| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.518

TELECOMMUNICATION (08/97)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

Directory

Information technology — Open Systems
Interconnection — The Directory: Procedures for
distributed operation

ITU-T Recommendation X.518

(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
Generdl
Satellite data transmission systems
MESSAGE HANDLING SYSTEMS
DIRECTORY

OSI NETWORKING AND SYSTEM ASPECTS

Networking

Efficiency

Quiality of service

Naming, Addressing and Registration

Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT

Systems Management framework and architecture
Management Communication Service and Protocol

Structure of Management Information
Management functions and ODMA functions
SECURITY
OSl APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, pleaserefer to ITU-T List of Recommendations.

INTERNATIONAL STANDARD 9594-4
ITU-T RECOMMENDATION X.518

INFORMATION TECHNOLOGY — OPEN SYSTEMS INTERCONNECTION -
THE DIRECTORY: PROCEDURES FOR DISTRIBUTED OPERATION

Summary

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent serviceto its users.

Source

The ITU-T Recommendation X.518 was approved on the 9th August 1997. The identical text is aso published as
I SO/IEC International Standard 9594-4.

ITU-T Rec. X.518 (1997 E) i

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on aworldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’'s purview, the necessary standards are prepared on a
collaborative basis with SO and |EC.

NOTE

In this Recommendation the term recognized operating agency (ROA) includes any individual, company, corporation or
governmental organization that operates a public correspondence service. The terms Administration, ROA and public
correspondence are defined in the Constitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

0 ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

i ITU-T Rec. X.518 (1997 E)

CONTENTS

Page

SECTION 1 — GENERAL ...ttt ettt bbbt bbb e s e bt b e e e bt st e e b e s e e s enennan 1
1 10 o U 1
2 o= RV = 1= (01T 1
21 ldentical Recommendations | International Standards...........c.cceeeeereie e e 1

3 = T T o) PSR 2
3.1 OSl Reference Model DEfiNITIONS.........cceirieriiirieinesee ettt 2

3.2 BasiC DIreCtory DEfINITIONS.ccoiiieiiirieesie sttt sttt 2

3.3 Directory Model DEfiNItIONSccciiiuieiiciesie e ste et este et e e e e eesaaesraesreesreenseeneeennenns 2

34 DSA Information Model definitioNS..........cccoviiiiieirieeee e enean 2

3.5 Directory replication defiNitiONS...........cciiiiiie et sre e sre e e eane e 3

3.6 Distributed operation defiNitioNS......... ..ot e 3

4 F N o] o 1=,V = 0] 1 5
5 100 01170110 1S 5
SECTION 2 — OVERVIEW ..ottt eb et b et b bbb e bbbt b eneneas 3
6 L@ = S 5
SECTION 3 — DISTRIBUTED DIRECTORY MODELS.......ccooiiiiieiieereeee et ere s 6
7 Distributed Directory System MOGE ..o €
8 (1S AN g 1= = o o 0 =AY oo = PR 7
8.1 DecOMPOSITION Of A TEOUES......ceiieietirieeite ettt ettt b e st b et b 7

8.2 UNI=CREINING ...ttt ettt et b e st b e st b e e et b s e e st b e bbb e se et eb e s be e e besbe e e b e 7

8.3 MUII-ChAINING ...ttt bbbt b e bbbt b e bbbt b e bt e 8

G = = 1 - [S

TN |V FoTo (] = = 411 0 (o g 10
SECTION 4 — DSA ABSTRACT SERVICE ...ttt st b e s 10
9 OVErvView Of DSA ADSITECE SEIVICE.coieeeerire sttt ettt e e te st ste e es e e e eseneeseeeesaesrenneeneen 10
10 INFOIMBLION TYPES. ...ttt bbb et b e bt b e e a bt e et s b e e e bt b e s eb b et st et e st nennas 10
0 50 O 1 1o [T o o PSR 10

10.2 Information types defined EISEBWHENE...........coouiiiiiie e 11

10.3 ChaiNiNg ATGUMENES.c.ueuiiuirieietertieetestee ettt st st e bt s st b e s e st s b e b e st s b e e st sb et et st et et sbenbe e s eee 11

10.4 ChaiNiNG RESUITS......c.ceuiitiietiriiiet ettt b bbb et b bbbt et e b et s b b e s e 13

105 OPEraliON PrOOrESS......eveuiieiieierterieiertestee sttt sttt a et s bbb s st s b et et s b et et s b e be et et et e besbe e neeee 14

O ST I = Tor = o 7= o] o PSR 14

LO.7 REFEIENCE TYPE ittt bbbt bbbt b e h e b b se e b et et e b e bbb e s e 14

10.8 ACCESS POINE INFOIMBLION.c.veueitireeietertee ettt b bbb bbbt b bt 15

L0.9 EXCIUSIONS....ueiieiii it sieeieeeeste et ste st et eseesees e seestesseeseenseseenteseeasesseeseeneesseneeseeebenseeseeseensanseseessesseeneeneens 15

10.10 ContiNUBLION REFEIENCE.......cueiieieeeeeeieeeeie ettt e et e e e e seestesaeseeeseeneeneeseesresseeneeneens 16

11 21T gTo =g o L0 o] o] o S SSR 17
0 O 1S V=7 1o ST 17

T2 1 1 VN U oo PSR 18

12 ChaiNEO OPEIBHIONSvieeteiteeeteste ettt st b ettt st b e s e st b e s e e st e b e se e st e b e se e st eb e seeneebeseebeebeseebeebeseenenbeseeneeben 18
12,1 ChaiNEd OPEIELIONS.eeeuirtieetirterteierte sttt sttt b e ebe bbb b st b e e st s b et et b et e st eb e be e b e b et e b e be e s eee 18

12.2 Chained ADaNAON OPEIELTION.c.iiiiiiiieiree bbbt bbb e 19

12.3 Chained operations and ProtOCOl VEFSIONc.ciuirueeererieirenteeeesiesiee st ettt 19

13 L@ T T T=o = o) RS 19
G 50 O 1 1o [T o o PR 19

T I 1S T . = o PSR 19

ITU-T Rec. X.518 (1997 E) i

SECTION 5 — DISTRIBUTED PROCEDURES.ccoooi it

14

15

16

17

18

19

20

21
22

Introduction
Scope and Limits................
Conformance...........cccu.....
Conceptual model...............

141
14.2
14.3
14.4
145

Distributed Directory behaviour

151
15.2
153
154
155
15.6

The Operation Dispatcher
Genera Concepts...............

16.1

Individual and cooperative Operation Of DSAScici e
Cooperative agreementS DEWEEN DSAS......cci et re e sre et e e e enren

Cooperative fulfilment Of OPEIatiONS...........ccveiieiieie et re s
Phases Of OPEration PrOCESSING.......ccueiteiieiieeieeireesteerteeteetesaestaesreesseesseesessesseesssesseenseesesseesaeesseesnes
Managing Distributed OPEratioNScccceiieiieiiicesees et e st te e e sraesreesns

Loop handling

Other considerations for distributed Operationccvceeiiecierie e
Authentication of Distributed OpPErations............ccccveiiiieriesiee e

16.2 Procedures of the operation iSPALCNEYccccoiiiiieiece e

16.3

171
17.2
17.3

18.1

Overview of procedures.....

Request Validation procedure
Introduction...........cceveunene
Procedure parameters.........
Procedure definition...........

Name Resolution procedure
Introduction...........cccceeeenee.

18.2 Find DSE proCedUre ParamELEr'S.........ciueieeiieeieeeeeseesteesteetestessaesteesteesteesesneesssasseeseensesnsesnsesseesaessnes

18.3

Operation evaluation
Modification procedure......

191

Procedures...........ccoevevuneee.

19.2 Single entry iNterrogation PrOCEAUIE..........cceeiueiieeeesteesteeteeae s e steesteesteseeseesreesseeteensesseesseesseesaeesnes
19.3 Multiple entry interrogation PrOCEAUIE...........ccuieuieieseeseee e see st sae et e e e re e te e beetesneesraesreesns

ContinuatiON REFEIENCE PrOCEAUNES..........ciitireeieite ettt sttt sttt bbbt bbbt be b e e
Chaining strategy in the presence of SHA0OWING.........c.ccveiieiieiiee et
Issuing chained SUDreqUESES 10 aremMOtE DSAo bbb

20.1
20.2
20.3
204
20.5

Results Merging procedure

Procedures parameters......

DEfINITION Of thE PrOCEAUIES.........eeeeeteie ettt ettt e e e ettt e e et e e s e e e e s st e e e sesaeesssesanaessbenesans

Abandon procedure............

Procedures for distributed aUthENtiCALIONc.eeei it s s e e e s be e e s snaeeas

221
22.2

Originator authentication....
Results authentication.........

SECTION 6 — KNOWLEDGE ADMINISTRATION....ccttitiiitirieiriesieeete ettt
Knowledge adminiStration OVENVIEWceeiieieeiieeieeeesee st este e e eteseesaeesreesaeesseeseensesseassaesseensesnsesneesaeesnes
23.1 Maintenance of KNowledge REFEIENCES.........coi i

23

24

iv

23.2

Requesting cross reference.
23.3 Knowledge inconsistencies.

23.4 Knowledge REfErences and COMEXES.......ccuiiuiiiiiiesieieeseeriessee st st e ste et eate et e e e steenesaeseesnne e

Hierarchical operational bindings

24.1
24.2
243
244
245

Operational binding type CharaClEriStiCSccviiiiciciece ettt
Operational binding information object Class definition.............cccoeveeiiiiiieii s
DSA procedures for hierarchical operational binding management.............cccvecvveeviesieesceesescee s

Procedures for operations...

Use of application contexts

ITU-T Rec. X.518 (1997 E)

25 Non-specific hierarchical operational DiNAING.........c.cccieiieiiieie e e e 84
25.1 Operational binding type CharaCteriStiCSuoiieiieiicie e 84
25.2 Operationa binding information object class definitionccceciecive s 85
25.3 DSA procedures for non-specific hierarchical operationa binding management...........c.ccccocevevvenne 85
25.4 ProCedUreS fOr OPEIaliONS........ccueieeieeiiecctecec et et et e e e e e s e sae e s e e saeebeeateeasesseessaesseesseesseenseensennneans 87
25.5 Use Of apPliCalionN CONLEXLSceciuiieieieesteeteetesiesiee s e eesae s e sreesreesteebeesaeeasessaesseenseensessreenseensesnneans 87
Annex A — ASN.1for DiStributed OPEratioNS.........cccoieiieiiieieesie st et eteee s e s e s e reetesee e e s e e sseeseenseensesreenseenrenn 88
Annex B — Example of distributed Name reSOIULIONcoeeiieiieie et 91
Annex C — Distributed use of QUENENTICALIONcociiiiiiie et e b 93
L O RS U1 0117 Y USSR SRR 93
C.2 Distributed proteCtion MOTELoccuiiiiiieiiceee e e te e s raesreesreenneereenneens 93
C.3 Signed ChaiNed OPEratioNS.........cccieiuieiieieseesee st estesitesee st e steesteeteestessaestaesteesteesesnsesnnesaeenseensesnneans 94
C.4 Encrypted ChaiNed OPEIraliOnS..........c.ecuieiesieeiieesiestesieeseeseeesteesseesesseesseesseesseesesssessassseessesssesnsessseans 95
C.5 Signed and Encrypted Distributed OPErationS...........cccvevueeiieiesieseeseeesae s e e sre e seesreesreense e 98
Annex D — Specification of hierarchical and non-specific hierarchical operational binding types.........c.ccccccveeui... 100
Annex E — Knowledge maintenanCe EXaMPIE..........cooiiiiiieiee et eee s et ae s s te et ae e saeesne e neenreenreenrean 102
Annex F — Amendments and COMTIJENUAL..........ccuiiiiiee e see ettt ettt ee st e st e s e e te e teeaesaeesreesneeseenseenrens 105

ITU-T Rec. X.518 (1997 E) v

I ntroduction

This Recommendation | International Standard part together with other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to alow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

— from different manufacturers;
— under different managements;
— of different levels of complexity; and

— of different ages.

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent serviceto its users.

This third edition technically revises and enhances, but does not replace, the second edition of this Recommendation |
International Standard. Implementations may still claim conformance to the second edition. However, at some point, the
second edition will not be supported (i.e. reported defects will no longer be resolved). It is recommended that
implementations conform to this third edition as soon as possible.

Thisthird edition specifies version 1 and version 2 of the Directory protocols.

The first and second editions also specified version 1. Most of the services and protocols specified in this edition are
designed to function under version 1. When version 1 has been negotiated, differences between the services and between
the protocols defined in the three editions are accommodated using the rules of extensibility defined in this edition of
ITU-T Rec. X.519 | ISO/IEC 9594-5. However some enhanced services and protocols, e.g. signed errors, will not
function unless al Directory entities involved in the operation have negotiated version 2.

Implementors should note that a defect resolution process exists and that corrections may be applied to this part of this
International Standard in the form of technical corrigenda. The identical corrections will be applied to this
Recommendation in the form of Corrigenda and/or an Implementor’s Guide. A list of approved technical corrigenda for
this part of this International Standard can be obtained from the subcommittee secretariat. Published technical corrigenda
are available from your national standards organization. The ITU-T Corrigenda and Implementor’s Guides may be
obtained fromthe ITU Web site.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
directory distributed operations.

Annex B, which is not an integral part of this Recommendation | International Standard, describes an example of
distributed name resol ution.

Annex C, which is not an integral part of this Recommendation | International Standard, describes authentication in the
distributed operations environment.

Annex D, which is an integral part of this Recommendation | International Standard, provides the definitions of the
ASN.1 information object classes introduced in this Directory Specification.

Annex E, which is not an integral part of this Recommendation | International Standard, illustrates knowledge
mai ntenance.

Annex F, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

Vi ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)
INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — OPEN SYSTEMS INTERCONNECTION -
THE DIRECTORY: PROCEDURES FOR DISTRIBUTED OPERATION

SECTION 1 — GENERAL

1 Scope

This Recommendation | International Standard specifies the behaviour of DSAs taking part in the distributed Directory
application. The allowed behaviour has been designed so as to ensure a consistent service given awide distribution of the
DIB across many DSAS.

The Directory is not intended to be a general purpose database system, although it may be built on such systems. It is
assumed that there is a considerably higher frequency of queries than of updates.

2 Nor mativereferences

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

21 Identical Recommendations| International Standards

— ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, |nformation technology — Open Systems
I nter connection — Basic Reference Model: The Basic Model.

— ITU-T Recommendation X.500 (1997) | ISO/IEC 9594-1:1998, Information technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

— ITU-T Recommendation X.501 (1997) | ISO/IEC 9594-2:1998, |nformation technology — Open Systems
Interconnection — The Directory: Models.

— ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998, Information technology — Open Systems
Interconnection — The Directory: Authentication framework.

— ITU-T Recommendation X.511 (1997) | ISO/IEC 9594-3:1998, |nformation technology — Open Systems
Interconnection — The Directory: Abstract service definition.

— ITU-T Recommendation X.519 (1997) | ISO/IEC 9594-5:1998, Information technology — Open Systems
Interconnection — The Directory: Protocol specifications.

— ITU-T Recommendation X.520 (1997) | ISO/IEC 9594-6:1998, |nformation technology — Open Systems
Interconnection — The Directory: Selected attribute types.

— ITU-T Recommendation X.521 (1997) | ISO/IEC 9594-7:1998, Information technology — Open Systems
Interconnection — The Directory: Selected object Classes.

— ITU-T Recommendation X.525 (1997) | ISO/IEC 9594-9:1998, Information technology — Open Systems
Interconnection — The Directory: Replication.

ITU-T Rec. X.518 (1997 E) 1

| SO/IEC 9594-4 : 1998 (E)

3

ITU-T Recommendation X.530 (1997) | ISO/IEC 9594-10:1998, |nformation technology — Open Systems
Interconnection — The Directory: Use of System management for Administration of the Directory.

ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Information object specification.

ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Constraint specification.

ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Parametrization of ASN.1 specifications.

ITU-T Recommendation X.880 (1994) | ISO/IEC 13712-1:1995, Information technology — Remote
Operations: Concepts, model and notation plus Technical Corrigendum 1 (1995).

ITU-T Recommendation X.880 (1994)/Amd. 1 (1995) | ISO/IEC 13712-1:1995/Amd. 1: 1996,
Information technology — Remote Operations. Concepts, model and notation — Amendment 1: Built-in
operations.

ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:1995, Information technology — Remote
Operations; OSl realizations — Remote Operations Service Element (ROSE) service definition.

ITU-T Recommendation X.881 (1994)/Amd. 1 (1995) | ISO/IEC 13712-2:1995/Amd. 1: 1996,
Information technology — Remote Operations. OS realizations — Remote Operations Service Element
(ROSE) service definition — Amendment 1. Mapping to A-UNIT-DATA and built-in operations.

Definitions

For the purpose of this Recommendation | International Standard the following definitions apply:

31

3.2

OSl Reference Model Definitions
The following termis defined in ITU-T Rec. X.200 | ISO/IEC 7498-1:

application entity title.

Basic Directory Definitions

The following terms are defined in ITU-T Rec. X.500 | ISO/IEC 9594-1:

3.3

34

a)
b)

(the) Directory;
Directory Information Base.

Directory Model Definitions
The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a)
b)
0)
d)
€
)
9)

access point;

alias,

distinguished name;

Directory Information Tree;
Directory System Agent (DSA);
Directory User Agent (DUA);
relative distinguished name.

DSA Information Model definitions
The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

a)
b)
0)

category;
commonly usable;
context prefix;

ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

d) crossreference;

e) DIB fragment;

f) DSAinformation tree;

g) DSA Secific Entry (DSE);

h) DSE type;

i) immediate superior reference;
i) knowledge information;

k) knowledge reference category;
1) knowledge reference type;

m) nhaming context;

n) non-specific knowledge;

0) non-specific subordinate reference;
p) operational attribute;

q) reference path;

r) specific knowledge;

s) subordinate reference;

t) superior reference.

35 Directory replication definitions

The following terms are defined in ITU-T Rec. X.525 | ISO/IEC 9594-9:
a) attribute completeness;
b) shadowing operational binding;
¢) subordinate completeness;
d) unit of replication.

3.6 Distributed operation definitions

The following terms are defined in this Recommendation | International Standard:

3.6.1 base object: The object or alias entry that is the target for an operation as issued by the originator.
3.6.2 chaining: The generic term for uni-chaining or multi-chaining.

3.6.3 context prefix information: Operational and user information supplied by the superior DSA to the subordinate
DSA inaRHOB regarding DIT vertices superior to the subordinate context prefix.

3.6.4 distributed name resolution: The process by which name resolution is performed in more than one DSA.

3.65 error: Information sent from the performer to the requester conveying a negative outcome of a previously
received request.

3.6.6 hard error: A definite error which indicates that the operation cannot currently be performed without external
intervention.

3.6.7 hierarchical operational binding (HOB): Relationship between two master DSAs holding naming contexts,
one of which is immediately subordinate to the other, in which the superior DSA holds a subordinate reference to the
subordinate DSA.

3.6.8 modification operations. These are the Directory Modify Operations, i.e. Modify Entry, Add Entry, Remove
Entry and Modify DN.

3.6.9 multi-chaining: A mode of interaction in which a DSA processing a request itself sends multiple requests
either in parallel or sequentially to a set of other DSASs.

3.6.10 multipleentry interrogation operations: These are the Directory Search Operations, i.e. List and Search.

ITU-T Rec. X.518 (1997 E) 3

| SO/IEC 9594-4 : 1998 (E)

3.6.11 nameresolution: The process of locating an entry by sequentially matching each RDN in a purported name to
avertex of the DIT.

3.6.12 non-specific hierarchical operational binding (NHOB): Relationship between two master DSAs holding
naming contexts, one of which is immediately subordinate to the other, in which the superior DSA holds a non-specific
subordinate reference to the subordinate DSA.

3.6.13 NSSR decomposition: Decomposition of non-specific knowledge references into subrequests for other DSAs
to pursue; these subrequests may be either chained to these DSAs by the DSA performing the decomposition, or a
continuation reference identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA
may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.6.14 operation progress. A set of values which denotes the extent to which name resol ution has taken place.
3.6.15 originator: The DUA that hasinitiated a specific (distributed) operation.
3.6.16 performer: DSA receiving arequest (i.e. to perform an operation).

3.6.17 procedure: An (informal) specification of how a DSA maps a given set of input arguments and its DSA
information tree into a result.

NOTE — Input arguments and results may correspond to information received in a requested operation and information sent in a
reply, or they may represent intermediate stages in the computation of a reply from a requested operation. In 14.2 the former
variety of input arguments and results are termed external.

3.6.18 relevant hierarchical operational binding (RHOB): Either aHOB or a NHOB, depending on the context.

3.6.19 referral: An outcome which can be returned by a DSA which cannot perform an operation itself, and which
identifies one or more other DSAs more able to perform the operation.

3.6.20 reply: A result or an error.

3.6.21 request: Information consisting of an operation code and associated arguments to convey a directory operation
from arequester to a performer.

3.6.22 request decomposition: Decomposition of a request into subrequests for other DSAs to pursue; these
subrequests may be either chained to these DSAs by the DSA performing the decomposition, or continuation references
identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA may pursue some of the
subrequests, leaving others unexplored for the requester to pursue.

3.6.23 requester: A DUA or DSA sending arequest to perform (i.e. invoke) an operation.

3.6.24 singleentry interrogation operations: These are the Directory Read Operations, i.e. Read and Compare.

3.6.25 soft error: An error which may be transient, or which may indicate a localized problem, in which case the use
of adifferent knowledge reference or access point may enable aresult or hard error to be obtained.

3.6.26 subordinate DSA: Of the two DSAs sharing a HOB or a NHOB, the DSA holding the subordinate naming
context.

3.6.27 subrequest: A request generated by request decomposition.

3.6.28 superior DSA: Of the two DSAs sharing aHOB or aNHOB, the DSA holding the superior naming context.
3.6.29 superior, subordinate DSA: Two master DSAs holding naming contexts, one of which is immediately
subordinate to the other; the relationship between the two DSAs is managed explicitly viaa HOB (or NHOB), or exists
implicitly by virtue of the superior DSA holding a subordinate (or non-specific subordinate) reference to the
subordinate DSA.

3.6.30 target object name: The name of an entry either to which the operation isto be directed at a particular stage of
name resolution, or which isinvolved in the evaluation of the operation.

3.6.31 uni-chaining: A mode of interaction optionally used by a DSA which cannot perform an operation itself. The
DSA chains by invoking an operation of another DSA and then relaying the outcome to the original requester.

4 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
DOP Directory Operational Binding Management Protocol
DISP Directory Information Shadowing Protocol
DMD Directory Management Domain
DSE DSA Specific Entry
HOB Hierarchical Operationa Binding
NHOB Non-specific Hierarchical Operational Binding
NSSR Non-specific Subordinate Reference
RHOB Relevant Hierarchical Operational Binding

5 Conventions

With minor exceptions this Directory Specification has been prepared according to the "Presentation of ITU-T/ISO/IEC
common text" guidelinesin the Guide for ITU-T and |SO/IEC JTC 1 Cooperation.

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean ITU-T Rec. X.518 |
ISO/IEC 9594-4. The term "Directory Specifications" shall be taken to mean the X.500-series Recommendations and all
parts of | SO/IEC 9594.

This Directory Specification uses the term "1988 edition systems' to refer to systems conforming to the first (1988)
edition of the Directory Specifications, i.e. the 1988 edition of the series of CCITT X.500 Recommendations and the
ISO/IEC 9594:1990 edition. This Directory Specification uses the term "1993 edition systems' to refer to systems
conforming to the second (1993) edition of the Directory Specifications, i.e. the 1993 edition of the series of
ITU-T X.500 Recommendations and the ISO/IEC 9594:1995 edition. Systems conforming to this third edition of the
Directory Specifications are referred to as 1997 edition systems'.

This Directory Specification presents ASN.1 notation in the bold Helvetica typeface. When ASN.1 types and values are
referenced in normal text, they are differentiated from normal text by presenting them in the bold Helvetica typeface. The
names of procedures, typically referenced when specifying the semantics of processing, are differentiated from normal
text by displaying them in bold Times. Access control permissions are presented in italicized Times.

If the items in a list are numbered (as opposed to using "—" or letters), then the items shall be considered steps in a
procedure.

This Directory Specification defines directory operations using the Remote Operation notation defined in
ITU-T Rec. X.880 | ISO/IEC 13712-1.

SECTION 2 — OVERVIEW

6 Overview

The Directory Abstract Service allows the interrogation, retrieval and modification of Directory information in the DIB.
This serviceis described in terms of the abstract Directory object as specified in ITU-T Rec. X.511 | ISO/IEC 9594-3.

Necessarily, the specification of the abstract Directory object does not in any way address the physical realization of the
Directory: in particular it does not address the specification of Directory System Agents (DSA) within which the DIB is
stored and managed, and through which the service is provided. Furthermore, it does not consider whether the DIB is
centralized, i.e. contained within asingle DSA, or distributed over a number of DSAs. Consequently, the requirements for
DSAs to have knowledge of, navigate to, and cooperate with other DSAS, in order to support the abstract service in a
distributed environment is aso not covered by the service description.

This Directory Specification specifies the refinement of the abstract Directory object, the refinement being expressed in
terms of a set of one or more DSA objects which collectively congtitute the distributed directory service.

ITU-T Rec. X.518 (1997 E) 5

| SO/IEC 9594-4 : 1998 (E)

In addition, this Directory Specification specifies the permissible ways in which the DIB may be distributed over one or
more DSAs. For the limiting case where the DIB is contained within asingle DSA, the Directory isin fact centralized; for
the case where the DIB is distributed over two or more DSAS, knowledge and navigation mechanisms are specified which
ensure that the whole of the DIB is potentially accessible from all DSAs that hold constituent entries.

Portions of the DIB may also be replicated in multiple DSAs. The protocols described in this Directory Specification
allow the use of replicated information to improve the availability, performance and efficiency of the distributed directory
service. The use of replicated information is, to some extent, under the user’s control, through the use of service control
options. The procedures described in this Directory Specification also indicate some of the opportunities for design
optimizations when using the replicated information.

Additionally, request handling interactions are specified that enable particular operational characteristics of the Directory
to be controlled by its users. In particular, the user has control over whether a DSA, responding to a directory inquiry
pertaining to information held in other DSA(S), has the option of interrogating the other DSA(s) directly (chaining) or,
whether it should respond with information about other DSA(S) which could further progress the inquiry (referral).

Generally, the decision by a DSA to chain or refer is determined by the service controls set by the user, and by the DSA’s
own administrative, operational or technical circumstances.

Recognizing that, in general, the Directory will be distributed, and that directory inquiries will be satisfied by an arbitrary
number of cooperating DSAs which may arbitrarily chain or refer according to the above criteria, this Directory
Specification specifies the appropriate procedures to be effected by DSAs in responding to distributed directory inquiries.
These procedures will ensure that users of the distributed Directory service perceive it to be both user-friendly and
consistent.

SECTION 3 — DISTRIBUTED DIRECTORY MODELS

7 Distributed Directory System Model

The Directory abstract service, as defined in ITU-T Rec. X.511 | ISO/IEC 9594-3, models the Directory as an object
which provides a set of directory services to its users. Users of the Directory access its services through an access point.
The Directory may have one or more access points and each access point is characterized by the services it provides and
the mode of interaction used to provide these services.

Figure 1 illustrates the distributed directory model which will be used as the basis for specifying the distributed aspects of
the directory. It illustrates the Directory as comprising a set of one or more DSAs.

access point pomemel

~ The Directory

chainedModify

TISO3580-94/d01

Figure 1 —Objects of the distributed Directory model

DSAs are specified in detail in the subsequent clauses of this Directory Specification. This clause merely states a number
of their characteristics in order to serve as an introduction and to establish the relationship between this Directory
Specification and the other Directory Specifications.

6 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

DSAs are defined in order that distribution of the DIB can be accommodated and that a number of physically distributed
DSAs can interact in a prescribed, cooperative manner to provide directory servicesto the users of the directory (DUAS).

Figure 1 illustrates the relationship between the Directory abstract service and the DSA abstract service. The Directory
abstract service defined in ITU-T Rec. X.511 | ISO/IEC 9594-3 is provided through a number of Directory operations. To
realize this service, the DSAs that comprise the Directory interact with one another. The nature of this interaction is
defined in terms of the service that one DSA may provide to another DSA, the DSA abstract service. The DSA abstract
service is provided through a number of operations, termed chained operations, each having a counterpart in the
Directory abstract service. Thus, a given operation in the Directory abstract service, e.g. Read, may require that the DSA
providing the service interact with one or more other DSAs using chained operations, e.g. Chained Read.

8 DSA Interactions Mode

A basic characteristic of the Directory is that, given a distributed DIB, a user should potentially be able to have any
service request satisfied (subject to security, access control, and administrative policies) irrespective of the access point at
which the request originates. In accommodating this requirement, it is necessary that any DSA involved in satisfying a
particular service request have some knowledge (as specified in ITU-T Rec. X.501 | ISO/IEC 9594-2) of where the
requested information is located and either return this knowledge to the requester or attempt to have the request satisfied
on its behaf. (The requester may either be a DUA or another DSA: in the latter case both DSAs shall support the DSP.)

Three modes of DSA interaction are defined to meet these requirements, namely "uni-chaining", "multi-chaining", and
"referral". Throughout the remainder of this Directory Specification, the generic term chaining is used to refer to uni-
chaining and/or multi-chaining as appropriate to the context. "Chaining" refers to the attempt by a DSA to satisfy a
request by sending one or more chained operations to other DSASs; "referra”, to the return of knowledge information to
the requester, which may then itself interact with the DSA(s) identified in the knowledge information.

Uni-chaining or areferral interaction may result from a single request. Alternatively, the request may be decomposed into
severa subrequests prior to the interaction. Multi-chaining or referral interactions, or a mixture of the two, may result
from a decomposed request. Two types of decomposition are defined; NSSR decomposition and request decomposition.

8.1 Decomposition of a request

8.1.1 NSSR decomposition

NSSR decomposition is the process of preparing identical requests ready for transfer (either sequentially or in parallel) to
several subordinate DSAs as a result of encountering an NSSR during name resolution. Non-specific subordinate
references do not hold the RDNs of the referenced subordinate naming contexts, so the referencing DSA is unable to tell
which subordinate DSA holds which subordinate naming context(s). During name resolution, a DSA encountering NSSRs
shall send an identical request to each subordinate DSA (in the absence of shadowing). This may be done sequentially or
in paralel. Typically, only one DSA will be able to continue with name resolution; the others will return the Service Error
unableToProceed. In certain (rare) circumstances it is possible that more than one DSA will continue with name
resolution, giving rise to duplicate results.

8.1.2 Request decomposition

Request decomposition, the other form of decomposing a request, is a process performed internally by a DSA prior to
communication with one or more other DSASs. A request is decomposed into several, possibly different, subrequests such
that each of the subrequests accomplishes a part of the original task. Request decomposition can be used only during
operation evaluation of a List or Search. After request decomposition, each of the subrequests may then be chained to
other DSAs to continue the task, or a partial result (an embedded referral) may be returned to the requester. An example
of the same subrequest being generated to different DSAs is when an entry has subordinate references and/or NSSRs that
together reference more than one DSA. An example of different subrequests being generated to the same or different
DSAsiswhen two different entries are encountered during a Search (subtree), and each has a subordinate reference.

8.2 Uni-chaining

This mode of interaction (depicted in Figure 2) may be used by one DSA to pass on a request to another DSA when the
former has knowledge about naming contexts held by the latter. Uni-chaining may be used to contact a single DSA
pointed to in a cross reference, a subordinate reference, a superior reference, a supplier reference, or a master reference.

NOTE — In Figure 2, the order of interactionsis defined by the numbers associated with the interaction lines.

ITU-T Rec. X.518 (1997 E) 7

| SO/IEC 9594-4 : 1998 (E)

TISO3590-94/d02

Figure 2 — Uni-chaining mode

8.3 Multi-chaining

This mode of interaction is used by a DSA for transferring several outgoing requests which have resulted from one
incoming request, as aresult of either request decomposition or NSSR decomposition.

8.3.1 Parallel multi-chaining

With parallel multi-chaining, the DSA transfers several outgoing requests simultaneously (see Figure 3a). Whilst parallel
multi-chaining may give improved performance, it may under certain circumstances, e.g. in the presence of shadowing,
cause duplicate results to be received.

TISO3600-94/d03

Figure 3a— Parallel Multi-chaining

8.3.2 Sequential multi-chaining

With sequential multi-chaining, the DSA transfers one outgoing request at a time and waits for the result or error of one
request before sending the next (see Figure 3b). Whilst sequential multi-chaining may not be the quickest mode of
interaction, it is unlikely that duplicate results will be received.

NOTE — A DSA may use a combination of parallel multi-chaining and sequential multi-chaining.

8 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

3 5

Request Response

1

TISO3610-94/d04

@) Unable to proceed.

Figure 3b — Sequential Multi-chaining
(asaresult of NSSR decomposition)

84 Referral

A referral (depicted in Figures 4a and 4b) is returned by a DSA in response to a request from either a DUA or another
DSA. The referral may constitute the whole response (in which case it is categorized as an error) or just part of the
response. The referral contains a knowledge reference, which may be either a superior, subordinate, cross, non-specific
subordinate, supplier, or master reference.

The DSA (Figure 4a) receiving the referral may use the knowledge reference contained therein, to subsequently chain or
multi-cast (depending upon the type of reference) the original request to other DSAs. Alternatively, a DSA receiving a
referral, may in turn pass the referral back in its response. A DUA (Figure 4b) receiving a referral may use it to contact
one or more other DSAsto progress the request.

NOTE — In Figures 4a and 4b, the order of interactions is defined by the numbers associated with the interaction lines.

TISO3620-94/d05

a) Referral to B
b) Referral to C

Figure 4a—Referral mode (DSA actson referrals)

ITU-T Rec. X.518 (1997 E) 9

| SO/IEC 9594-4 : 1998 (E)

Request Response

TISO3630-94/d06

a) Referral to E.
b) Referral to F.

