

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.510
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(08/2020)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

 Information technology – Open Systems
Interconnection – The Directory: Protocol
specifications for secure operations

Recommendation ITU-T X.510

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES (1) X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES (2) X.1300–X.1499

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1599

CLOUD COMPUTING SECURITY X.1600–X.1699

QUANTUM COMMUNICATION X.1700–X.1729

DATA SECURITY X.1750–X.1799

5G SECURITY X.1800–X.1819

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.510 (08/2020) i

INTERNATIONAL STANDARD ISO/IEC 9594-11

RECOMMENDATION ITU-T X.510

Information technology – Open Systems Interconnection –

The Directory: Protocol specifications for secure operations

Summary

Recommendation ITU-T X.510 | ISO/IEC 9594-11 specifies a general protocol, called the wrapper protocol, that provides

cybersecurity for protocols designed for its protection. The wrapper protocol provides authentication, integrity and

optionally confidentiality (encryption). The wrapper protocol allows cybersecurity to be provided independently of the

protected protocols, which means that security may be enhanced without affecting protected protocol specifications.

The wrapper protocol is specified without specifying specific cryptographic algorithms, but is designed for plucking-in

cryptographic algorithms as required.

The wrapper protocol is designed for easy migration of cryptographic algorithms, as stronger cryptographic algorithms

become necessary.

Recommendation ITU-T X.510 | ISO/IEC 9594-11 contains recommendations for how other Recommendations and

International Standards may include features for migration of cryptographic algorithms, and it includes ASN.1

specifications to be applied for that purpose.

Recommendation ITU-T X.510 | ISO/IEC 9594-11 also specifies three protocols that make use of the wrapper protocol

protection. This includes a protocol for maintenance of authorization and validation lists (AVLs), a protocol for subscribing

of public-key certificate status and a protocol for accessing a trust broker.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.510 2020-08-22 17 11.1002/1000/14320

Keywords

Certification authority, cryptography, cryptographic algorithm, digital signature, public-key certificate, PKI, quantum-safe,

trust anchor, validation.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/14320
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.510 (08/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected

by patents, which may be required to implement this Recommendation. However, implementers are cautioned

that this may not represent the latest information and are therefore strongly urged to consult the TSB patent

database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.510 (08/2020) iii

CONTENTS

 Page

SECTION 1 – GENERAL ... 1

1 Scope .. 1

2 Normative references ... 1
2.1 Identical Recommendations | International Standards .. 1
2.2 Other references .. 1

3 Definitions .. 2
3.1 OSI Reference Model definitions .. 2
3.2 Directory model definitions .. 2
3.3 Public-key and attribute certificate definitions .. 2
3.4 Terms specified by this Recommendation | International Standard .. 2

4 Abbreviations ... 3

5 Conventions .. 4

6 Common data types and special cryptographic algorithms .. 4
6.1 Introduction ... 4
6.2 ASN.1 information object class specification tool .. 4
6.3 Multiple-cryptographic algorithm specifications .. 6
6.4 Key establishment algorithms ... 7
6.5 Multiple-cryptographic algorithm-value pairs .. 9
6.6 Formal specification of encipherment ... 11

7 General concepts for securing protocols... 11
7.1 Introduction ... 11
7.2 Protected protocol plug-in concept.. 12
7.3 Communications structure... 12
7.4 Another view of the relationship between the wrapper protocol and the protected protocol 12
7.5 Structure of application protocol data unit .. 13
7.6 Exception conditions ... 13

SECTION 2 – THE WRAPPER PROTOCOL .. 14

8 Wrapper protocol general concepts .. 14
8.1 Introduction ... 14
8.2 UTC time specification ... 14
8.3 Use of alternative cryptographic algorithms ... 14
8.4 General on establishing shared keys ... 14
8.5 Sequence numbers ... 15
8.6 Use of invocation identification in the wrapper protocol .. 15
8.7 Mapping to underlying services .. 15
8.8 Definition of protected protocols .. 15
8.9 Overview of wrapper protocol data units .. 15

9 Association management .. 16
9.1 Introduction to association management ... 16
9.2 Association handshake request .. 16
9.3 Association accept ... 18
9.4 Association reject due to security issues ... 19
9.5 Association reject by the protected protocol ... 20
9.6 Handshake security abort .. 21
9.7 Handshake abort by protected protocol ... 21
9.8 Data transfer security abort ... 22
9.9 Abort by protected protocol .. 22
9.10 Release request WrPDU .. 23
9.11 Release response WrPDU ... 23
9.12 Release collision.. 24

iv Rec. ITU-T X.510 (08/2020)

 Page

10 Data transfer phase ... 24
10.1 Symmetric keys renewal ... 24
10.2 Data transfer by the client ... 24
10.3 Data transfer by the server .. 26

11 Information flow ... 28
11.1 Purpose and general model ... 28
11.2 Protected protocol SAOC .. 29
11.3 Wrapper SAOC ... 29

12 Wrapper error handling .. 32
12.1 General .. 32
12.2 Checking of a wrapper handshake request .. 32
12.3 Checking of a wrapper handshake accept ... 33
12.4 Checking of data transfer WrPDUs ... 34
12.5 Wrapper diagnostic codes ... 36

SECTION 3 – PROTECTED PROTOCOLS .. 37

13 Authorization and validation list management ... 37
13.1 General on authorization and validation management .. 37
13.2 Defined protected protocol data unit (PrPDU) types... 37
13.3 Authorization and validation management protocol initialization request .. 38
13.4 Authorization and validation management protocol initialization accept9 ... 38
13.5 Authorization and validation management protocol initialization reject ... 38
13.6 Authorization and validation management protocol initialization abort ... 38
13.7 Add authorization and validation list request .. 39
13.8 Add authorization and validation list response ... 40
13.9 Replace authorization and validation list request .. 40
13.10 Replace authorization and validation list response.. 40
13.11 Delete authorization and validation list request .. 41
13.12 Delete authorization and validation list response .. 41
13.13 Authorization and validation list abort .. 42
13.14 Authorization and validation list error codes .. 42

14 Certification authority subscription protocol .. 43
14.1 Certification authority subscription introduction .. 43
14.2 Defined protected protocol data unit (PrPDU) types... 43
14.3 Certification authority subscription protocol initialization request ... 43
14.4 Certification authority subscription protocol initialization accept .. 44
14.5 Certification authority subscription protocol initialization reject .. 44
14.6 Certification authority subscription protocol initialization abort .. 44
14.7 Public-key certificate subscription request .. 44
14.8 Public-key certificate subscription response ... 45
14.9 Public-key certificate un-subscription request .. 46
14.10 Public-key certificate un-subscription response .. 46
14.11 Public-key certificate replacements request .. 47
14.12 Public-key certificate replacement response ... 48
14.13 End-entity public-key certificate updates request ... 49
14.14 End-entity public-key certificate updates response ... 49
14.15 Certification authority subscription abort .. 50
14.16 Certification authority subscription error codes .. 50

15 Trust broker protocol .. 51
15.1 Introduction ... 51
15.2 Defined protected protocol data unit (PrPDU) types... 51
15.3 Trust broker protocol initialization request ... 51
15.4 Trust broker protocol initialization accept .. 52
15.5 Trust broker protocol initialization reject .. 52

 Rec. ITU-T X.510 (08/2020) v

 Page

15.6 Trust broker protocol initialization abort .. 52
15.7 Trust broker request syntax ... 52
15.8 Trust broker response syntax ... 53
15.9 Trust broker error information .. 53

Annex A − Crypto Tools in ASN.1 ... 55

Annex B − Wrapper protocol in ASN.1 .. 58

Annex C − Protected protocol interface to the wrapper protocol .. 63

Annex D − Cryptographic algorithms ... 65

Annex E − Authorization and validation list management in ASN.1 .. 67

Annex F − Certification authority subscription in ASN.1 ... 70

Annex G −Trust broker in ASN.1 .. 74

Annex H − Migration of cryptographic algorithms ... 76
H.1 Introduction ... 76
H.2 Negotiation of cryptographic algorithms .. 76
H.3 Non-negotiable digital signature algorithms ... 77

Annex I − Auxiliary specifications .. 80

Bibliography .. 85

vi Rec. ITU-T X.510 (08/2020)

Introduction

The Internet Engineering Task Force (IETF) maintains a substantial set of protocols for supporting public-key

infrastructure (PKI). Recommendation ITU-T X.510 | ISO/IEC 9594-11 provides protocols to supplement those protocols

developed by IETF, especially for:

a) supporting new functions specified by Rec. ITU-T X.509 | ISO/IEC 9594-8, for which IETF has not

provided support, e.g., support for authorization and validation list (AVL) maintenance;

b) constraint environments, where lean protocols are required.

In addition, it specifies:

c) a wrapper protocol that provides security services for other protocols.

This Recommendation | International Standard consist of three sections as follows.

Section 1 gives general specifications for this Recommendation | International Standard.

Section 2 is the wrapper protocol specification.

Section 3 specifies some protocols to be protected by the wrapper protocol:

a) a protocol for maintaining authorization and validation lists (AVLs);

b) a protocol for subscribing public-key certificate status information from certification authorities (CAs);

and

c) a protocol for accessing a trust broker.

The following annexes are included.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for

specifications to be imported by protocols providing a migration path for cryptographic algorithms.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

wrapper protocol.

Annex C, which is an integral part of this Recommendation | International Standard, provides specifications for how a

protected protocol is wrapped by the wrapper protocol.

Annex D, which is an integral part of this Recommendation | International Standard, provides cryptographic algorithm

specification.

Annex E, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for

maintenance of the authorization and validation lists (AVLs) protocol.

Annex F, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for

certification authority subscription protocol.

Annex G, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the

trust broker protocol.

Annex H, which is not an integral part of this Recommendation | International Standard, provides guidance for

cryptographic algorithm migration.

The content of this Rec. ITU-T X.510 | ISO/IEC 9594-11 was moved to here from Rec. ITU-T X.509 (2016) |

ISO/IEC 9594-8:2017 and subsequently updated.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 1

INTERNATIONAL STANDARD ISO/IEC 9594-11

RECOMMENDATION ITU-T X.510

Information technology – Open Systems Interconnection –

The Directory: Protocol specifications for secure operations

SECTION 1 – GENERAL

1 Scope

The scope of this Recommendation | International Standard is threefold.

This Recommendation | International Standard provides guidance on how to prepare new and old protocols for

cryptographic algorithm migration, and defines auxiliary cryptographic algorithms to be used for migration purposes.

This Recommendation | International Standard specifies a general wrapper protocol that provides authentication, integrity

and confidentiality (encryption) protection for other protocols. This wrapper protocol includes a migration path for

cryptographic algorithms allowing for smooth migration to stronger cryptographic algorithms as such requirements

evolve. This will allow migration to quantum-safe cryptographic algorithms. Protected protocols can then be developed

without taking security and cryptographic algorithms into consideration.

This Recommendation | International Standard also includes some protocols to be protected by the wrapper protocol

primarily for support of public-key infrastructure (PKI). Other specifications, e.g., Recommendations or International

Standards, may also develop protocols designed to be protected by the wrapper protocol.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid

ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– Recommendation ITU-T X.500 (2019) | ISO/IEC 9594-1:2020, Information technology - Open Systems

Interconnection - The Directory: Overview of concepts, models and services.

– Recommendation. ITU-T X.501 (2019) | ISO/IEC 9594-2:2020, Information technology – Open Systems

Interconnection – The Directory: Models.

– Recommendation ITU-T X.509 (2019) | ISO/IEC 9594-8:2020, Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate frameworks.

– Recommendation ITU-T X.511 (2019) | ISO/IEC 9594-3:2020, Information technology - Open Systems

Interconnection - The Directory: Abstract service definition.

– Recommendation ITU-T X.518 (2019) | ISO/IEC 9594-4:2020, Information technology - Open Systems

Interconnection - The Directory: Procedures for distributed operation.

– Recommendation ITU-T X.519 (2019) | ISO/IEC 9594-5:2020, Information technology - Open Systems

Interconnection - The Directory: Protocol specifications.

– Recommendation ITU-T X.520 (2019) | ISO/IEC 9594-6:2020, Information technology – Open Systems

Interconnection – The Directory: Selected attribute types.

– Recommendation ITU-T X.521 (2019) | ISO/IEC 9594-7:2020, Information technology - Open Systems

Interconnection - The Directory: Selected object classes.

– Recommendation ITU-T X.525 (2019) | ISO/IEC 9594-9:2020, Information technology - Open Systems

Interconnection - The Directory: Replication.

– Recommendation ITU-T X.680 (2015)| ISO/IEC 8824-1:2015, Information technology - Abstract Syntax

Notation One (ASN.1): Specification of basic notation.

ISO/IEC 9594-11:2020 (E)

2 Rec. ITU-T X.510 (08/2020)

– Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information technology – Abstract Syntax

Notation One (ASN.1): Information object specification.

– Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3:2015, Information technology - Abstract Syntax

Notation One (ASN.1): Constraint specification.

– Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4:2015, Information technology - Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

– Recommendation ITU-T X.690 (2015) | ISO/IEC 8825-1:2015, Information technology – ASN.1 encoding

rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER).

– Recommendation ITU-T X.691 (2015) | ISO/IEC 8825-2:2015, Information technology – ASN.1 encoding

rules: Specification of Packed Encoding Rules (PER).

2.2 Paired Recommendations | International Standards equivalent in technical content

– Recommendation ITU-T X.800 (1991), Security architecture for Open Systems Interconnection for CCITT

applications.

 ISO 7498-2:1989, Information processing systems – Open Systems Interconnection – Basic Reference

Model – Part 2: Security Architecture.

2.3 Other references

– IETF RFC 793 (1981), Transmission Control Protocol.

– IETF RFC 2104 (1997), HMAC: Keyed-Hashing for Message Authentication.

– IETF RFC 3526 (2003), More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key

Exchange (IKE).

– IETF RFC 5084 (2007), Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic

Message Syntax (CMS).

– IETF RFC 5114 (2008), Additional Diffie-Hellman Groups for Use with IETF Standards.

– IETF RFC 5869 (2010), HMAC-based Extract-and-Expand Key Derivation Function (HKDF).

– IETF RFC 6932 (2013), Brainpool Elliptic Curves for the Internet Key Exchange (IKE) Group Description

Registry.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 OSI Reference Model definitions

The following terms are defined in Rec. ITU-T X.800 | ISO 7498-2:

a) confidentiality;

b) cryptography;

c) digital signature.

3.2 Directory model definitions

The following terms are defined in Rec. ITU-T X.501 | ISO/IEC 9594-2:

a) attribute;

b) distinguished name (of an entry).

3.3 Public-key and attribute certificate definitions

The following terms are defined in Rec. ITU-T X.509 | ISO/IEC 9594-8:

a) authorization and validation list (AVL);

b) authorization and validation list entity (AVL entity);

c) authorizer;

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 3

d) certification authority (CA);

e) certification path;

f) end entity;

g) end-entity public-key certificate;

h) hash function;

i) key agreement;

j) private key;

k) public key;

l) public-key certificate;

m) public-key infrastructure (PKI);

n) relying party;

o) trust broker.

3.4 Terms defined in this Recommendation | International Standard

3.4.1 abstract syntax: A specification of application-protocol-data-units by using notation rules that are independent

of the encoding technique used to represent them.

NOTE – The term abstract syntax is original an OSI term but is extended here to be general applicable.

3.4.2 alternative cryptographic algorithm: A cryptographic algorithm to which migration is wanted.

3.4.3 application entity: An active element embodying a set of capabilities which is pertinent to communication

systems and which is defined for the application layer.

NOTE – The term application entity is originally an OSI term (see Rec. ITU-T X.519 | ISO/IEC 9594-5), but is extended here to be

generally applicable.

3.4.4 application protocol data unit (APDU): Data that is transmitted as a single unit at the application layer

between two application entities.

3.4.5 association: A cooperative relationship between two application entities, which enables the communication of

information and the coordination of their joint operation for an instance of communication.

3.4.6 client: The entity that initiates an association.

3.4.7 data transfer phase: The phase from the completion of the establishment of an association to the termination

of the association.

3.4.8 digital signature: The result of a cryptographic transformation of data that, when properly implemented,

provides a mechanism for origin authentication, data integrity and signatory non-repudiation.

3.4.9 native cryptographic algorithm: A cryptographic algorithm used prior to a migration period.

3.4.10 protected protocol data unit (PrPDU): Application protocol data unit defined by an application protocol to

be protected by the wrapper protocol.

3.4.11 server: The entity that accepts or rejects an association.

3.4.12 symmetric key: A cryptographic key used for both encryption of plaintext and decryption of ciphertext.

3.4.13 wrapper protocol data unit (WrPDU): An application protocol data unit carrying security protocol control

information and, when relevant, carrying a protected protocol data unit.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AES-CBC Advanced Encryption Standard-Cipher Block Chaining

APDU Application Protocol Data Unit

ASN.1 Abstract Syntax Notation One

https://www.itu.int/rec/T-REC-X.519/en

ISO/IEC 9594-11:2020 (E)

4 Rec. ITU-T X.510 (08/2020)

AVL Authorization and Validation List

AVMP Authorization and Validation Management Protocol

BER Basic Encoding Rules

CA Certification Authority

CASP Certification Authority Subscription Protocol

DER Distinguished Encoding Rules

DH Diffie-Hellman

HKDF HMAC-based extract-and-expand Key Derivation Function

HMAC keyed-Hash Message Authentication Code

ICV Integrity Check Value

ICT Information and Communications Technology

ID Identifier

LoA Loss of Alignment

MODP Modular exponential

OKM Output Keying Material

OSI Open Systems Interconnection

PDU Protocol Data Unit

PKI Public-Key Infrastructure

PMI Privilege Management Infrastructure

PRK Pseudorandom Key

PrPDU Protected protocol Data Unit

RAOC Receive Application Object Class

SAOC Send Application Object Class

TCP Transmission Control Protocol

UTC Coordinated Universal Time

WrPDU Wrapper Protocol Data Unit

5 Conventions

The term "Specification" (as in "this Specification") shall be taken to mean this Recommendation | International Standard.

If an International Standard or ITU-T Recommendation is referenced within normal text without an indication of the

edition, the edition shall be taken to be the one specified in the normative references clause.

This Specification makes extensive use of the abstract syntax notation one (ASN.1) for the formal specification of data

types and values, as it is specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2,

Rec. ITU-T X.682 | ISO/IEC 8824-3, Rec. ITU-T X.683 | ISO/IEC 8824-4, Rec. ITU-T X.690 | ISO/IEC 8825-1 and

Rec. ITU-T X.691 | ISO/IEC 8825-2.

This Specification presents ASN.1 notation in the bold Courier New typeface. When ASN.1 types and values are

referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New

typeface.

6 Common data types and special cryptographic algorithms

6.1 Introduction

This clause defines some auxiliary cryptographic specification as follows.

a) ASN.1 information object classes are heavily used for protocol design. The ALGORITHM information object

class is important for this Specification. This is further expanded in clause 6.2.

b) Multiple cryptographic algorithms of a specific class may be specified by using a single containing

cryptographic algorithm. This is done by utilizing the flexibility provided by the AlgorithmIdentifier

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 5

parameterized data type defined in clause 6.2.2 of Rec. ITU-T X.509 | ISO/IEC 9594-8. This is further

described in clause 6.3.

c) There are advantages to the definition of cryptographic algorithms for key agreement procedures. This has

been done for a few cases in clause 6.4.

d) Parameterized data types are defined in clause 6.5 for flexible protocol design.

e) Some formal specifications for encipherment are given in clause 6.6.

6.2 ASN.1 information object class specification tool

6.2.1 General information object class concept

Figure 1 – ASN.1 information object class concept

The concept of ASN.1 information object class is specified in Rec. ITU-T X.681 | ISO/IEC 8824-2. It is vital for protocol

design. For that reason, a short introduction is included here to encourage increased use of this facility. ASN.1 information

object classes are widely used by the ITU-T X.500 series of Recommendations | ISO/IEC 9594-all parts for defining

attributes, matching rules, extensions to public-key and attribute certificates, etc.

Figure 1 illustrates the general ASN.1 information object class concept. An ASN.1 information object class specifies the

general syntax for a class of information objects, e.g., attribute types as defined by Rec. ITU-T X.501 | ISO/IEC 9594-2.

From this general specification, specifications for specific attribute types are defined, e.g., an attribute type for e-mail

addresses. From this specification, instances of e-mail address attributes may be generated. Instances may be transferred

in the protocol or may be stored in a directory.

NOTE – The concept of object classes used in clause 11 is somewhat different from the concept of information object class defined

in Rec. ITU-T X.681 | ISO/IEC 8824-2.

6.2.2 The ALGORITHM information object class

The information object class concept is also used to define cryptographic algorithms. The ALGORITHM information object

class is defined in 6.2.2 of Rec. ITU-T X.509 | ISO/IEC 9594-8. The specification of this information is reproduced as

follows for easy reference. The ALGORITHM information object class is different from most other information object

classes in the sense that an instance of an information object is an invocation of the algorithm rather than specifying a

value identifying something, like an e-mail address.

The following ASN.1 information object class is used to specify cryptographic algorithms.

ALGORITHM ::= CLASS {

 &Type OPTIONAL,

 &DynParms OPTIONAL,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 [PARMS &Type]

 [DYN-PARMS &DynParms]

 IDENTIFIED BY &id }

The ALGORITHM information object class has the following fields.

a) The &Type field is used to specify those fixed parameters that are necessary for specifying the exact

procedure for deploying the cryptographic algorithm being defined. Not all cryptographic algorithms

ISO/IEC 9594-11:2020 (E)

6 Rec. ITU-T X.510 (08/2020)

require such parameters. The field is then absent or has the value NULL, as determined by the individual

cryptographic algorithm specifications.

b) The &DynParms field is used to specify those dynamic parameters that determine the value(s) to be

exchanged between two communicating entities when invoking the cryptographic algorithm. Not all

cryptographic algorithms require dynamic parameters. In this case the &DynParms field shall be absent.

c) The &id field is used to uniquely identify the class of cryptographic algorithm being defined.

The AlgorithmWithInvoke parameterized data type defined as follows is used in situations where the type of

cryptographic algorithm is signalled together with its invocation.

AlgorithmWithInvoke{ALGORITHM:SupportedAlgorithms} ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters [0] ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 dynamParms [1] ALGORITHM.&DynParms({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 ... }

The AlgorithmWithInvoke parameterized data type has the following components.

a) The algorithm component shall hold the object identifier that uniquely identify the cryptographic

algorithm being defined.

b) The parameters component, when present, shall hold the values of the fixed parameters that further

identify the cryptographic algorithm in question. This component shall be present when the &Type field is

present in the information object for the cryptographic algorithm in question. Otherwise, it shall be absent.

c) The dynamParms component, when present, shall hold the value(s) required by the dynamic parameters

for the cryptographic algorithm. This component shall be present when the &DynParms field is present in

the information object for the cryptographic algorithm. Otherwise, it shall be absent.

The AlgorithmIdentifier parameterized data type defined as follows is used in situations where the type of

cryptographic algorithm is signalled without a corresponding invocation.

AlgorithmIdentifier{ALGORITHM:SupportedAlgorithms} ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 ... }

The components of AlgorithmIdentifier data type shall be as specified for the corresponding components of the

AlgorithmWithIvoke parameterized data type.

The AlgoInvoke parameterized data type defined as follows is used when the cryptographic algorithm has previously

been determined and where only invocation information is required.

AlgoInvoke{ALGORITHM:SupportedAlgorithms} ::=

 ALGORITHM.&DynParms({SupportedAlgorithms})

6.3 Multiple-cryptographic algorithm specifications

6.3.1 General

Multiple cryptographic algorithms of the same object class may be specified using a single outer algorithm and then used

instead of a single algorithm as a tool for algorithm migration as discussed in Annex H.

The PARMS field of the ALGORITHM information object class allows any data type to be specified. This is utilized to define

ALGORITHM information objects that allow for multiple-cryptographic algorithm specifications within a single algorithm

specification.

