consumer DSA detects that the set of DSAs holding copies of the commonly usable replicated area (its consumers,

or, in turn, consumers of its consumers, etc., to whatever depth secondary shadowing might be carried) has changed

(by addition, modification or deletion of access points), it communicates this new information

(a set-of SupplierAndConsumers) by means of a modifyOperationalBinding operation, as described in

Rec. ITU-T X.525 | ISO/IEC 9594-9.

A supplier DSA maintains its own secondaryShadows attribute associated with the context prefix as follows:

a) The set of SupplierAndConsumers received from a consumer by means of a

modifyOperationalBinding operation may be used to create, or replace values of the attribute. The

supplier component of SupplierAndConsumers represents the access point of a consumer DSA (or of

its consumers, etc. depending upon the depth of secondary shadowing); the consumers component, the set

of the consumer's consumers (or of their consumers, etc. depending upon the depth of secondary

shadowing).

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 99

b) Every consumer providing its supplier with a modifyOperationalBinding operation containing a set

of SupplierAndConsumers, includes the following values: the values of its secondaryShadows

attribute, and a newly constructed value. This value is constructed using its own access point,

myAccessPoint, (as the supplier component), and the values of the consumers' access points, contained

within the consumerKnowledge attribute, that represent consumers holding commonly usable shadows

(as the consumers component).

Recursive use of this procedure permits a master DSA for a naming context to know all about its secondary shadow

consumer DSAs holding commonly usable replicated areas derived from the naming context. This information is then

available for the maintenance of subordinate, non-specific subordinate and immediate superior references.

23.1.2 Maintenance of subordinate and immediate superior knowledge in master DSAs

A subordinate reference is expressed through a value of the specificKnowledge attribute, held in a DSE of type subr

by the DSA holding the immediately superior naming context to that referenced; an immediate superior reference, through

a value of the specificKnowledge attribute, held in a DSE of type immSupr by the DSA holding the immediately

subordinate naming context to that referenced. A value of each one of these attributes is created in the superior and

subordinate master DSAs on establishment of the HOB, and updated on modification of the HOB.

A subordinate master DSA provides a superior master DSA the information to construct its subordinate reference via the

accessPoints component of the SubordinateToSuperior parameter it transfers to the superior in the DOP. The

information included in accessPoints is determined by values of attributes held by the subordinate DSA as follows:

a) The value of the myAccessPoint attribute (held in the root DSE) is used to form the element in

accessPoints with category having the value master.

b) The values of the consumerKnowledge and secondaryShadows (both held in the subordinate context

prefix DSE) are used to form additional elements in accessPoints with category having the value

shadow.

A superior master DSA provides a subordinate master DSA with the information to construct its immediate superior

reference via the contextPrefixInfo component of the SuperiorToSubordinate parameter it transfers to the

subordinate in the DOP. This component is a value of type SEQUENCE OF Vertex, containing a sequence of elements

corresponding to the path from the root of the DIT to the subordinate context prefix. For one of these elements,

corresponding to the context prefix of the immediately superior naming context, the optional component accessPoints

will be present. The subordinate DSA holds this information as a specificKnowledge attribute in the DSE, of type

immSupr, corresponding to this element of contextPrefixInfo. The information included in accessPoints by the

superior DSA is determined by values of attributes held by the superior DSA as follows:

a) The value of the myAccessPoint attribute (held in the root DSE) is used to form the element in

accessPoints with category having the value master.

b) The values of the consumerKnowledge and secondaryShadows (both held in the superior context

prefix DSE) are used to form additional elements in accessPoints with category having the value

shadow.

NOTE – Only those access points corresponding to consumer DSAs receiving commonly usable replicated areas should

be selected by the superior and subordinate DSAs from their consumerKnowledge attributes for inclusion in

accessPoints. The procedures for the construction of secondaryShadows guarantee that these access points will

identify shadow DSAs holding commonly usable replicated areas.

23.1.3 Maintenance of subordinate and immediate superior knowledge in consumer DSAs

A shadow consumer DSA contracting with its supplier to receive the immediate superior and subordinate knowledge

associated with a unit of replication, in effect, contracts to have its immediate superior and subordinate references

maintained by its shadow supplier DSA via the DISP.

NOTE – For certain units of replication specifications, it may be necessary for the consumer DSA to contract to receive

extendedKnowledge in order that subordinate knowledge may be provided to it by its supplier.

23.2 Requesting cross reference

To improve the performance of the Directory System, the local set of cross references can be expanded using ordinary

Directory operations. If a DSA supports the DSP, it may request another DSA (which also supports the DSP) to return

those knowledge references which contain information about the location of naming contexts related to the target object

name of an ordinary Directory operation.

If the returnCrossRefs component of the ChainingArguments is set to TRUE, the crossReferences component

of the ChainingResults may be present, consisting of a sequence of cross reference items.

ISO/IEC 9594-4:2020 (E)

100 Rec. ITU-T X.518 (10/2019)

If a DSA is not able to chain a request to the next DSA, a referral is returned to the originating DSA. If the

returnCrossRefs component of ChainingArguments was TRUE, the referral may contain additionally the context

prefix of the naming context which the referral refers to. The contextPrefix component is absent if the referral is based

on a non-specific subordinate reference. The cross reference returned by a referral is based on knowledge held by the

DSA which generated the referral.

In both cases (chaining result and referral) an administrative authority, through its DSA, may elect to ignore the request

for returning cross references.

23.3 Knowledge inconsistencies

The Directory has to support consistency-checking mechanisms to guarantee a certain degree of knowledge consistency.

NOTE – In certain circumstances, a knowledge reference will be accurate (not invalid in the senses described below) but not valid

for use by a DSA because the DMD of the referenced DSA does not wish it to be contacted at all by the referencing DSA (e.g., a

DSA which has somehow acquired a cross reference to the referenced DSA) or does not wish it to be contacted in a particular role

(e.g., as the master DSA for a naming context).

23.3.1 Detection of knowledge inconsistencies

The kind of inconsistency and its detection varies for the different types of knowledge references:

a) Cross and Subordinate references – This type of reference is invalid if the referenced DSA does not hold

a naming context or a replicated area derived from the naming context with the context prefix contained

in the reference. This inconsistency will be detected during the Name Resolution process by inspection of

the operationProgress and referenceType components of ChainingArguments.

b) Non-specific Subordinate references – This type of reference is invalid if the referenced DSA does not

hold a local naming context with the context prefix contained in the reference minus the last RDN. The

consistency check is applied as above.

c) Superior references – An invalid superior reference is one which does not form part of a reference path to

the root. The maintenance of superior references shall be done by external means and is outside the scope

of this Directory Specification.

NOTE – It is not always possible to detect an invalid superior reference.

d) Immediate Superior references – This type of reference is invalid if the referenced DSA does not hold a

naming context or a replicated area derived from the naming context with context prefix contained in the

reference. Furthermore, usage of this type of reference is only valid when the operationProgress

component of ChainingArguments has the value notStarted or proceeding. This inconsistency will

be detected during the Name Resolution process by inspection of the operationProgress and

referenceType components of ChainingArguments.

e) Supplier references – This type of reference, which identifies the supplier of a replicated area and

optionally the master for the naming context from which the replicated area is derived, is invalid if the

referenced DSA is not the shadow supplier for the DSA using the reference (when the referenceType

component of ChainingArguments has the value supplier), or if the referenced DSA is not the master

for the naming context (when referenceType has the value master). This inconsistency will be detected

during the Name Resolution and operation evaluation phases of operation processing by inspection of the

referenceType component of ChainingArguments.

23.3.2 Reporting of knowledge inconsistencies

If chaining is used in performing a Directory request, all knowledge inconsistencies will be detected by the DSA which

holds the invalid knowledge reference, through receiving a serviceError with problem invalidReference.

If a DSA returns a referral which is based on an invalid knowledge reference, the requester will be returned a

serviceError with problem invalidReference if it uses the referral. How the error condition will be propagated to

the DSA which stores the invalid reference is not within the scope of this Directory Specification.

23.3.3 Treatment of inconsistent knowledge references

After a DSA has detected an invalid reference, it should try to re-establish knowledge consistency. For example, this can

be done by simply deleting an invalid cross reference or by replacing it with a correct one which can be obtained using

the returnCrossRefs mechanisms.

The way in which a DSA actually handles invalid references is a local matter and outside the scope of this Directory

Specification.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 101

24 Hierarchical operational bindings

A hierarchical operational binding is used to represent the relationship between two DSAs holding two naming contexts,

one immediately subordinate to the other. In the case of an HOB, the superior DSA holds a subordinate reference to the

naming context held by the subordinate DSA; the subordinate DSA holds an immediate superior reference to the naming

context held by the superior DSA. The operational binding ensures that the appropriate knowledge information is

exchanged and maintained between the two DSAs so that both DSAs are able to behave during the process of Name

Resolution and Operation Evaluation as defined in clauses 18 and 19.

24.1 Operational binding type characteristics

24.1.1 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of

this type are:

a) the role of the master DSA for the superior naming context, the superior DSA (associated with abstract

role "A"); and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with

abstract role "B").

24.1.2 Agreement

The agreement information exchanged during the establishment of the hierarchical operational binding is a value of

HierarchicalAgreement. This contains the relative distinguished name of the new context prefix (the rdn component)

and the distinguished name of the entry immediately superior to the new naming context (the immediateSuperior

component). This information shall be provided by the DSA that initiates the HOB.

HierarchicalAgreement ::= SEQUENCE {

 rdn [0] RelativeDistinguishedName,

 immediateSuperior [1] DistinguishedName,

 ... }

24.1.3 Initiator

24.1.3.1 Establishment

The establishment of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can

be caused by an Add Entry operation with the subordinate DSA specified in the targetSystem extension, or by

administrative intervention. Initiation by the subordinate DSA (which connects a locally existing entry or subtree to the

global DIT) is caused by administrative intervention.