Figure 4b — Referral mode (DUA actson referrals)

85 M ode Deter mination

If aDSA cannot itself fully resolve arequest, it shall chain the request (or a request formed by decomposing the original
one), to another DSA, unless:

a) chaining is prohibited by the user via the service controls, in which case the DSA shall return areferral or
aserviceError with problem chainingRequired; or

b) the DSA has administrative, operational, or technical reasons for preferring not to chain, in which case the
DSA shall return areferral.
NOTE 1 — A "technical reason” for not chaining is that the DSA identified in the knowledge reference does not support the DSP.
NOTE 2 —If the localScope service control is set, then the DSA (or DMD) shall either resolve the request or return an error.
NOTE 3 —If the user prefersreferrals, the user should set chainingProhibited.

SECTION 4 — DSA ABSTRACT SERVICE

9 Overview of DSA Abstract Service

The service of the Directory is fully described in ITU-T Rec. X.511 | ISO/IEC 9594-3. When such a service is provided
in a distributed environment, as modelled in clause 7, it can be regarded as being provided by means of a set of DSAs.
Thisisillustrated in Figure 1.

For each operation defined in the Directory service, a corresponding "chained” operation is defined in the DSA abstract
service for use between DSASs cooperating in the accomplishment of that Directory service operation. Thus, a DSA
receiving a Read operation from a DUA might require the assistance of another DSA (e.g. a DSA holding the target entry
or acopy of it) to satisfy it, and so send that DSA a Chained Read operation.

The information types exchanged in the DSA abstract service are defined in clause 10. The operations and errors of the
DSA abstract service are defined in clauses 11 through 13.

10 Information types

10.1 I ntroduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the
definition of various of the operations of the DSA abstract service. The information types concerned are those which are
common to more than one operation, are likely to be in the future, or which are sufficiently complex or self-contained to
merit being defined separately from the operation which uses them.

Several of the information types used in the definition of the DSA abstract service are actually defined elsewhere.
Subclause 10.2 identifies these types and indicates the source of their definition. Subclauses 10.3 through 10.9 identify
and define an information type.

10 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

10.2 Information types defined elsewhere
The following information types are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

— aliasedEntryName;
— DistinguishedName,;
— Name;

— RelativeDistinguishedName.

The following information types are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3:
(Bind)
— DirectoryBind
(Operations)
— Abandon
(Errors)
— abandoned;
— attributeError;
— nameéError;
— securityError;

— serviceError;

updateError.
(Information Object Class)
— OPTIONALLY-PROTECTED
(Data Type)
— SecurityParameters
The following information type is defined in ITU-T Rec. X.520 | ISO/IEC 9594-6:

— PresentationAddress.

10.3 Chaining Arguments

The ChainingArguments are present in each chained operation, to convey to a DSA the information needed to
successfully perform its part of the overall task:

ChainingArguments ::= SET {

originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
operationProgress [2] OperationProgress
DEFAULT { nameResolutionPhase notStarted },

tracelnformation [3] Tracelnformation,
aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,

-- only present in 1988 systems
returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
info [8] Domaininfo OPTIONAL,
timeLimit [91 UTCTime OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT {},
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniqueldentifier [12] Uniqueldentifier OPTIONAL,
authenticationLevel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE,
operationldentifier [17] INTEGER OPTIONAL }

ITU-T Rec. X.518 (1997 E) 11

| SO/IEC 9594-4 : 1998 (E)

The various components have the meanings as defined below:

12

a)

b)

d)

e

f)

)

h)

)

The originator component conveys the name of the (ultimate) originator of the request unless already
specified in the security parameters. If requester is present in CommonArguments, this argument may be
omitted.

NOTE 1 — Where the originator has alternative names differentiated by context, then the name used as the value

of originator shall be the primary distinguished name, if known. Otherwise, authentication and access control
based on the value of originator may not work as desired.

The targetObject component conveys the name of the object whose directory entry is being routed to. The
role of this object depends on the particular operation concerned: it may be the object whose entry isto be
operated on, or which is to be the base object for a request or subrequest involving multiple objects (e.g.
chainedList or chainedSearch). This component can be omitted only if it has the same value as the
object or base object parameter in the chained operation, in which caseitsimplied value is that value.

Where the targetObject includes RDNs containing attribute type and value pairs for which there are
multiple distinguished values differentiated by context, the RDNs that have been resolved shall be primary
RDNSs.

The operationProgress component is used to inform the DSA of the progress of the operation, and hence
of the role which it is expected to play in its overal performance. The information conveyed in this
component is specified in 10.5.

The tracelnformation component is used to prevent looping among DSAs when chaining is in operation.
A DSA adds a new element to trace information prior to chaining an operation to another DSA. On being
requested to perform an operation, a DSA checks, by examination of the trace information, that the
operation has not formed aloop. The information conveyed in this component is specified in 10.6.

The aliasDereferenced component isa BOOLEAN value which is used to indicate whether or not one or
more alias entries have so far been encountered and dereferenced during the course of distributed name
resolution. The default value of FALSE indicates that no alias entry has been dereferenced.

The aliasedRDNs component indicates how many of the RDNSs in the targetObject Name have been
generated from the aliasedEntryName attributes of one (or more) aias entries. The integer value is set
whenever an alias entry is encountered and dereferenced. This component shall be present if and only if
the aliasDereferenced component is TRUE.
NOTE 2 — This component is provided for compatibility with 1988 edition implementations of the Directory.
DUAs (and DSAs) implemented according to later editions of the Directory Specifications shall always omit this

parameter from the CommonArguments of a subsequent request. In this way, the Directory will not signal an
error if aliases dereference to further aliases.

The entryOnly component is set to TRUE if the original operation was a search, with the subset argument
set to oneLevel and an alias entry was encountered as an immediate subordinate of the baseObject. The
DSA which successfully performs name resolution on the targetObject name, shall perform object
evaluation on only the named entry.

The returnCrossRefs component is a Boolean value which indicates whether or not knowledge
references, used during the course of performing a distributed operation, are requested to be passed back
to theinitial DSA as cross references, along with aresult or referral. The default value of FALSE indicates
that such knowledge references are not to be returned.

The referenceType component indicates, to the DSA being asked to perform the operation, what type of
knowledge was used to route the request to it. The DSA may therefore be able to detect errors in the
knowledge held by the invoker. If such an error is detected it shall be indicated by a ServiceError with the
invalidReference problem. ReferenceType is described fully in 10.7.

NOTE 3 —If the referenceType is missing then the value superior shall be assumed.

The info component is used to convey DM D-specific information among DSAs which are involved in the
processing of a common request. This component is of type Domaininfo, which is of unrestricted type:

Domaininfo::= ABSTRACT-SYNTAX.&Type

k)

1)

m)

The timeLimit component, if present, indicates the time by which the operation is to be completed
(see 16.1.4.1).

The SecurityParameters component is specified in ITU-T Rec. X.511 | ISO/IEC 9594-3. Its absence is
deemed equivalent to there being an empty set of security parameters.

authenticationLevel component is optionally supplied when it is required to indicate the manner in which
authentication has been carried out. The AuthenticationLevel data type is described in ITU-T Rec. X.501
| ISO/IEC 9594-2.

ITU-T Rec. X.518 (1997 E)

n)

0)

)

0)

)

S)

| SO/IEC 9594-4 : 1998 (E)

uniqueldentifier component is optionally supplied when it is required to confirm the originator name. The
Uniqueldentifier datatypeisdescribed in ITU-T Rec. X.501 | ISO/IEC 9594-2.

The entryOnly component is set to TRUE if the original operation was a Search with the subset argument
set to oneLevel, and an alias entry was encountered as an immediate subordinate of the baseObject. The
DSA which successfully performs name resolution on the targetObject name shall perform object
evaluation on only the named entry.

The exclusions component has significance only for Search operations; it indicates, if present, which
subtrees of entries subordinate to the targetObject shall be excluded from the result of the Search
operation (see 10.9).

The excludeShadows component has significance only for Search and List operations; it indicates that
the search shall be applied to entries and not to entry copies. This optional component may be used by a
DSA as one way to avoid the receipt of duplicate results (see 20.1).

The nameResolveOnMaster component only has significance during name resolution, and is only set if
NSSRs have been encountered. If set to TRUE, it signals that subsequent name resolution, i.e. matching
the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy information; subsequent
resolution of each remaining RDN shall be done in the master DSA for the entry identified by that RDN
(see 20.1).

The operationldentifier component facilitates the correlation of DAP operations with subsequent related
DSP operations as well as with results. It is assigned by the DSA that first receives a DAP request or is
copied from the chaining arguments of DSP requests that require further chaining. The DSA assigning the
operationldentifier shall not reuse the assigned integer for a sufficiently long time period. Correlation of
related DAP and DSP requests and results is facilitated by a DSA logging, for each operation and resullt,
the operationidentifier together with the name of the DSA that assigned it (the first DSA in
tracelnformation on a chained request). Such correlation may be useful for the purposes of logging,
auditing, charging and settlements, etc.

104 Chaining Results

The ChainingResults are present in the result of each operation and provide feedback to the DSA which invoked the

operation.

ChainingResults ::= SET{

info [0] Domaininfo OPTIONAL,

crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,
securityParameters [2] SecurityParameters DEFAULT { },
alreadySearched [3] Exclusions OPTIONAL }

The various components have the meanings as defined below:

a)

b)

The info component is used to convey DM D-specific information among DSAs which are involved in the
processing of acommon request. This component is of type Domaininfo, which is of unrestricted type.

The crossReferences component is not present in the ChainingResults unless the returnCrossRefs
component of the corresponding request had the value TRUE. This component consists of a sequence of
CrossReference items, each of which contains a contextPrefix and an accessPoint descriptor (see
10.8).

CrossReference ::= SET {

0)

d)

contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPointinformation }

A CrossReference may be added by a DSA when it matches part of the targetObject argument of an
operation with one of its context prefixes. The administrative authority of a DSA may have a policy not to
return such knowledge, and will, in this case, not add an item to the sequence.

The SecurityParameters data type is specified in ITU-T Rec. X.511 | ISO/IEC 9594-3. The absence of
the securityParameters component is deemed equivalent to there being an empty set of security
parameters.

The alreadySearched component, if present, indicates which subordinate RDNs subordinate to the
targetObject have been processed as a part of a chained Search operation and therefore shall be excluded
in a subsequent subrequest.

NOTE — Names in contextPrefix or alreadySearched shall be primary distinguished names and shall not contain aternative
distinguished names.

ITU-T Rec. X.518 (1997 E) 13

| SO/IEC 9594-4 : 1998 (E)

105 Operation Progress

An OperationProgress value describes the state of progress in the performance of an operation which several DSAs
shall participatein.

OperationProgress ::= SET {

nameResolutionPhase [0] ENUMERATED {
notStarted),
proceeding),
completed 3}
nextRDNToBeResolved [1] INTEGER OPTIONAL }

The various components have the meanings as defined below:

a) The nameResolutionPhase component indicates what phase has been reached in handling the
targetObject name of an operation. Where this indicates that name resolution has notStarted, then aDSA
has not hitherto been reached with a naming context containing the initiadl RDN(s) of the name. If name
resolution is proceeding, then the initial part of the name has been recognized, although the DSA holding
the target object has not yet been reached. The nextRDNToBeResolved indicates how much of the name
has already been recognized [see 10.5 b)]. If name resolution is completed, then the DSA holding the
target object has been reached, and performance of the operation proper is proceeding.

b) The nextRDNToBeResolved indicates to the DSA which of the RDNs in the targetObject name is the
next to be resolved. It takes the form of an integer in the range one to the number of RDNs in the name.
This component is only present if the nameResolutionPhase component has the value proceeding.

10.6 Trace Information

A Tracelnformation value carries forward a record of the DSAs which have been involved in the performance of an
operation. It is used to detect the existence of, or avoid, loops which might arise from inconsistent knowledge or from the
presence of aliasloopsintheDIT.

Tracelnformation ::= SEQUENCE OF Traceltem

Traceltem ::= SET {

dsa [0] Name,
targetObject [1] Name OPTIONAL,
operationProgress [2] OperationProgress }

Each DSA which is propagating an operation to another adds a new item to the end of the sequence of Traceltem. Each
such Traceltem contains:

a) thename of the DSA which is adding the item;

b) the targetObject name which the DSA adding the item received on the incoming request. This parameter
is omitted if the request being chained came from a DUA (in which case its implied value is the object or
baseObject in XOperation), or if its value is the same as the (actual or implied) targetObject in the
ChainingArgument of the outgoing request;

c) theoperationProgress which the DSA adding the item received on the incoming request.

dsa shall be the primary distinguished name and shall not contain aternative distinguished names. Each RDN in
targetObject which has been processed shall be a primary RDN. Alternative distinguished values with contexts may be
included within the valuesWithContext component of AttributeTypeAndDistinguishedValue inthe RDN.

10.7 Reference Type
A ReferenceType value indicates one of the various kinds of reference defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

ReferenceType ::= ENUMERATED {

superior (1),
subordinate (2),
Cross 3),
nonSpecificSubordinate 4),
supplier 5),
master (6),
immediateSuperior),
self 38)}

14 ITU-T Rec. X.518 (1997 E)

ISO/IEC 9594-4 : 1998 (E)
10.8 Access point information

There are three types of access points:

a) AnAccessPoint value identifies a particular point at which access to the Directory, specifically to aDSA,
can occur. The access point has a Name, that of the DSA concerned, and a PresentationAddress, to be
used in OSl communications to that DSA.

AccessPoint ::= SET {
ae-title [0] Name,
address [1] PresentationAddress,
protocolinformation [2] SET OF Protocolinformation OPTIONAL }

b) A MasterOrShadowAccessPoint value identifies an access point to the Directory. The category, either
master or shadow, of the access point is dependent upon whether it points to a naming context or
commonly usable replicated area.

MasterOrShadowAccessPoint ::= SET {

COMPONENTS OF AccessPoint,
category [3] ENUMERATED {
master 0),
shadow (1) } DEFAULT master } }

¢) A MasterAndShadowAccessPoints value identifies a set of access points to the Directory, i.e. a set of
related DSAs. These access points share the property that each refers to a DSA holding entry information
from a common naming context (or a common set of naming contexts mastered in one DSA when the
value is a value of the nonSpecificknowledge attribute. A MasterAndShadowAccessPoints value
indicates the category of each AccessPoint value it contains. The access point of the master DSA of the
naming context need not be included in the set.

MasterAndShadowAccessPoints ::= SET OF MasterOrShadowAccessPoint

An AccessPointInformation value identifies one or more access points to the Directory.

AccessPointinformation ::= SET {
COMPONENTS OF MasterOrShadowAccessPoint,
additionalPoints [4] SET OF MasterOrShadowAccessPoint OPTIONAL }

In the case of 1988 edition DSAs producing an AccessPointinformation value, the optional component of the set is
absent. In the case of 1988 edition DSAs interpreting an AccessPointinformation value, any MasterAndShadow-
AccessPoints values present are ignored.

In the case of post-1988 edition DSAs, the MasterOrShadowAccessPoint value component produced for an
AccessPointInformation value may be of category master or shadow, as determined by the knowledge selection
procedure of the DSA producing the value. It may be viewed as a suggested access point provided by the DSA generating
the value to the DSA receiving it. A set of MasterAndShadowAccessPoints values may optionally also be produced for
an AccessPointinformation value. This constitutes additional information which may be employed by the receiving
DSA’s knowledge selection procedure to determine an alternative access point.

10.9 Exclusions

As defined in 10.3, the exclusions component of ChainingArguments is used to limit the scope of a Search operation
by identifying a number of entries subordinate to the target object which, together with all of their subordinates, shall not
be included in the processing of a Search operation. The exclusion component is defined as a value of the ASN.1 type
Exclusions.

Exclusions ::= SET OF RDNSequence
Each RDNSequence value in the Exclusions set should identify the context prefix of a naming context subordinate to
the target object. If a DSA receives a search request with an RDNSequence value that does not conform to this

congtraint, the DSA may ignore that value. The RDNSequence is relative to the target object, and is not the distinguished
name of the context prefix.

ITU-T Rec. X.518 (1997 E) 15

| SO/IEC 9594-4 : 1998 (E)

Exclusions shall be the primary distinguished names. Alternative distinguished names and context information may also
be included.

Exclusions can, besides being part of a user request, be used by DSAs to minimize duplicate information returned from
Search subrequests performed in the presence of shadowed information.

Figure 5 illustrates an example of the use of Exclusions. In this example, a DSA holds two replicated areas, one beneath
the other. One starts with context prefix X, the other with context prefix C. An entry copy at Y has three subordinate
references to naming contexts, A, B and C.

If, as an example, a subtree Search is performed in this DSA, starting with a base object within naming context X, the
DSA can provide information from replicated areas X and C. The information from naming contexts A and B has to be
provided via the subordinate references. When performing request decomposition, continuation references, to be used in
either partialResults or chaining, will specify Y asthe target object and C as a single element of an Exclusions set.

TISO3640-94/d07

Figure5—Exclusions

10.10 Continuation Reference

A ContinuationReference describes how the performance of all or part of an operation can be continued at a different
DSA or DSAs. It istypicaly returned as a referral when the DSA involved is unable or unwilling to propagate the request
itself.

ContinuationReference ::= SET {
targetObject [0] Name,
aliasedRDNs [1] INTEGER OPTIONAL, -- only present in 1988 systems
operationProgress [2] OperationProgress,
rdnsResolved [3] INTEGER OPTIONAL,
referenceType [4] ReferenceType,
accessPoints [5] SET OF AccessPointinformation,
entryOnly [6] BOOLEAN DEFAULT FALSE,
exclusions [7] Exclusions OPTIONAL,
returnToDUA [8] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [9] BOOLEAN DEFAULT FALSE}

The various components have the meanings as defined below:

a) ThetargetObject component indicates the name which is proposed to be used in continuing the operation.
This might be different from the name received in targetObject of the incoming request if, for example, an
alias has been dereferenced, or the base object in a search has been located.

16 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

RDNsintargetObject shall be primary RDNs (for the RDNs already processed). Alternative distinguished
values with context may be included.

b) The aliasedRDNs component indicates how many (if any) of the RDNs in the target object name have been
produced by dereferencing an aias. The argument is only present if an alias has been dereferenced.

NOTE — This component is provided for compatibility with 1988 edition implementations of the Directory. DUAS

(and DSAs) implemented according to later editions of the Directory Specifications shall aways omit this

parameter from the CommonArguments of a subsequent request. In this way, the Directory will not signal an
error if aliases dereference to further aliases.

¢) TheoperationProgress indicates the amount of name resolution which has been achieved, and which will
govern the further performance of the operation by the DSAs named, should the DSA or DUA receiving
the ContinuationReference wish to follow it up.

d) TherdnsResolved component value (which need only be present if some of the RDNs in the name have
not been the subject of full name resolution, but have been assumed to be correct from a cross reference)
indicates how many RDNs have actually been resolved, using internal references only.

€) The referenceType component indicates what type of knowledge was used in generating this
continuation.

f) The accessPoints component indicates the access points which are to be contacted to achieve this
continuation. Only where non-specific subordinate references are involved can there be more than one
AccessPointIinformation item.

g) TheentryOnly component is set to TRUE if the original operation was a search, with the subset argument
set to oneLevel, and an alias entry was encountered as an immediate subordinate of the baseObject. The
DSA which successfully performs name resolution on the targetObject name, shall perform object
evaluation on only the named entry.

h) The exclusions component identifies a set of subordinate naming contexts that should not be explored by
the receiving DSA.

i) The returnToDUA €element is optionally supplied when the DSA creating the continuation reference
wishes to indicate that it is unwilling to return information via an intermediate DSA (e.g. for security
reasons), and wishes to indicate that information may be directly available via an operation over DAP
between the originating DUA and the DSA. When returnToDUA s set to TRUE, referenceType may be
set to self.

j) The nameResolveOnMaster element is optionally supplied when the DSA creating the continuation
reference has encountered NSSRs. If set to TRUE, it signals that subsequent name resolution, i.e. matching
the remaining RDNs from nextRDNToBeResolved, shall not employ entry copy information; subsequent
resolution of each remaining RDN shall be done in the master DSA for the entry identified by that RDN
(see 20.1).

11 Bind and Unbind

DSABind and DSAUnbind, respectively, are used by a DSA at the beginning and at the end of a period of accessing
another DSA.

111 DSA Bind
A DSABind operation is used to begin a period of cooperation between two DSASs providing the Directory service.

DSABind ::= BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError

The components of the DSABind are identical to their counterparts in the DirectoryBind (see ITU-T Rec. X.511 |
I SO/IEC 9594-3) with the following differences:

— The Credentials of the DirectoryBindArgument alows information identifying the AE-Title of the
initiating DSA to be sent to the responding DSA. The AE-Title shall be in the form of a Directory
Distinguished Name.

— The Credentials of the DirectoryBindResult alows information identifying the AE-Title of the
responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished
Name.

ITU-T Rec. X.518 (1997 E) 17

| SO/IEC 9594-4 : 1998 (E)

— The DSA's name or AE-Title may use aternative distinguished names and may include context
information.
NOTE 1 — Where names are used in either smple or strong credentials, it is possible to use alternative distinguished names, if they
exist. However, authentication and access control based on the name may not work as desired if the primary distinguished name is
not used. Following successful processing of an authenticated BIND operation, whatever the name used in the BIND argument,
the bound entities shall thereafter know each other by their primary distinguished names, to facilitate operation of access controls
whilethe BIND isin effect.

NOTE 2 — The credentials required for authentication may be carried by the Security Exchange Service Element (see
ITU-T Rec. X.519 | ISO/IEC 9594-5) in which case they are not present in the bind arguments or results.

11.2 DSA Unbind
A DSAUnbind is used to end a period of cooperation between two DSASs providing the Directory service.
DSAUnbind ::= UNBIND

There are no arguments, results or errors.

12 Chained operations

For each of the operations used to access the Directory abstract service, there is an operation used between cooperating
DSAs in a one-to-one correspondence. The names of the operations have been chosen to reflect that correspondence by
prefixing the names of operations used between cooperating DSAs with the term "Chained".

The arguments, results, and errors of the chained operations are, with one exception, formed systematically from the
arguments, results, and errors of the corresponding operations in the Directory abstract service (as described in 12.1). The
one exception is the ChainedAbandon operation, which is syntactically equivalent to its Directory service counterpart
(described in 12.2).

121 Chained operations

A DSA, having received an operation from a DUA, may elect to construct a chained form of that operation to propagate
to another DSA. A DSA, having received a chained form of an operation, may also elect to chain it to another DSA. The
DSA invoking a chained form of an operation may sign, encrypt, or sign and encrypt the argument of the operation; the
DSA performing the operation, if so requested, may sign, encrypt, or sign and encrypt the result or error returned by the
responder of the operation.

The chained form of an operation is specified using the parameterized type chained { }.

chained { OPERATION : operation } OPERATION ::= {
ARGUMENT OPTIONALLY-PROTECTED {

SET {
chainedArgument ChainingArguments,
argument [0] operation.&ArgumentType },
DIRQOP.&dspChainedOp-QOP{@dirqop} }
RESULT OPTIONALLY-PROTECTED {
SET {
chainedResult ChainingResults,
result [0] operation.&ResultType },

DIRQOP.&dspChainedOp-QOP{@dirqop} }
ERRORS { operation.&Errors EXCEPT (referral | dsaReferral) }
CODE operation.&operationCode }
NOTE 1 — The operations of the Directory abstract service which may be used as the actual parameter of chained { } include the

abandoned error. The presence of this error among the set of possible errors of a chained operation reflects the possibility
discussed in 12.2, that a ChainedAbandon can be generated for a ChainedModify operation when alinked association fails.

NOTE 2 — The definitive specification of the DSA abstract service in Annex A applies this parameterized type to construct al the
chained operations of the abstract service.

The argument of the derived operation has the components:

@) chainedArgument — This is a value of ChainingArguments which contains that information, over and
above the original DUA-supplied argument, which is needed in order for the performing DSA to carry out
the operation. Thisinformation type is defined in 10.3.

b) argument — Thisis a value operation.&Argument and consists of the original DUA-supplied argument,
as specified in the appropriate clause of ITU-T Rec. X.511 | ISO/IEC 9594-3.

18 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Should the request succeed, the result of the derived operation has the components:

a) chainedResult — Thisisavalue of ChainingResults which contains that information, over and above that
to be supplied to the originating DUA, which may be needed by previous DSAs in a chain. This
information type is defined in 10.4.

b) result — This is a value operation.&Result and consists of the result which is being returned by the
performer of this operation, and which is intended to be passed back in the result to the originating DUA.
Thisinformation is as specified in the appropriate clause of ITU-T Rec. X.511 | ISO/IEC 9594-3.

Should the request fail, one of the errors of the set operation.&Errors will be returned, except that dsaReferral is
returned instead of referral. The set of errors, which may be reported, is as described for the corresponding operation in
ITU-T Rec. X.511 | ISO/IEC 9594-3. The error dsaReferral is described in 13.2.

122 Chained Abandon operation

A chainedAbandon operation is used by one DSA to indicate to another that it is no longer interested in having a
previously invoked distributed operation performed. This may be for any of a number of reasons, of which the following
are examples:

— the operation which led to the DSA originaly chaining has itself been abandoned, or has implicitly been
aborted by the breakdown of an association;

— the DSA has obtained the necessary information in another way, e.g. from a faster responding DSA
involved in the parallel multi-chaining.

A DSA isnever obliged to issue achainedAbandon, or indeed to actually abandon an operation if requested to do so.

If chainedAbandon actually succeeds in stopping the performance of an operation, then a result will be returned, and the
subject operation will return an abandoned error. If the chainedAbandon does not succeed in stopping the operation,
then it itself will return an abandonFailed error.

12.3 Chained operations and protocol version

Operations which require a protocol version greater than v1 (such as the modifyEntry operation with certain arguments)
or which return different results when used with a protocol version greater than v1 (such as modifyEntry with a signed
argument) shall only be chained on associations with the same or a greater version number than that used to convey the
request.

13 Chained errors

13.1 I ntroduction

For the most part, the same errors can be returned in the DSA abstract service which can be returned in the Directory
abstract service. The exceptions are that the dsaReferral "error” is returned (see 13.2), instead of Referral, and the
following service problems have the same abstract syntax but different semantics:

a) invalidReference — The DSA returning this error detected an error in the calling DSA’s knowledge as
specified in the referenceType chaining argument.

b) loopDetected — The DSA returning this error detected a loop in the knowledge information in the
Directory.

The precedence of the errors which may occur is as for their precedence in the Directory abstract service, as specified in
ITU-T Rec. X.511 | ISO/IEC 9594-3.

If an error occurs during a chained operation, the responding DSA may sign, encrypt, or sign and encrypt the error
returned.

13.2 DSA Referral

The dsaReferral error is generated by a DSA when, for whatever reason, it doesn’'t wish to continue performing an
operation by chaining the operation to one or more other DSAs. The circumstances where it may return a referral are
described in 8.3. If the parameters of the operation were signed by the requestor, then the Directory applies the protection
specified in the DIRQOP.

ITU-T Rec. X.518 (1997 E) 19

| SO/IEC 9594-4 : 1998 (E)

dsaReferral ERROR ::= {
PARAMETER OPTIONALLY-PROTECTED {
SET {
reference [0] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL,
COMPONENTS OF CommonResults },
DIRQOP.&dsaReferral-QOP{@dirqop} }
CODE id-errcode-dsaReferral }

The various parameters have the meanings as described below:

@) The ContinuationReference contains the information needed by the invoker to propagate an appropriate
further request, perhapsto another DSA. Thisinformation typeis specified in 10.10.

b) If the returnCrossRefs component of the ChainingArguments for this operation had the value TRUE,
and the referral is being based upon a subordinate or cross-reference, then the contextPrefix parameter
may optionally be included. The administrative authority of any DSA will decide which knowledge
references, if any, can be returned in this manner (the others, for example, may be confidential to
that DSA).

A contextPrefix or a Continuation Reference shall be the primary distinguished name. Alternative distinguished values
with context may be included within the valuesWithContext component of an AttributeTypeAndDistinguishedValue of
any RDN.

SECTION 5 — DISTRIBUTED PROCEDURES

14 Introduction

14.1 Scope and Limits

This clause specifies the procedures for distributed operation of the Directory which are performed by DSAs. Each DSA
individually performs the procedures described below; the collective action of all DSAs produces the full set of services
provided to users by the Directory.

14.2 Conformance

The description of DSA procedures in this section is based on the models in clauses 8 and 9 of ITU-T Rec. X.501 |
ISO/IEC 9594-2 and clauses 7 and 8. The flow charts and their corresponding textual descriptions are one means of
mapping a given set of external (DAP and/or DSP) inputs to a DSA into one or more external outputs (i.e. aresult, error,
referral, or chained requests) produced by that DSA, depending on the particular DSA information tree held by that DSA.

It is probable that the Directory will be distributed across DSAs implemented according to different editions of the
Directory Specifications, e.g. 1988, 1993 and 1997 editions. The DUA initiating the request will be unaware as to which
edition the DSA or DSAs satisfying the DUA’s request will have been implemented. Therefore to allow operation in such
a heterogeneous environment, a DSA shall be implemented according to the rules of extensibility defined in clause 7 of
ITU-T Rec. 519 | ISO/IEC 9594-5.

A DSA implementation shall be functionally equivalent to the external behaviour specified by these procedures described
here. The agorithms used by a particular DSA implementation to derive the correct output(s) from the given inputs
and DSA information tree held are not standardized.

NOTE — The flowcharts which accompany the procedures are intended to be used as aids towards understanding the procedures.

They are not to be considered as being a precise aternative to the textual descriptions. Where there is a disparity between the
textual description and the flowchart for a particular procedure, it isintended that the textual description take precedence.

14.2.1 Interaction between 1988 edition and 1988/1997 edition DSAS

If the modify operations evaluate across DSA boundaries (i.e. addEntry with TargetSystem, Remove or Rename a
context prefix), then this Directory Specification only specifies how two 1997 edition DSAs or how a 1993 edition DSA
and a 1997 edition DSA shall behave. The interaction between two 1988 edition DSAS, or between a 1988 edition DSA
and a 1993/1997 edition DSA, is outside the scope of the Directory Specifications. When mixed edition DSAs have a
hierarchical operational binding, knowledge of each other’s edition may allow a consistent error to be given to the user.

20 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

14.3 Conceptual model

The complexity of the Directory’s distributed operation gives rise to a need for conceptual modelling using both narrative
and pictorial descriptive techniques. However, neither the narrative nor graphic diagrams should be construed as a formal
description of distributed Directory operation.

144 Individual and cooper ative operation of DSAs

The model views DSA operation from two separate perspectives, which, taken together, provide a complete, operational
picture of the Directory.

a) DSA-centered perspective — In this perspective the set of procedures that support the directory is
described from the viewpoint of a single DSA. This makes it possible to provide a definitive specification
of each procedure and to fully account for their interrelationships and overall control structure. Clauses 16
through 22 describe the DSA procedures from a DSA-centered perspective.

b) operation-centered perspective — The DSA-centered view provides complete detail but makes it difficult
to understand the structure of individual operations, which may undergo processing by multiple DSAs.
Consequently clause 15 adopts a primarily operation-centered view to introduce the processing phases
applicable to each.

To support the distributed operation of the Directory, each DSA shall perform actions needed to realize the intent of each
operation and additional actions needed to distribute that realization across multiple DSAs. Clause 15 explores the
distinction between these two kinds of actions. In clauses 16 through 22, both kinds of actions are specified in detail.

145 Cooper ative agreements between DSAs

All DSAs which are in a subordinate/superior relationship due to the naming contexts that they hold, have hierarchical
and/or non-specific hierarchical operational bindings between them, depending upon the types of knowledge reference
held by the subordinate DSA.

Hierarchical and non-specific hierarchical operational bindings between DSAs may be administered using the procedures
of clauses 24 and 25 of this Recommendation | International Standard, or by other means (e.g. telephone).

A DSA holding entries which are within the administrative area of its superior DSA shall administer the subschema and
shall control access to the entries as required by the administrative authority. The regulation of entries within an
administrative area may be performed as defined in ITU-T Rec. X.501 | ISO/IEC 9594-2 or may be by local mechanisms.

15 Distributed Directory behaviour

15.1 Cooperative fulfilment of operations

Each DSA is equipped with procedures capable of completely fulfilling al Directory operations. In the case that a DSA
contains the entire DIB, all operations are, in fact, completely carried out within that DSA. In the case that the DIB is
distributed across multiple DSAs, the completion of a typical operation is fragmented, with just a portion of that
operation carried out in each of potentially many cooperating DSASs.

In the distributed environment, the typical DSA sees each operation as a transitory event: the operation is invoked by a
DUA or some other DSA; the DSA carries out processing on the object and then directs it toward another DSA for
further processing.

An alternative view considers the total processing experienced by an operation during its fulfilment by multiple,
cooperating DSAs. This perspective reveal s the common processing phases that apply to all operations.
15.2 Phases of operation processing

Every Directory operation may be thought of as comprising three distinct phases:

a) the Name Resolution phase in which the name of the object on whose entry a particular operation is to be
performed is used to locate the DSA which holds the entry;

ITU-T Rec. X.518 (1997 E) 21

| SO/IEC 9594-4 : 1998 (E)

b) the Evaluation phase in which the operation specified by a particular directory request (e.g. a Read
operation) is actually performed;

¢) the Results Merging phase in which the results of a specified operation are returned to the requesting
DUA. If achaining mode of interaction was chosen, the Results Merging phase may involve several DSAS,
each of which chained the original request or subrequest (as defined in 15.3.1 Request Decomposition) to
another DSA during either or both of the preceding phases.

In the case of the operations Read, Compare, List, Search, Modify Entry, Modify DN and Remove Entry, name resolution
takes place on the object name provided in the argument of the operation. In the case of Add Entry, name resolution’s
target entry is the immediately superior entry of that provided in the argument of the operation — it can be easily derived
by removing the final RDN from the name provided in the operation argument. (This is done vialocal argument m in the
FindDSE procedure of 18.3.1.)

