

INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.518
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

(11/1988)

SERIES X: DATA COMMUNICATION NETWORKS:
TRANSMISSION, SIGNALLING AND SWITCHING,
NETWORK ASPECTS, MAINTENANCE AND
ADMINISTRATIVE ARRANGEMENTS
Data communication networks – Transmission, signalling
and switching

THE DIRECTORY – PROCEDURES FOR
DISTRIBUTED OPERATION

Reedition of CCITT Recommendation X.518 published in
the Blue Book, Fascicle VIII.8 (1988)

NOTES

1 CCITT Recommendation X.518 was published in Fascicle VIII.8 of the Blue Book. This file is an extract from
the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

 Fascicle VIII.8 – Rec. X.518 1

Recommendation X.518

THE DIRECTORY – PROCEDURES FOR DISTRIBUTED OPERATION 1)

(Melbourne, 1988)

CONTENTS

SECTION 1 – Introduction

0 Introduction

1 Scope and field of application

2 References

3 Definitions

4 Abbreviations

5 Notation

SECTION 2 – Overview

6 Overview

SECTION 3 – Distributed directory models

7 Distributed directory system model

8 DSA interactions model

 8.1 Chaining
 8.2 Multicasting
 8.3 Referral
 8.4 Mode determination

9 Directory distribution

10 Knowledge

 10.1 Minimal knowledge references
 10.2 Root context
 10.3 Knowledge references
 10.4 Knowledge administration

SECTION 4 – DSA abstract service

11 Overview of DSA abstract service

12 Information types

 12.1 Introduction
 12.2 Information types defined elsewhere
 12.3 Chaining arguments
 12.4 Chaining results

1) Recommendation X.518 and ISO 9594-4, Information Processing Systems – Open Systems Interconnection – The

Directory – Procedures for Distributed Operation, were developed in close collaboration and are technically aligned.

2 Fascicle VIII.8 – Rec. X.518

 12.5 Operation progress
 12.6 Trace information
 12.7 Reference type
 12.8 Access point
 12.9 Continuation reference

13 Abstract-bind and abstract-unbind

 13.1 DSA bind
 13.2 Directory unbind

14 Chained abstract-operations

15 Chained abstract-errors

 15.1 Introduction
 15.2 DSA referral

SECTION 5 – Distributed operations procedures

16 Introduction

 16.1 Scope and limits
 16.2 Conceptual model
 16.3 Individual and cooperative operation of DSAs

17 Distributed directory behaviour

 17.1 Cooperative fulfillment of operations
 17.2 Phases of operation processing
 17.3 Managing distributed operations
 17.4 Other considerations for distributed operation
 17.5 Authentication of distributed operations

18 DSA behaviour

 18.1 Introduction
 18.2 Overview of the DSA behaviour
 18.3 Specific operations
 18.4 Operation dispatcher
 18.5 Looping
 18.6 Name resolution procedure
 18.7 Object evaluation procedures
 18.8 Result merging procedure
 18.9 Procedures for distributed authentication

Annex A – ASN.1 for distributed operations

Annex B – Modelling of knowledge

Annex C – Distributed use of authentication

Annex D – Distributed directory object identifiers

 Fascicle VIII.8 – Rec. X.518 3

SECTION 1 – Introduction

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the interconnection of
information processing systems to provide directory services. The set of all such systems, together with the directory
information which they hold, can be viewed as an integrated whole, called the Directory. The information held by the
Directory, collectively known as the Directory Information Base (DIB), is typically used to facilitate communication
between, with or about objects such as OSI application entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a
minimum of technical agreement outside of the interconnection standards themselves, the interconnection of information
processing systems:

 – from different manufacturers;

 – under different managements;

 – of different levels of complexity; and

 – of different ages.

0.3 This Recommendation specifies the procedures by which the distributed components of the Directory
interwork in order to provide a consistent service to its users.

1 Scope and field of application

1.1 This Recommendation specifies the behaviour of DSAs taking part in the distributed Directory application.
The allowed behaviour has been designed so as to ensure a consistent service given a wide distribution of the DIB across
many DSAs.

1.2 The Directory is not intended to be a general purpose database system, although it may be built on such
systems. It is assumed that there is a considerably higher frequency of queries than of updates.

2 References

Recommendation X.200 – Open Systems Interconnection – Basic Reference Model

Recommendation X.208 – Open Systems Interconnection – Specification of Abstract Syntax Notation (ASN.1)

Recommendation X.500 – The Directory – Overview of Concepts, Models and Services

Recommendation X.501 – The Directory – Models

Recommendation X.511 – The Directory – Abstract Service Definition

Recommendation X.519 – The Directory – Protocol Specifications

Recommendation X.520 – The Directory – Selected Attribute Types

Recommendation X.521 – The Directory – Selected Object Classes

Recommendation X.407 – Message Handling Systems – Abstract Service Definition Conventions

3 Definitions

 The definitions contained in this paragraph make use of the abbreviations defined in § 4.

3.1 OSI Reference Model Definitions

 This Recommendation makes use of the following term defined in X.200:

 a) application entity title.

4 Fascicle VIII.8 – Rec. X.518

3.2 Basic Directory Definitions

 This Recommendation makes use of the following terms defined in Recommendation X.500:

 a) (the) Directory;

 b) Directory Information Base.

3.3 Directory Model Definitions

 This Recommendation makes use of the following terms defined in Recommendation X.501:

 a) access point;

 b) alias;

 c) distinguished name;

 d) Directory Information Tree;

 e) Directory System Agent;

 f) Directory User Agent;

 g) relative distinguished name.

3.4 Abstract Service Definition Conventions

 This Recommendation makes use of the following terms defined in X.407:

 a) abstract error;

 b) abstract operation;

 c) result.

3.5 Distributed Operation Definitions

 This Recommendation makes use of the following terms, as defined here:

 a) chaining: a mode of interaction optionally used by a DSA which cannot perform an operation itself. The
DSA chains by invoking an operation of another DSA and then relaying the outcome to the original
requestor;

 b) context prefix: the sequence of RDNs leading from the Root of the DIT to the initial vertex of a naming
context, corresponds to the distinguished name of that vertex;

 c) cross reference: a knowledge reference containing information about the DSA that holds an entry. This is
used for optimisation. The entry need have no superior or subordinate relationship;

 d) DIB fragment: the portion of the DIB that is held by one DSA, comprising one or more naming contexts;

 e) distributed name resolution: the process by which name resolution is performed in more than one DSA;

 f) internal reference: a knowledge reference containing an internal pointer to an entry held in the same
DSA;

 g) knowledge information: the information which a particular DSA has about the entries it holds and how to
locate other entries in the directory;

 h) knowledge reference: knowledge which associates, either directly or indirectly, a DIT entry with the DSA
in which it is located;

 i) knowledge tree: the conceptual model of the knowledge information that a DSA holds to enable it to
perform distributed name resolution;

 j) multicasting: a mode of interaction which may optionally be used by a DSA which cannot perform an
operation itself. The DSA multicasts the operation, i.e. invokes the same operation of several other DSAs
(in series or in parallel) and passes an appropriate outcome to the original requestor;

 k) name resolution: the process of locating an entry by sequentially matching each RDN in a purported name
to a vertex of the DIT;

 Fascicle VIII.8 – Rec. X.518 5

 l) naming context: a partial sub-tree of the DIT which starts at a vertex and extends downwards to leaf
and/or non-leaf vertices. Such vertices constitute the border of the naming context. Non-leaf vertices
belonging to the border denote the start of further naming contexts;

 m) non-specific subordinate reference: a knowledge reference that holds information about the DSA that
holds one or more unspecified subordinate entries;

 n) operation progress: a set of values which denotes the extent to which name resolution has taken place;

 o) reference path: a continuous sequence of knowledge references;

 p) referral: an outcome which can be returned by a DSA which cannot perform an operation itself, and
which identifies one or more other DSAs more able to perform the operation;

 q) request decomposition: decomposition of a request into subrequests each accomplishing a part of the
distributed operation;

 r) root context: the naming context for the vertex whose name comprises the empty sequence of RDNs;

 s) subordinate reference: a knowledge reference containing information about the DSA that holds a specific
subordinate entry;

 t) subrequest: a request generated by request decomposition;

 u) superior reference: a knowledge reference containing information about the DSA that holds a superior
entry.

4 Abbreviations

 The following abbreviations are used in this Recommendation:

 DIB Directory Information Base

 DIT Directory Information Tree

 DSA Directory System Agent

 DUA Directory User Agent

 RDN Relative Distinguished Name

5 Notation

 The notation used in this paragraph is defined as follows:

 a) the data syntax notation, encoding and macro notation are defined in Recommendation X.208;

 b) the notations for abstract models and abstract services are defined in Recommendation X.407.

SECTION 2 – Overview

6 Overview

 The Directory Abstract Service allows the interrogation, retrieval and modification of Directory information in
the DIB. This service is described in terms of the abstract Directory object as specified in Recommendation X.511.

 Necessarily, the specification of the abstract Directory object does not in any way address the physical
realization of the Directory, in particular it does not address the specification of Directory System Agents (DSA) within
which the DIB is stored and managed, and through which the service is provided. Furthermore, it does not consider
whether the DIB is centralized, i.e. contained within a single DSA, or distributed over a number of DSAs. Consequently,
the requirements for DSAs to have knowledge of, navigate to, and cooperate with other DSAs, in order to support the
abstract service in a distributed environment, is also not covered by the service description.

 This Recommendation specifies the refinement of the abstract Directory object, the refinement being expressed
in terms of a set of one or more DSA objects which collectively constitute the distributed directory service. Inherent in
this is the identification and specification of the DSA ports that are internal to the Directory object. For each such port,
this Recommendation specifies the associated abstract services and its procedures.

6 Fascicle VIII.8 – Rec. X.518

 In addition, this Recommendation specifies the permissible ways in which the DIB may be distributed over one
or more DSAs. For the limiting case where the DIB is contained within a single DSA, the Directory is in fact centralized;
for the case where the DIB is distributed over two or more DSAs, knowledge and navigation mechanisms are specified
which ensure that the whole of the DIB is potentially accessible from all DSAs that hold constituent entries.

 Additionally, request handling interactions are specified that enable particular operational characteristics of the
Directory to be controlled by its users. In particular, the user has control over whether a DSA, responding to a directory
enquiry pertaining to information held in other DSA(s), has the option of interrogating the other DSA(s) directly
(chaining/multicasting) or, whether it should respond with information about other DSA(s) which could further progress
the enquiry (referral).

 Generally, the decision by a DSA to chain/multicast or refer is determined by the service controls set by the
user, and by the DSA's own administrative, operational, or technical circumstances.

 Recognizing that, in general, the Directory will be distributed, that directory enquiries will be satisfied by an
arbitrary number of cooperating DSAs which may arbitrarily chain/multicast or refer according to the above criteria, this
Recommendation specifies the appropriate procedures to be effected by DSAs in responding to distributed directory
enquiries. These procedures will ensure that users of the distributed Directory service perceive it to be both user-friendly
and consistent.

SECTION 3 – Distributed directory models

7 Distributed directory system model

 The Directory abstract service as defined in Recommendation X.511 models the directory as an object which
provides a set of directory services to its users. The services of the directory are modelled in terms of ports, where each
port provides a particular set of directory services. Users of the directory access its services through an access point. The
directory may have one or more access points and each access point is characterized by the services it provides and the
mode of interaction used to provide these services.

 This paragraph addresses the internal structure of the directory object, identifying its constituent objects and
their ports, and thereby facilitates the specification of a distributed directory service.

 Figure 1/X.518 illustrates the distributed directory which will be used as the basis for specifying the distributed
aspects of the directory. It illustrates the directory object as comprising a set of one or more DSA-objects.

FIGURE 1/X.518

Objects of the distributed directory model

 DSA objects are specified in detail in the subsequent clauses of this Recommendation. This clause merely
states a number of their characteristics in order to serve as an introduction and to establish the relationship between this
Recommendation and other Recommendations.

 DSA objects are defined in order that distribution of the DIB can be accommodated and that a number of
physically distributed DSAs can interact in a prescribed, cooperative manner to provide directory services to the users of
the directory (DUAs).

 Fascicle VIII.8 – Rec. X.518 7

 DSA objects, like the Directory object, are characterized by their externally visible ports. The ports associated
with a DSA-object are of two types: service-ports and chained-service-ports.

 The service-ports of a DSA object are identical to those of the Directory object, namely, read, search and
modify. Figure 1/X.518 illustrates that the service-ports associated with a DSA object constitute an access-point through
which directory services are made available.

 The detailed specification of the read, search, and modify service-ports of the DSA object can be found in
Recommendation X.511. (The protocol specification for the corresponding OSI application service elements, as derived
from these port definitions, can be found in Recommendation X.519.)

 In addition to the service-ports of the DSA object which accommodate access to the Directory object, a second
set of ports are defined, the chained-service-ports. These permit inter-DSA communication in order that the Directory
abstract service can be realized in a distributed environment.

 The chained-service-ports and the operations provided through them are in direct correspondence to the
similarly named service-ports, and are, respectively, chainedRead, chainedSearch, and chainedModify.

 The process of specifying the constituent objects of a more abstract object is termed "refinement". The
specification of the refinement of the Directory object into its component parts (the DSAs), and the specification of the
abstract service provided by each of them (the DSA Abstract Service) is contained in Section Four of this
Recommendation. The protocol specification of the corresponding OSI application service elements, as derived from the
chained port definitions, can be found in Recommendation X.519.

8 DSA interactions model

 A basic characteristic of the Directory is that, given a distributed DIB, a user should potentially be able to have
any service request satisfied (subject to security, access control and administrator policies) irrespective of the access
point at which the request originates. In accommodating this requirement it is necessary that any DSA involved in
satisfying a particular service request have some knowledge (as specified in § 10 of this Recommendation) of where the
requested information is located and either return this knowledge to the requestor or attempt to have the request satisfied
on its behalf. (The requestor may either be a DUA or another DSA: in the latter case both DSAs must have a chained
port.)

 Three modes of DSA interaction are defined to meet these requirements, namely "chaining", "multicasting",
and "referral". "Chaining" and "multicasting" are defined to meet the latter of the above requirements whilst referrals
address the former.

8.1 Chaining

 This mode of interaction (depicted in Figure 2/X.518) may be used by one DSA, to pass on a request to another
DSA when the former has knowledge about naming contexts held by the latter. Chaining may be used to contact a single
DSA pointed to in a cross reference, a subordinate reference, or a superior reference. Multicasting is a form of chaining,
described in § 8.2.

FIGURE 2/X.518

Chaining mode

 Note – In Figure 2/X.518, the order of interactions is defined by the numbers associated with the interaction
lines.