24.1.3.2 Modification

The modification of a hierarchical operational binding can be initiated by either role. The superior DSA may issue the

modification as a result of a modification of the superior context prefix information. This can be as a result of any of the

modification operations, or by administrator intervention.

Either DSA may modify the agreement as a result of a modification of the RDN of the context prefix entry of the

subordinate naming context. The superior DSA initiates this modification because of a relative distinguished name being

modified higher up the DIT, or because of administrative intervention. The subordinate DSA initiates modification

because of a ModifyDN of a context prefix, or because of administrative intervention.

Either DSA may also modify the HOB if the access point information for its naming context changes.

24.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can

be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry

operation that removes the context prefix entry of the subordinate naming context, or by administrative intervention.

24.1.4 Establishment parameters

The establishment parameters for the two roles of an HOB, superior DSA and subordinate DSA, differ. The establishment

parameter for the superior DSA role is a value of SuperiorToSubordinate, the parameter for the subordinate role, a

value of SubordinateToSuperior.

ISO/IEC 9594-4:2020 (E)

102 Rec. ITU-T X.518 (10/2019)

24.1.4.1 Superior DSA establishment parameter

The establishment parameter issued by the superior DSA, a value of SuperiorToSubordinate, provides the

subordinate DSA with information regarding DIT vertices superior to the context prefix of the new naming context (which

includes the immediate superior reference) and optionally user and operational attributes for the subordinate context prefix

entry and copies of user and operational attributes from the entry immediately superior to the new context prefix.

SuperiorToSubordinate ::= SEQUENCE {

 contextPrefixInfo [0] DITcontext,

 entryInfo [1] SET SIZE (1..MAX) OF

 Attribute{{SupportedAttributes}} OPTIONAL,

 immediateSuperiorInfo [2] SET SIZE (1..MAX) OF

 Attribute{{SupportedAttributes}} OPTIONAL,

 ... }

24.1.4.1.1 Context prefix information

The contextPrefixInfo component of SuperiorToSubordinate is a value of type DITcontext, this being a

sequence of Vertex values.

DITcontext ::= SEQUENCE OF Vertex

Vertex ::= SEQUENCE {

 rdn [0] RelativeDistinguishedName,

 admPointInfo [1] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,

 subentries [2] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,

 accessPoints [3] MasterAndShadowAccessPoints OPTIONAL,

 ... }

The contextPrefixInfo component is the sequence of RDNs that form the distinguished name of the immediate

superior of the new context prefix, each RDN (given by the rdn component) optionally accompanied by additional

information.

The optional admPointInfo component of a Vertex signals that the DIT vertex is an administrative point and provides,

at least, its administrativeRole operational attribute.

The subentry information associated with an administrative point is provided by the subentries component of a

Vertex, which is a set of one or more SubentryInfo values. Each SubentryInfo value is composed of the RDN of

the subentry (the rdn component) and the attributes of the subentry (the info component).

SubentryInfo ::= SEQUENCE {

 rdn [0] RelativeDistinguishedName,

 info [1] SET OF Attribute{{SupportedAttributes}},

 ... }

The optional accessPoints component of a Vertex signals that the vertex corresponds to the context prefix of the

immediately superior naming context. The superior uses this component to provide the subordinate the information

required for its immediate superior reference.

NOTE – The master access point within accessPoints is the same as that passed in the accessPoint parameter of the Establish

and Modify Operational Binding operations.

24.1.4.1.2 Entry information

The optional entryInfo component of SuperiorToSubordinate is a set of attributes establishing the content of the

new context prefix entry.

24.1.4.1.3 Immediate superior entry information

The optional immediateSuperiorInfo component of SuperiorToSubordinate is a copy of a set of attributes, in

particular objectClass and entryACI, from the entry immediately superior to the new context prefix.

NOTE – This component may be used by the subordinate for optimizing the evaluation of a List request which generates an empty

ListResult for a base object which is the immediate superior of the subordinate context prefix [see note of clause 19.3.1.2.2,

item 2)].

24.1.4.2 Subordinate DSA establishment parameter

The establishment parameter issued by the subordinate DSA, a value of SubordinateToSuperior, provides the

superior DSA with information regarding the subordinate naming context.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 103

SubordinateToSuperior ::= SEQUENCE {

 accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,

 alias [1] BOOLEAN DEFAULT FALSE,

 entryInfo [2] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,

 subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,

 ... }

The accessPoints component of SubordinateToSuperior is used by the subordinate to provide the superior the

information required for its subordinate reference.

NOTE 1 – The master access point within accessPoints is the same as that passed in the accessPoint parameter of the Establish

and Modify Operational Binding operations.

The alias component of SubordinateToSuperior is used to signal to the superior that the subordinate naming context

consists of a single alias entry.

The entryInfo component of SubordinateToSuperior consists of a copy of a set of attributes, in particular

objectClass and entryACI, but also, if applicable, the administrativeRole operational attribute, from the new

context prefix entry.

NOTE 2 – The first two attributes may be used by the superior for optimizing the evaluation of a List or one-level Search request

whose base object is the entry immediately superior to the subordinate context prefix, while the last attribute is used to avoid

unwanted progression of a search operation into or out from a service-specific administrative area.

The subentries component of SubordinateToSuperior is used by the subordinate to pass subentries containing

prescriptive ACI to the superior.

24.1.5 Modification parameters

For modifications of an HOB, the modification parameter of the superior role,

SuperiorToSubordinateModification, is SuperiorToSubordinate, with the restriction that the entryInfo

component may not be present; that of the subordinate role is SubordinateToSuperior.

SuperiorToSubordinateModification ::= SuperiorToSubordinate (

 WITH COMPONENTS {..., entryInfo ABSENT })

These parameters are identical (with the restriction noted above) to the corresponding establishment parameters and are

used to signal changes occurring to information provided in the establishment parameters subsequent to the establishment

of the HOB.

If any component of SuperiorToSubordinate (or subsequently SuperiorToSubordinateModification) or

SubordinateToSuperior experiences a change (e.g., the contextPrefixInfo component of

SuperiorToSubordinate), the corresponding component of the modification parameter (e.g., the

contextPrefixInfo component of SuperiorToSubordinateModification) shall be provided in its entirety in the

Modify Operational Binding.

24.1.6 Termination parameters

Neither role provides a termination parameter when terminating an HOB.

24.1.7 Type identification

The hierarchical operational binding is identified by the object identifier assigned when defining the

hierarchicalOperationalBinding OPERATIONAL-BINDING information object in clause 24.2.

24.2 Operational binding information object Class definition

This clause defines the hierarchical operational binding type using the OPERATIONAL-BINDING information object class

defined in Rec. ITU-T X.501 | ISO/IEC 9594-2.

hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {

 AGREEMENT HierarchicalAgreement

 APPLICATION CONTEXTS {{directorySystemAC}}

 ASYMMETRIC

 ROLE-A { -- superior DSA

 ESTABLISHMENT-INITIATOR TRUE

 ESTABLISHMENT-PARAMETER SuperiorToSubordinate

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER SuperiorToSubordinateModification

 TERMINATION-INITIATOR TRUE }

 ROLE-B { -- subordinate DSA

ISO/IEC 9594-4:2020 (E)

104 Rec. ITU-T X.518 (10/2019)

 ESTABLISHMENT-INITIATOR TRUE

 ESTABLISHMENT-PARAMETER SubordinateToSuperior

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER SubordinateToSuperior

 TERMINATION-INITIATOR TRUE }

 ID id-op-binding-hierarchical }

24.3 DSA procedures for hierarchical operational binding management

In the following procedures, a new DSE or a mark (i.e., a state indication associated with an item of information) created

by a DSA shall be stored in stable storage. By doing so, it is possible for the two DSAs following the procedures below

to maintain a consistent understanding of the parameters of the HOB in the presence of communication and end system

failures.

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e., not

initiating the establishment or modification) may provide the DSA playing the initiating role with information

(e.g., operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the

operational binding in such cases.

24.3.1 Establishment procedure

24.3.1.1 Establishment initiated by superior DSA

If a DSA evaluates an Add Entry operation with a different DSA specified in the targetSystem extension, it shall

establish a hierarchical operational binding according to the following procedure. If a DSA, for administrative reasons,

wishes to establish an HOB with a subordinate DSA, and it supports the DOP HOB protocol, then the following procedure

shall be followed:

1) The superior DSA creates a new DSE of type subr, with the name of the new entry, and marks this new

DSE as being added. The superior DSA generates a unique bindingID and stores it with the new DSE.

2) The superior DSA shall send an Establish Operational Binding operation to the subordinate DSA

containing the following parameters:

a) bindingType set to hierarchicalOperationalBindingID;

b) SuperiorToSubordinate establishment parameter with contextPrefixInfo and entryInfo

components present; all other parameters are optional;

c) HierarchicalAgreement with the immediateSuperior component set to the distinguished

name of the immediate superior of the new entry and the rdn component set to the RDN of the new

entry;

d) the bindingID, myAccessPoint and valid parameters, as appropriate.

3) If the subordinate DSA accepts the operation, it creates the required DSEs of types glue, subentry,

admPoint, rhob and immSupr, as appropriate, to represent the contextPrefixInfo; a DSE of type cp

and entry or alias to represent the new context prefix object or alias entry; and, as appropriate, a DSE

of type rhob and entry to represent the immediateSuperiorInfo. It stores the bindingID with the

DSE of the new context prefix entry and returns a SubordinateToSuperior parameter to the superior

DSA.