An operation on a particular entry may initially be directed at any DSA in the Directory. That DSA uses its knowledge,
possibly in conjunction with other DSAS, to process the operation through the three phases.

15.2.1 Name Resolution phase

Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc (or vertex) of the DIT,
beginning logically at the Root and progressing downwards in the DIT. However, because the DIT is distributed between
arbitrarily many DSAs, each DSA may only be able to perform a fraction of the name resolution process. A given DSA
performs its part of the Name Resolution process by traversing its local DSA information tree. This process is described
in clause 18 and the accompanying diagrams (see Figures 9 through 12). Based on itslocal DSA information tree, and the
knowledge information contained therein, a DSA is able to infer whether the resolution can be continued by one or more
other DSASs, or whether the name is erroneous.

The Name Resolution phase is constrained to work within a DSA Information Tree if the manageDSAIT service control
option is set.

15.2.2 Evaluation phase
When the Name Resol ution phase has completed, the actual operation required (e.g. Read or Search) is performed.

Operations that involve a single entry interrogation — Read and Compare — may be carried out entirely within the DSA in
which the entry islocated.

Operations that involve multiple entries interrogation — List and Search — need to locate subordinates of the target, which
may or may not reside in the same DSA. If they do not all reside in the same DSA, operations need to be directed to the
DSAs specified in the subordinate, non-specific subordinate, supplier, or master references (as appropriate) to complete
the evaluation process.

The Evaluation phase is constrained to work within a DSA Information Tree if the manageDSAIT service control option
is set.

15.2.3 Resultsmerging phase
The Results Merging phase is entered once some of the results of the Evaluation phase are available.

In those cases where the operation affected only a single entry, the result of the operation can simply be returned to the
requesting DUA. In those cases where the operation has affected multiple entries on multiple DSAS, results can be
combined. If protection is performed on the results, the results shall not be combined. The results should be returned to
the DUA without performing merging.

The permissible responses returned to a requester after results merging include:
a) acomplete result of the operation;

b) aresult which is not complete because some parts of the DIT remain unexplored (applies to List and
Search only). Such a partial result may include continuation references for those parts of the DIT not
explored;

c) anerror (areferral being a special case); and

d) if therequester wasaDSA, aChainingResult.

22 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

15.3 Managing Distributed Operations

Information is included in the argument of each operation which a DSA may be asked to perform indicating the progress
of each operation as it traverses various of the DSAs of the Directory. This makes it possible for each DSA to perform the
appropriate aspect of the processing required, and to record the completion of that aspect before directing the operation
outward toward further DSAs.

Additional procedures are included in the DSA to physically distribute the operations and support other needs arising
from their distribution.

153.1 Reguest Decomposition

Request decomposition is a process performed internally by a DSA prior to communication with one or more other
DSAs. A request is decomposed into several subrequests such that each of the latter accomplishes a part of the origina
task. Request decomposition can be used, for example, in the search operation, after the base object has been found. After
decomposition, each of the subrequests may then be uni-chained or multi-chained to other DSAS, to continue the task. If
protection is performed on the arguments, request decomposition shall not be used.

15.3.2 DSA asRequest Responder

A DSA that receives a request can check the progress of that request using the operationProgress parameter. This will
determine whether the operation is still in the Name Resolution phase or has reached the evaluation phase, and what
portion of the operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request, it shal either pass
(by uni-chaining or multi-chaining) the operation on to one or more DSAs which can help to fulfill the request, or return a
referral to another DSA, or terminate the request with an error.

15.3.3 Completion of Operations

Each DSA that has initiated an operation or propagated an operation to one or more other DSAs shall keep track of that
operation’s existence until each of the other DSASs has returned a result or error, or the operation’s maximum time limit
has expired. This requirement applies to all operations, propagation modes and processing phases. It ensures the orderly
closing down of distributed operations that have propagated out into the Directory.

154 Loop handling

The DIT may be in a state that can cause looping. As an example, looping can occur during name resolution where
dereferencing one or more aliases brings the resolution back to the same branch of the DIT. Another potential cause of
looping is through misconfigured knowledge references.

Within the context of a particular directory operation, a loop occurs if at any time the operation returns to a previous
state, where state is defined by the following components:

— the name of the DSA currently processing the operation;
— the name of the targetObject as contained within the argument of the operation;

— theoperationProgress as contained within the argument of the operation and as defined in 10.5.

This does not mean that an operation cannot be processed multiple times by a particular DSA. However, it does mean that
the DSA will not process the same operation in the same state multiple times.

Looping is controlled using the tracelnformation argument as defined in 10.6, which records the sequence of states a
particular operation has gone through. Two strategies are defined to determine whether looping has occurred, or is about
to occur. These are loop detection and loop avoidance, and they are described in 15.4.1 and 15.4.2 respectively.

L oop detection is mandatory and loop avoidance is optional .

15.4.1 Loop detection

On receipt of a directory operation a DSA shall initialy validate the operation to ensure that it can be progressed. An
important task of validation isto check for loops, by determining whether the current state of the operation appearsin the

sequence of previous states recorded in the tracelnformation argument for that operation. This step of loop checking is
loop detection.

ITU-T Rec. X.518 (1997 E) 23

| SO/IEC 9594-4 : 1998 (E)

15.4.2 Loop avoidance

Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA as part of a chaining
procedure, determines whether the consequential state of the operation (which is the traceltem that the receiving DSA
will add to tracelnformation when it receives it) appears on the sequence of previous states recorded in the
tracelnformation argument for the original incoming operation.

In the case where referrals are received or acted upon, loop avoidance and loop detection cannot be achieved purely by
examining tracelnformation. In this case, each time a DSA acts on areferral, it needs to store the consequential state of
the operation (i.e. the traceltem that the receiving DSA is going to add when it receives the request) along with a record
of the incoming request. Before acting on or returning areferral, a DSA needsto check through thislist, in order to check
that an identical request has not been previously sent whilst trying to service the incoming operation.

155 Other considerationsfor distributed operation

155.1 Servicecontrols

Some service controls need special consideration in the distributed environment in order that the operation is processed
the way that was requested.

@) chainingProhibited — A DSA consults this service control when determining the mode of propagation of
an operation. If it is set, then the DSA aways uses referral mode. If, however, it is not set, the DSA can
choose whether to use chaining or referral depending on its capabilities.

b) timeLimit — A DSA needs to take account of this service control to ensure that the time limit is not
exceeded in that DSA. A DSA requested to perform an operation by a DUA, initially heeds the timeLimit
expressed by the DUA as the available elapsed time in seconds for completion of the operation. If chaining
is required, the timeLimit is included in the chaining argument to be passed to the next DSA(S). In this
case, the same vaue of the limit is used for each chained request, and is the (UTC) time by which the
operation shall complete to meet the originally specified constraint. On receiving ChainingArguments
with atimeLimit specified, the receiving DSA respects this limit.

c) sizeLimit — A DSA needs to take account of this service control to ensure that the list of results does not
exceed the size specified. The limit, as included in the common argument of the origina request, is
conveyed unchanged as the request is chained. If request decomposition is required, the same value is
included in the argument to be passed to the next DSA, the full limit is used for each subrequest. When the
results are returned, the requester DSA resolves the multiple results and applies the limit to the total to
ensure that only the requested number are returned. If the limit had been exceeded, thisisindicated in the

reply.

d) priority — In al modes of propagation, each DSA is responsible for ensuring that the processing of
operations is ordered so as to support this service control, if present.

€) localScope — The operation is limited to a locally defined scope and each DSA shall not propagate the
request outside of this.

f) scopeOfReferral — If the DSA returns a referral or partial result to a List or Search operation, then the
embedded continuation references shall be within the requested scope.

All other service controls need to be respected, but their use does not require any special consideration in the distributed
environment.

15.5.2 Extensions

If a DSA encounters an extended operation in the Name Resol ution phase of processing and determines that the operation
should be chained to one or more DSAS, it shall include unchanged in the chained operation any extensions present.

NOTE — An Administrative Authority may determine that it is appropriate to return a serviceError with problem
unwillingToPerform if it does not wish to propagate an extension.

If a DSA encounters an extension in the execution phase of processing, two possibilities may arise. If the extension is not
critical, the DSA shall ignore the extension. If the extension is critical, the DSA shall return aserviceError with problem
unavailableCriticalExtension. A critical extension to a multiple object operation may result in both results and service
errors of this variety. A DSA merging such results and errors shall discard these service errors and employ the
unavailableCriticalExtension component of PartialOutcomeQualifier as described in ITU-T Rec. X.511 |
ISO/IEC 9594-3.

24 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

1553 Aliasdereferencing

Alias dereferencing is the process of creating a new target object name, by replacing the alias entry distinguished name
part of the original target object name with the AliasedEntryName attribute value from the alias entry. The object name
in the operation is not affected by alias dereferencing.

15,54 Resolving context-variant names

During the name resolution phase, as RDNs are processed, a new target object name is created by ensuring that every
AttributeTypeAndDistinguishedValue in the RDN uses the primary distinguished value of that attribute as its value. In
this way, the target object name is progressed towards a primary distinguished name. This is done to provide consistent
name handling, in particular where pre-1997 DSAs may be involved in name resolution. The object name in the
operation is not affected by this substitution.

1555 DirQOP and Protection Request

The dirqop selected on the DSP Bind and the ProtectionRequest field in the DAP request govern the operation of
various security features associated with distributed directory operation.

The selection of point-to-point protection for DSP requests and responses (including chaining arguments and results) is
indicated by the dirqop established between the DSAs on DSP Bind.

The selection of protection preferred by the requestor for chained DAP Results or Errors is indicated by the
SecurityParameters.ProtectionRequest field in the DAP request or, if this field is not present, the
SecurityParameters.ProtectionRequest field in the ChainingArguments is to be set to reflect the dirqop in the DAP
bind.

Where a DAP request is signed, the protection is maintained in the chained DAP request. Any encryption on a DAP
request is removed before chaining, although this information may be protected using point-to-point protection of the
DSP requests, if required. Encryption of errorsis also applied only on a point-to-point basis.

The Security Parameters govern the distributed operation of various security features associated with a distributed
directory operation.

15.6 Authentication of Distributed Operations

Users of the Directory together with Administrative Authorities that provide directory services may, at their discretion,
require that directory operations be authenticated. For any particular directory operation, the nature of the authentication
process will depend upon the security policy in force.

Two sets of authentication procedures are available which collectively enable a range of authentication requirements to
be met. One set of procedures are those provided by Bind: these facilitate authentication between two directory
application-entities for the purposes of establishing an association. The Bind procedures accommodate a range of
authentication exchanges from a simple exchange of identities to strong authentication.

In addition to the peer entity authentication of an association as provided by Bind, additional procedures are defined
within the directory to enable individual operations to be authenticated. Two distinct sets of directory authentication
procedures are defined. One facilitates originator authentication services, which address the authentication, by a DSA, of
the initiator of the original service request. The second set facilitates results authentication services which address the
authentication, by an initiator, of any results that are returned.

For originator authentication, two procedures are defined, one based upon a simple exchange of identities, termed identity
based authentication, and one based upon digital signature techniques, termed signature based authentication. The former
of these procedures is rudimentary in nature since the identity exchange is based upon the exchange of distinguished
names which are transmitted in the clear.

For authentication of results a single results authentication procedure is defined, based upon digital signature techniques,
due to the generally complex nature of results collation, a simpler, identity-based procedure is not defined.

Authentication of error responses may be supported by these procedures.

The services described below are to be considered as augmenting those provided by the Bind service; Bind procedures
are assumed to have been effected successfully prior to authentication of directory operations.

The procedures to be effected by aDSA in providing originator and results authentication are specified in clause 22.

ITU-T Rec. X.518 (1997 E) 25

| SO/IEC 9594-4 : 1998 (E)

16 The Operation Dispatcher

The Operation Dispatcher isthe main controlling procedure in aDSA. It guides each operation through the three phases of
processing a request. The Operation Dispatcher therefore makes use of a set of procedures to fully process the request as

shown in Figure 6.

A |

Local DAP/DSP DSP DSP Local DAP/DSP
Request Request Request Reply Reply Reply
| | |
* * + Result Merging
Abandon
Request 4 A A Result
Validation Abandon Merging - DSP
procedure Reply
procedure £ procedure
I rror
i '
Return Name Resolution
| with error A Error I Rosult
. esu
Find DSE :
procedure Name Resolution
Return with Continuation Reference
: | entry unsuitable procedure 4]
[
Return with DSP .
entry suitable ' Request
|
luati List Continuation | L L Rl?es}lji
Evaluation Reference procedure v Ply
! - A —
o Single obiect Multiple object Search Continuation >
Modification inte?rogatjion interrogation Reference procedure
v v |
Modification Single Object = I”Et‘.me;)h No
Evaluation Interrogation e_so u 'OT ' 3se
procedures procedures Z complete
A Yes
reference-
Type is supplier —— -
or master? Yes
No
| B v
List (II) List (1) Search (Il) | g.| Search (1)
procedure || procedure procedure procedure
| |
Error or result Error Result
| | |

DOP/ DOP/ Local DAP/DSP
DISP DISP Reply Reply TISO3650-94/d08
Request Reply |

| \

Figure 6 — Operation Dispatcher

26 ITU-T Rec. X.518 (1997 E)

ISO/IEC 9594-4 : 1998 (E)
16.1 General Concepts
16.1.1 Procedures

Each of the procedures employed by the operation dispatcher consists of a definition of its conceptua interface in terms
of its parameters, i.e. arguments, results and errors, and a description of the procedure steps itself. The behaviour of the
procedures is described by flowcharts and text. Within a flow chart, the used symbols have the following semantics
(see Figure 7):

] Return to the calling procedure with X.
The entry point of the procedure Return X | X may be a result, null, an error, a string,
or a referral, or it may be absent.

Yes

. All X’s
Branch based on a condition rocessed

p
(2 or more outcomes) | Process each X contained in... }—>

Loop
detected?

Process a set of steps for each value X

Setexclusions until all values X have been processed

to empty An Action to be performed
Continue with the execution of the steps Continuation of
Call of the called sub-procedure. After completion procedures that span
procedure of the sub-procedure, continue with the multiple flow charts
— outgoing arrow of this box.

TISO3660-94/d09

Figure 7 — Symbol s Used in Flow Charts

16.1.2 Use of common data structures

All procedures make use of some data structures that are available during the processing of an operation within
the Operation Dispatcher. These data structures serve to coordinate the data flow within the Operation Dispatcher. Most
of these structures are directly associated with the argument of the operation and the result to be created for the operation.
Components of the argument and result are referred to using their names within the associated ASN.1 definition (e.g. the
operationProgress component of the chaining arguments). If any of these structures is acompound structure, a
component of this structure may be referred to as compound.component
(e.g. operationProgress.nameResolutionPhase).

The following data structures are defined within the Operation Dispatcher:

NRcontinuationList — A list of continuation references created for use in the Name Resolution Continuation
Reference procedure.

— SRcontinuationList — A list of continuation references created for use in the List or Search Continuation
Refer ence procedure.

— admPoints — A list of references to DSEs of type administrative point that is collected during Name
Resolution.

— referralRequests — A list of the requests or subrequests which have been chained as a result of executing
referrals. Each such request/subrequest is summarised in the form of a Traceltem. Thislist is used by the
Loop Avoidance procedure of 15.4.2.

Further, a procedure may use a set of locally defined variables.

ITU-T Rec. X.518 (1997 E) 27

| SO/IEC 9594-4 : 1998 (E)

16.1.3 Errors

At each stage of the processing an error may be detected during the execution of any sub-procedure. The error identified
within this sub-procedure is normally returned to the requester as a corresponding protocol error. In this case, the
operation dispatcher is terminated immediately. In the case that multiple errors are received, local procedures may select
one of them to be returned.

Alternatively, a procedure may choose to process errors (e.g. if a serviceError with problem busy is returned to a
chained search subrequest) at certain points of operation processing. In this case, the procedure continues with its
execution and no error is returned to the requester.

The DSA may optionaly sign, encrypt, or sign and encrypt the errors returned in a distributed operation based on the
selected DirQOP and error protection requested.

16.1.4 Asynchronousevents

During the processing of an operation request within the Operation Dispatcher several asynchronous events may occur.
The following paragraphs specify how to handle an exceeded time limit or size limit or administrative limit, a loss of
association and an Abandon request for an operation that is being processed. The handling of all other asynchronous
events, e.g. local policy decisions etc., is outside the scope of this Directory Specification.

16.1.4.1 Time limit

A timeLimit as specified in the CommonArguments can expire at any point in time during the operation. In this case,
normally aserviceError with problem timeLimitExceeded is returned to the requesting DUA or DSA and the operation
dispatcher is terminated. Alternatively, a procedure may choose to handle this event in a different way (e.g. during
processing of asearch request).

If a DSA receives a request from another DSA with the time limit exceeded, it shall send a serviceError with problem
timeLimitExceeded without any further processing of the request.

If a DSA has outstanding (sub)requests, when the timeLimit expires, and there are no results available, it shal return a
serviceError with problem timeLimitExceeded to the requester.

If a DSA has outstanding subrequests, when the timeLimit expires, and there are results available, it shall return a result
to the requester with the following contents:

a) al the collected results, up to the timeLimit expiring;

b) the limitProblem component of the partialOutcomeQualifier result-parameter shall be set to
timeLimitExceeded;

¢) theunexplored component of the partialOutcomeQualifier result-parameter shall contain a continuation
reference value for each set of DSAs to which subrequests were sent but the result of which are not
included in the result to the requester, in addition to continuation references to DSAs to which this DSA
did not attempt to send subrequests.

16.1.4.2 Lossof an association

If the association to the requester is lost, the DSA may optionally for each outstanding interrogation (sub)request, send an
chainedAbandon reguest, unless the association to the DSA in question has also been lost. All replies to such
chainedAbandon requests and all replies to outstanding (sub)requests shall be discarded.

If the association to one of the outstanding chained subrequests is lost and the association with the requester is not lost,
the DSA may, for interrogation operations only, optionally try any alternative reference to another DSA that is able to
process the chained request (e.g. a reference to a shadow DSA, after loss of the association to the master DSA). If this
does not succeed, the DSA shall act asfollows:

1) If operationProgress.nameResolution is set to notStarted or proceeding, return either a serviceError
with problem unavailable to the requester or areferral error whose continuation reference contains the set
of DSAs that are able to continue the operation. If non-specific subordinate references are used during the
Name Resolution phase and not all the associations in question are lost, optionally attempt to do the name
resolution without the DSAs to which the associations are lost. If this fails, return either a serviceError
with problem unavailable, or areferral error containing the complete set of NSSRs.

NOTE —Itisalocal choice which type of error isreturned.

2) If operationProgress.nameResolution is set to complete and the request is a single object operation,
return aserviceError with problem unavailable to the requester.

28 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

3) If operationProgress.nameResolution is set to complete and the request is a multiple entry
interrogation operation, the DSA shall add a continuation reference to
partialOutcomeQualifier.unexplored of the operation result, with AccessPointinformation identifying
the set of DSAs that are able to continue the operation, including any DSAs to which associations have
been lost.

16.1.4.3 Abandoning the operation

During the processing of an operation, an Abandon request can be received for this operation. In this case, during the
processing of the Abandon request, the Abandon procedure is called for the operation to be abandoned.

16.1.4.4 Administrative Limits

There may be limits imposed by the local DSA administrator, e.g. the amount of time to spend on processing a request, or
the maximum size of data to be returned. If any of these limits are exceeded the DSA shall return serviceError with
problem administrativeLimitExceeded.

16.1.4.5 SizeLimit

A size limit, as specified in CommonArguments, can be exceeded at any point in time during processing of a List or
Search operation. In this case, a partia result (taken from the set of already collected results) shall be returned to the
requester with limitProblem set to sizeLimitExceeded. In addition, the unexplored component may be used for
returning Continuation References of unaccessed DSAs. Operation Dispatcher is then terminated.

16.2 Procedures of the operation dispatcher

The procedure that is performed by the Operation Dispatcher for processing each received request (either over DAP or
DSP) is defined by the following steps. Due to aias dereferencing, this procedure may also call itself (alocal request), in
which case alocal reply (rather than a DAP or DSP reply) is returned.

1) Vadlidate several aspects of the operation arguments (Request Validation procedure). If an error is
encountered during validation, return this error locally or over DAP/DSP.

2) If the operation received was an Abandon operation, call the Abandon procedure and return a reply
afterwards.

3) Resolve the name of the target object by executing the Find DSE procedure (which includes the Target
Found and Target Not Found sub-procedures). If the requested entry was found and is suitable (according
to the setting of the service controls, chaining arguments and local policy decisions), continue with the
Evaluation Phase at step 6). If during Name Resolution an error was encountered, it is returned. If the entry
was found not to be suitable, continue at step 4).

4) The Name Resolution Continuation Reference procedure is caled to process the list of Continuation
References as stored in the NRcontinuationL ist. In order to process these Continuation References, chained
requests may be issued to other DSAs (if service controls and local policy decision alow it).

In case of an error, this error is directly returned either locally or via DAP/DSP. If the chained request
generated a result, then continue with step 5).

5) The Result Merging procedure is called to merge the local results with the received Chained Results. If the
Chained Results contain embedded Continuation References, these may first be resolved if the service
controls and local policy alow or requireit.

This may cause additiona Chained Requests to be issued (whose Chained Results may aso contain
embedded Continuation References).

The merged results are returned to the caller, and processing of the request ceases.

If protection is performed on the results, the merging of results shall not be performed.
6) If the operation is a modification operation, continue at step 7).

If the operation is a single entry interrogation operation, continue at step 8).

If the operation is a multiple entry interrogation operation, continue at step 9).

7) When carrying out a modification procedure, Operational Bindings may need to be established, modified
or terminated, or shadows may need to be updated as a consequence of performing the operation. Whether
these are done synchronously or asynchronously with the performance of the original operation depends
on the respective modification operations (and on local policy). A local or a DAP/DSP result or error is
returned to the caller.

ITU-T Rec. X.518 (1997 E) 29

| SO/IEC 9594-4 : 1998 (E)

8) The result of a single entry interrogation operation is directly returned to the caller as a local or a
DAP/DSP resuilt.

9) If the operation is a multiple entry interrogation operation, then check the nameResolutionPhase of the
operation. If it is not completed, then call the List(l) or Search(l) procedure, otherwise call the List(I1) or
Search(l1) procedure, respectively.

10) The outcome of a call to the List(l1) procedure (result or error) and the outcome of a call to the List(l)
procedure (in case that the outcome is an error) can directly be returned to the caller (as a local or a
DAP/DSP result).

If the procedure called was the List(l) procedure, the result might contain Continuation References that
have to be dereferenced (depending on service controls and local policy). This may result in chained List
operations being sent off to the respective DSAs. To merge the results continue at step 5) with the call to
the Result M erging procedure.

11) If the operation was a Search operation, any Continuation References are resolved by the Search
Continuation Reference procedure (if required and allowed). This may cause Chained Search requests to be
sent off to the respective DSAs. The Result Merging procedure [see step 5)] is called to merge the search
results and to possibly dereference contained Continuation Reference, if any.

16.3 Overview of procedures

This clause gives an overview of the basic functionality of the procedures employed by the Operation Dispatcher which
are defined in clauses 17 through 22.

16.3.1 Reguest Validation procedure

This procedure, described in clause 17, is called to perform loop checking, limit checking, and security checking prior to
performing local name resolution. This procedure aso provides default settings for those parameters of the
ChainingArgument that are not provided by the DAP in the case that the request came from a DUA. Further, this
procedure singles out any abandon request and notifies thisto Operation Dispatcher.

16.3.2 Abandon procedure

This procedure, described in 20.5, tries to find the operation that is to be abandoned and terminate it. If there are any
outstanding subrequests, Chained Abandon operations may be sent after them. The procedure either returns an empty
result to the caller, or an error indication (e.g. abandonError with problem tooLate).

16.3.3 Find DSE procedure

This procedure, described in 18.2 and 18.3, matches the components of the name of the target object against the locally
held DSEs to resolve the target object name. If an alias DSE is encountered, the alias is dereferenced (if permitted) and
the procedure is restarted to resolve the new name.

If the target was not found, the procedure is continued at the Target Not Found sub-procedure. If the target was found, the
procedure is continued at the Target Found sub-procedure.

NOTE — Target Not Found and Target Found are continuations of the Find DSE procedure.

The procedure may result in various errors, in which case, the associated protocol error is returned to the requester and
the Operation Dispatcher isterminated.

16.3.3.1 Target Not Found sub-procedure

This procedure, described in 18.3.2, performs an evaluation of the located intermediate DSEs and creates a set of
Continuation References in NRcontinuationList, based on the set of knowledge references that have been detected during
the Find DSE procedure. This set of references is then further processed within the Name Resolution Continuation
Refer ence procedure.

The procedure may result in various errors, in which case the associated error is returned to the requester and the
Operation Dispatcher isterminated.

30 ITU-T Rec. X.518 (1997 E)

I SO/IEC 9594-4 : 1998 (E)
16.3.3.2 Target Found sub-procedure

This procedure, defined in 18.3.3, checks if the found DSE is suitable for the requested operation, i.e. in the case where it
is shadowed information. This may include checking the suitability of the whole subtree of shadowed information below
the target object in the case of a multiple object operation (e.g. subtree search).

If the located entry is suitable, the appropriate operation evaluation procedure is invoked. Otherwise, a
ContinuationReference pointing to the supplier (or master) of the information is created in NRcontinuationList and the
Name Resolution Continuation Reference procedure is invoked.

16.34 Singleentry interrogation procedure

This procedure, described in 19.2, isinvoked to actually execute those operations that only affect a single entry, i.e. Read
and Compare operations. After completion, areply (result or error) created by the procedure is returned to the requesting
DSA/DUA.

16.3.5 Moaodification procedures

These procedures, described in 19.1, are executed to process the modification operations, i.e. Add Entry, Remove Entry,
Modify Entry and Modify DN. This is done by executing a specific sub-procedure defined for each of these operations.
During (or after) these sub-procedures, DOP and DISP requests may be issued to other DSAs. After successful
completion, aresult (created by the sub-procedures) is returned to the requesting DSA/DUA.

16.3.6 Multipleentry interrogation procedures

These procedures, described in 19.3, are executed to process operations that affect multiple entries which may or may not
be located in the same DSA. This is done by executing specific sub-procedures defined for each of the Search and List
operations to accomplish request decomposition. These procedures create a local result of the operation evaluation and
optionally a set of continuation references in SRcontinuationList. If SRcontinuationList is empty at the end of this
procedure, the created result is directly returned to the requesting DSA/DUA. Otherwise, these continuation references
are processed by invoking List or Search Continuation Reference procedure, according to the operation type.

16.3.7 Name Resolution Continuation Refer ence procedure

This procedure, described in 20.4.1, processes the continuation references in NRcontinuationL ist created during the Name
Resolution phase. These continuation references are either used to issue chained subrequests or returned in a referra
error. In the case of chaining, the results or errors returned from the chained request are returned for further processing by
the Result Merging Procedure.

16.3.8 List and Search Continuation Reference procedure

These procedures, described in 20.4.3 and 20.4.4, process the continuation references in SRcontinuationList created by
the multiple entry interrogation procedures and either resolve them by issuing chained subrequests or by creating
continuation reference(s) within the partialOutcomeQualifier.unexplored. When results or errors for al outstanding
subreguests have been received, they are returned for further processing by the Result M erging Procedure.

16.3.9 Result Merging procedure

This procedure, described in clause 21, either examines the result from a chained request or combines the local operation
results with the results received from the chained subrequests. If a subrequest had returned an error, this procedure
determines how this error has to be handled.

If there are any continuation references left in the result, they will (if local policy allows so and service controls requireit)
be dereferenced by the Name Resolution, List, or Search Continuation Reference procedures, accordingly. Duplicates are
removed from the result if it is unsigned.

The merged result (with al merged results and unresolved continuation references) is returned to the reguesting
DUA/DSA.

If protection is performed on the results, the merging of results shall not be performed.

ITU-T Rec. X.518 (1997 E) 31

| SO/IEC 9594-4 : 1998 (E)

17 Request Validation procedure

17.1 I ntroduction

The Request Validation procedure is the entry point of the Operation Dispatcher for inputs from DUAs and DSAS,
preparing such inputs for Name Resolution processing. The function of this procedure is to detect abandon operations, to
perform security checks, to adjust input received from DUAS so that it may be processed in the same way as input
received from DSAS, to check the arguments of the request for valid syntax and semantics, to perform loop detection, and
to perform other miscellaneous checks. The flow of Request Validation is depicted in Figure 8.

Enter

Return
Error

Abandon or
ChainedAbandon

Return
Abandon

Update or Create
ChainingArguments

Request
Parameters
Valid?

Return
Error

Return
ServiceError
loopDetected

Loop
detected?

Return
ServiceError busy,
unavailable or
unwilling ToPerform

Unwilling
or unable?

TISO3670-94/d10

Return

Figure 8 — Request Validation procedure

32 ITU-T Rec. X.518 (1997 E)

ISO/IEC 9594-4 : 1998 (E)
17.2 Procedure parameters

17.21 Arguments

The input argument to Request Validation consists of ChainingArguments (except in the case of chainedAbandon
operations), if the request is received from a DSA, and the argument issued by the originator of the request.

17.2.2 Results

The output result of Request Validation consists of five possibilities.
a) If the security check fails, an error is returned to the requester.
b) If theinputisanabandon or chainedAbandon operation, the output is the argument of the operation.

c) If the arguments of the request are invalid, then an error is returned to the requester. Depending on local
policy, the DSA may choose whether to return aserviceError or asecurityError.

d) If aloop isdetected, aserviceError with problem loopDetected is returned to the requester.

e) If, based on resource problems or policy considerations, the DSA is unable or unwilling to perform the
operation, a serviceError (with problem busy, unavailable, or unwillingToPerform) is returned to the
requester.

f) Inall other cases, the validated input, transformed by addition of ChainingArguments if received from a
DUA or the update of ChainingArguments.tracelnformation if received from a DSA, is the output of the
procedure and subsequently the input to the Name Resolution procedure.

17.3 Procedur e definition

The security check described in 17.3.2 is performed. This may result in the return of an error and the termination of the
Operation Dispatcher.

If the input is an abandon or chainedAbandon operation, only the steps in 17.3.1 are subsequently performed,
otherwise the stepsin 17.3.3-17.3.5 are performed. 17.3.5 describes the loop detection procedure which may result in the
return of an error and the termination of the Operation Dispatcher.

Next the checks in 17.3.6 are performed. They may result in the return of an error and the termination of the Operation
Dispatcher.

If the checks in 17.3.2-17.3.6 do not result in the termination of the Operation Dispatcher, the steps in 17.3.7 are
performed and the procedure terminates with the transfer of its output to the Name Resolution procedure.

17.3.1 Abandon processing

The argument of an abandon or chainedAbandon is passed to the Abandon procedure, (see 20.5), to process the
abandon request.

17.3.2 Security checks
If the argument to the operation is signed, encrypted, or signed and encrypted, the signature may be checked. Should the

signature be invalid or the decryption fail, or be absent in a case when it should be present, an error may be returned to
the requestor. Alternatively, a DSA may perform any other locally defined action.

17.3.3 Input preparation

17.3.3.1 DUA request

If the operation isreceived from a DUA, a ChainingArguments valueis created as follows:
@) ChainingArguments.originator is set as described in 10.3.

b) ChainingArguments.operationProgress is set to the value of CommonArguments.operationProgress.

ITU-T Rec. X.518 (1997 E) 33

| SO/IEC 9594-4 : 1998 (E)

Cc) ChainingArguments.tracelnformation is set to a sequence containing a single Traceltem value. This
value is constructed as follows. Traceltem.dsa is set to the name of the DSA executing Request Validation.
Traceltem.targetObject shall be omitted. Traceltem.operationProgress is set to the incoming value.

d) If the service control of the operation specifies a time limit (the available elapsed time in seconds for
completion of the operation), ChainingArguments.timeLimit is set to the (UTC) time by which the
operation shall complete to meet the user’s specified time limit.

€) ChainingArguments.AuthenticationLevel and ChaingingArguments.Uniqueldentifier are set
according to the local security policy.

f) If themanageDSAIT optionis set in the ServiceControls, then:
— thenameResolutionPhase component of operationProgress shall be set to completed;
— thenextRDNToBeResolved component of the operationProgress shall be omitted,;
— referenceType shall take the value self;
— entryOnly shall take the value FALSE;
— nameResolveOnMaster shall take the value FALSE; and
— thechainingProhibited option in ServiceControls shall be set;

— the remaining optional elements of ChainingArguments are omitted, with default values being
assumed where specified.

g) If the manageDSAIT option is not set in the ServiceControls, then the remaining optional elements of
ChainingArguments are omitted, with default values being assumed where specified.

h) ChainingArguments.SecurityParameters.ProtectionRequest is used to indicate the level of protection
(sign, encrypt, or sign and encrypt) to be applied to the resuilts.

17.3.3.2 DSA request

If the operation is received from a DSA, ChainingArguments.tracelnformation is updated by appending a value at the
end of sequence Traceltem. Thisvalueis constructed as follows:

a) Traceltem.dsa is set to the name of the DSA executing Request Validation.

b) Traceltem.targetObject is set to the value of ChainingArguments.targetObject unless the object
(or baseObject in the case of a Search operation) of the request argument is identica to
ChainingArguments.targetObject, in which case Traceltem.targetObject shall be omitted.

Cc) Traceltem.operationProgress is set to the value of ChainingArguments.operationProgress.

17.34 Validity assertion

The operation shall be checked for valid syntax and semantics of its arguments according to the rules contained in the
clauses defining each operation (e.g. it should be checked that the nextRDNToBeResolved does not provide a number
exceeding the number of RDNs in the targetObject). If the request is detected to contain invalid arguments, the operation
isterminated and an error is returned to the user, depending on the kind of invalidity detected.

