International Telecommunication Union

ITU-T X.501

TELECOMMUNICATION (10/2012)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

Information technology — Open Systems
Interconnection — The Directory: Models

Recommendation ITU-T X.501

(iq%u?).....

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems management framework and architecture
Management communication service and protocol
Structure of management information
Management functions and ODMA functions
SECURITY
OS| APPLICATIONS
Commitment, concurrency and recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSECURITY INFORMATION EXCHANGE

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399
X.1500-X.1599

For further details, please refer to thelist of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 9594-2
RECOMMENDATION ITU-T X.501

I nfor mation technology — Open Systems I nter connection —
The Directory: Models

Summary

Recommendation ITU-T X.501 | ISO/IEC 9594-2 provides a number of different models for the Directory as a
framework for the other Recommendations in the ITU-T X.500-series. The models are the overall (functional) model, the
administrative authority model, generic Directory Information models providing Directory User and Administrative User
views on Directory information, generic Directory System Agent (DSA) and DSA information models and operational
framework, and a security model.

History
Edition Recommendation Approval Study Group

10 ITU-T X.501 1988-11-25

2.0 ITU-T X.501 1993-11-16 7
3.0 ITU-T X.501 1997-08-09 7
31 ITU-T X.501 (1997) Technical Cor. 1 2000-03-31 7
32 ITU-T X.501 (1997) Amd. 1 2000-03-31 7
33 ITU-T X.501 (1997) Technical Cor.2 2001-02-02 7
34 ITU-T X.501 (1997) Technical Cor. 3 2005-05-14 17
4.0 ITU-T X.501 2001-02-02 7
41 ITU-T X.501 (2001) Technical Cor. 1 2005-05-14 17
4.2 ITU-T X.501 (2001) Technical Cor. 2 2005-11-29 17
4.3 ITU-T X.501 (2001) Cor. 3 2008-05-29 17
5.0 ITU-T X.501 2005-08-29 17
51 ITU-T X.501 (2005) Cor. 1 2008-05-29 17
5.2 ITU-T X.501 (2005) Cor. 2 2008-11-13 17
53 ITU-T X.501 (2005) Cor. 3 2011-02-13 17
54 ITU-T X.501 (2005) Cor. 4 2012-04-13 17
6.0 ITU-T X.501 2008-11-13 17
6.1 ITU-T X.501 (2008) Cor. 1 2011-02-13 17
6.2 ITU-T X.501 (2008) Cor. 2 2012-04-13 17
6.3 ITU-T X.501 (2008) Cor. 3 2012-10-14 17
7.0 ITU-T X.501 2012-10-14 17

Rec. ITU-T X.501 (10/2012) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommuni cations on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with |SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, eg., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received natice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

©ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of I TU.

ii Rec. ITU-T X.501 (10/2012)

http://www.itu.int/ITU-T/ipr/

10

11

CONTENTS

o0 o PSSRSO
NOMMBLIVE FEFEIEINCES ...ttt sttt ettt s e et b e s e e st ebese e st et e seebesbeseebesbeneenenbeneas
2.1 Identical Recommendations | International Standards............ccceoevereenenieieneneieseseese e
2.2 Paired Recommendations | International Standards equivalent in technical content..............cccccceeee.
2R T © 0= = 1= (= o= ST
DEFINITIONS....c.ee ettt e et e st et e e be e te s e e saeesae e beeabeeabeeaeeebeenbeeabeeabeeaaesteesaeesreeneeanas
31 CommuUNiCatioN EfINITIONS........ciiiieieieee ettt s b et et se b e b b sae s
3.2 BasiC DireCtOry defiNiTiONS.........ccoiiiuereeiee sttt ettt e s b et ae e e e e be e e nbesbe e
3.3 Distributed operation AefiNitiONS...........coeiiiiieieeeeee ettt e sae
G/ NN 2= o [Tor= o) a o (= 1T a1 (o) SRS
W o] o] (=Y T o] OSSR
(@00 1Y/ g1 Lo =TT
I T1 = (0 Y01, o [S
G20 I I T 0T« oS
O I 0 L= Y B = ok (o] VA= o T U= ST
6.3 Directory and DSA INformation MOGEIS........cceriiiririerere e
6.4 Directory Administrative AUthOrity MOGEL...........cooiiririii e e
Directory INfOrmMation BASE.........oiueuiiirieiiieeeene ettt st b e st se et b e e b b e b b e
% R BT 1 o1 o TSRS
A © o] 1= £ TS
A T B 11 = v (0] VA= 111 €=
7.4 Directory InfOrmation TrEE (DI T) ..uccuiireeiriireeiesieeeteseeestesteee st et sae s sse e ssestenessessenessessenes
1= (0 VA= 011 =S
ST B = 101 Lo PSS
8.2 OVENAIl SIIUCIUI.....c.eitietctetet ettt b e et b et b et b bbbttt
G T O o 1= ot o - 5 = RS
S N 11 0101 (= N Y 0= RS
8.5 ALTDULE VBIUES ...ttt bbb ettt ettt b et
8.6 AttribUte type NIErarChIES.ccviiececeee e e e e nn e re s nenne s
8.7 FrIENd GHITDULES ... e sttt e st e te st saesbeeneese et e e enseneenteseennens
LSS T ©o 1= (£ PR
8.9 MBICNING FUIES....c..eetieeet bbb bbbt b et et b et e b b e bt
8.10 ENLIY COHECHIONS.......uiiieeiitiet e bbbt b et b bbbt b b
8.11 Compound entries and familieS Of ENLITES.........coiiiiire e
A= 0TSO USRS
LS R B T 15 11 1o g TP URUSSPPRR
0.2 NAIMES TN GENEEL ...t ettt ee e b bt s heeb e et e e e reesbesbesbeebesaeenseseanbesaesaens
9.3 Relative distingUiSNEd NBIME.........ccociiiiiciccee st sre st s re s reese e e eneeseentesrennens
Lo A \\F- 00 TCY 1 7= (o211 R SRS
9.5 DiStiNQUISNEO NAMESc.ciiiiiiecticeeeee ettt st e st st st eese e e et e saestesbesreeseeneenaeseenteseeseatesrenrens
L N 1= S 4 7= 0 1= SO S
Y= = o aTTor= 0 (o LH oS
05 R T 1 a1 (PSPPSR
10.2 Hierarchical rel@tionShipcccccecieeieiire e et e e na e e snenreenn
10.3 Sequential ordering of ahierarchiCal groUDccevevererises e
Directory Administrative AUthOrtY MOOELoooiiiiiiiee e
S I 7= 1 o] TSP
L1.2 OVEIVIBW ..ottt ettt et et eebe e be et e e s be e abesheesheesaeesbeeaseeaseeaeeebeeabeenbeenbeenbessaesbeesteesbeensenanes
R T o o USRS
11.4 Specific adminiStrative aUtNOTIES..........coiiiieee e e
11.5 Administrative areas and adminiStrative POINEScooriiirerinineeee e e

Rec. ITU-T X.501 (10/2012)

U
&
© O N ~NOOO Ul A WWWWW WNDNN - O

Tl
O oo

NN RRPRRRRRERERRR
NRPONNODODORAWERR

DN NDNDNDNDNDN
O b B WWWW

NDNDNDN
~N o 01 O

WNNDNDNDN
O © © 0 00

12

13

14

15

16

11.6 DIT Domain policies........cccccoevrvrrnnnne
11.7 DMD pOliCIES....ccceerieerririeinierieenieeas

Model of Directory Administrative and Operational Information............ccoeeeerennienennie s

12.1 DEfiNitionS.....ccecceeeceecciee e
122 OVEIVIEW. ..ot
12.3 SUDLIEES.....ovceecveecteecrecce e
12.4 Operational attributes.............ccccevuenee.
125 ENES ittt
12.6 SUDENLHES.....ccveeeveeceeetee e

12.7 Information Model for COllECtIVE AttITDULES.........ccueiieiiceieeee et s
12.8 Information Model for CONtEXt AEfAUILS.cccviiieeii it

Directory Schema.........ccccoovveveeveveveneseens
13.1 Definitions......cccooeevinecnenecrinieennes
132 OVENVIEW ..o
13.3 Object classdefinition..........c.ccecevuenene
13.4 Attribute type definition.........c.cc........
13.5 Matching rule definition............c........
13.6 Relaxation and tightening....................
13.7 DIT structure definition.......................
13.8 DIT content rule definition..................
13.9 Context type definition...........cccceeuenee
13.10 DIT Context Use definition.................
13.11 Friendsdefinition.........cc.ccccoeveveennen.
13.12 Syntax definitions..........cccoeeeeeeeeieereennn.

Directory System Schema.........cccccceveveneneee
141 OVENVIEW ..o

14.2 System schema supporting the administrative and operational information modelcccccue......
14.3 System schema supporting the administrative MOdeL..........cccoveiieceeicrere e e
14.4 System schema supporting general administrative and operational requirements..........c.ccoeeevveeeneene.
14.5 System schema suppOorting aCCESS CONETOL.........ceciiieieiesee e et enas
14.6 System schema supporting the collective attribute model...........cccoeeieieveiie i,
14.7 System schema supporting context assertion defaults...........cooveveeeeeererenie s
14.8 System schema supporting the service administration Modelccoeverievenievin e
14.9 System schema supporting password admiNiStratioNcccveeeeeeererieverie e
14.10 System schema supporting hierarchiCal QroUPSc.covievereeeceeec e

14.11 Maintenance of system schema...........

14.12 System schemafor first-level SUBOrdiNALES.coevveeeierire e s

Directory schemaadministration....................
151 OVENVIEW. ..o
15.2 Policy ObjectS......ccoeveiiiiiireeeeenene
15.3 Policy parameters..........ccooeeereeeeenennn
15.4 Policy procedures........c.ccooeverererieenens
15.5 Subschema modification procedures...

15.6 Entry addition and modification ProCEOUIEScoeirieiire et

15.7 Subschemapolicy attributes................

Service Administration Modd
16.1 DEfinitions.....cccccceveveevevevececeeeeeennn,
16.2 Service-type/user-classmodd..............
16.3 Service-specific administrative areas..
16.4 Introduction to search-rules.................
165 Subfilters.....ccccevcevcvrivve e,
16.6 Filter requirements........c..ccocvvvrvreenene

16.7 Attribute information selection based 0N SEArCh-TUIESooeiievii i

16.8 Access control aspects of search-rules

Rec. ITU-T X.501 (10/2012)

S&&&EE

56
59
60
62
62
63

63

GREA

67
67
68
68
69
70
70
71

71
71
71
72
72
72
73
73

80
80
80
81
82
82
83
83

17

18

19

20

21

22

23

24

25

16.9 Contexts agPeCtS Of SEAICN-TUIESccoceie et nreens 84
16.10 SearcCh-rule SPECITICAIIONc.eivieeeirieeet ettt et b e et b e et b e e b b e ne b e 84
16.11 Matching restriction defiNitioN..........cociiirieiiereeree e bbb e 92
16.12 Search-validation FUNCHIONcoieieee e e sttt se et sne e enas 92
SECUIEY IMOOEL ...ttt bbbt b bt h b e b bbbt s b e e bbb et bt b et e bt b e s ene e enes 94
L17. 1 DEfINITIONS....ctiitieetiiteietestesteteste et st e et e e teste e etesae e etesae e et e saeseete st e e esesae e ebesteseeteseeneebeseesenbenensentenens 94
17.2 SECUNTY POLICIES.ueiieieietiite ettt ettt ettt b et ae bt et e e e e e bese e e b e s aeebe e st et eneeseebeseesbennas 94
17.3 Protection Of DireCtOry OPEIELIONS.......ccciuiiuiriereeeeieerie ettt eie et se e e e bbb sae e e neeseeeeseeseeenas 95
BaSiC ACCESS CONLIOL.......cueiuieeeeiie ettt ettt ettt b ettt ese e be s et sb e s aeeae e e e e e beseeebesaeebeebeeaeeneeneanbeseesbeneas 96
ST RES wo o L= 010 IF= o o 1T 1 o] o IS S 96
18.2 BasiC ACCESS CONIOl MOELc.eoviiieeiiierieiceie ettt st et e neesenbe e 96
18.3 Access control adMIiNiSEratiVE @rEBSeeeerieirerieise ettt sttt s be st e ebesbe e esesreseas 98
18.4 Representation of Access Control INfFOrMELIoNccceveverieie s s 101
18.5 ACI operational @ttriDULES.........cccveeiereerese s e e e et sre s reeseeneeae e neenrennn 106
RS I = 0= oi (] g To 1 1 A o S 107
18.7 Access control and DireCtory OPEratioNS.........cceeeereerereresiesesreseeeeseeseeseeseessesseeseseessessessessessessesses 107
18.8 Access Control DECISION FUNCLIONccoiiiiiiirieieie ettt st s sbe e e 107
18.9 SIMPlified ACCESS CONIOlveciiieeeeeeeeeec ettt e st e tesresresneene e e eeeneenrenns 109
RUIE-DASEA ACCESS CONEIOL.......eeiiieieisiecieete ettt e et s et saesbe e e e s et e s e beseesbeeneeneeneenseneeseenes 109
19.1 SCOPE AN APPIICALION ...ttt ettt sttt et b e et b e se e et see st ebeseesesbeneenenbenea 109
19.2 Rule-based Access CONLrOl MOTELcoiiiiiieeieiee e et 110
19.3 Access CONtrol admMiNiSLIALIVE IEES........coueivirieree ettt sttt e e et b b sbe st se e e e e e seeseeeeas 110
194 SECUNLY LADEL .ottt st sttt sttt st et e se e e et e seeseebeseesesbeneesenteneas 110
S T O 1= ot TSP 112
19.6 Access Control and DireCtOry OPEIaLiONS.cceeeereerierieriesere et see et e sbe s sae e se e e see b saesaeseas 112
19.7 Access Control DECISION FUNCHION........c.ciiiiriiieie ettt e e e e e e 113
19.8 Useof Rule-based and BasiC ACCESS CONEIOLocueuiverieirerieise sttt sre e 113
Data INtEGIITY iN SIOTAQEeoueceeeeie sttt e e sttt e e e e s ee s besbesaeese e e esteseesbeseeeresreeneeneessenteseeseenres 113
1220 50 [0140 o U [o TSP 113
20.2 Protection of an Entry or Selected AtIDULE TYPES.....cccveiievirere et 113
20.3 Context for Protection of aSingle Attribute ValUe........c..cocv v 115
DS T N 1Y oo L= K TSP 116
P20 0 R I T 0T o ST 116
21.2 Directory FUNCLONal MOELcoiiiiiiiiieice bbb 116
21.3 Directory DistribUtion MOGEccooiiiiiiiiee e 117
KINOWIEAGE ... ettt b et b bbbtk h et b e s e et e bt s e e st eb e s e e st sbene e bt ebeseebenbe e ebenbe e 119
p27 25 R T 10T 0] TR 119
A A 1 011 oo L1 Tox 1 (o] o USSP 119
22.3 KNOWIEAQE REFEIENCES..... .ottt ettt e b e et e b s it ae e e e e e b seesae b e 120
224 MinimUM KNOWIEAGEocviiiiiieciieieeee sttt ettt st sttt e e e s tesbesbesaeereeneenseaeseestesrentenrenns 122
225 FITSELEVEI DSAS....ccuiitiieiieteieeite ettt sttt ettt ettt s b et s et et b e st et bt et e e e be st et et et enee e ene e enen 122
22.6 Knowledge referenCesto LDAP SEIVEIS ...t e e sa e e sae st ne e e eaesaesne s e 123
Basic Elements of the DSA Information MOELcceoviiriiiinieiieese e st 123
P22 T T B T 1 0T] SRR 123
P22 [0110 o U o [o o HOU PP 123
23.3 DSA Specific Entries and their NAIMESccvcveeerere e s sre s 124
234 BESIC EIOIMENTS. ..ottt sttt bbbt bt b et ettt ne e s 125
Representation of DSA INfOrMBHION.ccvieerie et re e en e sa e eesresrenns 127
24.1 Representation of Directory User and Operational INformationc.coeeeverninenneneineneceneneens 127
24.2 Representation of KNOWledge REFEIENCES..........ccuvirieiiiricrie e 127
24.3 Representation of Names and Naming CONLEXLS.........coerirereririeerieriesiese e sresee e see e saeseesre e sseseens 134
L0 Y= V= VRO STR SO 136
251 DEFINITIONS.....uiiieeiiiiietiitisiei sttt a et et s be st e s e s b e saesesb e s esesb et eseesesseseesentebessenenbessenensensenen 136

Rec. ITU-T X.501 (10/2012) v

P2 [9110 o U o [o o FOU PRSP 136
26 OPErational DINAINGSc.eiirieiiiterieese ettt ettt et b e et e st et b e se et ebeseeb e s beneebesbe e ebenbe e 136
B €= o= TR 136
26.2 Application of the operational fraMEWOIKcoceeieririir e e 137
IR IS P (<X o w0 o] o 1< £ 1 Lo o DRSSP 138
27 Operational binding specification and ManageMENT............cooeiiirirere e e 139
27.1 Operationa binding type SPECITICALION.c..eiirieee e e 139
27.2 Operational binding ManagEMENTccociiiiieeece e e e e s sr e resreeresre e 140
27.3 Operational binding SPeCification tEMPIELESocuveiiirierie s 140
28 Operations for operational binding MaNAgEMENTcccveierieie e e e e seesresresneas 142
28.1 Application-context defiNitioNcccieiiiiieiesieeeee e s renne s 142
28.2 Establish Operationa Binding OPErationcccceeeeveerereriesesieseseereeseeseesees e see s sse e eseeseeseessessessenns 143
28.3 Modify Operational Binding OPEratioNccoeeririeiririeirisieesiesee st seenes 146
28.4 Terminate Operational Binding OPEration...........ccccurveeririeiriinieerieneesieeee e s seenes 148
28.5 Operational BiNGiNG EFTON.......cccoiiiiiiirieieieriesie sttt sttt b et sneseenes 149
28.6 Operationa Binding Management Bind and UnbiNd...........ccccoveieieninininnescneee e 151
29 OVEIVIBIW ...ttt ee st e st eete et e e ae e ebeeeteaabeeabesatesaeesheesheesbeeaseeaseeaeeebe e beenbeeabeeabesheesbeebesnsesnnesaeesseenseenns 152
20,1 DEFINIIONS....cuiite ettt ettt e et e e te s e e saeesheesbeeateeabeeteesbeesbeeseesreesaeesbeentenanas 152
2SI 1 011 oo LFTox 1 (o] o USSR 152
30 LDAP iNterWOrKiNg MOGELoeiieieiitiieieee ettt bbb et e b et e bt sb et e e e e e eeseesaeneas 153
30.1 LDAPINErWOrKiNG SCENANOS.ecueeuieieiesiestestesteeteseeeessesse e saestesaessesssessesseseessessessessesssessessensessessens 153
30.2 Overview of bound DSA handling LDAP OPErationS.........cccceevueeerieeeeieenieseseese e ssessesseesseseessessesnens 153
30.3 Genera LDAP requestor CharaCteriStiCS.......couiieieiiiiresieseseeteeieeseeesre e ste e sse e eaesaessestesaesresnesnens 154
30.4 LDAP extension MECNANISIMSccueiiirieirisieiriisieesesseesses e te e ssessesessesse e ssessenessessesessessesessensens 154
31 LDAP SPECITIC SYSIEM SCREMAL.......cuecuieieiee st sr e be s ae e reeae e e enee e enteneesrenrs 154
31.1 Operational Attribute types from IETF RFC 4512..........ccccivieiicineeeesesese e eaeseesae e 154
ANNEX A — ObJECE IHENLITTIEN USBOE ...ttt bbbttt b et b et t e b et enen 157
Annex B — Information framework iN ASNLLooo ittt et et ee e sbe et be e be e beeeesreesaeenreenns 161
Annex C — Subschema administration iNASN.L........coi et s re e re e s aeene s 172
Annex D — Service adminiStration iNASN. L. ..ottt e e ettt se e e e be e sbe e e 177
ANNex E —Basic ACCESS CONIOl INASN.L......ciiiieiiiieisieeete ettt st st se st be st e e bestenesseseenes 181
Annex F — DSA operational attribute typeSin ASN.L......cccoiiiieieieeieeereee st se e srenes 184
Annex G — Operational binding Management iN ASN.L.........cccceeiererire e s resrennes 187
Annex H — Enhanced SECUMLY 1N ASNLL ...ttt b e 192
ANNEX | — LDAP SYSEEM SCREMAL ...ttt sttt ettt e e bt e b e se e e e e et e saeebesbe s et ebe e e e ntennesbeseene 195
ANNEX J— The MAtheMELiCS OF TrEES......cuii ettt b e s he bbb e e e e e e snesbe b e 197
YN a0 S N = 01X o | g o] (= 4 - TSRS 198
Annex L — Examples of various aspects Of SCheMa..........ccccvivririerce e 200
L.1 Example of an attribute@ NiErarChycccoceiiiiieeescse s e 200
L.2 Example of asubtree SPECIfiCatioN.ccccviiieie et 200
L.3 SChEMa SPECITICAIION.eiviuiitereeieete ettt b e st b e et b e et b b e ebe b e 201
L4 DIT CONENE FUIBS.....cviiieiee sttt ettt ettt et e st e e e te s e e s e e s aeesaeebeeaseeaeeebeesbeenbeesbesatesaeesbeesteessennsesanas 202
I T I o (= A= SRS 203
Annex M — Overview of basiC acCesS CONLIOl PEIMISSIONS.......c.coireiririeiriireeerieseei st se e seenes 204
Y0 R 1 11 oo (U ot i T o DS PRTR 204
M.2 Permissions required fOr OPEIaLiONS..........coereiieie et s b et e e et e sre e 204
M.3 PermiSSiONS affECHING EITON.......c.iiiiieieeee ettt se e e bbb ae et et se e e e saesaeenas 205
M.4 ENtrY |@VEl PEIMISSIONS.....cuiitiitiieeteete ettt ettt et b e b e aeehe e e e eese e besbesaesbeeaeeneeseeeeseesaeneas 205
M.5 ENtry |@VEl PEIMISSIONS......ccoiieiiiectieecie e sttt sa e e e st s beeaeeae e e esaeseestestesnestesneeneeseenteseesrenrs 206
ANNeX N — EXamples Of @CCESS CONIOIouiieiriiieirieieisieeete ettt sttt st e s be s beste e sneneenes 207

Vi Rec. ITU-T X.501 (10/2012)

AN S R 1o o 8 o1 o PSPPSRSO 207
N.2 Design principles for Basic ACCESS CONLIOLc.eiiriririirieeieeeie ettt 207
N.3 INroduction t0 EXAMPIEc.iiiieireeee bbb e bt bbb ebe b 208
N.4 Policy affecting the definition of Specific and iINNEr @reaS ..o 208
N.5 Policy affecting the definition of Directory Access Control Domains (DACDS)ccccveerereeenieneas 210
N.6 Policy expressed in prescriptiVeACT @ttriDULESco.ceiirieiiireeneee e 213
N.7 Policy expressed in SUDEntryACH atriDULESccooiriiiiiieereee e 217
N.8 Policy expressed in entry ACH aIHTDULES..........coiiiiiiiee e s 218
N.O ACDF EXAIMPIES....c.eiuiirieiiiriete ettt sttt b et e bbb et se b e st s e ket s e e b eae bt e e seebenesb et e e ne e 219
N.10 RuUIE-DASEA GCCESS CONIOIeivireeiiiterietietese ettt b et b et b e et eb e et b e et er e enenre e 221
ANNEX O — DSE type COMDINGLIONS.ccuiitiieiitieieeieee ettt b e bbbt e e e e b e sbesae b e be s et ebe e e enseseeseeseenne 222
ANNEX P— MOl liNg Of KNOWIEAGE.........oiiiirieieiiiieise ettt st sttt sentenes 224
ANNEX Q — SUDFIEEIS ...ttt et e st e e te s e e s aeeebe e beeabeeabesbeesbeesbesabesbeesbeebeensesasesaeesreenseenns 228
Annex R — Compound entry name patterns and their USE..........ocverreirreinneeresreeese e 229
Annex S— Naming concepts and CONSIAEIBLIONS.civeerririeririreeerierieiert e er et se e b s b e sseseenes 231
ST N o E o)V (= KU USSR SPORTRN 231
S22 A New [00K 8 NAME FESOIULION.c..iieeeiriiieiiri ittt 231
Annex T — Alphabetical index of definitioNS...........cooeiiiiiii e 237
Annex U — Amendments and COMTIGENUAL..........cviireiiirieirise ettt ae st e besse e nsestenes 240

Rec. ITU-T X.501 (10/2012) vii

Introduction

This Recommendation | International Standard, together with other Recommendations in the ITU-T X.500-series | parts
of ISO/IEC 9594, has been produced to facilitate the interconnection of information processing systems to provide
directory services. A set of such systems, together with the directory information that they hold, can be viewed as an
integrated whole, called the Directory. The information held by the Directory, collectively known as the Directory
Information Base (DIB), is typically used to facilitate communication between, with or about objects such as
application entities, people, terminals and distribution lists.

