International Telecommunication Union

ITU-T X.518

TELECOMMUNICATION (10/2012)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

Information technology — Open Systems
Interconnection — The Directory: Procedures for
distributed operation

Recommendation ITU-T X.518

! intsernationsl

Telscommunication
Union

IR

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems management framework and architecture
Management communication service and protocol
Structure of management information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, concurrency and recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSECURITY INFORMATION EXCHANGE

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399
X.1500-X.1599

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 9594-4
RECOMMENDATION ITU-T X.518

I nfor mation technology — Open Systems I nter connection —
The Directory: Proceduresfor distributed operation

Summary

Recommendation ITU-T X.518 | ISO/IEC 9594-4 specifies the procedures required for a distributed directory consisting
of amix of Directory System Agents (DSAS) and lightweight directory access protocol (LDAP) servers acting together
to provide a consistent service to its users, independent of the point of access. It also describes procedures for protocol
conversion between the directory access protocol/directory system protocol (DAP/DSP) protocols and the LDAP
protocol.

History
Edition Recommendation Approval Study Group

1.0 ITU-T X.518 1988-11-25

2.0 ITU-T X.518 1993-11-16 7
3.0 ITU-T X.518 1997-08-09 7
31 ITU-T X.518 (1997) Technical Cor. 1 2000-03-31 7
3.2 ITU-T X.518 (1997) Amd. 1 2000-03-31 7
3.3 ITU-T X.518 (1997) Technica Cor.2 2001-02-02 7
4.0 ITU-T X.518 2001-02-02 7
4.1 ITU-T X.518 (2001) Technical Cor. 1 2005-05-14 17
4.2 ITU-T X.518 (2001) Cor. 2 2008-05-29 17
5.0 ITU-T X.518 2005-08-29 17
51 ITU-T X.518 (2005) Cor. 1 2008-05-29 17
52 ITU-T X.518 (2005) Cor. 2 2011-02-13 17
6.0 ITU-T X.518 2008-11-13 17
6.1 ITU-T X.518 (2008) Cor. 1 2011-02-13 17
6.2 ITU-T X.518 (2008) Cor. 2 2012-10-14 17
7.0 ITU-T X.518 2012-10-14 17

Rec. ITU-T X.518 (10/2012) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with |SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, eg., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received natice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

©ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of I TU.

ii Rec. ITU-T X.518 (10/2012)

http://www.itu.int/ITU-T/ipr/

o N o o b~

10

11

12

13

14

CONTENTS

N[0T 0107z AV SN (= (= 110
2.1 Identical Recommendations | International Standards............ccceoevereenenieieneneieseseese e
A © 1 415 G (< (=10 010 =Y

DEFINITIONS....c.ee ettt e e e st e e b e e be e te s aeesaeesaeesbeenbeeabeeaeeebeenbeeabeeabeeaeesteesbeesreereennas
3.1 BasiC DireCtory defiNiTiONS........ccoiieuereeiee ettt ettt e bt ae et e e et e e b sae e
3.2 Directory MOdE]l defiNITIONSoiiiirieieerese ettt e s b e se e se et e e sbe b e
3.3 DSA information Mmodel defiNITIONS.........ccueiieiieiieie e re s
34 ADStract Service defiNItIONS.......c.ooii i r e e e re s
TSI = Tl (0 To:o] I (= 11 a1 (0] RS
3.6 Directory replication defiNITIONScccieiiiiieie e st s re e ne e eesrestesrenrens
3.7 Distributed operation defiNiTiONS..........cccoeiiiiieieceee e s re e se e tesrestesresren

F N o] o (<Y A= o I
(O] 01V7< 0111 0] 0

Distributed DireCtory SyStemM MOE]coiiiiriieireee e ebe b e

DSA iNtEraCtioNS MOUE!ooueiiiieiiere et b bt e e e se e besbesbesbe st e e e se e besbesbeneas
8.1 DeCOMPOSITION Of @IEOUESE.......ciueiuirtereeieie sttt sttt et ae e se e see b e sbesbeebe e e e neeseenbeseesaens
S 022 U 1o =1 1 Vo RS
G T |V 101 o 7= 1 11 o RSN
S G [= OSSR
I Y oo (X0 L= (= 4T 7= o) OSSR

0T 0T 0] N 1Y/ = T S
0 50 I 1 11 oo o o o SRS
10.2 Information types defined ElSEWNENEco i
10.3 ChaiNiNg IQUMENESeieeiirterieiertereeteste sttt st e it sb ettt ese bt s b seebe s b e s e ebesaeseebesbeseebesbeseebeebeseebenbeneeneebeneas
104 ChaiNING FESUITS......civieeterteeeterieeet sttt sttt ettt et b se et et eseese b e s e e bt e bt se e bt sbeseebe et e seebeebeseebenbeneeneebeneas
105 OpPEraliON PIrOGIESS .. .cveueetereeuestereesestereesesseseesesseseesesseseesesseseesesaeseebesseneeseseeseabeseeneabeseeneebeseebesbeneeseabeneas
10.6 TraCeINfOMMIBION.ceitiieeeete ettt sttt st r e bbbt r e bt b e e e b e sr e e eb e sr e e ebeerenrenenre e
A = = g 01 £ oL OSSP PR R
10.8 ACCESS POINE INFOMMBLION ...ttt bt e et et s b et eae e e e e et seebeseeseeeaas
10.9 DIT bridge KNOWIEAGEcueeeeeeeeee ettt s ettt et b b e e sae b eaas
LO.10 EXCIUSIONS.....utitieetiiteeetesteeetesseee st see s se et ebese et ebeseeseeb e se e st eb e seebe e b e seeh e e R e neebeeEeneeb e eReseebeebeneebenbeneenenreneas
10.11 CONtiNUBLTION FEFEIEICE......c.eivereuireeieiesieie sttt b et b etk e bt se b e bt nr e

27000 = o IO 1 o o R
T O 5 1S N T o TR
I 19 1N 1 o1 o

L@ pT= 1 1= o 0] 0= = (001
12.1 ChaiNEd OPEIEIIONS.ccveieeuirtereeieete sttt sttt sttt et b e et be b e st e bt bese st sbese e bt ebesee st ebeseebesbeneebenbe e
12.2 Chained ADaNdON OPEFAION.ccirieuiiiriettrte ettt sb e ettt se bt b e e b sbe e ene b e
12.3 Chained operations and ProtOCOl VEISIONcieieerieererieeseseeeste et sse s sre e ebe e e b seene s e

(O 0T TE 1= = o £SO
G 75 A 1 01 o 18 o i o RSOOSR
D132 DSA TEFEITAl ..ottt ettt et e et e e be e e ebee et e s e beesabessbeesabeeabeesabeeeaseesabesanseenareas
g 00 [Vl 11 o] o RSP OSRPRR
S wa o L= 1o I T 1 £ S
F4.2 CONFOIMBNCE.veeiteeiteeitecitecee et e et ettt et e et e e be e st e e beeabesaeesaeesaeesbeesbeeasesaeeebeaabeenbeeabesabesaeesbeesbeesbeensesnnes
G T @0 1= o LU= 1100 L= [
14.4 Individual and cooperative Operation Of DSAS.......cccccieiiiie i e

Rec. ITU-T X.518 (10/2012)

U
&
© O© ©O© 0O N O O WWWWNMNNN NEPRFR PP O

N
N R O

[
w

NNNRPRRRRRRER R
B OO ©mOomS=N~N D WWww

N NN
WINDN

NN NN
A DWW

N NN
N NN

DN DN DNDNDN
[e2 BN e) o) o) I o]

15

16

17

18

19

20

21
22

23

24

25

iv

14.5 Cooperative agreementS DEIWEEN DSASccv e et sre e sreens 27
Distributed DireCtory DENAVIOUNcoeiiiiiierieete ettt b e bbb e sbe e 27
15.1 Cooperative fulfilment Of OPEraLiONScoeieeiiireerere e e 27
15.2 Phases Of OpEration PrOCESSINGcoerieuerteriererterietestereetesteseesesseseeseseeseesesae st sbeseesesbeseesesbeseebessensenesseneas 27
15.3 Managing Distributed OPEratioNS...........coi i et e e b e e enas 28
S o) o o= o To 1T oo USSP 29
155 Other considerations for distributed OPEration............c.ceoieererieriereee e e e 30
15.6 Authentication of Distributed OPErationS..........ccooeiirerirere e e e ere s 31
The Operation DiSPEECHEcciiiiee ettt et e e b ae et e e se e beseesbesbesaeene e e anbeseesbeenas 32
R 1= 1 o0 = o] K= S 32
16.2 Procedures of the Operation DiSPatChercoeiiiiieii s 37
16.3 OVEVIEW Of PrOCEAUIES.......coviiiiiecticeeee ettt e e s st beeae e e e e e seesbesaeereeseenseneeseenteseesrennn 38
Request Validation PrOCEAUIEcveieiere ettt se e et e e s ae e srestesneeneeseeneeneeseensesaenrennn 39
I R 1 011 oo 0o o o 1SS PTSRPSRN 39
17.2 ProCEAUIE PAIraMELENS......c.eiueeueeeeeeeieseestesteseessesseeseeseeeessessestesaeeseeseeseeseessessessestesseeseensensensessensessessensen 40
AT . o1er= o F = L= 101 o o RS 41
NamMe RESOIULION PrOCEAUIEccuiitiieterteeete ettt sttt sttt b e b b e bt sb et b e s b e e eb e s b e seebesbeneenenbe e 44
S 00 I 1 1o o o ' o ST 44
18.2 Find DSE ProCeture ParaMELErS..........ooeieireriereeiereerie ettt st eeessessee b seesbesaesaesae s e eneeseeeeseeseesnes 44
R o 0101 o 1 TSP 45
(O] 01< ¢z (o g = Y= LU= o] o VR STRURUPRR 54
19.1 MOdIfiCation PrOCEAUIESccuiiieceecieeeee st e e e s ae st s tesae s e e e tesresbesreeneereeseenseseenteseesrennin 55
19.2 Single entry interrogation PrOCEAUIE...........ceiieiieierese st ste e e e e e e e saeste e srestesaeere e e e e eeesresteseesrennas 62
19.3 Multiple entry interrogation PrOCEAUIEceieceeeeieereses et e e e st e re e e e e e e teseesreens 62
Continuation REFEIENCE PrOCEAUIES..........ciieieierteie st ete st e e e se st e e e s re s e e e esaess e beseesbestesaeeseeeeeesresressens 77
20.1 Chaining strategy in the presence of ShatOWINGcecvevereririeie s 77
20.2 Issuing chained subrequeststo aremote DSA Of LDAP SEIVENccccvveveeeceereee e 79
20.3 PrOCEOUIES PAIAIMELEIS. .. cueiteitereeetereeseeeeseesteseessesseeseseessesseseessesaeasesseessensessestesasssessessesseeseensessessessenns 80
20.4 Definition Of the PrOCEIUIES.........ceiiveierere ettt ne e e seeneesrenresne e 80
20.5 ADBNAON PrOCEUUNES........ceeteitiieteitieete sttt ettt ettt b et b bt b e s b et eb e e et bt s e et b e b e e bt sb e s eneseenes 89
20.6 DAPrequest to LDAP reqUuESt ProCRAUIEcviiriiirtirieietesie ettt 91
20.7 LDAP result to DAP reply ProCeOUNE ..ottt bbb 95
RESUITS MEITING PIrOCEAUIE.oeeuiitereeieete ettt sttt ettt et et s be b e s e e bt b e se e st b e seebeeb e se e bt ebeseebesbeneenenbe e 97
Procedures for distributed authentiCation ..o 99
2 R R 1= o 115 (= =011 1= 1= 0) o S 100
22.2 RESUILS QUENENEICALIONviueetiiieieiirieseesiee ettt se e se e bt e e ebe st e e eseneenes 100
Knowledge adminiStration OVEIVIEWcc.cieiieie i ceeseesie e st e e et e e e e saesae e srestesaesneesee e ensesaenseseesrenses 101
23.1 Maintenance of KNOWIEAQE FEfErENCES........cciv it sae s 101
23.2 ReQUESHING CrOSS FEfEIENCE.eeueeeereese st ste sttt e e ree e st ettt se e tesaestesbesaeereeneeneenaeneeeeseeseeneenes 102
23.3 KNOWIEAQE INCONSISIENCIESeivieiiiieceeeieeseeieste sttt ese e eae s e et stesresse s e ese e e e e saeseesaesneereeneeneeseensensenes 103
Hierarchical operational DiNINGS..........ccoveieiieiirie ettt resre e e eneeeesrenrenns 104
24.1 Operational binding type CharaCteristiCS........ccviiririiiiic s 104
24.2 Operational binding information object Class definition ..o 107
24.3 DSA proceduresfor hierarchical operational binding management............ccoeovereeneneineneenennens 107
244 ProCedUres fOr OPEIAHIONS.c.ciuiietereeieterietet ettt b et b et b et b e na e b et se st s nenes 111
24.5 Use Of apPliCation COMEEXES.........eiirieieierierte ettt sttt ae et e e st be et b e s st eae e e e e e eeseesbesae e 111
Non-specific hierarchical operational DINAING..........cooiiriiiiii e 111
25.1 Operationa binding type CharaCteriStiCScouririiieree e e 111
25.2 Operationa binding information object class defiNitioncccccvieverevie s 112
25.3 DSA procedures for non-specific hierarchical operational binding management..........c.cccceeveevenee. 113
25.4 ProCedUrES fOr OPEIBLIONS.ccueiuieieeeiesieste st et et et e stesrestesaesteste e e e e e s e tesaesbestesaeeseensenseseeseenseseestensens 114
25,5 Use Of appliCation CONEXES........cuciiieeiieriesiesie st s et e e e ste st re e re e e e e e ae st e besaesbesaeeneenaeseeneeseeseenrenns 114

Rec. ITU-T X.518 (10/2012)

Annex A —ASN.1 for Distributed OPErations.........ccccoieiereieieceereerese st sre e sre s e e e eseseeseenees 115
Annex B — Specification of hierarchical and non-specific hierarchical operational binding types.........c.cccceevvveueee. 119
Annex C — Example of distributed Name reSOIULTIONcooiiiiii e 121
Annex D — Distributed use Of AUtNENEICALION...........ooiiirieieee e e se e 123
IR R S U 0 110 Y2 PSPPSR 123
D.2 Distributed proteCtion MOELcoeiiiiii i e st e e sr et seesreens 123
DRCTINS o [01c o Mot g =T 0 co o] 1= = 1T gL 123
Annex E — Knowledge maintenanCe EXamPIeccvcerereie i ceeee et se et sre st ene e e eneeseesnenes 125
Annex F — Amendments and COMTIGENTAL..........uiiririee et e e e sre e sre e e sseenee e enseseeseenes 128

Rec. ITU-T X.518 (10/2012) v

Introduction

This Recommendation | International Standard, together with other Recommendations | International Standards, have
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information that they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory information base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

— from different manufacturers;

— under different managements;

— of different levels of complexity; and
— of different ages.

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent serviceto its users.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be
defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks
may be mandated for use in certain environments through profiles. This seventh edition technically revises and
enhances the sixth edition of this Recommendation | International Standard.

This seventh edition specifies versions 1 and 2 of the Directory protocols.

The first and second editions specified only version 1. Most of the services and protocols specified in this edition are
designed to function under version 1. However, some enhanced services and protocols, e.g., signed errors, will not
function unless all Directory entities involved in the operation have negotiated version 2. Whichever version has been
negotiated, differences between the services and between the protocols defined in the seven editions, except for those
specifically assigned to version 2, are accommodated using the rules of extensibility defined in Rec. ITU-T X.519 |
| SO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
directory distributed operations.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module
providing definitions for hierarchical operational bindings.

Annex C, which is not an integral part of this Recommendation | International Standard, describes an example of
distributed name resolution.

Annex D, which is not an integral part of this Recommendation | International Standard, describes authentication in the
distributed operations environment.

Annex E, which is not an integral part of this Recommendation | International Standard, illustrates knowledge
maintenance.

Annex F, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

Vi Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

INTERNATIONAL STANDARD ISO/IEC 9594-4
RECOMMENDATION ITU-T X.518

I nformation technology — Open Systems I nter connection —
The Directory: Proceduresfor distributed operation

SECTION 1 -GENERAL

1 Scope

This Recommendation | International Standard specifies the behaviour of DSAs taking part in a distributed directory
consisting of multiple Directory systems agents (DSAS) and/or LDAP servers with at least one DSA. The alowed
behaviour has been designed to ensure a consistent service given a wide distribution of the DIB across a distributed
directory. Only the behaviour of DSAs taking part in a distributed directory is specified. The behaviour of LDAP
servers are specified in relevant LDAP specifications. There are no specia requirements on an LDAP server beyond
those given by the LDAP specifications.

The Directory is not intended to be a general purpose database system, although it may be built on such systems. It is
assumed that there is a considerably higher frequency of queries than of updates.

2 Nor mative refer ences

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations| International Standards

— Recommendation ITU-T X.200 (1994) | ISO/IEC 7498-1:1994, Information technology — Open Systems
Interconnection — Basic Reference Model: The basic model.

— Recommendation ITU-T X.500 (2012 | ISO/IEC 9594-1:2014, Information technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

— Recommendation ITU-T X.501 (2012) | ISO/IEC 9594-2:2014, Information technology — Open Systems
Interconnection — The Directory: Models.

— Recommendation ITU-T X.509 (2012) | ISO/IEC 9594-8:2014, Information technology — Open Systems
Interconnection — The Directory: Public-key and attribute certificate frameworks.

— Recommendation ITU-T X.511 (2012) | ISO/IEC 9594-3:2014, Information technology — Open Systems
Interconnection — The Directory: Abstract service definition.

— Recommendation ITU-T X.519 (2012) | ISO/IEC 9594-5:2014, Information technology — Open Systems
Interconnection — The Directory: Protocol specifications.

— Recommendation ITU-T X.520 (2012) | ISO/IEC 9594-6:2014, Information technology — Open Systems
Interconnection — The Directory: Selected attribute types.

— Recommendation ITU-T X.521 (2012) | ISO/IEC 9594-7:2014, Information technology — Open Systems
Interconnection — The Directory: Selected object classes.

— Recommendation ITU-T X.525 (2012) | ISO/IEC 9594-9:2014, Information technology — Open Systems
Interconnection — The Directory: Replication.

— Recommendation ITU-T X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

— Recommendation ITU-T X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

— Recommendation ITU-T X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

Rec. ITU-T X.518 (10/2012) 1

| SO/l EC 9594-4:2014 (E)

Recommendation ITU-T X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

2.2 Other references

IETF RFC 3672 (2003), Subentries in the Lightweight Directory Access Protocol (LDAP).

IETF RFC 4510 (2006), Lightweight Directory Access Protocol (LDAP): Technical Specification Road
Map.

IETF RFC 4511 (2006), Lightweight Directory Access Protocol (LDAP): The Protocol.

IETF RFC 4514 (2006), Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply:

31 Basic Directory definitions
Thefollowing terms are defined in Rec. ITU-T X.500 | ISO/IEC 9594-1.

a)
b)

(the) Directory;
Directory Information Base.

3.2 Directory model definitions
The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a)
b)
0
d)
)
)
9)

access point;

alias;

Directory Information Tree;
Directory System Agent (DSA);
Directory User Agent (DUA);
distinguished name;

relative distinguished name.

33 DSA information model definitions
The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a)
b)
0
d)
S
)

9)
h)
i)

)

K)
1)

m)
n)
0)

category;

commonly usable;

context prefix;

cross reference;

DIB fragment;

DSA information tree;
DSA-Specific Entry (DSE);
DSE type;

immediate superior reference;
knowledge information;

knowl edge reference category;
knowl edge reference type;
naming context;

non-specific knowledge;
non-specific subordinate reference;

2 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

p) operational attribute;
q) reference path;

r) specific knowledge;

s) subordinate reference;
t) superior reference.

34 Abstract service definitions
The following terms are defined in Rec. ITU-T X.511 | ISO/IEC 9594-3:

a) reply;
b) request;
C) requester.

35 Protocol definitions

The following terms are defined in Rec. ITU-T X.519 | ISO/IEC 9594-5:
a) application-association;
b) application-entity-title.

3.6 Directory replication definitions

Thefollowing terms are defined in Rec. ITU-T X.525 | ISO/IEC 9594-9:
a) attribute completeness;
b) shadowing operational binding;
¢) subordinate completeness;
d) unit of replication.

3.7 Distributed operation definitions
The following terms are defined in this Recommendation | I nternational Standard:
371 base abject: The object or alias entry that isthe target for an operation as issued by the requester.

3.7.2 bound DSA: The DSA to which the requesting DUA or LDAP client has bound, by having performed a Bind
operation with that DSA.

373 bound-DSA paged results: The paging is performed entirely by the DSA to which the DUA is bound.
NOTE — Thisisthe only mode of paging supported by systems conforming to editions prior to the fifth edition.

374 chaining: The generic term for uni-chaining or multi-chaining.

3.75 context prefix information: Operational and user information supplied by the superior DSA to the
subordinate DSA in an RHOB regarding DIT vertices superior to the subordinate context prefix.

3.7.6 directory server: A DSA or an LDAP server.

3.7.7 distributed directory: An interconnected set of directory servers where at least one directory server shal be
aDSA.

3.7.8 distributed name resolution: The process by which name resolution starts in a DSA and continues in one or
more Directory servers.

379 DSP paged results: The DSP protocol provisions when a performing DSA is different from a bound DSA,
whereby paged results by theinitial performer are accomplished.

3.7.10 error: Information sent from the performer to the requester conveying a negative outcome of a previously
received request.

3711 hard error: A definite error which indicates that the operation cannot currently be performed without
external intervention.

Rec. ITU-T X.518 (10/2012) 3

| SO/l EC 9594-4:2014 (E)

3.7.12 hierarchical operational binding (HOB): Relationship between two master DSAs holding naming contexts,
one of which is immediately subordinate to the other, in which the superior DSA holds a subordinate reference to the
subordinate DSA.

3.7.13 initial performer: The first DSA or LDAP server to start performing on an operation, i.e., the first DSA or
LDAP server to enter the evaluation phase of the operation.

3714 LDAPrequester: A DSA that hasthe ability to access an LDAP server by using the LDAP protocol.

3.7.15 maodification operations: These are the Directory Modify operations, i.e., Modify Entry, Add Entry, Remove
Entry, Modify DN, Change Password and Administer Password operations.

3.7.16 multi-chaining: A mode of interaction in which a DSA processing a request itself sends multiple requests
either in parallel or sequentially to a set of other DSAS.

3.7.17 multiple entry interrogation operations: These are the Directory Search operations, i.e., List and Search
operations.

3.7.18 name resolution: The process of locating an entry by sequentially matching each RDN in a purported name
to avertex of the DIT.

3.7.19 non-specific hierarchical operational binding (NHOB): Relationship between two master DSAs holding
naming contexts, one of which isimmediately subordinate to the other, in which the superior DSA holds a non-specific
subordinate reference to the subordinate DSA.

3.7.20 NSSR decomposition: Decomposition of non-specific knowledge references into subrequests for other DSAs
to pursue; these subrequests may be either chained to these DSAs by the DSA performing the decomposition, or a
continuation reference identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA
may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.7.21 operation progress. A set of values which denotes the extent to which name resolution has taken place.

3.7.22 paging: A search Or 1list result is returned piecewise in the form of one or more pages that are comprised
by alimited number of entries.

3.7.23 performer: DSA receiving arequest (i.e., to perform an operation).
NOTE — The performer is aso the initia performer except possibly for operations that involve more than one DSA for their
evaluation.

3.7.24 procedure: An (informal) specification of how a DSA maps a given set of input arguments and its DSA
information tree into a resullt.

NOTE — Input arguments and results may correspond to information received in a requested operation and information sent in a
reply, or they may represent intermediate stages in the computation of a reply from a requested operation. In clause 14.2, the
former variety of input arguments and results are termed external.

3.7.25 relevant hierarchical operational binding (RHOB): Either an HOB or an NHOB, depending on the context.

3.7.26 referral: An outcome which can be returned by a DSA or LDAP server which cannot perform an operation
itself, and which identifies one or more other DSAs or LDAP servers more able to perform the operation.

3.7.27 request decomposition; Decomposition by a DSA of arequest into subrequests for other Directory serversto
pursue; these subrequests may be either chained to these Directory servers by the DSA performing the decomposition,
or continuation references identifying the Directory servers may be returned to the requester for it to pursue, or the
decomposing DSA may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.7.28 single entry interrogation operations. These are the Directory Read operations, i.e., Read and Compare
operations.

3.7.29 soft error: Anerror which may be transient, or which may indicate alocalized problem, in which case the use
of adifferent knowledge reference or access point may enable aresult or hard error to be obtained.

3.7.30 subordinate DSA: Of the two DSAs sharing an HOB or an NHOB, the DSA holding the subordinate naming
context.

3.7.31 subrequest: A request generated by request decomposition.

3.7.32 superior DSA: Of the two DSAs sharing an HOB or an NHOB, the DSA holding the superior naming
context.

4 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

3.7.33 superior, subordinate DSA: Two master DSAs holding naming contexts, one of which is immediately
subordinate to the other; the relationship between the two DSAs is managed explicitly viaan HOB (or NHOB), or exists
implicitly by virtue of the superior DSA holding a subordinate (or non-specific subordinate) reference to the
subordinate DSA.

3.7.34 target object name: The name of an entry either to which the operation is to be directed at a particular stage
of name resolution, or which isinvolved in the evaluation of the operation.

3.7.35 uni-chaining: A mode of interaction optionally used by a DSA which cannot perform an operation itself. The
DSA chains by invoking an operation of another DSA or LDAP server and then relaying the outcome to the original
requester.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
DAP Directory Access Protocol
DIB Directory Information Base
DISP Directory Information Shadowing Protocol
DMD Directory Management Domain
DOP Directory Operational Binding Management Protocol
DSA Directory System Agent
DSE DSA-Specific Entry
DSP Directory System Protocol
DUA Directory User Agent
HOB Hierarchical Operationa Binding
LDAP Lightweight Directory Access Protocol
NHOB Non-specific Hierarchical Operational Binding
NSSR Non-Specific Subordinate Reference
RHOB Relevant Hierarchical Operational Binding

5 Conventions

The term "Directory Specification” (as in "this Directory Specification”) shall be taken to mean Rec. ITU-T X.518 |
| SO/IEC 9594-4. The term "Directory Specifications" shall be taken to mean the X.500-series Recommendations and all
parts of 1SO/IEC 9594.

This Directory Specification uses the term first edition systems to refer to systems conforming to the first edition of the
Directory Specifications, i.e, the 1988 edition of the CCITT X.500-series Recommendations and the
I SO/IEC 9594:1990 edition.

This Directory Specification uses the term second edition systems to refer to systems conforming to the second edition
of the Directory Specifications, i.e, the 1993 edition of the ITU-T X.500-series Recommendations and the
I SO/IEC 9594:1995 edition.

This Directory Specification uses the term third edition systems to refer to systems conforming to the third edition of the
Directory Specifications, i.e, the 1997 edition of the ITU-T X.500-series Recommendations and the
| SO/IEC 9594:1998 edition.

This Directory Specification uses the term fourth edition systems to refer to systems conforming to the fourth edition of
the Directory Specifications, i.e., the 2001 editions of Rec. ITU-T X.500, X.501, X.511, X.518, X.519, X.520, X.521,
X.525, and X.530, the 2000 edition of Rec. ITU-T X.509, and parts 1-10 of the | SO/IEC 9594:2001 edition.

This Directory Specification uses the term fifth edition systems to refer to systems conforming to the fifth edition of the
Directory Specifications, i.e., the 2005 edition of the ITU-T X.500-series Recommendations and the
I SO/IEC 9594:2005 edition.

Rec. ITU-T X.518 (10/2012) 5

| SO/l EC 9594-4:2014 (E)

This Directory Specification uses the term sixth edition systems to refer to systems conforming to the sixth edition of the
Directory Specifications, i.e, the 2008 edition of the ITU-T X.500-series Recommendations and the
I SO/IEC 9594:2008 edition.

This Directory Specification uses the term seventh edition systems to refer to systems conforming to the seventh edition
of the Directory Specifications, i.e., the 2012 edition of the ITU-T X.500-series Recommendations and the
| SO/IEC 9594:2014 edition.

This Directory Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values
are referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New
typeface. The names of procedures, typically referenced when specifying the semantics of processing, are differentiated
from normal text by displaying them in bold Times New Roman. Access control permissions are presented in italicized
Times New Roman.

If the items in a list are numbered (as opposed to using "—" or letters), then the items shall be considered steps in a
procedure.

6 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

SECTION 2 - OVERVIEW

6 Overview

The Directory abstract service allows the interrogation, retrieval and modification of Directory information in the DIB.
This service is specified in in Rec. ITU-T X.511 | ISO/IEC 9594-3. Similarly, the lightweight directory access protocol
(LDAP) allows the interrogation, retrieval and modification of Directory information in the DIB. This protocol and the
servicesit enables are specified in IETF RFC 4511.

The abstract service as specified in Rec. ITU-T X.511 | ISO/IEC 9594-3 does not address the specification of Directory
system agents (DSA) within which the DIB is stored and managed, and through which the service is provided.
Furthermore, it does not consider whether the DIB is centralized, i.e., contained within asingle DSA, or distributed over
a DSA and a number of additional DSAs and/or LDAP servers. Directory server is the common name for a DSA or an
LDAP server. Consequently, the requirements for DSAs to have knowledge of, navigate to and cooperate with other
DSAs and or LDAP servers, in order to support the abstract service in a distributed environment is also not covered by
the abstract service specification.

This Directory Specification specifies how a set of one or more DSAs and zero or more LDAP servers collectively
congtitute the distributed directory service.

In addition, this Directory Specification specifies the permissible ways in which the DIB may be distributed over one or
more DSAs and zero or more LDAP servers. For the limiting case where the DIB is contained within asingle DSA, the
Directory is in fact centralized; for the case where the DIB is distributed over two or more DSAs, knowledge and
navigation mechanisms are specified which ensure that the whole of the DIB is potentially accessible from all DSAs
that hold constituent entries.

Portions of the DIB may also be replicated in multiple DSAs. The protocols described in this Directory Specification
allow the use of replicated information to improve the availability, performance and efficiency of the distributed
directory service. The use of replicated information is, to some extent, under the user's control, through the use of
service control options. The procedures described in this Directory Specification also indicate some of the opportunities
for design optimizations when using the replicated information.

Additionally, request handling interactions are specified that enable particular operational characteristics of the
Directory to be controlled by its users. In particular, the user has control over whether aDSA, responding to a directory
inquiry pertaining to information held in other directory server(s), has the option of interrogating the other DSA(S)
directly (chaining) or, whether it should respond with information about other directory server(s) which could further
progressthe inquiry (referral).

Generally, the decision by a DSA to chain or refer is determined by the service controls set by the user, and by the
DSA's own administrative, operational or technical circumstances.

Recognizing that, in general, the Directory will be distributed, and that directory inquiries will be satisfied by an
arbitrary number of cooperating DSAs which may arbitrarily chain or refer according to the above criteria, this
Directory Specification specifies the appropriate procedures to be effected by DSAS in responding to distributed
directory inquiries. These procedures will ensure that users of the distributed Directory service perceive it to be both
user-friendly and consistent.

NOTE — Although an LDAP server may participate in a distributed operation, it is not aware of this cooperation.

Rec. ITU-T X.518 (10/2012) 7

| SO/l EC 9594-4:2014 (E)

SECTION 3 -DISTRIBUTED DIRECTORY MODELS

7 Distributed Directory system model

The Directory abstract service, as defined in Rec. ITU-T X.511 | ISO/IEC 9594-3, models the Directory as an entity
which provides a set of directory servicesto its users. Users of the Directory access its services through an access point.

Figure 1 illustrates the distributed directory model which will be used as the basis for specifying the distributed aspects
of the directory. It illustrates the Directory as comprising a set of one or more DSAs and zero or more LDAP servers.

X.518(12)_FO1

Figure1—Thedistributed directory model

DSAs are specified in detail in the subsequent clauses of this Directory Specification. This clause merely states a
number of their characteristics, in order to serve as an introduction and to establish the relationship between this
Directory Specification and the other Directory Specifications.

DSAs are defined in order that distribution of the DIB can be accommodated and that a number of physically distributed
DSAs and LDAP servers can interact in a prescribed, cooperative manner to provide directory services to the users of
the directory (DUAs and/or LDAP clients).

Figure 1 illustrates the relationship between the directory abstract service and the DSA abstract service. The directory
abstract service defined in Rec. ITU-T X.511 | ISO/IEC 9594-3 is provided through a number of Directory operations.
Toredlize this service, the DSAs and LDAP servers that comprise the Directory interact with one another. The nature of
this interaction is defined in terms of the service that one DSA may provide to another DSA, the DSA abstract service.
In addition, a DSA may interact with an LDAP server using the LDAP protocol as defined by IETF RFC 4511. When
doing this, the DSA is called an LDAP requester and the DSA abstract service does not apply for this type of
interaction. A DSA that is directly bound to a DUA or LDAP client is called the bound DSA (for that DUA or LDAP
client).

Asindicated in Figure 1, each of two interacting DSAs may provide a DSA abstract service to the other DSA. However,
an LDAP server is not able to send requests to a DSA or to another LDAP server. LDAP servers are therefore always at
the edge of the infrastructure.

The DSA abstract service is provided through a number of operations, termed chained operations, each having a
counterpart in the Directory abstract service. Thus, a given operation in the directory abstract service, e.g., Read, may
require that the DSA providing the service interact with one or more other DSAs using chained operations,
e.g., Chained Read.

A DUA or LDAP client can only access the Directory by interacting with a DSA.

NOTE —An LDAP client interaction with an LDAP server is specified by IETF RFC 4510 and is outside the scope of these
Directory Specifications.

8 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

8 DSA interactions model

A basic characteristic of the Directory is that, given a distributed DIB, a requester should potentially be able to have any
service request satisfied (subject to security, access control, service restrictions and administrative policies) irrespective
of the access point at which the request originates. In accommodating this requirement, it is necessary that any DSA
involved in satisfying a particular service request has some knowledge (as specified in Rec. ITU-T X.501 |
ISO/IEC 9594-2) of where the requested information is located and either return this knowledge to the requester or
attempt to have the request satisfied on its behalf. (The requester may be a DUA, an LDAP client or another DSA
(possibly on behalf of bound LDAP clients). In the latter case, both DSAs shall support the DSP.

Three modes of DSA interaction are defined to meet these requirements, namely "uni-chaining”, "multi-chaining”, and
"referral”. Throughout the remainder of this Directory Specification, the generic term chaining is used to refer to
uni-chaining and/or multi-chaining as appropriate to the particular situation. "Chaining" refers to the attempt by a DSA
to satisfy a request by sending one or more chained operations to other DSAs; "referral”, refers to the return of
knowledge information to the requester, which may then itself interact with the DSA(S) identified in the knowledge
information.

LDAP servers may be components of a Directory. A DSA may chain requests to an LDAP server using the LDAP
protocol as specified in IETF RFC 4511. A DSA ableto chain requestsin thisway is called an LDAP requester.

Uni-chaining or a referral interaction may result from a single request. Alternatively, the request may be decomposed
into severa subrequests prior to the interaction. Multi-chaining or referra interactions, or a mixture of the two, may
result from a decomposed request. Two types of decomposition are defined: NSSR decomposition and request
decomposition.

81 Decomposition of arequest

8.1.1 NSSR decomposition

NSSR decomposition is the process of preparing (semantically) identical requests ready for transfer (either sequentialy
or in parallel) to severa subordinate directory servers as a result of encountering an NSSR during name resolution.
Non-specific subordinate references do not hold the RDNs of the referenced subordinate naming contexts, so the
referencing DSA is unable to tell which subordinate directory server holds which subordinate naming context(s).
During name resolution, a DSA encountering NSSRs shall send a semantically identical request to each subordinate
directory server (in the absence of shadowing). This may be done sequentially or in parallel. Typicaly, only one
directory server will be able to continue with name resolution; the other DSAs will return a serviceError with
problem unableToProceed, While other LDAP servers will return nosuchobject. In certain (rare) circumstances, it
is possible that more than one DSA will continue with name resolution, giving rise to duplicate results.

8.1.2 Request decomposition

Request decomposition, the other form of decomposing a request, is a process performed internally by a DSA prior to
communication with one or more other directory servers. A request is decomposed into several, possibly different,
subrequests such that each of the subrequests accomplishes a part of the origina task. Request decomposition can be
used only during operation evaluation of a List, Search or LDAP Search operation. After request decomposition, each
of the subrequests may then be chained to other directory servers to continue the task, or a partial result (an embedded
referral) may be returned to the requester. An example of the same subrequest being generated to different directory
servers is when an entry has subordinate references and/or NSSRs that together reference more than one directory
server. An example of different subrequests being generated to the same or different directory servers is when two
different entries are encountered during a Search (subtree), and each has a subordinate reference.

8.2 Uni-chaining

This mode of interaction (depicted in Figure 2) may be used by one DSA to pass on arequest to another directory server
when the former has knowledge about naming contexts held by the latter. Uni-chaining may be used to contact a single
DSA or LDAP server pointed to in a cross reference or a subordinate reference. In addition, a superior reference,
supplier reference or a master reference may be used to contact asingle DSA.

NOTE — In Figure 2, the order of interactions is defined by the numbers associated with the interaction lines.

Rec. ITU-T X.518 (10/2012) 9

| SO/l EC 9594-4:2014 (E)

X.518(12)_F02

Figure 2 — Uni-chaining mode

8.3 Multi-chaining

This mode of interaction is used by a DSA for transferring several outgoing requests which have resulted from one
incoming request, as aresult of either request decomposition or NSSR decomposition.

831 Par allel multi-chaining

With parallel multi-chaining, the DSA transfers several outgoing requests simultaneously (see Figure 3a). Whilst
paralel multi-chaining may give improved performance, it may under certain circumstances, e.g., in the presence of
shadowing, cause duplicate results to be received.

X518(12)_F03a

Figure 3a—Parallel multi-chaining
832 Sequential multi-chaining

With sequential multi-chaining, the DSA transfers one outgoing request at a time and waits for the result or error of one
request before sending the next (see Figure 3b). Whilst sequential multi-chaining may not be the quickest mode of
interaction, it is unlikely that duplicate results will be received.

NOTE — A DSA may use a combination of parallel multi-chaining and sequential multi-chaining.

10 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

a) X.518(12)_F03b
Unabl e to proceed

Figure 3b — Sequential multi-chaining
(asaresult of NSSR decomposition)

8.4 Referral

A referral (depicted in Figures 4a and 4b) is returned by aDSA in response to arequest from a DUA, an LDAP client or
another DSA. The referral may constitute the whole response (in which case it is categorized as an error) or just part of
the response. An LDAP server may also return areferral as specified in IETF RFC 4511. A referral returned by a DSA
contains a knowledge reference, which may be either a superior, subordinate, cross, non-specific subordinate, supplier,
or master reference. A referral from an LDAP server is equivalent to a cross reference.

The DSA (Figure 4a) receiving the referral may use the knowledge reference contained therein, to subsequently chain
or multi-cast (depending upon the type of reference) the original request to other directory servers. Alternatively, a DSA
receiving areferral, may in turn pass the referral back in its response. A DUA or LDAP client (Figure 4b) receiving a
referral may use it to contact one or more other DSAS to progress the request.

NOTE 1 — In Figures 4a and 4b, the order of interactions is defined by the numbers associated with the interaction lines.

D E F

8
Response

DUA or
a LDAP
b Referral to E

Referral to F

client
X.518(12)_F04a

Figure 4a—Referral mode (DSA actson referrals)

Rec. ITU-T X.518 (10/2012) 11

| SO/l EC 9594-4:2014 (E)

Request Response

)
:) Referral to E X.518(12)_F04b
Referral to F

Figure 4b — Referral mode (DUA or LDAP client actson referrals)

NOTE 2 — In Figure 4b, areferral to an LDAP client may be to an LDAP server. However, this situation is outside the scope of
this Directory Specification.

8.5 M ode deter mination

If aDSA cannot itself fully resolve arequest, it shall chain the request (or arequest formed by decomposing the original
one), to another DSA or LDAP server, unless;

a) chaning is prohibited by the requester or a bound DSA on behalf of an LDAP client via the
chainingProhibited Service control, in which case the DSA shal return a referral or a
serviceError With problem chainingRequired; Or

b) the DSA has administrative, operational, or technical reasons for preferring not to chain, in which case
the DSA shall return areferral.

NOTE 1 — A "technical reason" for not chaining is that the DSA identified in the knowledge reference does not

support the DSP.
NOTE 2 — If the 1ocalscope service control is set, then the DSA (or DMD) shall either resolve the request or return
an error.