17.3.5 Loop detection

If any two Traceltem values of ChainingArguments.tracelnformation (as prepared in 17.3.3) are identical, processing
of the operation has returned to a previous state, i.e. aloop has been detected. In this case, a serviceError (with problem
loopDetected) shall be returned to the requester and the Operation Dispatcher terminates.

17.3.6 Unableor unwilling to perform

Request Validation may assess available resources and determine that the operation cannot be performed. It may also
determine, based on policy considerations, that the operation should not be performed. In these cases, a serviceError
(with problem busy, unavailable, or unwillingToPerform) may be returned to the requester and the Operation
Dispatcher terminates.

17.3.7 Output processing

In the final phase of Request Validation the validated input, transformed by addition of ChainingArguments if received
from a DUA or the update of ChainingArguments.tracelnformation if received from a DSA, is returned and employed
asinput to the Name Resolution procedure.

34 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

18 Name Resolution procedure

18.1 I ntroduction

This clause describes the Name Resolution procedure, its Arguments, Results, and its possible Error conditions. As shown
in Figure 6 (Operation Dispatcher), the Name Resolution procedure consists of two procedures:

— Find DSE procedure;

— Name Resolution Continuation Reference procedure.

The Find DSE procedure is described in three flow charts, namely Find DSE, Target Found, and Target Not Found. The
Find DSE procedure matches the target entry name to locally stored DSEs, component by component. If the target entry is
found locally, then Find DSE continues with the Target Found sub-procedure, which then calls the Check Suitability
procedure to check the suitability of the found DSE for evaluation. If the target entry is not found locally, then Find DSE
continues with the Target Not Found sub-procedure prepares Continuation Reference(s) to be added to the
NRcontinuationList for the Name Resolution Continuation Reference procedure to dispatch it.

NOTE 1 — Name Resolution shall perform name matching against multiple distinguished values differentiated by context, as
described in 9.4 of ITU-T Rec. X.501 | ISO/IEC 9594-2, when determining a match.

NOTE 2 — Name Resolution may fail if a pre-1997 superior DSA holds a subordinate reference to an entry held in alater edition
DSA and the RDN for that entry includes contexts. Name Resolution will fail against the shadow copy of an entry when an
alternative name is used as a purported name and the shadow entry is held in afirst or second edition DSA.

18.2 Find DSE procedure parameters

18.21 Arguments

The procedure uses the following arguments:
a) ChainingArguments.aliasDereferenced;
b) ChainingArguments.aliasedRDNs;
¢) ChainingArguments.excludeShadows;
d) ChainingArguments.nameResolveOnMaster;
€) ChainingArguments.operationProgress (nameResolutionPhase, nextRDNToBeResolved);
f) ChainingArguments.referenceType;
g) ChainingArguments.targetObject;
h) the operation type;
i) the operation argument;
NOTE — Where no actual values exist, default or implied values are used, as specified in 10.3.
18.2.2 Results

There are two cases of successful outcome from Find DSE (indicated by entry suitable or entry unsuitable):

The first successful case returns (from the Target Not Found sub-procedure) Continuation Reference(s) in
NRcontinuationList which is then passed on to the Name Resolution Continuation Reference procedure to continue the
Name Resolution phase.

The second successful case returns (from the Target Found sub-procedure) a (reference to a) DSE, which is passed to one
of the Evaluation procedures.

18.2.3 Errors

The following errors may be returned:
a) serviceError: unableToProceed, invalidReference, unavailableCriticalExtension;

b) nameError: noSuchObject, aliasDereferencingProblem, contextProblem.

ITU-T Rec. X.518 (1997 E) 35

| SO/IEC 9594-4 : 1998 (E)

18.2.4 Global Variables

The procedure uses the following global variable:

— NRcontinuationList list to store the Continuation Reference(s) needed to continue name resolution in the
Name Resolution Continuation Reference procedure.

18.25 Local and Shared Variables

The procedure uses the following local variables:
a i Index used to identify the component of the target name being worked on.

b) m The length of the target object name to be used in hame resolution. For operations that
name resolve to the parent entry, i.e. Add Entry, m is set to (the number of RDNs in the
target object) — 1. For all other operations, m is set to the number of RDNs in the target
object.

¢) lastEntryFound Index, sothat DSE(lastEntryFound) isthe last matched DSE that is of type entry.
d) lastCP Index, so that DSE(lastCP) is the last shadowed context prefix encountered.

€) candidateRefs A set of continuation references.

The shared variable admPoints (defined in Operation Dispatcher) is also used. For convenience, component i of the target
object name is denoted as N(i).

18.3 Procedures

NOTE — There are some texts in the flow chart that are only relevant to specific operations. Thisis not shown in the flow charts,
but is described in the accompanying text.

18.3.1 Find DSE procedure

See Figure 9.

This procedure attempts to resolve the target object name locally.

1) Initialize the local variables lastEntryFound and lastCP to 0; admPoints and candidateRefs to an empty set,
and initializei to 0.

2) Comparei and m. If they are not equal, then continue at step 5).

3) If they are equal, check if nameResolutionPhase iscompleted. If not completed, continue at Target Not
Found sub-procedure.

If the nameResolutionPhase is completed and the manageDSAIT critical extension is set, then return
with entry suitable.

4) If nameResolutionPhase is completed, then check if any immediate subordinate of DSE(i) is a context
prefix (of type cp).
If one (or more) immediate subordinate DSE(S) is of type cp, then return with entry suitable.
NOTE 1 —Thiscaseisfor List (11) and Search (11) subrequests.

If no immediate subordinates of DSE(i) are of type cp, then continue at Target Not Found sub-procedure.

5) Try to find a match for the (i + 1)-th component of the target object name with the name of a subordinate
of the last matched DSE. In the case of i = 0, try to match one of the DSEs immediately subordinate to the
root DSE. If no match can be found, continue at Target Not Found sub-procedure. If a single match is
found, increment i, and store the matched DSE as the i-th element in the vector of found DSEs.

NOTE 2 — Name matching includes handling of multiple distinguished values differentiated by context, where
known, as described in 9.4 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

If more than one match is found, then return anameError with problem contextProblem.

NOTE 3 — For example, this can be the case when an AttributeTypeAndDistinguishedValue in a purported name
contains multiple distinguished attribute values differentiated by contexts and different of these values match
valuesin different target names.

36 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

lastEntryFound = 0
lastCP =0

manageDSAIT o

Y

nameResolution-
Phase = completed?

Yes

admPoints ={ }
candidateRefs = { }

ManageDSAITPlane-
Ref set?

Reference
Type is supplier
or master?

Match subordinates of No match

DSE(]) to RDN N (i + 1)
Match y

Continue at
Target Not
Found

i=i+

1 Subordinate of
DSE(i) = matched DSE

DSE(i) is of
type cp?

Return
entry suitable

nameResolveOnMaster
Is TRUE and DSE(j) is not
master

i = nextRDNToBe
Resolved?

Return serviceError
(unableToProceed)
| Check next unprocessed type of DSE(i)? }*

T T T T T T T T T
All tvpes alias subentry entry subr xr immSupr admPoint cp and
processed

|

I
other

v v v shaiow L»

Make a continuation
reference using lastCP = i
SpecificKnowledge

and add to candidateRefs

Return
NameError -
noSuchObject Add DSE(i) to the
list of admPoints

don’'tDereference-
Aliases set?

No f
: lastEntryFound = i ‘

Continue at

TargetFound Yes
nameResolution- Y€S manageDSAIT or ~ Yes
Return Phase = completed? —# ManageDSAITPlane-
NameError Ref set?
aliasDereferencingProblem :

Y No ¥ No
aliasDereferenced = true v Ref
nameResolutionPhase = notStarted es - e_erencel_

N = aliasedObjectName + RDNs ype s SUPF})lef
N@ + 1) to N(m) or master?
aliasedRDNs =1 (for 92 systems)
No
Any

Return
ServiceError
invalidReference

subordinate
of DSE(i) is of
type cp?

Yes

Return
Entry suitable

TISO8930-99/d11

Figure 9 — Find DSE procedure

ITU-T Rec. X.518 (1997 E) 37

| SO/IEC 9594-4 : 1998 (E)

18.3.2

6) IfiequalsnextRDNToBeResolved, then check if the following two conditions are both met:

the ChainingArgument.nameResolveOnMaster iS TRUE;
DSE(i) is not a master entry.

If both conditions are met, then return serviceError with problem unableT oProceed.

NOTE 4 — Thisindicates the use of nameResolveOnMaster to avoid multiple paths to the same target object.

7) Check al the DSE type bits of DSE(i). For each type bit, some processing is potentially required. The
action to take for each type found is given below:

If both the cp and shadow bits are set, then remember the index i in lastCP.

If the admPoint bit is set, check the administrativeRole operational attribute. If thisisthe start of an
autonomous administrative area then empty the admpPoints list. If this is the start of one or more
specific administrative areas, then check the admPoints list and remove any existing points that are no
longer relevant (i.e. their roles have been superseded by the new administrative point). Store DSE (i)
inthelist.

If one of the subr, xr or immSupr bits is set, then generate a continuation reference using the
specificknowledge attribute with operationProgress.nameResolutionPhase set to proceeding,
nextRDNToBeResolved set to i, targetObject constructed from the resolved components using
primary RDNs (aternative distinguished values may be included in the RDNs) concatenated with the
remaining unresolved components, and accessPoints and referenceType set as appropriate. Add
the continuation reference to the list of continuation references in candidateRefs.

If the entry bit is set, then test for i equal to m (and therefore the target object name being completely
matched). If i does not equal m, then remember the found entry by setting lastEntryFound to i and
continue processing the type bits of DSE(i). If i and m are equal, continue at step 8).

If the subentry bit is set, then test for i equal to m (and therefore the target object name being
completely matched). If they are equal, then continue at Target Found procedure; if they are not
equal, then return anameError with problem noSuchObject.

If the alias bit is set, test if dontDereferenceAliases is Set.

If dontDereferenceAliases is not set, the aias can be dereferenced. Therefore, set
chainingArguments.aliasDereferenced to TRUE, nameResolutionPhase to notStarted, the name
of the target object to the aliasedEntryName as supplied in the alias entry concatenated with the
remaining unmatched components of the previous target object name (i.e. concatenate with the (i + 1)-
th to m-th component of the previous target object name). Post-1988 edition DSAs do not set
aliasedRDNs (whereas 1988 edition DSAs set aliasedRDNs to the number of RDNs in
aliasedEntryName). Start Name Resolution again by continuing at step 1).

If dontDereferenceAliases is set, then the alias cannot be dereferenced. Check if the target object
name has been processed completely by comparing i and m for equality. If they are equal (and the
name therefore fully matched), then continue at Target Found sub-procedure. If they are not equal
(and the name therefore not fully matched), then return nameError with problem
aliasDereferencingProblem.

For all other possible DSE types, no action is needed. Internally mark that DSE type as processed and
continue processing the still unprocessed DSE type bits of the DSE(i).

If al type bits of DSE(i) are processed, then continue at step 2).

8) Check if nameResolutionPhase iscompleted. If it isnot, then continue at Target Found sub-procedure.

9) If nameResolutionPhase is completed, then check if the referenceType used is supplier or master; if
S0, continue at the Target Found sub-procedure.

NOTE 5 — Thisisfor the chain-to-supplier subrequests.

If the nameResolutionPhase is aready completed and the manageDSAIT critical extension is set, then
return with entry suitable.

10) Otherwise, check if any of the DSEs immediate subordinate to DSE(i) is a Context Prefix (and therefore of
type cp). If there is (one or more), return entry suitable. If none of the immediate subordinate entries is of
type Context Prefix, then return aserviceError with problem invalidReference.

NOTE 6 — Thiscaseisfor List (11) and Search (11) subrequests.

Target Not Found sub-procedure

See Figure 10.

38

ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Continue
from
Find DSE

Completed

notStarted Return
ServiceError

invalidReference

name
ResolutionPhase?

Proceeding

lastEntryFound
< nextRDNToBeResolved?

Reference Type

Yes = nssr?

lastEntryFound
=07?

nextRDNToBeResolved?

nameResolutionPhase =
proceeding -

Return
ServiceError
unableToProceed

Yes

Root DSE
of type supr?

Make continuation
reference using the superior
knowledge found in the root
DSE; and include it in
candidateRef

Is DSE(i) shadow

and with subordinate Yes
completeness flag FALSE?
Make continuation y
reference using the nssr .)
knowledge found in the root Make a continuation reference
DSE; and include it in No using the supplierKnowledge
candidateRef attribute found in DSE (lastCP);
and add it to NRcontinuation List
Is DSE Yes
(lastEntryFound)

of type nssr?

A

Make an nssr
continuation reference
and add it to the
candidateRefs

candidateRef
empty?

candidateRef
empty?

Y

nextRDNToBeResolved

Yes

PartialName-
Resolution True?

List or
Search?

i

Use local Selection Function
to choose a continuation
reference from candidateRefs
and add to NRcontinuation List

Return
NameError
noSuchObject

» nameResolution-
Phase = completed

Return
entry suitable

Return
NameError
noSuchObject

Return

partialNameResolution = TRUE in result !
entry unsuitable

nameResolutionPhase = completed

TIS08940-99/d12

Figure 10 — Target Not Found sub-procedure

ITU-T Rec. X.518 (1997 E) 39

| SO/IEC 9594-4 : 1998 (E)

This sub-procedure is called when the target object name is not found in the local DSA. This sub-procedure determines
the best type of knowledge reference to use to continue name resolution, unless an error is detected in which case the
error is returned.

40

1)

2)

3

4)

5)

6)

7)

8)

9)

When continuing from Find DSE procedure, distinguish between the three possible phases of the Name
Resolution phase.

If nameResolutionPhase isnotStarted, continue at step 2).
If nameResolutionPhase isproceeding, continue at step 8).
If nameResolutionPhase iscompleted, continue at step 12).

If an entry was found (lastEntryFound not equal to 0), set nameResolutionPhase to proceeding and
continue at step 9).

If no entry was found (lastEntryFound=0), then check if the DSA isaFirst Level DSA.

If itisaFirst Level DSA, then the root DSE does not contain a Superior Reference and therefore is not of
type supr. In this case, continue at step 4).

If the DSA isnot a First Level DSA, then the root DSE contains a Superior Reference and therefore is of
type supr. In this case, generate a Continuation Reference using the superior knowledge as found in the
root DSE. Set:

— targetObject to the name of the target object constructed from the resolved components using
primary RDNs (alternative distinguished values may be included in the RDNs) concatenated with the
remaining unresolved components;

— operationProgress.nameResolutionPhase to notStarted;
— referenceType to superior; and
— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 6).

Check if the operation was directed to the root entry (m = 0?). If it was, continue at step 5). If it was not,
generate a Continuation Reference using any NSSR knowledge found in the root DSE. Set:

— targetObject to the name of the target object constructed from the resolved components using
primary RDNs (alternative distinguished values may be included in the RDNs) concatenated with the
remaining unresolved components;

— operationProgress.nameResolutionPhase to proceeding;
— operationProgress.nextRDNToBeResolved to 1;

— referenceType to nonSpecificSubordinate; and

accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 6).

At aFirst Level DSA, only List or Search operations may be performed with the root entry as base object.
Therefore, if the operation was not a List or Search operation, return nameError with problem
noSuchObject. If it was a List or Search operation, set nameResolutionPhase to completed and return
with entry suitable.

Check if there are any Continuation References in candidateRefs. If candidateRefs is empty and
partialNameResolution is FALSE, return nameError with problem noSuchObject. If candidateRefs is
empty and partialNameResolution is TRUE, then in the result set partialName to TRUE,
nameResolutionPhase to completed, and return with entry suitable. Otherwise, continue at step 7).

Use aloca selection function to choose a Continuation Reference from the list of Continuation References
in candidateRefs, add it to the list of Continuation References in NRcontinuationList and return with entry
unsuitable.

If the DSA was unable to proceed with Name Resolution (in which case lastEntryFound is less than
nextRDNToBeResolved), continue at step 11). Otherwise, continue with next step.

If DSE(i) is a shadow DSE with incomplete subordinate knowledge (subordinateCompletenessFlag is
FALSE), then generate a Continuation Reference from the supplierKnowledge attribute found in
DSE(lastCP). Set:

— targetObject to the name of the target object constructed from the resolved components using
primary RDNs (alternative distinguished values may be included in the RDNs) concatenated with the
remaining unresolved components;

ITU-T Rec. X.518 (1997 E)

10)

11)
12)
13)

| SO/IEC 9594-4 : 1998 (E)

operationProgress.nameResolutionPhase to proceeding;

operationProgress.nextRDNToBeResolved to lastEntryFound;

referenceType to supplier; and

accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in NRcontinuationList, and return
with entry unsuitable.

If the last entry found contains a NSSR (DSE(lastEntryFound) is of type nssr), then generate a
Continuation Reference from the NSSR knowledge found in DSE(lastEntryFound). Set:

— targetObject to the name of the target object constructed from the resolved components using
primary RDNs (alternative distinguished values may be included in the RDNs) concatenated with the
remaining unresolved components;

— operationProgress.nameResolutionPhase to proceeding;

— operationProgress.nextRDNToBeResolved to lastEntryFound+1;
— referenceType to nonSpecificSubordinate; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation References in candidateRefs. Continue at
step 7).

If DSE(lastEntryFound) is not of type nssr, then continue at step 6).

If chainingArguments.referenceType is of type nssr, then continue at step 13), otherwise at step 12).
Return serviceError with problem invalidReference.

Ifi + Lisequal to nextRDNToBeResolved, then the request was routed here due to an NSSR and the DSA
is unable to proceed with name resolution; in this case, return serviceError with problem
unableToProceed; otherwise continue at step 12).

18.3.3 Target Found sub-procedure

This sub-procedure is entered when the target object name matches with an entry DSEs locally. This sub-procedure
checksif the found entry is suitable for processing the request locally (it is shown in Figure 11):

1)
2)

3

4)

Call the Check Suitability procedure.

If the entry is suitable (entry suitable), then set nameResolutionPhase to completed and return entry
suitable.

If the entry is not suitable (entry unsuitable), then generate a Continuation Reference using the
supplierKnowledge attribute found in DSE(lastCP). Set:

— targetObject to the name of the target object constructed from the resolved components using
primary RDNs (aternative distinguished values may be included in the RDNs) concatenated with the
remaining unresolved components;

— operationProgress.nameResolutionPhase to proceeding;
— operationProgress.nextRDNToBeResolved to m;

— referenceType to supplier; and

accessPoints as appropriate.
Add the Continuation Reference to the list of Continuation References in NRcontinuationList. Return entry
unsuitable.

NOTE - If the localScope service control is set, however, the DSA could, based on local policies, decide to
consider this entry as suitable and proceed asin step 2).

If a critical extension is not supported (unsupported critical extension), then return serviceError with
problem unavailableCriticalExtension.

18.3.4 Check Suitability procedure

This procedure is caled to decide whether a found DSE is suitable for performing the requested operation
(see Figure 12). It takes into account the ChainingArguments, the ServiceControls, the arguments as supplied by the
user, the operation type and the characteristics of the DSE (shadow, subordinate knowledge, attributes present, etc.).

ITU-T Rec. X.518 (1997 E) 41

| SO/IEC 9594-4 : 1998 (E)

18.34.1

Continue
from
Find DSE

Call Check Suitability | entry p»| NameResolutionPhase = Return
Procedure suitable completed entry suitable

entry
unsuitable

Make a continuation reference

nameResolutionPhase = using the supplierKnowledge
roceeding, and - ; h
ﬁextRDN'I’goBeResoIved =i attribute found in DSE(lastCP); — " Re“’”.‘t bl
and add it to NRcontinuation List entry unsuitable

TISO3700-94/d13

Figure 11 — Target Found sub-procedure

Procedur e parameters

The input argument to this procedureis:

areferenceto aDSE;
the operation type for which the suitability of the DSE is to be checked,;
the ChainingArguments; and

the operation argument.

The output is either entry suitable, entry unsuitable, or unsupported critical extension.

42

1)

2)

3

4)

5)

6)

7)

If the DSE is not of type shadow, then check if al criticalExtensions are supported. If they are, then
return entry suitable, else return unsupported critical extension.

The DSE is of type shadow. Return entry unsuitable, if any of the following is true:
— Therequested operation type is a modification operation.

— Theservice control dontUseCopy is set.

Otherwise, continue with the next step.

If the service control copyShallDo is set, then check if al criticalExtensions are supported. If they are,
then return entry suitable, €lse return unsupported critical extension.

If the service control copyShallDo is not set, then check if all criticalExtensions are supported. If they
are, then got step 5) else return entry unsuitable.

Distinguish between operation types:

If List operation, continue at step 6).

If Read operation, continue at step 7).

If Search or Compare operation, continue at step 8).

If the entry has full subordinate knowledge, the List operation can be performed. In this case, return entry
suitable, otherwise return entry unsuitable.

If al the requested attributes are present in the DSE, then return entry suitable. If some attributes are
missing, then determine by local means whether the shadow copy holds al the attributes held by the master
(e.g. by reference to the shadowing agreement). If they are, the entry is suitable (return entry suitable).
Otherwise, the supplier may hold the requested attributes which are not present at the shadow; in this case,
the reguest has to be chained (return entry unsuitable).

ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

8) If the operation is search with searchAliases set to TRUE and the DSE is of type alias then if
chainingArguments.excludeShadows is FALSE return entry suitable, if it is TRUE return entry
unsuitable.

9) If the DSA supports the matching rule for comparing or searching as requested and the operation is
compare or search operation with subset of baseObject, then continue at step 7). If the DSA supports
the matching rule and the operation is search with subset oneLevel or subtree, then continue at step 10).
Otherwise return entry unsuitable.

10) If chainingArguments.excludeShadows is TRUE, then return entry unsuitable. Otherwise, check the
local understanding of the shadowed information specification against the operation filter and selection. If
al necessary entries and attributes are present, then return entry suitable. If any entry or attribute is
missing, then return entry unsuitable.

Return

critical
extensions
No All critical Yes
DSE of type extensions >
shadow? supported? Return
> entry suitable
Yes e
A
All necessary entries,
Yes _ attributes are present
Return Modify
entry unsuitable operation?
Check current shadowing
A no agreement unit of
replication against Entries or
Yes operation filter and attributes
>l dontUseCopy selection absent
set?
No No
No
excludeShadows ™. Y&S excludeShadows
=TRUE? =TRUE?
Yes N
copyShallDo R:;;Jr;n Yes
?
set? Yes urafiEke (search onelLevel

or subtree)
No

Search operation
Search, and No

. Is operation
List Operation matching rule

hAliases =
type? searc supported by
Compare TRUE and ‘DSE the DSA? No
of type alias

Read

No Full subordinate Yes A
knowledge and (compare, searc
ACI for each? baseOlbject)

All necessary
attributes present
in DSE?

Return
entry
unsuitable

No

Yes

Yes requested
attributes not held
by the supplier?

No

Return
entry suitable

TISO8950-99/d14

Figure 12 — Check Suitability procedure

ITU-T Rec. X.518 (1997 E) 43

| SO/IEC 9594-4 : 1998 (E)

19 Operation evaluation

This clause defines the procedure that a DSA shall follow if the target entry of an operation has been found locally
(during Name Resolution). According to the type of operation, one of the following procedures are invoked:

— For an addEntry, chainedAddEntry, removeEntry, chainedRemoveEntry, modifyEntry,
chainedModifyEntry, modifyDN or chainedModifyDN operation the procedures in 19.1 shall be
followed.

— For aread, chainedRead, compare or chainedCompare operation the procedures in 19.2 shall be
followed.

— For asearch, chainedSearch, list or chainedList operation the proceduresin 19.3 shall be followed.

191 M odification procedure

According to the type of modification operation, the corresponding procedures defined in 19.1.1 through 19.1.4 shall be
followed.

19.1.1 Add Entry Operation

1) The DSA shall check that the initiator has sufficient access rights, e.g. as defined, in 11.1.5 of
ITU-T Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall assure that an entry with the name of the entry to be added does not aready exist.
Otherwise, it shall return an updateError with problem entryAlreadyExists. If the superior DSE is of
additional type nssr, the DSA shal follow the procedure defined in 19.1.5 (Modify Operations
and NSSRs) to ensure that the name of the new entry is unambiguous. If the name of the entry to be added
includes multiple distinguished values differentiated by context for some attribute in the final RDN, the
DSA shall assure that none of the possible alternative RDNs that may be constructed yields (regardless of
context) a name for an entry that already exists.

3) If targetSystem is present, and the AccessPoint is not that of the current DSA, go to step 4). If
targetSystem is not present, or is present and the AccessPoint isthat of the current DSA, go to step 5).

4) If the entry is a subentry, the DSA shall return updateError with problem affectsMultipleDSAs. If the
entry is not a subentry, the DSA has alocal choice as to whether or not it wishes to establish a HOB with
the specified DSA. If it does not, the DSA shall return serviceError with problem unwillingToPerform,
otherwise the DSA shall establish a hierarchical operational binding (HOB) with the specified subordinate
DSA. If the DOP is supported, the procedure in 24.3.1.1 shall be followed. Otherwise, local means are
used to establish the HOB. If the subordinate DSA is unwilling to establish the operationa binding,
aserviceError with problem unwillingToPerform is returned for the addEntry operation. If the HOB is
successfully established, continue at step 7).

NOTE 1 — This step of the procedure does not apply to the creation of autonomous administrative areas in a
subordinate DSA.

5) The DSA shall ensure that the new entry conforms to the sub-schema, or that the new subentry or DSE of
other types conform to the system schema (e.g. that the immediate superior DSE of a subentry is of type
admPoint). If not, it shall return an appropriate updateError or attributeError, else it shall add the new
DSE. If entry, continue at step 7). If subentry, continue at step 6). Otherwise, appropriate knowledge
management procedures for the other types of DSE are executed. See Section 6.

6) The DSA shall forward, at an appropriate time, a modify operationa binding to al relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the superior DSE.
Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed. If the DOP is not
supported, local means shall be used to modify the RHOBS.

NOTE 2 — An appropriate time is specified by the DSA administrator, and might range from immediately after (or
even before) the operation result is returned to a periodic strategy (e.g. at an appointed hour). The time may vary
depending upon the reason for the modification, e.g. updates to ACI taking immediate effect and changes to
schema being done periodically.

7) If the added entry or subentry is within the UnitOfReplication of one or more shadowing agreements, then
the shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

44 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Check Fails Return
ACI L Error

OK
Check name . Upﬁgiglrzrr]ror Return
is unique . ServiceError
entryAlreadyExists unwillingToPerform /™~
OK

targetSystem Yes

present?

targetSystem is
this DSA?

No

Establish hierarchical
operational binding with
subordinate DSA

type of entry entry Check OK Add the new No
to be added? ; Sub-schema entry
Alias
Subentry or . Yes
other DSE Fail
Check Fail Note
Return UpdateError shadows(s
System-schema or AttributeError will need(tg
be updated

OK

Schedule modification

Add the new - of RHOBs with
Subentry or DSE subordinate DSAs Return
TISO8960-99/d15

Figure 13 —Add Entry

19.1.2 RemoveEntry Operation

1) The DSA shall check that the initiator has sufficient access rights, e.g. as defined, in 11.2.5 of
ITU-T Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall ensure that the entry to be removed is a leaf entry. Otherwise, the DSA shal return an
updateError with problem notAllowedOnNonLeaf.

3) The DSE type of the entry to be removed is checked. If subentry, continue at step 5). If cp, continue at
step 6). If entry or alias, continue at step 4). Otherwise, appropriate knowledge management procedures
for the other types of DSE are executed. See Section 6.

4) Removethe entry or aias entry and continue at step 7).

5) Remove the subentry. At an appropriate time, modify the operational bindings of all relevant subordinate
DSAs with which the current DSA has hierarchical or non-specific hierarchical operational bindings. The
relevant bindings are those which are associated with naming contexts subordinate to the superior DSE.

ITU-T Rec. X.518 (1997 E) 45

| SO/IEC 9594-4 : 1998 (E)

46

6)

7)

hierarchical binding

Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed. Otherwise, local means
shall be used. Continue at step 7).

Remove the naming context. If the DSA has a hierarchical operational binding for this naming context, it
shall terminate the hierarchical operationa binding with its immediately superior DSA. If the DSA has a
non-specific hierarchical operational binding for this naming context, and thisis the last naming context of
the non-specific hierarchical operational binding, then it shall terminate the non-specific hierarchical
operational binding with its immediately superior DSA. If the DOP is supported, the procedures
in 24.3.3.2 and 25.3.3.2 shall be followed. Otherwise, local means are used to terminate the RHOB.

If the removed naming context, entry, alias entry or subentry was within the UnitOfReplication of one or
more shadowing agreements, then the shadow consumers shall be updated using the procedures of the
Directory information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

If the removed subordinate or non-specific subordinate reference in the immediately superior DSA (whose
RHOB was terminated), was within the UnitOfReplication of one or more shadowing agreements, then the
shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

Check ACI

Fails
Return
ETar Return

Note
Return shadow(s)
's target & leaf o UpdateError will need to
entry? notAllowedOnNonLeaf be updated
Remove the
entry or -
entry/alias alias
Type of DSE to Remove Apply appropriate
L
be removed? DSE ™ g/rggedures for DSE
Schedule modification
Removethe || of RHOBS with -
y subordinate DSAs

Non-specific

Last Naming

No i
o s Remove naming | »

context

exists?

Terminate NHOB
with superior DSA

o Terminate HOB - TISO8970-99/d16
with superior DSA

Figure 14 — Remove Entry procedure

ITU-T Rec. X.518 (1997 E)

19.1.3

19.1.4

| SO/IEC 9594-4 : 1998 (E)

M odify Entry Operation

1) The DSA shall check that the initiator has access rights, e.g. as defined, in 11.3.5 of ITU-T Rec. X.511 |

ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The modifications to the entry or alias shall conform to the sub-schema. The modification to a DSE of

3

4)

other types, including subentry, shall conform to the system schema. Otherwise, the DSA shall return an
appropriate updateError or attributeError. After performing the modifications, if the target DSE is of
type subentry, continue at step 3); if the target DSE is of type entry or alias, continue at step 4);
otherwise, appropriate knowledge management procedures for the other types of DSE are executed. See
Section 6.

The DSA shall, at an appropriate time, modify the operational bindings with all relevant subordinate DSAs
with which it has hierarchical or non-specific hierarchical operational bindings. The relevant bindings are
those which are associated with naming contexts that are subordinate to the administrative point that the
modified subentry is located below. Naming contexts whose context prefixes correspond to autonomous
administrative points are not relevant. If the DOP is supported, the procedure in 24.3.2.1 and 25.3.2 shall
be followed. Otherwise, local means are used.

If the modified entry, aias entry or subentry was within the UnitOfReplication of one or more shadowing
agreements, then the shadow consumers shall be updated using the procedures of the Directory
information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

Return
»

Note
Type of DSE to entry/alias Check shadow(s)
gg modified? Sub-schema Update entry B will need to
be updated
Other DSE ‘

Check

System-schema or attributeError

Update Yes Schedule modification
DSE Lo L of RHOBS with —
subordinate DSAs

Return updateError j

Other
DSE type
Take appropriate
action for DSE type
Figure 15 —Modify Entry TISO3740-94/d17

M odify DN operation

1)

2)

The DSA shal check that the initiator has sufficient access rights, e.g. as defined in 11.4.5 of
ITU-T Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

If the operation is either to move an entry or to both move an entry and change its Relative Distinguished
Name, go to step 3). If the operation is to only change the Relative Distinguished Name of an entry, go to
step 4).

ITU-T Rec. X.518 (1997 E) 47

| SO/IEC 9594-4 : 1998 (E)

48

3

4)

5)

6)

7)

8)

9)

The operation shall be performed according to the definition in 11.4.1 of ITU-T Rec. X.511 | ISO/IEC
9594-3. If either the old superior, the new superior, the entry or any of its subordinates are not in this DSA,
or if the new superior has NSSRs, then the operation shall be rejected with updateError with problem
affectsMultipleDSAs. The DSA shall ensure that no other entry with the new name already exists.
Otherwise, it shall return an updateError with problem entryAlreadyExists. The DSA shall ensure that
the new name of the entry conforms to the subschema. Otherwise, it shall return an appropriate
attributeError or updateError. If none of these problems arise then move the entry (changing the RDN if
required) and go to step 9).

The following text is applicable to changing the rel ative distinguished name of an entry, which may or may
not be a leaf entry, and which may or may not have one or more subordinates in one or more DSAs. The
DSE type of the entry to be renamed is checked. If subentry, continue at step 7). If cp, continue at step 6).
If entry or alias, continue at step 5).

The DSA shall ensure that no other entry with the new name already exists. Otherwise, it shal return an
updateError with problem entryAlreadyExists. If the superior DSE of the entry to be renamed is of
additional type nssr, the DSA shall follow the procedure defined in 19.1.5 (Modify Operations and
NSSRs) to ensure that the new name of the entry is unambiguous. If the new name includes multiple
distinguished values differentiated by context for some attribute in an RDN, the DSA shall assure that
none of the possible RDNs that may be constructed yields (regardless of context) a name for an entry that
dready exists. The DSA shal ensure that the new name of the entry conforms to the subschema.
Otherwise, it shall return an appropriate attributeError or updateError. Rename the entry or alias entry. If
the entry is a non-leaf entry and has subordinates in other DSAS, continue at step 8), otherwise continue at
step 9).

The DSA shall ensure that the new name of the naming context conforms to the subschema; otherwise, it
shall return an appropriate attributeError or updateError.

If the DSA has a HOB with the superior DSA, then the subordinate DSA shall attempt to modify the HOB
before responding to the Modify DN operation. The superior DSA shall ensure that no other entry with the
new name aready exists, before accepting the modification. If the DOP is supported, the procedure
in 24.3.2.2 shall be followed. If the DOP is not supported, it is a local matter how the HOB is modified
and the new name is checked for uniqueness. If the HOB is successfully modified, and the naming context
has subordinate naming contexts in other DSAS, go to step 8); otherwise, go to step 9). If the HOB cannot
be modified return updateError with problem affectsMultipleDSAs.