The Directory plays a significant role in Open Systems Interconnection (OSl), whose aim is to alow, with a minimum
of technical agreement outside of the interconnection standards themselves, the interconnection of information
processing systems:

— from different manufacturers;

— under different managements;

— of different levels of complexity; and

— of different ages.

This Recommendation | International Standard provides a number of different models for the Directory as a framework
for the other Recommendations in the ITU-T X.500 series | parts of ISO/IEC 9594. The models are the overal
(functional) model; the administrative authority model, generic Directory Information Models providing Directory User
and Administrative User views on Directory information, generic DSA and DSA information models, an Operational
Framework and a security model.

The generic Directory Information Models describe, for example, how information about objects is grouped to form
Directory entries for those objects and how that information provides names for objects.

The generic DSA and DSA information models and the Operational Framework provide support for Directory
distribution.

This Recommendation | International Standard provides a specialization of the generic Directory Information Models to
support Directory Schema administration.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be
defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks
may be mandated for use in certain environments through profiles. This seventh edition technically revises and
enhances the sixth edition of this Recommendation | International Standard.

This seventh edition specifies versions 1 and 2 of the Directory protocols.

The first and second editions specified only version 1. Most of the services and protocols specified in this edition are
designed to function under version 1. However, some enhanced services and protocols, e.g., signed errors, will not
function unless all Directory entities involved in the operation have negotiated version 2. Whichever version has been
negotiated, differences between the services and between the protocols defined in the six editions, except for those
specifically assigned to version 2, are accommodated using the rules of extensibility defined in Rec. ITU-T X.519 |
| SO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, summarizes the usage of ASN.1
object identifiersin the ITU-T X.500-series Recommendations | parts of 1SO/IEC 9594.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains al of the definitions associated with the information framework.

Annex C, which is an integral part of this Recommendation | International Standard, provides the subschema
administration schemain ASN.1.

Annex D, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
Service Administration.

Annex E, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
Basic Access Control.

Annex F, which is an integral part of this Recommendation | Internationa Standard, provides the ASN.1 module which
contains all the definitions associated with DSA operational attribute types.

Annex G, which isan integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains al the definitions associated with operational binding management operations.

viii Rec. ITU-T X.501 (10/2012)

Annex H, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains all the definitions associated with enhanced security.

Annex |, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains the definitions for LDAP system schema using the ASN.1 ATTRIBUTE information object.

Annex J, which is not an integral part of this Recommendation | International Standard, summarizes the mathematical
terminology associated with tree structures.

Annex K, which is not an integral part of this Recommendation | International Standard, describes some criteria that can
be considered in designing names.

Annex L, which is not an integral part of this Recommendation | International Standard, provides some examples of
various aspects of Schema.

Annex M, which is not an integral part of this Recommendation | International Standard, provides an overview of the
semantics associated with Basic Access Control permissions.

Annex N, which is not an integral part of this Recommendation | International Standard, provides an extended example
of the use of Basic Access Control.

Annex O, which is not an integral part of this Recommendation | International Standard, describes some DSA specific
entry combinations.

Annex P, which is not an integral part of this Recommendation | International Standard, provides a framework for the
modelling of knowledge.

Annex Q, which is not an integral part of this Recommendation | International Standard, describes the concept of
subfilters.

Annex R, which is not an integral part of this Recommendation | International Standard, describes recommendations
and examples on how family members can be named.

Annex S, which is not an integral part of this Recommendation | International Standard, gives an introduction to naming
concepts and considerations.

Annex T, which is not an integral part of this Recommendation | International Standard, lists alphabetically the terms
defined in this Recommendation | International Standard.

Annex U, which is not an integral part of this Recommendation | International Standard, lists the amendments and
defect reports that have been incorporated to form this edition of this Recommendation | International Standard.

Rec. ITU-T X.501 (10/2012) iX

| SO/l EC 9594-2:2014 (E)

INTERNATIONAL STANDARD
RECOMMENDATION ITU-T

I nformation technology — Open Systems I nter connection —
The Directory: Models

SECTION 1 -GENERAL

1 Scope

The models defined in this Recommendation | International Standard provide a conceptual and terminological
framework for the other ITU-T X.500-series Recommendations | parts of 1SO/IEC 9594 which define various aspects of
the Directory.

The functional and administrative authority models define ways in which the Directory can be distributed, both
functionally and administratively. Generic Directory System Agent (DSA) and DSA information models and an
Operational Framework are also provided to support Directory distribution.

The generic Directory Information Models describe the logical structure of the Directory Information Base (DIB) from
the perspective of Directory and Administrative Users. In these models, the fact that the Directory is distributed, rather
than centralized, is not visible.

This Recommendation | International Standard provides a specialization of the generic Directory Information Models to
support Directory Schema administration.

The other ITU-T Recommendations in the X.500 series | parts of 1SO/IEC 9594 make use of the concepts defined in this
Recommendation | International Standard to define specializations of the generic information and DSA models to
provide specific information, DSA and operational models supporting particular directory capabilities (e.g.,
Replication):

a) the service provided by the Directory is described (in Rec. ITU-T X.511 | ISO/IEC 9594-3) in terms of
the concepts of the information framework: this alows the service provided to be somewhat independent
of the physical distribution of the DIB;

b) the distributed operation of the Directory is specified (in Rec. ITU-T X.518 | ISO/IEC 9594-4) so as to
provide that service, and therefore maintain that logical information structure, given that the DIB isin
fact highly distributed;

c) replication capabilities offered by the component parts of the Directory to improve overall Directory
performance are specified (in Rec. ITU-T X.525 | ISO/IEC 9594-9).

The security model establishes a framework for the specification of access control mechanisms. It provides a
mechanism for identifying the access control scheme in effect in a particular portion of the Directory Information Tree
(DIT), and it defines three flexible, specific access control schemes which are suitable for a wide variety of applications
and styles of use. The security model also provides a framework for protecting the confidentiality and integrity of
directory operations using mechanisms such as encryption and digital signatures. This makes use of the framework for
authentication defined in Rec. ITU-T X.509 | ISO/IEC 9594-8 as well as generic upper layers security tools defined in
Rec. ITU-T X.830| ISO/IEC 11586-1.

DSA models establish a framework for the specification of the operation of the components of the Directory.
Specifically:

a) the Directory functional model describes how the Directory is manifested as a set of one or more
components, each being aDSA;

b) the Directory distribution model describes the principals according to which the DIB entries and
entry-copies may be distributed among DSAS;

c) the DSA information model describes the structure of the Directory user and operational information
heldinaDSA;

d) the DSA operational framework describes the means by which the definition of specific forms of
cooperation between DSAs to achieve particular objectives (e.g., shadowing) is structured.

Rec. ITU-T X.501 (10/2012) 1

| SO/l EC 9594-2:2014 (E)

2 Nor mative refer ences

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations| International Standards

Recommendation ITU-T X.200 (1994) | ISO/IEC 7498-1:1994, Information technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model.

Recommendation ITU-T X.500 (2012) | ISO/IEC 9594-1:2014, Information technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

Recommendation ITU-T X.509 (2012) | ISO/IEC 9594-8:2014, Information technology — Open Systems
Interconnection — The Directory: Public-key and attribute certificate frameworks.

Recommendation ITU-T X.511 (2012) | ISO/IEC 9594-3:2014, Information technology — Open Systems
Interconnection — The Directory: Abstract service definition.

Recommendation ITU-T X.518 (2012) | ISO/IEC 9594-4:2014, Information technology — Open Systems
Interconnection — The Directory: Procedures for distributed operation.

Recommendation ITU-T X.519 (2012) | ISO/IEC 9594-5:2014, Information technology — Open Systems
Interconnection — The Directory: Protocol specifications.

Recommendation ITU-T X.520 (2012) | ISO/IEC 9594-6:2014, Information technology — Open Systems
Interconnection — The Directory: Selected attribute types.

Recommendation ITU-T X.521 (2012) | ISO/IEC 9594-7:2014, Information technology — Open Systems
Interconnection — The Directory: Selected object classes.

Recommendation ITU-T X.525 (2012) | ISO/IEC 9594-9:2014, Information technology — Open Systems
Interconnection — The Directory: Replication.

Recommendation ITU-T X.660 (2008) | ISO/IEC 9834-1:2008, Information technology — Open Systems
Interconnection — Procedures for the operation of OS Registration Authorities: General procedures and
top arcs of the ASN.1 Object Identifier tree.

Recommendation ITU-T X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

Recommendation ITU-T X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

Recommendation ITU-T X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

Recommendation ITU-T X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

Recommendation ITU-T X.811 (1995) | ISO/IEC 10181-2:1996, Information technology — Open Systems
Interconnection — Security frameworks for open systems: Authentication framework.

Recommendation ITU-T X.812 (1995) | ISO/IEC 10181-3:1996, Information technology — Open Systems
I nterconnection — Security frameworks for open systems — Access control framework.

Recommendation ITU-T X.813 (1996) | ISO/IEC 10181-4:1997, Information technology — Open Systems
I nter connection — Security frameworks for open systems — Non-repudiation framework.

2.2 Paired Recommendations | International Standards equivalent in technical content

Recommendation ITU-T X.800 (1991) (previously CCITT Recommendation), Security architecture for
Open Systems | nterconnection for CCITT applications.

SO 7498-2:1989, Information processing systems — Open Systems Interconnection — Basic Reference
Model — Part 2; Security Architecture.

Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

2.3 Other references
— |ETF RFC 3672 (2003), Subentries in the Lightweight Directory Access Protocol (LDAP).

— |ETF RFC 4510 (2006), Lightweight Directory Access Protocol (LDAP): Technical Specification Road
Map.

— |ETF RFC 4511 (2006), Lightweight Directory Access Protocol (LDAP): The Protocol.

— |ETF RFC 4512 (2006), Lightweight Directory Access Protocol (LDAP): Directory Information Models.

— |ETF RFC 4526 (2006), Lightweight Directory Access Protocol (LDAP): Absolute True and False
Filters.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Communication definitions

The following terms are defined in Rec. ITU-T X.519 | ISO/IEC 9594-5:
a) application-context;
b) application-entity;
c) application process.

3.2 Basic Directory definitions

The following terms are defined in Rec. ITU-T X.500 | ISO/IEC 9594-1.
a) Directory;
b) Directory Access Protocol;
¢) Directory Information Base;
d) Directory Operational Binding Management Protocol;
e) Directory System Protocol;
f) (Directory) user.

3.3 Distributed operation definitions

The following terms are defined in Rec. ITU-T X.518 | ISO/IEC 9594-4:
a) accesspoint;
b) hierarchical operational binding;
Cc) name resolution;
d) non-specific hierarchical operational binding;
€) relevant hierarchical operational binding.

34 Replication definitions

Thefollowing terms are defined in Rec. ITU-T X.525 | ISO/IEC 9594-9:
a) cache-copy;
b) consumer reference;
c) entry-copy;
d) master DSA;
€) primary shadowing;
f) replicated area;
g) replication;
h) secondary shadowing;
i) shadow consumer;

Rec. ITU-T X.501 (10/2012) 3

| SO/l EC 9594-2:2014 (E)

j) shadow supplier;

k) Shadowed DSA Specific Entry;
[) shadowing;

m) supplier reference.

The definitions of terms defined in this Recommendation | International Standard are included at the beginning of
individual clauses, as appropriate. An index of these termsis provided in Annex T for easy reference.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.
ACDF Access Control Decision Function
ACI Access Control Information
ACIA Access Control Inner Area
ACSA Access Control Specific Area
ASN.1 Abstract Syntax Notation One
AVA Attribute Value Assertion
BER (ASN.1) Basic Encoding Rules
DACD Directory Access Control Domain
DAP Directory Access Protocol
DIB Directory Information Base
DISP Directory Information Shadowing Protocol
DIT Directory Information Tree
DMD Directory Management Domain
DMO Domain Management Organization
DOP Directory Operational Binding Management Protocol
DSA Directory System Agent
DSE DSA Specific Entry
DSP Directory System Protocol
DUA Directory User Agent
HOB Hierarchical Operationa Binding
IDM Internet Directly Mapped
LDAP Lightweight Directory Access Protocol
MHS Message Handling Systems
NHOB Non-specific Hierarchical Operational Binding
NSSR Non-Specific Subordinate Reference
osl Open Systems Interconnection
RDN Relative Distinguished Name
RHOB Relevant Hierarchical Operational Binding (aHOB or NHOB, as appropriate)
SDSE Shadowed DSE
TLS Transport Layer Security
TCP Transmission Control Protocol

4 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

5 Conventions

The term "Directory Specification” (as in "this Directory Specification”) shall be taken to mean Rec. ITU-T X.501 |
ISO/IEC 9594-2. The term "Directory Specifications' shall be taken to mean the ITU-T X.500-series Recommendations
and all parts of 1SO/IEC 9594.

This Directory Specification uses the term first edition systems to refer to systems conforming to the first edition of the
Directory Specifications, i.e., the 1988 edition of the series of (CCITT) ITU-T X.500 Recommendations and the
I SO/IEC 9594:1990 edition.

This Directory Specification uses the term second edition systems to refer to systems conforming to the second edition
of the Directory Specifications, i.e., the 1993 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:1995 edition.

This Directory Specification uses the term third edition systemsto refer to systems conforming to the third edition of the
Directory Specifications, i.e, the 1997 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:1998 edition.

This Directory Specification uses the term fourth edition systems to refer to systems conforming to the fourth edition of
the Directory Specifications, i.e., the 2001 editions of RecsITU-T X.500, ITU-T X.501, ITU-T X.511, ITU-T X.518,
ITU-T X.519, ITU-T X.520, ITU-T X.521, ITU-T X.525, and ITU-T X.530, the 2000 edition of Rec. ITU-T X.509, and
parts 1-10 of the ISO/IEC 9594:2001 edition.

This Directory Specification uses the term fifth edition systems to refer to systems conforming to the fifth edition of the
Directory Specifications, i.e, the 2005 editions of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:2005 edition.

This Directory Specification uses the term sixth edition systems to refer to systems conforming to the sixth edition of the
Directory Specifications, i.e, the 2008 editions of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:2008 edition.

This Directory Specification uses the term seventh edition systems to refer to systems conforming to the seventh edition
of these Directory Specifications, i.e.,, the 2012 edition of the series of ITU-T X.500 Recommendations and the
I SO/IEC 9594:2014 edition.

This Directory Specification presents ASN.1 notation in bold Courier New typeface. When ASN.1 types and values are
referenced in normal text, they are differentiated from normal text by presenting them in the bold Courier New
typeface. The names of procedures, typically referenced when specifying the semantics of processing, are differentiated
from normal text by displaying them in bold Times. Access control permissions are presented in italicized Times.

If the items in a list are numbered (as opposed to using "—" or letters), then the items shall be considered steps in a
procedure.

Rec. ITU-T X.501 (10/2012) 5

| SO/l EC 9594-2:2014 (E)

SECTION 2 —-OVERVIEW OF THE DIRECTORY MODELS

6 Directory Models

6.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

6.1.1 administrative authority: An agent of the Domain Management Organization concerned with various
aspects of Directory administration. The term administrative authority (in lower case) refers to the power vested in an
Administrative Authority by the Domain Management Organization to execute policy.

6.1.2 directory administrative and operational information: Information used by the Directory for
administrative and operational purposes.

6.1.3 directory information tree (DIT) domain: That part of the global DIT held by the DSAs and LDAP servers
forming aDMD.

6.1.4 directory management domain (DMD): A set of one or more DSASs, zero or more LDAP servers, zero or
more DUAs and zero or more LDAP clients managed by a single organization.

6.1.5 domain management or ganization: An organization that manages a DMD (and the associated DIT Domain).
6.1.6 directory user information: Information of interest to users and their applications.

6.1.7 directory system agent (DSA): An Open Systems Interconnection (OSl) application process which is part of
the Directory.

6.1.8 (directory) user: The end user of the Directory, i.e., the entity or person which accesses the Directory.

6.1.9 directory user agent (DUA): An OSl application process which represents a user in accessing the Directory.
NOTE — DUAs may aso provide arange of local facilities to assist users compose queries and interpret the responses.

6.1.10 lightweight directory access protocol (LDAP) client: An application process which represents a user in
accessing the Directory viathe Lightweight Directory Access Protocol (LDAP).

6.1.11 LDAP server: An application process which is part of the Directory, holds a part of the DIB, and which
responds to requests via the Lightweight Directory Access Protocol (LDAP).

6.2 The Directory and itsusers

The Directory is a repository of information and protocols and procedures for accessing and maintaining that
information. The repository is known as the Directory Information Base (DIB). Directory services provided to users are
concerned with various kinds of access to this information.

The services provided by the Directory are defined in Rec. ITU-T X.511 | ISO/IEC 9594-3.

A Directory user (e.g., a person or an application-process) obtains Directory services by accessing the Directory. More
precisely, a Directory User Agent (DUA) or a Lightweight Directory Access Protocol (LDAP) client actually accesses
the Directory and interacts with it to obtain the service on behalf of a particular user. The Directory provides one or
more access points at which such accesses can take place. These concepts areillustrated in Figure 1.

A DUA is manifested as an application-process. In any instance of communication, each DUA represents precisely one
directory user.

The Directory is manifested as a set of one or more application-processes known as Directory System Agents (DSAS)
and/or LDAP servers, each of which provides zero, one or more of the access points. For a more detailed description of
DSAS, see21.2.

An access point is provided by a particular DSA providing access to distributed directory. The DSA to which a DUA or
LDAP client has an application-association is called the bound DSA.
NOTE 1 — Some open systems may provide a centralized DUA function retrieving information for the actual users (application-
processes, persons, etc.). Thisistransparent to the Directory.
NOTE 2 — The DUA functions and a DSA can be within the same open system; it is an implementation choice whether to make
one or more DUASs visible within that open system.

NOTE 3 — A DUA may exhihit local behaviour and structure which is outside the scope of envisaged Directory Specifications.
For example, a DUA which represents a human directory user may provide a range of local facilities to assist its user to compose
queries and interpret the responses.

6 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Access point -

DUA/
LDAP
client

Directory
user

The Directory

X.501(12)_FO1

Figure 1 — Accesstothe Directory

6.3 Directory and DSA Information M odels
6.3.1 Generic Models

Directory information may be classified as either:

— user information, placed in the Directory by, or on behalf of, users; and subsequently administered by, or
on behalf of, users. Section 3 provides amodel of thisinformation; or

— administrative and operational information, held by the Directory to meet various administrative and
operational requirements. Section 5 provides a model of thisinformation. Also provided in Section 5isa
specification of the relationship between the user, administrative and operational information models.

These models, presenting views of the DIB from different perspectives, are referred to as the generic Directory
Information Models.

Directory information models describe how the Directory as a whole represents information. The composition of the
Directory as a set of potentialy cooperating DSAs is abstracted from the model. The DSA information model, on the
other hand, is especially concerned with DSAs and the information that must be held by DSAs in order that the set of
DSAs comprising the Directory may together realize the Directory information model. The DSA Information Model is
provided in clauses 22 through 23.

The DSA information model is a generic model describing the information held by DSAs and the relationship between
thisinformation and the DIB and DIT.

Some, but not al, of the information represented by the DSA information model is accessible viathe Directory abstract
service. Therefore, administration of all of the information described in these Directory Specifications is not possible
via the Directory abstract service. It is envisioned that administration of DSA information will initially be a local
matter, but that eventually some generic system management service will be employed to provide access to al of the
information described in the DSA information model.

6.3.2 Specific information models

Subsequent to the development of generic models for the Directory as a whole and for its components, specific
information models are required for the standardization of particular aspects of the operation of the Directory and its
components.

The generic Directory Information Models establish aframework for the following specific information models:
— anaccess control information model;
— asubschemainformation model;
— acollective attribute information model.
The generic DSA Information Model in turn establishes aframework for the following specific information models:
— amodel for aDSA's distribution knowledge;
— amodel for aDSA'sreplication knowledge.

6.4 Directory Administrative Authority M odel

A Directory Management Domain (DMD) is a set of one or more DSAs and zero or more DUAS managed by a single
organization.

That part of the global DIT held by (the DSAs forming) a DMD is referred to as a DIT Domain. There is a one-to-one
correspondence between DMDs and DIT Domains. The term "DMD" is used when referring to the management of the

Rec. ITU-T X.501 (10/2012) 7

| SO/l EC 9594-2:2014 (E)

functional components of the Directory. The term "DIT Domain" is used when referring to the management of
Directory Information. Two important points regarding this terminology are:

— A DIT Domain consists of one or more digoint subtrees of the DIT (see 11.5). A DIT Domain shall not
contain the root of the global DIT.

— Theterm "DMD" may also be used as a general term when both aspects of management are considered
together.

An organization that manages a DMD (and the associated DIT Domain) is referred to as a Domain Management
Organization (DMO).

Figure 2 illustrates the relationship between aDMO, DMD and DIT Domain.

[Domain management or ganization]

Manages Manages
A 4

DIT Domain DMD

DUA

DSA

@ =
(bua

X.501(12)_F02

Figure 2 — Directory management

Management of a DUA by a DMO implies an ongoing responsibility for service to that DUA, e.g., maintenance, or in
some cases ownership, by the DMO. The DMO may or may not elect to make use of the Directory Specifications to
govern any interactions among DUAs and DSAs which are wholly within the DMD.

An agent of a DMO concerned with various aspects of Directory administration is referred to as an Administrative
Authority. The term administrative authority (in lower case) refers to the power vested in an Administrative Authority
by aDMO to execute policy.

NOTE — A Directory Administrative Authority Model is specified in Section 4.

A DMD may be assigned an object identifier (a DMD-id) for convenience in reference, for example, in search-rules.

8 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

SECTION 3-MODEL OF DIRECTORY USER INFORMATION

7 Directory Information Base

7.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

711 alias entry: An entry of the class "alias’ containing information used to provide an aternative name for an
object or dias entry.

712 ancestor: The entry at the root of the hierarchy of family members that comprise a compound entry.

713 compound entry: A representation of an object in terms of family members that are hierarchically organized
into one or more families of entries.

714 derived entry: Entry information in a search result containing attribute values obtained by performing a join
on data that originated from more than one Directory entry.

7.15 direct superclass. Relative to a subclass — an object class from which the subclassis directly derived.

7.1.6 directory information base (DIB): The complete set of information to which the Directory provides access,
and which includes all of the pieces of information which can be read or manipulated using the operations of the
Directory.

717 directory information tree (DIT): The DIB considered as a tree, whose vertices (other than the root) are the
Directory entries.

NOTE — The term "DIT" is used instead of "DIB" only in contexts where the tree structure of the information is relevant.
7.1.8 (directory) entry: A named collection of information within the DIB. The DIB is composed of entries.

7.1.9 family: A hierarchical subset of family member entries that represents a particular class of information within
a compound entry. The root of each family within a compound entry is the ancestor, but apart from the shared ancestor,
families do not share common members. A family is distinguished from other families within a compound entry by
having a common class (structural object class) for each family member that isimmediately subordinate to the ancestor.

7.1.10 family member: A member of ahierarchical collection of entries that comprise a compound entry.