NOTE 3 —If the user prefersreferrals, the user should set chainingProhibited.
NOTE 4 — An LDAP server will always return areferral.

12 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

SECTION 4 —DSA ABSTRACT SERVICE

9 Overview of DSA abstract service

The service of the Directory isfully described in Rec. ITU-T X.511 | ISO/IEC 9594-3. When such a serviceis provided
in a distributed environment, as modelled in clause 7, it can be regarded as being provided by means of a set of DSAs
and zero or more LDAP servers. Thisisillustrated in Figure 1.

For each operation defined in the Directory service, a corresponding "chained" operation is defined in the DSA abstract
service for use between DSASs cooperating in the accomplishment of that Directory service operation. Thus, a DSA
receiving a Read operation from a DUA might require the assistance of another directory server (e.g., a DSA holding
the target entry or a copy of it) to satisfy it, and so send that DSA a Chained Read operation.

The information types exchanged in the DSA abstract service are defined in clause 10. The operations and errors of the
DSA abstract service are defined in clauses 11 to 13.

NOTE — Communication between a DSA (LDAP requester) and an LDAP server is outside the scope of DSA abstract service.

10 Information types

10.1 Introduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the
definition of the various operations of the DSA abstract service. The information types concerned are those which are
common to more than one operation or which are sufficiently complex or self-contained to merit being defined
separately from the operation which uses them.

Several of the information types used in the definition of the DSA abstract service are defined elsewhere. Clause 10.2
identifies these types and indicates the source of their definition. Clauses 10.3 to 10.10 each identifies and defines an
information type.

10.2 Information types defined elsewhere
The following information types are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:
(Attributes)
- aliasedEntryName,
(Data types)
— DistinguishedName,
- Name,

- RelativeDistinguishedName.

The following information types are defined in Rec. ITU-T X.511 | ISO/IEC 9594-3:
(Operations)
- abandon,
(Errors)
- abandoned,
- attributeError,
- nameError,
- securityError,
- serviceError,
— updateError.
(Information Object Class)
- OPTIONALLY-PROTECTED,
(DataType)

- SecurityParameters.

Rec. ITU-T X.518 (10/2012) 13

| SO/l EC 9594-4:2014 (E)

The following information typeis defined in Rec. ITU-T X.520 | ISO/IEC 9594-6:
(DataType)

- PresentationAddress

10.3 Chaining arguments

The chainingArguments shall be present in each chained operation, to convey to a DSA the information needed to
successfully perform its part of the overall task:

ChainingArguments ::= SET {
originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
operationProgress [2] OperationProgress
DEFAULT {nameResolutionPhase notStarted},

traceInformation [3] TraceInformation,

aliasDereferenced [4] BOOLEAN DEFAULT FALSE,

aliasedRDNs [5] INTEGER OPTIONAL,

-- only present in first edition systems
returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
info [8] DomainInfo OPTIONAL,
timeLimit [9] Time OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT {},
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniqueIdentifier [12] UniqueIdentifier OPTIONAL,
authenticationLevel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE,
operationIdentifier [17] INTEGER OPTIONAL,
searchRuleId [18] SearchRuleId OPTIONAL,
chainedRelaxation [19] MRMapping OPTIONAL,
relatedEntry [20] INTEGER OPTIONAL,
dspPaging [21] BOOLEAN DEFAULT FALSE,

-- [22] Not to be used
-- [23] Not to be used
excludeWriteableCopies [24] BOOLEAN DEFAULT FALSE,
e}
Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime,
}
DomainInfo ::= ABSTRACT-SYNTAX.&Type

The various components have the following meaning;:

a) The originator component need not be present if the requester component is present in
CommonArguments Value, if the certification-path component is present in the
SecurityParameters value, or if requester information is only made available in the request, but not
during the Bind operation. It shall not be present if requester information is not available. It shall be
present, if requester information is only available as the result of the Bind operation.

b) The targetobject component shall convey the name of the object whose directory entry is being
routed to. The role of this object depends on the particular operation concerned: it may be the object
whose entry is to be operated on, or which is to be the base object for a request or subrequest involving
multiple objects (e.g., chainedList Of chainedSearch). This component need not be present if it has
the same value as the object or base object parameter in the chained operation, in which case its implied
value isthat value. Otherwise, it shall be present.

C¢) The operationProgress component is used to inform the DSA of the progress of the operation, and
hence of the role which it is expected to play in its overall performance. The information conveyed in
this component is specified in clause 10.5. The default value indicates that the name resolution has not
started.

14 Rec. ITU-T X.518 (10/2012)

d)

e

f)

9)

h)

)

k)

n)

| SO/l EC 9594-4:2014 (E)

The traceInformation component shall be used to prevent looping among DSAs when chaining isin
operation. A DSA shall add a new element to trace information prior to chaining an operation to another
DSA. On being requested to perform an operation, a DSA shall check, by examination of the trace
information, that the operation has not formed a loop. The information conveyed in this component is
specified in clause 10.6.

The aliasDereferenced component is a BOOLEAN value which shall be used to indicate whether or
not one or more aias entries have so far been encountered and dereferenced during the course of
distributed name resolution. The default value of FaLsi indicates that no alias entry has been
dereferenced.

The aliasedrRDNs component indicates how many of the RDNs of the targetobject component
have been generated from the aliasedEntryName attributes of one (or more) alias entries. The integer
value is set whenever an alias entry is encountered and dereferenced. This component shall be present if
the aliasDereferenced component is TRUE. Otherwise, it shall be absent.
NOTE — This component is provided for compatibility with first edition implementations of the Directory. DUAS (and
DSAs) implemented according to later editions of the Directory Specifications shall always omit this parameter from
the commonarguments Of a subsequent request. In this way, the Directory will not signal an error if aliases
dereference to further aliases.

The returnCrossRefs component is a Boolean value which indicates whether or not knowledge
references, used during the course of performing a distributed operation, are requested to be passed back
to the initial DSA as cross references, along with a result or referral. The default value of FALSE
indicates that such knowledge references shall not be returned.

The referenceType component, when present, shall indicate, to the DSA being asked to perform the
operation, what type of knowledge was used to route the request to it. The DSA may therefore be able to
detect errors in the knowledge held by the invoker. If such an error is detected, it shall be indicated by a
serviceError With problem invalidReference. ReferenceType iS Specified fully in clause 10.7.
If the referenceType is absent, then the value superior shall be assumed.

The info component is used to convey DMD-specific information among DSAs which are involved in
the processing of a common request. This component is of type bomainInfo, which is of unrestricted
type:

The timeLimit component, if present, shal indicate the time by which the operation is to be completed
(see clause 16.1.4.1). Before a value of Time is used in any comparison operation and if the syntax of
Time has been chosen asthe uTcTime type, the value of the two-digit year field shall be rationalized into
afour-digit year value as follows:

— If the 2-digit valueis 00 to 49 inclusive, the value shall have 2000 added to it.

— If the 2-digit value is 50 to 99 inclusive, the value shall have 1900 added to it.
NOTE 3 —The use of GeneralizedTime May prevent interworking with implementations unaware of the possibility
of choosing either uTcTime Or GeneralizedTime. It iSthe responsibility of those specifying the domains in which
this Directory Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no
case shall uTcTime be used for representing dates beyond 2049.

The securityParameters datatypeis specified in Rec. ITU-T X.511 | ISO/IEC 9594-3. Its absenceis
deemed equivalent to there being an empty set of security parameters.

The entryonly component shall be set to TRUE if the original operation was a Search with the subset
argument set to oneLevel, and an alias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution on the targetobject name shall
perform abject evaluation on only the named entry.

uniqueIdentifier component is optionally supplied when it is required to confirm the requester
name. The uniqueIdentifier datatypeisdescribed in Rec. ITU-T X.501 | ISO/IEC 9594-2.

authenticationLevel component, when present, shall indicate the authentication level as established
during the Bind operation. If this component is absent, a performing DSA shall assume that there has
been no authentication (anonymous Bind). This component should be present whenever the requester has
been authenticated. The aAuthenticationLevel data type is described in Rec. ITU-T X.501 |
ISO/IEC 9594-2.

The exclusions component has significance only for Search operations; it shall indicate, if present,
which subtrees of entries subordinate to the targetobject shall be excluded from the result of the
Search operation (see clause 10.10).

Rec. ITU-T X.518 (10/2012) 15

| SO/l EC 9594-4:2014 (E)

16

p)

a)

r

S)

)

u)

v)

The excludeShadows component has significance only for Search, LDAP Search and List operations; it
indicates that the search shall be applied to entries and not to entry copies. If arequest is received by an
LDAP requester for forwarding it to an LDAP server, the request shall not be forwarded if the referenced
naming context within the LDAP server is of category shadow (See clause 10.8). This optional
component may be used by a DSA as one way to avoid the receipt of duplicate results (see clause 20.1).

The nameResolveOnMaster component only has significance during name resolution, and isonly set if
NSSRs have been encountered. If set to TRUE, it signals that subsequent name resolution, i.e., matching
the remaining RDNSs from nextRDNToBeResolved, shall not employ entry copy information, including
writeable copies in a multi-master LDAP server implementation; subsequent resolution of each
remaining RDN shall be done in the master DSA for the entry identified by that RDN (see clause 20.1).

The operationIdentifier component facilitates the correlation of DAP operations with subsequent
related DSP operations as well as with results. It isassigned by the DSA that first receives a DAP request
or is copied from the chaining arguments of DSP requests that require further chaining. The DSA
assigning the operationIdentifier shal not reuse the assigned integer for a sufficiently long time
period. The correlation of related DAP and DSP requests and results are facilitated by DSA logging, for
each operation and result, the operationIdentifier together with the name of the DSA that assigned
it (the first DSA in traceInformation 0N a chained request). Such correlation may be useful for the
purposes of logging, auditing, charging and settlements, etc.

The searchrRuleId component, when present, shall convey the unique identity of a search-rule. It is
included by the DSA performing the initial Search procedure (1) in case this procedure starts within a
service-specific administrative area and the search operation is progressed to other DSAs either when
progressing down the DIT, when following aliases or when following hierarchical group pointers.

The chainedRelaxation component enables relaxation to be carried out in a distributed manner for
chained Search operations. If a DSA received a chained search operation, and supports relaxation
policies, it can use the supplied chainedRelaxation component in place of any other relaxation policy
that it might implement, thereby enabling relaxation to be coordinated among the DSASs that potentially
return search results.

The relatedEntry element shall be present whenever the receiving DSA is required to resolve related
entries. When present, the receiving DSA shall respond only to the specific related entry element
specified by the relatedEntry value in joinAttributes Of the SearchArgument. Thus, a
relatedEntry value of zero shal select the first element in the joinattributes Sequence the
SearchArgument. The value shall never exceed one less than the number of elements in the
joinAttributes component of SsearchArgument. The absence of the relatedEntry element in the
ChainingArguments Of a DSP operation specifying related entries shall indicate that the distributed
operation being chained on isthe base search, and not the related entry part of the search.

If a DSA to which chaining is being carried out is required to handle both normal search results and
related-entry results, this shall be done by sending the DSA two distinct DSP operations.

When the relatedEntry element is present, the following special rules shall apply:

— in evaluating the infoTypes subcomponent of selection component of SearchArgument,
infoTypes shal be taken as having the value attributeTypesAndvalues, Whatever the
originally specified value;

— al attributes specified in any joinatt component of JoinattpPair shal be included in the
selection, whether or not previously included there;

— the DSA coordinating related entry results shall omit values and unspecified arguments, so as to
make the result conform with the original user request.

The relatedEntry argument shall be passed on in consequent outgoing ChainingArguments by a
DSA that supports related entries.

The dsppaging component may be used to request DSP paging. If the bound DSA is different from the
initial performer (see clause 15.5.4) and the bound DSA supports DSP paged results, it may set this
component to TRUE to instruct the initial performer to provide DSP paged results. If this component is
FALSE (default), the initial performer shall not perform DSP paged results. An initial performer that
supports DSP paged results shall not forward this component to DSA(S) to which it is sending
subrequests.

Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

W) The excludeWriteableCopies component has significance only for an LDAP requester receiving a
Search, LDAP search and List operation to be forwarded to an LDAP server. The request shall not be
forwarded if the referenced naming context within the LDAP server is of category writeableCopy
(see clause 10.8). This optional component may be used by a DSA as one way to avoid the receipt of
duplicate results (see clause 20.1).

104 Chainingresults

The chainingResults are present in the result of each operation and provide feedback to the DSA which invoked the
operation.

ChainingResults ::= SET {
info [0] DomainInfo OPTIONAL,
crossReferences [1] SEQUENCE SIZE (1..MAX) OF CrossReference OPTIONAL,
securityParameters [2] SecurityParameters DEFAULT {},
alreadySearched [3] Exclusions OPTIONAL,
-}
CrossReference ::= SET {
contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPointInformation,
-}

The various components have the following meaning:

a) The info component, when present, shall be used to convey DMD-specific information among DSAs
which are involved in the processing of a common request. This component is of type DomainInfo,
which is of unrestricted type.

b) The crossReferences component shall not be present in the chainingResults unless the
returnCrossRefs component of the corresponding request had the value TRug. This component
consists of a sequence of crossReference items, each of which contains a contextPrefix and an
accessPoint descriptor (see clause 10.8).

A CcrossReference May be added by a DSA when it matches part of the targetobject argument of
an operation with one of its context prefixes. The administrative authority of a DSA may have a policy
not to return such knowledge, and will, in this case, not add an item to the sequence.

C¢) ThesecurityParameters datatypeis specifiedin Rec. ITU-T X.511 | ISO/IEC 9594-3. The absence
of the securityParameters component is deemed equivalent to there being an empty set of security
parameters.

d) The alreadysearched component, if present, shall indicate which subordinate RDNs subordinate to
the targetobject have been processed as part of a chained Search operation and therefore shall be
excluded in a subsegquent subrequest.

105 Operation progress

An operationProgress value describes the state of progress in the performance of an operation which several DSAs
shall participate in.

OperationProgress ::= SET {
nameResolutionPhase [0] ENUMERATED {
notStarted (1),
proceeding (2),
completed (3),

’

nextRDNToBeResolved [1] INTEGER OPTIONAL,

-}
The various components have the following meaning;:

d) The nameResolutionPhase component shall indicate which phase has been reached in handling the
targetObiject name of an operation. Where this indicates that name resolution has notstarted, then
aDSA has not hitherto been reached with a naming context containing the initial RDN(s) of the name. If
name resolution is proceeding, then theinitia part of the name has been recognized, although the DSA
holding the target object has not yet been reached. The nextRDNToBeResolved indicates how much of
the name has already been recognized (see item b). If name resolution is completed, then the DSA
holding the target object has been reached, and performance of the operation proper is proceeding.

Rec. ITU-T X.518 (10/2012) 17

| SO/l EC 9594-4:2014 (E)

D) The nextRDNToBeResolved, When present, shall indicate to the DSA which of the RDNs in the
targetObject name is the next to be resolved. It takes the form of an integer in the range one to the
number of RDNs in the name. This component shall be absent if the nameResolutionPhase
component does not have the value proceeding.

10.6 Traceinformation

A TraceInformation value carries forward arecord of the DSAs that have been involved in the performance of an
operation. It is used to detect the existence of, or avoid, loops that might arise from inconsistent knowledge or from the
presence of aliasloopsintheDIT.

TraceInformation ::= SEQUENCE OF Traceltem

Traceltem ::= SET {

dsa [0] Name,

targetObject [1] Name OPTIONAL,

operationProgress [2] OperationProgress,
-}

Each DSA, which is propagating an operation to another DSA, shal add a new TraceItem t0o the end of the
TraceInformation. Each such TraceItem vaue hasthe following components:

a) thedsa component shall hold the name of the DSA which is adding the item;

b) the targetobject component, when present, shall be the value received on the targetobject
component of the chainingArguments value of the incoming request. This parameter shall be omitted
if:

— the request being chained came from a DUA, in which case its implied value is the object or
baseObject inthe DAP operation;

— the request is received from an LDAP client, in which case its implied value is the object or
baseObject of the LDAP request; or

— ifitsvaueisthe same asthe (actua or implied) targetobject inthe cChainingArgument oOf the
outgoing request;

¢) theoperationProgress component shall have avalue determined asfollows:

— If the incoming request is received from a DUA, the vaue shal be taken from the
operationProgress component of the CommonArguments of the DAP request. If this
component is absent on the DAP request, the default value notStarted shall be used.

— If theincoming request is received from an LDAP client, the value notstarted shall be used.

— If the incoming request is received from a DSA, the value shall be taken from the
operationProgress component of the chainedarguments value. If this component is absent
on the request, the default value notStarted shal be used.

10.7 Referencetype

A ReferenceType vaue indicates one of the various kinds of references defined in Rec. ITU-T X.501 |
| SO/IEC 9594-2.

ReferenceType ::= ENUMERATED {

superior (1),
subordinate (2),
cross (3),
nonSpecificSubordinate (4),
supplier (5),
master (6),
immediateSuperior (7),
self (8),
ditBridge (9),
-}

18 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

10.8 Access point information

There are three types of access points:

AccessPoint ::= SET {
ae-title [0] Name,
address [1] PresentationAddress,

protocolInformation [2] SET SIZE (1l..MAX) OF ProtocolInformation OPTIONAL,
-- [6] Not to be used

}
MasterOrShadowAccessPoint ::= SET {
COMPONENTS OF AccessPoint,
category [3] ENUMERATED (
master (0),
shadow (1),
writeableCopy (2),

... } DEFAULT master,
chainingRequired [5] BOOLEAN DEFAULT FALSE,

}

MasterAndShadowAccessPoints ::= SET SIZE (1l..MAX) OF MasterOrShadowAccessPoint

ad) An accessPoint vaue identifies a particular point at which access to the Directory, specifically to a
DSA or LDAP server, can occur. When referring to a DSA, the access point shall have a Name, that of
the DSA concerned. It shall have a Presentationaddress to be used in communications to that DSA
or LDAP server (see clause 11 of Rec. ITU-T X.519 | ISO/IEC9594-5 for additional information about
NSAP formats). When referring to a DSA using IDM protocol, pSelector, sSelector and
tSelector components shall be ignored. When referring to an LDAP server, the ae-title,
protocolInformation pSelector, sSelector and tSelector components shall be ignored (see
clause 11.3 of Rec. ITU-T X.519 | ISO/IEC 9594-5).

b) A MasteroOrshadowAccessPoint vaue identifies an access point to the Directory. The category,
either master Or shadow, Of the access point is dependent upon whether it points to a naming context or
to a commonly usable replicated area. The category writeableCopy iSonly applicable if the access
point is for an LDAP server with writeable copy entries. The chainingRequired component indicates
whether chaining is required for that DSA, i.e., areferral shall not be returned for that DSA.

C¢) A MasterAndShadowAccessPoints value identifies a set of access points to the Directory, i.e., a set
of related Directory servers. These access points share the property that each refers to a DSA or LDAP
server holding entry information from a common naming context (or a common set of naming contexts
mastered in one DSA when the value is a value of the nonSpecificknowledge attribute). A
MasterAndShadowAccessPoints vaue indicates the category Of each AccessPoint vaue it
contains. The access point of the master DSA or LDAP server of the naming context need not be
included in the set.

NOTE — Implementors should recognize that it is possible for an LDAP server, even if identified as shadow, to update
entries in response to an LDAP update operation that it receives.

An AccessPointInformation Value identifies one or more access pointsto the Directory.

AccessPointInformation ::= SET {
COMPONENTS OF MasterOrShadowAccessPoint,
additionalPoints [4] MasterAndShadowAccessPoints OPTIONAL,

In the case of first edition DSAs producing an AccessPointInformation value, the optional component of the
setisabsent. In the case of first edition DSAs interpreting an AccessPointInformation Vvalue, any
MasterAndShadowAccessPoints value present isignored.

In the case of second and subseguent edition DSAS, the MasterOrShadowAccessPoint value component produced
for an AccessPointInformation value may be of category master or shadow, as determined by the knowledge se-
lection procedure of the DSA producing the value. It may be viewed as a suggested access point provided by the DSA
generating the value to the DSA receiving it. A MasterAndShadowAccessPoints vValue may optionaly also be
produced for an AccessPointInformation vValue. This constitutes additional information which may be employed
by the receiving DSA's knowledge selection procedure to determine an alternative access point.

Rec. ITU-T X.518 (10/2012) 19

| SO/l EC 9594-4:2014 (E)

10.9 DIT bridge knowledge

A pitBridgeKnowledge Valueidentifies a particular point at which access to another DIT, specifically to aDSA or an
LDAP server, can occur. DitBridgeKnowledge Specifies an access point at which that DSA or LDAP server may be
accessed.

DitBridgeKnowledge ::= SEQUENCE {
domainLocalID UnboundedDirectoryString OPTIONAL,
accessPoints MasterAndShadowAccessPoints,

-}

domainLocalID contains areadable description identifying the DIT included in the reference.

10.10 Exclusions

As defined in clause 10.3, the exclusions component of chainingArguments iS used to limit the scope of a Search
operation by identifying a number of entries subordinate to the target object which, together with al of their
subordinates, shall not be included in the processing of a Search operation. The exclusion component is defined as a
value of the ASN.1 type Exclusions.

Exclusions ::= SET SIZE (1l..MAX) OF RDNSequence

Each RDNSequence value in the Exclusions Set should identify the context prefix of a naming context subordinate to
the target object. If a DSA receives a search request with an RDNSequence value that does not conform to this
congtraint, the DSA may ignore that value. The RDNSequence is relative to the target object, and is not the
distinguished name of the context prefix.

Exclusions can, besides being part of a user request, be used by DSAs to minimize duplicate information returned
from Search subrequests performed in the presence of shadowed information.

Figure 5 illustrates an example of the use of Exclusions. In this example, a DSA holds two replicated areas, one
beneath the other. One starts with context prefix X, the other with context prefix C. An entry copy at Y has three
subordinate references to naming contexts, A, B and C.

If, as an example, a subtree Search is performed in this DSA, starting with a base object within naming context X, the
DSA can provide information from replicated areas X and C. The information from naming contexts A and B has to be
provided viathe subordinate references. When performing request decomposition, continuation references, to be used in
either partialResults Or chaining, will specify Y asthe target object and C as a single element of an Exclusions
Set.

X.518(12)_F05

Figure5— Exclusions

20 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

10.11 Continuation reference

A continuationReference describes how the performance of al or part of an operation can be continued at one or
more different directory servers. It is typicaly returned as a referral when the DSA involved is unable or unwilling to
propagate the request itself.

ContinuationReference ::= SET {
targetObject [0] Name,
aliasedRDNs [1] INTEGER OPTIONAL, -- only present in first edition systems
operationProgress [2] OperationProgress,
rdnsResolved [3] INTEGER OPTIONAL,
referenceType [4] ReferenceType,
accessPoints [5] SET OF AccessPointInformation,
entryoOnly [6] BOOLEAN DEFAULT FALSE,
exclusions [7] Exclusions OPTIONAL,
returnToDUA [8] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE,

-}

The various components have the following meaning:

ad) The targetobject component shal indicate the name which is proposed to be used in continuing the
operation. This might be different from the name received in targetobject of the incoming request if,
for example, an aias has been dereferenced, or the base object in a search has been located.

b) The aliasedrDNs component indicates how many (if any) of the RDNs in the target object name have
been produced by dereferencing an alias. The argument is only present if an alias has been dereferenced.

NOTE — This component is provided for compatibility with first edition implementations of the Directory.
This component shall not be included in CommonArguments when implementing according to the
second or later editions of these Directory Specifications.

C¢) The operationProgress shal indicate the amount of name resolution which has been achieved, and
which will govern the further performance of the operation by the DSAs named, should the DSA or
DUA receiving the continuationReference Wish to follow it up.

d) The rdnsResolved component value (which need only be present if some of the RDNs in the name
have not been the subject of full name resolution, but have been assumed to be correct from a cross
reference) shall indicate how many RDNs have actually been resolved, using internal references only.

€) The referenceType component shall indicate what type of knowledge was used in generating this
continuation.

f) TheaccessPoints component shal indicate the access points which are to be contacted to achieve this
continuation. Only where non-specific subordinate references are involved can there be more than one
AccessPointInformation item.

g) Theentryonly component shall be set to TRUE if the original operation was a search, with the subset
argument set to oneLevel, and an alias entry was encountered as an immediate subordinate of the
baseobject. The DSA which successfully performs name resolution on the targetobject name shall
perform object evaluation on only the named entry. If the original operation was not a search, with the
subset argument set to oneLevel, this component shall be absent or take the value FALSE.

h) The exclusions component, when present, shal identify a set of subordinate naming contexts that
should not be explored by the receiving DSA.

i) The returnTopua element is optionally supplied when the DSA creating the continuation reference
wishes to indicate that it is unwilling to return information via an intermediate DSA (e.g., for security
reasons), and wishes to indicate that information may be directly available via an operation over a DAP
or LDAP between the originating DUA or LDAP client and the DSA. When returnToDUA is Set to
TRUE, referenceType May be set to self.

j) The nameResolveOnMaster element is optionally supplied when the DSA creating the continuation

reference has encountered NSSRs. If set to TRUE, it signals that subsequent name resolution, i.e.,
matching the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy information
including writeable copies in a multi-master LDAP server implementation; subsequent resolution of each
remaining RDN shall be done in the master DSA for the entry identified by that RDN (see clause 20.1).

Rec. ITU-T X.518 (10/2012) 21

| SO/l EC 9594-4:2014 (E)

11 Bind and Unbind

DSA Bind and DSA Unbind operations, respectively, are used by a DSA at the beginning and at the end of a period of
accessing another DSA. The binding or unbinding of a DSP application-association shall not, of itself, cause the loss of
any distributed paged results which were requested in the course of the application-association.

111 DSA Bind
11.1.1 DSA Bind syntax

A dsaBind operation is used to begin aperiod of cooperation between two DSAs providing the directory service.

dsABind OPERATION ::= {

ARGUMENT DSABindArgument

RESULT DSABindResult

ERRORS { directoryBindError } }
DSABindArgument ::= SET {

credentials [0] DSACredentials OPTIONAL,

versions [1] Versions DEFAULT {vl1} }
DSACredentials ::= CHOICE {

simple [0] SimpleCredentials,

strong [1] StrongCredentials,

externalProcedure [2] EXTERNAL,

spkm [3] SpkmCredentials }
DSABindResult ::= DSABindArgument

11.1.2 DSA Bind arguments

The components of the DsaABindargument are identica to their counterparts in the DirectoryBind (see
Rec. ITU-T X.511 | ISO/IEC 9594-3) with the following differences:

— Thecredentials oOf theDirectoryBindArgument alowsinformation identifying the AE-Title of the
initiating DSA to be sent to the responding DSA. The AE-Title shall be in the form of a Directory
Distinguished Name.

— Thesaslcredentials shal not beincluded in the credentials

— The credentials Of the DirectoryBindResult allows information identifying the AE-Title of the
responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished
Name.

11.1.3 DSA Bind results

The components of the DSABindResult are identical to their counterparts in the DirectoryBindResult
(see Rec. ITU-T X.511 | ISO/IEC 9594-3) with the following differences:

— The credentials Of the DirectoryBindResult alows information identifying the AE-Title of the
responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished
Name.

— Thesaslcredentials shall not beincluded in the credentials.
11.1.4 DSABinderrors

Should the Bind request fail, a Bind error shall be returned. If the Bind request was either using strong authentication or
SPKM credentials are supplied, then the Bind responder may sign the error parameters.

Theversions parameter of the dsaBindError indicates which versions are supported by the responding DSA.

The SecurityParameters components (see clause 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) shall be included if the
error isto be signed.

A securityError Of serviceError shall be supplied asfollows:
securityError inappropriateAuthentication
invalidCredentials

blockedCredentials

serviceError unavailable

22 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

112 DSA Unbind

The unbinding at the end of a period of cooperation between two DSAs providing the Directory service is for the OSI
environment specified in clauses 7.6.4 and 7.6.5 of Rec. ITU-T X.519 | ISO/IEC 9594-5 and for the TCP/IP
environment in clause 9.2.2 of Rec. ITU-T X.519 | ISO/IEC 9594-5.

12 Chained operations

For each of the operations used to access the directory abstract service, there is an operation used between cooperating
DSAs in a one-to-one correspondence. The names of the operations have been chosen to reflect that correspondence by
prefixing the names of operations used between cooperating DSAs with the term "Chained".

The arguments, results and errors of the chained operations are, with one exception, formed systematically from the
arguments, results and errors of the corresponding operations in the Directory abstract service (as specified in clause
12.1). The one exception is the Chained Abandon operation, which is syntactically equivalent to its Directory service
counterpart (specified in clause 12.2).

121 Chained operations

A DSA, having received an operation from a DUA, having created an LDAP Transport operation resulting from a
received request from an LDAP client, or having created a Linked LDAP operation resulting from a partial result from
an LDAP server, shall construct a chained form of that operation if it is to be propagated to another DSA. A DSA,
having received a chained form of an operation, may also elect to chain it to another DSA. The DSA invoking a chained
form of an operation may sign the argument of the operation; the DSA performing the operation, if so requested, may
sign the result or error returned by the responder of the operation.

The chained form of an operation is specified using the parameterized type chained { }.

chained{OPERATION:operation} OPERATION ::= {

ARGUMENT OPTIONALLY-PROTECTED {SET {

chainedArgument ChainingArguments,

argument [0] operation.&ArgumentType } }
RESULT OPTIONALLY-PROTECTED {SET {

chainedResult ChainingResults,

result [0] operation.&ResultType}}
ERRORS

{operation.&Errors EXCEPT referral | dsaReferral}
CODE operation.&operationCode }

NOTE 1 —The operations of the Directory abstract service which may be used as the actual parameter of chained { }
include the abandoned error. The presence of this error among the set of possible errors of a chained operation reflects the
possihility discussed in clause 12.2, that a chainedabandon Can be generated for a chainedModify operation when a linked
association fails.

NOTE 2 — The definitive specification of the DSA abstract servicein Annex A applies this parameterized type to construct all the
chained operations of the abstract service.

The argument of the derived operation has the components:

ad) chainedArgument — This is a value of chainingArguments that contains the information,
supplementing the information provided in the DAP argument. This additional information is needed in
order for the receiving DSA to handle the operation properly. This data type is defined in clause 10.3.

b) argument — Thisis a value operation.&Argument and consists of the origina DAP argument, as
specified in the appropriate clause of Rec. ITU-T X.511 | ISO/IEC 9594-3.

Should the request succeed, the result of the derived operation has the components:

a) chainedResult — Thisis a value of chainingResults which contains that information, over and
above that to be supplied in the DAP result, which may be needed by previous DSAs in a chain. This
information type is defined in clause 10.4.

b) result—Thisisavalueoperation.&Result and consists of the result which is being returned by the
performer of this operation, and which is intended to be passed back in the result to the requester. This
information is as specified in the appropriate clause of Rec. ITU-T X.511 | ISO/IEC 9594-3.

Should the request fail, one of the errors of the set operation.&Errors will be returned, except that dsaReferral is
returned instead of referral. The set of errors, which may be reported, is as described for the corresponding operation
in Rec. ITU-T X.511 | ISO/IEC 9594-3. The error dsaReferral isdescribed in clause 13.2.

Rec. ITU-T X.518 (10/2012) 23

| SO/l EC 9594-4:2014 (E)

12.2 Chained Abandon operation

A chainedabandon request is used by one DSA to indicate to another that it is no longer interested in having a
previously invoked distributed operation performed. This may be for any number of reasons, of which the following are
examples:

— the operation which led to the DSA originally chaining has itself been abandoned, or has implicitly been
aborted by the breakdown of an application-association;

— the DSA has obtained the necessary information in another way, e.g., from a faster responding DSA
involved in the parallel multi-chaining.

A DSA isnever obliged to issue a chainedabandon request, or indeed to actually abandon an operation if requested to
do so.

If the Chained Abandon operation actually succeeds in stopping the performance of an operation, then a result will be
returned, and the subject operation will return an abandoned error. If the chainedabandon does not succeed in
stopping the operation, then it will return an abandonFailed error itself.

A DSA may also issue an AbandonRequest t0 an LDAP server under the same conditions as above.

123 Chained operations and protocol version

Operations which require a protocol version greater than vl (such as the modifyEntry operation with certain
arguments) or which return different results when used with a protocol version greater than v1 (such asmodifyEntry
with a signed argument) shall only be chained on application-associations with the same or a greater version number
than that used to convey the request.

13 Chained errors

13.1 Introduction

For the most part, the same errors can be returned in the DSA abstract service which can be returned in the directory
abstract service. The exceptions are that the dsaReferral "error” is returned (see clause 13.2), instead of referral,
and the following service problems have the same abstract syntax but different semantics:

d) serviceError With problem invalidrReference — The DSA returning this error detected an error in
the calling DSA's knowledge as specified in the referenceType chaining argument.

D) serviceError with problem looppetected — The DSA returning this error detected a loop in the
knowledge information in the Directory.

The precedence of the errors which may occur is as for their precedence in the directory abstract service, as specified in
Rec. ITU-T X.511 | ISO/IEC 9594-3.

If an error occurs during a chained operation, the responding DSA may sign the error returned.

13.2 DSA referral

The dsarReferral error shall be generated by a DSA when, for whatever reason, it does not wish to continue
performing an operation by chaining the operation to one or more other directory servers. The circumstances where it
may return areferral are described in clause 8.3.

dsaReferral ERROR ::= {
PARAMETER OPTIONALLY-PROTECTED { DsaReferralData }
CODE id-errcode-dsaReferral }

DsaReferralData ::= SET {
reference [0] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL,

.oy

COMPONENTS OF CommonResults }

24 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

The various components of DsaReferralData datatype have the following meaning:

a) Thereference component contains the information needed by the invoker to propagate an appropriate
further request, perhaps to another DSA or to an LDAP server. The ContinuationReference data type is
specified in clause 10.11.

D) The contextPrefix component may optionally be included if the returncrossRefs component of
the chainingArguments for this operation had the value TRUE, and the referral is being based upon a
subordinate or cross-reference. Otherwise, it shall be absent. The administrative authority of any DSA
will decide which knowledge references, if any, can be returned in this manner (the others, for example,
may be confidential to that DSA).

The information provided can optionally be qualified by the use of thenotification component of CommonResults.

Rec. ITU-T X.518 (10/2012) 25

| SO/l EC 9594-4:2014 (E)

SECTION 5 -DISTRIBUTED PROCEDURES

14 I ntroduction

141 Scope and limits

This clause specifies the procedures for distributed operation that are performed by DSAs. Each DSA individually
performs the procedures described below; the collective action of all DSAs produces the full set of services provided to
users of the Directory.

14.2 Conformance

The description of DSA procedures in this section is based on the models in clauses 8 and 9 of Rec. ITU-T X.501 |
ISO/IEC 9594-2 and clauses 7 and 8 of this Directory Specification. The flow charts and their corresponding textual
descriptions are one of the means of mapping a given set of external (DAP, LDAP and/or DSP) inputs to a DSA into
one or more external outputs (i.e., a result, error, referral, chained requests or LDAP request) produced by that DSA,
depending on the particular DSA information tree held by that DSA.

It is probable that the Directory will be distributed across DSAs implemented according to different editions of these
Directory Specifications. The DUA or LDAP client initiating the request will be unaware as to which edition the DSA
or DSAs satisfying the DUA's or LDAP client's request will have been implemented. Therefore to alow operation in
such a heterogeneous environment, a DSA shall be implemented according to the rules of extensibility defined in
clause 12 of Rec. ITU-T X.519 | ISO/IEC 9594-5.

A DSA implementation shall be functionally equivalent to the external behaviour specified by the procedures described
here. The algorithms used by a particular DSA implementation to derive the correct output(s) from the given inputs
and DSA information tree held are not standardized.

NOTE — The flowcharts which accompany the procedures are intended to be used as aids towards understanding the procedures.

They are not to be considered as being a precise aternative to the textual descriptions. Where there is a disparity between the
textual description and the flowchart for a particular procedure, it isintended that the textual description take precedence.

14.2.1 Interaction involving afirst edition DSA

If the modify operations evaluate across DSA boundaries (i.e., addEntry With TargetSystem, Remove or Rename a
context prefix), then this Directory Specification only specifies how two second or subsequent edition DSAs shall
behave. The interaction between two first edition DSAS, or between a first edition DSA and a second or subseguent
edition DSA, is outside the scope of these Directory Specifications. When mixed edition DSAs have a hierarchical
operational binding, knowledge of each other's edition may allow a consistent error to be given to the user.

14.3 Conceptual model

The complexity of the Directory's distributed operation gives rise to a need for conceptual modelling using both
narrative and pictorial descriptive techniques. However, neither the narrative nor the diagrams should be construed as a
formal description of distributed directory operation.

144 Individual and cooper ative operation of DSAs

The model views DSA operation from two separate perspectives, which, taken together, provide a complete, operational
picture of the Directory.

a) DSA-centred perspective — In this perspective, the set of procedures that support the Directory is
described from the viewpoint of a single DSA. This makes it possible to provide a definitive
specification of each procedure and to fully account for their interrelationships and overall control
structure. Clauses 16 to 22 describe the DSA procedures from a DSA-centred perspective.

b) operation-centred perspective — The DSA-centred view provides complete detail but makes it difficult
to understand the structure of individual operations, which may undergo processing by multiple DSAs.
Consequently, clause 15 adopts a primarily operation-centred view to introduce the processing phases
applicable to each.

To support the distributed operation of the Directory, each DSA shall perform actions needed to realize the intent of
each operation and additional actions needed to distribute that realization across multiple DSAs. Clause 15 explores the
distinction between these two kinds of actions. In clauses 16 to 22, both kinds of actions are specified in detail.

26 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

145 Cooper ative agreements between DSAs

All DSAs which are in a subordinate/superior relationship due to the naming contexts that they hold have hierarchical
and/or non-specific hierarchical operational bindings between them, depending upon the types of knowledge reference
held by those DSAS.

Hierarchical and non-specific hierarchical operational bindings between DSAs may be administered using the
procedures of clauses 24 and 25, or by off-line means.

A DSA holding entries which are within the administrative area of its superior DSA shall administer the subschema,
shall follow the governing-search-rule (if any) and shall control access to the entries, as required by the administrative
authority. The regulation of entries within an administrative area may be performed as defined in Rec. ITU-T X.501 |
| SO/IEC 9594-2 or may be performed by local mechanisms.

15 Distributed Directory behaviour

151 Cooperative fulfilment of operations

Each DSA is equipped with procedures capable of completely fulfilling all directory operations. In the case that a DSA
contains the entire DIB, all operations are completely carried out within that DSA. In the case that the DIB is distributed
across a distributed directory, the completion of atypical operation is fragmented, with just a portion of that operation
carried out in each of potentially many cooperating directory servers.

In the distributed environment, the typical DSA sees each operation as a transitory event: the operation is invoked by a
DUA, an LDAP client or some other DSA; the DSA carries out processing on the object and then directs it toward
another directory server for further processing.

An dternative view considers the total processing experienced by an operation during its fulfilment by possible
multiple, cooperating directory servers. This perspective reveals the common processing phases that apply to all
operations.

152 Phases of operation processing

Every directory operation may be thought of as comprising three distinct phases:

a) the Name Resolution phase in which the name of the object on whose entry a particular operation isto be
performed is used to locate the DSA or LDAP server that holds the entry;

b) the Evaluation phase in which the operation specified by a particular directory request (e.g., a Read
operation) is actually performed,;

c) the Results Merging phase in which the results of a specified operation are returned to the requesting
DUA or LDAP client. If a chaining mode of interaction was chosen, the Results Merging phase may
involve several DSAS, each of which chained the original request or subrequest (as defined in clause
15.3.1 — Request decomposition) to other DSAs and LDAP servers during either or both of the preceding
phases.

In the case of a Read, Compare, List, Search, Modify Entry, Modify DN, Remove Entry, LDAP Transport or Linked
LDAP operation, name resolution takes place on the object name provided in the argument of the operation. In the case
of an Add Entry operation, name resolution's target entry is the immediately superior entry of that provided in the
argument of the operation — it can be easily derived by removing the final RDN from the name provided in the
operation argument. (Thisis done vialocal argument m in the FindDSE procedure of clause 18.3.1.)

An operation on a particular entry may initially be directed at any DSA in a distributed directory. That DSA uses its
knowledge, possibly in conjunction with other Directory servers, to process the operation through the three phases.

