
 

 
 

 

I n t e r n a t i o n a l  T e l e c o m m u n i c a t i o n  U n i o n  

 
 

ITU-T  X.511 
TELECOMMUNICATION 
STANDARDIZATION SECTOR 
OF ITU 

(10/2019)    

 

SERIES X: DATA NETWORKS, OPEN SYSTEM 
COMMUNICATIONS AND SECURITY 

Directory 

 

 Information technology – Open Systems 
Interconnection – The Directory: bstract service 
definition 

 

Recommendation  ITU-T  X.511 

 

 



 

ITU-T X-SERIES RECOMMENDATIONS 

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY 

  

PUBLIC DATA NETWORKS  

Services and facilities X.1–X.19 

Interfaces X.20–X.49 

Transmission, signalling and switching X.50–X.89 

Network aspects X.90–X.149 

Maintenance X.150–X.179 

Administrative arrangements X.180–X.199 

OPEN SYSTEMS INTERCONNECTION  

Model and notation X.200–X.209 

Service definitions X.210–X.219 

Connection-mode protocol specifications X.220–X.229 

Connectionless-mode protocol specifications X.230–X.239 

PICS proformas X.240–X.259 

Protocol Identification X.260–X.269 

Security Protocols X.270–X.279 

Layer Managed Objects X.280–X.289 

Conformance testing X.290–X.299 

INTERWORKING BETWEEN NETWORKS  

General X.300–X.349 

Satellite data transmission systems X.350–X.369 

IP-based networks X.370–X.379 

MESSAGE HANDLING SYSTEMS X.400–X.499 

DIRECTORY X.500–X.599 

OSI NETWORKING AND SYSTEM ASPECTS  

Networking X.600–X.629 

Efficiency X.630–X.639 

Quality of service X.640–X.649 

Naming, Addressing and Registration X.650–X.679 

Abstract Syntax Notation One (ASN.1) X.680–X.699 

OSI MANAGEMENT  

Systems management framework and architecture X.700–X.709 

Management communication service and protocol X.710–X.719 

Structure of management information X.720–X.729 

Management functions and ODMA functions X.730–X.799 

SECURITY X.800–X.849 

OSI APPLICATIONS  

Commitment, concurrency and recovery X.850–X.859 

Transaction processing X.860–X.879 

Remote operations X.880–X.889 

Generic applications of ASN.1 X.890–X.899 

OPEN DISTRIBUTED PROCESSING X.900–X.999 

INFORMATION AND NETWORK SECURITY X.1000–X.1099 

SECURE APPLICATIONS AND SERVICES (1) X.1100–X.1199 

CYBERSPACE SECURITY X.1200–X.1299 

SECURE APPLICATIONS AND SERVICES (2) X.1300–X.1499 

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599 

CLOUD COMPUTING SECURITY X.1600–X.1699 

QUANTUM COMMUNICATION X.1700–X.1729 

  

For further details, please refer to the list of ITU-T Recommendations. 

 



 

  Rec. ITU-T X.511 (10/2019) i 

INTERNATIONAL STANDARD ISO/IEC 9594-3 

RECOMMENDATION ITU-T X.511 

Information technology – Open Systems Interconnection – The Directory:  

Abstract service definition 

 

 

 

Summary 

Recommendation ITU-T X.511 | ISO/IEC 9594-3 defines in an abstract way the externally visible services provided by 

the Directory, including bind and unbind operations, read operations, search operations, modify operations, operations to 

support password policies and operations to support interworking with LDAP. It also defines errors. 

 

 

History 

Edition Recommendation Approval Study Group Unique ID* 

1.0 ITU-T X.511 1988-11-25  11.1002/1000/3003 

2.0 ITU-T X.511 1993-11-16 7 11.1002/1000/3004 

3.0 ITU-T X.511 1997-08-09 7 11.1002/1000/4124 

3.1  ITU-T X.511 (1997) Technical Cor. 1 2000-03-31 7 11.1002/1000/5036 

3.2  ITU-T X.511 (1997) Amd. 1 2000-03-31 7 11.1002/1000/5035 

3.3  ITU-T X.511 (1997) Technical Cor. 2 2001-02-02 7 11.1002/1000/5313 

3.4  ITU-T X.511 (1997) Technical Cor. 3 2005-05-14 17 11.1002/1000/8503 

4.0 ITU-T X.511 2001-02-02 7 11.1002/1000/5315 

4.1  ITU-T X.511 (2001) Technical Cor. 1 2005-05-14 17 11.1002/1000/8504 

4.2  ITU-T X.511 (2001) Technical Cor. 2 2005-11-29 17 11.1002/1000/8635 

4.3  ITU-T X.511 (2001) Cor. 3 2008-05-29 17 11.1002/1000/9433 

5.0 ITU-T X.511 2005-08-29 17 11.1002/1000/8502 

5.1  ITU-T X.511 (2005) Cor. 1 2008-05-29 17 11.1002/1000/9434 

5.2  ITU-T X.511 (2005) Cor. 2 2008-11-13 17 11.1002/1000/9594 

5.3  ITU-T X.511 (2005) Cor. 3 2011-02-13 17 11.1002/1000/11044 

5.4  ITU-T X.511 (2005) Cor. 4 2012-04-13 17 11.1002/1000/11586 

6.0 ITU-T X.511 2008-11-13 17 11.1002/1000/9593 

6.1  ITU-T X.511 (2008) Cor. 1 2011-02-13 17 11.1002/1000/11045 

6.2  ITU-T X.511 (2008) Cor. 2 2012-04-13 17 11.1002/1000/11587 

6.3  ITU-T X.511 (2008) Cor. 3 2012-10-14 17 11.1002/1000/11737 

7.0 ITU-T X.511 2012-10-14 17 11.1002/1000/11738 

8.0 ITU-T X.511 2016-10-14 17 11.1002/1000/13033 

9.0 ITU-T X.511 2019-10-14 17 11.1002/1000/14034 
 

 

Keywords 

Attribute, directory, directory information tree, directory system agent, directory user agent, distinguished name. 

 

____________________ 

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the 

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en. 

http://handle.itu.int/11.1002/1000/3003
http://handle.itu.int/11.1002/1000/3004
http://handle.itu.int/11.1002/1000/4124
http://handle.itu.int/11.1002/1000/5036
http://handle.itu.int/11.1002/1000/5035
http://handle.itu.int/11.1002/1000/5313
http://handle.itu.int/11.1002/1000/8503
http://handle.itu.int/11.1002/1000/5315
http://handle.itu.int/11.1002/1000/8504
http://handle.itu.int/11.1002/1000/8635
http://handle.itu.int/11.1002/1000/9433
http://handle.itu.int/11.1002/1000/8502
http://handle.itu.int/11.1002/1000/9434
http://handle.itu.int/11.1002/1000/9594
http://handle.itu.int/11.1002/1000/11044
http://handle.itu.int/11.1002/1000/11586
http://handle.itu.int/11.1002/1000/9593
http://handle.itu.int/11.1002/1000/11045
http://handle.itu.int/11.1002/1000/11587
http://handle.itu.int/11.1002/1000/11737
http://handle.itu.int/11.1002/1000/11738
http://handle.itu.int/11.1002/1000/13033
http://handle.itu.int/11.1002/1000/14034
http://handle.itu.int/11.1002/1000/11830-en


 

ii Rec. ITU-T X.511 (10/2019) 

FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 

telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the 

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other 

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of 

such words does not suggest that compliance with the Recommendation is required of any party. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve 

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or 

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of 

the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, 

protected by patents, which may be required to implement this Recommendation. However, implementers are 

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB 

patent database at http://www.itu.int/ITU-T/ipr/. 

 

 

 

 ITU 2019 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior 

written permission of ITU. 

http://www.itu.int/ITU-T/ipr/


ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) iii 

CONTENTS 

 Page 

1 Scope ..............................................................................................................................................................  1 

2 Normative references......................................................................................................................................  1 
2.1 Identical Recommendations | International Standards ........................................................................  1 
2.2 Paired Recommendations | International Standards equivalent in technical content ...........................  1 
2.3 Additional references ..........................................................................................................................  2 

3 Definitions ......................................................................................................................................................  2 
3.1 OSI Reference Model security architecture definitions.......................................................................  2 
3.2 Basic Directory definitions ..................................................................................................................  2 
3.3 Directory model definitions ................................................................................................................  2 
3.4 Directory information base definitions ................................................................................................  2 
3.5 Directory entry definitions ..................................................................................................................  2 
3.6 Name definitions .................................................................................................................................  3 
3.7 Distributed operations definitions .......................................................................................................  3 
3.8 Abstract service definitions .................................................................................................................  3 

4 Abbreviations .................................................................................................................................................  4 

5 Conventions ....................................................................................................................................................  4 

6 Overview of the Directory service ..................................................................................................................  5 

7 Information types and common procedures ...................................................................................................  5 
7.1 Introduction .........................................................................................................................................  5 
7.2 Information types defined elsewhere ..................................................................................................  5 
7.3 Common arguments ............................................................................................................................  6 
7.4 Common results ..................................................................................................................................  9 
7.5 Service controls ...................................................................................................................................  10 
7.6 Entry information selection .................................................................................................................  12 
7.7 Entry information ................................................................................................................................  15 
7.8 Filter ....................................................................................................................................................  17 
7.9 Paged results........................................................................................................................................  20 
7.10 Security parameters .............................................................................................................................  22 
7.11 Common elements of procedure for access control .............................................................................  23 
7.12 Managing the DSA Information Tree .................................................................................................  25 
7.13 Procedures for families of entries ........................................................................................................  25 

8 Directory authentication .................................................................................................................................  26 
8.1 Simple authentication procedure .........................................................................................................  26 
8.2 Password policy ..................................................................................................................................  28 

9 Bind, Unbind operations, Change Password and Administer Password operations .......................................  31 
9.1 Directory Bind .....................................................................................................................................  31 
9.2 Directory Unbind ................................................................................................................................  34 

10 Directory Read operations ..............................................................................................................................  34 
10.1 Read ....................................................................................................................................................  34 
10.2 Compare ..............................................................................................................................................  37 
10.3 Abandon ..............................................................................................................................................  40 

11 Directory Search operations ...........................................................................................................................  40 
11.1 List ......................................................................................................................................................  40 
11.2 Search ..................................................................................................................................................  44 

12 Directory Modify operations ..........................................................................................................................  55 
12.1 Add Entry ............................................................................................................................................  55 
12.2 Remove Entry......................................................................................................................................  57 
12.3 Modify Entry .......................................................................................................................................  59 
12.4 Modify DN ..........................................................................................................................................  63 
12.5 Change Password ................................................................................................................................  65 
12.6 Administer Password...........................................................................................................................  66 



 

iv Rec. ITU-T X.511 (10/2019) 

 Page 

13 Operations for LDAP messages .....................................................................................................................  66 
13.1 LDAP Transport operation ..................................................................................................................  67 
13.2 Linked LDAP operation ......................................................................................................................  69 

14 Errors ..............................................................................................................................................................  69 
14.1 Error precedence .................................................................................................................................  69 
14.2 Abandoned ..........................................................................................................................................  70 
14.3 Abandon Failed ...................................................................................................................................  70 
14.4 Attribute Error .....................................................................................................................................  71 
14.5 Name Error ..........................................................................................................................................  72 
14.6 Referral ................................................................................................................................................  73 
14.7 Security Error ......................................................................................................................................  73 
14.8 Service Error .......................................................................................................................................  74 
14.9 Update Error ........................................................................................................................................  76 

15 Analysis of search arguments .........................................................................................................................  77 
15.1 General check of search filter ..............................................................................................................  78 
15.2 Check of request-attribute-profiles ......................................................................................................  79 
15.3 Check of controls and hierarchy selections .........................................................................................  80 
15.4 Check of matching use ........................................................................................................................  81 

Annex A – Abstract Service in ASN.1 ......................................................................................................................  82 

Annex B – Operational semantics for Basic Access Control .....................................................................................  98 

Annex C – Examples of searching families of entries ...............................................................................................  111 
C.1 Single family example .........................................................................................................................  111 
C.2 Multiple families example ...................................................................................................................  112 

Annex D – External ASN.1 module ..........................................................................................................................  115 

Annex E – Use of protected passwords for Bind operations .....................................................................................  119 

Annex F – Amendments and corrigenda ...................................................................................................................  120 

 

 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) v 

Introduction 

This Recommendation | International Standard, together with the other Recommendations | International Standards, has 

been produced to facilitate the interconnection of information processing systems to provide directory services. A set of 

such systems, together with the directory information that they hold, can be viewed as an integrated whole, called the 

Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is 

typically used to facilitate communication between, with or about objects such as application entities, people, terminals, 

and distribution lists. 

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of 

technical agreement outside of the interconnection standards themselves, the interconnection of information processing 

systems: 

– from different manufacturers; 

– under different managements; 

– of different levels of complexity; and 

– of different ages. 

This Recommendation | International Standard defines the capabilities provided by the Directory to its users. 

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be 

defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks may 

be mandated for use in certain environments through profiles. This ninth edition technically revises and enhances the 

eighth edition of this Recommendation | International Standard. 

This ninth edition specifies versions 1 and 2 of the Directory protocols. 

Rec. ITU-T X.511 (1993) | ISO/IEC 9594-3 (1995), Rec. ITU-T X.518 (1993) | ISO/IEC 9594-4 (1995) and Rec. 

ITU-T X.519 (1993) | ISO/IEC 9594-5 (1995) and their previous edition specified only version 1. Most of the services 

and protocols specified in this edition are designed to function under version 1. However, some enhanced services and 

protocols, e.g., signed errors, will not function unless all Directory entities involved in the operation have negotiated 

version 2. Whichever version has been negotiated, differences between the services and between the protocols defined in 

the nine editions, except for those specifically assigned to version 2, are accommodated using the rules of extensibility 

defined in Rec. ITU-T X.519 | ISO/IEC 9594-5. 

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the 

Directory abstract service. 

Annex B, which is not an integral part of this Recommendation | International Standard, provides charts that describe the 

semantics associated with Basic Access Control as it applies to the processing of a Directory operation. 

Annex C, which is not an integral part of this Recommendation | International Standard, gives examples of the use of 

families of entries. 

Annex D, which is not an integral part of this Recommendation | International Standard, includes an updated copy of an 

external ASN.1 module referenced by this Directory Specification. 

Annex E, which is not an integral part of this Recommendation | International Standard, provides a suggested technique 

for Bind protected password. 

Annex F, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect 

reports that have been incorporated to form this edition of this Recommendation | International Standard. 

 

 





ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 1  

INTERNATIONAL STANDARD 

ITU-T RECOMMENDATION  

Information technology – Open Systems Interconnection – The Directory:  

Abstract service definition 

1 Scope 

This Recommendation | International Standard defines in an abstract way the externally visible service provided by the 

Directory. 

This Recommendation | International Standard does not specify individual implementations or products. 

2 Normative references 

The following Recommendations and International Standards contain provisions which, through reference in this text, 

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated 

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this 

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition 

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid 

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid 

ITU-T Recommendations. 

2.1 Identical Recommendations | International Standards 

– Recommendation ITU-T X.500 (2019) | ISO/IEC 9594-1:2020, Information technology – Open Systems 

Interconnection – The Directory: Overview of concepts, models and services. 

– Recommendation ITU-T X.501 (2019) | ISO/IEC 9594-2:2020, Information technology – Open Systems 

Interconnection – The Directory: Models. 

– Recommendation ITU-T X.509 (2019) | ISO/IEC 9594-8:2020, Information technology – Open Systems 

Interconnection – The Directory: Public-key and attribute certificate frameworks. 

– Recommendation ITU-T X.518 (2019) | ISO/IEC 9594-4:2020, Information technology – Open Systems 

Interconnection – The Directory: Procedures for distributed operation. 

– Recommendation ITU-T X.519 (2019) | ISO/IEC 9594-5:2020, Information technology – Open Systems 

Interconnection – The Directory: Protocol specifications. 

– Recommendation ITU-T X.520 (2019) | ISO/IEC 9594-6:2020, Information technology – Open Systems 

Interconnection – The Directory: Selected attribute types. 

– Recommendation ITU-T X.521 (2019) | ISO/IEC 9594-7:2020, Information technology – Open Systems 

Interconnection – The Directory: Selected object classes. 

– Recommendation ITU-T X.525 (2019) | ISO/IEC 9594-9:2020, Information technology – Open Systems 

Interconnection – The Directory: Replication. 

– Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information technology – Abstract Syntax 

Notation One (ASN.1): Specification of basic notation. 

– Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information technology – Abstract Syntax 

Notation One (ASN.1): Information object specification. 

– Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information technology – Abstract Syntax 

Notation One (ASN.1): Constraint specification. 

– Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information technology – Abstract Syntax 

Notation One (ASN.1): Parameterization of ASN.1 specifications. 

2.2 Paired Recommendations | International Standards equivalent in technical content 

– Recommendation ITU-T X.800 (1991), Security architecture for Open Systems Interconnection for CCITT 

applications. 

 ISO 7498-2:1989, Information processing systems  – Open Systems Interconnection – Basic Reference 

Model – Part 2: Security Architecture. 



ISO/IEC 9594-3:2020 (E) 

2 Rec. ITU-T X.511 (10/2019) 

2.3 Additional references 

– Recommendation ITU-T X.200 (1994) | ISO/IEC 7498-1:1994, Information technology – Open Systems 

Interconnection – Basic Reference Model: The basic model. 

– IETF RFC 2025 (1996), The Simple Public-Key GSS-API Mechanism (SPKM). 

– IETF RFC 4422 (2006), Simple Authentication and Security Layer (SASL). 

– IETF RFC 4511 (2006), Lightweight Directory Access Protocol (LDAP): The Protocol. 

3 Definitions 

For the purposes of this Recommendation | International Standard, the following definitions apply. 

3.1 OSI Reference Model security architecture definitions 

The following terms are defined in Rec. ITU-T X.800 | ISO 7498-2: 

a) password. 

3.2 Basic Directory definitions 

The following terms are defined in Rec. ITU-T X.500 | ISO/IEC 9594-1: 

a) Directory; 

b) Directory Information Base;  

c) (Directory) User. 

3.3 Directory model definitions 

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2: 

a) Directory System Agent;  

b) Directory User Agent. 

3.4 Directory information base definitions 

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2: 

a) alias entry; 

b) ancestor; 

c) compound entry; 

d) (Directory) entry; 

e) Directory Information Tree; 

f) family (of entries); 

g) immediate superior; 

h) immediately superior entry/object; 

i) object; 

j) object class; 

k) object entry; 

l) subordinate;  

m) superior. 

3.5 Directory entry definitions 

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2: 

a) attribute; 

b) attribute type; 

c) attribute value; 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 3  

d) attribute value assertion; 

e) context; 

f) context type; 

g) context value; 

h) operational attribute; 

i) matching rule;  

j) user attribute. 

3.6 Name definitions 

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2: 

a) alias, alias name; 

b) distinguished name; 

c) (directory) name; 

d) purported name;  

e) relative distinguished name. 

3.7 Distributed operations definitions 

The following terms are defined in Rec. ITU-T X.518 | ISO/IEC 9594-4: 

a) bound DSA; 

b) chaining; 

c) initial performer; 

d) LDAP requester;  

e) referral. 

3.8 Abstract service definitions 

For the purposes of this Recommendation | International Standard, the following definitions apply. 

3.8.1 additional search: A search that starts from joinBaseObject as specified by the originator in the search 

request. 

3.8.2 contributing member: A family member within a compound entry, which has made a contribution to either a 

Read, Search or Modify Entry operation. 

3.8.3 explicitly unmarked entry: An entry or a family member that is excluded from the SearchResult according 

to a specification given in a control attribute referenced by the governing-search-rule. 

3.8.4 family grouping: A set of members of a compound attribute that are grouped together for the purpose of 

operation evaluation. 

3.8.5 filter: An assertion about the presence or value of certain attributes of an entry in order to limit the scope of a 

search. 

3.8.6 originator: The user that originated an operation. 

3.8.7 participating member: A family member that is either a contributing member or is a member of a family 

grouping that as a whole matched a search filter. 

3.8.8 Password expiration: The situation where a user password has reached the end of its validity period: the 

account is locked and the user has to change the password before doing any other directory operation. 

3.8.9 Password quality attributes: Attributes that specify how a password shall be constructed. Password quality 

attributes include things like minimum length, mixture of characters (uppercase, lowercase, figures, punctuations, etc), 

and avoidance of trivial passwords. 

3.8.10 Password history: List of old passwords and the times they were inserted in the history. 

3.8.11 primary search: The search that starts from baseObject as specified by the originator in the search request. 



ISO/IEC 9594-3:2020 (E) 

4 Rec. ITU-T X.511 (10/2019) 

3.8.12 relaxation: A progressive modification of the behaviour of a filter during a search operation so as to achieve 

more matched entries if too few are received, or fewer matched entries if too many are received. 

3.8.13 reply: A DAP/DSP result or an error; or an LDAP result. 

3.8.14 request: Information consisting of an operation code and associated components to convey a directory operation 

from a requester to a performer. 

3.8.15 requester: A DUA, an LDAP client or a DSA sending a request to perform (i.e., invoke) an operation. 

3.8.16 service controls: Parameters conveyed as part of an operation, which constrain various aspects of its 

performance. 

3.8.17 strand: A family grouping comprising all the members in a path from a leaf family member up to the ancestor 

inclusive. A family member will reside in as many strands as there are leaf family members below it (as immediate or 

non-immediate subordinates). 

4 Abbreviations 

For the purposes of this Recommendation | International Standard, the following abbreviations apply: 

ACI  Access Control Information 

AVA Attribute Value Assertion 

DIB  Directory Information Base 

DIT  Directory Information Tree 

DMD Directory Management Domain 

DSA Directory System Agent 

DUA Directory User Agent 

LDAP Lightweight Directory Access Protocol 

RDN Relative Distinguished Name 

5 Conventions 

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean Rec. ITU-T X.511 | 

ISO/IEC 9594-3. The term "Directory Specifications" shall be taken to mean the Rec. ITU-T X.500 | ISO/IEC 9594-1, 

Rec. ITU-T X.501 | ISO/IEC 9594-2, Rec. ITU-T X.511 | ISO/IEC 9594-3, Rec. ITU-T X.518 | ISO/IEC 9594-4, Rec. 

ITU-T X.519 | ISO/IEC 9594-5, Rec. ITU-T X.520 | ISO/IEC 9594-6, Rec ITU-T X.521 | ISO/IEC 9594-7 and Rec. ITU-

T X.525 | ISO/IEC 9594-9. 

If an International Standard or ITU-T Recommendation is referenced within normal text without an indication of the 

edition, the edition shall be taken to be the latest one as specified in the normative references clause. 

Prior to year 2020, the parts making up the Directory Specifications progressed together and can therefore collectively be 

identified as the Directory Specifications of a specific edition using the format: Rec. ITU-T X.5** (yyyy) | ISO/IEC 9594-

*:yyyy (e.g.; Rec ITU-T X.5** (1993) | ISO/IEC 9594-*:1995). 

This Directory Specification makes extensive use of Abstract Syntax Notation One (ASN.1) for the formal specification 

of data types and values, as it is specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, ITU-T X.681 (2015) | ISO/IEC 8824-

2, ITU-T X.682 (2015) | ISO/IEC 8824-3, ITU-T X.683 (2015) | ISO/IEC 8824-4 and Rec. ITU-T X.690 | ISO/IEC 8825-

1. 

This Directory Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values 

are referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New 

typeface. The names of procedures, typically referenced when specifying the semantics of processing, are differentiated 

from normal text by displaying them in bold Times New Roman. Access control permissions are presented in italicized 

Times New Roman. 

If the items in a list are numbered (as opposed to using "–" or letters), then the items shall be considered steps in a 

procedure. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 5  

6 Overview of the Directory service 

As described in Rec. ITU-T X.501 | ISO/IEC 9594-2, the services of the Directory are provided through access points to 

directory user agents (DUAs), each acting on behalf of a user. These concepts are depicted in Figure 1. Through an access 

point, the Directory provides service to its users by means of a number of Directory operations. 

X.511(12)_F01

DUA

Access point

    The 
Directory 

Directory
    user

 

Figure 1 – Access to the Directory 

The Directory operations are of three different kinds: 

a) Directory Read operations, which interrogate a single Directory entry; 

b) Directory Search operations, which interrogate potentially several Directory entries; and 

c) Directory Modify operations. 

The Directory Read operations, the Directory Search operations and the Directory Modify operations are specified in 

clauses 10, 11, and 12, respectively. Conformance to Directory operations is specified in Rec. ITU-T X.519 | 

ISO/IEC 9594-5. 

7 Information types and common procedures 

7.1 Introduction 

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the 

definition of Directory operations. The information types concerned are those which are common to more than one 

operation, are likely to be in the future, or which are sufficiently complex or self-contained as to merit being defined 

separately from the operation which uses them. 

Several of the information types used in the definition of the Directory Service are actually defined elsewhere. Clause 7.2 

identifies these types and indicates the source of their definition. Each of the clauses (7.3 to 7.10) identifies and defines 

an information type. 

This clause also specifies some common elements of procedure that apply to most or all of the Directory operations. 

7.2 Information types defined elsewhere 

The following information types are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2: 

a) Attribute; 

b) AttributeType; 

c) AttributeValue; 

d) AttributeValueAssertion; 

e) Context; 

f) ContextAssertion; 

g) DistinguishedName; 

h) Name; 

i) OPTIONALLY-PROTECTED; 

j) OPTIONALLY-PROTECTED-SEQ; 

k) RelativeDistinguishedName. 



ISO/IEC 9594-3:2020 (E) 

6 Rec. ITU-T X.511 (10/2019) 

The following information type is defined in Rec. ITU-T X.520 | ISO/IEC 9594-6: 

a) PresentationAddress. 

The following information types are defined in Rec. ITU-T X.509 | ISO/IEC 9594-8: 

a) Certificate; 

b) SIGNED; 

c) CertificationPath. 

The following information type is defined in Rec. ITU-T X.880 | ISO/IEC 13712-1: 

a) InvokeId. 

The following information types are defined in Rec. ITU-T X.518 | ISO/IEC 9594-4: 

a) OperationProgress; 

b) ContinuationReference. 

7.3 Common arguments 

The CommonArguments information may be present to qualify the invocation of each operation that the Directory can 

perform. 
 

CommonArguments ::= SET { 

  serviceControls      [30]  ServiceControls    DEFAULT {}, 

  securityParameters   [29]  SecurityParameters OPTIONAL, 

  requestor            [28]  DistinguishedName  OPTIONAL, 

  operationProgress    [27]  OperationProgress  

                             DEFAULT {nameResolutionPhase notStarted}, 

  aliasedRDNs          [26]  INTEGER            OPTIONAL, 

  criticalExtensions   [25]  BIT STRING         OPTIONAL, 

  referenceType        [24]  ReferenceType      OPTIONAL, 

  entryOnly            [23]  BOOLEAN            DEFAULT TRUE, 

  exclusions           [22]  Exclusions         OPTIONAL, 

  nameResolveOnMaster  [21]  BOOLEAN            DEFAULT FALSE, 

  operationContexts    [20]  ContextSelection   OPTIONAL, 

  familyGrouping       [19]  FamilyGrouping     DEFAULT entryOnly, 

  ... } 

NOTE 1 – The above data type can only be used when included in set-constructs. An alternative data type CommonArgumentsSeq 

has been defined to be used in sequence-constructs (see Annex A). 

The ServiceControls component is specified in clause 7.5. Its absence is deemed equivalent to there being an empty 

set of controls. 

The SecurityParameters component is specified in clause 7.10. If the argument of the operation is to be signed by 

the requester, the SecurityParameters component shall be included. The absence of the SecurityParameters 

component is deemed equivalent to an empty set. 

The requestor component, when present, shall hold the distinguished name of the originator (requester) of the 

operation. If the distinguished name of the requester was established at bind time, the requestor component shall be 

equal to that distinguished name. Likewise, it shall be equal to the distinguished name in subject field of the end-entity 

public-key certificate of the requester if the certification-path component of the SecurityParameters is present. 

NOTE 2 – The bound directory system agent (DSA) should check the equality of the distinguished names as indicated above 

(implementations based on Rec. ITU-T X.511 (2008) | ISO/IEC 9594-3:2008) or earlier editions may not do that).  

NOTE 3 – If the distinguished name of the requester was not established at bind time and the certification-path component 

of the SecurityParameters is not present in the request, a possible value in the requester component should not be considered 

reliable for access control purposes. 

The operationProgress, referenceType, entryOnly, exclusions and nameResolveOnMaster components are 

defined in Rec. ITU-T X.518 | ISO/IEC 9594-4. They are supplied by a DUA either: 

a) when acting on a continuation reference returned by a DSA in response to an earlier operation, and their 

values are copied by the DUA from the continuation reference; or 

b) when the DUA represents an administrative user that is managing the DSA Information Tree and the 

manageDSAIT option is set in the service controls. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 7  

The aliasedRDNs component indicates to the DSA that the object component of the operation was created by the 

dereferencing of an alias on an earlier operation attempt. The integer value indicates the number of relative distinguished 

names (RDNs) in the name that came from dereferencing the alias. (The value would have been set in the referral response 

of the previous operation.)  

NOTE 4 – This component is provided for compatibility with implementations based on Rec CCITT X.511 (1988) | IEC 9594:1990. 

DUAs (and DSAs) implemented according to later editions of the Directory Specifications shall always omit this parameter from 

the CommonArguments of a subsequent request. In this way, the Directory will not signal an error if aliases dereference to further 

aliases. 

The operationContexts component supplies a set of context assertions which are applied to attribute value assertions 

and entry information selection made within this operation, which do not otherwise contain context assertions for the 

same attribute type and context type. If operationContexts is not present or does not address a particular attribute 

type or context type, then default context assertions shall be applied by the DSA as described in clause 7.6.1 and in 

clauses 8.9.2.2 and 12.8 of Rec. ITU-T X.501 | ISO/IEC 9594-2. If allContexts is chosen, then all contexts for all 

attribute types are valid and context defaults that might have been supplied by the DSA are overridden. 

(ContextSelection is defined in clause 7.6). 

familyGrouping is used to describe which family members should be selected for processing by a given operation. It is 

described more fully in clause 7.3.2. 

7.3.1 Critical extensions 

The criticalExtensions component provides a mechanism to list a set of extensions that are critical to the 

performance of a Directory operation. If the originator of the extended operation wishes to indicate that the operation 

shall be performed with one or more extensions (i.e., that performing the operation without these extensions is not 

acceptable), it does so by setting the criticalExtensions bit(s) which corresponds to the extension(s). If the Directory, 

or some part of it, is unable to perform a critical extension, it returns an indication of unavailableCriticalExtension 

(as a serviceError or PartialOutcomeQualifier). If the Directory is unable to perform an extension that is not 

critical, it ignores the presence of the extension. 

This Directory Specification does not establish rules regarding the order in which a performing DSA is to decode and 

process PDUs that it receives. A DSA that receives an unknown critical extension shall return a ServiceError with 

problem unavailableCriticalExtension to signal that the operation failed. 

These Directory Specifications define a number of extensions. The extensions take such forms as additional numbered 

bits in a BIT STRING, or additional components of a SET or SEQUENCE, and are ignored by implementations based on 

the 1988 edition of the CCITT X.500 Recommendations series or the ISO/IEC 9594:1990 edition. Each such extension 

is assigned an integer identifier, which is the number of the bit that may be set in criticalExtensions. If the criticality 

of an extension is defined to be critical, the DUA shall set the corresponding bit in criticalExtensions. If the defined 

criticality is non-critical, the DUA may or may not set the corresponding bit in criticalExtensions. 

The extensions, their identifiers, the operations in which they are permitted, the recommended criticality, the clauses in 

which they are defined, and the corresponding lightweight directory access protocol (LDAP) controls (if any) are shown 

in Table 1. 

Table 1 – Extensions 

Extension Identifier Operations Criticality 
Defined 

(clauses) 
LDAP control 

subentries 1 All Non-critical 7.5 1.3.6.1.4.1.4203.1.10.1 

copyShallDo 2 Read, Compare, List, 
Search 

Non-critical 7.5  

attribute size limit 3 Read, Search Non-critical 7.5  

extraAttributes 4 Read, Search Non-critical 7.6  

modifyRightsRequest 5 Read Non-critical 10.1  

pagedResultsRequest 6 List, Search Non-critical 11.1 1.2.840.113556.1.4.319 

matchedValuesOnly 7 Search Non-critical 11.2 1.2.826.0.1.3344810.2.3 

extendedFilter 8 Search Non-critical 11.2  

targetSystem 9 Add Entry Critical 12.1  

useAliasOnUpdate 10 Add Entry, Remove 
Entry, Modify Entry 

Critical 12.1  

newSuperior 11 Modify DN Critical 12.4  



ISO/IEC 9594-3:2020 (E) 

8 Rec. ITU-T X.511 (10/2019) 

Table 1 – Extensions 

Extension Identifier Operations Criticality 
Defined 

(clauses) 
LDAP control 

manageDSAIT 12 All Critical 7.5, 7.12 2.16.840.1.113730.3.4.2 

Use of contexts 13 Read, Compare, List, 
Search, Add Entry, 
Modify Entry, Modify 
DN 

Non-critical 7.6, 7.8  

partialNameResolution 14 Read, Search Non-critical 7.5  

overspecFilter 15 Search Non-critical 11.1.3 f)  

selectionOnModify 16 Modify Entry Non-critical 12.3.2  

 17 Reserved  7.10  

Security parameters – 
Operation code 

18 All Non-critical 7.10  

Security parameters – 
Attribute certification 
path 

19 All Non-critical 7.10  

Security parameters – 
Error Protection 

20 All Non-critical 7.10  

 21-24 Reserved    

Service administration 25 Read, Search, 
ModifyEntry 

Critical 11.2.2, 13, 
clause 16 of Rec. 

ITU-T X.501 | 
ISO/IEC 9594-2 

 

entryCount 26 Search Non-critical 11.1.3  

hierarchySelections 27 Search Non-critical 11.2.2  

relaxation 28 Search Non-critical 7.8  

familyGrouping 29 Compare, 
Search, 
RemoveEntry 

Non-critical 
Non-critical 
Critical 

7.3.2, 7.8.3 
& 

10.2.2 
11.2 

12.2.2 

 

familyReturn 30 Read, 
Search, 
ModifyEntry 

Non-critical 
Non-critical 
Non-critical 

7.6.4, 7.7.1 
& 

10.1.3 
11.2.3 
12.3.3 

 

dnAttributes 31 Search Non-critical 11.2.2  

friend attributes 32 Read, Search Non-critical 7.6, 7.8.2  

Abandon of paged 
results 

33 List, Search critical 7.9  

Paged results on the 
DSP 

34 List, Search Non-critical 7.9  

replaceValues 35 ModifyEntry critical 12.3.1, 12.3.2 1.3.6.1.1.14 

NOTE 1 – The first extension is given the identifier 1 and corresponds to bit 1 of the BIT STRING. Bit 0 of the BIT STRING is 
not used. 

NOTE 2 – Use of signing on errors Add Entry, Remove Entry, Modify Entry, Modify DN requires version 2 or higher of the 
protocol.  

NOTE 3 – The SPKM credentials extension shall be critical unless used in associations established using version 2 or higher. 

7.3.2 Family grouping 

Family grouping allows a single family member, several family members or all family members of a compound entry, to 

be grouped together for joint consideration prior to operation evaluation. These semantics can then be applied to the 

following operations (as indicated in the descriptions below): Compare (to define the scope within which the compared 

attribute might lie), Search (to define the groupings for which filtering might take place), Remove Entry (to define the 

groupings for removal). The following ASN.1 is used to select members of a family: 
 

FamilyGrouping ::= ENUMERATED { 

  entryOnly     (1), 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 9  

  compoundEntry (2), 

  strands       (3), 

  multiStrand   (4), 

  ... } 

entryOnly means that the specific family member selected by the operation is to be considered in the group. This is the 

default value, and ensures backward compatibility with previous editions of the Directory Specifications. 

compoundEntry means that the complete compound entry selected by the operation is to be considered as a unit by 

combining all the attributes. For Remove Entry operations, it is only applicable when the object name specified is that of 

an ancestor of a compound entry, and it causes all family members to be removed by the same operation (subject to access 

control). 

strands means that all the strands associated with the family member are to be selected by the operation. This option is 

not valid for the Remove Entry operation. For the Search operation, individual strands are considered for filter purposes. 

If the combined set of attributes of one or more strands matches the filter, the compound entry is said to match the filter. 

If the base object is a child member, only those strands that go through the base object are considered. For Compare 

operations, all the attributes from all the family members in all the strands to which the entry belongs are to be used in 

the comparison. 

multiStrand is only applicable to the Search operation, and qualifies the matching rule for filtering on family 

information. It is ignored for other operations. It specifies that one strand from each family within a compound entry is to 

be considered at one time, but in all combinations. multiStrand is not applicable if the base object is a child family 

member, in which case multiStrand shall be ignored and entryOnly shall be substituted. 

7.4 Common results 

The CommonResults or CommonResultsSeq information is present to qualify the result of each retrieval operation that 

the Directory can perform. In addition, it is present in any returned error. 
 

CommonResults ::= SET { 

  securityParameters  [30]  SecurityParameters  OPTIONAL, 

  performer           [29]  DistinguishedName   OPTIONAL, 

  aliasDereferenced   [28]  BOOLEAN             DEFAULT FALSE, 

  notification        [27]  SEQUENCE SIZE (1..MAX) OF Attribute 

                            {{SupportedAttributes}} OPTIONAL, 

  ... } 

 

CommonResultsSeq ::= SEQUENCE { 

  securityParameters  [30]  SecurityParameters OPTIONAL, 

  performer           [29]  DistinguishedName OPTIONAL, 

  aliasDereferenced   [28]  BOOLEAN DEFAULT FALSE, 

  notification        [27]  SEQUENCE SIZE (1..MAX) OF Attribute 

                            {{SupportedAttributes}} OPTIONAL, 

  ... } 

NOTE – CommonResults and CommonResultsSeq consist of the same components. The former is used when included in set 

types by the COMPONENT OF type, while the latter is used similarly in sequence types. 

The SecurityParameters component is specified in clause 7.10. If the result is to be signed by the Directory, the 

SecurityParameters component shall be included in the result. The absence of the SecurityParameters 

component is deemed equivalent to an empty set. 

The performer Distinguished Name identifies the performer of a particular operation. It may be required when the result 

is to be signed (see clause 7.10) and shall hold the name of the DSA that signed the result. 

The aliasDereferenced component is set to TRUE when the purported name of an object or base object which is the 

target of the operation included any aliases which were dereferenced. 

The notification component shall be used to qualify returned result and error APDUs, for example providing more 

precise error information. Standard notification attributes are defined in clause 6.13 of Rec. ITU-T X.520 | 

ISO/IEC 9594-6. Such notification attributes are not necessarily stored in directory entries. 



ISO/IEC 9594-3:2020 (E) 

10 Rec. ITU-T X.511 (10/2019) 

7.5 Service controls 

A ServiceControls parameter contains the controls, if any, that are to direct or constrain the provision of the service.  
 

ServiceControls ::= SET { 

  options              [0]  ServiceControlOptions DEFAULT {}, 

  priority             [1]  INTEGER {low(0), medium(1), high(2)} DEFAULT medium, 

  timeLimit            [2]  INTEGER OPTIONAL, 

  sizeLimit            [3]  INTEGER OPTIONAL, 

  scopeOfReferral      [4]  INTEGER {dmd(0), country(1)} OPTIONAL, 

  attributeSizeLimit   [5]  INTEGER OPTIONAL, 

  manageDSAITPlaneRef  [6]  SEQUENCE { 

    dsaName                   Name, 

    agreementID               AgreementID, 

    ...} OPTIONAL, 

  serviceType          [7]  OBJECT IDENTIFIER OPTIONAL, 

  userClass            [8]  INTEGER OPTIONAL, 

  ... } 

 

ServiceControlOptions ::= BIT STRING { 

  preferChaining          (0), 

  chainingProhibited      (1), 

  localScope              (2), 

  dontUseCopy             (3), 

  dontDereferenceAliases  (4), 

  subentries              (5), 

  copyShallDo             (6), 

  partialNameResolution   (7), 

  manageDSAIT             (8), 

  noSubtypeMatch          (9), 

  noSubtypeSelection      (10), 

  countFamily             (11), 

  dontSelectFriends       (12), 

  dontMatchFriends        (13), 

  allowWriteableCopy      (14)} 

The options component contains a number of indications, each of which, if set, asserts the condition suggested. Thus: 

a) preferChaining indicates that the preference is that chaining, rather than referrals, be used to provide 

the service. The Directory is not obliged to follow this preference. 

b) chainingProhibited indicates that chaining, and other methods of distributing the request around the 

Directory, are prohibited. 

c) localScope indicates that the operation is to be limited to a local scope. The definition of this option is 

itself a local matter, for example, within a single DSA or a single directory management domain (DMD). 

d) dontUseCopy indicates that copied information as defined in Rec. ITU-T X.518 | ISO/IEC 9594-4 shall 

not be used to provide the service. 

e) dontDereferenceAliases indicates that any alias used to identify the entry affected by an operation is 

not to be dereferenced.  

NOTE 1 – This is necessary to allow reference to an alias entry itself rather than the aliased entry, e.g., in order to read the alias 

entry.  

f) subentries indicates that a Search or List operation is to access subentries only; normal entries become 

inaccessible, i.e., the Directory behaves as though normal entries do not exist. If this service control is not 

set, then the operation accesses normal entries only and subentries become inaccessible. The service 

control is ignored for operations other than Search or List. 

NOTE 2 – The effects of subentries on access control, schema and collective attributes are still observed even if subentries are 

inaccessible. 

NOTE 3 – If this service control is set, normal entries may still be specified as the base object of an operation. 

g) copyShallDo indicates that if the Directory is able to partly but not fully satisfy a query at a copy of an 

entry, it shall not chain the query. It is meaningful only if dontUseCopy is not set. If copyShallDo is not 

set, the Directory will use shadow data only if it is sufficiently complete to allow the operation to be fully 

satisfied at the copy. A query may be only partly satisfied because some of the requested attributes are 

missing in the shadow copy, some of the attribute values for a given attribute are missing in the shadow 

copy, because the DSA does not hold all context information for the attribute values it does have, or 

because the DSA holding the shadowed data does not support the requested matching rules on that data. If 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 11  

copyShallDo is set and the Directory is not able to fully satisfy a query, it shall set incompleteEntry 

in the returned entry information. 

h) partialNameResolution indicates that if the Directory is able to resolve only part of the purported 

name in a Read or Search operation, i.e., it is about to return a nameError, the entry whose name consists 

of all resolved RDNs is to be considered the target of the operation and partialName is set to TRUE in 

the result. This service control is ignored for operations other than Read or Search. 