7.1.11 immediate superior (noun): Relative to a particular entry or object (it shall be clear from the context which
isintended), the immediately superior entry or object.

7.1.12 immediately superior entry: Relative to a particular entry — an entry which is at theinitial vertex of anarcin
the DIT whose final vertex isthat of the particular entry.

7.1.13 immediately superior object: Relative to a particular object — an object whose object entry is the immediate
superior of any of the entries (object or dias) for the second object.

7.1.14 object (of interest): Anything in some ‘world', generally the world of telecommunications and information
processing or some part thereof, which is identifiable (can be named), and which it is of interest to hold information on
in the DIB.

7.1.15 object class: Anidentified family of objects (or conceivable objects) which share certain characteristics.

7.1.16 object entry: An entry which is the primary collection of information in the DIB about an object, and which
can therefore be said to represent that object in the DIB.

7.1.17 related entries: A set of (directory) entries, each of which can be identified as holding information in the DIB
about a particular real-world object of interest. Different entries in the set may contain different types of information
about the real-world object, and may even contain conflicting information.
NOTE 1 —The value of information within a set of related entries depends on the reliability of the identification of each entry
with the real-world.
NOTE 2 — It is possible, but not necessary, for related entries to exist in separate DITs and to have identical distinguished names.
Similarly, it is possible for non-related entries to have identical distinguished names; however, it is recommended that identical
distinguished names be used only for related entries.

Rec. ITU-T X.501 (10/2012) 9

| SO/l EC 9594-2:2014 (E)

7.1.18 subclass. Relative to one or more superclasses — an object class derived from one or more superclasses. The
members of the subclass share all the characteristics of the superclasses and additional characteristics possessed by none
of the members of those superclasses.

7.1.19 subordinate: The converse of superior.

7.1.20 superclass. Relative to a subclass — a direct superclass, or superclass to an object class that is a direct
superclass (recursively).

7.1.21 superior: (Applying to entry or object) immediately superior, or superior to one which is immediately
superior (recursively).

7.2 Objects

The purpose of the Directory is to hold, and provide access to, information about objects of interest (objects) which
exist in some 'world'. An object can be anything in that world which isidentifiable (can be named).
NOTE — The objects known to the Directory may not correspond exactly with the set of 'real’ things in the world. For example, a
real-world person may be regarded as two different objects, a business person and a residential person, as far as the Directory is
concerned. The mapping is not defined in this Directory Specification, but is a matter for the users and providers of the Directory
in the context of their applications.

An object class is an identified family of objects, or conceivable objects, which share certain characteristics. Every
object belongs to at least one object class. An object class may be a subclass of other object classes, in which case the
members of the former class, the subclass, are aso considered to be members of the latter classes, the superclasses.
There may be subclasses of subclasses, etc., to an arbitrary depth.

7.3 Directory entries

The Directory Information Base (DIB) is composed of (Directory) entries. An entry is a named collection of
information.

There are four kinds of entries:

— Object entries: Representing the primary collection of information in the DIB about a particular object.
For any particular object, there is precisely one object entry or compound entry (see 8.10). The object
entry is said to represent the object. An object entry is either a single entry or a compound entry
comprising an aggregate of entries together representing the object.

— Alias entries: Used to provide alternative names for object entries (possibly the ancestor of a compound
entry, but not child family members).

— Subentries. Representing a collection of information in the DIB used to meet administrative and
operational requirements of the Directory. Subentries are discussed in Section 5.

— Family members: Specia entries that are components of a compound entry. The ancestor of a compound
entry is also afamily member.
A user view of the structure of Directory entriesis depicted in Figure 3 and described in 8.2.
Each entry contains an indication of the object classes, and their superclasses, to which the entry belongs.

Some object entries are specialy designated for the purpose of Directory administration. These entries are termed
administrative entries. The Directory user is not normally aware of this, and views these entries in the same way as
other object entries.

74 Directory Information Tree (DIT)

In order to satisfy requirements for the distribution and management of a very large DIB, and to ensure that entries can
be unambiguously named and rapidly found, a flat structure is not likely to be feasible. Accordingly, the hierarchical
relationship commonly found among objects (e.g., a person works for a department, which belongs to an organization,
which is headquartered in a country) can be exploited, by the arrangement of the entries into a tree, known as the
Directory Information Tree (DIT).

NOTE — An introduction to the concepts and terminology of tree structures can be found in Annex J.
The component parts of the DIT have the following interpretations:

a) theverticesarethe entries. Object entries may be either leaf or non-leaf vertices, whereas alias entries are
aways leaf vertices. The root is not an entry as such, but can, where convenient to do so [e.g., in the
definitions of b) and c) below], be viewed as a null object entry [see d) below];

10 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

b) the arcs define the relationship between vertices (and hence entries). An arc from vertex A to vertex B
means that the entry at A is the immediately superior entry (immediate superior) of the entry at B, and
conversely, that the entry at B is an immediately subordinate entry (immediate subordinate) of the entry
at A. The superior entries (superiors) of a particular entry are its immediate superior together with its
superiors (recursively). The subordinate entries (subordinates) of a particular entry are its immediate
subordinates together with their subordinates (recursively);

c) theobject represented by an entry is, or is closely associated with, the naming authority (see clause 8) for
its subordinates;

d) theroot represents the highest level of naming authority for the DIB.

A superior/subordinate relationship between objects can be derived from that between object entries. An object is an
immediately superior object (immediate superior) of another object if and only if the object entry for the first object is
the immediate superior of any of the object entries for the second object. The terms immediately subordinate object,
immediate subordinate, superior and subordinate (applied to objects) have their analogous meanings.

Permitted superior/subordinate relationships among objects are governed by the DIT structure definitions (see 13.7).

The Directory maintains, in addition to information concerning Directory entries, additional information regarding
collections of Directory entries. Such collections may be subtrees (of the DIT) or subtree refinements (when not a true
tree structure). See clause 12.

8 Directory entries

8.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

8.1.1 anchor attribute: A user attribute having friends, as defined within the relevant subschema. An anchor
attribute can be used to cause friend attributes to be included in the set of attributes to be selected or considered for
matching in a Search operation, without having to be itself present in an entry.

8.1.2 attribute: Information of a particular type. Entries are composed of attributes.
8.1.3 user attribute: An attribute holding user information.

814 attribute hierarchy: The aspect of an attribute that permits a user attribute type to be derived from a more
generic user attribute type. The relationship of the two attribute type definitions (which mandates certain behaviour of
attributes corresponding to these attribute types) is thus hierarchical.

8.15 attribute subtype (subtype): An attribute type A is related to another attribute type B by the fact that either
A has been derived from B, in which case A is adirect subtype of B, or A has been derived from an attribute type which
is asubtype of B, in which case A isan indirect subtype of B.

8.1.6 attribute supertype (supertype): An attribute type B is related to another attribute type A by the fact that
either A has been derived from B, in which case B is a direct supertype of A, or A has been derived from an attribute
type which isasubtype of B, in which case B is an indirect supertype of A.

8.1.7 attribute type: That component of an attribute which indicates the class of information held by that attribute.
8.1.8 attribute value: A particular instance of the class of information indicated by an attribute type.

8.19 attribute value assertion: A proposition, which may be true, false, or undefined, according to the specified
matching rules for the type, concerning the presence in an entry of an attribute value of a particular type.

8.1.10 auxiliary object class: An object class which is descriptive of entries or classes of entries and is not used for
the structural specification of the DIT.

8.1.11 collective attribute: A user attribute whose values are the same for each member of an entry collection.

8.1.12 context: A property that can be associated with a user attribute value to specify information that can be used
to determine the applicability of the value.

8.1.13 context assertion: A proposition, which may be true or false, regarding a context type and particular context
values for that type, that determines the applicability of an attribute value.

8.1.14 context type: That component of a context which indicates its type or purpose.

8.1.15 context list: The set of contexts associated with an attribute value.

Rec. ITU-T X.501 (10/2012) 11

| SO/l EC 9594-2:2014 (E)

8.1.16 context value: A particular instance of the property indicated by a context type.

8.1.17 derived attribute: An attribute whose value or values is computed in whole or in part at the time of retrieval
rather than directly stored.

8.1.18 derived object class value: A value of an object class whose presence is not administered by a user but is
computed. Derived object class values are categorized as abstract.

8.1.19 direct attribute reference: Reference (in the Directory and DSA abstract service) to one or more attribute
values using the identifier of their attribute type.

8.1.20 distinguished value: An attribute value in an entry that appears in the relative distinguished name of the
entry.

8121 dummy attribute: An attribute that is defined as a user attribute but which shall never be present in an entry.
Only an anchor attribute can be adummy attribute.

8.1.22 entry collection: A collection of entries belonging to an explicitly specified subtree or subtree refinement of
the DIT.

8.1.23 friend attributes: A set of user attributes associated with a specific user attribute (known as an anchor
attribute) by an administrative authority, for inclusion in a set of attributes returned when the anchor attribute is
specified, or used potentially to match a predicate which includes a condition on the anchor attribute.

8.1.24 indirect attribute reference: Reference (in the Directory and DSA abstract service) to one or more attribute
values using the identifier of a supertype of their attribute type.

8.1.25 matchingrule: A rule, forming part of the Directory Schema, which allows entries to be selected by making a
particular statement (a matching rule assertion) concerning their attribute values.

8.1.26 matching ruleassertion: A proposition, which may be true, false or undefined, concerning the presence in an
entry of attribute values meeting the criteria defined by the matching rule.

8.1.27 operational attribute: An attribute representing operational and/or administrative information.
8.1.28 structural object class: An object class used for the structural specification of the DIT.

8.1.29 structural object class of an entry: With respect to a particular entry, the single structural object class used
to determine the DIT Content Rule and DIT Structure Rule applying to the entry. This object class is indicated by the
structuralObjectClass operational attribute. This object class is the most subordinate object class of the entry's
structural object class superclass chain.

12 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

8.2 Overall structure

Asdepicted in Figure 3, an entry consists of a set of attributes.

ENTRY
‘ Attribute ‘ ‘ Attribute ‘ c o ‘ Attribute ‘

ATTRIBUTE
One or more per entry

ATTRIBUTE

Attribute Attribute
type val ue(s)

ATTRIBUTE VALUE(s)
One or more per attribute

Distinguished | | Attribute || Attribute
attribute value value

value i
| Context(s) | | Context(s) |

] Context(s) o

|
|
|
|
|
|
|
L

CONTEXT(s)
zero, one or more per attribute value

CONTEXT LIST

T

Context Context
type val ue(s) Fallback

X.501(12)_F03

Figure 3 —Structure of an entry

Each attribute provides a piece of information about, or describes a particular characteristic of, the object to which the
entry corresponds.

NOTE 1 — Examples of attributes which might be present in an entry include naming information such as the object's personal
name, and addressing information, such as its telephone number.

An attribute consists of an attribute type, which identifies the class of information given by an attribute, and the
corresponding attribute values, which are the particular instances of that class of information appearing in the attribute
within the entry. A user attribute value may have zero, one, or more contexts associated with it in its context list.
Operational attribute values shall not have contexts.

NOTE 2 — Attribute types, attribute values, and contexts are described in 8.4, 8.5 and 8.8 respectively. Operational attributes are
described in clause 12.

Attribute {ATTRIBUTE:SupportedAttributes} ::= SEQUENCE {

type ATTRIBUTE. &id ({SupportedAttributes}),
values SET SIZE (0..MAX) OF ATTRIBUTE.&Type ({SupportedAttributes}{@type}),
valuesWithContext SET SIZE (1..MAX) OF SEQUENCE {

value ATTRIBUTE. &Type ({SupportedAttributes}{@type}) .,

contextList SET SIZE (l1l..MAX) OF Context,

...} OPTIONAL,

}

An attribute may be designated as single-valued or multi-valued. The Directory shall ensure that single-valued attributes
have only asingle value. This value may have a context list to associate properties with the attribute value. Attributesin
storage shall have at least one value, but may at times appear to have zero values when transferred to or from storage
(e.g., because values are hidden by access contral).

Rec. ITU-T X.501 (10/2012) 13

| SO/l EC 9594-2:2014 (E)

8.3 Object classes

Object classes are used in the Directory for a number of purposes:

— describing and categorizing objects and the entries that correspond to these objects;

— where appropriate, controlling the operation of the Directory;

— regulating, in conjunction with DIT structure rule specifications, the position of entriesin the DIT;

— regulating, in conjunction with DIT content rule specifications, the attributes that are contained in
entries;

— identifying classes of entry that are to be associated with a particular policy by the appropriate
administrative authority.

Some object classes will be internationally standardized. Others will be defined by national administrative authorities
and/or private organizations. This implies that a number of separate authorities will be responsible for defining object
classes and unambiguously identifying them. This is accomplished by identifying each object class with an object
identifier when the object classis defined. A notation for this purpose is provided in 13.3.3.

NOTE 1 —An administrative authority may use object classes other than the useful object classes defined and registered in the
Directory Specifications. An administrative authority may itself specify and register object classes, for example, to supplement
those defined in the Directory Specifications.

An object class (a subclass) may be derived from an object class (its direct superclass) which isitself derived from an
even more generic object class. For structural object classes, this process stops at the most generic object class, top. An
ordered set of superclasses up to the most superior object class of an object classis its superclass chain.

An object class may be derived from two or more direct superclasses (superclasses not part of the same superclass
chain). This feature of subclassing istermed multiple inheritance.

The specification of an entry's or family member's object class identifies whether an attribute is mandatory or optional;
this specification also applies to its subclasses. The subclass may be said to inherit the mandatory and optional attribute
specification of its superclass. The specification of a subclass may indicate that an optional attribute of the superclassis
mandatory in the subclass.

If an object class specifies an anchor attribute having friend attributes as optional or mandatory, this automatically
includes friend attributes as optional attributes without necessarily being included in any object class definition or in
any content rule.

An abject class may define a dummy attribute as a mandatory or optiona attribute if the dummy attribute is an anchor
attribute. If an object class specifies a dummy anchor attribute type as a mandatory or optional attribute, the anchor
attribute shall not appear in an entry of this object class, but if specified as a mandatory attribute, at least one of its
friends attribute shall be present. However, if a non-dummy anchor attribute type is specified as a mandatory attribute
type, an attribute of the anchor attribute type shall be present.

Friend attribute types shall not be present if excluded by content rules.

There are three kinds of object classes:
— abstract object class;
— structural object class; and
— auxiliary object class.
NOTE 2 — For restriction on definition of subclasses, see 13.3.1.

Each object class is of precisely one of these kinds, and remains of this kind in whatever situation it is encountered
within the Directory. The definition of each object class shall specify what kind of object that it is.

All entries shall be amember of the object class top and at |east one other structural object class.

831 Abstract object class

An abstract object class is mainly used to derive other object classes, providing the common characteristics of such
object classes. An entry shall not belong only to abstract object classes.

top isan abstract object class used as a superclass of all structural object classes.

14 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

In addition to its use for deriving other object classes, an abstract object class value can be a derived value; that is, its
presence is computed or inferred by the Directory. For example, the parent object class value for a particular entry is
computed or inferred from the presence of afamily member, of auxiliary object class child, immediately subordinate
to the entry.

8.3.2 Structural object class

An object class defined for use in the structural specification of the DIT is termed a structural object class. Structural
object classes are used in the definition of the structure of the names of the objects for compliant entries.

An object or alias entry is characterized by precisely one structural object class superclass chain which has a single
structural object class as the most subordinate object class. This structural object class is referred to as the structural
object class of the entry.
Structural object classes are related to associated entries:
— an entry conforming to a structural object class shall represent the real-world object constrained by the
object class;
— DIT structure rules only refer to structural object classes; the structural object class of an entry is used to
specify the position of the entry in the DIT;
— the structural object class of an entry is used, along with an associated DIT content rule, to control the
content of an entry.

The structural object class of an entry shall not be changed.

8.3.3 Auxiliary object class

Specific applications using the Directory will frequently find it useful to specify an auxiliary abject class which may be
used in the construction of entries of several types. For example, message handling systems make use of the auxiliary
class MHS User (see Rec. ITU-T X.402 | ISO/IEC 10021-2) to specify a package of mandatory and optional message
handling attributes for entry types whose structural object class is variable, e.g., Organizational Person or Residential
Person.

In certain environments, there is a need to be able to add to or remove from the list of attributes permitted in an entry of
aparticular, perhaps standardized, class (or classes).

This requirement may be met by the definition and use of an auxiliary object class having semantics, known and
maintained within alocal community, which change from time to time as needed.

This requirement may also be met using the facilities of DIT content rule definitions to dynamically (i.e., without
registration) allow the addition or exclusion of attributes from entries at particular pointsin the DIT (see 13.3.3).

Auxiliary object classes are descriptive of entries or classes of entries.

Therefore, besides being a member of the structural object class, an entry may be optionally a member of one or more
auxiliary object classes.

An entry's auxiliary object classes may change over time.

NOTE — The unregistered object class facility, available in the first edition of these Directory Specifications to support the
requirements discussed in this clause, is now deprecated in favour of the use of DIT content rules.

834 Object class definition and thefirst edition of this Directory Specification

Object classes defined using the terminology of the first edition of this Directory Specification will not be classified as
one of structural, auxiliary or abstract.

Alias object classes specified using the terminology of the first edition of this Directory Specification may be
considered to be specified as either abstract, auxiliary or structural object classes and deployed in a subschema
accordingly.

Rec. ITU-T X.501 (10/2012) 15

| SO/l EC 9594-2:2014 (E)

8.4 Attribute types

Some attribute types will be internationally standardized. Other attribute types will be defined by national
administrative authorities and private organizations. This implies that a number of separate authorities will be
responsible for defining types and unambiguously identifying them. This is accomplished by identifying each attribute
type with an object identifier when the type is defined. Using the notation of the ATTRIBUTE information object class
defined in 13.4.8, an attribute type is defined as:

AttributeType ::= ATTRIBUTE.&id

All attributes in an entry shall be of distinct attribute types.

Certain attributes may not be stored and accessible in entries, but are intended to be carried in operations to convey
information, e.g., diagnostics information, that conveniently can be expressed as attributes. Other attributes, called
control attributes, may as part of their definition specify a special procedure to be executed based on the information in
the attribute. A control attribute may be specified in an operation, placed in entries, etc. See 8.5.3 of Rec. ITU-T X.520 |
| SO/IEC 9594-6 for an example.

There are anumber of attribute types which the Directory knows about and uses for its own purposes. They include:

a) objectClass —An atribute of thistype shall appear in every entry, and shal indicate the object classes
and superclasses to which the object belongs.

b) aliasedEntryName —An attribute of thistype shall appear in every alias entry, and shall hold the name
(see 8.5) of the entry which the adlias entry references.

These attributes are defined in 13.4.8.

The types of user attributes which shall or which may appear within an object or alias entry are governed by rules
applying to the indicated object classes as well as by the DIT content rule for that entry (see 13.8). The types of
attributes which may appear in a subentry are governed by the rules of the system schema.

Some Directory entries may contain special attributes not normally visible to the Directory User. These attributes are
called operational attributes and are used to meet the administrative and operational requirements of the Directory.
Operational attributes are discussed in more detail in Section 5.

85 Attribute values

Defining an attribute also involves specifying the syntax, and hence data type, to which every value in such attributes
shall conform. Using the notation of the ATTRIBUTE information object class defined in 13.4.8, an attribute value is
defined as:

AttributeValue ::= ATTRIBUTE.&Type

An attribute value may be designated as a distinguished value, in which case the attribute value can form part of the
relative distinguished name of the entry (see 9.3). Generaly, an attribute with a distinguished value will have only a
single distinguished value. If such an attribute value has associated context information (see 8.8), the context
information is not considered part of the distinguished value when being part of a relative distinguished name (see 8.8
and 9.3).

NOTE — A distinguished value may have contexts attached, but such context information is not part of a distinguished name.

Client-supplied values shall be preserved for storage in the Directory. Comparison values are ephemeral, and shall not
affect the stored value.

8.6 Attribute type hierarchies

When defining an attribute type, the characteristics of some more generic attribute type may optionally be employed as
the basis of the definition. The new attribute type is a direct subtype of the more generic attribute type, the supertype,
from which it is derived.

Attribute hierarchies allow access to the DIB with varying degrees of granularity. This is achieved by alowing the
value components of attributes to be accessed by using either their specific attribute type identifier (a direct reference to
the attribute) or by the identifier of a more generic attribute type (an indirect reference).

Semantically and syntactically related attribute types may be placed in a hierarchical relationship, the more specialized
being subtypes to the more generalized. Searching for, or retrieving attributes and their values is made easier by quoting
the more generalized attribute type; a filter item so specified is evaluated for the more specialized types as well as for

16 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

the quoted type; a context assertion specified for the more generalized attribute type is also applied to the more
specialized type.

Where specialized subtypes are selected to be returned as part of a search result these types shall be returned if
available. Where the more general types are selected to be returned as part of a search result, both attributes of the
general and the specialized types shall be returned, if available. An attribute value shall aways be returned as a value of
its own attribute type.

For an entry to contain a value of a user attribute type belonging to an attribute hierarchy, that type shall be explicitly
included either in the definition of an object class to which the entry belongs, or in the DIT content rule applicable to
that entry.

All of the attribute types in an attribute hierarchy are treated as distinct and unrelated types for the purpose of
administration of the entry and for user modification of entry content.

An attribute value stored in a Directory object or alias entry is of precisely one attribute type. The type is indicated
when the valueis originally added to the entry.

8.7 Friend attributes

Friend attributes are user attributes specified by an administrative authority as related in some practica way to a
specific anchor attribute. When an anchor attribute is specified in the information to be returned by a Read or Search
operation, the feature permits friend attributes for the anchor attribute to be returned, subject to service and
administrative controls (including access control, search rules, etc.). Similarly, when an anchor attribute is specified in a
filter item within a search predicate, friend attributes can be used to satisfy the predicate if the matching rule for the
friend is compatible with the proposed value.

If an anchor attribute is permitted within an entry by being included in the mandatory or optional lists of object class
values for the entry, friend attributes are also permitted unless excluded by content rules. If the anchor attribute is not a
mandatory attribute, it may be absent in the entry, even if friend attributes are present.

Any user attribute can be designated within a subschema as an anchor attribute.
NOTE 1- As an example of an anchor attribute, consider a hypothetical attribute commsaddr, which has, in a particular
subschema, friend attributes which are communications addresses attribute types, e.g., telephone number, e-mail address, URL,
etc.
The anchor-friend relationship is neither commutative nor transitive:
— If an anchor attribute A has afriend B, it cannot be deduced that A isafriend of B.
— If an anchor attribute A has afriend B, and B has afriend C, it cannot be deduced that C isafriend of A.

If an attribute A is a friend of some anchor attribute, then all subtypes of A are also friends of that anchor attribute.
However, it cannot be deduced that supertypes of A are also friends of that anchor attribute.

Designating an attribute as a friend confers no special access control or search-rule protection unless associated with
membership of the anchor's object class (of which it is automatically a member).

NOTE 2 — At present, access control and search rules make no use of object classes as a means of defining sets of attributes for
specia privileges or protections.

8.8 Contexts

The information model may be refined by associating with attribute values properties called contexts. Associated with
any user attribute value may be alist of contexts which provide additional information that can be used to determine the
applicability of the attribute value.

NOTE 1 — For example, contexts can be used to associate a particular language, time, or locale with an attribute value.

Each context consists of a type component, a value component whose syntax is determined by the type, and a
fallback flag. Using the notation of the coNTEXT information object class defined in 13.9, acontext isdefined as:

Context ::= SEQUENCE {
contextType CONTEXT.&id ({SupportedContexts}),
contextValues
SET SIZE (1l..MAX) OF CONTEXT.&Type ({SupportedContexts}{@contextType}),
fallback BOOLEAN DEFAULT FALSE,
-}

The contextType component shall hold the object identifier identifying the type of context.

Rec. ITU-T X.501 (10/2012) 17

| SO/l EC 9594-2:2014 (E)

The contextvalues component shall hold one or more values of the property specified by contextType that are
associated with the particular attribute value.