8 Fascicle VIII.8 – Rec. X.518

8.2 Multicasting

 This mode of interaction (depicted in Figures 3a/X.518 and 3b/X.518) may be used by a DSA, to chain an
identical request in parallel (a) or sequential (b) to one or more DSAs, when the former does not know the complete
naming contexts held by the other DSAs. Multicasting is only used by a DSA to contact other DSAs pointed to in a non-
specific subordinate reference. Each of the DSAs is passed the identical request. Normally, during name resolution, only
one of the DSAs will be able to continue processing the remote operation, all of the others returning the
unableToProceed ServiceError. However, during the evaluation phase of search and list operations, all DSAs in a
non-specific subordinate reference should be able to continue processing the request.

 Note – In Figures 3a/X.518 and 3b/X.518, the order of interactions is defined by the numbers associated with
the interaction lines.

FIGURE 3a/X.518

Multicasting mode

FIGURE 3b/X.518

Multicasting mode

8.3 Referral

 A referral (depicted in Figures 4a/X.518 and 4b/X.518) is returned by a DSA in its response to a request which
it had been requested to perform, either by a DUA, or by another DSA (in which case both DSAs must have a chained-
service port). The referral may constitute the whole response (in which case it is categorized as an error) or just part of
the response. The referral contains a knowledge reference, which may be either a superior, subordinate, cross or non-
specific subordinate reference.

 Fascicle VIII.8 – Rec. X.518 9

 The DSA (Figure 4a/X.518) receiving the referral may use the knowledge reference contained therein, to
subsequently chain or multicast (depending upon the type of reference) the original operation to other DSAs.
Alternatively, a DSA receiving a referral, may in turn pass the referral back in its response. A DUA (Figure 4b/X.518)
receiving a referral may use it to contact one or more other DSAs to progress the request.

FIGURE 4a/X.518

Referral mode – DSA with chained port

FIGURE 4b/X.518

Referral mode – DUA requests DSAs with no chained ports

 Note – In Figures 4a/X.518 and 4b/X.518, the order of interactions is defined by the numbers associated with
the interaction lines.

8.4 Mode determination

 If a DSA cannot itself fully resolve a request, it must chain/multicast the request (or a request formed by
decomposing the original one), to another DSA, unless:

 a) chaining is prohibited by the user via the service controls, in which case the DSA must return a referral or
a chainingRequired ServiceError (at its choice), or

 b) the DSA has administrative, operational, or technical reasons for preferring not to chain, in which case the
DSA must return a referral.

 Note 1 – A "technical reason" for not chaining/multicasting is that the DSA identified in the knowledge
reference has no chained service ports.

 Note 2 – If the localScope service control is set, then the DSA (or DMD) must either resolve the request or
return an error.

 Note 3 – If the user prefers referrals, the user should set chainingProhibited.

10 Fascicle VIII.8 – Rec. X.518

9 Directory distribution

 This paragraph defines the principles according to which the DIB can be distributed.

 Each entry within the DIB is administered by one, and only one, DSA's Administrator who is said to have
administrative authority for that entry. Maintenance and management of an entry must take place in a DSA administered
by the administrative authority for the entry.

 Although the Directory does not provide any support for the replication of entries, it is nevertheless possible to
realize replication in two ways:

 – Copies of an entry may be stored in other DSA(s) through bilateral agreement. The means by which these
copies are maintained and managed is a function of the bilateral agreement and is not defined in this
Recommendation.

 – Copies of an entry may be acquired by storing (locally and dynamically) a copy of an entry which results
from a request.

 Note – The acquisition of cache entries is subject to access control.

 The originator of the request is informed (via fromCopy) as to whether information returned in response to a
request is from a replicated entry or not. A service control, dontUseCopy, is defined which allows the user to prohibit
the use of replicated entries.

 Each DSA within the Directory holds a fragment of the DIB. The DIB fragment held by a DSA is described in
terms of the DIT and comprises one or more naming contexts. A naming context is a partial subtree of the DIT defined as
starting at a vertex and extending downwards to leaf and/or non-leaf vertices. Such vertices constitute the border of the
naming context. Subordinates of the non-leaf vertices belonging to the border denote the start of further naming contexts.

 It is possible for a DSA's administrator to have administrative authority for several disjoint naming contexts.
For every naming context for which a DSA has administrative authority, it must logically hold the sequence of RDNs
which lead from the root of the DIT to the initial vertex of the subtree comprising the naming context. This sequence of
RDNs is called the context prefix.

 A DSA's administrator may delegate administrative authority for any immediate subordinates of any entry held
locally to another DSA. A DSA that delegated authority is called a superior DSA and the context that holds the superior
entry of one for which the administrative authority was delegated, is called the superior naming context. Delegation of
administrative authority begins with the root and proceeds downwards in the DIT; that is, it can only occur from an entry
to its subordinates.

 Figure 5/X.518 illustrates a hypothetical DIT logically partitioned into five naming contexts (named A, B, C, D
and E), which are physically distributed over three DSAs (DSA1, DSA2, and DSA3).

 From the example it can be seen that the naming contexts held by particular DSAs may be configured so as to
meet a wide range of operational requirements. Certain DSAs may be configured to hold those entries that represent
higher level naming domains within some logical part(s) of the DIB, the organizational structure of a large company say,
but not necessarily all the subordinate entries. Alternatively, DSAs may be configured to hold only those naming
contexts representing primarily leaf entries.

 From the above definitions, the limiting case for a naming context can be either a single entry or the whole of
the DIT.

 Whilst the logical to physical mapping of the DIT onto DSAs is potentially arbitrary, the task of information
location and management is simplified if the DSAs are configured to hold a small number of naming contexts.

 In order for a DUA to begin processing a request it must hold some information, specifically the presentation
address, about at least one DSA that it can contact initially. How it acquires and holds this information is a local matter.

 During the process of modification of entries it is possible that the directory may become inconsistent. This
will be particularly likely if modification involves aliases or aliased objects which may be in different DSAs. The
inconsistency must be corrected by specific administrator action, for example to delete aliases if the corresponding
aliased objects have been deleted. The Directory continues to operate during this period of inconsistency.

 Fascicle VIII.8 – Rec. X.518 11

FIGURE 5/X.518

Hypothetical DIT

 Note – The Root is not held by any DSA, however some indication must exist at the local level to distinguish
those vertices (e.g. C = VV, C = WW) which are immediate subordinates of the Root.

10 Knowledge

 The DIB is potentially distributed across multiple DSAs with each DSA holding a DIB fragment; the principles
that govern distribution of the DIB are specified in § 9 of this Recommendation.

 It is a requirement of the Directory that, for particular modes of user interaction, the distribution of the
directory be rendered transparent, thereby giving the effect that the whole of the DIB appears to be within each and every
DSA.

 In order to support the operational requirements described above, it is necessary that each DSA holding a
fragment of the DIB be able to identify and optionally interact with other fragments of the DIB held by other DSAs.

 This paragraph defines knowledge as the basis for the mapping of a name to its location within a fragment of
the DIT.

 Conceptually DSAs hold two types of information:

 a) Directory Information;

 b) Knowledge Information.

 Directory Information is the collection of entries comprising the Naming Context(s) for which the
Administrator of a particular DSA has Administrative Authority.

 Knowledge Information embodies the Naming Context(s) held by a particular DSA and denotes how these fit
into the overall DIT hierarchy. Name Resolution, the process of locating the DSA which has Administrative Authority
for a particular entry given that entry's name, is based on knowledge information.

 A Context Prefix is the sequence of RDNs leading from the Root of the DIT to the initial vertex of a naming
context and corresponds to the distinguished name of that vertex.

 A Naming Context comprises a collection of knowledge references and a Context Prefix. A Naming Context
must contain exactly the following knowledge references:

 – All the internal references which define the internal structure of the portion of the DIT included in the
Naming Context.

 – All the subordinate and non-specific subordinate references to other Naming Contexts.

10.1 Minimal knowledge references

 It is a property of the Directory that each entry can be accessed independently of where a request is generated.

12 Fascicle VIII.8 – Rec. X.518

 To accomplish this, each DSA shall at least maintain the following knowledge references:

 – subordinate references as defined in § 10.3.2 and/or non-specific subordinate references as defined in
§ 10.3.5; and

 – superior references as defined in § 10.3.3.

 It is then possible to establish a reference path, as a continuous sequence of knowledge references, to all
naming contexts within the Directory.

 Optionally, cross references, as defined in § 10.3.4 may form part of a reference path to optimize performance.

10.2 Root context

 Because of the autonomy of the different countries or global organizations, there is likely to be no "single"
DSA which holds the root context. The functionality of a "root-DSA" concerning the name resolution process has to be
provided by those DSAs which have administrative authority for naming contexts that are immediately subordinate to the
root. These DSAs are called First Level DSAs. Each First Level DSA must be able to simulate the functionality of the
"root-DSA". This requires full knowledge about the root naming context. The root context is replicated onto each First
Level DSA and therefore has to be administered commonly by the autonomous first level administrative authorities.
Administration procedures have to be determined by multilateral agreements outside the scope of this Recommendation.

 – Each first level DSA shall hold the root context, which implies a reference path to each other first level
DSA.

 – Each non-first level DSA shall have a superior reference, which implies a reference path to any arbitrary
first level DSA.

10.3 Knowledge references

 The knowledge possessed by a DSA is defined in terms of a set of one or more knowledge references where
each reference associates, either directly or indirectly, entries of the DIB with DSAs which hold those entries.

 To be able to fulfill the requirements to reach every DIB entry from any DSA, every DSA is required to have
knowledge about the entries which it itself holds, and about subordinates and possibly superiors thereof. This gives rise
to the following types of knowledge references:

 – Internal references

 – Subordinate references

 – Superior references

 – Non-specific subordinate references.

 Additionally, for optimization purposes the following type of optional reference is defined:

 – Cross references

 In the event that the set of knowledge references associated with a particular DSA contain only internal
references, the DSA has no knowledge of other DSAs and the DIB is therefore centralized.

10.3.1 Internal references

 An internal reference consists of:

 – the RDN corresponding to a DIB entry;

 – an internal pointer to where the entry is stored in the local DIB. (The specification of this pointer is
outside the scope of this Recommendation.)

 All entries for which a particular DSA has Administrative Authority are represented by internal references in
the knowledge information of that DSA.

10.3.2 Subordinate references

 A subordinate reference consists of:

 – an RDN corresponding to an immediate subordinate DIB entry;

 – the Access Point of the DSA to which Administrative Authority for that entry was delegated.

 Fascicle VIII.8 – Rec. X.518 13

 All subordinate entries held by another DSA to which this DSA has delegated Administrative Authority, must
be represented by subordinate references (or non-specific subordinate references as described in § 10.3.5).

10.3.3 Superior references

 A superior reference consists of:

 – the Access Point of a DSA.

 Each non-first level DSA maintains precisely one superior reference. The superior reference shall form part of
a reference path to the root. Unless some method outside of the standard is employed to ensure this, for example within a
DMD, this shall be accomplished by referring to a DSA which holds a naming context whose context prefix has less
RDNs than the context prefix with fewest RDNs held by this DSA.

 If a new non-first level DSA is introduced, it must have a minimal initial knowledge, which is represented by
the superior reference. Any further knowledge will be added by subordinate references or cross references (as described
in § 10.3.4). If a new first level DSA is introduced, it must acquire the root context and advise all other first level DSAs.
How this is accomplished is outside the scope of this Recommendation.

10.3.4 Cross reference

 A cross reference consists of:
 – a Context Prefix;
 – the Access Point of a DSA which has Administrative Authority for that Naming Context.

 This type of reference is optional and serves to optimize Name Resolution. A DSA may hold any number
(including zero) of cross references.

10.3.5 Non-specific subordinate references

 A non-specific subordinate reference consists of:
 – The Access Point of a DSA which holds one or more immediately subordinate Naming Contexts.

 This type of reference is optional, to allow for the case in which a DSA is known to contain some subordinate
entries but the specific RDNs of those entries is not known.

 For each naming context which it holds, a DSA may hold any number (including zero) of non-specific
subordinate references, which will be evaluated if all specific internal and subordinate references have been pursued.
DSAs accessed via a non-specific reference must be able to resolve the request directly (either success or failure). In the
event of failure a ServiceError reporting a problem of unableToProceed is returned to the requestor.

10.4 Knowledge administration

 To operate a widely distributed Directory with an acceptable degree of consistency and performance,
procedures are required to maintain and extend the knowledge held by each DSA. The same procedures are appropriate
for creating initial knowledge.

 Knowledge can be maintained by:
 a) The DSA or its administrative authority propagating changes of knowledge to those DSAs holding all

kinds of references to it, whenever changes at that DSA cause the references to become invalid. This is the
only way superior, subordinate and non-specific subordinate references can be maintained.

 b) DSAs requesting and obtaining cross references to improve the performance through ordinary directory
operations.

 This Recommendation does not define any procedures for propagating knowledge changes as described in a).
Bilateral agreements must be established locally for this.

10.4.1 Requesting cross reference

 To improve the performance of the Directory System, the local set of cross references can be expanded using
ordinary Directory operations. If a DSA has a chained port it may request another DSA (which also must have a chained
port) to return those knowledge references which contain information about the location of naming contexts related to the
target object name of an ordinary Directory operation.

 If the returnCrossReference component of the ChainingArgument is set to TRUE, the crossReference
component of the ChainingResult may be present, consisting of a sequence of cross reference items.

14 Fascicle VIII.8 – Rec. X.518

 If a DSA is not able to chain a request to the next DSA a referral is returned to the originating DSA. If the
returnCrossReference component of the chaining argument was TRUE, the referral may contain additionally the
context prefix of the naming context which the referral refers to. The contextPrefix component is absent if the referral is
based on a non-specific subordinate reference. The cross reference returned by a referral is only based on knowledge
held by the DSA which generated the referral.

 In both cases (chaining result and referral) an administrative authority through its DSA may elect to ignore the
request for returning cross references.

10.4.2 Knowledge inconsistencies

 The Directory has to support consistency-checking mechanisms to guarantee a certain degree of knowledge
consistency.

10.4.2.1 Detection of knowledge inconsistencies

 The kind of inconsistency and its detection varies for the different types of knowledge references.

 – Cross and subordinate references:

 This type of reference is invalid if the referenced DSA does not have a local naming context with the context
prefix contained in the reference. This inconsistency will be detected during the determination of the initial naming
context of the name resolution process by the operation progress and reference type components of the
ChainingArgument.

 – Non-specific Subordinate-references:

 This type of reference is invalid if the referenced DSA does not have a local naming context whose
immediately superior context prefix is contained in the reference, i.e. the reference contains that DSA's local context
prefix minus the last RDN. The consistency check is applied as above.

