

INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.511
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

(11/1988)

SERIES X: DATA COMMUNICATION NETWORKS
DIRECTORY

THE DIRECTORY – ABSTRACT SERVICE
DEFINITION

Reedition of CCITT Recommendation X.511 published in
the Blue Book, Fascicle VIII.8 (1988)

NOTES

1 CCITT Recommendation X.511 was published in Fascicle VIII.8 of the Blue Book. This file is an extract from
the Blue Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents of the file are identical to the Blue Book version and copyright conditions remain unchanged (see below).

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

© ITU 1988, 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written
permission of ITU.

 Fascículo VIII.8 – Rec. X.511 1

Recommendation X.511

THE DIRECTORY – ABSTRACT SERVICE DEFINITION 1)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field of application

SECTION 1 – General

2 References

3 Definitions

4 Abbreviations

5 Conventions

SECTION 2 – Abstract service

6 Overview of the directory service

7 Information types

8 Bind and unbind operations

9 Directory read operations

10 Directory search operations

11 Directory modify operations

12 Errors

Annex A – Abstract service in ASN.1

Annex B – Directory object identifiers

1) Recommendation X.511 and ISO 9594-3, Information Processing Systems – Open Systems Interconnection – The

Directory – Abstract Service Definition, were developed in close collaboration and are technically aligned.

2 Fascicle VIII.8 – Rec. X.511

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the interconnection of
information processing systems to provide directory services. The set of all such systems, together with the directory
information which they hold, can be viewed as an integrated whole, called the Directory. The information held by the
Directory, collectively known as the Directory Information Base (DIB), is typically used to facilitate communication
between, with or about objects such as application-entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a
minimum of technical agreement outside of the interconnection standards themselves, the interconnection of information
processing systems:

 – from different manufacturers;

 – under different managements;

 – of different levels of complexity; and

 – of different ages.

0.3 This Recommendation defines the capabilities provided by the Directory to its users.

0.4 Annex A provides the ASN.1 module which contains all the definitions associated with the abstract service.

1 Scope and field of application

1.1 This Recommendation defines in an abstract way the externally visible service provided by the Directory.

1.2 This Recommendation does not specify individual implementation or products.

SECTION 1 – General

2 References

Recommendation X.200 – Open Systems Interconnection – Basic Reference Model.

Recommendation X.208 – Specification of Abstract Syntax Notation One (ASN.1).

Recommendation X.500 – The Directory – Overview of Concepts, Models and Services.

Recommendation X.501 – The Directory – Models.

Recommendation X.518 – The Directory – Procedures for Distributed Operation.

Recommendation X.519 – The Directory – Protocol Specifications.

Recommendation X.520 – The Directory – Selected Attribute Types.

Recommendation X.521 – The Directory – Selected Object Classes.

Recommendation X.509 – The Directory – Authentication Framework.

Recommendation X.219 – Remote Operations – Model, Notation and Service Definition.

Recommendation X.229 – Remote Operations – Protocol Specification.

Recommendation X.407 – Abstract Service Definition Conventions.

3 Definitions

3.1 Basic Directory definitions

 This Recommendation makes use of the following terms defined in Recommendation X.500:

 a) Directory;

 b) Directory Information Base (DIB);

 c) (Directory) User.

 Fascicle VIII.8 – Rec. X.511 3

3.2 Directory model definitions

 This Recommendation makes use of the following terms defined in Recommendation X.501:

 a) Directory System Agent;

 b) Directory User Agent.

3.3 Directory information base definitions

 This Recommendation makes use of the following terms defined in Recommendation X.501:

 a) alias entry;

 b) Directory Information Tree;

 c) (Directory) entry;

 d) immediate superior;

 e) immediately superior entry/object;

 f) object;

 g) object class;

 h) object entry;

 i) subordinate;

 j) superior.

3.4 Directory entry definitions

 This Recommendation makes use of the following terms defined in Recommendation X.501:

 a) attribute;

 b) attribute type;

 c) attribute value;

 d) attribute value assertion.

3.5 Name definitions

 This Recommendation makes use of the following terms defined in Recommendation X.501:

 a) alias, alias name;

 b) distinguished name;

 c) (directory) name;

 d) purported name;

 e) relative distinguished name.

3.6 Distributed operations definitions

 This Recommendation makes use of the following terms defined in Recommendation X.518:

 a) chaining;

 b) referral.

3.7 Abstract service definitions

 This Recommendation defines the following terms:

 a) filter: an assertion about the presence or value of certain attributes of an entry in order to limit the scope
of a search;

4 Fascicle VIII.8 – Rec. X.511

 b) service controls: parameters conveyed as part of an abstract-operation which constrain various aspects of
its performance;

 c) originator: the user that originated an operation.

4 Abbreviations

 This Recommendation makes use of the following abbreviations:

 AVA Attribute Value Assertion

 DIB Directory Information Base

 DIT Directory Information Tree

 DMD Directory Management Domain

 DSA Directory System Agent

 DUA Directory User Agent

 RDN Relative Distinguished Name

5 Conventions

 This Recommendation makes use of the abstract service definition conventions defined in
Recommendation X.407.

SECTION 2 – Abstract service

6 Overview of the directory service

6.1 As described in Recommendation X.501 the services of the Directory are provided through access points to
DUAs, each acting on behalf of a user. These concepts are depicted in Figure 1/X.511.

FIGURE 1/X.511

Access to the Directory

6.2 In principle, access points to the Directory may be of different types, providing different combinations of
services. It is valuable to consider the Directory as an object, supporting a number of types of port. Each port defines a
particular kind of interaction which the Directory can participate in with a DUA. Each access point corresponds to a
particular combination of port types.

6.3 Using the notation defined in Recommendation X.407 the Directory can be defined as follows:

 directory
 OBJECT
 PORTS { readPort [S],
 searchPort [S],
 modifyPort [S]}

 ::= id-ot-directory

 Fascicle VIII.8 – Rec. X.511 5

 The Directory supplies operations via: Read Ports, which support reading information from a particular named
entry in the DIB; Search Ports, which allow more "exploration" of the DIB; and Modify Ports, which enable the
modification of entries in the DIB.

 Note – It is intended that in the future there may be other types of Directory port.

6.4 Similarly, a DUA (from the viewpoint of the Directory) can be defined as follows:

 dua

 OBJECT

 PORTS { readPort [C],
 searchPort [C],
 modifyPort [C]}

 ::= id-ot-dua

 The DUA consumes the services provided by the Directory.

6.5 The ports cited from 6.2 to 6.4 can be defined as follows:

 readPort
 PORT
 CONSUMER INVOKES {
 Read, Compare, Abandon}
 ::= id-pt-search

 searchPort
 PORT
 CONSUMER INVOKES {
 List, Search}
 ::= id-pt-search

 modifyPort
 PORT
 CONSUMER INVOKES {
 AddEntry, RemoveEntry,
 ModifyEntry, ModifyRDN}
 ::= id-pt-modify

6.6 The operations from the readPort, searchPort and the modifyPort are defined in §§ 9, 10, and 11
respectively.

6.7 These ports are used only as a method of structuring the description of the Directory service. Conformance to
the Directory operations is specified in Recommendation X.519.

7 Information types

7.1 Introduction

7.1.1 This paragraph identifies, and in some cases defines, a number of information types which are subsequently
used in the definition of Directory operations. The information types concerned are those which are common to more
than one operation, are likely to be in the future, or which are sufficiently complex or self-contained as to merit being
defined separately from the operation which uses them.

7.1.2 Several of the information types used in the definition of the Directory service are actually defined elsewhere.
Paragraph 7.2 identifies types and indicates the source of their definition. Each of the remaining §§ (7.3 to 7.10)
identifies and defines an information type.