The fallback component is used to designate one or more attribute values for specific behaviour in relation to a
context type. In addition to having any specific contextvalues oOf that context type associated with it, an attribute
value for which fallback is TRUE for agiven contextType iS.

— considered as being associated with any value of the given contextType for which no other values of
the same attribute are otherwise associated. Thus, a context assertion of this context type that fails to
match any values of the attribute based on the rules for matching contextvalues shall match with any
attribute value for which £allback is TRUE for this context type.

NOTE 2 — For example, an attempt to select the attribute value associated with a particular language shall yield those
values with fallback Set to TRUE if none of the attribute values is otherwise associated with the chosen language.

— considered as a value to preserve during an operation which resets attribute values for a given attribute
type. A Modify (reset value) removes al values of a chosen attribute type which have an associated
context for which the falilback isset FALSE.

NOTE 3 —Modify (reset value) is further described in 11.3.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

An attribute value without contexts, or one whose context list does not contain a context of a specific type, is considered
to be applicable under all context values of that specific type.

NOTE 4 — For example, a selection based on the French context value of a language context shall select an attribute value that
does not have any language context specifically associated with it (as well as those attribute values having the French language
context associated with them specifically).

All contexts in an attribute value's context list shall be of distinct context types.

Context information associated with attribute values may be retrieved along with the attribute values (eg., to
differentiate between those attribute values). A user of the Directory may also make use of contexts to refine selection
and retrieval of information during Directory operations.

8.9 Matching rules

8.9.1 Overview

Of paramount importance to the Directory is the ability to be able to select a set of entries from the DIB based on
assertions concerning attribute values held by these entries.

A matching rule allows entries to be selected by making a particular assertion concerning their attribute values.

The most primitive type of assertion is the attribute value assertion. More complex assertions may be supported using
matching rule assertions. A matching rule assertion is a proposition, which may be TRUE, FALSE, or UNDEFINED,
concerning the presence in an entry of attribute values meeting the criteria defined by the matching rule.

An attribute value or matching rule assertion is evaluated based on the matching rule associated with the assertion.

A matching rule is defined through the specification of:
— therange of attribute syntaxes supported by therule;
— the specific types of matches supported by the rule;
— thesyntax required to express an assertion of each specific type of match;

— rulesfor deriving a value of the assertion syntax from avalue of the attribute syntax, if required.

NOTE — No restrictions are placed on the matching rules that may be defined to support a particular application. However, rules
defined to support one particular application may not be widely supported by DUAs and DSAs. Wherever possible, the matching
rules defined in Rec. ITU-T X.520 | ISO/IEC 9594-6 should be used in preference to the specification of new ones.

Sometimes there will be a one-to-one correspondence between a matching rule and the types of matches supported. For
example, the Directory Abstract Service supports a presence matching rule to detect the presence of an attribute of a
given typein an entry.

Sometimes there will be a many-to-many correspondence between a rule and the types of matches supported. For
example, the Directory Abstract Service supports a generic ordering rule allowing greater than or equal and less than or
equal types of matches.

18 Rec. ITU-T X.501 (10/2012)

892 Attri

| SO/l EC 9594-2:2014 (E)

bute value assertion

An attribute value assertion (AVA) is a proposition, which may be TRUE, FALSE, or UNDEFINED, according to the
specified matching rules for the type, concerning the presence in an entry of an attribute value of a particular type. It
involves an attribute type, an asserted attribute value, and optionally an assertion about contexts associated with the

attribute value:

AttributeVa

type
assertion

lueAssertion ::= SEQUENCE {
ATTRIBUTE. &id ({SupportedAttributes}),
ATTRIBUTE. &equality-match.&AssertionType
({SupportedAttributes}{@type}),

assertedContexts CHOICE {

allContexts [0] NULL,
selectedContexts [l] SET SIZE (l..MAX) OF ContextAssertion } OPTIONAL,
-}
ContextAssertion ::= SEQUENCE {
contextType CONTEXT . &id ({SupportedContexts}),
contextValues SET SIZE (1..MAX) OF
CONTEXT . &Assertion ({SupportedContexts}{@contextType}),
-}
The syntax of the assertion component of an AVA is determined by the equality matching rule defined for the

attribute type, and may be different from the syntax of the attribute itself.

89.21 Eva
AnAVA is:
a)

uation of an AVA

undefined, if any of the following holds:
1) theattribute typeis unknown;
2) theattribute type has no equality matching rule;

3) thevalue does not conform to the data type indicated by the syntax of the assertion of the attribute's
equality matching rule;

NOTE — 2) and 3) normally indicate a faulty AVA; 1) however, may occur as alocal situation (e.g., a particular DSA
has not been configured with support for that particular attribute type).

b)

0)

true, if the entry contains an attribute of that type, and the attribute contains a value of that value, and the
value contains a context that matchesthe assertedcontexts asdescribed in 8.9.2.2;

false, otherwise.

8.9.2.2 Useof assertedContextsor context assertion defaults

The inclusion of assertedContexts Within an AttributevValueAssertion iSoptional. If assertedContexts iS
specified, then the assertion shal be evaluated only against those values of the attribute for which the

assertedCon

texts istrue, asdefined in 8.9.2.3.

If assertedContexts IS not provided within an AttributevValueAssertion, then a default context assertion may
be applied in the same manner; that is, the assertion shall be evaluated only against those values of the attribute for
which, as defined in 8.9.2.3, the default context assertion is true. There are three potential sources for a default context

assertion: that

specified for the operation as a whole, that available within subentries in the DIT, and that available

locally in the DSA. They are applied as follows:

1)

2)

3

4)

If assertedContexts iS not provided within an AttributeValueAssertion, then any context
assertion for the given attribute type which has been supplied for the operation as a whole, as part of
operationContexts asdescribed in 7.3 of Rec. ITU-T X.511 | ISO/IEC 9594-3, shall be applied.

If the user has not provided assertedcontexts for the AVA and there is no context assertion for the
given attribute type which has been supplied for the operation as a whole, then the default context
assertion for the given attribute type in the context assertion subentries (if any) controlling the entry shall
be applied, as described in 14.7.

If there is no context assertion through steps 1) and 2) above, the DSA may apply a locally-defined
default context assertion for the given attribute type. Such a default shall typically reflect loca
parameters, such as the language or location of the place of deployment of the DSA, or the current time
of day, but may be tailored differently by the DSA for each DUA to which it responds.

If no context assertion is available from any of these sources, then the assertion shall be evauated
against all values of the attribute.

Rec. ITU-T X.501 (10/2012) 19

| SO/l EC 9594-2:2014 (E)

8.9.2.3 Evaluation of assertedContexts

assertedContexts istrueif:

a) allcontexts is specified (this permits a context assertion to override any default context assertion that
might otherwise be applied if assertedContexts were omitted from the
AttributeValueAssertion); OF

b) each contextAssertion in selectedContexts iStrueasdescribedin 8.9.2.4.

assertedContexts isfalse otherwise.

8.9.2.4 Evaluation of a ContextAssertion

A ContextAssertion istruefor aparticular attribute value if:

a) the attribute value has a context of the same contextType Of the ContextaAssertion and any of the
stored contextvalues Of that context matches with any of the asserted contextvalues according to
the definition of how amatch is determined for that contextType; Or

b) the attribute value contains no contexts of the asserted contextType; Or

¢) none of the other attribute values for the attribute satisfies the contextassertion according to 1) or 2)
in 8.9.2.2 above, but the attribute value does contain a context of the asserted contextType with the
fallback Set tO TRUE.

A CcontextAssertion isfalse otherwise.

8.9.3 Attribute Type Assertions

An attribute type assertion is a proposition, which may be true, false, or undefined, according to the associated contexts.

AttributeTypeAssertion ::= SEQUENCE {
type ATTRIBUTE. &id ({SupportedAttributes}),
assertedContexts SEQUENCE SIZE (1..MAX) OF ContextAssertion OPTIONAL,

-}
8.9.3.1 Evaluation of an attribute type assertion

An attribute type assertion is.
a) undefined, if the attribute type is unknown or if the attribute is not present in the entry;

b) TRUE, if the entry contains an attribute of that type, and the attribute contains one or more values that
contain a context that matches the assertedcontexts asdescribed in 8.9.3.2;

c¢) FALSE, otherwise.

8.9.3.2 Useof assertedContextsor context assertion defaults

The inclusion of assertedContexts within an AttributeTypeAssertion iS optional. If assertedContexts iS
specified, the assertedcontexts shall be true for at least one attribute value according to the rules defined in 8.9.2.4.

If assertedContexts isnot provided within an AttributeTypeAssertion, then adefault context assertion may be
applied in the same manner; that is, the default context assertion shall be true for at least one attribute value according
to the rules defined in 8.9.2.4. The potential sources for a default context assertion are as specified in 8.9.2.2.

8.94 Built-in matching rule assertions

A number of categories of related matching rules, whose semantics are generally understood and applicable to values of
many different types of attributes, are understood by the Directory:

— present;

- equality;

— substrings;

— ordering;

— approximate match.

Syntax for asserting certain types of matches associated with these categories of matching rules has been built into the
Directory Abstract Service:

— apresent Syntax for the present rule;

20 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

— anequality Syntax for equality rules;

— greaterOrEqual and lessOrEqual Syntaxesfor ordering rules;
— initial, any and final syntaxesfor substringsrules;

— an approximateMatch Syntax for approximate matching rules.

Thepresent Syntax may be used for any attribute of any type. The present match tests for the presence of any value of
aparticular type.

Specific equality, substrings and ordering matching rules may be associated with an attribute type when it is defined.
These specific rules are used when evaluating assertions of the equality, ordering and substrings rules made using the
syntax built-in to the Directory Abstract Service. If specific rules are not provided, then assertions made concerning
these attributes are undefined.

The approximateMatch Syntax supports an approximate matching rule whose definition is alocal matter to a DSA.

8.95 Matching rule requirements

In order for the Directory to behave in a consistent and well-defined manner, it is necessary that certain restrictions be
placed upon the matching rules that shall be used in conjunction with the syntax that has been built into the Directory
Abstract Service.

For an equality matching rule in which the syntax of the assertion is different from the attribute syntax to which the
matching rule applies, rules for deriving a value of the syntax of the assertion from a value of the attribute syntax shall
be supplied.

Equality matching rules for attributes used for naming shall be transitive, commutative and have an assertion syntax
identical to the attribute syntax.

A transitive matching rule is characterized by the fact that if a value a matches a value b; and if that value b matches a
third value c; then value a matches value ¢ using the rule.

A commutative matching rule is characterized by the fact that if a value a matches a value b, then that value b matches
the value a. The attribute presentationaddress is an example of an attribute supporting an attribute syntax whose
matching rule is not commutative.

With respect to a specific attribute type, the equality and ordering rules (if both present) shall always be related in at
least the following respect: two values are equal using the equality relation if and only if they are equal using the
ordering relation. In addition, the ordering relation shall be well-ordered; that is, for al x, y and z for which x precedes
y and y precedes z according to the relation, then x precedes z.

NOTE — These requirements imply that when ordering is defined, it also defines equality.

With respect to a specific attribute type, the equality and substrings rule (if both present) shall always be related in at
least the following respect: for all x and y that match according to the equality relation, then for all values z of the
substring relation, the result of evaluating the assertion against the value x equals the result of evaluating the assertion
against the value y. That is, two values that are indistinguishable using the equality relation are also indistinguishable
using the substrings relation.

8.9.6 Object Identifier and Distinguished Name equality matching rules

There are a number of equality matching rules used to evaluate attribute value assertions which the Directory knows
about and uses for its own purposes. They include:

— objectIdentifierMatch: Thisruleisused to match attributes with objectIdentifier Syntax.
— distinguishedNameMatch: Thisruleis used to match attributes with pistinguishedName Syntax.

8.10 Entry collections
8.10.1 Overview

A collection of object and dlias entries may have certain common characteristics (e.g., certain attributes that have the
same value for each entry of the collection) because of some common characteristic or shared relationship of the
corresponding objects. Such a grouping of entriesistermed an "entry collection”.

Entry collections may contain object and alias entries that are related by their position in the DIT. These collections are
specified as subtrees or subtree refinements as described in Section 5.

An entry may belong to several entry collections subject to administrative limitations imposed in Section 5.

Rec. ITU-T X.501 (10/2012) 21

| SO/l EC 9594-2:2014 (E)

8.10.2 Callective attributes
When user attributes are shared by the entries of an entry collection, they are termed collective attributes.

It is also permissible that the same collective attribute be independently associated with two or more of these
collections. In such cases, the entry's collective attribute has multiple values. Collective attributes shall, therefore,
always be specified as multi-valued.

Although they appear to users of the Directory interrogation operations as entry attributes, collective attributes are
treated differently from entry attributes in the Directory information model. This difference is manifested to users of the
Directory modification operations in that collective attributes cannot be administered (i.e., modified) via the entries in
which they appear but shall be administered viatheir associated subentries.

NOTE — The independent sources of these values are not manifested to the users of the Directory interrogation operations.

For a collective attribute to appear in an entry, the presence of that attribute type must be permitted according to the
DIT content rule governing the entry.

Entries may specifically exclude a particular collective attribute. This is achieved through the use of the
collectiveExclusions attribute, described in 12.7 and defined in 14.6.

8.11 Compound entries and families of entries

A compound entry is a special entry that comprises family member entries. These family members form a hierarchy and
thereby provide hierarchically organized information about the object represented by the compound entry. The
compound entry is represented in the DIT by an ancestor family member, which is at the root of a tree containing the
family members.

Family members can themselves be organized into one or more families for the purposes of filtering and information
retrieval. Each family is a subtree; distinct families have no common family members apart from the shared root that is
the ancestor. A family thus comprises an ancestor plus a set of subordinate family members.

A family is, beside the ancestor, composed of all of the immediately subordinate family members being of the same
structural object class. Their subordinate members, if any, are also part of the same family independent of their
structural object classes.

These concepts areillustrated in Figure 4.

Compound The Z?]E?; Structural
entry (ancestor) object classA

-
~
-
-
-
-
-
~
-
-

Structural
object class B

X.501(12)_F04

Figure 4 — Families of entries

A family member that is a child within a family tree is marked with the auxiliary object class child. The presence of
the child object class value for an entry causes the immediately superior entry automatically to be marked with the
abstract object class value parent. An entry that is both a parent and a child within a family tree is marked with
both aobject class values. The ancestor is the only family member that is not of object class child. The construction of
compound entriesis carried out by marking entries with chi1d object class values.

Each subordinate of a non-ancestor family member shall itself be a family member, and marked with a child object
classvalue.

The ASN.1 definition of these object classes can be found in 13.3.3.

22 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

All family members of a compound entry shall be placed in the same naming context as the ancestor. Family members
are not permitted to be alias entries. An alias shall not point to a child family member.

9 Names

9.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

9.1.1 alias, aliasname: An aternative name for an object, provided by the use of alias entries.

9.1.2 (alias) dereferencing: The process of converting an object's alias name to its distinguished name.

9.1.3 distinguished name (of an entry): the name of an entry which is formed from the sequence of the relative
distinguished names (RDNSs) of the entry and each of its superior entries. Every object entry, alias entry and subentry
has precisely one distinguished name

9.14 (directory) name: A construct that singles out a particular object from all other objects. A name shall be
unambiguous (that is, denote just one object); however, it need not be unique (that is, be the only name which
unambiguously denotes the object).

9.15 (entry) name: A construct that singles out a particular entry from all other entries.

9.1.6 local member name: A name for a family member constructed by the sequence of RDNs from the ancestor
down to the member in question not including the RDN for the ancestor.

9.1.7 naming authority: An authority responsible for the allocation of names in some region of the DIT.

9.1.8 purported name: A construct which is syntactically a name, but which has not (yet) been shown to be avalid
name.

9.1.9 relative distinguished name (RDN): A set of one or more attribute type and value pairs, each of which
matches a distinct distinguished attribute value of the entry.

9.2 Namesin general

A (directory) name is a construct that identifies a particular object from among the set of all objects. A name shall be
unambiguous, that is, denotes just one object. However, a name need not be unique, that is, be the only name that
unambiguously denotes the object. A (directory) name also identifies an entry. This entry is either an object entry that
represents the object or an aias entry which contains information that helps the Directory to locate the entry that
represents the object.

NOTE 1 —The set of names of an object thus comprises the set of alias names for the object, together with the distinguished
name of the object.

An object can be assigned a distinguished name without being represented by an entry in the Directory, but this name is
then the name its object entry would have had were it represented in the Directory.

Syntactically, each name for an object or entry is an ordered sequence of relative distinguished names (see 9.3).

Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
DistinguishedName ::= RDNSequence

NOTE 2 — Names which are formed in other ways than as described herein are a possible future extension.

Each initial sub-sequence of the name of an object is aso the name of an object. The sequence of objects so identified,
starting with the root and ending with the object being named, is such that each is the immediate superior of that which
followsit in the sequence.

A purported nameis a construct which is syntactically a name, but which has not (yet) been shown to be avalid name.

9.3 Relative distinguished name

Each object and entry has at least one relative distinguished name (RDN). An RDN of an object or alias entry consists
of a set of attribute type and value pairs, each of which matches, using the equality matching rule, a distinct
distinguished attribute value of the entry.

Rec. ITU-T X.501 (10/2012) 23

| SO/l EC 9594-2:2014 (E)

NOTE 1 — The eguality matching rule can be used because for naming attributes, the attribute syntax and the assertion syntax of
the equality matching rule are the same.

The RDNs of al of the entries with a particular immediate superior are distinct. It is the responsibility of the relevant
naming authority for an entry to ensure that this is so by appropriately assigning distinguished attribute values.
Allocation of RDNs is considered an administrative undertaking that may or may not require some negotiation between
involved organizations or administrations. This Directory Specification does not provide such a negotiation mechanism,
and makes no assumption asto how it is performed.

RelativeDistinguishedName ::= SET SIZE (1l..MAX) OF AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE. &id ({SupportedAttributes}),
value ATTRIBUTE. &Type ({SupportedAttributes}{@type}),
-}

The set that forms an RDN contains exactly one AttributeTypeAndvalue for each attribute which contains
distinguished valuesin the entry; that is, a given attribute type cannot appear twice in the same RDN.

An attribute value that has been designated to appear in an RDN is called a distinguished value. There may be other
values of the same attribute that are not distinguished values and thus may not be used in an RDN.

An RDN for agiven entry is formed by using one distinguished value from each attribute that has distinguished values.
The simplest case is an entry that has one distinguished value; it thus has one RDN, formed by using that distinguished
value. More than one attribute in an entry may contribute to the RDN.

Each RDN for an entry shall contain a type and value pair for each given attribute type forming part of the RDN.
primaryDistinguished isused to indicate that the value isthe primary distinguished value of that attribute type.

The RDN may be modified, if necessary, by the complete replacement of the distinguished value of al contributing
attributes.

Family members, like other entries, have RDNs. An RDN can consist of multiple attribute type and value pairs. The
local member name of a family member is the sequence of RDNs from the ancestor down to that member. The local
member name of the ancestor is an empty sequence.

NOTE 2 — RDNs are intended to be long-lived so that the users of the Directory can store the distinguished names of objects
(e.g., inthe Directory itself) without concerns for their obsol escence. Thus RDNs should be changed cautiously.

NOTE 3 — Changing the RDN of anon-leaf entry automatically changes the name of subordinate entries.

94 Name matching

It is often necessary in the operation of the Directory to determine if two names match. This requires that corresponding
RDNs be matched. The general approach to name matching is described here; specific approaches for particular uses for
name matches are described, where appropriate.

A purported RDN is said to match a target RDN if each AttributeTypeAndvalue in the purported RDN matches
with the AttributeTypeAndvalue for the same attribute typein the target RDN.

NOTE — The equality matching rule can be used because, for naming attributes, the attribute syntax and the assertion syntax of
the equality matching rule are the same.

If matching attribute values are not found as a result of the above, then the RDNs do not match.

9.5 Distinguished names

The distinguished name of a given object is defined as that name which consists of the sequence of the RDNSs of the
entry which represents the object and those of all of its superior entries (in descending order). Because of the one-to-one
correspondence between objects and object entries, the distinguished name of an object is the distinguished name of the
object entry.

NOTE 1 - It is preferable that the distinguished names of objects which humans have to deal with be user-friendly.

NOTE 2 —Rec. ITU-T X.650 | ISO/IEC 7498-3 defines the concept of a primitive name. A distinguished name can be used as a

primitive name for the object it identifies.

NOTE 3 — Because only the object entry and its superiors are involved, distinguished names of objects can never involve alias
entries.

Alias entries also have distinguished names; however, this name cannot be the distinguished name of an object. When
this distinction needs to be made, the complete term "distinguished name of an alias entry" is used. The distinguished

24 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

name of an alias entry is defined, as for the distinguished name of an object entry, to be the sequence of RDNSs of the
alias entry and those of all of its superior entries (in descending order).

It also proves convenient to define the 'distinguished name' of the root, although this can never be the distinguished
name of an object. The distinguished name of the root is defined to be an empty sequence.

An example which illustrates the concepts of RDN and distinguished name appearsin Figure 5.

RDN Distinguished name
ROOT
{1}
Countries
C=GB {C=GB}
Organi zati ns
O =Telecom {C =GB, O = Telecom}

Organl zatl onal~units

(OU = sales, {C =GB, O =Telecom,
L = Ipswich) (OU = Ssales, L = Ipswich)}
People
{C =GB, O =Telecom,
CN = Smith (OU = Sales, L = Ipswich),

CN = Smith}

X.501(12)_F05

Figure5— Determination of distinguished names

9.6 Alias names

An alias, or an alias name, for an object is an aternative name for an object or object entry which is provided by the
use of diasentries.

Each dlias entry contains, within the aliasedEntryName attribute, a name of some object. The distinguished name of
the alias entry is thus also a name for this object.

NOTE — The name within the aliasedEntryName iS Said to be pointed to by the adias. It does not have to be the distinguished
name of any entry.

The conversion of an alias name to an object name is termed (alias) "dereferencing” and comprises the systematic
replacement of aias names, where found within a purported name, by the value of the corresponding
aliasedEntryName attribute. The process may require the examination of more than one alias entry.

Any particular entry in the DIT may have zero or more alias names. It therefore follows that several alias entries may
point to the same entry. An alias entry may point to an entry that is not aleaf entry and may point to another alias entry.

An dlias entry shall have no subordinates, so that an alias entry is always aleaf entry.
Every dias entry shall belong to the alias object classwhich is defined in 13.3.3.

Family members are not permitted to be dias entries.

10 Hierarchical groups

10.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

10.1.1 hierarchical child: For an entry, a hierarchical child is an entry for which it is ahierarchical parent.

Rec. ITU-T X.501 (10/2012) 25

| SO/l EC 9594-2:2014 (E)

10.1.2 hierarchical group: A hierarchical group is a collection of entries, including compound entries, that forms a
logical tree that is not necessarily related to the DIT.

10.1.3 hierarchical leaf: Thisisan entry within ahierarchical group that has no hierarchical children.

10.1.4 hierarchical level: An integer that gives the distance from an entry within a hierarchica group to the
hierarchical top in form of the number of hierarchical links between the entry and the hierarchical top.

10.1.5 hierarchical link: This is a genera term for the logica relationship between two entries that have a
hierarchical immediate parent/immediate child relationship.

10.1.6 hierarchical parent: For an entry, the hierarchica parents are the immediately hierarchical parent, its
immediately hierarchical parent, recursively al the way up to and including the hierarchical top.

10.1.7 hierarchical sibling: For an entry, the hierarchical siblings are the entries having the same immediately
hierarchical parent asitself.

10.1.8 hierarchical sibling-child: For an entry, its hierarchical sibling-children are the complete set of hierarchical
children, at al lower levels, of its hierarchical siblings.

10.1.9 hierarchical top: Thisis the entry within a hierarchical group that is the root of the hierarchy. A hierarchical
top has no immediately hierarchical parent.

10.1.10 immediately hierarchical child: For an entry, an immediately hierarchical child isan entry for which it isthe
immediately hierarchical parent. This immediately hierarchical child does not need to be an immediately subordinate
entry within the DIT.