 – Superior references:

 An invalid superior reference is one which does not form part of a reference path to the root. The maintenance
of superior references must be done by external means and is outside the scope of this Recommendation.

 Note – It is not always possible to detect an invalid superior reference.

10.4.2.2 Reporting of knowledge inconsistencies

 If chaining is used in performing a Directory request, all knowledge inconsistencies will be detected by the
DSA which holds the invalid knowledge reference, through receiving a ServiceError with problem of
invalidReference.

 If a DSA returns a referral which is based on an invalid knowledge reference, the requestor will be returned a
ServiceError with problem of invalidReference if it uses the referral. How the error condition will be propagated to the
DSA which stores the invalid reference is not within the scope of this Recommendation.

10.4.2.3 Treatment of inconsistent knowledge references

 After a DSA has detected an invalid reference it should try to re-establish knowledge consistency. For
example, this can be done by simply deleting an invalid cross reference or by replacing it with a correct one which can be
obtained using the requestCrossReferences mechanisms.

 The way in which a DSA actually handles invalid references is a local matter, and outside the scope of this
Recommendation.

SECTION 4 – DSA abstract service

11 Overview of DSA abstract service

11.1 The abstract service of the directory is fully described in Recommendation X.511. When such a service is
provided in a distributed environment, as modelled in § 7 of this Recommendation, it can be regarded as being provided
by means of a set of DSAs. This is illustrated in Figure 1/X.518.

 Fascicle VIII.8 – Rec. X.518 15

11.2 To describe this model, the refinement of the directory object into its component dsa objects can be expressed
as:

 DirectoryRefinement ::= REFINE directory AS
 dsa RECURRING
 readPort [S] VISIBLE
 searchPort [S] VISIBLE
 modifyPort [S] VISIBLE
 chainedReadPort PAIRED with dsa
 chainedSearchPort PAIRED with dsa
 chainedModifyPort PAIRED with dsa

11.3 The dsa object itself can be defined as follows:

 dsa OBJECT
 PORTS { readPort [S],
 searchPort [S],
 modifyPort [S],
 chainedReadPort,
 chainedSearchPort,
 chainedModifyPort}
 ::= id-ot-dsa

 The DSA supplies Read, Search and Modify ports, thus making visible those services to the users of the
directory object, namely the DUAs. In addition, a DSA supports "chained" versions of these ports, namely Chained
Read, Chained Search, and Chained Modify, which allow DSAs to propagate requests for those services to other DSAs.

11.4 The ports cited from §§ 11.2 and 11.3 (excluding those which are defined in Recommendation X.511) are
defined as follows:

 chainedReadPort PORT
 ABSTRACT OPERATIONS {
 ChainedRead, ChainedCompare,
 ChainedAbandon}
 ::= id-pt-chained-read
 chainedSearchPort PORT
 ABSTRACT OPERATIONS {
 ChainedList, ChainedSearch}
 ::= id-pt-chained-search
 chainedModifyPort PORT
 ABSTRACT OPERATIONS {
 ChainedAddEntry,
 ChainedRemoveEntry,
 ChainedModifyEntry,
 ChainedModifyRDN}
 ::= id-pt-chained-modify

12 Information types

12.1 Introduction

12.1.1 This paragraph identifies, and in some cases defines, a number of information types which are subsequently
used in the definition of various of the operations of the DSA abstract service. The information types concerned are those
which are common to more than one operation, are likely to be in the future, or which are sufficiently complex or self-
contained as to merit being defined separately from the operation which uses them.

12.1.2 Several of the information types used in the definition of the DSA abstract service are actually defined
elsewhere. § 12.2 identifies these types and indicates the source of their definition. Each of the remaining (12.3 to 12.9)
identifies and defines an information type.

16 Fascicle VIII.8 – Rec. X.518

12.2 Information types defined elsewhere

12.2.1 The following information types are defined in Recommendation X.501:
a) aliasedObjectName;
b) DistinguishedName;
c) Name;
d) RelativeDistinguishedName.

12.2.2 The following information types are defined in Recommendation X.511:
(Abstract-bind)
a) DirectoryBind;
(Abstract-operations)
b) Abandon;
(Abstract-errors)
c) Abandoned;
d) AttributeError;
e) NameError;
f) SecurityError;
g) ServiceError;
h) UpdateError;
(Macro)
i) OPTIONALLY-SIGNED;
(Data Type)
j) SecurityParameters.

12.2.3 The following information type is defined in Recommendation X.520:
a) PresentationAddress.

12.3 Chaining arguments

12.3.1 The ChainingArguments are present in each Chained abstract-operation, to convey to a DSA the information
needed to successfully perform its part of the overall task:

 ChainingArguments ::= SET {
 originator [0] DistinguishedName OPTIONAL,
 targetObject [1] DistinguishedName OPTIONAL,
 operationProgress [2] OperationProgress DEFAULT {notStarted},
 traceInformation [3] TraceInformation,
 aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
 aliasedRDNs [5] INTEGER OPTIONAL,
 -- absent unless aliasDereferenced is TRUE
 returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
 referenceType [7] ReferenceType DEFAULT superior,
 Info [8] DomainInfo OPTIONAL,
 timeLimit [9] UTCTime OPTIONAL,
 [10] SecurityParameters DEFAULT {}}

12.3.2 The various components have the meanings as defined in §§ 12.3.2.1 to 12.3.2.11.

12.3.2.1 The originator component conveys the name of the (ultimate) originator of the request, unless already
specified in the security parameters. If requestor is present in CommonArguments, this argument may be omitted.

12.3.2.2 The targetObject component conveys the name of the object whose directory entry is being routed to. The role
of this object depends on the particular abstract-operation concerned: it may be the object whose entry is to be operated
on, or which is to be the base object for a request or sub-request involving multiple objects (e.g. ChainedList or
ChainedSearch). This component may be omitted only if it would have had the same value as the base object parameter
in XArgument (see § 14.3.1), in which case its implied value is that value.

 Fascicle VIII.8 – Rec. X.518 17

12.3.2.3 The operationProgress component is used to inform the DSA of the progress of the operation, and hence of
the role which it is expected to play in its overall performance. The information conveyed in this component is specified
in § 12.5.

12.3.2.4 The traceInformation component is used to prevent looping among DSAs when chaining is in operation. A
DSA adds a new element to trace information prior to chaining an operation to another DSA. On being requested to
perform an operation, a DSA checks, by examination of the trace information, that the operation has not formed a loop.
The information conveyed in this component is specified in § 12.6.

12.3.2.5 The aliasDereferenced component is a Boolean value which is used to indicate whether or not one or more
alias entries have so far been encountered and dereferenced during the course of distributed name resolution. The default
value of FALSE indicates that no alias entry has been dereferenced.

12.3.2.6 The aliasedRDNs component indicates how many of the RDNs in the targetObject Name have been
generated from the aliasedObjectName attributes of one (or more) alias entries. The integer value is set whenever an
alias entry is encountered and dereferenced. This component shall be present if and only if the aliasDereferenced
component is TRUE.

12.3.2.7 The returnCrossRefs component is a Boolean value which indicates whether or not knowledge references,
used during the course of performing a distributed operation, are requested to be passed back to the initial DSA, as cross
references, along with a result or referral. The default value of FALSE indicates that such knowledge references are not
to be returned.

12.3.2.8 The referenceType component indicates, to the DSA being asked to perform the abstract-operation, what type
of knowledge was used to route the request to it. The DSA may therefore be able to detect errors in the knowledge held
by the invoker. If such an error is detected it shall be indicated by a ServiceError with the invalidReference problem.
ReferenceType is described fully in § 12.7.

 Note – If the referenceType is missing, then the value superior shall be assumed.

12.3.2.9 The info component is used to convey DMD-specific information among DSAs which are involved in the
processing of a common request. This component is of type DomainInfo, which is of unrestricted type:

 DomainInfo ::= ANY

12.3.2.10 The timeLimit component, if present, indicates the time by which the operation is to be completed.

12.3.2.11 The SecurityParameters component is specified in Recommendation X.511. Its absence is deemed equivalent
to there being an empty set of security parameters.

12.4 Chaining results

12.4.1 The ChainingResults are present in the result of each abstract-operation and provide feedback to the DSA
which invoked the abstract-operation.

 ChainingResults ::= SET {
 Info [0] DomainInfo OPTIONAL,
 crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,
 [2] SecurityParameters DEFAULT {}}

12.4.2 The various components have the meanings as defined in §§ 12.4.2.1 to 12.4.2.3.

12.4.2.1 The info component is used to convey DMD-specific information among DSAs which are involved in the
processing of a common request. This component is of type DomainInfo, which is of unrestricted type.

12.4.2.2 The crossReferences component is not present in the ChainingResults unless the returnCrossRefs
component of the corresponding request had the value TRUE. This component consists of a sequence of
CrossReference items, each of which contains a contextPrefix and an accessPoint descriptor (see § 12.8).

 CrossReference ::= SET{
 contextPrefix [0] DistinguishedName,
 accessPoint [1] AccessPoint}

 A CrossReference may be added by a DSA when it matches part of the targetObject argument of an abstract-
operation with one of its context prefixes. The administrative authority of a DSA may have a policy not to return such
knowledge, and will in this case not add an item to the sequence.

12.4.2.3 The SecurityParameters component is specified in Recommendation X.511. Its absence is deemed equivalent
to there being an empty set of security parameters.

18 Fascicle VIII.8 – Rec. X.518

12.5 Operation progress

12.5.1 An OperationProgress value describes the state of progress in the performance of an abstract-operation which
several DSAs must participate in.

 OperationProgress ::= SET {
 nameResolutionPhase [0]
 ENUMERATED {
 notStarted (1),
 proceeding (2),
 completed (3)},
 nextRDNToBeResolved [1]
 INTEGER OPTIONAL}

12.5.2 The various components have the meanings as defined in §§ 12.5.2.1 and 12.5.2.2.

12.5.2.1 The nameResolutionPhase component indicates what phase has been reached in handling the targetObject
name of an operation. Where this indicates that name resolution has notStarted, then a DSA has not hitherto been
reached with a naming context containing the initial RDN(s) of the name. If name resolution is proceeding, then the
initial part of the name has been recognized, though the DSA holding the target object has not yet been reached. The
nextRDNToBeResolved indicates how much of the name has already been recognized (§ 12.5.2.2). If name resolution is
completed, then the DSA holding the target object has been reached, and performance of the operation proper is
proceeding.

12.5.2.2 The nextRDNToBeResolved indicates to the DSA which of the RDNs in the targetObject name is the next to
be resolved. It takes the form of an integer in the range one to the number of RDNs in the name. This component is only
present if the nameResolutionPhase component has the value proceeding.

12.6 Trace information

12.6.1 A TraceInformation value carries forward a record of the DSAs which have been involved in the performance
of an operation. It is used to detect the existence of, or avoid, loops which might arise from inconsistent knowledge or
from the presence of alias loops in the DIT.

 TraceInformation ::= SEQUENCE OF TraceItem
 TraceItem ::= SET {
 dsa [0] Name,
 targetObject [1] Name OPTIONAL,
 operationProgress [2] OperationProgress }

12.6.2 Each DSA which is propagating an operation to another adds a new item to the trace information. Each such
TraceItem contains:

a) the Name of the dsa which is adding the item;
b) the targetObject Name which the DSA adding the item received on the incoming request. This parameter

is omitted if the query being chained came from a DUA (in which case its implied value is the object or
baseObject in XOperation), or if its value is the same as the (actual or implied) targetObject in the
ChainingArgument of the outgoing request;

c) the operationProgress which the DSA adding the item received on the incoming request.

12.7 Reference type

12.7.1 A ReferenceType value indicates one of the various kinds of reference defined in § 10.

 ReferenceType ::=

 ENUMERATED {
 superior (1),
 subordinate (2),
 cross (3),
 nonSpecificSubordinate (4)}

12.8 Access point

12.8.1 An AccessPoint value identifies a particular point at which access to the Directory, specifically to a DSA, can
occur. The access point has a Name, that of the DSA concerned, and a PresentationAddress, to be used in OSI
communications to that DSA.

 Fascicle VIII.8 – Rec. X.518 19

 AccessPoint ::= SET {
 ae-title [0] Name,
 address [1] PresentationAddress }

12.9 Continuation reference

12.9.1 A ContinuationReference describes how the performance of all or part of an abstract-operation can be
continued at a different DSA or DSAs. It is typically returned as a referral when the DSA involved is unable or unwilling
to propagate the request itself.

 ContinuationReference ::= SET {
 targetObject [0] Name,
 aliasedRDNs [1] INTEGER OPTIONAL,
 operationProgress [2] OperationProgress,
 rdnsResolved [3] INTEGER OPTIONAL,
 referenceType [4] ReferenceType OPTIONAL,

 -- only present in the DSP
 accessPoints [5] SET OF AccessPoint}

12.9.2 The various components have the meanings as defined in §§ 12.9.2.1 to 12.9.2.6.

12.9.2.1 The targetObject Name which is proposed to be used in continuing the operation. This might be different
from the targetObject Name received on the incoming request if, for example, an alias has been dereferenced, or the
base object in a search has been located.

12.9.2.2 The aliasedRDNs component indicates how many (if any) of the RDNs in the target object name have been
produced by dereferencing an alias. The argument is only present if an alias has been dereferenced.

12.9.2.3 The operationProgress which has been achieved, and which will govern the further performance of the
abstract-operation by the DSAs named, should the DSA or DUA receiving the ContinuationReference follow it up.

12.9.2.4 The rdnsResolved component value, (which need only be present if some of the RDNs in the name have not
been the subject of full name resolution, but have been assumed to be correct from a cross reference) indicates how many
RDNs have actually been resolved, using internal references only.

12.9.2.5 The referenceType component, which is only present in the DSA abstract service, indicates what type of
knowledge was used in generating this continuation.

12.9.2.6 The accessPoints component indicates the access points which are to be followed up to achieve this
continuation. Where Nonspecific Subordinate References are involved there may be more than one AccessPoint listed,
and each should be followed up, e.g. by multicasting.

13 Abstract-bind and abstract-unbind

 DSABind and DSAUnbind, respectively, are used by a DSA at the beginning and at the end of a period
accessing another DSA.

13.1 DSA bind

13.1.1 A DSABind abstract-bind-operation is used by a DSA to bind its chainedRead, chainedSearch, and
chainedModify ports to those of another DSA.

 DSABind ::= ABSTRACT-BIND
 TO {chainedRead,
 chainedSearch,
 chainedModify}
 DirectoryBind

13.1.2 The components of the DSABind are identical to their counterparts in the DirectoryBind (see
Recommendation X.511) with the following differences.