6.3.2 Multiple signatures algorithm

The following is a specification of an ALGORITHM information object that allows multiple digital signature algorithms to

be specified.

multipleSignaturesAlgo ALGORITHM ::= {

 PARMS MultipleSignaturesAlgo

 IDENTIFIED BY id-algo-multipleSignaturesAlgo }

MultipleSignaturesAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedSignatureAlgorithms}}

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 7

SupportedSignatureAlgorithms ALGORITHM ::= {...}

6.3.3 Multiple symmetric key algorithm

The following is a specification of an ALGORITHM information object that allows multiple symmetric key algorithms to

be specified.

multipleSymmetricKeyAlgo ALGORITHM ::= {

 PARMS MultipleSymmetricKeyAlgo

 IDENTIFIED BY id-algo-multipleSymmetricKeyAlgo }

MultipleSymmetricKeyAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedSymmetricKeyAlgorithms}}

SupportedSymmetricKeyAlgorithms ALGORITHM ::= {...}

6.3.4 Multiple public-key algorithms

The following is a specification of an ALGORITHM information object that allows multiple public-key algorithms to be

specified.

multiplePublicKeyAlgo ALGORITHM ::= {

 PARMS MultiplePublicKeyAlgo

 IDENTIFIED BY id-algo-multiplePublicKeyAlgo }

MultiplePublicKeyAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedPublicKeyAlgorithms}}

SupportedPublicKeyAlgorithms ALGORITHM ::= {...}

6.3.5 Multiple hash algorithm

The following is a specification of an ALGORITHM information object that allows multiple hash algorithms to be specified.

multipleHashAlgo ALGORITHM ::= {

 PARMS MultipleHashAlgo

 IDENTIFIED BY id-algo-multipleHashAlgo }

MultipleHashAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedHashAlgorithms}}

SupportedHashAlgorithms ALGORITHM ::= {...}

6.3.6 Multiple authenticated encryption with associated data algorithm

The following is a specification of an ALGORITHM information object that allows multiple authenticated encryption with

associated data (AEAD) algorithms to be specified.

multipleAuthenEncryptAlgo ALGORITHM ::= {

 PARMS MultipleAuthenEncryptAlgo

 IDENTIFIED BY id-algo-multipleAuthenEncryptAlgo }

MultipleAuthenEncryptAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedAuthenEncryptAlgorithms}}

SupportedAuthenEncryptAlgorithms ALGORITHM ::= {...}

6.3.7 Multiple integrity check value algorithm

The following is a specification of an ALGORITHM information object that allows multiple integrity check value (ICV)

algorithms to be specified.

multipleIcvAlgo ALGORITHM ::= {

 PARMS MultipleIcvAlgo

 IDENTIFIED BY id-algo-multipleIcvAlgo }

MultipleIcvAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedIcvAlgorithms}}

SupportedIcvAlgorithms ALGORITHM ::= {...}

ISO/IEC 9594-11:2020 (E)

8 Rec. ITU-T X.510 (08/2020)

6.4 Key establishment algorithms

6.4.1 General

Key establishment technologies are used to establish symmetric keys directly between two communicating entities in a

secure way. The Diffie-Hellman (DH) technology, as specified in IETF RFC 2631, is an important example. The result

of a DH operation is a shared secret that a key derivation technology expands to generate the required symmetric keys.

DH and the key derivation technologies in their basic form are not well suited to the cryptographic algorithm migration

techniques described in Annex H. By defining different combination of DH and key derivation combinations as

cryptographic algorithms using the ALGORITHM information object class, as it specified in clause 6.2.2, it is possible to

establish a migration path. In the following, some key establishment information objects are defined.

Clause 6.4 is provided for the purpose of validating the wrapper protocol as a whole using DH technology, as specified

in IETF RFC 2631. The choice of the cryptographic mechanism for the shared key generation in the wrapper protocol is

made by end-users in accordance with the principles of national regulations.

6.4.2 Diffie-Hellman group 14 algorithm with HKDF-256

The following is a specification for key establishment algorithm based on the DH key agreement technique.

dhModpGr14Hkdf256Algo ALGORITHM ::= {

 PARMS Group14

 DYN-PARMS Payload14

 IDENTIFIED BY id-algo-dhModpGr14Hkdf256Algo }

Group14 ::= INTEGER (14)

Payload14 ::= SEQUENCE {

 dhPublicKey OCTET STRING (SIZE (256)),

 nonce OCTET STRING (SIZE (32)),

 ... }

The PARMS token specifies that the fixed parameters shall be those parameters specified for group number 14 for the

2048-bit modular exponential (MODP) as specified in IETF RFC 3526.

The DYN-PARMS token specifies that the dynamic parameters shall be those specified by the PayLoad14 data type.

The PayLoad14 data type has the following components.

a) The dhPublicKey component shall hold the DH public key to be used by the sender. For the group used,

the length of the key is always 256 octets. A different DH private and public key pair shall be generated

for each new association establishment. For the duration of the association, the DH public key of the server

shall be retained by both parties and the server shall retain its DH private key for later renewal of symmetric

keys (see clause 10.2).

b) For each key renewal, the client shall generate a new DH private and DH public key pair and use it for the

key renewal process.

c) The nonce component shall hold a random value to be used by the shared key derivation specified in

clause 6.4.5. A new value shall be generated for each key establishment. The length is recommended to be

that of the hash output. As the sha256 algorithms is used for key derivation, the length shall be 32 octets.

From the established shared secret, the two partners shall use the HMAC-based extract-and-expand key derivation

function (HKDF) to create symmetric keys according to the requirement established by the encryption and ICV

negotiation.

The hmacWithSHA256 algorithm shall be used for the HKDF derivation.

6.4.3 Diffie-Hellman group 23 algorithm with HKDF-256

dhModpGr23Hkdf256Algo ALGORITHM ::= {

 PARMS Group23

 DYN-PARMS Payload23

 IDENTIFIED BY id-algo-dhModpGr23Hkdf256Algo }

Group23 ::= INTEGER (23)

Payload23 ::= SEQUENCE {

 dhPublicKey OCTET STRING (SIZE (512)),

 nonce OCTET STRING (SIZE (32)),

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 9

 ... }

The PARMS token specifies that the fixed parameters shall be those parameters specified for group number 23, for the

ECDH curve secp256r1 as specified in IETF RFC 5114.

The DYN-PARMS token specifies that the dynamic parameters shall be those specified by the PayLoad23 data type.

The PayLoad23 data type has the same components as the PayLoad14 data type except that the dhPublicKey shall

have a length of 512 octets.

The key derivation shall be as specified in clause 6.4.5.

6.4.4 Diffie-Hellman group 28 algorithm with HKDF-256

dhModpGr28Hkdf256Algo ALGORITHM ::= {

 PARMS Group28

 DYN-PARMS Payload28

 IDENTIFIED BY id-algo-dhModpGr28Hkdf256Algo }

Group28 ::= INTEGER (28)

Payload28 ::= SEQUENCE {

 dhPublicKey OCTET STRING (SIZE (512)),

 nonce OCTET STRING (SIZE (32)),

 ... }

The PARMS token specifies that the fixed parameters shall be those parameters specified for group number 28, for the

ECDH curve sbrainpoolP256r1 as specified in IETF RFC 6932.

The DYN-PARMS token specifies that the dynamic parameters shall be those specified by the PayLoad28 data type.

The PayLoad28 data type has the same components as the PayLoad14 data type, except that the dhPublicKey shall

have a length of 512 octets.

The key derivation shall be as specified in clause 6.4.5.

6.4.5 Key derivation

6.4.5.1 General

When the outcome of a key agreement algorithm is a shared secret, this shared secret shall be expanded by use of a key

derivation function to provide sufficient material for the required symmetric keys.

6.4.5.2 HMAC-based extract-and-expand key derivation function

The HKDF is specified in IETF RFC 5869. It requires the use of the keyed-hash message authentication code (HMAC)

algorithm as specified in IETF RFC 2104.

The HKDF consists of an HKDF-extract, resulting in a so-called pseudorandom key (PRK) and of an HKDF-expand,

resulting in the output keying material (OKM).

The HKDF-extract may be expressed as follows.

PRK = HMAC-Hash(salt, IKM) where:

a) salt is a non-secret random value – it shall take the value of the nonce component of the key

establishment algorithm instance in question that require the use of HKDF;

b) IKM stands for input keying material – it shall be the shared secret resulting from the DH key agreement;

c) The OKM is defined as:

 OKM = HKDF-expand (PRK, info, L), where:

– PRK shall be the PRK generated by the HKDF-expand above,

– info shall be a zero-length string,

– L shall be the combined length of the keys to be generated;

If two keys are to be generated:

– the first part of the OKM is the key to be used by the client,

– the remaining part is the key to be used by the server;

If four keys are to be generated:

ISO/IEC 9594-11:2020 (E)

10 Rec. ITU-T X.510 (08/2020)

– the first key is the key used to generate an ICV by the client,

– the second key is the key used to generate an ICV by the server,

– the third key is the key used for encryption by the client,

– the fourth key is the key used for encryption by the server.

6.4.6 Special conditions

NOTE – For authenticated key agreement protocols, the absence of an explicit key validation phase [should] be compensated for

by mixing up the certificates of both parties when generating the shared key. Such mixing up is not carried out in this protocol,

which may lead to undesired consequences.

6.5 Multiple-cryptographic algorithm-value pairs

6.5.1 Multiple digital signatures attached to data

The MULTI_SIGNED parameterized data type is an expansion of the SIGNED data type defined in clause 6.2.1 of

Rec. ITU-T X.509 | ISO/IEC 9594-8. It allows for multiple signatures to be attached to data to be digitally signed.

MULTY-SIGNED{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 algorithm ALGORITHM.&id({multipleSignaturesAlgo}),

 parmeters SEQUENCE SIZE (1..MAX) OF

 sign SEQUENCE {

 algo AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 signature BIT STRING,

 ... },

 ... }

Depending on the deployment, it may be required that all signatures be verified. This requires that the recipient supports

all the involved digital signature algorithms. In other cases, a single signature is sufficient for verification.

6.5.2 Double digital signature attached to data

The Signed parameterized data type is used instead of the SIGNED data type, when signalling of digital signature

algorithms is not necessary.

Signed{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 signature BIT STRING,

 altSignature BIT STRING OPTIONAL,

 ... }

The Signed data type has the following components:

a) the toBeSigned component shall hold the value of the data type to be signed;

b) the signature component shall hold what is called the native digital signature to be attach to the data –

the digital signature shall be generated according to a digital signature algorithm that has previously been

signalled;

c) the altSignature component may be present if an alternative digital signature algorithm previously has

been signalled – otherwise, it shall be absent.

6.5.3 Duplicate integrity check values attached to data

The ICV parameterized data types are counterparts to the SIGNED parameterized data type as defined in clause 6.2.1 of

Rec. ITU-T X.509 | ISO/IEC 9594-8. They provide for attaching one or two ICVs to data whose integrity is to be protected.

The ICV-Total parameterized data type is used where the ICV algorithm has not previously been agreed between two

communication entities.

ICV-Total{ToBeProtected} ::= SEQUENCE {

 toBeProtected ToBeProtected,

 algorithmIdentifier AlgorithmWithInvoke{{SupportedIcvAlgorithms}},

 icv OCTET STRING,

 altAlgorithmIdentifier [0] AlgorithmWithInvoke{{SupportedIcvAlgorithms}} OPTIONAL,

 altIcv [1] OCTET STRING OPTIONAL,

 ... }

 (WITH COMPONENTS {..., altAlgorithmIdentifier PRESENT, altIcv PRESENT } |

 WITH COMPONENTS {..., altAlgorithmIdentifier ABSENT, altIcv ABSENT })

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 11

The ICV-Total data type has the following components.

a) The toBeProtected component shall specify the data value of what is passed in a parameter, being the

data value to be protected.

b) The algorithmIdentifier component consists of the following components (see clause 6.2.2):

– the algorithm component shall hold the object identifier assigned to the ICV algorithm in question;

– the parameters component, when present, shall hold the value of the fixed parameters – this

component shall be present when the &Type field is present in the information object for the ICV

algorithm in question – otherwise, it shall be absent;

– The dynamParms component, when present, shall hold the value of the dynamic parameters – this

component shall be present when the &DynParms field is present in the information object for the

ICV algorithm in question – otherwise, it shall be absent.

c) The icv component shall hold the value of the generated ICV using the ICV algorithm identified by the

algorithm and parameters components listed in b) and by applying the dynamParms component, if

relevant.

d) The altAlgorithmIdentifier component, when present, consists of the same components as the

algorithmIdentifier component.

e) The altIcv component, when present, shall hold the value of the generated ICV using ICV algorithm

identified by the algorithm and parameters components of the altAlgorithmIdentifier

component.

The altAlgorithmIdentifier and altIcv components shall either both be present, or both be absent.

The ICV-Invoke parameterized data type is used where the ICV algorithm has previously been agreed between two

communication entities, e.g., during a handshake.

ICV-Invoke{ToBeProtected} ::= SEQUENCE {

 toBeProtected ToBeProtected,

 dynParms [0] AlgoInvoke{{SupportedIcvAlgorithms}} OPTIONAL,

 icv BIT STRING,

 ... }

The ICV-Total data type has the following components.

a) The toBeProtected component shall specify the data value of what is passed in a parameter, being the

data value to be protected.

b) The dynParms component, when present, shall hold the value of the dynamic parameters associated with

the ICV algorithm in question. This component shall be present when the &DynParms field is present in

the information object for that ICV algorithm. Otherwise, it shall be absent.

c) The icv component shall hold the generated ICV using the previously agreed ICV algorithm and, if

relevant, by applying the dynamParms component.

6.6 Formal specification of encipherment

6.6.1 Formal specification of encryption

ENCIPHERED{ToBeEnciphered} ::= OCTET STRING (CONSTRAINED BY {

 -- shall be the result of applying an encipherment procedure

 -- to the encoded octets of a value of -- ToBeEnciphered })

6.6.2 Formal specification of authenticated encryption with associated data

The following parameterized data type is used to specify AEAD.

AUTHEN-ENCRYPT{ToBeAuth, ToBeEnciphered} ::= SEQUENCE {

 aad ToBeAuth,

 encr ToBeEnciphered,

 ... }

IETF RFC 5084 is a specification for the use of AEAD. IETF RFC 5084 has associated data as optional, while it is

mandatory in this Specification.

ISO/IEC 9594-11:2020 (E)

12 Rec. ITU-T X.510 (08/2020)

7 General concepts for securing protocols

7.1 Introduction

Protocols used in information and communications technology (ICT) infrastructures need to include cybersecurity

capabilities to make them resistant to attacks. The intention of this Specification is to provide a structure where the

cybersecurity aspects are clearly separated from the actual protocol requiring cybersecurity. This is done by a specification

of a general protocol, called the wrapper protocol, which includes all the cybersecurity aspects. This wrapper protocol

can then embed another protocol, called the protected protocol, and in this way supply cybersecurity to the embedded or

wrapped protocol. A protocol that is structured according to this Specification can be protected by the wrapper protocol

and needs no security capabilities of its own.

The wrapper protocol may protect protocols specific for maintenance of a PKI or a privilege management infrastructure

(PMI), but may also be used for protocols with different purposes.

7.2 Protected protocol plug-in concept

Figure 2 is one way of illustrating the relationship between the wrapper protocol and a protected protocol. A protected

protocol is seen as embedded in the wrapper protocol, which then provides a protecting shield for the protected protocol.

The wrapper protocol can protect any protocol that has been designed for protection by the wrapper protocol (see

clauses 7.4 and 8.10).

Figure 2 – Protected protocol plug-in

7.3 Communications structure

Figure 3 depicts the communications between two entities that are each running the wrapper protocol protecting an

instance of the same protocol. The data exchange by the protected protocol is then protected by the two instances of the

wrapper protocol. The two instances of the wrapper protocol may also need to communicate without involving the

instances of the protected protocol.

Figure 3 – Embedded communication

7.4 Another view of the relationship between the wrapper protocol and the protected protocol

Figure 4 illustrates how the wrapper protocol embeds a protected protocol. At different places within the wrapper protocol,

it interacts with the protected protocol. As the protected protocol specification includes several protected protocol data

unit (PrPDU) types, it is required that the top statement of the protected protocol is a choice among the defined PrPDU

types.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 13

Figure 4 – Inclusion of the protected protocol

7.5 Structure of application protocol data unit

Figure 5 depicts the structure of the transmitted application protocol data unit (APDU), called the wrapper protocol data

unit (WrPDU). When actual data is to be transmitted by the two instances of the protected protocol, this data it is

embedded in the WrPDU in the form of a protected protocol data unit (PrPDU). When the two instances of the wrapper

protocol need to interact without involving the protected protocol, there will be no embedded PrPDU.

Figure 5 – APDU structure

7.6 Exception conditions

This Specification requires checks of received APDUs (WrPDUs and PrPDUs). The objective is to force compliant

implementations to perform these checks to ensure resilient implementations.

This Specification defines two classes of exception.

a) Errors that could potentially be caused by an attack by an adversary. When such an error occurs, no

diagnostic information is returned, as such information might be useful for the adversary. Instead, it is

assumed that an implementation logs the incident for later analysis.

b) Errors that may safely be assumed not to be caused by an adversary. In this case, a diagnostic message

may be returned to the sender. It is recommended that implementations also log such incidents.

IETF RFC 5424 specifies classes of incidents. This Specification refers to two of those classes as follows.

a) Alert: Action shall be taken immediately. Errors that could potentially have been caused by an adversary.

b) Error: Exceptions assumed not to have been caused by an adversary.

In both cases, the association is either not established or it is aborted.

This Specification does not mandate any specific logging mechanism.

ISO/IEC 9594-11:2020 (E)

14 Rec. ITU-T X.510 (08/2020)

SECTION 2 – THE WRAPPER PROTOCOL

8 Wrapper protocol general concepts

8.1 Introduction

Section 2 specifies the general wrapper protocol providing security to other protocols. This clause considers the wrapper

protocol in general. Clause 9 specifies the WrPDUs used to establish, terminate and abort associations. Clause 10 specifies

the WrPDUs used during the data transfer phase. Clause 11 analyses the information flow. Clause 12 specifies a procedure

for error checking.

The wrapper protocol requires that an association be established between two application entities before they go into the

data transfer phase.

NOTE – The terms "association" and "application entity" are taken from the OSI area. However, these terms are here extended also

to be applied to a non-OSI area.

The wrapper protocol makes use of parameterized data types to avoid specifications that relate to specific cryptographic

algorithms keeping the protocol open to employ different cryptographic algorithms without changes to the basic protocol.

8.2 UTC time specification

The security of the wrapper protocol's shared key generation is based, among other things, on the presence of a trusted

source of time on the network.

WrPDUs include information about the time of their creation. The time is given as a coordinated universal time

(UTC)time.

This specification makes use of UTC time according to the following.

a) The year, months and date shall be written as YYYYMMDD, where YYYY is the year, MM is the number

of the month and DD is the number of the day of the month.

b) The hour, minute and second and fraction of second shall be written as hhmmss,sss, where hh is the hour

in the 24 h clock system, mm is the minute and the ss is the seconds. A comma (',') or full stop ('.') is used

as the decimal separator.

c) The accuracy shall be either 1 h, 1 min, 1 s or a fraction of a second to any degree of accuracy.

d) The time shall be specified as a pure UTC time and a 'Z' shall be appended to the time. Other forms shall

not be used.

e) There shall not be a 'T' between the data and the time specification.

The time value is given as a value of the GeneralizedTime ASN.1 data type.

8.3 Use of alternative cryptographic algorithms

Some WrPDUs allow for inclusion of alternative cryptographic algorithms. Such alternative cryptographic algorithms are

intended for migrating cryptographic algorithms to more safe cryptographic algorithms.

The requirements for cryptographic mechanisms and algorithms acceptable for use in the wrapper protocol will be further

defined in future versions of this Specification.

The cryptographic mechanisms and algorithms used by the end-users of the wrapper protocol shall comply with national

regulations.

8.4 Establishment of shared keys

To encrypt a wrapped PrPDU or generate an ICV require the establishment of shared symmetric keys. Two types of

symmetric keys are defined:

– content encryption keys, one for each direction if encryption of wrapped PrPDUs is required;

– ICV encryption keys, one for each direction, except if AEAD is used.

Different symmetric keys shall be used for the two directions of communication.

The classical way to establish shared symmetric encryption keys is to use a DH key agreement algorithm.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 15

8.5 Sequence numbers

The wrapper protocol uses sequence number for WrPDUs transmitted during the data transfer phase, one sequence number

per direction of communication. The sequence number shall take the value 0 for the first WrPDU sent after the

establishment of an association and be incremented by one for each WrPDU sent. The purpose is:

– to allow detection of replay of WrPDUs caused by an error or by an adversary;

– to detect missing WrPDUs.

The sequence number is a signed integer with a value range from 0 to 231 − 1 (0 ... 2147483647) (max. 4 octets).

8.6 Use of invocation identification in the wrapper protocol

While protected protocols may have a requirement for pairing data requests and data responses, the same requirement

may not be relevant for the wrapper protocol. However, there might be cases where the wrapper protocol needs to pair

data requests and data responses, e.g., where non-repudiation is required for the protected protocol.

The invocation identification is held by an invokeID component having a syntax of a 6-octet character string where the

first three characters are either REQ or RSP, depending on whether it a component of a data request or data response. The

last three characters are numerals taking a value in the range 000 to 127, as given by the protected protocol.

8.7 Mapping to underlying services
The wrapper protocol maps directly on to the transmission control protocol (TCP) layer as specified by IETF RFC 793.

The TCP port number 9877 as assigned by Internet Assigned Numbers Authority (IANA) to this Specification shall be

used.

The service number assigned by IANA is x510.

8.8 Definition of protected protocols

A wrapped protocol is identified by an information object being an instance of the WRAPPED-PROT information object

class. The WRAPPED-PROT information object class is equivalent to the TYPE-IDENTIFIER information object class

defined by Rec. ITU-T X.681 | ISO/IEC 8824-2.

WRAPPED-PROT ::= TYPE-IDENTIFIER

This information object is used to bind the type of protected protocol identified by an object identifier to the abstract

syntax of that protocol.

A protected protocol reference shall have the following syntax.

WrappedProt {WRAPPED-PROT:SupportedProtSet} ::= SEQUENCE {

 id WRAPPED-PROT.&id({SupportedProtSet}),

 prot WRAPPED-PROT.&Type({SupportedProtSet}{@id}),

 ... }

The WrappedProt parameterized data type has the following components:

a) the id component shall hold the object identifier assigned to the protected protocol in question;

b) The prot component shall hold an instance of the top level APDU being a choice of all the PrPDUs

defined by the protected protocol (see Figure 4).

How the protected protocol is wrapped by the wrapper is further specified in Annex C.

8.9 Overview of wrapper protocol data units

The WrapperPDU data type represents the top APDU of the set of WrPDUs supported by the wrapper protocol.

WrapperPDU ::= CHOICE {

 handshakeReq [0] HandshakeReq,

 handshakeAcc [1] HandshakeAcc,

 handshakeWrpRej [2] HandshakeWrpRej,

 handshakeProRej [3] HandshakeProRej,

 handshakeSecAbort [4] HandshakeSecAbort,

 handshakeProAbort [5] HandshakeProAbort,

 dtSecAbort [6] DtSecAbort,

 applAbort [7] ApplAbort,

 releaseReq [8] ReleaseReq,

ISO/IEC 9594-11:2020 (E)

16 Rec. ITU-T X.510 (08/2020)

 releaseRsp [9] ReleaseRsp,

 dataTransferClient [10] DataTransferClient,

 dataTransferServer [11] DataTransferServer,

 ... }

9 Association management

9.1 Introduction to association management

An association is defined as a cooperative relationship between two application entities, which enables the communication

of information and the coordination of their joint operation for an instance of communication.

The initiator of an association is called the client and the target of an association request is called the server.

9.2 Association handshake request

The HandshakeReq WrPDU is used by the client to initiate an association. It has the following syntax.