15.21 Name Resolution phase

Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc (or vertex) of the
DIT, beginning logically at the Root and progressing downwards in the DIT. However, because the DIT is distributed
among arbitrarily many Directory servers, each DSA may only be able to perform a fraction of the Name Resolution
process. A given DSA performs its part of the Name Resolution process by traversing its local DSA information tree.
This process is described in clause 18 and the accompanying diagrams (see Figures 9 to 12). Based on its local DSA
information tree, and the knowledge information contained therein, a DSA is able to infer whether the resolution can be
continued by one or more other DSASLDAP servers, or whether the name is erroneous.

NOTE — Name Resolution within an LDAP server is outside the scope of this Directory Specification.

Rec. ITU-T X.518 (10/2012) 27

| SO/l EC 9594-4:2014 (E)

The Name Resolution phase is constrained to work within a DSA information tree if the manageDSAIT service control
option is set.

15.2.2 Evaluation phase
When the Name Resol ution phase has completed, the actual operation required (e.g., Read or Search) is performed.

Operations that involve a single entry interrogation — Read, Search with subset Set t0 baseobject and Compare —
may be carried out entirely within the DSA or LDAP server in which the entry islocated.

Operations that involve multiple entries interrogation — List, Search and an LDAP search carried by an LDAP Transport
operation — need to locate subordinates of the target, which may or may not reside in the same DSA. If they do not all
reside in the same DSA, operations need to be directed to the DSAs specified in the subordinate, non-specific
subordinate, supplier, or master references (as appropriate) and/or LDAP servers specified in subordinate, non-specific
subordinate or cross references to complete the evaluation process.

The Evaluation phase is constrained to work within a DSA information tree if the manageDsaAIT Service control option
is set. Likewise, if the evaluation phase starts within a service-specific administrative area, the evaluation is constrained
to that administrative area.

15.23 ResultsMerging phase
The Results Merging phase is entered once some of the results of the Evaluation phase are available.

In those cases where the operation affected only a single entry, the result of the operation can simply be returned to the
requesting DUA or LDAP client. In those cases where the operation has affected multiple entries on multiple Directory
servers, results can be combined. If signing is performed on the results of an operation initiated by a DUA, the results
shall not be combined. The results should be returned to the DUA without performing merging.

The permissible responses returned to arequester after results merging include:
a) acomplete result of the operation;
b) aresult which is not complete because some parts of the DIT remain unexplored (appliesto List, Search

and LDAP search only). Such a partial result may include continuation references for those parts of the
DIT not explored;

¢) anerror (areferral being aspecia case); and
d) if therequester wasaDSA, achainingResults value.

153 Managing Distributed Oper ations

Information is included in the argument of each operation which a DSA may be asked to perform indicating the
progress of each operation as it traverses various DSAs of the Directory. This makes it possible for each DSA to
perform the appropriate aspect of the processing required, and to record the completion of that aspect before directing
the operation outward toward further directory servers.

Additional procedures are included in the DSA to physically distribute the operations and support other needs arising
from their distribution.

1531 Request decomposition

Request decomposition is a process performed internally by a DSA prior to communication with one or more other
directory servers. A reguest is decomposed into several subrequests such that each of the latter accomplishes a part of
the original task. Request decomposition can be used, for example, in the search operation, after the base object has
been found. After decomposition, each of the subrequests may then be uni-chained or multi-chained to other directory
servers, to continue the task.

The argument of a chained request (see clause 12.1) or subrequest shall be the unmodified operation argument of the
origina DAP operation. A DSA receiving a chained request shall not change argument of the DAP request when
doing request decomposition.
NOTE —The following subclauses specify this requirement for individual components of argument. This should not be
interpreted to mean that the component not explicitly mentioned can be changed.

28 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

15.3.2 DSA asRequest Responder

A DSA that receives arequest can check the progress of that request as follows:

— if the request is received from a DUA then using the operationProgress component of the
CommonArguments Value, or its default value;

— if therequest isreceived from an LDAP client then assume that Name Resolution has not started; or

— if the request is received from a DSA then using the operationProgress component of the
ChainingArguments value, or its default value.

Thiswill determine whether the operation is still in the Name Resolution phase or has reached the evaluation phase, and
what portion of the operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request, it shall
either pass (by uni-chaining or multi-chaining) the operation on to one or more Directory servers which can help to
fulfil the request, or return areferral to another DSA or LDAP server, or terminate the request with an error.

15.3.3 Completion of operations

Each DSA that has initiated an operation or propagated an operation to one or more other Directory servers shall keep
track of that operation's existence until each of the other Directory servers has returned a result or error, or the
operation's maximum time limit has expired. This requirement applies to all operations, propagation modes and
processing phases, except when an LDAP abandon request has been sent to an LDAP server (see clause 20.6.5). It
ensures the orderly closing down of distributed operations that have propagated out into the Directory.

154 L oop handling

The DIT may be in a state that can cause looping. As an example, looping can occur during name resolution where
dereferencing one or more aliases brings the resolution back to the same branch of the DIT. Another potential cause of
looping is through misconfigured knowledge references.

Within the context of a particular directory operation, a loop occurs if at any time the operation returns to a previous
state, where state is defined by the following components:

— the name of the DSA currently processing the operation;
— thename of the targetobject as contained within the chainingArguments value of the operation;

— the operationProgress as contained within the chainingaArguments value of the operation and as
defined in clause 10.5.

This does not mean that an operation cannot be processed multiple times by a particular DSA. However, it does mean
that the DSA will not process the same operation in the same state multiple times.

Looping is controlled using the TraceInformation value of the ChainingArguments value as defined in
clause 10.6, which records the sequence of states a particular operation has gone through. Two strategies are defined to
determine whether looping has occurred, or is about to occur. These are loop detection and loop avoidance, and they are
described in clauses 15.4.1 and 15.4.2, respectively.

L oop detection is mandatory and loop avoidance is optional.

NOTE — An LDAP server cannot perform loop detection. Loop detection has to be performed by the DSA acting as LDAP
requester. Detection of aloop may be delayed if more than one LDAP requester is forwarding requests to the same LDAP server
for the same operation.

154.1 Loop detection

On receipt of adirectory operation, a DSA shall initialy validate the operation to ensure that it can be progressed. An
important task of validation is to check for loops, by determining whether the current state of the operation appears in
the sequence of previous states recorded in the TraceInformation value for that operation. This step of loop
checking isloop detection.

15.4.2 Loop avoidance

Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA as part of achaining
procedure, determines whether the consequential state of the operation (which is the Traceitem vaue that the
receiving DSA will add to the TraceInformation value when it receives it) appears on the sequence of previous
states recorded in the traceInformation argument for the original incoming operation.

Rec. ITU-T X.518 (10/2012) 29

| SO/l EC 9594-4:2014 (E)

In the case where referrals are received or acted upon, loop avoidance and loop detection cannot be achieved purely by
examining traceInformation. In this case, each time a DSA acts on a referral, it needs to store the consequential
state of the operation (i.e., the TraceItem value that the receiving DSA is going to add when it receives the request)
along with arecord of the incoming request. Before acting on or returning areferral, a DSA needs to check through this
list, in order to check that an identical request has not been previously sent whilst trying to service the incoming
operation.

155 Other considerationsfor distributed operation

15.5.1 Servicecontrols

Some service controls need specia consideration in the distributed environment in order that the operation is processed
the way that was requested.

a) chainingProhibited — A DSA consults this service control when determining the mode of
propagation of an operation. If it is set, then the DSA shall always use referral mode. If, however, it is
not set, the DSA can choose whether to use chaining or referral depending on its capabilities.

b) timeLimit — A DSA shall take account of this service control to ensure that the time limit is not
exceeded in that DSA. A DSA requested to perform an operation by a DUA, initialy heeds the
timeLimit expressed by the DUA as the available elapsed time in seconds for completion of the
operation. If chaining is required, the timeLimit isincluded in the chaining arguments to be passed to
the next DSA(S). In this case, the same value of the limit is used for each chained request, and is the
(UTC) time by which the operation shall complete to meet the originally specified constraint. On
receiving chainingArguments With a timeLimit Specified, the receiving DSA respects this limit.

C) sizeLimit — A DSA shal take account of this service control for List, Search and LDAP Search
operations to ensure that the list of results does not exceed the size specified. The limit, asincluded in the
common argument of the original request, is conveyed unchanged as the request is chained. If request
decomposition is required, the same value is included in the argument to be passed to the next DSA, the
full limit is used for each subrequest. When the results are returned, the requester DSA resolves the
multiple results and applies the limit to the total to ensure that only the requested number is returned. If
the limit had been exceeded, thisisindicated in the reply.

d) priority — In al modes of propagation, each DSA is responsible for ensuring that the processing of
operations is ordered so as to support this service control, if present.

€) 1localscope — Theoperationislimited to alocaly defined scope and each DSA shall not propagate the
reguest outside of this.

f) scopeOfReferral —If the DSA returnsareferral or partial result to a List or Search operation, then the
embedded continuation references shall be within the requested scope.

All other service controls need to be respected, but their use does not require any specia consideration in the distributed
environment.

15.5.2 Extensions

If a DSA encounters an extended operation in the Name Resolution phase of processing and determines that the
operation should be chained to one or more DSAS, it shall include unchanged in the chained operation any extensions
present.

NOTE —An administrative authority may determine that it is appropriate to return a serviceError Wwith problem
unwillingToPerform if it does not wish to propagate an extension.

If aDSA encounters an extension it does not support in the evaluation phase of processing, two possibilities may arise.
If the extension isnot critical, the DSA shall ignore the extension. If the extension is critical, the DSA shall return a
serviceError With problem unavailableCriticalExtension. A critical extension to a multiple object operation
may result in both results and service errors of this variety. A DSA merging such results and errors shall discard these
service errors and employ the unavailableCriticalExtension component of PartialOutcomeQualifier as
described in Rec. ITU-T X.511 | ISO/IEC 9594-3.

If an LDAP requester is about to chain arequest initiated by a DUA to an LDAP server and it does not have knowledge
of an LDAP control corresponding to each critical extension, it shall return an unavailableCriticalExtensions aS
specified above. However, if thisis not the case and there are no other reasons for not chaining the request, it shall in
the chained request add all known LDAP controls corresponding to the extensions signalled in the received request.

30 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

155.3 Aliasdereferencing

Alias dereferencing is the process of creating a new target object name, by replacing the alias entry distinguished name
part of the original target object name with the AliasedEntryName attribute value from the alias entry. The object
name in the operation shall not be affected by alias dereferencing.

1554 Paged results

When a DUA includes the PagedResultsRequest iN the search oOr 1ist request (see clause 7.9 of Rec. ITU-T
X.511 | ISO/IEC 9594-3), the paging may be performed by the bound DSA, or it can be performed by the DSA that
holds the baseobject/object entry of the search or 1ist request (possible after one or more aias dereferencings),
also called the initial performer. If the paging is performed by the bound DSA, which could aso be the initial
performer, the paging is called bound-DSA paged results. If the paging is performed by the initial performer, and the
initial performer is different from the bound DSA, then the paging is called DSP paged results.

A DSA that supports DSP paged results shall:
— support DSA-bound paged results;
— support DSP paged results as bound DSA,;
— support DSP paged results as an initial performer; and
— support the entryCount subcomponent of the partialoutcomeQualifier.

When a bound DSA receives a search or 1ist request with the pagedrResultsRequest included, and the bound
DSA isnot the initial performer for that request, then the bound DSA may elect to include the dsppaging component
in the chainingArguments value. The initial performer may elect to do DSP paged results. This is signalled to the
bound DSA by including a queryReference in the PartialoutcomeQualifier. This is the queryReference
returned to the DUA to be used for retrieval of the next page.

If the initial performer either does not support DSP paged results or chooses not to perform it, the bound DSA may
perform normal bound-DSA paging.

A DSA that is a performer, but is not the initial performer, shal ignore a possible dsppaging component in the
ChainingArguments value, and it shall honour the sizeLimit Service control if present.

1555 Handling requestsfrom L DAP client

When an LDAP client sends a request into a boundary DSA, the request is formatted according to IETF RFC 4511.
How the request is handled by the boundary DSA depends on the initial destination of the request:

a) If the bound DSA and/or the LDAP servers for which the bound DSA is an LDAP responder complete
the operation, then the procedure is outside the scope of this Directory specification.

b) If the request isinitially handled as in @) but it becomes necessary to chain one or more subrequests to
other DSAS, then such subrequests shall be chained wrapped as LDAP Transport operations.

¢) |If the original request is chained to another DSA, it shall be chained wrapped as an LDAP Transport
operation.

15.6 Authentication of Distributed operations

Users of the Directory together with the administrative authorities that provide directory services may, at their
discretion, require that directory operations be authenticated. For any particular directory operation, the nature of the
authentication process will depend upon the security policy in force.

Two sets of authentication procedures are available which collectively enable arange of authentication requirements to
be met. One set of procedures are those provided by the Bind operation: these facilitate authentication between two
directory application-entities for the purposes of establishing an application-association. The Bind procedures
accommodate a range of authentication exchanges from a simple exchange of identities to strong authentication.

In addition to the peer entity authentication of an association as provided by the Bind operation, additional procedures
are defined within the directory to enable individual operations to be authenticated. Two distinct sets of directory
authentication procedures are defined. One facilitates requester authentication services, which address the
authentication, by a DSA, of the requester of the origina service request. The second set facilitates results
authentication services which address the authentication, by a requester, of any results that are returned.

Rec. ITU-T X.518 (10/2012) 31

| SO/l EC 9594-4:2014 (E)

For requester authentication, two procedures are defined, one based upon a simple exchange of identities, termed
identity based authentication, and one based upon digital signature techniques, termed signature based authentication. The
former of these procedures is rudimentary in nature since the identity exchange is based upon the exchange of
distinguished names which are transmitted in the clear.

For authentication of results a single results authentication procedure is defined, based upon digital signature techniques;
due to the generally complex nature of results collation, a simpler, identity-based procedure is not defined.

Authentication of error responses may be supported by these procedures.

The services described below are to be considered as augmenting those provided by the Bind service; Bind procedures
are assumed to have been effected successfully prior to authentication of directory operations.

The procedures to be effected by aDSA in providing requester and results authentication are specified in clause 22.

16 The Operation Dispatcher

The Operation Dispatcher isthe main controlling procedure in aDSA. It guides each operation through the three phases
of processing arequest. The Operation Dispatcher therefore makes use of a set of proceduresto fully process the request
as shown in Figure 6.

16.1 General concepts

16.1.1 Procedures

Each of the procedures employed by the Operation Dispatcher consists of a definition of its conceptual interfacein terms
of its parameters, i.e., arguments, results and errors, and a description of the procedure steps themselves. The behaviour
of the procedures is described by flowcharts and text. Within a flow chart, the used symbols have the semantics shown
inFigure7.

16.1.2 Useof common data structures

All procedures make use of some data structures that are available during the processing of an operation within
the Operation Dispatcher. These data structures serve to coordinate the data flow within the Operation Dispatcher. Most
of these structures are directly associated with the argument of the operation and the result to be created for
the operation. Components of the argument and result are referred to using their names within the associated
ASN.1 definition (e.g., the operationProgress component of the chaining arguments). If any of these structuresis a
compound structure, a component of this structure may be referred t0 @S compound.component
(e.g., operationProgress .nameResolutionPhase).

32 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

DAP/LDAP/DSP DAP/DSP | DAP/LDAP/DSP
request reply reply
Local DSP DSP Local Local
request request reply reply reply
Vi Vi A Result mergin
2 A 4 esu erging
Reguest Abandon | Abandon DSP
validation ~| procedure Resul t reply
procedure merging
Abandon error procedure
T Other error
Name r esolution
Return with error
Find DSE . Tenor
procedure Return with Name resol ution
entry unsuitable continuation reference
" procedure
DSP
Return with request >
entry suitable DSP
Evaluation reply
List continuation v
reference procedure
el Single obj ect Multiple object X -
Modification interragation interrogation Search continuation
reference procedure
Modification Single object
eval uation evaluation search? Yes Related entry
procedures procedures procedure

.

<

name-
Resol uti onPhase ~NO

= completed?

Yes

reference-

type issupplier
or master?

A

.

I

; ; Search- Search-
List (H) List (1) rule check rule check
procedure procec(iure procedure (11) procedure (1)
Search (I1 Search (I
proced&rg g procedLgr)e
DOP/ DOP/ X.518(12)_F06
DISP DISP Local DAP/LDAP/DSP
request reply reply reply

Figure 6 — Operation Dispatcher

Rec. ITU-T X.518 (10/2012)

33

| SO/l EC 9594-4:2014 (E)

. Return to the calling proccdure with X.
The entry point of the procedure .
niry por pr ! Return X X may be a result, null, an error, a string,
or a referral, or it may be absent.
Loop Branch based on a condition All Xsd
detected? (2 or more outcomes) I Process each X contained in... m

No L next X J

Yes

Sct exclusions An Action to be performed Prqcesa a set of steps for each value X
to empty until all values X have been processed
Continue with the execution of the steps Continuation of
Call of the called sub-procedure. After completion O procedurcs that span
procedure of the sub-procedure, continue with the multiple flow charts X.518_F07
outgoing arrow of this box.

Figure 7 — Symbolsused in flow charts

The following data structures are defined within the Operation Dispatcher :

— NRcontinuationList —A list of continuation references created for use in the Name Resolution
Continuation Reference procedure.

— SRcontinuationList — A list of continuation references created for use in the List or Search Continuation
Reference procedure.

— admPoints—A list of references to DSEs of type administrative point that is collected during Name
Resolution.

— referralRequests— A list of the requests or subrequests which have been chained as a result of executing
referrals. Each such request/subrequest is summarised in the form of a TraceItem. Thislist is used by
the Loop Avoidance procedure of clause 15.4.2.

— emptyHierarchySelect — A Boolean type variable that can be set in the Hierarchy Selection procedure. The
variableis assumed to be reset when entering Hierarchy Selection procedure the first time during a Search
operation.

Furthermore, a procedure may use a set of locally defined variables.

16.1.3 Errors

At each stage of the processing, an error may be detected during the execution of any sub-procedure. The error
identified within this sub-procedure is normally returned to the requester as a corresponding protocol error. In this case,
the Operation Dispatcher isterminated immediately. In the case that multiple errors are received, one shall be selected to
be returned (see clause 13.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3).

Alternatively, a procedure may choose to process errors (e.g., if a serviceError with problem busy is returned to a
chained search subrequest) at certain points of operation processing. In this case, the procedure continues with its
execution and no error isreturned to the requester.

The conditions under which a DSA may sign the errors returned are specified in clause 13 of Rec. ITU-T X.511 |
ISO/IEC 9594-3.

16.1.4 Asynchronousevents

During the processing of an operation request within the Operation Dispatcher, several asynchronous events may occur.
The following subclauses specify how to handle an exceeded time limit or size limit or administrative limit, a loss of
association and an abandon request for an operation that is being processed. The handling of al other asynchronous
events, e.g., local policy decisions, etc., is outside the scope of this Directory Specification.

16.1.4.1 Timelimit

A timeLimit, as specified in the commonArguments value, can expire at any point in time during the operation. In
this case, normally a serviceError with problem timeLimitExceeded iS returned to the requesting DUA or DSA
and the Operation Dispatcher isterminated. If the requester is an LDAP client, the bound DSA shall convert the error to
a timeLimitExceeded LDAP result code. Alternatively, a procedure may choose to handle this event in a different
way (e.g., during processing of a search request).

34 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

If a DSA receives a request from another DSA with the time limit exceeded, it shall send a serviceError with
problem timeLimitExceeded Without any further processing of the request.

If aDSA has outstanding (sub)requests, when the timeLimit expires, and there are no results available, it shall return
aserviceError With problem timeLimitExceeded to the requester.

If the request was not an 1dapTransport request, and if a DSA has outstanding subrequests, when the timeLimit
expires, and there are results available, it shall return aresult to the requester with the following contents:

a) all the collected results, up to the timeLimit expiring;

b) the 1imitProblem subcomponent of the partialoutcomeQualifier component shall be set to
timeLimitExceeded; and

¢) the unexplored subcomponent of the partialOutcomeQualifier component shall contain a
continuation reference value for each set of directory servers to which subrequests were sent but the
result of which is not included in the result to the requester, in addition to continuation references to
DSAsto which this DSA did not attempt to send subrequests.

If the request was an ldapTransport request, and if a DSA has outstanding subrequests, when the timeLimit
expires.

a) if there areretained results, these results shall be returned in a 1inkedLDAP request;

b) if the embedded LDAP request in the 1dapTransport request was a SearchRequest, then return an
SearchResultDone With resultCode equal t0 timeLimitExceeded embedded in an
ldapTransport result;

¢) if the embedded LDAP request in the 1dapTransport request was not a SsearchRequest, then return a
result for the type operation with resultCode Set t0 timeLimitExceeded embedded in an
ldapTransport result.

16.1.4.2 Lossof an application-association

If the application-association to the requester is lost, the possibility of returning resultsislost. The DSA may optionally
for each outstanding interrogation (sub)request to DSASs send a chainedabandon request, unless the application-
association to the DSA in question has also been lost. All replies to such chainedabandon requests and all replies to
outstanding (sub)requests shall be discarded. In the case of DSP paged results, the bound DSA should cancel
outstanding paged results by generating a new paged result request by taking the abandonQuery aternative of the
PagedResultsRequest value. The DSA may also for each outstanding interrogation (sub)regquest to LDAP servers
send an LDAP AbandonReguest and all results to outstanding (sub)requests shall be discarded.

If the application-association to one of the outstanding chained subrequests is lost and the application-association with
the requester is not lost, the DSA may, for interrogation operations only, optionaly try any alternative reference to
another directory server of the same type that is able to process the chained request (e.g., areference to a shadow DSA,
after loss of the association to the master DSA). If this does not succeed, the DSA shall act as follows:

1) If operationProgress.nameResolution iSSet tO notStarted Of proceeding, return either:

— if thereply isto be returned to a DUA (or DSA), a serviceError With problem unavailable to
the requester or a referral error whose continuation reference contains the set of directory servers
that are able to continue the operation.

— if the reply is to be returned to an LDAP client, an LDAP result with resultcode equal to
unavailable Or With resultCode Set t0 referral and with referrals (URIs) to the set of
directory serversthat are able to continue the operation.

If non-specific subordinate references are used during the Name Resolution phase and not all the
application-associations in question are lost, optionally attempt to do the name resolution without the
directory serversto which the associations are lost. If thisfails:

— if the reply is to be returned to a DUA (or DSA), return either a serviceError with problem
unavailable, Or areferral error containing the complete set of NSSRs.

— if thereply isto be returned to an LDAP client, return either an LDAP result with resultcCode Set
t0 unavailable Or With resultcCode equa to referral and with referrals (URIS) corresponding
to the complete set of NSSRs.

Rec. ITU-T X.518 (10/2012) 35

| SO/l EC 9594-4:2014 (E)

If the DSA using loca knowledge knows, possibly reflected in the appropriate
MasterOrShadowAccessPoint Vvalue, that chaining is required to a DSA to which an application-
association is lost, it shall elect to send a serviceError with problem unavailable. The
notification component of the CommonResults datatype may beincluded and shall then contain:

— adsAproblem notification attribute with the value id-pr-targetDsaUnavailable; and
— adistinguishedName attribute having as value the distinguished name of the DSA.

2) If operationProgress.nameResolution iS Set t0 completed and the request is a single object
operation:
— if the reply is to be returned to a DUA (or DSA), return a serviceError with problem
unavailable t0 the requester.

— if the reply is to be returned to an LDAP client, return an LDAP result with resultCode Set to
unavailable.

3) If operationProgress.nameResolution IS Set t0 completed and the request is a multiple entry
interrogation operation, the DSA shall add a continuation reference to
partialOutcomeQualifier.unexplored Of the operation result, with AccessPointInformation
identifying the set of directory servers that are able to continue the operation, including directory servers
to which application-associations have been lost.

16.1.4.3 Abandoning the operation

During the processing of an operation, an abandon request can be received for this operation. In this case, during the
processing of the abandon request, the Abandon procedure is called for the operation to be abandoned.

16.1.4.4 Administrative Limits

There may be limits imposed by the local directory server administrator or by the directory server implementation itself,
e.g., the amount of time to spend on processing a request, or the maximum size of data to be returned, etc. If any of
theselimitsis exceeded, a DSA shall:

— if the reply is to be returned to a DUA (or DSA), return either a serviceError with problem
administrativeLimitExceeded Or a partial result (taken from the set of already collected results)
with 1imitProblem Set tO administrativeLimitExceeded,;

— if the reply is to be returned to an LDAP client, return possible retained results collected before the
administrative limit was exceeded and LDAP result with resultCode Set t0 adminLimitExceeded.

If the reply is to be returned to a DUA (or DSA), additional information may be returned by a DSA in a dsaProblem
notification attribute as follows:

a) if thelimit is imposed by the administrator, the dsapProblem notification attribute shall take the value
id-pr-administratorImposedLimit;
NOTE —This does not imply that an implementation is required to have customization capabilities for an
administrator to implant administrative limits.
b) if the limit caused by an implementation restriction and the problem is perceived to be of permanent
nature, the dsaproblem notification attribute shall take the value id-pr-permanentRestriction;

c) if the limit caused by an implementation restriction and the problem is perceived to be of a temporary
nature, e.g., temporary congestion, the dsarroblem notification attribute shall take the value
id-pr-temporaryRestriction.

16.1.4.5 Sizelimit

A size limit, as specified in commonArguments, can be exceeded at any point in time during processing of a List,
Search or LDAP Search operation. In this case, a partial result (taken from the set of already collected results) shall be
returned to the requester with limitProblem Set tO sizeLimitExceeded. In addition, the unexplored component
may be used for returning Continuation References of unaccessed directory servers.

If it isa DAP Search operation and the entrycCount Search control option is set, the DSA shall make a best estimate on
how many entries would potentially have been returned had there been no size limit by taking into account access
control but not hierarchical selections, and then return that figure in the entrycCount component of the
PartialOutcomeQualifier USING the bestEstimate aternative if there are N0 unaccessed directory servers,
otherwise, it shall makethe LowEstimate aternative.

Operation Dispatcher isthen terminated.

36 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

16.2 Procedures of the Operation Dispatcher

The procedure that is performed by the Operation Dispatcher for processing each received request (over DAP, LDAP or
DSP) is defined by the following steps. Due to alias dereferencing, this procedure may also call itself (alocal request),
in which case alocal reply (rather than a DAP or DSP reply) is returned.

1)
2)
3

3)

4)

5)

6)

7)

8)

9)

10)

11)

Validate several aspects of the operation arguments (Request Validation procedures). If an error is
encountered during validation, return this error locally or over a DAP/DSP.

If the request received was a DAP abandon request, call the DAP/DSP Abandon procedure and return a
reply afterwards.

If the request received was an 1dapTransport request with an embedded abandonRequest, cal the
L DAP abandon procedure.

Resolve the name of the target object by executing the Find DSE procedure (which includes the Target
Found and Target Not Found sub-procedures). If the requested entry was found and is suitable (according
to the setting of the service controls, chaining arguments and local policy decisions), continue with the
Evaluation Phase at step 6). If during Name Resolution an error was encountered, it is returned. If the
entry was found not to be suitable, continue at step 4).

The Name Resolution Continuation Reference procedure is called to process the list of Continuation
References as stored in the NRcontinuationList. In order to process these Continuation References,
chained reguests may be issued to other DSAS (if service controls and local policy decision allow it).

In case of an error, this error is directly returned either locally or viaa DAP/DSP. If the chained request
generated aresult, then continue with step 5).

The Results Merging procedure is called to merge the local results with the received Chained Results. If
the Chained Results contain embedded Continuation References, these may first be resolved if the
service controls and local policy alow or requireit.

This may cause additional Chained Requests to be issued (whose Chained Results may also contain
embedded Continuation References).

The merged results are returned to the caller, and processing of the request ceases.

If protection is performed on the results, the merging of results shall not be performed.
If the operation is a modification operation, continue at step 7).

If the operation is asingle entry interrogation operation, continue at step 8).

If the operation is a multiple entry interrogation operation, continue at step 9).

When carrying out a modification procedure, Operational Bindings may need to be established, modified
or terminated, or shadows may need to be updated as a consequence of performing the operation.
Whether these are done synchronously or asynchronously with the performance of the original operation
depends on the respective modification operations (and on local policy). A local or a DAP/LDAP/DSP
result or error isreturned to the caller.

The result of a single entry interrogation operation is directly returned to the caller as a local or a
DAP/DSP result.

If the operation is a multiple entry interrogation operation, then check the nameResolutionPhase Of
the operation. If it is not completed, then call the List(l) or Search(l) procedure, otherwise, call the
List(I1) or Search(l1) procedure, respectively.

The outcome of a call to the List(11) procedure (result or error) and the outcome of a call to the List(l)
procedure (in case that the outcome is an error) can directly be returned to the caller (as a local or a
DAP/DSP result).

If the procedure called was the List(l) procedure, the result might contain Continuation References that
have to be dereferenced (depending on service controls and local policy). This may result in chained List
operations being sent off to the respective DSAs. To merge the results continue at step 5) with the call to
the Results M erging procedure.

If the operation was a Search operation, any Continuation References are resolved by the Search
Continuation Reference procedure (if required and allowed). This may cause chainedSearch requests to
be sent off to the respective DSAs and/or LDAP searchRequest t0 be sent to the respective adjacent
LDAP servers. The Results Merging procedure [see step 5)] is called to merge the search results and
possibly to dereference contained Continuation References, if any.

Rec. ITU-T X.518 (10/2012) 37

| SO/l EC 9594-4:2014 (E)

16.3 Overview of procedures

This clause gives an overview of the basic functionality of the procedures employed by the Operation Dispatcher which
are defined in clauses 17 to 22.

16.3.1 Request Validation procedure

This procedure, described in clause 17, is called to perform loop checking, limit checking, and security checking prior
to performing local name resolution. This procedure also provides default settings for those parameters of the
ChainingArguments that are not provided by the DAP in the case that the request came from a DUA. Furthermore,
this procedure singles out any abandon request and notifies this to Operation Dispatcher.

16.3.2 Abandon procedures

The DAP/DSP abandon procedure, described in clause 20.5.1, tries to find the operation that is to be abandoned and
terminate it. If there are any outstanding subrequests, Chained Abandon operations may be sent after them. The
procedure either returns an empty result to the caller, or an error indication (e.g., abandonError with problem
tooLate).

The LDAP abandon request, described in clause 20.5.2, forwards the abandon to the appropriate LDAP server and
returns an empty 1dapTransport result.

16.3.3 Find DSE procedure

This procedure, described in clauses 18.2 and 18.3, matches the components of the name of the target object against the
locally held DSEs to resolve the target object name. If an alias DSE is encountered, the alias is dereferenced (if
permitted) and the procedure is restarted to resolve the new name.

If the target was not found, the procedure is continued at the Target Not Found sub-procedure. If the target was found,
the procedure is continued at the Target Found sub-procedure.

NOTE — Target Not Found and Target Found are continuations of the Find DSE procedure.

The procedure may result in various errors, in which case, the associated protocol DAP error or LDAP result with
associated resultcCode isreturned to the requester and the Operation Dispatcher isterminated.

16.3.3.1 Target Not Found sub-procedure

This procedure, described in clause 18.3.2, performs an evaluation of the located intermediate DSESs and creates a set of
Continuation References in NRcontinuationList, based on the set of knowledge references that have been detected
during the Find DSE procedure. This set of references is then further processed within the Name Resolution Continuation
Reference procedure.

The procedure may result in various errors, in which case the associated DAP error or LDAP result with associated
resultCode isreturned to the requester and the Operation Dispatcher isterminated.

16.3.3.2 Target Found sub-procedure

This procedure, defined in clause 18.3.3, checks if the found DSE is suitable for the requested operation, i.e., in the case
where it is shadowed information. This may include checking the suitability of the whole subtree of shadowed
information below the target object in the case of a multiple object operation (e.g., subtree search).

If the located entry is suitable, the appropriate operation evaluation procedure is invoked. Otherwise, a
ContinuationReference pointing to the supplier (or master) of the information is created in NRcontinuationList and
the Name Resolution Continuation Reference procedure isinvoked.

16.34 Singleentry interrogation procedure

This procedure, described in clause 19.2, is invoked to actually execute those operations that only affect a single entry,
i.e.,, Read and Compare operations. After completion, areply (result or error) created by the procedure is returned to the
requesting DSA/DUA/LDAP client.

16.3.5 Madification procedures

These procedures, described in clause 19.1, are executed to process the modification operations, i.e., Add Entry,
Remove Entry, Modify Entry, Modify DN, Change Password and Administer Password. This is done by executing a
specific sub-procedure defined for each of these operations. During (or after) these sub-procedures, DOP and DISP
reguests may be issued to other DSAs. After successful completion, a result (created by the sub-procedures) is returned
to the requesting DSA/DUA/LDAP client.

38 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

16.3.6 Multipleentry interrogation procedures

These procedures, described in clause 19.3, are executed to process operations that affect multiple entries which may or
may not be located in the same DSA or LDAP server. This is done by executing specific sub-procedures defined for
each of the Search and List operations to accomplish request decomposition. These procedures create a local result of
the operation evaluation and optionally a set of continuation references in SRcontinuationList. If SRcontinuationList is
empty at the end of this procedure, the created result is directly returned to the requesting DSA/DUA/LDAP client.

If it isa DAP Search operation, if the result is empty and if the variable emptyHierarchySelect is set, then return in the
notification component of the PartialOutcomeQualifier:

— asearchServiceProblem Notification attribute with the value id-pr-emptyHierarchySelection.

If SReontinuationList is not empty, these continuation references are processed by invoking List or Search Continuation
Reference procedure, according to the operation type.

16.3.7 Name Resolution Continuation Reference procedure

This procedure, described in clause 20.4.1, processes the continuation references in NRcontinuationList created during
the Name Resolution phase. These continuation references are either used to issue chained subrequests or returned in a
referral. In the case of chaining, the results or errors returned from the chained request are returned for further
processing by the Results Merging procedure.

16.3.8 List and Search Continuation Reference procedure

These procedures, described in clauses 20.4.2 and 20.4.3, process the continuation references in SRcontinuationList
created by the multiple entry interrogation procedures and either resolve them by issuing chained subrequests or by
creating continuation reference(s) within the partialoutcomeQualifier.unexplored. When results or errors for
al outstanding subrequests have been received, they are returned for further processing by the Results Merging
procedure.

16.3.9 ResultsMerging procedure

This procedure, described in clause 21, either examines the result from a chained request or combines the local
operation results with the results received from the chained subrequests. If a subrequest had returned an error, this
procedure determines how this error has to be handled.

If there are any continuation references left in the result, they will (if local policy alows it and service controls require
it) be dereferenced by the Name Resolution, List, or Search Continuation Reference procedures, accordingly.
Duplicates are removed from the result if it is unsigned.

The merged result (with all merged results and unresolved continuation references) is returned to the requesting
DUA/DSA.

If the results are signed, the merging of results shall not be performed.

17 Request Validation procedure

17.1 Introduction

The Request Validation procedure is the entry point of the Operation Dispatcher for inputs from DUASs, LDAP clients
and DSASs, preparing such inputs for Name Resolution processing. The function of this procedure is to detect Abandon
operations, to perform security checks, to adjust input received from DUASs or LDAP clients so that it may be processed
in the same way as input received from DSAS, to check the arguments of the request for valid syntax and semantics, to
perform loop detection, and to perform other miscellaneous checks. The flow of Request Validation is depicted in
Figure 8.

Rec. ITU-T X.518 (10/2012) 39

| SO/l EC 9594-4:2014 (E)

Return
Error

Abandon or
ChainedAbandon

Update or Create
ChainingArguments

Request
Parameters
Valid?

Return
ServiceError
loopDetected

Loop
detected?

/

Return
ServiceError busy,
unavailable or
unwilling ToPerform

Unwilling
or unable?

X.518_F08

Figure 8 — Request Validation procedure

17.2 Procedure parameters

17.2.1 Arguments

The input argument to Request Validation consists of the ChainingArguments value (except in the case of
chainedabandon request), if the request isreceived from a DSA, and the argument issued by the requester.

17.2.2 Results

The output result of Request Validation consists of the following possibilities.

a)
b)
0)

d)
e

If the security check fails, an error is returned to the requester.
If theinput is an abandon Or chainedAbandon operation, the output is the argument of the operation.

If the arguments of the request are invalid, then an error is returned to the requester. Depending on local
policy, the DSA may choose whether to return a serviceError OF a securityError.

If aloop is detected, a serviceError With problem loopbDetected isreturned to the requester.

If, based on resource problems or policy considerations, the DSA is unable or unwilling to perform the
operation, a serviceError (with problem busy, unavailable, Of unwillingToPerform) iS
returned to the requester. If relevant, a serviceError with problem datasourceUnavailable may
be returned.

40 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

f) Inall other cases, the validated input, transformed by the addition of chainingArguments if received
from a DUA or LDAP client or the update of chainingArguments.traceInformation if received
fromaDSA, isthe output of the procedure and subsequently the input to the Name Resolution procedure.

17.3 Procedur e definition

The security check described in clause 17.3.2 is performed. This may result in the return of an error and the termination
of the Operation Dispatcher.

If the input is an abandon Or chainedAbandon Operation, only the stepsin clause 17.3.1 are subsequently performed,
otherwise, the stepsin clauses 17.3.3-17.3.5 are performed. Clause 17.3.5 describes the loop detection procedure which
may result in the return of an error and the termination of the Oper ation Dispatcher.

Next, the checks in clause 17.3.6 are performed. They may result in the return of an error and the termination of the
Operation Dispatcher.

If the checks in clauses 17.3.2-17.3.6 do not result in the termination of the Operation Dispatcher, the steps in
clause 17.3.7 are performed and the procedure terminates with the transfer of its output to the Name Resolution
procedure.

17.3.1 Abandon processing

The argument of an abandon Or chainedAbandon request is passed to the Abandon procedure, (see clause 20.5), to
process the abandon request.

17.3.2 Security checks

If the argument to the operation is signed, the signature may be checked. Should the signature be invalid, or be absent in
a case when it should be present, an error may be returned to the requester. Alternatively, a DSA may perform any other
locally defined action.

17.3.3 Input preparation
17.3.3.1 DUA request

If the operation is received from a DUA client, aChainingArguments Value is created asfollows:
d) ChainingArguments.originator shall be set asdescribedin clause 10.3.

b) ChainingArguments.operationProgress iSSettothevalue of
CommonArguments.operationProgress.

C) ChainingArguments.traceInformation iS Setto asequence containing asingle TraceItem value.
This value is constructed as follows. TraceItem.dsa is Set to the name of the DSA executing Request
Validation. TraceItem.targetObject shal be omitted. TraceItem.operationProgress is et to
the incoming value.

d) If the service control of the operation specifies a time limit (the available elapsed time in seconds for
completion of the operation), ChainingArguments. timeLimit iS Set to the (UTC) time by which the
operation shall complete to meet the user's specified time limit.

e) ChainingArguments.AuthenticationLevel and ChainingArguments.UniqueIdentifier are
set according to the local security policy.

f) ChainingArguments.nameResolveOnMaster iScopied from
CommonArguments .nameResolveOnMaster.

g) ChainingArguments.exclusions, ChainingArguments.entryonly and
ChainingArguments.referenceType ae copied from CommonArguments.exclusions,
CommonArguments.entryOnly and CommonArguments.referenceType if they are present,
otherwise, they are omitted.

h) If themanageDSAIT optionissetinthe serviceControls, then;
— thenameResolutionPhase component of operationProgress shall be set to completed;
— thenextRDNToBeResolved component of the operationProgress shall be omitted;
— referenceType shdl takethevaue self;
— entryonly shal take the value FALSE;
— nameResolveOnMaster Shall take the value FALSE; and

Rec. ITU-T X.518 (10/2012) 41

| SO/l EC 9594-4:2014 (E)

— thechainingProhibited OptioON in ServiceControls shal be set;

— the remaining optional elements of chainingArguments are omitted, with default values being
assumed where specified.

i) If themanageDSAIT option isnot setinthe serviceControls, then the remaining optional elements of
ChainingArguments are omitted, with default values being assumed where specified.

j) ChainingArguments.SecurityParameters.ProtectionRequest iS used to indicate the level of
protection (no signing or signing) to be applied to the results.

17.3.3.2 LDAP request

A request received from an LDAP client is validated according to the procedure specified in IETF RFC 4511. If an error
isreturned, the procedure is complete.

If the request includes a control value with the criticality component set to TRUE and this control value is not
supported, then an LDAP result with resultCode Set t0 unavailableCriticalExtension shall be returned and
the procedure is compl ete.

If the request includes a control value that is recognised and supported, this control value shall be processed as
specified.

If the request is evaluated entirely within the bound DSA, the procedure defined by IETF RFC 4511 shall be followed.