13.1.2.1 The Credentials of the DirectoryBindArgument allows information identifying the AE-Title of the initiating
DSA to be sent to the responding DSA. The AE-Title must be in the form of a Directory Distinguished Name.

13.1.2.2 The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the responding
DSA to be sent to the initiating DSA. The AE-Title must be in the form of Distinguished Name.

20 Fascicle VIII.8 – Rec. X.518

13.2 DSA unbind

13.2.1 A DSAUnbind operation is used to unbind the Chained Read, Chained Search and Chained Modify ports of a
pair of DSAs.

 DSAUnbind ::= ABSTRACT-UNBIND
 FROM {chainedRead,
 chainedSearch,
 chainedModify}

13.2.2 There are no arguments, results or errors.

14 Chained abstract-operations

14.1 Corresponding to each of the ports of the Directory abstract service is a port of the DSA which allows the
abstract service to be provided by cooperating DSAs. The abstract-operations in the corresponding ports are also in one-
to-one correspondence. The names of the ports and the abstract-operations have been chosen to reflect this
correspondence, with the port or abstract-operation in the DSA abstract service being formed from that of the Directory
abstract service by prefixing the word "Chained". The resulting ports and abstract-operations are as follows:

 ChainedReadPort: ChainedRead,
 ChainedCompare,
 ChainedAbandon
 ChainedSearchPort: ChainedList,
 ChainedSearch
 ChainedModifyPort: ChainedAddEntry,
 ChainedRemoveEntry,
 ChainedModifyEntry,
 ChainedModifyRDN

14.2 The arguments, results, and errors of the chained abstract-operation are, with one exception, formed
systematically from the arguments, results, and errors of the corresponding abstract-operations in the Directory abstract
service (as described in § 14.3). The one exception is the ChainedAbandon abstract-operation, which is syntactically
equivalent to its Directory abstract-service counterpart (described in § 14.4).

14.3 A ChainedX abstract-operation is used to propagate between DSAs a request which (normally) originated as a
DUA invoking an X abstract-operation at a DSA, that DSA having elected to chain it. The arguments of the abstract-
operation may optionally be signed by the invoker, and, if so requested, the performing DSA may sign the results.

14.3.1 The systematic derivation of a Chained abstract-operation ChainedX from its counterpart X is as follows:

 given:

 X ::=
 ABSTRACT-OPERATION
 ARGUMENT XArgument
 RESULT XResult
 ERRORS {..., Referral,...}

 the Chained abstract-operation is derived as:
 ChainedX ::=
 ABSTRACT-OPERATION
 ARGUMENT OPTIONALLY-SIGNED SET{
 ChainingArgument,
 [0] XArgument}
 RESULT OPTIONALLY-SIGNED SET{
 ChainingResult,
 [0] XResult}
 ERRORS {...,DsaReferral,...}

 Note – The definitive specification of the DSA abstract service in Annex A applies this derivation in full to the
Chained abstract-operations.

14.3.2 The arguments of the derived abstract-operation have the meanings as described in §§ 14.3.2.1 and 14.3.2.2.

14.3.2.1 The ChainingArgument contains that information, over and above the original DUA-supplied arguments,
which is needed in order for the performing DSA to carry out the operation. This information type is defined in § 12.3.

 Fascicle VIII.8 – Rec. X.518 21

14.3.2.2 The XArgument contains the original DUA-supplied arguments, as specified in the appropriate clause of
Recommendation X.511.

14.3.3 Should the request succeed, the result will be returned. The result parameters have the meanings as described
in §§ 14.3.3.1 and 14.3.3.2.

14.3.3.1 The ChainingResult contains the information, over and above that to be supplied to the originating DUA,
which may be needed by previous DSAs in a chain. This information type is defined in § 12.4.

14.3.3.2 The XResult contains the result which is being returned by the performer of this abstract-operation, and which
is intended to be passed back in the result to the originating DUA. This information is as specified in the appropriate
clause of Recommendation X.511.

14.3.4 Should the request fail, one of the listed errors will be returned. The set of errors which may be reported are as
described for the corresponding abstract-operation in Recommendation X.511, except that DSAReferral is returned
instead of Referral. The various errors are defined or referenced in § 15.

14.4 A ChainedAbandon abstract-operation is used by one DSA to indicate to another that it is no longer interested
in having a previously invoked chained operation performed. This may be for any of a number of reasons, of which the
following are examples:

a) the operation which led to the DSA originally chaining has itself been abandoned, or has implicitly been
aborted by the breakdown of an association;

b) the DSA has obtained the necessary information in another way, e.g. from a faster responding DSA
involved in a multicast.

 A DSA is never obliged to issue a ChainedAbandon, or indeed to actually abandon an operation if requested
to do so.

 If ChainedAbandon actually succeeds in stopping the performance of an operation, then a result will be
returned, and the subject operation will return an Abandoned abstract-error. If the ChainedAbandon does not succeed
in stopping the operation, then it itself will return an AbandonFailed error.

15 Chained abstract-errors

15.1 Introduction

15.1.1 For the most part, the same abstract-errors can be returned in the DSA abstract service which can be returned in
the Directory abstract-service. The exceptions are that the DSAReferral "error" is returned (see § 15.2), instead of
Referral, and the following service problems have the same abstract syntax but different semantics.

a) invalidReference.
b) loopDetected.

15.1.2 The precedence of the abstract-errors which may occur is as for their precedence in the Directory abstract
service, as specified in Recommendation X.511.

15.2 DSA Referral

15.2.1 The DSAReferral abstract-error is generated by a DSA when, for whatever reason, it doesn't wish to continue
performing an abstract-operation by chaining or multicasting the abstract-operation to one or more other DSAs. The
circumstances where it may return a referral are described in § 8.4.

 DSAReferral ::=
 ABSTRACT-ERROR
 PARAMETER SET{
 [0] ContinuationReference,
 contextPrefix [1] DistinguishedName OPTIONAL }

15.2.2 The various parameters have the meanings as described in §§ 15.2.2.1 and 15.2.2.2.

15.2.2.1 The ContinuationReference contains the information needed by the invoker to propagate an appropriate
further request, perhaps to another DSA. This information type is specified in § 12.9.

15.2.2.2 If the returnCrossRefs component of the ChainingArguments for this abstract-operation had the value
TRUE, and the referral is being based upon a subordinate or cross-reference, then the contextPrefix parameter may
optionally be included. The administrative authority of any DSA will decide which knowledge references, if any, can be
returned in this manner (the others, for example, may be confidential to that DSA).

22 Fascicle VIII.8 – Rec. X.518

SECTION 5 – Distributed operations procedures

16 Introduction

16.1 Scope and limits

 This paragraph specifies the procedures for distributed operation of the Directory which are performed by
DSAs. Each DSA individually performs the procedures described below: the collective action of all DSAs produces the
full set of services provided to users by the Directory.

 The description of procedures for a single DSA is based on the models in §§ 7 to 10 of this Recommendation.

 It should be noted that the model and procedures are included for expositional purposes only and are not
intended to constrain or govern the implementation of an actual DSA.

 This paragraph is divided into three sub-paragraphs: this introduction, a conceptual model for describing
directory behaviour and an introduction of both DSA-Centred and Operation-Centred models of DSA operations.

16.2 Conceptual model

 The complexity of the Directory's distributed operation gives rise to a need for conceptual modelling using
both narrative and pictorial descriptive techniques. However, neither the narrative nor graphic diagrams should be
construed as a formal description of distributed directory operation.

16.3 Individual and cooperative operation of DSAs

 The model views DSA operation from two separate perspectives, which, taken together, provide a complete,
operational picture of the Directory.

a) DSA-Centred Perspective. In this perspective the set of procedures that support the directory is described
from the viewpoint of a single DSA. This makes it possible to provide a definitive specification of each
procedure and to fully account for their interrelationships and overall control structure. § 18 describes the
DSA procedures from a DSA-centred perspective.

b) Operation-Centred Perspective. The DSA-centred view provides complete detail but makes it difficult to
understand the structure of individual operations, which may undergo processing by multiple DSAs.
Consequently § 17 adopts a primarily operation-centred view to introduce the processing phases
applicable to each.

 To support the distributed operation of the directory, each DSA must perform actions needed to realize the
intent of each operation and additional actions needed to distribute that realization across multiple DSAs. § 17 explores
the distinction between these two kinds of actions. In § 18 both kinds of actions are specified in detail.

17 Distributed directory behaviour

17.1 Cooperative fulfillment of operations

 Each DSA is equipped with procedures capable of completely fulfilling all Directory operations. In the case
that a DSA contains the entire DIB all operations are, in fact, completely carried out within that DSA. In the case that the
DIB is distributed across multiple DSAs the completion of a typical operation is fragmented, with just a portion of that
operation carried out in each of potentially many cooperating DSAs.

 In the distributed environment, the typical DSA sees each operation as a transitory event; the operation is
invoked by a DUA or some other DSA; the DSA carries out processing on the object and then directs it toward another
DSA for further processing.

 An alternate view considers the total processing experienced by an operation during its fulfillment by multiple,
cooperating DSAs. This perspective reveals the common processing phases that apply to all operations.

17.2 Phases of operation processing

 Every Directory operation may be thought of as comprising three distinct phases:
a) he Name Resolution phase – in which the name of the object on whose entry a particular operation is to be

performed is used to locate the DSA which holds the entry;
b) he Evaluation phase – in which the operation specified by a particular directory request (e.g. read) is

actually performed;

 Fascicle VIII.8 – Rec. X.518 23

c) he Results Merging phase – in which the results of a specified operation are returned to the requesting
DUA. If a chaining mode of interaction was chosen, the Results Merging phase may involve several
DSAs, each of which chained the original request or sub-request (as defined in § 17.3.1 Request
Decomposition) to another DSA during either or both of the preceding phases.

 In the case of the operations Read, Compare, List, Search, and ModifyEntry, name resolution takes place on
the object name provided in the argument of the operation. In the case of AddEntry, RemoveEntry, and ModifyRDN,
name resolution takes place on the name of the immediately superior object (derived by removing the final RDN from
the name provided in the operation argument).

 An operation on a particular entry may initially be directed at any DSA in the Directory. That DSA used its
knowledge, possibly in conjunction with other DSAs to process the operation through the three phases.

17.2.1 Name resolution phase

 Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc (or vertex)
of the DIT, beginning logically at the Root and progressing downwards in the DIT. However, because the DIT is
distributed between arbitrarily many DSAs, each DSA may only be able to perform a fraction of the name resolution
process. A given DSA performs its part of the Name Resolution process by traversing its local knowledge. This process
is described in § 18.6 and the accompanying diagrams (Figures 11/X.518 to 13/X.518). When a DSA reaches the border
of its naming context, it will know from the knowledge information contained therein, whether the resolution can be
continued by another DSA or whether the name is erroneous.

17.2.2 Evaluation phase

 When the name resolution phase has been completed, the actual operation required (e.g. read or search) is
performed.

 Operations that involve a single entry – Read, Compare, AddEntry, RemoveEntry, ModifyRDN and
ModifyEntry – can be carried out entirely within the DSA in which that entry has been located. AddEntry,
RemoveEntry and ModifyRDN may affect knowledge in more than one DSA. See § 18.7.1.

 Operations that involve multiple entries – List and Search – need to locate subordinates of the target, which
may or may not reside in the same DSA. If they do not all reside in the same DSA, operations need to be directed to the
DSAs specified in the subordinate references to complete the evaluation process.

17.2.3 Results merging phase

 The results merging phase is entered once some of the results of the evaluation phase are available.

 In those cases where the operation affected only a single entry, the result of the operation can simply be
returned to the requesting DUA. In those cases where the operation has affected multiple entries on multiple DSAs,
results need to be combined.

 The permissible responses returned to a requestor after results merging include:

a) a complete result of the operation;

b) result which is not complete because some parts of the DIT remain unexplored (applies to List and
Search only). Such a partial result may include continuation references for those parts of the DIT not
explored;

c) an error (a referral being a special case);

d) and if the requestor was a DSA, a ChainingResult.

17.3 Managing distributed operations

 Information is included in the argument of each abstract-operation which a DSA may be asked to perform
indicating the progress of each operation as it traverses various of the DSAs of the Directory. This makes it possible for
each DSA to perform the appropriate aspect of the processing required, and to record the completion of that aspect
before directing the operation outward toward further DSAs.

 Additional procedures are included in the DSA to physically distribute the operations and support other needs
arising from their distribution.

17.3.1 Request decomposition

 Request decomposition is a process performed internally by a DSA prior to communication with one or more
other DSAs. A request is decomposed into several sub-requests such that each of the latter accomplishes a part of the
original task. Request decomposition can be used, for example, in the search operation, after the base object has been

24 Fascicle VIII.8 – Rec. X.518

found. After decomposition, each of the sub-requests may then be chained or multicast to other DSAs, to continue the
task.

17.3.2 DSA as Request responder

 A DSA that receives a request can check the progress of that request using the Operation Progress parameter.
This will determine whether the operation is still in the name resolution phase or has reached the evaluation phase, and
what portion of the operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request it must either
pass the operation on to one or more DSAs which can help to fulfill the request (by chaining or multicasting) or return a
referral to another DSA or terminate the request with an error.

17.3.3 Completion of operations

 Each DSA that has initiated an operation or propagated an operation to one or more other DSAs must keep
track of that operation's existence until each of the other DSAs has returned a result or error, or the operation's maximum
time limit has expired. This requirement applies to all operations, propagation modes and processing phases. It ensures
the orderly closing down of distributed operations that have propagated out into the Directory.

17.4 Other considerations for distributed operation

17.4.1 Request validation

 On receipt of a directory operation a DSA must initially validate the operation to ensure that it can be
progressed. Circumstances such as loops within the DIT caused by inappropriate use of aliases or the use of erroneous
knowledge may cause operations to be sent to DSAs that cannot be processed.

 In the simple case these erroneous circumstances are adequately handled by name resolution procedures as
described in § 18. However, where circumstances cause operations to loop (as described in § 17.4.3) name resolution
alone is inadequate.

 The request validation actions ensures that a loop is detected before any attempt is made to progress an
operation through the erroneous data caused by the loop. The detection process is carried out by the loop detection
procedure specified in § 18.5.1.

 Where security procedures are in force request validation also verifies the identity of the requesting DSA or
DUA, and the validity of the request.

17.4.2 State and trace information

 The progression of an operation within the directory and the presence of loop conditions are determined by an
operation's "state", where state is defined to be the following:

– the name of the DSA currently processing the operation;
– the name of the targetObject as contained within the argument of the operation;
– the operationProgress as contained within the argument of the operation and as defined in § 12.5.