7.2 Information types defined elsewhere

7.2.1 The following information types are defined in Recommendation X.501:

 a) Attribute;

 b) AttributeType;

6 Fascicle VIII.8 – Rec. X.511

 c) AttributeValue;

 d) AttributeValueAssertion;

 e) DistinguishedName;

 f) Name;

 g) RelativeDistinguishedName.

7.2.2 The following information type is defined in Recommendation X.520:

 a) PresentationAddress.

7.2.3 The following information types are defined in Recommendation X.509:

 a) Certificate;

 b) SIGNED;

 c) CertificationPath.

7.2.4 The following information type is defined in Recommendation X.219:

 a) InvokeID.

7.2.5 The following information types are defined in Recommendation X.518:

 a) OperationProgress;

 b) ContinuationReference.

7.3 Common arguments

7.3.1 The CommonArguments information may be present to qualify the invocation of each operation that the
Directory can perform.

 CommonArguments ::= SET {
 [30] ServiceControls DEFAULT { },
 [29] SecurityParameters DEFAULT { },
 requestor [28] DistinguishedName
 OPTIONAL,
 [27] OperationProgress DEFAULT notStarted,
 aliasedRDNs [26] INTEGER OPTIONAL,
 extensions [25] SET OF EXTENSION OPTIONAL}

 Extension ::= SET {
 identifier [0] INTEGER,
 critical [1] BOOLEAN DEFAULT FALSE,
 item [2] ANY DEFINED BY identifier}

7.3.2 The various components have the meanings as defined in §§ 7.3.2.1 to 7.3.2.4.

7.3.2.1 The ServiceControls component is specified in § 7.5. Its absence is deemed equivalent to there being an
empty set of controls.

7.3.2.2 The SecurityParameters component is specified in § 7.9. Its absence is deemed equivalent to there being an
empty set of security parameters.

7.3.2.3 The requestor DistinguishedName identifies the originator of a particular abstract- operation. It holds the
name of the user as identified at the time of binding to the Directory. It may be required when the request is to be signed
(see § 7.10), and shall hold the name of the user who initiated the request.

7.3.2.4 The OperationProgress defines the role that the DSA is to play in the distributed evaluation of the request. It
is more fully defined in Recommendation X.518.

7.3.2.5 The aliasedRDNs component indicates to the DSA that the object component of the operation was created by
the dereferencing of an alias on an earlier operation attempt. The integer value indicates the number of RDNs in the
object that came from dereferencing the alias. (The value would have been set in the referral response of the previous
operation.)

 Fascicle VIII.8 – Rec. X.511 7

7.3.2.6 The extensions component provides a mechanism to express standardized extensions to the form of the
argument of a Directory abstract-operation.

 Note – The form of the result of such an extended abstract-operation is identical to that of the non-extended
version. (Nonetheless, the result of a particular extended abstract-operation may differ from its non-extended
counterpart).

 The subcomponents are as defined in §§ 7.3.2.6.1 to 7.3.2.6.3.

7.3.2.6.1 The identifier serves to identify a particular extension. Values of this component shall be assigned only by
future versions of this series of Recommendations.

7.3.2.6.2 The critical subcomponent allows the originator of the extended abstract-operation to indicate that the
performance of only the extended form of the abstract-operation is acceptable (i.e. that the non-extended form is not
acceptable). In this case the extension is a critical extension. If the Directory, or some part of it, is unable to perform a
critical extension it returns an indication of unavailableCriticalExtension (as a ServiceError or
PartialOutcomeQualifier). If the Directory is unable to perform an extension which is not critical, it ignores the
presence of the extension.

7.3.2.6.3 The item subcomponent provides the information needed for the Directory to perform the extended form of the
abstract-operation.

7.4 Common results

7.4.1 The CommonResults information should be present to qualify the result of each retrieval operation that the
Directory can perform.

 CommonResults ::= SET {
 [30] SecurityParameters OPTIONAL,
 performer [29] DistinguishedName
 OPTIONAL,
 aliasDereferenced [28] BOOLEAN
 DEFAULT FALSE}

7.4.2 The various components have the meanings as defined in §§ 7.4.2.1 to 7.4.2.3.

7.4.2.1 The SecurityParameters component is specified in § 7.9. Its absence is deemed equivalent to there being an
empty set of security parameters.

7.4.2.2 The performer DistinguishedName identifies the performer of a particular operation. It may be required
when the result is to be signed (see § 7.10), and shall hold the name of the DSA which signed the result.

7.4.2.3 The aliasDereferenced Component is set to TRUE when the purported name of an object or base object which
is the target of the operation included on alias which was dereferenced.

7.5 Service controls

7.5.1 A ServiceControls parameter contains the controls, if any, that are to direct or constrain the provision of the
service.

 ServiceControls ::= SET {
 options [0] BIT STRING {
 preferChaining(0)
 chainingProhibited (1),
 localScope (2),
 dontUseCopy (3),
 dontDereferenceAliases(4)}
 DEFAULT {},

 priority [1] INTEGER {
 low (0),
 medium (1),
 high (2) } DEFAULT medium,

 timeLimit [2] INTEGER OPTIONAL,

 sizeLimit [3] INTEGER OPTIONAL,

8 Fascicle VIII.8 – Rec. X.511

 scopeOfReferral [4] INTEGER {
 dmd(0),
 country(1)}
 OPTIONAL }

7.5.2 The various components have the meanings as defined in §§ 7.5.2.1 to 7.5.2.5.

7.5.2.1 The options component contains a number of indications, each of which, if set, asserts the condition suggested.
Thus:

 a) preferChaining indicates that the preference is that chaining, rather than referrals, be used to provide the
service. The Directory is not obliged to follow this preference;

 b) chainingProhibited indicates that chaining, and other methods of distributing the request around the
Directory, are prohibited;

 c) localScope indicates that the operation is to be limited to a local scope. The definition of this option is
itself a local matter. For example, within a single DSA or a single DMD;

 d) dontUseCopy indicates that copied information (as defined in Recommendation X.518) shall not be used
to provide the service;

 e) dontDereferenceAliases indicate that any alias used to identify the entry affected by an operation is not
to be dereferenced;

 Note – This is necessary to allow reference to an alias entry itself rather than the aliased entry, e.g. in order to
read the alias entry.

 If this component is omitted, the following are assumed: no preference for chaining but chaining not
prohibited, no limit on the scope of the operation, use of copy permitted, and aliases will be dereferenced (except for
modify operations where aliases will never be dereferenced).

7.5.2.2 The priority (low, medium or high) at which the service is to be provided. Note that this is not a guaranteed
service in that Directory, as a whole, does not implement queuing. There is no relationship implied with the use of
"priorities" in underlying layers.

7.5.2.3 The timeLimit indicates the maximum elapsed time, in seconds, within which the service shall be provided. If
the constraint cannot be met, an error is reported. If this component is omitted, no time limit is implied. In the case of
time limit exceeded on a List or Search, the result is an arbitrary selection of the accumulated results.

 Note – This component does not imply the length of time spent processing the request during the elapsed time:
any number of DSAs may be involved in processing the request during the elapsed time.

7.5.2.4 The sizeLimit is only applicable to List and Search operations. It indicates the maximum number of objects to
be returned. In the case of size limit exceeded, the results of List and Search may be an arbitrary selection of the
accumulated results, equal in number to the size limit. Any further results shall be discarded.

7.5.2.5 The scopeOfReferral indicates the scope to which a referral returned by a DSA should be relevant. Depending
on whether the value dmd or country are selected, only referrals to other DSAs within the selected scope will be
returned.