If the operation is received from an LDAP client and the next destination is an adjacent LDAP server, then the DSA
acting as an LDAP requester forwards the request according to IETF RFC 4511, except that the Message1d is changed
according to the procedures for the LDAP server. If the request is an LDAP abandon request, the procedure is compl ete.
Otherwise, on the return of the reply, the reply is forwarded to the LDAP client with the original Messageld.

If the LDAP client request is to be forwarded to or beyond an adjacent DSA, it is wrapped in an 1dapTransport
request argument together with some additional information as specified in clause 12.1.2 of ITU Rec. X.511 |
ISO/IEC 9594-3. A chainingArguments Value shall be created asfollows:

a) ThechainingArguments.originator component shall be set asdescribed in clause 10.3.
b) ThechainingArguments.targetObject component need not be present.

C) ThecChainingArguments.operationProgress shall be absent or take the value notstarted if the
bound DSA has not performed any name resolution. Otherwise, it shall take the value proceeding.

d) The chainingArguments.traceInformation iS Set t0 a sequence containing a single TraceItem
value. This vaue shall be constructed as follows. TraceItem.dsa is set to the name of the DSA
executing Request Validation. Traceltem.targetObject shall be omitted.
Traceltem.operationProgress shal besettonotsStarted.

€) The chainingArguments.aliasDereferenced shall be TRUE if an alias has been dereferenced
within the bound DSA. Otherwise, it shall be absent or shall have the value FALSE.

f) ThechainingArguments.aliasedRDNs shal be absent.

g) The CchainingArguments.returnCrossRefs, ChainingArguments.referenceType and
ChainingArguments.info components shall be set as described in clause 10.3.

h) The chainingArguments.timelimit component shall be present if the LDAP request includes a
timeLimit component different from zero. Otherwise, it shall be absent.

i) The chainingArguments.entryOnly component shall be absent.

i) The chainingArguments.uniqueIdentifier component shall be absent.

K) ChainingArguments.AuthenticationLevel component shall be set asdescribed in clause 10.3.
[) The chainingArguments.exclusions component shall be absent.

m) The ChainingArguments.excludeShadows component shall be set as described in clause 10.3.

n) The ChainingArguments.nameResolutionOnMasters component shall be set as described in
clause 10.3.

0) The cChainingArguments.operationIdentifier component shall be set as described in
clause 10.3.

p) The chainingArguments.searchRuleId component shall be absent.
) The chainingArguments.chainedRelaxation component shall be absent.

42 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

r) The ChainingArguments.relatedEntry component shall be absent.

s) The chainingArguments.dspPaging component shall be absent.

17.3.3.3 DSA request

If the operation is received from a DSA, ChainingArguments.traceInformation iSupdated by appending avalue
at the end of sequence TraceItem. Thisvalueis constructed asfollows:

ad) TraceItem.dsa iSSettothe name of the DSA executing Request Validation.

b) TraceItem.targetObject iS set to the value of chainingArguments.targetObject unless the
object (Or baseoObject in the case of a Search operation) of the request argument is identical to
ChainingArguments.targetObject, in Which case TraceItem. targetobject shall be omitted.

C) TraceItem.operationProgress iSSettothevalue of

ChainingArguments.operationProgress.

17.34 Validity assertion

The operation shall be checked for valid syntax and semantics of its arguments according to the rules contained in the
clauses defining each operation (e.g., it should be checked that the nextRDNToBeResolved does not provide a number
exceeding the number of RDNs in the targetobject). If the request is detected to contain invalid arguments, the
operation isterminated and an error is returned to the user, depending on the kind of invalidity detected.

17.35 Loop detection

If any two TraceItem vaues Of ChainingArguments.traceInformation (as prepared in clause 17.3.3) are
identical, processing of the operation has returned to a previous state, i.e., aloop has been detected. In this case,

a) if thereply isto bereturned to aDUA (or DSA), a serviceError (with problem looppetected) shall
be returned to the requester and the Operation Dispatcher terminates;

b) if thereply isto bereturned to an LDAP client, an LDAP result with resultCode Set t0 loopDetected
shall be returned to the requester and the Operation Dispatcher terminates.

17.3.6 Unableor unwilling to perform

Request Validation may assess available resources and determine that the operation cannot be performed. It may also
determine, based on policy considerations, that the operation should not be performed. In these cases,

a) If thereply isto bereturned to aDUA (or DSA), a serviceError (With problem busy, unavailable,
Or unwillingToPerform) may be returned to the requester and the Operation Dispatcher terminates.

b) If the reply is to be returned to an LDAP client, an LDAP result with resultcode Set t0 busy,
unavailable OF unwillingToPerform shall be returned to the requester and the Operation
Dispatcher terminates.

If aDSA by local means can determine that the problem is related to the unavailability of local DIB resources, it shall

a) If thereply isto be returned to a DUA (or DSA), send a serviceError With problem unavailable,
and the optional notification component of the commonResults value, if present, shall contain:

— adsaProblem notification attribute with the value id-pr-dataSourceUnavailable; and
— adistinguishedName attribute having as value the distinguished name of the DSA.

b) If thereply isto bereturned to an LDAP client, an LDAP result with resultCode Set tO unavailable
shall be returned to the requester.

17.3.7 Output processing

In the final phase of Request Validation the validated input, transformed by addition of chainingArguments if
received from a DUA or an LDAP client, or the update of CchainingArguments.traceInformation if received
fromaDSA, isreturned and employed as input to the Name Resolution procedure.

Rec. ITU-T X.518 (10/2012) 43

| SO/l EC 9594-4:2014 (E)

18 Name Resolution procedure

18.1 Introduction

This clause describes the Name Resolution procedure, its Arguments, Results, and its possible Error conditions. As
shown in Figure 6 (Operation Dispatcher), the Name Resolution procedure consists of two procedures:

— Find DSE procedure;

— Name Resolution Continuation Reference procedure.

The Find DSE procedure is described in three flow charts, namely Find DSE, Target Found, and Target Not Found. The
Find DSE procedure matches the target entry name to locally stored DSES, component by component. If the target entry
is found locally, then Find DSE continues with the Target Found sub-procedure, which then calls the Check Suitability
procedure to check the suitability of the found DSE for evaluation. If the target entry is not found locally, then Find DSE
continues with the Target Not Found sub-procedure prepares Continuation Reference(s) to be added to the
NRcontinuationList for the Name Resolution Continuation Reference procedure to dispatch it.

18.2 Find DSE procedure parameters

1821 Arguments

The procedure uses the following arguments:
a) ChainingArguments.aliasDereferenced,
b) ChainingArguments.aliasedRDNs;
C) ChainingArguments.excludeShadows;
d) ChainingArguments.nameResolveOnMaster;
e) ChainingArguments.operationProgress (nameResolutionPhase, nextRDNToBeResolved);
f) cChainingArguments.referenceType;
0) ChainingArguments.targetObject;
h) ChainingArguments.relatedEntry;
i) the operation type;
j) the operation argument.

NOTE — Where no actual values exist, default or implied values are used, as specified in clause 10.3.
1822 Results
There are two cases of a successful outcome from Find DSE (indicated by entry suitable or entry unsuitable):

The first successful case returns (from the Target Not Found sub-procedure) Continuation Reference(s) in
NRcontinuationList which is then passed on to the Name Resolution Continuation Reference procedure to continue the
Name Resolution phase.

The second successful case returns (from the Target Found sub-procedure) a (reference to a) DSE, which is passed to
one of the Evaluation procedures.

1823 Errors
The following errors may be returned to a DUA (or DSA):

a) serviceError With problems. unableToProceed, invalidReference,
unavailableCriticalExtension, requestedServiceNotAvailable,

D) nameError with problems: noSuchobject, aliasDereferencingProblem.
LDAP results with the following resultcode may be returned to an LDAP client:

d) noSuchObject;

b) wunavailableCriticalExtension,

C) aliasDereferencingProblem.

44 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)
1824 Global variables

The procedure uses the following global variables:
— NRcontinuationList list to store the Continuation Reference(s) needed to continue name resolution in the
Name Resolution Continuation Reference procedure.

18.25 Local and shared variables

The procedure uses the following local variables:
a i Index used to identify the component of the target name being worked on.

b) m Thelength of the target object name to be used in name resolution. For operations that name resolve
to the parent entry, i.e., Add Entry, m is set to (the number of RDNsin the target object) — 1. For all other
operations, m is set to the number of RDNs in the target object.

¢) lasEntryFound Index, so that DSE(lastEntryFound) is the last matched DSE that is of type entry.
d) lastCP Index, sothat DSE(lastCP) isthe last shadowed context prefix encountered.
€) candidateRefs A set of continuation references.

The shared variable admPoints (defined in Operation Dispatcher) is aso used. For convenience, component i of the
target object name is denoted as N(i).

18.3 Procedures

NOTE — Some of the text in the flow charts is only relevant to specific operations. This is not shown in the flow charts, but is
described in the accompanying text.

Rec. ITU-T X.518 (10/2012) 45

| SO/l EC 9594-4:2014 (E)

18.3.1 Find DSE procedure
See Figure 9.

lastEntryFound = 0
LastCP=0

» admPoints = { }
pangidateRefs ={}
i=

manageDSAIT or
ManageDSAITPlane-
Ref set?

nameResolution-
Phasc = completed?

Reference
Type is supplier
or master?

No Yes

A

Match subordinates of No match

DSE(i) to RDN N (i + 1)

Match #

Ci=itl Continue at Subordinate of
DSE(i) = matched DSE Ta;gfltn 1§0t DSE(i) is of

type cp? v

Retu_rnbl
t 1
Yes entry suitable

v

C Return scrviccError

nameResolveOnMaster
Is TRUE and DSE(i) is not
master

i = nextRDNToBe
Resolved?

unableToProceed
| Check next unprocessed type of DSE(i)? |<—
|
All t!ypes alias subelntry enltl'y subr T imm!Supr admPoint cp and other
procgssed shadow
4 v
M?ke a continuation \ 4
reference usin _
SpeciﬂcKnow%edge lastCP =i
and add to candidateRefs
Return
NameError
b 4 noSuchObject Add DSE(i) to the

list of admPoints

don’tDereference-
Aliases set?

lastEntryFound = i

Continue at
TargetFound

anageDSAIT or
ManageDSAITPlane-
Ref set?

Yes

nameResolution-
Return Phase = completed?
NameError

aliasDereferencingProblem

aliasDereferenced = true
nameResolutionPhase = notStarted
N = aliasedObjectName + RDNs
N(@+ 1) to N(m)

aliasedRDNs = 1 (for 92 systems)

Rec. ITU-T X.518 (10/2012)

Reference
Type is supplier
or master?

Ret oy

R ® “,"“E) subordinate
Servicekrror of DSE(i) is of
invalidReference type cp?

Return
Entry suitable

X.518_F08

Figure 9 —Find DSE procedure

| SO/l EC 9594-4:2014 (E)

The target object name is determined as follows:

a)

b)

0)

If the targetObject component is present in the chainingArguments, the value of that component is
used.

If the relatedEntry, but not the targetobject, iS present in the ChainingArguments, the
baseObject component of the JoinArgument identified by the relatedEntry isused.
NOTE 1 - Thisisonly relevant for a protected search request.

If neither the relatedEntry nor the targetobject ispresent in the chainingArguments, the base
(baseoObject) component of the operation argument is used.

This procedure attempts to resolve the target object name locally.

1)

2)
3)

4)

5)

6)

7)

Initialize the local variables lastEntryFound and lastCP to 0; admPoints and candidateRefs to an empty
set, and initialize i to 0.

Comparei and m. If they are not equal, then continue at step 5).

If they are equal, check if nameResolutionPhase iS completed. If Not completed, continue at
Target Not Found sub-procedure.

If the nameResolutionPhase iS completed and the manageDSAIT critical extension is set, then
return with entry suitable.
If nameResolutionPhase IS completed, then check if any immediate subordinate of DSE(i) is a
context prefix (of type cp).
— If one (or more) immediate subordinate DSE(S) is of type cp, then return with entry suitable.

NOTE 2 —Thiscaseisfor List (1) and Search (1) subrequests.
— If no immediate subordinates of DSE(i) are of type cp, then continue at Target Not Found

sub-procedure.

Try to find amatch for the (i + 1)-th component of the target object name with the name of a subordinate
of the last matched DSE. In the case of i = 0, try to match one of the DSEs immediately subordinate to

the root DSE. If no match can be found, continue at Target Not Found sub-procedure. If amatch is found,
increment i, and store the matched DSE as the i-th element in the vector of found DSEs.

If i equalsnextRDNToBeResolved, then check if the following two conditions are both met:
— thechainingArgument.nameResolveOnMaster iS TRUE,;
— DSE(i) isnot amaster entry.

If both conditions are met, then return serviceError with problem unableToProceed.
NOTE 3 — Thisindicates the use of nameResolveonMaster to avoid multiple paths to the same target object.

Check all the DSE type bits of DSE(i). For each type hit, some processing is potentially required. The
action to take for each type found is given below:

— If both the ep and shadow bits are set, then remember the index i in lastCP.

— If the admPoint hit isset, check the administrativeRole oOperationa attribute. If thisisthe start
of an autonomous administrative area, then empty the admPoints list. If this is the start of one or
more specific administrative areas, then check the admPoints list and remove any existing points
that are no longer relevant (i.e., their roles have been superseded by the new administrative point).
Store DSE (i) in thelist.

— If one of the subr, xr, immSupr, Or ditBridge bitsis set, then generate a continuation reference
using the specificknowledge attribute with operationProgress.nameResolutionPhase
set t0 proceeding, nextRDNToBeResolved Set t0 i, and accessPoints and referenceType
set as appropriate. Add the continuation reference to the list of continuation references in
candidateRefs.

— If the entry hit is set, then test for i equal to m (and therefore the target object name being
completely matched). If i does not equal m, then remember the found entry by setting
lastEntryFound to i and continue processing the type bits of DSE(i). If i and m are equal, continue at

step 8).
— If the subentry bit is set, then test for i equal to m (and therefore the target object name being

completely matched). If they are equal, then continue at Target Found procedure; if they are not
equal, then return anameError with problem noSuchobject.

— Ifthealias hitisset, test if dontDereferenceAliases iSSet.

Rec. ITU-T X.518 (10/2012) 47

| SO/l EC 9594-4:2014 (E)

48

If dontDereferenceAliases IS not set, the alias can be dereferenced. Therefore, set
chainingArguments.aliasDereferenced {0 TRUE, nameResolutionPhase tO notStarted,
the name of the target object to the aliasedEntryName as supplied in the alias entry concatenated
with the remaining unmatched components of the previous target object name (i.e., concatenate with
the (i + 1)-th to m-th component of the previous target object name). Second and subsequent edition
DSAs do not set aliasedrRDNs (Whereas first edition DSAS set aliasedRDNs to the number of
RDNsin aliasedEntryName). Start Name Resolution again by continuing at step 1).

If dontDereferenceAliases iS Set, then the alias cannot be dereferenced. Check if the target
object name has been processed completely by comparing i and m for equality. If they are equa
(and the name therefore fully matched), then continue at Target Found sub-procedure. If they are not
equa (and the name therefore not fully matched), then return nameError with problem
aliasDereferencingProblem.

For all other possible DSE types, no action is needed. Internally mark that DSE type as processed
and continue processing the still unprocessed DSE type bits of the DSE()).

If al type bits of DSE(i) are processed, then continue at step 2).

Check if nameResolutionPhase iS completed. If it is not, then continue at Target Found
sub-procedure.

If the nameResolutionPhase iS aready completed and the manageDSAIT critical extension is set,
then return with entry suitable.

10) Otherwise, check if any of the DSEs immediately subordinate to DSE(i) is a Context Prefix (and

therefore of type cp). If thereis (one or more), return entry suitable. If none of the immediate subordinate
entriesis of type Context Prefix, then return a serviceError with problem invalidrReference.

NOTE 6 — Thiscaseisfor List (11) and Search (1) subrequests.

Rec. ITU-T X.518 (10/2012)

18.3.2
See Figure 10.

no

Target Not Found sub-procedure

Continue
from
Find DSE

tStarted name

ResolutionPhase?

Proceeding

lastEntryFound
< nextRDNToBeResolved?

proceedi

nameResolutionPhase =

ing

Root DSE Yes

of type supr?

Make continuation
reference using the superior
knowledge found in the root
DSE; and include it in
candidateRef

Is DSE(i) shadow
and with

Make continuation
reference using the nssr
knowledge found in the root
DSE; and include it in
candidateRef

flag FALSE?

Is DSE

candidateRefs
empty?

Yes

List or
Search?

PartialName-
Resolution True?

(lastEntryFound)
of type nssr?

candidateRefs
empty?

Return

Completed

| SO/l EC 9594-4:2014 (E)

Return
. ServiceError
invalidReference

Return
ServiceError
unableToProceed

Yes

subordinateCompleteness v

Make a continuation reference
usir;g the supplierKnowledge
attribute found in DSE (lastCP);
and add it to NRcontinuationList

Yes

Make an nssr
continuation reference
and add it to the
candidateRefs

NameError
noSuchObject

nameResolution-
Phasc = completed

Return
entry suitable

Return
NameError
noSuchObject

partialNameResolution = TRUE in result
nameResolutionPhase = completed

\ 4
nextRDNToBeResolved
=i
Use local Selection Function
to choose a continuation
reference from candidateRefs
and add to NRcontinuationList
\ 4

Return

entry unsuitable

[
L

X.518_F10

Figure 10 — Target Not Found sub-procedure

Rec. ITU-T X.518 (10/2012) 49

| SO/l EC 9594-4:2014 (E)

This sub-procedure is called when the target object name is not found in the local DSA. This sub-procedure determines
the best type of knowledge reference to use to continue name resolution, unless an error is detected in which case the
error is returned.

1)

2)

3

4)

5)

6)

7)

8)

9)

When continuing from Find DSE procedure, distinguish between the three possible phases of the Name
Resolution phase.

— If nameResolutionPhase is notStarted, continue at step 2).
— If nameResolutionPhase is proceeding, continue at step 8).
— If nameResolutionPhase is completed, continue at step 12).

If an entry was found (lastEntryFound not equal to 0), Set nameResolutionPhase t0 proceeding and
continue at step 9).

If no entry was found (lastEntryFound=0), then check if the DSA isaFirst Level DSA.

If itisaFirst Level DSA, then the root DSE does not contain a Superior Reference and therefore is not of
type supr. In this case, continue at step 4).

If the DSA isnot aFirst Level DSA, then the root DSE contains a Superior Reference and therefore is of
type supr. In this case, generate a Continuation Reference using the superior knowledge as found in the
root DSE. Set:

— targetObject to the name of the target object;

— operationProgress.nameResol utionPhase to notStarted;
— referenceType to superior; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 6).

Check if the operation was directed to the root entry (m = 0?). If it was, continue at step 5). If it was not,
generate a Continuation Reference using any NSSR knowledge found in the root DSE. Set:

— targetObject to the name of the target object;

— operationProgress.nameResol utionPhase to proceeding;

— operationProgress.nextRDNToBeResolved to 1;

— referenceType to nonSpecificSubordinate; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 6).

At a First Level DSA, only List or Search operations may be performed with the root entry as base
object. Therefore, if the operation was not a List or Search operation, return nameError with problem

noSuchobject. If it was a List or Search operation, Set nameResolutionPhase {0 completed and
return with entry suitable.

Check if there are any Continuation References in candidateRefs. If candidateRefs is empty and
partialNameResolution IS FALSE, return nameError With problem noSuchobject. If
candidateRefs is empty and partialNameResolution iS TRUE, then in the result set partialName tO
TRUE, nameResolutionPhase t0 completed, and return with entry suitable. Otherwise, continue at
step 7).

Use a loca selection function to choose a Continuation Reference from the list of Continuation
References in candidateRefs, add it to the list of Continuation References in NRcontinuationList and
return with entry unsuitable.

If the DSA was unable to proceed with Name Resolution (in which case lastEntryFound is less than
nextRDNToBeResolved), continue at step 11). Otherwise, continue with next step.

If DSE(i) is ashadow DSE with incomplete subordinate knowledge (subordinateCompletenessFlag
is FALSE), then generate a Continuation Reference from the supplierknowledge attribute found in
DSE(lastCP). Set:

— targetObject tothe name of the target object;
— operationProgress.nameResolutionPhase {0 proceeding;

— operationProgress.nextRDNToBeResolved t0 lastEntryFound,

50 Rec. ITU-T X.518 (10/2012)

10)

11)

12)
13)

| SO/l EC 9594-4:2014 (E)

- referenceType t0 supplier; and
— accessPoints asappropriate.

Add the Continuation Reference to the list of Continuation References in NRcontinuationList, and return
with entry unsuitable.

If the last entry found contains an NSSR (DSE(lastEntryFound) is of type nssr), then generate a
Continuation Reference from the NSSR knowledge found in DSE(lastEntryFound). Set:

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase tO proceeding;

— operationProgress.nextRDNToBeResolved t0 lastEntryFound+1;
— referenceType tOnonSpecificSubordinate; and

— accessPoints asappropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 7).
If DSE(lastEntryFound) is not of type nssr, then continue at step 6).

If chainingArguments.referenceType iS Of type nssr, then continue at step 13), otherwise at
step 12).

Return serviceError with problem invalidReference.

If i + 1isequal t0 nextRDNToBeResolved, then the request was routed here due to an NSSR and the

DSA is unable to proceed with name resolution; in this case, return serviceError with problem
unableToProceed; Otherwise, continue at step 12).

18.3.3 Target Found sub-procedure

This sub-procedure is entered when the target object name matches with an entry DSE locally. This sub-procedure
checksif the found entry is suitable for processing the request locally (it is shown in Figure 11):

1)
2)

3

Call the Check Suitability procedure.

If the entry is suitable (entry suitable), then do the following;:
— St nameResolutionPhase O completed;

— return entry suitable.

If the entry is not suitable (entry unsuitable), then generate a Continuation Reference using the
supplierKnowledge attribute found in DSE(lastCP). Set:

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase tO proceeding;
- operationProgress.nextRDNToBeResolved tOm;

- referenceType {0 supplier; and

— accessPoints asappropriate.

Add the Continuation Reference to the list of Continuation References in NRcontinuationList. Return
entry unsuitable.

NOTE — If the 1ocalscope service control is set, however, the DSA could, based on local policies, decide to consider this entry
as suitable and proceed asin step 2).

4)

If a critical extension is not supported (unsupported critical extension), then return serviceError with
problem unavailableCriticalExtension.

Rec. ITU-T X.518 (10/2012) 51

| SO/l EC 9594-4:2014 (E)

Continue
from
Find DSE

y

nameResolutionPhase =
proceeding, and
nextRDNToBeResolved = i

Call Check Suitability entry nameResolutionPhase =
procedure suitable completed
entry
unsuitable

Return
cntry suitable

Figure 11 —Target Found sub-procedure

18.34 Check Suitability procedure

This procedure is called to decide whether a found DSE is suitable for performing the requested operation
(see Figure 12). It takes into account the chainingArguments, the ServiceControls, the arguments as supplied by
the user, the operation type and the characteristics of the DSE (shadow, subordinate knowledge, attributes present, etc.).

52 Rec. ITU-T X.518 (10/2012)

Make a continuation reference
using the supplierKnowledge
attribute found in DSE(lastCP);
and add it to NRcontinuation List

4.[

Return
entry unsuitable

X.518_F11

| SO/l EC 9594-4:2014 (E)

Enter No Return
unsupported
critical extensions
DSEof type o, Gidions \Yes
shadow? Supported? Return
pported: | entry stitable
Yes 1 1
All necessary entries,
attributes are present
Return Yes Modify
entry unsuitable operation?
Check current shadowing
A agreement unit of
N replication against -
o operation filter and Entrries or
selection attributes
absent
. Yes " dontUseCopy Yes No
Set?
excludeShadows™Y€s excludeShadows
No =TRUE? =TRUE?
shallD 0 Return
copy 0 entry Y
Set? unsuitable (search o‘eﬁeL evel
or subtree)
Yes
No
Search operation Is operation
List Operation Search, and No matching rule No
type? seachAliases = s.JEported by
Compare TRUE and DSE the DSA?
of type dias
Read ‘
. Yes
No Full subordinate ;
knowledge and (cotgnparet,)_:tar ch
ACI for each? p aseObject)
Return
Al I[I) necessary entry
Yes attributes present 3
in DSE? unsuitable
Requested
Return < Yes attributes not held No
entry suitable

by the supplier?

X.518(12)_F12

Figure 12 — Check Suitability procedure

18.3.4.1 Procedure parameters

The input argument to this procedure is:

— areferenceto aDSE;

— the operation type for which the suitability of the DSE isto be checked;
— thechainingArguments;

— the DAP operation argument; and

— therequest components, if an LDAP request.

Rec. ITU-T X.518 (10/2012) 53

| SO/l EC 9594-4:2014 (E)

18.3.4.2 Procedure definition

The output is either entry suitable, entry unsuitable, or unsupported critical extension.

1) If the DSE is not of type shadow, then check if al criticalExtensions are supported. If they are,
then return entry suitable, else return unsupported critical extension.

2) TheDSE isof type shadow. Return entry unsuitable, if any of the following istrue:

— Therequested operation type is a modification operation.
— Theservice control dontUseCopy IS Set.
Otherwise, continue with the next step.

3) If the service control copyShallbo is set, then check if all criticalExtensions are supported. If
they are, then return entry suitable, €lse return unsupported critical extension.

4) If the service control copyshallbo iSnot set, then check if al criticalExtensions are supported. If
they are, then go to step 5) else return entry unsuitable.

5) Distinguish between operation types:

If List operation, continue at step 6).
If Read operation, continue at step 7).
If Search or Compare operation, continue at step 8).

6) If the entry hasfull subordinate knowledge, the List operation can be performed. In this case, return entry
suitable, otherwise, return entry unsuitable.

7) If dl the requested attributes are present in the DSE, then return entry suitable. If some attributes are
missing, then determine by loca means whether the shadow copy holds al the attributes held by the
master (e.g., by reference to the shadowing agreement). If they are, the entry is suitable (return entry
suitable). Otherwise, the supplier may hold the requested attributes which are not present at the shadow;
in this case, the request has to be chained (return entry unsuitable).

8) IfitisaDAP search request with searchaliases Set to TRUE or it isan LDAP searchRequest With
derefInSearching OF derefAlways Set and the DSE is of type alias then if
chainingArguments.excludeShadows IS FALSE return entry suitable, if it is TRUE return entry
unsuitable.

9) If the DSA supports the matching rule for comparing or searching as requested and the operation is
compare Of search operation with subset Of baseObject, then continue at step 7). If the DSA
supports the matching rule and the operation is search with subset oneLevel Or subtree, then
continue at step 10). Otherwise, return entry unsuitable.

10) If chainingArguments.excludeShadows iS TRUE, then return entry unsuitable. Otherwise, check the
local understanding of the shadowed information specification against the operation filter and selection.
If al necessary entries and attributes are present, then return entry suitable. If any entry or attribute is
missing, then return entry unsuitable.

19 Operation evaluation

This clause defines the procedure that a DSA shall follow if the target entry of an operation has been found locally
(during Name Resolution). According to the type of operation, one of the following proceduresisinvoked:

For an addeEntry, chainedAddEntry, removeEntry, chainedRemoveEntry, modifyEntry,
chainedModifyEntry, modifyDN, chainedModifyDN, changePassword, chainedChangePassword,
administerPassword Of chainedAdministerPassword operation, the procedures in clause 19.1
shall be followed.

For a read, chainedRead, compare Of chainedCompare operation, the procedures in clause 19.2
shall be followed.

For a search, chainedSearch, 1list Of chainedList operation, the procedures in clause 19.3 shall
be followed.

54 Rec. ITU-T X.518 (10/2012)

191

| SO/l EC 9594-4:2014 (E)

M odification procedures

According to the type of modification operation, the corresponding procedures defined in clauses 19.1.1 to 19.1.4 shall
be followed for DAP requests. Clause 19.1.5 specifies special procedures for how DAP modify operations affect
NSSRs. An LDAP request embedded in an 1dapTransport request shall be handled as specified in clause 19.1.6.

1911

Add Entry operation

1)

2)

3

4)

5)

6)

7)

The DSA shall check that the initiator has sufficient access rights, e.g., as defined, in clause 11.1.5 of
Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

The DSA shall assure that an entry with the name of the entry to be added does not already exist.
Otherwise, it shal return an updateError with problem entryalreadyExists. If the superior DSE is
of additional type nssr, the DSA shall follow the procedure defined in clause 19.1.5 (Modify Operations
and NSSRs) to ensure that the name of the new entry is unambiguous.

If targetSystem component of the AddEntryArgumentData value is present, and the AccessPoint
is not that of the current DSA, go to step 4). If targetSystem component of a DAP request is not
present, or it is present and the AccessPoint isthat of the current DSA, go to step 5).

If the entry is a subentry, the DSA shall return updateError with problem affectsMultipleDsas. If
the entry is not a subentry, the DSA has alocal choice asto whether or not it wishes to establish an HOB
with the specified DSA. If it does not, the DSA shall return serviceError with problem
unwillingToPerform; otherwise, the DSA shall establish a hierarchical operationa binding (HOB)
with the specified subordinate DSA. If the DOP is supported, the procedure in clause 24.3.1.1 shall be
followed. Otherwise, local means are used to establish the HOB. If the subordinate DSA is unwilling to
establish the operational binding, a serviceError with problem unwillingToPer£form iSreturned for
the addEntry operation. If the HOB is successfully established, continue at step 7).

NOTE 1 — This step of the procedure does not apply to the creation of autonomous administrative areas in a
subordinate DSA.

The DSA shall ensure that the new entry conforms to the sub-schema, or that the new subentry or DSE of
other types conform to the system schema (e.g., that the immediate superior DSE of a subentry is of type
admPoint). If not, it shal return an appropriate updateError Or attributeError, elseit shal add
the new DSE. If entry, continue at step 7). If subentry, continue at step 6). Otherwise, appropriate
knowledge management procedures for the other types of DSE are executed. See Section 6.

The DSA shall forward, at an appropriate time, a modify operational binding to all relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the superior DSE.
Naming contexts whose context prefixes correspond to autonomous administrative points are not
relevant. If the DOP is supported, the procedures in clauses 24.3.2.1 and 25.3.2 shall be followed. If the
DOP is not supported, local means shall be used to modify the RHOBs.
NOTE 2 — An appropriate time is specified by the DSA administrator, and might range from immediately after
(or even before) the operation result is returned to a periodic strategy (e.g., at an appointed hour). The time may
vary depending upon the reason for the modification, e.g., updatesto ACI taking immediate effect and changes to
schema being done periodically.
If the added entry or subentry is within the unitofReplication Of one or more shadowing
agreements, then the shadow consumers shall be updated using the procedures of the Directory
information shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

Rec. ITU-T X.518 (10/2012) 55

| SO/l EC 9594-4:2014 (E)

Return
UpdateError
entryAlreadyExists

Return
ServiceError
unwillingToPerform

Check name Fails
is unique

) 4

TargetSystem

TargetSystem is
present?

this DSA?

Establish hierarchical
operational binding with
subordinate DSA

Type of entry entry Add the new o
to be added? entry Successful?
Subentry or v R Yes
other DSE
v
Not
Check Return UpdateError o
S h - shadows(s)
ystem-schema or AttributeError will need to
be updated

Schedule modification v
Add the new of RHOBs with
Subentry or DSE subordinate DSAs Return

X.518_F13

Figure 13— DAP Add Entry procedure

A

19.1.2 RemoveEntry operation

1) The DSA shal check that the initiator has sufficient access rights, e.g., as defined, in clause 11.2.5 of
Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shal ensure that the entry to be removed is a leaf entry. Otherwise, the DSA shall return an
updateError With problem notAllowedOnNonLeaf.

3) The DSE type of the entry to be removed is checked. If subentry, continue at step 5). If cp, continue at
step 6). If entry Or alias, continue at step 4). Otherwise, appropriate knowledge management
procedures for the other types of DSE are executed. See Section 6.

4) Remove the entry or dias entry and continue at step 7).

5) Remove the subentry. At an appropriate time, modify the operational bindings of al relevant subordinate
DSAs with which the current DSA has hierarchical or non-specific hierarchical operational bindings. The
relevant bindings are those which are associated with naming contexts subordinate to the superior DSE.

Naming contexts whose context prefixes correspond to autonomous administrative points are not
relevant. If the DOP is supported, the procedures in clauses 24.3.2.1 and 25.3.2 shall be followed.
Otherwise, local means shall be used. Continue at step 7).

56 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

6) Remove the naming context. If the DSA has a hierarchical operational binding for this naming context, it
shall terminate the hierarchical operational binding with itsimmediately superior DSA. If the DSA has a
non-specific hierarchical operational binding for this naming context, and this is the last naming context
of the non-specific hierarchical operational binding, then it shall terminate the non-specific hierarchical
operational binding with its immediately superior DSA. If the DOP is supported, the procedures
in clauses 24.3.3.2 and 25.3.3.2 shall be followed. Otherwise, local means are used to terminate the
RHOB.

7) If the removed naming context, entry, alias entry or subentry was within the unitofReplication Of
one or more shadowing agreements, then the shadow consumers shall be updated using the procedures of
the Directory information shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

If the removed subordinate or non-specific subordinate reference in the immediately superior DSA
(whose RHOB was terminated), was within the unitofReplication Of one or more shadowing
agreements, then the shadow consumers shall be updated using the procedures of the Directory
information shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

Check ACI

Fails > Return Return
4 Error
K

Note
Return shadow(s)
Is target g}leaf No =(UpdateError will need to
entry k notAllowedOnNonLeaf be updated
Remove the
entry or
entry/alias alias
Apply appropriate
Type of DSE to Remove procedures for DSE >
be removed? DSE type
subentry Remove the Schedule modification
cp subentry of RHOBs with >
subordinate DSAs
Non-specific) . .
hierarchical binding Lagt Naml{)ng Remove naming
ontext? context

exists?

Terminate NHOB
with superior DSA

\ 4

Terminate HOB X.518_F14
with supcrior DSA B

Figure 14 — DAP Remove Entry procedure

19.1.3 Madify Entry, Change Password and Administer Passwor d operations

1) The DSA shall check that the initiator has access rights, eg., as defined, in clause 11.3.5 of
Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

Rec. ITU-T X.518 (10/2012) 57

| SO/l EC 9594-4:2014 (E)

1914

58

2)

3

4)

The modifications to the entry or alias shall conform to the sub-schema. The modification to a DSE of
other types, including subentry, shall conform to the system schema. Otherwise, the DSA shall return an
appropriate updateError OF attributeError. After performing the modifications, if the target DSE
is of type subentry, continue at step 3); if the target DSE is of type entry Or alias, continue at
step 4); otherwise, appropriate knowledge management procedures for the other types of DSE are
executed. See Section 6.

The DSA shall, at an appropriate time, modify the operational bindings with all relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the administrative
point that the modified subentry is located below. Naming contexts whose context prefixes correspond to
autonomous administrative points are not relevant. 1f the DOP is supported, the procedure in clauses
24.3.2.1 and 25.3.2 shall be followed. Otherwise, local means are used.

If the modified entry, alias entry or subentry was within the unitofReplication Of One or more
shadowing agreements, then the shadow consumers shall be updated using the procedures of the
Directory information shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

Return
N Return
Error

Note
/alias) shadow(s)
Type of DSE to cntry Check 3
be modified? Sub-schema Update entry will need to
be updated
Check Return UpdateError
System-schema or AttributeError
Schedule modification
DSE of RHOBs with g
subordinate DSAs
Other
DSE type
P Take appropriate
action for DSE type
X.518 F15

Figure 15— DAP Modify Entry procedure

Modify DN operation

1)

2)

3

The DSA shall check that the initiator has sufficient access rights, e.g., as defined in clause 11.4.5 of
Rec. ITU-T X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

If the operation is either to move an entry or to both move an entry and change its Relative Distinguished
Name, go to step 3). If the operation is to only change the Relative Distinguished Name of an entry, go to
step 4).

The operation shall be performed according to the definition in clause 11.4.1 of Rec. ITU-T X.511 |
ISO/IEC 9594-3. If either the old superior, the new superior, the entry or any of its subordinates are not
in this DSA, or if the new superior has NSSRs, then the operation shall be rejected with updateError
with problem affectsMultipleDsas. The DSA shall ensure that no other entry with the new name
dready exists. Otherwise, it shall return an updateError with problem entryalreadyExists. The
DSA shall ensure that the new name of the entry conforms to the subschema. Otherwise, it shall return an

Rec. ITU-T X.518 (10/2012)

4)

5)

6)

7)

8)

9)

| SO/l EC 9594-4:2014 (E)

appropriate attributeError OF updateError. If none of these problems arise, then move the entry
(changing the RDN if required) and go to step 9).

The following text is applicable to changing the relative distinguished name of an entry, which may or
may not be aleaf entry, and which may or may not have one or more subordinates in one or more DSAS.
The DSE type of the entry to be renamed is checked. If subentry, continue at step 7). If cp, continue at
step 6). If entry Or alias, continue at step 5).

The DSA shall ensure that no other entry with the new name already exists. Otherwise, it shall return an
updateError With problem entryalreadyExists. If the superior DSE of the entry to be renamed is
of additional type nssr, the DSA shall follow the procedure defined in clause 19.1.5 (Modify Operations
and NSSRs) to ensure that the new name of the entry is unambiguous. The DSA shall ensure that the new
name of the entry conforms to the subschema. Otherwise, it shall return an appropriate
attributeError Of updateError. Rename the entry or alias entry. If the entry is a non-leaf entry and
has subordinates in other DSAS, continue at step 8), otherwise, continue at step 9).

The DSA shall ensure that the new name of the naming context conforms to the subschema; otherwise, it
shall return an appropriate attributeError Of updateError.

If the DSA has an HOB with the superior DSA, then the subordinate DSA shall attempt to modify the
HOB before responding to the Modify DN operation. The superior DSA shall ensure that no other entry
with the new name already exists, before accepting the modification. If the DOP is supported, the
procedure in clauses 24.3.2.2 shall be followed. If the DOP is not supported, it is alocal matter how the
HOB is modified and the new name is checked for uniqueness. If the HOB is successfully modified, and
the naming context has subordinate naming contexts in other DSAS, go to step 8); otherwise, go to step
9). If the HOB cannot be modified, return updateError with problem affectsMultipleDSas.

If the DSA has an NHOB for this naming context with the superior DSA, then how duplicate entries are
detected is outside the scope of this Directory Specification. Rename the entry. If the naming context has
subordinate naming contexts in other DSAS, go to step 8); otherwise, go to step 9).

The DSA shall ensure that the new name of the subentry conforms to the system schema. Otherwise, it
shall return an appropriate attributeError Of updateError. The DSA shall ensure that no other
subentry with the new name aready exists. Otherwise, it shall return an updateError with problem
entryAlreadyExists.

The DSA shall, at an appropriate time, modify the operational bindings of all relevant subordinate DSAS
with which it has hierarchical or non-specific hierarchical operational bindings. The relevant bindings are
those which are associated with all naming contexts that are subordinate to the entry being renamed, or
relevant naming contexts that are subordinate to the administrative point whose subentry was renamed.
Naming contexts whose context prefixes correspond to autonomous administrative points are not
relevant. If the DOP is supported, the procedures in clauses 24.3.2.1 and 25.3.2 shall be followed.
Otherwise, local means shall be used to update the RHOBS.

If the renamed naming context, entry or any of its subordinates, alias entry or subentry is within the
UnitOfReplication Of one or more shadowing agreements held by the DSA, then the shadow
consumers shall be updated using the procedures of the Directory information shadow service specified
in Rec. ITU-T X.525 | ISO/IEC 9594-9.

If the entry, alias entry or subentry was within the unitofReplication Of one or more shadowing
agreements held by the DSA, and the superior of the renamed entry, alias entry or subentry is not within
this unitofReplication, the shadow consumers shall be updated using the procedures of the
Directory shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9; in this case the shadowed
entry and all its subordinates shall be removed.

If the entry, alias entry or subentry was not within the tnitofReplication of one or more shadowing
agreements held by the DSA, and the renamed entry, alias entry or subentry is now within this
UnitOfReplication, the shadow consumers shall be updated using the procedures of the Directory
shadow service specified in Rec. ITU-T X.525 | ISO/IEC 9594-9; in this case the shadowed entry and all
its subordinates shall be shadowed.

If the renamed subordinate reference in the immediately superior DSA [whose HOB was modified in
step 6) above] iswithin the unitofReplication Of one or more of its shadowing agreements, then the
shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

If components of an RHOB with a subordinate DSA [as modified in step 8) above] are within the
UnitOfReplication Of one or more shadowing agreements held by the subordinate DSA, then the
shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in Rec. ITU-T X.525 | ISO/IEC 9594-9.