NOTE 4 – If this service control is set, the purported name is a context prefix entry to which access is denied, and the requester has 

access to the superior entry, then the existence of the context prefix entry will be indirectly disclosed to the requester even if 

DiscloseOnError permission to the entry is denied.  

i) manageDSAIT indicates that the operation has been requested by an administrative user so that the DSA 

Information Tree is managed. If multiple replication planes exist in the DSA to be managed, and the 

manageDSAITPlaneRef service control has not been included in the operation, then the DSA selects a 

suitable replication plane for the operation. 

j) noSubtypeMatch indicates that attribute subtype matching shall not be attempted. This service control is 

ignored for operations other than Compare and Search operations. 

k) noSubtypeSelection indicates that subtype selection shall not be made. 

l) countFamily indicates that each member of a compound entry shall be counted as a separate entry, e.g., 

for the purposes of size and administrative limits, and relaxation controls. If this control is not set, then 

members of a compound attribute shall be counted as a single entry. 

m) dontSelectFriends indicates that the specification of an anchor attribute in entry information selection 

does not automatically include friend attributes in the selection. 

n) dontMatchFriends indicates that the specification of an anchor attribute in a filter item can only be 

satisfied by the values of the anchor attribute, and not by friend attributes. 

o) allowWriteableCopy indicates that a DSE of type writeableCopy is acceptable in the provision of a 

query service request. 

NOTE 5 – The allowWriteableCopy service control is distinct from copyShallDo in that this service control is used to indicate 

that a complete copy is requested, but that it does not need to be the primary master, whereas copyShallDo is used to indicate that 

any copy, whether complete or not, is acceptable. 

If this component is omitted, the following are assumed: no preference for chaining but chaining not prohibited, no limit 

on the scope of the operation, use of copy permitted, aliases shall be dereferenced (except for modify operations for which 

alias dereferencing is not supported), subentries are not accessible, and operations that cannot be fully satisfied by 

shadowed data are subject to further chaining. However, these defaults may be overwritten by search-rules within 

service-specific administrative areas. 

The priority service control (low, medium, or high) indicates the priority at which the service is to be provided. Note 

that this is not a guaranteed service in that the Directory, as a whole, does not implement queueing. There is no relationship 

implied with the use of priorities in underlying layers. 

The timeLimit service control indicates the maximum elapsed time, in seconds, within which the service shall be 

provided. If the constraint cannot be met, an error is reported. If this component is omitted, no time limit is implied. In 

the case of time limit exceeded on a List or Search, the result is an arbitrary selection of the accumulated results. 

NOTE 6 – This component does not imply the length of time spent processing the request during the elapsed time: any number of 

DSAs may be involved in processing the request during the elapsed time. 

The sizeLimit service control is only applicable to List and Search operations. It indicates the maximum number of 

entries to be returned when paged results are not to be returned. In the case of size limit exceeded, the results of a List or 

Search operation may be an arbitrary selection of the accumulated results, equal in number to the size limit. Any further 

results shall be discarded. When paged results are being returned, the value of sizeLimit shall be ignored by the DSA 

performing the paging as detailed in clause 7.9. 

The scopeOfReferral service control indicates the scope to which a referral returned by a DSA should be relevant. 

Depending on whether the values dmd or country are selected, only referrals to other DSAs within the selected scope 

shall be returned. This applies to the referrals in both a referral error and the unexplored parameter of list and 

search results. 

The attributeSizeLimit service control indicates the largest size of any attribute (i.e., the type and all its values) that 

is included in returned entry information. If an attribute exceeds this limit, all of its values are omitted from the returned 

entry information and incompleteEntry is set in the returned entry information. The size of an attribute is taken to be 

its size in octets in the local concrete syntax of the DSA holding the data. Because of different ways applications store 

the data, the limit is imprecise. If this parameter is not specified, no limit is implied. 



ISO/IEC 9594-3:2020 (E) 

12 Rec. ITU-T X.511 (10/2019) 

NOTE 7 – Attribute values returned as part of an entry's Distinguished Name are exempt from this limit. 

Certain combinations of priority, timeLimit, and sizeLimit may result in conflicts. For example, a short time limit 

could conflict with low priority; a high size limit could conflict with a low time limit, etc. 

The manageDSAITPlaneRef service control indicates that the operation has been requested by an administrative user so 

that a specific replication plane of the DSA Information Tree is managed. The manageDSAITPlaneRef service control 

is ignored if the manageDSAIT option is not set. The plane is identified by the dsaName component which is the name 

of the supplying DSA and the agreementID component which contains the shadowing agreement identifier. 

The serviceType service control is only relevant for a search request that starts its initial evaluation phase within a 

service-specific administrative area; it is otherwise ignored. If supplied, it increases the possibility of getting useful 

notification information returned in case of a faulty formulated search request. 

The userClass service control is only relevant for a search request that starts its initial evaluation phase within a 

service-specific administrative area and is otherwise ignored. It identifies a user-class. It allows a requester to specify 

another user-class than the Directory would otherwise apply. If supplied, it also increases the possibility of getting useful 

notification information returned in case of a faulty formulated search request. 

7.6 Entry information selection 

An instance of the EntryInformationSelection data type indicates what information is being requested from an 

entry in a retrieval operation. 
 

EntryInformationSelection ::= SET { 

  attributes                     CHOICE { 

    allUserAttributes         [0]  NULL, 

    select                    [1]  SET OF AttributeType 

    -- empty set implies no attributes are requested -- } DEFAULT allUserAttributes:NULL, 

    infoTypes               [2]  INTEGER { 

      attributeTypesOnly        (0), 

      attributeTypesAndValues   (1)} DEFAULT attributeTypesAndValues, 

  extraAttributes                CHOICE { 

    allOperationalAttributes  [3]  NULL, 

    select                    [4]  SET SIZE (1..MAX) OF AttributeType } OPTIONAL, 

  contextSelection               ContextSelection OPTIONAL, 

  returnContexts                 BOOLEAN DEFAULT FALSE, 

  familyReturn                   FamilyReturn DEFAULT 

                                   {memberSelect contributingEntriesOnly} } 

 

ContextSelection ::= CHOICE { 

  allContexts       NULL, 

  selectedContexts  SET SIZE (1..MAX) OF TypeAndContextAssertion, 

  ... } 

 

TypeAndContextAssertion ::= SEQUENCE { 

  type               AttributeType, 

  contextAssertions  CHOICE { 

    preference         SEQUENCE OF ContextAssertion, 

    all                SET OF ContextAssertion, 

    ...}, 

  ... } 

 

FamilyReturn ::= SEQUENCE { 

  memberSelect   ENUMERATED { 

    contributingEntriesOnly   (1), 

    participatingEntriesOnly  (2), 

    compoundEntry             (3), 

    ...}, 

  familySelect   SEQUENCE SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL, 

  ... } 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 13  

The attributes component specifies the user and operational attributes for which information is requested: 

a) If the select option is chosen, then the attributes involved are listed. If the list is empty, then no attributes 

shall be returned. Information about a selected attribute shall be returned if the attribute is present. An 

attributeError with problem noSuchAttributeOrValue shall only be returned if none of the 

attributes selected is present.  

b) If the allUserAttributes option is selected, then information is requested about all user attributes in 

the entry. 

Attribute information is only returned if access rights are sufficient. A securityError (with problem 

insufficientAccessRights) shall only be returned in the case where access rights preclude the reading of all attribute 

values requested. Note that access control is also applied to the attributes and values eligible to be returned according to 

the components of EntryInformationSelection, and may further reduce the information that is returned. 

NOTE 1 – Access control is also applied to the attributes and values eligible to be returned according to the components of 

EntryInformationSelection, and may further reduce the information that is returned. 

The infoTypes component specifies whether both attribute type and attribute value information (the default) or attribute 

type information only is requested. If an attribute is of a type that is a carrier of other attributes, e.g., 

a family-information attribute, then the value(s) shall be returned independent of the setting of the infoTypes 

component, but the infoTypes specification shall be applied to the contained attributes. If the attributes component 

is such as to request no attributes, then this component is not meaningful. 

The extraAttributes component specifies a set of additional user and operational attributes for which information is 

requested. If the allOperationalAttributes option is chosen, then information is requested about all directory 

operational attributes in the entry. If the select option is chosen, then information about the listed attributes is requested. 

NOTE 2 – This component may be used to request information about, for example, specific operational attributes when 

attributes is set to allUserAttributes, or about all operational attributes. If the same attribute is listed or implied in both 

attributes and extraAttributes, it is treated as though it has been requested only once. 

A request for a particular attribute is always treated as a request for the attribute and all subtypes of that attribute (except 

for requests processed by implementations based on Rec. CCITT X.511 (1988) | ISO/IEC 9594-3:1990) if the 

noSubtypeSelection service control option is not set. If the noSubtypeSelection service control option is set, only 

the requested attributes are returned, not their subtypes. Similarly, a request for a particular attribute that has friends is 

treated as a request for the attribute and all friend attributes, subject to the dontSelectFriends service control option 

not being set. 

In responding to a request for attribute information, the Directory treats all collective attributes of an entry as if they were 

actual user attributes of the entry, i.e., they are selected like other user attributes and are merged into the returned entry 

information. A request for allUserAttributes requests all collective attributes of the entry as well as ordinary 

attributes of the entry. An attribute is a collective attribute of an entry if all of the following are true: 

a) it is located in a subentry whose subtree specification includes the entry; 

b) it is not excluded by the presence in the entry of a collectiveExclusions attribute value equal to the 

collective attribute type; and 

c) it is permitted by the content rule for the structural object class for the entry. 

The contextSelection component is used to specify which attribute values shall be returned of the attributes selected 

by attributes or extraAttributes. The contextSelection is evaluated only against the values of attributes that 

are candidates to be returned according to those other components of EntryInformationSelection. The evaluation 

of contextSelection, and the use of defaults if it is not supplied, is discussed in clauses 7.6.1 to 7.6.3. 

If the infoTypes component is such as to request no attribute values, or the attributes component is such as to request 

no attributes, then the contextSelection component is not meaningful. If, as a result of applying 

contextSelection, there are no values of an attribute eligible to be returned, the attribute may be returned without any 

values. 

The returnContexts component is used to request the Directory to return attribute values with their associated context 

lists. If this component is absent or is specified with a value of FALSE, then no context information is returned in the 

result. If this component is specified with a value of TRUE, then all context information is returned for each attribute value 

returned. Note that the contextSelection component does not selectively affect which context information is returned 

when returnContexts is TRUE. 

The familyReturn component (if present) is used to determine which entries within a compound entry shall be returned 

if one or more family members have been marked (see clause 7.6.4). 



ISO/IEC 9594-3:2020 (E) 

14 Rec. ITU-T X.511 (10/2019) 

7.6.1 Use of contextSelection or context selection defaults 

The contextSelection component is used to select certain attribute values of attributes selected by attributes or 

extraAttributes. The contextSelection is evaluated only against the values of attributes that are candidates to be 

returned according to those other components of EntryInformationSelection. For each attribute value, any context 

selection governing its attribute type shall evaluate to TRUE (as defined in clause 7.6.2), in order for that attribute value 

to be selected. 

A contextSelection is said to govern one or more attribute types if any of the following conditions occur: 

– the ContextSelection data type specifies allContexts (in which case all attribute values of all 

attribute types are selected); 

– the ContextSelection data type has a selectedContexts component which includes a set of 

TypeAndContextAssertion data types where the type component specifies an attribute type, including 

its subtypes, that is governed by the contextAssertions components; or 

– the ContextSelection data type has a selectedContexts component which includes a 

TypeAndContextAssertion data type where the type component specifies the object identifier id-oa-

allAttributeTypes. 

If contextSelection is not provided or it does not govern the given attribute type, then a default contextSelection 

shall be applied. In addition to contextSelection in EntryInformationSelection, there are three potential 

sources for a contextSelection: that specified for the operation as a whole, that available within subentries in the 

directory information tree (DIT), and that available locally in the DSA. They are applied according to the following 

precedence: 

1) If contextSelection is present in EntryInformationSelection and it governs the given attribute 

type as described above, then it shall be applied. 

2) If contextSelection is not present within the EntryInformationSelection, or it is present but 

does not govern the given attribute type, then the operationContexts which has been supplied for the 

operation as described in clause 7.3 shall be applied if one is present and it governs the given attribute type 

as described above. 

3) If the request has neither a contextSelection in the EntryInformationSelection nor 

operationContexts for the operation, or neither governs the given attribute, then the values of the 

contextAssertionDefaults attribute in the context assertion subentries (if any) controlling the entry 

shall be applied as the selectedContexts. (Context assertion subentries are described in clause 14.7 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2). 

4) If there is no contextSelection from the sources described above that govern the given attribute type, 

then the DSA may apply a locally-defined default contextSelection. Such a default shall typically 

reflect local parameters, such as the language or location of the place of deployment of the DSA, or the 

current time of day, but may be tailored differently by the DSA for each DUA to which it responds.  

5) If no contextSelection is available from any of these sources that govern the given attribute type, then 

all values of the attribute are considered selected (i.e., allContexts is assumed as the base default). 

NOTE – A default contextSelection that governs the given attribute type and makes an assertion about a certain context type 

shall be applied in addition to an earlier contextSelection governing the same attribute type but making an assertion about a 

different context type, in the same order of precedence as described above. 

7.6.2 Evaluation of contextSelection 

A contextSelection is TRUE (i.e., selects a given attribute value) if: 

a) allContexts is specified (this permits a context selection to override any default that might otherwise 

be applied if this contextSelection were omitted); or 

b) each TypeAndContextAssertion in selectedContexts is TRUE as described in clause 7.6.3. 

A contextSelection is FALSE otherwise. 

7.6.3 Evaluation of a TypeAndContextAssertion 

A TypeAndContextAssertion is TRUE (i.e., selects a given attribute value) if: 

a) the type of the attribute is not the same as (nor a subtype of) the type in the TypeAndContextAssertion 

and the type in the TypeAndContextAssertion is not id-oa-allAttributeTypes. In this case, the 

TypeAndContextAssertion is not applicable to the attribute type of the given attribute value and so 

does not eliminate the attribute value from selection; or 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 15  

b) for the attribute value, the contextAssertions in TypeAndContextAssertion is TRUE as defined 

below. 

NOTE 1 – The OBJECT IDENTIFIER value id-oa-allAttributeTypes may be used as the value of type in the 

TypeAndContextAssertion to force evaluation of the contextAssertions against an attribute value of any attribute type. 

contextAssertions is expressed either as an ordered sequence of preferred contexts or as a compound set of context 

assertions: 

a) If all is specified, then contextAssertions is TRUE for any attribute value only if each ContextAssertion in 

the SET is TRUE, as defined in clause 8.9.2.4 of Rec. ITU-T X.501 | ISO/IEC 9594-2. 

b) If preference is specified, then each ContextAssertion in the SEQUENCE is evaluated in turn against all candidate 

attribute values of the same attribute type, until a ContextAssertion evaluates TRUE as defined in clause 8.9.2.4 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2. (The fallback flag, if present, is not taken into consideration until the entire 

SEQUENCE is exhausted.) Once a ContextAssertion evaluates TRUE for one of the candidate attribute values, it shall 

be evaluated for every candidate attribute value of the same attribute type, but subsequent ContextAssertion in the 

SEQUENCE are ignored. 

NOTE 2 – preference provides a means for selection to be specified in terms of a first, second, etc., choice of context 

(e.g., Language = French but if no French then Language = English). 

A TypeAndContextAssertion is FALSE otherwise. 

7.6.4 Family Return 

The familyReturn component is used to determine which entries within a compound entry shall be returned if one or 

more family members have been marked as contributing or participating members. The procedures for how family 

members are marked are further described in clause 7.13. 

The memberSelect component specifies which entries are selected for return in the result: 

– contributingEntriesOnly means that only family members marked as contributing members by the 

operation are to be returned. In the case of Read or Modify-Entry operations, this is the family member 

identified by the object operation argument; for the Search operation, it includes family members that 

contributed to the match. 

– participatingEntriesOnly means that only family members marked as participating members by the 

operation are to be returned. In the case of Read or Modify-Entry, this is the same as for 

contributingEntriesOnly. 

– compoundEntry means that each family member within the compound entry is to be returned, except 

those that possibly have been explicitly unmarked by a governing-search-rule for a Search operation. 

The familySelect component supplements the memberSelect component by specifying that all child members of 

selected families shall be returned in addition to what is specified by memberSelect. The sequence of elements has no 

significance. A family is identified by the structural object class of the family members immediately subordinate to the 

ancestor. This component has no effect if the memberSelect specifies compoundEntry. 

NOTE – A governing-search-rule may modify what information shall be returned (see clause 16.10 of Rec. ITU-T X.501 | 

ISO/IEC 9594-2). 

7.7 Entry information 

7.7.1 Entry information data type 

The EntryInformation data type conveys selected information from an entry. 
 

EntryInformation ::= SEQUENCE { 

  name                  Name, 

  fromEntry             BOOLEAN DEFAULT TRUE, 

  information           SET SIZE (1..MAX) OF CHOICE { 

    attributeType         AttributeType, 

    attribute             Attribute{{SupportedAttributes}}, 

    ...} OPTIONAL, 

  incompleteEntry  [3]  BOOLEAN DEFAULT FALSE, 

  partialName      [4]  BOOLEAN DEFAULT FALSE, 

  derivedEntry     [5]  BOOLEAN DEFAULT FALSE, 

  ... } 



ISO/IEC 9594-3:2020 (E) 

16 Rec. ITU-T X.511 (10/2019) 

The Name parameter indicates the Distinguished Name of the entry or the name of an alias to the entry. The Distinguished 

Name of the entry is returned whenever permitted by the access control policy. If access is allowed to the attributes of the 

entry but not to its Distinguished Name, the Directory may return either an error or the name of a valid alias to the entry. 

NOTE 1 – If the entry was located using an alias, then that alias is known to be a valid alias. Otherwise, how it is ensured that the 

alias is valid, is outside the scope of these Directory Specifications. 

NOTE 2 – Where a particular component of the Directory has a choice of alias names available to it for return, it is recommended 

that where possible it chooses the same alias name for repeated requests by the same requester, in order to provide a consistent 

service. 

The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of the entry 

(FALSE). 

The information parameter is included if any attribute information from the entry is being returned, and contains a set 

of attributeTypes and attributes, as appropriate. 

The incompleteEntry parameter is included and set to TRUE whenever the returned entry information is incomplete in 

relation to the user's request, e.g., because attributes or attribute values are omitted for reasons of access control (and their 

existence is permitted to be disclosed), the presence of incomplete shadow information together with copyShallDo, or 

because the attributeSizeLimit has been exceeded. It is not set to TRUE because an alias name has been returned 

instead of the Distinguished Name (this component is not present for implementations based on Rec. CCITT X.511 (1988) 

| ISO/IEC 9594-3:1990). 

The Directory shall complete the name resolution phase of operations in its entirety (including checking all relevant 

knowledge references, following up on referrals, etc.) before the partialNameResolution service control is 

considered. If all name resolution options have been exhausted and at least one RDN has been resolved, the partialName 

component is included and set to TRUE if the request had the partialNameResolution service control set and the 

Directory was unable to complete name resolution on all RDNs of the relevant entry. When partialName is returned as 

TRUE, it indicates that the information being returned is from the entry at the point where the last RDN was successfully 

resolved. This function is only available for implementations based on Rec. ITU-T X.511 (1997) | ISO/IEC 9594-3:1998 

or later editions. 

The derivedEntry parameter is included and set to TRUE whenever the returned entry information contains joined 

results obtained by performing a join on data that originated from more than one directory entry. When this parameter is 

TRUE, the value in name may be the name of any of the related entries from which the entry information is derived, or it 

may be the name of an alias to any of those entries. The value in name should not be used in subsequent operations. If the 

derivedEntry parameter is set to TRUE and the response is signed, the signature is that of the DSA performing the join. 

This function is only available for implementations based on Rec. ITU-T X.511 (2001) | ISO/IEC 9594-3:2001 or later 

editions. 

7.7.2 Family information in entry information 

When information from a compound entry is to be returned, attributes from each member to be returned are selected 

according to the EntryInformationSelection (possibly modified by a governing-search-rule). When the 

separateFamilyMembers search control option is set in the search request, each member is returned as a separate 

entry. Otherwise, if more than one member is to be returned, the entry information shall be packed in such a way that the 

information appears to come from a single entry, which can be the ancestor or a subordinate member (the latter is 

appropriate when the base object of the search request is a family member subordinate to the ancestor and the ancestor 

has not been selected by FamilyReturn). The attributes from the other members shall be packed into a 

family-information derived attribute as described below. 

NOTE 1 – According to the above, multiple family members are always packed in a read or modifyEntry result. 

The use of the family-information derived attribute is for packaging only; the attribute does not exist as a distinct 

entity; it cannot directly be selected by entryInformationSelection (any attempt to do so shall be ignored), nor can 

it be protected directly by access control. 
 

family-information ATTRIBUTE ::= { 

  WITH SYNTAX  FamilyEntries 

  USAGE        directoryOperation 

  ID           id-at-family-information } 

 

FamilyEntries ::= SEQUENCE { 

  family-class   OBJECT-CLASS.&id, -- structural object class value 

  familyEntries  SEQUENCE OF FamilyEntry, 

  ... } 

 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 17  

FamilyEntry ::= SEQUENCE { 

  rdn            RelativeDistinguishedName, 

  information    SEQUENCE OF CHOICE { 

    attributeType  AttributeType, 

    attribute      Attribute{{SupportedAttributes}}, 

    ...}, 

  family-info    SEQUENCE SIZE (1..MAX) OF FamilyEntries OPTIONAL, 

  ... } 

The family-information attribute is a multi-valued attribute. If the ancestor is designated as the source of information, 

each attribute value holds information from a single family. If a family member subordinate to the ancestor is designated 

as the source of information, information is sorted into attribute values based on the structural object classes of the 

immediately subordinate members of the designated member. 

Each family member that is selected is represented by a value of type FamilyEntry, which contains: 

– Selected attribute information (where appropriate), either as an attribute type or as a complete attribute, 

depending on the infoTypes value in EntryInformationSelection; 

NOTE 2 – As stated in clause 7.6, the infoTypes specification only applies for the contained attributes, not for the family-

information attribute itself. 

– Any nested FamilyEntries information in the form of a complete family-information attribute, 

collected in terms of the structural object classes of the subordinate entries. 

– Unselected entries are not represented at all unless they are superior to one or more family members that 

have been selected. 

7.8 Filter 

7.8.1 Filter parameter 

A Filter parameter applies a test that is either satisfied or not by a particular entry. The filter is expressed in terms of 

assertions about the presence or value of certain attributes of the entry, and is satisfied if, and only if it evaluates to TRUE.  

NOTE – A filter may be TRUE, FALSE or UNDEFINED. 
 

Filter ::= CHOICE { 

  item  [0]  FilterItem, 

  and   [1]  SET OF Filter, 

  or    [2]  SET OF Filter, 

  not   [3]  Filter, 

  ... } 

 

FilterItem ::= CHOICE { 

  equality          [0]  AttributeValueAssertion, 

  substrings        [1]  SEQUENCE { 

    type                   ATTRIBUTE.&id({SupportedAttributes}), 

    strings                SEQUENCE OF CHOICE { 

      initial           [0]  ATTRIBUTE.&Type 

                              ({SupportedAttributes}{@substrings.type}), 

      any               [1]  ATTRIBUTE.&Type 

                              ({SupportedAttributes}{@substrings.type}), 

      final             [2]  ATTRIBUTE.&Type 

                              ({SupportedAttributes}{@substrings.type}), 

      control                Attribute{{SupportedAttributes}}, 

                    -- Used to specify interpretation of following items 

      ... }, 

    ... },  

  greaterOrEqual    [2]  AttributeValueAssertion, 

  lessOrEqual       [3]  AttributeValueAssertion, 

  present           [4]  AttributeType, 

  approximateMatch  [5]  AttributeValueAssertion, 

  extensibleMatch   [6]  MatchingRuleAssertion, 

  contextPresent    [7]  AttributeTypeAssertion, 

  ... } 

 

MatchingRuleAssertion ::= SEQUENCE { 

  matchingRule  [1]  SET SIZE (1..MAX) OF MATCHING-RULE.&id, 

  type          [2]  AttributeType OPTIONAL, 

  matchValue    [3]  MATCHING-RULE.&AssertionType (CONSTRAINED BY { 

    -- matchValue shall be a value of  type specified by the &AssertionType field of  



ISO/IEC 9594-3:2020 (E) 

18 Rec. ITU-T X.511 (10/2019) 

    -- one of the MATCHING-RULE information objects identified by matchingRule -- }), 

  dnAttributes  [4]  BOOLEAN DEFAULT FALSE, 

  ... } 

A Filter is either a FilterItem (see clause 7.8.2), or an expression involving simpler filters composed together with 

the logical operators and, or, and not. The evaluation of a filter can be affected by the action of a relaxation policy, 

which can cause a substitution of one matching rule for another, or can supply values that are to be considered for 

matching. 

A Filter which is a FilterItem has the value of the FilterItem (i.e., TRUE, FALSE or UNDEFINED). 

A Filter which is the and of a set of filters is TRUE if the set is empty or if each filter is TRUE; it is FALSE if at least 

one filter is FALSE; otherwise, it is UNDEFINED (i.e., if at least one filter is UNDEFINED and no filters are FALSE). 

A Filter which is the or of a set of filters is FALSE if the set is empty or if each filter is FALSE; it is TRUE if at least 

one filter is TRUE; otherwise, it is UNDEFINED (i.e., if at least one filter is UNDEFINED and no filters are TRUE). 

A Filter which is the not of a filter is TRUE if the filter is FALSE; FALSE if it is TRUE; and UNDEFINED if it is 

UNDEFINED. 

A non-negated filter item is defined as one that is nested within an even number of not elements (possibly zero) within 

the outermost Filter. Thus, a filter comprising only filter items in an and or or combination would only contain 

non-negated items. A negated filter item is defined as one nested within an odd number of not elements within the 

outermost Filter. 

7.8.2 Filter item 

A FilterItem is an assertion about the presence or value(s) of attributes in the entry under test. An assertion about a 

particular attribute type is also satisfied if the entry contains a subtype of the attribute and the assertion is TRUE for the 

subtype and the noSubtypeMatch service control option is not set, or if there is a collective attribute of the entry 

(see clause 7.6) for which the assertion is TRUE, or if: 

– the dontMatchFriends service control option is not set; and 

– the entry contains a friend attribute for the specified attribute which has a matching rule compatible with 

the assertion; and 

– the assertion is TRUE for the friend attribute. 

Each assertion is TRUE, FALSE or UNDEFINED. 

Every FilterItem includes or implies one or more AttributeTypes which identify the particular attribute(s) 

concerned. 

Any assertion about the values of such an attribute is only defined if the AttributeType is known by the evaluating 

mechanism, the purported AttributeValue(s) conforms to the attribute syntax defined for that attribute type, the 

implied or indicated matching rule is applicable to that attribute type, and (when used) a presented matchValue conforms 

to the syntax defined for the indicated matching rules. When these conditions are not met, the FilterItem shall evaluate 

to the logical value UNDEFINED. 

NOTE 1 – Access control restrictions may affect the evaluation of the FilterItem and may cause the FilterItem to evaluate 

to UNDEFINED. 

An assertion which is defined by these conditions additionally evaluates to UNDEFINED if it relates to an attribute value 

and the attribute type is not present in an attribute against which the assertion is being tested. An assertion which is defined 

by these conditions and relates to the presence of an attribute type evaluates to FALSE. 

Attribute value assertions in filter items are evaluated using the matching rules defined for that attribute type, as 

substituted for, where applicable, in accordance with the action of a relaxation policy. Matching rule assertions are 

evaluated as specified in their definition. A matching rule defined for a particular syntax can only be used to make 

assertions about attributes of that syntax or subtypes of that syntax. 

NOTE 2 – The action of a relaxation policy can cause a particular matching rule to revert to a nullMatch matching rule (which 

always evaluates as TRUE (if non-negated) or FALSE (if negated)) – see clause 8.7.2 of Rec. ITU-T X.520 | ISO/IEC 9594-6. 

A FilterItem may be UNDEFINED (as described above). Otherwise, where the FilterItem asserts: 

a) equality – It is TRUE if, and only if there is a value of the attribute or one of its subtypes for which the 

equality matching rule applied to that value and the presented value returns TRUE. 

b) substrings – It is TRUE if, and only if there is a value of the attribute or one of its subtypes for which 

the substring matching rule applied to that value and the presented value in strings returns TRUE. 

See Rec. ITU-T X.520 | ISO/IEC 9594-6 for a description of the semantics of the presented value. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 19  

c) greaterOrEqual – It is TRUE if, and only if there is a value of the attribute or one of its subtypes for 

which the ordering matching rule applied to that value and the presented value returns FALSE, i.e., there 

is a value of the attribute which is greater than or equal to the presented value. 

d) lessOrEqual – It is TRUE if, and only if there is a value of the attribute or one of its subtypes for which 

either the equality matching rule or the ordering matching rule applied to that value and the presented 

value returns TRUE, i.e., there is a value of the attribute which is less than or equal to the presented value. 

e) present – It is TRUE if, and only if the attribute or one of its subtypes is present in the entry. 

f) approximateMatch – It is TRUE if, and only if there is a value of the attribute or one of its subtypes for 

which a locally-defined approximate matching algorithm (e.g., spelling variations, phonetic match, etc.) 

returns TRUE. If an item matches for equality, it shall also satisfy an approximate match. Otherwise, there 

are no specific guidelines for approximate matching in this edition of this Directory Specification. 

If approximate matching is not supported, this FilterItem should be treated as a match for equality. 

g) extensibleMatch – It is TRUE if, and only if there is a value of the attribute with the indicated type or 

one of its subtypes for which the matching rule specified in matchingRule applied to that value and the 

presented value matchValue returns TRUE. 

 If several matching rules are given, the way in which these rules are combined into a new rule is unspecified 

(it is a locally-defined algorithm, which reflects the semantics of the constituent matching rules, e.g., 

phonetic + keyword match).  

 If type is omitted, the match is made against all attribute types which are compatible with that matching 

rule. If dnAttributes is TRUE, the attributes of the Distinguished Name of the entry are used in addition 

to those of the entry in evaluating the match. 

 If an extensibleMatch is requested in a filter (rather than an extendedFilter), the 

extendedFilter bit in the criticalExtensions parameter in CommonArguments shall be set, 

indicating that the extension is critical. 

 If an implementation does not support any of the matching rules defined in the matchingRule 

subcomponent, or if none of the matching rules are compatible with the attribute type, an 

extensibleMatch filter item evaluates to UNDEFINED if the performExactly search control option 

is not set. If the performExactly search control option is set, the search request is rejected with: 

– a serviceError with problem unsupportedMatchingUse; 

– a searchServiceProblem notification attribute with the value id-pr-

unsupportedMatchingRule if all the matching rules are unsupported, otherwise with the value 

id-pr-unsupportedMatchingUse; 

– an attributeTypeList notification attribute which has as value the attribute type for which the 

invalid matching rules were defined; and 

– a matchingRuleList notification attribute which has as values the object identifiers of the 

unsupported and/or incompatible matching rules. 

NOTE 3 – An extensibleMatch is not permitted for implementations based on Rec. CCITT X.500 (1988) | ISO/IEC 

9594-3:1990. 

h) contextPresent – It is TRUE if, and only if, the AttributeTypeAssertion for this attribute type or, 

if the noSubtypeMatch service control option is not set, one of its subtypes evaluates to TRUE. 

If context assertions are included in an attribute value assertion in a filter item, then the filter item is evaluated against 

only those values which satisfy all the given context assertions, as described in clause 8.9.2 of Rec. ITU-T X.501 | 

ISO/IEC 9594-2. If no context assertions are included in an attribute value assertion, then default context assertions shall 

be applied as described in clause 8.9.2.2 of Rec. ITU-T X.501 | ISO/IEC 9594-2. 

7.8.3 Evaluating filters with family information 

Specific family groupings work as follows in fulfilling filter requirements: 

entryOnly means that only family members that completely fulfil the filter requirements are marked as contributing and 

participating members (for the definition of contributing and participating members, see clause 7.13). 

compoundEntry means that the entire compound entry forms the group that shall satisfy the complete filter; within each 

compound entry that satisfies the filter, family members that contribute to the match are marked as contributing members, 

while all members of the compound entry are marked as participating entries. 



ISO/IEC 9594-3:2020 (E) 

20 Rec. ITU-T X.511 (10/2019) 

strands means that the filter applies to each complete strand from a leaf to the ancestor. The compound entry matches 

the filter if at least one strand matches the filter. Family members on a matching strand that contribute to the match are 

marked as contributing members, while all the members on a matching strand are marked as participating members. 

A strand is a set of members within a family that form a path from a leaf to the ancestor, so that there are as many strands 

as there are leaf entries. 

multiStrand means that a combination of one strand from each family class is a family grouping for the purpose of 

matching. All combinations are to be considered one at a time. The compound entry matches the filter if at least one 

combination of strands matches the filter. Family members on a matching strand combination that contribute to the match 

are marked as contributing members, while all members of a matching strand combination are marked as participating 

members. 

Two strands are of the same family class if, and only if the family members that are immediately subordinate to the 

ancestor have the same structural object class. 

A strand is matched for a filter if, and only if it is present in at least one of all possible combinations of strands that causes 

the entry to match for the subfilter. The following are corollaries: 

– If the ancestor matches the subfilter completely, all strands are matched. 

– Similarly, if there are three family classes for a particular ancestor, and the subfilter is fulfilled by two of 

the classes without considering the third one, all strands for the third family class are matched. 

multiStrand is only applicable if the base object is the ancestor (or higher) in the DIT. If the base object is a family 

member, but not the ancestor, then multiStrand shall be ignored and entryOnly shall be substituted. 

7.9 Paged results 

A PagedResultsRequest parameter is used by the DUA to request that the results of a List or Search operation be 

returned to it "page-by-page": it requests the DSA to return only a subset – a page – of the results of the operation, in 

particular the next pageSize subordinates or entries, and to return a queryReference which can be used to request the 

next set of results on a follow-up query. 

Paged results may either be performed by the DSA to which the DUA has bound by a Bind operation (the bound DSA) 

or by the DSA that started the initial evaluation phase (the initial performer as detailed in clause 15.5.5 of 

Rec. ITU-T X.518 | ISO/IEC 9594-4). 

It shall not be used if results are to be signed, unless there is an understanding among DSAs cooperating to provide the 

paged results that the DSA performing the paging may remove the signatures on results received from other DSAs and 

then itself sign the results to be returned toward the DUA. The way such an understanding is established is outside the 

scope of this Directory Specification. Although a DUA may request pagedResults, a DSA is permitted to ignore the 

request and return its results in the normal manner.  

NOTE 1 – The result may be unpredictable in case of a configuration that is not "well-connected", e.g., where due to shadowing 

and use of NSSRs, the name resolution will locate more than one base object. 

If paged results are requested and paging is performed, then the paging DSA shall ignore the sizeLimit service control, 

if any. If paging is not performed, the sizeLimit service control shall be honoured. A contributing DSA 

(see clause 15.5.5 of Rec. ITU-T X.518 | ISO/IEC 9594-4) shall honour the sizeLimit service control. 
 

PagedResultsRequest ::= CHOICE { 

  newRequest         SEQUENCE { 

    pageSize           INTEGER, 

    sortKeys           SEQUENCE SIZE (1..MAX) OF SortKey OPTIONAL, 

    reverse       [1]  BOOLEAN DEFAULT FALSE, 

    unmerged      [2]  BOOLEAN DEFAULT FALSE, 

    pageNumber    [3]  INTEGER OPTIONAL, 

    ...}, 

  queryReference     OCTET STRING, 

  abandonQuer   [0]  OCTET STRING, 

  ... } 

 

SortKey ::= SEQUENCE { 

  type          AttributeType, 

  orderingRule  MATCHING-RULE.&id OPTIONAL, 

  ... } 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 21  

For a new list or search operation, the PagedResultsRequest is set to newRequest, which consists of the following 

parameters:  

a) The pageSize parameter specifies the maximum number of subordinates or entries to return in the results. 

The DSA shall return up to but not more than the requested number of subordinates or entries. The 

sizeLimit, if any, is ignored. The inclusion of family information does not count towards page size when 

packaged in family-information derived attributes. 

b) The sortKeys parameter specifies a sequence of attribute types with optional ordering matching rules to 

use as sort keys for sorting the returned entries prior to the return to the DUA. In the case of List operations, 

the sorting shall be by RDN, but the sorting requirements shall apply only to attributes within the RDN. In 

the case of Search operations, ordering shall only apply to attributes that are actually supplied (as a result 

of selection, and access control, with sorting by distinguished name as a fallback). The entries are sorted 

according to their values of the type attribute of the first SortKey in the sequence, and in the event of 

multiple entries with the same sort position, of the next SortKey in the sequence, and so on. 

 For a particular SortKey, the DSA uses the orderingRule matching rule if it is present, otherwise the 

ordering matching rule of the attribute if one is defined; it ignores the sort key if none are defined. If the 

attribute type is multi-valued, the "least" value is used; if the attribute type is missing from the returned 

results, it is regarded as "greater" than all other matched values. A DSA is permitted to support only certain 

sort key sequences (thus, a DSA that holds and returns its data in the internal order "alphabetic by surname" 

will be able to comply with only one sort key sequence). If it cannot support the requested sequence, it 

shall use a default sort sequence. 

 A hierarchical group shall not be separated, but returned in the sequence as specified by clause 10.3 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2. When sorting is performed, the first entry of a hierarchical group to 

be returned determines the position of the hierarchical group within the sorted result. 

NOTE 2 – A hierarchical group may span pages. 

c) If the reverse parameter is TRUE, then the DSA shall return the sorted results in reverse order (i.e., from 

"greatest" to "least" – if the attribute type is multi-valued, the "greatest" is used; if the attribute type is 

missing from the returned results, it is regarded as "less" than all other matched values). If it is FALSE, the 

DSA shall return them in forward order. If no sortKeys parameter is specified, this parameter is ignored. 

d) If the unmerged parameter is TRUE and the DSA responsible for the paging is collecting results from a 

number of other DSAs, it shall return all the data from one DSA (in sort order) before returning data from 

the next DSA. If the parameter is FALSE, the DSA shall collect the results from all other DSAs and sort 

the merged data before returning any of it. If no sortKeys parameter is specified, this parameter is 

ignored. The semantic of the unmerged parameter is the same whether the DSA supports DSP paged 

results or not. 

e) If the pageNumber parameter is present, it indicates that the user wants to start with a particular page 

rather than the first one. This parameter shall be ignored if ordering is not requested. 

For a follow-up request, i.e., to request the next set of paged results, the DUA makes the same list or search request as 

before, but sets PagedResultsRequest to queryReference, with the value of this parameter the same as that returned 

in the PartialOutcomeQualifier of the previous results. The DUA has no understanding of the queryReference, 

which is available to a DSA to use as it wishes to record context information for the query. The DSA uses this information 

to determine which results to return next.  

The DUA may at any time indicate that no more pages are required by making the same list or search request as 

before, by setting the PagedResultsRequest set to abandonQuery, with the value identical to the queryReference 

value returned in the PartialOutcomeQualifier of the previous results. No further pages shall be requested or 

returned. An abandoned error with problem code pagingAbandoned shall be returned. It is implementation-dependent 

as to when the pages will be purged. 

In the case where the queryReference or the abandonQuery choice is made, the new request and the original 

information shall be identical in the following respects: 

– baseObject within SearchArgument or object within ListArgument shall match for the present and 

the original request; 

– the queryReference subcomponent of pagedResults shall be identical to the queryReference value 

returned in the PartialOutcomeQualifier of the previous result; 

– the options component of the ServiceControls data type shall specify identical options for the present 

and the original request; 

– operationProgress (if present) shall be identical for the present and the original request. 



ISO/IEC 9594-3:2020 (E) 

22 Rec. ITU-T X.511 (10/2019) 

Otherwise a serviceError with problem invalidQueryReference shall be returned. 

NOTE 3 – If the DIB changes between search requests, the DUA may not see the effects of these changes. This is 

implementation-dependent. 

NOTE 4 – A query-reference may remain valid even if a DUA begins a new list or search operation. A DUA may request paged 

results with several queries and then return to an earlier query and request the next page of results using the query-reference supplied 

for it. The number of "active" query-references to which a DUA can return is a local DSA implementation option, as is the lifetime 

of those query-references.  

NOTE 5 – Support of the abandonQuery choice is only available for implementations based on Rec. ITU-T X.511 (2005) | 

ISO/IEC 9594-3:2005 or later editions. 

NOTE 6 – When a DAP association terminates, access to all associated paged results is lost. Paged results can only be accessed 

within the DAP application-association within which they were originally invoked. 

7.10 Security parameters 

The SecurityParameters govern the operation of various security features associated with a Directory operation. 

NOTE 1 – These parameters are conveyed from sender to recipient. Where the parameters appear in the argument of an operation 

the requester is the sender, and the performer is the recipient. In a result, the roles are reversed. 
 

SecurityParameters ::= SET { 

  certification-path          [0]  CertificationPath OPTIONAL, 

  name                        [1]  DistinguishedName OPTIONAL, 

  time                        [2]  Time OPTIONAL, 

  random                      [3]  BIT STRING OPTIONAL, 

  target                      [4]  ProtectionRequest OPTIONAL, 

  --                          [5]  Not to be used 

  operationCode               [6]  Code OPTIONAL, 

  --                          [7]  Not to be used 

  errorProtection             [8]  ErrorProtectionRequest OPTIONAL, 

  errorCode                   [9]  Code OPTIONAL, 

  ... } 

 

ProtectionRequest ::= INTEGER {none(0), signed(1)} 

 

Time ::= CHOICE { 

  utcTime          UTCTime, 

  generalizedTime  GeneralizedTime, 

  ... } 

 

ErrorProtectionRequest ::= INTEGER {none(0), signed(1)} 

The public-key certificate framework defined in Rec. ITU-T X.509 | ISO/IEC 9594-8 is used in all Directory protocols 

defined in these Directory Specifications to optionally protect the operations including requests, responses and errors. 

Integrity protection is provided through the digital signature of the sender and the verification of that signature by the 

recipient using the sender's corresponding public-key certificate. 

The certification-path component is defined in clause 7.7 in Rec. ITU-T X.509 | ISO/IEC 9594-8.). This component 

shall be present and contain the signer's public-key certificate if the request argument, response or error is signed. If the 

recipient requires a certification path for validation, and an acceptable parameter is not present, whether the recipient 

rejects the signature, or attempts to determine a certification path, is a local matter. The public-key certificate shall have 

the distinguished name in the subject field as specified by the name component. 

The name is the distinguished name of the first intended recipient of the argument or result. For example, if a DUA 

generates a signed argument, the name is the distinguished name of the DSA to which the operation is submitted. 

The time is the intended expiry time for the validity of the request, response or error. It is used in conjunction with the 

random number to enable the detection of replay attacks. 