 This applies to the referrals in both a ReferralError and the unexplored parameter of List and Search results.

7.5.3 Certain combinations of priority, timeLimit, and sizeLimit may result in conflicts. For example, a short time
limit could conflict with low priority; a high size limit could conflict with a low time limit, etc.

7.6 Entry information selection

7.6.1 An EntryInformationSelection parameter indicates what information is being requested from an entry in a
retrieval service.

 EntryInformationSelection ::= SET {
 attributeTypes
 CHOICE {
 allAttributes [0] NULL,
 select [1]] SET OF AttributeType
 -- empty set implies no attributes
 -- are requested --}
 DEFAULT allAttributes NULL,

 Fascicle VIII.8 – Rec. X.511 9

 InfoTypes [2] INTEGER {
 attributeTypesOnly (0),
 attributeTypesAndValues (1) }
 DEFAULT attributeTypesAndValues }

7.6.2 The various components have the meanings as defined in §§ 7.6.2.1 and 7.6.2.2.

7.6.2.1 The attributeTypes component specifies the set of attributes about which information is requested:

 a) if the select option is chosen, then the attributes involved are listed. If the list is empty, then no attributes
will be returned. Information about a selected attribute shall be returned if the attribute is present. An
AttributeError with the noSuchAttribute problem shall only be returned if none of the attributes
selected is present;

 b) if the allAttributes option is selected, then information is requested about all attributes in the entry.

 Attribute information is only returned if access rights are sufficient. A SecurityError (with an
insufficientAccessRights problem) will only be returned in the case where access rights preclude the reading of all
attribute values requested.

7.6.2.2 The infoTypes component specifies whether both attribute type and attribute value information (the default) or
attribute type information only is requested. If the attributeTypes component (§ 7.6.2.1) is such as to request no
attributes, then this component is not meaningful.

7.7 Entry information

7.7.1 An EntryInformation parameter conveys selected information from an entry.

 EntryInformation ::= SEQUENCE {
 DistinguishedName,
 fromEntry BOOLEAN DEFAULT TRUE,
 SET OF CHOICE {
 AttributeType,
 Attribute} OPTIONAL }

7.7.2 The DistinguishedName of the entry is always included.

7.7.3 The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a copy of
the entry (FALSE).

7.7.4 A set of AttributeTypes or Attributes are included, if relevant, each of which may be alone or accompanied
by one or more attribute values.

7.8 Filter

7.8.1 A Filter parameter applies a test that is either satisfied or not by a particular entry. The filter is expressed in
terms of assertions about the presence or value of certain attributes of the entry, and is satisfied if and only if it evaluates
to TRUE.

 Note – A Filter may be TRUE, FALSE, or undefined.

 Filter ::= CHOICE {
 item [0] FilterItem,
 and [1] SET OF Filter,
 or [2] SET OF Filter,
 not [3] Filter }

 FilterItem ::= CHOICE {
 equality [0] AttributeValueAssertion,
 substrings [1] SEQUENCE {
 type AttributeType,
 strings SEQUENCE OF CHOICE {
 Initial [0] AttributeValue,
 any [1] AttributeValue,
 final [2] AttributeValue}},
 greaterOrEqual [2] AttributeValueAssertion,
 lessOrEqual [3] AttributeValueAssertion,
 present [4] AttributeType,
 approximateMatch [5] AttributeValueAssertion }

10 Fascicle VIII.8 – Rec. X.511

7.8.2 A Filter is either a FilterItem (see § 7.8.3), or an expression involving simpler Filters composed together
using the logical operators and, or, and not. The Filter is undefined if it is a FilterItem which is undefined, or if it
involves one or more simpler Filters, all of which are undefined. Otherwise, where the Filter is:

 a) an item, it is TRUE if and only if the corresponding FilterItem is TRUE;

 b) an and, it is TRUE unless any of the nested Filters is FALSE;

 Note – Thus, if there are no nested Filters the and evaluates to TRUE.

 c) an or, it is FALSE unless any of the nested Filters is TRUE;

 Note – Thus, if there are no nested Filters the or evaluates to FALSE.

 d) a not, it is TRUE if and only if the nested Filter is FALSE.

7.8.3 A FilterItem is an assertion about the presence or value(s) of an attribute of a particular type in the entry under
test. Each such assertion is TRUE, FALSE, or undefined.

7.8.3.1 Every FilterItem includes an AttributeType which identifies the particular attribute concerned.

7.8.3.2 Any assertion about the value of such an attribute is only defined if the AttributeType is known, and the
purported AttributeValue(s) conforms to the attribute syntax defined for that attribute type.

 Note 1 – Where these conditions are not met the FilterItem is undefined.

 Note 2 – Access control restrictions may require that the FilterItem be considered undefined.

7.8.3.3 Assertions about the value of an attribute are evaluated using the matching rules associated with the attribute
syntax defined for that attribute type. A matching rule not defined for a particular attribute syntax cannot be used to make
assertions about that attribute.

 Note – Where this condition is not met, the FilterItem is undefined.

7.8.3.4 A FilterItem may be undefined (as described in §§ 7.8.3.2 and 7.8.3.3 above). Otherwise, where the
FilterItem asserts:

 a) equality, it is TRUE if and only if there is a value of the attribute which is equal to that asserted;

 b) substrings, it is TRUE if and only if there is a value of the attribute in which the specified substrings
appear in the given order. The substrings shall be non-overlapping, and may (but need not) be separated
from the ends of the attribute value and from one another by zero or more string elements.

 If initial is present, the substring shall match the initial substring of the attribute value; if final is present,
the substring shall match the final substring of the attribute value; if any is present, the substring may
match any substring in the attribute value;

 c) greaterOrEqual, it is TRUE if and only if the relative ordering (as defined by the appropriate ordering
algorithm) places the supplied value before or equal to any value of the attribute;

 d) lessOrEqual, it is TRUE if and only if the relative ordering (as defined by the appropriate ordering
algorithm) places the supplied value after or equal to any value of the attribute;

 e) present, it is TRUE if and only if such an attribute is present in the entry;

 f) approximateMatch, it is TRUE if and only if there is a value of the attribute which matches that which is
asserted by some locally-defined approximate matching algorithm (e.g. spelling variations, phonetic
match, etc.). There are no specific guidelines for approximate matching in this version of the
Recommendation. If approximate matching is not supported, this FilterItem should be treated as a match
for equality.

7.9 Security Parameters

7.9.1 The SecurityParameters govern the operation of various security features associated with a Directory
operation.

 Note – These parameters are conveyed from sender to recipient. Where the parameters appear in the argument
of an abstract-operation the requestor is the sender, and the performer is the recipient. In a result, the roles are reversed.

 Fascicle VIII.8 – Rec. X.511 11

 SecurityParameters ::= SET {
 certification-path [0]
 CertificationPath OPTIONAL,
 name [1] DistinguishedName
 OPTIONAL,
 time [2] UTCTime OPTIONAL,
 random [3] BIT STRING OPTIONAL,
 target [4] ProtectionRequest OPTIONAL
 }

 ProtectionRequest ::= INTEGER {
 none(0),
 signed (1)}

7.9.2 The various components have the meanings as defined in §§ 7.9.2.1 to 7.9.2.5.

7.9.2.1 The CertificationPath component consists of the sender's certificate, and, optionally, a sequence of certificate
pairs. The certificate is used to associate the sender's public key and distinguished name, and may be used to verify the
signature on the argument or result. This parameter shall be present if the argument or result is signed. The sequence of
certification pairs consists of certification authority cross certificates. It is used to enable the sender's certificate to be
validated. It is not required if the recipient shares the same certification authority as the sender. If the recipient requires a
valid set of certificate pairs, and this parameter is not present, whether the recipient rejects the signature on the argument
or result, or attempts to generate the certification path, is a local matter.