10.1.11 immediately hierarchical parent: For an entry, its immediately hierarchical parent is the entry that, within
the hierarchical group, is its immediately superior entry. The immediately hierarchical parent does not need to be the
immediately superior entry within the DIT.

10.2 Hierarchical relationship

Directory entries have a hierarchical relationship in the way they are placed in the DIT. However, entries may also have
hierarchical relationships not reflected in the DIT structure. As an example, a dynamic organization may not want to
reflect its current organization directly in the DIT, as it may require frequent changes to the DIT structure. There is
therefore a requirement in the Directory to be able to reflect hierarchical relationships independent of the DIT structure.
Hierarchical groups form such relationships. A hierarchical group forms a logical tree with a root caled the
hierarchical top.

By referring to hierarchical relationships, it is possible in a Search operation to retrieve information not only from a
given entry, but also from other entries within the same hierarchical group.

A compound entry is considered a single entry in the context of hierarchical groups. A child family member cannot be
part of ahierarchical group in its own right.
NOTE — Hierarchical groups are intended to permit modelling of collections of distinct objects that have logically informal
relationships, and particularly relationships that are, or could be, temporary. Compound entries, in contrast, model objects that
comprise sub-objects that are conveniently considered as a hierarchy.

To describe navigation within a hierarchical group, it is convenient to define terms for the relationships that a given
entry has with other entries within the group. This is done in 10.1. Some of these defined terms for direct relationships
are parallel to those defined for entry relationships within the DIT (immediately hierarchical child, hierarchical child,
immediately hierarchical parent and hierarchical parent). However, it is also convenient to define terms for more
distant relationships. In some situations, a user may want to retrieve information for hierarchical siblings, and even for
their hierarchical children (hierarchical sibling-children).

An entry can only be amember of asingle hierarchical group at one time.

An entry that is part of a hierarchical group holds operational attributes as defined in 14.10. These operational attributes
reflect the relationship with other entries within the group, including the hierarchical level of the entry within the group.
When acompound entry is part of a hierarchical group, the ancestor holds these operational attributes.

A hierarchical group has to be completely outside any service-specific administrative area (see 16.3) or has to be
completely contained within a service-specific administrative area. A hierarchical group shal be confined to a
single DSA. The Directory service shall detect and prevent attempts to break these rules.

26 Rec. ITU-T X.501 (10/2012)

| SO/IEC 9594-2:2014 (E)
10.3 Sequential ordering of a hierarchical group

In some situation, e.g., when transmitting a hierarchical group, a sequential ordering rule is required. The sequential
order of ahierarchical group comes from following all the strands of the hierarchical group as follows:

a) Thetop entry isthefirst entry in the sequence followed by the remaining entries within a complete strand
going down from top to a hierarchical leaf. Itisalocal choice which strands to select as the first one.

b) The next strand to be selected is one that has not previously been selected and which has the maximum
number of entries common with the previous selected strand. If several strands are identical in that

respect, selection is a loca matter. Only those entries not previously included are included in the
sequence.

¢) Theprocedurein b) isrepeated until al strands have been included.

Rec. ITU-T X.501 (10/2012) 27

| SO/l EC 9594-2:2014 (E)

SECTION 4 — DIRECTORY ADMINISTRATIVE MODEL

11 Directory Administrative Authority model

111 Definitions

For the purposes of this Directory Specification, the following definitions apply:

11.1.1 administrative area: A subtree of the DIT considered from the perspective of administration.
11.1.2 administrative entry: An entry located at an administrative point.

11.1.3 administrative point: The root vertex of an administrative area.

11.1.4 administrative user: A representative of an Administrative Authority. The full definition of the
administrative user concept is outside the scope of this Directory Specification.

11.1.5 autonomous administrative area: A subtree of the DIT whose entries are all administered by the same
Administrative Authority. Autonomous administrative areas are non-overlapping.

11.1.6 DIT domain administrative authority: An Administrative Authority in its role as the entity having
responsibility for the administration of a part of the DIT.

11.1.7 DIT domain policy: An expression of the general goals and acceptable procedures for a DIT Domain.

11.1.8 DMD administrative authority: An Administrative Authority in its role as the entity responsible for the
administration of aDMD.

11.1.9 DMD palicy: A policy governing the operation of the DSAsin a DMD.
11.1.10 DMO policy: A policy defined by aDMO, expressed in terms of DMD and DIT Domain policies.

11.1.11 inner administrative area: A specific administrative area whose scope is wholly contained within the scope
of another specific administrative area of the same type.

11.1.12 policy: An expression by an Administrative Authority of general goals and acceptable procedures.
11.1.13 policy attribute: A generic term for any Directory operational attribute which expresses policy.
11.1.14 policy object: An entity with which a policy is concerned.

11.1.15 policy procedure: A rule defining how a set of policy objects should be considered and what actions should
be taken as aresult of this consideration.

11.1.16 policy parameter: A policy procedure is characterized by certain policy parameters which are subject to
configuration (i.e., choice) by an Administrative Authority.

11.1.17 specific administrative area: A subset (in the form of a subtree) of an autonomous administrative area
defined for a particular aspect of administration: access control, subschema or entry collection administration. When
defined, specific administrative areas of a particular kind partition an autonomous administrative area.

11.1.18 specific administrative point: The root vertex of a specific administrative area.

11.2 Overview

A fundamental objective of the Directory information model is to consider well-defined collections of entries so that
they may be administered consistently as a unit. This clause clarifies the nature and scope of the authorities responsible
for that administration and the means by which their authority is exercised.

The concept of policy, defined in 11.3, provides the mechanism by which Administrative Authorities exercise control of
the Directory.

Some aspects of the Directory Administrative Model are supported by the Model of Directory Administrative and
Operational Information (see clause 12). This is to alow the modelling of information required for the regulation of
Directory user information and for other administrative purposes.

28 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Other aspects of the Directory Administrative Model require support for the distribution of administrative and
operational information among the component parts of the Directory, i.e., DSAs. Clauses 22 through 24 describe a DSA
Information Model to support these requirements.

11.3 Policy

A policy is an expression by an Administrative Authority, acting as an agent of the DMO, of general goals and
acceptable procedures. A policy is defined in terms of rules that are to be enforced (by the Directory, if appropriate) and
in terms of aspects within which an administrative user has some degree of freedom of action and specific
responsibilities.
An Administrative Authority expresses DMO policy in terms of

— DIT Domain Policy;

— DMD Palicy.
These policies may be expressed as policy attributes. A model of DIT policiesis defined in 11.6.

NOTE — Clause 14 defines the system schema necessary to support the administration of collective attributes. Clause 15 definesa
framework for supporting subschema administration policies. Clause 17 defines aframework supporting access control policies.

DMD palicies relate specifically to DSAs as components of the distributed Directory. These DMD policies are
described in 11.7 which defines amodel for DSA administration.

Finally, there are policies which relate to external matters (such as bilatera agreements between DMOs) and are
therefore not further described here.

A policy object is an entity with which apolicy is concerned (e.g., a subschema administrative areais a policy object).

A policy procedure is arule defining how a set of policy objects should be considered and what actions should be taken
(and under what circumstances) as a result of this consideration (e.g., clause 15 defines subschema administration
policy procedures).

A policy procedure is characterized by certain policy parameters which are subject to configuration (i.e., choice) by an
Administrative Authority.

Operationa attributes are used to represent policy parameters. The values of such an attribute form an expression of
some or all of the policy parameter it represents.

114 Specificadministrative authorities

The administration of a DIT Domain involves the execution of five functions related to different aspects of
administration:

— naming administration;

— subschema administration;

— security administration;

— collective attribute administration;
— service administration.

A specific Administrative Authority is an Administrative Authority in its role as the entity responsible for one of these
specific aspects of DIT Domain policy.

The term Naming Authority (see clause 9) identifies the role of the Administrative Authority as it pertains to the
alocation of names and administration of the structure of these names. A role of the Subschema Authority is to
implement these naming structures in the subschema.

The term Subschema Authority identifies the role of the Administrative Authority as it pertains to the establishment,
administration and execution of the subschema policy controlling the naming and content of entriesin a DIT Domain.
Clause 15 describes Directory support of Subschema Administration.

The term Security Authority (see Rec. ITU-T X.509 | ISO/IEC 9594-8) identifies the role of the Administrative
Authority as it pertains to the establishment, administration and execution of a security policy governing the behaviour
of the Directory with respect to entriesin aDIT Domain.

The term Collective Attribute Authority identifies the role of the Administrative Authority as it pertains to the
establishment and administration of collective attributes (see 12.7) inaDIT Domain.

Rec. ITU-T X.501 (10/2012) 29

| SO/l EC 9594-2:2014 (E)

The term Service Authority identifies the role of the Administrative Authority as it pertains to the establishment and
administration of service constraints and adjustment.

115 Administrative areas and administrative points

11.5.1 Autonomousadministrative areas

Each entry in the DIT is administered by precisely one Administrative Authority (which may operate in different roles).
An autonomous administrative area is a subtree of the DIT whose entries are all administered by the same
Administrative Authority.

The DIT Domain may be partitioned into one or more non-overlapping autonomous administrative areas.

The set of one or more autonomous administrative areas for which a DMO has administrative authority is its DIT
Domain. Thisisrepresented in Figure 6.

Autonomous
AA Area (AA)

X.501(12)_F06

Figure6—A DIT Domain

11.5.2 Specific administrative areas

In the same way that an Administrative Authority may operate in a specific role, entries in an administrative area may
be considered in terms of a specific administrative function. When viewed in this context, an administrative area is
termed a specific administrative area. There are six kinds of specific administrative area:

— subschema administrative aress;

— access control administrative areas;

— collective-attribute administrative areas;
— context default administrative areas;

— service administrative areas; and

— password administrative areas.

An autonomous administrative area may be considered as implicitly defining a single specific administrative area for
each specific aspect of administration. In this case, there is a precise correspondence between each such specific
administrative area and the autonomous administrative area.

Alternatively, for each specific aspect of administration, the autonomous administrative area may be partitioned into
non-overlapping specific administrative aress.

If so partitioned for a particular aspect of administration, each entry of the autonomous administrative area is contained
in one and only one specific administrative area of that aspect.

A specific Administrative Authority is responsible for each specific administrative area. If, for a particular
administrative aspect, an autonomous administrative area is not partitioned, a specific Administrative Authority is
responsible for that administrative aspect for the entire autonomous administrative area.

11.5.3 Inner administrative areas

For the purpose of security or collective attribute administration, inner (administrative) areas within these kinds of
specific administrative areas may be defined:

30 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

a) torepresent alimited form of delegation; or

b) for administrative or operational convenience (e.g., where the administrative point of a subtree isin a
DSA other than the one holding the entries within the subtree, that subtree may be designated as an inner
areato allow administration viathe local DSA).

An inner administrative areamay be nested within another inner administrative area.

Inner areas represent areas of limited autonomy. Entries in inner areas are administered by the specific Administrative
Authorities of the specific administrative areas within which they are contained, and also by the Administrative
Authorities of the inner areas within which they are contained. The former authorities have overall control of the
policies regulating these entries, while the latter authorities have (limited) control over those aspects of policy delegated
to them by the former.

The rules for nested inner areas, should they be permitted, shall be defined as part of the definition of the specific
administrative aspect within which they are contained.

1154 Administrative points

The specification of the extent of an autonomous administrative area is implicit and consists of the identification of a
point in the DIT (the root of the autonomous administrative area's subtree), an autonomous administrative point, from
which the administrative area proceeds downwards until another autonomous administrative point is encountered, at
which another autonomous area begins.

NOTE 1 — The immediate subordinates of the root of the DIT are autonomous administrative points.

Where an autonomous administrative area is not partitioned for a specific aspect of administration, then the
administrative area for that aspect coincides with the autonomous administrative area. In this case, the autonomous
administrative point is also the specific administrative point for this aspect of administration.

Where an autonomous administrative area is partitioned for a specific aspect of administration, then the specification of
the extent of each specific administrative area consists of the identification of the root of the specific administrative
area's subtree, a specific administrative point, from which the specific administrative area proceeds downwards until
another specific administrative point (of the same administrative aspect) is encountered, at which another specific
administrative area begins.

Specific administrative areas are always bounded by the autonomous administrative area they partition.

A particular administrative point may be the root of an autonomous administrative area and may be the root of one or
more specific administrative areas.

The specification of the extent of an inner administrative area (within a specific administrative area) consists of the
identification of the root of the inner administrative area's subtree, an inner administrative point. An inner
administrative areais bounded by the specific administrative area within which it is defined.

An administrative point corresponding to the root of an autonomous administrative area represents a DIT Domain
(and DSA) boundary. That is, its immediate superior in the DIT must be under the administrative authority of
another DMD.

NOTE 2 —Thisimplies that a DMO cannot arbitrarily partition a DIT Domain into autonomous administrative areas.
An administrative point is represented in the Directory information model by an entry holding an

administrativeRole attribute. The values of this attribute identify the type of administrative point. This attribute is
defined in 14.3.

Clauses 22 through 24 describe how administrative areas are mapped onto DSAs and the DSA information model.

Figure 7 depicts an autonomous administrative area which has been partitioned into two specific administrative areas
for a specific aspect of administration (e.g., access control). In one specific administrative area, a nested inner
administrative area has been created (e.g., because the subtree isto be held in a different DSA from the remainder of the
specific administrative area).

Figure 7 uses the abbreviations AAP (Autonomous Administrative Point), SAP (Specific Administrative Point) and IAP
(Inner Administrative Point).

Rec. ITU-T X.501 (10/2012) 31

| SO/l EC 9594-2:2014 (E)

Administrative

Autonomous \ -
administrative —— Spe(_:n‘_lc _
area / administrative
/
/f
'/
[y
//// Y
Inner IAP) Specific
/ \ .. .
administrative / N——— administrative
aea / aea
Winar
A |
Wis \

X.501(12)_F07

Figure 7 — Administrative points and areas

1155 Administrative entries

An entry located at an administrative point is an administrative entry. Administrative entries may have special entries,
called subentries, as immediate subordinates. The administrative entry and its associated subentries are used to control
the entries encompassed by the associated administrative area.

Where inner administrative areas are used, the scopes of these areas may overlap.

Therefore, for each specific aspect of administrative authority, a definition is required of the method of combination of
administrative information when it is possible for entries to be included in more than one subtree or subtree refinement
associated with an inner area defined for that aspect.

NOTE — It is not necessary for an administrative point to represent each specific aspect of administrative authority. For example,
there might be an administrative point, subordinate to the root of the autonomous administrative area, which is used for access
control purposes only.

11.6 DIT Domain policies

A DIT Domain policy has the following components: DIT policy objects, DIT policy procedures, and DIT policy
parameters.

An operationa attribute that represents a DIT policy parameter is termed a DIT policy attribute (e.g., subschema
administration operational attributes defined in clause 14 are DIT Domain policy attributes).

For a particular DSA, the possible values of a policy parameter may not correspond to distinct, realizable courses of
action for that component. This may be the case, for example, when the DSA lacks the technical capability to perform
all aspects of the policy procedure (e.g., implement a particular access control scheme). To be well-defined, a policy
procedure shall take such circumstances into account as part of its definition.

Specific DIT Domain policy objects and attributes are defined in clause 15 to support subschema administration.

117 DMD policies

A DMD policy is a policy that pertains to the operation of one or more of the DSAs in the DMD. A DMD policy may
apply either to all the DSAsin the DMD in a uniform manner, to a subset of the DSAs in the DMD, or it may apply to
one specific DSA.

One sort of DMD policy is to restrict or otherwise control the Directory and DSA abstract service provided by one or
more DSAS.

32 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Examples of such restrictions are:

a)

b)

0)

d)

Limiting the basic service provided to Directory (i.e., non-administrative) users to interrogation
operations only.

Limiting the service provided to users accessing the DSA indirectly, via chaining, including distinctions
based on whether the user request traversed a trusted path.

Limitations on requests accepted from users accessing the DSA directly when chaining is required to
DSAsin the DMD known to be subject to limitations of the kind indicated in the previous point.

Constraints on the kinds of searches certain users can perform, and on the characteristics of such searches
(e.g., relaxation policies).

Rec. ITU-T X.501 (10/2012) 33

| SO/l EC 9594-2:2014 (E)

SECTION 5-MODEL OF DIRECTORY ADMINISTRATIVE
AND OPERATIONAL INFORMATION

12 Model of Directory Administrative and Operational Information

12.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

12.1.1 base The root vertex of the subtree or subtree refinement produced by the evaluation of a subtree
specification.

12.1.2 chop: A set of assertions concerning the names of the subordinates of a base.

12.1.3 directory operational attribute: An operational attribute defined and visible in the Directory Administrative
and Operational information model.

12.1.4 directory system schema: The set of rules and constraints concerning operational attributes and subentries.

1215 entry: A Directory entry or extended Directory entry, depending on the context (either users and their
applications or administration and operation of the Directory) in which the term is used.

12.1.6 subentry: A special sort of entry, known by the Directory, used to hold information associated with a subtree
or subtree refinement.

12.1.7 subtree: A collection of object and alias entries situated at the vertices of atree. The prefix "sub" emphasizes
that the base (or root) vertex of thistree isusually subordinate to the root of the DIT.

12.1.8 subtree refinement: An explicitly specified subset of the entries in a subtree, where the entries are not
located at the vertices of asingle subtree.

12.1.9 subtree specification: The explicit specification of a subtree or subtree refinement. A subtree specification
consists of zero or more of the specification elements base, chop and specification filter. The definition is termed
"explicit" (in contrast to that of an administrative area) because the portion of the DIT subordinate to the base that is
included in the subtree or subtree refinement is explicitly specified.

12.2 Overview

From an administrative perspective, user information held in the DIB is supplemented by administrative and operational
information represented by:

— operational attributes, which represent information used to control the operation of the Directory (e.g.,
access control information) or used by the Directory to represent some aspect of its operation (e.g., time
stamp information); and

— subentries, which associate the values of a set of attributes (e.g., collective attributes) with entries within
the scope of the subentry. The scope of a subentry is a subtree or subtree refinement.

This information, illustrated in Figure 8, may be placed in the Directory by administrative authorities or by DSAs, and
is used by the Directory in the course of its operation.

Two mechanisms in the Directory abstract service that relate to this view of Directory information are:
— EntryInformationSelection permitsthe selection of operationa attributesin an entry; and

— thesubentries service control permitsthe List and Search operationsto apply either to object and alias
entries or to subentries.

Access to operational information, as for user information, may be limited by an access control mechanism.

Entries are made visible to Directory users via the Directory abstract service, but their relationships to the DSAs that
ultimately hold them are not. The DSA information model, described in clauses 22 through 24, expresses the mapping
of these entries onto the information repositories of DSAS.

34 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

ADMINISTRATIVE ENTRY

Administrative)
Point (AP) AP U_ser Oper_atlonal
attributes attributes
SUBENTRY
|| | | || | SUBENTRY
[| | | User Operational
Administrative attributes attributes
Area(AA)
| | | I | | | | |
| || | ENTRY
User Operational
attributes attributes
X.501(12)_F08

Figure8—Modd of Directory Administrative and Operational Information

12.3 Subtrees
12.3.1 Overview

A subtree is a collection of object and alias entries situated at the vertices of a tree. Subtrees do not contain subentries.
The prefix "sub", in subtree, emphasizes that the base (or root) vertex of this tree is usually subordinate to the root of
the DIT.

A subtree begins at some vertex and extends to some identifiable lower boundary, possibly extending to leaves. A
subtree is aways defined within a context which implicitly bounds the subtree. For example, the vertex and lower
boundaries of a subtree defining a replicated area are bounded by a naming context. Similarly, the scope of a subtree
defining a specific administrative areais limited to the context of an enclosing autonomous administrative area.

12.3.2 Subtree specification

Subtree specification is the definition of a subset of the entries below a specified vertex which forms the base of the
subtree or subtree refinement.

The vertex and/or the lower boundary of the subtree may be implicitly specified, in which case they are determined by
the context within which the subtreeis used.

The vertex and/or the lower boundary may be explicitly specified using the mechanism specified in this clause. This
mechanism may also be used to specify subtree refinements which are not true tree structures.

NOTE — The topological concept of a (sub)tree is useful in considering such specifications, although a particular specification
may determine a collection of entries that are not located at the vertices of a single (sub)tree. The term subtree refinement is
preferred when the entries of the collection are not so located.

Specification of a subtree consists of three optional elements of specification which identify the base of the subtree, and
then reduce the collection of subordinate entries. These elements of specification are:

a) Base — The root vertex of the subtree or subtree refinement produced by the evaluation of a subtree
specification;

b) Chop—A set of assertions concerning the names of the subordinate entries; and

c) Specification filter — A proper subset of the assertive capability of afilter applied to the subordinates.

The specification of asubtree or subtree refinement may be represented by the following ASN.1 type:

SubtreeSpecification ::= SEQUENCE (
base [0] LocalName DEFAULT {},
COMPONENTS OF ChopSpecification,
specificationFilter [4] Refinement OPTIONAL,
-}

-- empty sequence specifies whole administrative area

Rec. ITU-T X.501 (10/2012) 35

| SO/l EC 9594-2:2014 (E)

The three components of this sequence correspond to the three specification elements identified above.

Where avalue of subtreespecification identifies acollection of entries that are located at the vertices of asingle
subtree, the collection is termed a "subtree”; otherwise, the collection is termed a " subtree refinement".

The subtreesSpecification type provides ageneral purpose mechanism for the specification of subtrees and subtree
refinements. Any particular use of this mechanism defines the specific semantics of precisely what is specified and may
impose limitations or constraints on the components of subtreeSpecification.

When each of the components of subtreeSpecification isabsent (i.e., avaue of type subtreeSpecification
which is an empty sequence, {}), the subtree so specified is implicitly determined by the context within which the
SubtreeSpecification iSused.

These terms are illustrated in Figure 9, for the case where subtrees are deployed within the context of administrative
aress.

g Administrative

A Point (AP)
N
Local name oy
Subtree
A AP
e H 7
AN strati ver
FEATea (AR) FH
Subtree
refinement @ AA

X.501(12)_FO9

Figure 9 — Specification of Subtrees and Subtree Refinements
within the context of Administrative Areas

1233 Base

The base component of subtreeSpecification represents the root vertex of the subtree or subtree refinement. This
may be an entry which is subordinate to the root vertex of the identified scope or may be the root vertex of the identified
scope itself (the default).

The relative name of the root vertex of the subtree with respect to the root vertex of the identified scope is a value of
type LocalName:

LocalName ::= RDNSequence

Note that the root vertex of the identified scope and the root vertex of the subtree coincide when LocalName iS omitted
from subtreeSpecification.

12.34 Chop Specification

The components of the chopspecification datatype specify assertions concerning the names of the subordinates of
abase.

ChopSpecification ::= SEQUENCE {
specificExclusions [1] SET SIZE (1..MAX) OF CHOICE ({
chopBefore [0] LocalName,
chopAfter [1] LocalName,
...} OPTIONAL,

minimum [2] BaseDistance DEFAULT O,
maximum [3] BaseDistance OPTIONAL,

This type is intended to permit the specification of a tree structure (or subset thereof) starting at the base by two
methods, specific exclusions and base distance.

36 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

12.3.4.1 Specific Exclusions

The specificExclusions component has two forms, chopBefore and chopAfter, which may be used
individually or in combination.

The chopBefore component defines a list of exclusions, each in terms of some limit point which is to be excluded,
along with its subordinates, from the subtree or subtree refinement. The limit points are the entries identified by a
LocalName, relative to the base.

The chopafter component defines alist of exclusions, each in terms of some limit point whose subordinates are to be
excluded from the subtree or subtree refinement. The limit points are the entries identified by a LocalName, relative to
the base.

12.3.4.2 Minimum and M aximum

These components allow exclusion of all entries that are superior to entries that are minimum RDN arcs below the base,
as well as entries which are subordinate to entries that are maximum RDN arcs below the base. These distances are
expressed by values of the type BaseDistance:

BaseDistance ::= INTEGER (0..MAX)

For the purpose of chop specifications, a compound entry is counted as a single entry. In a compound entry, all family
members are counted as having the same base distance as the ancestor, since they are al part of the same logical entry.