 In addition to the current state of an operation, a DSA also needs to know all previous states for that operation.
These are recorded in the traceInformation argument and conveyed with the operation.

 The traceInformation argument forms the basis of loop avoidance/detection strategies as specified in § 17.4.3.

17.4.3 Looping

 Within the context of a particular directory operation a loop occurs if at any time the operation returns to a
previous state (as defined above). Looping is managed using the traceInformation argument. Two strategies are defined
to handle loops. In loop detection a DSA determines whether a loop has occurred in an incoming operation and, if so
returns an error. In loop avoidance a DSA determines whether an operation, if forwarded, would yield a loop.

17.4.4 Service controls

 Some service controls need special consideration in the distributed environment in order that the operation is
processed the way that was requested.

a) chainingProhibited: A DSA consults this service control when determining the mode of propagation of
an operation. If it is set then the DSA always uses referral mode. If, however, it is not set, the DSA can
choose whether to use chaining or referral depending on its capabilities.

 Fascicle VIII.8 – Rec. X.518 25

b) timeLimit: A DSA needs to take account of this service control to ensure that the time limit is not
exceeded in that DSA. A DSA requested to perform an operation by a DUA, initially heeds the timeLimit
expressed by the DUA as the available elapsed time in seconds for completion of the operation. If
chaining is required, the timeLimit is included in the chaining argument to be passed to the next DSA(s).
In this case the same value of the limit is used for each chained request, and is the (UTC) time by which
the operation must be completed to meet the originally specified constraint. On receiving a chaining
argument with a timeLimit specified, the receiving DSA respects this limit.

c) sizeLimit: A DSA needs to take account of this service control to ensure that the list of results does not
exceed the size specified. The limit, as included in the common argument of the original request, is
conveyed unchanged as the request is chained/multicast. If request decomposition is required, the same
value is included in the argument to be passed to the next DSA: that is, the full limit is used for each sub-
request. When the results are returned the requestor DSA resolves the multiple results and applies the limit
to the total to ensure that only the requested numbers are returned. If the limit has been exceeded, this is
indicated in the reply.

d) Priority: In all modes of propagation, each DSA is responsible for ensuring that the processing of
operations is ordered so as to support this service control if present.

e) localScope: The operation is limited to a locally defined scope and cannot be propagated by any of the
modes.

f) scopeOfReferral: If the DSA returns a referral or partial result to a List or Search operation, then the
embedded ContinuationReferences shall be within the requested scope.

 All other service controls need to be respected, but their use does not require any special consideration in the
distributed environment.

17.4.5 Extensions

17.4.5.1 If a DSA encounters an extended abstract-operation in the name resolution phase of processing and determines
that the abstract-operation should be chained to one or more other DSAs, it shall include unchanged in the chained
abstract-operation any extensions present.

 Note – An Administrative Authority may determine that it is appropriate to return a ServiceError with
problem unwillingToPerform if it does not wish to propagate an extension.

17.4.5.2 If a DSA encounters an extension in the execution phase of processing, two possibilities may arise. If the
extension is not critical, the DSA shall ignore the extension. If the extension is critical, the DSA shall return a
ServiceError with problem unavailableCriticalExtension.

 A critical extension to a multiple object operation may result in both results and service errors of this variety. A
DSA merging such results and errors shall discard these service errors and employ the unavailableCriticalExtension
component of PartialOutcomeQualifier as described in § 10.1.1 of Recommendation X.511.

17.4.6 Alias Dereferencing

 Alias dereferencing is the process of creating a new target object name, by replacing the alias entry
distinguished name part of the original target object name with the Aliased Object Name attribute value from the alias
entry. The object name in the operation is not affected by alias dereferencing.

17.5 Authentication of distributed operations

 Users of the Directory together with administrative authorities that provide directory services may, at their
discretion, require that directory operations be authenticated. For any particular directory operation the nature of the
authentication process will depend upon the security policy in force.

 Two sets of authentication procedures are available which collectively enable a range of authentication
requirements to be met. One set of procedures are those provided by Bind: these facilitate authentication between two
directory application-entities for the purposes of establishing an association. The Bind procedures accommodate a range
of authentication exchanges from a simple exchange of identities to strong authentication.

 In addition to the peer entity authentication of an association as provided by Bind, additional procedures are
defined within the directory to enable individual operations to be authenticated. Two distinct sets of directory
authentication procedures are defined. One facilitates originator authentication services, which address the
authentication, by a DSA, of the initiator of the original service request. The second set facilitates results authentication
services which address the authentication, by an initiator, of any results that are returned.

26 Fascicle VIII.8 – Rec. X.518

 For originator authentication two procedures are defined, one based upon a simple exchange of identities,
termed identity based authentication, and one based upon digital signature techniques, termed signature based
authentication. The former of these procedures is rudimentary in nature since the identity exchange is based upon the
exchange of distinguished names which are transmitted in the clear.

 For authentication of results a single results authentication procedure is defined, based upon digital signature
techniques; due to the generally complex nature of results collation a simpler, identity-based procedure is not defined.

 Authentication of error responses is not supported by these procedures.

 The services described above are to be considered as augmenting those provided by the Bind service; Bind
procedures are assumed to have been effected successfully prior to authentication of directory operations.

 The procedures to be effected by a DSA in providing originator and results authentication are specified in
§ 18.9.

18 DSA behaviour

18.1 Introduction

 Corresponding to each operation invoked by a requestor (e.g. DUA or DSA) the performing DSA must behave
in accordance with well-defined procedures so that an appropriate response will be returned deterministically. This
paragraph specifies the allowed behaviour by modelling a DSA in terms of processes implementing a particular
collection of procedures. It is important to realize that a DSA need conform only to the externally visible behaviour
implied by these procedures, and not to the procedures themselves.

18.2 Overview of the DSA behaviour

 The behaviour of the distributed Directory as a whole is the sum of the behaviour of its cooperating DSAs.
Each of these DSAs can be viewed as a process, supported internally by a set of procedures.

 Figure 6/X.518 illustrates the internal view of the DSA behaviour.

 The Operation Dispatcher is the main controlling procedure in a DSA. It guides each operation through the
three phases of processing described in § 17.2.

 The procedures which support the Operation Dispatcher are: Name Resolution, Find Naming Context, Local
Name Resolution, Evaluation, Single Object Evaluation, Multiple Object Evaluation, and Result Merging. The
relationships among these procedures are shown graphically in Figure 6/X.518.

FIGURE 6/X.518

DSA Behaviour – Internal view

 Fascicle VIII.8 – Rec. X.518 27

18.2.1 The operation dispatcher

 Upon initially receiving an operation, the Operation Dispatcher validates it, checking for loop or authentication
errors. If none is found, it calls Name Resolution, which returns either a Found indication, a Reference, or an error
indication. References are handled by a referral or by a Chain or Multicast action, Found indications by calling the
Evaluation procedure, which actually performs the intended operation. Once returned, internal or external results are
collated by Results Merging, and, in the absence of errors, returned to the calling DUA or DSA.

18.2.2 Name resolution

 Name Resolution calls Find Naming Context. If the returned context is local, then Local Name resolution is
called, otherwise Name Resolution returns a reference or an error and terminates. If Local Name Resolution encounters
an alias, it is dereferenced (if permitted) and Name Resolution repeats the analysis from the beginning. Otherwise Local
Name Resolution returns a Found indication, an error or a Referral, which is passed back to the Operation Dispatcher.

18.2.3 Find naming context

 Find Naming Context attempts to match the Purported Name against Context Prefixes. If none matches, then
Find Naming Context attempts to identify a cross or superior reference. If a context prefix is matched, Find Naming
Context returns a cross reference relating downwards in the DIT, or an indication that a suitable naming context was
found locally, and sets NameResolutionPhase to "proceeding".

18.2.4 Local Name Resolution

 The Local Name Resolution procedure attempts to match RDNs in the Purported Name internally until it can
return a Found indication. If unable to match all RDNs internally, it attempts to identify first specific, then non-specific
subordinate references, and return these to Name Resolution. If an alias is encountered, and dereferencing is allowed by
the service controls, a dereferenced alias indication is returned. If dereferencing is not allowed, a Found indication is
returned if and only if all RDNs had matched at the time the alias was encountered, otherwise a nameError is returned.

18.2.5 Evaluation

 The Evaluation procedure actually executes the requested Directory operation against the target object.
Depending on the type of operation, Single Object Evaluation or Multiple Object Evaluation is invoked.

18.2.6 Single object evaluation

 Single object evaluation is invoked for Read, Compare, AddEntry, RemoveEntry, ModifyEntry, and
ModifyRDN. It is in this procedure that attributes are actually retrieved, checked, or changed.

18.2.7 Multiple object evaluation

 The Multiple Object Evaluation procedure is invoked for the Search and List operations to check filters,
retrieve results, and if necessary, dispatch sub-requests.

18.2.8 Result merging

 The Results Merging procedure collates results or errors received from other DSAs with locally retrieved
results.

18.3 Specific operations

 The operations fall into three categories of operations (in each case the operation and its Chained counterpart
are both in the same category).

a) Single-Object Operations: Read, Compare, AddEntry, ModifyEntry, ModifyRDN, RemoveEntry.
b) Multiple-Object Operations: List, Search.
c) Abandon Operation, i.e. Abandon.

 The handling of these categories are described in §§ 18.3.1 to 18.3.3 respectively. Since there is considerable
similarity between the way that a DSA behaves in performing an operation of a service-port and in performing its
counterpart chained operation of a chained service-port, there is a single description applying to both, with exceptions to
this rule being noted.

28 Fascicle VIII.8 – Rec. X.518

18.3.1 Single-object operations

 Single-object operations are those which affect a single entry, and which therefore can be carried out entirely
within the DSA which contains the entry on which the operation is to be performed. Such operations can be commonly
described by the following sequence of events:

1) Activate the Operation Dispatcher.
2) Perform Name Resolution to locate the object whose name was specified as the argument of the operation.
3) Perform the single-object evaluation procedure.
4) Service controls, such as time limit, should be checked during the course of the operation to enforce the

constraints specified by the user.
5) Return the results to the DUA or DSA which forwarded the request.

18.3.2 Multiple-object operations

 Multiple-object operations are those which affect several entries which may or may not be co-located in the
same DSA. Such operations may thus entail a cooperative effort by several DSAs to locate and operate on all the entries
affected by the requested operation. The common behaviour of such operations can be summarized as follows:

1) Activate the Operation Dispatcher.
2) Perform the Name Resolution procedures to locate the object whose name was specified as the argument

of operation.
3) Once the target object of the operation has been located, perform the multiple-object evaluation

procedures.
4) If request decomposition has taken place in one of the multiple-object evaluation procedures and sub-

requests have been chained/multicasted, the Operation Dispatcher maintains the current local results,
waits for chained responses, and activates Results Merging.

5) Service Controls such as time limit, size limit should be checked during the course of the operation to
remain within the constraints specified in the common argument.

6) Return the results or errors to the DUA or DSA which forwarded the request.

18.3.3 Abandon operation

 On receipt of an abandon operation, a DSA determines whether it can abandon the specified operation, and, if
so, abandons it and returns a result (the operation that was abandoned returns an Abandoned error). If it cannot abandon
the specified operation, it returns an AbandonFailed error.

 The following specifies the procedure specific to the Abandon operation.
1) Locate the operation whose invoke identifier is specified as the argument of the Abandon operation.
2) Optionally compose request(s) with the proper invoke-id to abandon any outstanding chained/multicast

operations to other DSAs.
3) Optionally, the abandon operation is performed locally as defined in Recommendation X.511.
4) Return result or error to the DUA or DSA which forwarded the request.

18.4 Operation dispatcher

18.4.1 Introduction

 The Operation Dispatcher utilizes the Name Resolution described in § 18.6 of this Recommendation and all the
interactions (i.e. DSA to DSA or DUA to DSA) necessary to locate target entries in a distributed directory environment.
Figure 7/X.518 shows a detailed diagram describing the Operation Dispatcher. The algorithm is summarized below.

 Fascicle VIII.8 – Rec. X.518 29

FIGURE 7/X.518

Operation Dispatcher

30 Fascicle VIII.8 – Rec. X.518

18.4.2 Implicit actions

18.4.2.1 Security

 It should be noted that although the checking of signatures is not explicitly included in this algorithm, this
action is always the first step when a signed operation, result or error arrives to the DSA.
 Note – This does not include embedded signatures.

 Should the signature be invalid, or absent in a case when it should be present, a SecurityError is returned. All
processing of the operation is terminated and the operation dispatcher goes to its idle state.

 The signing of an operation result if required is likewise an implicit last step before sending it off.

18.4.2.2 ServiceControls

 Although the ServiceControls are not explicitly mentioned, they are respected. For example, the checking
of the timeLimit of an arriving operation and the checking of sizeLimit before sending a result are regarded as
mandatory. These are discussed in § 17.4.4.

18.4.2.3 TraceInformation

 TraceInformation is always updated with the state it arrived to the DSA in, before including it in the
ChainingArguments. That is not explicitly stated in the text below.

18.4.3 Arguments

 Chaining arguments for the particular operation.

18.4.4 Results

 Chaining results for the particular operation.

18.4.5 Errors

 Any error defined in this Recommendation.

18.4.6 Algorithm
 1) Receive operation.
 If the operation originates from another DSA it will comprise the chaining arguments, including:

operationProgress, aliasDereferenced, aliasedRDNs, targetObject Name and traceInformation as
well as the parameters contained in the original operation.

 If the operation originates from a DUA it will not contain the aliasDereferenced indication: thus adopt
the value of FALSE. The argument also does not include any TraceInformation, so no loop checking
needs to be performed. Set targetObject Name to the name of the target object for the operation (see
§ 17.2). Other chaining arguments are set according to the parameters in the DAP operation. Originator is
set to the name of the user.

 2) If the operation came from a DSA, check the trace information for loops (activate Loop Detection). If a
loop is detected, return ServiceError with a problem of loopDetected and terminate the processing.

 3) Perform security checks to the operation (originating either from a DUA or a DSA). If there is a violation,
a SecurityError is returned. Otherwise, set operationProgress and aliasDereferenced according to the
operation argument or by default.

 4) Perform the Name Resolution Procedure.
 The Name Resolution Procedure will return a found indication, a remote reference, or an error indication.
 5) One of the following errors may be raised:
 ServiceError (UnableToProceed) – if a DSA determines that it was forwarded an operation pertaining to

information which it does not hold.
 ServiceError (invalidReference) – if a DSA determines that an invalid knowledge reference was used.
 NameError (noSuchObject) – if the purported name specified in the operation request is determined to

be invalid.
 NameError (aliasProblem) – if an alias has been dereferenced which names no object.
 Name Error (aliasDereferencingProblem) – if an alias was encountered in a situation where it is not

 allowed.
 On receipt of any one of these errors, the Operation Dispatcher terminates and an error is returned to the

DSA or DUA which originated the distributed operation.
 6) If Found is returned, activate the Evaluation Procedure.