 If the subordinate DSA refuses the operation, it returns an Operational Binding Error with the appropriate

problem value set.

 If the naming context already exists and the bindingID values for the existing and the new context are

the same, the subordinate DSA has already created the requested naming context, in which case the

subordinate DSA returns a result to the superior. If the values are not equal, an Operational Binding Error

with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge

inconsistency that requires correction by an administrator.

4) If the superior DSA receives an error, it deletes the marked DSE of type subr and returns an error for the

Add Entry operation.

 If the superior DSA receives a result, it removes the mark from the DSE that represents the subr and

returns a result for the Add Entry operation.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 105

 If any failure occurs (e.g., communication or end system), the superior DSA shall repeat the steps starting

at step 2) until a result or error has been received for each pending establishment of a hierarchical

operational binding for which it is the initiator. If the establishment is as a result of an Add Entry operation,

and the requester aborts the operation (e.g., by releasing or aborting the application association) before the

establishment is complete, the superior DSA shall ignore this event and complete the establishment (which

may or may not be successful). In this case, the user will not be informed of the outcome of the Add Entry

operation.

NOTE 1 – Marking the subordinate aids recovery and concurrency control. Another user cannot add an entry that is

already marked, and the DSA repeats the establish operational binding for all marked subordinates after a failure.

NOTE 2 – With the above procedure, knowledge has only transient inconsistency. It is a local matter how the superior

DSA treats unrelated operations that read the subordinate reference while it is marked.

24.3.1.2 Establishment initiated by subordinate DSA

The subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an administrator

to connect a subtree of entries held in the DSA to a certain point in the global DIT. In this case, the subordinate DSA shall

establish an HOB according to the following procedure:

1) The subordinate DSA either has a DSE of type cp as part of an existing naming context or it creates a new

one. It marks the DSE being added, and generates a unique bindingID and stores it with the context

prefix DSE.

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing

the following parameters:

a) bindingType set to hierarchicalOperationalBindingID;

b) SubordinateToSuperior establishment parameter, as appropriate;

c) HierarchicalAgreement with the immediateSuperior component set to the distinguished

name of the immediate superior of the new entry and the rdn component set to the RDN of the new

entry;

d) the bindingID, myAccessPoint and valid parameters, as appropriate.

 If the superior DSA refuses the operation, it returns an Operational Binding Error with the appropriate

problem value set.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or

returns an operationalBindingError with problem roleAssignment.

4) The superior DSA checks that the requested RDN for the new context prefix is not already in use. If no

matching RDN is found using locally held information, but the immediately superior DSE is of type nssr,

the procedure in clause 19.1.5 is followed. If no matching RDN is discovered using this procedure, the

superior DSA creates a DSE of type subr, stores the bindingID with it, and returns a result.

 If a subordinate reference is found with this RDN, the two values of bindingID are compared. If they

are equal, a result is returned. The SuperiorToSubordinate parameter returned by the superior DSA

shall not contain the entry component. If the two values of bindingID are not equal, an

operationalBindingError with problem invalidAgreement is sent; this means the superior DSA

has a permanent knowledge inconsistency that requires correction by an administrator.

 If a matching RDN is found by exploring an NSSR, an operationalBindingError with problem

invalidAgreement is sent; this also means the superior DSA has a permanent knowledge inconsistency

that requires correction by an administrator.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is a local

matter to determine the fate of the entry information from which the context prefix DSE was derived.

 If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry, admPoint,

rhob and immSupr, as appropriate, to represent the contextPrefixInfo; and, as appropriate, a DSE of

type rhob and entry to represent the immediateSuperiorInfo. The mark of the context prefix DSE

is removed.

 If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps

starting at step 2) until a result or error has been received for each pending establishment of a hierarchical

operational binding for which it is the initiator.

24.3.2 Modification procedure

The following procedures are defined for the modification of an HOB which has been initiated by the procedure detailed

in clause 24.3.1.

ISO/IEC 9594-4:2020 (E)

106 Rec. ITU-T X.518 (10/2019)

24.3.2.1 Modification procedure initiated by superior

This procedure may be invoked as a result of modification operations, as described in clause 19.1, or as a result of

administrative intervention (e.g., to convey changes to the myAccessPoint, agreement or valid parameters of the

HOB). Also, if a superior DSA detects changes to the contextPrefixInfo or immediateSuperiorInfo components

of the SuperiorToSubordinate value that it supplied to the subordinate DSA, it shall propagate the new information

to the subordinate DSA employing the following procedure:

1) Mark the DSE of type subr as being modified, and if this modification is as a result of a modification to

the RDN of the subordinate context prefix entry, a new DSE of type subr is added and marked as being

added.

2) The superior DSA produces a new bindingID value from the existing value by incrementing its version

component. Using this new bindingID, it sends a Modify Operational Binding operation to the

subordinate DSA with the modification parameter SuperiorToSubordinateModification.

3) The subordinate DSA checks the identifier component of the bindingID. If it has no such agreement

with the superior, or if the version component is less than the version of the HOB, it shall return an

operationalBindingError with problem invalidAgreement.

4) The subordinate DSA may accept the modification to the HOB, modify or rebuild the DSEs representing

the context prefix information, update the version component of its bindingID and return a result.

Alternatively, it may return an error and then terminate the agreement.

5) If the superior DSA receives a result, the modification is completed. If this modification is the result of a

modification to the RDN of the subordinate context prefix entry, the new DSE, having type subr and

marked as being added, has its mark removed, and the old DSE, marked as being modified, is deleted. If

not, the mark being modified is simply removed.

 If the superior DSA receives an error, the modification has failed. The mark being modified is removed. If

this modification is the result of a modification to the RDN of the subordinate context prefix entry, the

new DSE, having type subr and marked as being added, is removed. If not, the measures taken are outside

the scope of this Directory Specification.

 If any failure occurs (e.g., communication or end system), the superior DSA shall repeat the steps starting

at step 2) until a result or error has been received for each pending modify of a hierarchical operational

binding for which it is the initiator. If the modification is as a result of a ModifyDN operation modifying

the RDN of the subordinate context prefix entry, and the requester aborts the operation (e.g., by releasing

or aborting the application association) before the modification is complete, the superior DSA shall ignore

this event and complete the modification (which may or may not be successful). In this case, the user will

not be informed of the outcome of the ModifyDN operation.

24.3.2.2 Modification procedure initiated by subordinate

This procedure may be invoked as a result of administrative intervention (e.g., to convey changes to the myAccessPoint,

agreement or valid parameters of the HOB). Also if a subordinate DSA detects changes to the

SubordinateToSuperior value that it supplied to the superior DSA, it shall propagate the new information to the

superior DSA employing the following procedure:

1) Mark the DSE of type cp as being modified.

2) The subordinate DSA produces a new bindingID value from the existing value by incrementing its

version component. Using this new bindingID, it sends a Modify Operational Binding operation to the

superior DSA with the modification parameter SubordinateToSuperior.

3) The superior DSA checks the identifier component of the bindingID. If it has no such agreement

with the subordinate, or if the version component is less than the version of the HOB, it shall return an

operationalBindingError with problem invalidAgreement.

4) The superior DSA may accept the modification to the HOB, modify the DSE representing the subordinate

reference and return a result. Alternatively, it may return an error and then terminate the agreement.

 In addition, if the superior DSE of the DSE (of type subr) to be renamed is of type nssr, the DSA shall

follow the procedure defined in clause 19.1.5 (Modify Operations and NSSRs) to ensure that the new name

of the entry is unambiguous, before responding to the HOB modification request.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 107

5) If the subordinate DSA receives a result, the modification is completed and it removes the mark. If it

receives an error, the measures taken are outside the scope of this Directory Specification.

 If any failure occurs (e.g., communication or end system), the subordinate DSA shall repeat the steps

starting at step 2) until a result or error has been received for each pending modify of a hierarchical

operational binding for which it is the initiator.

24.3.3 Termination procedure

The following procedures are defined for termination of an HOB which has been initiated by the procedure detailed in

clause 24.3.1.

24.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative

intervention. The following procedure shall be followed:

1) The superior DSA marks the DSE representing the subordinate reference being deleted, so that the

subordinate reference is no longer used during Name Resolution.

2) The superior DSA sends a Terminate Operational Binding operation for the hierarchical operational

binding to the subordinate DSA. The version component of the bindingID is omitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about

the hierarchical operational binding and sends a result, unless the identifier component of the

bindingID is unknown, in which case an operationalBindingError with problem invalidID, is

returned. It is a local matter to determine the fate of any entry information associated with the subordinate

naming context.

4) If the superior DSA receives a result or an operationalBindingError with problem invalidID, it

shall delete the DSE marked being deleted that represents the subordinate reference associated with the

hierarchical operational binding and deletes any information about the operational binding.

 If any failure occurs (e.g., communication of end system), the superior DSA shall repeat the steps starting

at step 2) until a result or error has been received for each pending termination of a hierarchical operational

binding for which it is the initiator.

24.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry

within the subordinate naming context, the context prefix entry, or as a result of administrative intervention. The following

procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being deleted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational

binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the DSE that represents the

subordinate reference associated with the hierarchical operational binding, deletes any information about

the operational binding and sends a result, unless the identifier component of the bindingID is

unknown, in which case an operationalBindingError with problem invalidID, is returned.

4) If the subordinate DSA receives a result or an operationalBindingError with problem invalidID,

it shall delete any information about the operational binding.

NOTE – The fate of the entry information of naming context is a matter local to the subordinate DSA. Since renaming

(i.e., moving) a naming context is not allowed by the Modify DN operation, an administrator might, for example,

terminate the HOB, select another context prefix for the naming context and reconnect it to another part of the DIT

(i.e., establish a new HOB).