A value of minimum equal to zero (the default), corresponds to the base. An absent maximum component indicates that
no lower limit should be imposed on the subtree or subtree refinement.

1235 Specification Filter

The specificationFilter cCOMponent consists of aproper subset of the assertive capability of afilter (see Rec. ITU-
T X.511 | ISO/IEC 9594-3) applied to the subordinates of a base. Only entries for which the filter evaluates to true are
included in the resulting subtree refinement. It consists of avalue of type Refinement:

Refinement ::= CHOICE {
item [0] OBJECT-CLASS.&id,
and [1] SET SIZE (1..MAX) OF Refinement,
or [2] SET SIZE (1..MAX) OF Refinement,
not [3] Refinement,

-}

A Refinement evauatesto TRUE asif it were afilter making an equality assertion regarding values of the attribute
type objectclass only.

If a family member is excluded from a subtree by this specification, al its subordinate family members are also
excluded.

124 Operational attributes

There are three varieties of operational attributes. Directory operational attributes, DSA shared operational attributes,
and DSA specific operational attributes.

Directory operational attributes occur in the Directory information model and are used to represent control information
(e.g., access control information) or other information provided by the Directory (e.g., an indication of whether an entry
isaleaf or non-leaf entry).

DSA shared operational attributes occur only in the DSA Information Model, and are not visible at all in the Directory
Information Models.

DSA specific operational attributes occur only in the DSA Information Model, and are not visible at all in the Directory
Information Models.

NOTE — These are described in clauses 23 through 24.

The definition and use of each operational attribute is a matter for specification in the appropriate Directory
Specification.

Rec. ITU-T X.501 (10/2012) 37

| SO/l EC 9594-2:2014 (E)

12.5 Entries
12.5.1

From an administrative perspective, user information held in an entry may be supplemented by administrative and
operational information represented by operational attributes.

Overview

The Directory uses the object class attribute and DIT content rules applicable to an entry to control the user attributes
required and permitted in the entry. The operational attributes of an entry are governed by the Directory system schema
(see clause 14) applicable to the entry.

1252

Although not normally visible, the directory operational attributes within entries may be made visible to authorized
(e.g., administrative) users of the directory abstract service. Certain operationa attributes (e.g., entryacI, or
modifyTimestamp) Might also be available to ordinary users.

Accessto operational attributes

12.6 Subentries

126.1

A subentry is a special kind of entry immediately subordinate to an administrative point. It contains attributes that
pertain to a subtree (or subtree refinement) associated with its administrative point. The subentries and their
administrative point are part of the same naming context (see clause 21).

Overview

A single subentry may serve all or severa aspects of administrative authority. Alternatively, a specific aspect of
administrative authority may be handled through one or more of its own subentries. At most, one subentry is permitted
for a subschema administrative authority. Access control and collective attribute authorities may have severa
subentries.

A subentry is not considered in List and Search operations unless the subentries service control is included in the
request.

A subentry shall not have subordinates.

The structure of a subentry corresponding to an administrative point is depicted in Figure 10.

ADMINISTRATIVE ENTRY

A subentry consists of:

38

a commonName attribute, specified in Rec. ITU-T X.520 | ISO/IEC 9594-6 which contains the RDN of

the subentry;

Figure 10 — Structure of a subentry

asubtreeSpecification attribute, specified in clause 14;

an objectClass attribute, specified in clause 13, which indicates the purpose(s) of the subentry in the

operation of the Directory;

other attributes, depending on the values of the objectclass attribute.

Rec. ITU-T X.501 (10/2012)

User Operational
attributes attributes
Subentry Subentry
SUBENTRY
Subentry Subtree Object
RDN specification class Attribute Attribute
attribute attribute attribute
X.501(12)_F10

| SO/IEC 9594-2:2014 (E)
Subentries may also contain operational attributes with appropriate semantics (see 12.6.4).

12.6.2 Subentry RDN attribute

The commonName attribute used as the subtree identifier serves to distinguish the various subentries that may be defined
as immediate subordinates of a specific administrative entry.

NOTE — The value of this attribute might be selected to serve as a mnemonic to representatives of the Administrative Authority.

12.6.3 Subtree Specification attribute

The subtreeSpecification attribute defines the collection of entries within the administrative area with which the
subtree is concerned.

12.6.4 Useof Object Classattribute
The content of a subentry is regulated by the values of the subentry's objectclass attribute.

The objectClass attribute of all subentries shall contain the value subentry. The subentry object class is a
structural object class, defined in clause 14, used to include the commonName, subtreeSpecification and
objectClass attributesin al subentries.

In order to regulate the remaining attributes, the other values of the objectclass attribute, representing the auxiliary
object classes allowed for the subentry, shall be used.

The definition of the semantics of one of these values includes an identification and specification of zero or more
atribute types that shall or may appear in the subentry when the objectclass attribute assumes the value. The
definition of the semantics of avalue for the objectcilass attribute shal include:

— an indication of whether an entry may be included in more than one subtree or subtree refinement
associated with the particular purpose (e.g., it may not be permitted in the case of subschema, but may
be permitted for access control); and if so

— theeffects of the combination of associated subentry attributes, if any.

A subentry of a particular object class may only be subordinate to an administrative entry if the administrativeRole
attribute permits that class of subentry as a subordinate.

As for object and dias entries, information held in a subentry may be supplemented by administrative and operational
information represented by operational attributes. For example, a subentry is permitted to contain entry ACI, provided
only that this ACI is permitted by and consistent with the value of the accessControlscheme attribute of the
corresponding access control specific point. Similarly, a subentry may contain amodi fyTimestamp.

12.6.5 Other subentry attributes

The remaining attributes within a subentry depend on the values of the objectClass attribute. For example, a
subschema attribute may only be placed in asubentry if itsobjectClass attribute has subschema as one of its values.

12.7 Information model for collective attributes

An autonomous administrative area may be designated as a collective attribute specific administrative area in order
todeploy and administer collective attributes. This shall be indicated by the presence of the value
id-ar-collectiveAttributeSpecificArea in the associated administrative entry's administrativeRole
attribute (in addition to the presence of the value autonomousarea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer collective attributes in the
specific partitions. In this case, the administrative entries for each of the collective attribute specific administrative areas
are indicated by the presence of the value id-at-collectiveAttributeSpecificArea in these entries
administrativeRole attributes.

If such an autonomous administrative area is not partitioned, there is a single specific administrative area for collective
attributes encompassing the entire autonomous administrative area.

Additionally, a specific administrative area defined for the purpose of collective attribute administration may be further
divided into nested inner areas for the same purpose. The administrativeRole attribute of the administrative entries

for each such inner administrative area shall indicate this by the presence of the value
id-ar-collectiveAttributeInnerArea.

An entry collection and its associated collective attributes are represented in the Directory information model by a
subentry, termed a collective attribute subentry, whose objectClass attribute has the vaue

Rec. ITU-T X.501 (10/2012) 39

| SO/l EC 9594-2:2014 (E)

id-sc-collectiveAttributeSubentry, as defined in clause 14. A subentry of this class may be the immediate
subordinate of an administrative entry whose administrativeRole attribute contains the value
id-ar-collectiveAttributeSpecificArea Or id-ar-collectiveAttributeInnerArea.

Where there are different entry collections within a given collective attribute area, each shall have its own subentry.

The entry collection itself is defined by the value of the subtreespecification operational attribute of the subentry.

This value defines the scope of the collective attribute subentry. The user attributes of the subentry are the collective

attributes of the entry collection.
NOTE 1 — Because subtree refinement is based on object class, the association of collective attributes with object entries can be
done in a manner that naturally extends the schema for these entries. For example, the organizationalPerson entries of an
organization might be extended with a set of collective attributes appropriate for all persons affiliated with the organization by
the creation of a subentry whose associated subtree is refined to include only organizationalPerson entries and which
contains the organization's set of collective attributes. Additionally, aDIT Content Rule for such entries would need to be defined
to allow collective attributes to become visible in the entries.

Collective attribute types and non-collective attribute types differ semantically. An attribute type capable of expressing
collective semantics shall be designated as a collective attribute type at the time of its definition.

NOTE 2 — Merging procedures employed by the Directory in the case of independent sources of values of a collective attribute
type are described in Rec. ITU-T X.511 | ISO/IEC 9594-3.

Collective attributes may be excluded from appearing in a particular entry through use of the collectiveExclusions
attribute defined in clause 14.

12.8 I nformation model for context defaults

An autonomous administrative area may be designated as a context default specific administrative area in order to
deploy and administer context defaults. This shall be indicated by the presence of the value
id-ar-contextDefaultSpecificArea in the associated administrative entry's administrativeRole attribute (in
addition to the presence of the value id-ar-autonomousarea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer context defaults in the
specific partitions. In this case, the administrative entries for each of the context default specific areas are indicated by
the presence of thevalue id-ar-contextDefaultSpecificArea intheseentries administrativeRole attribute.

If an autonomous administrative areais not partitioned, there is a single specific administrative areafor context defaults
encompassing the entire autonomous administrative area.

Context defaults are represented in the Directory Information model by a subentry, termed a context default subentry,
whose objectClass attribute has the value id-sc-contextAssertionSubentry as defined in 14.7. A subentry of
this class may be the immediate subordinate of an administrative entry whose administrativeRole attribute contains
thevalue id-ar-contextDefaultSpecificArea.

The context default subentry defines a set of context assertions, any one of which is applied whenever there is no
context assertion applicable to a given attribute type specified by the user when accessing the portion of the DIT defined
by the subtreespecification operationa attribute of the subentry. Application of default context assertions is
described in 8.9.2.2, and in 7.6.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

40 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

SECTION 6 — THE DIRECTORY SCHEMA

13 Directory Schema

131 Definitions
For the purposes of this Directory Specification, the following definitions apply:
13.1.1 attribute syntax: The ASN.1 data type used to represent values of an attribute.

13.1.2 directory schema: The set of rules and constraints concerning DIT structure, DIT content, DIT context use,
object classes, and attribute types, syntaxes and matching rules which characterize the DIB. The Directory Schema is
manifested as a set of non-overlapping subschemas each governing entries of an autonomous administrative area (or a
subschema specific partition thereof). The Directory schema is concerned only with Directory User Information.

13.1.3 (directory) subschema: The set of rules and constraints concerning DIT structure, DIT content, object classes
and attribute types, syntaxes and matching rules which characterize the DIB entries within an autonomous
administrative area (or a subschema specific partition thereof).

13.1.4 DIT content rule: A rule governing the content of entries of a particular structural object class. It specifies
the auxiliary object classes and additional attribute types permitted to appear, or excluded from appearing, in entries of
the indicated structural object class.

13.1.5 DIT context use: A rule governing the context types that may be associated with attribute values of particular
attribute types. It specifies the permitted and the mandatory context types for the attribute type.

13.1.6 DIT structure rule: A rule governing the structure of the DIT by specifying a permitted superior to
subordinate entry relationship. A structure rule relates a name form, and therefore a structural object class, to superior
structure rules. This permits entries of the structural object class identified by the name form to exist in the DIT as
subordinates to entries governed by the indicated superior structure rules.

13.1.7 governing structure rule (of an entry): With respect to a particular entry, the single DIT structure rule that
applies to the entry. Thisruleisindicated by the governingStructureRule Operationa attribute.

13.1.8 name form: A name form specifies a permissible RDN for entries of a particular structural object class. A
name form identifies a named object class and one or more attribute types to be used for naming (i.e., for the RDN).
Name forms are primitive pieces of specification used in the definition of DIT structure rules.
NOTE — Name forms are registered and have global scope. DIT structure rules are not registered and have the scope of the
administrative area with which they are associated.

13.1.9 superior structure rule: With respect to a particular entry, the DIT structure rule governing the entry's
superior.

13.2 Overview

The Directory Schema is a set of definitions and constraints concerning the structure of the DIT, the possible ways
entries are named, the information that can be held in an entry, the attributes used to represent that information and their
organization into hierarchies to facilitate search and retrieval of the information and the ways in which values of
attributes may be matched in attribute value and matching rule assertions.

NOTE 1 — The schema enables the Directory system to, for example:
— prevent the creation of subordinate entries of the wrong object class (e.g., a country as a subordinate of a person);

— prevent the addition of attribute-types to an entry inappropriate to the object class (e.g., a serial humber to a person's
entry);

— prevent the addition of an attribute value of a syntax not matching that defined for the attribute-type (e.g., a printable
string to a bit string).

Formally, the Directory Schema comprises a set of:
a) Name Formdefinitions that define primitive naming relations for structural object classes;

b) DIT Sructure Rule definitions that define the names that entries may have and the ways in which the
entries may be related to one another in the DIT;

Rec. ITU-T X.501 (10/2012) 41

| SO/l EC 9594-2:2014 (E)

0)

d)

e)

f)
0)

DIT Content Rule definitions that extend the specification of allowable attributes for entries beyond those
indicated by the structural object classes of the entries;

Object Class definitions that define the basic set of mandatory and optional attributes that shall be
present, and may be present, respectively, in an entry of a given class, and which indicate the kind of
object class that is being defined (see 7.3);

Attribute Type definitions that identify the object identifier by which an attribute is known, its syntax,
associated matching rules, whether it is an operationa attribute and if so its type, whether it is a
collective attribute, whether it is permitted to have multiple values and whether or not it is derived from
another attribute type;

Matching Rule definitions that define matching rules;

DIT Context Use definitions that govern the context types that may be associated with attribute values of
any particular attribute type.

Figure 11 illustrates the relationships between schema and subschema definitions on the one side, and the DIT,
directory entries, attributes, and attribute values on the other.

N
Directory Rules for Directory
schema information tree
- J
Us%i TBeIong to
4 A
Subschema Rules for Subschema
DIT structure rule administrative areas
. J
Us&si TBeIong to
Name form)
DIT content rule Rules for > Entries
object class
. J
Usei TBeIong to
A
i Rules for
Attribute types Attributes
DIT context use
- J
Usei TBeIong to
2\
ASN.1 type Rulesfor
matching rule Values
- J

X.501(12)_F11

Figure 11 — Overview of Directory Schema

Figure 11 isinterpreted as follows:

the items listed vertically on the left represent elements of schema;

the items listed vertically on the right represent instances of corresponding schema items, instantiated
according to the rules defined by these schema items;

the relationship between items of schemaisillustrated by the "uses' relationship;

the relationship between instances of different aspects of schema is illustrated using the "belong to"
relationship.

The Directory Schema is distributed, like the DIB itself. It is manifested as a set of non-overlapping subschemas each
governing entries of an autonomous administrative area (or a subschema specific partition thereof). A subschema
administrative authority establishes the rules and constraints constituting the subschema.

The subschema administrative authority may elect to use individual elements of the Directory Schema having global
scope which are defined in these Directory Specifications: name forms, object classes and attributes (types and
matching rules). It may also choose to define aternatives to these elements more appropriate to its own environment or
it may choose some intermediate approach, using both standardized and proprietary schema elements.

The subschema administrative authority defines those schema elements whose scope is limited to the subschema: DIT
structure rules, DIT content rules, and DIT context use. In addition, the subschema administrative authority may also
specify which matching rules are applicable to which attribute types.

42 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The Directory Schema is concerned only with directory user information. Although some support for the specification
of operational information is provided in the notation defined in this clause, the regulation of Directory Administrative
and Operational Information is the concern of the Directory System Schema.

NOTE 2 — The Directory System Schemais described in clause 14.

133 Object class definition

The definition of an object classinvolves:
a) indicating which classes this object classisto be a subclass of;
b) indicating what kind of object classis being defined;
¢) listing the mandatory attribute types that an entry of the object class shall contain in addition to the
mandatory attribute types of all its superclasses;

d) listing the optional attribute types that an entry of the object class may contain in addition to the optional
attributes of all its superclasses;
€) assigning an object identifier for the object class.
NOTE — Collective attributes shall not appear in the attribute types of an object class definition.

13.3.1 Subclassing

There are restrictions on subclassing, namely:
— only abstract object classes shall be superclasses of other abstract object classes.
— adtructural object class shall not be derived from auxiliary object classes.
— anauxiliary object class shall not be derived from structural object classes.

Thereis one special object class, of which every structural object classis asubclass. This object classiscalled top. top
is an abstract object class.

13.3.2 Object classattribute

Every entry shall contain an attribute of type objectclass to identify the object classes and superclasses to which the
entry belongs. The definition of this attribute is given in 13.4.8. This attribute is multi-valued.

There shall be one value of the objectclass attribute for the entry's structural object class and a value for each of its
superclasses. top may be omitted.

An entry's structural object classes shall not be changed. The initial values of the objectclass attribute are provided
by the user when the entry is created.

Where auxiliary object classes are used, an entry may contain values of the objectclass attribute for the auxiliary
object classes and their superclasses alowed by a DIT content rule. If a value for an alowed auxiliary object class is
present, then values for the superclasses of the auxiliary object class shall also be present.

Where the objectclass attribute contains an object identifier value for an auxiliary object class, then the entry shall
contain the mandatory attributes indicated by that object class.

NOTE 1 — The requirement that the objectclass attribute be present in every entry isreflected in the definition of top.

NOTE 2 — Because an object class is considered to belong to all its superclasses, each member of the chain of superclasses up to
top isrepresented by avalue in the objectclass attribute (and any value in the chain may be matched by afilter).

NOTE 3 — Access Control restrictions may be placed on modification of the objectclass attribute.

In conjunction with the applicable DIT content rules, the Directory enforces the defined object class for every entry in
the DIB. Any attempt to modify an entry that would violate the entry's object class definition that is not explicitly
allowed by the entry's DIT content rule shall fail.

NOTE 4 — In particular, the Directory will ordinarily prevent:

a) attribute types absent from an entry's structural object class definition and not permitted by the entry's DIT content rule
being added to an entry of that object class;

b) anentry being created with one or more absent mandatory attribute types for an object class of the entry;
¢) amandatory attribute type for the object class of the entry being deleted.

Rec. ITU-T X.501 (10/2012) 43

| SO/l EC 9594-2:2014 (E)

13.3.3

Object class specification

Object classes may be defined as instances (information objects) of the oBgecT-cLass information object class:

OBJECT-CLASS ::= CLASS {
&Superclasses OBJECT-CLASS OPTIONAL,
&kind ObjectClassKind DEFAULT structural,

&MandatoryAttributes ATTRIBUTE OPTIONAL,
&OptionalAttributes ATTRIBUTE OPTIONAL,

&ldapName SEQUENCE SIZE(1l..MAX) OF UTF8String OPTIONAL,

&ldapDesc UTF8String OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SUBCLASS OF &Superclasses]

[KIND &kind]

[MUST CONTAIN &MandatoryAttributes]

[MAY CONTAIN &OptionalAttributes]

[LDAP-NAME &ldapName]

[LDAP-DESC &ldapDesc]

ID &id }
ObjectClassKind ::= ENUMERATED {

abstract (0),

structural (1),
auxiliary (2)}

For an object class which is defined using this information object class:

a)
b)

0)

d)

e

f)

9)

the &superclasses field is used for specifying the set of object classes which are its direct
superclasses,

the &kind field is used for specifying the kind of object class being defined, i.e., whether it is an
abstract, structural or auxiliary object class;

the sMandatoryattributes field, if relevant, is used for specifying the set of user attribute types that
shall be represented in entries of that object class;

the soptionalattributes field is used for specifying the set of user attribute types that may be
represented in entries of that object class, except that if an attribute type appears in both the mandatory
and optional sets, it shall be considered mandatory;

NOTE — There are specia rules for object classes for subentries, where operational attribute types may be included in

the object class specification.

the &1dapName field, if relevant, is used for specifying one or more values for the NAME specification
used in the corresponding LDAP definition defined either by the IETF or by these Directory
Specifications. It allows multiple values to be specified.

the sldappesc field, if relevant, is used for specifying the DESC used in the corresponding LDAP
definition defined either by the IETF or by these Directory Specifications.

the &id field is used for specifying the object identifier assigned to this object class.

The object classes previously mentioned (top and alias) are defined below:

top OBJECT-CLASS ::= {

KIND

abstract

MUST CONTAIN {objectClass}
LDAP-NAME {"top"}

ID

id-oc-top }

alias OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {aliasedEntryName}
LDAP-NAME {"alias"}

ID

id-oc-alias }

NOTE 1—The object class alias does not specify appropriate attribute types for the RDN of an aias entry. Administrative
Authorities may specify subclasses of the class alias which specify useful attribute types for RDNs of alias entries.

parent OBJECT-CLASS ::= {

KIND
ID

abstract
id-oc-parent }

Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

child OBJECT-CLASS ::= {
KIND auxiliary
ID id-oc-child }

Neither the parent nor the child object classes shall be combined with the alias object classto form an alias entry.

The parent object class is derived by the presence of an immediately subordinate family member, marked by the
presence of achild object class value. It may not be directly administered. The child object class value may only be
added or removed when the result is consistent with the architecture of compound entries (e.g., the subordinates of
family members shall always have a child object class).

NOTE 2 —The object classesparent and child do not specify any appropriate attribute types for the RDNs of family members.
Thiswill be done in the normal way via the appropriate structural object classes and name forms for these entries.

13.4 Attributetype definition

The definition of an attribute type involves:

a) optionaly indicating that the attribute type is a subtype of a previously defined attribute type, its direct
supertype;

b) specifying the attribute syntax for the attribute type;

c) optionaly indicating the equality, ordering and/or substring matching rule(s) for the attribute type;
d) indicating whether an attribute of this type shall have only one or may have more than one value;
e) indicating whether the attribute type is operational or user;

f) optionally indicating that a user attribute typeis collective;

g) optionaly indicating that a user attribute type is dummy attribute type;

h) optionally indicating that an operationa attribute is not user modifiable;

i) for operational attributes, indicating the application;

i) optionally indicating the object identifier for the associated L DAP attribute syntax;

k) optionally indicating the NAME of the corresponding LDAP attribute type;

[) optionally indicating the attribute description to be used in the LDAP protocol;

m) assigning an object identifier to the attribute type.

Any user attribute can be identified by an administrative authority as an anchor attribute, having friend attributes.
Therefore, the attribute type definition does not identify the friends of an anchor attribute. This may vary from
subschema to subschema.

13.4.1 Operational attributes

Some operational attributes are under direct user control. In other cases, the operational attribute's values are controlled
by the Directory. In the latter case, the definition of the operational attribute shall indicate that no user modifications to
the attribute values are permitted.

The specification of an operational attribute type shall indicate its application, which shall be one of the following:
— Directory operationa attribute (e.g., access control attributes);
— DSA shared operational attribute (e.g., a master-access-point attribute);
— DSA gspecific operational attribute (e.g., a copy-status attribute).

13.4.2 Attribute hierarchies

An attribute hierarchy shall contain either user attributes or operationa attributes but not both. It follows that a user
attribute shall not be derived from an operational attribute, and that an operational attribute shall not be derived from a
user attribute.

An operational attribute that is a subtype of another operationa attribute shall have the same application as its
supertype.

If an attribute type is not a subtype of another attribute type, the attribute syntax and matching rules (if applicable) shall
be specified in the attribute type definition. Specifying an attribute syntax shall be done by directly specifying the
ASN.1 datatype.

Rec. ITU-T X.501 (10/2012) 45

| SO/l EC 9594-2:2014 (E)

If an attribute type is a subtype of an indicated type, the definition need not specify an attribute syntax, in which case its
attribute syntax is that of its direct supertype. If the attribute syntax is indicated and the attribute has a direct supertype,
the indicated syntax shall be compatible with the supertype's syntax, i.e., every possible value satisfying the attribute's
syntax shall also satisfy the supertype's syntax.

If an attribute type is a subtype of another attribute type, the matching rules applicable to the supertype are applicable to
the subtype, unless extended or modified in the definition of the subtype. A matching rule defined for a supertype may
not be removed when defining a subtype.

13.4.3 Friend attributes

The list of friends of an anchor attribute shall only contain user attributes. The relationship imposes no restraints
whatever on the semantics, syntax, or other characteristics of afriend attribute.