Rec. ITU-T X.518 (10/2012) 59

| SO/l EC 9594-4:2014 (E)

Enter Return Return
UpdateError Error

affectsMultipleDSAs 2
No
Notc
No New superior and shadow(s)
Modify RDN? the whole subtree are will need to
in the same DSA? be updated
Yes
Yes
OK .
Check Rename/Move entries .
ACI within subtree i
Check new .
name does not Already exists p Fail
exist A
Return No Ycs
OK Error
Yes
Is entry No Referenced No Modit;}_/ hiclr;i;clclii‘cal
L 9 by NSSR? operational binding
in this DSA? Y with subordinate DSA
Yes
Check Fail Return
ACI Error
OK
Type of DSE to Entry or alias Check OK Rename >
be renamed? sub-schema the DSE
Subentry Fail
Schedule modification
of RHOBs with
subordinate DSAs
Fail Return UpdateError
or AttributeError
OK _ Rename the X518 F16

Subentry

Figure 16 — DAP Modify DN procedure

19.1.5 Madify operations and non-specific subordinate references

If aDSA has NSSRs and does not know the complete set of names of the subordinates of an entry, to which either:
@) anaddeEntry operation has been directed, or
b) amodifyDN operation has been directed;

then the DSA may perform the following set of procedures prior to performing the operation.

1) If the chainingProhibited Service control option is set on the addEntry OF modifyDN Operation,
return updateError With problem affectsMultipleDSAs.

2) If the DSA isunwilling or unable to multi-chain outgoing requests, return serviceError with problem
unwillingToPerform Of unavailable, respectively.

60 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

3) The DSA shall multi-chain a chainedReadEntry oOperation to each master DSA in the set of
accessPointInformation Of the NSSR. (The DSA shall only use the master DSA from each
MasterAndShadowAccessPoints due to transient inconsistency caused by shadowing.)

a) The components of the Readargument shall be set asfollows:

— object component: to either the name of the entry to be added (in the case of addEntry), or
to the proposed name of an existing entry (in the case of modi £yDN);

— selection component: to the object class attribute.
b) The parameters of commonarguments shall be set asfollows:

— setthe dontDereferenceAliases Service control option;

— Set OperationProgress.nameResolutionPhase {0 completed.
C) Theparametersof ChainingArguments shall be set asfollows:

— setoriginator to the name of the requester;

— targetObject iSsomitted,;

— setoperationProgress.nameResolutionPhase {0 proceeding and
nextRDNToBeResolved to (number of RDNsin the object name) — 1;

— Set traceInformation t0 an empty sequence;
— St referenceType tOnonSpecificSubordinate,
— timeLimit, asappropriate according to the incoming request.
d) Other parameters, e.g., SecurityParameters, may be set as appropriate, e.g., by local policy.

4) The DSA waits for the complete set of responses. If any of the response is a ReadResult, then an error
shall be returned asin 6) below.

5) If al responses are serviceError With problem unableToProceed, oOperation evaluation may
proceed.

6) |If aReadResult isreturned, an updateError with problem entryaAlreadyExists shall be returned
for the original operation.

7) If any other error is returned to the readEntry request, a serviceError with problem
unwillingToPerform shall be returned.

The DSA receiving the chainedRead request shall give aresponse according to the presence or not of the entry, and its
access control policy.

19.1.6 LDAP Modify operations

This procedure shall be executed when an 1dapTransport request holding an LDAP update request has reached the
evaluation phase.

NOTE — An LDAP modify operation handled by the bound DSA is specified fully by the LDAP specifications and therefore
outside the scope of this Directory Specification,

An LDAP request carried by an ldapTransport request is unpacked and processed according to the LDAP
specifications. However, there are some additional considerations depending on the setting of the commomArguments
value and the ChainingArguments value.

a) If the target component of the SecurityParameters (See clause 7.10 of Rec. ITU-T X.511 |
ISO/IEC 9594-3) in the request is set to signed and aresult is to be returned, the result may be signed.
Otherwise, the result shall not be signed.

b) The DSA shall ensure that the requester has sufficient access according to the type of operation. If not,
return an LDAP response with resultCode equa t0 insufficientAccessRights.

Rec. ITU-T X.518 (10/2012) 61

| SO/l EC 9594-4:2014 (E)

19.2 Single entry interrogation procedure

The operations read, chainedRead, compare, and chainedCompare fall into the group of single entry interrogation
procedures. These procedures contain only the following three steps:

1) Check access control, as described in clause 9 of Rec. ITU-T X.511 | ISO/IEC 9594-3. If the operation is
disallowed, return the appropriate security error.

2) Perform the operation on the found DSE as described in clause 9 of Rec. ITU-T X.511 | ISO/IEC 9594-3.
3) Preparethereply, and return.

19.3 Multiple entry interrogation procedure

According to the type of interrogation operation (1ist Or search), the corresponding procedures defined in
clauses 19.3.1 and 19.3.2 shall be followed.

19.31 List procedures
This clause specifies the evaluation procedure specificto 1ist and chainedList Operations.

The List (1) procedure shall be followed when the List request's operationProgress.nameResolutionPhase
component is set to notStarted Or proceeding and when the DSA, after performing Name Resolution, finds that it
holds the base object. The List (I1) procedure shall be followed when the List request's nameResolutionPhase
component is set t0 completed.

19.3.1.1 Procedure parameters

19.3.1.1.1 Arguments

The arguments that are used by this procedure are:
— theListArgument;
— thetarget DSE €

— operationProgress Of the chainingArgument.

19.3.1.1.2 Results
If this procedure is successfully executed, it returns:
— aset of subordinatesof ein 1istInfo.subordinates;
— limitProblemindicated in partialoutcomeQualifier;

— aset of continuation references in SRcontinuationList.
19.3.1.2 Procedure definition

19.3.1.2.1 List (l) procedure
The List (1) procedure consists of the following steps as depicted in Figure 17:
1) If the service control subentry is Set, then go to step 5); otherwise, go to step 2).

2) |If DSE eis of type nssr, then add a Continuation Reference to SRcontinuationList with the following
components:

— targetObject shall be set to the DSE g
— aliasedRDNs absent;

— operationProgress With nameResolutionPhase Set tO completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType Set tO nonSpecificSubordinate;

— accessPoints Set t0 a Set Of accessPointInformation each derived from a value of the
nonSpecificKnowledge attribute of DSE e.

62 Rec. ITU-T X.518 (10/2012)

3

4)
5)

6)

| SO/l EC 9594-4:2014 (E)

For each DSE € immediately subordinate to DSE e execute the following steps:

a)

b)

0)

d)

Check the ACI in ¢ if available. If the ACI disallows listing the RDN of e, then skip this DSE. If
the ACI is not available (for example in the case of subordinate references and glue), then it is a
local policy whether to proceed.

Check all the DSE typesof €.

i) If e isof type subr, then there are two cases. In the first case, the subordinate entry's ACI and
object classis available locally, in which case, based on local policy and the ACI's permission,
add the RDN of € t0 1istInfo.subordinates With aliasEntry Set to TRUE if € isof type
sa, and fromEntry Set FALSE. The other case is when the ACI of the entry is not available in
€, in which case add a Continuation Reference to SRcontinuationList with the following
components:

— targetObject to the distinguished name of the DSE €;
— aliasedRDNs absent;

— operationProgress With nameResolutionPhase Set 10 completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType S&t {0 subordinate;
— accessPoints Set to the value contained in the specificknowledge attribute of DSE €.

ii) IftheDSE € isof type entry Or glue, then add the RDN of € t0 listInfo.subordinates
with aliasEntry Set to FALSE and fromEntry Set according to whether € isacopy.

NOTE — In the case that € is glue, it must have one or more subordinates which implies it cannot be
an diasin the master DSA. Also, any ACI relevant to the List operation is stored in this DSE, supplied
viathe shadowing protocol.

iii) If the DSE € is of type alias, then add the RDN of € t0 1istInfo.subordinates With
aliasEntry Set tO TRUE, and fromEntry Set according to whether € isa copy.

Check if time, size or administrative limit is exceeded. If so, set 1imitProblem accordingly in
partialOutcomeQualifier and return.

Continue from step 3) a) until all subordinate DSEs have been processed.

If all subordinate DSEs have been processed, return to the Operation Dispatcher.
For each subentry ¢ immediately subordinate to DSE e, execute the following steps:

a)

b)

Check the ACl in €. If the ACI disallows listing the RDN of €, then skip this DSE. Otherwise, add
the RDN of € 10 1istInfo.subordinates With aliasEntry Set t0 FALSE and fromEntry Set
according to whether € isacopy.

Check if time, size or administrative limit is exceeded. If so, set 1imitProblem accordingly in
partialOutcomeQualifier and return.

Return to the Operation Dispatcher.

Rec. ITU-T X.518 (10/2012) 63

| SO/l EC 9594-4:2014 (E)

Include all
subentry
RDNSs in result

Return
ListResult

Subentries
set?

Add a continuation reference

with all APIs contained in
nonSpecificKnowledge attribute
to SRcontinuationList

DSE type
of target =
nsst?

A 4

Process each DSE e' immediately subordinate to DSE e

All es
processed

next e'

setlimitProblem of
partialOutcomeQualifier

Time,
size, administrative
limit exceeded?

Add RDN of e' to listinfo. Set
aliasEntry and fromEntry »
according to DSE type

A4

Add RDN of e' to listinfo. Sct
aliasEntry and fromEntry
according to DSE type

Availability of ACI
and local policy

v

Add a continuation reference from
access point information in
specificKnowledge attribute

to SRcontinuationList

v

X.518_F17

Figure17 —List (1) procedure

19.3.1.2.2 List (1) procedure

The List (11) procedure consists of the following steps as depicted in Figure 18:
1) For each DSE ¢ immediately subordinate to DSE e, execute steps 1 a) to 1 d):
a) If ¢ isnot an entry or aias, continue with the next immediate subordinate.

b) Check ACI in €. If the operation is disalowed by the ACI, continue with the next immediate

subordinate of e.

¢) Add the RDN of DSE € to listInfo.subordinates, With the aliasEntry component of
listInfo.subordinates according to whether € isan alias, and the fromEntry component set
depending on whether € is a copy or not. Ignore those DSES of type shadow Of writableCopy, if

excludeShadows iS TRUE.

d) Check if time, size or administrative limit is exceeded. If so, set the limitProblem Of

partialOutcomeQualifier accordingly and return.
e) Continuefrom step 1) @) until al subordinate DSEs have been processed.

64 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

2) If dl subordinate DSEs have been processed, check if this subrequest came from a DAP or DSP. In case
this subrequest is submitted via a DAP, and the ListResult iS empty, then return a serviceError
with problem invalidReference t0 the Operation Dispatcher. Otherwise, the ListResult iS
returned.

NOTE — invalidReference iS Used as a security precaution in case the user does not have access to the

superior entry. If the superior's entry ACI is available (provided by the RHOB), then a null result may be
returned if allowed.

TistResult
Enter

Return
ServiceError
invalid reference

Process each DSE e' immediately subordinate to DSE e

All es
processed

A

set limitProblem of
partialOutcomeQualifier

Fails

Time,
size, administrative
limit exceeded?

Yes
X.518_F18

Add RDN of e' to listinfo. Set aliasEntry
and fromEntry according to DSE type

Figure18 —List (I1) procedure
19.3.2 Search procedures

This clause specifies the evaluation procedures specific t0 chainedLdapTransport requests with an embedded
LDAP searchRequest, search requests and chainedSearch requests.

The Search-rulecheck (1) procedure, when relevant, shal be followed when the search request's
operationProgress.nameResolutionPhase COMponent is set t0 notStarted OF proceeding and when the
DSA, after performing Name Resolution, finds that it holds the target object. If this procedure returns an error, return
with that error. If the Search-rule-check (1) procedure was not followed or was followed without returning an error, then
the Search (1) procedure shall be followed for a search Or chainedSearch request, while the LDAP Search (1)
procedure shall be followed for a chainedLdapTransport request.

The Search-rulecheck (I1) procedure, when relevant, shal be followed when the search request's
nameResolutionPhase COMponent is set to completed. If this procedure returns an error, return with that error. If
the Search-rule-check (1) procedure was not followed or was followed without returning an error, then the Search (11)
procedure shall be followed for a search Or chainedSearch request, while the LDAP Search (11) procedure shall be
followed for achainedrLdapTransport request.

NOTE —When nameResolutionPhase iS completed, the target object is expected to be the immediate superior of a context
prefix.

Rec. ITU-T X.518 (10/2012) 65

| SO/l EC 9594-4:2014 (E)

19.3.2.1 Procedure parameters

19.3.2.1.1 Arguments

The arguments that are used by this procedure are:

— thesearchArgument;
— thetarget DSE €

— operationProgress Of the ChainingArguments;

— exclusions Of the ChainingArguments (alist of RDNsto exclude from search);

- traceInformation Of the ChainingArguments;

— searchRuleId Of the ChainingArguments;

— chainedRelaxation Of the ChainingArguments; and

— relatedEntry Of the ChainingArguments.

19.3.2.1.2 Results

If this procedure is successfully executed, it returns:

— aset of matched entriesin searchResult.entryInformation,

— alreadySearched inChainingResults;

— dependent on conditions, a count inthe partialOutcomeQualifier.entryCount; and

— aset of continuation references in SRcontinuationList.

19.3.2.2 Procedure definition

19.3.2.2.1 Related Entry Argument procedure

This procedureis only relevant if the search request has a joinarguments component and ChainingArguments (if
any) does not have arelatedEntry COmponent.

1) If the search request is protected, generate a DSP request for each element of the joinArguments
component each including the original DAP request. The chainingArguments shall be asfollows:

if the incoming request has a chainingArguments With component originator, the value of this
component is copied into the originator component of generated requests; otherwise, the use of
this component is determined by local security policy.

NOTE — The receiving DSA may not be able to make use of the name given in this component, as it is from a
separate DIT.

the operationProgress component shall be omitted or set to default value;

the traceInformation, aliasDereferenced, aliasedRDNs, returnCrossRefs,
entryOnly, exclusions, nameResolutionOnMaster, searchRuleId, chainedRelaxation
components shall be omitted; and

the relatedEntry component is set to a value corresponding to the relative position of the
JoinArgument that applies to the DSA to which the request is forwarded; where the first
JoinArgument iS given the value 0, the next one the value 1, etc.

2) If the incoming search request is not protected, generate a DSP request for each element of the
jointArguments component where the searchArgument shall be generated as follows:

the baseobject component shall be copied from the joinBaseobject component of the
corresponding JoinArgument;

the subset component shall be copied from the joinsubset component of the corresponding
JoinArgument;

the filter component shal be copied from the filter component of the corresponding
JoinArgument; and

the remaining components shall be as in the original request, except that the joinArguments and
joinType components shall be omitted.

The chainingArguments shall be as above for protected requests, except that the relatedEntry
component shall be omitted.

66 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

3) Call the Operation Dispatcher for each request to be locally continued.

4) If the Operation Dispatcher returns a referral error, or busy, or unavailable errors then add (or make
and add) the continuation reference to partialOutcomeQualifier Of SearchResult, and return.

5) If the Operation Dispatcher returns other errors, discard it and return.
6) If the Operation Dispatcher returns a searchResult, then:
i) If theresultissigned, add it t0 uncorrelatedSearchInfo iN SearchResult.

ii) If the result is not signed, perform the join process as specified in Rec. ITU-T X.511 |
ISO/IEC 9594-3.

19.3.2.2.2 Search-rule check procedure (1)
This procedure is only relevant, if the DSA supports service-specific administration areas.

If the searchRuleId component is present in the chainingArguments, the operation is the result of an alias
dereferencing procedure during a previous evaluation phase. Then, if the target DSE is within a service-specific
administrative area having a different dmdaxd, or if the target DSE is outside a service-specific administrative area,
return with an unwillingToPerform Service error. Otherwise, select the appropriate search-rule based on information
in searchRuleId and return.
NOTE 1 — Service administration has been defined as a critical extension. When a DSA, which does not support service
administration, receives a chained search request with a searchRuleIrd component, it will return a serviceError with
problem unavailableCriticalExtension.

If the searchRuleld isnot present and the target DSE is outside a service-specific administrative area; or if it iswithin
such an area, but no subentries are associated with that area, return.

If the target DSE is within a service-specific administrative area and the traceInformation revealsthat the operation
has been in a previous evaluation phase, return with an unwillingToPerform SErvice error.

NOTE 2 —This is the situation where a search has started its initial evaluation outside a service-specific administrative area and
now attempts to spread into a different service-specific administrative area

Otherwise, the following procedure is followed:

1) Locate al search-rules associated with the target DSE, i.e., all search-rules in service subentries having
the target DSE within its subtree specifications (e.g., by use of the searchRulesSubentry Operational
attribute). These search-rules are in the following called candidate-search-rules. If there are no such
search-rules, generate a service error with problem requestedServiceNotAvailable, include into
the notification component of the CommonResults a searchServiceProblem attribute with the
vaue id-pr-unidentifiedOperation, and return.

2) If the serviceType and/or the userclass service controls are included in the search request, eliminate
al search-rules not complying with those service controls from the candidate-search-rules. If that leaves
the list empty, generate a service error with problem requestedserviceNotAvailable; include in
thenotification component of the CommonResults theinformation as detailed below and return:

— asearchServiceProblem atribute with thevalue id-pr-unidentifiedOperation;

— if the serviceType service control was included in the search request, a serviceType attribute
with the value of that service control.

3) Split the candidate-search-rule list up into four lists (some of which may be empty):

— aGoodPermittedSR list containing al the candidate-search-rules to which the requester has invoke
permission and with which the search request complies according to the search-validation procedure
specified in clause 14 of Rec. ITU-T X.511 | ISO/IEC 9594-3;

NOTE 3 —If thislist is not empty, thereis no reason to create the other lists.

— aMatchProblemSR list containing all the candidate search-rules to which the requester has invoke
permission and with which the search request complies except for matchingUse in one or more
request-attribute-profiles;

— aBadPermittedSR list containing all the candidate-search-rules to which the requester has invoke
permission but with which the search request does not comply;

— a DeniedSR list containing al the candidate-search-rules to which the requester does not have
invoke permission.

4) If the GoodPer mittedSR list contains one or more empty search-rule, select using alocal algorithm one
of these empty search-rules as the governing search-rule and return.

Rec. ITU-T X.518 (10/2012) 67

| SO/l EC 9594-4:2014 (E)

68

5)

6)

7)

8)

9)

10)

11)

14)

If the GoodPermittedSR list is not empty, discard all search-rules except those with the highest
userClass indication.

Select one of the remaining search-rule in the GoodPer mittedSR list as the governing-search-rule, using
alocal algorithm, and return.
NOTE 4 - If in the list above there are severa search-rules to select from, the implementation should log the incident
for administrative attention, as the search-rule definitions probably need re-working.

If the MatchProblemSR list is not empty, select one of its search-rules following an algorithm similar to
the one specified in 5) and 6) above; generate a service error and associated information as detailed in
clause 14.4 of Rec. ITU-T X.511 | ISO/IEC 9594-3, and then return.

If the DeniedSR list is empty, continue with 10); otherwise, discard any search-rule from the list with
which the search request does not comply and discard any empty search-rule. If the list is now empty,
continue with 10); otherwise, generate a sevice error with problem
requestedServiceNotAvailable; include in the notification component of the
CommonResults the subcomponents detailed below, and return:

— asearchServiceProblen attribute with the value id-pr-unavailableOperation;

— if al the remaining search-rules in the DeniedSR list have the same value in the serviceType
component, aserviceType attribute with that value.

If the BadPermittedSR is empty, generate a service error with problem
requestedServiceNotAvailable; include into the notification component of the
CommonResults the subcomponents detailed below and return:

— asearchServiceProblem attribute with thevalue id-pr-unidentifiedOperation.

For each numbered item in the procedure in clause 14.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3 taken in
order, check the search request against the remaining search-rules in BadPermittedSR, and then for
each item:

— if the search complies with the item for some search-rules, but not for all search-rules, discard the
search rules with which it does not comply;

— if the BadPermittedSR now only holds one search-rule, perform the procedure specified in
clause 14 of Rec. ITU-T X.511 | ISO/IEC 9594-3, and return;

— otherwise, the next item is checked.

If the BadPer mittedSR now only holds search-rules with which the search does not comply according to
the procedure so far, generate a service error with problem requestedServiceNotAvailable;
include in the notification component of the commonResults the subcomponents detailed below
and return:

— asearchServiceProblem attribute with thevalue id-pr-unidentifiedOperation;

— if dl the search-rules in BadPermittedSR specifies the same service-type, a serviceType
attribute with that service-type asvalue.

For each numbered item in clause 14.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3 taken in order, check the
search regquest against the remaining search-rules in BadPer mittedSR, and then for each item:

— if the search complies with the item for some search-rules, but not for all search-rules, discard the
search rules with which it does not comply;

— if the BadPermittedSR now only holds one search-rule, perform the procedure specified in
clause 14 of Rec. ITU-T X.511 | ISO/IEC 9594-3, and return;

— otherwise, the next item is checked.

For each numbered item in clause 14.3 of Rec. ITU-T X.511 | ISO/IEC 9594-3 taken in order, check the
search regquest against the remaining search-rules in BadPer mittedSR, and then for each item:

— if the search complies with the item for some search-rules, but not for all search-rules, discard the
search rules with which it does not comply;

— if the BadPermittedSR now only holds one search-rule, perform the procedure specified in
clause 14 of Rec. ITU-T X.511 | ISO/IEC 9594-3, and return;

— otherwise, the next item is checked.

Generate a service error with problem requestedServiceNotAvailable; include in the
notification component of the CommonResults the subcomponents detailed below and return:

— asearchServiceProblemn attribute with thevalue id-pr-unidentifiedOperation;

Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

— if al the search-rules in BadPermittedSR specifies the same service-type, a serviceType
attribute with that service-type asvalue.

19.3.2.2.3 Search-rule check procedure (I1)
This procedure is only relevant, if the DSA supports service-specific administrative areas.

If the searchRuleId is not present, and all the immediate subordinate entries (context prefixes) of the target DSE are
service-specific administrative points, then return with a serviceError with problem unwillingToPerform. If,
however, some of the subordinate entries are not service-specific administrative points, then select the corresponding
naming contexts for the search evaluation and return.

If the searchRulelId is present, each subordinate entry of the target DSE is checked to verify that it is within the same
service-specific administration area as the target DSE. If not, the corresponding naming context is excluded from the
search. If there are remaining naming contexts (including ones in the performing DSA) in which the search can
continue, select the search-rule identified in searchRuleId and return. If there are no remaining naming contexts in
which the search can continue, generate a serviceError With problem unwillingToPerform and return.

NOTE — The latter should not occur if knowledge information is consistent between the DSA and the DSA holding the superior
naming context.

19.3.2.2.4 Entry information selection

For matched entries and for entry selected as part of hierarchy selection, attribute information is selected as the
intersection of:

a) what is specified by the searchargument.selection, possible modified by the default context
specifications, and for matched entries also by the searchArgument.matchedvaluesOnly;

b) what isdetermined by the governing-search-rule (if any).
This entry information is added to the list of entries in sear chResult.entryl nformation.

Only add attributes whose size (type and all values) is not greater than the attributeSizeLimit.

19.3.2.2.5 Search (1) procedure

Thisis arecursive procedure that applies to a search request that starts at a given target entry e. It searches the target
entry e and then processes the DSEs immediately subordinate to e. The procedure is invoked by itself recursively in the
case that awhole subtree is to be searched. The procedure consists of the following steps as shown in Figure 19:

1) |If thetype of DSE eis of type cp (a DSE at a context prefix), check if any element of the exclusions
argument is a prefix of the DN of e.

a) |If so, return.
b) Else, call Check Suitahility.

i) If e is unsuitable, make a continuationReference as follows and add it to
SRContinuationList:

— targetObject Set to the distinguished name of the immediate superior of DSE €;

— operationProgress With nameResolutionPhase S&t t0 proceeding and
nextRDNtoBeResolved Set to the number of RDNsin e

— al other components of continuationReference are unchanged.

Then return.

NOTE 1 — This is the only place when a search subrequest is chained to a shadow's supplier. In
other words, the target object for such a chained subrequest is always a context prefix.

ii) Else, add the Distinguished Name of et0 alreadySearched in ChainingResults.
NOTE 2 — alreadySearched only contains context prefixes.

2) If eis of type alias and searchAliases iN SearchArgument IS TRUE, then call Search Alias
procedure and then return.

3) If subset iSoneLevel, then proceed to step 6).

NOTE 3 — The e cannot be subordinate incomplete at this point since the Check Suitability at the context prefix should
have ascertained that this cannot happen.

Rec. ITU-T X.518 (10/2012) 69

| SO/l EC 9594-4:2014 (E)

70

4)

5)

6)

7)

If subset iS baseObject, Or if entryonly iS TRUE then continue with this step; otherwise, go to

step 5).

If one of the following istrue:

a) eisof type subentry and the service control subentry iS Sef; or

b) eisnot of type subentry and the service control subentry isnot set, then do the following steps:
i) Check ACI. If the operation is disallowed, return.

i) Apply the filter argument specified in the searchArgument. filter to the DSE e. Ensure
that access to al attributes used in the filter is permitted as defined in Rec. ITU-T X.501 |
ISO/IEC 9594-2. If the filter matches, and if the entry is not excluded due to hierarchy
selection, add the attribute information as specified in clause 19.3.2.2.3.

iii) If the hierarchyselection Search control is included in the search request (possibly
modified by a search-rule specification), the entry is part of a hierarchical group having more
than one member, and more than the sel£ indication is set, then call the Hierarchy Selection (1)
procedure.

Then return.

If subset iSsubtree (and entryonly isnot TRUE), and in addition one of the following istrue:

a) eisof type subentry and the service control subentry iS Set; or

b) eisnot of type subentry and the service control subentry is not set, then do the following steps:
i) Check ACI. If the operation is disallowed, go to step 6).

ii) Apply the filter argument specified in the searchArgument.filter to the DSE e. Ensure
that access to all attributes used in the filter is permitted as defined in Rec. ITU-T X.501 |
ISO/IEC 9594-2. If the filter matches, and if the entry is not excluded due to hierarchy
selection, add the attribute information as specified in clause 19.3.2.2.3.

iii) If the hierarchyselection Search control is included in the search request (possibly
modified by a search-rule specification), the entry is part of a hierarchical group having more
than one member, and more than the se1£ indication is set, then call the Hierarchy Selection (1)
procedure.
iv) Proceed to step 6).
If e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following
components:
— targetObject to the distinguished name of the DSE €,
— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType SettOnssr;

— accessPoints Set {0 AccessPointInformation derived from the value(s) found in the
nonSpecificKnowledge atribute.

Process all DSEs €' that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. If e is within a service-specific administrative area, only those immediately
subordinate DSESs that are part of the same service-specific administrative area shall be processed. If eis
outside a service-specific administrative area, those immediately subordinate DSEs that are part of a
service-specific administrative area shall not be processed. During this loop, if the list of matched entries
in searchResult.entryInformation exceeds the size limit, or time or administrative limit is
exceeded then set 1imitProblem accordingly in partialOutcomeQualifier and return.

NOTE 4 — The check for size limit isaso implicitly applied every time searchrResult is updated.

a) Ifthe DSE ¢ isof type subr, isnot of type cp, and is not representing a subordinate entry that isa
service-specific administrative point, then add a Continuation Reference to SRcontinuationList with
the following components:

— targetObject to the distinguished name of the DSE €;
— aliasedRDNs absent;

Rec. ITU-T X.518 (10/2012)

| SO/IEC 9594-4:2014 (E)
— operationProgress With nameResolutionPhase Set t0 completed and
nextRDNtoBeResolved absent;
— rdnsResolved absent;
— referenceType Set O subr;

— accessPoints Set to the access point information contained in the specificknowledge
attribute of DSE €'.

NOTE5-If € is of both type cp and subr, a search subrequest can be generated potentialy from either the
subordinate reference or the supplier knowledge, but not both. This procedure uses the latter (supplier references
found in ep).

b) For al cases:
i) If subset iSoneLevel, Set entryOnly tO TRUE.
ii) Recursively execute Search (1) procedure for target DSE €.
8) If all subordinates have been processed, return to the Operation Dispatcher for further processing.

Rec. ITU-T X.518 (10/2012) 71

| SO/l EC 9594-4:2014 (E)

» Return

Add DN of'e to

Yes
Add continuation reference
DSE e Yes N Isein SRcontinuationList which
of type cp? " exclusions? points to supplicr
(including master)
No A

Entry unsuitable

TRUE?

Call Search

alreadySearched
Call Check Suitability
procedure for DSE e
e of type)
alias agd Yes | Entry suitable
searchAliases =

Alias procedure

e is not
subentry and
subentries
not set?

e of type
subentry and
subentries set?

Subset =
oneLevel?

Yes

v

No match .
¢ Match e against

filter

Match

Add selected
attributes of DSE >
to searchinfo subset =
baseObject or entry
Only = TRUE?
Add a continuation reference with
all access points contained in Yes DSE e is of
attribute nonSpecificKnowledge to M type nssr?
SRcontinuationList

v

| Set targetObject to DN of e

Yes

All es
processed

Process each DSE e' immediately subordinate to DSE e

Add a continuation reference
for access point information

in specificKnowledge attribute
to SReontinuationList

e' of type
subr

Time,
size, administrative
limit exceeded?

Set limitProblem of
partialOutcomeQualifier

Call Search Procedure(l) with e'
If subset = oneLevel, set
entryOnly to TRUE

Figure 19 — Search (I) procedure

72 Rec. ITU-T X.518 (10/2012)

X.518_F19

| SO/l EC 9594-4:2014 (E)

19.3.2.2.6 Search (I1) procedure

This procedure applies if a search request is processed that originated from a request decomposition at the DSA from
which the request was received. The procedure processes the DSEs below the target DSE e and calls the Search (1)
procedure for each object entry:

1) Process al DSEs e that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. When all subordinates have been processed, return to the Operation
Dispatcher for further processing.

2) If the DSE isnot of type cp then ignoreit. Return to step 1).
3) Call Check Suitability. If suitable go to step 4); otherwise, ignore it and return to step 1).

4) Execute the Search Procedure (1) for the DSE € as described in clause 19.3.2.2. If the DSE is of type
alias and the value of the subset parameter is set t0 oneLevel, Set
ChainingArguments.entryOnly t0 TRUE When calling Search (I) procedure. Return to step 1).

=)

All es
processed
Process each DSEs e' of type cp immediately subordinate to DSE e
Next e'
Call Check Suitability procedure entry v
unsuitable
. Return
entry suitable

One level
search?

dse type
= alias

entryOnly =
TRUE

Call Search procedure(l) with DSE e'

X.518_F20

Figure 20 — Search (I1) procedure

19.3.2.2.7 LDAP Search (1) procedure

Thisis arecursive procedure that applies to a chainedL dapTransport request with embedded LDAP SearchRequest that
starts at a given target entry e. It searches the target entry e and then processes the DSEs immediately subordinate to e.
The procedure is invoked by itself recursively in the case that a whole subtree is to be searched. The procedure consists
of the following steps as shown in Figure 19:

1) If thetype of DSE eisof type cp (a DSE at a context prefix), call Check Suitability.
a) If eisunsuitable, make acontinuationReference asfollows and add it to SRContinuationList:
— targetObject Set to the distinguished name of the immediate superior of DSE €;

— operationProgress With nameResolutionPhase Set tO0 proceeding and
nextRDNtoBeResolved Set to the number of RDNsin g;

— dl other components of continuationReference are unchanged.

Then return.

NOTE 1 — This is the only place when a search subrequest is chained to a shadow's supplier. In other words,
the target object for such a chained subrequest is always a context prefix.

b) Else, add the Distinguished Name of et0 alreadySearched in ChainingResults.
NOTE 2 — alreadySearched only contains context prefixes.

Rec. ITU-T X.518 (10/2012) 73

| SO/l EC 9594-4:2014 (E)

74

2) |If eisof type alias and the derefaliases component of the embedded LDAP searchRequest iS
either derefInsearching Or derefAlways, then call Search Alias procedure and then return.
3) If scope of the embedded LDAP searchRequest iSsingleLevel, then proceed to step 6).

NOTE 3 — The e cannot be subordinate incomplete at this point since the Check Suitability at the context prefix should
have ascertained that this cannot happen.

4) If scope iSbaseObject, Or if entryonly iSTRUE then continue with this step; otherwise, go to step 5).
If one of the following istrue:
a) eisof type subentry and the LDAP subentries control is included, is recognised and has the
value TRUE; or
b) eisnot of type subentry and the LDAP subentries control is absent, has the value FALSE or is
not recognised, then do the following steps:

NOTE 4 — As specified in clause 17.3.3.2, if a control value has the criticality component set to TRUE and is
not recognised, the request has been rejected.

i) Check ACI. If the operation is disallowed, return.

ii) Apply the filter argument specified in the £ilter component of the searchRequest to the
DSE e. Ensure that access to al attributes used in the filter is permitted as defined in
Rec. ITU-T X.501 | ISO/IEC 9594-2. If the filter matches, add the attribute information as
specified in clause 19.3.2.2.3.

Then return.
5) If scope iSwholeSubtree (and entryonly isnot TRUE), and in addition one of the following istrue:

a) eisof type subentry and the LDAP subentries control isincluded, is recognised and has the
value TRUE; or

b) eisnot of type subentry and the LDAP subentries control is absent, has the value FALSE or is
not recognised, then do the following steps:
i) Check ACI. If the operation is disallowed, go to step 6).
ii) Apply the filter argument specified in the £ilter component of the searchRequest to the
DSE e. Ensure that access to all attributes used in the filter is permitted as defined in

Rec. ITU-T X.501 | ISO/IEC 9594-2. If the filter matches, add the attribute information as
specified in clause 19.3.2.2.3.

iii) Proceed to step 6).
6) If e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following

components:

— targetObject to the distinguished name of the DSE €,

— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;

— referenceType SettOnssr;

— accessPoints Set 10 AccessPointInformation derived from the value(s) found in the
nonSpecificKnowledge atribute

7) Process al DSEs € that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. If e is within a service-specific administrative area, only those immediately
subordinate DSEs that are part of the same service-specific administrative area shall be processed. If eis
outside a service-specific administrative area, those immediately subordinate DSEs that are part of a
service-specific administrative area shall not be processed. During this loop, if the list of matched entries
in searchResult.entryInformation exceeds the size limit, or time or administrative limit is
exceeded then set 1imitProblem accordingly in partialOutcomeQualifier and return.

NOTE 4 — The check for size limit isalso implicitly applied every time searchResult is updated.

Rec. ITU-T X.518 (10/2012)

8)

| SO/l EC 9594-4:2014 (E)

a) If the DSE € is of type subr, is not of type cp, and is not representing a subordinate entry that is a
service-specific administrative point, then add a Continuation Reference to SRcontinuationList with
the following components:

— targetObject to the distinguished name of the DSE €;
— aliasedRDNs absent;

— operationProgress With nameResolutionPhase Set tO0O completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType Set O subr;

— accessPoints Set to the access point information contained in the specificknowledge
attribute of DSE €'.

NOTE 5—If € isof both type cp and subr, a search subrequest can be generated potentially from either
the subordinate reference or the supplier knowledge, but not both. This procedure uses the latter (supplier
references found in cp).

b) For all cases:
i) If subset iSoneLevel, Set entryonly tO TRUE.
i) Recursively execute Search (1) procedure for target DSE €'
If all subordinates have been processed, return to the Oper ation Dispatcher for further processing.

19.3.2.2.8 LDAP Search (I1) procedure

19.3.2.2.9 Search Aliasprocedure

This procedure is executed if a DSE of type alias has been encountered during the processing of a search request

(see Figure 21):

1) If subset iSbaseObject Or oneLevel, §O to step 4).

2) If aliasedEntryName iSa prefix of targetobject Or baseObject Or any of the previous values of
the targetObject in ChainingArguments.traceInformation, then the dliasis excluded from the
Search because this would cause a recursive search with duplicate results.

3) If targetObject Or baseObject Or any of the previous values of the targetobject in
ChainingArguments.traceInformation iS a prefix of aliasedEntryName, then no specific
processing of the dliasis required because the aliased subtree will be searched anyway.

NOTE — For both of the above cases, baseobject may not be aprefix of targetobject, dueto alias dereferencing.

4) If the search is performed within a service-specific administrative area and if the service-specific
administrative point is not a prefix of aliasedEntryName, then no specific processing of the dias is
required, as the aliased entry is outside the service-specific administrative area.

5) Build a DSP request with the targetobject set to the aliasedEntryName. |f subset iS oneLevel,
set entryonly to TRUE. Call the Operation Dispatcher for the request to be locally continued.

6) If the Operation Dispatcher returns a referral efror, or busy, or unavailable errors then add (or make
and add) the continuation reference to partialoutcomeQualifier Of SearchResult, and return.

7) If the Operation Dispatcher returns other errors, discard it and return.

8) If the Operation Dispatcher returns a searchResult, then;

i) Iftheresultissigned, add it to uncorrelatedSearchInfo iN SearchResult.
ii) If theresultisnot signed, add it t0 searchInfo in SearchResult.
And return.

Rec. ITU-T X.518 (10/2012) 75

| SO/l EC 9594-4:2014 (E)

aliasedObjectName is Yes
prefix of baseObject or

targetObject?

A 4
SR

Return]

baseObject or
targetObject is prefix
of aliasedObjectName?

Yes

h 4

Add continuationRcference

Build a local DSP request to partialOutcomeQualifier

Referral

Error
Call Operation Dispatcher P Discard

A 4

Result

A 4

Signed? Add to searchinfo

Add to uncorrelatedSearchinfo

X.518_F21

Figure 21 — Search Alias procedure

19.3.2.2.10 Hierarchy Selection procedure(l)

This procedure is executed if a member of a hierarchical group is encountered during the processing of a search
request specifying hierarchy selection.

a) If ahierarchy selection that is not supported by the DSA is present, then return with:

aserviceError With problem requestedserviceNotAvailable;

a searchServiceProblem notification attribute with the value id-pr-
unavailableHierarchySelect,

a serviceType hotification attribute having as value the serviceType component of the search-
rule; and

ahierarchySelectList notification attribute indicating the invalid selection(s).

b) Otherwise, add al the entries defined by the hierarchical selection as defined in clause 19.3.2.2.4. If that
results in no entry being added, i.e., the hierarchy selections only specify non-existing entries, then set
the emptyHierar chySelect global variable.

76 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

20 Continuation Reference procedures

The procedures in this clause are caled to process the list of continuation references (NRcontinuationList or
SRcontinuationL ist) created by other procedures.

The Continuation Reference procedures consist of the steps shown in Figures 24, 25 and 26. The first stage is to identify
sets of continuation references from the continuation list that have a common target object component. These have been
created from a set of subordinate or non-specific subordinate references associated with the same entry in the DIT.
Within each of these sets there may be continuation references which occur more than once. The sets should be scanned
and any duplicates found should be discarded.

These sets (each with a different targetobject component) may be processed independently, either sequentialy or in
paralel by the DSA, since there is no risk that the same results will be returned from any two sets. However, the
processing of each continuation reference within one set, and of each AccessPointInformation Within one
continuation reference, and of each access point within one AccessPointInformation, has to be controlled, or
duplicate results may occur, as described in clause 20.1.

NOTE — Some continuation references may be unusable if the AccessPoint contains a Presentationaddress Where all the
NSAP addresses have an unknown structure (see clause 12.3 of Rec. ITU-T X.519 | ISO/IEC 9594-5).

The procedure adopted in the APInfo procedure is to process one by one the set of access points contained in a single
AccessPointInformation. These all point to (copies of) the same naming context (or possibly a set of naming
contexts held in one DSA, in the case of NSSRs). If the first access point produces a result or a hard error, further
access points do not need to be processed. However, if the error is a soft error, i.e., a serviceError (With problem
busy, unavailable, unwillingToPerform, invalidReference, Or administrativeLimitExceeded), then
the DSA may choose, as alocal option, to process another access point from the set.

Processing of the AccessPointInformation valueswithin one set of continuation referencesis handled in auniform
way, irrespective of which continuation reference they originated from. (This is because two DSEs of type subr below
a single entry would produce two continuation references, each containing one AccessPointInformation value,
whereas one DSE of type nssr to the same two subordinates (assuming that they are held in different DSASs) would
produce one continuation reference containing a set of two AccessPointInformation vValues.)

The accessPointInformation values may be processed either sequentially or in parallel, as described in
clause 20.1. The parallel strategy is more likely to produce duplicate results. Duplicates shall always be discarded.