If the DSA has a NHOB for this naming context with the superior DSA, then how duplicate entries are
detected is outside the scope of this Directory Specification. Rename the entry. If the naming context has
subordinate naming contextsin other DSAS, go to step 8); otherwise, go to step 9).

The DSA shall ensure that the new name of the subentry conforms to the system schema. Otherwise, it
shall return an appropriate attributeError or updateError. The DSA shall ensure that no other subentry
with the new name dready exists. Otherwise, it shal return an updateError with problem
entryAlreadyEXxists.

The DSA shall, at an appropriate time, modify the operational bindings of al relevant subordinate DSAs
with which it has hierarchical or non-specific hierarchical operational bindings. The relevant bindings are
those which are associated with all naming contexts that are subordinate to the entry being renamed, or
relevant naming contexts that are subordinate to the administrative point whose subentry was renamed.
Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed. Otherwise, local means
shall be used to update the RHOBS.

If the renamed naming context, entry or any of its subordinates, alias entry or subentry is within the
UnitOfReplication of one or more shadowing agreements held by the DSA, then the shadow consumers
shall be updated using the procedures of the Directory information shadow service specified in ITU-T Rec.
X.525 | 1SO 9594-9.

If the renamed subordinate reference in the immediately superior DSA [whose HOB was modified in
step 6) above] is within the UnitOfReplication of one or more of its shadowing agreements, then the
shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

If components of a RHOB with a subordinate DSA [as modified in step 8) above] are within the
UnitOfReplication of one or more shadowing agreements held by the subordinate DSA, then the shadow
consumers shall be updated using the procedures of the Directory information shadow service specified in
ITU-T Rec. X.525 | ISO/IEC 9594-9.

ITU-T Rec. X.518 (1997 E)

Return
affectsMultipleDSAs

New superior and
the whole subtree
are in the same DSA?

Modify RDN?

Check new Already exists

name doesn't
exist

Referenced
by NSSR?

Return
Error

entry or alias

Check

Type of DSE to
Sub-schema

be renamed?

Subentry

Check

System-schema

Return UpdateError
or AttributeError

| SO/IEC 9594-4 : 1998 (E)

Return
Error

Note
shadow(s)
will need to
be updated

i

Rename/Move entries
within subtree

_>

Modify hierarchical
operational binding
with subordinate DSA

Rename
the DSE

Schedule modification
of RHOBs with
subordinate DSAs

Rename the

L Subentry

Figure 16 — M odify DN procedure

19.1.5 Modify operations and Non-Specific Subordinate References

TISO3750-94/d18

If aDSA has NSSRs and does not know the complete set of names of the subordinates of an entry, to which either

a) anaddEntry operation has been directed; or
b) amodifyDN operation has been directed;

then the DSA may perform the following set of procedures prior to performing the operation.

1) If the chainingProhibited service control option is set on the addEntry or modifyDN operation, return

updateError with problem affectsMultipleDSAs.

ITU-T Rec. X.518 (1997 E) 49

| SO/IEC 9594-4 : 1998 (E)
2) If the DSA is unwilling or unable to multi-chain outgoing requests, return serviceError with problem
unwillingToPerform or unavailable, respectively.

3) The DSA shall multi-chain a chainedReadEntry operation to each master DSA in the set of
accessPointinformation of the NSSR. (The DSA shall only use the master DSA from each
MasterAndShadowAccessPoints due to transient inconsistency caused by shadowing.) The parameters
of the ReadArgument shall be set as follows:

object to either the name of the entry to be added (in the case of addEntry), or to the proposed name
of an existing entry (in the case of modifyDN).

selection the object class attribute.

The parameters of CommonArguments shall be set as follows:

— setthedontDereferenceAliases service control option;

— set OperationProgress.nameResolutionPhase to completed.
The parameters of ChainingArguments shall be set asfollows:

— setoriginator to the name of the originator;

— targetObject isomitted,;

— set OperationProgress.nameResolutionPhase to proceeding and nextRDNToBeResolved to
(number of RDNsin the object name) — 1;

— settracelnformation to an empty sequence;

— setreferenceType to nonSpecificSubordinate;

— timeLimit, as appropriate according to the incoming request.

Other parameters, e.g. SecurityParameters, may be set as appropriate, e.g. by local policy.

4) The DSA waits for the complete set of responses. If any of the response is a ReadResult, then an error
shall be returned asin 6) below.

5) If dl responses are serviceError with problem unableToProceed, operation eval uation may proceed.

6) If aReadResult isreturned, an updateError with problem entryAlreadyExists shall be returned for the
original operation;

7) If any other error is returned to the readEntry request, aserviceError with problem unwillingToPerform
shall be returned.

The DSA receiving the chainedRead request shall give a response according to the presence or not of the entry, and its
access control policy.

19.2 Singleentry interrogation procedure

The operations read, chainedRead, compare, and chainedCompare fal into the group of single entry interrogation
procedures. These procedures contain only the following three steps:

1) Check access control, as described in clause 9 of ITU-T Rec. X.511 | ISO/IEC 9594-3. If the operation is
disallowed, return the appropriate security error.

2) Perform the operation on the found DSE as described in clause 9 of ITU-T Rec. X.511 | ISO/IEC 9594-3.
3) Preparethereply, and return.

19.3 Multiple entry interrogation procedure

According to the type of interrogation operation (list or search), the corresponding procedures defined in 19.3.1
and 19.3.2 shall be followed.

19.3.1 List procedures
This subclause specifies the eval uation procedure specific to list and chainedList operations.

The List (1) Procedure shall be followed when the List request’s operationProgress.nameResolutionPhase component
is set to notStarted or proceeding and when the DSA, after performing Name Resolution, finds that it holds the base
object. The List (11) Procedure shall be followed when the List request’s nameResolutionPhase component is set to
completed.

50 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

19.3.1.1 Procedure parameters

19.3.1.1.1 Arguments

The arguments that are used by this procedure are:
— theListArgument;
— thetarget DSE ¢

— operationProgress of the chainingArgument.

19.3.1.1.2 Results

If this procedure is successfully executed, it returns:
— aset of subordinates of einlistinfo.subordinates;
— limitProblem indicated in partialOutcomeQualifier;
— aset of continuation references in SRcontinuationList.

19.3.1.1.3 Errors
The procedure can result in one of the following errors returned to the requesting DUA/DSA:

— anaccessControlError or nameProblem;

— any error defined for the find DSE procedure, when an alias has been dereferenced.

19.3.1.2 Procedure definition
The sub-procedures as defined in 19.3.2.2.1 and 19.3.2.2.2 shall be invoked according to the following rules.

19.3.1.2.1 List (I) procedure

The List (1) procedure consists of the following steps as depicted in Figure 17:
1) If the service control subentry is set, then go to Step 5); otherwise, go to Step 2).

2) |If DSE e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following
components:

— targetObject to the primary distinguished name of the DSE e (alternative distinguished values may be
included in the RDNSs);

— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and nextRDNtoBeResolved
absent;

— rdnsResolved absent;
— referenceType set to nonSpecificSubordinate;

— accessPoints set to a set of accessPointinformation each derived from a vaue of the
nonSpecificKknowledge attribute of DSE e.

3) For each DSE ¢ immediately subordinate to DSE e execute the following steps:

a) Checkthe ACl in¢ if available. If the ACI disallows listing the RDN of €, then skip this DSE. If the
ACI is not available (for example in the case of subordinate references and glue), then it is a local
policy whether to proceed.

b) Check all the DSE types of €.

i) If € isof type subr, then there are two cases. In the first case, the subordinate entry’s ACI and
object class is available locally, in which case, based on local policy and the ACI’s permission,
add the RDN of € to listinfo.subordinates with aliasEntry set to TRUE if € is of type sa, and
fromEntry set FALSE. The other case is when the ACI of the entry is not available in €, in
which case add a Continuation Reference to SRcontinuationList with the following components:

— targetObject to the primary distinguished name of the DSE e (alternative distinguished
values may be included in the RDNSs);

— aliasedRDNSs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

ITU-T Rec. X.518 (1997 E) 51

| SO/IEC 9594-4 : 1998 (E)

4)
5)

6)

0)

d)

— rdnsResolved absent;
— referenceType set to subordinate;
— accessPoints set to the value contained in the specificknowledge attribute of DSE €.

ii) If the DSE ¢ is of type entry or glue, then add the RDN of € to listinfo.subordinates with
aliasEntry set to FALSE and fromEntry set according to whether € isa copy.

NOTE — In the case that € is glue, it must have one or more subordinates which implies it cannot be
an dias in the master DSA. Also, any ACI relevant to the List operation is stored in this DSE, supplied
viathe shadowing protocol.

iii) If the DSE € is of type alias, then add the RDN of € to listinfo.subordinates with aliasEntry
set to TRUE, and fromEntry set according to whether € isacopy.

Check if time, size or administrative is exceeded. If so, set limitProblem accordingly in
partialOutcomeQualifier and return.

Continue from step 3) a) until all subordinate DSEs have been processed.

If al subordinates DSES have been processed, return to the Operation Dispatcher.

For each subentry e immediately subordinate to DSE e execute the following steps:

a)

b)

Check the ACI in €. If the ACI disallows listing the RDN of €, then skip this DSE. Otherwise, add
the RDN of € tolistinfo.subordinates with aliasEntry set to FALSE and fromEntry set according to
whether € isacopy.

Check if time, size or administrative limit is exceeded. If so, set limitProblem accordingly in
partialOutcomeQualifier and return.

Return to the Operation Dispatcher.

19.3.1.2.2 List (1) procedure

TheList (11) procedure consists of the following steps as depicted in Figure 18:

1)

2)

For each DSEs e immediately subordinate to DSE e, execute steps 1), a) to 1), d):

a)

b)

<)

d)

Check ACI in €. If the operation is disalowed by the ACI, continue with the next immediate
subordinate of e.

Add the RDN of DSE € to listinfo.subordinates, with the aliasEntry component of
listinfo.subordinates to according to whether € is an dlias, and the fromEntry component set
depending on whether € is a copy or not. Ignore those DSESs of type shadow, if excludeShadows is
TRUE.

Check if time, size or administrative limit is exceeded. If so, set the limitProblem of
partialOutcomeQualifier accordingly and return.

continue from step 1) a) until all subordinate DSES have been processed.

If all subordinate DSEs have been processed, check if this subrequest came from DAP or DSP. In case this
subrequest is submitted via DAP, and the ListResult is empty, then return a serviceError with problem
invalidReference to the Operation Dispatcher. Otherwise, the ListResult is returned.

NOTE — invalidReference is used as a security precaution in case the user does not have access to the superior
entry. If the superior’'s entry ACI is available (provided by the RMOB), then a null result may be returned if
allowed.

19.3.2 Search procedures

This subclause specifies the evaluation procedure specific to search and chainedSearch operations.

Search (1) procedure shall be followed when the search request's operationProgress.nameResolutionPhase
component is set to notStarted or proceeding and when the DSA, after performing Name Resolution, finds that it holds
the base object. The Search (I1) procedure shall be followed when the search request’'s nameResolutionPhase
component is set to completed.

NOTE — When nameResolutionPhase is completed, the target object is expected to be the immediate superior of a context

prefix.

52 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Include all
subentry
RDNSs in result

Subentries
set?

Add a continuation reference
with all APIs contained in
nonSpecificKnowledge attribute
to SRcontinuationList

Y

DSE type
of target =
nssr?

Return
ListResult

Process each DSE e' immediately subordinate to DSE e

No

Time,

Add RDN of €’ to listInfo. Set

dse type aliasEntry and fromEntry o
according to dse type
-
o Add RDN of e’ to listInfo. Set
. Availability of ACI aliasEntry and fromEntry ||
and local policy according to dse type
Not OK
Add a continuation reference from
> access point information in >

specificKnowledge attribute
to SRcontinuationList

Figure 17 —List (1) procedure

ITU-T Rec. X.518 (1997 E)

Alle’s
processed

set limitProblem of
partialOutcomeQualifier

size, administrative
limit exceeded?

Yes *

TISO3760-94/d19

53

| SO/IEC 9594-4 : 1998 (E)

(listResult
Enter

No No

Return
ServiceError
invalid reference Yes Yes

Process each DSE e’ immediately subordinate to DSE e

Alle’s
processed

Next e’

set limitProblem of
partialOutcomeQualifier

Yes 4

TISO3770-94/d20

No

Time,
size, administrative
limit exceeded?

Add RDN of e’ to listinfo. Set aliasEntry
and fromEntry according to dse type

Figure 18 —List (I1) procedure

19.3.2.1 Procedure parameters

19.3.2.1.1 Arguments

The arguments that are used by this procedure are:
— theSearchArgument;
— thetarget DSE €
— operationProgress of the ChainingArguments;

— exclusions of the ChainingArguments (alist of RDNs to exclude from search).

19.3.2.1.2 Results

If this procedure is successfully executed, it returns:
— aset of matched Entries in searchResult.entrylnformation;
— alreadySearched in ChainingResults;

— aset of continuation references in SRcontinuationList.
19.3.2.2 Procedure definition

19.3.2.2.1 Search (I) procedure

This is a recursive procedure that applies to a search request that starts at a given target entry e. It searches the target
entry e and then processes the DSEs immediately subordinate to e. The procedure is invoked by itself recursively in the
case that awhole subtree is to be searched. The procedure consists of the following steps as shown in Figure 19:

1) If the type of DSE e is of type cp (a DSE at a context prefix), check if any element of the exclusions
argument is a prefix of the DN of e.

a) If so, return.

54 ITU-T Rec. X.518 (1997 E)

b)

| SO/IEC 9594-4 : 1998 (E)

Else, call Check Suitability.

i)

i)

If eisunsuitable, make a Continuation Reference as follows and add it to SRcontinuationList:

— targetObject to the primary distinguished name of the immediate superior of DSE e
(alternative distinguished values may be included in the RDNS);

— aliasedRDNSs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType set to supplier;

— accessPoints set to AccessPointinformation derived from the value(s) found in the
supplierKnowledge attributein e.

Then return.

NOTE 1- This is the only place when a search subrequest (nameResolutionPhase is
completed) is chained to a shadow’ s supplier. In other words, the target object for such a chained
subrequest is always a context prefix.

Else, add the Distinguished Name of e to alreadySearched in ChainingResults.

NOTE 2 — alreadySearched only contains context prefixes.

2) |If eisof typealias and searchAliases in SearchArgument is TRUE then call Search Alias procedure and
then return.

3) If subset isoneLevel, then proceed to step 6).

NOTE 3 — The e cannot be subordinate incomplete at this point since the Check Suitability at the context prefix
should have ascertained that this cannot happen.

4) If subset ishaseObject, or if entryOnly is TRUE then continue with this step; otherwise, go to step 5).

If one of the following is true:

a)

b)

eis of type subentry and the service control subentry is set; or

eisnot of type subentry and the service control subentry is not set,

then do the following steps:

i)
i)

Check ACI. If the operation is disallowed, return.

Apply the filter argument specified in the SearchArgument filter to the DSE e. Ensure that
access to al attributes used in the filter is permitted as defined in ITU-T Rec. X.501 | ISO/IEC
9594-2. If the filter matches, add the attributes selected by the SearchArgument.selection to
the list of matched entries in searchResult.entryinformation. Only add attributes that are not
greater than the attributeSizeLimit.

Return.

5) If subset issubtree (and entryOnly ishot TRUE), and in addition one of the following is true:

a)

b)

eis of type subentry and the service control subentry is set; or

eisnot of type subentry and the service control subentry is not set,

then do the following steps:

i)
i)

i)

Check ACI. If the operation is disallowed, go to step 6).

Apply the filter argument specified in the SearchArgument.filter to the DSE e. Ensure that
access to all attributes used in the filter is permitted as defined in ITU-T Rec. X.501 |
ISO/IEC 9594-2. If the filter matches, add the attributes selected by the
SearchArgument.selection to the list of matched entriesin searchResult.entrylnformation.

Proceed to step 6).

ITU-T Rec. X.518 (1997 E) 55

| SO/IEC 9594-4 : 1998 (E)

6)

7)

8)

If e is of type nssr, then add a Continuation Reference to SRcontinuationList with the following
components:

— targetObject to the primary distinguished name of the DSE e (alternative distinguished values may be
included in the RDNSs);

— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and nextRDNtoBeResolved
absent;

— rdnsResolved absent;
— referenceType setto nssr;

— accessPoints set to AccessPointinformation derived from the vaue(s) found in the
nonSpecificKnowledge attribute.

Process all DSEs € that are located immediately subordinate to the target DSE e until al subordinate
DSEs have been processed. During this loop, if the list of matched entries in
searchResult.entryinformation exceeds the size limit, or time or administrative limit is exceeded then set
limitProblem accordingly in partialOutcomeQualifier and return.

NOTE 4 — The check for size limit isalso implicitly applied every time searchResult is updated.

a If the DSE € is of type subr, and not of type cp, then add a Continuation Reference to
SRcontinuationL ist with the following components:

— targetObject to the primary distinguished name of the DSE e (alternative distinguished values
may be included in the RDNSs);

— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType set to subr;

— accessPoints set to the access point information contained in the specificKnowledge attribute
of DSE €.

NOTE 5 — If € is of both type cp and subr, a search subrequest can be generated potentially from
either the subordinate reference or the supplier knowledge, but not both. This procedure uses the latter
(supplier references found in cp).
b) For al cases:.
i) IfsubsetisonelLevel, set entryOnly to TRUE.
ii) Recursively execute Search (1) procedure for target DSE €.

If al subordinates have been processed, return to the operation dispatcher for further processing.

19.3.2.2.2 Search (I1) procedure

This procedure applies if a search request is processed that originated from a request decomposition at the DSA from
which the request was received. The procedure processes the DSEs below the target DSE e and calls the Search (1)
procedure for each object entry:

1)

2)
3
4)

Process all DSEs € that are located immediately subordinate to the target DSE e until al subordinate
DSEs have been processed. When all subordinates have been processed, return to the operation dispatcher
for further processing.

If the DSE is not of type cp thenignoreit. Return to step 1).
Cadll Check Suitability. If suitable go to step 4); otherwise, ignore it and return to step 1).

Execute the Search Procedure (1) for the DSE € as described in 19.3.2.2. If the DSE is of type alias and the
value of the subset parameter is set to oneLevel, set ChainingArguments.entryOnly to TRUE when
calling Search (I) procedure. Return to step 1).

56 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

<—

| Yes

Add continuation reference
SRcontinuationList which
points to supplier
(including master)

DSE e
of type cp?

Yes Isein

exclusions?

No

- Add DN of e to

* Entry unsuitable
alreadySearched

Call Check Suitability
Procedure for DSE e

e of type
alias and
searchAliases =
TRUE?

Yes | Entry suitable

- Call Search
Alias Procedure

e is not
subentry and
subentries
not set?

e of type
subentry and
subentries set?

Subset =
onelLevel?

Yes

No match)
— Match e against

filter

Add selected
attributes of DSE
to searchinfo

subset =
baseObject or entry
Only = TRUE?

Yes

Add a continuation reference with
all access points contained in Yes
attribute nonSpecificknowledge to g
SRcontinuationList

v

: All e’s
‘ Set targetObject to DN ofe processed

v

Process each DSE e' immediately subordinate to DSEe

DSE e is of
type nssr?

No

Time,

size, administrative
limit exceeded?

No Add a continuation reference
for access point information .
in specificKknowledge attribute
to SRcontinuationList

e’ of type
subr

e' of type

Set limitProblem of

partialOutcomeQuialifier
Call Search Procedure(l) with ' _ [

If subset = onelLevel, set
entryOnly to TRUE

TISO3780-94/d21

Figure 19 — Search (1) procedure

ITU-T Rec. X.518 (1997 E) 57

| SO/IEC 9594-4 : 1998 (E)

=)
i

— Process each DSEs e’ of type cp immediately subordinate to DSEe |_processed
+ Next e’
. | entry
Call Check Suitability Procedure Unsuitable
|
entry suitable L Return j

dse type Yes

= alias

One level
search?

+ No
entryOnly =

-? TRUE

TISO3790-94/d22

Call SearchProcedure(l) with DSE e’

Figure 20 — Search (I1) procedure

19.3.2.2.3 Search Alias procedure

This procedure is executed if a DSE of type alias has been encountered during the processing of a search request

(see Figure 21):

1) If subsetisbaseObject or oneLevel, go to step 4).

2) If aliasedEntryName is a prefix of targetObject or baseObject or any of the previous values of the
targetObject in ChainingArguments.tracelnformation, then the alias is excluded from the Search
because this would cause a recursive search with duplicate results.

3) If targetObject or baseObject or any of the previous vaues of the targetObject in
ChainingArguments.tracelnformation is a prefix of aliasedEntryName, then no specific processing of
the aliasis required because the aliased subtree will be searched anyway.

NOTE — For both of the above cases, baseObject may not be prefix of targetObject, due to alias dereferencing.

4) Build a DSP request with the targetObject set to the aliasedEntryName. If subset is oneLevel, set
entryOnly to TRUE. Call the Operation Dispatcher for the request to be locally continued.

5) If the Operation Dispatcher returns a referral error, or busy, or unavailable errors then add (or make and
add) the continuation reference to partialOutcomeQualifier of SearchResult, and return.

6) If the Operation Dispatcher returns other errors, discard it and return.

7) If the Operation Dispatcher returns a SearchResult, then:

58

i) If the result is signed, encrypted, or signed and encrypted, add it to uncorrelatedSearchinfo in
SearchResult.

ii) If theresult is not signed, encrypted, or signed and encrypted, add it to searchInfo in SearchResult.

And return.

ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

(=

aliasedObjectName is
prefix of baseObject or
targetObject?

Yes
Return

A

baseObject or Yes
targetObject is prefix -
of aliasedObjectName?
No
Add continuationReference | . -
. to partialOutcomeQualifier
Build a local DSP request
+ Referral/(
Error
Call Operation Dispatcher ——®= piccqrq J—
Result
Add to searchinfo —
Yes Add to uncorrelatedSearchinfo

TISO3800-94/d23

Figure 21 — Search alias procedure

20 Continuation Reference procedures

The procedures in this clause are caled to process the list of continuation references (NRcontinuationList or
SRcontinuationList) created by other procedures.

The Continuation Reference procedures consist of the steps shown in Figures 24, 25, and 26. The first stage is to identify
sets of continuation references from the continuation list that have a common target object component. These have been
created from a set of subordinate or non-specific subordinate references associated with the same entry in the DIT.
Within each of these sets there may be continuation references which occur more than once. The sets should be scanned
and any duplicates found should be discarded.

These sets (each with a different targetObject component) may be processed independently, either sequentially or in
paralel by the DSA, since there is no risk that the same results will be returned from any two sets. However, the
processing of each continuation reference within one set, and of each AccessPointinformation within one continuation
reference, and of each access point within one AccessPointinformation, has to be controlled, or duplicate results may
occur, as described in 20.1.

ITU-T Rec. X.518 (1997 E) 59

| SO/IEC 9594-4 : 1998 (E)

The procedure adopted in the APInfo procedure, is to process one by one the set of access points contained in a single
AccessPointinformation. These all point to (copies of) the same naming context (or possibly a set of naming contexts
held in one DSA, in the case of NSSRs). If the first access point produces aresult or a hard error, further access points do
not need to be processed. However, if the error is a soft error, i.e. a serviceError (with problem busy, unavailable,
unwillingToPerform, invalidReference, or administrativeLimitExceeded), then the DSA may choose, as a local
option, to process another access point from the set.

Processing of the AccessPointinformation values within one set of continuation references, is handled in a uniform way,
irrespective of which continuation reference they originated from. (This is because two DSEs of type subr below asingle
entry would produce two continuation references, each containing one AccessPointinformation value, whereas one DSE
of type nssr to the same two subordinates (assuming that they are held in different DSASs), would produce one
continuation reference containing a set of two AccessPointinformation values.)

The accessPointinformation values may be processed either sequentially or in parallel, as described in 20.1. The
parallel strategy is more likely to produce duplicate results. Duplicates shall always be discarded.

20.1 Chaining strategy in the presence of shadowing

In the presence of shadowing, a DSA may choose between different strategies when it has to multi-chain request to more
than one DSA. This choice always occurs if the DSA has to process more than one continuation reference with the same
targetObject. This situation can occur from multi-chaining caused by NSSR decomposition during Name Resolution (as
shown in Figure 22) or from request decomposition during the evaluation of a multiple object operation (see Figure 23).

The goa of these strategies is to deal with the problem of duplicate results and duplicate processing when shadowed
information is used in multi-chaining of requests (caused by either NSSR or request decomposition). For example, in
Figure 22, DSA 1 multi-chains a request to both DSAs 2 and 3 because of the NSSR held in DSE B. If the use of
shadowed information is allowed, both DSAs 2 and 3 may apply the chained operation to both subtrees starting at X
andY.

nssr to DSA 2

and DSA Chained

Request with
targeObject B

Chained
Request with
targeObject B

Shadow Shadow B

TISO3810-94/d24

Figure 22 — M ulti-chaining caused by NSSR during Name

60 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Similarly, in Figure 23, DSA 1 multi-chains (as a result of request decomposition) to the two subordinate references held
in DSEs X and Y. Again, if the use of shadowed information is allowed, both DSAs 2 and 3 may apply the chained
operation to both subtrees startingat X and Y.

To dea with this problem of duplication, a DSA may choose one of the following strategies when multi-chaining to
multiple DSA reguests with the same targetObject.

Chained

Chained
Subrequest Subrequest
with with

targetObject B

targetObject B

TISO3820-94/d25

Figure 23 — M ulti-chaining Request Decomposition using Subordinate

20.1.1 Master only strategy

A DSA may choose this strategy to prevent the usage of shadowed information when performing a parallel or sequential
multi-chaining caused by NSSR decomposition, or request decomposition during a Search or List evaluation. For this
strategy, during a Search or List operation evaluation the excludeShadows component of the ChainingArguments is set
to TRUE. If NSSRs are encountered during Name Resolution, a DSA may set nameResolveOnMaster to TRUE to
ensure that only a single path is followed. nameResolveOnMaster shall be set to TRUE if NSSR are encountered and the
operation is one of the Directory modification operations. In either case, only the DSA(S) that hold the master entry (or
entries) relevant to the operation shall perform the operation. This master only strategy can be used during both parallel
aswell as sequential multi-chaining.

NOTE — Setting nameResolveOnMaster to TRUE eliminates the possibility of multiple paths during name resolution by
(2) ignoring shadow entries and (2) by ensuring that only one DSA may proceed with name resolution in situations where a
complex DIT distribution would otherwise permit more than one to proceed. This is achieved by alowing only the DSA holding
the master entry corresponding to the first nextRDNToBeResolved RDNs of the target object name to continue with name

resolution. Any other DSAs will not be able to proceed even though they may hold master entries which match more of the target
object name.

20.1.2 Parallel strategy

Using this strategy, a DSA sends out all chained requests by parallel multi-chaining. This strategy may be used during
Search or List evaluation, and name resolution of the NSSRs. This will alow the use of shadowed information for
processing of the chained requests, but may result in duplicate executions and duplicate results for the operation. If a
DSA selectsthis strategy, it shall remove duplicate results from the operation result that it returns.

ITU-T Rec. X.518 (1997 E) 61

| SO/IEC 9594-4 : 1998 (E)

Because the removal of duplicate resultsis not possible if a signed result has been requested, a DSA shall not choose this
strategy if signed results are requested during Search evaluation, unless excludeShadows is also set.

20.1.3 Sequential strategy

This strategy avoids duplicate results by using sequential multi-chaining to process the chained (sub)requests of a Search
decomposition or of a NSSR decomposition. Each chained request is processed one after the other.

In the case of NSSR decomposition, if aresult or a hard error is returned to a request, further requests do not need to be
chained. If a soft error is returned, a further request may be chained, or the soft error returned to the requester, depending
upon local policy.

In the case of Search evaluation, the exclusions component of the ChainingArguments is set to the set of RDNSs that
have already been processed. This is done by incorporating the elements in ChainingResults.alreadySearched to the
exclusions argument of the next chained request. This is the only strategy that completely avoids duplication during
Search evaluation.

A sequential strategy is not defined for List evaluation (although sequential multi-chaining may be used), since a superior
DSA has no way of excluding specific subordinates from being returned in further List subrequests (note that
excludeShadows does not exclude specific subordinates, but rather is a coarse way of excluding all shadows).

20.2 I ssuing chained subrequeststo aremote DSA

Prior to issuing a subrequest, a DSA has to execute adSABind operation when the DSA has to establish an association to
the remote DSA. Management of associations is outside the scope of the Directory Specifications. An association to
another DSA is considered unavailable if the association cannot be established or the DSA for local reasons decides not
to establish one. In this case, the dSABind hasfailed. It isaloca decision when to stop trying to establish an association
and declare an association as unavailable.

When a DSA tries dSABind to another DSA and receives adirectoryBindError, the issuing of the subrequest failed.

20.3 Procedures parameters

20.3.1 Arguments

These procedures make use of the following arguments:

— thelist of continuation references to process in NRcontinuationList (for the Name Resolution Continuation
Reference procedure), and SRcontinuationList (for the List Continuation Reference and Search Continuation
Refer ence procedures, respectively);

— theCommonArguments of the operation argument;

— theChainingArguments.

20.3.2 Results

These procedures cregate the following results:
— alist of received resultg/errors of issued chained requests if chaining has been selected;

— anupdated list of unprocessed continuation referencesin continuationL ist.

20.3.3 Errors

These procedures can return one of the following errors:

— aserviceError with problem outOfScope in the case that a referra would have been created which is not
within scopeOfReferral;

— aserviceError with problem ditError in the case that an invalid knowledge reference has been detected,;

— anameError with problem noSuchObject in the case that all subrequests from NSSR decomposition
returned unableToProceed;

— any other error that is returned by a chained subrequest;

— areferral in the case that chaining was not selected and operationProgress.nameResolutionPhase is set
to notStarted or proceeding.

62 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

20.4 Definition of the Procedures

If operationProgress.nameResolutionPhase is set to notStarted or proceeding, the procedure in 20.4.1 (Name
Resolution Continuation Reference procedure) shall be followed. The multiple entry interrogation operations List and
Search respectively call the proceduresin 20.4.2 and 20.4.3.

20.4.1 Name Resolution Continuation Reference procedure

The Name Resolution Continuation Reference procedure consists of the steps as shown in Figure 24. The basic principle of
this procedure is to sequentially process the set of continuation references created during Name Resolution. The
following steps shall be executed for each continuation reference C contained in NRcontinuationList in a selected order
until all references have been processed or an error or result has been returned. If al references have been processed,
return to the Operation Dispatcher to continue with the Result M erging procedure to process the received result or referral.

1) Check whether chainingProhibited is set. If it is set, then the DSA is not allowed to chain. According to
local policy, either a serviceError with problem chainingRequired or a referral is returned to the
Operation Dispatcher.

2) If chainingProhibited is not set, then check if local policy allows chaining. If chaining is not allowed, then
return areferral. If local policy allows chaining, then continue with the next step.

3) Process each of the Continuation References of the list of Continuation References found in
NRcontinuationList. If there are no more unprocessed Continuation References then return with
serviceError.

4) Process the next Continuation Referenced C from NRcontinuationList. If it isaNSSR, then continue at step
5). If it is not a NSSR, then call the APInfo procedure to process it. Distinguish between the possible
returns of the APInfo procedure:

— If the APInfo procedure returns a null result, continue at step 3) with processing the next Continuation
Reference.

— If the APInfo procedure returns an error, referral or result, then returnit.

5) Inthis case, the Continuation Reference is of type NSSR and the DSA has the choice of doing sequential
or parallel chaining, depending on the local choice of strategy. If the NSSR is to be processed sequentialy,
then continue at step 6). If it isto be processed in parallel, then for each of the AccessPointinformation
(API) in the NSSR the APInfo procedure is called so that they are processed in paralel. Wait for al the
API to be processed, i.e. wait for al the calls to the APInfo procedure to return. Check all the results
received from the call to the APInfo procedure in the following order:

— If al the callsreturn aserviceError with problem unableToProceed and partialNameResolution is
FALSE, then return nameError.

— If dl the calsreturn aserviceError with problem unableToProceed and partialNameResolution is
TRUE, then in the result set partialName to TRUE, nameResolutionPhase to completed, set entry
suitable (this will be for the lastEntryFound), and go to the appropriate operation evaluation.

— If one or more results are received, then discard possible duplicates and return the result.
— Ifanerror isreceived that isnot aserviceError (e.g. anameError), then return anerror.
— Otherwise return areferral or serviceError to the Operation Dispatcher, according to local choice.

6) Choose the next unprocessed API from the set of APIsin the NSSR and continue at step 7). If al the API’s
have been processed, then check if al the calls to the APInfo procedure returned a serviceError with
problem unableToProceed.

— If they did and partialNameResolution is FALSE, then the entry cannot be found and a NameError
is returned. If they did and partialnameResolution is TRUE, then in the result set partialName to
TRUE, nameResolutionPhase to completed, set entry suitable (this will be for the lastEntryFound),
and go to the appropriate operation evaluation. If they did not, then according to local choice, return a
referral or serviceError.

7) Cd

— If asserviceError with problem unableToProceed is received, try another Access Point. Continue at
step 6).

— If a serviceError with problem busy, unavailable, unwillingToPerform or invalidReference is

received, then the indicated problem may be of a transient nature and it is a local choice to try and

chain the request on to another DSA. If it is chosen to try another DSA, then continue at step 6);
otherwise return areferral or serviceError, according to local choice.

the APInfo procedure. Distinguish between the possible results from the call to APInfo procedure:

ITU-T Rec. X.518 (1997 E) 63

| SO/IEC 9594-4 : 1998 (E)

— If an error other than serviceError with problem busy, unavailable, unwillingToPerform,
invalidReference or unableToProceed is received, that error should be returned to the Operation
Dispatcher. If the serviceError is invalidReference, this shall be converted into ditError before
being returned to the requester.

— Ifaresult or referral isreceived, return it to the Operation Dispatcher.