7.9.2.2 The name is the distinguished name of the first intended recipient of the argument or result. For example, if a
DUA generates a signed argument, the name is the distinguished name of the DSA to which the operation is submitted.

7.9.2.3 The time is the intended expiry time for the validity of the signature, when signed arguments are used. It is
used in conjunction with the random number to enable the detection of replay attacks.

7.9.2.4 The random component is a number which should be different for each unexpired token. It is used in
conjunction with the time parameter to enable the detection of replay attacks when the argument or result has been
signed.

7.9.2.5 The target ProtectionRequest may appear only in the request for an operation to be carried out, and indicates
the requestor's preference regarding the degree of protection to be provided to the result. Two levels are provided: none
(no protection requested), and signed (the Directory is requested to sign the result, the default). The degree of protection
actually provided to the result is indicated by the form of result and may be equal to or lower than that requested, based
on the limitations of the Directory.

7.10 OPTIONALLY-SIGNED

7.10.1 An OPTIONALLY-SIGNED information type is one whose values may, at the option of the generator, be
accompanied by their digital signature. This capability is specified by means of the following macro:

 OPTIONALLY-SIGNED MACRO ::=
 BEGIN

 TYPE NOTATION ::= type (Type)
 VALUE NOTATION ::= value (VALUE
 CHOICE { Type, SIGNED Type})

 END

7.10.2 The SIGNED macro, which describes the form of the signed form of the information, is specified in
Recommendation X.509.

8 Bind and unbind operations

 The DirectoryBind and DirectoryUnbind operations, defined in § 8.1 and § 8.2 respectively, are used by the
DUA at the beginning and end of a particular period of accessing the Directory.

12 Fascicle VIII.8 – Rec. X.511

8.1 Directory bind

8.1.1 A DirectoryBind operation is used at the beginning of a period of accessing the Directory.

8.1.2 The various arguments have the meanings as defined in §§ 8.1.2.1 to 8.1.2.2.

8.1.2.1 The Credentials of the DirectoryBindArgument allow the Directory to establish the identity of the user.
They may be either simple, strong (as described in Recommendation X.509) or externally defined (externalProcedure).

8.1.2.1.1 SimpleCredentials consist of a name (always the distinguished name of an object) and (optionally) a
password. This provides a limited degree of security. If the password is protected as described in § 5 of
Recommendation X.509, then SimpleCredentials includes name, password and (optionally) time and/or random
numbers which are used to detect replay. In some instances a protected password may be checked by an object which

 Fascicle VIII.8 – Rec. X.511 13

knows the password only after locally regenerating the protection to its own copy of the password and computing the
result with the value in the bind argument (password). In other instances a direct compare may be possible.

8.1.2.1.2 StrongCredentials consist of a bind token and, optionally, a certificate and sequence of certification-authority
cross-certificate (as defined in Recommendation X.509). This enables the Directory to authenticate the identity of the
request establishing the association, and vice versa.

 The arguments of the bind token are used as follows: algorithm is the identifier of the algorithm employed to
sign the information; name is the name of the intended recipient. The time parameter contains the expiry time of the
token. The random number is a number which should be different for each unexpired token, and may be used by the
recipient to detect replay attacks.

8.1.2.1.3 If externalProcedure is used then the semantics of the authentication scheme being used is outside the scope
of the Directory document.

8.1.2.2 The Versions argument of the DirectoryBindArgument identifies the versions of the service which the DUA
is prepared to participate in. For this version of the protocol the value shall be set to v1988(0).

8.1.2.3 Migration to future versions of the Directory should be facilitated by:

 a) any elements of DirectoryBindArgument other than those defined in this Recommendation shall be
accepted and ignored;

 b) additional options for named bits of DirectoryBindArgument (e.g. Versions) not defined shall be
accepted and ignored.

8.1.3 Should the bind request succeed, a result will be returned. The result parameters have the meanings as defined
in §§ 8.1.3.1 and 8.1.3.2.

8.1.3.1 The Credentials of the DirectoryBindResult allow the user to establish the identity of the DSA. They allow
information identifying the DSA (that is directly providing the Directory service) to be conveyed to the DUA. They shall
be of the same form (i.e. CHOICE) as those supplied by the user.

8.1.3.2 The Versions parameter of the DirectoryBindResult indicates which of the versions of the service requested
by the DUA is actually going to be provided by this DSA.

8.1.4 Should the bind request fail, a bind error will be returned as defined in §§ 8.1.4.1 and 8.1.4.2.

8.1.4.1 The Versions parameter of the DirectoryBindError indicates which versions are supported by this DSA.

8.1.4.2 A securityError or serviceError shall be supplied as follows:

 – securityError inappropriateAuthentication
 invalidCredentials

 – serviceError unavailable.

8.2 Directory unbind

8.2.1 A DirectoryUnbind operation is used at the end of a period of accessing the Directory.

 DirectoryUnbind ::= ABSTRACT-UNBIND
 FROM {readPort, searchPort, modifyPort }

8.2.2 The DirectoryUnbind has no arguments.

9 Directory read operations

 There are two "read-like" operations: Read and Compare, defined in §§ 9.1 and 9.2, respectively. The
Abandon operation, defined in § 9.3, is grouped with the Read operations for convenience.

9.1 Read

9.1.1 A Read operation is used to extract information from an explicitly identified entry. It may also be used to
verify a distinguished name. The arguments of the operation may optionally be signed (see § 7.10) by the requestor. If so
requested, the Directory may sign the result.

 Read ::= ABSTRACT-OPERATION
 ARGUMENT ReadArgument
 RESULT ReadResult

14 Fascicle VIII.8 – Rec. X.511

 ERRORS {
 AttributeError, NameError,
 ServiceError, Referral, Abandoned,
 SecurityError }

 ReadArgument ::= OPTIONALLY-SIGNED SET {
 object [0] Name,
 selection [1] Selection F13 EntryInformationSelection
 DEFAULT {}
 COMPONENTS OF CommonArguments }

 ReadResult ::= OPTIONALLY-SIGNED SET {
 entry [0] EntryInformation,
 COMPONENTS OF CommonResults }

9.1.2 The various arguments have the meanings as defined in §§ 9.1.2.1 to 9.1.2.3.

9.1.2.1 The object argument identifies the object entry from which the information is requested. Should the Name
involve one or more aliases, they are dereferenced (unless this is prohibited by the relevant service controls).

9.1.2.2 The selection argument indicates what information from the entry is requested (see § 7.6).

9.1.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the sizeLimit component is not relevant and is ignored if provided.

9.1.3 Should the request succeed, the result will be returned. The result parameters have the meanings as defined in
§ 9.1.3.1 and § 7.4.

9.1.3.1 The entry result parameter holds the requested information (see § 7.7).

9.1.4 Should the request fail, one of the listed errors will be reported. If none of the attributes explicitly listed in
selection can be returned, then an AttributeError with problem noSuchAttribute will be reported. The circumstances
under which other errors will be reported are defined in § 12.

9.2 Compare

9.2.1 A Compare operation is used to compare a value (which is supplied as an argument of the request) with the
value(s) of a particular attribute type in a particular object entry. The arguments of the operation may optionally be
signed (see § 7.10) by the requestor. If so requested, the Directory may sign the result.