20.1 Chaining strategy in the presence of shadowing

In the presence of shadowing, a DSA may choose between different strategies when it has to multi-chain a request to
more than one DSA. This choice always occursif the DSA has to process more than one continuation reference with the
same targetObject. This situation can occur from multi-chaining caused by NSSR decomposition during Name
Resolution (as shown in Figure 22) or from request decomposition during the evaluation of a multiple object operation
(see Figure 23).

The goal of these strategies is to deal with the problem of duplicate results and duplicate processing when shadowed
information is used in multi-chaining of requests (caused by either NSSR or request decomposition). For example, in
Figure 22, DSA 1 multi-chains a request to both DSAs 2 and 3 because of the NSSR held in DSE B. If the use of
shadowed information is allowed, both DSAs 2 and 3 may apply the chained operation to both subtrees starting at X
andY.

Similarly, in Figure 23, DSA 1 multi-chains (as a result of request decomposition) to the two subordinate references
held in DSEs X and Y. Again, if the use of shadowed information is allowed, both DSAs 2 and 3 may apply the chained
operation to both subtrees startingat X and Y.

To deal with this problem of duplication, a DSA may choose one of the following strategies when multi-chaining to
multiple DSA requests with the same targetobiject.

Rec. ITU-T X.518 (10/2012) 77

| SO/l EC 9594-4:2014 (E)

nssrto DSA 2
and DSA 3
Chained Chained
Request with Request with
targetObject B targetObject B

Shadow

Shadow

X.518_F22

Chained Chained
Subrequest with Subrequest with
targetObject B targetObject B

Shadow B

Shadow

X.518_F23

Figure 23 — M uulti-chaining request decomposition using subordinate r efer ences

78 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

20.1.1 Master only strategy

A DSA may choose this strategy to prevent the usage of shadowed information when performing a parallel or sequential
multi-chaining caused by NSSR decomposition, or request decomposition during a Search or List evaluation. For this
strategy, during a Search or List operation evaluation, the excludeShadows component of the ChainingArguments
is set to TRUE. If NSSRs are encountered during Name Resolution, a DSA may Set nameResolveOnMaster {0 TRUE tO
ensure that only a single path is followed. nameResolveonMaster shal be set to TRUE if NSSRs are encountered and
the operation is one of the Directory modification operations. In either case, only the DSA(s) that hold the master entry
(or entries) relevant to the operation shall perform the operation. This master only strategy can be used during both
parallel, aswell as sequential multi-chaining.

NOTE — Setting nameResolveOnMaster t0 TRUE eliminates the possibility of multiple paths during name resolution by:

1) ignoring shadow entries; and

2) by ensuring that only one DSA may proceed with name resolution in situations where a complex DIT distribution would

otherwise permit more than one to proceed.

Thisis achieved by allowing only the DSA holding the master entry corresponding to the first nextRDNToBeResolved RDNS of
the target object name to continue with name resolution. Any other DSAs will not be able to proceed even though they may hold
master entries which match more of the target object name.

20.1.2 Paralld strategy

Using this strategy, a DSA sends out al chained requests by parallel multi-chaining. This strategy may be used during
Search or List evaluation, and name resolution of the NSSRs. This will allow the use of shadowed information for
processing of the chained requests, but may result in duplicate executions and duplicate results for the operation. If a
DSA sdlectsthis strategy, it shall remove duplicate results from the operation result that it returns.

Because the removal of duplicate results is not possible if a signed result has been requested, a DSA shall not choose
this strategy if signed results are requested during Search evaluation, unless excludesShadows iSalso Set.

20.1.3 Sequential strategy

This strategy avoids duplicate results by using sequential multi-chaining to process the chained (sub)requests of a
Search decomposition or of an NSSR decomposition. Each chained request is processed one after the other.

In the case of NSSR decomposition, if aresult or ahard error is returned to a request, further requests do not need to be
chained. If a soft error is returned, a further request may be chained, or the soft error returned to the requester,
depending upon local policy.

In the case of Search evaluation, the exclusions component of the chainingArguments is Set to the set of RDNs
that have aready been processed. This is done by incorporating the €elements in
ChainingResults.alreadySearched t0 the exclusions argument of the next chained request. This is the only
strategy that completely avoids duplication during Search evaluation.

A sequential strategy is not defined for List evaluation (although sequential multi-chaining may be used), since a
superior DSA has no way of excluding specific subordinates from being returned in further List subrequests (note that
excludeshadows does not exclude specific subordinates, but rather is a coarse way of excluding all shadow copies).

20.2 I ssuing chained subrequeststo aremote DSA or L DAP server

Prior to issuing a subrequest, a DSA has to execute a dsaBind operation when the DSA has to establish an association
to the remote DSA. Management of associations is outside the scope of the Directory Specifications. An association to
another DSA is considered unavailable if the association cannot be established or the DSA for local reasons decides not
to establish one. In this case, the dsaBind has failed. It is a local decision when to stop trying to establish an
association and declare an association as unavailable.

When a DSA tries dsaBind to another DSA and receives a directoryBindError, the issuing of the subrequest
failed.

Rec. ITU-T X.518 (10/2012) 79

| SO/l EC 9594-4:2014 (E)

20.3 Procedures parameters

20.3.1 Arguments

These procedures make use of the following arguments:

— thelist of continuation references to process in NRcontinuationList (for the Name Resolution Continuation
Reference procedure), and SRcontinuationList (for the List Continuation Reference and Search
Continuation Reference procedures, respectively);

— the commonArguments oOf the operation argument;

— thechainingArguments.

20.3.2 Resaults

These procedures create the following results:;
— alist of received results/errors of issued chained requests if chaining has been selected;
— anupdated list of unprocessed continuation referencesin continuationList.

20.3.3 Errors

These procedures can return one of the following errors:

— aserviceError With problem outofscope in the case that a referral would have been created which
isnot within scopeOfReferral;

— aserviceError With problem ditError in the case that an invalid knowledge reference has been
detected;

— anameError With problem nosuchobject in the case that all subrequests from NSSR decomposition
returned unableToProceed;

— any other error that is returned by a chained subrequest;

— areferral in the case that chaining was not selected and operationProgress .nameResolutionPhase
issettonotStarted Of proceeding.

20.4 Definition of the procedures

If operationProgress.nameResolutionPhase iS S&f t0 notStarted Of proceeding, the procedure in
clause 20.4.1 (Name Resolution Continuation Reference procedure) shall be followed. The multiple entry interrogation
operations List and Search respectively call the proceduresin clauses 20.4.2 and 20.4.3.

20.4.1 NameResolution Continuation Reference procedure

The Name Resolution Continuation Reference procedure consists of the steps as shown in Figure 24. The basic principle
of this procedure is to sequentially process the set of continuation references created during Name Resolution. The
following steps shall be executed for each continuation reference C contained in NRcontinuationList in a selected order
until all references have been processed or an error or result has been returned. If all references have been processed,
return to the Operation Dispatcher to continue with the Results Merging procedure to process the received result or
referral.

1) Check whether chainingProhibited isset. If it isset the DSA isnot allowed to chain, then

— if the request is not an ldapTransport request, then according to local policy, either a
serviceError With problem chainingRequired OF a referral shal be returned to the
Operation Dispatcher; or

— if the request is an ldapTransport request, then an LDAP referral shall be included in the
ldapTransport result.

2) If chainingProhibited iSnot set, then check if local policy alows chaining. If chaining is not allowed,
then

— if therequest isnot an 1dapTransport request, return areferral; Or

— if the request is an ldapTransport request, then an LDAP referral shall be included in the
ldapTransport result.

If local policy allows chaining, then continue with the next step.

80 Rec. ITU-T X.518 (10/2012)

3

4)

5)

6)

7)

| SO/l EC 9594-4:2014 (E)

Process each of the Continuation References of the list of Continuation References found in
NRcontinuationList. If there are no more unprocessed Continuation References, then return with
serviceError.

Process the next Continuation Reference from NRcontinuationList. If it is an NSSR, then continue at
step 5). If it is not an NSSR, then call the APInfo procedure to process it. Distinguish between the
possible returns of the APInfo procedure:

— If the APInfo procedure returns a null result, continue at step 3) with processing the next
Continuation Reference.

— If the APInfo procedure returns an error, referral or result, then return it.

In this case, the Continuation Reference is of type NSSR and the DSA has the choice of doing sequential
or parald chaining, depending on the local choice of strategy. If the NSSR is to be processed
sequentialy, then continue at step 6). If it is to be processed in paralel, then for each of the
AccessPointInformation (API) in the NSSR, the APInfo procedure is called so that they are
processed in parallel. Wait for all the API to be processed, i.e., wait for al the calls to the APInfo
procedure to return. Check all the results received from the call to the APInfo procedure in the following
order:

— If dl the cadls return a serviceError Wwith problem wunableToProceed and
partialNameResolution iSFALSE, then return nameError.

— If dl the cdls return a serviceError Wwith problem unableToProceed and
partialNameResolution IS TRUE, then in the result set partialName tO TRUE,
nameResolutionPhase t0 completed, Set entry suitable (thiswill be for the lastEntryFound), and
go to the appropriate operation evaluation.

— If one or moreresults are received, then discard possible duplicates and return the result.
— Ifanerror isreceived that isnot a serviceError (€.0., anameError), thenreturn anerror.

— Otherwise return a referral Or serviceError to the Operation Dispatcher, according to local
choice.

Choose the next unprocessed API from the set of APIs in the NSSR and continue at step 7). If al the
APIs have been processed, then check if all the calls to the APInfo procedure returned a serviceError
with problem unableToProceed.

— If they did and partialNameResolution iS FALSE, then the entry cannot be found and a
nameError is returned. If they did and partialnameResolution iS TRUE, then in the result set
partialName {0 TRUE, nameResolutionPhase 10 completed, Set entry suitable (this will be for
the lastEntryFound), and go to the appropriate operation evaluation. If they did not, then according
to local choice, return areferral Of serviceError.

Call the APInfo procedure. Distinguish between the possible results from the call to APInfo procedure:

— If a serviceError with problem unableToProceed iS received, try another access point.
Continue at step 6).

— If a serviceError with problem busy, unavailable, unwillingToPerform Of
invalidReference iSreceived, then the indicated problem may be of atransient nature and it isa
local choice to try and chain the request on to another DSA. If it is chosen to try another DSA, then
continue at step 6); otherwise, return areferral Of serviceError, according to local choice.

— If an error other than serviceError with problem busy, unavailable, unwillingToPerform,
invalidReference Of unableToProceed iS received, that error should be returned to the
Operation Dispatcher. If the serviceError iS invalidReference, this shall be converted into
ditError before being returned to the requester.

— If aresult or referral isreceived, return it to the Operation Dispatcher.

Rec. ITU-T X.518 (10/2012) 81

| SO/l EC 9594-4:2014 (E)

Return
ServiceError
chainingRequired

chainingProhibited
set?

Return
Referral

Local DSA
policy allows
chaining?

Return
ServiceError

. . . . R All Cs
Process cach continuation reference C from NRcontinuationList |—> processed

null
Call APInfo procedure
referral
> Return
result d result

Parallel

Strategy? Call APInfo procedure for

each AccessPointInformation

sequential

Process each accessPointInformation APT

referral Return
Referral

result

AlLAPI Next APT
S
processed

All
unable ToProceed
Service Errors?

Call APInfo procedure

Unable
to
proceed

Return
result

busy,
unavailable,
unwilling,
invalid ref

One or
more
results?

Discard
duplicates

Try
another?

Yes

All clﬁgggel' non-service
" error?
unable Return
ToProceed Referral
Service or Service

Errors? Error

——)

Yes

A

partialName-
Resolution TRUE?

Return

partialNameResolution = TRUE in result,
NameError

nameResolutionPhase = completed,
set entry suitable

Go to
appropriate
operation evaluation

X.518_F24

Figure 24 — Name Resolution Continuation Reference procedure

82 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

20.4.2 List Continuation Reference procedure

The List Continuation Reference procedure consists of the steps shown in Figure 25. This procedure is invoked when a
List request cannot be satisfied in the loca DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. All these continuation references (CR) have the same targetoObject.
Those CRs with referenceType nss have one or more AccessPointInformation vaues (APIS), whereas other
type CRs have only one API in them. Each of these APIsis extracted and considered for chaining or referral.

Yes

Limit
exceeded?

chainingProhibited

All APIs processed

Extract all APIs from the continuation references, and process each using either
parallel or sequential strategy

Next API

error or
Call APInfo procedure o A‘!d a continuation
reference based on

this API, and add it to
partialOutcomeQualifier.
unexplored

referral result

A 4

| Implausible I

Result
signed

Add result to listInfo

Add result to
uncorrelatedListInfo

X.518_F25

Figure 25— List Continuation Reference procedure

The following steps shall be executed:

1)

2)

3

If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to
continue with the Results Merging procedure.

If the chainingProhibited flag in CommonArguments.serviceControls iS Set or the DSA
decides not to do any chaining because of its local operational policy, then the DSA shall directly return
to the Operation Dispatcher to continue with the Results Merging procedure.

Create a set of AccessPointInformation vaues from the accessPoints component of every
continuation references in the SRcontinuationL ist.

Use either aparallel or sequential strategy to process each API as follows:
i) Call the APInfo procedure with the next API in the set.

ii) If a result is returned then add it to 1listInfo if it is not signed, or add it to
uncorrelatedListInfo if itissigned.

Rec. ITU-T X.518 (10/2012) 83

| SO/l EC 9594-4:2014 (E)

iii) If the return is an error or null, it means that APInfo has already tried all access points in the API
without success. Based on local operational and security policy, either ignore and proceed to the
next API, or add a continuation reference based on this API to the partialoutcomeQualifier.

NOTE -1t is not plausible to get a referral back from APInfo. Any "referral” should come in the form of

unexplored iNpartialOutcomeQualifier.

4) When all APIsare processed, return to the Operation Dispatcher.

20.4.3 Search Continuation Reference procedure

The Search Continuation Reference procedure consists of the steps shown in Figure 26. This procedure is invoked when
a Search request cannot be satisfied in the loca DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. The procedure is very similar to the List Continuation Reference procedure.
The differenceis that, in this case, the continuation referencesin SRcontinuationList may have different targetobject
values. Thus, the continuation references are sorted into sets of continuation references with the same targetobject.
Also, the use of exclusions in chaining arguments and of alreadySearched in chaining resultsis defined, asthisis
an important strategy for search. The use of exclusions and alreadySearched is applied to processing each set of
continuation references with the same targetobject.

84 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

Limit
exceeded?

ChainingProhibited Yes

set?

Do not chain

Local policy?

Chain

Sort continuation references into
sets that have the same target object

l All sets

processed

Process each target objet set (either sequentially or in parallel)

Next set

Compare each element of alreadySearched with target object, and add matched elements to exclusions

I

Extract all APls from the set of continuation references

4|A“ APls Process each accessPointInformation APT I: Add to uncorrelated-
processed | SearchInfo
Next APL
Add to searchInfo
No
result parallel Ye
Srror Call APInfo procedure - S
null
referral
Add to y tial
partialOutcomeQualifier. sequentia
unexplored Implausible
Updatc cxclusions for Merge alrcadyScarched
next APL, using incoming > of incoming result into
alreadySearched ChainingResults.alreadySearched
X.518 F26

Figure 26 — Search Continuation Reference procedure

The following steps shall be executed:

1)

2)

3

If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to
continue with the Results Mer ging procedure.

If the chainingProhibited flag in CommonArguments.serviceControls iS St or the DSA
decides not to do any chaining because of its local operational policy, then the DSA shall directly return
to the Operation Dispatcher to continue with the Results Merging procedure.

Sort the continuation references in SRcontinuationList into sets that have the same targetObject.
Continuation references of type ditBridge are not included in such sets, but each such continuation
reference constitutes a set of its own. Within each set, remove any duplicates.

Rec. ITU-T X.518 (10/2012) 85

| SO/l EC 9594-4:2014 (E)

4)

5)

For each subset of continuation references, create a set of AccessPointInformation vValues from the
accessPoints component of every continuation reference in the subset, and choose either the
sequential or parallel strategy for further processing. If the parallel strategy is chosen, then skip the steps
below that are indicated only applicable to the sequentia strategy.

a) If the sequential strategy is chosen, maintain a local variable localExclusions for each set of
continuation references that have the same targetObject. Initially, localExclusions is set to the
exclusions of the incoming chaining request (if it exists), and all locally searched subtrees directly
under targetObject.

b) If the sequential strategy is used, compare the targetObject to al the elements of localExclusions,
and remove those elements which do not contain targetObject as a prefix. These are the relevant
exclusions for the current target object.

¢) Extract al the APIsfrom all the continuation references of the current target object's set.
d) Loop through each API. For each API:
i) Cadl APInfo.

ii) If aresult is returned, then add the result to searchinfo if it is not signed, or add it to
uncorrelatedSearchInfo if it is signed. If the sequential strategy is used, update
localExclusions using alreadySearched in the incoming reply, and also merge the
alreadySearched in the incoming reply to this DSA's
ChainingResults.alreadySearched. Then proceed to the next API.

iii) 1f anerror or null isreturned, it means that APInfo has aready tried all access pointsin the API
without success. Based on the local operational and security policy, either ignore and proceed
to the next API, or add a continuation reference based on this APl to the
partialOutcomeQualifier.

NOTE — It isnot plausible to get areferral back from APInfo. Any "referral” should comein the form of
unexplored INpartialOutcomeQualifier.
€) When all APIs are processed, proceed to the next set of continuation references with the same
targetObject.

When all the continuation references are processed, return to the Operation Dispatcher.

20.4.4 APInfo procedure

This procedure is called to process an AccessPointInformation, Which contains one or more access points
(see Figure 27). They are processed one by one until either a result or error is returned. If the error is a service error
such that trying another access point may succeed, then additional access points are tried as long as local operational
policy permits:

86

1)

2)

3

4)

Perform loop detection. If aloop is detected, then:

— if the request is not an ldapTransport request, return serviceError With problem
loopDetected,; Or

— if therequest is an 1dapTransport request, an 1dapTransport result with an embedded LDAP
result with resultCode Set t0 1oopDetected.

Otherwise, continue at step 2).

Process each of the access points from the access point information. If al have been processed, return a
null result. If there is any access point to process, continue at step 3).

Check whether local policy alows chaining to this access point. This check should take into account the
settings of the service controls and chaining arguments (e.0., chainingProhibited,
preferChaining, Whether the access point is within the localscope Or not, excludeShadows). If
the local policy or the setting of the respective service controls do not alow the use of this particular
access point, then ignore the access point and continue at step 2). If the access point can be used,
continue at step 4).

If local policy selected the master only strategy, then set the chaining argument excludeShadows tO
TRUE.

If nameResolutionPhase iSNOt completed and the strategy is to continue name resolution on master
entries, then set nameResolveOnMaster tO TRUE.

The chaining argument nameResolveOnMaster shall be set to TRUE if either of the following is true:

Rec. ITU-T X.518 (10/2012)

5)

6)

7)

8)

| SO/l EC 9594-4:2014 (E)

— in the incoming chaining argument nameResolutionPhase IS proceeding and

nameResolveOnMaster iS TRUE; OF

— the operation is one of the modification operations, the referenceType of the chaining request to be

issued isNSSR, and a parallel strategy is used.

NOTE — This method of using nameResolveOnMaster iS to prevent modification operations being applied
multiple times due to the presence of NSSR.

Build a chained request and try to issueiit:

a) Perform loop avoidance by checking if an item with the same targetobject and
operationProgress OCCUrSiN traceInformation Of thereceived chainingArguments. If the
resulting request [(asdescribed in step 5), ¢)] would result in a loop, then the DSA shall either
return a serviceError With problem loopbetected to the requesting DUA/LDAP client/DSA or
ignore the access point and try the next access point by continuing at step 2).

b) If the request or subrequest to be chained is the result of executing areferral, then an extra check for
loop avoidance is required. Check if an item with the same targetObject, operationProgress
and target DSA occurs in referralRequests. If so, then take the action specified in a). If not, then add
anew TraceItem tO referralRequests with the following components:

— targetObject and operationProgress Set to the value of the chained request/subrequest;
— dsa set to the name of the DSA to which the request/subrequest is to be chained.

C) If the AccessPointInformation point to an LDAP server, then continue at step 9). Otherwise,
after a successful Bind, the DSA shall issue a chained operation of the same operation type as the
operation that is processed with the following parameters:

— the operation argument within the chained operation is set as for the operation argument
received,

— ChainingArguments.originator Set asreceived;

— ChainingArguments.targetObject Set t0 the targetobject of the continuation
reference;

— ChainingArguments.operationProgress Set t0 the value of operationProgress of the
continuation reference;

— ChainingArguments.traceInformation Set to trace information as updated by the
Request Validation procedure if the continuation reference is not of type ditBridge,
otherwise, the component shall be absent;

— ChainingArguments.aliasDereferenced t0 the updated value of the locally updated
aliasDer eferenced;

— ChainingArguments.returnCrossRefs to alocal choice;

— ChainingArguments.referenceType {0 the value of referenceType Of the continuation
reference;

— ChainingArguments.timeLimit t0 the value of thereceived timeLimit;

— chainingArguments.exclusions iS Set to either the relevant exclusions for the current
target object if called by the Search Continuation Reference procedure, or absent if the APInfo
procedure was called by the Name Resolution or the List Continuation procedures;

— SecurityParameters Set to the value of thereceived securityParameters.

If the request could not be issued successfully, then continue at step 7). If it could be issued successfully,
continue at step 8).

It isaloca choice whether or not to continue. If the DSA chooses to continue, then the error is ignored
and the next access point will be tried. Continue at step 2). If the DSA decides not to try another access
point, then it is a choice of local policy whether to return arespective referral Or a serviceError tO
the caller of the procedure.

If the request could be issued successfully, then the DSA shall wait for the reply and processit:
a) If aresult isreceived, theresult isreturned to the caller of the procedure.

b) If a serviceError with problem busy, unavailable, unwillingToPerform Of
invalidReference iSreceived, continue at step 7).

¢) |If referral isreceived and returnToDUA is Set t0 TRUE, then the receiving DSA shall not act on
the Referral, but shall return the Referral to the requester.

Rec. ITU-T X.518 (10/2012) 87

| SO/l EC 9594-4:2014 (E)

88

d)

e)

If a referral is received and returnToDUA iS S&t t0 FALSE, then the same local policy
considerations apply as in step 3) (taking into account service controls, chaining arguments,
chaining strategy, etc.). If it is decided not to dereference the referral, then return the referral
to the caller. If it is decided to dereference the referral, then empty the NRcontinuationList, place
the Continuation Reference as received in the Referral in NRcontinuationList and call the Name
Resolution Continuation Reference procedure. This may produce a result, referral,
serviceError Or another error. Whatever is received from the call of the Name Resolution
Continuation Reference procedure shall be given back to the caller.

If any other error occurs, it shall be given back to the caller.

9) If the incoming request is an 1dapTransport request, the embedded LDAP request shall be unpacked
and forwarded unchanged to the LDAP server with the following exceptions:

a)

b)

The messagelD component shall be replaced with a value valid for the LDAP connection in
guestion.

If the incoming request has the entryonly component set to TRUE in the ChainingArguments Or
if the operation is a Search operation with the scope component set to singleLevel and an dias
entry within this DSA was encountered as an immediate subordinate to the baseobject, then the
scope component shall be set to baseobject.

10) If the incoming request has originated from a DUA, the DAP request shall be converted to a
corresponding LDAP request as specified in clause 20.6 and then forwarded to the LDAP server.

Rec. ITU-T X.518 (10/2012)

Return
ServiceError
loopDetected

Perform loop
avoidance

| SO/l EC 9594-4:2014 (E)

Return
null

Process each access point AP from AccessPointInformation

|7

All APs
Next AP processed
Local
policy?
Set excludeShadows or
nameResolveOnMaster
as appropriate
Issue DSP
chained request
Yes
Successfully No . TNNO
issued? W
referral Local
] policy?
busy, unavailable,
unwillingginvalidRef
Do not use
result referral e ToDUA Local referral et
true? policy? referral

y'y Return

ServiceError

v Use referral

Return
result
= Empty NRcontinuationList. Replace
with continuation reference from referral
Return
error
i referral .
Service
; A . error
result Call Name Resolution Continuation Reference procedure
X.518 _F27
Figure 27 — APInfo procedure
20.5 Abandon procedures

20.5.1 DAP/DSP Abandon procedure

This procedure is invoked if an abandon Or chainedAbandon request is received either to be handled locally or

chained to another DSA.. It consists of the following steps as shown in Figure 28:

1) When an abandon Or chainedAbandon request is received, which references an unknown operation, an
abandonFailed With problem nosuchoperation shall be returned to the requester.

2) If therequest to be abandoned has already been replied to, and the DSA has retained information to know
SO, an abandonError With problem tooLate may be returned to the requester.

Rec. ITU-T X.518 (10/2012) 89

| SO/l EC 9594-4:2014 (E)

3

4)

If the Abandon request is not valid, i.e., asks to abandon a request that is not an interrogation request, an
abandonFailed With problem cannotabandon shall be returned to the requester.

If aDSA has outstanding chained (sub)requests when receiving a valid Abandon request for the original
reguest, and the DSA decides to attempt abandoning, it may send Abandon requests for none, some or all
outstanding (sub)requests for the operation in question, and then wait for the replies to Abandon request
and the outstanding (sub)requests. At any time during this operation, the DSA may send an Abandon
result and an abandonFailed to the requester and then discard replies to the issued Abandon requests
and the outstanding (sub)requests as they arrive.

If the DSA decides not to send replies to the requester until there are no more outstanding (sub)requests,
it may optionally send an abandonedFailed error to the requester if al the issued abandon requests
were replied to with abandonedFailed errorsand if no local abandon operation has been performed.

If an AbandonedFailed error is returned to the requester, the origina request shall be treated as if the
Abandon request had never been received.

Enter J

Find Request AbandonError
with invokelD "noSuchOperation"

Reply already ’ AbandonError
sent? "tooLate"

Abandon AbandonError
valid? "cannotAbandon"

Send an Abandon
request for each
oustanding subrequest.
Discard any local result

Terminate further processing of
this request within operation
dispatcher

serviceError
"abandoned"

X.518_F28

Figure 28 — DAP/DSP Abandon procedure

20.5.2 LDAP Abandon procedure

When an LDAP abandon request is to be handled by a DSA functioning as both the boundary DSA for the LDAP client
issuing the request and the LDAP requester against an LDAP server serving the request, it shall forward the
AbandonRequest to the LDAP server in question.

When an LDAP abandon request received by a boundary DSA isto be forwarded to or beyond an adjacent DSA, it shall
be wrapped into an 1dapTransport request and chained to the DSA in question.

A DSA acting as LDAP requester receiving a DSP request with an embedded LDAP abandonRequest, shall forward
the request unchanged to the LDAP server, except that the MessageID has to be changed to have alegal vaue for the
LDAP application-association in question.

90

Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

20.6 DAP request to LDAP request procedure

20.6.1 Introduction

The DAP request to LDAP request procedure is used when a DAP request that is not an 1dapTransport request isto
be converted to an LDAP request. This happens if the name resolution is not completed by the LDAP reguester and the
name resolution is to be continued in an LDAP server. If the name resolution is completed by the LDAP requester for
an addEntry request, but the new entry is to be added to an LDAP server (see clause 20.6.8), then this procedure also

applies.

20.6.2 General on conversion

a) If the DSA des not support a critical extension or if it is not able to reflect a critical extension in the
LDAP protocol, it shall return a serviceError with problem unavailableCriticalExtension.

b) Attribute values of certain attributes requires a binary encoding (see IETF RFC 4522).

C) The MessageID of an LDAP request shall set as required on the LDAP connection. The DSA shall
maintain information about the relationship between this MessagelD and the DAP InvokeId in the
incoming DAP request until the result of the LDAP request is returned or a time-out has occurred
(seeclause 20.7.1).

d) An attribute received on the DAP shall be converted to an LDAP attribute. The LDAP information
needed for the conversion is provided as part of the of the attribute type specification for the type of
attribute. If such information or similar information is not available, the conversion is not possible. The
behaviour in this situation is dependent on the type of operation to be converted.

€) An attribute type specification received on the DAP shall be converted to an LDAP counterpart with
syntax OID, as described in clause 9.2.25 of Rec. ITU-T X.520 | ISO/IEC 9594-6 and which may either
be an object identifier in dot-decimal format or a descriptor. The LDAP information needed for the
conversion is provided as part of the attribute type specification for the attribute type. If such information
or similar information is not available, the conversion is not possible. The behaviour in this situation is
dependent on the type of operation to be converted.

f) AnEntryInfomationSelection (Seeclause 7.6 of Rec. ITU-T X.511 | ISO/IEC 9594-3) received in a
request on the DAP shal be converted to LDAP AttributeSelection and typesonly LDAP
SearchRequest components as follows:

— The typesonly component of the LDAP searchRequest shall be set to TRUE if the infoTypes
component of EntryInfomationSelection Of the DAPrequestissetto attributeTypesOnly.
Otherwiseg, it shall be set to FALSE.

- If the EntryInformationSelection.contextSelection and/or
EntryInformationSelection.returnContext are present and are defined as non-critical, they
shall beignored. Otherwise, an error is returned as specified b) above.

— IftheEntryInformationSelection. familyReturn iS present and is defined as non-critical, it
shall beignored. Otherwise, an error is returned as specified b) above.

— Other components of EntryInfomationSelection Of the DAP request shal be converted as
specified by clause 4.5.1.8 of IETF RFC 4511.

g) The pagedResults component of a list Or search request does not affect a resulting LDAP
SearchRequest, but shall be retained to allow proper handling of the LDAP resullts.

20.6.3 Convertinga DAP read request
A DAP read request shall be converted to an LDAP searchRequest.

The baseobject component of the LDAP search request shall be the distinguished name given in the object
component of the DAP read request converted as specified in IETF RFC 4514.

The scope component of the LDAP search request shall be set to baseobject.

The derefaliases component of the LDAP search request shall be set t0 neverDerefaliases if the
dontDereferenceAliases Service control option is set in the DAP read request. Otherwise, it shall be set to
derefFindingBaseObj.

The sizeLimit component of the LDAP search request shall be set to zero.

Rec. ITU-T X.518 (10/2012) 91

| SO/l EC 9594-4:2014 (E)

The timeLimit component of the LDAP search request shall,

— if the DAP request has not been chained, be set to zero if the timeLimit Service control of the DAP
reguest is not present, or, if this service control is present, be set to its value; or

— if the DAP request has been chained, be set to zero if the timeLimit component of the
ChainedArguments iS Not present, or, if this component is present, be set to its value minus the current
time with the result rounded up to the nearest integer.

The typesonly component of the LDAP search request shall be set as specified in clause 20.6.2 item f).

The filter component of the LDAP search request shall consist of a single element by taking the present
alternative with the value of objectclass.

The attributes component of the LDAP search request shall be set as specified in clause 20.6.2 item f).

20.6.4 Converting a DAP comparerequest
The DAP compare request shall be converted to an LDAP CompareRequest.

The entry component of the LDAP compareRequest shal be the distinguished name given in the object
component of the DAP compare request converted as specified in IETF RFC 4514.

The ava component of the LDAP compareRequest shall be the aAttributevValueAssertion data of the DAP
compare request converted to LDAP format as specified in clause 4.1.6 of IETF RFC 4511

The commonArguments Of the DAP request shall be ignored, except for the nosubtypeMatch Service control option.
If this service control option is set, then a serviceError with problem notSupportedByLDAP required shall be
returned.

20.6.5 Handling and converting a DAP abandon request

Based on the retained information about outstanding operation for the LDAP server in question, an LDAP requester
shall check the validity according to the procedures in clause 20.5.1, steps 1) to 3) and if any of the steps apply, return
the appropriated reply.

If the above does not apply an LDAP abandonRequest shall be forwarded to the LDAP server. The Message1D of the
LDAP AbandonRequest shall be the MessagelD corresponding to the InvokeId component of the DAP request to be
abandoned.

When forwarding an LDAP aAbandonRequest t0 an LDAP server, atimer shall be started with alocally defined time
value. If an LDAPResult is returned from the LDAP server for the operation to be abandoned before the timer expires,
it shall discard possible result(s) for that operation and return:

— an abandoned error with the problem component absent shall be returned for the abandoned operation;
and

— an abandon result shall be returned for the Abandon operation.
20.6.6 Convertinga DAP list request
A DAP 1ist request shall be converted to an LDAP searchRequest.

The baseobject component of the LDAP search request shall be the distinguished name given in the object
component of the DAP 1ist request.

The scope component of the LDAP search request shall be set to singleLevel.

The derefaliases component of the LDAP search request shall be set t0 neverDerefaliases if the
dontDereferenceAliases Service control option is set in the DAP read request. Otherwise, it shall be set to
derefFindingBaseObj.

The sizeLimit component of the LDAP search request shall be set to zero if the sizeLimit Service control is not
present in the DAP request. Otherwise, it shall be set to the value specified in the sizeLimit service control in the
DAP request.

92 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

The timeLimit component of the LDAP search request shall,

— if the DAP request has not been chained, be set to zero if the timeLimit Service control of the DAP
reguest is not present or, if this service control is present, be set to its value; or

— if the DAP request has been chained, be set to zero if the timeLimit component of the
ChainedArguments iS not present or, if this component is present, be set to its value minus the current
time with the result rounded up to the nearest integer.

The typesonly component of the LDAP search request shall be set to FALSE.

The filter component of the LDAP search request shall consist of a single element by taking the present
alternative with the value of objectclass.

The attributes component of the LDAP search request shall be set to noattrs as specified in clause 4.5.1.8 of
IETF RFC 4511.

20.6.7 Converting a DAP search request
A DAP search request shall be converted to an LDAP searchRequest.

The baseobject component of the LDAP search request shall be the converted distinguished name given in the
baseObject component of the DAP search request.

The scope component of the LDAP search request shall be set according to subset component of the DAP request.

The derefaliases component of the LDAP search request shall be set to:

— neverDerefAliases if the dontDereferencealiases Service control optionis setin the DAP read
request and the searchaliases component of the DAP search request is set to FALSE.

— derefInSearching if the dontDereferenceAliases service control option is set in the DAP read
request and the searchaliases component of the DAP search request is set to TRUE.

— derefFindingBaseObj if the dontDereferenceAliases Service control option is not set in the
DAP read request and the searchaliases component of the DAP search request is set to FALSE.

— derefAlways if the dontDereferencealiases Service control option is not set in the DAP read
request and the searchaliases component of the DAP search request is set to TRUE.

The sizeLimit component of the LDAP search request shall be set to zero if the sizeLimit Service control is not
present in the DAP request. Otherwise, it shall be set to the value specified in the sizeLimit Service control in the
DAP request.

The timeLimit component of the LDAP search request shal,

— if the DAP request has not been chained, be set to zero if the timeLimit service control of the DAP
request is not present, or, if this service control is present, be set to its value; or

— if the DAP request has been chained, be set to zero if the timeLimit component of the
chainedArguments iS not present, or, if this component is present, be set to its value minus the current
time with the result rounded up to the nearest integer.

The typesonly component of the LDAP search request shall be set as specified in clause 20.6.2 item f)

The £ilter component of the LDAP search request shall be set as follows:

— If the £ilter component is absent in the DAP request or has the value and:{}, then the filter
component of the LDAP request shall consist of a single element by taking the present alternative with
the value of objectClass.

— If the filter component is present in the DAP request, then the LDAP £ilter component shall be
constructed to have the same effect. Possible context information in the DAP filter shall be ignored,
unlessit is marked critical (see clause 20.6.2 item a)).

The attributes component of the LDAP search request shall be set as specified in clause 20.6.2 item f).

Rec. ITU-T X.518 (10/2012) 93

| SO/l EC 9594-4:2014 (E)

20.6.8 Converting a DAP addEntry request

A DAP addEntry request shall be converted to an LDAP AddRequest if
— the targetsystem component is not present in the DAP addEntry request; or

— the targetSystem component is present in the DAP addEntry request, the immediate superior entry
of the new entry is located within the LDAP requester, the targetsystem component is an LDAP
access point and the DSA supports the targetSystem extension.

The entry component of the LDAP addrequest shal be the converted distinguished name given in the object
component of the DAP addEntry request.

The attributes component of the LDAP addrequest shall be the set of attributes as given in the entry component of
the DAP addentry request converted as specified in clause 20.6.2 d).

If the targetsSystem component is present in the DAP addeEntry request and the immediate superior entry of the new
entry is not located within the LDAP requester, then a serviceError Wwith problem
unavailableCriticalExtension shall bereturned.

20.6.9 Converting a DAP removeEntry request

A DAP removeEntry reguest shall be converted to an LDAP pelRequest with a value being the converted
distinguished name given in the object component of the DAP 1ist request.

20.6.10 Converting a DAP modifyEntry request
A DAPmodifyEntry request shall be converted to an LDAP ModifyRequest.

The object component of the LDAP ModifyRequest shall be the converted distinguished name given in the object
component of the DAP modifyEntry request.

If the EntryModification data type of the DAP request includes an alter aternative and the LDAP server is not
known to support the LDAP extended feature specified in IETF RFC 4525, it shall return a serviceError with
problem notSupportedByLDAP.

If the EntryModification data type of the DAP request includes a resetvalue aternative, it shal return a
serviceError With problem notSupportedByLDAP.

The changes component of the LDAP ModifyRequest shall be converted to the changes component of the DAP
modifyEntry as shown below:

— An addattribute Or addvalues aternative of the DAP request shall be converted to a change
component of the LDAP ModifyRequest Where the operation subcomponent shall take the value
add and the modification subcomponent shall hold the converted attributes specified by the DAP
request.

— A removeAttribute aternative of the DAP request shall be converted to a change component of the
LDAP ModifyRequest Where the operation subcomponent shall take the value delete and with an
empty modification subcomponent shall hold the converted attributes specified by the DAP request.

— A removevValues dternative of the DAP request shall be converted to a change component of the
LDAP ModifyRequest Where the operation subcomponent shall take the value delete and the
modification subcomponent shall hold the converted attributes specified by the DAP reguest.

— A replacevalues dternative of the DAP request shall be converted to a change component of the
LDAP ModifyRequest Where the operation subcomponent shall take the value replace and the
modification subcomponent shall hold the converted attributes specified by the DAP request.

If the selection component included in the DAP modifyEntry request is present, it shall be ignored unless
selectionOnModify extension is marked as critical (see clause 20.6.2, item a).

20.6.11 Converting a DAP modifyDN request
A DAPmodi fyDN request shall be converted to an LDAP Modi fyDNRequest

The entry component of the LDAP modi £yDN request shall be the converted distinguished name given in the object
component of the DAP search request.

The newrdn component of the LDAP modi £yDN request shall be the RDN given in the newrpN component of the DAP
reguest converted according to IETF RFC 4514.

94 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

The deleteoldrdn component of the LDAP modifyDN request shall be set to false, if the deleteo1dRDN component
of the DAP request is absent. Otherwise, it shall be set to the same value as in the deleteoldrRpN component of the
DAP request.

The newsuperior component of the LDAP request shall not be present if the newSuperior component is not present
in the DAP request. Otherwise, the newsuperior component of the LDAP request shall be the converted distinguished
name of the DAP request. This conversion may be performed in the case where the LDAP requester does not support
the newSuperior extension.

20.7 LDAP result to DAP reply procedure

20.7.1 Introduction

The LDAP result to DAP reply procedure is used when the result of a converted DAP request is received with a
non-error result code included.

20.7.2 General on conversion

An LDAP reference is converted to acontinuationReference value, where

a) The targetobject component shall hold the converted distinguished name held in the LDAP referral.
If this name is not included in the referral, then this component shall be an empty sequence.

b) ThealiasedrDNs component shall be absent.

C) the operationProgress cOomponent shall have an OperationProgress value asfollows;
— thenameResolutionPhase component shall be set to notStarted; and
— thenextRDNToBeResolved component shall be absent.

d) TherdnsResolved component shall be absent.

€) ThereferenceType component shall be setto cross.

f) The accessPoint component shall hold a single AccessPointInformation value with a single
MasterOrShadowAccessPoint value with the following:

— TheaccessPoint vaue shall have the following components:
i) theae-title component shall bean empty distinguished name;

ii) the address component shall have the pselector, sSelector and the tselector
subcomponents absent; and

— The category component shall take the value master or be absent.

— The chainingRequired component shall take the value FALSE or be absent.
g) Theentryonly components.
h) The exclusions component shall be absent.
i) ThereturnToDua component shall have the value FALSE or be absent.

20.7.3 Converting LDAP search resultsto DAP read result

The DAP read result shall be created on the receipt of the final searchResultbDone if it isareply to a DAP read
reguest and an error was not encountered.

If an LDAP SearchResultEntry iSthe result of a DAP read request, this result is converted to a DAP read result
after the receipt of thefinal searchResultDone:

— the entry component of the read result shall be the converted attributesin the attributes component
of the LDAP resullt.