Return
ServiceError
chainingRequired

Local
policy?

chainingProhibited
set?

Return
Referral

Local DSA
policy allows
chaining?

No

Return
ServiceError

All C's

Process each continuation reference C from NRcontinuationList processed

A

null
error Return

Error

Call APInfo Procedure

referral

result result

parallel
Call APInfo Procedure for
each AccessPointInformation

sequential

‘ Process each AccessPointInformation (API) ‘

All

* Next API
unableToProceed
Service Errors?

All API's referral
processed | ca)| APInfo Procedure Return
Referral Yes

result

Unable error
to Ret
proceed busy, rgsﬂrltn

unavailable,
unwilling,
invalidRef

One or
more
results?

Discard
duplicates

A

Local Return .
choice: Error non-ser\;we
Return error?
Referral
unableToProceed or Service

Service Errors? Error

Go to
appropriate
operation evaluation

partialNameResolution = TRUE in result,
nameResolutionPhase = completed,
set entry suitable

partialName-
Resolution TRUE?

Return
NameError

TISO8980-99/d26

Figure 24 — Name Resolution Continuation Reference

64 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

20.4.3 List Continuation Reference procedure

The List Continuation Reference procedure consists of the steps shown in Figure 25. This procedure is invoked when a
List request cannot be satisfied in the local DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. All these continuation references (CR) have the same targetObject. Those
CRs with referenceType nss have one or more AccessPointinformation values (APIS), whereas other type CRs have
only one API in them. Each of these API is extracted and considered for chaining or referral.

Limit
exceeded?

Yes

chainingProhibited

No
Local policy

Chain

Extract all APIs from the continuation references, and process each using either
parallel or sequential strategy

¢ Next API ‘

error or
null Add a continuation
. reference based on
this API, and add it to
partialOutcomeQualifier.
unexplored

All API's processed

Call APInfo Procedure

referral result

Implausible

Add result to listInfo

Add result to
uncorrelatedListinfo

TISO3840-94/d27

Figure25—List Continuation Reference procedure

The following steps shall be executed:

1)

2)

3

If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to continue
with the Result Merging procedure.

If the chainingProhibited flag in CommonArguments.serviceControls is set or the DSA decides not to
do any chaining because of itslocal operational policy, then the DSA shall directly return to the Operation
Dispatcher to continue with the Result M erging procedure.

Create a set of AccessPointinformation values from the accessPoints component of every continuation
references in the SRcontinuationL ist.

Use either parallel or sequentia strategy to process each API asfollows:
i) Cal the APInfo procedure with the next API in the set.

i) If aresultisreturned then add it to listinfo if it is not signed, or add it to uncorrelatedListinfo if itis
signed.

ITU-T Rec. X.518 (1997 E) 65

| SO/IEC 9594-4 : 1998 (E)

iii) If the return is an error or null, it means that APInfo has aready tried all access points in the API
without success. Based on local operational and security policy, either ignore and proceed to the next
API, or add a continuation reference based on this API to the partialOutcomeQualifier.

NOTE — It is not plausible to get a referral back from APInfo. Any "referral” should come in the form of
unexplored in partialOutcomeQualifier.

4) When al APIsare processed, return to the Operation Dispatcher.

20.4.4 Search Continuation Reference procedure

The Search Continuation Reference procedure consists of the steps shown in Figure 26. This procedure is invoked when a
Search request cannot be satisfied in the loca DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. The procedure is very similar to the List Continuation Reference procedure.
The difference is that in this case the continuation references in SRcontinuationList may have different targetObject
values. Thus, the continuation references are sorted into sets of continuation references with the sametargetObject. Also,
the use of exclusions in chaining arguments and of alreadySearched in chaining results is defined, as this is an
important strategy for search. The use of exclusions and alreadySearched is applied to processing each set of
continuation references with the same targetObject.

The following steps shall be executed:

1) If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to continue
with the Result M erging procedure.

2) If the chainingProhibited flag in CommonArguments.serviceControls is set or the DSA decides not to
do any chaining because of its local operational policy, then the DSA shall directly return to the Operation
Dispatcher to continue with the Result M erging procedure.

3) Sort the continuation references in SRcontinuationList into sets that have the same targetObject. Within
each set, remove any duplicates.

NOTE 1 — If one or more targetObject values is not a primary RDN, then this sorting may not be accurate. The
sorting shall take into account alternative distinguished RDNs, if known.

4) For each subset of continuation references create a set of AccessPointinformation values from the
accessPoints component of every continuation reference in the subset, and choose either sequential or
parallel strategy for further processing. If the parallel strategy is chosen, then skip the steps below that are
indicated only applicable to the sequential strategy.

a) If the sequential strategy is chosen, maintain a local variable localExclusions for each set of
continuation references that have the same targetObject. Initialy, localExclusions is set to the
exclusions of the incoming chaining request (if it exists), and al locally searched subtrees directly
under targetObject.

b) If the sequential strategy is used, compare the targetObject to all the elements of localExclusions, and
remove those elements which do not contain targetObject as a prefix. These are the relevant
exclusions for the current target object.

¢) Extract al the APIsfrom all the continuation references of the current target object’s set.
d) Loop through each API. For each API:
i) Cal APInfo.

i) If aresult is returned, then add the result to searchinfo if it is not signed, or add it to
uncorrelatedSearchinfo if it is signed. If the sequential strategy is used, update localExclusions
using alreadySearched in the incoming reply, and also merge the alreadySearched in the
incoming reply to this DSA’s ChainingResults.alreadySearched. Then proceed to the next
API.

iii) If an error or null is returned, it means that APInfo has already tried all access pointsin the AP
without success. Based on local operational and security policy, either ignore and proceed to the
next API, or add a continuation reference based on this API to the partialOutcomeQualifier.

NOTE 2 — It is not plausible to get a referral back from APInfo. Any "referral" should come in the
form of unexplored in partialOutcomeQualifier.

€) When al APIs are processed, proceed to the next set of continuation references with the same
targetObject.

5) When al the continuation references are processed, return to the Operation Dispatcher.

66 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Yes

Limit
exceeded?

Yes

chainingProhibited
set?

Do not chain

Local policy?

Chain

Sort continuation references into
sets that have the same target object

* All sets
processed

Process each target objet set (either sequentially or in parallel)
A * Next set

Compare each element of alreadySearched with target object, and add matched elements to exclusions

Y

Extract all APIs from the set of continuation references

* Add to uncorrelated-
All API's ‘ Process each accessPointInformation API " Searchinfo
processed
Next API
Add to searchlinfo
No
Yes
v% Call APinfo procedure parallel
Add to referral
partialOutcomeQualifier. sequential
unexplored)
Implausible
Update exclusions for Merge alreadySearched
next API, using incoming | g of incoming result into
alreadySearched ChainingResults.alreadySearched

TISO3850-94/d28

Figure 26 — Sear ch Continuation Reference

ITU-T Rec. X.518 (1997 E) 67

| SO/IEC 9594-4 : 1998 (E)

2045

APInfo procedure

This procedure is called to process an AccessPointinformation, which contains one or more access points (see
Figure 27). They are processed one by one until either aresult or error is returned. If the error is a service error such that
trying another access point may succeed, then additional access points are tried as long as local operational policy

permits:

68

1)

2)

3

4)

5)

Perform loop detection. If aloop is detected, return serviceError with problem loopDetected. Otherwise,
continue at step 2).

Process each of the access points from the access point information. If all have been processed, return a
null result. If there is any access point to process, continue at step 3).

Check whether local policy allows chaining to this access point. This check should take into account the
settings of the service controls and chaining arguments (e.g. chainingProhibited, preferChaining,
whether the access point is within the localScope or not, excludeShadows). If the local policy or the
setting of the respective service controls do not allow the use of this particular access point, then ignore the
access point and continue at step 2). If the access point can be used, continue at step 4).

If local policy selected the master only strategy, then set the chaining argument excludeShadows to
TRUE.

If nameResolutionPhase is not completed and the strategy is to continue name resolution on master
entries, then set nameResolveOnMaster to TRUE.

The chaining argument nameResolveOnMaster shall be set to TRUE if either of the following istrue:

— in the incoming chaining argument nameResolutionPhase is proceeding and
nameResolveOnMaster iS TRUE; or

— the operation is one of the modification operations, the referenceType of the chaining request to be
issued isNSSR, and aparallel strategy is used.

NOTE — This method of using nameResolveOnMaster is to prevent modification operations being applied
multiple times due to the presence of NSSR.
Build a chained request and try to issueit:

a) Perform loop avoidance by checking if an item with the same targetObject and operationProgress
occurs in tracelnformation of the received ChainingArguments. If the resulting request
(asdescribed in step 5), ¢) would result in a loop, then the DSA shall either return a serviceError
with problem loopDetected to the requesting DUA/DSA or ignore the access point and try the next
access point by continuing at step 2).

b) If the request or subrequest to be chained is the result of executing a referral, then an extra check for
loop avoidance is required. Check if an item with the same targetObject, operationProgress and
target DSA occursin referralRequests. If so, then take the action specified in &). If not, then add a new
Traceltem to referralRequests with the following components:

— targetObject and operationProgress set to the value of the chained request/subrequest;
— dsa set to the name of the DSA to which the request/subrequest is to be chained.

c) After a successful Bind, the DSA shall issue a chained operation of the same operation type as the
operation that is processed with the following parameters:

— the operation argument within the chained operation is set as for the operation argument
received;

— ChainingArguments.originator Set as received;
— ChainingArguments.targetObject Set to the targetObject of the continuation reference;

— ChainingArguments.operationProgress set to the value of operationProgress of the
continuation reference;

— ChainingArguments.tracelnformation set to trace information as updated by the Request
Validation procedure;

— ChainingArguments.aliasDereferenced to the updated value of the locally updated
aliasDer efer enced,;

ITU-T Rec. X.518 (1997 E)

6)

7)

8)

| SO/IEC 9594-4 : 1998 (E)

— ChainingArguments.returnCrossRefs to alocal choice;

— ChainingArguments.referenceType to the vaue of referenceType of the continuation
reference;

— ChainingArguments.timeLimit to the value of the received timeLimit;
— ChainingArguments.exclusions absent;
— SecurityParameters set to the value of the received SecurityParameters.

If the request could not be issued successfully, then continue at step 7). If it could be issued successfully
continue at step 8).

It isalocal choice whether or not to continue. If the DSA chooses to continue, then the error is ignored
and the next access point will be tried. Continue at step 2). If the DSA decides not to try another access
point, then it is a choice of local policy whether to return a respective referral or a serviceError to the
caller of the procedure.

If the request could be issued successfully, then the DSA shall wait for the reply and processiit:
a) If aresult isreceived, theresult isreturned to the caller of the procedure.

b) If a serviceError with problem busy, unavailable, unwillingToPerform or invalidReference is
received, continue at step 7).

c) If referral isreceived and returnToDUA is set to TRUE, then the receiving DSA shall not act on the
Referral, but shall return the Referral to the requester.

d) |If areferral isreceived and returnToDUA is set to FALSE, then the same local policy considerations
apply as in step 3) (taking into account service controls, chaining arguments, chaining strategy, etc.).
If it is decided not to dereference the referral, then return the referral to the caller. If it is decided to
dereference the referral, then empty the NRcontinuationList, place the Continuation Reference as
received in the Referral in NRcontinuationList and call the Name Resolution Continuation Reference
procedure. This may produce a result, referral, serviceError or other error. Whatever is received
from the call of the Name Resolution Continuation Reference procedure shall be given back to the
caler.

e) If any other error occurs, it shall be given back to the caller.

20.5 Abandon procedure

This procedure isinvoked if an abandon request is received. It consists of the following steps as shown in Figure 28:

1)

2)

3

4)

When an abandon request is received, which references an unknown operation, an abandonFailed with
problem noSuchOperation shall be returned to the requester.

If the request to be abandoned has already been replied to, and the DSA has retained information to know
so, an abandonError with atooLate error value may be returned to the requester.

If the Abandon request is not valid, i.e. asks to abandon a request that is not an interrogation request, an
abandonFailed with acannotAbandon error value shall be returned to the requester.

If a DSA has outstanding chained (sub)requests when receiving a valid Abandon request for the original
request, and the DSA decides to attempt abandoning, it may send Abandon requests for none, some, or all
outstanding (sub)requests for the operation in question, and then wait for the replies to Abandon request
and the outstanding (sub)requests. At any time during this operation the DSA may send an Abandon result
and an abandonFailed to the requester and then discard replies to the issued Abandon requests and the
outstanding (sub)requests as they arrive.

If the DSA decides not to send replies to the requester until there are no more outstanding (sub)requests, it
may optionally send an abandonedFailed error to the requester if all the issued Abandon requests were
replied to with abandonedFailed errors and if no local abandon operation has been performed.

If an AbandonedFailed error is returned to the requester, the original request shall be treated as if the
Abandon regquest had never been received.

ITU-T Rec. X.518 (1997 E) 69

| SO/IEC 9594-4 : 1998 (E)

Return
null

Return
ServiceError
loopDetected

Perform loop
avoidance

Process each access point AP from AccessPointInformation

AllAP’'s
Next AP
A processed

Set excludeShadows or
nameResolveOnMaster
as appropriate

Issue DSP
chained request

Yes

No Try No
another?

Successfully
issued?

Yes referral Local
policy?

busy, unavailable,
unwilling, invalidRef

Yes Do not use
referral

result Wait referral Return
for reply returnToDUA

Return
ServiceError

Use referral

error

Return
error

Return
result

Empty NRcontinuationList. Replace |
with continuation reference from referral
]

referral Service
R_eror | error
Call Name Resolution Continuation Reference Procedure
result . TISO3860-94/d29

Figure 27 — APInfo procedure

70 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

Enter j

Fi_nd Request AbandonError
with invokelD “noSuchOperation”

Reply already AbandonError
sent? “tooLate”

Abar_1don AbandonError
valid? “cannotAbandon”

Send an Abandon . . .
Terminate further processing of serviceError
request for each — this request within Operation “ »
oustanding subrequest ques P abandaned
Dispatcher X

Discard any local result

TISO3870-94/d30

Figure 28 — Abandon

21 Results Merging procedure

The Result Merging procedure in Figure 29 is called following one of the Continuation Reference procedures. This
procedure removes duplicates, if the result is not signed, and if there are additional continuation references in
partialOutcomeQualifier.unexplored. Then the relevant Continuation Reference procedure(s) is caled, if loca
operational policy permits:

1)

2)

3

4)

If the operation is a List operation, continue at step 2); if the operation is a Search operation, then continue
a step 3); otherwise, return the result that was supplied as input parameter to the Result Merging
procedure.

The operation is a List operation. Remove all duplicates, giving preference to master information over
shadow information.

If the operation result was generated locally and it contains Continuation References then these will not be
used for chaining but returned to the user. In this case, continue at step 6).

If the operation result was received as the result of a Chained List operation, then the result might contain
Continuation References. In this case, check if the preferChaining service control was set. If TRUE, the
Continuation References should be used for chaining by the DSA. Continue at step 4).

The operation is a Search operation. Remove al duplicates, giving preference to master information over
shadow information. If thereis alimit problem then return the result. Otherwise continue at step 4).

Process each Continuation Reference that is in the partialOutcomeQualifier.unexplored of the result of
any chained operation. If the local policy decides not to use it for chaining, then ignore it and choose
another Continuation Reference. If the loca policy allows the use of the Continuation Reference for
chaining, then perform the following:

ITU-T Rec. X.518 (1997 E) 71

| SO/IEC 9594-4 : 1998 (E)

Check nameResolutionPhase that is supplied in the Continuation Reference. If it is notStarted or
proceeding, then add it to the list of Continuation References that will be supplied to the Name Resolution
Continuation procedure (NRcontinuationList). If nameResolutionPhase is completed then add the
Continuation Reference to the list of Continuation References that is supplied to the subrequest
Continuation procedure (SRcontinuationList).

Proceed until all Continuation References have been processed.

5) If there are Continuation References to be processed in SRecontinuationL ist, check the operation type. If the
operation is a List operation, call the List Continuation Reference procedure and continue at step 2). If the
operation is a Search operation, call the Search Continuation Reference procedure and continue at step 3).

If SRecontinuationList is empty, then check if there are Continuation References in NRcontinuationList. If
so, call the Name Resolution Continuation Refer ence procedure and continue at step 3).

If both continuation lists are empty, continue at step 6).

6) Check whether the result is empty. If it is not empty then return it. If it is empty, either return anull result
if the access control and local policy allows, or return an appropriate error.

If protection is performed, the merging of results shall not be performed.

22 Proceduresfor distributed authentication

This clause specifies the procedures necessary to support the directory distributed authentication services. These services,
and hence the procedures, are categorized as:

— originator authentication, which is supported in either an unprotected (simple identity based) or secure
(based upon digital signatures) form; and
— results authentication which is similarly protected (again based upon digital signatures).

221 Originator authentication

2211 ldentity-based authentication

The identity-based authentication service enables DSAs to authenticate the origina requester of information for the
purpose of effecting local access controls. DSAs wishing to exploit this service shall adopt the following procedure:

— For a DSA requiring to authenticate a DAP request, the DSA acquires the distinguished name of the
requester through the Bind procedures at the time a DUA association (DUA to DSA) is established.
Successful conclusion of these procedures does not in any way prejudice the level of authentication that
may subsequently be required for processing operations using that association.

— The DSA with which the DUA association exists shall insert the requester’s distinguished name in the
initiator field of the ChainingArguments for all subsequent chained operationsto other DSASs.

— A DSA, on receiving a chained operation, may satisfy that operation, or not, depending upon the
determination of access rights (a locally defined mechanism). If the outcome is not satisfactory, a
securityError may be returned with problem insufficientAccessRights.

22.1.2 Signature-based originator authentication

This signature-based originator authentication service enables a DSA to authenticate (in a secure manner) the originator
of a particular service request. The procedures to be effected by a DSA in realizing this service are described in this
clause.

The signature-based authentication service is invoked by a DUA using the PROTECTED variant of an optionaly
protected service request with DirQOP signed or signedAndEncrypted.

A DSA, on receiving a signed request from another DSA, shall remove that DSA’s signature prior to processing the
operation. Assuming the result of any signature verification proves to be satisfactory, the DSA will continue to progress
the operation. If, during processing, the DSA needs to perform chaining, the argument set for each associated chained
operation shall be constructed as follows:

— the DSA forms an argument set which may be optionally signed; the argument set comprises the incoming
signed argument set together with a modified ChainingArguments.

In the event that the DSA is able to contribute information to the response, originator authentication, based upon the
signed service request, may be used for the determination of access rights to that information.

72 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

If a DSA receives an unsigned service request for information which will only be released subject to originator
authentication, asecurityError will be returned with SecurityProblem set to protectionRequired.

v

Remove duplicates Call List
from searchinfo

Return result

Other operations

Remove duplicates
from listinfo

Continuation
Reference Procedure

Call Search
Continuation
Reference Procedure

Return result

Process each continuation reference CR AllCR’s
in partialOutcomeQualifier.unexplored processed

Operation?

Next CR

Local
policy?

Add to

. L Add to
SRcontinuationList

SRcontinuationList

Is SRcontinuation-

process List empty?

Name
Resolution
phase

notStarted
proceeding

completed

Is NRcontinuation-
List empty?

OK

Call Name Resolution
Continuation
Reference Procedure

‘ Return result

TISO3880-94/d31

Figure 29 — Results M erging procedure

22.2 Results authentication

This service is provided to enable requesters of directory operations (either DUAs or DSAS) to verify (in a secure manner

using digital signature techniques) the source of results. The results authentication service may be requested irrespective
of whether originator authentication isto be used.

The results authentication service is initiated using the signed value of the protectionRequest component as contained
within the argument set of directory operations; a DSA receiving an operation with this option selected may then
optionally sign any subsequent results. The signed option in the protection request serves as an indication, to the DSA, of
the requester’s preference; the DSA may, or may not, actually sign any subsequent results.

ITU-T Rec. X.518 (1997 E) 73

| SO/IEC 9594-4 : 1998 (E)

In the case where a DSA performs chaining, the DSA has a number of options in terms of the form of results sent back to
the requester, namely:

a) return acomposite response (signed or unsigned) to the requester;

b) return a set of two or more uncollated partial responses (signed or unsigned) to the requester; within this
set zero or more members may be signhed and zero or one unsigned. In the event that an unsigned partial
result is present, this member may in fact be a collation of one or more unsigned partial responses which
have been received from other DSAS, contributed by this DSA, or both.

SECTION 6 — KNOWLEDGE ADMINISTRATION

23 K nowledge administration overview

To operate a widely distributed Directory with an acceptable degree of consistency and performance, procedures are
required to create, maintain, and extend the knowledge held by each DSA. The following mechanisms together are used
to administer aDSA’ s knowledge.

@) Hierarchical and non-specific hierarchical operational bindings — These procedures and protocols are
defined in clauses 24 and 25. They are used to create and maintain subordinate references, non-specific
subordinate references, and immediate superior references, as well as the context prefix information for
naming contexts. These operational bindings are established between master DSAs holding naming
contexts that are hierarchically related to each other as immediate subordinate to immediate superior. The
procedures may be triggered as a side effect of modifying the RDN of, or adding or removing an entry,
whose immediate superior is not held in the same DSA that holds the entry.

b) Shadowing operational bindings — These procedures and protocols are defined in ITU-T Rec. X.525 |
ISO/IEC 9594-9. They are used to create and maintain knowledge references in two ways. First, as a side
effect of establishing (or terminating) shadowing agreements, access points are added (or removed) from
the consumerKnowledge and optionally the secondaryShadow operational attributes. This information
may then be used by the procedures and protocols discussed above to update the subordinate reference in
the superior master DSA and the immediate superior reference in the subordinate master DSA. Second, the
DI SP propagates the knowledge references held by master DSAs to shadow consumer DSAS.

c) Crossreferences— Cross reference distribution is a feature of the DSP. Its use to create and maintain cross
references is summarized in 23.2.

NOTE — Mechanisms for initializing and maintaining the superior reference and myAccessPoint are outside the
scope of this Directory Specification.

231 Maintenance of Knowledge References

This subclause describes how the DOP is used to maintain DSA operational attributes that express knowledge. A simple
example of the relationship between knowledge attributes and the protocols employed to maintain them is described in
Annex E.

23.1.1 Maintenance of consumer knowledge by supplier and master DSAs

A consumer reference is expressed through a value of the consumerKnowledge attribute, held by a shadow supplier
DSA and associated with the context prefix for a naming context; a supplier reference, through a value of the
supplierKnowledge attribute, held by a shadow consumer DSA and also associated with the context prefix for a naming
context. Both attributes are held in DSEs of type cp. A value of each one of these attributesis created on establishment of
the Shadow Operational Binding, and updated on modification of the Shadow Operational Binding.

A supplier DSA may obtain the information to construct values of the secondaryShadows attribute if the optional
secondaryShadows component of its ShadowingAgreementinfo with a consumer is TRUE. In this case, whenever the
consumer DSA detects that the set of DSAs holding copies of the commonly usable replicated area (its consumers, or, in
turn, consumers of its consumers, etc., to whatever depth secondary shadowing might be carried) has changed (by
addition, modification or deletion of access points), it communicates this new information (a set-of
SupplierAndConsumers) by means of a modifyOperationalBinding operation, as described in ITU-T Rec. X.525 |
I SO/IEC 9594-9.

74 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

A supplier DSA maintainsits own secondaryShadows attribute associated with the context prefix as follows:

@) Theset of SupplierAndConsumers received from a consumer by means of amodifyOperationalBinding
operation may be used to create, or replace values of the attribute. The supplier component of
SupplierAndConsumers represents the access point of a consumer DSA (or of its consumers, etc.
depending upon the depth of secondary shadowing); the consumers component, the set of the consumer’s
consumers (or of their consumers, etc. depending upon the depth of secondary shadowing).

b) Every consumer providing its supplier with a modifyOperationalBinding operation containing a set of
SupplierAndConsumers, includes the following values: the values of its secondaryShadows attribute,
and a newly constructed value. This value is constructed using its own access point, myAccessPoint, (as
the supplier component), and the values of the consumers access points, contained within the
consumerkKnowledge attribute, that represent consumers holding commonly usable shadows (as the
consumers component).

Recursive use of this procedure permits a master DSA for a naming context to know about al of its secondary shadow
consumer DSAs holding commonly usable replicated areas derived from the naming context. This information is then
available for the maintenance of subordinate, non-specific subordinate, and immediate superior references.

23.1.2 Maintenance of subordinate and immediate superior knowledgein master DSAs

A subordinate reference is expressed through a value of the specificKnowledge attribute, held in a DSE of type subr by
the DSA holding the immediately superior naming context to that referenced; an immediate superior reference, through a
value of the specificKknowledge attribute, held in a DSE of type immSupr by the DSA holding the immediately
subordinate naming context to that referenced. A value of each one of these attributes is created in the superior and
subordinate master DSAs on establishment of the HOB, and updated on modification of the HOB.

A subordinate master DSA provides a superior master DSA the information to construct its subordinate reference via the
accessPoints component of the SubordinateToSuperior parameter it transfers to the superior in the DOP. The
information included in accessPoints is determined by values of attributes held by the subordinate DSA as follows:

a) The vaue of the myAccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints with category having the value master.

b) The values of the consumerkKnowledge and secondaryShadows (both held in the subordinate context
prefix DSE) are used to form additional elements in accessPoints with category having the value
shadow.

A superior master DSA provides a subordinate master DSA the information to construct its immediate superior reference
via the contextPrefixinfo component of the SuperiorToSubordinate parameter it transfers to the subordinate in the
DOP. This component is a value of type SEQUENCE OF Vertex, containing sequence of elements corresponding to the
path from the root of the DIT to the subordinate context prefix. For one of these elements, corresponding to the context
prefix of the immediately superior naming context, the optional component accessPoints will be present. The
subordinate DSA holds this information as a specificKnowledge attribute in the DSE, of type immSupr, corresponding
to this element of contextPrefixinfo. The information included in accessPoints by the superior DSA is determined by
values of attributes held by the superior DSA as follows:

a) The vaue of the myAccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints with category having the value master.

b) The values of the consumerknowledge and secondaryShadows (both held in the superior context
prefix DSE) are used to form additional elements in accessPoints with category having the value
shadow.

NOTE — Only those access points corresponding to consumer DSAS receiving commonly usable replicated areas
should be selected by the superior and subordinate DSAs from their consumerKnowledge attributes for inclusion
in accessPoints. The procedures for the construction of secondaryShadows guarantee that these access points
will identify shadow DSAs holding commonly usable replicated areas.

23.1.3 Maintenance of subordinate and immediate superior knowledge in consumer DSAs

A shadow consumer DSA contracting with its supplier to receive the immediate superior and subordinate knowledge
associated with a unit of replication, in effect, contracts to have its immediate superior and subordinate references
maintained by its shadow supplier DSA viathe DISP.

NOTE — For certain units of replication specifications, it may be necessary for the consumer DSA to contract to receive
extendedKnowledge in order that subordinate knowledge may be provided to it by its supplier.

ITU-T Rec. X.518 (1997 E) 75

| SO/IEC 9594-4 : 1998 (E)

23.2 Requesting crossreference

To improve the performance of the Directory System, the local set of cross references can be expanded using ordinary
Directory operations. If a DSA supports the DSP, it may request another DSA (which must also support the DSP) to
return those knowledge references which contain information about the location of naming contexts related to the target
object name of an ordinary Directory operation.

If the returnCrossRefs component of the ChainingArguments is set to TRUE, the crossReferences component of the
ChainingResults may be present, consisting of a sequence of cross reference items.

If a DSA is not able to chain a request to the next DSA, a referra is returned to the originating DSA. If the
returnCrossRefs component of ChainingArguments was TRUE, the referral may contain additionally the context prefix
of the naming context which the referral refers to. The contextPrefix component is absent if the referral is based on a
non-specific subordinate reference. The cross reference returned by a referra is based on knowledge held by the DSA
which generated the referral.

In both cases (chaining result and referral) an administrative authority, through its DSA, may elect to ignore the request
for returning cross references.

23.3 Knowledge inconsistencies

The Directory has to support consistency-checking mechanisms to guarantee a certain degree of knowledge consistency.

NOTE — In certain circumstances a knowledge reference will be accurate (not invalid in the senses described below) but not valid
for use by a DSA because the DMD of the referenced DSA does not wish it to be contacted at all by the referencing DSA (e.g. a
DSA which has somehow acquired a cross reference to the referenced DSA) or does not wish it to be contacted in a particular role
(e.g. asthe master DSA for a naming context).

23.3.1 Detection of knowledge inconsistencies

The kind of inconsistency and its detection varies for the different types of knowledge references:

a) Crossand Subordinate references — Thistype of reference isinvalid if the referenced DSA does not hold a
naming context or a replicated area derived from the naming context with the context prefix contained in
the reference. This inconsistency will be detected during the Name Resolution process by inspection of the
operationProgress and referenceType components of ChainingArguments.

b) Non-specific Subordinate references — This type of reference is invalid if the referenced DSA does not
hold a local nhaming context with the context prefix contained in the reference minus the last RDN. The
consistency check is applied as above.

¢) Superior References— An invalid superior reference is one which does not form part of areference path to
the root. The maintenance of superior references shall be done by external means and is outside the scope
of this Directory Specification.

NOTE — It is not always possible to detect an invalid superior reference.

d) Immediate Superior References — This type of reference is invalid if the referenced DSA does not hold a
naming context or a replicated area derived from the naming context with context prefix contained in the
reference. Furthermore, usage of this type of reference is only valid when the operationProgress
component of ChainingArguments has the value notStarted or proceeding. This inconsistency will be
detected during the Name Resolution process by inspection of the operationProgress and referenceType
components of ChainingArguments.

e) Supplier References — This type of reference, which identifies the supplier of a replicated area and
optionally the master for the naming context from which the replicated area is derived, is invalid if the
referenced DSA is not the shadow supplier for the DSA using the reference (when the referenceType
component of ChainingArguments has the value supplier), or if the referenced DSA is not the master for
the naming context (when referenceType has the value master). This inconsistency will be detected
during the Name Resolution and operation evaluation phases of operation processing by inspection of the
referenceType component of ChainingArguments.

23.3.2 Reporting of knowledge inconsistencies

If chaining is used in performing a Directory request, all knowledge inconsistencies will be detected by the DSA which
holds the invalid knowledge reference, through receiving aserviceError with probleminvalidReference.

If a DSA returns a referral which is based on an invalid knowledge reference, the requester will be returned a
serviceError with problem invalidReference if it uses the referral. How the error condition will be propagated to the
DSA which stores the invalid reference is not within the scope of this Directory Specification.

76 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

23.3.3 Treatment of inconsistent knowledge references

After a DSA has detected an invalid reference it should try to re-establish knowledge consistency. For example, this can
be done by simply deleting an invalid cross reference or by replacing it with a correct one which can be obtained using
the returnCrossRefs mechanisms.

The way in which a DSA actualy handles invalid references is a local matter, and outside the scope of this Directory
Specification.

234 Knowledge References and contexts

The names in knowledge references shall be the primary distinguished names and may include aternative distinguished
values and context information held in valuesWithContext for any attribute contributing to any RDN, as described in 9.3
of ITU-T Rec. X.501 | ISO/IEC 9594-2.

Depending on how a knowledge reference is obtained (in particular if a pre-1997 DSA is holding the reference or has
been part of the chain through which the reference has been obtained), it is possible that a knowledge reference will not
include all possible aternative distinguished names. This may result in a purported name not being recognized as the
same name by the holder of the knowledge reference, leading to extra steps in name resolution or, in some situations,
inconsistent results or failure of name resolution. The general use of the primary distinguished names, where known,
optimizes the ability of the Directory to deal with context variants in names.

24 Hierarchical operational bindings

A hierarchical operational binding is used to represent the relationship between two DSASs holding two naming contexts,
one immediately subordinate to the other. In the case of a HOB, the superior DSA holds a subordinate reference to the
naming context held by the subordinate DSA; the subordinate DSA holds an immediate superior reference to the naming
context held by the superior DSA. The operational binding ensures that the appropriate knowledge information is
exchanged and maintained between the two DSAs so that both DSAs are able to behave during the process of Name
Resolution and Operation Evaluation as defined in clauses 18 and 19.

24.1 Operational binding type characteristics

2411 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
thistype are:

a) the role of the master DSA for the superior naming context, the superior DSA (associated with abstract
role"A"); and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with
abstract role "B").

24.1.2 Agreement

The agreement information exchanged during the establishment of the hierarchical operational binding is a value of
HierarchicalAgreement. This contains the relative distinguished name of the new context prefix (the rdn component)
and the distinguished name of the entry immediately superior to the new naming context (the immediateSuperior
component). Thisinformation shall be provided by the DSA that initiates the HOB.

HierarchicalAgreement ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
immediateSuperior [1] DistinguishedName }

The rdn shall be the primary RDN, and immediateSuperior shall be a primary distinguished name. Context information
and al aternative distinguished values shal be included in the valueswithContext component of the
AttributeTypeAndDistinguishedValue of any RDN, asdescribed in 9.3 of ITU-T Rec. X.501 | ISO/IEC 9594-2.

24.1.3 Initiator

24.1.3.1 Establishment

The establishment of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by an Add Entry operation with the subordinate DSA specified in the targetSystem extension, or by
administrative intervention. Initiation by the subordinate DSA (which connects a locally existing entry or subtree to the
global DIT) is caused by administrative intervention.

ITU-T Rec. X.518 (1997 E) 77

| SO/IEC 9594-4 : 1998 (E)

24.1.3.2 Modification

The modification of a hierarchical operational binding can be initiated by either role. The superior DSA may issue the
modification as a result of a modification of the superior context prefix information. This can be as a result of any of the
modification operations, or by administrator intervention.

Either DSA may modify the agreement as a result of a modification of the RDN of the context prefix entry of the
subordinate naming context. The superior DSA initiates this modification because of a relative distinguished name being
modified higher up the DIT, or because of administrative intervention. The subordinate DSA initiates modification
because of aModifyDN of a context prefix, or because of administrative intervention.