 Compare ::= ABSTRACT-OPERATION
 ARGUMENT CompareArgument
 RESULT CompareResult
 ERRORS {
 AttributeError, NameError,
 ServiceError, Referral, Abandoned,
 SecurityError }

 CompareArgument ::= OPTIONALLY-SIGNED
 SET {
 object [0] Name,
 purported [1] AttributeValueAssertion,
 COMPONENTS OF CommonArguments }

 CompareResult ::= OPTIONALLY-SIGNED
 SET {
 DistinguishedName OPTIONAL,
 matched [0] BOOLEAN,
 from Entry [1] BOOLEAN DEFAULT TRUE,
 COMPONENTS OF CommonResults }

9.2.2 The various arguments have the meanings as defined in §§ 9.2.2.1 to 9.2.2.3.

9.2.2.1 The object argument is the name of the particular object entry concerned. Should the Name involve one or
more aliases, they are dereferenced (unless prohibited by the relevant service control).

9.2.2.2 The purported argument identifies the attribute type and the value to be compared with that in the entry.

9.2.2.3 The CommonArguments (see § 7.3) specify the service controls applying to the request. For the purposes of
this operation the sizeLimit component is not relevant and is ignored, if provided.

 Fascicle VIII.8 – Rec. X.511 15

9.2.3 Should the request succeed (i.e. the comparison is actually carried out), the result will be returned. The result
parameters have the meanings as described in § 9.2.3.1, § 9.2.3.2 and § 7.4.

9.2.3.1 The DistinguishedName is present if an alias was dereferenced and represents the distinguished name of the
object itself.

9.2.3.2 The matched result parameter, holds the result of the comparison. The parameter takes the value TRUE if the
values were compared and matched, and FALSE if they did not.

9.2.3.3 If fromEntry is TRUE the information was compared against the entry; if FALSE some of the information
was compared against a copy.

9.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

9.3 Abandon

9.3.1 Operations that interrogate the Directory may be abandoned using the Abandon operation if the user is no
longer interested in the result.

 Abandon ::= ABSTRACT-OPERATION
 ARGUMENT AbandonArgument
 RESULT AbandonResult
 ERRORS {AbandonFailed}

 AbandonArgument ::= SEQUENCE {
 InvokeID [0] InvokeID}

 AbandonResult ::= NULL

9.3.2 There is a single argument, the InvokeID which identifies the operation that is to be abandoned. The value of
the invokeID is the same invokeID which was used to invoke the operation which is to be abandoned.

9.3.3 Should the request succeed, a result will be returned, although no information will be conveyed with it. The
original operation will fail with an Abandoned error.

9.3.4 Should the request fail, the AbandonFailed error will be reported. This error is described in § 12.3.

9.3.5 Abandon is only applicable to interrogation operations, i.e., Read, Compare, List and Search.

9.3.6 A DSA may abandon an operation locally. If the DSA has chained or multicasted the operation to other DSAs,
it may in turn request them to abandon the operation. A DSA may choose not to abandon the operation and shall then
return the AbandonFailed error.

10 Directory search operations

 There are two "search-like" operations: List and Search, defined in § 10.1 and § 10.2 respectively.

10.1 List

10.1.1 A List operation is used to obtain a list of the immediate subordinates of an explicitly identified entry. Under
some circumstances, the list returned may be incomplete. The arguments of the operation may optionally be signed (see
§ 7.10) by the requestor. If so requested, the Directory may sign the result.

16 Fascicle VIII.8 – Rec. X.511

10.1.2 The various arguments have the meanings as defined in § 10.1.2.1 and § 7.3.

10.1.2.1 The object argument identifies the object entry (or possibly the root) whose immediate subordinates are to be
listed. Should the Name involve one or more aliases, they are dereferenced (unless prohibited by the relevant service
control).

10.1.3 The request succeeds if the object is located regardless of whether there is any subordinate information to
return. The result parameters have the meanings as defined in §§ 10.1.3.1 to 10.1.3.4 and § 7.4.

10.1.3.1 The DistinguishedName is present if an alias was dereferenced. It represents the distinguished name of the
object itself.

10.1.3.2 The subordinates parameter conveys the information on the immediate subordinate, if any, of the named
entry. Should any of the subordinate entries be aliases, they will not be dereferenced.

10.1.3.2.1 The RelativeDistinguishedName is that of the subordinate.

10.1.3.2.2 The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or a
copy of the entry (FALSE).

10.1.3.2.3 The aliasEntry parameter indicates whether the subordinate entry is an alias entry (TRUE) or not
(FALSE).

10.1.3.3 The PartialOutcomeQualifier consists of three subcomponents as defined in §§ 10.1.3.3.1 to 10.1.3.3.3. This
parameter shall be present whenever the result is incomplete.

10.1.3.3.1 The LimitProblem parameter indicates whether the time limit, the size limit, or an administrative limit
has been exceeded. The results being returned are those which were available when the limit was reached.

10.1.3.3.2 The unexplored parameter shall be present if regions of the DIT were not explored. Its information allows
the DUA to continue the processing of the List operation by contacting other access points if it so chooses. The
parameter consists of a set (possibly empty) of ContinuationReferences, each consisting of the name of a base object

 Fascicle VIII.8 – Rec. X.511 17

from which the operation may be progressed, an appropriate value of OperationProgress, and a set of access points
from which the request may be further progressed. The ContinuationReferences that are returned shall be within the
scope of referral requested in the operation service control.

10.1.3.3.3 The unavailableCriticalExtensions parameter indicates, if present, that one or more critical extensions
were unavailable in some part of the Directory.

10.1.3.4 When the DUA has requested a protection request of signed, the uncorrelatedListInfo parameter may
comprise a number of sets of result parameters originating from and signed by different components of the Directory. If
no DSA in the chain can correlate all the results, the DUA must assemble the actual result from the various pieces.

10.1.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

10.2 Search

10.2.1 A Search operation is used to search a portion of the DIT for entries of interest and to return selected
information from those entries. The arguments of the operation may optionally be signed (see § 7.10) by the requestor. If
so requested, the Directory may sign the result.

10.2.2 The various arguments have the meanings as defined in §§ 10.2.2.1 to 10.2.2.3, § 10.2.2.5, and § 7.3.

10.2.2.1 The baseObject argument identifies the object entry (or possibly the root) relative to which the search is to
take place.

10.2.2.2 The subset argument indicates whether the search is to be applied to:

 a) the baseObject only;

 b) the immediate subordinates of the base object only (oneLevel);

 c) the base object and all its subordinates (wholeSubtree).

10.2.2.3 The filter argument is used to eliminate entries from the search space which are not of interest. Information
will only be returned on entries which satisfy the filter (see § 7.8).

18 Fascicle VIII.8 – Rec. X.511

10.2.2.4 Aliases shall be dereferenced while locating the base object, subject to the setting of the
dontDereferenceAliasesServiceControl. Aliases among the subordinates of the base object shall be dereferenced during
the search, subject to the setting of the searchAliases parameter. If the searchAliases parameter is TRUE, aliases shall
be dereferenced, if the parameter is FALSE, aliases shall not be dereferenced. If the searchAliases parameter is TRUE,
the search shall continue in the subtree of the aliased object.

10.2.2.5 The selection argument indicates what information from the entries is requested (see § 7.6).

10.2.3 The request succeeds if the base object is located, regardless of whether there are any subordinates to return.

 Note – As a corollary to this, the outcome of an (unfiltered) Search applied to a single entry may not be
identical to a Read which seeks to interrogate the same set of attributes of the entry. This is because the latter will return
an AttributeError if none of the selected attributes exist in the entry.

 The result parameters have the meanings as defined in §§ 10.2.3.1 to 10.2.3.4 and § 7.3.

10.2.3.1 The DistinguishedName is present if an alias was dereferenced, and represents the distinguished name of the
base object.

10.2.3.2 The entries parameter conveys the requested information from each entry (zero or more) which satisfied the
filter (see § 7.5).