The random value is a number that should be different for each request, response or error. It is used in conjunction with 

the time parameter to enable the detection of replay attacks. If sequence integrity is required, then the random argument 

may be used to carry a sequence integrity number as follows: 

a) The random value used with operation arguments is derived using a pre-agreed sequence (e.g., the previous 

value plus 1) from: 

i) for the first operation sent from a system on a binding, the random value passed in the bind operation 

argument/result by the remote peer system; and 

ii) for subsequent operations, the random value passed in the previous operation in the same direction. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 23  

b) The random value used with operation results or errors is derived using some pre-agreed sequence from 

the random value in the request (e.g., random in request argument plus 1). 

The target ProtectionRequest may appear only in the request for an operation to be carried out, and indicates the 

requester's preference regarding the degree of protection to be provided to the result. Two levels are provided: none 

(no protection requested, the default), and signed (the Directory is requested to sign the result). The degree of protection 

actually provided to the result is indicated by the form of result and may be equal to or lower than that requested, based 

on the limitations of the Directory. 

The operationCode parameter is used to bind securely the operation code to the message (request arguments, results or 

errors). If this parameter is present, it shall take the value of the operation code for the operation and the receiver shall 

check that the value in this parameter is equal to the operation code in the received message. If not, the assumption is that 

the operation code has been changed and the message shall be discarded, 

NOTE 2 -– The operation code is only securely bound to the message if the message is signed, 

The errorProtection request may appear only in the request for an operation to be carried out, and indicates the 

requester's preference regarding the degree of protection to be provided to any error. Two levels are provided: none 

(no protection requested, the default), and signed (the Directory is requested to sign the error). The degree of protection 

actually provided to the error is indicated by the form of error and may be equal to or lower than that requested, based on 

the limitations of the Directory. 

NOTE 3 – A DUA may request that any security label context be returned with an attribute value using the context selection. 

The errorCode is used to secure the error code where an error is returned in response to an operation. 

If the syntax of Time has been chosen as the UTCTime type, the value of the two-digit year field shall be rationalized into 

a four-digit year value as follows: 

– If the 2-digit value is 00 to 49 inclusive, the value shall have 2000 added to it. 

– If the 2-digit value is 50 to 99 inclusive, the value shall have 1900 added to it. 

GeneralizedTime shall be used if the negotiated version is v2 or greater. The use of GeneralizedTime when v1 has 

been negotiated may prevent interworking with implementations unaware of the possibility of choosing either UTCTime 

or GeneralizedTime. It is the responsibility of those specifying the domains in which this Directory Specification will 

be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shall UTCTime be used for 

representing dates beyond 2049. 

7.11 Common elements of procedure for access control 

This clause defines the elements of procedure that are common to all abstract service operations when basic-access-control, 

rule-based-access-control or both are in effect. If both mechanisms are in effect, the order in which they are applied is a 

local matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, then 

a grant from the other mechanism shall not override it. In this respect, DiscloseOnError permission of basic-access-control 

is a grant that shall not override a deny of rule-based-access-control. 

7.11.1 Common elements of procedure for basic access control 

7.11.1.1 Alias dereferencing 

If, in the process of locating a target object entry (identified in the argument of an abstract service operation), alias 

dereferencing is required, no specific permissions are necessary for alias dereferencing to take place. However, if alias 

dereferencing would result in a ContinuationReference being returned (i.e., in a Referral), the following sequence 

of access controls applies. If the DSA chains the request to another DSA and receives a referral back from it, then the 

access controls shall be applied to the referral if the targetObject in the referral is the same as in the chained request. 

That is, the DSA shall police all referrals whether they were generated locally or remotely. 

1) Read permission is required to the alias entry. If permission is not granted, the operation fails in accordance 

with the procedure described in clause 7.11.1. 

2) Read permission is required to the aliasedEntryName attribute and to the single value that it contains. 

If permission is not granted, the operation fails and nameError with problem 

aliasDereferencingProblem shall be returned. The matched element shall contain the name of the 

alias entry. 

NOTE – In addition to the access controls described above, security policy may prevent the disclosure of knowledge information 

which would otherwise be conveyed as a ContinuationReference in Referral. If such a policy is in effect and if a DUA 

constrains the service by specifying chainingProhibited, the Directory may return a serviceError with problem 

chainingRequired. Otherwise, a securityError with problem insufficientAccessRights or noInformation shall be 

returned. 



ISO/IEC 9594-3:2020 (E) 

24 Rec. ITU-T X.511 (10/2019) 

7.11.1.2 Return of Name Error 

If, while performing an abstract service operation, the specified target object (alias or entry) – e.g., the Name of an entry 

to be read or the baseObject in a search request – could not be found, a nameError with problem noSuchObject 

shall be returned. The matched element shall either contain the name of the next superior entry to which DiscloseOnError 

permission is granted, or the name of the DIT root (i.e., an empty RDNSequence). 

NOTE – The second alternative may be taken by a DSA which does not have access to all superior entries.  

7.11.1.3 Non-disclosure of the existence of an entry 

If access is denied under rule-based-access-control, then the DiscloseOnError permission is not applicable. 

If, while performing an abstract service operation, the necessary entry level permission is not granted to the specified 

target object entry – e.g., the entry to be read – the operation fails and the error returned is one of: if DiscloseOnError 

permission is granted to the target entry, a securityError with problem insufficientAccessRights or 

noInformation shall be returned; otherwise, a nameError with problem noSuchObject shall be returned. The 

matched element shall either contain the name of the next superior entry to which DiscloseOnError permission is 

granted, or the name of the DIT root (i.e., an empty RDNSequence). 

NOTE – The second alternative may be taken by a DSA which does not have access to all superior entries. 

Additionally, whenever the Directory detects an operational error (including a referral), it shall ensure that in returning 

that error, it does not compromise the existence of the named target entry and any of its superiors. For example, before 

returning a serviceError with problem timeLimitExceeded or an updateError with problem 

notAllowedOnNonLeaf, the Directory verifies that DiscloseOnError permission is granted to the target entry. If it is 

not, the procedure described in the paragraph above shall be followed. 

7.11.1.4 Return of Distinguished Name 

In a Compare, List, or Search operation, ReturnDN permission is required to the object (or baseObject) entry if, as a 

result of dereferencing an alias, the object's distinguished name is to be returned in the name parameter of the operation 

result (see clause 10.2.3). If this permission is not granted, the Directory shall return an alias name for the entry instead, 

as described in clause 7.7, or it shall omit the name parameter altogether. 

If a Read or Search operation, is not granted, the Directory shall return the name of an alias instead, as described 

in clause 7.7, or if no alias name is available, it shall fail the operation with a nameError (in the case of Read) or omit 

the entry from the results (in the case of Search). 

If the user supplied alias name is returned in the result, then the aliasDeferenced flag of CommonResults shall not 

be set to TRUE. 

7.11.2 Common elements of procedure for rule-based-access-control 

7.11.2.1 Accessing an entry (entry level permission) 

In order to access an entry, permission is required to access at least one attribute value in the entry. If entry level 

permission is not granted, then nameError with problem noSuchObject shall be returned. 

7.11.2.2 Returning the name of an entry  

In order to return the DN of an entry, permission is required to access all the attribute values of at least one context variant 

of the RDN of the entry (this is termed RDN permission). No permissions are required from any of the superiors of the 

entry. If RDN permission is not granted, then a DSA may choose to either return the DN of a valid alias of the entry for 

which RDN permission has been granted, or to omit the name component from the operation result. 

NOTE – The selection of an appropriate alias name is further described in the notes of clause 7.7. 

7.11.2.3 Alias dereferencing 

In order to dereference an alias, permission is required to access the aliasedEntryName attribute value. 

7.11.2.4 Return of Name Error (noSuchObject) 

The matched component of nameError with problem noSuchObject shall be set to the name of the next superior entry 

to which the requester has RDN permission. If such an entry is not available to the DSA generating the error, then the 

name of the DIT root shall be returned. 

7.11.2.5 Accessing an attribute 

In order to access an attribute, permission is needed to access at least one of the values of the attribute. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 25  

7.11.2.6 Deleting information 

In order to delete an attribute value, permission is needed to access that value. When deleting an entry or an attribute, the 

operation shall return a successful response if at least one attribute value is deleted, irrespective of how many values were 

requested to be deleted. 

7.11.2.7 Invoking search-rules 

In order to evaluate a search-rule against the arguments of a search operation, invoke permission to the search-rule is 

required for the requester originating the search operation. The user needs no other permissions to access the search-rule 

attribute or the subentry that contains it. 

7.11.3 Family information 

Family information is treated the same way as any other information, except that the access control information (ACI) for 

which the ProtectedItem is marked as is includeFamily; if the ACI is applicable to an ancestor or family member 

this causes subordinate family members to be subject to the same ACI. IncludeFamily is only meaningful when applied 

to an entry protected item. 

7.12 Managing the DSA Information Tree 

The DSA Information Tree held by a DSA can be managed using the Directory abstract service. When the DSA 

Information Tree is managed: 

– all DSEs in a DSA are visible through the DAP including the root DSE; 

– attributes defined as no user modification may be modified (though the DSA can reply with a 

serviceError with problem unwillingToPerform if it cannot support the requested change); 

– knowledge is merely another attribute which can be read and modified; and 

– the DSA never chains requests or returns referrals or continuation references. 

Visibility of DSEs and the retrieval of or changes to operational attributes can be controlled via access control in the 

normal way. 

The management of a DSA Information Tree is achieved by a DUA using the following procedures: 

1) The DUA BINDs directly to the DSA which holds the DSA Information Tree that is to be managed. 

2) For each operation that is used to manage the DSA Information Tree: 

– the manageDSAIT extension bit shall be set; 

– the manageDSAIT option shall be set; 

– the manageDSAITPlaneRef option shall be included if a specific replication plane is to be managed. 

The following components are ignored by the Directory: 

– operationProgress in CommonArgument; 

– referenceType in CommonArgument; 

– entryOnly in CommonArgument; 

– nameResolveOnMaster in CommonArgument; and 

– chainingProhibited in ServiceControls. 

7.13 Procedures for families of entries 

As specified in clause 7.3.2, family members within a compound entry may be grouped together for the purpose of 

operation evaluation. This grouping is only relevant for Compare, Search and Remove Entry operations. If family 

grouping is specified for any other operation, it shall be ignored. 

For determining which family members that shall be returned according to the familyReturn component of the 

entryInformationSelection, the concepts of contributing member and participating member is introduced. These 

concepts are only relevant for operations that return entry information, i.e., Read, Search and Modify Entry operations. 

If a family member makes an active contribution to the operation evaluation, it is marked as a contributing member. A 

family member makes a contribution to the match if it is part of a family grouping that matches the filter and if it holds 

one or more attributes that are matched by non-negated filter items. It also contributes if it holds an attribute of a given 

type if a negated filter item for the same type does not match. In the case of a Read or Modify Entry operation, the family 

member that is selected by the operation (as specified by the object component of the operation) is the only member 



ISO/IEC 9594-3:2020 (E) 

26 Rec. ITU-T X.511 (10/2019) 

marked as a contributing member and as a participating member. In the case of a Search operation, family grouping is 

done for filter matching. If a family grouping matches a filter (see clause 7.8.3), all members that have contributed actively 

to the matching are marked as contributing members, while all entries of the grouping are marked as participating 

members. If the filter used is the default filter (and : { }), then all members of a family grouping shall be marked as 

participating members, but not as contributing members. 

When a family grouping of compound entry matches the filter and the SearchArgument specifies hierarchy selection 

(except for self), the selected entries shall also be marked if applicable. If the ancestor of the compound entry is marked 

as participating (and possibly also as contributing), all referenced entries of the hierarchical group that are not compound 

entries shall be selected, otherwise they shall be excluded. If a referenced entry is a compound entry, the marking of its 

members shall be done as follows. Each member of the referenced compound entry that have the same local member 

name as a member of the matched compound entry is marked the same way. All other members of the referenced 

compound entry are left unmarked. 

As a Search filter can possibly match several compound entries, the resulting selection and marking shall be the union of 

those for the individual matched compound entries. 

If a matched entry not being a compound entry references a compound entry in its hierarchy selection, all the members 

of that compound entry are marked as participating. 

How this marking of entries affects the return of entry information is detailed in clause 7.6.4. 

Family members may be packed into a family-information derived attribute. If only a single member of a compound 

entry is returned in the result, packaging shall not be performed. However, if several members are returned from a Read 

or Modify Entry operation, these members shall be packed. In the case of a Search operation where several members of 

a compound attribute are returned they shall be packed unless the separateFamilyMembers search control option is 

set, in which case the members shall be returned as separate entries. 

When performing search operations involving compound entries, there are four relevant phases for a Search operation: 

a) The groupings of family members within each entry of interest, as defined by familyGrouping, are 

logically considered within each candidate entry (i.e., as selected by subset). By pooling together all the 

attributes of the group, all attribute values for a given attribute type are considered to belong to that single 

attribute type, even if they originate from different family members. 

b) The filter is applied to each family grouping; if the filter is satisfied for the grouping, the compound entry 

then satisfies the filter, and is considered to be selected by the filter. Family members are marked as 

described above. 

c) The marked entries are augmented, as specified by familyReturn in EntryInformationSelection, 

to mark all entries that would be returned. 

d) If the additionalControl component is present in a governing-search-rule (see clause 16.10.8 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2), the markings, and thereby what is returned, may be changed as the 

result of processing the referenced control attributes. 

8 Directory authentication 

The Directory supports the authentication of users accessing the Directory via DUAs and the authentication of directory 

systems (DSAs) to users and to other DSAs. Depending on the environment, either simple or strong authentication may 

be used. The procedures to be used for simple and strong authentication in the Directory are described in the following 

subclauses. 

8.1 Simple authentication procedure 

Simple authentication is intended to provide local authorization based upon the distinguished name of a user, a bilaterally 

agreed (optional) password, and a bilateral understanding of the means of using and handling this password within a 

single domain. The utilization of simple authentication is primarily intended for local use only, i.e., for peer entity 

authentication between one DUA and one DSA or between one DSA and one DSA. Simple authentication may be 

achieved by several means: 

a) the transfer of the user's distinguished name and (optional) password in the clear (non-protected) to the 

recipient for evaluation; 

b) the transfer of the user's distinguished name, password and a random number and/or a timestamp, all of 

which are protected by applying a one-way function; 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 27  

c) the transfer of the protected information described in b) together with a random number and/or a timestamp, 

all of which is protected by applying a one-way function. 

NOTE 1 – There is no requirement that the one-way functions applied be different. 

NOTE 2 – The signalling of procedures for protecting passwords may be a matter for an extension to the document. 

Where passwords are not protected, a minimal degree of security is provided for preventing unauthorized access. It should 

not be considered a basis for secure services. Protecting the user's distinguished name and password provides greater 

degrees of security. The algorithms to be used for the protection mechanism are typically non-enciphering one-way 

functions that are very simple to implement. 

The general procedure for achieving simple authentication is shown in Figure 2. 

 

Figure 2 – The unprotected simple authentication procedure 

The following steps are involved: 

1) An originating user A sends its distinguished name and password to recipient user B. 

2) B sends the purported distinguished name and password of A to the Directory, where the password is 

checked against that held as the UserPassword attribute within the directory entry for A (using the 

Compare operation of the Directory). 

3) The Directory confirms (or denies) to B that the credentials are valid. 

4) The success (or failure) of authentication may be conveyed to A. 

The most basic form of simple authentication involves only step 1) and after B has checked the distinguished name and 

password, may include step 4). 

8.1.1 Generation of protected identifying information 

Figure 3 illustrates two approaches by which protected identifying information may be generated. f1 and f2 are one-way 

functions (either identical or different) and the timestamps and random numbers are optional and subject to bilateral 

agreements. 

Annex E provides a suggested algorithm to be used for protected passwords. 

 

Figure 3 – Protected simple authentication 



ISO/IEC 9594-3:2020 (E) 

28 Rec. ITU-T X.511 (10/2019) 

8.1.2 Procedure for protected simple authentication 

Figure 4 illustrates the procedure for protected simple authentication. 

 

Figure 4 – The protected simple authentication procedure 

The following steps are involved (initially using f1 only): 

1) An originating user, user A, sends its protected identifying information (Authenticator1) to user B. 

Protection is achieved by applying the one-way function (f1) of Figure 3, where the timestamp and/or 

random number (when used) is used to minimize replay and to conceal the password. 

The protection of A's password is of the form: 

Protected1 = f1 (t1A, q1A, A, passwA) 

The information conveyed to B is of the form: 

Authenticator1 = t1A, q1A, A, Protected1 

2) B verifies the protected identifying information offered by A by generating (using the distinguished name 

and optional timestamp and/or random number provided by A, together with a local copy of A's password) 

a local protected copy of A's password (of the form Protected1). B compares for equality the purported 

identifying information (Protected1) with the locally generated value. 

3) B confirms or denies to A the verification of the protected identifying information. 

The procedure can be modified to afford greater protection using f1 and f2. The main differences are as follows: 

1) A sends its additionally protected identifying information (Authenticator2) to B. Additional protection is 

achieved by applying a further one-way function, f2, as illustrated in Figure 3. The further protection is of 

the form: 

Protected2 = f2 (t2A, q2A, Protected1) 

The information conveyed to B is of the form: 

Authenticator2 = t1A, t2A, q1A, q2A, A, Protected2 

For comparison, B generates a local value of A's additionally protected password and compares it for equality with that 

of Protected2. 

2) B confirms or denies to A the verification of the protected identifying information. 

8.2 Password policy 

8.2.1 Introduction 

Password policy is a set of rules that controls how passwords are used and administered in the Directory. It improves the 

security of the Directory and makes it difficult for password cracking programs to break into the Directory. These rules 

ensure that users change their passwords periodically, that passwords meet quality requirements, that the reuse of old 

passwords is restricted, and that users are locked out after a certain number of failed attempts. This policy also forces the 

user to update its password after it has been set for the first time, or has been reset by a password administrator. However, 

in some cases, it is desirable to disallow users from adding and updating their own passwords.  

A password is supposed not to be well known. If a password is frequently changed, the chance of misuse is minimized. 

Password policy administrators may deploy a password policy that causes passwords to expire after a given amount of 

time thus forcing users to change their passwords periodically. There must be a way to make users aware of the need to 

change their password before being locked out of their accounts. One or both of the following methods could be used:  

– A warning may be returned to the user sometime before the password is due to expire. If the user ignores 

this warning before the expiration time, the account will be locked. 

– The user may Bind to the directory a certain number of times after the password has expired. If the user 

fails to change the password following one of the 'grace' authentications, the account will be locked. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 29  

Password quality rules are rules for how a password shall be constructed. It is not the intention to provide a specification 

for password qualities, as requirements on quality may change over time. Password quality includes things like: 

– minimum length; 

– a mixture of characters (uppercase, lowercase, figures, punctuations, etc.); and 

– avoidance of trivial passwords. 

A particular quality rule requires specialized code within the implementation. It may therefore be of advantage to 

standardize password quality rules and assign object identifiers to such rules. An implementation may then claim support 

to one or more of such standardized quality rules. 

An intruder may try to guess a password to get access to protected information. Currently, two different safeguards have 

been identified:  

– Specification of the maximum number of failed attempts before a successful attempt within a given time 

span (which could be indefinitely): This approach allows for "denial of service attacks". One or more 

genuine users could have their access to the directory barred by the action of an attacker. 

– The other mechanism is to insert a delay before returning information on authentication failure, and 

increasing this delay for repeated failed authentications on the same connection. This approach slows 

authentication, and makes brute force attacks impractical. 

Password history is a mechanism to prevent password reuse. Previously used passwords should be stored to allow the 

Directory to ensure that a new password has not been previously used. Old passwords are stored for a time specified by 

the password policy, and after this time a password may be reused. The history is maintained in a userPwdHistory 

multi-valued operational attribute. A value is purged after a specific time, and the purged password may in principle be 

reused. The maximum time a password is kept in the userPwdHistory attribute is specified in the 

pwdMaxTimeInHistory operational attribute, and the minimum time is specified in the pwdMinTimeInHistory 

operational attribute. The number of passwords stored is limited by the pwdHistorySlots operational attribute and the 

password cannot be changed if there is no free slot in the history and no passwords in the history have been for less than 

the pwdMinTimeInHistory, so a user cannot revert to a "preferred password" simply by making lots of password changes. 

The password policy can be used with clear passwords (using the clear alternative of the userPwd attribute), or with 

encrypted passwords (using the encrypted alternative of the userPwd attribute) or with another password attribute. All 

entries in the same specific password administrative area shall use the same password attribute type. 

8.2.2 Operational attributes and procedures 

The password policy uses specific operational attributes to register policy parameters, times and dates related to password 

management. 

When a password value is first stored in the directory, in the userPwd attribute, the pwdStartTime operational attribute 

is set (Figure 5). The pwdExpiryTime operational attribute which contains the expiration of the password may either be 

automatically computed from the pwdExpiryAge operational attribute or set by explicit administrator action. It is an 

implementation option whether the value is dynamically computed by addition of the pwdExpiryAge to the 

pwdStartTime of the entry, in which case it does not need to be stored in the directory entry, or it is set by an 

administrator, in which case it shall be stored in the directory entry. The pwdEndTime operational attribute which contains 

the expiration of the account may either be automatically computed from the pwdMaxAge operational attribute or set by 

explicit administrator action. It is an implementation option whether the value is dynamically computed by addition of 

the pwdMaxAge to the pwdStartTime of the entry, in which case it does not need to be stored in the directory entry, or 

is set by an administrator, in which case it shall be stored in the directory entry. 

The pwdStartTime operational attribute may also be set by an Administrator to specify that the account cannot be used 

before a given time. 

When the user (or an administrator acting on behalf of the user) changes the userPwd attribute within the pwdMaxAge 

period, the pwdStartTime operational attribute should be updated. The pwdExpiryTime and the pwdEndTime 

operational attributes should be recomputed and updated to reflect the new password creation time. 

NOTE – If a user does bind with the Directory for a long time, the values of pwdExpiryTime and pwdEndTime operational 

attributes may be exceeded and the account automatically locked. 



ISO/IEC 9594-3:2020 (E) 

30 Rec. ITU-T X.511 (10/2019) 

 

Figure 5 – Time chart for password attributes 

When the user (or an administrator acting on behalf of the user) changes the value of the password, the new value is 

generally not immediately known by all the Directory servers because of replication delays. To prevent authentication 

problems, the previous password remains available for the pwdRecentlyExpiredDuration duration time (which shall 

be greater than the replication periods used in the Directory system). 

When the user (or an administrator acting on behalf of the user) changes the value of the password, the old value should 

be copied into the recently expired password attribute. (The userPwd attribute is copied into the 

userPwdRecentlyExpired). When the recently expired password duration time is over, the recently expired password 

attribute (userPwdRecentlyExpired) should not be available to the user. If the user (or an administrator acting on 

behalf of the user) changes their password again during the recently expired password duration time, then their recently 

expired password should be overwritten and the duration should be set to start again (see Figure 6). Thus, a recently 

expired password will only be kept in the recently expired password attribute for the shorter of the recently expired 

password duration time or until the user changes their password again. However, it will be kept in the password history 

table. 

 

Figure 6 – Time line for recently expired passwords 

8.2.3 Password history 

The password history attribute is used to prevent password reuse, by storing old values of the user's password so that the 

user cannot reuse the same password again whilst it is stored in the password history (see Figure 7). When the user (or an 

administrator acting on behalf of the user) changes their password, it may be copied into the password history 

(userPwdHistory) operational attribute along with the time that the password was changed. The password maximum 

time in history attribute (pwdMaxTimeInHistory) specifies the maximum duration (in seconds) that a password should 

remain in the password history. Once this time has expired for a particular password, then it is removed from the password 

history, and the user may use this password again. 

The number of slots in the password history table (or password history attribute values) is defined in the 

pwdHistorySlots operational attribute. When all the slots are filled, the oldest password may be removed subject to it 

having been in the history for a minimum duration time (as specified in the pwdMinTimeInHistory attribute). 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 31  

NOTE – If an administrator has to change the password of a user when all the history slots are full and no passwords are older than 

pwdMinTimeInHistory, then the administrator might free two slots in the history table (i.e., delete two attribute values), reset 

the user's password to a temporary value (which is copied into the history), leaving one spare slot for the user to choose their own 

new password. 

 

Figure 7 – userPwdHistory attribute 

9 Bind, Unbind operations, Change Password and Administer Password operations 

The Directory Bind and Directory Unbind operations, defined in clauses 9.1 and 9.2 respectively, are used by the DUA 

at the beginning and end of a particular period of accessing the Directory. 

9.1 Directory Bind 

9.1.1 Directory Bind syntax 

A Directory Bind operation is used at the beginning of a period of accessing the Directory.  
 

directoryBind OPERATION ::= { 

  ARGUMENT  DirectoryBindArgument 

  RESULT    DirectoryBindResult 

  ERRORS    {directoryBindError} } 

 

DirectoryBindArgument ::= SET { 

  credentials  [0]  Credentials OPTIONAL, 

  versions     [1]  Versions DEFAULT {v1}, 

  ... } 

 

Credentials ::= CHOICE { 

  simple             [0]  SimpleCredentials, 

  strong             [1]  StrongCredentials, 

  externalProcedure  [2]  EXTERNAL, 

  spkm               [3]  SpkmCredentials, 

  sasl               [4]  SaslCredentials, 

  ... } 

 

SimpleCredentials ::= SEQUENCE { 

  name      [0]  DistinguishedName, 

  validity  [1]  SET { 

    time1     [0]  CHOICE { 

      utc            UTCTime, 

      gt             GeneralizedTime} OPTIONAL, 

    time2     [1]  CHOICE { 

      utc            UTCTime, 

      gt             GeneralizedTime} OPTIONAL, 

    random1   [2]  BIT STRING OPTIONAL, 

    random2   [3]  BIT STRING OPTIONAL} OPTIONAL, 

  password  [2]  CHOICE { 

    unprotected    OCTET STRING, 



ISO/IEC 9594-3:2020 (E) 

32 Rec. ITU-T X.511 (10/2019) 

    protected      HASH{OCTET STRING}, 

    ..., 

    userPwd   [0]  UserPwd } OPTIONAL } 

 

StrongCredentials ::= SET { 

  certification-path          [0]  CertificationPath OPTIONAL, 

  bind-token                  [1]  Token, 

  name                        [2]  DistinguishedName OPTIONAL, 

  --                          [3]  Not to be used 

  ... } 

 

SpkmCredentials ::= CHOICE { 

  req            [0]  SPKM-REQ, 

  rep            [1]  SPKM-REP-TI, 

  ... } 

 

SaslCredentials ::= SEQUENCE { 

  mechanism    [0]  DirectoryString{ub-saslMechanism}, 

  credentials  [1]  OCTET STRING OPTIONAL, 

  saslAbort    [2]  BOOLEAN DEFAULT FALSE, 

  ... } 

 

ub-saslMechanism INTEGER ::= 20 -- According to RFC 2222 

 

Token ::= SIGNED{TokenContent} 

 

TokenContent ::= SEQUENCE { 

  algorithm  [0]  AlgorithmIdentifier{{SupportedAlgorithms}}, 

  name       [1]  DistinguishedName, 

  time       [2]  Time, 

  random     [3]  BIT STRING, 

  response   [4]  BIT STRING OPTIONAL, 

  ... } 

 

Versions ::= BIT STRING {v1(0), v2(1)} 

 

DirectoryBindResult ::= SET { 

  credentials       [0]  Credentials OPTIONAL, 

  versions          [1]  Versions DEFAULT {v1}, 

  ..., 

  pwdResponseValue  [2]  PwdResponseValue OPTIONAL } 

 

PwdResponseValue ::= SEQUENCE { 

  warning CHOICE { 

    timeLeft        [0]  INTEGER (0..MAX), 

    graceRemaining  [1]  INTEGER (0..MAX), 

    ...} OPTIONAL, 

  error ENUMERATED { 

    passwordExpired  (0), 

    changeAfterReset (1), 

    ... } OPTIONAL} 

 

directoryBindError ERROR ::= { 

  PARAMETER OPTIONALLY-PROTECTED {SET { 

    versions              [0]  Versions DEFAULT {v1}, 

    error                      CHOICE { 

      serviceError          [1]  ServiceProblem, 

      securityError         [2]  SecurityProblem, 

      ...}, 

    securityParameters    [30]  SecurityParameters OPTIONAL }}} 

 

BindKeyInfo ::= ENCRYPTED{BIT STRING} 

9.1.2 Directory Bind arguments 

The credentials component of the DirectoryBindArgument allows the Directory to establish the identity of the 

user. The credentials may be simple, or strong or externally defined (externalProcedure) (as described in 

Rec. ITU-T X.509 | ISO/IEC 9594-8). 

If simple is used, it consists of a name (always the distinguished name of an object), an optional validity, and an optional 

password. This provides a limited degree of security. The password may be unprotected, or it may be protected (either 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 33  

Protected1 or Protected2) as described in clause 18.1 of Rec. ITU-T X.509 | ISO/IEC 9594-8 or it may be the userPwd 

attribute. The validity supplies time1, time2, random1 and random2 arguments, which derive their meaning through 

bilateral agreement, and which may be used to detect replay. In some instances a protected password may be checked by 

an object which knows the password only after locally regenerating the protection to its own copy of the password and 

comparing the result with the value in the bind argument (password). In other instances, a direct comparison may be 

possible. A possible approach for protected passwords may be found in Annex K of ITU-T X.509 | ISO/IEC 9594-8. If the 

userPwd attribute is used, the password may be transmitted in the clear or encrypted and the matching rule is defined in 

clause 18.1.8 of Rec. ITU-T X.509 | ISO/IEC 9594-8. 

GeneralizedTime shall be used for time1 and time2 if the negotiated version is v2 or greater. The use of 

GeneralizedTime when v1 has been negotiated may prevent interworking with implementations unaware of the 

possibility of choosing either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains 

in which this Directory Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. 

UTCTime shall not be used for representing dates beyond 2049. 

For the strong alternative, the specification for the parameters of StrongCredential are: 

– the certificate-path component, if present, shall hold a certification path as specified by the 

CertificationPath data type as defined in clause 7.6 of Rec. ITU-T X.509 | ISO/IEC 9594-8; 

– the bind-token component shall be signed and shall have the subcomponents as specified below; and 

– the name component shall hold the distinguished name of the requester. 

This enables the bound DSA to authenticate the identity of the requester establishing the application-association. The 

corresponding information in the result allows the requester to authenticate the bound DSA. 

If the spkm alternative is taken in, information relating to identity is conveyed. This enables the identity of either entity 

to be authenticated. 

The arguments of the bind token are used as follows. algorithm is the identifier of the algorithm employed to sign this 

information. name is the name of the intended recipient. The time parameter contains the expiry time of the token. The 

random number is a number which should be different for each unexpired token, and may be used by the recipient to 

detect replay attacks. 

If externalProcedure is used, then the semantics of the authentication scheme being used are outside the scope of the 

Directory Specifications. 

sasl is used when using the Simple Authentication and Security Layer (SASL) specified in IETF RFC 4422. If a 

directoryBind operation is invoked with a SaslCredentials mechanism value set to the empty string, a 

SecurityError of inappropriateAuthentication shall be returned. 

The versions component of the DirectoryBindArgument identifies the versions of the service which the DUA is 

prepared to participate in. The value v1 denotes the protocol version 1 and the value v2 denotes the protocol version 2. 

The value v2 shall be used if, in a subsequent ModifyEntry operation, the alterValues or resetValue modification 

types are to be sent in a request or a result other than NULL is required (see clause 12.3). The value shall be set to v2 if 

signing of errors or result to Add Entry, Remove Entry, Modify Entry, Modify DN is used. 

Migration to future versions of the Directory should be facilitated by: 

a) any elements of DirectoryBindArgument other than those defined in this Directory Specification shall 

be accepted and ignored; 

b) additional options for named bits of DirectoryBindArgument (e.g., versions) not defined shall be 

accepted and ignored. 

The response component is used to carry a number derived from random if challenge response of authentication is 

required.  

9.1.3 Directory Bind results 

Should the bind request succeed, a result shall be returned. 

The credentials component of the DirectoryBindResult allows the user to establish the identity of the Directory. 

It allows information identifying the DSA (that is directly providing the Directory service) to be conveyed to the DUA. 

It shall be of the same form (i.e., CHOICE) as that supplied by the user. 

The versions parameter of the DirectoryBindResult indicates which of the versions of the service requested by the 

DUA is actually going to be provided by the DSA. 



ISO/IEC 9594-3:2020 (E) 

34 Rec. ITU-T X.511 (10/2019) 

The following applies independently whether the DSA holds the responder's master entry or a replicated entry:  

a) If the warning.timeLeft component is present and different from zero, the error component shall be 

absent. 

b) If the warning.graceRemaining component is present, the error.passwordExpired may be set.  

The following applies when the DSA holds the master entry for the requester:  

a) If warning is present with either the timeLeft set to zero or graceRemaining set to zero and 

error.passwordExpired set, only a change-password operation is accepted. 

b) if error.changeAfterReset is set, warning shall not be present. Only a change-password operation 

is accepted.  

9.1.4 Directory Bind errors 

Should the bind request fail, a bind error shall be returned. If the Bind request was using strong authentication or if SPKM 

credentials were supplied, then the Bind responder may sign the error parameters. 

The versions parameter of the directoryBindError indicates which versions are supported by the DSA. 

The SecurityParameters components (see clause 7.10) shall be included if the error is to be signed. 

A securityError or serviceError shall be supplied as follows: 
 

  securityError  inappropriateAuthentication 

                 invalidCredentials 

                 blockedCredentials 

                 spkmError 

                 unsupportedAuthenticationMethod 

                 passwordPolicyRequired 

                 passwordExpired 

                 inappropriateAlgorithms 

 

  serviceError   unavailable 

                 saslBindInProgress 

For details on serviceError and securityError, see clauses 14.7 and 14.8. 

9.2 Directory Unbind 

The unbinding at the end of a period of accessing the Directory is for the OSI environment specified in clauses 7.6.4 

and 7.6.5 of Rec. ITU-T X.519 | ISO/IEC 9594-5 and for the TCP/IP environment in clause 9.2.2 of Rec. ITU-T X.519 | 

ISO/IEC 9594-5. 

NOTE – On unbinding, all paged results that have not been accessed so far become inaccessible, and they should be disposed of. 

10 Directory Read operations 

There are two 'read-like' operations: read and compare, defined in clauses 10.1 and 10.2, respectively. The abandon 

operation, defined in clause 10.3, is grouped with these operations for convenience.  

10.1 Read 

10.1.1 Read syntax 

A Read operation is used to extract information from an explicitly identified entry. It may also be used to verify a 

distinguished name. The arguments of the operation may be signed (see clause 17.3 of Rec. ITU-T X.501 | 

ISO/IEC 9594-2) by the requester. If the target component of the SecurityParameters (see clause 7.10) in the 

request is set to signed and a result is to be returned, the result may be signed. Otherwise, the result shall not be signed. 
 

read OPERATION ::= { 

  ARGUMENT  ReadArgument 

  RESULT    ReadResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             abandoned | 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 35  

             securityError} 

  CODE      id-opcode-read } 

 

ReadArgument ::= OPTIONALLY-PROTECTED { ReadArgumentData } 

 

ReadArgumentData ::= SET { 

  object               [0]  Name, 

  selection            [1]  EntryInformationSelection DEFAULT {}, 

  modifyRightsRequest  [2]  BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF             CommonArguments }  

 

ReadResult ::= OPTIONALLY-PROTECTED { ReadResultData } 

 

ReadResultData ::= SET { 

  entry         [0]  EntryInformation, 

  modifyRights  [1]  ModifyRights OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF      CommonResults } 

 

ModifyRights ::= SET OF SEQUENCE { 

  item      CHOICE { 

    entry      [0]  NULL, 

    attribute  [1]  AttributeType, 

    value      [2]  AttributeValueAssertion, 

    ...}, 

  permission   [3]  BIT STRING { 

    add     (0), 

    remove  (1), 

    rename  (2), 

    move    (3)}, 

  ... } 

10.1.2 Read  components 

The object component identifies the object entry from which information is requested. Should the Name involve one or 

more aliases, they are dereferenced (unless this is prohibited by the relevant service controls). 

The selection component indicates which information from the entry is requested (see clause 7.6). However, it should 

not be assumed that the attributes returned are the same as or limited to those requested. 

The CommonArguments (see clause 7.3) include a specification of the service controls and security parameters applying 

to the request. For the purposes of this operation, the sizeLimit component is not relevant and is ignored if provided. 

If the argument of this operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component 

shall be included in the arguments. 

The modifyRightsRequest component is used to request the return of the requester's modification rights to the entry 

and its attributes. 

10.1.3 Read results 

Should the request succeed, the result shall be returned.  

The entry result parameter holds the requested information (see clause 7.7). This may include family information, if 

required by the presence of a familyReturn element in EntryInformationSelection. 

The modifyRights parameter is present if it was requested via the modifyRightsRequest component, and the user 

has modification privileges to some or all of the requested entry information, and the return of this information is permitted 

by the local security policy. If returned, the modification rights of the requester are returned for the entry and for the 

attributes specified in the selection component. The parameter contains the following: 

– An element of the SET is returned for the entry; for each user attribute requested which the user has 

the right to add or remove; and for each returned attribute value for which the user's rights to add or 

remove it differ from those of the corresponding attribute. 

– The returned permission indicates which operations or actions on the entry by the user would succeed. 

In the case of an entry, remove indicates that a RemoveEntry operation would succeed; rename indicates 

that a ModifyDN operation with the newSuperior parameter absent would succeed; and move that a 

ModifyDN operation with the newSuperior parameter present and an unchanged RDN would succeed. 



ISO/IEC 9594-3:2020 (E) 

36 Rec. ITU-T X.511 (10/2019) 

 In the case of attributes and values, add indicates that a ModifyEntry operation that adds the attribute 

or value would succeed; and remove indicates that a ModifyEntry operation that removes the attribute 

or value would succeed. 

NOTE – An operation to move an entry to a new superior may also depend on permissions associated with the new superior (as for 

example with basic-access-control). These are ignored when determining permission. 

The CommonResults (see clause 7.4) include the security parameters applying to the response. If this result is to be 

signed by the Directory, the SecurityParameters (see clause 7.10) component shall be included in the results. 

10.1.4 Read errors 

Should the request fail, one of the listed errors shall be reported. If none of the attributes explicitly listed in selection 

can be returned, then an attributeError with problem noSuchAttributeOrValue shall be reported. The 

circumstances under which other errors shall be reported are defined in clause 14. 

10.1.5 Read operation decision points for basic access control 

If rule-based-access-control is also to be applied, the order in which it is applied with respect to basic-access-control is a 

local matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it 

shall not be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a 

permission that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the entry being read, the following sequence of access controls applies: 

1) Read permission is required to the entry being read. If permission is not granted, the operation fails in 

accordance with clause 7.11.1.3. 

2) If the infoTypes element of selection specifies that attribute types only are to be returned, then for 

each attribute type that is to be returned, Read permission is required. If permission is not granted, the 

attribute type is omitted from the ReadResult. If, as a consequence of applying these controls no attribute 

information is returned, the entire operation fails in accordance with clause 10.1.5.1.  

3) If the infoTypes element of selection specifies that attribute types and values are to be returned, then 

for each attribute type and for each value that is to be returned, Read permission is required. If permission 

to an attribute type is not granted, the attribute is omitted from ReadResult. If permission to an attribute 

value is not granted, the value is omitted from its corresponding attribute. In the event that permission is 

not granted to any of the values within the attribute, an Attribute element containing an empty SET OF 

AttributeValue is returned. If, as a consequence of applying these controls, no attribute information is 

returned, the entire operation fails in accordance with clause 10.1.5.1. 

NOTE – Privileges that permit a DAP read operation may not work in an LDAP environment where browse permission is required 

to support an equivalent read service. 

10.1.5.1 Error returns 

If the operation fails as defined in clause 10.1.5, items 2) or 3), the valid error returns are one of:  

a) If an open-ended option was specified (i.e., allUserAttributes or allOperationalAttributes), a 

securityError with problem insufficientAccessRights or noInformation shall be returned. 

b) Otherwise, if a select option was specified (in attributes and/or in extraAttributes), then if the 

DiscloseOnError permission is granted to any of the selected attributes, a securityError with problem 

insufficientAccessRights or noInformation shall be returned. Otherwise, an attributeError 

with problem noSuchAttributeOrValue shall be returned. 

10.1.5.2 Non-disclosure of incomplete results 

If an incomplete result is being returned in EntryInformation, i.e., some of the attributes or attribute values have been 

omitted because of the applicable access controls, the incompleteEntry element shall be set to TRUE if 

DiscloseOnError permission is granted to at least one attribute type withheld from the result, or at least one attribute 

value withheld from the result (for which attribute type Read permission was granted). 

10.1.6 Read operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 37  

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being 

read, the following access controls apply: 

1) If entry level access is denied under rule-based-access-control, then the operation fails with nameError 

with problem noSuchObject in accordance with clause 7.11.2.4.  

2) If access to the entry is not permitted under the basic-access-control scheme as described in clause 10.1.5, 

item 1), then the operation fails in accordance with clause 7.11.1.3. 

3) If the infoTypes element of selection specifies that attribute types only are to be returned, then if 

under rule-based-access-control, access is not granted for all attribute values of that type, the attribute type 

is omitted from the ReadResult. If, as a consequence of applying these controls, no attribute information 

is returned, the entire operation fails returning an attributeError with problem 

noSuchAttributeOrValue in accordance with clause 10.1.5.1, item b). 

4) If the infoTypes element of selection specifies that attribute types only are to be returned, basic-access-

control is applied as described in clause 10.1.5, item 2). 

5) Under rule-based access controls, if the infoTypes element of selection specifies that attribute types and 

values are to be returned, then for each attribute value that is to be returned, access shall be granted. If 

access to an attribute value is not granted, the attribute value is omitted from its corresponding attribute. 

In the event that access is not granted to any of the attribute values within an attribute, the whole attribute 

is omitted from ReadResult. If, as a consequence of applying these controls, no attribute information is 

returned, the entire operation fails returning an attributeError with problem 

noSuchAttributeOrValue. 

6) basic-access-control is applied as described in clause 10.1.5, item 3). 

7) The name of the entry returned in the operation result is determined as defined in clause 7.11.2.2. 

10.2 Compare 

10.2.1 Compare syntax 

A Compare operation is used to compare a value (which is supplied as a component of the request) with the value(s) of a 

particular attribute type in a particular object entry. The arguments of the operation may be signed (see clause 17.3 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester. If the target component of the SecurityParameters 

(see clause 7.10) in the request is set to signed and a result is to be returned, the result may be signed. Otherwise, the 

result shall not be signed. 