HandshakeReq ::= Signed{TbsHandshakeReq}

TbsHandshakeReq ::= SEQUENCE {

 version Version DEFAULT {v1},

 prProt WRAPPED-PROT.&id ({SupportedProtSet}),

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier {{SupportedAltSignatureAlgorithms}} OPTIONAL,

 pkiPath DER-PkiPath,

 assoID AssoID,

 time TimeStamp,

 keyEst AlgorithmWithInvoke{{SupportedKeyEstablishmentAlgos}},

 altKeyEst [1] AlgorithmWithInvoke{{SupportedAltKeyEstablishmentAlgos}} OPTIONAL,

 encr-mode CHOICE {

 aead [2] SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedAeadAlgorithms}},

 non-aead [3] SEQUENCE {

 encr [0] SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedSymmetricKeyAlgorithms}}

 OPTIONAL,

 icvAlgID [1] SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedIcvAlgorithms}} },

 ... },

 attCert DER-AttributeCertificate OPTIONAL,l

 applData [4] WrappedProt{{SupportedProtSet}} OPTIONAL,

 ... }

Version ::= BIT STRING {

 v1 (0) -- version 1

 }

DER-PkiPath ::= OCTET STRING

 (CONTAINING PkiPath ENCODED BY der)

DER-AttributeCertificate ::= OCTET STRING

 (CONTAINING AttributeCertificate ENCODED BY der)

der OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

AssoID ::= INTEGER (0.. 32767)

TimeStamp ::= GeneralizedTime

SupportedSignatureAlgorithms ALGORITHM ::= {...}

SupportedAltSignatureAlgorithms ALGORITHM ::= {...}

SupportedKeyEstablishmentAlgos ALGORITHM ::= {...}

SupportedAltKeyEstablishmentAlgos ALGORITHM ::= {...}

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 17

SupportedAeadAlgorithms ALGORITHM ::= {...}

SupportedSymmetricKeyAlgorithms ALGORITHM ::= {...}

SupportedIcvAlgorithms ALGORITHM ::= {...}

The Signed data type is defined in clause 6.5.2. As detailed in clause 8.3, a Signed data value may contain two digital

signatures during a migration period. When a second digital signature is included, then the altSigAlg component shall

also be present.

The TbsHandshakeReq data type has the following components.

a) The version component shall specify the version(s) of the wrapper protocol supported by the client. The

version component is a bit-string that allows the client to set multiple bits if it supports multiple versions.

NOTE 1 – At the time of publication, only version 1 is defined.

b) The prProt component specifies the type of protocol to be protected. It shall hold the object identifier

identifying that protocol.

c) The sigAlg component shall hold the digital signature algorithm to be used for the digital signature. If

the Signed data value includes two digital signatures, then this component shall be used to generate the

digital signature to be placed in the signature component of the Signed data type.

 The inclusion of the digital signature algorithm within the integrity-protected area serves two purposes. It

allows the digital signature algorithm to be protected by the digital signature and by placing it near the

start of the WrPDU makes it possible to generate the hash for digital signature verification during the first

pass of the WrPDU.

NOTE 2 – This Specification does not mandate a specific set of digital signature algorithms. Reference specifications

or implementers' agreements may replace the dots with a set of digital signature algorithms to be supported for a specific

environment.

d) The altSigAlg component, when present, may be used for digital signature algorithm migration purposes

(see clause 8.3). It shall be present if the Signed data value includes two digital signatures. Otherwise, it

shall be absent. If present, it shall be used to generate the digital signature to be placed in the

altSignature component of the Signed data type.

e) The pkiPath component shall hold the certification path necessary to verify the digital signature as

specified in Rec. ITU-T X.509 | ISO/IEC 9594-8. The first element shall be a CA certificate issued by a

trust anchor trusted by the relying party. The last element shall be the end-entity public-key certificate used

to validate the digital signature. As a special case, the end-entity public-key certificate may be issued

directly by the trust anchor. This component is encapsulated in an octet string being distinguished encoding

rules (DER) encoded allowing other than basic encoding rules (BER) to be used for general encoding.

f) The assoID component shall uniquely identify the identity of an association within the context a client

and server pair.

g) The time component shall hold the UTC generalized time at which this component was created (see

clause 8.2 for details).

h) The keyEst component shall hold the key establishment algorithm used to establish shared symmetric

keys to be used during data transfer. Two or four keys shall be generated as specified in item j).

i) The altKeyEst component, when present, may be used for key establishment algorithm migration.

j) The encr-mode component is a choice between two alternatives as follows.

– The aead alternative is used when the client wants to take advantage of the performance benefits of

using an AEAD algorithm for both encryption and integrity protection using a single operation. When

this alternative is taken, two symmetric keys shall be generated, one for each direction. The client

may specify several AEAD algorithms. The client shall list the algorithms according to its preference

by having the most preferred algorithm as the first one in the sequence-of. If a HandshakeAcc

WrPDU is to be returned, the server shall take the same alternative and specify the first AEAD

algorithm it supports of those suggested.

– The non-aead alternative is taken when the client does not suggest that encryption be used or the

client for some reason wants added flexibility by using separate encryption and ICV specifications.

 This alternative requires two symmetric keys to be generated for ICV purposes and an additional two

symmetric keys to be generated if encryption is required.

 This alternative has two components as follows.

ISO/IEC 9594-11:2020 (E)

18 Rec. ITU-T X.510 (08/2020)

i) In the encr component, when present, the client shall suggest a sequence-of one or more

symmetric key algorithms listed according to its preference by having the most preferred

algorithm as the first one in the sequence-of. If a HandshakeAcc WrPDU is to be returned, the

server shall, if relevant, specify the first symmetric key algorithm it supports of those suggested.

ii) In the icvAlgID component, the client shall suggest a sequence-of one or more ICV algorithms

listed according to its preference by having the most preferred algorithm as the first one in the

sequence-of. If a HandshakeAcc WrPDU is to be returned, the server shall specify the first ICV

algorithm it supports of those suggested.

k) The attCert component, when present, shall hold an attribute certificate providing access control

information. This component is encapsulated in an octet string being DER encoded allowing other than

BER to be used for general encoding.

l) The applData component, when required by the protected protocol, shall hold an instance of a PrPDU

specifying some initialization information required by the protected protocol.

9.3 Association accept

The HandshakeAcc WrPDU shall be issued by the server, when accepting an association request.

The HandshakeAcc WrPDU has the following syntax.

HandshakeAcc ::= Signed{TbsHandshakeAcc}

TbsHandshakeAcc ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigSel CHOICE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier{{SupportedAltSignatureAlgorithms}} },

 pkiPath DER-PkiPath,

 assoID AssoID,

 time TimeStamp,

 keyEstSel CHOICE {

 keyEst AlgorithmWithInvoke{{SupportedKeyEstablishmentAlgos}},

 altKeyEst [1] AlgorithmWithInvoke{{SupportedAltKeyEstablishmentAlgos}} },

 encr-mode CHOICE {

 aead [2] AlgorithmIdentifier{{SupportedAeaAlgorithms}},

 non-aead [3] SEQUENCE {

 encr [0] AlgorithmIdentifier{{SupportedSymmetricKeyAlgorithms}} OPTIONAL,

 icvAlgID [1] AlgorithmIdentifier{{SupportedIcvAlgorithms}} },

 ... },

 attCert DER-AttributeCertificate OPTIONAL,

 applData [4] WrappedProt{{SupportedProtSet}} OPTIONAL,

 ... }

The TbsHandshakeAcc data type has the following components.

a) The version component shall specify exactly one version that is supported by the server. It shall be

selected among those suggested in the corresponding HandshakeReq. The highest supported version of

those suggested by the client should be selected.

b) The sigSel component has two alternatives:

– the sigAlg alternative shall be selected if the client did not include an alternative digital signature

algorithm or if the client included an alternative algorithm, but the server does not support that

alternative algorithm;

– the altSigAlg alternative shall be selected if the client has included an alternative digital signature

algorithm and the server supports that algorithm.

 The alternative taken determines which digital signature algorithm shall be used in future communications

within the association.

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

NOTE – If the altSigAlg alternative is taken, the parties in the communication now know that they both support the

more secure digital signature algorithm, which may be utilized in future communications.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 19

c) The pkiPath component shall hold the certification path used to verify the digital signature. This

component shall be encapsulated in an octet string being DER encoded allowing other than BER to be used

for general encoding.

d) The assoID component shall have the same value as specified for the corresponding component of the

associated HandshakeReq WrPDU.

e) The time component shall hold the UTC generalized time at which of this component was created (see

clause 8.2 for details).

f) The keyEstSel component has two alternatives:

– the keyEst alternative shall be selected if the client did not include an alternative key establishment

or if the client included an alternative algorithm, but the server does not support that alternative

algorithm;

– the altKeyEst alternative shall be selected if the client has included an alternative key establishment

algorithm and the server supports that algorithm.

g) The encr-mode component is a choice between two alternatives. The server shall take the same alternative

as the client did in the HandshakeReq WrPDU:

– if the client selected the aead alternative, the server shall select the first supported AE-algorithm of

the sequence-of of the AEAD-algorithms suggested by the client;

– if the client selected the non-aead alternative, the server shall include the same components as

included in the HandshakeReq WrPDU:

i) if the client included the encr component, the server shall select the first supported symmetric

key algorithm of the sequence-of of those suggested by the client,

ii) the icvAlgID component shall select the first supported ICV algorithm of the sequence-of of

those suggested by the client.

h) The attCert component, when present, shall hold an attribute certificate. This component shall be

encapsulated in an octet string being DER encoded allowing other than BER to be used for general

encoding.

i) The applData component, when required by the protected protocol, shall hold an instance of a PrPDU

responding to initialization information provided by the client.

9.4 Association reject due to security issues

When the server detects an error or an unsupported component in the wrapper protocol part of a HandshakeReq WrPDU,

a HandshakeWrpRej WrPDU shall be returned.

The HandshakeWrpRej WrPDU has the following syntax.

HandshakeWrpRej ::= Signed{TbsHandshakeWrpRej}

TbsHandshakeWrpRej ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigSel CHOICE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier{{SupportedAltSignatureAlgorithms}} },

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 diag WrpError OPTIONAL,

 ... }

The altAlgorithmIdentifier and the altSignature components of the Signed data value shall be absent.

The TbsHandshakeWrpRej data type has the following components.

a) The version component shall specify exactly one version that is supported by the server. It should be

selected among those suggested in the corresponding HandshakeReq WrPDU. The highest supported

version of those suggested should be selected. However, if the server does not support any of the suggested

versions, it shall return one alternative value it does support.

b) The sigSel component has two alternatives:

ISO/IEC 9594-11:2020 (E)

20 Rec. ITU-T X.510 (08/2020)

– the sigAlg alternative shall be selected if the client did not include an alternative digital signature

algorithm or if the client included an alternative algorithm, but the server does not support that

alternative algorithm, but it does support the native algorithm;

– the altSigAlg alternative shall be selected if the client has included an alternative digital signature

algorithm and the server supports that algorithm.

 If the server does not support any of the algorithms, it shall instead add a supported algorithm in the

sigAlg alternative.

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

c) The assoID component shall have the same value as specified for the corresponding component of the

associated HandshakeReq WrPDU.

d) The time component shall hold the UTC generalized time at which this component was created (see

clause 8.2 for details).

e) The pkiPath component shall hold the certification path used to verify the digital signature.

f) The diag component, when present, shall hold a WrpError value with the appropriate diagnostic code. It

shall be absent if an alert event was raised. Otherwise, it shall be present.

9.5 Association reject by the protected protocol

When an error is detected in the protected protocol parts of a HandshakeReq WrPDU, a HandshakeProRej WrPDU

shall be returned.

The HandshakeProRej WrPDU has the following syntax.

HandshakeProRej ::= Signed{TbsHandshakeProRej}

TbsHandshakeProRej ::= SEQUENCE {

 sigSel CHOICE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier{{SupportedSignatureAlgorithms}} },

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 applData WrappedProt{{SupportedProtSet}},

 ... }

The TbsHandshakeProRej WrPDU has the following components.

a) The sigSel component has two alternatives:

– the sigAlg alternative shall be selected if the client did not include an alternative digital signature

algorithm or if the client included an alternative algorithm, but the server does not support that

alternative algorithm;

– the altSigAlg alternative shall be selected if the client has included an alternative digital signature

algorithm and the server supports that algorithm.

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

b) The assoID component shall have the same value as specified by the corresponding component of the

associated HandshakeReq WrPDU.

c) The time component shall hold the UTC generalized time at which of this component was created

(see clause 8.2 for details).

d) The pkiPath component shall hold the certification path used to verify the digital signature.

e) The applData component shall hold information from the protected protocol as to the reason for the

rejection.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 21

9.6 Handshake security abort

A HandshakeSecAbort WrPDU is issued by the client when it does not agree with the information supplied in the

HandshakeAcc WrPDU.

The HandshakeSecAbort WrPDU has the following syntax.

HandshakeSecAbort ::= Signed{TbsHandshakeSecAbort}

TbsHandshakeSecAbort ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 diag WrpError OPTIONAL,

 ... }

The TbsHandshakeSecAbort data type has the following components.

a) The version component shall have the same bits set as in the original HandshakeReq WrPDU.

b) The sigAlg component shall have the same value as the one used in the HandshakeAcc WrPDU, if that

was a valid value according to the client. Otherwise, it shall hold the native digital signature algorithm as

specified in the sigAlg component in the original HandshakeReq WrPDU.

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

c) The AssoID component shall hold the same value as in the rejected HandshakeAcc WrPDU.

d) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

e) The pkiPath component shall hold the certification path used to verify the digital signature.

f) The diag component, when present, shall hold a value of the WrpError data type with the appropriate

diagnostic code. It shall be absent if an alert event was raised. Otherwise, it shall be present.

9.7 Handshake abort by protected protocol

A HandshakeProAbort WrPDU is issued by a client when the protected protocol does not agree with the information

supplied in the HandshakeAcc WrPDU.

The HandshakeProAbort WrPDU has the following syntax.

HandshakeProAbort ::= Signed{TbsHandshakeProAbort}

TbsHandshakeProAbort ::= SEQUENCE {

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 applData WrappedProt{{SupportedProtSet}},

 ... }

The TbsHandshakeProAbort data type has the following components.

a) The sigAlg component shall have the same value as the one used in the HandshakeAcc WrPDU.

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

b) The AssoID component shall hold the same value as in the rejected HandshakeAcc WrPDU.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The pkiPath component shall hold the certification path used to verify the digital signature.

e) The applData component shall hold information from the protected protocol as to the reason for the

abortion.

ISO/IEC 9594-11:2020 (E)

22 Rec. ITU-T X.510 (08/2020)

9.8 Data transfer security abort

A DtSecAbort WrPDU is issued when a security problem is encountered within the wrapper protocol part during the

data transfer phase. Integrity and authentication are provided by a digital signature rather than an ICV.

The DtSecAbort WrPDU has the following syntax.

DtSecAbort ::= Signed{TbsDtSecAbort}

TbsDtSecAbort ::= SEQUENCE {

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 seq SequenceNumber,

 diag WrpError OPTIONAL,

 ... }

The TbsDtSecAbort data type has the following components.

a) The sigAlg component shall hold the digital signature algorithm resulting from the algorithm selection

(see item b) in clause 9.3).

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

b) The assoID component shall have the same value as specified for the corresponding component of the

associated HandshakeReq WrPDU.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The pkiPath component shall hold the certification path used to verify the digital signature.

e) The seq component shall hold the sequence number that caused the exception.

f) The diag component, when present, shall hold a value of the WrpError data type with the appropriate

diagnostic code. It shall be absent if an alert event was raised. Otherwise, it shall be present.

9.9 Abort by protected protocol

An ApplAbort WrPDU shall be issued when a protected protocol during the data transfer phase decides to abort an

association.

The ApplAbort WrPDU has the following syntax.

ApplAbort ::= Signed{TbsApplAbort}

TbsApplAbort ::= SEQUENCE {

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 seq SequenceNumber,

 applData WrappedProt{{SupportedProtSet}},

 ... }

The TbsApplAbort data type has the following components.

a) The sigAlg component shall hold the digital signature algorithm resulting from the algorithm selection

(see item b) in clause 9.3).

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

b) The assoID component shall have the same value as specified for the corresponding component of the

associated HandshakeReq WrPDU.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The pkiPath component shall hold the certification path used to validate the digital signature.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 23

e) The seq component shall hold the sequence number of WrPDU that held the PrPDU that caused the

exception.

f) The applData component shall hold information from the protected protocol as to the reason for the

abortion.

9.10 Release request WrPDU

A ReleaseReq WrPDU shall be issued when one of the application entities requires termination of an existing

association. If the client and the server almost simultaneously issue a ReleaseReq WrPDU, we have a release collision

as discussed in clause 9.12.

The ReleaseReq WrPDU has the following syntax.

ReleaseReq ::= Signed{TbsReleaseReq}

TbsReleaseReq ::= SEQUENCE {

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 ... }

A ReleaseReq PDU has the following components.

a) The sigAlg component shall hold the digital signature algorithm resulting from the algorithm selection

(see item b) in clause 9.3).

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

b) The assoID component shall have the same value as specified for the corresponding component of the

associated HandshakeReq WrPDU.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The pkiPath component shall hold the certification path used to verify the digital signature.

9.11 Release response WrPDU

A ReleaseRsp WrPDU shall be issued as a reply to a ReleaseReq WrPDU.

The ReleaseRsp WrPDU has the following syntax.

ReleaseRsp ::= Signed{TbsReleaseRsp}

TbsReleaseRsp ::= SEQUENCE {

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 ... }

A ReleaseRsp WrPDU has the following components.

a) The sigAlg component shall hold the digital signature algorithm resulting from the algorithm selection

(see item b) in clause 9.3).

 The selected digital signature algorithm shall be used to generate the digital signature to be placed in the

signature component of the Signed data type. The altSignature component of the Signed data type

shall be absent.

b) The assoID component shall have the same value as specified for the corresponding component of the

associated HandshakeReq WrPDU.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The pkiPath component shall hold the certification path used to verify the digital signature.

ISO/IEC 9594-11:2020 (E)

24 Rec. ITU-T X.510 (08/2020)

9.12 Release collision

When the client and the server almost simultaneously issue a ReleaseReq WrPDU, the result is a release collision as

illustrated in Figure 6.

Figure 6 – Release collision

A collision is detected when both entities receive a ReleaseReq WrPDU instead of a ReleaseRsp WrPDU after having

issued a ReleaseReq WrPDU. Having detected the collision situation:

1. the client shall issue a ReleaseRsp WrPDU;

2. the server shall wait for the ReleaseRsp WrPDU to arrive from the client;

3. when the server receives the ReleaseRsp WrPDU, it shall issue a ReleaseRsp WrPDU toward the client

and shall consider the association as terminated;

4. when the client receives the ReleaseRsp WrPDU form the server, it shall consider the association as

terminated.

10 Data transfer phase

10.1 Symmetric keys renewal

Symmetric keys used for encryption as well as for generation and verification of the ICV require renewal. This shall be

done within the data transfer phase.

Only one side of a communication may initiate key renewal. Otherwise, the collision cases become quite complicated.

Therefore, only the client may initiate key renewal. The wrapping protocol is therefore slightly different for data transfer

initiated by the client and for data transfer initiated by the server.

10.2 Data transfer by the client

10.2.1 General

The DataTransferClient WrPDU is used by the client when transmitting data. It has the following syntax.

DataTransferClient ::= CHOICE {

 aead [0] DataTransferClientAE,

 non-aead [1] DataTransferClientNEA,

 ... }

The DataTransferClient is a choice between the two alternative types of WrPDUs.

a) The aead alternative shall be selected if the aead alternative was taken for the encr-mode component of

the HandshakeReq WrPDU. It is further discussed in clause 10.2.2.

b) The non-aead alternative shall be selected if the non-aead alternative was taken for the encr-mode

component of the HandshakeReq WrPDU. It is further discussed in clause 10.2.3.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 25

10.2.2 Client using authenticated encryption with associated data

The DataTransferClientAE WrPDU is expressed using the AUTHEN-ENCRYPT parameterized data type specified in

clause 6.6.2.

DataTransferClientAE ::= AUTHEN-ENCRYPT{AadClientAE, WRAPPED-PROT.&Type}

AadClientAE ::= SEQUENCE {

 COMPONENTS OF AadClient,

 encInvoke [3] AlgoInvoke{{SupportedAeadAlgorithms}} OPTIONAL,

 ... }

The DataTransferClientAE WrPDU has the following parameters.

a) The AadClientAE is the part of the DataTransferClientAE that is not encrypted, but serves as

associated data for the AEAD algorithm. It consists of the components of the AaDClient data type (see

clause 10.2.4) together with the value of the dynamic parameters, if any, for the AEAD algorithm, as

specified by the encInvoke component.

b) The WRAPPED-PROT.&Type is the PrPDU to be encrypted.

10.2.3 Client not using authenticated encryption with associated data

The DataTransferClientNEA WrPDU has the following syntax.

DataTransferClientNEA ::= ICV-Invoke{TbpDataTransferClient}

TbpDataTransferClient ::= SEQUENCE {

 COMPONENTS OF AadClient,

 encEnvoke [3] AlgoInvoke{{SupportedSymmetricKeyAlgorithms}} OPTIONAL,

 conf CHOICE {

 clear [4] WrappedProt{{SupportedProtSet}},

 protected [5] ENCIPHERED{WRAPPED-PROT.&Type},

 ... },

 ... }

The TbpDataTransferClient data type has the following components.

a) The components of the AadClient data type are defined in clause 10.2.4.

b) The encEnvoke component, when present, shall hold the value of the dynamic parameters of the

information object for the symmetric key algorithm in question. It shall be present if encryption is required

and if that algorithm has dynamic parameters. Otherwise, this component shall be absent.

NOTE – It the symmetric key algorithm is of the advanced encryption standard-cipher block chaining (AES-CBC) type,

the dynamic parameter is an initialization vector of 16 octets.

c) The conf components has two alternatives:

– the clear alternative shall be taken if confidentiality (encryption) is not required and shall then

include the appropriate PrPDU of the protected protocol;

– the protected alternative shall be taken if confidentiality is required and shall then include an

encrypted PrPDU of the protected protocol.

10.2.4 Client non-encrypted data

Client non-encrypted data in the form of the AadClient data type is included in a data transfer WrPDU as specified in

clauses 10.2.2 and 10.2.3.

The AadClient data type has the following syntax.

AadClient ::= SEQUENCE {

 invokeID [0] InvokeID OPTIONAL,

 assoID AssoID,

 time TimeStamp,

 seq SequenceNumber,

 keyEst [2] AlgoInvoke{{SupportedKeyEstablishmentAlgos}} OPTIONAL }

InvokeID ::= OCTET STRING (SIZE (6))

SequenceNumber ::= INTEGER (0..2147483647)

ISO/IEC 9594-11:2020 (E)

26 Rec. ITU-T X.510 (08/2020)

The AadClient data type has the following components.

a) The invokeID component, when present, shall have a value determined by the protected protocol

(see clause 8.6).

b) The assoID component shall take the value agreed for the association to which this WrPDU belongs.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The seq component shall hold a sequence number for the DataTransferClient WrPDU. The first data

transfer WrPDU sent by the client within a specific association shall have sequence number '0' and

increased by '1' for each new WrPDU to be sent. When reaching maximum, the sequence number shall

wrap to '0'.

e) The rekey component shall be present when the client is required to refresh the shared keys.

 The time maximum between key refreshments shall be configurable from a minimum of 15 min to a

maximum of 24 h. The actual value is determined by local security policy.

 The client shall not include the rekey component if it has not received a DataTransferServer WrPDU

with the changedKey component set to TRUE for an outstanding DataTransferClient WrPDU with

the rekey component included.

10.3 Data transfer by the server

10.3.1 General

The DataTransferServer WrPDU is used by the server when transmitting data. It has the following syntax.

DataTransferServer ::= CHOICE {

 aead [0] DataTransferServerAE,

 non-aead [1] DataTransferServerNEA,

 ... }

The DataTransferServer is a choice between the two alternative types of WrPDUs:

a) the aead alternative shall be selected if the aead alternative was taken for the encr-mode component of

the HandshakeReq;

b) the non-aead alternative shall be selected if the non-aead alternative was taken for the encr-mode

component of the HandshakeReq.