 If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps

starting at step 2) until a result or error has been received for each pending termination of a hierarchical

operational binding for which it is the initiator.

24.4 Procedures for operations

The operations that can be executed in the cooperative state of a hierarchical operational binding are those defined within

the directorySystemAC application context.

The procedures that the DSA involved in a hierarchical operational binding shall follow are defined in clauses 16 to 22.

ISO/IEC 9594-4:2020 (E)

108 Rec. ITU-T X.518 (10/2019)

24.5 Use of application contexts

To establish, modify or terminate a hierarchical operational binding using the protocol and procedures of this Directory

Specification, a DSA shall use the operationalBindingManagementAC application context.

25 Non-specific hierarchical operational binding

A non-specific hierarchical operational binding is used to represent the relationship between two DSAs holding two

naming contexts, one immediately subordinate to the other. In the case of an NHOB, the superior DSA holds a non-

specific subordinate reference to the naming context held by the subordinate DSA; the subordinate DSA holds an

immediate superior reference to the naming context held by the superior DSA. The operational binding ensures that the

appropriate knowledge information is exchanged and maintained between the two DSAs so that both DSAs are able to

behave during the process of name resolution and operation evaluation as defined in clauses 18 and 19.

25.1 Operational binding type characteristics

25.1.1 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of

this type are:

a) the role of the master DSA for the superior naming context, the superior DSA (associated with abstract

role "A"); and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with

abstract role "B").

25.1.2 Agreement

The agreement information exchanged during the establishment of the non-specific hierarchical operational binding a

value of NonSpecificHierarchicalAgreement contains only the distinguished name of the entry immediately

superior to the new naming context (the immediateSuperior component). This information shall be provided by the

DSA that initiates the NHOB.

NonSpecificHierarchicalAgreement ::= SEQUENCE {

 immediateSuperior [1] DistinguishedName,

 ... }

NOTE – How the subordinate DSA determines that the name of the new naming context is unambiguous is outside the scope of

this Directory Specification. The name will be unambiguous if correctly assigned by the relevant naming authority and if no other

DSA holds the same name as a master entry.

25.1.3 Initiator

25.1.3.1 Establishment

The establishment of a non-specific hierarchical operational binding can be initiated only by the subordinate DSA role.

Initiation by the subordinate DSA (which connects one or more locally existing entries or subtrees to the global DIT) is

caused by administrative intervention.

25.1.3.2 Modification

The modification of a non-specific hierarchical operational binding can be initiated by either role. The superior DSA may

issue the modification as a result of a modification of the superior context prefix information. This can be as a result of

any of the modification operations, or by administrator intervention.

Either DSA may also modify the NHOB if the access point information for its naming context (or one of its immediately

subordinate naming contexts in the case of the subordinate role) changes.

25.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can

be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry

operation that removes the final context prefix entry held by the subordinate immediately subordinate to the

immediateSuperior component of the agreement or by administrative intervention.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 109

25.1.4 Establishment parameters

The establishment parameter issued by the superior DSA, a value of NHOBSuperiorToSubordinate, is equivalent to

the corresponding HOB establishment parameter, except that the entryInfo component is absent.

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (

 WITH COMPONENTS {..., entryInfo ABSENT })

The establishment parameter issued by the subordinate DSA, a value of NHOBSubordinateToSuperior, is equivalent

to the corresponding HOB establishment parameter, except that the alias and entryInfo components are absent.

NHOBSubordinateToSuperior ::= SEQUENCE {

 accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,

 subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,

 ... }

25.1.5 Modification parameters

These parameters are identical to the corresponding establishment parameters and are used to signal changes occurring to

information provided in the establishment parameters subsequent to the establishment of the NHOB.

If any component of NHOBSuperiorToSubordinate or NHOBSubordinateToSuperior experiences a change

(e.g., the contextPrefixInfo component of NHOBSuperiorToSubordinate), the corresponding component of the

modification parameter (e.g., the contextPrefixInfo component of NHOBSuperiorToSubordinate) shall be

provided in its entirety in the Modify Operational Binding.

25.1.6 Termination parameters

Neither role provides a termination parameter when terminating an NHOB.

25.1.7 Type identification

The non-specific hierarchical operational binding is identified by the object identifier assigned when defining the

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING information object in clause 25.2.

25.2 Operational binding information object class definition

This clause defines the non-specific hierarchical operational binding type using the OPERATIONAL-BINDING information

object class defined in Rec. ITU-T X.501 | ISO/IEC 9594-2.

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {

 AGREEMENT NonSpecificHierarchicalAgreement

 APPLICATION CONTEXTS {{directorySystemAC}}

 ASYMMETRIC

 ROLE-A { -- superior DSA

 ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER NHOBSuperiorToSubordinate

 TERMINATION-INITIATOR TRUE}

 ROLE-B { -- subordinate DSA

 ESTABLISHMENT-INITIATOR TRUE

 ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER NHOBSubordinateToSuperior

 TERMINATION-INITIATOR TRUE}

 ID id-op-binding-non-specific-hierarchical }

25.3 DSA procedures for non-specific hierarchical operational binding management

In the following procedures, as in the procedures described in clause 24.3, a new DSE or a mark created by a DSA shall

be stored in stable storage.

In both the establishment and modification procedure described below, the DSA playing the responding role

(i.e., not initiating the establishment or modification) may provide the DSA playing the initiating role with information

(e.g., operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the

operational binding in such cases.

ISO/IEC 9594-4:2020 (E)

110 Rec. ITU-T X.518 (10/2019)

25.3.1 Establishment procedure

Only the subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an

administrator to connect one or more subtrees of entries held in the DSA to a certain point in the global DIT. In this case,

the subordinate DSA shall establish an NHOB according to the following procedure:

1) The subordinate DSA either has a DSE of type cp as part of an existing naming context or it creates a new

one. It marks the DSE being added, and generates a unique bindingID and stores it with the context

prefix DSE.

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing

the following parameters:

a) bindingType set to nonSpecificHierarchicalOperationalBindingID;

b) NHOBSubordinateToSuperior establishment parameter, as appropriate;

c) NonSpecificHierarchicalAgreement with the immediateSuperior component set to the

distinguished name of the immediate superior of the new entry;

d) the bindingID, myAccessPoint and valid, parameters, as appropriate.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or

returns an operationalBindingError with problem roleAssignment.

4) The superior DSA adds the DSE type nssr (and nonSpecificKnowledge attribute information) to the

DSE of the immediate superior of the new entry, stores the bindingID with it, and returns a result.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is a local

matter to determine the fate of the entry information from which the context prefix DSE was derived.

 If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry, admPoint,

rhob, and immSupr, as appropriate, to represent the contextPrefixInfo; and, as appropriate, a DSE

of type rhob and entry to represent the immediateSuperiorInfo. The mark of the context prefix DSE

is removed.

 If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps

starting at step 2) until a result or error has been received for each pending establishment of a hierarchical

operational binding for which it is the initiator.

25.3.2 Modification procedure

If the superior DSA detects any changes in the NHOBSuperiorToSubordinate information that it supplied to a

subordinate DSA within a non-specific hierarchical operational binding, it shall propagate the changed information to the

subordinate DSA. If the NHOB was established using the procedures of clause 25.3.1, then it shall be modified according

to the procedures defined for modifying the hierarchical operational binding in clause 24.3.2.1 (with

NHOBSuperiorToSubordinate substituted for SuperiorToSubordinateModification).

Similarly, if the subordinate DSA detects any changes in the NHOBSubordinateToSuperior information that it

supplied to a superior DSA, it shall propagate the changes to the superior DSA. If the NHOB was established using the

procedures of clause 25.3.1, then it shall be modified according to the procedures defined for modifying the hierarchical

operational binding in clause 24.3.2.2 (with NHOBSubordinateToSuperior substituted for

SubordinateToSuperior).

25.3.3 Termination procedure

The following procedures are defined for termination of an NHOB which was established using the procedures of clause

25.3.1.

25.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative

intervention. The following procedure shall be followed:

1) The superior DSA marks the value corresponding to the subordinate DSA in the

nonSpecificKnowledge attribute held in the DSE of the immediately superior entry, as being deleted.

2) The superior DSA sends a Terminate Operational Binding operation for the NHOB with the subordinate

DSA. The version component of the bindingID is omitted by the superior.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 111

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about

the NHOB and sends a result, unless the identifier component of the bindingID is unknown, in which

case an operationalBindingError with problem invalidID is returned. It is a local matter to

determine the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an operationalBindingError with problem invalidID, it

shall delete the value of the nonSpecificKnowledge attribute marked being deleted that represents the

access point information associated with the NHOB and deletes any information about the operational

binding. If this was the last value of the nonSpecificKnowledge attribute, it removes the

nonSpecificKnowledge attribute and the DSE type nssr from the DSE.

 If any failure occurs (e.g., communication of end system), the superior DSA shall repeat the steps starting

at step 2) until a result or error has been received for each pending termination of an NHOB for which it

is the initiator.

25.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry

within the subordinate naming context, the context prefix entry, of the last subordinate naming context held by the

subordinate DSA, or as a result of administrative intervention. The following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being deleted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational

binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the value of the

nonSpecificKnowledge attribute that represents the access point information associated with the

NHOB, deletes any information about the operational binding, removes the nonSpecificKnowledge

attribute and the DSE type nssr from the DSE immediately superior to the subordinate naming context (if

the deleted value was the last value of the nonSpecificKnowledge attribute) and sends a result, unless

the identifier component of the bindingID is unknown, in which case an

operationalBindingError with problem invalidID is returned.