Any value of familyGrouping except multiStrand may be used, and the attributes in all the grouped family members 

are to be used in the comparison against the purported attribute value assertion. If familyGrouping specifies 

multiStrand, compoundEntry is assumed. 
 

compare OPERATION ::= { 

  ARGUMENT  CompareArgument 

  RESULT    CompareResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-compare } 

 

CompareArgument ::= OPTIONALLY-PROTECTED { CompareArgumentData } 

 

CompareArgumentData ::= SET { 

  object       [0]  Name, 

  purported    [1]  AttributeValueAssertion, 

  ..., 

  ..., 

  COMPONENTS OF     CommonArguments } 

 

CompareResult ::= OPTIONALLY-PROTECTED { CompareResultData } 

 

CompareResultData ::= SET { 

  name                 Name OPTIONAL, 

  matched         [0]  BOOLEAN, 

  fromEntry       [1]  BOOLEAN DEFAULT TRUE, 



ISO/IEC 9594-3:2020 (E) 

38 Rec. ITU-T X.511 (10/2019) 

  matchedSubtype  [2]  AttributeType OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF        CommonResults } 

10.2.2 Compare arguments 

The object component is the name of the particular object entry concerned. Should the Name involve one or more aliases, 

they are dereferenced (unless prohibited by the relevant service control). 

The purported component identifies the attribute type and value to be compared with that in the entry. The comparison 

is TRUE if the entry holds the purported attribute type or one of its subtypes, or there is a collective attribute of the entry 

which is the purported attribute type or one of its subtypes (see clause 7.6), and if there is a value of that attribute which 

matches the purported value using the attribute's equality matching rule. 

NOTE – A compare request cannot be satisfied by a friend attribute type of the attribute type specified in this component. 

If context assertions are included in the attribute value assertion, then the matching shall be attempted only against those 

values which satisfy all the given context assertions, as described in clause 8.9.2 of Rec. ITU-T  X.501 | ISO/IEC  9594-2. 

If no context assertions are included in the attribute value assertion, then default context assertions shall be applied as 

described in clause 8.9.2.2 of Rec. ITU-T X.501 | ISO/IEC 9594-2. 

The CommonArguments (see clause 7.3) include a specification of the service controls and security parameters applying 

to the request. For the purposes of this operation, the sizeLimit component is not relevant and is ignored if provided. 

If the argument of this operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component 

shall be included in the arguments. 

10.2.3 Compare results 

Should the request succeed (i.e., the comparison is actually carried out), the result shall be returned.  

The name component, if present, shall be the distinguished name of the entry or an alias name of the entry, as described 

in clause 7.7. It shall be present if an alias has been dereferenced and the name to be returned differs from the object 

name supplied in the operation argument. 

The matched result parameter holds the result of the comparison. The parameter takes the value TRUE if the values were 

compared and matched, and FALSE if they did not. 

If fromEntry is TRUE, the information was compared against the entry; if FALSE, the information was compared against 

a copy. 

The matchedSubtype parameter is present only if the result of the match was TRUE and if the match succeeded because 

a subtype of the purported attribute was matched. It contains the matched subtype. If more than one such subtype is 

available, the one highest in the hierarchy is returned. 

The CommonResults (see clause 7.4) include the security parameters applying to the response. If this result is to be 

signed by the Directory, the SecurityParameters (see clause 7.10) component shall be included in the results. 

10.2.4 Compare errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be reported are defined in clause 14. 

10.2.5 Compare operation decision points for basic access control  

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the entry being compared, the following sequence of access controls applies: 

1) Read permission is required to the entry to be compared. If permission is not granted, the operation fails 

in accordance with clause 7.11.1.3. 

2) Compare permission is required to the attribute being compared. If permission is not granted, the operation 

fails in accordance with clause 10.2.5.1. 

3) If there exists a value within the attribute being compared that matches the purported argument and for 

which Compare permission is granted, the operation returns the value TRUE in the matched result 

parameter of the CompareResult. Otherwise, the operation returns the value FALSE. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 39  

10.2.5.1 Error returns 

If the operation fails as defined in clause 10.2.5, item 2), the valid error returns are one of: if the DiscloseOnError 

permission is granted to the attribute being compared, a securityError with problem insufficientAccessRights 

or noInformation shall be returned; otherwise, an attributeError with problem noSuchAttributeOrValue shall 

be returned. 

10.2.6 Compare operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being 

compared, the following access controls apply: 

1) if entry level access is denied under rule-based-access-control, then the operation fails with nameError 

with problem noSuchObject in accordance with clause 7.11.2.4; 

2) if access to the entry is not permitted under the basic-access-control scheme as described in clause 10.2.5, 

item 1), then the operation fails in accordance with clause 7.11.1.3; 

3) if access is not granted to the attribute value being compared, the Directory shall act as though the attribute 

value was not present; 

4) basic-access-control is applied as described in clause 10.2.5, items 2) and 3); 

5) the name returned in the operation result is determined as defined in clause 7.11.2.2. 

10.2.7 Remote checking of password 

A DUA may bind to another DSA than the one holding the entry for the requester. These Directory specifications only 

consider the case where a DUA only uses simple credentials with the userPwd alternative. Handling of other types of 

authentication is not specified by these Directory Specifications. A DSA receiving such a bind may have to contact the 

DSA holding the entry for the requester. 

This procedure also uses a notification attribute type pwdResponse (see clause 6.13.17 of ITU Rec. X.520 | 

ISO/IEC 9594-6).  

This DSA may use a Compare operation against the DSA holding the entry in question to check the validity of the 

password. If the DSA does not know the password attribute type used by the DSA holding requester information, this 

information may be obtained by first reading the pwdAdminSubentryList attribute and subsequently the 

pwdAttribute attribute. 

When generating a Compare operation to be forwarded to another DSA based on a DUA bind request, the DSA shall in 

the purported component of the CompareArgument use the value from the userPwd alternative together with the password 

attribute type. The name component of the SimpleCredentials shall be used as the name component of the 

CompareArgument. 

If it is a DSA holding the entry of the requester, it shall respond as follows: 

a) If the presented password matches the password in the designated password attribute type and it has not 

expired, TRUE shall be returned in he matched component of the result. If relevant, either a notification 

attribute of type pwdResponse may be included in the result with the warning component taking either 

the timeleft or the graceRemaining alternative, as appropriate. The error component shall be absent. 

b) If the presented password matches the password in a stored attribute of the proper type, but it has expired 

or it requires to be reset due to administrative action, TRUE shall be returned in the matched component 

of the result. A notification attribute of type pwdResponse shall be included with the error component 

which has the appropriate value. The warning component may optionally be present with a zero value. 

c) If the presented password does not match the password in a stored attribute of the proper type, FALSE shall 

be returned in the matched component of the result. 

d) If the entry does not hold a password attribute of the proper type, an attributeError with problem 

noSuchAttributeOrValue shall be returned. 

The DSA that initiated the result of the Compare operation shall handle the result as follows: 

In the case of a) above, the authenticity of requester has been established and the DSA may complete the binding. 



ISO/IEC 9594-3:2020 (E) 

40 Rec. ITU-T X.511 (10/2019) 

In the case of b) above, the authenticity of requester has been established and the DSA may conditionally complete the 

binding by including in the bind result the pwdResponseValue component with the value copied from the received 

pwdResponse notification. 

In the cases of c) or d) above, an appropriate error shall be returned. 

10.3 Abandon 

Operations that interrogate the Directory may be abandoned using the abandon operation if the user is no longer 

interested in the result. The arguments of the operation may be signed (see clause 17.3 of Rec. ITU-T X.501 | 

ISO/IEC 9594-2) by the requester. If the target component of the SecurityParameters (see clause 7.10) in the 

request is set to signed and a result is to be returned, the result may be signed. Otherwise, the result shall not be signed. 
 

abandon OPERATION ::= { 

  ARGUMENT  AbandonArgument 

  RESULT    AbandonResult 

  ERRORS    {abandonFailed} 

  CODE      id-opcode-abandon } 

 

AbandonArgument ::= 

  OPTIONALLY-PROTECTED-SEQ { AbandonArgumentData } 

 

AbandonArgumentData ::= SEQUENCE { 

  invokeID  [0]  InvokeId, 

  ... }  

 

AbandonResult ::= CHOICE { 

  null          NULL, 

  information   OPTIONALLY-PROTECTED-SEQ { AbandonResultData }, 

  ... } 

 

AbandonResultData ::= SEQUENCE { 

  invokeID      InvokeId, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

There is a single argument, the invokeID which identifies the operation that is to be abandoned. The value of the 

invokeID is the same invokeID that was used to invoke the operation that is to be abandoned. 

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the 

SecurityParameters (see clause 7.10) component of CommonResultsSeq (see clause 7.4) shall be included in the 

results. If the result of the operation is not to be signed by the Directory, no information shall be conveyed with the result. 

The original operation shall fail with an abandoned error. 

Should the request fail, the abandonFailed error shall be reported. As a local matter, a DSA may choose not to abandon 

the operation and shall then return the abandonFailed error. This error is described in clause 14.3. 

Abandon is only applicable to interrogation operations, i.e., Read, Compare, List and Search operations. 

A DSA may abandon an operation locally. If the DSA has chained or multicasted the operation to other DSAs, it may in 

turn request them to abandon the operation.  

11 Directory Search operations 

There are two 'search-like' operations: List and Search, defined in clauses 11.1 and 11.2 respectively. 

11.1 List 

11.1.1 List syntax 

A List operation is used to obtain a list of the immediate subordinates of an explicitly identified entry. Under some 

circumstances, the list returned may be incomplete. The arguments of the operation may be signed (see clause 17.3 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester. If the target component of the SecurityParameters (see 

clause 7.10) in the request is set to signed and a result is to be returned, the result may be signed. Otherwise, the result 

shall not be signed. 
 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 41  

list OPERATION ::= { 

  ARGUMENT  ListArgument 

  RESULT    ListResult 

  ERRORS    {nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-list } 

 

ListArgument ::= OPTIONALLY-PROTECTED { ListArgumentData } 

 

ListArgumentData ::= SET { 

  object        [0]  Name, 

  pagedResults  [1]  PagedResultsRequest OPTIONAL, 

  listFamily    [2]  BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF      CommonArguments 

  }  

 

ListResult ::= OPTIONALLY-PROTECTED { ListResultData } 

 

ListResultData ::= CHOICE { 

  listInfo                     SET { 

    name                         Name OPTIONAL, 

    subordinates            [1]  SET OF SEQUENCE { 

      rdn                          RelativeDistinguishedName, 

      aliasEntry              [0]  BOOLEAN DEFAULT FALSE, 

      fromEntry               [1]  BOOLEAN DEFAULT TRUE, 

      ... }, 

    partialOutcomeQualifier [2]  PartialOutcomeQualifier OPTIONAL, 

    ..., 

    ..., 

    COMPONENTS OF                CommonResults 

    }, 

  uncorrelatedListInfo    [0]  SET OF ListResult, 

  ... }  

 

PartialOutcomeQualifier ::= SET { 

  limitProblem                  [0]  LimitProblem OPTIONAL, 

  unexplored                    [1]  SET SIZE (1..MAX) OF ContinuationReference OPTIONAL, 

  unavailableCriticalExtensions [2]  BOOLEAN DEFAULT FALSE, 

  unknownErrors                 [3]  SET SIZE (1..MAX) OF ABSTRACT-SYNTAX.&Type OPTIONAL, 

  queryReference                [4]  OCTET STRING OPTIONAL, 

  overspecFilter                [5]  Filter OPTIONAL, 

  notification                  [6]  SEQUENCE SIZE (1..MAX) OF 

                                       Attribute{{SupportedAttributes}} OPTIONAL, 

  entryCount                         CHOICE { 

    bestEstimate                  [7]  INTEGER, 

    lowEstimate                   [8]  INTEGER, 

    exact                         [9]  INTEGER, 

    ...} OPTIONAL 

  --                            [10] Not to be used -- } 

 

LimitProblem ::= INTEGER { 

  timeLimitExceeded           (0), 

  sizeLimitExceeded           (1), 

  administrativeLimitExceeded (2) } 

11.1.2 List arguments 

The object argument identifies the object entry (or possibly the root) whose immediate subordinates are to be listed. 

Should the Name involve one or more aliases, they are dereferenced (unless prohibited by the relevant service control). 

The pagedResults argument is used to request that results of the operation be returned page-by-page, as described 

in clause 7.9. 

If listFamily is TRUE and the object is an ancestor, the listed subordinates are taken from immediately subordinate 

family members; no other subordinates are included. Otherwise, the listed subordinates are taken only from immediately 

subordinate entries that are not family members. 



ISO/IEC 9594-3:2020 (E) 

42 Rec. ITU-T X.511 (10/2019) 

The CommonArguments (see clause 7.3) include a specification of the service controls applying to the request. If the 

argument of this operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component shall 

be included in the arguments. 

11.1.3 List results 

The request succeeds, subject to access controls, if the object is located, regardless of whether there is any subordinate 

information to return.  

The name component, if present, shall be the distinguished name of the entry or an alias name of the entry, as described 

in clause 7.7. It shall be present if an alias has been dereferenced and the name to be returned differs from the object 

name supplied in the operation argument. 

The subordinates component conveys the information on the immediate subordinates, if any, of the named entry. 

Should any of the subordinate entries be aliases, they shall not be dereferenced. 

The rdn subcomponent is the relative distinguished name of the subordinate. 

The fromEntry subcomponent indicates whether the information was obtained from the entry (TRUE) or a copy of the 

entry (FALSE). 

The aliasEntry subcomponent indicates whether the subordinate entry is an alias entry (TRUE) or not (FALSE). 

The partialOutcomeQualifier component consists of eight subcomponents as described below. This component 

shall be present whenever the result is incomplete because of a time limit, size limit or administrative limit problem, 

because regions of the DIT were not explored, because some critical extensions were unavailable, because an unknown 

error was received or because paged results are being returned, an overspecified filter is to be indicated, one or more 

notification attributes are to be returned: 

a) The LimitProblem subcomponent indicates whether the time limit, size limit or an administrative limit 

has been exceeded. The results being returned are those which were available when the limit was reached. 

b) The unexplored subcomponent shall be present if regions of the DIT were not explored. Its information 

allows the DUA to continue the processing of the List operation by contacting other access points if it so 

chooses. The subcomponent consists of a set (possibly empty) of ContinuationReferences, each 

consisting of the name of a base object from which the operation may be progressed, an appropriate value 

of OperationProgress, and a set of access points from which the request may be further progressed. 

The ContinuationReferences that are returned shall be within the scope of a referral requested in the 

operation service control. See clause 14.6. 

c) The unavailableCriticalExtensions subcomponent indicates, if present, that one or more critical 

extensions were unavailable in some part of the Directory. 

d) The unknownErrors subcomponent is used to return unknown error types or parameters received from 

other DSAs in the processing of the operation. Each member of the SET contains one such unknown error. 

See clause 12.2.4 of Rec. ITU-T X.519 | ISO/IEC 9594-5. 

e) The queryReference subcomponent shall be present when the DUA has requested paged results and the 

DSA has not returned all the available results. See clause 7.9. It shall be absent when the DSA can 

determine that all results valid for the user have been returned (i.e., other than as a result of applying access 

control). 

f) The overspecFilter subcomponent is only used in conjunction with the Search operation when, as a 

consequence of overspecified filtering, the returned Search result is empty, although there are candidate 

entries either matching only portions of the filter or matching only approximately the filter. It is returned 

only if the search request included the checkOverspecified item and the Directory can determine that 

the filter was overspecified. It consists of the filter supplied in the search argument with those elements 

of the filter that succeeded in matching some omitted entries. The actual procedure for generating the 

overspecFilter is a local matter. 

NOTE 1 – The return of a suitable overspecFilter in a distributed Directory is for further study. 

g) The notification subcomponent may be used to send qualifications of error outcomes, and may also 

for the Search operation be used to return a proposedRelaxation attribute (see clause 6.13.15 of Rec. 

ITU-T X.520 | ISO/IEC 9594-6) which provides a relaxation policy that could be applied by the user. 

In this case, the sequence of MRMapping elements that would have been used to affect the relaxation 

(or tightening) policy specified by the relevant search-rule may be supplied. 

NOTE 2 – The ordering of sequence-of Attribute in notification is not significant. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 43  

h) The entryCount subcomponent is only relevant in search results and if then present, it gives a best 

estimate of the number of entries that fulfil the search criteria. This subcomponent shall be present if, and 

only if: 

– entryCount search control option is set in the search argument or by a governing-search-rule; 

– if paged results have been requested or a size limit has been exceeded; and 

– if the feature is supported by at least one of the participating DSAs. 

When the entryCount subcomponent is present, the bestEstimate or exact choice shall be taken if all 

performing DSAs support the feature and if all eligible DSAs have participated in the operation. The exact 

choice shall be taken if all participating DSAs can supply an exact count; otherwise, the bestEstimate 

choice shall be taken. If not all the eligible DSAs participated in the operation or if some of the participating 

DSAs do not support the entryCount parameter, the lowEstimate choice shall be taken. Family 

members of a compound entry only count as a single entry. 

If a limit problem is encountered which results in a limitProblem element being used in PartialOutcomeQualifier, 

this component shall be repeated in all subsequent results supplied as part of the paged result set. 

When the DUA has requested a protection request of signed, or if the Directory for other reasons is not able to correlate 

information, the uncorrelatedListInfo parameter may comprise a number of sets of result parameters originating 

from and signed by different components of the Directory. If no DSA in the chain can correlate all the results, the DUA 

shall assemble the actual result from the various pieces.  

The CommonResults (see clause 7.4) include the security parameters applying to the response. If this result is to be 

signed by the Directory, the SecurityParameters value (see clause 7.10) shall be included in the results. 

11.1.4 List errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be reported are defined in clause 14. 

11.1.5 List operation decision points for basic access control 

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the portion of the DIB where the list operation is being performed, the following 

sequence of access controls applies: 

1) No specific permission is required to the entry identified by the object argument. 

2) For each immediate subordinate for which a RelativeDistinguishedName is to be returned in 

subordinates, Browse and ReturnDN permissions are required to that entry. Entries for which these 

permissions are not granted are ignored. If, as a consequence of applying these controls, no subordinate 

information (excluding any ContinuationReferences in PartialOutcomeQualifier) is returned 

and if DiscloseOnError permission is not granted to the entry identified by the object argument, the 

operation fails and a nameError with problem noSuchObject shall be returned. The matched element 

shall either contain the name of the next superior entry to which DiscloseOnError permission is granted, 

or the name of the DIT root (i.e., an empty RDNSequence). Otherwise, the operation succeeds but no 

subordinate information (excluding any ContinuationReferences in PartialOutcomeQualifier) 

is conveyed with it. 

NOTE 1 – In the case of a nameError being returned, the empty RDNSequence may be used by a DSA which does not have access 

to all superior entries.  

NOTE 2 – Security policy may prevent the disclosure of subordinate information which would otherwise be conveyed as 

ContinuationReferences in PartialOutcomeQualifier. If such a policy is in effect and if a DUA constrains the service by 

specifying chainingProhibited, the Directory may return a serviceError with problem chainingRequired. Otherwise, 

the procedure described in item 2) above is followed. 

NOTE 3 – Security policy may prevent the Directory from indicating that a listed subordinate entry is an alias entry. For example, 

if the DUA is not granted Read access to the alias entry, its objectClass attribute and the value alias that it contains, the 

Directory may omit the aliasEntry component of subordinates from the ListResult or set it to FALSE. 

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the object argument, a 

partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be returned as it 

may compromise the security of this entry. 



ISO/IEC 9594-3:2020 (E) 

44 Rec. ITU-T X.511 (10/2019) 

11.1.6 List operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the portion of 

the DIB where the List operation is being performed, the following access controls apply: 

1) If rule-based entry level permission is denied to the entry identified by the object argument, then 

nameError with problem noSuchObject is returned in accordance with clause 7.11.2.4. 

2) For each immediate subordinate for which a RelativeDistinguishedName is to be returned in 

subordinates, rule-based RDN permission must be granted to that entry. Entries for which access is not 

granted are ignored. 

3) basic-access-control is applied as described in clause 11.1.5. 

11.2 Search 

11.2.1 Search syntax 

A Search operation is used to search one or more portions of the Directory for entries of interest, and to return selected 

information from those entries. The arguments of the operation may be signed (see clause 17.3 of Rec. ITU-T X.501 | 

ISO/IEC 9594-2) by the requester. If the target component of the SecurityParameters (see clause 7.10) in the 

request is set to signed and a result is to be returned, the result may be signed. Otherwise, the result shall not be signed. 
 

search OPERATION ::= { 

  ARGUMENT  SearchArgument 

  RESULT    SearchResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-search } 

 

SearchArgument ::= OPTIONALLY-PROTECTED { SearchArgumentData } 

 

SearchArgumentData ::= SET {  

  baseObject            [0]  Name, 

  subset                [1]  INTEGER { 

    baseObject    (0), 

    oneLevel      (1), 

    wholeSubtree  (2)} DEFAULT baseObject, 

  filter                [2]  Filter DEFAULT and:{}, 

  searchAliases         [3]  BOOLEAN DEFAULT TRUE, 

  selection             [4]  EntryInformationSelection DEFAULT {}, 

  pagedResults          [5]  PagedResultsRequest OPTIONAL, 

  matchedValuesOnly     [6]  BOOLEAN DEFAULT FALSE, 

  extendedFilter        [7]  Filter OPTIONAL, 

  checkOverspecified    [8]  BOOLEAN DEFAULT FALSE, 

  relaxation            [9]  RelaxationPolicy OPTIONAL, 

  extendedArea          [10] INTEGER OPTIONAL, 

  hierarchySelections   [11] HierarchySelections DEFAULT {self}, 

  searchControlOptions  [12] SearchControlOptions DEFAULT {searchAliases}, 

  joinArguments         [13] SEQUENCE SIZE (1..MAX) OF JoinArgument OPTIONAL, 

  joinType              [14] ENUMERATED { 

    innerJoin      (0), 

    leftOuterJoin  (1), 

    fullOuterJoin  (2)} DEFAULT leftOuterJoin, 

  ..., 

  ..., 

  COMPONENTS OF              CommonArguments } 

 

HierarchySelections ::= BIT STRING { 

  self                  (0), 

  children              (1), 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 45  

  parent                (2), 

  hierarchy             (3), 

  top                   (4), 

  subtree               (5), 

  siblings              (6), 

  siblingChildren       (7), 

  siblingSubtree        (8), 

  all                   (9) } 

 

SearchControlOptions ::= BIT STRING { 

  searchAliases         (0),  

  matchedValuesOnly     (1), 

  checkOverspecified    (2), 

  performExactly        (3), 

  includeAllAreas       (4), 

  noSystemRelaxation    (5), 

  dnAttribute           (6), 

  matchOnResidualName   (7), 

  entryCount            (8), 

  useSubset             (9), 

  separateFamilyMembers (10), 

  searchFamily          (11) } 

 

JoinArgument ::= SEQUENCE { 

  joinBaseObject  [0]  Name, 

  domainLocalID   [1]  DomainLocalID OPTIONAL, 

  joinSubset      [2]  ENUMERATED { 

    baseObject   (0), 

    oneLevel     (1), 

    wholeSubtree (2), 

    ... } DEFAULT baseObject, 

  joinFilter      [3]  Filter OPTIONAL, 

  joinAttributes  [4]  SEQUENCE SIZE (1..MAX) OF JoinAttPair OPTIONAL, 

  joinSelection   [5]  EntryInformationSelection, 

  ... } 

 

DomainLocalID ::= UnboundedDirectoryString 

 

JoinAttPair ::= SEQUENCE { 

  baseAtt      AttributeType, 

  joinAtt      AttributeType, 

  joinContext  SEQUENCE SIZE (1..MAX) OF JoinContextType OPTIONAL, 

  ... } 

 

JoinContextType ::= CONTEXT.&id({SupportedContexts}) 

 

SearchResult ::= OPTIONALLY-PROTECTED { SearchResultData } 

 

SearchResultData ::= CHOICE { 

  searchInfo                    SET { 

    name                          Name OPTIONAL, 

    entries                  [0]  SET OF EntryInformation, 

    partialOutcomeQualifier  [2]  PartialOutcomeQualifier OPTIONAL, 

    altMatching              [3]  BOOLEAN DEFAULT FALSE, 

    ..., 

    ..., 

    COMPONENTS OF                 CommonResults 

    }, 

  uncorrelatedSearchInfo   [0]  SET OF SearchResult, 

  ... } 

11.2.2 Search components 

The baseObject component identifies the object entry (or possibly the root) relative to which the primary search is to 

take place. 

The subset component indicates whether the primary search is to be applied to:  

a) the baseObject only;  

b) the immediate subordinates of the base object only (oneLevel);  

c) the base object and all its subordinates (wholeSubtree). 



ISO/IEC 9594-3:2020 (E) 

46 Rec. ITU-T X.511 (10/2019) 

If the base object is an ordinary entry, compound entries shall be counted as a single entry with respect to the subset 

specification. If the base object is the ancestor of a compound entry, the searchFamily search control option controls 

the exact behaviour. If the base object is a child family member, family members shall count as individual entries. 

The filter component is used to eliminate entries from the primary search space which are not of interest. Information 

shall only be returned on entries which satisfy the filter (see clause 7.8). In the presence of a basic user-supplied or search-

rule-supplied relaxation policy, the filter shall be evaluated for the first time with the required substitutions of matching 

rules. 

In the presence of a user-supplied or a search-rule-supplied relaxation policy, or both, the return of fewer results than 

minimum shall cause a re-evaluation of the filter, using the appropriate relaxations (see clause 7.8 and also below, for the 

relaxation element of SearchArgument), progressively until there are enough entries or no more relaxations are defined. 

Similarly, the return of more results than the maximum shall cause a re-evaluation of the filter, using the appropriate 

tightenings, progressively until there are few enough entries or no more tightenings are defined. 

NOTE 1 – If no search-rule relaxations are provided, the user may need to simplify the filter and try again, or alternatively to define 

a user defined relaxation. 

The familyGrouping component of CommonArguments is used to logically merge together entries in a family prior to 

applying the filter, as described in clauses 7.3.2 and 7.8.3. 

Aliases shall be dereferenced while locating the base object, subject to the setting of the dontDereferenceAliases 

service control. Aliases among the subordinates of the base object shall be dereferenced during the search, subject to the 

setting of the searchAliases parameter. If the searchAliases parameter is TRUE, aliases shall be dereferenced, if 

the parameter is FALSE, aliases shall not be dereferenced. If the searchAliases parameter is TRUE, the search shall 

continue in the subtree of the aliased entry. 

The selection component indicates which information from the entries is requested (see clause 7.6). However, it should 

not be assumed that the attributes returned are the same as or limited to those requested. 

NOTE 2 – A DSA that is coordinating distributed operations for related entries (i.e., has finished name resolution for a Search 

argument containing joinArguments and needs to acquire a collection of potentially related entries from non-internal sources) 

needs to override the DAP-supplied infoTypes value with attributeTypesAndValues for the purposes of distributed 

operations, and needs also to include join attributes (i.e., attributes in the set specified by JoinAttPair.joinAtt within 

JoinArgument.joinAttributes) in the selection of attributes to be returned using distributed operations. However, entries and 

derived entries that are returned to the user by the coordinating DSA shall omit attribute values in the DAP-returned information if 

the infoTypes value was attributeTypesOnly, and shall thus return EntryInformation in accordance with the original user 

request. 

The pagedResults component is used to request that results of the operation be returned page-by-page, as described 

in clause 7.9. 

The matchedValuesOnly component indicates that certain attribute values are to be omitted from the returned entry 

information. Specifically, where an attribute to be returned is multi-valued, and some but not all of the values of that 

attribute contributed to the search filter, in its last effective form (i.e., taking relaxed matching rules into account) returning 

TRUE via filter items other than present, then the values that did not contribute are omitted from the returned entry 

information. 

If the matchedValuesOnly component is specified in the search argument, the following logic processing applies to 

the attributes to be returned: 

a) If the filter consists of one filter item, the following rules apply: 

– if the type of the filter item is present, then the matchedValuesOnly component has no effect on 

the attribute in this filter item. 

– If the type of the filter item is equality, substrings, greaterOrEqual, lessOrEqual, 

approximateMatch, contextPresent or extensibleMatch and the assertion is not TRUE for 

the attribute, then the matchedValuesOnly component has no effect on this attribute. If the assertion 

is TRUE, then the values of this attribute that did not match the filter item are omitted from the 

returned entry information. 

– If the filter item is negated, then the matchedValuesOnly argument has no effect on this attribute. 

b) If the filter is complex (consists of more than one filter item), then the following rules apply: 

– If the filter contains a negated (i.e., not) filter, then the matchedValuesOnly argument has no effect 

on any attribute within the negated filter. 

NOTE 3 – This applies to nested negated filters as well. 

– The matchedValuesOnly component has no effect on the attributes of any elements of or filters 

that evaluate to FALSE or UNDEFINED. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 47  

– An attribute that occurs multiple times in the filter, only needs one of its occurrences to evaluate to 

TRUE as described in a), second bullet above, for the matchedValuesOnly argument to be effective, 

i.e., one instance of effectiveness overrides one or more instances of ignore. 

– Each filter in an or filter should be evaluated for matchedValuesOnly, even if the truth of the filter 

can be determined before full evaluation is complete. 

The extendedFilter component is used in mixed version environments to specify an alternative filter to that described 

above. When this component is present, the filter component (if any) shall be ignored by implementations based on 

Rec. ITU-T X.511 (1993) | ISO/IEC 9594-3:1995 and later editions. The extendedFilter is always ignored by 

implementations based on Rec. CCITT X.511 (1988) ISO/IEC 9594-3:1990. Search relaxation is applied just as for 

filter. 

NOTE 4 – By including both filters, a DUA can specify one filter to be used by implementations based on Rec. CCITT X.511 

(1988) ISO/IEC 9594-3:1990 and a different filter to be used by implementations based on Rec. ITU-T X.511 (1993) | ISO/IEC 

9594-3:1995 and later editions in the distributed processing of the Search request. Implementations based on Rec. CCITT X.511 

(1988) ISO/IEC 9594-3:1990 do not support attribute polymorphism or matching rule assertions. 

The checkOverspecified component is used to request the Directory to return an overspecFilter item in 

partialOutcomeQualifier if the result of the search operation is empty and the Directory is able to determine that 

this is due to the filter being overspecified. 

The relaxation component may be used to specify a user-supplied RelaxationPolicy using the construct defined 

in clause 16.10 of Rec. ITU-T X.501 | ISO/IEC 9594-2. 

Substitutions specified by a search request shall not be performed within a service-specific administrative area if the 

substitution causes the search to be invalid with respect to the governing-search-rule. The governing-search-rule can be 

violated when the substituting matching rule: 

a) effectively removes one or more filter items from the search filter; or 

b) violates the matchingUse specification for the attribute type (see clause 16.10.2 of Rec. ITU-T X.501 | 

ISO/IEC 9594-2). 

NOTE 5 – The nullMatch matching rule has the effect of removing one or more filter items from the filter. When using this 

matching rule, the governing-search-rule might be violated. 

If the Search operation is performed outside a service-specific administrative area or if the governing-search-rule does 

not provide a RelaxationPolicy component, the user-supplied RelaxationPolicy is applied as described in 

clause 16.10.7 of Rec. ITU-T X.501 | ISO/IEC 9594-2. When a search-rule-provided RelaxationPolicy is also 

present, the combination is applied according to the following procedure: 

1) The search-rule specified basic substitution policy, if any, is applied already during the search-validation 

process. The possible basic substitutions specified by the governing-search-rule are thereby applied 

a priori. 

2) The basic substitutions and the mapping-based matching specified in the search request, if present, shall 

then be applied. However, basic substitutions that cause the governing-search-rule to be violated shall not 

be applied, but shall be ignored. The oldMatchingRule value (if supplied) in this case applies to the 

basic matching rule, i.e., the one that would have been applicable in the absence of a search-rule-applied 

basic substitution policy. 

3) The relaxation/tightening substitutions, if any, specified in the search request are then applied together 

with any specified mapping-based matching following the rules defined in clause 16.10.7 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2. If a substituting matching rule is encountered at any point that caused 

non-conformance with the governing-search-rule, this particular substitution is abandoned completely, 

together with any further substitutions that may have been specified by the search request for that attribute 

type. If during the process, the minimum or maximum specification specified in the search request is 

satisfied, the process stops. 

4) The governing search-rule-supplied relaxation or tightening substitutions are applied, with the exception 

that there shall be no substitution for attribute types for which relaxation or tightening substitutions have 

been performed. That is, further relaxation or tightening substitutions apply only to matching rules for 

attribute types that so far have not been exposed to relaxation or tightening substitution. In this part of the 

process, the maximum or minimum specifications in the search request still apply, rather than those 

specified in the governing-search-rule. 

If a substitution specified in the search request proposes an unsupported matching rule, the existing matching rule stays 

in place. If this strategy fails to produce a supported matching rule, the filter-item is evaluated as UNDEFINED. 



ISO/IEC 9594-3:2020 (E) 

48 Rec. ITU-T X.511 (10/2019) 

The user can propose that the system provides a relaxation or tightening by specifying the dummy matching rule 

systemProposedMatch. 

The extendedArea component indicates the level of relaxation (if greater than zero) or the level of tightening (if less 

than zero). If this component is present, it affects relaxation or tightening, as it is described in clause 16.10.7 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2. 

The hierarchySelections search control specifies by means of a bit string the hierarchical selection to be performed 

within a hierarchical group with respect to each matched entry. It is ignored for matched entries that are not part of a 

hierarchical group. If several entries within a hierarchy are matched, hierarchical selection will not result in the same 

entry being returned more than once. If this search control is not present, no hierarchical selection is performed. When 

present, the following choices are possible either alone or in combinations: 

a) self indicates that entry information shall be returned from the matched entries. If this is the only choice, 

it corresponds to performing no hierarchical selection. 

b) children indicates that for each matched entry, the entry information is returned from all immediately 

hierarchical children, if any, of each matched entry. No information is returned from the matched entry if 

this is the only setting. 

c) parent indicates that for each matched entry, the entry information is returned from the immediately 

hierarchical parent, if any, of each matched entry. No information is returned from the matched entry if 

this is the only setting. 

d) hierarchy indicates that for each matched entry, the entry information is returned from all the 

hierarchical parents. No information is returned from the matched entry if this is the only setting. 

e) top indicates that for each matched entry, the entry information from the hierarchical top is returned. 

No information is returned from the matched entry if this is the only setting, unless the matched entry is 

the top entry. 

f) subtree indicates that for each matched entry, the entry information is returned from all its hierarchical 

children, if any. No information is returned from the matched entry if this is the only setting. 

g) siblings indicates that for each matched entry, the entry information from all hierarchical siblings is 

returned. No information is returned from the matched entry if this is the only setting. 

h) siblingChildren indicates that for each matched entry, the entry information from the immediately 

hierarchical children of all hierarchical siblings is returned. No information is returned from the matched 

entry and its siblings if this is the only setting. 

i) siblingSubtree indicates that for each matched entry, the entry information from all the children of all 

hierarchical siblings is returned. No information is returned from the matched entry and its siblings if this 

is the only setting.  

j) all indicates that for each matched entry, the entry information from all entries of the hierarchical group 

is returned. 

The searchControlOptions component contains only control options applicable for the Search operation. This 

component has indicators with the same semantics as the Boolean type components of the search argument. An 

implementation supporting the service administration extension shall support this component. A sending supporting 

implementation (e.g., a DUA) shall in addition to setting the Boolean type components also set the corresponding bits in 

this component (unless defaults apply). If a supporting DSA implementation receives a search request with this 

component, it shall ignore the Boolean type components in the request. If this component is absent in a request, the default 

setting shall be understood to be all bits reset, except as indicated below: 

a) The searchAliases search control option is a replacement for the searchAliases search argument 

component. If this bit is set, it corresponds to the searchAliases component being TRUE. If the 

searchControlOptions component is absent, the default value is according to the searchAliases 

component, i.e., if the searchAliases component is absent or set to TRUE, this bit defaults to being set. 

b) The matchedValuesOnly search control option is a replacement for the matchedValuesOnly search 

component. If this bit is set, it corresponds to the matchedValuesOnly component being TRUE. If the 

searchControlOptions component is absent, the default value is according to the 

matchedValuesOnly component, i.e., if the matchedValuesOnly component is set to TRUE, this bit 

defaults to being set; otherwise, it defaults to being reset. 

c) The checkOverspecified search control option is a replacement for the checkOverspecified search 

component. If this bit is set, it corresponds to the checkOverspecified component being TRUE. If the 

searchControlOptions component is absent, the default value is according to the 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 49  

checkOverspecified component, i.e., if the checkOverspecified component is set to TRUE, this bit 

defaults to being set; otherwise, it defaults to being reset. 

d) The performExactly search control option indicates that an operation shall be performed exactly 

according to the relevant matching rules as specified or implied by the filter after a basic matching rule 

substitution, if applicable. When an extensibleMatch filter item specifies an unsupported matching rule, 

the search request shall be rejected when this search control option is set. Otherwise, the filter item 

evaluates to UNDEFINED. If the Search operation starts its initial evaluation phase within a 

service-specific administrative area and a matching restriction in a search-rule is violated, that search-rule 

will fail the search-validation if, and only if, this search control option is set. 

e) The includeAllAreas search control option is only relevant if the extendedArea component is 

included with a value of zero or greater. In all other cases, it is ignored. If the value is TRUE, inclusive 

relaxation is performed; otherwise, exclusive relaxation is performed if possible (see clause 13.6 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2). 

f) The noSystemRelaxation search control option is used when the user requires that DSA-supplied 

relaxation policies shall not be applied. The DSA still applies a basic policy, unless there is a user-supplied 

basic policy that overrides it, but no subsequent relaxations or tightenings shall be applied. That is, the 

filter is never evaluated more than once over the set of candidate entries, except because of user-supplied 

relaxations. 

g) The dnAttribute search control option is used to indicate that the attributes of the Distinguished Name 

of an entry are used in addition to those of the entry when evaluating a filter against the entry. If set, it 

overrides any possible dnAttribute specification in extensibleMatch filter items. It also applies to 

all filter item types. 

h) The matchOnResidualName search control option is only relevant if the partialNameResolution 

service control option is set. It is used to indicate that if the Directory is able to resolve only part of the 

purported name in a search operation, the attribute value assertions (AVAs) of the unresolved RDNs 

shall be treated as AND'ed equality filter items. These filter items are AND'ed with the search filter both 

for search evaluation against search-rules and for entry matching. 

i) The entryCount search control option indicates that an entry count shall be supplied in the search result 

in case either a service control size limit or an administrative size limit has been exceeded. The 

entryCount gives an indication of how many entries would have been returned had a size limit not been 

encountered. This search control is ignored if the subentries service control option is set. 

j) The useSubset search control option indicates that the imposedSubset search-rule component shall 

be ignored (see clause 16.10.9 of Rec. ITU-T X.501 | ISO/IEC 9594-2). 

k) The separateFamilyMembers search control option indicates that family members are returned as 

separate entries rather than being embedded in the family-information derived attribute. 

l) The searchFamily search control option specifies how the search is performed if the base object is the 

ancestor of a compound attribute. This option is ignored if the base object is not an ancestor or if the 

entryOnly is set in either the CommonArguments or in the ChainingArguments. If this option is set, 

the operation is only performed on the compound entry and each family member count as a separate entry 

with respect to the subset and sizeLimit specifications. If searchFamily option is not set, the 

compound entry is considered a single entry with respect to the subset specification. 

NOTE 6 – The latter implies that if, as an example, subset is set to baseObject and familyGrouping is entryOnly, then each 

individual family member is within the scope of the search. 

The joinArguments argument is used to specify additional portions of the Directory to be searched for the purpose of 

identifying and accessing entries related to those in the primary search and to specify the attributes to be used in joining 

the related entries. Although specified as a SEQUENCE, the order in which joinArgument arguments appear is not 

significant. 

NOTE 7 – When joinArguments is specified, the primary search and each additional search is considered to produce a set of 

intermediate results. Each set of intermediate results resulting from a specification of joinArgument will be joined with the results 

of the primary search, and all joins will be performed prior to returning any results in SearchResult. Intermediate results are not 

visible to users of the directory. 

The joinBaseObject component identifies the object entry (or possibly the root) relative to which each additional 

search is to take place. The joinBaseObject may be an alternative name and may include context information, as 

described in clause 9.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2. 

The domainLocalID component optionally specifies a separate DIT in which the search for joinBaseObject is to be 

initiated. If absent, the search for joinBaseObject is to be initiated in all DITs known to the DSA. 



ISO/IEC 9594-3:2020 (E) 

50 Rec. ITU-T X.511 (10/2019) 

The joinSubset component indicates whether the additional search is to be applied to:  

a) the joinBaseObject only;  

b) the immediate subordinates of the join base object only (oneLevel);  

c) the join base object and all its subordinates (wholeSubtree). 

The joinFilter component is used to eliminate entries from the additional search space which are not of interest. Only 

information which satisfies the joinFilter will be considered for joining with related entries. If joinFilter is not 

specified, the value in the filter component of the SearchArgument will be used. If the filter component of the 

SearchArgument is not supplied, the default value for that component will be used. When present, joinFilter will 

be treated according to the rules for extendedFilter. 

The joinAttributes component is used to specify the pairs of attributes to be used in joining entries from the primary 

search with entries from an additional search. An entry from the primary search (the "primary entry") is considered related 

to an entry from an additional search (the "additional entry") if there exists a joinAttrPair such that the following 

conditions are true: 

a) the primary entry has a value for the attribute type specified by baseAtt; 

b) the additional entry has a value for the attribute type specified by joinAtt; 

c) one of the attribute values in the primary entry and one of the attribute values in the additional entry are 

equal according to the following rules: 

i) if the attribute types are the same, the equality matching rule for that attribute type is applied; 

ii) if the attribute types are not the same, but have the same syntax, the equality matching rule for the 

attribute type specified for the primary entry is applied; 

iii) if joinContexts is present, only attribute values of the specified contexts may be used in evaluating 

in accordance with rule i) or ii) above. If joinContexts is absent, attribute values of all contexts 

may be used in evaluating in accordance with rule i) or ii) above.  

In evaluating joinAttributes for potential joins, subtypes of the join attributes shall be ignored. Only the 

explicitly-identified baseAtt and joinAtt shall be used to evaluate a potential join. 

If an equality rule is applied and evaluates to either FALSE or UNDEFINED, the entries are not considered to be related. 

If no suitable matching rule can be applied under condition c) above, the entries are not considered to be related. 

NOTE 8 – Care should be taken to prevent the unintentional retrieval of meaningless data when specifying joins involving 

multi-valued attributes. For example, if an entry uses a multi-valued attribute such as an employee identifier to denote membership 

in a committee, specification of that multi-valued attribute in performing the join could result in the return of an uncorrelated set 

containing group member names, telephone numbers, electronic mail addresses, and so on. Nevertheless, when outer joins are 

specified, all entries that are retrieved will be returned, even if not related. 

The joinSelection component is used to eliminate attributes from the additional search intermediate result which are 

not of interest.  