10.2.3.3 The PartialOutcomeQualifier consists of two subcomponents as described for the List operation in
§ 10.1.3.4.

10.2.3.4 The uncorrelatedSearchInfo parameter is as described for uncorrelatedListInfo in § 10.1.3.4.

10.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11 Directory modify operations

 There are four operations to modify the Directory: AddEntry, RemoveEntry, ModifyEntry and ModifyRDN
defined in §§ 11.1 to 11.4 respectively.

 Note 1 – Each of these abstract-operations identifies the target entry by means of its distinguished name.

 Note 2 – The success of AddEntry, RemoveEntry, and ModifyRDN operations will be dependent on the
physical distribution of the DIB across the Directory. Failure will be reported with an UpdateError and problem
affectsMultipleDSAs. See Recommendation X.518.

11.1 Add entry

11.1.1 An AddEntry operation is used to add a leaf entry (either an object entry, or an alias entry) to the DIT. The
arguments of the operation may optionally be signed (see § 7.10) by the requestor.

 AddEntry ::= ABSTRACT-OPERATION
 ARGUMENT AddEntryArgument
 RESULT AddEntryResult
 ERRORS {
 AttributeError, NameError,
 ServiceError, Referral, SecurityError,
 UpdateError }

 AddEntryArgument ::= OPTIONALLY-SIGNED
 SET {
 object [0] DistinguishedName,
 entry [1] SET OF Attribute,
 COMPONENTS OF CommonArguments }

 AddEntryResult ::= NULL

11.1.2 The various arguments have the meanings as defined in §§ 11.1.2.1 to 11.1.2.3.

11.1.2.1 The object argument identifies the entry to be added. Its immediate superior, which must already exist for the
operation to succeed, can be determined by removing the last RDN component (which belongs to the entry to be
created).

 Fascicle VIII.8 – Rec. X.511 19

11.1.2.2 The entry argument contains the attribute information which, together with that from the RDN, constitutes the
entry to be created. The Directory shall ensure that the entry conforms to the Directory schema. Where the entry being
created is an alias, no check is made to ensure that the aliasedObjectName attribute points to a valid entry.

11.1.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the dontDereferenceAlias option and the sizeLimit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.1.3 Should the request succeed, a result will be returned, although no information will be conveyed with it.

11.1.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11.2 Remove Entry

11.2.1 A RemoveEntry operation is used to remove a leaf entry (either an object entry or an alias entry) from the
DIT. The arguments of the operation may optionally be signed (see § 7.10) by the requestor.

 RemoveEntry ::= ABSTRACT-OPERATION
 ARGUMENT RemoveEntryArgument
 RESULT RemoveEntryResult
 ERRORS {
 NameError,
 ServiceError, Referral, SecurityError,
 UpdateError}

 RemoveEntryArgument ::= OPTIONALLY-SIGNED SET {
 object [0] DistinguishedName,
 COMPONENTS OF CommonArguments }

 RemoveEntryResult ::= NULL

11.2.2 The various arguments have the meanings as defined in §§ 11.2.2.1 and 11.2.2.2.

11.2.2.1 The object argument identifies the entry to be deleted. Aliases in the name will not be dereferenced.

11.2.2.2 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the dontDereferenceAlias option and the sizeLimit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.2.3 Should the request succeed, a result will be returned, although no information will be conveyed with it.

11.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11.3 Modify Entry

11.3.1 The ModifyEntry operation is used to perform a series of one or more of the following modifications to a
single entry:

 a) add a new attribute;

 b) remove an attribute;

 c) add attribute values;

 d) remove attribute values;

 e) replace attribute values;

 f) modify an alias.

 The arguments of the operation may optionally be signed (see § 7.10) by the requestor.

 ModifyEntry ::= ABSTRACT-OPERATION
 ARGUMENT ModifyEntryArgument
 RESULT ModifyEntryResult
 ERRORS {
 AttributeError, NameError,
 ServiceError, Referral, SecurityError,
 UpdateError }

20 Fascicle VIII.8 – Rec. X.511

 ModifyEntryArgument ::= OPTIONALLY-SIGNED SET {
 object [0] DistinguishedName,
 changes [1] SEQUENCE OF EntryModification,
 COMPONENTS OF CommonArguments }

 ModifyEntryResult ::= NULL

 EntryModification ::= CHOICE {
 addAttribute [0] Attribute,
 removeAttribute [1] AttributeType,
 addValues [2] Attribute,
 removeValues [3] Attribute }

11.3.2 The various arguments have the meanings as defined in §§ 11.3.2.1 and 11.3.2.2.

11.3.2.1 The object argument identifies the entry to which the modifications should be applied. Any aliases in the name
will not be dereferenced.

11.3.2.2 The changes argument defines a sequence of modifications, which are applied in the order specified. If any of
the individual modifications fails, then an AttributeError is generated and the entry left in the state it was prior to the
operation. That is, the operation is atomic. The end result of the sequence of modifications shall not violate the Directory
schema. However, it is possible, and sometimes necessary, for the individual EntryModification changes to appear to
do so. The following types of modification may occur:

 a) addAttribute: This identifies a new attribute to be added to the entry, which is fully specified by the
argument. Any attempt to add an already existing attribute results in an AttributeError;

 b) removeAttribute: The argument identifies (by its type) an attribute to be removed from the entry. Any
attempt to remove a non-existing attribute results in an AttributeError;

 Note – This operation is not allowed if the attribute type is present in the RDN.

 c) addValues: This identifies an attribute by the attribute type in the argument, and specifies one or more
attribute values to be added to the attribute. An attempt to add an already existing value results in an error.
An attempt to add a value to a non-existent type results in an error;

 d) removeValues: This identifies an attribute by the attribute type in the argument and specifies one or more
attribute values to be removed from the attribute. If the values are not present in the attribute, this results
in an AttributeError. If an attempt is made to modify the object class attribute, an update error is
returned.

 Note – This operation is now allowed if one of the values is present in the RDN.

 Values may be replaced by a combination of addValues and removeValues in a single ModifyEntry
operation.

11.3.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying to the request. For
the purposes of this operation the dontDereferenceAlias option and the sizeLimit component are not relevant and are
ignored if provided. Aliases are never dereferenced by this operation.

11.3.3 Should the request succeed, a result will be returned although no information will be conveyed with it.

11.3.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be reported are defined in § 12.

11.4 Modify RDN

11.4.1 The ModifyRDN operation is used to change the Relative Distinguished Name of a leaf entry (either an object
entry or an alias entry) in the DIT. The arguments of the operation may optionally be signed (see § 7.10) by the
requestor.

 ModifyRDN ::= ABSTRACT-OPERATION
 ARGUMENT ModifyRDNArgument
 RESULT ModifyRDNResult
 ERRORS {
 NameError,
 ServiceError, Referral, SecurityError,
 UpdateError }

 ModifyRDNArgument ::= OPTIONALLY-SIGNED SET {

 Fascicle VIII.8 – Rec. X.511 21

 object [0] DistinguishedName,
 newRDN [1] RelativeDistinguishedName,
 deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
 COMPONENTS OF CommonArguments }

 ModifyRDNResult ::= NULL

11.4.2 The various parameters have the meanings as defined in §§ 11.4.2.1 to 11.4.2.5.

11.4.2.1 The object argument identifies the entry whose Relative Distinguished Name is to be modified. Aliases in the
name will not be dereferenced. The immediate superior entry shall not have any Non-Specific Subordinate References
(see Recommendation X.518).

11.4.2.2 The newRDN argument specifies the new RDN of the entry.

11.4.2.3 If an attribute value in the new RDN does not already exist in the entry (either as part of the old RDN or as a
non-distinguished value) it is added. If it cannot be added, an error is returned.