4) If the subordinate DSA receives a result or an operationalBindingError with problem invalidID,

it shall delete any information about the operational binding. It is a local matter to determine the fate of

any entry information associated with the subordinate naming context.

 If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps

starting at step 2) until a result or error has been received for each pending termination of an NHOB for

which it is the initiator.

25.4 Procedures for operations

The operations that can be executed in the cooperative state of a non-specific hierarchical operational binding are those

defined within the directorySystemAC application context.

The procedures that the DSA involved in a non-specific hierarchical operational binding shall follow are defined in

clauses 16 to 22.

25.5 Use of application contexts

To establish, modify, or terminate a non-specific hierarchical operational binding using the protocol and procedures of

this Directory Specification, a DSA shall use the operationalBindingManagementAC application context.

ISO/IEC 9594-4:2020 (E)

112 Rec. ITU-T X.518 (10/2019)

Annex A

ASN.1 for Distributed Operations

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type and value definitions contained in this Directory Specification in the form of

the ASN.1 module DistributedOperations.

DistributedOperations

 {joint-iso-itu-t ds(5) module(1) distributedOperations(3) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within these Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications may

use them for their own purposes, but this will not constrain extensions and

modifications needed to maintain or improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 DistinguishedName, Name, RDNSequence

 FROM InformationFramework

 {joint-iso-itu-t ds(5) module(1) informationFramework(1) 9} WITH SUCCESSORS

 MRMapping, SearchRuleId

 FROM ServiceAdministration

 {joint-iso-itu-t ds(5) module(1) serviceAdministration(33) 9} WITH SUCCESSORS

 AuthenticationLevel

 FROM BasicAccessControl

 {joint-iso-itu-t ds(5) module(1) basicAccessControl(24) 9} WITH SUCCESSORS

 OPTIONALLY-PROTECTED{}

 FROM EnhancedSecurity

 {joint-iso-itu-t ds(5) modules(1) enhancedSecurity(28) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.511 | ISO/IEC 9594-3

 abandon, addEntry, administerPassword, changePassword, CommonResults, compare,

 directoryBindError, ldapTransport, linkedLDAP, list, modifyDN, modifyEntry,

 read, referral, removeEntry, search, SecurityParameters, SimpleCredentials,

 SpkmCredentials, StrongCredentials, Versions

 FROM DirectoryAbstractService

 {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.519 | ISO/IEC 9594-5

 ERROR, id-errcode-dsaReferral, OPERATION

 FROM CommonProtocolSpecification

 {joint-iso-itu-t ds(5) module(1) commonProtocolSpecification(35) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.520 | ISO/IEC 9594-6

 PresentationAddress, ProtocolInformation, UnboundedDirectoryString,

 UniqueIdentifier

 FROM SelectedAttributeTypes

 {joint-iso-itu-t ds(5) module(1) selectedAttributeTypes(5) 9} WITH SUCCESSORS ;

-- errors and parameters

dsaReferral ERROR ::= {

 PARAMETER OPTIONALLY-PROTECTED { DsaReferralData }

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 113

 CODE id-errcode-dsaReferral }

DsaReferralData ::= SET {

 reference [0] ContinuationReference,

 contextPrefix [1] DistinguishedName OPTIONAL,

 ...,

 ...,

 COMPONENTS OF CommonResults }

-- common arguments and results

ChainingArguments ::= SET {

 originator [0] DistinguishedName OPTIONAL,

 targetObject [1] DistinguishedName OPTIONAL,

 operationProgress [2] OperationProgress

 DEFAULT {nameResolutionPhase notStarted},

 traceInformation [3] TraceInformation,

 aliasDereferenced [4] BOOLEAN DEFAULT FALSE,

 aliasedRDNs [5] INTEGER OPTIONAL,

 returnCrossRefs [6] BOOLEAN DEFAULT FALSE,

 referenceType [7] ReferenceType DEFAULT superior,

 info [8] DomainInfo OPTIONAL,

 timeLimit [9] Time OPTIONAL,

 securityParameters [10] SecurityParameters DEFAULT {},

 entryOnly [11] BOOLEAN DEFAULT FALSE,

 uniqueIdentifier [12] UniqueIdentifier OPTIONAL,

 authenticationLevel [13] AuthenticationLevel OPTIONAL,

 exclusions [14] Exclusions OPTIONAL,

 excludeShadows [15] BOOLEAN DEFAULT FALSE,

 nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE,

 operationIdentifier [17] INTEGER OPTIONAL,

 searchRuleId [18] SearchRuleId OPTIONAL,

 chainedRelaxation [19] MRMapping OPTIONAL,

 relatedEntry [20] INTEGER OPTIONAL,

 dspPaging [21] BOOLEAN DEFAULT FALSE,

 -- [22] Not to be used

 -- [23] Not to be used

 excludeWriteableCopies [24] BOOLEAN DEFAULT FALSE,

 ... }

Time ::= CHOICE {

 utcTime UTCTime,

 generalizedTime GeneralizedTime,

 ... }

DomainInfo ::= ABSTRACT-SYNTAX.&Type

ChainingResults ::= SET {

 info [0] DomainInfo OPTIONAL,

 crossReferences [1] SEQUENCE SIZE (1..MAX) OF CrossReference OPTIONAL,

 securityParameters [2] SecurityParameters DEFAULT {},

 alreadySearched [3] Exclusions OPTIONAL,

 ... }

CrossReference ::= SET {

 contextPrefix [0] DistinguishedName,

 accessPoint [1] AccessPointInformation,

 ... }

OperationProgress ::= SET {

 nameResolutionPhase [0] ENUMERATED {

 notStarted (1),

 proceeding (2),

 completed (3),

 ... },

 nextRDNToBeResolved [1] INTEGER OPTIONAL,

 ... }

TraceInformation ::= SEQUENCE OF TraceItem

TraceItem ::= SET {

ISO/IEC 9594-4:2020 (E)

114 Rec. ITU-T X.518 (10/2019)

 dsa [0] Name,

 targetObject [1] Name OPTIONAL,

 operationProgress [2] OperationProgress,

 ... }

ReferenceType ::= ENUMERATED {

 superior (1),

 subordinate (2),

 cross (3),

 nonSpecificSubordinate (4),

 supplier (5),

 master (6),

 immediateSuperior (7),

 self (8),

 ditBridge (9),

 ... }

AccessPoint ::= SET {

 ae-title [0] Name,

 address [1] PresentationAddress,

 protocolInformation [2] SET SIZE (1..MAX) OF ProtocolInformation OPTIONAL,

 -- [6] Not to be used

 ... }

MasterOrShadowAccessPoint ::= SET {

 COMPONENTS OF AccessPoint,

 category [3] ENUMERATED {

 master (0),

 shadow (1),

 writeableCopy (2),

 ... } DEFAULT master,

 chainingRequired [5] BOOLEAN DEFAULT FALSE,

 ... }

MasterAndShadowAccessPoints ::= SET SIZE (1..MAX) OF MasterOrShadowAccessPoint

AccessPointInformation ::= SET {

 COMPONENTS OF MasterOrShadowAccessPoint,

 additionalPoints [4] MasterAndShadowAccessPoints OPTIONAL,

 ... }

DitBridgeKnowledge ::= SEQUENCE {

 domainLocalID UnboundedDirectoryString OPTIONAL,

 accessPoints MasterAndShadowAccessPoints,

 ... }

Exclusions ::= SET SIZE (1..MAX) OF RDNSequence

ContinuationReference ::= SET {

 targetObject [0] Name,

 aliasedRDNs [1] INTEGER OPTIONAL, -- only present in first edition systems

 operationProgress [2] OperationProgress,

 rdnsResolved [3] INTEGER OPTIONAL,

 referenceType [4] ReferenceType,

 accessPoints [5] SET OF AccessPointInformation,

 entryOnly [6] BOOLEAN DEFAULT FALSE,

 exclusions [7] Exclusions OPTIONAL,

 returnToDUA [8] BOOLEAN DEFAULT FALSE,

 nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE,

 ... }

-- bind unbind operation

dSABind OPERATION ::= {

 ARGUMENT DSABindArgument

 RESULT DSABindResult

 ERRORS { directoryBindError } }

DSABindArgument ::= SET {

 credentials [0] DSACredentials OPTIONAL,

 versions [1] Versions DEFAULT {v1},

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 115

 ... }

DSACredentials ::= CHOICE {

 simple [0] SimpleCredentials,

 strong [1] StrongCredentials,

 externalProcedure [2] EXTERNAL,

 spkm [3] SpkmCredentials,

 ... }

DSABindResult ::= DSABindArgument

 -- parameterized type for deriving chained operations

 chained{OPERATION:operation} OPERATION ::= {

 ARGUMENT OPTIONALLY-PROTECTED {SET {

 chainedArgument ChainingArguments,

 argument [0] operation.&ArgumentType } }

 RESULT OPTIONALLY-PROTECTED {SET {

 chainedResult ChainingResults,

 result [0] operation.&ResultType}}

 ERRORS

 {operation.&Errors EXCEPT referral | dsaReferral}

 CODE operation.&operationCode }

 -- chained operations

chainedRead OPERATION ::= chained{read}

chainedCompare OPERATION ::= chained{compare}

chainedAbandon OPERATION ::= abandon

chainedList OPERATION ::= chained{list}

chainedSearch OPERATION ::= chained{search}

chainedAddEntry OPERATION ::= chained{addEntry}

chainedRemoveEntry OPERATION ::= chained{removeEntry}

chainedModifyEntry OPERATION ::= chained{modifyEntry}

chainedModifyDN OPERATION ::= chained{modifyDN}

chainedChangePassword OPERATION ::= chained{changePassword}

chainedAdministerPassword OPERATION ::= chained{administerPassword}

chainedLdapTransport OPERATION ::= chained{ldapTransport}

chainedLinkedLDAP OPERATION ::= chained{linkedLDAP}

END -- DistributedOperations

ISO/IEC 9594-4:2020 (E)

116 Rec. ITU-T X.518 (10/2019)

Annex B

Specification of hierarchical and non-specific hierarchical

operational binding types
(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes the definitions of the ASN.1 information object classes introduced in this Directory Specification in

the form of the ASN.1 module HierarchicalOperationalBindings.