The joinType component is used to specify the type of join to be performed on related entries, as follows: 

a) If innerJoin is specified, the resulting entry set will include only those entries for which a join has been 

performed based on the attribute pairs specified in joinAttributes. Each resulting entry will include 

all the corresponding related entries as relatedEntry attribute values. 

b) If leftOuterJoin is specified, the resulting entry set will include all entries selected by the primary 

search; all entries for which a join has been performed based on the attribute pairs specified in 

joinAttributes will include all the corresponding related entries as relatedEntry attribute values. 

c) If fullOuterJoin is specified, the resulting entry set will include all entries from the primary and 

additional searches; all entries for which a join has been performed based on the attribute pairs specified 

in joinAttributes will include all the corresponding related entries as relatedEntry attribute values 

rather than as explicit entries. 

No attempt at joining shall take place unless the joinAttributes value contains at least one JoinAttPair and each 

JoinAttPair is valid in terms of matching rules. If this is not the case, no attempt at joining shall take place, and the 

following shall be the outcome of merging for each JoinAttPair, depending on the join-type: 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 51  

 

Join-type Merged output 

inner-join empty 

left-outer-join primary results only 

full-outer-join results from primary and joined search 

Otherwise, entries shall only be eligible for joining when they can supply all of the relevant join-attribute values. 

The results of joining shall include all combinations of matched join attributes. 

NOTE 9 – For example, consider A B and C as entries from the primary search and P, Q, R as entries from an additional search 

using J, a corresponding JoinAttPair value, and suppose that the following matches take place as a result of J: 

– A with P, A with Q, A with R 

– B with Q 

– C with P and C with Q 

Then, the joined results will include: 

– A with {P,Q,R}  

– B with {Q}  

– C with {P,Q}  

even though Q's results occur three times. 

The CommonArguments (see clause 7.3) include a specification of the service controls and security parameters applying 

to the request. If the argument of this operation is to be signed by the requester, the SecurityParameters 

(see clause 7.10) component shall be included in the arguments. 

11.2.3 Search results 

The request succeeds, subject to access controls, if the baseObject is located, regardless of whether there are any 

subordinates to return, and if there are no service restrictions as specified within a service-specific administrative area 

that prevent the Search operation from proceeding. 

NOTE 1 – As a corollary to this, the outcome of an unfiltered Search operation applied to a single entry may not be identical to a 

Read operation which seeks to interrogate the same set of attributes of the entry. This is because the latter shall return an 

AttributeError if none of the selected attributes exist in the entry. 

The name component, if present, shall be the distinguished name of the entry or an alias name of the entry, as described 

in clause 7.7. It shall be present if an alias has been dereferenced and the name to be returned differs from the baseObject 

name supplied in the operation argument. 

The entries parameter conveys the requested information from each entry (zero or more) which satisfied the filter 

(see clause 7.5). The entry information may include family information, as required by the familyReturn element of 

EntryInformationSelection. The interaction between familyGrouping and familyReturn is defined in a 

four-phase evaluation of a filter and subsequent evaluation of what to return, as described in clause 7.8.3. 

The partialOutcomeQualifier is as described in clause 11.1.3.  

NOTE 2 – Where returned entry information is incomplete for a particular entry, it is indicated via the incompleteEntry 

parameter in the returned entry information. 

The altMatching parameter indicates that a matching rule has not been applied exactly as specified in the search 

request. 

The appliedRelaxation attribute in the notifications element of CommonResults shall be used to list the 

attributes of the filter which have been subject to relaxation or tightening, other than those made by the basic element 

of a relaxation policy (see clause 6.13.16 of Rec. ITU-T X.520 | ISO/IEC 9594-6). 

The uncorrelatedSearchInfo parameter is as described for uncorrelatedListInfo in clause 11.1.3. 

The CommonResults (see clause 7.4) include the security parameters applying to the response. If this result is to be 

signed by the Directory, the SecurityParameters (see clause 7.10) component shall be included in the results. 

11.2.4 Service administration 

An administrative authority may establish service-specific administrative areas as specified in clause 7 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2. This allows the administrative authority to administer the service by restricting the 

Search operation with respect to what areas of the DIT can be searched and what type of searches can be formed, what 

information can be returned, etc., by definition of search-rules. 



ISO/IEC 9594-3:2020 (E) 

52 Rec. ITU-T X.511 (10/2019) 

11.2.5 Search errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be reported are defined in clause 14. 

When searches are performed within service-specific administrative areas, a number of additional, quite detailed elements 

of error information may be returned as detailed in clause 14. 

11.2.6 Search operation decision points for basic access control  

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the portion of the DIT to be searched, the following sequence of access controls 

applies: 

1) No specific permission is required to the entry identified by the baseObject argument. 

NOTE 1 – If the baseObject is within the scope of the SearchArgument (i.e., when the subset argument specifies baseObject 

or wholeSubtree) the access controls specified in items 2) to 5) apply. 

2) For each entry within the scope of the SearchArgument which is to be a candidate for consideration, 

Browse permission is required. Entries for which this permission is not granted are ignored.  

3) The filter component is applied to each entry left to be considered after taking item 2) into account, in 

accordance with the following: 

a) For each FilterItem that specifies an attribute, FilterMatch permission for the attribute type is 

required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for 

which this permission is not granted evaluates as UNDEFINED. 

b) For each FilterItem that additionally specifies an attribute value, FilterMatch permission is 

required for each stored attribute value which is to be considered for the purposes of matching. If 

there is a value that both matches the FilterItem and for which permission is granted, the 

FilterItem evaluates to TRUE, otherwise it evaluates to FALSE. 

4) If present, the joinCriteria component is applied to each entry left to be considered after taking item 

3) into account, in accordance with the following: 

a) For each JoinCriteriaItem which specifies an attribute, FilterMatch permission for the attribute 

type is required before the JoinCriteriaItem can be evaluated as either TRUE or FALSE. A 

JoinCriteriaItem for which this permission is not granted evaluates as UNDEFINED. 

b) For each JoinCriteriaItem that additionally specifies an attribute value, FilterMatch permission 

is required for each stored attribute value which is to be considered for the purposes of matching. If 

there is a value that both matches the JoinCriteriaItem and for which permission is granted, the 

JoinCriteriaItem evaluates to TRUE, otherwise it evaluates to FALSE. 

5) Once the procedures defined in 2) to 4) have been applied, the entry is either selected or discarded. If, as a 

consequence of applying these controls to the entire scoped subtree, no entries have been selected 

(excluding any ContinuationReferences in partialOutcomeQualifier) and if DiscloseOnError 

permission is not granted to the entry identified by the baseObject component, the operation fails and a 

nameError with problem noSuchObject shall be returned. The matched element shall either contain 

the name of the next superior entry to which DiscloseOnError permission is granted, or the name of the 

DIT root (i.e., an empty RDNSequence). Otherwise, the operation succeeds but no subordinate information 

is conveyed with it.  

NOTE 2 – In the case of a nameError being returned, the empty RDNSequence may be used by a DSA which does not have access 

to all superior entries.  

NOTE 3 – Security policy may prevent the disclosure of knowledge information which would otherwise be conveyed as 

ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect and if a DUA constrains the service by 

specifying chainingProhibited, the Directory may return a serviceError with problem chainingRequired. Otherwise, 

the ContinuationReference is omitted from partialOutcomeQualifier. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 53  

6) Otherwise, for each selected entry, the information returned is as follows: 

a) If the infoTypes element of selection specifies that attribute types only are to be returned, then 

for each attribute type that is to be returned, Read permission is required. If permission is not granted, 

the attribute type is omitted from EntryInformation. If, as a consequence of applying these 

controls no attribute type information is selected, the EntryInformation element is returned but no 

attribute type information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty). 

b) If the infoTypes element of selection specifies that attribute types and values are to be returned, 

then for each attribute type and for each value that is to be returned, Read permission is required. If 

permission to an attribute type is not granted, the attribute is omitted from EntryInformation. If 

permission to an attribute value is not granted, the value is omitted from its corresponding attribute. 

In the event that permission is not granted to any of the values within the attribute, an Attribute 

element containing an empty SET OF AttributeValue is returned. If, as a consequence of applying 

these controls no attribute information is selected, the EntryInformation element is returned but 

no attribute information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty). 

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the baseObject component, a 

partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be 

returned, as it may compromise the security of this entry. 

11.2.6.1 Search operation decision points for basic-access-control in the presence of additional searches  

If the joinArguments argument is present, and if basic-access-control is in effect for the portion of the DIT to be searched, 

the following sequence of access controls applies to each additional search: 

1) No specific permission is required to the entry identified by the joinBaseObject component. 

NOTE 1 – If the joinBaseObject is within the scope of the joinArgument (i.e., when the joinSubset component specifies 

baseObject or wholeSubtree) the access controls specified in items 2) to 6) apply. 

2) For each entry within the scope of the joinArgument which is to be a candidate for consideration, Browse 

permission is required. Entries for which this permission is not granted are ignored.  

3) If present, the joinFilter component is applied to each entry left to be considered after taking item 2) 

into account, in accordance with the following: 

a) For each FilterItem which specifies an attribute, FilterMatch permission for the attribute type is 

required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for 

which this permission is not granted evaluates as UNDEFINED. 

b) For each FilterItem which additionally specifies an attribute value, FilterMatch permission is 

required for each stored attribute value which is to be considered for the purposes of matching. If 

there is a value which both matches the FilterItem and for which permission is granted, the 

FilterItem evaluates to TRUE, otherwise it evaluates to FALSE. 

4) If the joinFilter component is not present, the filter component is applied to each entry left to be 

considered after taking item 2) into account, in accordance with the following: 

a) For each FilterItem which specifies an attribute, FilterMatch permission for the attribute type is 

required before the FilterItem can be evaluated as either TRUE or FALSE. A FilterItem for 

which this permission is not granted evaluates as UNDEFINED. 

b) For each FilterItem which additionally specifies an attribute value, FilterMatch permission is 

required for each stored attribute value which is to be considered for the purposes of matching. If 

there is a value which both matches the FilterItem and for which permission is granted, the 

FilterItem evaluates to TRUE, otherwise it evaluates to FALSE. 

5) Once the procedures defined in 2) to 4) have been applied, the entry is either selected or discarded. If, as a 

consequence of applying these controls to the entire scoped subtree, no entries have been selected 

(excluding any ContinuationReferences in partialOutcomeQualifier) and if DiscloseOnError 

permission is not granted to the entry identified by the baseObject component, the operation fails and a 

nameError with problem noSuchObject shall be returned. The matched element shall either contain 

the name of the next superior entry to which DiscloseOnError permission is granted, or the name of the 

DIT root (i.e., an empty RDNSequence). Otherwise, the operation succeeds but no subordinate information 

is conveyed with it.  

NOTE 2 – In the case of a nameError being returned, the empty RDNSequence may be used by a DSA which does not have access 

to all superior entries.  

NOTE 3 – Security policy may prevent the disclosure of knowledge information which would otherwise be conveyed as 

ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect and if a DUA constrains the service by 



ISO/IEC 9594-3:2020 (E) 

54 Rec. ITU-T X.511 (10/2019) 

specifying chainingProhibited, the Directory may return a serviceError with problem chainingRequired. Otherwise, 

the ContinuationReference is omitted from partialOutcomeQualifier. 

6) Otherwise, for each selected entry, the information returned is as follows: 

a) If the infoTypes element of selection specifies that attribute types only are to be returned, then 

for each attribute type that is to be returned, Read permission is required. If permission is not granted, 

the attribute type is omitted from EntryInformation. If, as a consequence of applying these 

controls no attribute type information is selected, the EntryInformation element is returned but no 

attribute type information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty). 

b) If the infoTypes element of selection specifies that attribute types and values are to be returned, 

then for each attribute type and for each value that is to be returned, Read permission is required. If 

permission to an attribute type is not granted, the attribute is omitted from EntryInformation. If 

permission to an attribute value is not granted, the value is omitted from its corresponding attribute. 

In the event that permission is not granted to any of the values within the attribute, an Attribute 

element containing an empty SET OF AttributeValue is returned. If, as a consequence of applying 

these controls no attribute information is selected, the EntryInformation element is returned but 

no attribute information is conveyed with it (i.e., the SET OF CHOICE element is omitted or empty). 

NOTE 4 – If DiscloseOnError permission is not granted to the entry identified by the baseObject argument, a 

partialOutcomeQualifier indicating a limitProblem or unavailableCriticalExtensions should not be returned as it 

may compromise the security of this entry. 

11.2.6.2 Alias dereferencing during Search 

No specific permissions are necessary for alias dereferencing to take place in the course of a search operation (subject 

to the searchAliases parameter being set to TRUE). However, for each alias entry encountered, if alias dereferencing 

would result in a ContinuationReference being returned in partialOutcomeQualifier, the following access 

controls apply: Read permission is required to the alias entry, the aliasedEntryName attribute and to the single value 

that it contains. If any of these permissions is not granted, the ContinuationReference shall be omitted from 

partialOutcomeQualifier. These access controls shall also be applied to a continuationReference that is 

received in a response from another DSA. That is, the DSA shall police all continuationReferences whether they 

were generated locally or not. 

NOTE – In addition to the access controls described above, security policy may prevent the disclosure of knowledge information 

that would otherwise be conveyed as ContinuationReferences in partialOutcomeQualifier. If such a policy is in effect 

and if a DUA constrains the service by specifying chainingProhibited, the Directory may return a serviceError with 

problem chainingRequired. Otherwise, the ContinuationReference is omitted from partialOutcomeQualifier. 

11.2.6.3 Non-disclosure of incomplete results 

If an incomplete result is being returned in EntryInformation, i.e., some of the attributes or attribute values have been 

omitted because of the applicable access controls, the incompleteEntry element shall be set to TRUE if 

DiscloseOnError permission is granted to at least one attribute type withheld from the result, or at least one attribute 

value withheld from the result (for which attribute type Read permission was granted). 

11.2.7 Search operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the portion of 

the DIB where the Search operation is being performed, the following access controls apply: 

1) If rule-based entry level permission is denied to the entry identified by the baseObject component, then 

nameError with problem noSuchObject is returned as defined in clause 7.11.2.4. 

2) Under rule-based-access-control, each entry within the scope of the SearchArgument for which entry level 

access is denied is ignored. 

3) basic-access-control on entries is applied as defined in clause 11.2.6, item 2). 

4) The filter is applied ignoring attribute values to which access is denied under rule-based-access-control. 

5) basic-access-control on the filter is applied as defined in clause 11.2.6, items 3) and 4). 

6) For any selected entry: 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 55  

a) for each attribute type that may be returned under rule-based-access-control, access must be granted to 

at least one attribute value of that type; 

b) attribute values to which access is denied under rule-based-access-control shall not be returned. 

7) basic-access-control is applied to the information returned as defined in clause 11.2.6, item 5). 

12 Directory Modify operations 

There are four operations to modify the Directory: addEntry, removeEntry, modifyEntry, and modifyDN defined 

in clauses 12.1 to 12.4, respectively. 

NOTE 1 – Each of these operations identifies the target entry by means of its distinguished name. 

NOTE 2 – The success of addEntry, removeEntry, and modifyDN operations may depend on the physical distribution of the DIB 

across the Directory. Failure shall be reported with an updateError with problem affectsMultipleDSAs. See Rec ITU-

T X.518 | ISO/IEC 9594-4. 

NOTE 3 – In the event of failure of the underlying communications mechanism, the outcome of the operations is undetermined. 

The user should use Directory interrogation operations to check whether the attempted modification operation succeeded or not. 

12.1 Add Entry 

12.1.1 Add Entry syntax 

An addEntry operation is used to add a leaf entry (either an object entry or an alias entry) to the DIT. The arguments of 

the operation may be signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester. If the target 

component of the SecurityParameters (see clause 7.10) in the request is set to signed and a result is to be returned, 

the result may be signed. Otherwise, the result shall not be signed. 
 

addEntry OPERATION ::= { 

  ARGUMENT  AddEntryArgument 

  RESULT    AddEntryResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-addEntry } 

 

AddEntryArgument ::= OPTIONALLY-PROTECTED { AddEntryArgumentData } 

 

AddEntryArgumentData ::= SET { 

  object        [0]  Name, 

  entry         [1]  SET OF Attribute{{SupportedAttributes}}, 

  targetSystem  [2]  AccessPoint OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF      CommonArguments } 

 

AddEntryResult ::= CHOICE { 

  null          NULL, 

  information   OPTIONALLY-PROTECTED-SEQ { AddEntryResultData }, 

  ... } 

 

AddEntryResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

12.1.2 Add Entry arguments 

The object component identifies the entry to be added. Its immediate superior, which must already exist for the operation 

to succeed, is determined by removing the last RDN component (which belongs to the entry to be created).  

The entry component contains the attribute information which, together with that from the RDN, constitutes the entry 

to be created. The Directory shall ensure that the entry conforms to the Directory schema. Where the entry being created 

is an alias, no check is made to ensure that the aliasedEntryName attribute points to a valid entry. 



ISO/IEC 9594-3:2020 (E) 

56 Rec. ITU-T X.511 (10/2019) 

The targetSystem component indicates the DSA to hold the new entry. If this component is absent, it shall be taken to 

mean the same DSA as holds the superior of the new object. If the component is present, it shall be the DSA with the 

specified AccessPoint. The parameter shall be absent when subentries are to be added. 

If the component is present, the targetSystem bit in the criticalExtensions parameter in CommonArguments shall 

be set, indicating that this extension is critical. 

NOTE 1 – If the choice of indicated or implied DSA conflicts with local administrative policy, the operation is not performed and 

an error is returned. 

The CommonArguments (see clause 7.3) includes a specification of the service controls and security parameters applying 

to the request. The dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate 

critical extension bit is set in criticalExtensions. Thus aliases are dereferenced by this operation only if 

dontDereferenceAlias is not set and useAliasOnUpdate is set. The sizeLimit component is ignored if provided. 

If the argument of this operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component 

shall be included in the arguments. 

NOTE 2 – Update operations that involve dereferencing of an alias name will always fail if they encounter  DSAs implemented 

according to Rec. CCITT X.5** (1988) | ISO/IEC 9594-*:1990. 

12.1.3 Add Entry results 

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the 

SecurityParameters (see clause 7.10) component of CommonResultsSeq (see clause 7.4) shall be included in the 

results. If the result of this operation is not to be signed by the Directory, no information shall be conveyed with the result. 

12.1.4 Add Entry errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be reported are defined in clause 14. 

12.1.5 Add operation decision points for basic access control 

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the entry being added, the following sequence of access controls applies: 

1) No specific permission is required to the immediate superior of the entry identified by the object 

component. 

NOTE 1 – Security policy may prevent Directory users from adding entries across DSA boundaries (e.g., using the targetSystem 

component). In this event, an appropriate nameError, serviceError, securityError or updateError may be returned 

provided that it does not compromise the existence of the immediate superior entry. If it does (i.e., DiscloseOnError is not granted 

to the superior entry), the procedure defined in clause 7.11.3 shall be followed with respect to the superior entry. 

2) If an entry already exists with a distinguished name equal to the object component, the operation fails in 

accordance with clause 12.1.5.1, item a). 

3) Add permission is required for the new entry being added. If this permission is not granted, the operation 

fails in accordance with clause 12.1.5.1, item b). 

NOTE 2 – The Add permission shall be provided as prescriptiveACI when attempting to add an entry and as prescriptiveACI 

or subentryACI when attempting to add a subentry. 

4) For each attribute type and for each value that is to be added, Add permission is required. If any permission 

is absent, the operation fails in accordance with clause 12.1.5.1, item c). 

12.1.5.1 Error returns 

If the operation fails as defined in clause 12.1.5, the following procedure applies: 

a) If the operation fails as defined in clause 12.1.5, item 2), the valid error returns are one of: if 

DiscloseOnError or Add permission is granted to the existing entry, an updateError with problem 

entryAlreadyExists shall be returned. Otherwise, the procedure described in clause 7.11.3 is followed 

with respect to the entry being added. 

b) If the operation fails as defined in clause 12.1.5, item 3), the procedure described in clause 7.11.3 is 

followed with respect to the entry being added. 

c) If the operation fails as defined in clause 12.1.5, item 4), the valid error return is securityError with 

problem insufficientAccessRights or noInformation.  



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 57  

12.1.6 Add Entry operation decision points for rule-based-access-control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the portion of 

the DIB where the addEntry operation is being performed, the following sequence of access control applies: 

1) If rule-based entry level permission to the immediate superior is denied, then nameError with problem 

noSuchObject is returned as defined in clause 7.11.2.4. 

2) basic-access-control is applied as defined in clause 11.1.5. 

12.2 Remove Entry 

12.2.1 Remove Entry syntax 

A Remove Entry operation is used to remove a leaf entry (either an object entry, family member or an alias entry) or a 

non-leaf ancestor and its children, from the DIT. The arguments of the operation may be signed (see clause 17.3 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester. If the target component of the SecurityParameters 

(see clause 7.10) in the request is set to signed and a result is to be returned, the result may be signed. Otherwise, the 

result shall not be signed. 
 

removeEntry OPERATION ::= { 

  ARGUMENT  RemoveEntryArgument 

  RESULT    RemoveEntryResult 

  ERRORS    {nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-removeEntry } 

 

RemoveEntryArgument ::= OPTIONALLY-PROTECTED { RemoveEntryArgumentData } 

 

RemoveEntryArgumentData ::= SET { 

  object     [0]  Name, 

  ..., 

  ..., 

  COMPONENTS OF   CommonArguments 

  } 

 

RemoveEntryResult ::= CHOICE { 

  null          NULL, 

  information   OPTIONALLY-PROTECTED-SEQ { RemoveEntryResultData }, 

  ... } 

 

RemoveEntryResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

12.2.2 Remove Entry arguments 

The object component identifies the entry to be deleted. 

The CommonArguments (see clause 7.3) includes a specification of the service controls and security parameters applying 

to the request. The dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate 

critical extension bit is set in criticalExtensions. Thus, aliases are dereferenced by this operation only if 

dontDereferenceAlias is not set and useAliasOnUpdate is set. The sizeLimit component is ignored if provided. 

If the argument of this operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component 

shall be included in the arguments. 

NOTE – Update operations that involve dereferencing of an alias name will always fail if they encounter DSAs implemented 

according to Rec. CCITT X.5** (1988) | ISO/IEC 9594-*:1990. 

FamilyGrouping may be set as follows: 

– entryOnly is the default for this operation. The entry to be removed shall be a leaf entry. 



ISO/IEC 9594-3:2020 (E) 

58 Rec. ITU-T X.511 (10/2019) 

– compoundEntry may be specified for an ancestor. All the members of the compound entry will be 

removed. The operation will fail with an updateError with problem notAncestor if the target object 

is not an ancestor. The operation will also fail with an appropriate error if it is not possible to remove all 

members, e.g., for security reasons. 

If FamilyGrouping is absent or set to any other value than above, entryOnly is assumed. 

12.2.3 Remove Entry results 

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the 

SecurityParameters (see clause 7.10) component of CommonResultsSeq (see clause 7.4) shall be included in the 

results. If the result of the operation is not to be signed by the Directory, no information shall be conveyed with the result. 

When family information is selected by familyReturn in EntryInformationSelection, the information returned 

is defined in clause 7.6.4. 

The information returned in information component corresponds to the state of the DIB after the (successful) Modify 

Entry operation. 

12.2.4 Remove Entry errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be reported are defined in clause 14. 

12.2.5 Remove Entry operation decision points for basic access control  

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the entry being removed, the following access controls apply: 

– Remove permission is required for the entry being removed. If this permission is not granted, the operation 

fails in accordance with clause 7.11.1. 

NOTE – No specific permissions are required for any of the attributes and attribute values present within the entry being removed. 

12.2.6 Remove Entry operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being 

removed, the following sequence of access control applies: 

1) If rule-based entry level permission is not granted to the target entry, the operation fails with nameError 

with problem noSuchObject as defined in clause 7.11.2.4. 

2) Entry level basic-access-control is applied as specified in clause 12.2.5. 

3) If rule-based access is not granted to an attribute value, then it shall not be removed.  

4) If rule-based RDN permission is not granted, then none of the attribute values of the RDN shall be removed. 

If all the values of an attribute are removed, then the attribute is removed from the entry. If all the attributes 

are removed, then the entry is removed from the DIT. If at least one attribute value is removed, and the 

requester does not have RDN permission, the operation succeeds but the entry remains in the DIT with one 

or more attributes. 

NOTE 1 – Unless all the values of the label context for distinguished values of the entry have all the same values, this may not 

support a rule-based access-control policy. 

5) Under rule-based-access-control, if RDN permission is granted, but permission to access at least one other 

attribute value is not granted, then the RDN is not removed, and the operation fails with securityError 

with problem insufficientAccessRights. It is a local matter whether other attribute values to which 

the requester has access permission are removed or not. 

NOTE 2 – This reveals to the requester that at least one attribute value exists that is inaccessible. 

6) If all the attributes of the entry are removed, then the entry is removed from the DIT, and the operation is 

successful. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 59  

12.3 Modify Entry 

12.3.1 Modify Entry syntax 

The Modify Entry operation is used to perform a series of one or more of the following modifications to a single entry: 

a) add a new attribute; 

b) remove an attribute; 

c) add attribute values; 

d) remove attribute values; 

e) replace attribute values; 

f) modify an alias; 

g) add a constant to all values of an attribute; 

h) delete all attribute values for which fallback is FALSE in every context. 

The arguments of the operation may be signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester. 

If the target component of the SecurityParameters (see clause 7.10) in the request is set to signed and a result is 

to be returned, the result may be signed. Otherwise, the result shall not be signed. 
 

modifyEntry OPERATION ::= { 

  ARGUMENT  ModifyEntryArgument 

  RESULT    ModifyEntryResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-modifyEntry } 

 

ModifyEntryArgument ::= OPTIONALLY-PROTECTED { ModifyEntryArgumentData } 

 

ModifyEntryArgumentData ::= SET { 

  object     [0]  Name, 

  changes    [1]  SEQUENCE OF EntryModification, 

  selection  [2]  EntryInformationSelection OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF   CommonArguments } 

 

ModifyEntryResult ::= CHOICE { 

  null         NULL, 

  information  OPTIONALLY-PROTECTED-SEQ { ModifyEntryResultData }, 

  ... } 

 

ModifyEntryResultData ::= SEQUENCE { 

  entry    [0]  EntryInformation OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

EntryModification ::= CHOICE { 

  addAttribute     [0]  Attribute{{SupportedAttributes}}, 

  removeAttribute  [1]  AttributeType, 

  addValues        [2]  Attribute{{SupportedAttributes}}, 

  removeValues     [3]  Attribute{{SupportedAttributes}}, 

  alterValues      [4]  AttributeTypeAndValue, 

  resetValue       [5]  AttributeType, 

  replaceValues    [6]  Attribute{{SupportedAttributes}}, 

  ... } 

12.3.2 Modify Entry arguments 

The object component identifies the entry to which the modifications should be applied. 

The changes component defines a sequence of modifications that are applied in the order specified. If any of the 

individual modifications fail, then an attributeError is generated and the entry left in the state that it was prior to the 

operation. That is, the operation is atomic. The end result of the sequence of modifications shall not violate the Directory 



ISO/IEC 9594-3:2020 (E) 

60 Rec. ITU-T X.511 (10/2019) 

schema. However, it is possible, and sometimes necessary, for the individual EntryModification changes to appear 

to do so. The following types of modification may occur: 

a) addAttribute – This identifies a new attribute to be added to the entry, which is fully specified by the 

component. Any attempt to add an already existing attribute results in an attributeError. 

b) removeAttribute – The component identifies (by its type) an attribute to be removed from the entry. 

Any attempt to remove a non-existing attribute results in an attributeError. 

NOTE 1 – This operation is not allowed if the attribute type is present in the RDN. 

c) addValues – This identifies an attribute by the attribute type in the argument, and specifies one or more 

attribute values to be added to the attribute. An attempt to add an already existing value results in an error. 

An attempt to add a value to a non-existent type results in the type and value being added. 

d) removeValues – This identifies an attribute by the attribute type in the argument, and specifies one or 

more attribute values to be removed from the attribute. If the values are not present in the attribute, this 

results in an attributeError. An attempt to remove the last value from an attribute results in the 

attribute type being removed. 

NOTE 2 – This operation is not allowed if one of the values is present in the RDN. 

 Attributes or attribute values to be added may be specified with or without a context list. Contexts cannot 

be added to existing attribute values, removed from existing attribute values, nor modified. To alter a 

context list of an existing attribute value, first remove the attribute value, and then insert the same attribute 

value with the new context list. When an attribute value is removed, no context list shall be supplied, and 

any existing context list associated with the attribute value being removed is removed with the attribute 

value. 

e) alterValues – This identifies an attribute type, and specifies a quantity to be added to all values of the 

attribute. An attempt to apply this modification to an attribute whose syntax is anything other than 

INTEGER or REAL results in an attributeError. 

f) resetValue – This identifies an attribute by its type, and removes all values of the attribute (if any) which 

have an associated attribute value context for which fallback is FALSE. resetValue does not remove any 

attribute values that have no context. 

g) replaceValues – This replaces all existing values of the given attribute type with the values supplied, 

creating the attribute type if it did not exist. A replace with no value removes the attribute type if it exists, 

and is ignored if the type does not exist. 

NOTE 3 – This Directory Specification does not establish rules regarding the order in which a performing DSA is to decode and 

process PDUs that it receives. If a DSA decodes the entire PDU before processing each element, and if a new and unexpected 

value, such as replaceValues, is in place for a non-optional CHOICE, it is possible that the DSA will signal an encoding error. 

If, however, the DSA decodes the elements as they are needed, it will most likely detect an unknown critical extension and return 

an unsupported critical extension reason code to signal that the operation failed. In either case, it is correct for the DSA to not 

process the operation; however, implementers should be aware that either signal may be used to indicate the failure of the operation. 

Values may be replaced by a combination of addValues and removeValues in a single ModifyEntry operation. 

The CommonArguments (see clause 7.3) includes a specification of the service controls and security parameters applying 

to the request. The dontDereferenceAlias option is ignored (and treated as set) unless the useAliasOnUpdate 

critical extension bit is set in criticalExtensions. Thus, aliases are dereferenced by this operation only if 

dontDereferenceAlias is not set and useAliasOnUpdate is set. The sizeLimit component is ignored if provided. 

If the argument of this operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component 

shall be included in the arguments. 

NOTE 4 – Update operations that involve dereferencing of an alias name will always fail if they encounter DSAs implemented 

according to Rec. CCITT X.5** (1988) | ISO/IEC 9594-*:1990. 

The selection component specifies an optional entry information selection that controls whether information is 

returned in the operation result and specifies the specific attributes and values to be returned. It shall only be specified if 

the version negotiated through the bind operation is v2 or higher. 

The operation may be used to modify directory operational attributes. Only those directory operational attributes which 

are not classified noUserModification (and to which the user has effective modification access rights) may be 

modified.  

NOTE 5 – Whether or not user modification is permitted, the Directory may change the values of directory operational attributes 

as a side effect of other Directory operations. 

The operation may be used to modify collective attributes only if the service control subentries is TRUE and if the 

object is the subentry actually holding the collective attribute(s) to be modified. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 61  

NOTE 6 – Caution should therefore be exercised when modifying the information returned on reading an entry: some of the 

information may be from collective attributes, and cannot be modified in an operation directed at the entry itself. For example, it 

is not possible to delete a collective attribute from an (ordinary) entry via a removeAttribute entry modification to the entry 

(an attributeError with problem noSuchAttributeOrValue would be returned).  

The operation may be used to modify an entry's Object Class attribute value if the values specify auxiliary object classes. 

However, an attempt to change an Object Class value which specifies an entry's structural object class shall result in an 

updateError with problem objectClassModificationProhibited. Any modification to auxiliary object classes 

shall leave the superclass chains consistent and correct with the resultant object class definition. 

12.3.3 Modify Entry results 

Should the request succeed, a result shall be returned. If no selection was specified in the operation argument and 

the result is not to be signed, the null result is returned. If no selection was specified (but the result is to be signed by 

the Directory), the entry component is omitted. If the result is to be signed by the Directory, the SecurityParameters 

(see clause 7.10) component of CommonResultsSeq (see clause 7.4) shall be included in the results. If the result is not 

to be signed by the Directory, no entry information shall be conveyed with the result. 

12.3.4 Modify Entry errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be reported are defined in clause 14. 

12.3.5 Modify Entry operation decision points for basic access control 

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the entry being modified, the following sequence of access controls applies: 

1) Modify permission is required for the entry being modified. If this permission is not granted, the operation 

fails in accordance with clause 7.11.1. 

2) For each of the specified EntryModification arguments applied in sequence, the following permissions 

are required: 

i) Add permission for the attribute type and for each of the values specified in an addAttribute 

parameter. If these permissions are not granted or the attribute already exists, the operation fails in 

accordance with clause 12.3.5.1, item a). 

ii) Remove permission for the attribute type specified in a removeAttribute parameter. If this 

permission is not granted, the operation fails in accordance with clause 12.3.5.1, item b). 

NOTE 1 – No specific permissions are required for any of the attribute values present within the attribute being removed. 

iii) Add permission on each of the attribute values specified in an addValues parameter. If these 

permissions are not granted or any of the attribute values already exist, the operation fails in 

accordance with clause 12.3.5.1, item c). 

iv) Remove permission on each of the values specified in a removeValues parameter. If these 

permissions are not granted, the operation fails in accordance with clause 12.3.5.1, item d). 

NOTE 2 – If the end result of a removeValues modification is to remove the last value of an attribute (which causes the attribute 

itself to be removed), Remove permission is also required on the specified attribute type. 

v) Add and Remove permission on each of the values specified in an alterValues parameter. If these 

permissions are not granted, the operation fails in accordance with clause 12.3.5.1, item e). 

vi) Remove permission on each of the values to be removed via a resetValue parameter. If at least one 

value is to be removed and these permissions are not granted, the operation fails in accordance 

with clause 12.3.5.1, item f). 

vii) Add permission for the attribute type and for each of the values in the replaceValues if the 

operation attempts to add the attribute type. If these permissions are not granted, the operation fails 

in accordance with clause 12.3.5.1, item g). 

viii) Remove permission for the attribute type in the replaceValues parameter if the operation attempts 

to remove the attribute. If this permission is not granted, the operation fails in accordance with clause 

12.3.5.1, item b). 

ix) Remove permission for all the values currently in the attribute and Add permission for all values in 

the replaceValues if the operation attempts to replace the values. 



ISO/IEC 9594-3:2020 (E) 

62 Rec. ITU-T X.511 (10/2019) 

– If all the Remove permissions are not granted, the operation fails in accordance with 

clause 12.3.5.1, item d). 

– If all the Remove permissions are granted, but all the Add permissions are not granted, the 

operation fails in accordance with clause 12.3.5.1, item g). 

12.3.5.1 Error returns 

If the operation fails as defined in clause 12.3.5, the following procedure applies: 

a) If the operation fails as defined in clause 12.3.5, item 2), subitem i), the valid error returns are one of: if 

the attribute already exists and DiscloseOnError or Add is granted to that attribute, an attributeError 

with problem attributeOrValueAlreadyExists shall be returned; otherwise, a securityError 

with problem insufficientAccessRights or noInformation shall be returned. 

b) If the operation fails as defined in clause 12.3.5, item 2), subitem ii) or subitem viii), the valid error returns 

are one of: if DiscloseOnError permission is granted to the attribute being removed and the attribute exists, 

a securityError with problem insufficientAccessRights or noInformation shall be returned; 

otherwise, an attributeError with problem noSuchAttributeOrValue shall be returned. 

c) If the operation fails as defined in clause 12.3.5, item 2), subitem iii), the valid error returns are one of: if 

an attribute value already exists and DiscloseOnError or Add is granted to that attribute value, an 

attributeError with problem attributeOrValueAlreadyExists shall be returned; otherwise, 

DiscloseOnError permission at the attribute level shall be verified. If DiscloseOnError is granted to the 

attribute, a securityError with problem insufficientAccessRights or noInformation shall be 

returned; otherwise, an attributeError with problem noSuchAttributeOrValue shall be returned. 

d) If the operation fails as defined in clause 12.3.5, item 2), subitem iv) or subitem ix), first bullet point, the 

valid error returns are one of: if DiscloseOnError permission is granted to any of the attribute values being 

removed, a securityError with problem insufficientAccessRights or noInformation shall be 

returned; otherwise, an attributeError with problem noSuchAttributeOrValue shall be returned. 

e) If the operation fails as defined in clause 12.3.5, item 2), subitem v), the valid error returns are one of: if 

DiscloseOnError permission is granted to any of the attribute values being altered, a securityError 

with problem insufficientAccessRights or noInformation shall be returned; otherwise, an 

attributeError with problem noSuchAttributeOrValue shall be returned. 

f) If the operation fails as defined in clause 12.3.5, item 2), subitem vi), the valid error returns are one of: if 

DiscloseOnError permission is granted to any of the attribute values being removed, a securityError 

with problem insufficientAccessRights or noInformation shall be returned; otherwise, an 

attributeError with problem noSuchAttributeOrValue shall be returned. 

g) If the operation fails as defined in clause 12.3.5, item 2), subitem vii) or subitem ix), second bullet point, 

a securityError with problem insufficientAccessRights or noInformation shall be returned. 

12.3.6 Modify Entry operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being 

modified, the following sequence of access control applies: 

1) If rule-based entry level permission is not granted to the target entry, then the operation fails with 

nameError with problem noSuchObject according to clause 7.11.2.4. 

2) Entry level basic-access-control is applied according to clause 12.3.5.1. 

3) Access must be granted to each of the attribute values (if any) that are removed. If rule-based-access-control 

permission is not granted to any attribute value that is to be removed, the operation fails with 

attributeError with problem noSuchAttributeOrValue. 

4) Attribute level basic-access-control is applied as in clause 12.3.5, item 2). 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 63  

12.4 Modify DN 

12.4.1 Modify DN syntax 

The Modify DN operation is used to change the Relative Distinguished Name of an entry, and/or to move an entry to a 

new superior in the DIT. It may be used with object entries, including compound entries or alias entries. 

For family members, its use is restricted to the case where the affected family members stay within the same compound 

entry. 

If the entry has subordinates, then all subordinates are renamed or moved accordingly (i.e., the subtree remains intact). 

The arguments of the operation may be signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester. 

If the target component of the SecurityParameters (see clause 7.10) in the request is set to signed and a result is 

to be returned, the result may be signed. Otherwise, the result shall not be signed. 

NOTE 1 – Implementations based on Rec. CCITT X.511 (1988) ISO/IEC 9594-3:1990 may use the operation only to change the 

Relative Distinguished Name of a leaf entry. 

NOTE 2 – Implementations based on Rec. ITU-T X.511 (1993) | ISO/IEC 9594-3:1995 and later editions may use the operation to 

move entries to a new superior only if the old superior, the new superior, the entry, and all its subordinates are in one DSA. 

NOTE 3 – The operation does not move entries to a new DSA; all entries remain in the original DSA. 

NOTE 4 – The operation either succeeds or fails in its entirety; it shall not fail with some entries moved and some not moved. No 

intermediate states of the operation shall be externally visible to users of the Directory. 

NOTE 5 – Some offline activity may be required following this operation to preserve consistency, for example, to update attributes 

in any entries that hold Distinguished Name values that refer to the renamed or moved entry(ies). 

NOTE 6 – The modifyTimeStamp attribute is not updated for entries subordinate to the renamed or moved entry. 
 

modifyDN OPERATION ::= { 

  ARGUMENT  ModifyDNArgument 

  RESULT    ModifyDNResult 

  ERRORS    {nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-modifyDN } 

 

ModifyDNArgument ::= OPTIONALLY-PROTECTED { ModifyDNArgumentData } 

 

ModifyDNArgumentData ::= SET { 

  object        [0]  DistinguishedName, 

  newRDN        [1]  RelativeDistinguishedName, 

  deleteOldRDN  [2]  BOOLEAN DEFAULT FALSE, 

  newSuperior   [3]  DistinguishedName OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF      CommonArguments } 

 

ModifyDNResult ::= CHOICE { 

  null         NULL, 

  information  OPTIONALLY-PROTECTED-SEQ { ModifyDNResultData }, 

  ... } 

 

ModifyDNResultData ::= SEQUENCE { 

  newRDN        RelativeDistinguishedName, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

12.4.2 Modify DN arguments 

The object component identifies the entry whose Distinguished Name is to be modified. Aliases in the name shall not 

be dereferenced. 

The newRDN component specifies the new RDN of the entry. If the operation moves the entry to a new superior without 

changing its RDN, the old RDN is supplied for this parameter. 

If an attribute value in the new RDN does not already exist in the entry (either as part of the old RDN or as a 

non-distinguished value), it is added. If it cannot be added, an error is returned. 



ISO/IEC 9594-3:2020 (E) 

64 Rec. ITU-T X.511 (10/2019) 

If the deleteOldRDN flag is set, all attribute values in the old RDN that are not in the new RDN are deleted. If this flag 

is not set, the old distinguished values shall remain in the entry (but are no longer distinguished values). The flag shall be 

set where a single value attribute in the RDN has its value changed by the operation. If this operation removes the last 

attribute value of an attribute, that attribute shall be deleted. 

The newSuperior component, if present, specifies that the entry is to be moved to a new superior in the DIT. The entry 

becomes an immediate subordinate of the entry with the indicated Distinguished Name, which must be an already existing 

object entry. The new superior shall not be the entry itself or any of its subordinates, or an alias, or such that the moved 

entry violates any DIT structure rules. It is possible that entries subordinate to the moved entry may violate the active 

subschema, in which case it is the responsibility of the Subschema Administrative Authority to 

make subsequent adjustments to these entries to make them consistent with the subschema, as described in clause 14 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2. 

If the component is present, the newSuperior bit in the criticalExtensions parameter in CommonArguments shall 

be set, indicating that this extension is critical. 

The CommonArguments (see clause 7.3) includes a specification of the service controls and security parameters applying 

to the request. For the purposes of this operation, the dontDereferenceAlias option and the sizeLimit component 

are not relevant and are ignored if provided. Aliases are never dereferenced by this operation. If the argument of this 

operation is to be signed by the requester, the SecurityParameters (see clause 7.10) component shall be included in 

the arguments. 

12.4.3 Modify DN results 

Should the request succeed, a result shall be returned. If this result is to be signed by the Directory, the 

SecurityParameters (see clause 7.10) component of CommonResultsSeq (see clause 7.4), and the new RDN shall 

be included in the results. If the result is not to be signed by the Directory, no information shall be conveyed with the 

result. 

12.4.4 Modify DN errors 

Should the request fail, one of the listed errors shall be reported. The circumstances under which the particular errors shall 

be returned are defined in clause 14. 

12.4.5 ModifyDN decision points for basic access control 

If rule-based-access-control is also applied, the order in which it is applied with respect to basic-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 

If basic-access-control is in effect for the entry being renamed, the following access controls apply: 

– If the effect of the operation is to change the RDN of the entry, Rename permission is required for the entry 

being renamed (considered with its original name). If this permission is not granted, the operation fails in 

accordance with clause 12.4.5.1. 