Either DSA may aso modify the HOB if the access point information for its naming context changes.

24.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can be
caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the context prefix entry of the subordinate naming context, or by administrative intervention.

24.1.4 Establishment parameters

The establishment parameters for the two roles of a HOB, superior DSA and subordinate DSA, differ. The establishment
parameter for the superior DSA role is a value of SuperiorToSubordinate, the parameter for the subordinate role, a
value of SubordinateToSuperior.

24.1.4.1 Superior DSA establishment parameter

The establishment parameter issued by the superior DSA, a value of SuperiorToSubordinate, provides the subordinate
DSA with information regarding DIT vertices superior to the context prefix of the new naming context (which includes
the immediate superior reference) and optionally user and operational attributes for the subordinate context prefix entry
and copies of user and operational attributes from the entry immediately superior to the new context prefix.

SuperiorToSubordinate ::= SEQUENCE {

contextPrefixinfo [0] DITcontext,
entrylnfo [1] SET OF Attribute OPTIONAL,
immediateSuperiorinfo [2] SET OF Attribute OPTIONAL }

The rdn in Vertex or in Subentryinfo shall be the primary RDN, and context information and al other distinguished
values shall be included in the AttributeTypeAndDistinguishedValue components of the RDN, as described in 9.3 of
ITU-T Rec. X.501 | ISO/IEC 9594-2.

24.1.4.1.1 Context prefix information

The contextPrefixinfo component of SuperiorToSubordinate is a value of type DITcontext, this being a sequence of
Vertex values.

DITcontext ::= SEQUENCE OF Vertex

Vertex ::= SEQUENCE {

rdn [0] RelativeDistinguishedName,
admPointinfo [1] SET OF Attribute OPTIONAL,
subentries [2] SET OF Subentryinfo OPTIONAL,

accessPoints [3] MasterAndShadowAccessPoints OPTIONAL }

The contextPrefixInfo component is the sequence of RDNs that form the distinguished name of the immediate superior
of the new context prefix, each RDN (given by the rdn component) optionally accompanied by additional information.

The optional admPointinfo component of a Vertex signalsthat the DIT vertex is an administrative point and provides, at
least, itsadministrativeRole operational attribute.

The subentry information associated with an administrative point is provided by the subentries component of a Vertex,
which is a set of one or more Subentryinfo values. Each Subentryinfo value is composed of the RDN of the subentry
(the rdn component) and the attributes of the subentry (the info component).

Subentryinfo ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute }

78 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

The optional accessPoints component of a Vertex signals that the vertex corresponds to the context prefix of the
immediately superior naming context. The superior uses this component to provide the subordinate the information
required for itsimmediate superior reference.

NOTE — The master access point within accessPoints is the same as that passed in the accessPoint parameter of the Establish
and Modify Operational Binding operations.

24.1.4.1.2 Entry information

The optional entrylnfo component of SuperiorToSubordinate is a set of attributes establishing the content of the new
context prefix entry.

24.1.4.1.3 Immediate superior entry information

The optional immediateSuperiorinfo component of SuperiorToSubordinate isacopy of aset of attributes, in particular
objectClass and entryACI, from the entry immediately superior to the new context prefix.
NOTE — This component may be used by the subordinate for optimizing the evaluation of a List request which generates an empty
ListResult for a base object which is the immediate superior of the subordinate context prefix [see Note of 19.3.1.2.2, item 2)].

24.1.4.2 Subordinate DSA establishment parameter

The establishment parameter issued by the subordinate DSA, a value of SubordinateToSuperior, provides the superior
DSA with information regarding the subordinate naming context.

SubordinateToSuperior::= SEQUENCE ({
accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entrylnfo [2] SET OF Attribute OPTIONAL,
subentries [3] SET OF Subentryinfo OPTIONAL }

The accessPoints component of SubordinateToSuperior is used by the subordinate to provide the superior the
information required for its subordinate reference.
NOTE 1 — The master access point within accessPoints is the same as that passed in the accessPoint parameter of the Establish
and Modify Operationa Binding operations.

The alias component of SubordinateToSuperior is used to signal to the superior that the subordinate naming context
consists of asingle alias entry.

The entryInfo component of SubordinateToSuperior consists of a copy of a set of attributes, in particular objectClass
and entryAClI, from the new context prefix entry.

The subentries component of SubordinateToSuperior is used by the subordinate to pass subentries containing
prescriptive ACI to the superior.
NOTE 2 — The latter two components may be used by the superior for optimizing the evaluation of a List or one-level Search
request whose base object is the entry immediately superior to the subordinate context prefix.

24.1.5 Modification parameters

For modifications of a HOB, the modification parameter of the superior role, SuperiorToSubordinateModification, is
SuperiorToSubordinate, with the restriction that the entrylnfo component may not be present; that of the subordinate
roleis SubordinateToSuperior.

SuperiorToSubordinateModification ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryinfo ABSENT})

These parameters are identical (with the restriction noted above) to the corresponding establishment parameters and are
used to signal changes occurring to information provided in the establishment parameters subsequent to the establishment
of the HOB.

If any component of SuperiorToSubordinate (or subsequently SuperiorToSubordinateModification) or
SubordinateToSuperior experiences a change (e.g. the contextPrefixinfo component of SuperiorToSubordinate), the
corresponding component of the modification parameter (e.g. the contextPrefixinfo component of
SuperiorToSubordinateModification) shall be provided in its entirety in the Modify Operational Binding.

2416 Termination parameters

Neither role provides a termination parameter when terminating a HOB.

ITU-T Rec. X.518 (1997 E) 79

| SO/IEC 9594-4 : 1998 (E)

2417 Typeidentification

The hierarchica operationa binding is identified by the object identifier assigned when defining the
hierarchicalOperationalBinding OPERATIONAL-BINDING information object in 24.2.

24.2 Operational binding information object Class definition

This subclause defines the hierarchical operational binding type using the OPERATIONAL -BINDING information object
classtemplate defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT HierarchicalAgreement
APPLICATION CONTEXTS {
{directorySystemAC} }

ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SuperiorToSubordinateModification
TERMINATION-INITIATOR TRUE }
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateToSuperior
TERMINATION-INITIATOR TRUE }
ID id-op-binding-hierarchical }

24.3 DSA proceduresfor hierarchical operational binding management

In the following procedures, a new DSE or a mark (i.e. a state indication associated with some item of information)
created by a DSA shall be stored in stable storage. By doing so, it is possible for the two DSAs following the procedures
below to maintain a consistent understanding of the parameters of the HOB in the presence of communication and end
system failures.

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e. not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.g. operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operational binding in such cases.

2431 Establishment procedure

24.3.1.1 Establishment initiated by superior DSA

If a DSA evaluates an Add Entry operation with a different DSA specified in the targetSystem extension, it shall
establish a hierarchical operational binding according to the following procedure. If a DSA, for administrative reasons,
wishes to establish a HOB with a subordinate DSA, and it supports the DOP HOB protocol, then the following procedure
shall be followed:

1) The superior DSA creates a new DSE of type subr, with the name of the new entry, and marks this new
DSE as being added. The superior DSA generates a unique bindingID and stores it with the new DSE.

2) The superior DSA shal send an Establish Operational Binding operation to the subordinate DSA
containing the following parameters:

a) bindingType set to hierarchicalOperationalBindingID;

b) SuperiorToSubordinate establishment parameter with contextPrefixinfo and entryinfo components
present; all other parameters are optional;

C) HierarchicalAgreement with the immediateSuperior component set to the distinguished name of
the immediate superior of the new entry and the rdn component set to the RDN of the new entry;

d) thebindinglD, myAccessPoint and valid parameters, as appropriate.

3) If the subordinate DSA accepts the operation, it creates the required DSEs of types glue, subentry,
admPoint, rhob and immSupr, as appropriate, to represent the contextPrefixinfo; a DSE of type cp and
entry or alias to represent the new context prefix object or alias entry; and, as appropriate, a DSE of type

80 ITU-T Rec. X.518 (1997 E)

4)

| SO/IEC 9594-4 : 1998 (E)

rhob and entry to represent the immediateSuperiorinfo. It stores the bindingID with the DSE of the new
context prefix entry and returns a SubordinateToSuperior parameter to the superior DSA.

If the subordinate DSA refuses the operation it returns an Operational Binding Error with the appropriate
problem value set.

If the naming context already exists and the bindingID values for the existing and the new context are the
same, the subordinate DSA has aready created the requested naming context, in which case the
subordinate DSA returns a result to the superior. If the values are not equal, an Operational Binding Error
with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

If the superior DSA receives an error, it deletes the marked DSE of type subr and returns an error for the
Add Entry operation.

If the superior DSA receives a result, it removes the mark from the DSE that represents the subr and
returns aresult for the Add Entry operation.

If any failure occurs (e.g. communication or end system), the superior DSA shall repeat the steps starting
a step 2) until a result or error has been received for each pending establishment of a hierarchical
operational binding for which it is the initiator. If the establishment is as a result of an Add Entry
operation, and the requester aborts the operation (e.g. by releasing or aborting the application association)
before the establishment is complete, the superior DSA shall ignore this event and complete the
establishment (which may or may not be successful). In this case, the user will not be informed of the
outcome of the Add Entry operation.

NOTE 1 — Marking the subordinate aids recovery and concurrency control. Another user cannot add an entry that

is aready marked, and the DSA repeats the establish operational binding for all marked subordinates after a
failure.

NOTE 2 — With the above procedure, knowledge has only transient inconsistency. It is a loca matter how the
superior DSA treats unrelated operations that read the subordinate reference whileit is marked.

24.3.1.2 Establishment initiated by subordinate DSA

The subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an administrator
to connect a subtree of entries held in the DSA to a certain point in the global DIT. In this case, the subordinate DSA
shall establish aHOB according to the following procedure:

1)

2)

3

4)

The subordinate DSA either has a DSE of type cp as a part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingID and stores it with the context
prefix DSE.

The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType set to hierarchicalOperationalBindingID;
b) SubordinateToSuperior establishment parameter, as appropriate;

C) HierarchicalAgreement with the immediateSuperior component set to the distinguished name of
the immediate superior of the new entry and the rdn component set to the RDN of the new entry;

d) thebindingID, myAccessPoint and valid parameters, as appropriate.

If the superior DSA refuses the operation, it returns an Operational Binding Error with the
appropriate problem value set.

The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an Operational Binding Error with problem roleAssignment.

The superior DSA checks that the requested RDN for the new context prefix is not already in use. If no
matching RDN is found using locally held information, but the immediately superior DSE is of type nssr,
the procedure in 19.1.5 is followed. If no matching RDN is discovered using this procedure, the superior
DSA creates a DSE of type subr, storesthe bindingID with it, and returns a result.

If a subordinate reference is found with this RDN, the two values of bindingID are compared. If they are
equal, aresult isreturned. The SuperiorToSubordinate parameter returned by the superior DSA shall not
contain the entry component. If the two values of bindingID are not equal, an Operational Binding Error
with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

If a matching RDN is found by exploring an NSSR, an Operational Binding Error with problem
invalidAgreement is sent; this also means the superior DSA has a permanent knowledge inconsistency
that requires correction by an administrator.

ITU-T Rec. X.518 (1997 E) 8l

| SO/IEC 9594-4 : 1998 (E)

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is alocal
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry, admPoint,
rhob and immSupr, as appropriate, to represent the contextPrefixInfo; and, as appropriate, a DSE of type
rhob and entry to represent theimmediateSuperiorinfo. The mark of the context prefix DSE is removed.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until aresult or error has been received for each pending establishment of a hierarchical
operational binding for which it isthe initiator.

2432 Madification procedure

The following procedures are defined for modification of a HOB which has been initiated by the procedure detailed
in24.3.1.

24.3.2.1 Modification procedureinitiated by superior

This procedure may be invoked as a result of modification operations, as described in 19.1, or as a result of
administrative intervention (e.g. to convey changes to the myAccessPoint, agreement or valid parameters of the HOB).
Also, if a superior DSA detects changes to the contextPrefixinfo or immediateSuperiorinfo components of the
SuperiorToSubordinate value that it supplied to the subordinate DSA, it shal propagate the new information to the
subordinate DSA employing the following procedure:

1) Mark the DSE of type subr as being modified, and if this modification is as a result of a modification to
the RDN of the subordinate context prefix entry, a new DSE of type subr is added and marked as being
added.

2) The superior DSA produces a new bindingID value from the existing value by incrementing its version
component. Using this new bindingID, it sends a Modify Operational Binding operation to the subordinate
DSA with the modification parameter SuperiorToSubordinateModification.

3) The subordinate DSA checks the identifier component of the bindingID. If it has no such agreement with
the superior, or if the version component is less than the version of the HOB, it shall return an Operational
Binding Error with probleminvalidAgreement.

4) The subordinate DSA may accept the modification to the HOB, modify or rebuild the DSES representing
the context prefix information, update the version component of its bindingID and return a result.
Alternatively, it may return an error and then terminate the agreement.

5) If the superior DSA receives a result, the modification is completed. If this modification is as a result of a
modification to the RDN of the subordinate context prefix entry, the new DSE having type subr and
marked as being added hasits mark removed, and the old DSE marked as being modified is deleted. If not,
the mark being modified is simply removed.

If the superior DSA receives an error, the modification has failed. The mark being modified is removed. If
this modification is as a result of a modification to the RDN of the subordinate context prefix entry, the
new DSE having type subr and marked as being added is removed. If not, the measures taken are outside
the scope of this Directory Specification.

If any failure occurs (e.g. communication or end system), the superior DSA shall repeat the steps starting
at step 2) until aresult or error has been received for each pending modify of a hierarchical operational
binding for which it is the initiator. If the modification is as a result of a ModifyDN operation modifying
the RDN of the subordinate context prefix entry, and the requester aborts the operation (e.g. by releasing
or aborting the application association) before the modification is complete, the superior DSA shall ignore
this event and complete the modification (which may or may not be successful). In this case, the user will
not be informed of the outcome of the ModifyDN operation.

24.3.2.2 Modification procedureinitiated by subordinate

This procedure may be invoked as aresult of administrative intervention (e.g. to convey changes to the myAccessPoint,
agreement or valid parameters of the HOB). Also if a subordinate DSA detects changes to the SubordinateToSuperior
value that it supplied to the superior DSA, it shall propagate the new information to the superior DSA employing the
following procedure:

1) Mark the DSE of type cp as being modified.

2) The subordinate DSA produces a new bindingID value from the existing value by incrementing its
version component. Using this new bindingID, it sends a Modify Operational Binding operation to the
superior DSA with the modification parameter SubordinateToSuperior.

82 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

3) The superior DSA checks the identifier component of the bindingID. If it has no such agreement with the
subordinate, or if the version component is less than the version of the HOB, it shall return an Operational
Binding Error with problem invalidAgreement.

4) The superior DSA may accept the modification to the HOB, modify the DSE representing the subordinate
reference and return aresult. Alternatively, it may return an error and then terminate the agreement.

In addition, if the superior DSE of the DSE (of type subr) to be renamed is of type nssr, the DSA shall
follow the procedure defined in 19.1.5 (Modify Operations and NSSRs) to ensure that the new name of the
entry is unambiguous, before responding to the HOB modification request.

5) If the subordinate DSA receives a result, the modification is completed and it removes the mark. If it
receives an error, the measures taken are outside the scope of this Directory Specification.

If any failure occurs (e.g. communication or end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending modify of a hierarchical
operational binding for which it isthe initiator.

2433 Termination procedure

The following procedures are defined for termination of a HOB which has been initiated by the procedure detailed
in24.3.1.

24.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operationa binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the DSE representing the subordinate reference being deleted, so that the
subordinate reference is no longer used during Name Resol ution.

2) The superior DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the subordinate DSA. The version component of the bindingID is omitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the hierarchical operational binding and sends a result, unless the identifier component of the bindingID is
unknown, in which case an Operational Binding Error with problem invalidID, is returned. It is a local
matter to determine the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an Operational Binding Error with problem invalidID, it shall
delete the DSE marked being deleted that represents the subordinate reference associated with the
hierarchical operational binding and deletes any information about the operational binding.

If any failure occurs (e.g. communication of end system), the superior DSA shall repeat the steps starting
a step 2) until a result or error has been received for each pending termination of a hierarchical
operationa binding for which it isthe initiator.

24.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, or as a result of administrative intervention. The
following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being deleted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the DSE that represents the
subordinate reference associated with the hierarchical operational binding, deletes any information about
the operational binding and sends a result, unless the identifier component of the bindingID is unknown,
in which case an Operational Binding Error with probleminvalidID, is returned.

4) If the subordinate DSA receives aresult or an Operational Binding Error with problem invalidID, it shall
delete any information about the operational binding.

NOTE - The fate of the entry information of naming context is a matter local to the subordinate DSA. Since

renaming (i.e. moving) a naming context is not allowed by the Modify DN operation, an administrator might, for

example, terminate the HOB, select another context prefix for the naming context and reconnect it to another part
of the DIT (i.e. establish anew HOB).

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending termination of a hierarchical
operational binding for which it isthe initiator.

ITU-T Rec. X.518 (1997 E) 83

| SO/IEC 9594-4 : 1998 (E)

24.4 Proceduresfor operations

The operations that can be executed in the cooperative state of a hierarchical operational binding are those defined within
the directorySystemAC application context.

The procedures that the DSA involved in ahierarchical operational binding shall follow are defined in clauses 16 to 22.

245 Use of application contexts

To establish, modify or terminate a hierarchical operational binding using the protocol and procedures of this Directory
Standard, a DSA shall use the operationalBindingManagementAC application context.

25 Non-specific hierarchical operational binding

A non-specific hierarchical operational binding is used to represent the relationship between two DSA holding two
naming contexts, one immediately subordinate to the other. In the case of a NHOB, the superior DSA holds a
non-specific subordinate reference to the naming context held by the subordinate DSA; the subordinate DSA holds an
immediate superior reference to the naming context held by the superior DSA. The operational binding ensures that the
appropriate knowledge information is exchanged and maintained between the two DSASs so that both DSAs are able to
behave during the process of name resolution and operation evaluation as defined in clauses 18 and 19.

25.1 Operational binding type characteristics

25.1.1 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
thistype are:

a) therole of the master DSA for the superior naming context, the superior DSA (associated with abstract
role"A"); and

b) the role of the master DSA for the subordinate naming context, the subordinate DSA (associated with
abstract role "B").

2512 Agreement

The agreement information exchanged during the establishment of the non-specific hierarchical operational binding a
value of NonSpecificHierarchicalAgreement, contains only the distinguished name of the entry immediately superior to
the new naming context (the immediateSuperior component). This information shall be provided by the DSA that
initiates the NHOB.

NonSpecificHierarchicalAgreement ::= SEQUENCE {
immediateSuperior [1] DistinguishedName }

NOTE — How the subordinate DSA determines that the name of the new naming context is unambiguous is outside the scope of
this Recommendation | International Standard. The name will be unambiguous if correctly assigned by the relevant naming
authority and if no other DSA holds the same name as a master entry.

25.1.3 Initiator

25.1.3.1 Establishment

The establishment of a non-specific hierarchical operational binding can be initiated only by the subordinate DSA role.
Initiation by the subordinate DSA (which connects one or more locally existing entries or subtrees to the global DIT) is
caused by administrative intervention.

25.1.3.2 Moadification

The modification of a non-specific hierarchical operational binding can be initiated by either role. The superior DSA may
issue the modification as a result of a modification of the superior context prefix information. This can be as a result of
any of the modification operations, or by administrator intervention.

Either DSA may also modify the NHOB if the access point information for its naming context (or one of itsimmediately
subordinate naming contexts in the case of the subordinate role) changes.

84 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

25.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can be
caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the final context prefix entry held by the subordinate immediately subordinate to the
immediateSuperior component of the agreement or by administrative intervention.

25.1.4 Establishment parameters

The establishment parameter issued by the superior DSA, a value of NHOBSuperiorToSubordinate, is equivalent to the
corresponding HOB establishment parameter, except that the entryinfo component is absent.

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryinfo ABSENT})

The establishment parameter issued by the subordinate DSA, a value of NHOBSubordinateToSuperior, is equivalent to
the corresponding HOB establishment parameter, except that the alias and entryinfo components are absent.

NHOBSubordinateToSuperior ::= SubordinateToSuperior (
WITH COMPONENTS{ ..., alias ABSENT, entrylnfo ABSENT})

25.1.5 Moadification parameters

These parameters are identical to the corresponding establishment parameters and are used to signal changes occurring to
information provided in the establishment parameters subsequent to the establishment of the NHOB.

If any component of NHOBSuperiorToSubordinate or NHOBSubordinateToSuperior experiences a change
(e.g. the contextPrefixinfo component of NHOBSuperiorToSubordinate), the corresponding component of the
modification parameter (e.g. the contextPrefixinfo component of NHOBSuperiorToSubordinate) shall be provided in
its entirety in the Modify Operational Binding.

25.1.6 Termination parameters

Neither role provides a termination parameter when terminating a NHOB.

25.1.7 Typeidentification

The non-specific hierarchical operational binding is identified by the object identifier assigned when defining the
nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING information object in 25.2.

25.2 Operational binding infor mation object class definition

This subclause defines the non-specific hierarchical operational binding type using the OPERATIONAL-BINDING
information object class template defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {
AGREEMENT NonSpecificHierarchicalAgreement
APPLICATION CONTEXTS {
{ directorySystemAC}}

ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperiorToSubordinate
TERMINATION-INITIATOR TRUE }

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE

ESTABLISHMENT-PARAMETER NHOBSubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateToSuperior
TERMINATION-INITIATOR TRUE }

ID id-op-binding-non-specific-hierarchical }

25.3 DSA proceduresfor non-specific hierarchical operational binding management

In the following procedures, as in the procedures described in 24.3, a new DSE or a mark created by a DSA shall be
stored in stable storage.

ITU-T Rec. X.518 (1997 E) 85

| SO/IEC 9594-4 : 1998 (E)

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e. not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.g. operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operationa binding in such cases.

25.3.1 Establishment procedure

Only the subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an
administrator to connect one or more subtrees of entries held in the DSA to a certain point in the global DIT. In this case,
the subordinate DSA shall establish a NHOB according to the following procedure:

1) The subordinate DSA either has a DSE of type cp as a part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingID and stores it with the context
prefix DSE.

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType set to nonSpecificHierarchicalOperationalBindingID;
b) NHOBSubordinateToSuperior establishment parameter, as appropriate;

¢) NonSpecificHierarchicalAgreement with the immediateSuperior component set to the distin-
guished name of the immediate superior of the new entry;

d) thebindingID, myAccessPoint and valid, parameters, as appropriate.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an Operational Binding Error with problem roleAssignment.

4) The superior DSA adds the DSE type nssr (and nonSpecificKnowledge attribute information) to the
DSE of theimmediate superior of the new entry, stores the bindingID with it, and returns a result.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is alocal
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives a result, it adds the necessary DSEs of types glue, subentry, admPoint,
rhob, and immSupr, as appropriate, to represent the contextPrefixInfo; and, as appropriate, a DSE of
type rhob and entry to represent the immediateSuperiorinfo. The mark of the context prefix DSE is
removed.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until aresult or error has been received for each pending establishment of a hierarchical
operational binding for which it isthe initiator.

25.3.2 Moadification procedure

If the superior DSA detects any changes in the NHOBSuperiorToSubordinate information that it supplied to a
subordinate DSA within a non-specific hierarchical operational binding, it shall propagate the changed information to the
subordinate DSA. If the NHOB was established using the procedures of 25.3.1, then it shall be modified according to the
procedures defined for modifying the hierarchical operational binding in 24.3.2.1 (with NHOBSuperiorToSubordinate
substituted for SuperiorToSubordinateModification).

Similarly, if the subordinate DSA detects any changes in the NHOBSubordinateToSuperior information that it supplied
to asuperior DSA, it shall propagate the changes to the superior DSA. If the NHOB was established using the procedures
of 25.3.1, then if shall be modified according to the procedures defined for modifying the hierarchical operational binding
in 24.3.2.2 (with NHOBSubordinateToSuperior substituted for SubordinateToSuperior).

25.3.3 Termination procedure

The following procedures are defined for termination of a NHOB which was established using the procedures of 25.3.1.

25.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the value corresponding to the subordinate DSA in the nonSpecificknowledge
attribute held in the DSE of the immediately superior entry, as being deleted.

2) The superior DSA sends a Terminate Operational Binding operation for the NHOB with the subordinate
DSA. Theversion component of the bindingID is omitted by the superior.

86 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the NHOB and sends a result, unless the identifier component of the bindingID is unknown, in which case
an Operational Binding Error with problem invalidID, is returned. It is alocal matter to determine the fate
of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an Operational Binding Error with problem invalidID, it shall
delete the value of the nonSpecificknowledge attribute marked being deleted that represents the access
point information associated with the NHOB and deletes any information about the operational binding. If
this was the last value of the nonSpecificknowledge attribute, it removes the nonSpecificknowledge
attribute and the DSE type nssr from the DSE.

If any failure occurs (e.g. communication of end system), the superior DSA shall repeat the steps starting
at step 2 until aresult or error has been received for each pending termination of a NHOB for which it is
the initiator.

25.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, of the last subordinate naming context held by the
subordinate DSA, or as aresult of administrative intervention. The following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being del eted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingID is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the value of the
nonSpecificKknowledge attribute that represents the access point information associated with the NHOB,
deletes any information about the operational binding, removes the nonSpecificKnowledge attribute and
the DSE type nssr from the DSE immediately superior to the subordinate naming context (if the deleted
value was the last value of the nonSpecificKnowledge attribute) and sends a result, unless the identifier
component of the bindingID is unknown, in which case an Operational Binding Error with problem
invalidID, is returned.

4) If the subordinate DSA receives aresult or an Operational Binding Error with problem invalidID, it shall
delete any information about the operational binding. It is alocal matter to determine the fate of any entry
information associated with the subordinate naming context.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2) until a result or error has been received for each pending termination of a NHOB for
which it isthe initiator.

25.4 Proceduresfor operations

The operations that can be executed in the cooperative state of a non-specific hierarchical operational binding are those
defined within the directorySystemAC application context.

The procedures that the DSA involved in a non-specific hierarchical operational binding shall follow are defined in
clauses 16 through 22.
255 Use of application contexts

To establish, modify, or terminate a non-specific hierarchical operational binding using the protocol and procedures of
this Directory Standard, a DSA shall use the operationalBindingManagementAC application context.

ITU-T Rec. X.518 (1997 E) 87

I SO/IEC 9594-4 : 1998 (E)
Annex A

ASN.1for Distributed Operations
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type and value definitions contained in this Directory Specification in the form of
the ASN.1 module DistributedOperations.

DistributedOperations {joint-iso-itu-t ds(5) module(1) distributedOperations(3) 3}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access

-- Directory services. Other applications may use them for their own purposes, but this will not constrain

-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS

informationFramework, directoryAbstractService, distributedOperations,
selectedAttributeTypes, basicAccessControl, dap
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 3}

DistinguishedName, Name, RDNSequence
FROM InformationFramework informationFramework

PresentationAddress, Protocolinformation, Uniqueldentifier
FROM SelectedAttributeTypes selectedAttributeTypes

AuthenticationLevel
FROM BasicAccessControl basicAccessControl

OPERATION, ERROR
FROM Remote-Operations-Information-Objects
{joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}

directoryBind, directoryUnbind, read, compare, abandon, list, search, addEntry, removeEntry,
modifyEntry, modifyDN, referral, SecurityParameters, CommonResults
FROM DirectoryAbstractService directoryAbstractService

DIRQOP, OPTIONALLY-PROTECTED{ }
FROM EnhancedSecurity enhancedSecurity

id-errcode-dsaReferral
FROM DirectoryAccessProtocol dap
-- parameterized type for deriving chained operations --

chained { OPERATION : operation } OPERATION ::= {
ARGUMENT OPTIONALLY-PROTECTED {

SET {
chainedArgument ChainingArguments,
argument [0] operation.&ArgumentType },
DIRQOP.&dspChainedOp-QOP{@dirqop} }
RESULT OPTIONALLY-PROTECTED {
SET {
chainedResult ChainingResults,
result [0] operation.&ResultType },

DIRQOP.&dspChainedOp-QOP{@dirqop} }
ERRORS { operation.&Errors EXCEPT (referral | dsaReferral) }
CODE operation.&operationCode }

-- bind and unbind operations --

88 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

dSABind OPERATION ::= directoryBind
dSAUnbind OPERATION ::= directoryUnbind

-- chained operations --

chainedRead OPERATION ::= chained { read }
chainedCompare OPERATION ::= chained { compare }
chainedAbandon OPERATION ::= abandon

chainedList OPERATION ::= chained { list }
chainedSearch OPERATION ::= chained { search }
chainedAddEntry OPERATION ::= chained { addEntry }
chainedRemoveEntry OPERATION ::= chained { removeEntry }
chainedModifyEntry =~ OPERATION ::= chained { modifyEntry }
chainedModifyDN OPERATION ::= chained { modifyDN }

-- errors and parameters --

dsaReferral ERROR ::= {
PARAMETER OPTIONALLY-PROTECTED {
SET {
reference [0] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL,
COMPONENTS OF CommonResults },
DIRQOP.&dsaReferral-QOP{@dirqop} }

CODE id-errcode-dsaReferral }

-- common arguments and results --

ChainingArguments ::= SET{
originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
operationProgress [2] OperationProgress

DEFAULT { nameResolutionPhase notStarted },
tracelnformation [3] Tracelnformation,
aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,
-- only present in 1988 systems

returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
info [8] Domaininfo OPTIONAL,
timeLimit [9] UTCTime OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT { },
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniqueldentifier [12] Uniqueldentifier OPTIONAL,
authenticationLevel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnMaster [16] BOOLEAN DEFAULT FALSE,
operationldentifier [17] INTEGER OPTIONAL }

ChainingResults ::= SET{
info [0] Domaininfo OPTIONAL,
crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,
securityParameters [2] SecurityParameters DEFAULT { },
alreadySearched [3] Exclusions OPTIONAL }

CrossReference ::= SET {
contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPointinformation }

ITU-T Rec. X.518 (1997 E) 89

| SO/IEC 9594-4 : 1998 (E)

ReferenceType ::= ENUMERATED {
superior (1),
subordinate (2),
Cross 3),
nonSpecificSubordinate 4),
supplier 5),
master (6),
immediateSuperior),
self 8)}

Tracelnformation

Traceltem ::= SET {
dsa [O]
targetObject [1]

operationProgress [2]
OperationProgress ::= SET {
nameResolutionPhase
notStarted
proceeding
completed
nextRDNToBeResolved

A,
),
3}

Domaininfo ::=

ContinuationReference
targetObject
aliasedRDNs
operationProgress
rdnsResolved
referenceType
accessPoints
entryOnly
exclusions
returnToDUA
nameResolveOnMaster

1= SET{

AccessPoint
ae-title
address
protocolinformation

= SET{

(0]
(1]
(2]

AccessPointinformation
COMPONENTS OF
additionalPoints [4]

MasterOrShadowAccessPoint
COMPONENTS OF
category

master
shadow

(3]
(0),

MasterAndShadowAccessPoints

= SET{

::= SEQUENCE OF Traceltem

Name,
Name OPTIONAL,
OperationProgress }

[0] ENUMERATED {

[1] INTEGER OPTIONAL }

ABSTRACT-SYNTAX.&Type

(0]
(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8]
(9

Name,

INTEGER OPTIONAL, -- only present in 1988 systems
OperationProgress,

INTEGER OPTIONAL,

ReferenceType,

SET OF AccessPointIinformation,

BOOLEAN DEFAULT FALSE,

Exclusions OPTIONAL,

BOOLEAN DEFAULT FALSE,

BOOLEAN DEFAULT FALSE }

Name,
PresentationAddress,
SET OF Protocolinformation OPTIONAL }

MasterOrShadowAccessPoint ,
SET OF MasterOrShadowAccessPoint OPTIONAL }

= SET{
AccessPoint,

ENUMERATED {

(1) } DEFAULT master } }

::= SET OF MasterOrShadowAccessPoint

Exclusions ::= SET OF RDNSequence
END
90 ITU-T Rec. X.518 (1997 E)

I SO/IEC 9594-4 : 1998 (E)
Annex B

Example of distributed nameresolution

(This annex does not form an integral part of this Recommendation | International Standard)

Figure B.1 is an example of how distributed name resolution is used to process different directory requests. The example
is based on the hypothetical DIT and the corresponding DSA configuration(s) described in Annex M (Modeling of
knowledge) of ITU-T Rec. X.501 | ISO/IEC 9594-2, and reproduced here for convenience.

Context D

Context C

Autonomous
Administrative
Area BB

Context E

TISO3890-94/d32

Autonomous
Administrative
Area AA

DSA 1 DSA 2 DSA 3

Figure B.1—Hypothetical DIT Mapped onto three DSAs

Assuming a chaining mode of propagating, the following requests addressed to DSA 1 would be processed as follows:
1) A request with distinguished name {C =WW, O=ABC,0U =G, CN =1}

— Name resolution will successfully match each RDN in the target name with DSEs held by DSA 1,
until the target DSE is located.

2) A request with distinguished name {C = WW, O = JPR}

— The Name Resolution procedure in DSA 1 will match the DSE C = WW, and will be unable to match
further. At this point, DSA 1 finds potentially two references to help it proceed: one is the immSupr
reference in DSE C = WW, and the other is the supr reference in the root DSE. In this hypothetical
example, both would be pointing to DSA 2. Therefore the request is chained to DSA 2.

— In DSA 2, the Name Resolution procedure will match the DSE C = WW, and will be unable to match
further. In this case, since the DSE C = WW isacp and entry, and DSA 2 is the master DSA for this
entry, and further there are no nssr at C = WW, DSA 2 is therefore able to determine that there is no
such name in the directory. An name error noSuchObject is returned.