NOTE — An anchor attribute may be defined as a dummy attribute.

13.4.4 Collective attributes
An operationa attribute shall not be defined to be collective.

A user attribute may be defined to be collective. This indicates that the same attribute values will appear in the entries
of an entry collection subject to the use of the collectiveExclusions atribute.

Collective attributes shall be multi-valued.

13.45 Derived attributes

A derived attribute is one that contains information using the syntax of attribute information, but where the values are
computed as returned rather than being held in the DIB.

The family-information derived attribute is introduced for use in the Directory service for the containment of
family information. Its characteristics are defined in 7.7.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

DSAs may aso use derived attribute technology to provide other attributes. For example, all operational attributes that
include the accessPoint value of a specific DSA may (and probably should) derive the value from a single source of
the information, which may be suitably administered.

13.4.6 Attribute syntax

If an equality matching rule is specified for the attribute type, the Directory shall ensure that the correct attribute syntax
isused for every value of this attribute type.

13.4.7 Matchingrules

Equality, ordering and substrings matching rules may be indicated in the attribute type definition. The same matching
rule may be used for one or more of these types of matches if the semantics of the rule allows for more than one of these
different types of matches.

NOTE 1 — Thisfact should be reflected in the definition of the indicated matching rule.
If no equality matching rule isindicated, the Directory:

a) treats values of this attribute as having type anv, i.e., the Directory may not check that those values
conform with the data type or any other rule indicated for the attribute;

b) doesnot permit the attribute to be used for naming;

¢) doesnot allow individual values of multi-valued attributes to be added or removed;
d) doesnot perform comparisons of values of the attribute;

e) will not attempt to evaluate avas using values of such an attribute type.

If an equality matching rule isindicated, the Directory:

a) treatsvalues of this attribute as having the type defined in the sType field in the attribute's definition (or
that of the attribute from which the attribute is derived);

b) will use the indicated equality matching rule for the purpose of evaluating attribute value assertions
concerning the attribute;

¢) will only match a presented value of a suitable data type as specified in the attribute type definition.

NOTE 2 — This subclause applies equally to an attribute whose equality matching rule uses an assertion syntax different from the
syntax of the attribute type.

46 Rec. ITU-T X.501 (10/2012)

If no ordering

| SO/l EC 9594-2:2014 (E)

matching rule is indicated, the Directory shall treat any assertion of an ordering match using the syntax

provided by the Directory Abstract Service as undefined.

If no substring

s matching rule is indicated, the Directory shall treat any assertion of a substring match using the syntax

provided by the Directory Abstract Service as undefined.

An attribute type shall only specify matching rules whose definition applies to the attribute's attribute syntax.

13.4.8 Attribute definition

Attributes may be defined as values of the ATTRIBUTE information object class:

ATTRIBUTE ::= CLASS {
&derivation ATTRIBUTE OPTIONAL,
&Type OPTIONAL, -- either &Type or &derivation required
&equality-match MATCHING-RULE OPTIONAL,
&ordering-match MATCHING-RULE OPTIONAL,
&substrings-match MATCHING-RULE OPTIONAL,
&single-valued BOOLEAN DEFAULT FALSE,
&collective BOOLEAN DEFAULT FALSE,
&dummy BOOLEAN DEFAULT FALSE,
-- operational extensions
&no-user-modification BOOLEAN DEFAULT FALSE,
&usage AttributeUsage DEFAULT userApplications,

&ldapSyntax SYNTAX-NAME. &id OPTIONAL,

&ldapName SEQUENCE SIZE(l..MAX) OF UTF8String OPTIONAL,

&ldapDesc UTF8String OPTIONAL,

&obsolete BOOLEAN DEFAULT FALSE,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SUBTYPE OF &derivation]

[WITH SYNTAX &Typel

[EQUALITY MATCHING RULE &equality-matchl]

[ORDERING MATCHING RULE &ordering-match]

[SUBSTRINGS MATCHING RULE &substrings-match]

[SINGLE VALUE &single-valued]

[COLLECTIVE &collectivel

[DUMMY &dummy]

[NO USER MODIFICATION &no-user-modification]

[USAGE &usagel

[LDAP-SYNTAX &ldapSyntax]

[LDAP-NAME &ldapName]

[LDAP-DESC &ldapDesc]

[OBSOLETE &obsolete]

ID &id }

AttributeUs
userAppli
directory
distribut
dSAOperat

}

age ::= ENUMERATED {
cations (0),

Operation (1),
edOperation (2),
ion (3),

For an attribute type which is defined using this information object class:

a)
b)

0)
d)
e

f)

the sderivation field, if relevant, is used for specifying the attribute type, of which this attribute type
isasubtype;

the sType field, if relevant, is used for specifying the syntax. This shall be an ASN.1 type and it is
required if the sderivation field is not relevant;

the sequality-match field, if relevant, is used for specifying the equality matching rule;
the sordering-match field, if relevant, is used for specifying the ordering matching rule;
the esubstrings-match field, if relevant, is used for specifying the substrings matching rule;

the &single-valued field is used for specifying that an attribute of the type shall have only one value
by using the value TrUE, while a multi-valued attribute type is defined by not applying this field or by
using the value FALSE;

Rec. ITU-T X.501 (10/2012) 47

| SO/l EC 9594-2:2014 (E)

9)

h)

)

k)

m)

n)

0)

the scollective field isused for specifying that an attribute of the type is a collective attribute type by
using the value TRUE, while an attribute type that is not a collective attribute type is defined by not
applying thisfield or by using the value FALSE;

the &dummy field is used for specifying that an attribute of the type is a dummy attribute type by using
the value TRUE, while an attribute type that is not a dummy attribute type is defined by not applying this
field or by using the value FALSE;

the eno-user-modification field is used for specifying that an operationa attribute of the type is not
user modifiable by using the value TRUE, while an attribute type that is user modifiable is defined by not
applying thisfield or by using the value FALSE;

the susage field is used for indicating the operational usage of an attribute of this type.
userApplications means it is a user attribute type, directoryOperation,
distributedOperation, and dSsaoperation mean it is a directory, distributed, or DSA operational
attribute type respectively;

the s1dapsyntax field, if relevant, is used for specifying the object identifier for the syntax used for the
corresponding LDAP attribute type ;

the &1dapName field, if relevant, is used for specifying one or more values for the NAME specification
used in the corresponding LDAP definition either defined by the IETF or by these Directory
Specifications;

the &ldappesc field, if relevant, is used for specifying the DESC used in the corresponding LDAP
attribute type specification;

the sattributeDescription field, if relevant, shall specify the attribute description used in the LDAP
protocol possibly including relevant attribute options, but not including possible tagging options.

the &id field is used for specifying the object identifier assigned to this attribute type.

The attribute types defined in the first edition of this Directory Specification, which are known to and used by the
Directory for its own purposes, are defined as follows:

objectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
LDAP-SYNTAX oid.&id
LDAP-NAME {"objectClass"}
ID id-at-objectClass }
aliasedEntryName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
LDAP-SYNTAX dn.&id
LDAP-NAME {"aliasedObjectName"}

ID

id-at-aliasedEntryName }

NOTE — The matching rules referred to in these definitions are defined in 13.5.2.

The objectClass and aliasedEntryName attributes are defined as user attributes even though they are used for
Directory operations and semantically should be defined as operational. Thisis because these attributes were defined as

user attributes

before the operational attribute concept and must remain as user attributes to facilitate interworking

between systems implementing different editions of this Directory Specification.

135 M at

ching rule definition

13.5.1 Overview

The definition
a)
b)
c)
d)

e

of amatching ruleinvolves:

optionally defining the parent matching rules from which the present matching rule may be derived,;
defining the syntax of an assertion of the matching rule;

specifying the different types of matches supported by the rule;

defining the appropriate rules for evaluating a presented assertion with respect to target attribute values
held in the DIB;

assigning an object identifier to the matching rule.

48 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

A matching rule shall be used to evaluate attribute value assertions of attributes indicating the rule as their equality
matching rule. The syntax used in the attribute value assertion (i.e., the assertion component of the attribute value
assertion) is the matching rule's assertion syntax.

A matching rule may apply to many different types of attributes with different attribute syntaxes.

The definition of a matching rule shall include a specification of the syntax of an assertion of the matching rule and the
way in which values of this syntax are used to perform a match. This does not require a full specification of the attribute
syntax to which the matching rule may apply. A definition of a matching rule for use with attributes with different
ASN.1 syntaxes shall specify how matches shall be performed.

The applicability of defined matching rules to the attributes contained in a subschema specification (over and above the
matching rules used in the definition of these attribute types) is indicated through the subschema specification
operationa attributematchingRuleUse, defined in 15.7.7.

13.5.2 Matching rule definition

Matching rules may be defined as values of the MATCHING-RULE information object class:

MATCHING-RULE ::= CLASS ({

&ParentMatchingRules MATCHING-RULE OPTIONAL,

&AssertionType OPTIONAL,

&uniqueMatchIndicator ATTRIBUTE OPTIONAL,

&ldapSyntax SYNTAX-NAME. &id OPTIONAL,

&ldapName SEQUENCE SIZE(1l..MAX) OF UTF8String OPTIONAL,

&ldapDesc UTF8String OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[PARENT &ParentMatchingRules]

[SYNTAX &AssertionTypel

[UNIQUE-MATCH-INDICATOR &uniqueMatchIndicator]

[LDAP- SYNTAX &ldapSyntax]

[LDAP-NAME &ldapName]

[LDAP-DESC &ldapDesc]

ID &id }

For amatching rule which is defined using this information object class:

a)

b)

0

d)

€)

f)

The sParentMatchingRules field is used if the matching rule being defined combines the
characteristics of two or more other matching rules. It is given as a set of two or more object identifiers
for the matching rules that supply the basic characteristics of the matching rule being defined (e.g.,
matching algorithm); it shall be omitted for a basic matching rule.

&AssertionType IS the syntax for an assertion using this matching rule; if it is omitted, the assertion
syntax is the same syntax as that of the attribute the rule is applied to unless the matching rule specifies
otherwise. If it is present, it may specify arestriction on the parent matching rule(s) if present, but in this
case it shall be compatible with the syntax for the parent matching rule(s) (i.e., a value complying with
&AssertionType shal aso comply with sAssertionType for the parent matching rule(s)).

&uniqueMatchIndicator iS a notification attribute type. When present, unique matching is required.
For a mapping-based matching rule (see 13.6), that means mapping against the mapping table shall yield
an unambiguous result. If there are multiple matches against the mapping table, the search request shall
be rejected with a serviceError with problem ambiguousKeyAttributes. In addition, a notification
attribute of the type specified by thisfield shall be placed in CommonResults oOf the error returned.
NOTE 1 — Such a situation can occur in geographical matching when, for example, an assertion can specify "Newton"
asalocality in the United Kingdom,; there are many distinct towns with this name, which need to be distinguished by a
qualifier (e.g., "Newton, Cambs").
the &1dapsyntax field, when relevant, is used for specifying the object identifier for the syntax used for
the corresponding LDAP assertion type;

the s1dapName field, if relevant, is used for specifying one or more values for the NAME specification
used in the corresponding LDAP definition defined either by the IETF or by these Directory
Specifications;

the &ldappesc field, if relevant, is used for specifying the DESC used in the corresponding LDAP
matching rule specification;

the &id field is used for specifying the object identifier assigned to this matching rule.

Rec. ITU-T X.501 (10/2012) 49

| SO/IEC 9594-2:2014 (E)
If two or more matching rules are used for ParentMatchingRules, the result isa combined matching rule that returns
aresult, for valuesthat are compatible with AssertionType, as prescribed by the following rule:

a) if theresult of any parent matching ruleis TRUE, the combined matching rule shall return TRUE;

b) otherwise, if the result of any parent matching rule is FALSE, the combined matching rule shall return
FALSE; or

¢) otherwise, the combined matching rule shall return undefined.

The following table shows the rules of combination of two matching rules A and B; the table could in principle be
extended into multiple dimensions, with similar result patterns, to cover the case of three or more parent matching rules:

Rule A
TRUE FALSE UNDEFINED
TRUE TRUE TRUE TRUE
Rule B FALSE TRUE FALSE FALSE
UNDEFINED TRUE FALSE UNDEFINED

By combining matching rules as specified above, it is possible to obtain valid matching in cases where the matching
would otherwise fail.
NOTE 2 — A specific case of the use of a parent matching rule is with the combination of an arbitrary matching rule with the
specia matching rule ignoreIfabsentMatch. The latter causes a filter-item to return TRUE if the attribute is absent; if it is
present, the normal rules apply. This enables a search filter to examine entries when some attributes specified in the search filter
are absent. See 8.7.1 of Rec. ITU-T X.520 | ISO/IEC 9594-6.

The objectIdentifierMatch matching ruleis defined asfollows:

objectIdentifierMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
LDAP-SYNTAX oid.&id
LDAP-NAME {"objectIdentifierMatch"}
ID id-mr-objectIdentifierMatch }

A presented value of type object identifier matches a target value of type object identifier if and only if they both have
the same number of integral components, and each integral component of the first is equa to the corresponding
component of the second. This matching rule is inherent in the definition of the ASN.1 type object identifier.
objectIdentifierMatch iSan equality matching rule.

The distinguishedNameMatch is defined as follows:

distinguishedNameMatch MATCHING-RULE ::= {
SYNTAX DistinguishedName
LDAP-SYNTAX dn.&id
LDAP-NAME {"distinguishedNameMatch"}
ID id-mr-distinguishedNameMatch }

A presented distinguished name value matches a target distinguished name value if and only if al of the following are
true:

a) thenumber of RDNsin each isthe same;

b) corresponding RDNs have the same number of AttributeTypeAndvalue;

c) corresponding AttributeTypeAndvalue (i.e, those in corresponding RDNs and with identical
attribute types) have attribute values which match as described in 9.4.

distinguishedNameMatch iSan equality matching rule.

13.6 Relaxation and tightening

Relaxation and tightening are functions that in a systematic way modify the matching of one or more filter items. If
relaxation is performed, the modification of the matching is done in such a way as to increase the likelihood of having
more matched entries. Relaxation is performed when the number of matched entries is below a certain minimum.
Tightening is performed in a similar way when the number of matched entries is above a certain maximum. There are
two modes of relaxation/tightening:

a) thematching rule applied for a particular attribute type can be replaced by matching rule substitution in a
stepwise fashion until the required effect is achieved or the possibilities have been exhausted as detailed
in 13.6.1; and

50 Rec. ITU-T X.501 (10/2012)

| SO/IEC 9594-2:2014 (E)
b) the relaxation/tightening can be applied as part of a mapping-based matching as detailed in 13.6.2.

13.6.1 Matchingrulesubstitution

The matching rule substitution can be controlled by a governing-search-rule within a service-specific administrative
area (see 16.10.7). It can aso be controlled by the user in the search request (see 10.2.1 of Rec. ITU-T X.511 |
| SO/IEC 9594-3). In both cases, the RelaxationPolicy construct, asdefined in 16.10, controls the substitution.

Relaxation/tightening by matching rule substitution modifies the action of a filter by systematically substituting the
previously applicable matching rules for selected attributes onto matching rules that provide looser (or tighter)
matching. Having relaxed, or tightened by matching rule substitution, the whole of the search process is re-evaluated on
the same set of entries within the scope of the search. Re-evaluation can continue until no more relaxations exist, or
until a satisfactory return (less than or equal t0 maximum, or more than minimum, by reference to the controlling
RelaxationPolicy elements) is made.

The result is that the filter remains the same for each re-evaluation, but the individual matching rules used to evaluate
the filter undergo a substitution as necessary (see Figure 12). Relaxation may either be evaluated on a DSA by-DSA
basis, using no coordinated relaxation between DSAS, or may alternatively use the chainedRelaxation component of
ChainingArguments to define what relaxation isto be used.

Filter
v O O
rel axation —p Matching rule mapping

S N O A A A !

Filter evaluation on |ocal
part of DIT

X.501(12)_F12

Figure 12 —Matching rule substitution

When a relaxation policy is to be used, the DSA before starting a local search makes a basic substitution for each
attribute type for which a basic substitution is defined, as specified by the relaxation policy.
NOTE 1—A particular useful application of basic substitution is, as an example, for the localityName attribute type to
substitute the caseIgnoreSubstringMatch matching rule with the generalwordMatch matching rule in situations where this
matching rule is more appropriate and the user is expected to formulate a substrings filter item accordingly.

If too few entries result from the search, as applied to this particular DSA, the first relaxation policy is applied; if too
few entries still result, the next relaxation policy is applied; and so on.

Similarly, if too many entries result from the search, the first tightening policy is applied in a similar fashion. Thereis
no reversal from atightening to arelaxation, or vice versa.

A relaxation applied by one set of MRSubstitution for a particular attribute applies until countermanded by another
MRMapping. The countermanding can be explicit by specifying the matching rule, or implicit by omitting the
oldMatchingRule identifier.

If arelaxed evaluation is performed due to too few results from the previous evaluation, and if too many results are
returned from the relaxed evauation, some or al of the results from the relaxed evaluation shall be returned. If a
tightened evaluation is performed due to too many results from the previous evaluation, and if too few are returned from
the tightened evaluation, some or al of the results from the previous evauation shall be returned. In either case, the
relaxation or tightening process stops.

An applicable relaxation policy appliesboth to £ilter Or extendedFilter, as appropriate.
NOTE 2 — Because relaxation allows filter item evaluations to be relaxed or tightened for the ordinary filter, the need for
extended filters to achieve more complex filtering is diminished.

A DSA may supply the proposedRelaxation notification attribute (see 6.13.15 of Rec. ITU-T X.520 |
ISO/IEC 9594-6) in a search result within the notification subcomponent of the partialOutcomeQualifier.
The information here can then in a subsequent search request be used as a user-supplied relaxation policy.

As an ultimate case of relaxation, a policy can cause a particular filter item to be evaluated as TRUE (or FALSE, if the
filter-item is negated) in accordance with the nul1Match matching rule.

Rec. ITU-T X.501 (10/2012) 51

| SO/l EC 9594-2:2014 (E)

Within a service specific administrative area, validation against search-rules is performed after possible basic
substitutions have been made, as dictated by the search-rule against which the search request is being evaluated. A
governing-search-rule is selected prior to any subsequent matching rule substitution, including possible basic
substitutions specified in the search request.

13.6.2 Mapping-based matching

Mapping-based matching is relevant for the Search operation when the users conception of the real world may in
several ways differ from the idealized model often used by the Directory. As an example, users notions of locality
names and how localities relate to each other may be quite different from how localities are represented in the
Directory. To bridge that gap and to improve the rate of successful searches, it is essential to have a mapping between
the users' conception of some real-world objects, including their mutual relationships, and the Directory model for the
same objects. The same mapping should aso allow for "fuzzy" matching, i.e., alowing some attribute values to reflect
more than their precise definition.

NOTE 1 - As an example, a user may specify alocation name in the filter, but the object being looked for may be close to the

border in aneighbouring location.

The mapping-based matching is applicable to geographical aspects of White Pages searches, business category aspects
of Yellow Pages searches, etc.

The mapping-based matching employs some intermediate table, a mapping table, in order to control the mapping. The
exact behaviour of a mapping-based matching and the structure of the mapping table are local matters. However, the
basic principle for the technique is common asillustrated in Figure 13.

M apping-based matching Mapped
filter items

Mappable
filter items
for specified

attribute types List of possible
matchable)
Mapping

values algorithm
(Intermediate
> table) ‘l/ Result
>

X501(12)_F13

VYVYYY

Figure 13 — Mapping-based matching

Using this technique, filter items for designated attribute types (mappable filter items) go through a mapping process
using a mapping table and some kind of mapping algorithm. This mapping results in some new filter items called
mapped filter items as replacements for the mappable filter items. In exception cases, the mapping is not performed and
information is returned as to the exact nature of the exception.

The number of mapped filter items does not need to be the same as the number of mappable filter items, and will in
general be different.

A filter item of type extensibleMatch With the type specification absent cannot be a mappable filter item.

A mapping-based mapping may be local to a DSA. If the Search evaluation is distributed, other DSASs participating in
the evaluation phase of a Search may apply their own mapping-based mapping. However, the mapping used can be
conveyed to other DSAsin the chainedRelaxation component of the ChainedArguments.

NOTE 2—To be able to provide a consistent service to users, administrators of DSAs potentially participating in a distributed
Search evaluation should consider harmonizing their mapping tables and functions.

Figure 14 illustrates the principle behind the establishment of the mapping function between the real world and the
Directory model of that world. Users have some perception of the real world. This perception may not consider al
aspects of the real world. The aspects of the real world that have some importance for how a user formulates a Search
request constitute a model of the real world. This model then forms the basis for how the mapping is performed. The
precise model of the real world has to be based on experience and is likely to require regular updates based on observed
search behaviour by users.

52 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

List of
User possible J\ Mapping
perception matchable ‘/ algorithm
T values Entries

T !

Model of the real world

T /f

C Thereal world
X.501(12)_F14

Figure 14 — Information derivation

This model of the real world may only involve a subset of the attribute types used by a user in a Search request, and
possibly only asingle attribute type is relevant. As an example, in considering a model of the real world with respect to
localities, only locality-related attribute types would be relevant to consider. Filter items not referring to such attribute
types are not mapped, but are retained and used together with the mapped filter items for entry match.

A model of the real world is used for establishing a mapping table of matchable values, i.e., a set of values to be
potentially matched against the mappable filter items. How this mapping table of matchable values is established is a
local matter. Matching against this mapping table can then result in zero or more matches. Each match results in one or
more mapped filter items. The mapping algorithm determines how the mapped filter items are applied against entries.
How thisis doneis aloca matter. It could be based on values of traditional attributes in the entries or it could be based
on values planted in the entries that have no meaning outside the Directory, e.g., numeric identifiers.

The way mapping is employed and the resulting mapped filter items are handled is conveniently specified by referring
to subfilters as defined in 16.5 and further detailed in Annex Q. The concept of subfilters is only used here as a
descriptive tool. An implementation can use any other algorithm giving the same result.

Each subfilter is evaluated against the mapping table, and the resulting mapped filter items are combined with the non-
mapped filter itemsin away determined by the detailed mapping algorithm. The resulting matched entries are the union
of the entries matched by each of the subfilters.

NOTE 3 — In many situations, the mappable filter items will be replaced by alogical OR of the mapped filter items.

There are in principle two different modes of mapping. Each mappable filter item could be mapped one at the time, or
multiple combinable mappable filter items could be used to satisfy a single match against the mapping table. Multiple
filter items are applicable to a single mapping-based match if and only if they are combinable filter items; that is to say,
contained as elements within a single subfilter.

NOTE 4 —For example, two separate geographical names ANDed together in a subfilter can be used to specify a single

geographical location of useful size, where the use of a single geographical name may specify an ambiguous or oversize
geographical location.

The matching of a filter item against the mapping table is performed using the matching rule implied or specified by
that filter item, possibly after a basic matching rule substitution either specified in the governing-search-rule (if any)
and in the search request.

NOTE 5 — This could involve a complex matching rule like generalwordMatch defined in Rec. ITU-T X.520 | ISO/IEC 9594-6

allowing word rotation, word truncation, approximate word match, etc.

NOTE 6 — These Directory Specifications do not specify how an implementation combines the relevant matching rules into a

combined matching. It is expected that implementation may restrict what combinations of filter items and matching rules that are
supported.

If the matching attempted by a filter item or combinable filter items against the mapping table does not result in any
match for any subfilter, i.e., the match yields a FALSE or undefined result, it will result in zero mapped filter items. If
there are mappablefilter itemsin every subfilter, the Search would yield no result. An error shall then be returned to the
user.

In some situations, e.g., in geographical zonal matching, it is a requirement that the matching against the mapping table
yields a single, unambiguous result. If a subfilter matches more than one entry in the mapping table or if different
subfilters match different entries in the mapping table, the search may return too many unwanted entries. Instead,
information is returned to the user to allow a new and better targeted search request to beinitiated.