11.4.2.4 If the deleteOldRDN flag is set, all attribute values in the old RDN which are not in the new RDN are deleted.
If this flag is not set, the old values should remain in the entry (not as a part of the RDN). The flag shall be set where a
single value attribute in the RDN has its value changed by the operation. If this operation removes the last attribute value
of an attribute, that attribute shall be deleted.

11.4.2.5 The Common Arguments (see § 7.3) include a specification of the service controls applying to the request.
For the purposes of this operation the dontDereferenceAlias option and the sizeLimit component are not relevant and
are ignored if provided. Aliases are never dereferenced by this operation.

11.4.3 Should the request succeed, a result will be returned, although no information will be conveyed with it.

11.4.4 Should the request fail, one of the listed errors will be reported. The circumstances under which the particular
errors will be returned are defined in § 12.

11.4.5 As defined in this Recommendation this operation may only be used on a leaf entry.

12 Errors

12.1 Error Precedence

12.1.1 The Directory does not continue to perform an operation beyond the point at which it determines that an error
is to be reported.

 Note 1 – An implication of this rule is that the first error encountered can differ for repeated instances of the
same query, as there is not a specific logical order in which to process a given query. For example, DSAs may be
searched in different orders.

 Note 2 – The rules of error precedence specified here apply only to the abstract service provided by the
Directory as a whole. Different rules apply when the internal structure of the Directory is taken into account.

12.1.2 Should the Directory simultaneously detect more than one error, the following list determines which error is
reported. An error higher in the list has a higher logical precedence than one below it and is the error which is reported.

 a) NameError

 b) UpdateError

 c) AttributeError

 d) SecurityError

 e) ServiceError.

12.1.3 The following errors do not present any precedence conflicts:

 a) AbandonFailed, because it is specific to one operation, Abandon, which can encounter no other error;

 b) Abandoned, which is not reported if an Abandon operation is received simultaneously with the detection
of an error. In this case an AbandonFailed error, reporting the problem tooLate is reported along with the
report of the actual error encountered;

 c) Referral, which is not a "real" error, only an indication that the Directory has detected that the DUA must
present its request to another access point.

22 Fascicle VIII.8 – Rec. X.511

12.2 Abandoned

12.2.1 This outcome may be reported for any outstanding directory enquiry operation (i.e. Read, Search, Compare,
List) if the DUA invokes an Abandon operation with the appropriate InvokeID.

 Abandoned ::= ABSTRACT-ERROR -- not literally an "error"

12.2.2 There are no parameters associated with this error.

12.3 Abandon Failed

12.3.1 The AbandonFailed error reports a problem encountered during an attempt to abandon an operation.

 AbandonFailed ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] AbandonProblem,
 operation [1] InvokeID}

 AbandonProblem ::= INTEGER
 noSuchOperation (1),
 tooLate (2),
 cannotAbandon (3) }

12.3.2 The various parameters have the meanings as defined in §§ 12.3.2.1 and 12.3.2.2.

12.3.2.1 The particular problem encountered is specified. Any of the following problems may be indicated:

 a) noSuchOperation, when the Directory has no knowledge of the operation which is to be abandoned (this
could be because no such invoke took place or because the Directory has forgotten about it);

 b) tooLate, when the Directory has already responded to the operation;

 c) cannotAbandon, when an attempt has been made to abandon an operation for which this is prohibited
(e.g. modify), or the abandon could not be performed.

12.3.2.2 The identification of the particular operation (invocation) to be abandoned.

12.4 Attribute Error

12.4.1 An AttributeError reports an attribute-related problem.

 AttributeError ::= ABSTRACT-ERROR
 PARAMETER SET {
 object [0] Name,
 problems [1] SET OF SEQUENCE {
 problem [0] AttributeProblem,
 type [1] AttributeType,
 value [2] AttributeValue
 OPTIONAL }}

 AttributeProblem ::= INTEGER {
 noSuchAttributeOrValue (1),
 InvalidAttributeSyntax (2),
 undefinedAttributeType (3),
 InappropriateMatching (4),
 constraintViolation (5)
 attributeOrValueAlreadyExists (6) }

12.4.2 The various parameters have the meanings as described in §§ 12.4.2.1 and 12.4.2.2.

12.4.2.1 The object parameter identifies the entry to which the operation was being applied when the error occurred.

12.4.2.2 One or more problems may be specified. Each problem identified below is accompanied by an indication of
the attribute type, and if necessary to avoid ambiguity, the value, which caused the problem:

 a) noSuchAttributeOrValue: The named entry lacks one of the attributes or attribute values specified as an
argument of the operation;

 Fascicle VIII.8 – Rec. X.511 23

 b) invalidAttributeSyntax: A purported attribute value, specified as an argument of the operation, does not
conform to the attribute syntax of the attribute type;

 c) undefinedAttributeType: An undefined attribute type was provided as an argument to the operation.
This error may occur only in relation to Add, Remove, Modify or ModifyRDN operations;

 d) inappropriateMatching: An attempt was made, e.g. in a filter, to use a matching rule not defined for the
attribute type concerned;

 e) constraintViolation: An attribute or attribute value supplied in the argument of abstract- operation does
not conform to the constraints imposed by Recommendation X.501 or by the attribute definition (e.g. the
value exceeds the maximum size allowed);

 f) attributeOrValueAlreadyExists: An attempt was made to add an attribute which already existed in the
entry, or a value which already existed in the attribute.

12.5 Name Error

12.5.1 A NameError reports a problem related to the name provided as an argument to an operation.

 NameError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] NameProblem,
 matched [1] Name}

 NameProblem ::= INTEGER {
 noSuchObject (1),
 aliasProblem (2),
 invalidAttributeSyntax (3),
 aliasDereferencingProblem (4) }

12.5.2 The various parameters have the meanings as described in §§ 12.5.2.1 and 12.5.2.2.

12.5.2.1 The particular problem encountered. Any of the following problems may be indicated:

 a) noSuchObject: The name supplied does not match the name of any object;

 c) invalidAttributeSyntax: An attribute type and its accompanying attribute value in AVA in the name are
incompatible;

 d) aliasDereferencingProblem: An alias was encountered in a situation where it was not allowed.

12.5.2.2 The matched parameter contains the name of the lowest entry (object or alias) in the DIT that was matched
and is a truncated form of the name provided or, if an alias has been dereferenced, of the resulting name.

 Note – If there is a problem with the attribute types and/or values in the name offered in a directory operation
argument, this is reported via a NameError (with problem invalidAttributeSyntax) rather than as an AttributeError
or an UpdateError.

12.6 Referral

12.6.1 A Referral redirects the service-user to one or more access points better equipped to carry out the requested
operation.

 Referral ::= ABSTRACT-ERROR -- not literally an "error"
 PARAMETER SET {
 candidate [0] ContinuationReference }

12.6.2 The error has a single parameter which contains a ContinuationReference which can be used to progress the
operation (see Recommendation X.518).

12.7 Security Error

12.7.1 A SecurityError reports a problem in carrying out an operation for security reasons.

 SecurityError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] SecurityProblem }

 SecurityProblem ::= INTEGER {

24 Fascicle VIII.8 – Rec. X.511

 InappropriateAuthentication (1),
 InvalidCredentials (2),
 InsufficientAccessRights (3),
 InvalidSignature (4),
 protectionRequired (5),
 noInformation (6) }

12.7.2 The error has a single parameter, which reports the particular problem encountered. The following problems
may be indicated:

 a) inappropriateAuthentication: The level of security associated with the requestor's credentials is
inconsistent with the level of protection requested, e.g. simple credentials were supplied while strong
credentials were required;

 b) invalidCredentials: The supplied credentials were invalid;

 c) insufficientAccessRights: The requestor does not have the right to carry out the requested operation;

 d) invalidSignature: The signature of the request was found to be invalid;

 e) protectionRequired: The Directory was unwilling to carry out the requested operation because the
argument was not signed;

 f) noInformation: The requested operation produced a security error for which no information is available.