– If the effect of the operation is to move an entry to a new superior in the DIT, Export permission is required 

for the entry being considered with its original name, and Import permission is required for the entry being 

considered with its new name. If either of these permissions is not granted, the operation fails in accordance 

with clause 12.4.5.1. 

NOTE 1 – The Import permission shall be provided as prescriptive ACI. 

NOTE 2 – No additional permissions are required even if, as a result of modifying the last RDN of the name, a new distinguished 

value needs to be added or an old one removed. 

12.4.5.1 Error returns 

If the operation fails as defined in clause 12.4.5, the procedure described in clause 7.11.1 is followed with respect to the 

entry being renamed (considered with its original name). 

12.4.6 Modify DN operation decision points for rule-based access control 

If basic-access-control is also applied, the order in which it is applied with respect to rule-based-access-control is a local 

matter, except that if access is denied to the entry, an attribute type or an attribute value, by either mechanism, it shall not 

be overridden by the other mechanism. In this respect, DiscloseOnError permission of basic-access-control is a permission 

that shall not override a deny of rule-based-access-control. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 65  

If rule-based-access-control, rule-and-basic-access-control, or rule-and-simple-access-control is in effect for the entry being 

renamed, the following sequence of access control applies: 

1) If rule-based RDN permission is not granted to the target entry, the operation fails with nameError with 

problem noSuchObject in accordance with clause 7.11.2.4. 

2) Entry level basic-access-control is applied as in clause 12.4.5. 

3) If the effect of the operation is to move the entry to a new superior in the DIT, rule-based RDN permission 

is required to the new superior, otherwise the operation fails with nameError with problem 

noSuchObject in accordance with clause 7.11.2.4. 

12.5 Change Password 

This operation is intended to be used by Directory users to change their own passwords. 

12.5.1 Change Password syntax 

A Directory Change Password operation is used by a user to change a password to prevent password expiration or after 

password reset by an administrator. The password may be changed at any time during an application-association. The 

user is allowed as many attempts as specified in the pwdMaxCompareFailure attribute. When this limit is reached, the 

DSA shall unbind the application-association and, if the pwdCompareLockout attribute is TRUE, lock the account for 

pwdCompareLockoutDuration. 
 

changePassword OPERATION ::= {  

  ARGUMENT  ChangePasswordArgument  

  RESULT    ChangePasswordResult  

  ERRORS    {securityError | 

             updateError }  

  CODE      id-opcode-changePassword }  

 

ChangePasswordArgument ::= OPTIONALLY-PROTECTED-SEQ { ChangePasswordArgumentData } 

 

ChangePasswordArgumentData ::= SEQUENCE { 

  object   [0]  DistinguishedName,  

  oldPwd   [1]  UserPwd,  

  newPwd   [2]  UserPwd, 

  ... } 

 

ChangePasswordResult ::= CHOICE { 

  null        NULL, 

  information OPTIONALLY-PROTECTED-SEQ { ChangePasswordResultData }, 

  ...} 

 

ChangePasswordResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

12.5.2 Change Password arguments 

The current password (oldPwd component) and the new password (newPwd component) have to be supplied in a Change 

Password operation. The oldPwd and newPwd components shall contain a clear or encrypted password. 

12.5.3 Change Password results 

If the password is changed successfully, no information is returned by the operation and normal communication may 

continue. 

12.5.4 Change Password errors 

Should the request fail, a securityError or updateError shall be supplied as follows: 
 

  securityError  inappropriateAlgorithms 

  updateError    insufficientPasswordQuality 

                 pwdInHistory 

                 pwdHistoryFull 

The circumstances under which other errors shall be reported are defined in clause 14. 



ISO/IEC 9594-3:2020 (E) 

66 Rec. ITU-T X.511 (10/2019) 

12.6 Administer Password 

This operation is intended to be used by Directory Administrators to change users' passwords. If two free slots are not 

available in the userPwdHistory attribute, this operation will free two slots before proceeding. At the end of the 

successful operation, there will be one free slot for the user to change the password which has been set by the 

Administrator. 

12.6.1 Administer Password syntax 

Administer password operation is used by an administrator to change a user's password.  
 

administerPassword OPERATION ::= {  

  ARGUMENT  AdministerPasswordArgument  

  RESULT    AdministerPasswordResult  

  ERRORS    {securityError | 

             updateError}  

  CODE      id-opcode-administerPassword }  

 

AdministerPasswordArgument ::= 

  OPTIONALLY-PROTECTED-SEQ { AdministerPasswordArgumentData } 

 

AdministerPasswordArgumentData ::= SEQUENCE { 

  object  [0]  DistinguishedName,  

  newPwd  [1]  UserPwd, 

  ... } 

 

AdministerPasswordResult ::= CHOICE { 

  null NULL, 

  information OPTIONALLY-PROTECTED-SEQ { AdministerPasswordResultData }, 

  ...} 

 

AdministerPasswordResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

12.6.2  Administer Password arguments 

The new password (newPwd component) has to be supplied in Administer Password operation. The newPwd component 

shall contain a clear or encrypted password. 

12.6.3 Administer Password results 

If the password is changed successfully, no information is returned by the operation and normal communication may 

continue. 

12.6.4 Administer Password errors 

Should the request fail, a securityError or updateError shall be supplied as follows: 
 

  securityError  inappropriateAlgorithms 

  updateError    insufficientPasswordQuality 

                 pwdInHistory 

The circumstances under which other errors shall be reported are defined in clause 14. 

13 Operations for LDAP messages 

The operations for carrying LDAP messages are defined by this clause. These operations are used for carrying all types 

of LDAP messages through a Directory infrastructure established according to these Directory Specifications. These 

operations are not used on the DAP. They are only used on the DSP between DSAs. However, they are defined in this 

Directory Specification to keep together all definitions operation types carried on the DSP. 

An LDAP request may eventually be chained to an LDAP server and it may result in multiple results, like for an LDAP 

Search operation. The LDAP requester may operate in two different ways: 

a) It may collect all the results and return the combined results in an ldapTransport result. The DSA bound 

to the LDAP client shall decompose such combined results before returning them to the LDAP client. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 67  

b) Return the results one by one in linkedLDAP requests, except for the last result, which shall be carried in 

the ldapTransport result. 

13.1 LDAP Transport operation 

13.1.1 LDAP Transport syntax 

An LDAP Transport operation is used to carry an LDAP request and some or all of the results. This is achieved by means 

of a specific operation, ldapTransport defined below. This operation is only relevant if an LDAP request is to be 

forwarded to an adjacent DSA. 

The bound DSA may sign the ldapTransport request based on its own identity or based on the identity of the requester. 

If the target component of the SecurityParameters (see clause 7.10) in the request is set to signed and a result is 

to be returned, the result together with possible linkedLDAP requests may be signed. Otherwise, the result and possible 

linkedLDAP requests shall not be signed.  
 

ldapTransport OPERATION ::= { 

  ARGUMENT    LdapArgument 

  RESULT      LdapResult 

  ERRORS      { abandonFailed | abandoned } 

  CODE        id-opcode-ldapTransport } 

 

LdapArgument ::= OPTIONALLY-PROTECTED-SEQ { LdapArgumentData } 

 

LdapArgumentData ::= SEQUENCE { 

  object        DistinguishedName, 

  ldapMessage   LDAPMessage, 

  linkId        LinkId  OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF CommonArgumentsSeq } 

 

LinkId ::= INTEGER 

 

LdapResult ::= OPTIONALLY-PROTECTED-SEQ { LdapResultData } 

 

LdapResultData ::= SEQUENCE { 

  ldapMessages   SEQUENCE SIZE (1..MAX) OF LDAPMessage OPTIONAL, 

  returnToClient BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

13.1.2 LDAP Transport arguments 

The object component shall hold the distinguished name as converted from the LDAP distinguished name in object 

or baseObject component of the LDAPMessage. If the LDAPMessage is an AddRequest, the last RDN shall be removed. 

The ldapMessage component shall hold the LDAP request as defined by RFC 4511. 

The linkId component shall hold a unique identifier that uniquely identifies an outstanding LDAP operation among 

other outstanding LDAP operations forwarded to a particular adjacent DSA. This component shall be present for LDAP 

operations possibly providing multiple results. Otherwise, it shall be absent. 

NOTE 1 – An implementation could use the same value as used for the InvokeId for the chained request. 

CommonArguments needs not to be filled for components only affecting the performing DSA(s). Performing DSAs shall 

act on the embedded LDAP request when performing evaluation. 

LDAP controls may specify capabilities corresponding to the components of CommonArguments (see clause 7.3). If such 

controls are recognised, relevant for other than the performing DSA(s) and supported by the bound DSA, the relevant 

components and/or service controls shall be filled accordingly. Otherwise, the CommonArguments shall be filled as 

specified in the following. If a component is not referenced below, it shall be encoded as specified in clause 7.3. 

The serviceControls component shall be encoded as follows: 

– The options subcomponent shall be set as follows: 



ISO/IEC 9594-3:2020 (E) 

68 Rec. ITU-T X.511 (10/2019) 

a) The preferChaining service control option may be set according to local policy for the bound 

DSA. If this option is set, it is the preference of the bound DSA that chaining is preferred beyond the 

adjacent DSA. 

b) The chainingProhibited service control may be set according to local policy for the bound DSA. 

If this option is set, it is the preference of the bound DSA that chaining shall not be done beyond the 

adjacent DSA. 

NOTE 2 – An adjacent DSA may not react on this service control option, as it might see the request as a chained request. 

c) The localScope service control option may be set according to local policy for the bound DSA. 

d) If the LDAP Don't Use Copy control extension (see IETF RFC 6171) is included in the LDAP request 

and supported by the bound DSA, the dontUseCopy service control option shall be set. Otherwise, 

this service control option may be set according to local policy. 

e) The dontDereferenceAliases shall be set, if the embedded LDAP request is of a type not 

allowing dereferencing of aliases. Otherwise, this service control option may be set according to local 

policy. 

f) The subentries service control option is not relevant for intermediate DSAs and shall not be set. 

g) The copyShallDo service control option is not relevant for intermediate DSAs and shall not be set. 

h) The partialNameResolution shall not be set if the embedded LDAP request is not a search 

request. Otherwise, it shall be set according to local policy. 

i) The manageDSAIT service control option is not relevant for intermediate DSAs and shall not be set. 

j) The noSubtypeMatch service control option is not relevant for intermediate DSAs and shall not be 

set. 

k) The noSubtypeSelection service control option is not relevant for intermediate DSAs and shall 

not be set. 

l) The countFamily service control option is not relevant for intermediate DSAs and shall not be set. 

m) The dontSelectFriends service control option is not relevant for intermediate DSAs and shall not 

be set. 

n) The dontMatchFriends service control option is not relevant for intermediate DSAs and shall not 

be set. 

– The priority service control may be set according to local policy for the bound DSA. 

– The timeLimit service control may be set according to local policy for the bound DSA. 

– The sizeLimit service control is not relevant for intermediate DSAs and shall be absent. 

– The scopeOfReferral subcomponent may be set according to local policy for the bound DSA. 

– The attributeSizeLimit subcomponent may be set according to local policy for the bound DSA. 

– The manageDSAITPlaneRef subcomponent shall be absent. 

– The serviceType subcomponent shall be absent. 

– The userClass subcomponent shall be absent. 

SecurityParameters component is specified in clause 7.10. If the argument of the operation is to be signed by the 

bound DSA, the SecurityParameters component shall be included. The absence of the SecurityParameters 

component is deemed equivalent to an empty set. 

The requestor component shall be present if the distinguished name of the requester is known from the LDAP Bind 

operation. Otherwise, it shall be absent. 

The operationProgress, referenceType, entryOnly, exclusions and nameResolveOnMaster components are 

defined in Rec. ITU-T X.518 | ISO/IEC 9594-4. They are supplied by the bound DSA when acting on a continuation 

reference returned by another DSA in response to an earlier operation, and their values are copied by the bound DSA 

from the continuation reference. Otherwise, they shall be absent. 

The operationContexts and familyGrouping components shall be absent. 

13.1.3 LDAP Transport results 

An ldapTransport result shall be returned when: 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 69  

a) all results from the LDAP server has been collected by the LDAP requester to be transmitted together in 

the ldapTransport result; or 

b) all results have been transmitted by linkedLDAP requests, except for the last one(s) to be transmitted by 

the ldapTransport result. 

The ldapMessages component shall hold one or more LDAP results as defined by RFC 4511. This parameter shall be 

present except if the result is for a previous embedded LDAP abandon request or no result was received for an abandoned 

operation. Such ldapTransport results shall be discarded by the bound DSA. When the ldapMessages component is 

present, the LDAP messages shall be transmitted to the LDAP client one by one in the same sequence as provided in the 

component. 

The linkId component shall echo the linkId in the argument in the corresponding ldapTransport request. 

The returnToClient component may be present when an LDAP referral is returned. Otherwise, it shall be absent. If 

present and has the value TRUE, it signals that the referral shall be returned to the LDAP client rather than being handled 

by the bound DSA . It shall be set by the DSA generating the referral. If the referral is generated by an LDAP server, the 

DSA adjacent to that server may set this component based on knowledge of the policy of the LDAP server. Such 

information may be supplied by administrative means outside the scope of this Directory Specification. 

13.2 Linked LDAP operation 

13.2.1 Linked LDAP syntax 

A Linked LDAP operation is used to carry a single result of an LDAP multiple results operation. The final result is not 

carried by this operation. 
 

linkedLDAP OPERATION ::= { 

  ARGUMENT    LinkedArgument 

  RESULT      LinkedResult 

  CODE        id-opcode-linkedLDAP } 

 

LinkedArgument ::= OPTIONALLY-PROTECTED-SEQ { LinkedArgumentData } 

 

LinkedArgumentData ::= SEQUENCE { 

  object         DistinguishedName, 

  ldapMessage    LDAPMessage, 

  linkId         LinkId, 

  returnToClient BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF  CommonArgumentsSeq }  

 

LinkedResult ::= NULL 

13.2.2 Linked LDAP arguments 

The object argument shall hold the distinguished name of the bound DSA as provided in the dsa component of the first 

TraceItem element of the TraceInformation data type. 

The ldapMessage argument shall hold an LDAPMessage result. 

The linkId component shall hold the same value as provided in the corresponding ldapTransport request. 

The returnToClient component shall be handled as specified in clause 12.1.3. 

13.2.3 Linked LDAP results 

The linkedLDAP result shall be returned for each linkedLDAP request received to complete the handling by intermediate 

DSAs. 

14 Errors 

14.1 Error precedence 

The Directory does not continue to perform an operation beyond the point at which it determines that an error is to be 

reported. 



ISO/IEC 9594-3:2020 (E) 

70 Rec. ITU-T X.511 (10/2019) 

NOTE 1 – An implication of this rule is that the first error encountered can differ for repeated instances of the same query, as there 

is not a specific logical order in which to process a given query. For example, DSAs may be searched in different orders. 

NOTE 2 – The rules of error precedence specified here apply only to the abstract service provided by the Directory as a whole. 

Different rules apply when the internal structure of the Directory is taken into account. 

Should the Directory simultaneously detect more than one error, the following list determines which error is reported. An 

error higher in the list has a higher logical precedence than one below it, and is the error which is reported. 

a) nameError; 

b) updateError; 

c) attributeError; 

d) securityError; 

e) serviceError. 

The following errors do not present any precedence conflicts: 

a) abandonFailed, because it is specific to one operation, Abandon, which can encounter no other error. 

b) abandoned, which is not reported if an Abandon operation is received simultaneously with the detection 

of an error. In this case, an abandonFailed error with problem tooLate is returned along with the report 

of the actual error encountered. 

c) referral, which is not a "real" error, only an indication that the Directory has detected that the DUA 

should present its request to another access point. 

14.2 Abandoned 

This outcome may be reported for any outstanding directory enquiry operation (i.e., Read, Search, Compare, List) if the 

DUA invokes an Abandon operation with the appropriate InvokeId.It shall be returned as a response to a list or 

search request with the pageResults component included with the value abandonQuery. If the arguments of the 

operation were signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the 

errorProtection parameter of the SecurityParameters data type was set to signed in the request, then the error 

parameters may be signed. Otherwise, they shall not be signed. 
 

abandoned ERROR ::= {-- not literally an "error" 

  PARAMETER     OPTIONALLY-PROTECTED { AbandonedData } 

  CODE          id-errcode-abandoned } 

 

AbandonedData ::= SET { 

    problem       AbandonedProblem OPTIONAL, 

    ..., 

    ..., 

    COMPONENTS OF CommonResults } 

 

AbandonedProblem  ::= ENUMERATED { 

  pagingAbandoned (0) } 

The problem component shall not be present if this error is returned for an Abandon operation. 

The problem component shall be present if this error is returned for a list or search request with the pageResults 

component included with the value abandonQuery. In this case, the component shall take the value pagingAbandoned. 

The securityParameters component shall be included in the CommonResults (see clause 7.4) if the error is to be 

signed. 

14.3 Abandon Failed 

The abandonFailed error reports a problem encountered during an attempt to abandon an operation. If the arguments 

of the operation were signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the 

errorProtection parameter of the SecurityParameters data type was set to signed in the request, then the error 

parameters may be signed. Otherwise, they shall not be signed. 
 

abandonFailed ERROR ::= { 

  PARAMETER OPTIONALLY-PROTECTED { AbandonFailedData } 

  CODE      id-errcode-abandonFailed } 

 

AbandonFailedData ::= SET { 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 71  

  problem    [0]  AbandonProblem, 

  operation  [1]  InvokeId, 

  ..., 

  ..., 

  COMPONENTS OF   CommonResults } 

 

AbandonProblem ::= INTEGER { 

  noSuchOperation (1), 

  tooLate         (2), 

  cannotAbandon   (3) } 

The various parameters have the following meanings. 

A particular problem that is encountered is specified. Any of the following problems may be indicated: 

a) noSuchOperation – When the Directory has no knowledge of the operation which is to be abandoned 

(this could be because no such invoke took place, or because the Directory has forgotten about it); 

b) tooLate – When the Directory has already responded to the operation; 

c) cannotAbandon – When an attempt has been made to abandon an operation for which this is prohibited 

(e.g., modify), or the abandon could not be performed.  

The identification of the particular operation (invocation) to be abandoned. 

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

The information provided by the error problem can optionally be qualified by the use of the notification component 

of CommonResults. 

14.4 Attribute Error 

An attributeError reports an attribute-related problem. If the arguments of the operation were signed (see clause 17.3 

of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the errorProtection parameter of the 

SecurityParameters data type was set to signed in the request, then the error parameters may be signed. Otherwise, 

they shall not be signed. 
 

attributeError ERROR ::= { 

  PARAMETER     OPTIONALLY-PROTECTED { AttributeErrorData } 

  CODE          id-errcode-attributeError } 

 

AttributeErrorData ::= SET { 

  object   [0]  Name, 

  problems [1]  SET OF SEQUENCE { 

    problem  [0]  AttributeProblem, 

    type     [1]  AttributeType, 

    value    [2]  AttributeValue OPTIONAL, 

    ...}, 

  ..., 

  ..., 

  COMPONENTS OF CommonResults } 

 

AttributeProblem ::= INTEGER { 

  noSuchAttributeOrValue        (1), 

  invalidAttributeSyntax        (2), 

  undefinedAttributeType        (3), 

  inappropriateMatching         (4), 

  constraintViolation           (5), 

  attributeOrValueAlreadyExists (6), 

  contextViolation              (7) } 

The various parameters have the following meaning. 

The object component identifies the entry to which the operation was being applied when the error occurred. 

One or more problems may be specified. Each problem (identified below) is accompanied by an indication of the 

attribute type, and, if necessary to avoid ambiguity, the value, which caused the problem: 

a) noSuchAttributeOrValue – The named entry lacks one of the attributes or attribute values specified as 

an argument of the operation. 



ISO/IEC 9594-3:2020 (E) 

72 Rec. ITU-T X.511 (10/2019) 

b) invalidAttributeSyntax – A purported attribute value, specified as an argument of the operation, 

does not conform to the attribute syntax of the attribute type. 

c) undefinedAttributeType – An undefined attribute type was provided as an argument to the operation. 

This error may occur only in relation to addEntry or modifyEntry operations. 

d) inappropriateMatching – An attempt was made, e.g., in a filter, to use a matching rule not defined for 

the attribute type concerned.  

e) constraintViolation – An attribute value supplied in the argument of an operation does not conform 

to the constraints imposed by Rec. ITU-T X.501 | ISO/IEC 9594-2 or by the attribute definition (e.g., the 

value exceeds the maximum size allowed). 

f) attributeOrValueAlreadyExists – An attempt was made to add an attribute which already existed 

in the entry, or a value which already existed in the attribute.  

g) contextViolation – A context list or context supplied with an attribute value in the argument of an 

operation does not conform to the constraints imposed by Rec. ITU-T X.501 | ISO/IEC 9594-2, by the 

context definition (e.g., the context value is not of the correct syntax), or the DIT Context Use. 

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

The information provided by the error problem can optionally be qualified by the use of the notification component 

of CommonResults. 

14.5 Name Error 

A nameError reports a problem related to the name provided as an argument to an operation. If the arguments of the 

operation were signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the 

errorProtection parameter of the SecurityParameters data type was set to signed in the request, then the error 

parameters may be signed. Otherwise, they shall not be signed. 
 

nameError ERROR ::= { 

  PARAMETER     OPTIONALLY-PROTECTED { NameErrorData } 

  CODE          id-errcode-nameError } 

 

NameErrorData ::= SET { 

  problem  [0]  NameProblem, 

  matched  [1]  Name, 

  ..., 

  ..., 

  COMPONENTS OF CommonResults } 

 

NameProblem ::= INTEGER { 

  noSuchObject              (1), 

  aliasProblem              (2), 

  invalidAttributeSyntax    (3), 

  aliasDereferencingProblem (4) 

  -- not to be used         (5)-- } 

The various components have the following meaning. 

A particular problem is encountered. Any of the following problems may be indicated: 

a) noSuchObject – The name supplied does not match the name of any object. 

b) aliasProblem – An alias has been dereferenced which names no object. 

c) invalidAttributeSyntax – An attribute type and its accompanying attribute value in an AVA in the 

name are incompatible. 

d) aliasDereferencingProblem – An alias was encountered in a situation where it was not allowed or 

where access was denied. 

The matched parameter contains the name of the lowest entry (object or alias) in the DIT that was matched, and is a 

truncated form of the name provided or, if an alias has been dereferenced, of the resulting name. 

NOTE – If there is a problem with the attribute types and/or values in the name offered in a Directory operation argument, this is 

reported via a nameError with problem invalidAttributeSyntax rather than as an attributeError or an 

updateError. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 73  

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

The information provided by the error problem can optionally be qualified by the use of the notification component 

of CommonResults. 

14.6 Referral 

A referral redirects the service-user to one or more access points better equipped to carry out the requested operation. 

If the arguments of the operation were signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester 

or if the errorProtection parameter of the SecurityParameters data type was set to signed in the request, then 

the error parameters may be signed. Otherwise, they shall not be signed. 
 

referral ERROR ::= { -- not literally an "error" 

  PARAMETER      OPTIONALLY-PROTECTED { ReferralData } 

  CODE           id-errcode-referral } 

 

ReferralData ::= SET { 

  candidate  [0] ContinuationReference, 

  ..., 

  ..., 

  COMPONENTS OF  CommonResults } 

The error has a single parameter which contains a ContinuationReference which can be used to progress the operation 

(see Rec. ITU-T X.518 | ISO/IEC 9594-4). 

If the DSA is responding to an LDAP request, the nAddresses component of the PresentationAddress data type 

shall hold one or more LDAP URLs as specified in clause 11.4 of Rec. ITU-T X.519 | ISO/IEC 9594-5. This information 

shall be used by the bound DSA to create an LDAP referral.   

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

Before acting on a continuation reference, the DUA shall check that an identical request to the one that would be generated 

from the continuation reference has not already been issued as a part of processing the same user request. If it has, the 

DUA shall not act on the continuation reference. This avoids loops. 

14.7 Security Error 

A securityError reports a problem in carrying out an operation for security reasons. If the arguments of the operation 

were signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the errorProtection 

parameter of the SecurityParameters data type was set to signed in the request, then the error parameters may be 

signed. Otherwise, they shall not be signed. 
 

securityError  ERROR  ::=  { 

  PARAMETER   OPTIONALLY-PROTECTED { SecurityErrorData } 

  CODE        id-errcode-securityError } 

 

SecurityErrorData ::= SET { 

  problem      [0]  SecurityProblem, 

  spkmInfo     [1]  SPKM-ERROR OPTIONAL, 

  encPwdInfo   [2]  EncPwdInfo OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF CommonResults } 

 

SecurityProblem ::= INTEGER { 

  inappropriateAuthentication     (1), 

  invalidCredentials              (2), 

  insufficientAccessRights        (3), 

  invalidSignature                (4), 

  protectionRequired              (5), 

  noInformation                   (6), 

  blockedCredentials              (7), 

  -- invalidQOPMatch              (8), obsolete 

  spkmError                       (9), 

  unsupportedAuthenticationMethod (10), 

  passwordExpired                 (11), 



ISO/IEC 9594-3:2020 (E) 

74 Rec. ITU-T X.511 (10/2019) 

  inappropriateAlgorithms         (12) } 

 

EncPwdInfo ::= SEQUENCE { 

  algorithms     [0]  SEQUENCE OF AlgorithmIdentifier 

                        {{SupportedAlgorithms}} OPTIONAL, 

  pwdQualityRule [1]  SEQUENCE OF AttributeTypeAndValue OPTIONAL, 

  ... } 

The error has a single parameter, which reports the particular problem encountered. The following problems may be 

indicated: 

a) inappropriateAuthentication – The level of security associated with the requester's credentials is 

inconsistent with the level of protection requested, e.g., simple credentials were supplied while strong 

credentials were required. 

b) invalidCredentials – The supplied credentials were invalid. 

c) insufficientAccessRights – The requester does not have the right to carry out the requested 

operation. 

d) invalidSignature – The signature of the request was found to be invalid. 

e) protectionRequired – The Directory was unwilling to carry out the requested operation because the 

argument was not signed. 

f) noInformation – The requested operation produced a security error for which no information is 

available. 

g) blockedCredentials – The credentials are blocked from consideration for security reasons 

(e.g., because an invalid password has been presented too many times in succession). The decision to return 

this error is governed by the security policy in effect for the DSA. 

h) spkmError – The supplied SPKM token was found to be invalid. The spkmInfo parameter contains an 

indication that this is an SPKM error token and the identifier of the SPKM context with which this error is 

associated. 

i) unsupportedAuthenticationMethod – The authentication method suggested is not supported by the 

DSA. 

j) passwordExpired – The requester cannot log onto the DSA because the password has expired. The 

password has to be reset by an administrator. 

k) inappropriateAlgorithms – The algorithms used to encrypt the password are not compatible with 

the algorithms stored in the DSA for the entry. The algorithms parameter contains the list of algorithms 

supported by the DSA. 

NOTE – For the Bind operation or Compare operation, one or two algorithms can be specified to check the proposed password 

with the encrypted password and the possibly recently expired encrypted password. For change password operation the algorithm 

used by the current password and all the algorithms used by the password present in the history shall be returned. 

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

The information provided by the error problem can optionally be qualified by the use of the notification component 

of CommonResults. 

14.8 Service Error 

A serviceError reports a problem related to the provision of the service. If the arguments of the operation were signed 

(see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the errorProtection parameter of the 

SecurityParameters data type was set to signed in the request, then the error parameters may be signed. Otherwise, 

they shall not be signed. 
 

serviceError ERROR ::= { 

  PARAMETER   OPTIONALLY-PROTECTED { ServiceErrorData } 

  CODE        id-errcode-serviceError } 

 

ServiceErrorData ::= SET { 

  problem   [0]  ServiceProblem, 

  ..., 

  ..., 

  COMPONENTS OF  CommonResults } 

 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 75  

ServiceProblem ::= INTEGER { 

  busy                         (1), 

  unavailable                  (2), 

  unwillingToPerform           (3), 

  chainingRequired             (4), 

  unableToProceed              (5), 

  invalidReference             (6), 

  timeLimitExceeded            (7), 

  administrativeLimitExceeded  (8), 

  loopDetected                 (9), 

  unavailableCriticalExtension (10), 

  outOfScope                   (11), 

  ditError                     (12), 

  invalidQueryReference        (13), 

  requestedServiceNotAvailable (14), 

  unsupportedMatchingUse       (15), 

  ambiguousKeyAttributes       (16), 

  saslBindInProgress           (17), 

  notSupportedByLDAP           (18) } 

The error has a single parameter which reports the particular problem encountered. The following problems may be 

indicated: 

a) busy – The Directory, or some part of it, is presently too busy to perform the requested operation, but may 

be able to do so after a short while. 

b) unavailable – The Directory, or some part of it, is currently unavailable. 

c) unwillingToPerform – The Directory, or some part of it, is not prepared to execute this request, e.g., 

because it would lead to excessive consumption of resources or violates the policy of an Administrative 

Authority involved. 

d) chainingRequired – The Directory is unable to accomplish the request other than by chaining; however, 

chaining was prohibited by means of the chainingProhibited service control option. 

e) unableToProceed – The DSA returning this error did not have administrative authority for the 

appropriate naming context and, as a consequence, was not able to participate in name resolution. 

f) invalidReference – The DSA was unable to perform the request as directed by the DUA, 

(via OperationProgress) – This may have arisen due to using an invalid referral. 

g) timeLimitExceeded – The Directory has reached the limit of time set by the user in a service control. 

No partial results are available to return to the user. 

h) administrativeLimitExceeded – The Directory has reached the limit set by an administrative 

authority, and no partial results are available to return to the user. 

i) loopDetected – The Directory is unable to accomplish this request due to an internal loop. 

j) unavailableCriticalExtension – The Directory was unable to satisfy the request because one or 

more critical extensions were not available. 

k) outOfScope – No referrals were available within the requested scope. 

l) ditError – The Directory is unable to accomplish the request due to a DIT consistency problem. 

m) invalidQueryReference – The parameters of the requested operation are invalid. This problem is 

reported if the queryReference in paged results is invalid. 

NOTE – This problem is not supported by implementations based on Rec. CCITT X.511 (1988) ISO/IEC 9594-3:1990. 

n) requestedServiceNotAvailable – A search request failed within a service-specific administrative 

area because no search-rule was available for the search or because the search violated an applicable 

search-rule. Additional diagnostic information may be returned together with this service problem. Such 

additional information for different situations is defined in clause 14. 

o) unsupportedMatchingUse – An attempt was made, e.g., in a filter, to use a matching rule not supported 

by the DSA when the performExactly search option is set. 

p) ambiguousKeyAttributes – A mapping-based matching rule was selected, but the mappable filter 

items provided multiple matches against the relevant mapping table. This error situation is accompanied 

by a notification attribute, as indicated by the relevant matching-based matching rule. 



ISO/IEC 9594-3:2020 (E) 

76 Rec. ITU-T X.511 (10/2019) 

q) saslBindInProgress – For some authentication mechanisms, it may be necessary for the requester to 

invoke the directoryBind operation multiple times. This is indicated by the responder sending a 

serviceError with problem saslBindInProgress. This indicates that the responder requires the 

requester to invoke a new directoryBind operation, with the same SaslCredentials mechanism, to 

continue the authentication process. If at any stage the requester wishes to abort the process, it may invoke 

a directoryBind operation with SaslAbort set to TRUE. 

r) notSupportedByLDAP – A DAP request was about to be converted to a corresponding LDAP request by 

an LDAP requester, but the DAP requester determined that the request could not be served by LDAP.  

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

The information provided by the problem component can optionally be qualified by the use of the notification 

component of CommonResults. 

14.9 Update Error 

An updateError reports problems related to attempts to add, delete, or modify information in the DIB. If the arguments 

of the operation were signed (see clause 17.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2) by the requester or if the 

errorProtection parameter of the SecurityParameters data type was set to signed in the request, then the error 

parameters may be signed. Otherwise, they shall not be signed. 
 

updateError ERROR ::= { 

  PARAMETER   OPTIONALLY-PROTECTED { UpdateErrorData } 

  CODE        id-errcode-updateError } 

 

UpdateErrorData ::= SET { 

  problem        [0]  UpdateProblem, 

  attributeInfo  [1]  SET SIZE (1..MAX) OF CHOICE { 

    attributeType       AttributeType, 

    attribute           Attribute{{SupportedAttributes}}, 

    ... } OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF       CommonResults } 

 

UpdateProblem ::= INTEGER { 

  namingViolation                   (1), 

  objectClassViolation              (2), 

  notAllowedOnNonLeaf               (3), 

  notAllowedOnRDN                   (4), 

  entryAlreadyExists                (5), 

  affectsMultipleDSAs               (6), 

  objectClassModificationProhibited (7), 

  noSuchSuperior                    (8), 

  notAncestor                       (9), 

  parentNotAncestor                 (10), 

  hierarchyRuleViolation            (11), 

  familyRuleViolation               (12), 

  insufficientPasswordQuality       (13), 

  passwordInHistory                 (14), 

  noPasswordSlot                    (15) } 

The problem parameter reports the particular problem encountered. The following problems may be indicated. 

a) namingViolation – The attempted addition or modification would violate the structure rules of the DIT 

as defined in the Directory schema and Rec. ITU-T X.501 | ISO/IEC 9594-2. That is, it would place an 

entry as the subordinate of an alias entry, or in a region of the DIT not permitted to a member of its object 

class, or would define an RDN for an entry to include a forbidden attribute type. 

b) objectClassViolation – The attempted update would produce an entry inconsistent with the rules for 

entry content; for example, its object class definition, the DIT content rules, or with the definitions of Rec. 

ITU-T X.501 | ISO/IEC 9594-2 as they pertain to object classes. 

c) notAllowedOnNonLeaf – The attempted operation is only allowed on leaf entries of the DIT. 

d) notAllowedOnRDN – The attempted operation would affect the RDN (e.g., removal of an attribute which 

is a part of the RDN). 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 77  

e) entryAlreadyExists – An attempted addEntry or modifyDN operation names an entry which already 

exists. 

NOTE 1 – This includes a conflict caused by RDNs which include multiple distinguished values differentiated by contexts, 

regardless of context, as described in clause 9.3 of Rec. ITU-T X.501 | ISO/IEC 9594-2. 

f) affectsMultipleDSAs – An attempted update would need to operate on multiple DSAs where this 

operation is not permitted. 

g) objectClassModificationProhibited – An operation attempted to modify the structural object class 

of an entry. 

h) noSuchSuperior – An attempted ModifyDN operation names a new superior entry that does not exist. 

i) notAncestor – An operation attempted to delete a compound entry without specifying the ancestor as 

the object. 

j) parentNotAncestor – An operation attempted to establish an entry as an immediately hierarchical child 

under a family member that is not the ancestor. 

k) hierarchyRuleViolation – An operation attempted to break a rule applicable to a hierarchical group: 

a hierarchical group has to be completely outside any service-specific administrative area or has to be 

completely contained within a service-specific administrative area; hierarchical group is confined to a 

single DSA. 

l) familyRuleViolation – An operation attempted to break a rule applicable to families within a 

compound entry. 

m) insufficientPasswordQuality – The new password does not satisfy the quality rules (no trivial 

passwords, mixture of characters, too short, etc) imposed by the Directory. 

NOTE 2 ­ When the password is not transmitted in clear text to the DSA, the quality rule cannot be checked by the DSA but only 

by the DUA. 

n) passwordInHistory – The new password has been found in the history kept by the Directory. 

o) noPasswordSlot – There are no free slots left in the password history. 

The attributeInfo parameter identifies the particular attribute type(s) and possibly value(s) causing a problem. If an 

objectClassViolation is being reported, an attribute item shall be present indicating the objectClass attribute 

type and listing the object class(es) that caused the problem; additional attributeType items may also be present 

(e.g., to identify missing mandatory attributes or extraneous attributes). 

NOTE 3 – The updateError is not used to report problems with attribute types, values, or constraint violations encountered in an 

addEntry, removeEntry, modifyEntry, or modifyDN operation. Such problems are reported via an attributeError. 

The SecurityParameters component (see clause 7.10) shall be included in the CommonResults (see clause 7.4) if the 

error is to be signed by the Directory. 

The information provided by the error problem can optionally be qualified by the use of the notification component 

of CommonResults. 

15 Analysis of search arguments 

This clause is only relevant for a Search operation starting its initial evaluation phase within a service-specific 

administrative area. 

This procedure has two purposes: 

a) It provides the search-validation function (see clause 16.12 of Rec. ITU-T X.501 | ISO/IEC 9594-2). 

However, the search-validation function does not produce error information. If during the procedure an 

error is encountered, the evaluation stops and returns FALSE; otherwise, it returns TRUE. 

A search-validation against an empty search-rule will always return TRUE. 

b) It is the procedure to be used when no governing-search-rule can be located and where it is possible to 

identify a single search-rule the SearchArgument can be evaluated against, to identify why the search 

request failed. When an error condition is found in this case, the evaluation stops, the necessary diagnostic 

information is supplied in the notification component of the CommonResults data type and a service 

error with problem requestedServiceNotAvailable is returned. What diagnostic information is 

included, depends on the type of error identified. 

NOTE – According to the specification above, a search request may be evaluated twice against the same search-rule. How this 

could be optimized is not part of this specification, but is an implementation decision. 



ISO/IEC 9594-3:2020 (E) 

78 Rec. ITU-T X.511 (10/2019) 

The procedure assumes that an implementation will not allow an invokable search-rule to: 

– specify unsupported attribute types, context types, matching rules, matching restrictions, etc.; 

– specify mapping-based matching algorithms that are unsupported or not relevant for the type of search for 

which the search-rule is governing; 

– specify matching rule substitutions that would violate the search-rule; 

– refer to optional search-rule features not supported by the implementation; or 

– be inconsistent or erroneous. 

15.1 General check of search filter 

The evaluation is performed by first checking whether the filter violates some basic restrictions using the following 

procedure: 

1) If there are attribute types represented in the filter but not represented by any request-attribute-profile in 

the inputAttributeTypes search-rule component, the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-searchAttributeViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– an attributeTypeList notification attribute which has as values the object identifiers identifying 

the illegal attribute types. 

2) If there are attribute types only represented by negated filter items, then the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-attributeNegationViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– an attributeTypeList notification attribute where the values are the object identifiers identifying 

the attribute types illegally negated in the filter. 

3) Check that the condition specified in the attributeCombination is fulfilled with respect to the 

non-negated presence of attribute types. If mandatory attribute types, i.e., attribute types that 

unconditionally have to be represented by non-negated filter items in the filter, are missing in any subfilter, 

the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-

missingSearchAttribute; 

– a serviceType notification attribute which has as value the serviceType component of the search-

rule; and 

– an attributeTypeList notification attribute which has as values the object identifiers identifying 

the missing attribute types. 

If a required combination is not present, the notification shall contain: 

– a searchServiceProblem notification attribute with the value 

id-pr-searchAttributeCombinationViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– an attributeCombinations notification attribute identifying the missing combination(s). 

4) For request-attribute-profiles which have a selectedValues subcomponent but the set of values is 

empty, it is checked whether there is any filter item for those attribute types that do not meet one of the 

following requirements: 

– the filter item is of type present and the contexts subcomponent is not present in the 

request-attribute-profile; or 

– the filter item is of type contextPresent and the contexts subcomponent is present in the request-

attribute-profile. 

If the above check fails for any filter item, the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-searchValueNotAllowed; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 79  

– a filterItem notification attribute with the failing filters items as values. 

5) For request-attribute-profiles which have a contexts subcomponent, it is checked whether there are any 

filter items that refer to context types not included in this subcomponent. If so, the notification shall 

contain: 

– a searchServiceProblem notification attribute with the value id-pr-searchContextViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– a contextTypeList notification attribute which has as values the object identifiers for the illegal 

context types. 

6) If the allowed choice for the subset component is taken in the search-rule, it is checked whether the 

subset argument of the SearchArgument complies with that specification. If not, the notification 

shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-

searchSubsetViolation; and 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule. 

15.2 Check of request-attribute-profiles 

If the above procedure did not yield any error, it has to be checked for each subfilter that any attribute type represented 

in that subfilter is also effectively present. This procedure does not specify any order in which subfilters should be 

evaluated. For an attribute type to be effectively present in a subfilter, it has to be represented by at least one non-negated 

filter item that complies with the corresponding request-attribute-profile. A non-negated filter item is evaluated using the 

procedure below. 

The non-negated filter items are checked in the following order: 

1) the filter items for the attribute types that unconditionally have to be represented are checked for each 

subfilter; 

2) the filter items for the attribute types that conditionally have to be represented are checked for each 

subfilter; and 

3) the remaining filter items are checked for each subfilter. 

If a subfilter fails the evaluation, the evaluation stops and error information is returned as detailed below. 

If an attribute type in a subfilter is represented by several non-negated filter items, each such filter item is in principle 

checked until either a complying filter item is found or all filter items are checked. If a filter item fails during the 

procedure, it is dropped for further evaluation. It is the last filter item to fail for the attribute type that determines the 

diagnostic information returned. 

A filter item is evaluated using the following procedure: 

1) If the selectedValues component in the request-attribute-profile is absent; or if it is present and 

non-empty, check whether the filter item is of type equality, substrings, approximateMatch or 

extensibleMatch. If not, the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-searchValueRequired; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– an attributeTypeList notification attribute which has as value the object identifier identifying 

the attribute type from the filter item. 

2) If the selectedValues subcomponent in the corresponding request-attribute-profile is present and 

non-empty, check whether the filter item fails to match any value specified in that subcomponent. If so, 

the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-invalidSearchValue; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– a filterItem notification attribute with the failing filter item as the only value. 

3) If the contexts subcomponent is not present, continue with the next subclause. 



ISO/IEC 9594-3:2020 (E) 

80 Rec. ITU-T X.511 (10/2019) 

4) Check that the condition specified in the contextCombination subcomponent is fulfilled with respect 

to the presence of context types. If mandatory context types, i.e., context types that unconditionally have 

to be represented for the attribute type, are missing, the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-missingSearchContext; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; 

– an attributeTypeList notification attribute which has as a single value the object identifier 

identifying the attribute type from the filter item; 

– a contextTypeList notification attribute with the object identifiers identifying the missing context 

types. 

If a required combination is not present, the notification shall contain: 

– a searchServiceProblem notification attribute with the value 

id-pr-searchContextCombinationViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; 

– an attributeTypeList notification attribute which has as the only value the object identifier 

identifying the attribute type from the filter item; 

– a contextCombinations notification attribute identifying the missing combination(s). 

5) Check if the context assertions for the attribute type in the subfilter are all included in the contexts 

subcomponent. If not, the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-searchContextViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; 

– an attributeTypeList notification attribute which has as the only value the object identifier 

identifying the attribute type from the filter item; and 

– a contextTypeList notification attribute which has as values the object identifiers identifying the 

context types not allowed for the attribute type. 