 Fascicle VIII.8 – Rec. X.518 31

 7) If a remote reference is returned (whether from Name Resolution or Evaluation) it may be any one of the
following: a cross reference, a subordinate reference, a superior reference or a non-specific subordinate
reference.

 If any such reference is returned it signifies that the Name Resolution or Evaluation cannot be completed
in this DSA, but must involve the DSA identified in the reference.

 The Operation Dispatcher then checks for referral or chaining mode.
 8) If the referral mode or interaction has been selected, then, subject to scopeOfReferral, either the

information contained in the returned reference will be returned to the originating DUA or DSA as a
referral, or outOfScope ServiceError will be returned. The processing of this operation will then
terminate.

 Note – If returnCrossRefs is true and reference is not a non-specific subordinate reference or superior
reference and, in addition, the administrative authority is willing to provide knowledge, then the context prefix
in the referral can be set.

 9) If the chaining mode of interaction has been selected, the operation is forwarded to the DSA specified in
the reference. In the case of a non-specific subordinate reference, the operation must be forwarded to each
DSA whose name was attained as part of a non-specific subordinate reference. Such forwarding may be
accomplished either by multicasting or by sequentially chaining the operation.

 10) Perform Loop Avoidance for each operation to be sent. If the avoidance turns out to be not applicable or
no loop is detected, assign values to the chaining arguments, including an updated version of
traceInformation, and send the operations.

 If no operations were sent (because of looping problems), return a serviceError (with problem of
loopDetected) and terminate the processing of this operation.

 Note – If the decomposed operation was aborted because of loop avoidance in this step it is a local matter
whether to return a partial result or to abort the whole operation and return an error. If the latter is chosen then
return ServiceError (with problem loopDetected) and terminate processing.

 11) Wait for the responses then perform the Results Merging procedure.

18.5 Looping

 Within the context of a particular directory operation a loop occurs if at any time the operation returns to a
previous state (as defined in § 17.4.2). This does not mean that an operation cannot be processed multiple times by a
particular DSA. However, it does mean that the DSA will not process the same operation in the same state multiple
times.

 Looping is managed using the traceInformation argument as defined in § 12.6. Two strategies are defined to
determine loops: loop detection and loop avoidance, described in §§ 18.5.1 and 18.5.2 respectively.

18.5.1 Loop detection

 Loop detection requires that a DSA, when receiving an incoming operation, determines whether the current
state of the operation appears in the sequence of previous states recorded in the traceInformation argument for that
operation. If it does, the operation is looping and a ServiceError (with problem of loopDetected) is returned. Otherwise
the DSA continues processing the operation according to the procedures specified in § 18.4.

18.5.2 Loop avoidance

 Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA (as part of
a chaining, multicasting, or request decomposition procedure), determines whether the consequential state of the
operation (if known) appears on the sequence of previous states recorded in the trace-information argument for the
original incoming operation. The consequential state is the value of TraceItem which will be added to
TraceInformation by the receiving DSA.

 In the event that the original incoming operation was to a service-port (rather than a chained-service-port) there
will be no trace information and the loop avoidance procedure will not be relevant.

 If the consequential state of the operation is known and does appear within the traceInformation, the
operation, if invoked, would cause a loop. Under this circumstance the appropriate response to the original operation is a
ServiceError (with problem of loopDetected).

18.6 Name resolution procedure

 This paragraph describes in detail the Name Resolution procedure, its input and output parameters, and its
possible error conditions. Figure 7/X.518 shows the overall procedure in the form of a diagram. The Name Resolution
procedure calls two component procedures:

32 Fascicle VIII.8 – Rec. X.518

 1) Find Naming Context (Figure 8/X.518).

FIGURE 8/X.518

Find Naming Context

 Fascicle VIII.8 – Rec. X.518 33

 2) Local Name Resolution (Figure 9/X.518).

FIGURE 9/X.518

Local Name Resolution

34 Fascicle VIII.8 – Rec. X.518

 The Name Resolution procedure conveys back to the Operation Dispatcher the results of the above mentioned
component procedures, except in the following two cases. The first one is when the Find Naming Context procedure
identifies a suitable context which has to be further examined, and returns the local naming context. The second case is
when the Local Name Resolution procedure indicates that it has dereferenced an alias. In the former case, the Name
Resolution procedure calls the Local Name Resolution procedure. In the latter case, the Name Resolution procedure is
reactivated with the new target object name.

18.6.1 Arguments

 The procedure makes use of the following arguments:
 – the target object name (the purported name);
 – operation progress;
 – the value of the dontDereferenceAliases service control;
 – the value of the aliasedRDNs parameter;
 – the value of the aliasDereferenced parameter.

18.6.2 Results

 There are two cases of successful outcome.

 The first of these returns:

 – a reference;

 – operation progress (updated appropriately);

 – aliasDereferenced indication and, optionally, aliasedRDNs.

 The second of these returns:

 – an indication that the naming context was found (together with the local pointer to the entry);

 – operation progress (updated appropriately);

 – aliasDereferenced indication and, optionally, aliasedRDNs.

18.6.3 Errors

 One of the following errors may be returned:

 – ServiceError (unableToProceed);

 – ServiceError (invalidReference);

 – NameError (aliasProblem, noSuchObject or aliasDereferencingProblem).

18.6.4 Procedure

 1) Activate the Find Naming Context procedure.

 2) Wait for response from Find Naming Context procedure.

 3) Receive returned results or error, i.e. Local Naming Context Found, Remote Reference, Unable to Proceed
Error, Name Error, or invalidReference.

 4) Perform functions based on returned results or error.

 a) If the local naming context has been found, activate the Local Name Resolution procedure. This
procedure may return an Internal Reference Found, a Remote Reference, an Alias Dereference, or a
NameError. Each of these causes the Name Resolution to be terminated with the outcome reported,
except that if an alias has been dereferenced, the procedure is restarted at step 1).

 b) Any other outcome is passed back to the Operation Dispatcher.

18.6.5 Find naming context procedure

18.6.5.1 Introduction

 Figure 8/X.518 shows this procedure in the form of a diagram. Below is a textual description. In this it is
assumed that the current value of Operation Progress is always returned upon exit of the procedure.

 Fascicle VIII.8 – Rec. X.518 35

18.6.5.2 Arguments

 The procedure makes use of the following arguments:

 – the target object name (the purported name);

 – operation progress.

18.6.5.3 Results

 There are two cases of successful outcome.

 The first of these returns:

 – a reference;

 – operation progress (updated appropriately).

 The second of these returns:

 – an indication that a suitable naming context was found locally;

 – operation progress (updated appropriately).

18.6.5.4 Errors

 One of the following errors may be returned:

 – ServiceError (unableToProceed);

 – ServiceError (invalidReference).

18.6.5.5 Procedure

 1) If nameResolutionPhase is set to completed on entry, attempt to match the purported name against the
context prefixes of the superior naming contexts of all the locally held naming contexts. If a match is
found, return all the appropriate locally held naming contexts. If no match is found, return an
invalidReference ServiceError.

 2) If nameResolutionPhase is not set to completed, attempt to match context prefixes against a sequence of
one or more RDNs in the initial portion of the purported name. For a match to be found, all RDNs in a
context prefix must be matched. The context prefixes used are those of Naming Contexts for which this
DSA has administrative authority. In case of multiple matches the one with the maximum number of
matched RDNs is chosen.

 If a match is found, execute (3).

 If a match is not found, execute (5).

 3) If nameResolutionPhase is notStarted, execute (4). If the number of RDNs in the initial portion of the
purported name, matched as described in (2) above, is greater or equal to the nextRDNToBeResolved
component of OperationProgress, then execute (4), otherwise execute (9).

 4) The nextRDNToBeResolved is set to the number of matched RDNs plus 1 and the
nameResolutionPhase is set to Proceeding. The context is returned and this procedure terminated.

 As a performance enhancement, the DSA may optionally match the purported name against the cross
references held by the DSA. If more RDNs are matched against a cross reference than against the locally
held context prefixes, then execute step (7).

 Note – The Name Resolution procedure will in case of this outcome call the Local Name Resolution.

 5) If no match was found, the value of the nameResolutionPhase is checked. If the nameResolutionPhase
is notStarted, execute (6).

 If the nameResolutionPhase is proceeding or completed, then execute (9).

 6) Using Cross Reference context prefixes, attempt to match against a sequence of one or more RDNs in the
initial portion of the purported name. In case of multiple matches, the one with the maximum number of
matched RDNs is chosen.

 7) If a match was found to a cross reference, set the nextRDNToBeResolved to the number of RDNs in the
chosen cross reference. The cross reference is returned and this procedure is terminated.

36 Fascicle VIII.8 – Rec. X.518

 8) If no match was found to a cross reference, determine if the DSA is a first level DSA. If not, it will have a
superior reference. Return this and terminate the procedure.

 If the DSA is a first level DSA, set nextRDNToBeResolved to one, and nameResolutionPhase to
proceeding. Return the root naming context and terminate the procedure.

 9) Check the value of the referenceType component of the ChainingArgument. If a non-specific
subordinate reference was used, or the request came from a DUA, execute (10); otherwise, return
ServiceError with invalidReference problem and terminate the procedure.

 10) Compare the initial portion of the purported name to the context prefixes (minus their last RDN) of the
locally held naming contexts. This effectively is a comparison to some of the naming contexts of the
immediate superior to this DSA.

 If there is no match, return ServiceError with invalidReference problem and terminate the procedure.

 If a match is found, and the number of RDNs matched is less than in nextRDNToBeResolved – 1, return
ServiceError with invalidReference problem; otherwise, return ServiceError unableToProceed
problem. Terminate the procedure.

18.6.6 Local Name Resolution

18.6.6.1 Introduction

 The Local Name Resolution matches RDNs in the purported name against internal knowledge references. It
returns Found, Remote Reference, Alias Dereferenced, or Error indication.

 Figure 9/X.518 shows this procedure in the form of a diagram. Below is a textual description.

18.6.6.2 Arguments

 The procedure makes use of the following arguments:

 – internal reference to naming context (with pointer to the entry whose name is the same as the context
prefix);

 – the target object name (the purported name);

 – operation progress;

 – the value of the dontDereferenceAliases service control;

 – the value of the aliasedRDNs parameter;

 – the value of the aliasDereferenced parameter.

18.6.6.3 Results

 There are three cases of successful outcome.

 The first of these returns:

 – a reference;

 – operation progress (updated appropriately).

 The second of these returns:

 – an indication that the entry was found locally;

 – operation progress (updated appropriately).

 The third of these returns:

 – an indication that an alias was dereferenced;

 – operation progress (set back to "not started").

18.6.6.4 Errors

 One of the following errors may be returned:

 – name error.

 Fascicle VIII.8 – Rec. X.518 37

18.6.6.5 Procedure

 The naming context returned by FindNaming Context will point to the entry of the root of the subtree. In the
case of the root context, the entry is only a null entry.

 1) If the internal reference is for an alias entry, execute step (7), otherwise step (2).

 2) If all the RDNs in the purported name have been matched, then the target entry has been found. Set
nameResolutionPhase to completed. An internal pointer is returned and the procedure terminated.

 Otherwise step (3) should be executed.

 Note – The matching could be attained with the context prefix on its own, or with the context prefix plus
successive RDNs contained in internal references in the knowledge tree.

 3) If an internal reference entry is found subordinate to the current entry in the knowledge tree which
matches the next RDN in the purported name, then increment the nextRDNToBeResolved, set current
entry to subordinate entry, and execute step (1) of this procedure again.

 4) If the current entry has a subordinate reference whose RDN matches the next one in the purported name,
return it and terminate the procedure.

 5) If there are any non-specific subordinate references, subordinate to the current entry in the knowledge
tree, return them as references and terminate the procedure.

 6) If an internal reference, subordinate reference, or non-specific subordinate reference is not found, then
check the number of RDNs in the purported name that have been matched. If more RDNs have been
matched than in the aliasedRDNs component of ChainingArgument, then return NameError with
noSuchObject problem. If less RDNs have been matched, then return NameError with aliasProblem.

 7) If the number of RDNs in the purported name that have been matched is less than or equal to the
aliasedRDNs component of ChainingArgument (if any), then the previous alias that was dereferenced
(if any) points to another alias. If so, return NameError with aliasDereferencingProblem.

 8) If the aliasedRDNs component is missing, or if the number of RDNs matched is greater than
aliasedRDNs component of ChainingArgument, then check the dontDereferenceAlias service control.
If aliases can be dereferenced, then execute step (9), otherwise step (10).

 9) Dereference the alias. Set nameResolutionPhase of OperationProgress to notStarted. Set
aliasDereferenced component of ChainingArgument to TRUE, and aliasedRDNs to the number of
RDNs in the aliasedObjectName attribute of the alias entry. Set targetObject to the new name.
Terminate the procedure. (The process of Name Resolution will be restarted.)

 10) If all the RDNs in the purported name have been matched, execute step (2). Otherwise, return NameError
with aliasDereferencingProblem.

18.7 Object evaluation procedures

 The object evaluation procedures specified comprise two categories of procedures:

 a) single-object evaluation procedure;

 b) multiple-object evaluation procedures.

 Figure 10/X.518 shows the object evaluation procedure.

38 Fascicle VIII.8 – Rec. X.518

FIGURE 10/X.518

Evaluation and result merging

18.7.1 Single-object evaluation procedures

 Single-object evaluation procedures, which are common to the class of operations concerned with accessing a
single object are carried out directly, with the result or error being returned to the invoker.

 These operations comprise Read, Compare, AddEntry, RemoveEntry, ModifyEntry and ModifyRDN, and
their Chained counterparts.

 The action required on the entry is as described in the appropriate paragraph of Recommendation X.511.

 AddEntry, RemoveEntry, and ModifyRDN operations affect knowledge. If the immediate superior of the
entry is in a different DSA, correct external knowledge references shall be maintained. How this is done is outside the
scope of this Recommendation.

 How the DSA is chosen to contain the entry created by AddEntry is outside the scope of this
Recommendation.

 If the immediate superior of an entry to be created by AddEntry or modified by ModifyRDN has non-specific
subordinate references, procedures outside the scope of this Recommendation shall be followed to ensure that no two
entries have the same distinguished name.

 Requests which cannot be satisfied under these conditions shall fail with an UpdateError with problem
affectsMultipleDSAs.

18.7.2 Multiple-object evaluation procedures

 Multiple-object evaluation procedures, which are common to the class of operations concerned with accessing
multiple objects, are specified in the following subparagraphs.