HierarchicalOperationalBindings

 {joint-iso-itu-t ds(5) module(1) hierarchicalOperationalBindings(20) 9}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

/*

The types and values defined in this module are exported for use in the other ASN.1

modules contained within these Directory Specifications, and for the use of other

applications which will use them to access Directory services. Other applications may

use them for their own purposes, but this will not constrain extensions and

modifications needed to maintain or improve the Directory service.

*/

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 Attribute{}, DistinguishedName, RelativeDistinguishedName, SupportedAttributes

 FROM InformationFramework

 {joint-iso-itu-t ds(5) module(1) informationFramework(1) 9} WITH SUCCESSORS

 OPERATIONAL-BINDING

 FROM OperationalBindingManagement

 {joint-iso-itu-t ds(5) module(1) opBindingManagement(18) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.518 | ISO/IEC 9594-4

 MasterAndShadowAccessPoints

 FROM DistributedOperations

 {joint-iso-itu-t ds(5) module(1) distributedOperations(3) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.519 | ISO/IEC 9594-5

 directorySystemAC

 FROM DirectoryOSIProtocols

 {joint-iso-itu-t ds(5) module(1) directoryOSIProtocols(37) 9} WITH SUCCESSORS

 id-op-binding-hierarchical, id-op-binding-non-specific-hierarchical

 FROM DirectoryOperationalBindingTypes

 {joint-iso-itu-t ds(5) module(1) directoryOperationalBindingTypes(25) 9}

 WITH SUCCESSORS ;

-- types

HierarchicalAgreement ::= SEQUENCE {

 rdn [0] RelativeDistinguishedName,

 immediateSuperior [1] DistinguishedName,

 ... }

SuperiorToSubordinate ::= SEQUENCE {

 contextPrefixInfo [0] DITcontext,

 entryInfo [1] SET SIZE (1..MAX) OF

 Attribute{{SupportedAttributes}} OPTIONAL,

 immediateSuperiorInfo [2] SET SIZE (1..MAX) OF

 Attribute{{SupportedAttributes}} OPTIONAL,

 ... }

DITcontext ::= SEQUENCE OF Vertex

Vertex ::= SEQUENCE {

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 117

 rdn [0] RelativeDistinguishedName,

 admPointInfo [1] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,

 subentries [2] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,

 accessPoints [3] MasterAndShadowAccessPoints OPTIONAL,

 ... }

SubentryInfo ::= SEQUENCE {

 rdn [0] RelativeDistinguishedName,

 info [1] SET OF Attribute{{SupportedAttributes}},

 ... }

SubordinateToSuperior ::= SEQUENCE {

 accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,

 alias [1] BOOLEAN DEFAULT FALSE,

 entryInfo [2] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,

 subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,

 ... }

SuperiorToSubordinateModification ::= SuperiorToSubordinate (

 WITH COMPONENTS {..., entryInfo ABSENT })

NonSpecificHierarchicalAgreement ::= SEQUENCE {

 immediateSuperior [1] DistinguishedName,

 ... }

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (

 WITH COMPONENTS {..., entryInfo ABSENT })

NHOBSubordinateToSuperior ::= SEQUENCE {

 accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,

 subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,

 ... }

-- operational binding information objects

hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {

 AGREEMENT HierarchicalAgreement

 APPLICATION CONTEXTS {{directorySystemAC}}

 ASYMMETRIC

 ROLE-A { -- superior DSA

 ESTABLISHMENT-INITIATOR TRUE

 ESTABLISHMENT-PARAMETER SuperiorToSubordinate

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER SuperiorToSubordinateModification

 TERMINATION-INITIATOR TRUE }

 ROLE-B { -- subordinate DSA

 ESTABLISHMENT-INITIATOR TRUE

 ESTABLISHMENT-PARAMETER SubordinateToSuperior

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER SubordinateToSuperior

 TERMINATION-INITIATOR TRUE }

 ID id-op-binding-hierarchical }

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {

 AGREEMENT NonSpecificHierarchicalAgreement

 APPLICATION CONTEXTS {{directorySystemAC}}

 ASYMMETRIC

 ROLE-A { -- superior DSA

 ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER NHOBSuperiorToSubordinate

 TERMINATION-INITIATOR TRUE}

 ROLE-B { -- subordinate DSA

 ESTABLISHMENT-INITIATOR TRUE

 ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior

 MODIFICATION-INITIATOR TRUE

 MODIFICATION-PARAMETER NHOBSubordinateToSuperior

 TERMINATION-INITIATOR TRUE}

 ID id-op-binding-non-specific-hierarchical }

END -- HierarchicalOperationalBindings

ISO/IEC 9594-4:2020 (E)

118 Rec. ITU-T X.518 (10/2019)

Annex C

Example of distributed name resolution

(This annex does not form an integral part of this Recommendation | International Standard.)

Figure C.1 is an example of how distributed name resolution is used to process different directory requests. The example

is based on the hypothetical DIT and the corresponding DSA configuration(s) described in Annex O (Modelling of

knowledge) of Rec. ITU-T X.501 | ISO/IEC 9594-2, and reproduced here for convenience.

X.518(12)_FC.1

Context A Context B

Root

Context C

Context E

Autonomous
administrative

area AA

Context D

Autonomous
administrative

area BB

DSA 1 DSA 2 DSA 3

O = WW O = VV

O = ABC

OU = G

CN = l CN = m CN = n

CN = o CN = p CN = q

CN = AA

OU = U
OU = K

CN = BB

O = DEF

OU = H

OU = I

Figure C.1 – Hypothetical DIT mapped onto three DSAs

Assuming a chaining mode of propagation, the following requests addressed to DSA 1 would be processed as follows:

1) A request with distinguished name {C = WW, O = ABC, OU = G, CN = l}

– Name resolution will successfully match each RDN in the target name with DSEs held by DSA 1,

until the target DSE is located.

2) A request with distinguished name {C = WW, O = JPR}

– The Name Resolution procedure in DSA 1 will match the DSE C = WW, and will be unable to match

further. At this point, DSA 1 finds potentially two references to help it proceed: one is the immSupr

reference in DSE C = WW, and the other is the supr reference in the root DSE. In this hypothetical

example, both would be pointing to DSA 2. Therefore the request is chained to DSA 2.

– In DSA 2, the Name Resolution procedure will match the DSE C = WW, and will be unable to match

further. In this case, since the DSE C = WW is a cp and entry, and DSA 2 is the master DSA for

this entry, and further there are no nssr at C = WW, DSA 2 is therefore able to determine that there

is no such name in the directory. A nameError with problem noSuchObject is returned.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 119

3) A request with distinguished name {C = VV, O = DEF, OU = K}

– The Name Resolution procedure in DSA 1 will not be able to match any DSE. The only reference

available is the supr reference in the root DSE, which points to DSA 2. So the request is chained to

DSA 2.

– In DSA 2, the Name Resolution procedure will match the DSE C = VV, and then DSE O = DEF, and

will be unable to match further. Since DSE O = DEF is found to be of type subr, the specific

knowledge reference, which points to DSA 3, is used, and the request is chained to DSA 3.

– In DSA 3, the Name Resolution procedure will match the entire target object name, and find that the

located DSE is of type alias. Assuming aliases are to be dereferenced in this case, a new name will

be constructed using the aliasedEntryName contained in the matched DSE. DSA 3 will then

re-enter the Name Resolution procedure to continue.

ISO/IEC 9594-4:2020 (E)

120 Rec. ITU-T X.518 (10/2019)

Annex D

Distributed use of authentication

(This annex does not form an integral part of this Recommendation | International Standard.)

D.1 Summary

The security model is defined in clause 17 of Rec. ITU-T X.501 | ISO/IEC 9594-2. The following is a summary of the

main points of the model:

a) Strong Authentication, by the signing of the request, result and errors, is supported in the DSP.

b) Encryption of the request, result and errors is supported in the DSP.

This annex describes how these are realized in the distributed Directory. It makes use of terminology and notation defined

in Rec. ITU-T X.509 | ISO/IEC 9594-8.

D.2 Distributed protection model

X.518(12)_FD.1

Operation results

Operation requests

DUA
a

DSA
b

DSA
c

DSA
d

DSA
e

1 2 3

4 5 6, ,

1

6 5

2

3

4

3

4

, ,

Figure D.1 – Distributed protection

Figure D.1 illustrates the model to be used to specify the distributed protection procedures. The model identifies the

sequence of information flows for the general case of a List or Search operation. The operation is considered as originating

from DUA 'a', citing a target object which resides in DSA 'c' in performing the operation, DSAs 'b', 'c', 'd' and 'e' are to be

involved.

DUA 'a' initially contacts any DSA (DSA 'b') which does not hold the target object, but which is able to navigate, via

chaining, to the DSA (DSA 'c') holding the target object. If all the DSAs were operating in referral mode, then the model

would be significantly simplified, and each DSA/DSA exchange would equate, in protection terms, to the interaction

between DUA 'a' and DSA 'b'.