ITU-T Rec. X.518 (1997 E) 91

| SO/IEC 9594-4 : 1998 (E)

3) A request with ditinguished name {C =VV, O = DEF, OU =K}

— The Name Resolution procedure in DSA 1 will match not be able to match any DSE. The only
reference available is the supr reference in the root DSE, which points to DSA 2. So the request is
chained to DSA 2.

— In DSA 2, the Name Resolution procedure will match the DSE C = VV, and then DSE O = DEF, and
will be unable to match further. Since DSE O = DEF is found to be of type subr, the specific
knowledge reference, which pointsto DSA 3, isused, and the request is chained to DSA 3.

— In DSA 3, the Name Resolution procedure will match the entire target object name, and find that the
located DSE is of type alias. Assuming aliases are to be dereferenced in this case, a new name will be
constructed using the aliasedEntryName contained in the matched DSE. DSA 3 will then re-enter the
Name Resolution procedure to continue.

92 ITU-T Rec. X.518 (1997 E)

I SO/IEC 9594-4 : 1998 (E)
Annex C

Distributed use of authentication

(This annex does not form an integral part of this Recommendation | International Standard)

C1l Summary

The security model is defined in clause 10 of ITU-T Rec. X.501 | ISO/IEC 9594-2. The following is a summary of the
main points of the model:

a) Strong Authentication, by the signing of the request, result, and errors, is supported in the DSP.

b) Encryption of the request, result, and errorsis supported in the DSP.

This annex describes how these are realized in the distributed Directory. It makes use of terminology and notation defined
in ITU-T Rec. X.509 | ISO/IEC 9594-8.

Cc.z2 Distributed protection model

5C
O B ©
)

TISO8990-99/d33

@@@ Operation Requests
@@@ Operation Results

Figure C.1 - Distributed Protection

Figure C.1 illustrates the model to be used to specify the distributed protection procedures. The model identifies the
sequence of information flows for the general case of a List or Search operation. The operation is considered as
originating from DUA 'd, citing atarget object which residesin DSA 'c’ in performing the operation, DSAs b, 'c’, 'd’ and
'€ areto beinvolved.

DUA & initially contacts any DSA (DSA 'b") which does not hold the target object, but which is able to navigate, via
chaining, to the DSA (DSA ') holding the target object. If al the DSAs were operating in referral mode, then the model
would be significantly simplified, and each DSA/DSA exchange would equate, in protection terms, to the interaction
between DUA 'a and DSA 'b'.

C.21 Quality of Protection

The quality of protection to be used during the life of the application association is established during the Directory Bind
operation. System policy will assert the level of protection that the DUA and DSA must abide by. DIRQOP is an
information object class that can be used to specify the quality of protection to be associated with each operation (request,
result, or errors). The DUA conveys the DIRQOP information object class in the DirectoryBindArgument, and the DSA
accepts this level of protection in the DirectoryBindResult. The quality of protection can be used to provide the
following types of protection: signed, encrypted, or signed and encrypted.

ITU-T Rec. X.518 (1997 E) 93

ISO/IEC 9594-4 : 1998 (E)
C.3 Signed Chained Operations

If digitally signed chained operations are supported, the DUA is responsible for verifying the digital signatures returned
by the DSA in aList or Search result. The DUA must be capable of verifying digital signatures from more than one DSA
if a distributed environment were used to generate the List or Search results. Correlating the results of List and Search
operations is the responsibility of the DUA. DSAs should not merge these results on behalf of the DUA. In some cases,
the DUA may receive information from various DSAs each supporting different levels of authentication and digital
signatures. The DUA must make a decision whether or not to use the returned information if the digital signature is
invalid.

C.3.1 Chained Signed Arguments

If a DAP argument is signed by the DUA, the signature should be maintained throughout the life of the request. This
signature can be verified and used by DSAs when performing Access Control verifications. If the DSA determines that
the request needs to be chained to another DSA for processing, it should include the DUA’ s signed request along with the
necessary chaining arguments. If the DSA is going to support signed DSP operations (DSA-to-DSA) then the DSA’s
credentials would be used to sign the DSP ChainingArguments and the DUA’s signature should be maintained along
with the original DAP request.

@ ()

TISO9000-99/d34
@ DUA User signs DAP request

@ DSA b’ signs DSP Chaining Argument
(DAP request signed by DUA 'a’ user)

C.3.2 Chained Signed Results

If the DUA user wishes to receive signed results from the Directory, the SecurityParameters.ProtectionRequest field
should be set to SIGNED. The remote DSA should have the ability to be configured to send digitally signed
ChainingResults. The remote DSA can optionaly sign the DAP result and the DSP ChainingResults, thereby
supporting end-to-end signatures. DSA 'b' will be responsible for verifying the remote DSA’s DSP Signature, and the
DUA 'a will be responsible for verifying the DSA’s DAP Result Signature.

TISO9010-99/d35

@ DSA 'c’ signs DSP Chaining Result and signs DAP Result

@ DSA 'b’ returns DAP result signed by DSA ‘¢’

C.33 Merging of Signed List or Search Results

The DUA must be capable of verifying digital signatures from more than one DSA if a distributed environment were used
to generate the List or Search results. Correlating the results of List and Search operations is the responsibility of the
DUA. DSAs should not merge these results on behalf of the DUA user. In some cases, the DUA may receive information
from various DSAs each supporting different levels of authentication and digital signatures. The DUA must make a
decision whether or not to use the returned information if the digital signatureisinvalid.

94 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

(2) ©)
@

TISO9020-99/d36

@ DSA ¢, 'd’, 'e’ sign DSP Chaining Result
(DAP result signed by DSA 'c’, 'd’, 'e’)

DSA 'b’ returns partial DAP result signed
@ by DSA 'c’, 'd’ and 'e’, DSA 'b’ does not merge
the DAP results.

NOTE — The DSA-to-DSA DSP protocol can also be signed, encrypted, or signed and encrypted.

C.3.4 Multi-chaining Request

If the DSA determines that the DAP request needs to be chained to multiple other DSAS, it can multi-chain the request
either in paralel or sequentially. There are two modes of decomposition described: Non-Specific Subordinate References
(NSSR) or request decomposition. In NSSR decomposition, the DSA sends the identical request to other identified DSAs.
In request decomposition, the DSA sends a partia (possibly different) subsequent request to each of the other DSAs.

C4 Encrypted Chained Operations

If encryption is supported, equivalent protection needs to be provided between each of the directory components.
Mappings, beyond the scope of this specification, are required to come to an agreement regarding the equivalency of
policies.

C.41 Point-to-Point (DUA->DSA or DSA->DSA) Encryption on Request

If a DUA user wants to encrypt the DAP request, encryption can occur only on a point-to-point basis. The DUA will
encrypt the DAP request for DSA ’'b', however, the DUA user does not know whether or not the request will ultimately be
chained to a remote DSA for processing. The DSA b’ will decrypt the request and try to fulfill the request. If DSA b’
determines that the request should be chained to another DSA (DSA 'c’) for processing, then DSA b’ must encrypt the
chained operations for DSA 'c’. The selection of point-to-point protection for DSP request and responses (chained
operation arguments and results) isindicated by the dirqop established between DSA b’ and DSA ¢’ in the DSP Bind.

@

® @

TISO9030-99/d37
@ DUA a’ user encrypts DAP request for DSA
@ DSA 'b’ encrypts DSP chained operation Argument

ITU-T Rec. X.518 (1997 E) 95

| SO/IEC 9594-4 : 1998 (E)

C.42 Point-to-Point (DUA<-DSA or DSA<-DSA) Encryption on Result

If the DUA user wishes to receive encrypted results or errors from the Directory, the
SecurityParameters.ProtectionRequest field should be set to ENCRYPTED, or if this field is not present, the
SecurityParameters.ProtectionRequest field in the chained operation Arguments is to be set to reflect the DIRQOP in
the DAP BindArgument. The remote DSA (DSA 'c)) should have the ability to be configured to send encrypted chained
operation Results. In this scenario, the DSA 'C’ system determines that it can fulfill the request, it generates a DAP Result
and DSP chained operation Results. Point-to-point encryption can be achieved by DSA ¢’ encrypting the DSP chained
operation Results for DSA 'b’. DSA 'b’ can decrypt the DSP chained operation Results and encrypt the DAP Result for the
DUA 'a user. This provides point-to-point encryption of the result. The DUA ’'a will be responsible for decrypting its

local DSA’s (DSA 'b') DAP Reslt.
. “ . © .

TISO9040-99/d38

(D) DSA "¢’ encrypts DSP chaining operation Result
(2) DSA b’ encrypts DAP Result for DUA 'a’

C.4.3 End-to-End Encryption on DAP Result and Point-to-Point Encryption on DSP Chaining Result

If the DUA 'a wuser wishes to receive encrypted results or errors from the Directory, the
SecurityParameters.ProtectionRequest field should be set to ENCRYPTED or, if this field is not present, the
SecurityParameters.ProtectionRequest field in the chained operation Arguments is set to reflect the DIRQOP in the
DAP Bind. The remote DSA 'c' should have the ability to be configured to send encrypted chained operation Results. In
this scenario, the DSA 'c' system determines that it can fulfill the request, it generates an end-to-end encryption on the
DAP Result (for the DUA User) and a point-to-point encryption on the DSP chained operation Result. The end-to-end
encryption can be performed by DSA 'c' because he knows who the intended DUA 'a user is. Point-to-Point encryption
can be achieved on the DSP chained operation Results by DSA 'c' encrypting the DSP chained operation Results for
DSAL. DSA 'b' can decrypt the DSP and relay the encrypted DAP Result to the DUA 'a user. The DUA will be
responsible for decrypting the DAP Result that it receives from DSA 'c' viaDSA 'b'.

. .
TISO9050-99/d39

DSA 'c’ encrypts the DSP chained operation result
for DSA b, this includes the DAP result from DSA 'c’
that was encrypted for DUA 'a’.

DSA 'b’ returns the DAP result that was encrypted
by DSA ‘¢’ for DUA 'a’.

C.44 Merging of List/Search Results (merging with re-encryption by DSA1)

If the DUA 'd user wishes to receive encrypted List or Search results or errors from the Directory, the
SecurityParameters.ProtectionRequest field should be set to ENCRYPTED or, if this field is not present, the
SecurityParameters.ProtectionRequest field in the chained operation Arguments is set to reflect the DIRQOP in the
DAP Bind. The local DSA (DSA 'b") may elect to multi-chain the list/search request to several other DSAs (either in
paralel or sequentially). The remote DSAs (DSAs 'c, 'd', and '€') should have the ability to be configured to send
encrypted chained list/search results. In this model, each of the remote DSAs ('c', 'd', and '€") fulfills the request and
generates DAP Results and encrypted DSP chained operation Results. The chained operation Results that are generated
by the remote DSAs ('c', 'd', and '€') are transferred to DSA 'b'. DSA 'b' receives each of the chained operation Results,
decrypts the results and collates or merges the results into one common result. DSA 'b' then encrypts this new common
list/search result and sends it to the DUA 'a user. Point-to-Point encryption is achieved by the remote DSAS encrypting
the DSP chained operation Results for DSA 'b' and by DSA 'b' encrypting the DAP Result for the DUA 'a user. The DUA
will be responsible for decrypting one merged DAP Resullt.

96 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

©) ©)
©)

TISO9060-99/d40

DSA 'c’, 'd’, 'e’ encrypt the DSP chained operation Results
@ (including DAP Result)

DSA 'b’ decrypts the DSP chained operation Results
@ from DSA 'c’, DSA 'd’ and DSA 'e’, then merges
the DAP results and re-encrypts the DAP result for DUA 'a’

C.45 Merging-Not-Allowed for List/Search Results
(No-merging by DSA 'b’ providing end-to-end encryption of the DAP List/Search Result)

If the DUA wuser wishes to receive encrypted list or search results or errors from the Directory, the
SecurityParameters.ProtectionRequest field should be set to ENCRYPTED or, if this field is not present, the
SecurityParameters.ProtectionRequest field in the chained operation Arguments is set to reflect the DIRQOP in the
DAP Bind. The local DSA may elect to multi-chain the list/search request to severa other DSAs (either in parallel or
sequentially). The remote DSAs (’c, 'd’, and '€) should have the ability to be configured to send encrypted Chained
List/Search results. In this scenario, each of the remote DSAs (¢, 'd, and '€) fulfills the request and generates encrypted
DAP Results (for the DUA 'a User) and encrypted DSP chained operation Results (for DSA 'b’). The chained operation
Resuts that are generated by the remote DSAs (’c’, 'd’, and '€) are transferred to DSA 'b’. DSA b’ receives each of the
chained operation Results, decrypts the DSP chained operation Results and does NOT perform any type of collation or
merging of the results. DSA b’ relays the List/Search results (that were encrypted by 'c’, 'd’, and '€) and sends it to the
DUA 'a without modification. End-to-end encryption is achieved by the remote DSAs encrypting the DAP List/Search
Result for the DUA "a User and point-to-point encryption was achieved by the remote DSA encrypting the DSP chained
operation Results for DSA 'b’. The DUA ’a will be responsible for decrypting each of the returned DAP List/Search
Results.

©)
@ ®

TISO9070-99/d41

DSA 'c’, 'd’, ’e’ encrypt the DSP chained operation Results
@ for DSA 'k, this includes those that have been encrypted
for the DUA "a’ user.

DSA 'b’ decrypts the DSP chained operation Results from

@ DSA 'c’, DSA 'd’, and DSA ’e’, then relays the DAP results
(which were encrypted by 'c’, 'd’ and 'e’ for DUA 'a’) without
decrypting or merging them to DUA 'a’.

ITU-T Rec. X.518 (1997 E) 97

| SO/IEC 9594-4 : 1998 (E)

C.46 Multi-Chaining a DAP Request using an Encryption-K ey (net-key)

If the DUA 'a wuser wishes to receive encrypted results or errors from the Directory, the
SecurityParameters.ProtectionRequest field should be set to ENCRYPTED or, if this field is not present, the
SecurityParameters.ProtectionRequest field in the chained operation Arguments is set to reflect the DIRQOP in the
DAP Bind. The local DSA may elect to multi-chain the List/Search request to severa other DSAS (either in parale or
sequentially). The local DSA (DSA 'b’) may be configured to support an encryption-key or net-key. A net-key is a
symmetric encryption key that is shared by all the DSAs in the chain. By using a net-key, DSA b’ only needs to encrypt
the Chained request once. Each of the remote DSAs knows about the net-key and is able to decrypt the DSP chained
operation Argument using the net-key. In this scenario, point-to-point encryption can be achieved by the DUA-user
encrypting the DAP request for DSA 'b’ and DSA b’ can achieve point-to-point encryption using a net-key to remote
DSAs.

®
20
@

TISO9080-99/d42
@ DUA 'a’ encrypts a DAP Argument for DSA 'b'.

DSA 'b’ decrypts the request and tries to fulfill the
@ request, if DSA 'b’ cannot fulfil the request, it uses

a "net-key" to encrypt the DSA chained operation

Request (including the DAP request).

Chained request is sent to DSA 'c’, 'd’ and 'e’.

C5 Signed and Encrypted Distributed Operations

C.5.1 End-to-End Signatures, with Point-to-Point Encryption

If aDUA 'a user wants to sign and encrypt the DAP request, the signature can be provided end-to-end and the encryption
can only occur on a point-to-point basis. The DUA 'a can sign and encrypt the DAP request for DSA ’'b’; however, the
DUA 'a user does not know whether or not the request will ultimately be chained to a remote DSA (DSA ') for
processing. DSA b’ will decrypt the request and verify the signature. It will then try to fulfill the request. If DSA b’
determines that the request should be chained to another DSA (DSA ') for processing, then DSA b’ must encrypt the
DSP ChainingArguments for DSA ’c’. The origina signed DAP Request can be maintained and passed along with the
encrypted DSP ChainingArguments.

ORO,

TISO9090-99/d43

DUA user signs and encrypts DAP request
for DSA 'b'.

DSA 'b’ decrypts the DAP request and verifies
the signature, after trying to fulfil the request
locally, DSA 'b’ determines that this request
needs to be chained to DSA 'c’. DSA 'b’ sends
the originally signed DAP Request (signed by
DUA 'a’ user) and generates and encrypts
DSP Chaining Argument for DSA 'c’.

98 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

C.5.2 End-to-End Signature and Encryption on DAP Result, Point-to-Point Signature and Encryption on DSP

If the DUA '@ wuser wishes to receive signed and encrypted results from the Directory, the
SecurityParameters.ProtectionRequest field should be set to SIGNED-AND-ENCRYPTED or, if this field is not
present, the SecurityParameters.ProtectionRequest field in the ChainingArguments is set to reflect the DIRQOP in
the DAP Bind. The remote DSA should have the ability to be configured to send signed and encrypted chained
operations. In this model, the DSA ¢’ system can fulfill the request and generates and performs end-to-end encryption on
the DAP Result (for the DUA ’a User) and a point-to-point encryption on the DSP ChainingResults. The end-to-end
signature and encryption can be performed by DSA ’¢’ because he knows who the intended DUA 'a user is. Point-to-Point
signature and encryption can be achieved on the DSP ChainingResults by DSA 'c’ signing and encrypting the DSP
ChainingResults for DSA 'b. DSA b’ can decrypt and verify the signature of DSA ¢’ for the Signed DSP
ChainingResults and relay the signed and encrypted DAP Result to the DUA 'a user. The DUA 'a will be responsible
for decrypting and verifying the signature of the DAP Result that it receives from DSA 'c’ viaDSA 'b'.

@@

TIS09100-99/d44

DSA ’c’ signs and encrypts DSP ChainedResult
for DSA 'b’, this includes DAP Results that are
signed and encrypted for the DUA 'a’ user.

DSA 'b’ decrypts the DSP Chained Result from
DSA 'c’ and forwards the signed and encrypted
DAP Result for DUA 'a’.

C.5.3 End-to-End Signature on DAP, Point-to-Point Encryption on DSP and DAP Result

If the DUA '@ wuser wishes to receive signed and encrypted results from the Directory, the
SecurityParameters.ProtectionRequest field should be set to SIGNED-AND-ENCRYPTED or, if this field is not
present, the SecurityParameters.ProtectionRequest field in the ChainingArguments is set to reflect the DIRQOP in
the DAP Bind. The remote DSA (DSA 'c’) should have the ability to be configured to send signed and encrypted chained
operations. In this model, the DSA 'c’ system can fulfill the request, it generates a signed DAP Result and signs and
encrypts the DAP Result and the DSP ChainingResults for DSA 'b’. DSA b’ can decrypt and verify DSA 'c’ signature on
the DSP ChainingResults and re-encrypted the signed (by DSA 'c’) DAP Result for the DUA 'a user. The DUA 'a will
be responsible for decrypting the DAP Result received from DSA b’ and verifying the signature of the DAP Result that it
receivesfrom DSA 'c’' viaDSA 'b’.

©) @

TIS09110-99/d45

DSA 'c’ signs and encrypts DSP ChainedResult
for DSA b, this includes DAP Results.

DSA 'b’ decrypts the DSP Chained Result from
DSA 'c’ (and the DAP Result received in the
DSP Chained Result) and forwards the signed
DAP Result to DUA 'a’.

ITU-T Rec. X.518 (1997 E) 99

I SO/IEC 9594-4 : 1998 (E)
Annex D
Specification of hierarchical and non-specific hierarchical operational binding types

(Thisannex forms an integral part of this Recommendation | International Standard)

This annex includes the definitions of the ASN.1 information object classes introduced in this Directory Specification in
the form of the ASN.1 module HierarchicalOperationalBindings.

HierarchicalOperationalBindings

{joint-iso-itu-t ds(5) module(1) hierarchicalOperationalBindings(20) 3}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access

-- Directory services. Other applications may use them for their own purposes, but this will not constrain

-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, distributedOperations, directoryOperationalBindingTypes,
opBindingManagement, dsp
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 3}

Attribute, RelativeDistinguishedName, DistinguishedName
FROM InformationFramework informationFramework

MasterAndShadowAccessPoints
FROM DistributedOperations distributedOperations

directorySystemAC
FROM DirectorySystemProtocol dsp

OPERATIONAL-BINDING
FROM OperationalBindingManagement opBindingManagement

id-op-binding-hierarchical, id-op-binding-non-specific-hierarchical
FROM DirectoryOperationalBindingTypes directoryOperationalBindingTypes ;

- types --
HierarchicalAgreement ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
immediateSuperior [1] DistinguishedName }

NonSpecificHierarchicalAgreement ::= SEQUENCE {
immediateSuperior [1] DistinguishedName }

SuperiorToSubordinate ::= SEQUENCE {

contextPrefixinfo [0] DITcontext,
entrylnfo [1] SET OF Attribute OPTIONAL,
immediateSuperiorinfo [2] SET OF Attribute OPTIONAL }

DITcontext ::= SEQUENCE OF Vertex

Vertex ::= SEQUENCE {

rdn [0] RelativeDistinguishedName,
admPointinfo [1] SET OF Attribute OPTIONAL,
subentries [2] SET OF Subentryinfo OPTIONAL,

accessPoints [3] MasterAndShadowAccessPoints OPTIONAL }

Subentryinfo ::= SEQUENCE {
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute}

100 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

SubordinateToSuperior::= SEQUENCE ({

accessPoints [0] MasterAndShadowAccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entrylnfo [2] SET OF Attribute OPTIONAL,

subentries [3] SET OF Subentryinfo OPTIONAL }

SuperiorToSubordinateModification ::= SuperiorToSubordinate (
WITH COMPONENTS{ ..., entryinfo ABSENT})

NHOBSuperiorToSubordinate ::= SuperiorToSubordinate (
WITH COMPONENTS { ..., entryinfo ABSENT})

NHOBSubordinateToSuperior ::

= SubordinateToSuperior (

WITH COMPONENTS { ..., alias ABSENT, entryinfo ABSENT})

-- operational binding information objects --

hierarchicalOperationalBinding OPERATIONAL-BINDING ::= {

AGREEMENT
APPLICATION CONTEXTS {

{directorySystemAC} }

HierarchicalAgreement

ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SuperiorToSubordinateModification
TERMINATION-INITIATOR TRUE }
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateToSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateToSuperior
TERMINATION-INITIATOR TRUE }
ID id-op-binding-hierarchical }

nonSpecificHierarchicalOperationalBinding OPERATIONAL-BINDING ::= {

AGREEMENT
APPLICATION CONTEXTS {

{ directorySystemAC}}

NonSpecificHierarchicalAgreement

ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperiorToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperiorToSubordinate
TERMINATION-INITIATOR TRUE }

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE

ESTABLISHMENT-PARAMETER
MODIFICATION-INITIATOR

TRUE

NHOBSubordinateToSuperior

MODIFICATION-PARAMETER NHOBSubordinateToSuperior

TERMINATION-INITIATOR

TRUE }

ID id-op-binding-non-specific-hierarchical }

END

ITU-T Rec. X.518 (1997 E)

101

I SO/IEC 9594-4 : 1998 (E)
Annex E
K nowledge maintenance example

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates knowledge maintenance, as defined in clause 23, with a simple example. In Figure E.1, the
following symbols are used to depict the DSA information trees of five DSAs.

® rootDsE (O glue DSE B context prefix entry
@ ey \/ subr DSE /\ immSupr DSE

Q shadowed entry D shadowed context prefix entry

V shadowed subr DSE A shadowed immSupr DSE

shadowing

“reverse” shadowing

HOB TISO3910-94/d46

Figure E.1 — Symbolsused to depict DSA information trees

In Figure E.2, DSA 1 is the master for naming context { A}, consisting of the two entries{ A} and { A, B}. DSA 1 holds a
subordinate reference for naming context {A, B, C} which is maintained via an HOB with DSA 3. DSA 1 is a shadow
supplier to DSA 2, supplying it with copies of the user information of naming context { A} and the subordinate reference
to naming context { A, B, C} which identifies the access points of DSA 3, DSA 4 and DSA 5, the former being the master
for the subordinate naming context.

DSA 3 is the master for naming context {A, B, C}. In addition to holding the single entry {A, B, C} of the naming
context, DSA 3 holds an immediate superior reference for naming context { A} which is maintained viaan HOB with DSA
1. DSA 3is ashadow supplier to DSA 4, supplying it with copies of the user information of naming context { A, B, C}
and the immediate superior reference to naming context { A} which identifies the access points of DSA 1 and DSA 2, the
former being the master for the superior naming context. DSA 4 is a (secondary) shadow supplier to DSA 5, providing it
with a copy of the information it receives from DSA 3.

Figure E.2 illustrates the DSA operational attributes employed to represent and maintain knowledge.

DSA 1 uses the value of its myAccessPoint attribute (associated with its root DSE) and the commonly usable values of
its consumerKnowledge (associated with context prefix {A}) attribute to form a vaue of the type
MasterAndShadowAccessPoints for use in its HOB interactions with DSA 3. DSA 3, in turn, uses the value of its
myAccessPoint attribute (associated with its root DSE) and the commonly usable values of its consumerKnowledge
attribute and its secondaryShadows (both associated with context prefix { A, B, C}) attribute to form a value of the type
MasterAndShadowAccessPoints for usein its HOB interactions with DSA 1. Together, the two DSAS, using the DOP,
maintain a subordinate reference held by DSA 1 and an immediate superior reference held by DSA 3. DSA 1's
subordinate reference, expressed by a specificknowledge attribute associated with a DSE at { A, B, C}, is based on the
MasterAndShadowAccessPoints value it receives from DSA 3; DSA 3'simmediate superior reference, expressed by a
specificknowledge attribute associated with aDSE at { A}, is similarly based on the MasterAndShadowAccessPoints
valueit receivesfrom DSA 1.

102 ITU-T Rec. X.518 (1997 E)

| SO/IEC 9594-4 : 1998 (E)

myAccessPoint = DSA 1 b/ DSA 1 ‘myAccessPoint =DSA 2 DSA 2
consumerKnowledge = DSA 2 ’_2/ A supplierKknowledge = DSA 1‘ A
| N
B \ (B
j > O
specificknowledge = c specifi _ C
pecificKnowldege =
DSA 3, DSA4,DSAS V DSA 3,DSA 4, DSA 5
myAccessPoint = DSA 3 % DSA 3 ‘ myAccessPoint = DSA 4 DSA 4

specificknowledge = DSA 1, DSA 2 ‘_2/ A specificKnowledge = DSA 1, DSA 2 [—2/ A
A 7 - A/
B (B

consumerKnowledge = DSA 5

secondaryShadows = supplierknowledge = DSA 4 —
DSA 4, {DSA 5} _—— e === —

consumerkKnowledge = DSA 4

myAccessPoint = DSA 5 F DSA 5

1 v

‘ specificknowledge = DSA 1, DSA,Zr_

‘supplierKnowIedge =DSA 4

TISO3920-94/d47

Figure E.2 — Knowledge maintenance example

DSA 1 and DSA 2 use their values of myAccessPoint in Shadowing Operational Binding interactions to maintain a
value of consumerkKnowledge in DSA 1 (identifying the access point of DSA 2) and supplierknowledge in DSA 2
(identifying the access point of DSA 1), both attributes associated with the context prefix { A}. Together, the two DSAS,
using the DOP, maintain the consumer reference held by DSA 1 and the supplier reference held by DSA 2.

DSA 2 receives a copy of the specificKnowledge attribute associated with context prefix {A, B, C} from DSA 1 in
DISP interactions with DSA 1. This interaction serves to maintain DSA 2's subordinate reference to the context prefix
{A, B, C}.

DSA 3 and DSA 4 (and similarly DSA 4 and DSA 5} maintain consumer and supplier references, respectively, in a
fashion analogous to the interaction between DSA 1 and DSA 2.

DSA 4 receives a copy of the specificKnowledge attribute associated with context prefix {A4} from DSA 3 in DISP
interactions with DSA 3. This interaction serves to maintain DSA 4's immediate superior reference to the context
prefix {A}.

ITU-T Rec. X.518 (1997 E) 103

| SO/IEC 9594-4 : 1998 (E)

DSA 4 communicates to DSA 3 any changes in its myAccessPoint and consumerKnowledge attribute (and
secondaryShadows attribute, which is null in this example) using the modify operational binding operation of the DOP.
DSA 4 supplies DSA 3 with a vaue of SupplierAndConsumers, containing only those values of the
consumerKnowledge attribute that identify the access points of DSASs that have commonly usable shadows; the values
of the secondaryShadows attribute supplied by DSA 4, had there been any, would al, by design, be commonly usable.
(In this example, DSA 5 is presumed to hold a commonly usable copy of the naming context at {A, B, C}.) DSA 3 uses
this information to maintain a value of its secondaryShadows attribute associated with context prefix {A, B, C}. This
attribute, as described above, is used in DOP interactions with DSA 1 to maintain DSA 1's subordinate reference to the
context prefix { A, B, C}.

DSA 5 maintains its immediate superior reference to context prefix { A} using DISP interactions with DSA 4 in afashion
analogous to the interactions between DSA 3 and DSA 4.

104 ITU-T Rec. X.518 (1997 E)

I SO/IEC 9594-4 : 1998 (E)
Annex F

Amendments and corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendments:
— Amendment 1 for Use of Systems Management for Administration of the Directory;
— Amendment 2 for Minor Extensions To Support User Requirements;
— Amendment 3 for Enhancement of Directory Operational Security;

— Amendment 4 for Contexts.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects in the
following defect reports (some parts of some of the following Technical Corrigenda may have been subsumed by the
amendments that formed this edition of this Directory Specification):

— Technical Corrigendum 1 (covering Defect Reports 094, 108, 109, 111, 112, 113, 114, 115).

— Technical Corrigendum 2 (covering Defect Reports 116, 117, 118, 119, 120, 121, 130, 152, 153, 154,
155, 156, 158, 160, 161,165, 167).

ITU-T Rec. X.518 (1997 E) 105

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

Series J
SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
Series Q
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
Series Y
SeriesZ

ITU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overal network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, tel ephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networ ks and open system communications

Global information infrastructure

Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.518 (08/97) INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION - THE DIRECTORY: PROCEDURES FOR DISTRIBUTED OP
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION - THE DIRECTORY: PROCEDURES FOR DISTRIBUTED OPERATION
	SECTION 1 - GENERAL
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards

	3 Definitions
	3.1 OSI Reference Model Definitions
	3.2 Basic Directory Definitions
	3.3 Directory Model Definitions
	3.4 DSA Information Model definitions
	3.5 Directory replication definitions
	3.6 Distributed operation definitions

	4 Abbreviations
	5 Conventions
	SECTION 2 - OVERVIEW
	6 Overview
	SECTION 3 - DISTRIBUTED DIRECTORY MODELS
	7 Distributed Directory System Model
	8 DSA Interactions Model
	8.1 Decomposition of a request
	8.2 Uni-chaining
	8.3 Multi-chaining
	8.4 Referral
	8.5 Mode Determination

	SECTION 4 - DSA ABSTRACT SERVICE
	9 Overview of DSA Abstract Service
	10 Information types
	10.1 Introduction
	10.2 Information types defined elsewhere
	10.3 Chaining Arguments
	10.4 Chaining Results
	10.5 Operation Progress
	10.6 Trace Information
	10.7 Reference Type
	10.8 Access point information
	10.9 Exclusions
	10.10 Continuation Reference

	11 Bind and Unbind
	11.1 DSA Bind
	11.2 DSA Unbind

	12 Chained operations
	12.1 Chained operations
	12.2 Chained Abandon operation
	12.3 Chained operations and protocol version

	13 Chained errors
	13.1 Introduction
	13.2 DSA Referral

	SECTION 5 - DISTRIBUTED PROCEDURES
	14 Introduction
	14.1 Scope and Limits
	14.2 Conformance
	14.3 Conceptual model
	14.4 Individual and cooperative operation of DSAs
	14.5 Cooperative agreements between DSAs

	15 Distributed Directory behaviour
	15.1 Cooperative fulfilment of operations
	15.2 Phases of operation processing
	15.3 Managing Distributed Operations
	15.4 Loop handling
	15.5 Other considerations for distributed operation
	15.6 Authentication of Distributed Operations

	16 The Operation Dispatcher
	16.1 General Concepts
	16.2 Procedures of the operation dispatcher
	16.3 Overview of procedures

	17 Request Validation procedure
	17.1 Introduction
	17.2 Procedure parameters
	17.3 Procedure definition

	18 Name Resolution procedure
	18.1 Introduction
	18.2 Find DSE procedure parameters
	18.3 Procedures

	19 Operation evaluation
	19.1 Modification procedure
	19.2 Single entry interrogation procedure
	19.3 Multiple entry interrogation procedure

	20 Continuation Reference procedures
	20.1 Chaining strategy in the presence of shadowing
	20.2 Issuing chained subrequests to a remote DSA
	20.3 Procedures' parameters
	20.4 Definition of the Procedures
	20.5 Abandon procedure

	21 Results Merging procedure
	22 Procedures for distributed authentication
	22.1 Originator authentication
	22.2 Results authentication

	SECTION 6 - KNOWLEDGE ADMINISTRATION
	23 Knowledge administration overview
	23.1 Maintenance of Knowledge References
	23.2 Requesting cross reference
	23.3 Knowledge inconsistencies
	23.4 Knowledge References and contexts

	24 Hierarchical operational bindings
	24.1 Operational binding type characteristics
	24.2 Operational binding information object Class definition
	24.3 DSA procedures for hierarchical operational binding management
	24.4 Procedures for operations
	24.5 Use of application contexts

	25 Non-specific hierarchical operational binding
	25.1 Operational binding type characteristics
	25.2 Operational binding information object class definition
	25.3 DSA procedures for non-specific hierarchical operational binding management
	25.4 Procedures for operations
	25.5 Use of application contexts

	Annex A - ASN.1 for Distributed Operations
	Annex B - Example of distributed name resolution
	Annex C - Distributed use of authentication
	C.1 Summary
	C.2 Distributed protection model
	C.3 Signed Chained Operations
	C.4 Encrypted Chained Operations
	C.5 Signed and Encrypted Distributed Operations
	Annex D - Specification of hierarchical and non-specific hierarchical operational binding types
	Annex E - Knowledge maintenance example
	Annex F - Amendments and corrigenda