— themodifyRights component of the read result shall not be included.
— the objectName component of the LDAP result shall be ignored.
20.7.4 Converting LDAP compareresult to a DAP compare result

The DAP compare result shall be created on the receipt of the final SearchResultDone if an error was not
encountered.

Rec. ITU-T X.518 (10/2012) 95

| SO/l EC 9594-4:2014 (E)

The compareResultData Value shall have the following component:

— The name component, when present, shall take the value in the targetobject component of the
ChainingArguments value. If that value is equal to the object component of the ListArgumentData
value, it may be absent. Otherwise, it shall be present.

— The matched component shall have the value TRUE if the resultcode Of the LDAPResult has the
value compareTrue. If resultCode Of the LDAPResult hasthe value compareFalse, this component
shall have the value FALSE.

— The fromEntry component shall be absent or has the default value.

— Thematchedsubtype component shall be absent.

- The commonResults value shall be present with the securityParameters component included, if the
result isto be signed (see clauses 9.2.1 and 9.2.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3.

20.75 Converting LDAP search resultsto DAP list result

The DAP 1ist result shall be created on the receipt of the fina searchResultbone if itisareply to a DAP 1ist
request and an error was not encountered. The 1istInfo aternative of the ListResultData Value shal be taken.

The name component, when present, shal take the vaue in the targetobject component of the
ChainingArguments vaue. If that value is equal to the object component of the ListArgumentData value, it may
be absent. Otherwise, it shall be present.
NOTE — An LDAP server does not report if an alias has been dereferenced within the LDAP server.
Each LDAP searchResultEntry iSconverted to an element of the subordinates component asfollows:
a) The rdn subcomponent shall be the first RDN component of the objectName of the LDAP resullt.
b) ThealiasEntry and fromEntry subcomponents shall be absent or encoded with their default values.
¢) ThepartialoutcomeQualifier Value shal be set asfollows:

— The limitProblem component shall be present if the LDAP SearchResultDone has a
resultCode equa to ether timeLimitExceeded, sizeLimitExceeded and
adminLimitExceeded and shall encode accordingly.

— The unexplored component shall be present if one or more searcResultReference are
received and shall then hold the set of converted references.

— TheunavailableCriticalExtensions component shall be present and have the value TRUE if
the LDAP SearchResultDone has a resultCode equal to
unavailableCriticalExtensions. Otherwise, it shall be absent or take the value FALSE.

— TheunknownErrors components shall be absent.
— The queryReference component shall be coded according to the DSP paging requirements.
— TheoverspecFilter component shall be absent.
— Thenotification component shall be absent.
— Theentrycount component shall be absent
d) ThecommonResults value shall set as specified in clause 7.4 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

20.7.6 Converting LDAP search resultsto DAP search result

The DAP search result shall be created on the receipt of the final searchResultpone if it is a reply to a DAP
search request and an error was not encountered. The searchInfo aternative of the searchResultbata value shall
be taken.

The name component, when present, shal take the value in the targetobject component of the
ChainingArguments Value. If that valueis equal to the object component of the searchArgumentData value, it may
be absent. Otherwise, it shall be present.

NOTE — An LDAP server does not report if an alias has been dereferenced within the LDAP server.

Each LDAP searchResultEntry iSconverted to an element of the entries component asfollows:
a) Thename subcomponent shall be the converted objectName of the LDAP result.
b) The fromEntry subcomponent shall be absent or encoded with its default value.

96 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

¢) The information Subcomponent shall take the attributeType adternative if the LDAP
SearchRequest had the typeonly component set to true and shall then hold the converted attribute
type of the LDAP searchResultEntry. Otherwise, the attribute aternative shall be taken and shall
then hold the converted attribute of the LDAP SearchResultEntry.

d) The incompleteEntry, partialName and derivedEntry components shall be absent or encoded
with their default values.

€) ThepartialoutcomeQualifier value shal befilled as specified initem c) of clause 20.7.5.
f) The commonResults value shall set as specified in clause 7.4 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

20.7.7 Converting LDAP AddResponseto DAP addEntry result
The DAP addentry result shall be created on the receipt of the searchResultDone if an error was not encountered.

The information component of the AddEntryResult value shall be taken if the result is to be signed (see clauses
11.1.1 and 11.1.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, thenul1 aternative shall be taken.

20.7.8 Converting LDAP DelResponseto DAP removeEntry result
The DAP removeEntry result shall be created on receipt of the searchResultDone if an error was not encountered.

The information component of the RemoveEntryResult Value shall be taken if the result is to be signed (see
clauses 11.2.1 and 11.2.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the nul1l alternative shall be taken.

20.7.9 Converting LDAP ModifyResponse to DAP modifyEntry result
The DAPmodifyEntry result shall be created on receipt of the searchResultDone if an error was not encountered.

The information component of the ModifyEntryResult value shal be taken if the result is to be signed with the
entry component absent (see clauses 11.3.1 and 11.3.3) of Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the nul1l
alternative shall be taken.

20.7.10 Converting LDAP ModifyDNResponse to DAP modifyDN result
The DAP modi £yDN result shall be created on receipt of the searchResultDone if an error was not encountered.

The information alternative Of the ModifyDNResult value shal be taken if the result is to be signed. The
newRDN component shall have the value given in the corresponding DAP request (see clauses 11.4.1 and 11.4.3) of
Rec. ITU-T X.511 | ISO/IEC 9594-3. Otherwise, the nu11 alternative shall be taken.

21 Results Merging procedure

The Results Merging procedure in Figure 29 is caled following one of the Continuation Reference procedures. This
procedure removes duplicates if the result is not signed, and if there are additional continuation references in
partialOutcomeQualifier.unexplored. Then the relevant Continuation Reference procedure(s) is called, if local
operationa policy permits:
1) If the operation is a List operation, continue at step 2); if the operation is a Search operation, then
continue at step 3); otherwise, return the result that was supplied as the input parameter to the Results
Merging procedure.

2) The operation is a List operation. Remove all duplicates, giving preference to master information over
shadow information.

If the operation result was generated locally and it contains Continuation References, then these will not
be used for chaining but returned to the user. In this case, continue at step 6).

If the operation result was received as the result of a Chained List operation, then the result might contain
Continuation References. In this case, check if the preferchaining Service control was set. If TRUE,
the Continuation References should be used for chaining by the DSA. Continue at step 4).

3) Theoperation is a Search operation. Remove all duplicates, giving preference to master information over
shadow information. If thereis alimit problem, then return the result. Otherwise, continue at step 4).

4) Process each Continuation Reference that is in the partialOoutcomeQualifier.unexplored Of the
result of any chained operation. If the local policy decides not to use it for chaining, then ignore it and
choose another Continuation Reference. If the local policy allows the use of the Continuation Reference
for chaining, then perform the following:

Rec. ITU-T X.518 (10/2012) 97

| SO/l EC 9594-4:2014 (E)

Check nameResolutionPhase that is supplied in the Continuation Reference. If it iSnotStarted oOr
proceeding, then add it to the list of Continuation References that will be supplied to the Name
Resolution Continuation procedure (NRcontinuationList). If nameResolutionPhase iScompleted, then
add the Continuation Reference to the list of Continuation References that is supplied to the subrequest
Continuation procedure (SRcontinuationL ist).

Proceed until all Continuation References have been processed.

5) If there are Continuation References to be processed in SRcontinuationList, check the operation type. If
the operation is a List operation, call the List Continuation Reference procedure and continue at step 2). If
the operation is a Search operation, call the Search Continuation Reference procedure and continue at
step 3).

If SRcontinuationList is empty, then check if there are Continuation References in NRcontinuationList. If
so, call the Name Resolution Continuation Reference procedure and continue at step 3).

If both continuation lists are empty, continue at step 6).

6) Check whether the result is empty. If it is not empty, then return it. If it is empty, either return a null
result if the access control and local policy allows, or return an appropriate error.

In case a DSA receives search or list results from other DSAs and such results have parameters unknown to the DSA,
the uncorrelated results shall be returned. Otherwise, the DSA shall perform merging, if the search results are not
signed, or if the DSA is an initiad performer that is alowed to remove the signatures (see clause 7.9 of
Rec. ITU-T X.511 | ISO/IEC 9594-3).

A DSA which has received unsigned, uncorrelated results from a DSA that was not able to perform consolidation, shall
perform merging, if it has the proper knowledge of all parameters of the uncorrelated results.

If a DSA receives unsigned results from other DSAS, and possibly also has alocal result and when generating an entry
count to be returned in the entryCount Of the PartialoutcomeQualifier generated by the DSA, the DSA shall
take the sum of all entrycount values received, the local result and the number of entries received from DSAs that did
not return an entrycount value and then compensate for duplicate entries. If the DSA is the initial performer and
paged results have been requested, then it shall also include the entry counts for signed results from other DSASs.

If paged results are requested and no limit problem has been encountered by any DSA, then the DSA shall take the
exact choicefor the entryCount parameter. The same value shall be given for each returned page.

If one or more DSAs have encountered alimit problem, then:

— if dl the DSAs that have encountered a limit problem have returned an entryCount with the exact or
bestEstimate choice, it shal take the bestEstimate choice if just one DSA had taken that choice;
otherwisg, it shall take the exact choice;

— if just one DSA that has encountered a limit problem and has returned an entrycount with the choice
lowEstimate Or did not return an entryCount, it shall take the 1owEstimate choice.

98 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

l Enter l

A
A

Search

Operation?

Other operations i

Call List
Continuation
Reference procedure

Remove duplicates
from listInfo

Remove duplicates
from searchInfo

Call Search
Continuation
Reference procedure

Local
evaluation?

Return result

Process each continuation reference CR All CRs
in partialOutcomeQualifier.unexplored processed

No

Operation?
scarch

Local
policy?

Add to
SRcontinuationList

Add to
SRcontinuationList

Is SRcontinuation-

process -
List empty?

Name
resolution
phase

notStarted
proceeding

completed Yes

Is NRcontinuation-
List empty?

No
Call Name Resolution

Continuation
Return result Reference procedure

X.518_F29

Figure 29 — Results Merging procedure

22 Proceduresfor distributed authentication

This clause specifies the procedures necessary to support the directory distributed authentication services. These
services, and hence the procedures, are categorized as:

— requester authentication, which is supported in either an unprotected (simple identity based) or secure
(based upon digital signatures) form; and

— results authentication which is similarly protected (again based upon digital signatures).

Rec. ITU-T X.518 (10/2012) 99

| SO/l EC 9594-4:2014 (E)

22.1 Requester authentication

22.1.1 ldentity-based authentication

The identity-based authentication service enables DSAs to authenticate the original requester of information for the
purpose of effecting local access controls. DSAs wishing to exploit this service shall adopt the following procedure:

— For aDSA requiring to authenticate a DAP or LDAP request, the DSA acquires the distinguished name
of the requester through the Bind procedures at the time a DUA association (DUA to DSA) or LDAP
client association (LDAP client to DSA) is established. Successful conclusion of these procedures does
not in any way prejudice the level of authentication that may subsequently be required for processing
operations using that association.

— The DSA with which the DUA association exists shall insert the requester's distinguished name in the
initiator field of the chainingArguments for all subsequent chained operations to other DSASs.

— A DSA, on receiving a chained operation, may satisfy that operation, or not, depending upon the
determination of access rights (a locally defined mechanism). If the outcome is not satisfactory, a
securityError With problem insufficientAccessRights may be returned.

22.1.2 Signature-based requester authentication

This signature-based requester authentication service enables a DSA to authenticate (in a secure manner) the requester
of a particular service request. The procedures to be effected by a DSA in realizing this service are described in this
clause.

A DSA, on receiving a signed request from another DSA, shall remove that DSA's sighature prior to processing the
operation. Assuming the result of any signature verification proves to be satisfactory, the DSA will continue to progress
the operation. If, during processing, the DSA needs to perform chaining, the argument set for each associated chained
operation shall be constructed as follows:

— the DSA forms an argument set which may be optionally signed; the argument set comprises the
incoming signed argument set together with amodified chainingArguments.

In the event that the DSA is able to contribute information to the response, requester authentication, based upon the
signed service request, may be used for the determination of access rights to that information.

If a DSA receives an unsigned service request for information which will only be released subject to requester
authentication, a securityError With problem protectionRequired shal be returned.

22.2 Results authentication

This service is provided to enable requesters of directory operations (DUAs or DSAS) to verify (in a secure manner
using digital signature techniques) the source of results. The results authentication service may be requested irrespective
of whether requester authentication is to be used.

The results authentication service is initiated using the signed value of the protectionRequest component as
contained within the argument set of directory operations;, a DSA receiving an operation with this option selected may
then optionally sign any subsequent results. The signed option in the protection request serves as an indication, to the
DSA, of the requester's preference; the DSA may, or may not, actually sign any subsequent results.

In the case where a DSA performs chaining, the DSA has a number of options in terms of the form of results sent back
to the requester, namely:
a) return acomposite response (signed or unsigned) to the requester;

b) return a set of two or more uncollated partial responses (signed or unsigned) to the requester; within this
set zero or more members may be signed and zero or one unsigned. In the event that an unsigned partial
result is present, this member may in fact be a collation of one or more unsigned partial responses which
have been received from other DSAS, contributed by this DSA, or both.

In the case where a DSA performs ajoin of related entries, then the DSA performing the join may sign the result.

100 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

SECTION 6 — KNOWLEDGE ADMINISTRATION

23 Knowledge administration overview

To operate a widely distributed Directory with an acceptable degree of consistency and performance, procedures are
required to create, maintain and extend the knowledge held by each DSA. The following mechanisms together are used
to administer aDSA's knowledge.

a) Hierarchical and non-specific hierarchical operational bindings — These procedures and protocols are
defined in clauses 24 and 25. They are used to create and maintain subordinate references, non-specific
subordinate references, and immediate superior references, as well as the context prefix information for
naming contexts. These operational bindings are established between master DSAs holding naming
contexts that are hierarchically related to each other asimmediate subordinate to immediate superior. The
procedures may be triggered as a side effect of modifying the RDN of, or adding or removing an entry,
whose immediate superior is not held in the same DSA that holds the entry.

b) Shadowing operational bindings — These procedures and protocols are defined in Rec. ITU-T X.525 |
ISO/IEC 9594-9. They are used to create and maintain knowledge references in two ways. First, as aside
effect of establishing (or terminating) shadowing agreements, access points are added (or removed) from
the consumerkKnowledge and optionally the secondaryshadow operational attributes. This
information may then be used by the procedures and protocols discussed above to update the subordinate
reference in the superior master DSA and the immediate superior reference in the subordinate master
DSA. Second, the DISP propagates the knowledge references held by master DSAs to shadow consumer
DSAs.

¢) Crossreferences — Cross-reference distribution is a feature of the DSP. Its use to create and maintain
cross-referencesis summarized in clause 23.2.

NOTE — Mechanisms for initializing and maintaining the superior reference and myAccessPoint are outside the
scope of this Directory Specification.

23.1 Maintenance of knowledge r eferences

This clause describes how the DOP is used to maintain DSA operational attributes that express knowledge. A simple
example of the relationship between knowledge attributes and the protocols employed to maintain them is described in
Annex E.

2311 Maintenance of consumer knowledge by supplier and master DSAs

A consumer reference is expressed through a value of the consumerknowledge éttribute, held by a shadow supplier
DSA and associated with the context prefix for a naming context; a supplier reference, through a value of the
supplierKnowledge attribute, held by a shadow consumer DSA and also associated with the context prefix for a
naming context. Both attributes are held in DSEs of type cp. A value of each one of these attributes is created on
establishment of the Shadow Operational Binding, and updated on modification of the Shadow Operational Binding.

A supplier DSA may obtain the information to construct values of the secondaryshadows attribute if the optional
secondaryShadows component of itS ShadowingAgreementInfo With a consumer is TRUE. In this case, whenever
the consumer DSA detects that the set of DSASs holding copies of the commonly usable replicated area (its consumers,
or, in turn, consumers of its consumers, etc., to whatever depth secondary shadowing might be carried) has changed
(by addition, modification or deletion of access points), it communicates this new information (a set-of
SupplierAndConsumers) by means of a modifyOperationalBinding operation, as described in
Rec. ITU-T X.525 | ISO/IEC 9594-9.

A supplier DSA maintains its own secondaryShadows attribute associated with the context prefix as follows:

a) The set of supplierAndConsumers received from a consumer by means of a
modifyOperationalBinding Operation may be used to create, or replace values of the attribute. The
supplier component of supplierAndConsumers represents the access point of a consumer DSA (or of
its consumers, etc. depending upon the depth of secondary shadowing); the consumers component, the
set of the consumer's consumers (or of their consumers, etc. depending upon the depth of secondary
shadowing).

Rec. ITU-T X.518 (10/2012) 101

| SO/l EC 9594-4:2014 (E)

b) Every consumer providing its supplier with amodi fyOperationalBinding Operation containing a set
of supplierAndConsumers, includes the following values: the values of its secondaryShadows
attribute, and a newly constructed value. This value is constructed using its own access point,
myAccessPoint, (asthe supplier component), and the values of the consumers' access points, contained
within the consumerknowledge attribute, that represent consumers holding commonly usable shadows
(as the consumers component).

Recursive use of this procedure permits a master DSA for a naming context to know all about its secondary shadow
consumer DSAs holding commonly usable replicated areas derived from the naming context. This information is then
available for the maintenance of subordinate, non-specific subordinate and immediate superior references.

23.1.2 Maintenance of subordinate and immediate superior knowledgein master DSAs

A subordinate reference is expressed through a value of the specificknowledge attribute, held in a DSE of type
subr by the DSA holding the immediately superior naming context to that referenced; an immediate superior reference,
through a value of the specificKnowledge attribute, held in a DSE of type immsupr by the DSA holding the
immediately subordinate naming context to that referenced. A value of each one of these attributes is created in the
superior and subordinate master DSAs on establishment of the HOB, and updated on modification of the HOB.

A subordinate master DSA provides a superior master DSA the information to construct its subordinate reference via
the accessPoints component of the subordinateToSuperior parameter it transfers to the superior in the DOP.
The information included in accessPoints is determined by values of attributes held by the subordinate DSA as
follows:

a) The value of the myaccesspPoint attribute (held in the root DSE) is used to form the element in
accessPoints With category having thevaluemaster.

b) The values of the consumerknowledge and secondaryshadows (both held in the subordinate context
prefix DSE) are used to form additional elements in accessPoints With category having the value
shadow.

A superior master DSA provides a subordinate master DSA with the information to construct its immediate superior
reference via the contextPrefixInfo component of the superiorToSubordinate parameter it transfers to the
subordinate in the DOP. This component is a value of type SEQUENCE OF Vertex, cOntaining a sequence of elements
corresponding to the path from the root of the DIT to the subordinate context prefix. For one of these elements,
corresponding to the context prefix of the immediately superior naming context, the optional component
accessPoints Will be present. The subordinate DSA holds this information as a specificknowledge attribute in
the DSE, of type immsupr, corresponding to this element of contextPrefixInfo. The information included in
accessPoints by the superior DSA isdetermined by values of attributes held by the superior DSA asfollows:

a) The value of the myaccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints With category having thevaluemaster.

b) The values of the consumerknowledge and secondarysShadows (both held in the superior context
prefix DSE) are used to form additional elements in accessPoints With category having the value
shadow.

NOTE — Only those access points corresponding to consumer DSAs receiving commonly usable replicated areas
should be selected by the superior and subordinate DSAs from their consumerknowledge attributes for inclusion in
accessPoints. The procedures for the construction of secondaryshadows guarantee that these access points will
identify shadow DSAs holding commonly usable replicated areas.

23.1.3 Maintenance of subordinate and immediate superior knowledgein consumer DSAs

A shadow consumer DSA contracting with its supplier to receive the immediate superior and subordinate knowledge
associated with a unit of replication, in effect, contracts to have its immediate superior and subordinate references
maintained by its shadow supplier DSA viathe DISP.

NOTE — For certain units of replication specifications, it may be necessary for the consumer DSA to contract to receive
extendedKnowledge in order that subordinate knowledge may be provided to it by its supplier.

23.2 Requesting crossreference

To improve the performance of the Directory System, the local set of cross references can be expanded using ordinary
Directory operations. If a DSA supports the DSP, it may request another DSA (which aso supports the DSP) to return
those knowledge references which contain information about the location of naming contexts related to the target object
name of an ordinary Directory operation.

102 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

If the returnCrossRefs component of the chainingArguments iS Set tO TRUE, the crossReferences component
of the chainingResults may be present, consisting of a sequence of cross reference items.

If a DSA is not able to chain a request to the next DSA, a referral is returned to the originating DSA. If the
returnCrossRefs component of chainingArguments Was TRUE, the referral may contain additionally the context
prefix of the naming context which the referral refers to. The contextPrefix component is absent if the referral is
based on a non-specific subordinate reference. The cross reference returned by areferral is based on knowledge held by
the DSA which generated the referral.

In both cases (chaining result and referral) an administrative authority, through its DSA, may elect to ignore the request
for returning cross references.

23.3 Knowledge inconsistencies

The Directory has to support consi stency-checking mechanisms to guarantee a certain degree of knowledge consistency.

NOTE - In certain circumstances, a knowledge reference will be accurate (not invalid in the senses described below) but not
valid for use by a DSA because the DMD of the referenced DSA does not wish it to be contacted at al by the referencing DSA
(e.g., a DSA which has somehow acquired a cross reference to the referenced DSA) or does not wish it to be contacted in a
particular role (e.g., asthe master DSA for a naming context).

23.3.1 Detection of knowledge inconsistencies

Thekind of inconsistency and its detection varies for the different types of knowledge references:

a) Crossand Subordinate references — This type of referenceisinvalid if the referenced DSA does not hold
anaming context or a replicated area derived from the naming context with the context prefix contained
in the reference. This inconsistency will be detected during the Name Resolution process by inspection
of the operationProgress and referenceType components of chainingArguments.

b) Non-specific Subordinate references — This type of reference is invalid if the referenced DSA does not
hold a local naming context with the context prefix contained in the reference minus the last RDN. The
consistency check is applied as above.

¢) Superior references — An invalid superior reference is one which does not form part of a reference path
to the root. The maintenance of superior references shall be done by external means and is outside the
scope of this Directory Specification.

NOTE — It is not always possible to detect an invalid superior reference.

d) Immediate Superior references — This type of reference isinvalid if the referenced DSA does not hold a
naming context or areplicated area derived from the naming context with context prefix contained in the
reference. Furthermore, usage of this type of reference is only valid when the operationProgress
component of chainingArguments has the value notStarted Or proceeding. This inconsistency
will be detected during the Name Resolution process by inspection of the operationProgress and
referenceType COMpPoONents of ChainingArguments.

e) Supplier references — This type of reference, which identifies the supplier of a replicated area and
optionally the master for the naming context from which the replicated area is derived, is invdid if the
referenced DSA is not the shadow supplier for the DSA using the reference (when the referenceType
component of chainingArguments has the value supplier), or if the referenced DSA is not the
master for the naming context (when referenceType has the value master). This inconsistency will
be detected during the Name Resolution and operation evaluation phases of operation processing by
inspection of the referenceType component of ChainingArguments.

23.3.2 Reporting of knowledge inconsistencies

If chaining is used in performing a Directory request, all knowledge inconsistencies will be detected by the DSA which
holds the invalid knowledge reference, through receiving a serviceError with problem invalidReference.

If a DSA returns a referral which is based on an invalid knowledge reference, the requester will be returned a
serviceError With problem invalidreference if it usesthereferral. How the error condition will be propagated to
the DSA which stores the invalid reference is not within the scope of this Directory Specification.

23.3.3 Treatment of inconsistent knowledger eferences

After a DSA has detected an invalid reference, it should try to re-establish knowledge consistency. For example, this
can be done by simply deleting an invalid cross reference or by replacing it with a correct one which can be obtained
using the returnCrossRefs mechanisms.

Rec. ITU-T X.518 (10/2012) 103

| SO/l EC 9594-4:2014 (E)

The way in which a DSA actually handles invalid references is a local matter and outside the scope of this Directory
Specification.

24 Hierarchical operational bindings

A hierarchical operational binding is used to represent the relationship between two DSAs holding two naming
contexts, one immediately subordinate to the other. In the case of an HOB, the superior DSA holds a subordinate
reference to the naming context held by the subordinate DSA; the subordinate DSA holds an immediate superior
reference to the naming context held by the superior DSA. The operational binding ensures that the appropriate
knowledge information is exchanged and maintained between the two DSAs so that both DSAs are able to behave
during the process of Name Resolution and Operation Evaluation as defined in clauses 18 and 19.

24.1 Operational binding type characteristics

2411 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
thistype are:

a) therole of the master DSA for the superior naming context, the superior DSA (associated with abstract
role"A"); and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with
abstract role "B").

2412 Agreement

The agreement information exchanged during the establishment of the hierarchical operational binding is a value of
HierarchicalAgreement. This contains the relative distinguished name of the new context prefix (the rdn
component) and the distinguished name of the entry immediately superior to the new naming context (the
immediateSuperior component). Thisinformation shall be provided by the DSA that initiates the HOB.

HierarchicalAgreement ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
immediateSuperior [1l] DistinguishedName,
-}

24.1.3 Initiator

24.1.3.1 Establishment

The establishment of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA
can be caused by an Add Entry operation with the subordinate DSA specified in the targetSystem extension, or by
administrative intervention. Initiation by the subordinate DSA (which connects a locally existing entry or subtree to the
global DIT) is caused by administrative intervention.

24.1.3.2 Moaodification

The modification of a hierarchical operational binding can be initiated by either role. The superior DSA may issue the
modification as aresult of a modification of the superior context prefix information. This can be as aresult of any of the
modification operations, or by administrator intervention.

Either DSA may modify the agreement as a result of a modification of the RDN of the context prefix entry of the
subordinate naming context. The superior DSA initiates this modification because of a relative distinguished name
being modified higher up the DIT, or because of administrative intervention. The subordinate DSA initiates
modification because of aModi £yDN of acontext prefix, or because of administrative intervention.

Either DSA may also modify the HOB if the access point information for its naming context changes.

24.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the context prefix entry of the subordinate naming context, or by administrative intervention.

104 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

2414 Establishment parameters

The establishment parameters for the two roles of an HOB, superior DSA and subordinate DSA, differ. The
establishment parameter for the superior DSA role is a value of SuperiorToSubordinate, the parameter for the
subordinate role, avalue of SsubordinateToSuperior.

24.1.4.1 Superior DSA establishment parameter

The establishment parameter issued by the superior DSA, a value of SuperiorToSubordinate, provides the
subordinate DSA with information regarding DIT vertices superior to the context prefix of the new naming context
(which includes the immediate superior reference) and optionally user and operational attributes for the subordinate
context prefix entry and copies of user and operational attributes from the entry immediately superior to the new context
prefix.

SuperiorToSubordinate ::= SEQUENCE {
contextPrefixInfo [0] DITcontext,
entryInfo [1] SET SIZE (1..MAX) OF

Attribute{{SupportedAttributes}} OPTIONAL,
immediateSuperiorInfo [2] SET SIZE (1l..MAX) OF
Attribute{{SupportedAttributes}} OPTIONAL,
}

24.1.4.1.1 Context prefix information

The contextPrefixInfo component of SuperiorToSubordinate IS a value of type DITcontext, this being a
sequence of vertex values.

DITcontext ::= SEQUENCE OF Vertex
Vertex ::= SEQUENCE ({
rdn [0] RelativeDistinguishedName,
admPointInfo [1] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,
subentries [2] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,
accessPoints [3] MasterAndShadowAccessPoints OPTIONAL,
}

The contextPrefixInfo component is the sequence of RDNSs that form the distinguished name of the immediate
superior of the new context prefix, each RDN (given by the rdn component) optionally accompanied by additional
information.

The optional admPointInfo component of a vertex signals that the DIT vertex is an administrative point and
provides, at leadt, itSadministrativeRole operational attribute.

The subentry information associated with an administrative point is provided by the subentries component of a
Vertex, Which is a set of one or more subentryInfo values. Each subentryInfo valueis composed of the RDN of
the subentry (the ran component) and the attributes of the subentry (the info component).

SubentryInfo ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute{{SupportedAttributes}},

}

The optional accessPoints component of a vertex signals that the vertex corresponds to the context prefix of the
immediately superior naming context. The superior uses this component to provide the subordinate the information
required for itsimmediate superior reference.

NOTE — The master access point within accessPoints is the same as that passed in the accessPoint parameter of the
Establish and Modify Operational Binding operations.

24.1.4.1.2 Entry information

The optional entryInfo component of SuperiorToSubordinate iSa Set of attributes establishing the content of the
new context prefix entry.

Rec. ITU-T X.518 (10/2012) 105

| SO/l EC 9594-4:2014 (E)

24.1.4.1.3 Immediate superior entry information

The optional immediateSuperiorInfo cOmponent of SuperiorToSubordinate iSa copy of aset of attributes, in
particular objectclass and entryact, from the entry immediately superior to the new context prefix.
NOTE — This component may be used by the subordinate for optimizing the evaluation of a List request which generates an
empty ListResult for a base object which is the immediate superior of the subordinate context prefix [see note of clause
19.3.1.2.2, item 2)].

24.1.4.2 Subordinate DSA establishment parameter

The establishment parameter issued by the subordinate DSA, a value of SubordinateToSuperior, provides the
superior DSA with information regarding the subordinate naming context.

SubordinateToSuperior ::= SEQUENCE {
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entryInfo [2] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,
subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,
}

The accessPoints component of SubordinateToSuperior IS used by the subordinate to provide the superior the
information required for its subordinate reference.

NOTE 1 — The master access point within accessPoints is the same as that passed in the accessPoint parameter of the
Establish and Modify Operational Binding operations.

The alias component of SubordinateToSuperior iS used to signal to the superior that the subordinate naming
context consists of asingle alias entry.

The entryInfo component of SubordinateToSuperior consists of a copy of a set of attributes, in particular
objectClass and entryAcCI, but also, if applicable, the administrativeRole operational attribute, from the new
context prefix entry.

NOTE 2 — The first two attributes may be used by the superior for optimizing the evaluation of aList or one-level Search request

whose base object is the entry immediately superior to the subordinate context prefix, while the last attribute is used to avoid
unwanted progression of a search operation into or out from a service-specific administrative area.

The subentries component of subordinateToSuperior IS used by the subordinate to pass subentries containing
prescriptive ACI to the superior.

2415 Moadification parameters

For modifications of an HOB, the modification parameter of the superior role,
SuperiorToSubordinateModification, iS SuperiorToSubordinate, With the restriction that the entryInfo
component may not be present; that of the subordinate roleis subordinateToSuperior.

SuperiorToSubordinateModification ::= SuperiorToSubordinate (
WITH COMPONENTS {..., entryInfo ABSENT })

These parameters are identical (with the restriction noted above) to the corresponding establishment parameters and are
used to signal changes occurring to information provided in the establishment parameters subsequent to the
establishment of the HOB.

If any component of SuperiorToSubordinate (Or subsequently SuperiorToSubordinateModification) OF
SubordinateToSuperior experiences a change (eg., the contextPrefixInfo component of
SuperiorToSubordinate), the corresponding component of the modification parameter (eg., the
contextPrefixInfo component of SuperiorToSubordinateModification) shall be provided in its entirety in
the Modify Operational Binding.

2416 Termination parameters
Neither role provides a termination parameter when terminating an HOB.

2417 Typeidentification

The hierarchical operational binding is identified by the object identifier assigned when defining the
hierarchicalOperationalBinding OPERATIONAL-BINDING information object in clause 24.2.

106 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

24.2 Operational binding information object Class definition

This clause defines the hierarchical operational binding type using the OPERATIONAL-BINDING information object
class defined in Rec. ITU-T X.501 | ISO/IEC 9594-2.

hierarchicalOperationalBinding OPERATIONAL-BINDING ::
AGREEMENT HierarchicalAgreement
APPLICATION CONTEXTS {{directorySystemAcC}}
ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SuperiorToSubordinateModification
TERMINATION-INITIATOR TRUE }
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateToSuperior
TERMINATION-INITIATOR TRUE }
ID id-op-binding-hierarchical }

{

24.3 DSA proceduresfor hierarchical operational binding management

In the following procedures, a new DSE or a mark (i.e., a state indication associated with an item of information)
created by a DSA shall be stored in stable storage. By doing so, it is possible for the two DSAs following the
procedures below to maintain a consistent understanding of the parameters of the HOB in the presence of
communication and end system failures.

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e., not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.g., operationa attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operational binding in such cases.

2431 Establishment procedure

24.3.1.1 Establishment initiated by superior DSA

If a DSA evaluates an Add Entry operation with a different DSA specified in the targetsystem extension, it shall
establish a hierarchical operational binding according to the following procedure. If a DSA, for administrative reasons,
wishes to establish an HOB with a subordinate DSA, and it supports the DOP HOB protocol, then the following
procedure shall be followed:

1) The superior DSA creates anew DSE of type subr, with the name of the new entry, and marks this new
DSE as being added. The superior DSA generates a unique bindingIb and storesit with the new DSE.

2) The superior DSA shall send an Establish Operational Binding operation to the subordinate DSA
containing the following parameters:

@) bindingType SettOhierarchicalOperationalBindingID;

b) superiorToSubordinate establishment parameter with contextPrefixInfo and entryInfo
components present; all other parameters are optional;

C) HierarchicalAgreement With the immediateSuperior component set to the distinguished
name of the immediate superior of the new entry and the ran component set to the RDN of the new
entry;

d) thebindingID, myAccessPoint and valid parameters, as appropriate.

3) If the subordinate DSA accepts the operation, it creates the required DSES of types glue, subentry,
admPoint, rhob and immSupr, as appropriate, to represent the contextPrefixInfo; a DSE of type
cp and entry OF alias to represent the new context prefix object or alias entry; and, as appropriate, a
DSE of type rhob and entry to represent the immediateSuperiorInfo. It stores the bindingID
with the DSE of the new context prefix entry and returns a SsubordinateToSuperior parameter to the
superior DSA.

If the subordinate DSA refuses the operation, it returns an Operational Binding Error with the
appropriate problem value set.

Rec. ITU-T X.518 (10/2012) 107

| SO/l EC 9594-4:2014 (E)

4)

If the naming context already exists and the bindingID values for the existing and the new context are
the same, the subordinate DSA has already created the requested naming context, in which case the
subordinate DSA returns a result to the superior. If the values are not equal, an Operational Binding Error
with problem invalidagreement iS sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

If the superior DSA receives an error, it deletes the marked DSE of type subr and returns an error for the
Add Entry operation.

If the superior DSA receives a result, it removes the mark from the DSE that represents the subr and
returns aresult for the Add Entry operation.

If any failure occurs (e.g., communication or end system), the superior DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending establishment of a
hierarchical operational binding for which it is the initiator. If the establishment is as a result of an Add
Entry operation, and the requester aborts the operation (e.g., by releasing or aborting the application
association) before the establishment is complete, the superior DSA shall ignore this event and complete
the establishment (which may or may not be successful). In this case, the user will not be informed of the
outcome of the Add Entry operation.

NOTE 1 — Marking the subordinate aids recovery and concurrency control. Another user cannot add an entry that is
already marked, and the DSA repeats the establish operational binding for all marked subordinates after a failure.

NOTE 2 — With the above procedure, knowledge has only transient inconsistency. It is alocal matter how the superior
DSA treats unrelated operations that read the subordinate reference while it is marked.

24.3.1.2 Establishment initiated by subordinate DSA

The subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an
administrator to connect a subtree of entries held in the DSA to a certain point in the global DIT. In this case, the
subordinate DSA shall establish an HOB according to the following procedure:

108

1)

2)

3)

4)

The subordinate DSA either has a DSE of type cp as part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingID and stores it with the
context prefix DSE.

The subordinate DSA sends an Establish Operationa Binding operation to the superior DSA containing
the following parameters:

@) bindingType SettOhierarchicalOperationalBindingID;
b) subordinateToSuperior establishment parameter, as appropriate;

C) HierarchicalAgreement With the immediateSuperior component set to the distinguished
name of the immediate superior of the new entry and the ran component set to the RDN of the new
entry;

d) thebindingID, myAccessPoint and valid parameters, as appropriate.

If the superior DSA refuses the operation, it returns an Operational Binding Error with the appropriate
problem value set.

The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an operationalBindingError With problem roleAssignment.

The superior DSA checks that the requested RDN for the new context prefix is not already in use. If no
matching RDN is found using locally held information, but the immediately superior DSE is of type
nssr, the procedure in clause 19.1.5 is followed. If no matching RDN is discovered using this procedure,
the superior DSA creates a DSE of type subr, storesthebindingIp with it, and returns aresult.

If a subordinate reference is found with this RDN, the two values of bindingID are compared. If they
are equal, aresult isreturned. The SsuperiorToSubordinate parameter returned by the superior DSA
shal not contain the entry component. If the two values of bindingID are not equal, an
operationalBindingError With problem invalidagreement iS sent; this means the superior DSA
has a permanent knowledge inconsistency that requires correction by an administrator.

If a matching RDN is found by exploring an NSSR, an operationalBindingError With problem
invalidAgreement iS Sent; this also means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It isalocal
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry,
admPoint, rhob and immSupr, as appropriate, to represent the contextPrefixInfo; and, as
appropriate, a DSE of type rhob and entry to represent the immediateSuperiorInfo. The mark of
the context prefix DSE is removed.

If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending establishment of a
hierarchical operational binding for which it isthe initiator.

24.3.2 Moadification procedure

The following procedures are defined for the modification of an HOB which has been initiated by the procedure
detailed in clause 24.3.1.

24.3.2.1 Moadification procedureinitiated by superior

This procedure may be invoked as a result of modification operations, as described in clause 19.1, or as a result of
administrative intervention (e.g., to convey changes to the myAccessPoint, agreement Or valid parameters of the
HOB). Also, if a superior DSA detects changes to the contextPrefixInfo Of immediateSuperiorInfo
components of the superiorTosubordinate value that it supplied to the subordinate DSA, it shall propagate the new
information to the subordinate DSA employing the following procedure:

1) Mark the DSE of type subr as being modified, and if this modification is as a result of a modification to
the RDN of the subordinate context prefix entry, a new DSE of type subr is added and marked as being
added.

2) The superior DSA produces a new bindingID Value from the existing value by incrementing its
version component. Using this new bindingID, it sends a Modify Operational Binding operation to
the subordinate DSA with the modification parameter SsuperiorToSubordinateModification.

3) The subordinate DSA checks the identifier component of the bindingIp. If it has no such
agreement with the superior, or if the version component is less than the version of the HOB, it shall
return an operationalBindingError With problem invalidagreement.

4) The subordinate DSA may accept the modification to the HOB, modify or rebuild the DSES representing
the context prefix information, update the version component of its bindingID and return a result.
Alternatively, it may return an error and then terminate the agreement.

5) If the superior DSA receives aresult, the modification is completed. If this modification is the result of a
modification to the RDN of the subordinate context prefix entry, the new DSE, having type subr and
marked as being added, has its mark removed, and the old DSE, marked as being modified, is deleted. If
not, the mark being modified is simply removed.

If the superior DSA receives an error, the modification has failed. The mark being modified is removed.
If this modification is the result of a modification to the RDN of the subordinate context prefix entry, the
new DSE, having type subr and marked as being added, is removed. If not, the measures taken are
outside the scope of this Directory Specification.

If any failure occurs (e.g., communication or end system), the superior DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending modify of a hierarchical
operational binding for which it istheinitiator. If the modification is as aresult of aModi £yDN operation
modifying the RDN of the subordinate context prefix entry, and the requester aborts the operation
(eg., by releasing or aborting the application association) before the modification is complete, the
superior DSA shall ignore this event and complete the modification (which may or may not be
successful). In this case, the user will not be informed of the outcome of the Modi £yDN operation.

24.3.2.2 Moadification procedureinitiated by subordinate

This procedure may be invoked as a result of administrative intervention (e.g., to convey changes to the
myAccessPoint, agreement Of valid parameters of the HOB). Also if a subordinate DSA detects changes to the
SubordinateToSuperior value that it supplied to the superior DSA, it shall propagate the new information to the
superior DSA employing the following procedure:

Rec. ITU-T X.518 (10/2012) 109

| SO/l EC 9594-4:2014 (E)

1) Mark the DSE of type cp as being modified.

2) The subordinate DSA produces a new bindingID value from the existing value by incrementing its
version component. Using this new bindingiD, it sends a Modify Operational Binding operation to
the superior DSA with the modification parameter subordinateToSuperior.

3) The superior DSA checks the identifier component of the bindingID. If it has no such agreement
with the subordinate, or if the version component is less than the version of the HOB, it shall return an
operationalBindingError With problem invalidAgreement.