12.8 Service Error

12.8.1 A ServiceError reports a problem related to the provision of the service.

 ServiceError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] ServiceProblem },

 ServiceProblem ::= INTEGER {
 busy (1),
 unavailable (2),
 unwillingToPerform (3),
 chainingRequired (4),
 unableToProceed (5),
 invalidReference (6),
 timeLimitExceeded (7),
 administrativeLimitExceeded (8),
 loopDetected (9),
 unavailableCriticalExtension (10),
 outOfScope (11),
 ditError (12) }

12.8.2 The error has a single parameter, which reports the particular problem encountered. The following problems
may be indicated:

 a) busy: The Directory, or some part of it, is presently too busy to perform the requested operation, but may
be able to do so after a short while;

 b) unavailable: The Directory, or some part of it, is currently unavailable;

 c) unwillingToPerform: The Directory, or some part of it, is not prepared to execute this request, e.g.
because it would lead to excessive consumption of resources or violate the policy of an Administrative
Authority involved;

 d) chainingRequired: The Directory is unable to accomplish the request other than by chaining, however
chaining was prohibited by means of the chainingProhibited service control option;

 e) unableToProceed: The DSA returning this error did not have administrative authority for the appropriate
naming context and as a consequence was not able to participate in name resolution;

 f) invalidReference: The DSA was unable to perform the request as directed by the DUA (in
OperationProgress). This may have arisen due to using an invalid referral;

 g) timeLimitExceeded: The Directory has reached the limit of time set by the user in a service control. No
partial results are available to return to the user;

 Fascicle VIII.8 – Rec. X.511 25

 h) administrativeLimitExceeded: The Directory has reached some limit set by an administrative authority,
and no partial results are available to return to the user;

 i) loopDetected: The Directory is unable to accomplish the request due to an internal loop;

 j) unavailableCriticalExtension: The Directory was unable to execute the request because one or more
critical extensions were not available;

 k) outOfScope: No referrals were available within the requested scope;

 l) ditError: The Directory is unable to accomplish the request due to a DIT consistency problem.

12.9 Update Error

12.9.1 An UpdateError reports problems related to attempts to add, delete, or modify information in the DIB.

 UpdateError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] UpdateProblem }

 UpdateProblem ::= INTEGER {
 namingViolation (1),
 objectClassViolation (2),
 notAllowedOnNonLeaf (3),
 notAllowedOnRDN (4),
 entryAlreadyExists (5),
 affectsMultipleDSAs (6),
 objectClassModificationProhibited (7) }

12.9.2 The error has a single problem parameter, which reports the particular problem encountered. The following
problems may be indicated:

 a) namingViolation: The attempted addition or modification would violate the structure rules of the DIT as
defined in the Directory schema and Recommendation X.501. That is, it would place an entry as the
subordinate of an alias entry, or in a region of the DIT not permitted to a member of its object class or
would define an RDN for an entry to include a forbidden attribute type;

 b) objectClassViolation: The attempted update would produce an entry inconsistent with the definition
provided by its object class or with the definitions of Recommendation X.501 as they pertain to object
classes;

 c) notAllowedOnNonLeaf: The attempted operation is only allowed on leaf entries of the DIT;

 d) notAllowedOnRDN: The attempted operation would affect the RDN (e.g. removal of an attribute which
is a part of the RDN);

 e) entryAlreadyExists: An attempted AddEntry operation names an entry which already exists;

 f) affectsMultipleDSAs: An attempted update would need to operate on multiple DSAs, which is not
permitted;

 g) objectClassModificationProhibited: An operation attempted to modify the object class attribute.

 Note – The UpdateError is not used to report problems with attribute types, values or constraint
violations encountered in an AddEntry, RemoveEntry, ModifyEntry or ModifyRDN operation. Such
problems are reported via an AttributeError.

ANNEX A

(to Recommendation X.511)

Abstract service in ASN.1

 This Annex is part of the standard.

 This Annex includes all of the ASN.1 type, value and macro definitions contained in this Recommendation in
the form of the ASN.1 module DirectoryAbstractService.

26 Fascicle VIII.8 – Rec. X.511

 Fascicle VIII.8 – Rec. X.511 27

28 Fascicle VIII.8 – Rec. X.511

 Fascicle VIII.8 – Rec. X.511 29

30 Fascicle VIII.8 – Rec. X.511

 Fascicle VIII.8 – Rec. X.511 31

32 Fascicle VIII.8 – Rec. X.511

 Fascicle VIII.8 – Rec. X.511 33

ANNEX B

(to Recommendation X.511)

Directory object identifiers

 This Annex is part of the standard.

 This Annex includes all of the ASN.1 object identifiers contained in this Recommendation in the form of the
ASN.1 module "DirectoryObjectIdentifiers".

 DirectoryObjectIdentifiers {joint-ISO-CCITT ds(5) modules(1)
 directoryObjectIdentifiers(9)}

 DEFINITIONS ::=
 BEGIN

 EXPORTS
 id-ot-directory, id-ot-dua, id-pt-read, id-pt-search, id-pt-modify;

 IMPORTS
 id-ot, id-pt
 FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(1),
 usefulDefinitions(0)};

34 Fascicle VIII.8 – Rec. X.511

 -- Objects --

 id-ot-directory OBJECT IDENTIFIER ::= {id-ot 1}

 id-ot-dua OBJECT IDENTIFIER ::= {id-ot 2}

 -- Port Types --

 id-pt-read OBJECT IDENTIFIER ::= {id-pt 1}

 id-pt-search OBJECT IDENTIFIER ::= {id-pt 2}

 id-pt-modify OBJECT IDENTIFIER ::= {id-pt 3}

 END

Printed in Switzerland

Geneva, 2008

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.511 (11/1988) – THE DIRECTORY – ABSTRACT SERVICE DEFINITION
	CONTENTS
	0 Introduction
	1 Scope and field of application
	2 References
	3 Definitions
	3.1 Basic Directory definitions
	3.2 Directory model definitions
	3.3 Directory information base definitions
	3.4 Directory entry definitions
	3.5 Name definitions
	3.6 Distributed operations definitions
	3.7 Abstract service definitions

	4 Abbreviations
	5 Conventions
	6 Overview of the directory service
	7 Information types
	7.1 Introduction
	7.2 Information types defined elsewhere
	7.3 Common arguments
	7.4 Common results
	7.5 Service controls
	7.6 Entry information selection
	7.7 Entry information
	7.8 Filter
	7.9 Security Parameters
	7.10 OPTIONALLY-SIGNED

	8 Bind and unbind operations
	8.1 Directory bind
	8.2 Directory unbind

	9 Directory read operations
	9.1 Read
	9.2 Compare
	9.3 Abandon

	10 Directory search operations
	10.1 List
	10.2 Search

	11 Directory modify operations
	11.1 Add entry
	11.2 Remove Entry
	11.3 Modify Entry
	11.4 Modify RDN

	12 Errors
	12.1 Error Precedence
	12.2 Abandoned
	12.3 Abandon Failed
	12.4 Attribute Error
	12.5 Name Error
	12.6 Referral
	12.7 Security Error
	12.8 Service Error
	12.9 Update Error

	ANNEX A – Abstract service in ASN.1
	ANNEX B – Directory object identifiers