10.3.2 Server using authenticated encryption with associated data

The DataTransferServerAE WrPDU is expressed using the AUTHEN-ENCRYPT parameterized data type specified in

clause 6.6.2.

DataTransferServerAE ::= AUTHEN-ENCRYPT{AadServerAE, WRAPPED-PROT.&Type}

AadServerAE ::= SEQUENCE {

 COMPONENTS OF AadServer,

 encInvoke [3] AlgoInvoke{{SupportedAeadAlgorithms}} OPTIONAL,

 ... }

The DataTransferServerAE WrPDU has the following components.

a) The AadServerAE is the part of the DataTransferServerAE that is not encrypted, but serves as

associated data for the AEAD algorithm. It consists of the components of the AadServer data type

(see clause 10.3.4) together with the value of the dynamic parameters for the AEAD algorithm, if any, as

specified by the encInvoke component.

b) The WRAPPED-PROT.&Type is the PrPDU to be encrypted.

10.3.3 Server not using authenticated encryption with associated data

The DataTransferServerNEA WrPDU has the following syntax.

DataTransferServerNEA ::= ICV-Invoke{TbpDataTransferServer}

TbpDataTransferServer ::= SEQUENCE {

 COMPONENTS OF AadServer,

 encInvoke [3] AlgoInvoke{{SupportedSymmetricKeyAlgorithms}} OPTIONAL,

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 27

 conf CHOICE {

 clear [4] WrappedProt{{SupportedProtSet}},

 protected [5] ENCIPHERED{WRAPPED-PROT.&Type},

 ... },

 ... }

The TbpDataTransferServer data type has the following components.

a) The components of the AadServer data type as defined in clause 10.3.4.

b) The encEnvoke component, when present, shall hold the value of the dynamic parameters of the

information object for the symmetric key algorithm in question. It shall be present if encryption is required

and if the algorithm has dynamic parameters. Otherwise, this component shall be absent.

NOTE – It the symmetric key algorithm is of type AES-CBC, the dynamic parameter is an initialization vector of

16 octets.

c) The conf components has two alternatives:

– the clear alternative shall be taken if confidentiality (encryption) is not required and shall then

include the appropriate PrPDU of the protected protocol;

– the protected alternative shall be taken if confidentiality is required and shall then include an

encrypted PrPDU of the protected protocol.

10.3.4 Server non-encrypted data

Server non-encrypted data in the form of the AadServer data type is included in a data transfer WrPDU as specified in

clauses 10.3.2 and 10.3.3.

The AadServer data type has the following syntax.

AadServer ::= SEQUENCE {

 invokeID [0] InvokeID OPTIONAL,

 assoID AssoID,

 time TimeStamp,

 seq SequenceNumber,

 reqRekey [1] BOOLEAN DEFAULT FALSE,

 changedKey [2] BOOLEAN DEFAULT FALSE }

The AadServer data type has the following components.

a) The invokeID component, when present, shall have a value determined by the protected protocol

(see clause 8.6).

b) The assoID component shall take the value for the association to which this WrPDU belongs.

c) The time component shall hold the UTC generalized time at which this component was created

(see clause 8.2 for details).

d) The seq component shall hold a sequence number for the WrPDU. The WrPDU sent by the server within

a specific association shall have sequence number '0' and increased by '1' for each new WrPDU to be sent.

When reaching maximum, the sequence number shall wrap to '0'.

e) The reqRekey component shall be included with the value TRUE when the server wants the client to

initiate a key renewal process. Otherwise, it shall have the value FALSE or be absent. This component shall

not be included with the value TRUE if the server has received a DataTransferClient WrPDU with a

rekey component without having sent a DataTransferServer WrPDU with a changedKey component

confirming the latest rekey request.

f) The changedKey component shall be included with the value TRUE when the server has received a

DataTransferClient WrPDU with a valid rekey component. The server shall use the old symmetric

keys for the WrPDU holding this component. Subsequent DataTransferServer WrPDUs sent by the

server shall be generated using the new keys. This component shall not be included with the value TRUE if

there is not an outstanding DataTransferClient WrPDU with the rekey component present.

ISO/IEC 9594-11:2020 (E)

28 Rec. ITU-T X.510 (08/2020)

11 Information flow

11.1 Purpose and general model

This clause explores the flow of information between two application entities and verifies the control of that information

flow.

Figure 7 depicts a general model describing a component going into a communication between two application entities.

Figure 7 is not intended to reflect a possible implementation structure, but is used to reflect the relationship between the

different aspects of an application entity.

Figure 7 – Application entity structure and information flow

The concept of application entity has its origin in the Open Systems Interconnection (OSI) world, but it is here generalized

to reflect the structure of a set of application functions making up an overall application specification for a specific

purpose. This Specification therefore describes the structure of an application entity by borrowing some of the concepts

specified in Rec. ITU-T X.207 | ISO/IEC 9545, although there are significant differences. It refers to the different elements

as:

a) send application object classes (SAOCs) for controlling APDU generation;

b) receive application object classes (RAOCs) for validating received APDUs.

It takes an object-oriented view of the components, although a rather simple one.

Figure 7 also illustrates the information flow between two application entities, where the SAOCs are only shown in one

application entity, while the RAOCs are shown in the other application entity. However, it should be realized that an

application entity typically holds both types of objects.

As illustrated in Figure 7, an application entity in the context of this specification consists of two SAOCs and two RAOCs

reflecting the wrapping protocol and the protected protocol. The control function included in Figure 7 models the overall

coordination of the application entity. The implementation of the control function may be considered the overall

application that includes the capabilities of the enclosing SAOCs and RAOCs.

Object classes defined in this way have subclasses for specific purposes. As an example, the wrapper SAOC has a subclass

for each type of WrPDU to be generated. Each such subclass is described in terms of required input and generated output.

In the following, the SAOCs and RAOCs are described in more detail.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 29

11.2 Protected protocol SAOC

There may be many different protected protocols to consider. The details of the protected protocol lie outside the scope

of this Specification. The input to a protected protocol SAOC is the type of PrPDU to be generated and some additional

information required by the PrPDU type.

Output from a protected protocol SAOC is a PrPDU to be submitted as input to the wrapper SAOC.

11.3 Wrapper SAOC

11.3.1 General

The input to the different subclasses of the wrapper SAOC is outlined in clauses 11.3.2 to 11.3.15.

The output from a subclass is a generated WrPDU to be transmitted.

11.3.2 Handshake request subclass

This subclass is invoked when the control function requests an association establishment. The control function provides

the following input to the subclass:

a) the version information;

b) the object identifier for the protocol to be protected;

c) the cryptographic algorithms to be used and proposed;

d) whether encryption shall be supported;

e) if encryption shall be supported, whether AEAD shall be used or not;

f) the certification path to be included;

g) if relevant, an attribute certificate;

h) if relevant, a PrPDU to be included in the HandshakeReq WrPDU.

Based on this information a HandshakeReq WrPDU is generated ready for transmission.

11.3.3 Handshake accept subclass

This subclass is invoked when a received HandshakeReq WrPDU has been accepted. The control function provides the

following input to the subclass:

a) the version to be used;

b) the cryptographic algorithms to be used;

c) encryption options;

d) the certification path to be included;

e) if relevant, an attribute certificate;

f) if relevant, a PrPDU to be included in the HandshakeAcc WrPDU.

11.3.4 Handshake security reject subclass

This subclass is invoked when a received HandshakeReq WrPDU has been rejected due to issues with the wrapper

protocol elements. The control function provides the following input to the subclass:

a) version information according to clause 9.4;

b) the digital signature algorithm to be used;

c) the certification path to be included;

d) whether a diagnostic code shall be returned and if yes, with which diagnostic code.

11.3.5 Handshake reject by protected protocol subclass

This subclass is invoked when a received HandshakeReq WrPDU has been rejected due to issues detected by the

protected protocol. This subclass is only relevant when the protected protocol has supplied initialization information. The

control function provides the following input to the subclass:

a) the version to be used;

b) the digital signature algorithm to be used;

c) the certification path to be included;

ISO/IEC 9594-11:2020 (E)

30 Rec. ITU-T X.510 (08/2020)

d) a PrPDU from the protected protocol describing the issue.

11.3.6 Handshake security abort subclass

This subclass is invoked when a received HandshakeAcc WrPDU has been rejected due to issues with the wrapper

protocol elements. The control function provides the following input to the subclass:

a) version information;

b) the digital signature algorithm to be used;

c) the certification path to be included;

d) whether a diagnostic code shall be returned and if yes, with which diagnostic code.

11.3.7 Handshake abort by protected protocol subclass

This subclass is invoked when a received HandshakeAcc WrPDU has been rejected due to issues detected by the

protected protocol. This subclass is only relevant when the protected protocol has supplied initialization information. The

control function provides the following input to the subclass:

a) the digital signature algorithm to be used;

b) the certification path to be included;

c) a PrPDU from the protected protocol describing the exception.

11.3.8 Data transfer security abort subclass

This subclass is invoked when due to security issues a received DataTransferClient WrPDU has been rejected by the

server or when a received DataTransferServer WrPDU has been rejected by the client. The control function provides

the following input to the subclass:

a) the digital signature algorithm to be used;

b) sequence number of faulty data transfer WrPDU;

c) the certification path to be included;

d) whether a diagnostic code shall be returned and if yes, with which diagnostic code.

11.3.9 Data transfer application abort subclass

This subclass is invoked when an exception condition is encountered in the protected protocol during data transfer. The

control function provides the following input to the subclass:

a) the digital signature algorithm to be used;

b) sequence number of the wrapping WrPDU;

c) the certification path to be included;

d) a PrPDU from the protected protocol describing the exception.

11.3.10 Release request subclass

This subclass is invoked when the control function determines that the association should be terminated. The control

function provides the following input to the subclass:

a) the digital signature algorithm to be used;

b) the association identifier (ID);

c) the certification path to be included.

Based on this information a ReleaseReq WrPDU is generated ready for transmission.

11.3.11 Release response subclass

This subclass is invoked when a ReleaseReq WrPDU was received. The control function provides the following input

to the subclass:

a) the digital signature algorithm to be used;

b) the association ID;

c) the certification path to be included.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 31

Based on this information a ReleaseRsp WrPDU is generated ready for transmission. If the entity acts as server for the

association to be terminated and if a release collision is detected (see clause 9.12), the transmission of the WrPDU shall

be deferred until a ReleaseRsp WrPDU is received from the client.

11.3.12 Client data transfer with authenticated encryption with associated data subclass

This subclass is invoked within the data transfer phase when AEAD is used. The control function provides the following

input to the subclass:

a) the AEAD algorithm to be used;

b) the dynamic parameters associated with the AEAD algorithm;

c) the PrPDU to be protected;

d) if the protected protocol has a component that correspond to the invokeID component, the value of that

component;

e) the association ID;

f) whether key renewal is to be initiated;

g) if key renewal is to be initiated, the key agreement algorithm to be used;

h) if key renewal is to be initiated, the dynamic parameters associated with the key agreement algorithm.

11.3.13 Client data transfer with integrity check value protection subclass

This subclass is invoked within the data transfer phase when protected by ICV. The control function provides the

following input to the subclass:

a) whether encryption is used;

b) if encryption is used, the symmetric key algorithm;

c) if encryption is used, the dynamic parameters associated with the symmetric key algorithm;

d) the ICV algorithm to be used;

e) the dynamic parameters associated with the ICV algorithm;

c) the PrPDU to be protected;

d) whether key renewal is to be initiated;

e) if key renewal is to be initiated, the key agreement algorithm to be used;

f) if key renewal is to be initiated, the dynamic parameters associated with the key agreement algorithm;

g) if the protected protocol has a component that correspond to the invokeID component, the value of that

component;

h) the association ID.

11.3.14 Server data transfer with authenticated encryption with associated data subclass

This subclass is invoked within the data transfer phase when AEAD is used. The control function provides the following

input to the subclass:

a) the AEAD algorithm to be used;

b) the dynamic parameters associated with the AEAD algorithm;

c) the PrPDU to be protected;

d) if the protected protocol has a component that correspond to the invokeID component, the value of that

component;

e) the association ID;

f) whether a reqRekey indication should be issued;

g) whether to respond to a key renewal by issuing a changedKey indication.

11.3.15 Client data transfer with integrity check value protection subclass

This subclass is invoked within the data transfer phase when a separate ICV is used, and if required, with a separate

encryption of the embedded PrPDU. The control function provides the following input to the subclass:

a) whether encryption is used;

b) if encryption is used, the symmetric key algorithm;

ISO/IEC 9594-11:2020 (E)

32 Rec. ITU-T X.510 (08/2020)

c) if encryption is used, the dynamic parameters associated with the symmetric key algorithm;

d) the ICV algorithm to be used;

e) the dynamic parameters associated with the ICV algorithm;

f) the PrPDU to be protected;

g) if the protected protocol has a component that correspond to the invokeID component, the value of that

component;

h) whether a reqRekey indication should be issued;

i) whether to respond to a key renewal by issuing a changedKey indication.

12 Wrapper error handling

12.1 General

This clause considers the type of errors that might occur within the WrPDU specific protocol elements.

12.2 Checking of a wrapper handshake request

12.2.1 General

If an exception condition is encountered in a HandshakeReq WrPDU, the server shall return a HandshakeSecReject

WrPDU with the appropriate diagnostic code for the diag component, except when an alert event has been raised, in

which case, the diag component shall be absent in the HandshakeSecReject WrPDU.

12.2.2 Digital signature checking

For security reasons, the digital signature shall be verified before any of the signed data is validated.

The Signed data value (see clause 8.3) is checked using the following procedure:

a) if neither of the digital signature algorithms specified in the sigAlg component nor the altSigAlg

component (if present) are supported or accepted, then an invalid-signatureAlgorithm diagnostic

code shall be returned;

b) if the altSigAlg component is absent or not supported, the signature components of the Signed data

value shall be checked and if invalid, an invalid signature alert event shall be raised;

c) if the altSigAlg component is present and supported, then the altSignature component of the Signed

data value shall be checked and if invalid, an invalid alternative signature alert event shall be raised.

12.2.3 Checking of the to-be-signed part

a) If none of the versions specified in the HandshakeReq WrPDU are supported by the server, an

unexpected-version diagnostic code shall be returned.

b) If the protected protocol specified in the prProt component is not supported, a protected-protocol-

not-supported diagnostic code shall be returned.

c) If the pkiPath component does not allow the verification of the attached public-key certificate, a public-

key certificate verification failed alert event shall be raised.

d) If an association with an assoID and a time value equal to the one in the HandshakeReq WrPDU already

exists between the two entities in question, a replay detected alert event shall be raised.

e) If an association with an assoID equal to the one in the HandshakeReq WrPDU already exists between

the two entities in question, a duplicate-assoID diagnostic code shall be returned.

f) If the value in the time component is more than 5 min from the UTC time as observed locally, then an

invalid-time-value diagnostic code shall be returned.

g) If none of the key establishment algorithms specified in the keyEst component or the altKeyEst

component (if present) are supported, then a key-estab-algorithm-not-supported diagnostic code

shall be returned.

h) If the aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the server

does not support or does not want to support AEAD, an encr-mode-aead-not-supported diagnostic

code shall be returned.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 33

i) If the aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the server

does not or does not want to support encryption, an encryption-not-supported diagnostic code shall

be returned.

j) If the server does not support any of the AEAD algorithms proposed in the encr-mode.aead.algo

component, then an aead-algorithms-not-supported diagnostic code shall be returned.

k) If the non-aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the

server does not support or does not want to support encryption without authentication, an aead-is-

required diagnostic code shall be returned.

l) If the non-aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU with

the encr component present and the server does not support or does not want to support encryption, then

an encryption-not-supported diagnostic code shall be returned.

m) If the non-aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU with the

encr component absent and the server requires encryption, then an encryption-required diagnostic

code shall be returned.

n) If the server does not support any of the symmetric key algorithms proposed in the encr-mode.non-

aead.encr.algo component, then a symmetricKey-algorithms-not-supported diagnostic code

shall be returned.

o) If the server does not support any of the ICV algorithms proposed in the encr-mode.non-

aead.icvAlgID.algo component, then an icv-algorithms-not-supported diagnostic code shall be

returned.

p) If the attCert component is present, the attribute certificate held by that component shall be checked for

validity. If that check fails, the invalid-attribute-certificate diagnostic code shall be returned

unless an alert event is to be raised where a diagnostic code shall not be returned.

12.3 Checking of a wrapper handshake accept

12.3.1 General

If an exception condition is encountered in a HandshakeAcc WrPDU, the client shall return a HandshakeSecAbort

WrPDU with the appropriate diagnostic code, except when an alert event has been raised, in which case, the diag

component shall not be included in the HandshakeSecAbort WrPDU.

12.3.2 Digital signature checking

For security reasons, the signature shall be verified before any of the signed data is validated.

The Signed data value (see clause 8.3) is checked using the following procedure:

a) if the altSignature components are included in the Signed data value, then an alt-signature-not-

allowed diagnostic code shall be returned;

b) if the algorithm specified in the sigAlg component is different from both the sigAlg component and the

altSigAlg component of the corresponding HandshakeReq WrPDU, then an invalid digital signature

algorithm alert event shall be raised;

c) if the digital signature in the signature components of the Signed data value is not verified, an invalid

signature alert event shall be raised.

12.3.3 Checking of the to-be-signed part

a) If a version component has bits set for more than one version, an only-one-version diagnostic code

shall be returned.

b) If the version selected by the server was not included in the corresponding HandshakeReq WrPDU, an

unexpected-version diagnostic code shall be returned.

c) If the pkiPath component does not allow the verification of the attached public-key certificate, a public-

key certificate verification failed alert event shall be raised.

d) If the assoID does not identify an outstanding HandshakeReq WrPDU, discard the WrPDU and raise an

invalid assoID error event.

e) If the value in the time component is more than 5 min from the UTC time as observed locally, then an

invalid-time-value diagnostic code shall be returned.

ISO/IEC 9594-11:2020 (E)

34 Rec. ITU-T X.510 (08/2020)

f) If the keyEst alternative is taken for the keyEstSel component, and if the specified algorithm is different

from the one specified in the keyEst component of the corresponding HandshakeReq WrPDU, then an

invalid-key-alt-estab-algorithm diagnostic code shall be returned.

g) If the altKeyEst alternative is taken for the keyEstSel component, and if the specified algorithm is

different from the one specified in the altKeyEst component of the corresponding HandshakeReq

WrPDU or if the corresponding HandshakeReq WrPDU did not include that component, then an

invalid-key-alt-estab-algorithm diagnostic code shall be returned.

h) If the aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the server

in the HandshakeAcc WrPDU does not specify this alternative, then an aead-is-required diagnostic

code shall be returned.

i) If the aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the server

in the encr-mode.aead component of the HandshakeAcc WrPDU specifies an algorithm not included

in the corresponding component of the HandshakeReq WrPDU, then an invalid-aead-algorithm

diagnostic code shall be returned.

j) If the non-aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the

server in the HandshakeAcc WrPDU does not specify this alternative, then an aead-not-allowed

diagnostic code shall be returned.

k) If the non-aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the

server in the HandshakeAcc WrPDU in the encr-mode.non-aead.encr component specifies an

algorithm not included in the corresponding component of the HandshakeReq WrPDU, then an

invalid-symmetricKey-algorithm diagnostic code shall be returned.

l) If the non-aead alternative of the enc-mode component is selected in a HandshakeReq WrPDU, but the

server in the HandshakeAcc WrPDU in the encr-mode.non-aead.icvAlgID component specifies an

algorithm that is not included in the corresponding component of the HandshakeReq WrPDU, then an

invalid-icv-algorithm diagnostic code shall be returned.

m) If the attCert component is present, the attribute certificate held by that component shall be checked for

validity. If that check fails, then an invalid-attribute-certificate diagnostic code shall be returned,

unless an alert event is to be raised, in which case a diagnostic code shall not be returned.

12.4 Checking of data transfer WrPDUs

12.4.1 General

If an exception condition is encountered in the security parameters of a data transfer WrPDU, then a DtSecAbort WrPDU

shall be returned with the appropriate diagnostic code in the diag component, except when an alert event has been raised,

in which case, the diag component shall not be included in the DtSecAbort WrPDU.

12.4.2 Common checking for data transfer

12.4.2.1 Common checking for use of authenticate encryption with associated data

The following procedure shall be used when the aead alternative was taken for the encr-mode component of the

HandshakeReq WrPDU.

a) If a non-aead alternative was taken for the data transfer, then an aead-is-required diagnostic code

shall be returned.

b) If the authenticated encrypted WrPDU is not verified, an invalid AEAD alert event shall be raised.

c) If the encInvoke component of the AadClientAE / AadServerAE is required, then:

– if the encInvoke component is absent, a dynamic-aead-algo-parms-required diagnostic code

shall be returned;

– if the AEAD dynamic parameters are invalid, an invalid-dynamic-aead-algo-parms diagnostic

code shall be returned.

12.4.2.2 Common checking for non-use of authenticate encryption with associated data

The following procedure shall be used when the non-aead alternative was taken for the encr-mode component of the

HandshakeReq WrPDU.

a) If the aead alternative was taken for the data transfer, then an aead-not-allowed diagnostic code shall

be returned.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 35

b) If the encr-mode.non-aead.encr component was present in the HandshakeReq WrPDU, then:

– if the data is not encrypted, return an encryption-required diagnostic code;

– if the symmetric key algorithm specifies dynamic parameters and values for these parameters are not

included, return a dynamic-symKey-algo-parms-required diagnostic code;

– if the symmetric key algorithm specifies dynamic parameters and values for these parameters are

invalid, return an invalid-dynamic-symKey-algo-parms diagnostic code;

– if the symmetric key algorithm does not specify dynamic parameters and values for parameters are

included, return a dynamic-symKey-algo-parms-not-required diagnostic code;

– if decryption not possible, a decryption not possible alert event shall be raised.

c) If the encr-mode.non-aead.encr component was not present in the HandshakeReq WrPDU and data

was encrypted, return an encryption-not-supported diagnostic code.

d) If the ICV algorithm specifies dynamic parameters and values for these parameters are not included, return

a dynamic-icv-algo-parms-required diagnostic code.

e) If the ICV algorithm specifies dynamic parameters and values for these parameters are invalid, return an

invalid-dynamic-icv-algo-parms diagnostic code.

f) If the ICV algorithm does not specify dynamic parameters and these parameters are included, return a

dynamic-icv-algo-parms-not-required diagnostic code.

g) If the ICV is not verified, then an invalid ICV alert event shall be raised.

12.4.2.3 Common checking for AadClient and AadServer data types

The AadClient and -AadServer data types have some components in common. The components are considered in the

following.

a) If the invokeID component is present, with a value starting with the first three characters “RSP” when no

data WrPDU has been sent with the first three characters "REQ", an unexpected-invokeID-received

diagnostic code shall be returned.

b) If the assoID component specifies an unknown association, the data WrPDU shall be discarded and an

unknown assoID received alert event shall be raised.

c) If the value in the time component is more than 5 min from the UTC time as observed locally, then an

invalid-time-value diagnostic code shall be returned.

d) If the value in the seq component is not '0' for the first data transfer WrPDU receive after association

establishment or if the value is not '1' greater than the previous received data transfer WrPDU, then an

invalid sequence number alert event shall be raised.

12.4.5 AadClient data value specific checking

When a server receives a DataTransferClient WrPDU, it shall perform the following specific check on the

AadClient data value.

a) If the rekey component is present and the server has not yet replied with a changedKey indication to the

DataTransferClient WrPDU with the rekey component, then a rekey-out-of-sequence

diagnostic code shall be returned.

b) If the values for dynamic parameters of the key establishment algorithm are invalid, an invalid-

dynamic-keyEst-algo-parms diagnostic code shall be returned.

12.4.6 AadServer data value specific checking

When a client receives a DataTransferServer WrPDU, it shall perform the following specific check on the

AadServer data value.

a) If the reqRekey component is present with the value TRUE, when a DataTransferClient WrPDU with

the keyEst component included and a DataTransferServer WrPDU with a changedKey component

with the value TRUE has not been received, then the reqRekey component shall be ignored.

b) If the changedKey component is present with the value TRUE, when all previously sent

DataTransferClient WrPDUs with the keyEst component included have already been confirmed with

a changedKey with the value TRUE, then return a changedKey-out-of-sequence diagnostic code.