4) The superior DSA may accept the modification to the HOB, modify the DSE representing the
subordinate reference and return a result. Alternatively, it may return an error and then terminate the
agreement.

In addition, if the superior DSE of the DSE (of type subr) to be renamed is of typenssr, the DSA shall
follow the procedure defined in clause 19.1.5 (Modify Operations and NSSRs) to ensure that the new
name of the entry is unambiguous, before responding to the HOB modification request.

5) If the subordinate DSA receives a result, the modification is completed and it removes the mark. If it
receives an error, the measures taken are outside the scope of this Directory Specification.

If any failure occurs (e.g., communication or end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending modify of a hierarchical
operational binding for which it istheinitiator.

2433 Termination procedure

The following procedures are defined for termination of an HOB which has been initiated by the procedure detailed in
clause 24.3.1.

24.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the DSE representing the subordinate reference being deleted, so that the
subordinate reference is no longer used during Name Resol ution.

2) The superior DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the subordinate DSA. The version component of the bindingID iSomitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the hierarchical operational binding and sends a result, unless the identifier component of the
bindingID iS unknown, in which case an operationalBindingError With problem invalidiIp, is
returned. It is a loca matter to determine the fate of any entry information associated with the
subordinate naming context.

4) If the superior DSA receives aresult or an operationalBindingError With problem invalidIp, it
shall delete the DSE marked being deleted that represents the subordinate reference associated with the
hierarchical operational binding and deletes any information about the operational binding.

If any failure occurs (e.g., communication of end system), the superior DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending termination of a hierarchical
operational binding for which it istheinitiator.

24.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, or as a result of administrative intervention. The
following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being del eted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the DSE that represents
the subordinate reference associated with the hierarchical operational binding, deletes any information
about the operational binding and sends a result, unless the identifier component of the bindingID
isunknown, in which case an operationalBindingError With problem invalidib, is returned.

4) If the subordinate DSA receives aresult or an operationalBindingError With problem invalidiIp,
it shall delete any information about the operational binding.

110 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

NOTE — The fate of the entry information of naming context is a matter local to the subordinate DSA. Since renaming
(i.e,, moving) a naming context is not alowed by the Modify DN operation, an administrator might, for example,
terminate the HOB, select another context prefix for the naming context and reconnect it to another part of the DIT
(i.e., establish anew HOB).

If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending termination of a hierarchical
operational binding for which it istheinitiator.

24.4 Proceduresfor operations

The operations that can be executed in the cooperative state of a hierarchical operational binding are those defined
within the directorySystemac application context.

The procedures that the DSA involved in a hierarchical operational binding shall follow are defined in clauses 16 to 22.

24.5 Use of application contexts

To establish, modify or terminate a hierarchical operational binding using the protocol and procedures of this Directory
Specification, a DSA shall use the operationalBindingManagementAcC application context.

25 Non-specific hierarchical operational binding

A non-gpecific hierarchical operationa binding is used to represent the relationship between two DSAs holding two
naming contexts, one immediately subordinate to the other. In the case of an NHOB, the superior DSA holds a non-
specific subordinate reference to the naming context held by the subordinate DSA; the subordinate DSA holds an
immediate superior reference to the naming context held by the superior DSA. The operational binding ensures that the
appropriate knowledge information is exchanged and maintained between the two DSAs so that both DSAs are able to
behave during the process of name resolution and operation evaluation as defined in clauses 18 and 19.

25.1 Operational binding type characteristics

2511 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
thistype are:

a) therole of the master DSA for the superior naming context, the superior DSA (associated with abstract
role"A"); and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with
abstract role "B").

2512 Agreement

The agreement information exchanged during the establishment of the non-specific hierarchical operational binding a
value of NonSpecificHierarchicalAgreement cOntains only the distinguished name of the entry immediately
superior to the new naming context (the immediateSuperior component). Thisinformation shall be provided by the
DSA that initiates the NHOB.

NonSpecificHierarchicalAgreement ::= SEQUENCE ({
immediateSuperior [1] DistinguishedName,
-}

NOTE — How the subordinate DSA determines that the name of the new naming context is unambiguous is outside the scope of
this Directory Specification. The name will be unambiguous if correctly assigned by the relevant naming authority and if no other
DSA holds the same name as a master entry.

25.1.3 [Initiator

25.1.3.1 Establishment

The establishment of a non-specific hierarchical operational binding can be initiated only by the subordinate DSA role.
Initiation by the subordinate DSA (which connects one or more locally existing entries or subtrees to the global DIT) is
caused by administrative intervention.

Rec. ITU-T X.518 (10/2012) 111

| SO/l EC 9594-4:2014 (E)

25.1.3.2 Moaodification

The modification of a non-specific hierarchical operational binding can be initiated by either role. The superior DSA
may issue the modification as a result of a modification of the superior context prefix information. This can be as a
result of any of the modification operations, or by administrator intervention.

Either DSA may aso modify the NHOB if the access point information for its naming context (or one of its
immediately subordinate naming contexts in the case of the subordinate role) changes.

25.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the final context prefix entry held by the subordinate immediately subordinate to the
immediateSuperior component of the agreement or by administrative intervention.

25.1.4 Establishment parameters

The establishment parameter issued by the superior DSA, a value of NHOBSuperiorToSubordinate, IS equivalent to
the corresponding HOB establishment parameter, except that the entryInfo component is absent.

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (
WITH COMPONENTS {..., entryInfo ABSENT })

The establishment parameter issued by the subordinate DSA, avalue of NHOBSubordinateToSuperior, iSequivalent
to the corresponding HOB establishment parameter, except that the alias and entryInfo components are absent.

NHOBSubordinateToSuperior ::= SEQUENCE {
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,
-}

25.1.5 Moadification parameters

These parameters are identical to the corresponding establishment parameters and are used to signal changes occurring
to information provided in the establishment parameters subsequent to the establishment of the NHOB.

If any component of NHOBSuperiorToSubordinate Of NHOBSubordinateToSuperior experiences a change
(e.g., the contextPrefixInfo cOmponent of NHOBSuperiorToSubordinate), the corresponding component of the
modification parameter (e.g., the contextPrefixInfo component of NHOBSuperiorToSubordinate) shall be
provided in its entirety in the Modify Operational Binding.

25.1.6 Termination parameters

Neither role provides a termination parameter when terminating an NHOB.

25.1.7 Typeidentification

The non-specific hierarchical operational binding is identified by the object identifier assigned when defining the
nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING information object in clause 25.2.

25.2 Operational binding information object class definition

This clause defines the non-specific hierarchical operational binding type using the OPERATIONAL-BINDING
information object class defined in Rec. ITU-T X.501 | ISO/IEC 9594-2.

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT NonSpecificHierarchicalAgreement
APPLICATION CONTEXTS {{directorySystemAC}}
ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperiorToSubordinate
TERMINATION-INITIATOR TRUE}

112 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateToSuperior
TERMINATION-INITIATOR TRUE}
ID id-op-binding-non-specific-hierarchical }

25.3 DSA proceduresfor non-specific hierarchical operational binding management

In the following procedures, as in the procedures described in clause 24.3, a new DSE or a mark created by a DSA shall
be stored in stable storage.

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e., not
initiating the establishment or modification) may provide the DSA playing the initiating role with information (e.g.,
operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operational binding in such cases.

25.3.1 Establishment procedure

Only the subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an
administrator to connect one or more subtrees of entries held in the DSA to a certain point in the global DIT. In this
case, the subordinate DSA shall establish an NHOB according to the following procedure;

1) The subordinate DSA either has a DSE of type cp as part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingID and stores it with the
context prefix DSE.

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType Se&t {0 nonSpecificHierarchicalOperationalBindingID;
b) NHOBSubordinateToSuperior establishment parameter, as appropriate;

C) NonSpecificHierarchicalAgreement With the immediateSuperior component set to the
distinguished name of the immediate superior of the new entry;

d) thebindingID, myAccessPoint andvalid, parameters, asappropriate.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an operationalBindingError With problem roleAssignment.

4) The superior DSA adds the DSE type nssr (and nonSpecificknowledge attribute information) to the
DSE of the immediate superior of the new entry, storesthe bindingIDb with it, and returns a result.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It isalocal
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives a result, it adds the necessary DSES of types glue, subentry,
admPoint, rhob, and immSupr, as appropriate, to represent the contextPrefixInfo; and, as
appropriate, a DSE of type rhob and entry to represent the immediateSuperiorInfo. The mark of
the context prefix DSE is removed.

If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending establishment of a
hierarchical operational binding for which it isthe initiator.

25.3.2 Moadification procedure

If the superior DSA detects any changes in the NHOBSuperiorToSubordinate information that it supplied to a
subordinate DSA within a non-specific hierarchical operational binding, it shall propagate the changed information to
the subordinate DSA. If the NHOB was established using the procedures of clause 25.3.1, then it shall be modified
according to the procedures defined for modifying the hierarchical operational binding in clause 24.3.2.1 (with
NHOBSuperiorToSubordinate Substituted for SuperiorToSubordinateModification).

Similarly, if the subordinate DSA detects any changes in the NHOBSubordinateToSuperior information that it
supplied to a superior DSA, it shall propagate the changes to the superior DSA. If the NHOB was established using the
procedures of clause 25.3.1, then it shall be modified according to the procedures defined for modifying the hierarchical
operationa binding in clause 24322 (with NHOBSubordinateToSuperior Substituted for
SubordinateToSuperior).

Rec. ITU-T X.518 (10/2012) 113

| SO/l EC 9594-4:2014 (E)

25.3.3 Termination procedure

The following procedures are defined for termination of an NHOB which was established using the procedures of
clause 25.3.1.

25.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the value corresponding to the subordinate DSA in the
nonSpecificKnowledge attribute held in the DSE of the immediately superior entry, as being deleted.

2) The superior DSA sends a Terminate Operational Binding operation for the NHOB with the subordinate
DSA. The version component of the bindingID isomitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the NHOB and sends a result, unless the identifier component of the bindingID is unknown, in
which case an operationalBindingError With problem invalidib is returned. It is alocal matter
to determine the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives aresult or an operationalBindingError With problem invalidIb, it
shall delete the value of the nonspecificKnowledge attribute marked being deleted that represents the
access point information associated with the NHOB and deletes any information about the operational
binding. If this was the last value of the nonSpecificKnowledge attribute, it removes the
nonSpecificKnowledge attribute and the DSE type nssr from the DSE.

If any failure occurs (e.g., communication of end system), the superior DSA shall repeat the steps
starting at step 2) until aresult or error has been received for each pending termination of an NHOB for
which it isthe initiator.

25.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, of the last subordinate naming context held by the
subordinate DSA, or as aresult of administrative intervention. The following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being del eted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operationa
binding to the superior DSA. The version component of the bindingID isomitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the value of the
nonSpecificKnowledge atribute that represents the access point information associated with the
NHOB, deletes any information about the operational binding, removes the nonSpecificKnowledge
attribute and the DSE type nssr from the DSE immediately superior to the subordinate naming context
(if the deleted value was the last value of the nonspecificKnowledge attribute) and sends a result,
unless the identifier component of the bindingID IS unknown, in which case an
operationalBindingError With problem invalidID isreturned.

4) If the subordinate DSA receives aresult or an operationalBindingError With problem invalidIp,
it shall delete any information about the operational binding. It is alocal matter to determine the fate of
any entry information associated with the subordinate naming context.

If any failure occurs (e.g., communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending termination of an NHOB for
which it isthe initiator.

254 Proceduresfor operations

The operations that can be executed in the cooperative state of a non-specific hierarchical operational binding are those
defined within the directorysystemac application context.

The procedures that the DSA involved in a non-specific hierarchical operational binding shall follow are defined in
clauses 16 to 22.

25.5 Use of application contexts

To establish, modify, or terminate a non-specific hierarchical operational binding using the protocol and procedures of
this Directory Specification, a DSA shall use the operationalBindingManagementAcC application context.

114 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

Annex A

ASN.1for Distributed Operations

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type and value definitions contained in this Directory Specification in the form of
the ASN.1 module DistributedOperations.

DistributedOperations {joint-iso-itu-t ds(5) module(l) distributedOperations(3) 7}
DEFINITIONS ::=
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within these Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2

basicAccessControl, commonProtocolSpecification, directoryAbstractService,
enhancedSecurity, informationFramework, selectedAttributeTypes, serviceAdministration
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

DistinguishedName, Name, RDNSequence
FROM InformationFramework informationFramework

MRMapping, SearchRuleId
FROM ServiceAdministration serviceAdministration

AuthenticationLevel
FROM BasicAccessControl basicAccessControl

OPTIONALLY-PROTECTED({}
FROM EnhancedSecurity enhancedSecurity

-- from Rec. ITU-T X.511 | ISO/IEC 9594-3
abandon, addEntry, administerPassword, changePassword, CommonResults, compare,
directoryBindError, ldapTransport, linkedLDAP, list, modifyDN, modifyEntry,
read, referral, removeEntry, search, SecurityParameters, SimpleCredentials,
SpkmCredentials, StrongCredentials, Versions

FROM DirectoryAbstractService directoryAbstractService

-- from Rec. ITU-T X.519 | ISO/IEC 9594-5

ERROR, id-errcode-dsaReferral, OPERATION
FROM CommonProtocolSpecification commonProtocolSpecification

-- from Rec. ITU-T X.520 | ISO/IEC 9594-6
PresentationAddress, ProtocolInformation, UnboundedDirectoryString,
UniqueIdentifier
FROM SelectedAttributeTypes selectedAttributeTypes;
-- errors and parameters
dsaReferral ERROR ::= {

PARAMETER OPTIONALLY-PROTECTED { DsaReferralData }
CODE id-errcode-dsaReferral }

Rec. ITU-T X.518 (10/2012) 115

| SO/l EC 9594-4:2014 (E)

DsaReferralData ::=
reference [0]
contextPrefix [1]

e e ey

COMPONENTS OF

SET {

ContinuationReference,
DistinguishedName OPTIONAL,

CommonResults }

-- common arguments and results

ChainingArguments ::= SET {

originator
targetObject
operationProgress

traceInformation
aliasDereferenced
aliasedRDNs

[0l
[1]
[2]

DistinguishedName OPTIONAL,
DistinguishedName OPTIONAL,

OperationProgress

DEFAULT {nameResolutionPhase notStarted},

[3]
[4]
[5]

TraceInformation,

BOOLEAN DEFAULT FALSE,

INTEGER OPTIONAL,

-- only present in first edition systems

returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
info [8] DomainInfo OPTIONAL,
timeLimit [9] Time OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT {},
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniqueIdentifier [12] UniqueIdentifier OPTIONAL,
authenticationLevel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE,
operationIdentifier [17] INTEGER OPTIONAL,
searchRuleId [18] SearchRuleId OPTIONAL,
chainedRelaxation [19] MRMapping OPTIONAL,
relatedEntry [20] INTEGER OPTIONAL,
dspPaging [21] BOOLEAN DEFAULT FALSE,
-- [22] Not to be used
-- [23] Not to be used
excludeWriteableCopies [24] BOOLEAN DEFAULT FALSE,
e}

Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime,
oo}

DomainInfo ::= ABSTRACT-SYNTAX.&Type

ChainingResults ::= SET {
info [0] DomainInfo OPTIONAL,
crossReferences [1] SEQUENCE SIZE (1l..MAX) OF CrossReference
securityParameters [2] SecurityParameters DEFAULT {},
alreadySearched [3] Exclusions OPTIONAL,
e}

CrossReference ::= SET {
contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPointInformation,
e}

OperationProgress ::= SET
nameResolutionPhase [0]

notStarted (1),
proceeding (2),
completed (3),

Y

nextRDNToBeResolved [1]

o)

TraceInformation ::=

Traceltem ::= SET {
dsa

{

ENUMERATED {

INTEGER OPTIONAL,

SEQUENCE OF TraceItem

[0l

Name,

116 Rec. ITU-T X.518 (10/2012)

OPTIONAL,

| SO/l EC 9594-4:2014 (E)

targetObject [1] Name OPTIONAL,
operationProgress [2] OperationProgress,
e}
ReferenceType ::= ENUMERATED {
superior (1),
subordinate (2),
cross (3),
nonSpecificSubordinate (4),
supplier (5),
master (6),
immediateSuperior (7).,
self (8),
ditBridge (9),
e}
AccessPoint ::= SET ({
ae-title [0] Name,
address [1] PresentationAddress,

protocolInformation [2] SET SIZE (1l..MAX) OF ProtocolInformation OPTIONAL,
-- [6] Not to be used

e}

MasterOrShadowAccessPoint ::= SET {
COMPONENTS OF AccessPoint,
category [3] ENUMERATED (

master (0),
shadow (1),
writeableCopy (2),

... } DEFAULT master,
chainingRequired [5] BOOLEAN DEFAULT FALSE,

oo

MasterAndShadowAccessPoints ::= SET SIZE (1l..MAX) OF MasterOrShadowAccessPoint

AccessPointInformation ::= SET {

COMPONENTS OF MasterOrShadowAccessPoint,
additionalPoints [4] MasterAndShadowAccessPoints OPTIONAL,

DitBridgeKnowledge ::= SEQUENCE {
domainLocalID UnboundedDirectoryString OPTIONAL,
accessPoints MasterAndShadowAccessPoints,

e}
Exclusions ::= SET SIZE (1l..MAX) OF RDNSequence
ContinuationReference ::= SET {
targetObject [0] Name,
aliasedRDNs [1] INTEGER OPTIONAL, -- only present in first edition systems
operationProgress [2] OperationProgress,
rdnsResolved [3] INTEGER OPTIONAL,
referenceType [4] ReferenceType,
accessPoints [5] SET OF AccessPointInformation,
entryOnly [6] BOOLEAN DEFAULT FALSE,
exclusions [7] Exclusions OPTIONAL,
returnToDUA [8] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE,
e}

-- bind unbind operation

dSABind OPERATION ::= {

ARGUMENT DSABindArgument

RESULT DSABindResult

ERRORS { directoryBindError } }
DSABindArgument ::= SET {

credentials [0] DSACredentials OPTIONAL,

versions [1] Versions DEFAULT {v1},

cee }

Rec. ITU-T X.518 (10/2012) 117

| SO/l EC 9594-4:2014 (E)

DSACredentials ::= CHOICE {
simple [0] SimpleCredentials,
strong [1] StrongCredentials,
externalProcedure [2] EXTERNAL,
spkm [3] SpkmCredentials,
e}

DSABindResult ::= DSABindArgument

-- parameterized type for deriving chained operations

chained{OPERATION:operation} OPERATION ::= {

ARGUMENT OPTIONALLY-PROTECTED {SET {

chainedArgument ChainingArguments,

argument [0] operation.&ArgumentType } }
RESULT OPTIONALLY-PROTECTED {SET {

chainedResult ChainingResults,

result [0] operation.&ResultType}}
ERRORS

{operation.&Errors EXCEPT referral | dsaReferral}
CODE operation.&operationCode }

-- chained operations

chainedRead OPERATION ::= chained{read}
chainedCompare OPERATION ::= chained{compare}
chainedAbandon OPERATION ::= abandon

chainedList OPERATION ::= chained{list}
chainedSearch OPERATION ::= chained{search}
chainedAddEntry OPERATION ::= chained{addEntry}
chainedRemoveEntry OPERATION ::= chained{removeEntry}
chainedModifyEntry OPERATION ::= chained{modifyEntry}
chainedModi fyDN OPERATION ::= chained{modifyDN}
chainedChangePassword OPERATION ::= chained{changePassword}
chainedAdministerPassword OPERATION ::= chained{administerPassword}
chainedLdapTransport OPERATION ::= chained{ldapTransport}
chainedLinkedLDAP OPERATION ::= chained{linkedLDAP}

END -- DistributedOperations

118 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

Annex B

Specification of hierarchical and non-specific hierarchical
operational binding types
(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex includes the definitions of the ASN.1 information object classes introduced in this Directory Specification in
the form of the ASN.1 module HierarchicalOperationalBindings.

HierarchicalOperationalBindings {joint-iso-itu-t ds(5) module (1)
hierarchicalOperationalBindings (20) 7}

DEFINITIONS ::=

BEGIN

-- EXPORTS All
-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within these Directory Specifications, and for the use of other
-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and
-- modifications needed to maintain or improve the Directory service.
IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2

directoryOperationalBindingTypes, directoryOSIProtocols,
distributedOperations, informationFramework, opBindingManagement
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

Attribute{}, DistinguishedName, RelativeDistinguishedName, SupportedAttributes
FROM InformationFramework informationFramework

OPERATIONAL-BINDING
FROM OperationalBindingManagement opBindingManagement

-- from Rec. ITU-T X.518 | ISO/IEC 9594-4

MasterAndShadowAccessPoints
FROM DistributedOperations distributedOperations

-- from Rec. ITU-T X.519 | ISO/IEC 9594-5

directorySystemAC
FROM DirectoryOSIProtocols directoryOSIProtocols

id-op-binding-hierarchical, id-op-binding-non-specific-hierarchical
FROM DirectoryOperationalBindingTypes directoryOperationalBindingTypes;

-- types

HierarchicalAgreement ::= SEQUENCE {

rdn [0] RelativeDistinguishedName,

immediateSuperior [1] DistinguishedName,
SuperiorToSubordinate ::= SEQUENCE {

contextPrefixInfo [0] DITcontext,

entryInfo [1] SET SIZE (1..MAX) OF

Attribute{{SupportedAttributes}} OPTIONAL,
immediateSuperiorInfo [2] SET SIZE (1..MAX) OF

Attribute{{SupportedAttributes}} OPTIONAL,
cee }

DITcontext ::= SEQUENCE OF Vertex
Vertex ::= SEQUENCE {

rdn [0] RelativeDistinguishedName,
admPointInfo [1] SET SIZE (l..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,

Rec. ITU-T X.518 (10/2012) 119

| SO/l EC 9594-4:2014 (E)

subentries [2] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,
accessPoints [3] MasterAndShadowAccessPoints OPTIONAL,

)

SubentryInfo ::= SEQUENCE (
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute{{SupportedAttributes}},

o)

SubordinateToSuperior ::= SEQUENCE {
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,

alias [1] BOOLEAN DEFAULT FALSE,

entryInfo [2] SET SIZE (1..MAX) OF Attribute{{SupportedAttributes}} OPTIONAL,

subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,
SuperiorToSubordinateModification ::= SuperiorToSubordinate (

WITH COMPONENTS {..., entryInfo ABSENT })

NonSpecificHierarchicalAgreement ::= SEQUENCE {
immediateSuperior [1] DistinguishedName,

)

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (
WITH COMPONENTS {..., entryInfo ABSENT })

NHOBSubordinateToSuperior ::= SEQUENCE {
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
subentries [3] SET SIZE (1..MAX) OF SubentryInfo OPTIONAL,
e}
-- operational binding information objects
hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT HierarchicalAgreement
APPLICATION CONTEXTS {{directorySystemAC}}
ASYMMETRIC
ROLE-A { -- superior DSA

ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SuperiorToSubordinateModification
TERMINATION-INITIATOR TRUE }

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateToSuperior
TERMINATION-INITIATOR TRUE }

ID id-op-binding-hierarchical }

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT NonSpecificHierarchicalAgreement
APPLICATION CONTEXTS {{directorySystemAcC}}
ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperiorToSubordinate
TERMINATION-INITIATOR TRUE}
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateToSuperior

TERMINATION-INITIATOR TRUE}
ID id-op-binding-non-specific-hierarchical }
END -- HierarchicalOperationalBindings

120 Rec. ITU-T X.518 (10/2012)

| SO/I EC 9594-4:2014 (E)
Annex C

Example of distributed nameresolution

(Thisannex does not form an integral part of this Recommendation | International Standard.)

Figure C.1 is an example of how distributed name resolution is used to process different directory requests. The
example is based on the hypothetical DIT and the corresponding DSA configuration(s) described in Annex O
(Modelling of knowledge) of Rec. ITU-T X.501 | ISO/IEC 9594-2, and reproduced here for convenience.

Root
Q

Context A Context B

Context C Context D

Autonomous
administrative
areaBB

Context E

X.518(12) FC.1
CN=l CN=m CN=n

Autonomous
administrative
areaAA

CN=0 CN=p CN=q

DSA 1 DSA 2 DSA 3

Figure C.1 —Hypothetical DIT mapped onto three DSAs

Assuming a chaining mode of propagation, the following requests addressed to DSA 1 would be processed as follows:
1) A request with distinguished name {C =WW, O=ABC,0OU =G, CN =1}
— Name resolution will successfully match each RDN in the target name with DSEs held by DSA 1,
until the target DSE is located.
2) A request with distinguished name {C = WW, O = JPR}

— The Name Resolution procedure in DSA 1 will match the DSE C = WW, and will be unable to
match further. At this point, DSA 1 finds potentially two references to help it proceed: one is the
immSupr reference in DSE C = WW, and the other is the supr reference in the root DSE. In this
hypothetical example, both would be pointing to DSA 2. Therefore the request is chained to DSA 2.

— InDSA 2, the Name Resolution procedure will match the DSE C = WW, and will be unable to match
further. In this case, since the DSE C = WW isacp and entry, and DSA 2 is the master DSA for
this entry, and further there are no nssr at C = WW, DSA 2 is therefore able to determine that there
is no such name in the directory. A nameError with problem noSuchobject isreturned.

Rec. ITU-T X.518 (10/2012) 121

| SO/l EC 9594-4:2014 (E)

3) A request with distinguished name{C =VV, O = DEF, OU =K}

— The Name Resolution procedure in DSA 1 will not be able to match any DSE. The only reference
available isthe supr reference in the root DSE, which points to DSA 2. So the request is chained to
DSA 2.

— InDSA 2, the Name Resolution procedure will match the DSE C = VV, and then DSE O = DEF, and
will be unable to match further. Since DSE O = DEF is found to be of type subr, the specific
knowledge reference, which pointsto DSA 3, is used, and the request is chained to DSA 3.

— InDSA 3, the Name Resolution procedure will match the entire target object name, and find that the
located DSE is of type alias. Assuming aliases are to be dereferenced in this case, a new name
will be constructed using the aliasedEntryName contained in the matched DSE. DSA 3 will then
re-enter the Name Resolution procedure to continue.

122 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

Annex D

Distributed use of authentication

(Thisannex does not form an integral part of this Recommendation | International Standard.)

D.1 Summary
The security model is defined in clause 17 of Rec. ITU-T X.501 | ISO/IEC 9594-2. The following is a summary of the
main points of the model:

a) Strong Authentication, by the signing of the request, result and errors, is supported in the DSP.

b) Encryption of the request, result and errorsis supported in the DSP.

This annex describes how these are realized in the distributed Directory. It makes use of terminology and notation
defined in Rec. ITU-T X.509 | ISO/IEC 9594-8.

D.2 Distributed protection model

D@
@@@ &

@@@ Operation requests X.518(12)_FD.1
@@@ Operation results

FigureD.1 - Distributed protection

Figure D.1 illustrates the model to be used to specify the distributed protection procedures. The model identifies the
sequence of information flows for the general case of a List or Search operation. The operation is considered as
originating from DUA 'a, citing a target object which resides in DSA 'c' in performing the operation, DSAs 'b', 'c', 'd'
and '€ are to beinvolved.

DUA 'd initially contacts any DSA (DSA 'b") which does not hold the target object, but which is able to navigate, via
chaining, to the DSA (DSA 'c) holding the target object. If all the DSAs were operating in referral mode, then the
model would be significantly simplified, and each DSA/DSA exchange would equate, in protection terms, to the
interaction between DUA 'a and DSA 'b'.

D.3 Signed chained operations

If digitally signed chained operations are supported, the DUA is responsible for verifying the digital signatures returned
by the DSA in a List or Search result. This requires that the DUA is capable of verifying digital signatures from more
than one DSA if a distributed environment were used to generate the List or Search results. Correlating the results of
List and Search operationsis the responsibility of the DUA. DSAs should not merge these results on behalf of the DUA.
In some cases, the DUA may receive information from various DSAs each supporting different levels of authentication
and digital signatures. It is then a DUA decision whether to use the returned information if the digital signature is
invalid.

Rec. ITU-T X.518 (10/2012) 123

| SO/l EC 9594-4:2014 (E)

D.3.1 Chained signed arguments

If a DAP argument is signed by the DUA, the signature should be maintained throughout the life of the request. This
signature can be verified and used by DSAs when performing Access Control verifications. If the DSA determines that
the request needs to be chained to another DSA for processing, it shall include the DUA's signed request along with the
necessary chaining arguments. If the DSA is going to support signed DSP operations (DSA-to-DSA) then the DSA's
credentials would be used to sign the DSP chainingArguments and the DUA's signature should be maintained along

with the original DAP request.

X.518(12)_FD.2
@ DUA 'a user signs DAP request
@ DSA 'b' signs DSP chaining argument
(DAPrequest signed by DUA 'a user)

Figure D.2 — Chained signed arguments
D.3.2 Chained signed results

If the DUA user wishes to receive signed results from the Directory, the SecurityParameters.ProtectionRequest
field should be set to steNED. The remote DSA should have the ability to be configured to send digitaly signed
ChainingResults. The remote DSA can optionally sign the DAP result and the DSP chainingResults, thereby
supporting end-to-end signatures. DSA 'b" will be responsible for verifying the remote DSA's DSP Signature, and the
DUA 'a will be responsible for verifying the DSA's DAP Result Signature.

X.518(12)_FD.3
@ DSA 'c' signs DSP chaining result and signs DAP result

@ DSA 'b' returns DAP result signed by DSA 'c'

Figure D.3 —Chained signed results

D.3.3 Mergingof Signed List or Search Results

This requires that the DUA is capable of verifying digital signatures from more than one DSA if a distributed
environment were used to generating the List or Search results. Correlating the results of List and Search operations is
the responsibility of the DUA. DSAs should not merge these results on behalf of the DUA user. In some cases, the
DUA may receive information from various DSAs each supporting different levels of authentication and digital
signatures. It isthen a DUA decision whether or not to use the returned information if the digital signatureisinvalid.

o)
ROKO
©)

X.518(12)_FD.4
@ DSA 'c, 'd', '€ sign DSP chaining result (DAPresult signed by DSA 'c', 'd', '€)

@ DSA 'b' returns partial DAP result signed by DSA 'c', 'd' and 'e', DSA 'b' does
not merge the DAP results

FigureD.4 —Merging of Signed List or Search Results

124 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

Annex E

K nowledge maintenance example

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This annex illustrates knowledge maintenance, as defined in clause 23, with a simple example. In Figure E.1, the
following symbols are used to depict the DSA information trees of five DSAS.

©) root DSE (O glue DSE [contextprefix entry

@ cniry \/ SubrDSE /\ immSupr DSE

(O shadowed entry D shadowed context prefix entry

\V shadowed subr DSE /\ shadowed immSupr DSE X 518_FE.1
shadowing

v

"reverse" shadowing

Figure E.1 — Symbols used to depict DSA infor mation trees

In Figure E.2, DSA 1 is the master for naming context { A}, consisting of the two entries{ A} and {A, B}. DSA 1 holds
a subordinate reference for naming context { A, B, C} which is maintained viaan HOB with DSA 3. DSA 1 is a shadow
supplier to DSA 2, supplying it with copies of the user information of naming context {A} and the subordinate
reference to naming context {A, B, C} which identifies the access points of DSA 3, DSA 4 and DSA 5, the former
being the master for the subordinate naming context.

DSA 3 is the master for naming context {A, B, C}. In addition to holding the single entry {A, B, C} of the naming
context, DSA 3 holds an immediate superior reference for naming context { A} which is maintained via an HOB with
DSA 1. DSA 3 is a shadow supplier to DSA 4, supplying it with copies of the user information of naming context
{A, B, C} and the immediate superior reference to naming context { A} which identifies the access points of DSA 1 and
DSA 2, the former being the master for the superior naming context. DSA 4 is a (secondary) shadow supplier to DSA 5,
providing it with a copy of the information it receives from DSA 3.

Figure E.2 illustrates the DSA operational attributes employed to represent and maintain knowledge.

Rec. ITU-T X.518 (10/2012) 125

| SO/l EC 9594-4:2014 (E)

| myAccessPoint = DSA 1

/

| myAccessPoint = DSA 2

DSA1 DSA2

| consumerKnowledge = DSA 2 | supplierKnowledge = DSA 1

specificKnowldege =
DSA 3,DSA4,DSAS

specificKnowledge =
DSA 3,DSA4,DSA5

myAccessPoint = DSA 3
/
specificKnowledge = DSA 1, DSA 2

DSA3 myAccessPoint = DSA 4 DSA 4
/
specificKnowledge = DSA 1, DSA 2 A

consumerKnowledge = DSA 5

consumerKnowledge = DSA 4

supplierKnowledge = DSA 4

secondaryShadows =
DSA 4, {DSA 5}

myAccessPoint = DSA S F DSAS
|V

| specificKnowledge = DSA 1, DSA 2

B

| supplierKnowledge = DSA 4

X.518 FE.2

Figure E.2 — Knowledge maintenance example

DSA 1 uses the value of itsmyAccessPoint attribute (associated with its root DSE) and the commonly usable values
of itS consumerknowledge (associated with context prefix {A}) attribute to form a value of the type
MasterAndShadowAccessPoints for use in its HOB interactions with DSA 3. DSA 3, in turn, uses the value of its
myAccessPoint attribute (associated with its root DSE) and the commonly usable values of itS consumerknowledge
atribute and its secondaryshadows (both associated with context prefix {A, B, C}) attribute to form a value of the
type MasterAndShadowAccessPoints for usein its HOB interactions with DSA 1. Together, the two DSAS, using
the DOP, maintain a subordinate reference held by DSA 1 and an immediate superior reference held by DSA 3. DSA 1's
subordinate reference, expressed by a specificknowledge attribute associated with a DSE at { A, B, C}, isbased on
the MasterAndShadowAccessPoints Vvalue it receives from DSA 3; DSA 3's immediate superior reference,
expressed by a specificKnowledge ditribute associated with a DSE a {A}, is similaly based on the
MasterAndShadowAccessPoints valueit receivesfrom DSA 1.

DSA 1 and DSA 2 use their values of myAccessPoint in Shadowing Operational Binding interactions to maintain a
value of consumerknowledge in DSA 1 (identifying the access point of DSA 2) and supplierKnowledge in DSA 2
(identifying the access point of DSA 1), both attributes associated with the context prefix { A}. Together, the two DSAS,
using the DOP, maintain the consumer reference held by DSA 1 and the supplier reference held by DSA 2.

126 Rec. ITU-T X.518 (10/2012)

| SO/l EC 9594-4:2014 (E)

DSA 2 receives a copy of the specificKnowledge éttribute associated with context prefix {A, B, C} from DSA 1in
DISP interactions with DSA 1. This interaction serves to maintain DSA 2's subordinate reference to the context prefix
{A, B, C}.

DSA 3 and DSA 4 (and similarly DSA 4 and DSA 5} maintain consumer and supplier references, respectively, in a
fashion analogous to the interaction between DSA 1 and DSA 2.

DSA 4 receives acopy of the specificKknowledge attribute associated with context prefix { A4} from DSA 3in DISP
interactions with DSA 3. This interaction serves to maintain DSA 4's immediate superior reference to the context
prefix {A}.

DSA 4 communicates to DSA 3 any changes in itS myAccessPoint and consumerKnowledge attribute (and
secondaryShadows attribute, which is null in this example) using the modify operational binding operation of the
DOP. DSA 4 supplies DSA 3 with a value of supplierandConsumers, containing only those values of the
consumerKnowledge attribute that identify the access points of DSAs that have commonly usable shadows; the values
of the secondaryshadows attribute supplied by DSA 4, had there been any, would all, by design, be commonly
usable. (In this example, DSA 5 is presumed to hold a commonly usable copy of the naming context at {A, B, C}.)
DSA 3 uses thisinformation to maintain avalue of its secondaryshadows attribute associated with context prefix { A,
B, C}. This attribute, as described above, is used in DOP interactions with DSA 1 to maintain DSA 1's subordinate
reference to the context prefix { A, B, C}.

DSA 5 maintains its immediate superior reference to context prefix {A} using DISP interactions with DSA 4 in a
fashion analogous to the interactions between DSA 3 and DSA 4.

Rec. ITU-T X.518 (10/2012) 127

| SO/l EC 9594-4:2014 (E)

Annex F

Amendmentsand corrigenda

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This edition of this Directory Specification includes the following amendment to the previous edition that was balloted
and approved by | SO/IEC:

— Amendment 1 on Password policy support; and
— Amendment 2 on Communications support enhancements.

This edition of this Directory Specification includes the following technical corrigenda correcting defects documented
in Defect Reports against the sixth edition of this Directory Specification;

— Technical Corrigendum 1 (covering Defect Reports 338 and 339).
— Technical Corrigendum 2 (covering Defect Reports 375, 376, 377, 380, 383, 384, 385, 386 and 387).

128 Rec. ITU-T X.518 (10/2012)

SeriesA
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-tel ephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Glaobal information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2014

	ITU-T Rec. X.518 (10/2012) –
Information technology - Open Systems Interconnection - The Directory: Procedures for distributed operation
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Other references

	3 Definitions
	3.1 Basic Directory definitions
	3.2 Directory model definitions
	3.3 DSA information model definitions
	3.4 Abstract service definitions
	3.5 Protocol definitions
	3.6 Directory replication definitions
	3.7 Distributed operation definitions

	4 Abbreviations
	5 Conventions
	6 Overview
	7 Distributed Directory system model
	8 DSA interactions model
	8.1 Decomposition of a request
	8.2 Uni-chaining
	8.3 Multi-chaining
	8.4 Referral
	8.5 Mode determination

	9 Overview of DSA abstract service
	10 Information types
	10.1 Introduction
	10.2 Information types defined elsewhere
	10.3 Chaining arguments
	10.4 Chaining results
	10.5 Operation progress
	10.6 Trace information
	10.7 Reference type
	10.8 Access point information
	10.9 DIT bridge knowledge
	10.10 Exclusions
	10.11 Continuation reference

	11 Bind and Unbind
	11.1 DSA Bind
	11.2 DSA Unbind

	12 Chained operations
	12.1 Chained operations
	12.2 Chained Abandon operation
	12.3 Chained operations and protocol version

	13 Chained errors
	13.1 Introduction
	13.2 DSA referral

	14 Introduction
	14.1 Scope and limits
	14.2 Conformance
	14.3 Conceptual model
	14.4 Individual and cooperative operation of DSAs
	14.5 Cooperative agreements between DSAs

	15 Distributed Directory behaviour
	15.1 Cooperative fulfilment of operations
	15.2 Phases of operation processing
	15.3 Managing Distributed Operations
	15.4 Loop handling
	15.5 Other considerations for distributed operation
	15.6 Authentication of Distributed operations

	16 The Operation Dispatcher
	16.1 General concepts
	16.2 Procedures of the Operation Dispatcher
	16.3 Overview of procedures

	17 Request Validation procedure
	17.1 Introduction
	17.2 Procedure parameters
	17.3 Procedure definition

	18 Name Resolution procedure
	18.1 Introduction
	18.2 Find DSE procedure parameters
	18.3 Procedures

	19 Operation evaluation
	19.1 Modification procedures
	19.2 Single entry interrogation procedure
	19.3 Multiple entry interrogation procedure

	20 Continuation Reference procedures
	20.1 Chaining strategy in the presence of shadowing
	20.2 Issuing chained subrequests to a remote DSA or LDAP server
	20.3 Procedures' parameters
	20.4 Definition of the procedures
	20.5 Abandon procedures
	20.6 DAP request to LDAP request procedure
	20.7 LDAP result to DAP reply procedure

	21 Results Merging procedure
	22 Procedures for distributed authentication
	22.1 Requester authentication
	22.2 Results authentication

	23 Knowledge administration overview
	23.1 Maintenance of knowledge references
	23.2 Requesting cross reference
	23.3 Knowledge inconsistencies

	24 Hierarchical operational bindings
	24.1 Operational binding type characteristics
	24.2 Operational binding information object Class definition
	24.3 DSA procedures for hierarchical operational binding management
	24.4 Procedures for operations
	24.5 Use of application contexts

	25 Non-specific hierarchical operational binding
	25.1 Operational binding type characteristics
	25.2 Operational binding information object class definition
	25.3 DSA procedures for non-specific hierarchical operational binding management
	25.4 Procedures for operations
	25.5 Use of application contexts

	Annex A –
ASN.1 for Distributed Operations
	Annex B –
Specification of hierarchical and non-specific hierarchical operational binding types
	Annex C –
Example of distributed name resolution
	Annex D –
Distributed use of authentication
	D.1 Summary
	D.2 Distributed protection model
	D.3 Signed chained operations

	Annex E –
 Knowledge maintenance example
	Annex F –
Amendments and corrigenda