 These operations comprise List and Search, and their Chained counterparts.

 Fascicle VIII.8 – Rec. X.518 39

18.7.2.1 List

 This paragraph specifies the evaluation procedure specific to List and ChainedList. (In what follows the term
"List" applies to both.)

18.7.2.1.1 List procedure (I)

 This procedure applies where the List request has nameResolutionPhase component of OperationProgress
set to notStarted or proceeding and where the DSA, after performing Name Resolution The base object will be
denoted by "e".

 1) Get each locally held immediate subordinate of e to form a local set of results. Set aliasEntry and
fromEntry in ListResult as appropriate.

 2) Get the set of non-specific subordinate references and subordinate references to DSAs which hold
immediate subordinates of "e".

 3) Pass the subrequest with base object = e, and OperationProgress set to completed to the Operation
Dispatcher which subsequently forwards it to each DSA which holds immediate subordinates of e.

 Note – If the DSA holds subordinate references with an indication of whether or not the subordinate entry are
aliases, and the dontUseCopy is FALSE, then this step can be omitted for those entries. The information about the
subordinates is available directly.

18.7.2.1.2 List Procedure (II)

 This procedure applies to a List request with the nameResolutionPhase component of OperationProgress set
to completed.

 The base object will be denoted by "e".

 1) Get each locally held immediate subordinate of e to form a local set of results. Set aliasEntry and
fromEntry in ListResult as appropriate.

 2) Pass the results to the Operation Dispatcher which forwards them to the requesting DUA or DSA.

18.7.2.2 Search

 This paragraph specifies the evaluation procedure specific to Search and ChainedSearch. (In what follows the
term "Search" applies to both.)

 Note that two circumstances exist, requiring two separate procedures. The first procedure (18.7.2.2.1) applies
when the DSA executing the Search contains the targetObject as a local entry. The second procedure (18.7.2.2.2)
applies when the DSA executing the Search does not hold the targetObject, but only subordinates of the targetObject.

18.7.2.2.1 Search procedure (I)

 This procedure applies to a Search request with the nameResolutionPhase component of OperationProgress
set to notStarted or proceeding and where the DSA, after performing Name Resolution, determines that it holds the
target object.

 The base object will be denoted by "e".

 1) If the subset argument is baseObject or wholeSubtree, then apply the filter argument specified in the
Search to the entry e, to form a set of local results. Return the results for Results Merging. If the subset
argument is baseObject, terminate the procedure, otherwise continue at (2).

 2) If the subset argument is oneLevel or wholeSubtree form a set E from the locally-held immediate
subordinates of e, except that:

 If aliases are to be dereferenced, i.e. the searchAliases parameter is TRUE, then any alias entries that are
found are handled in paragraph 5) below and do not contribute to these results.

 Apply the filter arguments to E to give a filtered subset E' gE; return this set E' of local results for Results
Merging.

 3) Other subordinates of e may reside in other DSAs, and if so will be referenced as subordinate or non-
specific subordinate references. For each DSA which is so referenced, prepare a new Search with
targetObject = e, and with nameResolutionPhase of OperationProgress set to completed. Return each
Search subrequest to the Operation Dispatcher for forwarding. If any error result is returned from a
subrequest, it is ignored, as if no subrequest had been sent.

40 Fascicle VIII.8 – Rec. X.518

 4) If the subset argument is oneLevel, the Search is now complete so terminate the procedure.

 If the subset argument is wholeSubtree, then:

 if the set E from paragraph (2) is empty, then the whole subtree held in this DSA has been searched, so
terminate the procedure;

 otherwise continue processing as follows:

 let each entry that was in set E be denoted by e. Repeat the Search procedure from paragraph (2), for each
entry e.

 5) If aliases are to be dereferenced, any alias entries found in step (2) are placed in set D. For each entry d in
D, dereference the alias, and formulate a new Search with nameResolutionPhase set to notStarted, and
targetObject created from the aliasedObjectName attribute and the old targetObject name.

 If the subset argument was oneLevel, set it to baseObject in the new subrequest, otherwise set it to
wholeSubtree.

 If any error result is returned from the subrequest, it is ignored, as if no subrequest had been made.

18.7.2.2.2 Search Procedure (II)

 This procedure applies to a Search request with the nameResolutionPhase component of OperationProgress
set to completed.

 The target object will be denoted by "e".

 For each locally held immediate subordinate e' of e, formulate a new request with targetObject = e'. If the
subset argument was oneLevel, set it to baseObject, otherwise leave it as wholeSubtree. Now carry out the
procedure defined in steps (1) to (5) in § 18.7.2.2.1. If there are no such subordinates, return unableToProceed
ServiceError.

18.8 Result merging procedure

 This procedure is called when external results and/or errors are present. There might also be one internal result.
All results and errors are assumed to be held within the DSA until the procedure completes.

 The external information could be due to chaining, multicasting or request decomposition.

 In the case of chaining there will be a single result or error. In the case of multicasting there might be either no
result, one result or several identical results. In addition, there may be some errors. If there is more than one result, all but
one of them are arbitrarily discarded. A result is always returned in preference to an error. If there are no results, an error
is returned, with the following exceptions:

 i) If invalidReference was returned, the reference is marked as such, and the DSA may either use an
appropriate alternate external reference to continue the request, or return ditError to the requestor. (The
handling of invalid external references is beyond the scope of this Recommendation.)

 ii) In the case of multicasting, unableToProceed errors should be ignored, unless all responses are of this
type in which case NameError noSuchObject should be returned to the responder. If at least one result is
returned, then all errors can be ignored.

 iii) In the case of referrals, these need not be treated as errors, and may be acted upon.

 If the merging is required due to a request decomposition, the merging amounts to forming the union of
the results.

 In the case of decomposition, when there are both results and errors to be merged, an incomplete result is
returned to the requestor.

 A DSA might at this stage choose to extract referrals from the incoming results and errors that should be
merged. It might then decide to explore all or some of these further, in which case operations are chained. The old result
will have to be saved and later merged with the results or errors produced by the chaining.

 The handling of signatures which may be present with the results being returned is specified in § 18.9.2 below.

 Fascicle VIII.8 – Rec. X.518 41

18.9 Procedures for distributed authentication

 This paragraph specifies the procedures necessary to support the directory distributed authentication services.
These services, and hence the procedures, are categorized as:

 – originator authentication, which is supported in either an unprotected (simple identity based) or secure
(based upon digital signatures) form; and

 – results authentication which is similarly protected (again based upon digital signatures).

18.9.1 Originator authentication

18.9.1.1 Identity based authentication

 The identity based authentication service enables DSAs to authenticate the original requestor of information for
the purpose of effecting local access controls. DSAs wishing to exploit this service must adopt the following procedure:

 – for a DSA requiring to authenticate a DAP request, the DSA acquires the distinguished name of the
requestor through the Bind procedures at the time a DUA association (DUA or DSA) is established.
Successful conclusion of these procedures does not in any way prejudice the level of authentication that
may subsequently be required for processing operations using that association;

 – the DSA with which the DUA association exists must insert the requestor's distinguished name in the
initiator field of the ChainingArgument for all subsequent chained operations to other DSAs;

 – a DSA, on receiving a chained-operation, may satisfy that operation, or not, depending upon the
determination of access rights (a locally defined mechanism). If the outcome is not satisfactory a
SecurityError may be returned with SecurityProblem set to insufficientAccessRights.

18.9.1.2 Signature-based originator authentication

 This signature-based originator authentication service enables a DSA to authenticate (in a secure manner) the
originator of a particular service request. The procedures to be effected by a DSA in realizing this service are described
in this paragraph.

 The signature-based authentication service is invoked by a DUA using the SIGNED variant of an optionally-
signed service request.

 A DSA, on receiving a signed request from another DSA, shall remove that DSA's signature prior to
processing the operation. Assuming the result of any signature verification proves to be satisfactory, the DSA will
continue to progress the operation. If, during processing, the DSA requires to perform chaining, multicasting or request
decomposition, the argument set for each associated chained operation shall be constructed as follows:

 – the DSA forms an argument set which may be optionally signed; the argument set comprises the incoming
signed argument set together with a modified ChainingArgument.

 In the event that the DSA is able to contribute information to the response, originator authentication, based
upon the signed service request, may be used for the determination of access rights to that information.

 If a DSA receives an unsigned service request for information which will only be released subject to originator
authentication, a SecurityError will be returned with SecurityProblem set to protectionRequired.

18.9.2 Results authentication

 This service is provided to enable requestors of directory operations (either DUA or DSAs) to verify (in a
secure manner using digital signature techniques) the source of results. The results authentication service may be
requested irrespective of whether originator authentication is to be used.

 The results authentication service is initiated using the signed value of the protectionRequest component as
contained within the argument set of directory operations; a DSA receiving an operation with this option selected may
then optionally sign any subsequent results. The signed option in the protectionRequest serves as an indication, to the
DSA, of the requestor's preference; the DSA may, or may not, actually sign any subsequent results.

 In the case where a DSA performs chaining, multicasting or request decomposition of such a request, the DSA
has a number of options in terms of the form of results sent back to the requestor, namely:

 a) return a composite response (signed or unsigned) to the requestor;

 b) return a set of two or more uncollated partial responses (signed or unsigned) to the requestor; within this
set zero or more members may be signed and zero or one unsigned. In the event that an unsigned partial
result is present, this member may in fact be a collation of one or more unsigned partial responses which
have been received from other DSAs, contributed by this DSA, or both.

42 Fascicle VIII.8 – Rec. X.518

ANNEX A

(to Recommendation X.518)

ASN.1 for distributed operations

 This Annex is part of the Recommendation.

 This Annex includes all of the ASN.1 type, value and macro definitions contained in this Recommendation in
the form of the ASN.1 module Distributed Operations.

 Fascicle VIII.8 – Rec. X.518 43

44 Fascicle VIII.8 – Rec. X.518

 Fascicle VIII.8 – Rec. X.518 45

46 Fascicle VIII.8 – Rec. X.518

ANNEX B

(to Recommendation X.518)

Modelling of knowledge

 This Annex is not part of the Recommendation.

B.1 Example of knowledge modelling

 The following example illustrates the knowledge information that would have to be maintained by the DSAs
shown in Figure 5/X.518 (9). Figure 5/X.518 depicts a hypothetical DIT logically partitioned into five Naming Contexts
(A, B, C, D and E) and physically distributed over three DSAs (DSA1, DSA2, DSA3). In the example, DSA1 holds
context C, DSA2 holds contexts A, B, and E, and DSA3 holds context D.

 The following abbreviations have been used in Figures B-1/X.518 to B-3/X.518.

 SUPR: superior reference

 SUBR: subordinate reference

 INTR: internal reference

 NSSR: non-specific subordinate reference

 CROSSR: cross reference

 DSAn: Distinguished Name of DSAn

 PS: Presentation Address

 CP: context prefix

 RDN: Relative Distinguished name

 DSA: Distinguished name of a DSA

 PTR: Pointer

 AON: Aliased Object Name.

 Note – The following figures are intended only to provide a pictorial example of the concepts defined in this
paragraph. How knowledge information is actually stored and managed in a particular DSA implementation is a local
matter and is outside the scope of this Recommendation.

 Fascicle VIII.8 – Rec. X.518 47

FIGURE B-1/X.518

Knowledge information for DSA1

 Figure B-1/X.518 illustrates the knowledge information that must be held by DSA1. This must include the
following context prefixes and set of references:

 Context Prefixes: {C=WW, O=ABC}, context C.

 Cross References: { }

 Superior References: {DSA2, presentation address of DSA2}

 Internal References
 for Context C: {C=WW, O=ABC},
 {OU=G}, {OU=H}
 {OU=G, CN=1},
 {OU=G, CN=m},
 {OU=G, CN=n}.

 Subordinate References: { }

 Non-specific subordinate
 References: {DSA2, presentation address of DSA2}.

48 Fascicle VIII.8 – Rec. X.518

FIGURE B-2/X.518

Knowledge information for DSA1

 Figure B-2/X.518 illustrates the knowledge information that must be held by DSA2. This must include the
following context prefixes and set of references:

 Context Prefixes: {C=WW}, context A
 {C=VV}, context B
 {C=WW}, O=ABC, OU=I}, context E.

 Cross References: { }

 Superior References: { }

 Internal References
 for Context A: {C=WW}

 Internal References
 for Context B: {C=VV}

 Internal References
 for Context E: {C=WW, O=ABC, OU=I},
 {CN=o},
 {CN=p},
 {CN=q}.

 Subordinate References
 for Context A: {C=WW, O=ABC}

 Subordinate References
 for Context B: {C=VV, O=DEF}

 Non-specific subordinate
 References: { }

 Fascicle VIII.8 – Rec. X.518 49

FIGURE B-3/X.518

Knowledge information for DSA3

 Figure B-3/X.518 illustrates the knowledge information that must be held by DSA3. This must include the
following context prefixes and set of references:

 Context Prefixes: {C=VV, O=DEF}, context D

 Cross References: {{C=WW, O=ABC, OU=H}, DSA1, presentation address of DSA1} (not shown
 in the figure above)

 Superior References: {DSA2, presentation address of DSA2}

 Internal References
 for Context D: {DSA1, presentation address of DSA1}
 {C=VV, O=DEF},
 {OU=J},
 {OU=K} alias for {C=WW, O=ABC, OU=I, CN=o}
 (alias information is not part of the knowledge)

 Subordinate References: { }

 Non-specific subordinate
 References: { }

B.2 Example of distributed name resolution

 The following is an example of how Distributed Name Resolution is used to process different directory
requests. The example is based on the hypothetical DIT shown in Figure 5/X.518 (9) and the corresponding DSA
configuration(s) shown in Figures B-1/X.518 to B-3/X.518 (Annex B).

 Assuming a chaining mode of propagating, the following requests addressed to DSA1 would be processed as
follows:

 1) A request with distinguished name {C=WW, O=ABC, OU=G, CN=1}
 – Will match context prefix {C=WW, O=ABC} of context C for which DSA1 has administrative

authority. Therefore, name resolution will begin in DSA1 with context C.
 – Name resolution will proceed downwards in context C successfully matching each remaining RDN,

until CN=1 is located.

 2) A request with distinguished name {C=WW, O=JPR}
 – Will not match any context prefix held by DSA1, therefore DSA1 will use its superior reference to

forward the request to its superior DSA, DSA2.
 – In DSA2, the request will match context prefix {C=WW} and name resolution will begin in DSA2

with context A.
 – Name resolution will not find a subordinate of C=WW to match RDN O=JPR, therefore the request

will fail and the name will be determined to have been invalid (i.e. reference a non-existent object).