ISO/IEC 9594-11:2020 (E)

36 Rec. ITU-T X.510 (08/2020)

12.5 Wrapper diagnostic codes

The following diagnostic codes are defined for the wrapper protocol.

WrpError ::= ENUMERATED {

 protocol-error (0),

 invalid-signatureAlgorithm (1),

 unexpected-version (2),

 protected-protocol-not-supported (3),

 duplicate-assoID (4),

 invalid-time-value (5),

 key-estab-algorithm-not-supported (6),

 encr-mode-aead-not-supported (7),

 encryption-not-supported (8),

 encryption-required (9),

 aead-algorithms-not-supported (10),

 aead-is-required (11),

 symmetricKey-algorithms-not-supported (12),

 icv-algorithms-not-supported (13),

 invalid-attribute-certificate (14),

 alt-signature-not-allowed (15),

 only-one-version (16),

 invalid-key-estab-algorithm (17),

 invalid-alt-key-estab-algorithm (18),

 invalid-aead-algorithm (19),

 aead-not-allowed (20),

 invalid-symmetricKey-algorithm (21),

 invalid-icv-algorithm (22),

 dynamic-aead-algo-parms-required (23),

 invalid-dynamic-aead-algo-parms (24),

 dynamic-aead-algo-parms-not-required (25),

 dynamic-symKey-algo-parms-required (26),

 invalid-dynamic-symKey-algo-parms (27),

 dynamic-symKey-algo-parms-not-required (28),

 dynamic-icv-algo-parms-required (29),

 invalid-dynamic-icv-algo-parms (30),

 dynamic-icv-algo-parms-not-required (31),

 unexpected-invokeID-received (32),

 rekey-out-of-sequence (33),

 invalid-dynamic-keyEst-algo-parms (34),

 changedKey-out-of-sequence (35),

 ... }

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 37

SECTION 3 – PROTECTED PROTOCOLS

13 Authorization and validation list management

13.1 General on authorization and validation management

13.1.1 Introduction

Authorization and validation management is concerned with how the authorizer maintains AVL information within the

AVL entities the authorizer supports. This management is executed using the authorization and validation manage

protocol (AVMP). The AVMP is designed to be protected by the wrapper protocol as specified in Section 2.

NOTE – For a definition of AVL and authorizer see clause 11 of Rec. ITU-T X.509 | ISO/IEC 9594-8.

It shall be the same trusted CA that has certified the end-entity public-key certificates for the authorizer and the AVL

entities the authorizer serves. Each AVL entity shall be supplied with:

– its own end-entity public-key certificate and the corresponding private key to be used for digital signature

generation;

– the end-entity public-key certificate for the authorizer;

– the CA certificate of the issuing CA for above end-entity public-key certificate.

When the AVMP is the protected protocol, the authorizer is the client of the association, while the AVL entity is the

server.

13.1.2 Invocation identification

When an interaction consists of a request and a response, the two PrPDUs are tied together with an InvokeID, which is

an integer that allows the response to be paired with the corresponding request.

The InvokeID shall be unique within the context of a client-server pair. When an interaction has completed, the

InvokeID may be reused for a new interaction.

13.1.3 Exception conditions

There are three types of exception condition as follows.

a) Warning: this is an exception condition within a received request that is not considered severe enough to

cause termination of an existing association. Exception information is provided as part of normal response.

This exception type is only relevant for the data transfer phase.

b) Error: this is an exception condition severe enough to cause an existing association to be terminated, but it

is determined that the error is not caused by an adversary. The association is terminated by issuing an abort

PrPDU with the appropriate diagnostic code.

c) Alert: this is an exception condition that potentially has been caused by the action of an adversary. The

association is terminated by issuing an abort PrPDU with a noRreason diagnostic code.

13.2 Defined protected protocol data unit types

The following PrPDU types are defined for the AVMP.

avlprot WRAPPED-PROT ::= {

 Avlprot

 IDENTIFIED BY id-avlprot }

Avlprot ::= CHOICE {

 initReq [0] InitializationRec,

 initAcc [1] InitializationAcc,

 initRej [2] InitializationRej,

 initAbt [3] InitializationAbort,

 certReq [4] CertReq,

 certRsp [5] CertRsp,

 addAvlReq [6] AddAvlReq,

 addAvlRsp [7] AddAvlRsp,

 replaceAvlReq [8] ReplaceAvlReq,

 replaceAvlRsp [9] ReplaceAvlRsp,

 deleteAvlReq [10] DeleteAvlReq,

ISO/IEC 9594-11:2020 (E)

38 Rec. ITU-T X.510 (08/2020)

 deleteAvlRsp [11] DeleteAvlRsp,

 rejectAVL [12] RejectAVL,

 abort [13] Abort,

 ... }

13.3 Authorization and validation management protocol initialization request

During association establishment, the version of AVMP is negotiated as part of the initialization. The Initialization

PrPDU has the following syntax.

InitializationRec ::= SEQUENCE {

 version Version,

 ... }

The version component shall hold the version of the AVMP. The syntax of the Version data type is a named bit string.

The client may specify multiple versions by setting the appropriate bits, while the server shall specify only a single version

among those suggested by the client.

The current version is version v1.

If the server supports at least one of the versions suggested by the client, it shall return InitializationAcc PrPDU. If

the server does not support any of the versions suggested, it shall return an InitializationRej PrPDU.

The InitializationReq PrPDU shall be embedded in a HandshakeReq WrPDU (see clause 9.2).

13.4 Authorization and validation management protocol initialization accept

When accepting the initialization information in the InitializationReq PrPDU, the server shall return an

InitializationAcc PrPDU. It has the following syntax.

InitializationAcc ::= SEQUENCE {

 version Version,

 ... }

The version component shall specify a single version of those suggested by the client.

If the client does not accept the InitializationAcc PrPDU, it shall issue an InitializationAbort PrPDU.

The InitializationAcc PrPDU shall be embedded in a HandshakeAcc WrPDU (see clause 9.3).

13.5 Authorization and validation management protocol initialization reject

When rejecting the initialization information in the InitializationReq PrPDU, the server shall return an

InitializationRej PrPDU. It has the following syntax.

InitializationRej ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersions (0),

 ... },

 ... }

The diag component shall specify the reason for the rejection:

a) the server does not support any of versions proposed by the client.

The InitializationRej PrPDU shall be embedded in a HandshakeProRej WrPDU (see clause 9.5).

13.6 Authorization and validation management protocol initialization abort

When rejecting the initialization information in the InitializationAcc PrPDU, the client shall return an

InitializationAbort PrPDU. It has the following syntax.

InitializationAbort ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 onlySingleVersionAllowed (1),

 ... },

 ... }

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 39

The diag component shall specify the reason for the abort:

a) the unsupportedVersion diagnostic code shall be selected if the server specifies a single version not

included in those proposed by the client;

b) the onlySingleVersionAllowed diagnostic code shall be selected if the server returned multiple

versions.

The InitializationAbort PrPDU shall be embedded in a HandshakeProAbort WrPDU (see clause 9.7).

13.7 Add authorization and validation list request

The authorizer uses the addAvlReq PrPDU to initiate the addition of an AVL to an AVL entity.

AddAvlReq ::= SEQUENCE {

 invokeID InvokeID,

 certlist CertAVL,

 ... }

The AddAvlReq PrPDU shall be embedded in a DataTransferClient WrPDU.

The AddAvlReq data type specifies the syntax of the actual content and has the following components:

a) the invokeID component shall identify the interaction consisting of the AddAvlReq and the

corresponding AddAvlRsp;

b) The certList component shall hold the AVL to be added to the AVL entity.

The recipient AVL entity shall check the validity of the request:

a) by checking the validity of the signature on the received AVL and if invalid, raise an invalid AVL signature

alert event and return a noReason error code in an AbortAVL PrPDU;

b) by checking whether all the AVL mandatory components are present and if not, return a

missingAvlComponent error code;

c) by checking whether the version component on the received AVL validation list specifies a supported

version and if not, return an invalidAvlVersion error code;

d) if the serialNumber component is present in the received AVL, then checking whether an AVL with the

same value already exists and if so, return a duplicateAVL error code;

e) if the serialNumber component is absent in the received AVL, then checking whether an AVL with

absent serialNumber component already exists and if so, return a duplicateAVL error code;

f) by checking whether the constrained component of the received AVL corresponds to the capabilities

of the AVL entity and if not, return a constrainedRequired error code or a

nonConstrainedRequired error code, as appropriate;

g) for each element of the entries component of the received AVL:

– by checking whether the idType component contains a valid alternative and if not, return a

protocolError error code,

– if the certIdentifier alternative is chosen, then:

i) by checking whether the certIdentifier component contains a valid alternative and if not,

return a protocolError,

ii) if the entityGroup alternative is taken and the constrained component has the value TRUE,

return a notAllowedForConstrainedAVLEntity error code,

– by checking whether the entryExtensions component contains an unsupported critical extension

and if so, return an unsupportedCriticalEntryExtension error code;

h) by checking whether the AVL contains an unsupported critical extension and if so, return an

unsupportedCriticalExtension error code;

i) by checking whether the maximum number of AVLs has been exceeded by the new AVL and if so, return

a maxAVLsExceeded error code.

NOTE – Maximum limit might be just a single AVL.

ISO/IEC 9594-11:2020 (E)

40 Rec. ITU-T X.510 (08/2020)

13.8 Add authorization and validation list response

The recipient AVL entity uses the addAvlRsp PrPDU to report the outcome of an add AVL.

AddAvlRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] AddAvlOK,

 failure [1] AddAvlErr,

 ... },

 ... }

AddAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

AddAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

The AddAvlRsp PrPDU shall be embedded in a DataTransferServer WrPDU.

The AddAvlRsp data type specifies the actual content and has the following components:

a) the invokeID component shall have the same value as in the corresponding AddAvlReq PrPDU;

b) the result component has the following two alternatives:

– the success alternative shall be taken if the addition of an AVL was performed successfully;

– the failure alternative shall be taken if the addition of an AVL failed – the AVMP-error data type

is specified in clause 13.14.

13.9 Replace authorization and validation list request

The authorizer uses the replaceAvlReq PrPDU to initiate the replacement of an AVL at an AVL entity. It shall be used

when changes to the AVL have occurred.

ReplaceAvlReq ::= SEQUENCE {

 invokeID InvokeID,

 old AvlSerialNumber OPTIONAL,

 new CertAVL,

 ... }

The ReplaceAvlReq PrPDU shall be embedded in a DataTransferClient WrPDU.

The ReplaceAvlReq data type specifies the actual content and has the following components:

a) the invokeID component shall identify the interaction consisting of the ReplaceAvlReq and the

corresponding ReplaceAvlRsp;

b) the old component, when present, shall hold the serial number of the old AVL and it shall be absent if the

authorizer expects that an AVL with no sequence number exists;

c) the new component shall hold the replacement AVL.

The AVL entity shall verify the validity of the request by checking:

a) as specified in 13.7 items a) to h);

b) if the old component was present in the request, then check whether the AvlSerialNumber value

specified in that component matches the AvlSerialNumber of a local authorization validation list and if

not, return an unknownAvl error code;

c) if the old component was absent in the request, then check whether there is locally just a single AVL and

that AVL is without the serialNumber component and if not, return an unknownAvl error code.

13.10 Replace authorization and validation list response

The AVL entity shall use the replaceAvlRsp PrPDU to report the outcome of an AVL replace request.

ReplaceAvlRsp ::= SEQUENCE {

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 41

 invokeID InvokeID,

 result CHOICE {

 success [0] RepAvlOK,

 failure [1] RepAvlErr,

 ... },

 ... }

RepAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

RepAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

The ReplaceAvlRsp PrPDU shall be embedded in a DataTransferServer WrPDU.

The ReplaceAvlRsp PrPDU has the following components.

a) The invokeID component shall have the same value as in the corresponding ReplaceAvlReq PrPDU.

b) The result component has the following two alternatives:

a) the success alternative shall be taken if the replacement of an AVL was performed successfully;

b) the failure alternative shall be taken if the replacement of an AVL failed – the AVMP-error data

type is specified in clause 13.14.

13.11 Delete authorization and validation list request

The authorizer uses the deleteAvlReq PrPDU to initiate deletion of an AVL at an AVL entity.

DeleteAvlReq ::= SEQUENCE {

 COMPONENTS OF AVMPcommonComponents,

 avl-Id AVLSerialNumber OPTIONAL,

 ... }

The DeleteAvlReq PrPDU shall be embedded in a DataTransferClient WrPDU.

The DeleteAvlReq data type specifies the syntax of the actual content and has the following components:

a) the invokeID component shall identify the interaction consisting of the ReplaceAvlReq and the

corresponding ReplaceAvlRsp;

b) the avl-Id component, when present, shall identify the AVL to be deleted.

The recipient AVL entity shall verify the validity of the request by:

a) if the avl-id component is present in the request, checking whether the AlvSerialNumber value

specified in that component matches the AvlSerialNumber of a local AVL and if not, return an

unknownAVL error code;

b) if the avl-id component is absent in the request, checking whether there locally is just a single AVL and

that AVL is without the serialNumber component and if not, return an unknownAVL error code.

13.12 Delete authorization and validation list response

The recipient AVL entity uses the deleteAvlRsp content type to report the outcome of a delete AVL request.

DeleteAvlRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] DelAvlOK,

 failure [1] DelAvlErr,

 ... },

 ... }

DelAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

DelAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

ISO/IEC 9594-11:2020 (E)

42 Rec. ITU-T X.510 (08/2020)

The deleteAvlRsp PrPDU shall be embedded in a DataTransferServer WrPDU.

The DeleteAvlRsp PrPDU has the following components.

a) The invokeID component shall have the same value as in the corresponding ReplaceAvlReq PrPDU.

b) The result component has the following two alternatives:

– the success alternative shall be taken if the deletion of an AVL was performed successfully;

– the failure alternative shall be taken if the deletion of an AVL failed – the AVMP-error data type

is specified in clause 13.14.

13.13 Authorization and validation list abort

The AbortAvl PrPDU is used by the authorizer to report problems with a response from the AVL entity.

AbortAVL ::= SEQUENCE {

 invokeID InvokeID,

 reason AVMP-error,

 ... }

The AbortAvl PrPDU has the following components:

a) the invokeID component shall have the same value as in the response being rejected;

b) the AVMP-error as specified in clause 13.14.

The AbortAvl PrPDU shall be embedded in an ApplAbort WrPDU.

13.14 Authorization and validation list error codes

A value of the AVMP-error data type is used by an AVL entity to report an error when processing a request from the

authorizer. It is also used by an authorizer to reject a faulty response from an AVL entity.

AVMP-error ::= ENUMERATED {

 noReason (0),

 protocolError (1),

 duplicateAVL (2),

 missingAvlComponent (3),

 invalidAvlVersion (4),

 notAllowedForConstrainedAVLEntity (5),

 constrainedRequired (6),

 nonConstrainedRequired (7),

 unsupportedCriticalEntryExtension (8),

 unsupportedCriticalExtension (9),

 maxAVLsExceeded (10),

 unknownAVL (11),

 ... }

The following AVL error codes are defined:

a) the noReason value shall be selected when no other error code is applicable;

b) the protocolError value shall be selected when a protocol error is encountered;

c) the duplicateAVL value shall be selected when the authorizer attempts to add an already existing AVL

to an end entity;

d) the missingAvlComponent value shall be selected when a received AVL is missing a mandatory

component;

e) the invalidAvlVersion value shall be selected when an unsupported authorization validation list

version is received;

f) the notAllowedForConstrainedAVLEntity shall be selected if a component is included that is not

allowed by a constrained AVL entity;

g) the constraintRequired value shall be selected when the end entity requires an AVL with the

constraint component set to FALSE;

h) the nonConstraintRequired value shall be selected when the end entity requires an AVL with the

constraint component set to TRUE;

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 43

i) the unsupportedCriticalEntryExtension value shall be selected when a received AVL contains an

unsupported critical entry extension;

j) the unsupportedCriticalExtension value shall be selected when a received AVL contains an

unsupported critical extension;

k) the maxAVLsExceeded value shall be selected when the addition of an AVL would bring the number of

AVLs beyond a locally determined value;

l) the unknownAVL value shall be selected when an end entity receives a content including a value of the

AvlSerialNumber data type that did not match any local AVL.

14 Certification authority subscription protocol

14.1 Certification authority subscription introduction

The certification authority subscription protocol (CASP) is concerned with how the authorizer maintains AVL status

information by subscribing to the necessary information from relevant CAs. It is only relevant for an authorizer supporting

authorization validation lists for constraint AVL entities.

Before subscribing to maintenance information, the authorizer needs to know the exact public-key certification

configuration for the end entities it supports. The following information is necessary to establish:

a) the end-entity public-key certificates for the AVL entities for which AVL support is to be provided;

b) for each AVL entity from a), the end-entity public-key certificates for the AVL entities to which

communications are possible;

c) the CA-certificate and trust anchor information necessary to establish any necessary certification path.

This Specification does not give details on how an authorizer obtains this information. It could be by a local configuration

or by extract of a centralized database.

The CASP comprises a set of exchange types as detailed in the following.

14.2 Defined protected protocol data unit types

casubprot WRAPPED-PROT ::= {

 Casubprot

 IDENTIFIED BY id-casubprot }

CasubProt ::= CHOICE {

 initReq [0] InitializationRec,

 initAcc [1] InitializationAcc,

 initRej [2] InitializationRej,

 initAbt [3] InitializationAbort,

 certSubscribeReq [4] CertSubscribeReq,

 certSubscribeRsp [5] CertSubscribeRsp,

 certUnsubscribeReq [6] CertUnsubscribeReq,

 certUnsubscribeRsp [7] CertUnsubscribeRsp,

 certReplaceReq [8] CertReplaceReq,

 certReplaceRsp [9] CertReplaceRsp,

 certUpdateReq [10] CertUpdateReq,

 certUpdateRsp [11] CertUpdateRsp,

 cAsubscribeAbort [12] CAsubscribeAbort,

 ... }

14.3 Certification authority subscription protocol initialization request

During association establishment, the version of CASP is negotiated as part of the initialization. The

InitializationReq PrPDU has the following syntax.

InitializationReq ::= SEQUENCE {

 version Version,

 ... }

The version component shall hold the version of the CASP. The syntax of the version is a bit string. The client may

specify multiple versions by setting the appropriate bits, while the server is required to specify only a single version

among those suggested by the client.

ISO/IEC 9594-11:2020 (E)

44 Rec. ITU-T X.510 (08/2020)

The current version is version v1.

The InitializationReq PrPDU shall be embedded in a HandshakeReq WrPDU (see clause 9.2).

14.4 Certification authority subscription protocol initialization accept

When accepting the initialization information in the InitializationReq PrPDU, the server shall return an

InitializationAcc PrPDU. It has the following syntax.

InitializationAcc ::= SEQUENCE {

 version Version,

 ... }

The version component shall specify a single version of those suggested by the client.

If the client does not accept the InitializationAcc PrPDU, it shall issue an InitializationAbort PrPDU.

The InitializationAcc PrPDU shall be embedded in a HandshakeAcc WrPDU (see clause 9.3).

14.5 Certification authority subscription protocol initialization reject

When rejecting the initialization information in the InitializationReq PrPDU, the server shall return an

InitializationRej PrPDU. It has the following syntax.

InitializationRej ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersions (0),

 ... },

 ... }

The diag component signals the reason for the reject:

a) the server does not support any of versions proposed by the client.

The InitializationRej PrPDU shall be embedded in a HandshakeProRej WrPDU (see clause 9.5).

14.6 Certification authority subscription protocol initialization abort

When rejecting the initialization information in the InitializationAcc PrPDU, the client shall return an

InitializationAbort PrPDU. It has the following syntax.

InitializationAbort ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 onlySingleVersionAllowed (1),

 ... },

 ... }

The diag component signals the reason for the abort:

a) the unsupportedVersion diagnostic code shall be selected if the server specifies a single version not

included in those proposed by the client;

b) the onlySingleVersionAllowed diagnostic code shall be selected if the server returned multiple

versions.

The InitializationAbort PrPDU shall be embedded in an ApplAbort WrPDU (see clause 9.8).

14.7 Public-key certificate subscription request

The authorizer uses the CertSubscribeReq PrPDU to request a specific CA to supply status information about public-

key certificates issued by this CA relevant for the AVLs supported by the authorizer.

CertSubscribeReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 45

The CertSubscribeReq PrPDU has the following components.

a) The invokeID component shall identify the interaction consisting of the CertSubscribeReq and the

corresponding CertSubscribeRsp.

b) The certs component shall identify a list of end-entity public-key certificates, for which the authorizer

requests information about status changes. It has the following subcomponents for each element:

– the subject subcomponent shall be the name of the entity for which the end-entity public-key

certificate has been issued;

– the serialNumber subcomponent shall be the serial number for the end-entity public-key certificate

in question.

The CA shall verify the validity of the request by checking:

a) each element of the certs component for validity, i.e., whether it identifies an end-entity public-key

certificate issued by the CA – if not, an unknownCert status code shall be returned in the corresponding

element of the response.

14.8 Public-key certificate subscription response

The CA uses the CertSubscribeRsp PrPDU to report the outcome of the subscription request.

CertSubscribeRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertSubscribeOK,

 failure [1] CertSubscribeErr,

 ... },

 ... }

CertSubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 cert Certificate,

 status CertStatus,

 revokeReason CRLReason OPTIONAL,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CASP-CertStatusCode ::= ENUMERATED {

 noReason (1),

 unknownCert (2),

 ... }

CertStatus ::= ENUMERATED {

 good (0),

 revoked (1),

 on-hold (2),

 expired (3),

 ... }

CertSubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertSubscribeRsp data type specifies the actual content and has the following components.

a) The invokeID component shall have the same value as in the corresponding CertSubscribeReq

PrPDU.

b) The result component has the following two alternatives:

– the success alternative shall be taken if the subscription was accepted for at least one public-key

certificate – it shall then hold a value of the CertSubscribeOK data type;

– the failure alternative shall be taken if the evaluation of the request failed to a degree where no

results could be returned – it shall then hold a value of the CertSubscribeErr data type – the CASP-

error data type is specified in clause 14.16.

ISO/IEC 9594-11:2020 (E)

46 Rec. ITU-T X.510 (08/2020)

The CertSubScribeOK shall include an element for each public-key certificate specified in the request in the same order.

Each element has two alternatives as follows.

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It has

the following components:

– the cert component shall hold the public-key certificate for the requested subject;

– the status component shall hold the status of the public-key certificate and shall take one the

following values:

i) the good value signals that the represented public-key certificate can be trusted,

ii) the revoked value signals that the represented public-key certificate has been revoked and can

no longer be trusted,

iii) the on-hold value signals that the represented public-key certificate has been put on hold status

and should not be trusted for the time being,

iv) the expired value signals that the represented public-key certificate has expired and can no

longer be trusted;

– the revokeReason component may be present when the status component is set to revoked, and

shall otherwise be absent. When present, it shall indicate the reason for the revocation as defined in

clause 9.5.3.1.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified:

– the no-reason status code shall be returned when no other code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

14.9 Public-key certificate un-subscription request

The authorizer uses the CertUnsubscribeReq PrPDU to request a specific CA to stop supplying status information

about public-key certificates issued by that CA.

CertUnsubscribeReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

The CertUnsubscribeReq PrPDU has the following components.

a) The invokeID component shall identify the interaction consisting of the CertUnsubscribeReq and the

corresponding CertUnsubscribeRsp.

b) The certs component shall identify a list of public-key certificates for which the authorizer requests stop

for information about status changes. It has the following subcomponents for each public-key certificate:

– the subject subcomponent shall be the name of the entity to which the public-key certificate has

been issued;

– the serialNumber subcomponent shall be the serial number for the public-key certificate in

question.

The CA shall verify the validity of the request by checking:

a) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued

by the CA – if not, an unknownCert status code shall be returned in the corresponding element of the

response.

14.10 Public-key certificate un-subscription response

The CA uses the CertUnsubscribeRsp PrPDU to report the outcome of the un-subscription request.

CertUnsubscribeRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertUnsubscribeOK,

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 47

 failure [1] CertUnsubscribeErr,

 ... },

 ... }

CertUnsubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUnsubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertSubscribeRsp data type specifies the actual content and has the following components.

a) The invokeID component shall have the same value as in the corresponding CertSubscribeReq

PrPDU.

b) The result component has the following two alternatives:

– the success alternative shall be taken if the subscription was accepted for at least one public-key

certificate – it shall then hold a value of the CertUnsubscribeOK data type;

– the failure alternative shall be taken if the evaluation of the request failed to a degree where no

results could be returned – it shall then hold a value of the CertUnsubscribeErr data type – the

CASP-error data type is specified in clause 14.16.

The CertUnsubScribeOK includes an element for each public-key certificate specified in the request in the same order.

Each element has two alternatives as follows.

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It has

the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had

been issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified:

– the no-reason status code shall be returned when no other status code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

The error alternative shall be taken if the evaluation of the request failed to a degree where no results could be returned.

The CASP-error data type is specified in clause 14.16.

14.11 Public-key certificate replacements request

The CA uses the CertReplacementReq PrPDU to submit replacement end-entity public-key certificates to the

authorizer.

CertReplaceReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 old CertificateSerialNumber,

 new Certificate,

 ... },

 ... }

The CertReplacementReq PrPDU has the following components.

a) The invokeID component shall identify the interaction consisting of the CertReplacementReq and the

corresponding CertReplacementRsp.

b) The certs component shall identify a list of public-key certificate replacements. It has the following

subcomponents for each public-key certificate:

ISO/IEC 9594-11:2020 (E)

48 Rec. ITU-T X.510 (08/2020)

– the old subcomponent shall hold the identification of the public-key certificate to be replaced;

– the new subcomponent shall hold the replacement public-key certificate.

The authorizer shall verify the validity of the request by checking:

a) as specified in clause 7.3;

b) each element of the certs component for validity:

– whether the old subcomponent identifies a public-key certificate at the authorizer and if not, an

unknownCert status code shall be returned in the corresponding element of the response;

c) each element of the certs component for validity, i.e., whether it identifies a public-key certificate issued

by the CA – if not, an unknownCert status code shall be returned in the corresponding element of the

response.

14.12 Public-key certificate replacement response

The authorizer uses the CertReplaceRsp PrPDU to report the outcome of the replacement request.

CertReplaceRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertReplaceOK,

 failure [1] CertReplaceErr,

 ... },

 ... }

CertReplaceOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertReplaceErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertReplaceRsp PrPDU has the following components.

a) The invokeID component shall have the same value as in the corresponding CertSubscribeReq

PrPDU.

b) The result component has the following two alternatives:

– the success alternative shall be taken if the subscription was accepted for at least one public-key

certificate – it shall then hold a value of the CertReplaceOK data type;

– the failure alternative shall be taken if the evaluation of the request failed to a degree where no

results could be returned – it shall then hold a value of the CertReplaceErr data type – the CASP-

error data type is specified in clause 14.16.

The CertReplace data type includes an element for each public-key certificate specified in the request in the same order.

Each element has two alternatives as follows.

a) The ok alternative shall be taken when public-key certificate information was successfully retrieved. It has

the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had

been issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified:

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 49

14.13 End-entity public-key certificate updates request

The CA uses the CertUpdateReq PrPDU to submit to the authorizer updated status information on public-key

certificates.

CertUpdateReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 certStatus CertStatus,

 ... },

 ... }

The CertUpdateReq PrPDU has the following components.

a) The invokeID component shall identify the interaction consisting of the CertUpdateReq and the

corresponding CertUpdateRsp.

b) The certs component shall identify a list of updates to public-key certificates. It has the following

subcomponents for each element:

– the subject subcomponent shall hold the identification of the end-entity public-key certificate to be

replaced;

– the serialNumber subcomponent shall identify the end-entity public-key certificate or which new

status information is available:

– the certStatus shall hold the updated status information for the end-entity public-key certificate in

question.

The authorizer shall verify the validity of the request by checking:

a) each element of the certs component for validity by checking whether:

– the subject subcomponent identifies a new entity and if not, return an unknownSubject error code;

– the serialNumber subcomponent identifies a known public-key certificate and if not, return an

unknownCert error code;

– the certStatus subcomponent has a valid value and if not, return an unknownCertStatus error

code.

14.14 End-entity public-key certificate updates response

The authorizer shall use the CertUpdateRsp content type to report the outcome of the updates to status information on

public-key certificates.

CertUpdateRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertUpdateOK,

 failure [1] CertUpdateErr,

 ... },

 ... }

CertUpdateOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUpdateErr ::= SEQUENCE {

 code CASP-error,

 ... }

The CertUpdateRsp PrPDU has the following components.

ISO/IEC 9594-11:2020 (E)

50 Rec. ITU-T X.510 (08/2020)

a) The invokeID component shall have the same value as in the corresponding CertSubscribeReq

PrPDU.

b) The result component has the following two alternatives:

– the success alternative shall be taken if the subscription was accepted for at least one public-key

certificate – it shall then hold a value of the CertUpdateOK data type;

– the failure alternative shall be taken if the evaluation of the request failed to a degree where no

results could be returned – it shall then hold a value of the CertUpdateErr data type – the

CASP-error data type is specified in clause 14.16.

The CertUpdateOK includes an element for each public-key certificate specified in the request in the same order. Each

element has two alternatives as follows.

a) The ok alternative shall be taken when the update to the public-key certificate information was successfully

processed. It has the following components:

– the subject component shall hold the name of the subject to which the public-key certificate had

been issued;

– the serialNumber component shall hold the serial number for the public-key certificate.

b) The not-ok alternative shall be taken when a corresponding public-key certificate was not identified:

– the no-reason status code shall be returned when no code is applicable;

– the unknownCert status code shall be selected when the corresponding element in the request did

not identify a public-key certificate issued by the CA.

14.15 Certification authority subscription abort

CAsubscribeAbort ::= SEQUENCE {

 invokeID InvokeID,

 reason CASP-error,

 ... }

The CAsubscribeAbort PDU type has the following components:

a) the invokeID component shall have the same value as in the response being rejected;

b) the reason component shall hold a CASP-error value as specified in clause 13.12.

14.16 Certification authority subscription error codes

CASP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedCASPversion (2),

 missingContent (3),

 missingContentComponent (4),

 invalidContentComponent (5),

 sequenceError (6),

 unknownCertStatus (7),

 ... }

A value of the CASP-error data type indicates the result of an issued request:

a) the noReason value shall be selected when no other error code is applicable;

b) the unknownContentType value shall be selected if the content type is not known by the receiver;

c) the unsupportedCASPversion value shall be selected if a request or response specified a CASP version

that is not supported;

d) the missingContent value shall be selected when the request or response did not include content;

f) the missingContentComponent value shall be selected when a request or response does not include a

mandatory component;

e) the invalidContentComponent value shall be selected when an unexpected component was included

in a request or response;

f) the sequenceError value shall be selected by when:

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 51

– an authorizer or a CA receives a request for the first time that did not have the sequence component

set to 1;

– an authorizer or a CA receives a request that did not have the sequence component set to one higher

than for a previous request content in the same direction;

– an authorizer or a CA receives a response content with a sequence component value different from

that in the corresponding request content.

15 Trust broker protocol

15.1 Introduction

A trust broker is an entity, possibly a commercial entity, that maintains reliability of one or more CAs and makes that

information available to requesting relying parties. The trust broker protocol allows the relying party to query the trust

broker about the trustworthiness of the public-key certificate issued to the subject it is communicating with. The relying

party may send the public certificate of either the issuing CA or the subject and receive information about the

trustworthiness of the subject’s certificate.

There are two issues involved in determining the trustworthiness of a public-key certificate:

– whether the public-key certificate is still valid;

– the level of trustworthiness of the issuing CA.

The relying party may use a local client to answer the first point, in which case the trust broker will only answer the

second. Alternatively, the relying party may ask the trust broker to answer both points.

The relying party requesting information shall act as the client of the association, while the trust broker acts the server.

15.2 Defined protected protocol data unit types

The following PDU types are defined for the trust broker protocol.

tbprot WRAPPED-PROT ::= {

 TBprot

 IDENTIFIED BY id-tbprot }

TBprot ::= CHOICE {

 caCert [0] PKCertIdentifier,

 subjectCert [1] PKCertIdentifier,

 tbresponse [2] CHOICE {

 success [0] TBOK,

 failure [1] TBerror,

 ... },

 ... }

15.3 Trust broker protocol initialization request

During association establishment, the version of the trust broker protocol is negotiated as part of the initialization. The

InitializationReq PrPDU has the following syntax.

InitializationReq ::= SEQUENCE {

 version Version,

 ... }

The version component shall hold the version of the trust broker protocol. The syntax of the version is a bit string. The

client may specify multiple versions by setting the appropriate bits, while the server is required to specify only a single

version among those suggested by the client.

The current version is version v1.

15.4 Trust broker protocol initialization accept

When accepting the initialization information in the InitializationReq PrPDU, the server shall return an

InitializationAcc PrPDU. It has the following syntax.

ISO/IEC 9594-11:2020 (E)

52 Rec. ITU-T X.510 (08/2020)

InitializationAcc ::= SEQUENCE {

 version Version,

 ... }

The version component shall specify a single version of those suggested by the client.

If the client does not accept the InitializationAcc PrPDU, it shall issue an InitializationAbort PrPDU.

This PrPDU shall be embedded in a HandshakeAcc WrPDU (see clause 9.3).

15.5 Trust broker protocol initialization reject

When rejecting the initialization information in the InitializationReq PrPDU, the server shall return an

InitializationRej PrPDU. It has the following syntax.

InitializationRej ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersions (0),

 ... },

 ... }

The diag component signals the reason for the reject:

a) the server does not support any of the versions proposed by the client.

This PrPDU shall be embedded in a HandshakeProRej WrPDU (see clause 9.5).

15.6 Trust broker protocol initialization abort

When rejecting the initialization information in the InitializationAcc PrPDU, the client shall return an

InitializationAbort PrPDU. It has the following syntax.

InitializationAbort ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 onlySingleVersionAllowed (1),

 ... },

 ... }

The diag component signals the reason for the abort:

a) the unsupportedVersion diagnostic code shall be selected if the server specifies a single version not

included in those proposed by the client;

b) the onlySingleVersionAllowed diagnostic code shall be selected if the server returned multiple

versions.

This PrPDU shall be embedded in an ApplAbort WrPDU (see clause 9.8).

15.7 Trust broker request syntax

The syntax of format of a trust broker request is as follows.

TBrequest ::= CHOICE {

 caCert [0] PKCertIdentifier,

 subjectCert [1] PKCertIdentifier,

 ... }

If the relying party sends the certificate of the CA, then only the second point in clause 15.1 is to be answered. The TB

does not know which of the CA's subjects the relying party is communicating with, and therefore can only return

information that relates to all certificates issued by this CA. This method protects the privacy of the relying party by not

divulging the subjects that the relying party communicates with. The TB shall check that the CA's certificate is still valid

and then return information about the trustworthiness of all the subject certificates issued by this CA.

If the relying party sends the certificate of the subject, then the TB shall check that the subject's certificate is still valid

and then check that the CA's certificate is still valid and return information about the trustworthiness of all the subject

certificates issued by this CA.

15.8 Trust broker response syntax

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 53

TBresponse ::= CHOICE {

 success [0] TBOK,

 failure [1] TBerror,

 ... }

TBOK ::= SEQUENCE {

 levelOfAssurance [0] INTEGER (0..100),

 confidenceLevel [1] INTEGER (0..100),

 validationTime [2] UTCTime,

 info UTF8String OPTIONAL,

 ... }

If the trust broker successfully validates the presented public-key certificate, it returns a value of the TBOK data type.

The TBOK data type has the following components.

a) The levelOfAssurance component shall indicate the level of assurance that the relying party can have

in the subject's public-key certificate, as determined by the responding trust broker. This assurance is

asserted by the trust broker as a result of its careful analysis of many factors. Different trust brokers may

therefore return different levels of assurance values for the same presented public-key certificate due to

their different validation procedures. The level of assurance value will be in the range 0 to 100, where 0

indicates zero assurance and 100 indicates full assurance.

b) The confidenceLevel component shall indicate the confidence that the trust broker has in the level of

assurance value that it has returned, where 0 indicates zero confidence and 100 indicates full confidence.

c) The validationTime component shall hold the date and time at which the trust broker last checked the

revocation information for the presented certificate.

d) The info component, when present, shall hold additional information to be presented to the requestor.

15.9 Trust broker error information

If the TB fails to validate the presented certificate, it returns an error code and diagnostic string. Note that if the TB

validates the certificate but does not trust it or the issuer, it should return TBOK with a loss of alignment (LoA) of zero.

TBerror ::= SEQUENCE {

 code ENUMERATED {

 caCertInvalid (1),

 unknownCert (2),

 unknownCertStatus (3),

 subjectCertRevoked (4),

 incorrectCert (5),

 contractExpired (6),

 pathValidationFailed (7),

 timeOut (8),

 other (99),

 ... },

 diagnostic UTF8String OPTIONAL,

 ... }

The error code can be one of the following:

a) caCertInvalid – either the presented CA certificate is not valid, or the certificate of a CA superior to

the presented subject certificate is not valid;

b) unknownCert – the certificate submitted to the TB by the relying party is unknown and cannot be

validated;

c) unknownCertStatus – the TB cannot determine the status of the (known) certificate submitted by the

relying party;

d) subjectCertRevoked – the presented subject certificate has been revoked;

e) incorrectCert – the presented certificate is incorrectly formatted;

f) contractExpired – the relying party’s contract with the TB has expired and should be renewed before

service can be restored;

g) pathValidationFailed – one or more of the CA certificates in the chain from the subject’s certificate

to the root CA could not be validated – another attempt at a later time may succeed;

h) timeOut – the presented certificate could not be validated because one or more services timed out –

retrying again later may rectify this error;

ISO/IEC 9594-11:2020 (E)

54 Rec. ITU-T X.510 (08/2020)

i) other – the presented certificate could not be validated for some reason other than one of the above – if

this error code is used, then it is mandatory for the TB to complete the diagnostic string.

The diagnostic string is an optional parameter that the TB may wish to be recorded in the client logs and displayed to the

relying party. It is mandatory if the error code "other" is returned.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 55

Annex A

Crypto Tools in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 type, value and information object definitions for cryptographic specifications and

constitutes a formal ASN.1 module.

CryptoTools {joint-iso-itu-t ds(5) module(1) cryptoTools(42) 9}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

/*

Last component of object identifiers for X.510 modules

42 - CryptoTools

43 - Wrapper

44 - AVL-management

45 - CaSubscription

46 - TrustBroker

47 - ProtProtocols

48 - GenAlgo

*/

-- EXPORTS All

IMPORTS

 AlgoInvoke{}, ALGORITHM, AlgorithmIdentifier{}, AlgorithmWithInvoke{}

 FROM PKI-Stub

 {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9} WITH SUCCESSORS

 id-algo-mca

 FROM GenAlgo

 {joint-iso-itu-t ds(5) module(1) genAlgo(48) 9} WITH SUCCESSORS ;

multipleSignaturesAlgo ALGORITHM ::= {

 PARMS MultipleSignaturesAlgo

 IDENTIFIED BY id-algo-multipleSignaturesAlgo }

MultipleSignaturesAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedSignatureAlgorithms}}

SupportedSignatureAlgorithms ALGORITHM ::= {...}

multipleSymmetricKeyAlgo ALGORITHM ::= {

 PARMS MultipleSymmetricKeyAlgo

 IDENTIFIED BY id-algo-multipleSymmetricKeyAlgo }

MultipleSymmetricKeyAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedSymmetricKeyAlgorithms}}

SupportedSymmetricKeyAlgorithms ALGORITHM ::= {...}

multiplePublicKeyAlgo ALGORITHM ::= {

 PARMS MultiplePublicKeyAlgo

 IDENTIFIED BY id-algo-multiplePublicKeyAlgo }

MultiplePublicKeyAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedPublicKeyAlgorithms}}

SupportedPublicKeyAlgorithms ALGORITHM ::= {...}

multipleHashAlgo ALGORITHM ::= {

 PARMS MultipleHashAlgo

 IDENTIFIED BY id-algo-multipleHashAlgo }

ISO/IEC 9594-11:2020 (E)

56 Rec. ITU-T X.510 (08/2020)

MultipleHashAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedHashAlgorithms}}

SupportedHashAlgorithms ALGORITHM ::= {...}

multipleAuthenEncryptAlgo ALGORITHM ::= {

 PARMS MultipleAuthenEncryptAlgo

 IDENTIFIED BY id-algo-multipleAuthenEncryptAlgo }

MultipleAuthenEncryptAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedAuthenEncryptAlgorithms}}

SupportedAuthenEncryptAlgorithms ALGORITHM ::= {...}

multipleIcvAlgo ALGORITHM ::= {

 PARMS MultipleIcvAlgo

 IDENTIFIED BY id-algo-multipleIcvAlgo }

MultipleIcvAlgo ::= SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedIcvAlgorithms}}

SupportedIcvAlgorithms ALGORITHM ::= {...}

-- Auxiliary data types

MULTY-SIGNED{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 algorithm ALGORITHM.&id({multipleSignaturesAlgo}),

 parmeters SEQUENCE SIZE (1..MAX) OF

 sign SEQUENCE {

 algo AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 signature BIT STRING,

 ... },

 ... }

Signed{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 signature BIT STRING,

 altSignature BIT STRING OPTIONAL,

 ... }

ICV-Total{ToBeProtected} ::= SEQUENCE {

 toBeProtected ToBeProtected,

 algorithmIdentifier AlgorithmWithInvoke{{SupportedIcvAlgorithms}},

 icv BIT STRING,

 altAlgorithmIdentifier [0] AlgorithmWithInvoke{{SupportedIcvAlgorithms}} OPTIONAL,

 altIcv [1] BIT STRING OPTIONAL,

 ... }

 (WITH COMPONENTS {..., altAlgorithmIdentifier PRESENT, altIcv PRESENT } |

 WITH COMPONENTS {..., altAlgorithmIdentifier ABSENT, altIcv ABSENT })

ICV-Invoke{ToBeProtected} ::= SEQUENCE {

 toBeProtected ToBeProtected,

 dynParms [0] AlgoInvoke{{SupportedIcvAlgorithms}} OPTIONAL,

 icv BIT STRING,

 ... }

ENCIPHERED{ToBeEnciphered} ::= OCTET STRING (CONSTRAINED BY {

 -- shall be the result of applying an encipherment procedure

 -- to the BER-encoded octets of a value of -- ToBeEnciphered })

AUTHEN-ENCRYPT{ToBeAuth, ToBeEnciphered} ::= SEQUENCE {

 aad [0] ToBeAuth OPTIONAL,

 encr [1] ToBeEnciphered,

 ... }

-- Algorithms

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 57

id-algo-multipleSignaturesAlgo OBJECT IDENTIFIER ::= {id-algo-mca 1}

id-algo-multipleSymmetricKeyAlgo OBJECT IDENTIFIER ::= {id-algo-mca 2}

id-algo-multiplePublicKeyAlgo OBJECT IDENTIFIER ::= {id-algo-mca 3}

id-algo-multipleHashAlgo OBJECT IDENTIFIER ::= {id-algo-mca 4}

id-algo-multipleAuthenEncryptAlgo OBJECT IDENTIFIER ::= {id-algo-mca 5}

id-algo-multipleIcvAlgo OBJECT IDENTIFIER ::= {id-algo-mca 6}

END -- CryptoTools

ISO/IEC 9594-11:2020 (E)

58 Rec. ITU-T X.510 (08/2020)

Annex B

Wrapper protocol in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 type, value and information object definitions for the wrapper protocol in the form of

the ASN.1 module Wrapper. This ASN.1 module is the formal specification of the wrapper protocol.

NOTE – This module was called PkiPMIWrapper in Rec. ITU-T X.509 (2016) | ISO/IEC 9594-8 :2017. The name is changed

to indicate that the module is also relevant outside the strict PKI/PMI area.

Wrapper {joint-iso-itu-t ds(5) module(1) wrapper(43) 9}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

 AlgoInvoke{}, ALGORITHM, AlgorithmIdentifier{}, AlgorithmWithInvoke{},

AttributeCertificate, id-wrprot, PkiPath

 FROM PKI-Stub

 {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9}

 SupportedProtSet

 FROM ProtProtocols

 {joint-iso-itu-t ds(5) module(1) protProtocols(47) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.510 | ISO/IEC 9594-11

 AUTHEN-ENCRYPT{}, ENCIPHERED{}, ICV-Invoke{}, Signed{}

 FROM CryptoTools

 {joint-iso-itu-t ds(5) module(1) cryptoTools(42) 9 } WITH SUCCESSORS ;

WRAPPED-PROT ::= TYPE-IDENTIFIER

WrappedProt {WRAPPED-PROT:SupportedProtSet} ::= SEQUENCE {

 id WRAPPED-PROT.&id({SupportedProtSet}),

 prot WRAPPED-PROT.&Type({SupportedProtSet}{@id}),

 ... }

WrapperPDU ::= CHOICE {

 handshakeReq [0] HandshakeReq,

 handshakeAcc [1] HandshakeAcc,

 handshakeWrpRej [2] HandshakeWrpRej,

 handshakeProRej [3] HandshakeProRej,

 handshakeSecAbort [4] HandshakeSecAbort,

 handshakeProAbort [5] HandshakeProAbort,

 dtSecAbort [6] DtSecAbort,

 applAbort [7] ApplAbort,

 releaseReq [8] ReleaseReq,

 releaseRsp [9] ReleaseRsp,

 dataTransferClient [10] DataTransferClient,

 dataTransferServer [11] DataTransferServer,

 ... }

HandshakeReq ::= Signed{TbsHandshakeReq}

TbsHandshakeReq ::= SEQUENCE {

 version Version DEFAULT {v1},

 prProt WRAPPED-PROT.&id ({SupportedProtSet}),

 sigAlg AlgorithmIdentifier {{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier {{SupportedAltSignatureAlgorithms}} OPTIONAL,

 pkiPath DER-PkiPath,

 assoID AssoID,

 time TimeStamp,

 keyEst AlgorithmWithInvoke{{SupportedKeyEstablishmentAlgos}},

 altKeyEst [1] AlgorithmWithInvoke{{SupportedAltKeyEstablishmentAlgos}} OPTIONAL,

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 59

 encr-mode CHOICE {

 aead [2] SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedAeadAlgorithms}},

 non-aead [3] SEQUENCE {

 encr [0] SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedSymmetricKeyAlgorithms}}

 OPTIONAL,

 icvAlgID [1] SEQUENCE SIZE (1..MAX) OF

 algo AlgorithmIdentifier{{SupportedIcvAlgorithms}} },

 ... },

 attCert DER-AttributeCertificate OPTIONAL,

 applData [4] WrappedProt{{SupportedProtSet}} OPTIONAL,

 ... }

Version ::= BIT STRING {

 v1 (0) -- version 1

 }

DER-PkiPath ::= OCTET STRING

 (CONTAINING PkiPath ENCODED BY der)

DER-AttributeCertificate ::= OCTET STRING

 (CONTAINING AttributeCertificate ENCODED BY der)

der OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

AssoID ::= INTEGER (0..32767)