D.3 Signed chained operations

If digitally signed chained operations are supported, the DUA is responsible for verifying the digital signatures returned

by the DSA in a List or Search result. This requires that the DUA is capable of verifying digital signatures from more

than one DSA if a distributed environment were used to generate the List or Search results. Correlating the results of List

and Search operations is the responsibility of the DUA. DSAs should not merge these results on behalf of the DUA. In

some cases, the DUA may receive information from various DSAs each supporting different levels of authentication and

digital signatures. It is then a DUA decision whether to use the returned information if the digital signature is invalid.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 121

D.3.1 Chained signed arguments

If a DAP argument is signed by the DUA, the signature should be maintained throughout the life of the request. This

signature can be verified and used by DSAs when performing Access Control verifications. If the DSA determines that

the request needs to be chained to another DSA for processing, it shall include the DUA's signed request along with the

necessary chaining arguments. If the DSA is going to support signed DSP operations (DSA-to-DSA) then the DSA's

credentials would be used to sign the DSP ChainingArguments and the DUA's signature should be maintained along

with the original DAP request.

X.518(12)_FD.2

DUA a user signs DAP request' '

DSA 'b' signs DSP chaining argument
(DAP request signed by DUA 'a' user)

DUA
a

DSA
b

DSA
c

2

1 2

1

Figure D.2 – Chained signed arguments

D.3.2 Chained signed results

If the DUA user wishes to receive signed results from the Directory, the SecurityParameters.ProtectionRequest field

should be set to SIGNED. The remote DSA should have the ability to be configured to send digitally signed

ChainingResults. The remote DSA can optionally sign the DAP result and the DSP ChainingResults, thereby

supporting end-to-end signatures. DSA 'b' will be responsible for verifying the remote DSA's DSP Signature, and the

DUA 'a' will be responsible for verifying the DSA's DAP Result Signature.

X.518(12)_FD.3

DSA 'c' signs DSP chaining result and signs DAP result

DSA 'b' returns DAP result signed by DSA 'c'

1

2

2 1
DUA

a
DSA

b
DSA

c

Figure D.3 – Chained signed results

D.3.3 Merging of Signed List or Search Results

This requires that the DUA is capable of verifying digital signatures from more than one DSA if a distributed environment

were used to generating the List or Search results. Correlating the results of List and Search operations is the responsibility

of the DUA. DSAs should not merge these results on behalf of the DUA user. In some cases, the DUA may receive

information from various DSAs each supporting different levels of authentication and digital signatures. It is then a DUA

decision whether or not to use the returned information if the digital signature is invalid.

X.518(12)_FD.4

DSA 'c', 'd', 'e' sign DSP chaining result (DAP result signed by DSA 'c', 'd', 'e')

DSA 'b' returns partial DAP result signed by DSA 'c', 'd' and 'e', DSA 'b' does
not merge the DAP results

1

2

1

2 1

1

DUA
a

DSA
b

DSA
c

DSA
d

DSA
e

Figure D.4 – Merging of Signed List or Search Results

ISO/IEC 9594-4:2020 (E)

122 Rec. ITU-T X.518 (10/2019)

Annex E

Knowledge maintenance example

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex illustrates knowledge maintenance, as defined in clause 23, with a simple example. In Figure E.1, the following

symbols are used to depict the DSA information trees of five DSAs.

Figure E.1 – Symbols used to depict DSA information trees

In Figure E.2, DSA 1 is the master for naming context {A}, consisting of the two entries {A} and {A, B}. DSA 1 holds

a subordinate reference for naming context {A, B, C} which is maintained via an HOB with DSA 3. DSA 1 is a shadow

supplier to DSA 2, supplying it with copies of the user information of naming context {A} and the subordinate reference

to naming context {A, B, C} which identifies the access points of DSA 3, DSA 4 and DSA 5, the former being the master

for the subordinate naming context.

DSA 3 is the master for naming context {A, B, C}. In addition to holding the single entry {A, B, C} of the naming context,

DSA 3 holds an immediate superior reference for naming context {A} which is maintained via an HOB with DSA 1.

DSA 3 is a shadow supplier to DSA 4, supplying it with copies of the user information of naming context {A, B, C} and

the immediate superior reference to naming context {A} which identifies the access points of DSA 1 and DSA 2, the

former being the master for the superior naming context. DSA 4 is a (secondary) shadow supplier to DSA 5, providing it

with a copy of the information it receives from DSA 3.

Figure E.2 illustrates the DSA operational attributes employed to represent and maintain knowledge.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 123

Figure E.2 – Knowledge maintenance example

DSA 1 uses the value of its myAccessPoint attribute (associated with its root DSE) and the commonly usable values of

its consumerKnowledge (associated with context prefix {A}) attribute to form a value of the type

MasterAndShadowAccessPoints for use in its HOB interactions with DSA 3. DSA 3, in turn, uses the value of its

myAccessPoint attribute (associated with its root DSE) and the commonly usable values of its consumerKnowledge

attribute and its secondaryShadows (both associated with context prefix {A, B, C}) attribute to form a value of the type

MasterAndShadowAccessPoints for use in its HOB interactions with DSA 1. Together, the two DSAs, using the DOP,

maintain a subordinate reference held by DSA 1 and an immediate superior reference held by DSA 3. DSA 1's subordinate

reference, expressed by a specificKnowledge attribute associated with a DSE at {A, B, C}, is based on the

MasterAndShadowAccessPoints value it receives from DSA 3; DSA 3's immediate superior reference, expressed by

a specificKnowledge attribute associated with a DSE at {A}, is similarly based on the MasterAndShadowAccess-

Points value it receives from DSA 1.

DSA 1 and DSA 2 use their values of myAccessPoint in Shadowing Operational Binding interactions to maintain a

value of consumerKnowledge in DSA 1 (identifying the access point of DSA 2) and supplierKnowledge in DSA 2

(identifying the access point of DSA 1), both attributes associated with the context prefix {A}. Together, the two DSAs,

using the DOP, maintain the consumer reference held by DSA 1 and the supplier reference held by DSA 2.

DSA 2 receives a copy of the specificKnowledge attribute associated with context prefix {A, B, C} from DSA 1 in

DISP interactions with DSA 1. This interaction serves to maintain DSA 2's subordinate reference to the context prefix

{A, B, C}.

ISO/IEC 9594-4:2020 (E)

124 Rec. ITU-T X.518 (10/2019)

DSA 3 and DSA 4 (and similarly DSA 4 and DSA 5} maintain consumer and supplier references, respectively, in a

fashion analogous to the interaction between DSA 1 and DSA 2.

DSA 4 receives a copy of the specificKnowledge attribute associated with context prefix {A4} from DSA 3 in DISP

interactions with DSA 3. This interaction serves to maintain DSA 4's immediate superior reference to the context

prefix {A}.

DSA 4 communicates to DSA 3 any changes in its myAccessPoint and consumerKnowledge attribute

(and secondaryShadows attribute, which is null in this example) using the modify operational binding operation of the

DOP. DSA 4 supplies DSA 3 with a value of SupplierAndConsumers, containing only those values of the

consumerKnowledge attribute that identify the access points of DSAs that have commonly usable shadows; the values

of the secondaryShadows attribute supplied by DSA 4, had there been any, would all, by design, be commonly usable.

(In this example, DSA 5 is presumed to hold a commonly usable copy of the naming context at {A, B, C}.) DSA 3 uses

this information to maintain a value of its secondaryShadows attribute associated with context prefix {A, B, C}. This

attribute, as described above, is used in DOP interactions with DSA 1 to maintain DSA 1's subordinate reference to the

context prefix {A, B, C}.

DSA 5 maintains its immediate superior reference to context prefix {A} using DISP interactions with DSA 4 in a fashion

analogous to the interactions between DSA 3 and DSA 4.

ISO/IEC 9594-4:2020 (E)

 Rec. ITU-T X.518 (10/2019) 125

Annex F

Amendments and corrigenda

(This annex does not form an integral part of this Recommendation | International Standard.)

This edition of this Directory Specification includes the following amendment to the previous edition that were balloted

and approved by ISO/IEC:

– Amendment 1 for General updates.

This edition of this Directory Specification does not include any technical corrigenda, as there were no accepted defect

reports against the previous edition of this Directory Specification.

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T X.518 (10/2019) Information technology – Open Systems Interconnection – The Directory: Procedures for distributed operation
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.1.1 Identical Recommendations | International Standards
	2.1.2 Other references

	2.2 Non-normative reference

	3 Definitions
	3.1 Basic Directory definitions
	3.2 Directory model definitions
	3.3 DSA information model definitions
	3.4 Abstract service definitions
	3.5 Protocol definitions
	3.6 Directory replication definitions
	3.7 Distributed operation definitions

	4 Abbreviations
	5 Conventions
	6 Overview
	7 Distributed Directory system model
	8 DSA interactions model
	8.1 Decomposition of a request
	8.1.1 NSSR decomposition
	8.1.2 Request decomposition

	8.2 Uni-chaining
	8.3 Multi-chaining
	8.3.1 Parallel multi-chaining
	8.3.2 Sequential multi-chaining

	8.4 Referral
	8.5 Mode determination

	9 Overview of DSA abstract service
	10 Information types
	10.1 Introduction
	10.2 Information types defined elsewhere
	10.3 Chaining arguments
	10.4 Chaining results
	10.5 Operation progress
	10.6 Trace information
	10.7 Reference type
	10.8 Access point information
	10.9 DIT bridge knowledge.
	10.10 Exclusions
	10.11 Continuation reference

	11 Bind and Unbind
	11.1 DSA Bind
	11.1.1 DSA Bind syntax
	11.1.2 DSA Bind arguments
	11.1.3 DSA Bind results
	11.1.4 DSA Bind errors

	11.2 DSA Unbind

	12 Chained operations
	12.1 Chained operations
	12.2 Chained Abandon operation
	12.3 Chained operations and protocol version