50 Fascicle VIII.8 – Rec. X.518

 3) A request with distinguished name {C=VV, O=DEF, OU=K}
 – DSA1 will therefore forward the request to its superior DSA, DSA2.
 – The request will match context prefix {C=VV} of context B held by DSA2. Therefore, name

resolution will begin in DSA2 with context B.
 – As name resolution attempts to match O=DEF, it will find a subordinate reference indicating that

{C=VV, O=DEF} is the start of a new context held in DSA3.
 – Name resolution will continue in DSA3 until {C=VV, O=DEF, CN=K} is located.
 – Assuming that aliases are to be dereferenced, a new name will be constructed using the aliased name

contained in the entry {C=VV, O=DEF, CN=K}. The resulting new name will be: {C=WW,
O=ABC, OU=I, CN=o}.

 – DSA3 will resume processing of the request using the new name obtained by dereferencing.

ANNEX C
(to Recommendation X.518)

Distributed use of authentication

 This Annex is not part of the Recommendation.

C.1 Summary

 The security model is defined in § 10 of Recommendation X.501. The following is a summary of the main
points of the model.
 a) Simple Authentication of the operation initiator is not supported in the DSP.
 b) Strong Authentication, by the signing of the request and of the result, is supported in the DSP.
 c) Encryption of the request, or of the result, is not supported in the DSP.
 d) Authentication of errors, including referrals, is not supported in the DSP.

 This Annex describes how b) above is realized in the distributed Directory. It makes use of terminology and
notation defined in Recommendation X.509.

C.2 Simple authentication

 The DUA will be authenticated as part of the Bind Operation of the DAP. Thereafter, only the name of the
DUA will be carried in the DSP, in the initiator field of the Chaining Argument.

C.3 Distributed authentication model

FIGURE C-1/X.518

Distributed authentication model

 Fascicle VIII.8 – Rec. X.518 51

 Figure C-1/X.518 illustrates the model to be used to specify the distributed authentication procedures. The
model identifies the sequence of information flows for the general case of a list or search operation. The operation is
considered as originating from DUA "a" citing a target object which resides in DSA "c"; in performing the operation,
DSAs "b", "c", "d" and "e" are to be involved.

 DUA "a" initially contacts any DSA (DSA "b") which does not hold the target object, but which is able to
navigate, via chaining, to the DSA (DSA "c") holding the target object. If all the DSAs were operating in referral mode,
then the model would be significantly simplified, and each DUA/DSA exchange would equate, in authentication terms,
to the interaction between DUA "a" and DSA "b".

C.4 DUA to DSA

 Originator authentication is realized as a consequence of exchange (1). In Figure C-1/X.518 the authentication
procedure is as follows:

 Let
 OA = the Operation Argument i.e. Search, Read, Compare etc. Argument as defined in Part 3.

 and
 a(OA) = the Operation Argument signed by DUA "a".

 Authentication will be determined by verification of the signature.

C.5 Transference from the DAP to the DSP

 This procedure is effected by DSA "b" in Figure C-1/X.518 and represents the transference of the signed
identity of the initiator from the DAP to the DSP.

 DSA "b" formulates the appropriate Chaining Argument as described in § 12.3 of this Recommendation and
combines it with the Operation Argument from the DAP thus forming a Chained Operation, i.e. Chained Read, Search,
List etc. of the DSP. The Chained Operation so formed will be signed prior to passing it to other DSAs (DSA "c" in
Figure C-1/X.518). The data structure can be represented as:

 b{ChA,a{OA}} = the Chained Operation signed by
 DSA b

 where

 ChA = Chaining Argument.

 Authentication information carried in the DSP between two DSAs [labelled exchange (2) in Figure C-1/X.518]
therefore comprises two parts:

 – the Operation Argument, signed by the initiator, which allows authentication of the initiator;

 – the Chained Operation, signed by the sending DSA, which allows authentication of the sending DSA.

C.6 Chaining through intermediate DSAs

 This procedure would be effected by DSA "c" in the model depicted in Figure C-1/X.518. DSA "c" will
discard the signature provided by the sending DSA (DSA "b" in Figure C-1/X.518), and will modify the Chaining
Argument, as described in § 12.3 of this Recommendation. DSA "c" shall then combine the modified Chaining
Argument with the signed Operation Argument, and sign the result to create a modified signed Chained Operation. This
can be represented by:

 c{ChA ', a{OA}} = the Chained Operation signed by DSA "c"

 where

 ChA ' = modified Chaining Argument.

upon the nature of the operation, and upon the type of knowledge held, DSA "c" may perform request decomposition
prior to chaining or multicasting any resultant operation(s). This has been represented in Figure C-1/X.518 by DSA "c"
sending operations to DSA "d" and DSA "e"; in each case the authentication procedure is identical.

52 Fascicle VIII.8 – Rec. X.518

C.7 Results authentication

 The results authentication service is requested by an initiator of a directory operation using the signed option
within the protectionRequest SecurityParameter. In providing a response to such a request a DSA may optionally
decide whether or not to sign any or all of the results; the results authentication service does not provide for the
authentication of error responses.

 Within the context of a particular DSA processing results from an arbitrary number of DSAs (each of which
are associated with a particular service request) the following distinct cases are possible:

 – the DSA provides a complete set of results for an operation without the need to perform any collating
function (represented by DSA "d" and DSA "e" in Figure C-1/X.518);

 – the DSA collates local results (sourced by this DSA) with the results from one or more other DSAs
(represented by DSA "c" in Figure C-1/X.518);

 – the DSA chains a result from a DSA to either another DSA or a DUA and does not contribute to the result
set as it does so (represented by DSA "b" in Figure C-1/X.518).

C.7.1 DSA results – no collation

 This paragraph addresses the role of a DSA in being the sole source of results to a particular operation request,
i.e. the DSA has no collation function to perform. The paragraph considers the case for both the DSP and the DAP.

C.7.1.1 DSP

 The DSA can choose to perform either of the following procedures:

 – return the results unsigned, this can be represented by:

 ChR,OR = Chained Operation Result (unsigned)

 where

 ChR = Chaining Results

 OR = Operation Result;

 – sign only the Operation Result, this can be represented by:

 ChR, d(OR) = Operation Result signed by DSA "d";

 – sign only the Chained Operation Result, which can be represented as:

 d (ChR, OR) = Chained Operation Result signed by DSA "d"

 – sign both the Operation Result and the Chained Operation Result, which can be represented by:

 d{ChR, D{OR}} = Operation Result and Chained Operation Result signed by DSA "d".

 Note – For the case where the Operation Result is signed, the signed result will be carried back to the initiator;
for the case where the Chained Operation Result has been signed, the receiving DSA will have to discard the signature in
order to modify the Chaining Results argument prior to forwarding the Chained Operation Result.

C.7.1.2 DAP

 This is fully described in Recommendation X.511, a summary is reproduced here for completeness.

 The DSA can choose to either return the results unsigned, which can be represented by:

 OR = Operation Result

 or, signed, which can be represented by:

 d{OR} = Operation Result signed by DSA "d".

C.7.2 DSA results – collation included

 This paragraph addresses the role of a DSA in returning the result of particular service requests where collation
and integration of results from other DSAs is a necessary prerequisite. The paragraph considers the case for both the DSP
and the DAP.

 Fascicle VIII.8 – Rec. X.518 53

C.7.2.1 DSP

 Recognizing that zero or more results received from other DSAs may be signed, this procedure enables a DSA
to collate and integrate the results and sign zero or more constituent parts of the composite result and optionally, sign the
composite result as a whole.

C.7.2.1.1 Production of the chaining results argument

 This procedure requires that a DSA (represented by DSA "c" in Figure C-1/X.518) remove all of the Chained
Operation Result signatures from the results received from external DSAs (DSA "d" and DSA "e" in Figure C-1/X.518).
DSA "c" then possesses a set of unsigned Chaining results, a set of signed Operation Results, and a set of unsigned
Operation Results.

 All the Chaining Results are manipulated as described in § 12.4 of this Recommendation to create a single
modified Chaining Result, denoted by:

 i) ChR ' = modified Chaining Results.

C.7.2.1.2 Unsigned locally derived result

 If the DSA does not wish to sign the locally generated results, the set of unsigned Operation Results are
merged with the local result to form a modified set of Operation Results, denoted by:

 OR ' = Merged Operation Result.

 The complete set of Operation Results is then the union of the set of externally signed Operation Results
denoted by:

 d{OR}, e{OR} ...

 and the Merged Operation Result, collectively denoted by:

 (ii) OR ', d{OR}, e{OR} ... = Operation Result.

C.7.2.1.3 Signed locally derived result

 If the DSA does wish to sign the locally generated results, then the externally generated set of unsigned
Operation Results are first merged together. The complete set of Operation Results is then the union of the locally signed
set of Operation Results denoted by C{OR}, the merged set of externally unsigned Operation Results denoted by, OR",
and the set of externally signed Operation Results denoted by:

 d{OR}, e{OR}, ..., which are collectively denoted as:

 (iii) c{OR}, OR", d{OR}, e{OR}, ... = Operation Result.

C.7.2.1.4 Unsigned chained operation result

 If the DSA does not wish to sign the Chained Operation Result, then the latter will comprise the Chaining
Results (identified in (i) above) added to the Operation Result identified in either (ii) or (iii) above, collectively, these are
denoted by:

 either:

 ChR ', OR ', d{OR}, e{OR}, ... = Chained Operation Result (unsigned).

 or,

 ChR ', c{OR}, OR", d{OR}, e{OR}, ... = Chained Operation Result (unsigned) and
 Operation Result signed by DSA "c".

C.7.2.1.5 Signed chained operation result

 If the DSA does wish to sign the Chained Operation Result, then the result will comprise the Chaining Results
(identified in (i) above) added to the Operation Result (identified in either (ii) or (iii) above), collectively denoted as:

 either:

 c{ChR ', OR ', d{OR}, e{OR}, ...} = Chained Operation Result signed by DSA "c"

 or,

 c{ChR ', c{OR}, OR ", d{OR}, e{OR}, ...} = Chained Operation Result and Operation
 Result signed by DSA "c".

54 Fascicle VIII.8 – Rec. X.518

C.7.2.2 DAP

 The procedure is very similar to that described in § C.7.2.1, with the exception that the Chaining Results
argument is not passed in the DAP.

C.7.3 DSA chained results

 This paragraph addresses the procedures to be effected by a DSA in chaining an operation result back to the
requestor, DSA or DUA, within the DSP and DAP respectively.

C.7.3.1 DSP

 The DSA initially removes the signature (if one exists) from the Chained Operation Result. It then manipulates
the Chaining Results argument as described in this Recommendation, to produce a modified Chaining Results argument.
The latter is then merged back with the Operation Result argument to produce a modified Chained Operation Result.
Finally, the DSA may optionally sign the Chained Operation Result before passing it to the next DSA in the chain.

C.7.3.2 DAP

 A DSA (represented by DSA "b" in Figure C-1/X.518) first removes the signature (if one exists) from the
Chained Operation Result. It then analyses and discards the Chaining Results argument and, finally, it optionally signs
the remaining Operation Result argument before passing the result to the DUA.

ANNEX D

(to Recommendation X.518)

Distributed directory object identifiers

 This Annex is part of the Recommendation.

 This Annex includes all of the ASN.1 object identifiers contained in this Recommendation in the form of the
ASN.1 module DistributedDirectoryObjectIdentifiers.

DistributedDirectoryObjectIdentifiers {joint-iso-ccitt ds(5) modules(1)
 distributedDirectoryObjectIdentifiers(13)}

DEFINITION ::=
BEGIN

EXPORTS
 id-ot-dsa, id-pt-chainedRead, id-pt-chainedSearch, id-pt-chainedModify;

IMPORTS
 id-ot, id-pt
 FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(1) usefulDefinitions(0)};

-- objects --

id-ot-dsa OBJECT IDENTIFIER ::= {id-ot 3}

-- part types --

id-pt-chainedRead OBJECT IDENTIFIER ::= {id-pt 4}
id-pt-chainedSearch OBJECT IDENTIFIER ::= {id-pt 5}
id-pt-chainedModify OBJECT IDENTIFIER ::= {id-pt 6}

END

Printed in Switzerland

Geneva, 2008

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	UIT-T Rec. X.518 (11/1988) – THE DIRECTORY – PROCEDURES FOR DISTRIBUTED OPERATION
	CONTENTS
	0 Introduction
	1 Scope and field of application
	2 References
	3 Definitions
	3.1 OSI Reference Model Definitions
	3.2 Basic Directory Definitions
	3.3 Directory Model Definitions
	3.4 Abstract Service Definition Conventions
	3.5 Distributed Operation Definitions

	4 Abbreviations
	5 Notation
	6 Overview
	7 Distributed directory system model
	8 DSA interactions model
	8.1 Chaining
	8.2 Multicasting
	8.3 Referral
	8.4 Mode determination

	9 Directory distribution
	10 Knowledge
	10.1 Minimal knowledge references
	10.2 Root context
	10.3 Knowledge references
	10.4 Knowledge administration

	11 Overview of DSA abstract service
	12 Information types
	12.1 Introduction
	12.2 Information types defined elsewhere
	12.3 Chaining arguments
	12.4 Chaining results
	12.5 Operation progress
	12.6 Trace information
	12.7 Reference type
	12.8 Access point
	12.9 Continuation reference

	13 Abstract-bind and abstract-unbind
	13.1 DSA bind
	13.2 DSA unbind

	14 Chained abstract-operations
	15 Chained abstract-errors
	15.1 Introduction
	15.2 DSA Referral

	16 Introduction
	16.1 Scope and limits
	16.2 Conceptual model
	16.3 Individual and cooperative operation of DSAs

	17 Distributed directory behaviour
	17.1 Cooperative fulfillment of operations
	17.2 Phases of operation processing
	17.3 Managing distributed operations
	17.4 Other considerations for distributed operation
	17.5 Authentication of distributed operations

	18 DSA behaviour
	18.1 Introduction
	18.2 Overview of the DSA behaviour
	18.3 Specific operations
	18.4 Operation dispatcher
	18.5 Looping
	18.6 Name resolution procedure
	18.7 Object evaluation procedures
	18.8 Result merging procedure
	18.9 Procedures for distributed authentication

	ANNEX A – ASN.1 for distributed operations
	ANNEX B – Modelling of knowledge
	B.1 Example of knowledge modelling
	B.2 Example of distributed name resolution
	ANNEX C – Distributed use of authentication
	C.1 Summary
	C.2 Simple authentication
	C.3 Distributed authentication model
	C.4 DUA to DSA
	C.5 Transference from the DAP to the DSP
	C.6 Chaining through intermediate DSAs
	C.7 Results authentication
	ANNEX D – Distributed directory object identifiers