TimeStamp ::= GeneralizedTime

SupportedSignatureAlgorithms ALGORITHM ::= {...}

SupportedAltSignatureAlgorithms ALGORITHM ::= {...}

SupportedKeyEstablishmentAlgos ALGORITHM ::= {...}

SupportedAltKeyEstablishmentAlgos ALGORITHM ::= {...}

SupportedAeadAlgorithms ALGORITHM ::= {...}

SupportedSymmetricKeyAlgorithms ALGORITHM ::= {...}

SupportedIcvAlgorithms ALGORITHM ::= {...}

HandshakeAcc ::= Signed{TbsHandshakeAcc}

TbsHandshakeAcc ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigSel CHOICE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier{{SupportedAltSignatureAlgorithms}} },

 pkiPath DER-PkiPath,

 assoID AssoID,

 time TimeStamp,

 keyEstSel CHOICE {

 keyEst AlgorithmWithInvoke{{SupportedKeyEstablishmentAlgos}},

 altKeyEst [1] AlgorithmWithInvoke{{SupportedAltKeyEstablishmentAlgos}} },

 encr-mode CHOICE {

 aead [2] AlgorithmIdentifier{{SupportedAeadAlgorithms}},

 non-aead [3] SEQUENCE {

 encr [0] AlgorithmIdentifier{{SupportedSymmetricKeyAlgorithms}} OPTIONAL,

 icvAlgID [1] AlgorithmIdentifier{{SupportedIcvAlgorithms}} },

 ... },

 attCert DER-AttributeCertificate OPTIONAL,

 applData [4] WrappedProt{{SupportedProtSet}} OPTIONAL,

 ... }

HandshakeWrpRej ::= Signed{TbsHandshakeWrpRej}

TbsHandshakeWrpRej ::= SEQUENCE {

ISO/IEC 9594-11:2020 (E)

60 Rec. ITU-T X.510 (08/2020)

 version Version DEFAULT {v1},

 sigSel CHOICE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier{{SupportedAltSignatureAlgorithms}} },

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 diag WrpError OPTIONAL,

 ... }

HandshakeProRej ::= Signed{TbsHandshakeProRej}

TbsHandshakeProRej ::= SEQUENCE {

 sigSel CHOICE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 altSigAlg [0] AlgorithmIdentifier{{SupportedAltSignatureAlgorithms}} },

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 applData WrappedProt{{SupportedProtSet}},

 ... }

HandshakeSecAbort ::= Signed{TbsHandshakeSecAbort}

TbsHandshakeSecAbort ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 diag WrpError OPTIONAL,

 ... }

HandshakeProAbort ::= Signed{TbsHandshakeProAbort}

TbsHandshakeProAbort ::= SEQUENCE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 applData WrappedProt{{SupportedProtSet}},

 ... }

DtSecAbort ::= Signed{TbsDtSecAbort}

TbsDtSecAbort ::= SEQUENCE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 seq SequenceNumber,

 diag WrpError OPTIONAL,

 ... }

ApplAbort ::= Signed{TbsApplAbort}

TbsApplAbort ::= SEQUENCE {

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 seq SequenceNumber,

 applData WrappedProt{{SupportedProtSet}},

 ... }

ReleaseReq ::= Signed{TbsReleaseReq}

TbsReleaseReq ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 assoID AssoID,

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 61

 time TimeStamp,

 pkiPath DER-PkiPath,

 ... }

ReleaseRsp ::= Signed{TbsReleaseRsp}

TbsReleaseRsp ::= SEQUENCE {

 version Version DEFAULT {v1},

 sigAlg AlgorithmIdentifier{{SupportedSignatureAlgorithms}},

 assoID AssoID,

 time TimeStamp,

 pkiPath DER-PkiPath,

 ... }

DataTransferClient ::= CHOICE {

 aead [0] DataTransferClientAE,

 non-aead [1] DataTransferClientNEA,

 ... }

DataTransferClientAE ::= AUTHEN-ENCRYPT{AadClientAE, WRAPPED-PROT.&Type}

AadClientAE ::= SEQUENCE {

 COMPONENTS OF AadClient,

 encInvoke [3] AlgoInvoke{{SupportedAeadAlgorithms}} OPTIONAL,

 ... }

DataTransferClientNEA ::= ICV-Invoke{TbpDataTransferClient}

TbpDataTransferClient ::= SEQUENCE {

 COMPONENTS OF AadClient,

 encEnvoke [3] AlgoInvoke{{SupportedSymmetricKeyAlgorithms}} OPTIONAL,

 conf CHOICE {

 clear [4] WrappedProt{{SupportedProtSet}},

 protected [5] ENCIPHERED{WRAPPED-PROT.&Type},

 ... },

 ... }

AadClient ::= SEQUENCE {

 invokeID [0] InvokeID OPTIONAL,

 assoID AssoID,

 time TimeStamp,

 seq SequenceNumber,

 keyEst [2] AlgoInvoke{{SupportedKeyEstablishmentAlgos}} OPTIONAL }

InvokeID ::= OCTET STRING (SIZE (6))

SequenceNumber ::= INTEGER (0..2147483647)

DataTransferServer ::= CHOICE {

 aead [0] DataTransferServerAE,

 non-aead [1] DataTransferServerNEA,

 ... }

DataTransferServerAE ::= AUTHEN-ENCRYPT{AadServerAE, WRAPPED-PROT.&Type}

AadServerAE ::= SEQUENCE {

 COMPONENTS OF AadServer,

 encInvoke [3] AlgoInvoke{{SupportedAeadAlgorithms}} OPTIONAL,

 ... }

DataTransferServerNEA ::= ICV-Invoke{TbpDataTransferServer}

TbpDataTransferServer ::= SEQUENCE {

 COMPONENTS OF AadServer,

 encInvoke [3] AlgoInvoke{{SupportedSymmetricKeyAlgorithms}} OPTIONAL,

 conf CHOICE {

 clear [4] WrappedProt{{SupportedProtSet}},

 protected [5] ENCIPHERED{WRAPPED-PROT.&Type},

 ... },

 ... }

ISO/IEC 9594-11:2020 (E)

62 Rec. ITU-T X.510 (08/2020)

AadServer ::= SEQUENCE {

 invokeID [0] InvokeID OPTIONAL,

 assoID AssoID,

 time TimeStamp,

 seq SequenceNumber,

 reqRekey [1] BOOLEAN DEFAULT FALSE,

 changedKey [2] BOOLEAN DEFAULT FALSE }

WrpError ::= ENUMERATED {

 protocol-error (0),

 invalid-signatureAlgorithm (1),

 unexpected-version (2),

 protected-protocol-not-supported (3),

 duplicate-assoID (4),

 invalid-time-value (5),

 key-estab-algorithm-not-supported (6),

 encr-mode-aead-not-supported (7),

 encryption-not-supported (8),

 encryption-required (9),

 aead-algorithms-not-supported (10),

 aead-is-required (11),

 symmetricKey-algorithms-not-supported (12),

 icv-algorithms-not-supported (13),

 invalid-attribute-certificate (14),

 alt-signature-not-allowed (15),

 only-one-version (16),

 invalid-key-estab-algorithm (17),

 invalid-alt-key-estab-algorithm (18),

 invalid-aead-algorithm (19),

 aead-not-allowed (20),

 invalid-symmetricKey-algorithm (21),

 invalid-icv-algorithm (22),

 dynamic-aead-algo-parms-required (23),

 invalid-dynamic-aead-algo-parms (24),

 dynamic-aead-algo-parms-not-required (25),

 dynamic-symKey-algo-parms-required (26),

 invalid-dynamic-symKey-algo-parms (27),

 dynamic-symKey-algo-parms-not-required (28),

 dynamic-icv-algo-parms-required (29),

 invalid-dynamic-icv-algo-parms (30),

 dynamic-icv-algo-parms-not-required (31),

 unexpected-invokeID-received (32),

 rekey-out-of-sequence (33),

 invalid-dynamic-keyEst-algo-parms (34),

 changedKey-out-of-sequence (35),

 ... }

END -- Wrapper

*

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 63

Annex C

Protected protocol interface to the wrapper protocol

(This annex forms an integral part of this Recommendation | International Standard.)

As specified in clause 8.8, a protected protocol is defined as an information object of the WRAPPER-PROT information

object class. This means that a particular protected protocol may be specified as follows.

<identifier> WRAPPED-PROT ::= {

 <The top-level APDU of the protected protocol>

 IDENFIED BY <object identifier for protected protocol>

A protected protocol is then represented by a data value being an instance of the WrapperProt data type specified in

clause 8.8. This implies that the protected protocol is a sequence of the identifying object identifier and the chosen PrPDU

from the top-level of the APDU.

For a specific purpose, e.g., creating an implementation, an ASN.1 module, named ProtProtocols shall be included in

the set of ASN.1 modules to be compiled. The structure of this module is shown in the following.

This annex defines three different protocols potentially to be protected. For each of them, the top-level APDU is imported

from the relevant module.

The object set SupportedProtSet is then imported by the wrapper protocol allowing either of the protocols in the object

set to be protected. To ease implementation only a single information object should be included.

ProtProtocols {joint-iso-itu-t ds(5) module(1) protProtocols(47) 9}

IMPLICIT TAGS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

 id-wrprot

 FROM

 PKI-Stub {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9} WITH SUCCESSORS

 WRAPPED-PROT

 FROM Wrapper

 {joint-iso-itu-t ds(5) module(1) wrapper(43) 9} WITH SUCCESSORS

 AvlProt

 FROM AVL-management

 {joint-iso-itu-t ds(5) module(1) avl-management(44) 9} WITH SUCCESSORS

 CasubProt

 FROM CaSubscription

 {joint-iso-itu-t ds(5) module(1) caSubscription(45) 9} WITH SUCCESSORS

 TBprot

 FROM TrustBroker

 {joint-iso-itu-t ds(5) module(1) trustBroker(46) 9} WITH SUCCESSORS;

avlProt WRAPPED-PROT ::= {

 AvlProt

 IDENTIFIED BY id-avlprot }

casubProt WRAPPED-PROT ::= {

 CasubProt

 IDENTIFIED BY id-casubprot }

tbprot WRAPPED-PROT ::= {

 TBprot

 IDENTIFIED BY id-tbprot }

SupportedProtSet WRAPPED-PROT ::= {avlProt | casubProt | tbprot }

ISO/IEC 9594-11:2020 (E)

64 Rec. ITU-T X.510 (08/2020)

id-avlprot OBJECT IDENTIFIER ::= {id-wrprot 0}

id-casubprot OBJECT IDENTIFIER ::= {id-wrprot 1}

id-tbprot OBJECT IDENTIFIER ::= {id-wrprot 2}

END -- ProtProtocols

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 65

Annex D

Cryptographic algorithms

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 type, value and information object definitions for the use of cryptographic algorithms

in the form of the ASN.1 module GenAlgo.

GenAlgo {joint-iso-itu-t ds(5) module(1) genAlgo(48) 9}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

 ALGORITHM, id-algo

 FROM

 PKI-Stub {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9} WITH SUCCESSORS ;

id-algo-mca OBJECT IDENTIFIER ::= {id-algo 1} -- multiple-cryptographic algorithms

id-algo-ska OBJECT IDENTIFIER ::= {id-algo 2} -- symmetric-key algorithms

id-algo-aead OBJECT IDENTIFIER ::= {id-algo 3} -- authenticated encryption with asso data

id-algo-pka OBJECT IDENTIFIER ::= {id-algo 4} -- public-key algorithms

id-algo-ha OBJECT IDENTIFIER ::= {id-algo 5} -- hash algorithms

id-algo-dsa OBJECT IDENTIFIER ::= {id-algo 6} -- digital dignature algorithms

id-algo-kea OBJECT IDENTIFIER ::= {id-algo 7} -- key establishment algorithms

-- Key establishment algorithms

dhModpGr14Hkdf256Algo ALGORITHM ::= {

 PARMS Group14

 DYN-PARMS Payload14

 IDENTIFIED BY id-algo-dhModpGr14Hkdf256Algo }

Group14 ::= INTEGER (14)

Payload14 ::= SEQUENCE {

 dhPublicKey OCTET STRING (SIZE (256)),

 nonce OCTET STRING (SIZE (32)),

 ... }

dhModpGr23Hkdf256Algo ALGORITHM ::= {

 PARMS Group23

 DYN-PARMS Payload23

 IDENTIFIED BY id-algo-dhModpGr23Hkdf256Algo }

Group23 ::= INTEGER (23)

Payload23 ::= SEQUENCE {

 dhPublicKey OCTET STRING (SIZE (512)),

 nonce OCTET STRING (SIZE (32)),

 ... }

dhModpGr28Hkdf256Algo ALGORITHM ::= {

 PARMS Group28

 DYN-PARMS Payload28

 IDENTIFIED BY id-algo-dhModpGr28Hkdf256Algo }

Group28 ::= INTEGER (28)

Payload28 ::= SEQUENCE {

 dhPublicKey OCTET STRING (SIZE (512)),

 nonce OCTET STRING (SIZE (32)),

 ... }

ISO/IEC 9594-11:2020 (E)

66 Rec. ITU-T X.510 (08/2020)

-- Object identifier allocation

id-algo-dhModpGr14Hkdf256Algo OBJECT IDENTIFIER ::= {id-algo-kea 1}

id-algo-dhModpGr15Hkdf384Algo OBJECT IDENTIFIER ::= {id-algo-kea 2}

id-algo-dhModpGr16Hkdf512Algo OBJECT IDENTIFIER ::= {id-algo-kea 3}

id-algo-dhModpGr17Hkdf768Algo OBJECT IDENTIFIER ::= {id-algo-kea 4}

id-algo-dhModpGr18Hkdf1024Algo OBJECT IDENTIFIER ::= {id-algo-kea 5}

id-algo-dhModpGr23Hkdf256Algo OBJECT IDENTIFIER ::= {id-algo-kea 10}

id-algo-dhModpGr28Hkdf256Algo OBJECT IDENTIFIER ::= {id-algo-kea 15}

END -- GenAlgo

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 67

Annex E

Authorization and validation list management in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 type, value and information object definitions for the AVMP in the form of the ASN.1

module AVL-management.

NOTE – This module was part of the PkiPMIProtocolSpecifications in Rec. ITU-T X.509 (2016) |

ISO/IEC 9594-8:2017.

AVL-management {joint-iso-itu-t ds(5) module(1) avl-management(44) 9}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

/*

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 Attribute{}, SupportedAttributes

 FROM InformationFramework

 {joint-iso-itu-t ds(5) module(1) informationFramework(1) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 Certificate, CertAVL, AvlSerialNumber

 FROM AuthenticationFramework

 {joint-iso-itu-t ds(5) module(1) authenticationFramework(7) 9}

*/

 -- From x510-import

 Attribute{}, AvlSerialNumber, CertAVL, Certificate, SupportedAttributes

 FROM PKI-Stub

 {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9} WITH SUCCESSORS

 Version

 FROM Wrapper

 {joint-iso-itu-t ds(5) module(1) wrapper(43) 9} WITH SUCCESSORS ;

-- PDU types

AvlProt ::= CHOICE {

 initReq [0] InitializationRec,

 initAcc [1] InitializationAcc,

 initRej [2] InitializationRej,

 initAbt [3] InitializationAbort,

 certReq [4] CertReq,

 certRsp [5] CertRsp,

 addAvlReq [6] AddAvlReq,

 addAvlRsp [7] AddAvlRsp,

 replaceAvlReq [8] ReplaceAvlReq,

 replaceAvlRsp [9] ReplaceAvlRsp,

 deleteAvlReq [10] DeleteAvlReq,

 deleteAvlRsp [11] DeleteAvlRsp,

 abortAVL [12] AbortAVL,

 ... }

InitializationRec ::= SEQUENCE {

 version Version,

 ... }

InitializationAcc ::= SEQUENCE {

 version Version,

 ... }

ISO/IEC 9594-11:2020 (E)

68 Rec. ITU-T X.510 (08/2020)

InitializationRej ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 ... },

 ... }

InitializationAbort ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 onlySingleVersionAllowed (1),

 ... },

 ... }

CertReq ::= SEQUENCE {

 invokeID InvokeID,

 ... }

InvokeID ::= INTEGER (0..127)

CertRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertOK,

 failure [1] CertErr,

 ... },

 ... }

CertOK ::= SEQUENCE {

 dhCert Certificate,

 ... }

CertErr ::= SEQUENCE {

 notOK AVMP-error,

 note Notifications OPTIONAL,

 ... }

Notifications ::= SEQUENCE SIZE (1..MAX) OF Attribute {{SupportedAttributes}}

AddAvlReq ::= SEQUENCE {

 invokeID InvokeID,

 certlist CertAVL,

 ... }

AddAvlRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] AddAvlOK,

 failure [1] AddAvlErr,

 ... },

 ... }

AddAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

AddAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

ReplaceAvlReq ::= SEQUENCE {

 invokeID InvokeID,

 old AvlSerialNumber OPTIONAL,

 new CertAVL,

 ... }

ReplaceAvlRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] RepAvlOK,

 failure [1] RepAvlErr,

 ... },

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 69

 ... }

RepAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

RepAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

DeleteAvlReq ::= SEQUENCE {

 invokeID InvokeID,

 avl-Id AvlSerialNumber OPTIONAL,

 ... }

DeleteAvlRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] DelAvlOK,

 failure [1] DelAvlErr,

 ... },

 ... }

DelAvlOK ::= SEQUENCE {

 ok NULL,

 ... }

DelAvlErr ::= SEQUENCE {

 notOK AVMP-error,

 ... }

AbortAVL ::= SEQUENCE {

 invokeID InvokeID,

 reason AVMP-error,

 ... }

AVMP-error ::= ENUMERATED {

 noReason (0),

 protocolError (1),

 duplicateAVL (2),

 missingAvlComponent (3),

 invalidAvlVersion (4),

 notAllowedForConstrainedAVLEntity (5),

 constrainedRequired (6),

 nonConstrainedRequired (7),

 unsupportedCriticalEntryExtension (8),

 unsupportedCriticalExtension (9),

 maxAVLsExceeded (10),

 unknownAVL (11),

 ... }

END -- AVL-management

ISO/IEC 9594-11:2020 (E)

70 Rec. ITU-T X.510 (08/2020)

Annex F

Certification authority subscription in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 type, value and information object definitions used by the CASP in the form of the

ASN.1 module CaSubsription.

NOTE – This module was part of the PkiPMIProtocolSpecifications in Rec. ITU-T X.509 (2016) |

ISO/IEC 9594-8:2017.

CaSubscription {joint-iso-itu-t ds(5) module(1) caSubscription(45) 9}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

/*

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 Name

 FROM InformationFramework

 {joint-iso-itu-t ds(5) module(1) informationFramework(1) 9} WITH SUCCESSORS

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 Certificate, CertificateSerialNumber

 FROM AuthenticationFramework

 {joint-iso-itu-t ds(5) module(1) authenticationFramework(7) 9}

 CRLReason

 FROM CertificateExtensions

 {joint-iso-itu-t ds(5) module(1) certificateExtensions(26) 9}

*/

 Certificate, CertificateSerialNumber, CRLReason, Name

 FROM PKI-Stub

 {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9}

 -- from Rec. ITU-T X.510 | ISO/IEC 9594-11

 Version

 FROM Wrapper

 {joint-iso-itu-t ds(5) module(1) wrapper(43) 9} WITH SUCCESSORS ;

CasubProt ::= CHOICE {

 initReq [0] InitializationRec,

 initAcc [1] InitializationAcc,

 initRej [2] InitializationRej,

 initAbt [3] InitializationAbort,

 certSubscribeReq [4] CertSubscribeReq,

 certSubscribeRsp [5] CertSubscribeRsp,

 certUnsubscribeReq [6] CertUnsubscribeReq,

 certUnsubscribeRsp [7] CertUnsubscribeRsp,

 certReplaceReq [8] CertReplaceReq,

 certReplaceRsp [9] CertReplaceRsp,

 certUpdateReq [10] CertUpdateReq,

 certUpdateRsp [11] CertUpdateRsp,

 cAsubscribeAbort [12] CAsubscribeAbort,

 ... }

InitializationRec ::= SEQUENCE {

 version Version,

 ... }

InitializationAcc ::= SEQUENCE {

 version Version,

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 71

 ... }

InitializationRej ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 ... },

 ... }

InitializationAbort ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 onlySingleVersionAllowed (1),

 ... },

 ... }

CertSubscribeReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

InvokeID ::= INTEGER (0..127)

CertSubscribeRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertSubscribeOK,

 failure [1] CertSubscribeErr,

 ... },

 ... }

CertSubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 cert Certificate,

 status CertStatus,

 revokeReason CRLReason OPTIONAL,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertStatus ::= ENUMERATED {

 good (0),

 revoked (1),

 on-hold (2),

 expired (3),

 ... }

CASP-CertStatusCode ::= ENUMERATED {

 noReason (1),

 unknownCert (2),

 ... }

CertSubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

CertUnsubscribeReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 ... }

CertUnsubscribeRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

ISO/IEC 9594-11:2020 (E)

72 Rec. ITU-T X.510 (08/2020)

 success [0] CertUnsubscribeOK,

 failure [1] CertUnsubscribeErr,

 ... },

 ... }

CertUnsubscribeOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUnsubscribeErr ::= SEQUENCE {

 code CASP-error,

 ... }

CertReplaceReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 old CertificateSerialNumber,

 new Certificate,

 ... },

 ... }

CertReplaceRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertReplaceOK,

 failure [1] CertReplaceErr,

 ... },

 ... }

CertReplaceOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... },

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertReplaceErr ::= SEQUENCE {

 code CASP-error,

 ... }

CertUpdateReq ::= SEQUENCE {

 invokeID InvokeID,

 certs SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 certStatus CertStatus,

 ... },

 ... }

CertUpdateRsp ::= SEQUENCE {

 invokeID InvokeID,

 result CHOICE {

 success [0] CertUpdateOK,

 failure [1] CertUpdateErr,

 ... },

 ... }

CertUpdateOK ::= SEQUENCE (SIZE (1..MAX)) OF CHOICE {

 ok [0] SEQUENCE {

 subject Name,

 serialNumber CertificateSerialNumber,

 ... },

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 73

 not-ok [1] SEQUENCE {

 status CASP-CertStatusCode,

 ... },

 ... }

CertUpdateErr ::= SEQUENCE {

 code CASP-error,

 ... }

CAsubscribeAbort ::= SEQUENCE {

 invokeID InvokeID,

 reason CASP-error,

 ... }

CASP-error ::= ENUMERATED {

 noReason (0),

 unknownContentType (1),

 unsupportedWLMPversion (2),

 missingContent (3),

 missingContentComponent (4),

 invalidContentComponent (5),

 sequenceError (6),

 unknownSubject (7),

 unknownCert (8),

 ... }

END -- CaSubsription

ISO/IEC 9594-11:2020 (E)

74 Rec. ITU-T X.510 (08/2020)

Annex G

Trust broker in ASN.1

(This annex forms an integral part of this Recommendation | International Standard.)

This annex includes all the ASN.1 type, value and information object definitions used by the trust broker protocol in the

form of the ASN.1 module TrustBroker.

NOTE – This module was part of the PkiPMIProtocolSpecifications in Rec. ITU-T X.509 (2016) |

ISO/IEC 9594-8:2017.

TrustBroker {joint-iso-itu-t ds(5) module(1) trustBroker(46) 9}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

/*

 PKCertIdentifier

 FROM AuthenticationFramework

 {joint-iso-itu-t ds(5) module(1) authenticationFramework(7) 9} WITH SUCCESSORS

*/

 PKCertIdentifier

 FROM PKI-Stub

 {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9} WITH SUCCESSORS

 Version

 FROM Wrapper

 {joint-iso-itu-t ds(5) module(1) wrapper(43) 9} WITH SUCCESSORS ;

 -- PDU types

TBprot ::= CHOICE {

 initReq [0] InitializationReq,

 initAcc [1] InitializationAcc,

 initRej [2] InitializationRej,

 initAbt [3] InitializationAbort,

 tBrequest [4] TBrequest,

 tBresponse [5] TBresponse,

 ... }

InitializationReq ::= SEQUENCE {

 version Version,

 ... }

InitializationAcc ::= SEQUENCE {

 version Version,

 ... }

InitializationRej ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersions (0),

 ... },

 ... }

InitializationAbort ::= SEQUENCE {

 diag ENUMERATED {

 unsupportedVersion (0),

 onlySingleVersionAllowed (1),

 ... },

 ... }

TBrequest ::= CHOICE {

 caCert [0] PKCertIdentifier,

 subjectCert [1] PKCertIdentifier,

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 75

 ... }

TBresponse ::= CHOICE {

 success [0] TBOK,

 failure [1] TBerror,

 ... }

TBOK ::= SEQUENCE {

 levelOfAssurance [0] INTEGER (0..100),

 confidenceLevel [1] INTEGER (0..100),

 validationTime [2] UTCTime,

 info [3] UTF8String OPTIONAL,

 ... }

TBerror ::= SEQUENCE {

 code ENUMERATED {

 caCertInvalid (1),

 unknownCert (2),

 unknownCertStatus (3),

 subjectCertRevoked (4),

 incorrectCert (5),

 contractExpired (6),

 pathValidationFailed (7),

 timeOut (8),

 other (99),

 ... },

 diagnostic UTF8String OPTIONAL,

 ... }

END -- Trustbroker

ISO/IEC 9594-11:2020 (E)

76 Rec. ITU-T X.510 (08/2020)

Annex H

Migration of cryptographic algorithms

(This annex does not form an integral part of this Recommendation | International Standard.)