6) If context values are included for any of the context types in the contexts subcomponent of the 

request-attribute-profile, check whether any of the context assertions specified for the attribute type in the 

subfilter contains values not specified for the corresponding context types in contexts subcomponent. 

If so, the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-searchContextValueViolation; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; 

– an attributeTypeList notification attribute which has as the only value the object identifier 

identifying the attribute type from the filter item; and 

– a contextList notification attribute which has as values the context assertions not allowed for the 

attribute type. 

15.3 Check of controls and hierarchy selections 

If the search request fails the test against the control and hierarchy selections as specified in clause 16.10.5 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2, the procedure in this clause is performed. 

1) If the defaultControls component of the search-rule or the hierarchyOptions subcomponent of the 

defaultControls is absent, and the search request specifies hierarchy selections beside self, then the 

notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-hierarchySelectForbidden; and 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule. 

2) If there are hierarchy select options in the request that are not allowed, or some selections are missing 

according to the combination of the defaultControls and mandatoryControls components of the 

search-rule, then the notification shall contain: 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 81  

– a searchServiceProblem notification attribute with the value id-pr-invalidHierarchySelect; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– a hierarchySelectList notification attribute which has as value a bitstring identifying the invalid 

hierarchy selection options. 

3) If there are hierarchy select options in the request that are not supported by the DSA and which are not 

covered by 2), then the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-unavailableHierarchySelect; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– a hierarchySelectList notification attribute which has as value a bitstring identifying the 

unsupported hierarchy selection options. 

4) If there are search control options (as defined by clause 11.2.1) in the request that are not allowed, or some 

options are missing according to the combination of the defaultControls and mandatoryControls 

components of the search-rule, then the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-invalidSearchControlOptions; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– a searchControlOptionsList notification attribute which has as value a bitstring identifying the 

invalid search control options. 

5) If there are service control options in the request that are not allowed or some options are missing according 

to the combination of the defaultControls and mandatoryControls components of the search-rule, 

then the notification shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-invalidServiceControlOptions; 

– a serviceType notification attribute which has as value the serviceType component of the 

search-rule; and 

– a serviceControlOptionsList notification attribute which has as value a bitstring identifying 

the invalid service control options. 

15.4 Check of matching use 

In the search-validation procedure, this clause represents the last step in the validation and it is assumed that the search 

request has passed all other validation steps. A search-rule failing this last step is put on the MatchProblemSR list 

(see clause 19.3.2.2.1, item 3) of Rec. ITU-T X.518 | ISO/IEC 9594-4). 

If the search request does not comply with the matchingUse requirement as specified in clause 16.10.2 of 

Rec. ITU-T X.501 | ISO/IEC 9594-2 for any of the request-attribute-profiles, then a notification for one of the failing 

request-attribute-profiles shall contain: 

– a searchServiceProblem notification attribute with the value id-pr-

attributeMatchingViolation if the matching restriction is violated, or with the value id-pr-

unsupportedMatchingUse if the matching rule is to be applied in an unsupported way; 

– a serviceType notification attribute which has as value the serviceType component of the search-rule; 

– an attributeTypeList notification attribute which has as the only value the object identifier identifying 

the attribute type; and 

– for the matching restriction that is violated, additional notification attributes as specified by the 

specification for that matching restriction. 

NOTE – When several request-attribute-profiles fail the validation, it is a local matter to select which one for which to create a 

notification. 

  



ISO/IEC 9594-3:2020 (E) 

82 Rec. ITU-T X.511 (10/2019) 

Annex A 

 

Abstract Service in ASN.1 

(This annex forms an integral part of this Recommendation | International Standard.) 

This annex includes all of the ASN.1 type, value and information object definitions contained in this Directory 

Specification in the form of the ASN.1 module DirectoryAbstractService. 
 

DirectoryAbstractService 

  {joint-iso-itu-t ds(5) module(1) directoryAbstractService(2) 9} 

DEFINITIONS ::= 

BEGIN 

 

-- EXPORTS All  

/* 

The types and values defined in this module are exported for use in the other ASN.1 

modules contained within these Directory Specifications, and for the use of other 

applications which will use them to access Directory services. Other applications may 

use them for their own purposes, but this will not constrain extensions and 

modifications needed to maintain or improve the Directory service. 

*/ 

IMPORTS 

 

  -- from Rec. ITU-T X.501 | ISO/IEC 9594-2 

 

  id-at 

    FROM UsefulDefinitions 

      {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 9} WITH SUCCESSORS 

   

  Attribute{}, ATTRIBUTE, AttributeType, AttributeTypeAndValue, AttributeTypeAssertion, 

  AttributeValue, AttributeValueAssertion, CONTEXT, ContextAssertion, 

  DistinguishedName, MATCHING-RULE, Name, OBJECT-CLASS, 

  RelativeDistinguishedName, SupportedAttributes, SupportedContexts 

    FROM InformationFramework 

      {joint-iso-itu-t ds(5) module(1) informationFramework(1) 9} WITH SUCCESSORS  

   

  RelaxationPolicy 

    FROM ServiceAdministration 

      {joint-iso-itu-t ds(5) module(1) serviceAdministration(33) 9} WITH SUCCESSORS 

 

  OPTIONALLY-PROTECTED{}, OPTIONALLY-PROTECTED-SEQ{} 

    FROM EnhancedSecurity 

      {joint-iso-itu-t ds(5) modules(1) enhancedSecurity(28) 9} WITH SUCCESSORS 

  

 -- from Rec. ITU-T X.518 | ISO/IEC 9594-4 

 

  AccessPoint, ContinuationReference, Exclusions, OperationProgress, ReferenceType 

    FROM DistributedOperations 

      {joint-iso-itu-t ds(5) module(1) distributedOperations(3) 9} WITH SUCCESSORS 

   

-- from Rec. ITU-T X.519 | ISO/IEC 9594-5 

 

  Code, ERROR, id-errcode-abandoned, id-errcode-abandonFailed, 

  id-errcode-attributeError, id-errcode-nameError, id-errcode-referral, 

  id-errcode-securityError, id-errcode-serviceError, id-errcode-updateError, 

  id-opcode-abandon, id-opcode-addEntry, id-opcode-administerPassword, 

  id-opcode-compare, id-opcode-changePassword, id-opcode-ldapTransport, 

  id-opcode-linkedLDAP, id-opcode-list,   id-opcode-modifyDN, 

  id-opcode-modifyEntry, id-opcode-read, id-opcode-removeEntry, 

  id-opcode-search, InvokeId, OPERATION 

    FROM CommonProtocolSpecification 

      {joint-iso-itu-t ds(5) module(1) commonProtocolSpecification(35) 9} WITH SUCCESSORS 

   

-- from Rec. ITU-T X.520 | ISO/IEC 9594-6 

 

  DirectoryString{}, UnboundedDirectoryString 

    FROM SelectedAttributeTypes 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 83  

      {joint-iso-itu-t ds(5) module(1) selectedAttributeTypes(5) 9} WITH SUCCESSORS 

 

  -- from Rec. ITU-T X.509 | ISO/IEC 9594-8 

 

  AlgorithmIdentifier{}, CertificationPath, ENCRYPTED{}, HASH{}, SIGNED{}, 

  SupportedAlgorithms 

    FROM AuthenticationFramework 

      {joint-iso-itu-t ds(5) module(1) authenticationFramework(7) 9} WITH SUCCESSORS 

 

  UserPwd 

    FROM PasswordPolicy 

      {joint-iso-itu-t ds(5) module(1) passwordPolicy(39) 9} WITH SUCCESSORS 

  

  AttributeCertificationPath 

    FROM AttributeCertificateDefinitions 

      {joint-iso-itu-t ds(5) module(1) attributeCertificateDefinitions(32) 9} 

       WITH SUCCESSORS 

 

  -- from Rec. ITU-T X.525 | ISO/IEC 9594-9 

  

  AgreementID 

    FROM DirectoryShadowAbstractService 

      {joint-iso-itu-t ds(5) module(1) directoryShadowAbstractService(15) 9} 

       WITH SUCCESSORS 

 

  -- from IETF RFC 2025 

 

  SPKM-ERROR, SPKM-REP-TI, SPKM-REQ 

    FROM SpkmGssTokens {iso(1) identified-organization(3) dod(6) internet(1) 

      security(5) mechanisms(5) spkm(1) spkmGssTokens(10)} 

 

 -- from IETF RFC 4511 

 

  LDAPMessage 

    FROM Lightweight-Directory-Access-Protocol-V3 

      {iso(1) identified-organization(3) dod(6) internet(1) directory(1) ldap(18)} ; 

 

-- Common data types  

 

CommonArguments ::= SET { 

  serviceControls      [30]  ServiceControls    DEFAULT {}, 

  securityParameters   [29]  SecurityParameters OPTIONAL, 

  requestor            [28]  DistinguishedName  OPTIONAL, 

  operationProgress    [27]  OperationProgress  

                             DEFAULT {nameResolutionPhase notStarted}, 

  aliasedRDNs          [26]  INTEGER            OPTIONAL, 

  criticalExtensions   [25]  BIT STRING         OPTIONAL, 

  referenceType        [24]  ReferenceType      OPTIONAL, 

  entryOnly            [23]  BOOLEAN            DEFAULT TRUE, 

  exclusions           [22]  Exclusions         OPTIONAL, 

  nameResolveOnMaster  [21]  BOOLEAN            DEFAULT FALSE, 

  operationContexts    [20]  ContextSelection   OPTIONAL, 

  familyGrouping       [19]  FamilyGrouping     DEFAULT entryOnly, 

  ... } 

 

CommonArgumentsSeq ::= SEQUENCE { 

  serviceControls      [30]  ServiceControls    DEFAULT {}, 

  securityParameters   [29]  SecurityParameters OPTIONAL, 

  requestor            [28]  DistinguishedName  OPTIONAL, 

  operationProgress    [27]  OperationProgress  

                             DEFAULT {nameResolutionPhase notStarted}, 

  aliasedRDNs          [26]  INTEGER            OPTIONAL, 

  criticalExtensions   [25]  BIT STRING         OPTIONAL, 

  referenceType        [24]  ReferenceType      OPTIONAL, 

  entryOnly            [23]  BOOLEAN            DEFAULT TRUE, 

  exclusions           [22]  Exclusions         OPTIONAL, 

  nameResolveOnMaster  [21]  BOOLEAN            DEFAULT FALSE, 

  operationContexts    [20]  ContextSelection   OPTIONAL, 

  familyGrouping       [19]  FamilyGrouping     DEFAULT entryOnly, 

  ... } 

 



ISO/IEC 9594-3:2020 (E) 

84 Rec. ITU-T X.511 (10/2019) 

FamilyGrouping ::= ENUMERATED { 

  entryOnly     (1), 

  compoundEntry (2), 

  strands       (3), 

  multiStrand   (4), 

  ... } 

 

CommonResults ::= SET { 

  securityParameters  [30]  SecurityParameters  OPTIONAL, 

  performer           [29]  DistinguishedName   OPTIONAL, 

  aliasDereferenced   [28]  BOOLEAN             DEFAULT FALSE, 

  notification        [27]  SEQUENCE SIZE (1..MAX) OF Attribute 

                            {{SupportedAttributes}} OPTIONAL, 

  ... } 

 

CommonResultsSeq ::= SEQUENCE { 

  securityParameters  [30]  SecurityParameters OPTIONAL, 

  performer           [29]  DistinguishedName OPTIONAL, 

  aliasDereferenced   [28]  BOOLEAN DEFAULT FALSE, 

  notification        [27]  SEQUENCE SIZE (1..MAX) OF Attribute 

                            {{SupportedAttributes}} OPTIONAL, 

  ... } 

 

ServiceControls ::= SET { 

  options              [0]  ServiceControlOptions DEFAULT {}, 

  priority             [1]  INTEGER {low(0), medium(1), high(2)} DEFAULT medium, 

  timeLimit            [2]  INTEGER OPTIONAL, 

  sizeLimit            [3]  INTEGER OPTIONAL, 

  scopeOfReferral      [4]  INTEGER {dmd(0), country(1)} OPTIONAL, 

  attributeSizeLimit   [5]  INTEGER OPTIONAL, 

  manageDSAITPlaneRef  [6]  SEQUENCE { 

    dsaName                   Name, 

    agreementID               AgreementID, 

    ...} OPTIONAL, 

  serviceType          [7]  OBJECT IDENTIFIER OPTIONAL, 

  userClass            [8]  INTEGER OPTIONAL, 

  ... } 

 

ServiceControlOptions ::= BIT STRING { 

  preferChaining          (0), 

  chainingProhibited      (1), 

  localScope              (2), 

  dontUseCopy             (3), 

  dontDereferenceAliases  (4), 

  subentries              (5), 

  copyShallDo             (6), 

  partialNameResolution   (7), 

  manageDSAIT             (8), 

  noSubtypeMatch          (9), 

  noSubtypeSelection      (10), 

  countFamily             (11), 

  dontSelectFriends       (12), 

  dontMatchFriends        (13), 

  allowWriteableCopy      (14)} 

 

EntryInformationSelection ::= SET { 

  attributes                     CHOICE { 

    allUserAttributes         [0]  NULL, 

    select                    [1]  SET OF AttributeType 

    -- empty set implies no attributes are requested -- } DEFAULT allUserAttributes:NULL, 

    infoTypes               [2]  INTEGER { 

      attributeTypesOnly        (0), 

      attributeTypesAndValues   (1)} DEFAULT attributeTypesAndValues, 

  extraAttributes                CHOICE { 

    allOperationalAttributes  [3]  NULL, 

    select                    [4]  SET SIZE (1..MAX) OF AttributeType } OPTIONAL, 

  contextSelection               ContextSelection OPTIONAL, 

  returnContexts                 BOOLEAN DEFAULT FALSE, 

  familyReturn                   FamilyReturn DEFAULT 

                                   {memberSelect contributingEntriesOnly} } 

 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 85  

ContextSelection ::= CHOICE { 

  allContexts       NULL, 

  selectedContexts  SET SIZE (1..MAX) OF TypeAndContextAssertion, 

  ... } 

 

TypeAndContextAssertion ::= SEQUENCE { 

  type               AttributeType, 

  contextAssertions  CHOICE { 

    preference         SEQUENCE OF ContextAssertion, 

    all                SET OF ContextAssertion, 

    ...}, 

  ... } 

 

FamilyReturn ::= SEQUENCE { 

  memberSelect   ENUMERATED { 

    contributingEntriesOnly   (1), 

    participatingEntriesOnly  (2), 

    compoundEntry             (3), 

    ...}, 

  familySelect   SEQUENCE SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL, 

  ... } 

 

EntryInformation ::= SEQUENCE { 

  name                  Name, 

  fromEntry             BOOLEAN DEFAULT TRUE, 

  information           SET SIZE (1..MAX) OF CHOICE { 

    attributeType         AttributeType, 

    attribute             Attribute{{SupportedAttributes}}, 

    ...} OPTIONAL, 

  incompleteEntry  [3]  BOOLEAN DEFAULT FALSE, 

  partialName      [4]  BOOLEAN DEFAULT FALSE, 

  derivedEntry     [5]  BOOLEAN DEFAULT FALSE, 

  ... } 

 

family-information ATTRIBUTE ::= { 

  WITH SYNTAX  FamilyEntries 

  USAGE        directoryOperation 

  ID           id-at-family-information } 

 

FamilyEntries ::= SEQUENCE { 

  family-class   OBJECT-CLASS.&id, -- structural object class value 

  familyEntries  SEQUENCE OF FamilyEntry, 

  ... } 

 

FamilyEntry ::= SEQUENCE { 

  rdn            RelativeDistinguishedName, 

  information    SEQUENCE OF CHOICE { 

    attributeType  AttributeType, 

    attribute      Attribute{{SupportedAttributes}}, 

    ...}, 

  family-info    SEQUENCE SIZE (1..MAX) OF FamilyEntries OPTIONAL, 

  ... } 

 

Filter ::= CHOICE { 

  item  [0]  FilterItem, 

  and   [1]  SET OF Filter, 

  or    [2]  SET OF Filter, 

  not   [3]  Filter, 

  ... } 

 

FilterItem ::= CHOICE { 

  equality          [0]  AttributeValueAssertion, 

  substrings        [1]  SEQUENCE { 

    type                   ATTRIBUTE.&id({SupportedAttributes}), 

    strings                SEQUENCE OF CHOICE { 

      initial           [0]  ATTRIBUTE.&Type 

                              ({SupportedAttributes}{@substrings.type}), 

      any               [1]  ATTRIBUTE.&Type 

                              ({SupportedAttributes}{@substrings.type}), 

      final             [2]  ATTRIBUTE.&Type 

                              ({SupportedAttributes}{@substrings.type}), 



ISO/IEC 9594-3:2020 (E) 

86 Rec. ITU-T X.511 (10/2019) 

      control                Attribute{{SupportedAttributes}}, 

                    -- Used to specify interpretation of following items 

      ... }, 

    ... },  

  greaterOrEqual    [2]  AttributeValueAssertion, 

  lessOrEqual       [3]  AttributeValueAssertion, 

  present           [4]  AttributeType, 

  approximateMatch  [5]  AttributeValueAssertion, 

  extensibleMatch   [6]  MatchingRuleAssertion, 

  contextPresent    [7]  AttributeTypeAssertion, 

  ... } 

 

MatchingRuleAssertion ::= SEQUENCE { 

  matchingRule  [1]  SET SIZE (1..MAX) OF MATCHING-RULE.&id, 

  type          [2]  AttributeType OPTIONAL, 

  matchValue    [3]  MATCHING-RULE.&AssertionType (CONSTRAINED BY { 

    -- matchValue shall be a value of  type specified by the &AssertionType field of  

    -- one of the MATCHING-RULE information objects identified by matchingRule -- }), 

  dnAttributes  [4]  BOOLEAN DEFAULT FALSE, 

  ... } 

 

PagedResultsRequest ::= CHOICE { 

  newRequest         SEQUENCE { 

    pageSize           INTEGER, 

    sortKeys           SEQUENCE SIZE (1..MAX) OF SortKey OPTIONAL, 

    reverse       [1]  BOOLEAN DEFAULT FALSE, 

    unmerged      [2]  BOOLEAN DEFAULT FALSE, 

    pageNumber    [3]  INTEGER OPTIONAL, 

    ...}, 

  queryReference     OCTET STRING, 

  abandonQuery  [0]  OCTET STRING, 

  ... } 

 

SortKey ::= SEQUENCE { 

  type          AttributeType, 

  orderingRule  MATCHING-RULE.&id OPTIONAL, 

  ... } 

 

SecurityParameters ::= SET { 

  certification-path          [0]  CertificationPath OPTIONAL, 

  name                        [1]  DistinguishedName OPTIONAL, 

  time                        [2]  Time OPTIONAL, 

  random                      [3]  BIT STRING OPTIONAL, 

  target                      [4]  ProtectionRequest OPTIONAL, 

  --                          [5]  Not to be used 

  operationCode               [6]  Code OPTIONAL, 

  --                          [7]  Not to be used 

  errorProtection             [8]  ErrorProtectionRequest OPTIONAL, 

  errorCode                   [9]  Code OPTIONAL, 

  ... } 

 

ProtectionRequest ::= INTEGER {none(0), signed(1)} 

 

Time ::= CHOICE { 

  utcTime          UTCTime, 

  generalizedTime  GeneralizedTime, 

  ... } 

 

ErrorProtectionRequest ::= INTEGER {none(0), signed(1)} 

 

--  Bind and unbind operations  

 

directoryBind OPERATION ::= { 

  ARGUMENT  DirectoryBindArgument 

  RESULT    DirectoryBindResult 

  ERRORS    {directoryBindError} } 

 

DirectoryBindArgument ::= SET { 

  credentials  [0]  Credentials OPTIONAL, 

  versions     [1]  Versions DEFAULT {v1}, 

  ... } 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 87  

 

Credentials ::= CHOICE { 

  simple             [0]  SimpleCredentials, 

  strong             [1]  StrongCredentials, 

  externalProcedure  [2]  EXTERNAL, 

  spkm               [3]  SpkmCredentials, 

  sasl               [4]  SaslCredentials, 

  ... } 

 

SimpleCredentials ::= SEQUENCE { 

  name      [0]  DistinguishedName, 

  validity  [1]  SET { 

    time1     [0]  CHOICE { 

      utc            UTCTime, 

      gt             GeneralizedTime} OPTIONAL, 

    time2     [1]  CHOICE { 

      utc            UTCTime, 

      gt             GeneralizedTime} OPTIONAL, 

    random1   [2]  BIT STRING OPTIONAL, 

    random2   [3]  BIT STRING OPTIONAL} OPTIONAL, 

  password  [2]  CHOICE { 

    unprotected    OCTET STRING, 

    protected      HASH{OCTET STRING}, 

    ..., 

    userPwd   [0]  UserPwd } OPTIONAL } 

 

StrongCredentials ::= SET { 

  certification-path          [0]  CertificationPath OPTIONAL, 

  bind-token                  [1]  Token, 

  name                        [2]  DistinguishedName OPTIONAL, 

  attributeCertificationPath  [3]  AttributeCertificationPath OPTIONAL, 

  ... } 

 

SpkmCredentials ::= CHOICE { 

  req            [0]  SPKM-REQ, 

  rep            [1]  SPKM-REP-TI, 

  ... } 

 

SaslCredentials ::= SEQUENCE { 

  mechanism    [0]  DirectoryString{ub-saslMechanism}, 

  credentials  [1]  OCTET STRING OPTIONAL, 

  saslAbort    [2]  BOOLEAN DEFAULT FALSE, 

  ... } 

 

ub-saslMechanism INTEGER ::= 20 -- According to RFC 2222 

 

Token ::= SIGNED{TokenContent} 

 

TokenContent ::= SEQUENCE { 

  algorithm  [0]  AlgorithmIdentifier{{SupportedAlgorithms}}, 

  name       [1]  DistinguishedName, 

  time       [2]  Time, 

  random     [3]  BIT STRING, 

  response   [4]  BIT STRING OPTIONAL, 

  ... } 

 

Versions ::= BIT STRING {v1(0), v2(1)} 

 

DirectoryBindResult ::= SET { 

  credentials       [0]  Credentials OPTIONAL, 

  versions          [1]  Versions DEFAULT {v1}, 

  ..., 

  pwdResponseValue  [2]  PwdResponseValue OPTIONAL } 

 

PwdResponseValue ::= SEQUENCE { 

  warning CHOICE { 

    timeLeft        [0]  INTEGER (0..MAX), 

    graceRemaining  [1]  INTEGER (0..MAX), 

    ... } OPTIONAL, 

  error   ENUMERATED { 

    passwordExpired  (0), 



ISO/IEC 9594-3:2020 (E) 

88 Rec. ITU-T X.511 (10/2019) 

    changeAfterReset (1), 

    ... } OPTIONAL} 

 

directoryBindError ERROR ::= { 

  PARAMETER OPTIONALLY-PROTECTED {SET { 

    versions              [0]  Versions DEFAULT {v1}, 

    error                      CHOICE { 

      serviceError          [1]  ServiceProblem, 

      securityError         [2]  SecurityProblem, 

      ...}, 

    securityParameters    [30]  SecurityParameters OPTIONAL }}} 

 

BindKeyInfo ::= ENCRYPTED{BIT STRING} 

 

--  Operations, arguments, and results  

 

 

read OPERATION ::= { 

  ARGUMENT  ReadArgument 

  RESULT    ReadResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-read } 

 

ReadArgument ::= OPTIONALLY-PROTECTED { ReadArgumentData } 

 

ReadArgumentData ::= SET { 

  object               [0]  Name, 

  selection            [1]  EntryInformationSelection DEFAULT {}, 

  modifyRightsRequest  [2]  BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF             CommonArguments }  

 

ReadResult ::= OPTIONALLY-PROTECTED { ReadResultData } 

 

ReadResultData ::= SET { 

  entry         [0]  EntryInformation, 

  modifyRights  [1]  ModifyRights OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF      CommonResults } 

 

ModifyRights ::= SET OF SEQUENCE { 

  item      CHOICE { 

    entry      [0]  NULL, 

    attribute  [1]  AttributeType, 

    value      [2]  AttributeValueAssertion, 

    ...}, 

  permission   [3]  BIT STRING { 

    add     (0), 

    remove  (1), 

    rename  (2), 

    move    (3)}, 

  ... } 

 

compare OPERATION ::= { 

  ARGUMENT  CompareArgument 

  RESULT    CompareResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-compare } 

 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 89  

CompareArgument ::= OPTIONALLY-PROTECTED { CompareArgumentData } 

 

CompareArgumentData ::= SET { 

  object       [0]  Name, 

  purported    [1]  AttributeValueAssertion, 

  ..., 

  ..., 

  COMPONENTS OF     CommonArguments } 

 

CompareResult ::= OPTIONALLY-PROTECTED { CompareResultData } 

 

CompareResultData ::= SET { 

  name                 Name OPTIONAL, 

  matched         [0]  BOOLEAN, 

  fromEntry       [1]  BOOLEAN DEFAULT TRUE, 

  matchedSubtype  [2]  AttributeType OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF        CommonResults } 

 

abandon OPERATION ::= { 

  ARGUMENT  AbandonArgument 

  RESULT    AbandonResult 

  ERRORS    {abandonFailed} 

  CODE      id-opcode-abandon } 

 

AbandonArgument ::= 

  OPTIONALLY-PROTECTED-SEQ { AbandonArgumentData } 

 

AbandonArgumentData ::= SEQUENCE { 

  invokeID  [0]  InvokeId, 

  ... }  

 

AbandonResult ::= CHOICE { 

  null          NULL, 

  information   OPTIONALLY-PROTECTED-SEQ { AbandonResultData }, 

  ... } 

 

AbandonResultData ::= SEQUENCE { 

  invokeID      InvokeId, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

list OPERATION ::= { 

  ARGUMENT  ListArgument 

  RESULT    ListResult 

  ERRORS    {nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-list } 

 

ListArgument ::= OPTIONALLY-PROTECTED { ListArgumentData } 

 

ListArgumentData ::= SET { 

  object        [0]  Name, 

  pagedResults  [1]  PagedResultsRequest OPTIONAL, 

  listFamily    [2]  BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF      CommonArguments 

  }  

 

ListResult ::= OPTIONALLY-PROTECTED { ListResultData } 

 

ListResultData ::= CHOICE { 

  listInfo                     SET { 

    name                         Name OPTIONAL, 

    subordinates            [1]  SET OF SEQUENCE { 



ISO/IEC 9594-3:2020 (E) 

90 Rec. ITU-T X.511 (10/2019) 

      rdn                          RelativeDistinguishedName, 

      aliasEntry              [0]  BOOLEAN DEFAULT FALSE, 

      fromEntry               [1]  BOOLEAN DEFAULT TRUE, 

      ... }, 

    partialOutcomeQualifier [2]  PartialOutcomeQualifier OPTIONAL, 

    ..., 

    ..., 

    COMPONENTS OF                CommonResults 

    }, 

  uncorrelatedListInfo    [0]  SET OF ListResult, 

  ... }  

 

PartialOutcomeQualifier ::= SET { 

  limitProblem                  [0]  LimitProblem OPTIONAL, 

  unexplored                    [1]  SET SIZE (1..MAX) OF ContinuationReference OPTIONAL, 

  unavailableCriticalExtensions [2]  BOOLEAN DEFAULT FALSE, 

  unknownErrors                 [3]  SET SIZE (1..MAX) OF ABSTRACT-SYNTAX.&Type OPTIONAL, 

  queryReference                [4]  OCTET STRING OPTIONAL, 

  overspecFilter                [5]  Filter OPTIONAL, 

  notification                  [6]  SEQUENCE SIZE (1..MAX) OF 

                                       Attribute{{SupportedAttributes}} OPTIONAL, 

  entryCount                         CHOICE { 

    bestEstimate                  [7]  INTEGER, 

    lowEstimate                   [8]  INTEGER, 

    exact                         [9]  INTEGER, 

    ...} OPTIONAL 

  --                            [10] Not to be used -- } 

 

LimitProblem ::= INTEGER { 

  timeLimitExceeded           (0), 

  sizeLimitExceeded           (1), 

  administrativeLimitExceeded (2) } 

 

search OPERATION ::= { 

  ARGUMENT  SearchArgument 

  RESULT    SearchResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             abandoned | 

             securityError} 

  CODE      id-opcode-search } 

 

SearchArgument ::= OPTIONALLY-PROTECTED { SearchArgumentData } 

 

SearchArgumentData ::= SET {  

  baseObject            [0]  Name, 

  subset                [1]  INTEGER { 

    baseObject    (0), 

    oneLevel      (1), 

    wholeSubtree  (2)} DEFAULT baseObject, 

  filter                [2]  Filter DEFAULT and:{}, 

  searchAliases         [3]  BOOLEAN DEFAULT TRUE, 

  selection             [4]  EntryInformationSelection DEFAULT {}, 

  pagedResults          [5]  PagedResultsRequest OPTIONAL, 

  matchedValuesOnly     [6]  BOOLEAN DEFAULT FALSE, 

  extendedFilter        [7]  Filter OPTIONAL, 

  checkOverspecified    [8]  BOOLEAN DEFAULT FALSE, 

  relaxation            [9]  RelaxationPolicy OPTIONAL, 

  extendedArea          [10] INTEGER OPTIONAL, 

  hierarchySelections   [11] HierarchySelections DEFAULT {self}, 

  searchControlOptions  [12] SearchControlOptions DEFAULT {searchAliases}, 

  joinArguments         [13] SEQUENCE SIZE (1..MAX) OF JoinArgument OPTIONAL, 

  joinType              [14] ENUMERATED { 

    innerJoin      (0), 

    leftOuterJoin  (1), 

    fullOuterJoin  (2)} DEFAULT leftOuterJoin, 

  ..., 

  ..., 

  COMPONENTS OF              CommonArguments } 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 91  

 

HierarchySelections ::= BIT STRING { 

  self                  (0), 

  children              (1), 

  parent                (2), 

  hierarchy             (3), 

  top                   (4), 

  subtree               (5), 

  siblings              (6), 

  siblingChildren       (7), 

  siblingSubtree        (8), 

  all                   (9) } 

 

SearchControlOptions ::= BIT STRING { 

  searchAliases         (0),  

  matchedValuesOnly     (1), 

  checkOverspecified    (2), 

  performExactly        (3), 

  includeAllAreas       (4), 

  noSystemRelaxation    (5), 

  dnAttribute           (6), 

  matchOnResidualName   (7), 

  entryCount            (8), 

  useSubset             (9), 

  separateFamilyMembers (10), 

  searchFamily          (11) } 

 

JoinArgument ::= SEQUENCE { 

  joinBaseObject  [0]  Name, 

  domainLocalID   [1]  DomainLocalID OPTIONAL, 

  joinSubset      [2]  ENUMERATED { 

    baseObject   (0), 

    oneLevel     (1), 

    wholeSubtree (2), 

    ... } DEFAULT baseObject, 

  joinFilter      [3]  Filter OPTIONAL, 

  joinAttributes  [4]  SEQUENCE SIZE (1..MAX) OF JoinAttPair OPTIONAL, 

  joinSelection   [5]  EntryInformationSelection, 

  ... } 

 

DomainLocalID ::= UnboundedDirectoryString 

 

JoinAttPair ::= SEQUENCE { 

  baseAtt      AttributeType, 

  joinAtt      AttributeType, 

  joinContext  SEQUENCE SIZE (1..MAX) OF JoinContextType OPTIONAL, 

  ... } 

 

JoinContextType ::= CONTEXT.&id({SupportedContexts}) 

 

SearchResult ::= OPTIONALLY-PROTECTED { SearchResultData } 

 

SearchResultData ::= CHOICE { 

  searchInfo                    SET { 

    name                          Name OPTIONAL, 

    entries                  [0]  SET OF EntryInformation, 

    partialOutcomeQualifier  [2]  PartialOutcomeQualifier OPTIONAL, 

    altMatching              [3]  BOOLEAN DEFAULT FALSE, 

    ..., 

    ..., 

    COMPONENTS OF                 CommonResults 

    }, 

  uncorrelatedSearchInfo   [0]  SET OF SearchResult, 

  ... } 

 

addEntry OPERATION ::= { 

  ARGUMENT  AddEntryArgument 

  RESULT    AddEntryResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 



ISO/IEC 9594-3:2020 (E) 

92 Rec. ITU-T X.511 (10/2019) 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-addEntry } 

 

AddEntryArgument ::= OPTIONALLY-PROTECTED { AddEntryArgumentData } 

 

AddEntryArgumentData ::= SET { 

  object        [0]  Name, 

  entry         [1]  SET OF Attribute{{SupportedAttributes}}, 

  targetSystem  [2]  AccessPoint OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF      CommonArguments } 

 

AddEntryResult ::= CHOICE { 

  null          NULL, 

  information   OPTIONALLY-PROTECTED-SEQ { AddEntryResultData }, 

  ... } 

 

AddEntryResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

removeEntry OPERATION ::= { 

  ARGUMENT  RemoveEntryArgument 

  RESULT    RemoveEntryResult 

  ERRORS    {nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-removeEntry } 

 

RemoveEntryArgument ::= OPTIONALLY-PROTECTED { RemoveEntryArgumentData } 

 

RemoveEntryArgumentData ::= SET { 

  object     [0]  Name, 

  ..., 

  ..., 

  COMPONENTS OF   CommonArguments 

  } 

 

RemoveEntryResult ::= CHOICE { 

  null          NULL, 

  information   OPTIONALLY-PROTECTED-SEQ { RemoveEntryResultData }, 

  ... } 

 

RemoveEntryResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

modifyEntry OPERATION ::= { 

  ARGUMENT  ModifyEntryArgument 

  RESULT    ModifyEntryResult 

  ERRORS    {attributeError | 

             nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-modifyEntry } 

 

ModifyEntryArgument ::= OPTIONALLY-PROTECTED { ModifyEntryArgumentData } 

 

ModifyEntryArgumentData ::= SET { 

  object     [0]  Name, 

  changes    [1]  SEQUENCE OF EntryModification, 

  selection  [2]  EntryInformationSelection OPTIONAL, 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 93  

  ..., 

  ..., 

  COMPONENTS OF   CommonArguments } 

 

ModifyEntryResult ::= CHOICE { 

  null         NULL, 

  information  OPTIONALLY-PROTECTED-SEQ { ModifyEntryResultData }, 

  ... } 

 

ModifyEntryResultData ::= SEQUENCE { 

  entry    [0]  EntryInformation OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

EntryModification ::= CHOICE { 

  addAttribute     [0]  Attribute{{SupportedAttributes}}, 

  removeAttribute  [1]  AttributeType, 

  addValues        [2]  Attribute{{SupportedAttributes}}, 

  removeValues     [3]  Attribute{{SupportedAttributes}}, 

  alterValues      [4]  AttributeTypeAndValue, 

  resetValue       [5]  AttributeType, 

  replaceValues    [6]  Attribute{{SupportedAttributes}}, 

  ... } 

 

modifyDN OPERATION ::= { 

  ARGUMENT  ModifyDNArgument 

  RESULT    ModifyDNResult 

  ERRORS    {nameError | 

             serviceError | 

             referral | 

             securityError | 

             updateError} 

  CODE      id-opcode-modifyDN } 

 

ModifyDNArgument ::= OPTIONALLY-PROTECTED { ModifyDNArgumentData } 

 

ModifyDNArgumentData ::= SET { 

  object        [0]  DistinguishedName, 

  newRDN        [1]  RelativeDistinguishedName, 

  deleteOldRDN  [2]  BOOLEAN DEFAULT FALSE, 

  newSuperior   [3]  DistinguishedName OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF      CommonArguments } 

 

ModifyDNResult ::= CHOICE { 

  null         NULL, 

  information  OPTIONALLY-PROTECTED-SEQ { ModifyDNResultData }, 

  ... } 

 

ModifyDNResultData ::= SEQUENCE { 

  newRDN        RelativeDistinguishedName, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

changePassword OPERATION ::= {  

  ARGUMENT  ChangePasswordArgument  

  RESULT    ChangePasswordResult  

  ERRORS    {securityError | 

             updateError }  

  CODE      id-opcode-changePassword }  

 

ChangePasswordArgument ::= OPTIONALLY-PROTECTED-SEQ { ChangePasswordArgumentData } 

 

ChangePasswordArgumentData ::= SEQUENCE { 

  object   [0]  DistinguishedName,  

  oldPwd   [1]  UserPwd,  

  newPwd   [2]  UserPwd, 

  ... } 



ISO/IEC 9594-3:2020 (E) 

94 Rec. ITU-T X.511 (10/2019) 

 

ChangePasswordResult ::= CHOICE { 

  null        NULL, 

  information OPTIONALLY-PROTECTED-SEQ { ChangePasswordResultData }, 

  ...} 

 

ChangePasswordResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

administerPassword OPERATION ::= {  

  ARGUMENT  AdministerPasswordArgument  

  RESULT    AdministerPasswordResult  

  ERRORS    {securityError | 

             updateError}  

  CODE      id-opcode-administerPassword }  

 

AdministerPasswordArgument ::= 

  OPTIONALLY-PROTECTED-SEQ { AdministerPasswordArgumentData } 

 

AdministerPasswordArgumentData ::= SEQUENCE { 

  object  [0]  DistinguishedName,  

  newPwd  [1]  UserPwd, 

  ... } 

 

AdministerPasswordResult ::= CHOICE { 

  null NULL, 

  information OPTIONALLY-PROTECTED-SEQ { AdministerPasswordResultData }, 

  ...} 

 

AdministerPasswordResultData ::= SEQUENCE { 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

ldapTransport OPERATION ::= { 

  ARGUMENT    LdapArgument 

  RESULT      SEQUENCE OF LDAPMessage 

  ERRORS      { abandonFailed | abandoned } 

  CODE        id-opcode-ldapTransport } 

 

LdapArgument ::= OPTIONALLY-PROTECTED-SEQ { LdapArgumentData } 

 

LdapArgumentData ::= SEQUENCE { 

  object        DistinguishedName, 

  ldapMessage   LDAPMessage, 

  linkId        LinkId  OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF CommonArgumentsSeq } 

 

LinkId ::= INTEGER 

 

LdapResult ::= OPTIONALLY-PROTECTED-SEQ { LdapResultData } 

 

LdapResultData ::= SEQUENCE { 

  ldapMessages   SEQUENCE SIZE (1..MAX) OF LDAPMessage OPTIONAL, 

  returnToClient BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF CommonResultsSeq } 

 

linkedLDAP OPERATION ::= { 

  ARGUMENT    LinkedArgument 

  RESULT      LinkedResult 

  CODE        id-opcode-linkedLDAP } 

 

LinkedArgument ::= OPTIONALLY-PROTECTED-SEQ { LinkedArgumentData } 

 

LinkedArgumentData ::= SEQUENCE { 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 95  

  object         DistinguishedName, 

  ldapMessage    LDAPMessage, 

  linkId         LinkId, 

  returnToClient BOOLEAN DEFAULT FALSE, 

  ..., 

  ..., 

  COMPONENTS OF  CommonArgumentsSeq } 

 

LinkedResult ::= NULL 

 

-- Errors and parameters  

 

abandoned ERROR ::= {-- not literally an "error" 

  PARAMETER     OPTIONALLY-PROTECTED { AbandonedData } 

  CODE          id-errcode-abandoned } 

 

AbandonedData ::= SET { 

    problem       AbandonedProblem OPTIONAL, 

    ..., 

    ..., 

    COMPONENTS OF CommonResults } 

 

AbandonedProblem  ::= ENUMERATED { 

  pagingAbandoned (0) } 

 

abandonFailed ERROR ::= { 

  PARAMETER OPTIONALLY-PROTECTED { AbandonFailedData } 

  CODE      id-errcode-abandonFailed } 

 

AbandonFailedData ::= SET { 

  problem    [0]  AbandonProblem, 

  operation  [1]  InvokeId, 

  ..., 

  ..., 

  COMPONENTS OF   CommonResults } 

 

AbandonProblem ::= INTEGER { 

  noSuchOperation (1), 

  tooLate         (2), 

  cannotAbandon   (3) } 

 

attributeError ERROR ::= { 

  PARAMETER     OPTIONALLY-PROTECTED { AttributeErrorData } 

  CODE          id-errcode-attributeError } 

 

AttributeErrorData ::= SET { 

  object   [0]  Name, 

  problems [1]  SET OF SEQUENCE { 

    problem  [0]  AttributeProblem, 

    type     [1]  AttributeType, 

    value    [2]  AttributeValue OPTIONAL, 

    ...}, 

  ..., 

  ..., 

  COMPONENTS OF CommonResults } 

 

AttributeProblem ::= INTEGER { 

  noSuchAttributeOrValue        (1), 

  invalidAttributeSyntax        (2), 

  undefinedAttributeType        (3), 

  inappropriateMatching         (4), 

  constraintViolation           (5), 

  attributeOrValueAlreadyExists (6), 

  contextViolation              (7) } 

 

nameError ERROR ::= { 

  PARAMETER     OPTIONALLY-PROTECTED { NameErrorData } 

  CODE          id-errcode-nameError } 

 

NameErrorData ::= SET { 

  problem  [0]  NameProblem, 



ISO/IEC 9594-3:2020 (E) 

96 Rec. ITU-T X.511 (10/2019) 

  matched  [1]  Name, 

  ..., 

  ..., 

  COMPONENTS OF CommonResults } 

 

NameProblem ::= INTEGER { 

  noSuchObject              (1), 

  aliasProblem              (2), 

  invalidAttributeSyntax    (3), 

  aliasDereferencingProblem (4) 

  -- not to be used         (5)-- } 

 

referral ERROR ::= { -- not literally an "error" 

  PARAMETER      OPTIONALLY-PROTECTED { ReferralData } 

  CODE           id-errcode-referral } 

 

ReferralData ::= SET { 

  candidate  [0] ContinuationReference, 

  ..., 

  ..., 

  COMPONENTS OF  CommonResults }  

 

securityError  ERROR  ::=  { 

  PARAMETER   OPTIONALLY-PROTECTED { SecurityErrorData } 

  CODE        id-errcode-securityError } 

 

SecurityErrorData ::= SET { 

  problem      [0]  SecurityProblem, 

  spkmInfo     [1]  SPKM-ERROR OPTIONAL, 

  encPwdInfo   [2]  EncPwdInfo OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF CommonResults } 

 

SecurityProblem ::= INTEGER { 

  inappropriateAuthentication     (1), 

  invalidCredentials              (2), 

  insufficientAccessRights        (3), 

  invalidSignature                (4), 

  protectionRequired              (5), 

  noInformation                   (6), 

  blockedCredentials              (7), 

  -- invalidQOPMatch              (8), obsolete 

  spkmError                       (9), 

  unsupportedAuthenticationMethod (10), 

  passwordExpired                 (11), 

  inappropriateAlgorithms         (12) } 

 

EncPwdInfo ::= SEQUENCE { 

  algorithms     [0]  SEQUENCE OF AlgorithmIdentifier 

                        {{SupportedAlgorithms}} OPTIONAL, 

  pwdQualityRule [1]  SEQUENCE OF AttributeTypeAndValue OPTIONAL, 

  ... } 

 

serviceError ERROR ::= { 

  PARAMETER   OPTIONALLY-PROTECTED { ServiceErrorData } 

  CODE        id-errcode-serviceError } 

 

ServiceErrorData ::= SET { 

  problem   [0]  ServiceProblem, 

  ..., 

  ..., 

  COMPONENTS OF  CommonResults } 

 

ServiceProblem ::= INTEGER { 

  busy                         (1), 

  unavailable                  (2), 

  unwillingToPerform           (3), 

  chainingRequired             (4), 

  unableToProceed              (5), 

  invalidReference             (6), 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 97  

  timeLimitExceeded            (7), 

  administrativeLimitExceeded  (8), 

  loopDetected                 (9), 

  unavailableCriticalExtension (10), 

  outOfScope                   (11), 

  ditError                     (12), 

  invalidQueryReference        (13), 

  requestedServiceNotAvailable (14), 

  unsupportedMatchingUse       (15), 

  ambiguousKeyAttributes       (16), 

  saslBindInProgress           (17), 

  notSupportedByLDAP           (18) } 

 

updateError ERROR ::= { 

  PARAMETER   OPTIONALLY-PROTECTED { UpdateErrorData } 

  CODE        id-errcode-updateError } 

 

UpdateErrorData ::= SET { 

  problem        [0]  UpdateProblem, 

  attributeInfo  [1]  SET SIZE (1..MAX) OF CHOICE { 

    attributeType       AttributeType, 

    attribute           Attribute{{SupportedAttributes}}, 

    ... } OPTIONAL, 

  ..., 

  ..., 

  COMPONENTS OF       CommonResults } 

 

UpdateProblem ::= INTEGER { 

  namingViolation                   (1), 

  objectClassViolation              (2), 

  notAllowedOnNonLeaf               (3), 

  notAllowedOnRDN                   (4), 

  entryAlreadyExists                (5), 

  affectsMultipleDSAs               (6), 

  objectClassModificationProhibited (7), 

  noSuchSuperior                    (8), 

  notAncestor                       (9), 

  parentNotAncestor                 (10), 

  hierarchyRuleViolation            (11), 

  familyRuleViolation               (12), 

  insufficientPasswordQuality       (13), 

  passwordInHistory                 (14), 

  noPasswordSlot                    (15) } 

 

-- attribute types  

 

id-at-family-information OBJECT IDENTIFIER ::= {id-at 64} 

 

END -- DirectoryAbstractService 

  



ISO/IEC 9594-3:2020 (E) 

98 Rec. ITU-T X.511 (10/2019) 

Annex B 

 

Operational semantics for Basic Access Control 

(This annex does not form an integral part of this Recommendation | International Standard.) 