	13 Chained errors
	13.1 Introduction
	13.2 DSA referral

	14 Introduction
	14.1 Scope and limits
	14.2 Conformance
	14.2.1 Interaction involving a DSA based on Rec. CCITT X.5** (1988) | ISO/IEC 9594-*:1990

	14.3 Conceptual model
	14.4 Individual and cooperative operation of DSAs
	14.5 Cooperative agreements between DSAs

	15 Distributed Directory behaviour
	15.1 Cooperative fulfilment of operations
	15.2 Phases of operation processing
	15.2.1 Name Resolution phase
	15.2.2 Evaluation phase
	15.2.3 Results Merging phase

	15.3 Managing Distributed Operations
	15.3.1 Request decomposition
	15.3.2 DSA as Request Responder
	15.3.3 Completion of operations

	15.4 Loop handling
	15.4.1 Loop detection
	15.4.2 Loop avoidance

	15.5 Other considerations for distributed operation
	15.5.1 Service controls
	15.5.2 Extensions
	15.5.3 Alias dereferencing
	15.5.4 Paged results
	15.5.5 Handling requests from LDAP client

	15.6 Authentication of Distributed operations

	16 The Operation Dispatcher
	16.1 General concepts
	16.1.1 Procedures
	16.1.2 Use of common data structures
	16.1.3 Errors
	16.1.4 Asynchronous events
	16.1.4.1 Time limit
	16.1.4.2 Loss of an application-association
	16.1.4.3 Abandoning the operation
	16.1.4.4 Administrative Limits
	16.1.4.5 Size limit

	16.2 Procedures of the Operation Dispatcher
	16.3 Overview of procedures
	16.3.1 Request Validation procedure
	16.3.2 Abandon procedures
	16.3.3 Find DSE procedure
	16.3.3.1 Target Not Found sub-procedure
	16.3.3.2 Target Found sub-procedure

	16.3.4 Single entry interrogation procedure
	16.3.5 Modification procedures
	16.3.6 Multiple entry interrogation procedures
	16.3.7 Name Resolution Continuation Reference procedure
	16.3.8 List and Search Continuation Reference procedure
	16.3.9 Results Merging procedure

	17 Request Validation procedure
	17.1 Introduction
	17.2 Procedure parameters
	17.2.1 Arguments
	17.2.2 Results

	17.3 Procedure definition
	17.3.1 Abandon processing
	17.3.2 Security checks
	17.3.3 Input preparation
	17.3.3.1 DUA request
	17.3.3.2 LDAP request
	17.3.3.3 DSA request

	17.3.4 Validity assertion
	17.3.5 Loop detection
	17.3.6 Unable or unwilling to perform
	17.3.7 Output processing

	18 Name Resolution procedure
	18.1 Introduction
	18.2 Find DSE procedure parameters
	18.2.1 Arguments
	18.2.2 Results
	18.2.3 Errors
	18.2.4 Global variables
	18.2.5 Local and shared variables

	18.3 Procedures
	18.3.1 Find DSE procedure
	18.3.2 Target Not Found sub-procedure
	18.3.3 Target Found sub-procedure
	18.3.4 Check Suitability procedure
	18.3.4.1 Procedure parameters
	18.3.4.2 Procedure definition

	19 Operation evaluation
	19.1 Modification procedures
	19.1.1 Add Entry operation
	19.1.2 Remove Entry operation
	19.1.3 Modify Entry, Change Password and Administer Password operations
	19.1.4 Modify DN operation
	19.1.5 Modify operations and non-specific subordinate references
	19.1.6 LDAP Modify operations

	19.2 Single entry interrogation procedure
	19.3 Multiple entry interrogation procedure
	19.3.1 List procedures
	19.3.1.1 Procedure parameters
	19.3.1.1.1 Arguments
	19.3.1.1.2 Results

	19.3.1.2 Procedure definition
	19.3.1.2.1 List (I) procedure
	19.3.1.2.2 List (II) procedure

	19.3.2 Search procedures
	19.3.2.1 Procedure parameters
	19.3.2.1.1 Arguments
	19.3.2.1.2 Results

	19.3.2.2 Procedure definition
	19.3.2.2.1 Related Entry Argument procedure
	19.3.2.2.2 Search-rule check procedure (I)
	19.3.2.2.3 Search-rule check procedure (II)
	19.3.2.2.4 Entry information selection
	19.3.2.2.5 Search (I) procedure
	19.3.2.2.6 Search (II) procedure
	19.3.2.2.7 LDAP Search (I) procedure
	19.3.2.2.8 LDAP Search (II) procedure
	19.3.2.2.9 Search Alias procedure
	19.3.2.2.10 Hierarchy Selection procedure (I)

	20 Continuation Reference procedures
	20.1 Chaining strategy in the presence of shadowing
	20.1.1 Master only strategy
	20.1.2 Parallel strategy
	20.1.3 Sequential strategy

	20.2 Issuing chained subrequests to a remote DSA or LDAP server
	20.3 Procedures' parameters
	20.3.1 Arguments
	20.3.2 Results
	20.3.3 Errors

	20.4 Definition of the procedures
	20.4.1 Name Resolution Continuation Reference procedure
	20.4.2 List Continuation Reference procedure
	20.4.3 Search Continuation Reference procedure
	20.4.4 APInfo procedure

	20.5 Abandon procedures
	20.5.1 DAP/DSP Abandon procedure
	20.5.2 LDAP Abandon procedure

	20.6 DAP request to LDAP request procedure
	20.6.1 Introduction
	20.6.2 General on conversion
	20.6.3 Converting a DAP read request
	20.6.4 Converting a DAP compare request
	20.6.5 Handling and converting a DAP abandon request
	20.6.6 Converting a DAP list request
	20.6.7 Converting a DAP search request
	20.6.8 Converting a DAP addEntry request
	20.6.9 Converting a DAP removeEntry request
	20.6.10 Converting a DAP modifyEntry request
	20.6.11 Converting a DAP modifyDN request

	20.7 LDAP result to DAP reply procedure
	20.7.1 Introduction
	20.7.2 General on conversion
	20.7.3 Converting LDAP search results to DAP read result
	20.7.4 Converting LDAP compare result to a DAP compare result
	20.7.5 Converting LDAP search results to DAP list result
	20.7.6 Converting LDAP search results to DAP search result
	20.7.7 Converting LDAP AddResponse to DAP addEntry result
	20.7.8 Converting LDAP DelResponse to DAP removeEntry result
	20.7.9 Converting LDAP ModifyResponse to DAP modifyEntry result
	20.7.10 Converting LDAP ModifyDNResponse to DAP modifyDN result

	21 Results Merging procedure
	22 Procedures for distributed authentication
	22.1 Requester authentication
	22.1.1 Identity-based authentication
	22.1.2 Signature-based requester authentication

	22.2 Results authentication

	23 Knowledge administration overview
	23.1 Maintenance of knowledge references
	23.1.1 Maintenance of consumer knowledge by supplier and master DSAs
	23.1.2 Maintenance of subordinate and immediate superior knowledge in master DSAs
	23.1.3 Maintenance of subordinate and immediate superior knowledge in consumer DSAs

	23.2 Requesting cross reference
	23.3 Knowledge inconsistencies
	23.3.1 Detection of knowledge inconsistencies
	23.3.2 Reporting of knowledge inconsistencies
	23.3.3 Treatment of inconsistent knowledge references

	24 Hierarchical operational bindings
	24.1 Operational binding type characteristics
	24.1.1 Symmetry and roles
	24.1.2 Agreement
	24.1.3 Initiator
	24.1.3.1 Establishment
	24.1.3.2 Modification
	24.1.3.3 Termination

	24.1.4 Establishment parameters
	24.1.4.1 Superior DSA establishment parameter
	24.1.4.1.1 Context prefix information
	24.1.4.1.2 Entry information
	24.1.4.1.3 Immediate superior entry information

	24.1.4.2 Subordinate DSA establishment parameter

	24.1.5 Modification parameters
	24.1.6 Termination parameters
	24.1.7 Type identification

	24.2 Operational binding information object Class definition
	24.3 DSA procedures for hierarchical operational binding management
	24.3.1 Establishment procedure
	24.3.1.1 Establishment initiated by superior DSA
	24.3.1.2 Establishment initiated by subordinate DSA

	24.3.2 Modification procedure
	24.3.2.1 Modification procedure initiated by superior
	24.3.2.2 Modification procedure initiated by subordinate

	24.3.3 Termination procedure
	24.3.3.1 Termination initiated by superior DSA
	24.3.3.2 Termination initiated by subordinate DSA

	24.4 Procedures for operations
	24.5 Use of application contexts

	25 Non-specific hierarchical operational binding
	25.1 Operational binding type characteristics
	25.1.1 Symmetry and roles
	25.1.2 Agreement
	25.1.3 Initiator
	25.1.3.1 Establishment
	25.1.3.2 Modification
	25.1.3.3 Termination

	25.1.4 Establishment parameters
	25.1.5 Modification parameters
	25.1.6 Termination parameters
	25.1.7 Type identification

	25.2 Operational binding information object class definition
	25.3 DSA procedures for non-specific hierarchical operational binding management
	25.3.1 Establishment procedure
	25.3.2 Modification procedure
	25.3.3 Termination procedure
	25.3.3.1 Termination initiated by superior DSA
	25.3.3.2 Termination initiated by subordinate DSA

	25.4 Procedures for operations
	25.5 Use of application contexts
	D.1 Summary
	D.2 Distributed protection model
	D.3 Signed chained operations
	D.3.1 Chained signed arguments
	D.3.2 Chained signed results
	D.3.3 Merging of Signed List or Search Results