H.1 Introduction

This annex applies to protocols in general and not only to the protocol defined by this Specification.

When moving from one cryptographic algorithm to an assumingly stronger cryptographic algorithm of the same type, not

everybody will migrate at the same time, which potentially will give interworking problems. During a migration period,

it should be possible for some entities to use a new stronger cryptographic algorithm while others for a while may keep

using the old one, while at the same time maintaining interworking among all entities.

The migration of cryptographic algorithms occurs in different situations.

a) Use of cryptographic algorithms is negotiated before their use. This is the case where there is a connection-

oriented application layer protocol, i.e. a protocol specification where there is a handshake procedure

followed by a data transfer phase. Cryptographic algorithms used during the data transfer phase can then

be negotiated during the handshake procedure. This can further be divided into:

– measures taken for new application protocols;

– measures taken for existing application protocols.

b) Cryptographic algorithms that are used in the same APDU in which they are specified. This can again be

divided into two cases:

– measures taken for new application protocols;

– measures taken for existing application protocols.

 This may further be divided into migration of digital signature algorithms with associated digital signatures

and migration of other types of cryptographic algorithms.

H.2 Negotiation of cryptographic algorithms

H.2.1 Cryptographic negotiation for new protocols

The client may use the handshake exchange to propose cryptographic algorithms to be used during the subsequent data

transfer phase allowing for negotiation as described in the following.

The following component may be included in a handshake request.

<identifier> SEQUENCE SIZE (1..MAX) OF

 AlgorithmIdentifier {{<algorithm object set of a specific information object class>}},

This component will allow the client to specify a sequence of supported algorithms of the same type of information

objects, e.g., a sequence of hash algorithms. For migration purposes, at last two algorithms shall be included. The first

one in the sequence shall then be the alternative algorithm, i.e., the algorithm to which migration is wanted, while the

second algorithm should be the native algorithm, i.e., the algorithm from which migration is wanted. This assumes that

the client supports and is ready to migrate to the alternative algorithm. Otherwise, the client will only supply the native

algorithm.

The server shall then in the handshake accept include a single algorithm as follows.

<identifier> AlgorithmIdentifier

 {{<algorithm object set of specific a specific object class>}},

Assuming that the client has supplied an alternative algorithm together with the native algorithm in the sequence-of, the

server shall select the first cryptographic algorithm it supports of those proposed by client. If this is the first algorithm in

the sequence-of, i.e., the alternative algorithm, then both the client and the server have migrated. They may now for future

mutual communication use what was the alternative algorithm as the new native algorithm.

H.2.2 Cryptographic negotiation for existing protocols

If an existing protocol already in the handshake procedure has cryptographic algorithm definitions as described in

clause H.2.1, then that subclause applies, although there may be some updates to the procedure.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 77

If the original handshake request only specifies a single cryptographic algorithm to be used during the data transfer phase,

there are two approaches depending on whether ASN.1 extension marks are used by the protocol specification.

In the example shown in Figure H.1, the client suggests a single symmetric-key algorithm to be used during the data

transfer phase. As ASN.1 extension marks are supported, an alternative algorithm specification may then be placed after

the extension mark.

Figure H.1 – Alternative algorithm with extension marks supported

This approach has the advantage that an implementation that supports extension marks, but does not understand the

component with the alternative encryption algorithm, will continue to function. The approach has the disadvantage that

it requires an update to the protocol specification in question.

Another technique is to use the appropriate multiple-cryptographic algorithm specified in clause 6.3 allowing for

specification of several cryptographic algorithms within a single outer algorithm specification.

This technique has the advantage that the protocol specification does not need to be changed. The disadvantage is that

implementations will fail if they do not support the multiple-cryptographic algorithm in question.

As described in the foregoing, the client specifies the algorithm according to preference by placing the alternative

algorithm as the first algorithm and the native algorithm as the second algorithm. The server then selects the first one it

supports.

H.3 Non-negotiable digital signature algorithms

H.3.1 General

Digital signature algorithms and digital signatures are generally used as part of handshake procedure and cannot therefore

be negotiated before their use.

Figure H.2 depicts a structure generally used. Some information requires a digital signature. The digital signature

algorithm to be used is place inside the data that has to be signed and the digital signature is then created over the data to

be signed and appended to the data.

Figure H.2 – Use of digital signatures

ISO/IEC 9594-11:2020 (E)

78 Rec. ITU-T X.510 (08/2020)

H.3.2 Duplicate signatures for new protocols

Figure H.3 depicts a way of providing alternative digital signature algorithm together with an alternative digital signature

for new protocols. The alternative digital signature algorithm may my placed adjacent to the native digital signature

algorithm within the signed area.

Figure H.3 – Duplicate signatures for new protocols

This is further described in Figure H.4, where the handshake request holds two digital signature algorithms, while the

response only holds one. If the server supports the alternative digital signature algorithm, the server will select it for

inclusion in the response. Otherwise, it will select the native digital signature algorithm.

The response only holds a single digital signature generated according to the selected digital signature algorithm.

If the server selects the alternative signature algorithm, both the client and the server have migrated to the alternative

signature and in future may use the alternative digital signature algorithm as the new native digital signature algorithm.

Figure H.4 – Negotiation of digital signature algorithm

The Signed parametrized data specified clause 6.5.2 may be used for the digital signature process.

H.3.3 Duplicate signatures for existing protocols

Generally, it is not possible to specify how existing protocols may be updated to provide a migration path. This will

depend on how the protocol is designed. The different tools for establishing a migration path defined in clauses 6.3 and

6.5 may be used.

In some cases, the SIGNED parameterized data type defined in clause 6.2.1 of Rec. ITU-T X.509 | ISO/IEC 9594-8 may

be utilized when it has originally been used in its simpler form, i.e., where the altAlgorithmIdentifier and

altSignature components are absent. This is illustrated in Figure H.5.

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 79

Figure H.5 – Duplicate signatures for existing protocols

Providing an alternative digital signature for an existing protocol may be divided into whether the protocol supports

ASN.1 extension marks are not.

Figure H.5 represents the situation where a protocol in general has included extension marks. This is a similar situation

to that described in clause H.3.2, with the exception that the alternative digital signature algorithm is placed after the

extension mark and therefore will be ignored if the server does not expect that component. In this case, the server shall

use the alternative digital signature algorithm if it is supported for the native digital signature algorithm component.

Likewise, the server shall only include a single signature.

If ASN.1 extension marks are not supported, a technique like that depicted in Figure H.2 may be used. The

multipleSignaturesAlgo algorithm specification given in clause 6.2 may be used within the protected area, while

multiple signatures may be specified by use of the MULTY-SIGNED{ToBeSigned} data type defined in clause 6.3.

This technique does not require any changes to the existing protocol, although some updated procedures will have to be

observed. It will require changes to implementations.

ISO/IEC 9594-11:2020 (E)

80 Rec. ITU-T X.510 (08/2020)

Annex I

Auxiliary specifications

(This annex does not form an integral part of this Recommendation | International Standard.)

This annex reproduces the ASN.1 specification from other Specifications in the ITU X.500 Series of Recommendations

| ISO/IEC 9594-all parts.

PKI-Stub {joint-iso-itu-t ds(5) module(1) pki-stub(999) 9}

DEFINITIONS ::=

BEGIN

id-wrprot OBJECT IDENTIFIER ::= wrapperProtocolType

wrapperProtocolType OBJECT IDENTIFIER ::= {ds 43}

ds OBJECT IDENTIFIER ::= {joint-iso-itu-t ds(5)}

id-algo OBJECT IDENTIFIER ::= algorithms

algorithms OBJECT IDENTIFIER ::= {ds 44}

ALGORITHM ::= CLASS {

 &Type OPTIONAL,

 &DynParms OPTIONAL,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 [PARMS &Type]

 [DYN-PARMS &DynParms]

 IDENTIFIED BY &id }

AlgorithmWithInvoke{ALGORITHM:SupportedAlgorithms} ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters [0] ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 dynamParms [1] ALGORITHM.&DynParms({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 ... }

AlgorithmIdentifier{ALGORITHM:SupportedAlgorithms} ::= SEQUENCE {

 algorithm ALGORITHM.&id({SupportedAlgorithms}),

 parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm}) OPTIONAL,

 ... }

AlgoInvoke{ALGORITHM:SupportedAlgorithms} ::=

 ALGORITHM.&DynParms({SupportedAlgorithms})

HASH{ToBeHashed} ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 hashValue BIT STRING,

 ... }

SupportedAlgorithms ALGORITHM ::= {...}

SIGNED{ToBeSigned} ::= SEQUENCE {

 toBeSigned ToBeSigned,

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 signature BIT STRING,

 ...,

 altAlgorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}} OPTIONAL,

 altSignature BIT STRING OPTIONAL

 } (WITH COMPONENTS {..., altAlgorithmIdentifier PRESENT, altSignature PRESENT } |

 WITH COMPONENTS {..., altAlgorithmIdentifier ABSENT, altSignature ABSENT })

FingerPrint {ToBeFingerprinted} ::= SEQUENCE {

 algorithmIdentifier AlgorithmIdentifier{{SupportedAlgorithms}},

 fingerprint BIT STRING,

 ... }

PkiPath ::= SEQUENCE SIZE (1..MAX) OF Certificate

Certificate ::= SIGNED{TBSCertificate}

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 81

TBSCertificate ::= SEQUENCE {

 version [0] Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

 ...,

 --[[2: if present, version shall be v2 or v3

 subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL--]]--,

 --[[3: if present, version shall be v2 or v3

 extensions [3] Extensions OPTIONAL --]]

 -- If present, version shall be v3]]

 } (CONSTRAINED BY { -- shall be DER encoded -- })

Version ::= INTEGER {v1(0), v2(1), v3(2)}

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time,

 ... }

SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier{{SupportedAlgorithms}},

 subjectPublicKey PublicKey,

 ... }

PublicKey ::= BIT STRING

Time ::= CHOICE {

 utcTime UTCTime,

 generalizedTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

-- For those extensions where ordering of individual extensions within the SEQUENCE is

-- significant, the specification of those individual extensions shall include the

-- rules for the significance of the order therein

Extension ::= SEQUENCE {

 extnId EXTENSION.&id({ExtensionSet}),

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING

 (CONTAINING EXTENSION.&ExtnType({ExtensionSet}{@extnId})

 ENCODED BY der),

 ... }

der OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

ExtensionSet EXTENSION ::= {...}

EXTENSION ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &ExtnType }

WITH SYNTAX {

 SYNTAX &ExtnType

 IDENTIFIED BY &id }

Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue

ISO/IEC 9594-11:2020 (E)

82 Rec. ITU-T X.510 (08/2020)

DistinguishedName ::= RDNSequence

AttributeTypeAndValue ::= SEQUENCE {

 type ATTRIBUTE.&id, --({SupportedAttributes}),

 value ATTRIBUTE.&type, --({SupportedAttributes}{@type}),

 ... }

SupportedAttributes ATTRIBUTE ::= {...}

ATTRIBUTE ::= CLASS {

 &type UTF8String,

 &id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

 WITH SYNTAX &type

 ID &id }

Attribute {ATTRIBUTE:SupportedAttributes} ::= SEQUENCE {

 type ATTRIBUTE.&id({SupportedAttributes}),

 values SET SIZE (0..MAX) OF ATTRIBUTE.&type({SupportedAttributes}{@type}),

 ... }

AttributeCertificate ::= SIGNED{TBSAttributeCertificate}

TBSAttributeCertificate ::= SEQUENCE {

 version AttCertVersion, -- version is v2

 holder Holder,

 issuer AttCertIssuer,

 signature AlgorithmIdentifier{{SupportedAlgorithms}},

 serialNumber CertificateSerialNumber,

 attrCertValidityPeriod AttCertValidityPeriod,

 attributes SEQUENCE OF Attribute{{SupportedAttributes}},

 issuerUniqueID UniqueIdentifier OPTIONAL,

 ...,

 ...,

 extensions Extensions OPTIONAL

 } (CONSTRAINED BY { -- shall be DER encoded -- })

AttCertVersion ::= INTEGER {v2(1)}

Holder ::= SEQUENCE {

 baseCertificateID [0] IssuerSerial OPTIONAL,

 entityName [1] GeneralNames OPTIONAL,

 objectDigestInfo [2] ObjectDigestInfo OPTIONAL }

 (WITH COMPONENTS {..., baseCertificateID PRESENT } |

 WITH COMPONENTS {..., entityName PRESENT } |

 WITH COMPONENTS {..., objectDigestInfo PRESENT })

IssuerSerial ::= SEQUENCE {

 issuer GeneralNames,

 serial CertificateSerialNumber,

 issuerUID UniqueIdentifier OPTIONAL,

 ... }

ObjectDigestInfo ::= SEQUENCE {

 digestedObjectType ENUMERATED {

 publicKey (0),

 publicKeyCert (1),

 otherObjectTypes (2)},

 otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,

 digestAlgorithm AlgorithmIdentifier{{SupportedAlgorithms}},

 objectDigest BIT STRING,

 ... }

AttCertIssuer ::= [0] SEQUENCE {

 issuerName GeneralNames OPTIONAL,

 baseCertificateID [0] IssuerSerial OPTIONAL,

 objectDigestInfo [1] ObjectDigestInfo OPTIONAL,

 ... }

 (WITH COMPONENTS {..., issuerName PRESENT } |

 WITH COMPONENTS {..., baseCertificateID PRESENT } |

 WITH COMPONENTS {..., objectDigestInfo PRESENT })

ISO/IEC 9594-11:2020 (E)

 Rec. ITU-T X.510 (08/2020) 83

AttCertValidityPeriod ::= SEQUENCE {

 notBeforeTime GeneralizedTime,

 notAfterTime GeneralizedTime,

 ... }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

 otherName [0] INSTANCE OF OTHER-NAME,

 rfc822Name [1] IA5String,

 dNSName [2] IA5String,

--x400Address [3] ORAddress,

 directoryName [4] Name,

--ediPartyName [5] EDIPartyName,

 uniformResourceIdentifier [6] IA5String,

 iPAddress [7] OCTET STRING,

 registeredID [8] OBJECT IDENTIFIER,

 ... }

OTHER-NAME ::= TYPE-IDENTIFIER

CertAVL ::= SIGNED {TBSCertAVL}

TBSCertAVL ::= SEQUENCE {

 version [0] IMPLICIT Version DEFAULT v1,

 serialNumber AvlSerialNumber OPTIONAL,

 signature AlgorithmIdentifier {{SupportedAlgorithms}},

 issuer Name,

 constrained BOOLEAN,

 entries SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {

 idType CHOICE {

 certIdentifier [0] PKCertIdentifier,

 entityGroup DistinguishedName, -- only for constrained = FALSE

 ... },

 entryExtensions [1] IMPLICIT Extensions OPTIONAL,

 ... },

 ...,

 ...,

 avlExtensions Extensions OPTIONAL }

AvlSerialNumber ::= INTEGER (0..MAX)

PKCertIdentifier ::= CHOICE {

 issuerSerialNumber IssuerSerialNumber,

 fingerprintPKC [0] IMPLICIT FingerPrint {Certificate},

 fingerprintPK [1] IMPLICIT FingerPrint {PublicKey},

 ... }

IssuerSerialNumber ::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber,

 ... }

CRLReason ::= ENUMERATED {

 unspecified (0),

 keyCompromise (1),

 cACompromise (2),

 affiliationChanged (3),

 superseded (4),

 cessationOfOperation (5),

 certificateHold (6),

 removeFromCRL (8),

 privilegeWithdrawn (9),

 aACompromise (10),

 ...,

 weakAlgorithmOrKey (11) }

END

ISO/IEC 9594-11:2020 (E)

84 Rec. ITU-T X.510 (08/2020)

Bibliography

– Recommendation ITU-T X.207 (1993) | ISO/IEC 9545:1994, Information Technology – Open Systems

Interconnection – Application layer structure.

– IETF RFC 2631 (1999), Diffie-Hellman Key Agreement Method.

– IETF RFC 5424 (2009), The Syslog Protocol.

– Fischlin M., Gunther, F., Schmidt, B., Warinschi, B. (2016). Key confirmation in key exchange: A formal

treatment and implications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy (SP), San Jose,

CA, USA, pp. 452-469. Piscataway, NJ: IEEE. doi: 10.1109/SP.2016.34

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T X.510 (08/2020) Information technology – Open Systems Interconnection – The Directory: Protocol specifications for secure operations
	Summary
	History
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Other references

	3 Definitions
	3.1 OSI Reference Model definitions
	3.2 Directory model definitions
	3.3 Public-key and attribute certificate definitions
	3.4 Terms defined in this Recommendation | International Standard

	4 Abbreviations
	5 Conventions
	6 Common data types and special cryptographic algorithms
	6.1 Introduction
	6.2 ASN.1 information object class specification tool
	6.2.1 General information object class concept
	6.2.2 The ALGORITHM information object class

	6.3 Multiple-cryptographic algorithm specifications
	6.3.1 General
	6.3.2 Multiple signatures algorithm
	6.3.3 Multiple symmetric key algorithm
	6.3.4 Multiple public-key algorithms
	6.3.5 Multiple hash algorithm
	6.3.6 Multiple authenticated encryption with associated data algorithm
	6.3.7 Multiple integrity check value algorithm

	6.4 Key establishment algorithms
	6.4.1 General
	6.4.2 Diffie-Hellman group 14 algorithm with HKDF-256
	6.4.3 Diffie-Hellman group 23 algorithm with HKDF-256
	6.4.4 Diffie-Hellman group 28 algorithm with HKDF-256
	6.4.5 Key derivation
	6.4.5.1 General
	6.4.5.2 HMAC-based extract-and-expand key derivation function

	6.4.6 Special conditions

	6.5 Multiple-cryptographic algorithm-value pairs
	6.5.1 Multiple digital signatures attached to data
	6.5.2 Double digital signature attached to data
	6.5.3 Duplicate integrity check values attached to data

	6.6 Formal specification of encipherment
	6.6.1 Formal specification of encryption
	6.6.2 Formal specification of authenticated encryption with associated data

	7 General concepts for securing protocols
	7.1 Introduction
	7.2 Protected protocol plug-in concept
	7.3 Communications structure
	7.4 Another view of the relationship between the wrapper protocol and the protected protocol
	7.5 Structure of application protocol data unit
	7.6 Exception conditions

	8 Wrapper protocol general concepts
	8.1 Introduction
	8.2 UTC time specification
	8.3 Use of alternative cryptographic algorithms
	8.4 Establishment of shared keys
	8.5 Sequence numbers
	8.6 Use of invocation identification in the wrapper protocol
	8.7 Mapping to underlying services
	8.8 Definition of protected protocols
	8.9 Overview of wrapper protocol data units

	9 Association management
	9.1 Introduction to association management
	9.2 Association handshake request
	9.3 Association accept
	9.4 Association reject due to security issues
	9.5 Association reject by the protected protocol
	9.6 Handshake security abort
	9.7 Handshake abort by protected protocol
	9.8 Data transfer security abort
	9.9 Abort by protected protocol
	9.10 Release request WrPDU
	9.11 Release response WrPDU
	9.12 Release collision

	10 Data transfer phase
	10.1 Symmetric keys renewal
	10.2 Data transfer by the client
	10.2.1 General
	10.2.2 Client using authenticated encryption with associated data
	10.2.3 Client not using authenticated encryption with associated data
	10.2.4 Client non-encrypted data

	10.3 Data transfer by the server
	10.3.1 General
	10.3.2 Server using authenticated encryption with associated data
	10.3.3 Server not using authenticated encryption with associated data
	10.3.4 Server non-encrypted data

	11 Information flow
	11.1 Purpose and general model
	11.2 Protected protocol SAOC
	11.3 Wrapper SAOC
	11.3.1 General
	11.3.2 Handshake request subclass
	11.3.3 Handshake accept subclass
	11.3.4 Handshake security reject subclass
	11.3.5 Handshake reject by protected protocol subclass
	11.3.6 Handshake security abort subclass
	11.3.7 Handshake abort by protected protocol subclass
	11.3.8 Data transfer security abort subclass
	11.3.9 Data transfer application abort subclass
	11.3.10 Release request subclass
	11.3.11 Release response subclass
	11.3.12 Client data transfer with authenticated encryption with associated data subclass
	11.3.13 Client data transfer with integrity check value protection subclass
	11.3.14 Server data transfer with authenticated encryption with associated data subclass
	11.3.15 Client data transfer with integrity check value protection subclass

	12 Wrapper error handling
	12.1 General
	12.2 Checking of a wrapper handshake request
	12.2.1 General
	12.2.2 Digital signature checking
	12.2.3 Checking of the to-be-signed part

	12.3 Checking of a wrapper handshake accept
	12.3.1 General
	12.3.2 Digital signature checking
	12.3.3 Checking of the to-be-signed part

	12.4 Checking of data transfer WrPDUs
	12.4.1 General
	12.4.2 Common checking for data transfer
	12.4.2.1 Common checking for use of authenticate encryption with associated data
	12.4.2.2 Common checking for non-use of authenticate encryption with associated data
	12.4.2.3 Common checking for AadClient and AadServer data types

	12.4.5 AadClient data value specific checking
	12.4.6 AadServer data value specific checking

	12.5 Wrapper diagnostic codes

	13 Authorization and validation list management
	13.1 General on authorization and validation management
	13.1.1 Introduction
	13.1.2 Invocation identification
	13.1.3 Exception conditions

	13.2 Defined protected protocol data unit types
	13.3 Authorization and validation management protocol initialization request
	13.4 Authorization and validation management protocol initialization accept
	13.5 Authorization and validation management protocol initialization reject
	13.6 Authorization and validation management protocol initialization abort
	13.7 Add authorization and validation list request
	13.8 Add authorization and validation list response
	13.9 Replace authorization and validation list request
	13.10 Replace authorization and validation list response
	13.11 Delete authorization and validation list request
	13.12 Delete authorization and validation list response
	13.13 Authorization and validation list abort
	13.14 Authorization and validation list error codes

	14 Certification authority subscription protocol
	14.1 Certification authority subscription introduction
	14.2 Defined protected protocol data unit types
	14.3 Certification authority subscription protocol initialization request
	14.4 Certification authority subscription protocol initialization accept
	14.5 Certification authority subscription protocol initialization reject
	14.6 Certification authority subscription protocol initialization abort
	14.7 Public-key certificate subscription request
	14.8 Public-key certificate subscription response
	14.9 Public-key certificate un-subscription request
	14.10 Public-key certificate un-subscription response
	14.11 Public-key certificate replacements request
	14.12 Public-key certificate replacement response
	14.13 End-entity public-key certificate updates request
	14.14 End-entity public-key certificate updates response
	14.15 Certification authority subscription abort
	14.16 Certification authority subscription error codes

	15 Trust broker protocol
	15.1 Introduction
	15.2 Defined protected protocol data unit types
	15.3 Trust broker protocol initialization request
	15.4 Trust broker protocol initialization accept
	15.5 Trust broker protocol initialization reject
	15.6 Trust broker protocol initialization abort
	15.7 Trust broker request syntax
	15.8 Trust broker response syntax
	15.9 Trust broker error information
	H.1 Introduction
	H.2 Negotiation of cryptographic algorithms
	H.2.1 Cryptographic negotiation for new protocols
	H.2.2 Cryptographic negotiation for existing protocols

	H.3 Non-negotiable digital signature algorithms
	H.3.1 General
	H.3.2 Duplicate signatures for new protocols
	H.3.3 Duplicate signatures for existing protocols