This annex contains a number of charts that describe the semantics associated with Basic Access Control as it applies to 

the processing of a Directory operation (see Figures B.1 to B.16). 

X.511(12)_FB.1

Alias dereferencing on Name Resolution

result in
ContinuationReference?

No
Continue

Continue

Read granted to
alias entry?

Non-disclosure procedureNo

Yes

Yes

Yes
Read granted to

attribute
type and its value?

AliasedObjectName 

matched = name of alias

NameError

aliasDereferencingProblem

 with

No

 

Figure B.1 – Alias dereferencing in Name Resolution 

 

X.511(12)_FB.2

Return of NameError procedure

Matched object corresponds to next superior
entry for which  is granted

(root if no such entry can be found)
DisclosureOnError

NameError
noSuchObject

 with

 

Figure B.2 – Return of Name Error 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 99  

X.511(12)_FB.3

Non-disclosure procedure

DiscloseOnError
granted for entry?

No

Yes

List  Searchor ? No

YesReturn of 
procedure

NameError SecurityError

insufficientAccessRights 

noInformation

 with
or

Return empty set of results

 

Figure B.3 – Non-disclosure of the existence of an Entry 

 

X.511(12)_FB.4

Return of DN

ReturnDN granted ?

Yes

Return DN of entry

List operation ?

No

Yes

Omit RDN from result

Yes

Yes

No

Alias name available?

Return alias name or (base)
object name as supplied by

DAP operation if entry

corresponds to (base) object

No

No

Entry corresponds
to (base) object of DAP

operation?

Return (base) object name as
supplied by DAP operation

Omit entry information
(in Search)

No

Read operation? Name Error

Yes

 

Figure B.4 – Return of Distinguished Name 



ISO/IEC 9594-3:2020 (E) 

100 Rec. ITU-T X.511 (10/2019) 

X.511(12)_FB.5

Read operation

Read granted to entry?
No

Non-disclosure procedure

Yes

incompleteEntry = FALSE

Return of DN procedure to obtain
name to be supplied in result

Yesselection
empty?

Return Read
result or nameError

No

For each attribute in selection
Finished

No Such Attribute or Value –
Read Procedure

YesYes

No

Attribute
present in 

entry?

Read 
granted to 
attribute

type?

No

No Yes
DiscloseOnError granted to

attribute type?

Attribute types and values
required?

NoYes

incompleteEntry = TRUE Include attribute type

Finished

For each attribute value

Read granted to attribute
value?

No

No

Yes

DiscloseOnError granted to
attribute value?

incompleteEntry = TRUE Include attribute value

Yes

 

Figure B.5 – Read operation 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 101  

X.511(12)_FB.6

NoSuchAttributeOrValue-Read

Attribute information
to be returned?

Obtain name to be
supplied in result by

performing the

Return of DN
procedure

Return 
result

ReadYes

No

No

No

No

Are attributes in
 present in

entry?
selection

AttributeError
NoSuchAttributeOrValue

 with problem

Yes

Yes

Yes

Any specific attributes
selected ?

SecurityError 

insufficientAccessRights
noInformation

with problem
 or

DiscloseOnError
granted to any attributes

selected?

AttributeError

NoSuchAttributeOrValue

 with problem

SecurityError 

insufficientAccessRights

noInformation

with problem
 or

 

Figure B.6 – NoSuchAttributeOrValue for Read 



ISO/IEC 9594-3:2020 (E) 

102 Rec. ITU-T X.511 (10/2019) 

X.511(12)_FB.7

Compare operation

Read granted to
entry?

Non-disclosure procedure
No

No

No

Yes

Yes

Yes

Attribute or subtype
present?

AttributeError 
NoSuchAttributeOrValue

with problem

Compare granted
for attribute type or

subtypes?

Disclose ErrorOn  granted
for attribute?

Finished

Security Error

InvalidAccessRights
NoInformation

 with problem
 or

No

No

Compare granted for 
attribute value?

Yes

Yes

attribute value matches
supplied value?

matched = TRUE matched = FALSE

Obtain name to be supplied in

result by performing the

Return of DN procedure

Return Compare

No

Yes

For each attribute value
of relevant type

 

Figure B.7 – Compare operation 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 103  

X.511(12)_FB.8

List operation

For each immediate subordinate Finished

Browse and ReturnDN
granted to entry?

Any subordinate found?
No

Yes

Yes

No

Include RDN in result
Non-disclosure procedure

for base object

Return result

 

Figure B.8 – List operation 



ISO/IEC 9594-3:2020 (E) 

104 Rec. ITU-T X.511 (10/2019) 

X.511(12)_FB.9

Search operation

For each entry in scope Finished

Finished

Finished

Alias and 
true?
searchAliases Alias dereference on

Search
Any Entries or Cross

References exist?
Yes Yes

No No

No Browse granted to
entry?

Non-disclosure procedure

Yes

Yes

For each filter item

FilterMatch granted
for attr. and attr. is present

in entry?

No

Present match?

evaluate TRUE evaluate UNDEFINED evaluate FALSE

Present match?
No Yes

No

Yes

For each attribute value
evaluate filterFinished?

No FilterMatch
 

 granted
for value and value

matches?

TRUE?
No

Yes

evaluate TRUE evaluate FALSE
Entry Selection in Search

procedure

Yes

 

Figure B.9 – Search operation 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 105  

X.511(12)_FB.10

Alias dereference on Search

Alias object name
to be considered?

Evaluate alias

No

e.g., not already included;
does not lead to search loop

Yes

Yes

Yes

Yes

Yes

Continuation Reference
required?

Add to search scope as
appropriate

NoRead granted to alias
entry?

No
Read granted to 

 attribute

type and value?

AliasedObjectName

NoSecurity 
policy permits disclosure 

of reference?

Include CR in result

Continue

No

 

Figure B.10 – Alias dereference in Search 



ISO/IEC 9594-3:2020 (E) 

106 Rec. ITU-T X.511 (10/2019) 

X.511(12)_FB.11

Entry selection in Search

Finished
No Such Attribute or Value –

Read procedure

No Yes YesAttribute present
in entry?

Read
granted to 
attribute

type ?

No YesDiscloseOnError granted
to attribute type?

Attribute types and
values required?

Yes No

incompleteEntry = TRUE Include attribute type

For each attribute value

Read granted to 
attribute value?

Yes

No

No DiscloseOnError granted
to attribute value?

incompleteEntry = FALSE Include attribute value

No

Yes

Finished

For each attribute in selection

 

Figure B.11 – Entry selection in Search 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 107  

X.511(12)_FB.12

AddEntry operation

No

Yes

Yes

Yes

Yes

Entry already exists?

DiscloseOnError Add or 
granted?

Non-disclosure procedure
(for the entry itself)

UpdateError 

entryAlreadyExists

with problem

Yes

NoAdd granted
to new entry?

No

Finished
For each attribute

Add granted
to attribute type?

SecurityError

insufficientAccessRights

noInformation

 with problem
 or

No

for each value
finished

Add granted to value?
No

SecurityError

insufficientAccessRights

noInformation

 with problem
 or

Perform requested operation
 

Figure B.12 – Add Entry operation 

 

X.511(12)_FB.13

RemoveEntry operation

Remove granted
to entry?

Non-disclosure procedure

Perform requested operation

Yes

No

 

Figure B.13 – Remove Entry operation 



ISO/IEC 9594-3:2020 (E) 

108 Rec. ITU-T X.511 (10/2019) 

X.511(12)_FB.14

Yes

No

ModifyEntry operation

Modify granted
for entry being modified?

No

Non-disclosure procedure

Yes

For each modification

Finished
Perform requested operation

(remove-Attribute) (Add attribute or value) (removeValues)

No

No

Yes

Attribute
exists?

Modify Add Attribute or
Values procedure

Attribute
exists?

YesRemove granted
for attribute?

For each value to
be removed

Finished

No

No

Value exists?

Yes

No

No

Yes Remove granted
for value?

DiscloseOnError
granted for

attribute?

Yes
Yes DiscloseOnError

granted for

value?

SecurityError

insufficientAccessRights

noInformatioin

 with problem
 or AttributeError

noSuchAttributeOrValue

 with problem

 

Figure B.14 – Modify Entry operation 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 109  

X.511(12)_FB.15

Yes

ModifyDN operation

No

No

No

No

Yes

Yes

Yes

Yes

Effect is to modify last
RDN?

Rename granted to
entry being removed?

Non-disclosure procedure

Effect is to modify
name of immediate

superior entry?

Export granted to
entry with old name?

Import granted to
entry with new name?

Perform requested operation

No

 

Figure B.15 – ModifyDN operation 



ISO/IEC 9594-3:2020 (E) 

110 Rec. ITU-T X.511 (10/2019) 

X.511(12)_FB.16

Modify Add Attribute or Values

(addAttribute) (addValues)

Yes NoAttribute
exists?

Attribute
exists?

No

No

Yes

Add granted or
attribute?

Finished For each value
to be added

Success

Yes
Value exists?

No

Yes YesAdd granted for
attribute value?

DiscloseOnError
granted for 
attribute?

No

Yes

Yes No

DiscloseOnError
granted for 

value?

DiscloseOnError
granted for 
attribute?

AttributeError

attributeOrValueAlreadyExists

 with problem SecurityError

insufficientAccessRights

noInformation

 with problem
 or

AttributeError

noSuchAttributeOrValue

 with problem

Yes

No

No

 

Figure B.16 – Modify Add Attribute or Values 

  



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 111  

Annex C 

 

Examples of searching families of entries 

(This annex does not form an integral part of this Recommendation | International Standard.) 

C.1 Single family example 

Suppose Charles Smith has multiple modes of communication: A landline telephone, a fax, a mobile phone and e-mail, 

and each mode has its own associated parameters. Suppose further that Charles Smith has two e-mail accounts, one at his 

place of work and one at home, and that both offer POP3 mailboxes and SMTP servers. All this information can be held 

in a compound entry, with Charles Smith's member being the ancestor, with each mode of communication being a child 

member, and with each e-mail service being a child of the e-mail mode of communication. This is shown in Figure C.1 

below. As all the members immediately subordinate to the ancestor has the same structural object class (comAddr), the 

compound entry consists of a single family. 

X.511(12)_FC.1

1

2 3 4 5

6 7 8 9

serverN=orgISP
server=SMTP
dns=mail.org.com

oc=server, child

commsName=aa
telNo=1234
service=voice

tariff=tollfree

network=PSTN
oc=comAddr, child

cn=Smith
givenName=Charles

oc=orgPerson, parent

commsName=bb
telNo=5678
service=voice

tariff=normal

network=mobile
oc=comAddr, child

serverN=homeISP
server=SMTP
from=jc@org.com

dns=mail.isp.com

oc=server, child

commsName=cc
telNo=9012
service=fax

restriction=secret

network=Internet
oc=comAddr, child

mailboxN=orgISP
server=POP3
un=orgun

dns=post.org.com

oc=mailbox, child

commsName=dd
rfc822=cs@cs.dk
service=e-mail

network=SMTP

oc=comAddr, child,
           parent

mailboxN=homeISP
server=POP3
un=myname

dns=mail.isp.com

oc=maibox, child

orgName=Andersen Express
businessCat=Delivery service
oc=organization

 

Figure C.1 – Charles Smith's family of entries 

Suppose a search request is generated with a base object of {...o=Andersen Express}, a filter of {telNo=1234 & 

tariff=normal}, and a subset of wholeSubtree or oneLevel. With the familyGrouping parameter set to: 

a) entryOnly: No members of the family would match the filter. 

b) strands or multiStrand: No strand or multi-strand in the family would match the filter. 

c) compoundEntry: Member 2 and member 3 would together match the filter and would be marked as 

contributing members. All the members are marked as participating members. 

Nothing from this compound entry would be returned for cases a) and b) above. 



ISO/IEC 9594-3:2020 (E) 

112 Rec. ITU-T X.511 (10/2019) 

For case c) above, the returned information would be dependent on the family return specification (e.g., given by 

familyReturn in EntryInformationSelection): 

i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2 and 3 

would be returned. 

ii) participatingEntriesOnly and compoundEntry: All the members in the compound entry would be 

returned. 

C.2 Multiple families example 

Suppose Charles Smith only has a landline telephone and e-mail, but also has two postal addresses with associated 

parameters. All this information can be held in a compound entry, with Charles Smith's member being the ancestor and 

with each mode of communication or postal address being a child member. This is shown in Figure C.2 below. As the 

members immediately subordinate to the ancestor are of two different structural object classes (comAddr and postAddr), 

the compound entry consists of two families, where members 1, 2 and 3 constitute one family, and members 1, 4, 5, 6, 7, 

8 and 9 constitute another family. 

X.511(12)_FC.2

1

2 3 4 5

6 7 8 9

serverN=orgISP
server=SMTP

dns=mail.org.com

oc=server, child

cn=Smith
givenName=Charles
oc=orgPerson, parent

serverN=homeISP
server=SMTP

from=jc@org.com

dns=mail.isp.com
oc=server, child

mailboxN=orgISP
server=POP3

un=orgun

dns=post.org.com
oc=mailbox, child

commsName=bb
rfc822=cs@cs.dk

service=e-mail

network=SMTP
oc=comAddr, child,

           parent

mailboxN=homeISP
server=POP3

un=myname

dns=mail.isp.com
oc=maibox, child

orgName=Andersen Express
businessCat=Delivery service
oc=organization

postalAddrN=xx
streetAddr=Main
postalCode=1815

location=One
          Village
oc=postAddr, child

postalAddrN=yy
streetAddr=Main
postalCode=3740

location=Another
           Village
oc=postAddr, child

commsName=aa
telNo=1234
service=voice

tariff=normal
network=PSTN
oc=comAddr, child

 

Figure C.2 – Charles Smith's families of entries 

C.2.1 Filter example 1 

Now suppose a Search request is generated with a base object of {...o=Andersen Express}, a filter of {telNo=1234 & 

service=e-mail & streetAddr=Main & postalCode=3740 }, and a subset of wholeSubtree or oneLevel. With the 

familyGrouping parameter set to: 

a) entryOnly: No single member of the compound entry would match the filter. 

b) strands: No single strand in any of the families would match the filter. 

c) multiStrand: No combination of strands, one strand from each family, would match the filter. 

d) compoundEntry: Members 2, 3, 4 and 5 would together match the filter and would be marked as 

contributing members. All the members are marked as participating members. 

Nothing from this compound entry would be returned for cases a), b) and c) above. 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 113  

For case d) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2, 3, 4 and 

5 would be returned. 

ii) participatingEntriesOnly and compoundEntry: All the members within the compound entry 

would be returned. 

C.2.2 Filter example 2 

If we change the filter to {rfc822=cs@cs.dk & service=e-mail & streetAddr=Main & postalCode=1815}. With the 

familyGrouping parameter set to: 

a) entryOnly: No single member of the compound entry would match the filter. 

b) strands: No single strand in any of the families would match the filter. 

c) multiStrand: The strand ending in member 2 together with any strand going through member 5 would 

match the filter. Members 2 and 5 have contributed to the matching and would be marked as contributing 

members. Members 1, 2, 5, 6, 7, 8 and 9 are marked as participating members. 

d) compoundEntry: Members 2 and 5 would together match the filter and would be marked as contributing 

members. All the members are marked as participating members. 

Nothing from this compound entry would be returned for cases a) and b) above. 

For case c) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2 and 5, 

would be returned. 

ii) participatingEntriesOnly: The members marked as participating members are returned, i.e., the 

members 1, 2, 5, 6, 7, 8 and 9. 

iii) compoundEntry: All the members of the compound entry would be returned. 

For case d) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: The members marked as contributing members, i.e., members 2 and 5, 

would be returned. 

ii) participatingEntriesOnly and compoundEntry: All the members of the compound entry would be 

returned. 

C.2.3 Filter example 3 

If we now change the filter to {rfc822=cs@cs.dk & service=e-mail}. With the familyGrouping parameter set to: 

a) entryOnly: Member 5 alone would match the filter and this member would be marked as a contributing 

member and as a participating member. 

b) strands: Any strand going through member 5 would match the filter. Member 5 would be marked as a 

contributing member. Members 1, 5, 6, 7, 8 and 9 would be marked as participating members. 

c) multiStrand: Any strand going through member 5 together with any strand of the postal address family 

would match the filter. Entries 5 would be marked as a contributing member. Members 1, 2, 3, 5, 6, 7, 8 

and 9 would be marked as participating members. 

d) compoundEntry: Member 5 would match the filter and would be marked as a contributing member. 

All the members are marked as participating members. 

For case a) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly and participatingEntriesOnly: Member 5 would be returned. 

ii) compoundEntry: All the members of the compound entry would be returned. 

For case b) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: Member 5 would be returned. 

ii) participatingEntriesOnly: All the members marked as participating members are returned, i.e., 

the members 1, 5, 6, 7, 8 and 9. 

iii) compoundEntry: All the members of the compound entry would be returned. 



ISO/IEC 9594-3:2020 (E) 

114 Rec. ITU-T X.511 (10/2019) 

For case c) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: Member 5 would be returned. 

ii) participatingEntriesOnly: All the members marked as participating members are returned, i.e., 

the member 1, 2, 3, 5, 6, 7, 8 and 9. 

iii) compoundEntry: All the members of the compound entry would be returned. 

For case d) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: Member 5 would be returned. 

ii) participatingEntriesOnly and compoundEntry: All the members of the compound entry would be 

returned. 

C.2.4 Filter example 4 

If we finally change the filter to {cn=Smith & givenName=Charles}. The ancestor alone would match the filter. 

a) entryOnly: Only the ancestor (member 1) would be marked as a contributing member and as a 

participating member. 

b) strands, multiStrand and compoundEntry: The ancestor would be marked as a contributing member 

and all members would be marked as participating members. 

For case a) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly and participatingEntriesOnly: Member 1 would be returned. 

ii) compoundEntry: All the members of the compound entry would be returned. 

For case b) above, the returned information would be dependent on the family return specification: 

i) contributingEntriesOnly: Member 1 would be returned. 

ii) participatingEntriesOnly and compoundEntry: All the members of the compound entry would 

be returned. 

  



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 115  

Annex D 

 

External ASN.1 module 

(This annex does not form an integral part of this Recommendation | International Standard.) 

This annex provides an external ASN.1 module referenced by this Directory Specification. This module is provided for 

easy compilation of the ASN.1 modules defined by these Directory Specifications. 

The following module is an abstract of the module specified by IETF RFC 2025. This module imports data types from 

Rec. ITU-T X.501 (1993) | ISO/IEC 9594-2:1995 and Rec. ITU-T X.509 (1993) | ISO/IEC 9594-8:1995. The import 

statements have been changed to allow import from the latest edition of those two Directory Specifications by adding the 

WITH SUCCESSORS instruction. 
 

SpkmGssTokens {iso(1) identified-organization(3) dod(6) internet(1) security(5) 

  mechanisms(5) spkm(1) spkmGssTokens(10)} DEFINITIONS IMPLICIT TAGS ::= 

 

BEGIN 

 

-- EXPORTS ALL 

 

IMPORTS 

  Name 

    FROM InformationFramework {joint-iso-itu-t(2) ds(5) module(1) 

      informationFramework(1) 9} WITH SUCCESSORS 

 

  Certificate, CertificateList, CertificatePair, AlgorithmIdentifier{}, 

    SupportedAlgorithms, Validity 

    FROM AuthenticationFramework {joint-iso-itu-t(2) ds(5) module(1) 

      authenticationFramework(7) 9} WITH SUCCESSORS ; 

 

-- types  

 

SPKM-REQ ::= SEQUENCE { 

  requestToken  REQ-TOKEN, 

  certif-data   [0]  CertificationData OPTIONAL, 

  auth-data     [1]  AuthorizationData OPTIONAL 

} 

 

CertificationData ::= SEQUENCE { 

  certificationPath          [0]  CertificationPath OPTIONAL, 

  certificateRevocationList  [1]  CertificateList OPTIONAL 

} -- at least one of the above shall be present 

 

CertificationPath ::= SEQUENCE { 

  userKeyId          [0]  OCTET STRING OPTIONAL, 

  userCertif         [1]  Certificate OPTIONAL, 

  verifKeyId         [2]  OCTET STRING OPTIONAL, 

  userVerifCertif    [3]  Certificate OPTIONAL, 

  theCACertificates  [4]  SEQUENCE OF CertificatePair OPTIONAL 

} -- Presence of [2] or [3] implies that [0] or [1] must also be 

-- present.  Presence of [4] implies that at least one of [0], [1], 

-- [2], and [3] must also be present. 

 

REQ-TOKEN ::= SEQUENCE { 

  req-contents   Req-contents, 

  algId          AlgorithmIdentifier{{SupportedAlgorithms}}, 

  req-integrity  Integrity -- "token" is Req-contents 

} 

 

Integrity ::= BIT STRING 

 

-- If corresponding algId specifies a signing algorithm, 

-- "Integrity" holds the result of applying the signing procedure 

-- specified in algId to the BER-encoded octet string which results 

-- from applying the hashing procedure (also specified in algId) to 

-- the DER-encoded octets of "token". 

-- Alternatively, if corresponding algId specifies a MACing 



ISO/IEC 9594-3:2020 (E) 

116 Rec. ITU-T X.511 (10/2019) 

-- algorithm, "Integrity" holds the result of applying the MACing 

-- procedure specified in algId to the DER-encoded octets of 

-- "token" 

 

Req-contents ::= SEQUENCE { 

  tok-id        INTEGER(256), -- shall contain 0100 (hex) 

  context-id    Random-Integer, 

  pvno          BIT STRING, 

  timestamp     UTCTime OPTIONAL, -- mandatory for SPKM-2 

  randSrc       Random-Integer, 

  targ-name     Name, 

  src-name      [0]  Name OPTIONAL, 

  req-data      Context-Data, 

  validity      [1]  Validity OPTIONAL, 

  key-estb-set  Key-Estb-Algs, 

  key-estb-req  BIT STRING OPTIONAL, 

  key-src-bind  OCTET STRING OPTIONAL 

  -- This field must be present for the case of SPKM-2 

  -- unilateral authen. if the K-ALG in use does not provide 

  -- such a binding (but is optional for all other cases). 

  -- The octet string holds the result of applying the 

  -- mandatory hashing procedure (in MANDATORY I-ALG; 

  -- see Section 2.1) as follows:  MD5(src || context_key), 

  -- where "src" is the DER-encoded octets of src-name, 

  -- "context-key" is the symmetric key (i.e., the 

  -- unprotected version of what is transmitted in 

  -- key-estb-req), and "||" is the concatenation operation. 

} 

 

Random-Integer ::= BIT STRING 

 

Context-Data ::= SEQUENCE { 

  channelId   ChannelId OPTIONAL, 

  seq-number  INTEGER OPTIONAL, 

  options     Options, 

  conf-alg    Conf-Algs, 

  intg-alg    Intg-Algs, 

  owf-alg     OWF-Algs 

} 

 

ChannelId ::= OCTET STRING 

 

Options ::= BIT STRING { 

  delegation-state(0), mutual-state(1), replay-det-state(2), sequence-state(3), 

  conf-avail(4), integ-avail(5), target-certif-data-required(6)} 

 

Conf-Algs ::= CHOICE { 

  algs  [0]  SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}}, 

  null  [1]  NULL 

} 

 

Intg-Algs ::= SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}} 

 

OWF-Algs ::= SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}} 

 

Key-Estb-Algs ::= SEQUENCE OF AlgorithmIdentifier{{SupportedAlgorithms}} 

 

SPKM-REP-TI ::= SEQUENCE { 

  responseToken  REP-TI-TOKEN, 

  certif-data    CertificationData OPTIONAL 

  -- present if target-certif-data-required option was 

} -- set to TRUE in SPKM-REQ 

 

REP-TI-TOKEN ::= SEQUENCE { 

  rep-ti-contents  Rep-ti-contents, 

  algId            AlgorithmIdentifier{{SupportedAlgorithms}}, 

  rep-ti-integ     Integrity -- "token" is Rep-ti-contents 

} 

 

Rep-ti-contents ::= SEQUENCE { 

  tok-id        INTEGER(512), -- shall contain 0200 (hex) 



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 117  

  context-id    Random-Integer, 

  pvno          [0]  BIT STRING OPTIONAL, 

  timestamp     UTCTime OPTIONAL, -- mandatory for SPKM-2 

  randTarg      Random-Integer, 

  src-name      [1]  Name OPTIONAL, 

  targ-name     Name, 

  randSrc       Random-Integer, 

  rep-data      Context-Data, 

  validity      [2]  Validity OPTIONAL, 

  key-estb-id   AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL, 

  key-estb-str  BIT STRING OPTIONAL 

} 

 

SPKM-REP-IT ::= SEQUENCE { 

  responseToken  REP-IT-TOKEN, 

  algId          AlgorithmIdentifier{{SupportedAlgorithms}}, 

  rep-it-integ   Integrity -- "token" is REP-IT-TOKEN 

} 

 

REP-IT-TOKEN ::= SEQUENCE { 

  tok-id        INTEGER(768), -- shall contain 0300 (hex) 

  context-id    Random-Integer, 

  randSrc       Random-Integer, 

  randTarg      Random-Integer, 

  targ-name     Name, 

  src-name      Name OPTIONAL, 

  key-estb-rep  BIT STRING OPTIONAL 

} 

 

SPKM-ERROR ::= SEQUENCE { 

  errorToken  ERROR-TOKEN, 

  algId       AlgorithmIdentifier{{SupportedAlgorithms}}, 

  integrity   Integrity -- "token" is ERROR-TOKEN 

} 

 

ERROR-TOKEN ::= SEQUENCE { 

  tok-id      INTEGER(1024), -- shall contain 0400 (hex) 

  context-id  Random-Integer 

} 

 

SPKM-MIC ::= SEQUENCE {mic-header  Mic-Header, 

                       int-cksum   BIT STRING 

} 

 

Mic-Header ::= SEQUENCE { 

  tok-id      INTEGER(257), -- shall contain 0101 (hex) 

  context-id  Random-Integer, 

  int-alg     [0]  AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL, 

  snd-seq     [1]  SeqNum OPTIONAL 

} 

 

SeqNum ::= SEQUENCE {num      INTEGER, 

                     dir-ind  BOOLEAN 

} 

 

SPKM-WRAP ::= SEQUENCE {wrap-header  Wrap-Header, 

                        wrap-body    Wrap-Body 

} 

 

Wrap-Header ::= SEQUENCE { 

  tok-id      INTEGER(513), -- shall contain 0201 (hex) 

  context-id  Random-Integer, 

  int-alg     [0]  AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL, 

  conf-alg    [1]  Conf-Alg OPTIONAL, 

  snd-seq     [2]  SeqNum OPTIONAL 

} 

 

Wrap-Body ::= SEQUENCE {int-cksum  BIT STRING, 

                        data       BIT STRING 

} 

 



ISO/IEC 9594-3:2020 (E) 

118 Rec. ITU-T X.511 (10/2019) 

Conf-Alg ::= CHOICE { 

  algId  [0]  AlgorithmIdentifier{{SupportedAlgorithms}}, 

  null   [1]  NULL 

} 

 

SPKM-DEL ::= SEQUENCE {del-header  Del-Header, 

                       int-cksum   BIT STRING 

} 

 

Del-Header ::= SEQUENCE { 

  tok-id      INTEGER(769), -- shall contain 0301 (hex) 

  context-id  Random-Integer, 

  int-alg     [0]  AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL, 

  snd-seq     [1]  SeqNum OPTIONAL 

} 

 

-- other types  

-- from [RFC-1508]  

MechType ::= OBJECT IDENTIFIER 

 

InitialContextToken ::= [APPLICATION 0] IMPLICIT SEQUENCE { 

  thisMech           MechType, 

  innerContextToken  SPKMInnerContextToken 

} -- when thisMech is SPKM-1 or SPKM-2 

 

SPKMInnerContextToken ::= CHOICE { 

  req     [0]  SPKM-REQ, 

  rep-ti  [1]  SPKM-REP-TI, 

  rep-it  [2]  SPKM-REP-IT, 

  error   [3]  SPKM-ERROR, 

  mic     [4]  SPKM-MIC, 

  wrap    [5]  SPKM-WRAP, 

  del     [6]  SPKM-DEL 

} 

 

-- from [RFC-1510] 

AuthorizationData ::= 

  SEQUENCE OF SEQUENCE {ad-type  INTEGER, 

                        ad-data  OCTET STRING} 

 

-- object identifier assignments  

md5-DES-CBC OBJECT IDENTIFIER ::= 

  {iso(1) identified-organization(3) dod(6) internet(1) security(5) 

   integrity(3) md5-DES-CBC(1)} 

 

sum64-DES-CBC OBJECT IDENTIFIER ::= 

  {iso(1) identified-organization(3) dod(6) internet(1) security(5) 

   integrity(3) sum64-DES-CBC(2)} 

 

spkm-1 OBJECT IDENTIFIER ::= 

  {iso(1) identified-organization(3) dod(6) internet(1) security(5) 

   mechanisms(5) spkm(1) spkm-1(1)} 

 

spkm-2 OBJECT IDENTIFIER ::= 

  {iso(1) identified-organization(3) dod(6) internet(1) security(5) 

   mechanisms(5) spkm(1) spkm-2(2)} 

 

END -- SpkmGssTokens 

  



ISO/IEC 9594-3:2020 (E) 

  Rec. ITU-T X.511 (10/2019) 119  

Annex E 

 

Use of protected passwords for Bind operations 

(This annex does not form an integral part of this Recommendation | International Standard.) 

The protected component of SimpleCredentials specifies an OCTET STRING to be hashed. This annex provides 

information about how this octet string may be constructed. It also proposes some suggested associated procedures. 

In its simple form, the octet string is constructed as the DER encoding of the following: 
 

SEQUENCE { 

  name       DistinguishedName, 

  time1      GeneralizedTime, 

  random1    BIT STRING, 

  password   OCTET STRING } 

The name component is the distinguished name of the sender and the password component is the password of the sender. 

The sender generates the two other values as follows: 

a) The time1 value should specify the time after which the authentication should fail. This time should be 

"closely" after the current time. 

b) The random1 value is a new random number generated for each authentication attempt. The value should 

be sufficiently large to prevent the same number to be generated frequently. 

The same pair of time1 and random1 should never be used more than once. 

The same value of name, time1 and random1 shall be supplied in the SimpleCredentials data type of the Bind. 

NOTE 1 – The hashing algorithm is also transferred. 

The receiver of a Bind request/result will perform the authentication as follows: 

a) If the value in time1, as supplied in the SimpleCredentials, is less than the current time seen by the 

recipient, the authentication already fails here. Also, the time value should be different from recently 

received time values. 

b) If the value in the random1, as supplied in the SimpleCredentials, is equal to a value received in a 

recent Bind request/response, the authentication also fails. 

c) If time1 and random1 appear to be valid, the name, time1 and random1 included in the Bind 

request/result, together with the local copy of the password, are used to generate a copy of the message 

digest using the algorithm indicated. 

d) If the generated message digest is equal to the message digest received in the Bind request/result, the 

authentication is positive, otherwise it fails. 

The above procedure allows the password to be protected during transfer and it prevents a replay of the transmission 

sequence. If the attempted reply is done early, the random number will cause the authentication to fail. If the reply is 

attempted sometime later, the random number may be accepted, but the authentication will fail due to the time value. 

The scheme above may be extended by using the following sequence. 
 

SEQUENCE { 

  f1       OCTET STRING, -- hashed octet string from above 

  time2    GeneralizedTime, 

  random2  BIT STRING } 

The DER encoding of this data type is then used as the octet string in the SimpleCredentials. 

In this case, the time2 and random2 also have to be included in SimpleCredentials. 

The hashing algorithm used for producing the f1 component shall be the same as that used for the hashing, as indicated 

within the HASH data type within SimpleCredentials. 

NOTE 2 – This Directory Specification does not give any recommendation as to how values for time2 and random2 are selected. 

  



ISO/IEC 9594-3:2020 (E) 

120 Rec. ITU-T X.511 (10/2019) 

Annex F 

 

Amendments and corrigenda 

(This annex does not form an integral part of this Recommendation | International Standard.) 

This edition of this Directory Specification includes the following amendment to the previous edition that was balloted 

and approved by ISO/IEC: 

– Amendment 1 on General updates 

This edition of this Directory Specification does not include any technical corrigenda, as there were no accepted defect 

reports against the previous edition of this Directory Specification.



 

 

 

 



 

Printed in Switzerland 
Geneva, 2019 

 

SERIES OF ITU-T RECOMMENDATIONS 

Series A Organization of the work of ITU-T 

Series D Tariff and accounting principles and international telecommunication/ICT economic and 

policy issues 

Series E Overall network operation, telephone service, service operation and human factors 

Series F Non-telephone telecommunication services 

Series G Transmission systems and media, digital systems and networks 

Series H Audiovisual and multimedia systems 

Series I Integrated services digital network 

Series J Cable networks and transmission of television, sound programme and other multimedia 

signals 

Series K Protection against interference 

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation 

and protection of cables and other elements of outside plant 

Series M Telecommunication management, including TMN and network maintenance 

Series N Maintenance: international sound programme and television transmission circuits 

Series O Specifications of measuring equipment 

Series P Telephone transmission quality, telephone installations, local line networks 

Series Q Switching and signalling, and associated measurements and tests 

Series R Telegraph transmission 

Series S Telegraph services terminal equipment 

Series T Terminals for telematic services 

Series U Telegraph switching 

Series V Data communication over the telephone network 

Series X Data networks, open system communications and security 

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, 

Internet of Things and smart cities 

Series Z Languages and general software aspects for telecommunication systems 

  

 
 


	Rec. ITU-T X.511 (10/2019) Information technology – Open Systems Interconnection – The Directory: bstract service definition
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Additional references

	3 Definitions
	3.1 OSI Reference Model security architecture definitions
	3.2 Basic Directory definitions
	3.3 Directory model definitions
	3.4 Directory information base definitions
	3.5 Directory entry definitions
	3.6 Name definitions
	3.7 Distributed operations definitions
	3.8 Abstract service definitions

	4 Abbreviations
	5 Conventions
	6 Overview of the Directory service
	7 Information types and common procedures
	7.1 Introduction
	7.2 Information types defined elsewhere
	7.3 Common arguments
	7.3.1 Critical extensions
	7.3.2 Family grouping

	7.4 Common results
	7.5 Service controls
	7.6 Entry information selection
	7.6.1 Use of contextSelection or context selection defaults
	7.6.2 Evaluation of contextSelection
	7.6.3 Evaluation of a TypeAndContextAssertion
	7.6.4 Family Return

	7.7 Entry information
	7.7.1 Entry information data type
	7.7.2 Family information in entry information

	7.8 Filter
	7.8.1 Filter parameter
	7.8.2 Filter item
	7.8.3 Evaluating filters with family information

	7.9 Paged results
	7.10 Security parameters
	7.11 Common elements of procedure for access control
	7.11.1 Common elements of procedure for basic access control
	7.11.1.1 Alias dereferencing
	7.11.1.2 Return of Name Error
	7.11.1.3 Non-disclosure of the existence of an entry
	7.11.1.4 Return of Distinguished Name

	7.11.2 Common elements of procedure for rule-based-access-control
	7.11.2.1 Accessing an entry (entry level permission)
	7.11.2.2 Returning the name of an entry
	7.11.2.3 Alias dereferencing
	7.11.2.4 Return of Name Error (noSuchObject)
	7.11.2.5 Accessing an attribute
	7.11.2.6 Deleting information
	7.11.2.7 Invoking search-rules

	7.11.3 Family information

	7.12 Managing the DSA Information Tree
	7.13 Procedures for families of entries

	8 Directory authentication
	8.1 Simple authentication procedure
	8.1.1 Generation of protected identifying information
	8.1.2 Procedure for protected simple authentication

	8.2 Password policy
	8.2.1 Introduction
	8.2.2 Operational attributes and procedures
	8.2.3 Password history


	9 Bind, Unbind operations, Change Password and Administer Password operations
	9.1 Directory Bind
	9.1.1 Directory Bind syntax
	9.1.2 Directory Bind arguments
	9.1.3 Directory Bind results
	9.1.4 Directory Bind errors

	9.2 Directory Unbind

	10 Directory Read operations
	10.1 Read
	10.1.1 Read syntax
	10.1.2 Read  components
	10.1.3 Read results
	10.1.4 Read errors
	10.1.5 Read operation decision points for basic access control
	10.1.5.1 Error returns
	10.1.5.2 Non-disclosure of incomplete results

	10.1.6 Read operation decision points for rule-based access control

	10.2 Compare
	10.2.1 Compare syntax
	10.2.2 Compare arguments
	10.2.3 Compare results
	10.2.4 Compare errors
	10.2.5 Compare operation decision points for basic access control
	10.2.5.1 Error returns

	10.2.6 Compare operation decision points for rule-based access control
	10.2.7 Remote checking of password

	10.3 Abandon

	11 Directory Search operations
	11.1 List
	11.1.1 List syntax
	11.1.2 List arguments
	11.1.3 List results
	11.1.4 List errors
	11.1.5 List operation decision points for basic access control
	11.1.6 List operation decision points for rule-based access control

	11.2 Search
	11.2.1 Search syntax
	11.2.2 Search components
	11.2.3 Search results
	11.2.4 Service administration
	11.2.5 Search errors
	11.2.6 Search operation decision points for basic access control
	11.2.6.1 Search operation decision points for basic-access-control in the presence of additional searches
	11.2.6.2 Alias dereferencing during Search
	11.2.6.3 Non-disclosure of incomplete results

	11.2.7 Search operation decision points for rule-based access control


	12 Directory Modify operations
	12.1 Add Entry
	12.1.1 Add Entry syntax
	12.1.2 Add Entry arguments
	12.1.3 Add Entry results
	12.1.4 Add Entry errors
	12.1.5 Add operation decision points for basic access control
	12.1.5.1 Error returns

	12.1.6 Add Entry operation decision points for rule-based-access-control

	12.2 Remove Entry
	12.2.1 Remove Entry syntax
	12.2.2 Remove Entry arguments
	12.2.3 Remove Entry results
	12.2.4 Remove Entry errors
	12.2.5 Remove Entry operation decision points for basic access control
	12.2.6 Remove Entry operation decision points for rule-based access control

	12.3 Modify Entry
	12.3.1 Modify Entry syntax
	12.3.2 Modify Entry arguments
	12.3.3 Modify Entry results
	12.3.4 Modify Entry errors
	12.3.5 Modify Entry operation decision points for basic access control
	12.3.5.1 Error returns

	12.3.6 Modify Entry operation decision points for rule-based access control

	12.4 Modify DN
	12.4.1 Modify DN syntax
	12.4.2 Modify DN arguments
	12.4.3 Modify DN results
	12.4.4 Modify DN errors
	12.4.5 ModifyDN decision points for basic access control
	12.4.5.1 Error returns

	12.4.6 Modify DN operation decision points for rule-based access control

	12.5 Change Password
	12.5.1 Change Password syntax
	12.5.2 Change Password arguments
	12.5.3 Change Password results
	12.5.4 Change Password errors

	12.6 Administer Password
	12.6.1 Administer Password syntax
	12.6.2  Administer Password arguments
	12.6.3 Administer Password results
	12.6.4 Administer Password errors


	13 Operations for LDAP messages
	13.1 LDAP Transport operation
	13.1.1 LDAP Transport syntax
	13.1.2 LDAP Transport arguments
	13.1.3 LDAP Transport results

	13.2 Linked LDAP operation
	13.2.1 Linked LDAP syntax
	13.2.2 Linked LDAP arguments
	13.2.3 Linked LDAP results


	14 Errors
	14.1 Error precedence
	14.2 Abandoned
	14.3 Abandon Failed
	14.4 Attribute Error
	14.5 Name Error
	14.6 Referral
	14.7 Security Error
	14.8 Service Error
	14.9 Update Error

	15 Analysis of search arguments
	15.1 General check of search filter
	15.2 Check of request-attribute-profiles
	15.3 Check of controls and hierarchy selections
	15.4 Check of matching use
	C.1 Single family example
	C.2 Multiple families example
	C.2.1 Filter example 1
	C.2.2 Filter example 2
	C.2.3 Filter example 3
	C.2.4 Filter example 4