Rec. ITU-T X.501 (10/2012) 53

| SO/l EC 9594-2:2014 (E)

NOTE 7 —In asimpler situation, the mappable filter items are just checked against the mapping table. If this match is successful,
the mappabl e filter items are used unchanged.

The mapping can be dynamic in the sense that the mapping can be adjusted (relaxed) if the search yields zero or too few
matched entries. The details on how such a relaxation is performed are outside the scope of these Directory
Specifications. These are determined by local requirements. The relaxation can be performed in steps, potentially
causing more entries to be found. The relaxation shall be done in such away that when one additional step in relaxation
istaken, all entries returned from previous steps are returned together with potentially some new entries.

The relaxation is performed in steps by specifying different levels of relaxation. A level of zero corresponds to no
relaxation. Level one corresponds to a first level of relaxation, etc. Figure 15 is an abstract way of illustrating this
stepwise relaxation mechanism. What the different levels of relaxations exactly imply is not defined by these Directory
Specifications. The relaxation level can be controlled by the RelaxationPolicy construct, which may be supplied in
asearch-rule, in a search request, or both. This allows the relaxation of the mapping-based mapping and relaxation by
matching rule substitutions to be synchronized with each other, as both can be determined from each step of relaxation
as specified by the RelaxationPolicy.

4131211 0

X501(12)_F15

Figure 15 — Sear ch relaxation

The extendedarea Search control is an integer that provides an aternative way of controlling the level of relaxation
for a mapping-based matching algorithm. It is part of the customization of a mapping-based mapping algorithm whether
it can be controlled by this search control.

If the extendedarea Search control present in a search request and its use is allowed for a mapping-based algorithm,
any level specification in the RelaxationPolicy, Whether included in the search or the governing-search-rule, is
ignored.

The includeAllareas Search control option specifies the mode of relaxation when this is controlled by the
extendedArea Search control. If this option is set, the relaxing is performed as described above, i.e., potentially more
entries are returned for higher levels of relaxation (inclusive relaxation). If this option is not set, the user is only
interested in the result corresponding to the incremental relaxation (exclusive relaxation). The latter could be
interesting, if the user is stepwise relaxing and is not interested in getting entries that were returned in previous results,
but only additional entries resulting from the latest step of relaxation.
NOTE 8 — There is no guarantee (particularly with a complex filter) that the user will not get some entries received previoudly,
nor that all entries that could be of interest will be returned. For example, looking for French restaurants in Winkfield could fail;
relaxing to look for al restaurants in the Winkfield area but excluding Winkfield would then cause the mixed-cuisine White Hart
Inn restaurant in Winkfield to be left out of the search results.

Some mapping-based matching algorithms may not support exclusive relaxation or may be customized not to allow it.
In this case, the includeAllareas Search control option shall be ignored for that mapping function and a possible
relaxation shall be performed as an inclusive relaxation.

In some environments, it may also be relevant to be able to specify a negative level for relaxation, which corresponds to
a tightening of the matching. In this case, the includeallareas search control option has no significance and is
ignored, if present. Tightening may not be relevant for al types of mapping-based matching.

A DSA may simultaneously support several mapping functions, i.e., hold multiple mapping tables with corresponding
mapping algorithms. The reasons for multiple mapping functions could be:

a) The mapping function to be done is dependent on the type of application. Geographical zonal matching
(see 8.8 of Rec. ITU-T X.520 | ISO/IEC 9594-6) is a particular important application of mapping-based
matching. Other examples are mapping-based matching for Yellow Pages searches, bibliographic
searches, etc.

54 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

b) Within a particular application, the detailed specification for how the mapping is performed may vary
dependent on specific conditions. As an example, the mapping for geographical zonal matching may
depend on the geographical area (e.g., as reflected by the baseobject of the Search) or by the type of
search the user is attempting, i.e., based on information in the search filter. As another example, mapping
may depend on the language used in the request.

If multiple mapping functions are simultaneously applicable and the execution of one of these results in an exception
condition that shall be reported to the user, an implementation is not required to check whether multiple exceptions exist
(but it may do so).

A mapping-based mapping specification (see later) determines whether the extendedarea search control shal be
applicable for the mapping function in question. If several mapping functions are active for the same Search operation
and some of those can be controlled by extendedarea search control, they all perform simultaneous relaxation or
tightening according to the extendedarea search control, and if applicable, aso to the includeallareas search
control option.
NOTE 9 — The example given earlier shows that using includeAllAreas with more than one mapping-based mapping can
giveriseto difficulties.

If the extendedarea search control specifies alevel of relaxation or tightening not supported by the DSA for some of
the mapping functions affected by that search control, then the DSA shall perform the mapping based on best effort. If
the extendedarea search control specifies alevel of relaxation or tightening not supported by the DSA for any of the
mapping functions affected by that search control, a searchserviceProblem notification attribute with the value id-
pr-unavailableRelaxationLevel shall bereturnedinthenotification parameter of CommonResults.

NOTE 10-If the evaluation of a Search operation is distributed across multiple DSAs, such DSAs may employ different
mapping functions giving inconsistent result unless some coordination among the DSAs is established.

Although the details of mapping-based matching are local matters, it is possible to define the overall characteristics of
mapping-based matching by defining a special type of matching rules called mapping-based matching rules. Such a
matching rule is defined as an instance of the MATCHING-RULE information object class. However, it is different from
traditional matching rules in the sense that it does not specify matching in the traditional sense and therefore does not
specify syntax for the matching. However, as part of its definition it gives specifications of its purpose, how it is applied
and how exception conditions are handled. The specific behaviour of a mapping-based matching rule can partly be
described by an instance of the ASN.1 information object class derived from the below generic (parameterized)
MAPPING-BASED-MATCHING information object class. This information object class is only intended to specify those
aspects that are potentially customizable. This Directory Specification does not dictate how and where an instance of
such an information object class is stored, just that it is made available to the DSA in some way.

MAPPING-BASED-MATCHING
{SelectedBy, BOOLEAN:combinable, MappingResult, OBJECT IDENTIFIER:matchingRule} ::=

cLass {
&selectBy SelectedBy OPTIONAL,
&ApplicableTo ATTRIBUTE,
&subtypesIncluded BOOLEAN DEFAULT TRUE,
&combinable BOOLEAN (combinable),
&mappingResults MappingResult OPTIONAL,
&userControl BOOLEAN DEFAULT FALSE,
&exclusive BOOLEAN DEFAULT TRUE,
&matching-rule MATCHING-RULE. &id (matchingRule),
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
[SELECT BY &selectBy]
APPLICABLE TO &ApplicableTo
[SUBTYPES INCLUDED &subtypesIncluded]
COMBINABLE &combinable
[MAPPING RESULTS &mappingResults]
[USER CONTROL &userControl]
[EXCLUSIVE &exclusive]
MATCHING RULE &matching-rule
ID &id }

The MAPPING-BASED-MATCHING information object class has the following field specifications:

a) ThesaselectBy fiddisadummy reference for a specification of how an instance of a specialization of
the information object classis selected for a mapping-based mapping. The specialized information object
class shall, if applicable, specify an ASN.1 type determining together with a textual description on how
the selection is to be performed. This component shall be ignored if the user in the search request
supplies a non-empty mapping component of the RelaxationPolicy construct.

Rec. ITU-T X.501 (10/2012) 55

| SO/l EC 9594-2:2014 (E)

b)

d)

€)

f)

0)

h)

i)

NOTE 11 —1In principle, several instances possibly of different derived information object classes can be
selected by the same search request.

The sapplicableTo field specifies what filter items shall be considered mappable filter items by
specifying the attribute types for such filter items. Any filter item for an attribute type listed by this
subcomponent is subject to mapping-based matching. This component shall always be present. Attribute
types listed by this component may not necessarily al be present in the filter. The value is determined by
the information object instance of a speciaization of this information object class.

The &subtypesIncluded field is a value of boolean type which specifies whether an instance of a
derived information object class can accept subtypes of sapplicableTo attributes, in addition to the
specified attribute types. If absent, subtypes are permitted, provided that they are not turned off by other
mechanisms. The value is determined by the information object instance of the derived information
object class.

The scombinable field is a value of boolean type that, if TRUE, permits the mapping-based matching to
use multiple combinable filter items in the satisfaction of the match against the mapping table. The
combinable isadummy reference for the value of this component to be determined by a specialization
of thisinformation object class.

The smappingResults field is dummy reference for a specification on how exception conditions are
reported. The derived information object class shall specify an ASN.1 type for reporting relevant
exception conditions.

The susercontrol field is a value of boolean type which specifies whether an instance of a derived
information object class and its associated mapping-based matching rule can be controlled by the
extendedArea Search control.

NOTE 12 — If several mapping-based matchings are simultaneously being applied, it may be appropriate to let
only one of these allow use of the extendedarea Search control.

The gexclusive field is a value of boolean type which specifies whether an instance of a derived
information object class and its associated mapping-based matching rule allows exclusive relaxation to
be performed. The value, if present, is determined by the information object instance of the derived
information object class. If the valueis FaLsE or if the DSA does not support exclusive matching for this
mapping-based matching, this particular mapping shall act as if the includeallareas search control
option were set.

NOTE 13 - If several mapping-based matchings are simultaneously being applied, it may be appropriate to let
only one of these allow exclusive relaxation.

The smatching-rule field isavalue of object identifier type identifying the matching-based matching
rule for which this instance provides additional specification and which shall be applied for the mapping-
based matching. The matchingRule dummy reference for the value of this component is to be
determined by a specialization of thisinformation object class. The matching rule specified shall be used
for the particular mapping-based matching.

The &id field is an object identifier allocated to the particular mapping-based mapping.

13.7 DIT structuredefinition

13.7.1 Overview

A fundamental aspect of the Directory schema is the specification of where an entry of a particular class may be placed
inthe DIT and how it should be named, considering:

the hierarchical relationship of entriesin the DIT (DIT structure rules);
the attribute or attributes used to form the RDN of the entry (name forms).

13.7.2 Nameform definition

The definition of a name form involves:

a)
b)

0)

d)

specifying the named object class;

indicating the mandatory attributes to be used for the RDNs for entries of this object class where this
name form applies;

indicating the optional attributes, if any, that may be used for the RDNSs for entries of this object class
where this name form applies;

assigning an object identifier for the name form.

56 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

If different sets of naming attributes are required for entries of a given structural object class, then a name form shall be
specified for each distinct set of attributes to be used for naming.

Only structural object classes are used in name forms.

For entries of a particular structural object class to exist in a portion of the DIB, at least one name form for that object
class shall be contained in the applicable part of the schema. The schema contains additional name forms as required.

The RDN attribute (or attributes) need not be chosen from the list of permitted attributes of the structural object class as
specified in its structural or alias object class definition.

NOTE — Naming attributes are governed by DIT content rules and DIT context use in the same way as other attributes.
A name form is only a primitive element of the full specification required to constrain the form of the DIT to that

required by the administrative and naming authorities that determine the naming policies of a given region of the DIT.
The remaining aspects of the specification of DIT structure are discussed in 13.7.5.

13.7.3 Nameform specification

Name forms may be defined as values of the NaME - FORM information object class:

NAME-FORM ::= CLASS {
&namedObjectClass OBJECT-CLASS,
&MandatoryAttributes ATTRIBUTE,
&OptionalAttributes ATTRIBUTE OPTIONAL,

&ldapName SEQUENCE SIZE(1l..MAX) OF UTF8String OPTIONAL,
&ldapDesc UTF8String OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
NAMES &namedObjectClass
WITH ATTRIBUTES &MandatoryAttributes
[AND OPTIONALLY &OptionalAttributes]
[LDAP-NAME &ldapName]
[LDAP-DESC &ldapDesc]
ID &id }

For aname form which is defined using this information object class:

a) thesnamedobjectclass fieldisused for specifying the structural object class for which the name form
applies;

b) the sMandatoryattributes field isthe set of attributes which shall be present in the RDN of the entry
it governs,

¢) thesoptionalAttributes fieldisthe set of attributes which may be present in the RDN of the entry it
governs;

e) the &ldapName field, if relevant, is used for specifying one or more values for the NAME specification
used in the corresponding LDAP definition either defined by the IETF or by these Directory
Specifications;

m) the s1dappesc field, if relevant, is used for specifying the DESC used in the corresponding LDAP
attribute type specification;

d) thesid fieldisused for specifying the object identifier assigned to this name form.
All attribute types in the mandatory and optional lists shall be different.

13.7.4 Structural object class of an entry

Some subschema specifications will include name forms for no more than one structural object class per structural
object class superclass chain represented in the subschema.

Some subschema specifications may include name forms for more than one structural object class per structural object
class superclass chain represented in the subschema.

In either case, with respect to a particular entry, only the most subordinate structural object class in the structural
superclass chain present in the entry's objectClass attribute determines the DIT content rule and DIT structure rule
applying to the entry. This class is referred to as the structural object class of the entry and is indicated by the
structuralObjectClass operational attribute.

Rec. ITU-T X.501 (10/2012) 57

| SO/l EC 9594-2:2014 (E)

13.7.5 DIT structureruledefinition

A DIT structure rule is a specification provided by the subschema administrative authority which the Directory uses to
control the placement and naming of entries within the scope of the subschema. Each object and alias entry is governed
by asingle DIT structure rule. A subschema governing a subtree of the DIT will typically contain several DIT structure
rules permitting several types of entries within the subtree.

A DIT structure rule definition includes:
a) aninteger identifier which is unique within the scope of the subschema;
b) anindication of the name form for entries governed by the DIT structurerule;
c) theset of allowed superior structure rules, if required.

The set of DIT structure rules for a subschema specifies the forms of distinguished names for entries governed by the
subschema.

A DIT structure rule allows entries in a given subschema to subscribe to a particular name form. The form of the
last RDN component of an entry's bistinguishedName iS determined by the name form of the DIT structure rule
governing the entry.

The namedobjectClass component of the name form (the name form's object class) corresponds to the structural
object class of the entry.

A DIT structure rule shall only permit entries belonging to the structural object class identified by its associated name
form. It does not permit entries belonging to any of the subclasses of the structural object class.

With respect to a particular entry, the DIT structure rule governing the entry is termed the entry's governing structure
rule. Thisrule may be identified by examining the entry's governingStructureRule attribute.

With respect to a particular entry, the DIT structure rule governing the entry's superior is termed the entry's superior
structurerule.

An entry may only exist in the DIT as a subordinate to another entry (the superior) if a DIT structure rule exists in the
governing subschema which:

— indicates aname form for the structural object class of the entry; and

— ether includes the entry's superior structure rule as a possible superior structure rule or does not specify
asuperior structure rule, in which case the entry shall be a subschema administrative point.

If an entry which is itself a subschema administrative point is not included for the purposes of subschema
administration in its subschema subentry, then the subschema from the immediately superior subschema administrative
areais used to govern the entry.

Entries which are administrative point entries but have no subschema subentry (e.g., newly created administrative point
entries) have no governing structure rule. The Directory shall not allow subordinates to be created below such entries
until a subschema subentry has been added.

If an entry is converted to a new subschema administrative point, then the governing structure rule of al entries in the
new subschema administrative area is automatically changed to that implied by the new subschema.

13.7.6 DIT structurerule specification
The abstract syntax of aDIT structure rule is expressed by the following ASN.1 type:

DITStructureRule ::= SEQUENCE ({
ruleIdentifier RuleIdentifier,
-- shall be unique within the scope of the subschema
nameForm NAME-FORM. &id,
superiorStructureRules SET SIZE (1..MAX) OF RuleIdentifier OPTIONAL,
-}
RuleIdentifier ::= INTEGER

The correspondence between the parts of the definition, as listed in 13.7.5, and the various components of the ASN.1
type defined above, is asfollows:

a) theruleldentifier component identifiesthe DIT structure rule uniquely within a subschema;

b) the nameForm component of the DIT structure rule specifies the name form for entries governed by the
DIT structurerule;

58 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Cc) the superiorsStructureRules component identifies permitted superior structure rules for entries
governed by the rule. If this component is omitted, then the DIT structure rule applies to a subschema
administrative point.

The sTRUCTURE-RULE information object classis provided to facilitate the documentation of DIT structure rules:

STRUCTURE-RULE ::= CLASS {
&nameForm NAME-FORM,
&SuperiorStructureRules STRUCTURE-RULE.&id OPTIONAL,
&id RuleIdentifier }

WITH SYNTAX {
NAME FORM &nameForm
[SUPERIOR RULES &SuperiorStructureRules]
ID &id }

13.8 DIT content rule definition

13.8.1 Overview

A DIT content rule specifies the permissible content of entries of a particular structural object class via the
identification of an optional set of auxiliary object classes, mandatory, optional and precluded attributes. Collective
attributes shall be included in DIT Content rules if they are to be permitted in an entry.
A DIT content rule definition includes:

a) anindication of the structural object class to which it applies;

b) optionally, anindication of the auxiliary object classes allowed for entries governed by therule;

¢) optionaly, an indication of the mandatory attributes, over and above those called for by the structural
and auxiliary object classes, required for entries governed by the DIT content rule;

d) optionaly, an indication of the optional attributes, over and above those called for by the structural and
auxiliary object classes, permitted for entries governed by the DIT content rule;

€) optionaly, an indication of optional attribute(s) from the entry's structural and auxiliary object classes
which are precluded from appearing in entries governed by the rule.
For any valid subschema specification, thereis at most one DIT content rule for each structural object class.

Every entry in the DIT is governed by at most one DIT content rule. This rule may be identified by examining the value
of theentry's structuralobjectClass attribute.

If no DIT content rule is present for a structural object class, then entries of that class shall contain only the attributes
permitted by the structural object class definition.

The DIT content rules of superclasses of the structural object class for an entry do not apply to that entry.

AsaDIT content rule is associated with a structural object class, it follows that all entries of the same structura object
class will have the same DIT content rule regardless of the DIT structure rule governing their location in the DIT.

An entry governed by a DIT content rule may, in addition to the structural object class of the DIT structure rule, be
associated with a subset of the auxiliary object classes identified by the DIT content rule. This association isreflected in
theentry's objectClass attribute.

An entry's content shall be consistent with the object classes indicated by its objectcClass attribute in the following
way:

— mandatory attributes of object classes indicated by the objectclass attribute shall always be present in
the entry;

— optional attributes (not indicated as additional optional or mandatory in the DIT content rule) of auxiliary
object classes indicated by the DIT content rule may only be present if the objectclass atribute
indicates these auxiliary object classes.

Mandatory attributes associated with the structural or indicated auxiliary object classes shall not be precluded in aDIT
content rule.

Rec. ITU-T X.501 (10/2012) 59

| SO/l EC 9594-2:2014 (E)

1382 DIT

content rule specification

The abstract syntax of aDIT content rule is expressed by the following ASN.1 type:

DITContentR
structura
auxiliari
mandatory
optional
precluded

}

ule ::= SEQUENCE {

lObjectClass OBJECT-CLASS.&id,

es SET SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL,
[1] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
[2] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
[3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,

The correspondence between the parts of the definition, as listed in 13.8.1, and the various components of the ASN.1
type defined above, is asfollows:

a)
b)

0)

d)

€)

the structuralobjectClass component identifies the structural object classto which the DIT content
rule applies;

the auxiliaries component identifies the auxiliary object classes alowed for an entry to which the
DIT content rule applies;

the mandatory component specifies user attribute types which an entry to which the DIT content rule
applies shall contain in addition to those which it shall contain according to its structural and auxiliary
object classes;

the optional components specify user attribute types which an entry to which the DIT content rule
applies may contain in addition to those which it may contain according to its structural and auxiliary
object classes;

the precluded component specifies a subset of the optional user attribute types of the structural and
auxiliary object classes which are precluded from an entry to which the DIT content rule applies.

NOTE — Content rules for directly identified attributes (e.g., attributes in the mandatory, optional, and precluded lists) apply rules
only to the attributes that they specify, and not to subtypes and friend attributes.

The coNTENT - RULE information object classis provided to facilitate the documentation of DIT content rules:

CONTENT -RUL
&structur
&Auxiliar
&Mandator
&Optional
&Preclude

WITH SYNTAX

E ::= CLASS {

alClass OBJECT-CLASS.&id UNIQUE,

ies OBJECT-CLASS OPTIONAL,

Y ATTRIBUTE OPTIONAL,
ATTRIBUTE OPTIONAL,

d ATTRIBUTE OPTIONAL }

{

STRUCTURAL OBJECT-CLASS &structuralClass

[AUXILIAR

Y OBJECT-CLASSES &Auxiliaries]

[MUST CONTAIN &Mandatoryl]

[MAY CONT
[MUST-NOT

13.9 Con
The definition

a)

b)

)

d)

€)

f)

9)

AIN &Optional]
CONTAIN &Precluded] }

text type definition

of acontext type involves:

specifying the syntax of the context;

specifying the syntax of a context assertion;

optionally specifying a default value for the context;
defining the semantics of the context;

specifying how matches are done;

specifying behaviour in the absence of a context value; and
assigning an object identifier to the context type.

139.1 Context value matching

A presented context assertion matches a stored context value of the same context type according to the description of
matching which is part of the context definition.

60 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

13.9.2 Context definition

Contexts are defined using the coNTEXT information object class:

CONTEXT ::= CLASS {
&Type,
&defaultValue &Type OPTIONAL,
&Assertion OPTIONAL,
&absentMatch BOOLEAN DEFAULT TRUE,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
WITH SYNTAX &Type
[DEFAULT-VALUE &defaultValue]
[ASSERTED AS &Assertionl]
[ABSENT-MATCH &absentMatch]
ID &id }

a) TheesType field isused for specifying the syntax: This shall be an ASN.1 type

b) A pErFauLT-VALUE Will cancel out effect (a) of ABsENT-MATCH. Effect (b) of aABsENT-MATCH could be
assumed for any context defined with a DEFAULT-VALUE, in which case the ABsENT-MaTCH field could
be dispensed with.

If sdefaultvalue isspecified, then entry modification requests to add values with contexts will behave
in amanner consistent with the following pre-processing and post-processing specification.

NOTE — A DSA is not obligated to implement the exact sequence of steps below, so long as the end result exhibits the same
externally observable behaviour.

Pre-processing

For each modifyEntry request to add values with contexts, remove values with contexts or remove all values with
contexts. For each context type applicable to the attribute type, if the context type is defined with a &defaultvalue,
then:

1) if the context type is not explicitly listed in the request, add the context type with the &defaultvalue to
the request;

2) for each stored attribute value of the attribute type, if the attribute value does not have the context type,
then add the context type with the &defaultValue to the attribute value.

Normal Processing
Post-processing

For each modifyEntry request to add values with contexts, remove values with contexts or remove all values with
contexts. For each context type applicable to the attribute type, if the context type is defined with a sdefaultvalue,
then for each stored attribute value of the attribute type,

3) if the attribute value does not have the context type, then remove the attribute value;

4) if the attribute value has the context type and the only context value of that context type is the
&defaultvValue, remove the context (but not the attribute value).

If the sAssertion isomitted, the context assertion syntax isthe same as &Type.

Specifying &absentMatch as FALSE in acontext definition has the following two effects:

a) An attribute value that does not have a context of the specified context type is treated as though it has no
values of that context type. That is, if an attribute value contains no contexts of an asserted contextType,
then the contextassertion evaluatesto FALSE.

b) The £fallback component of context values of such a context type is treated as being set to FALSE
regardless of its actual setting.

When a context is defined, the specification shall include a description of the semantics of the context, and how a match
is evaluated.

Rec. ITU-T X.520 | ISO/IEC 9594-6 specifies selected Context Definitions.

Rec. ITU-T X.501 (10/2012) 61

| SO/IEC 9594-2:2014 (E)
13.10 DIT Context Use definition

13.10.1 Overview

A DIT Context Use is a specification provided by the subschema administrative authority to specify the permissible
context types that may be stored with an attribute, and the mandatory context types that shall be stored with an attribute.

A DIT Context Use definition includes:
a) anindication of the attribute type to which it applies;

b) optionally, an indication of the mandatory context types that shall be associated with values of the
attribute type whenever the attribute is stored;

¢) optionaly, an indication of the optional context types that may be associated with values of the attribute
type whenever the attribute is stored.

If no DIT Context Use definition is present for a given attribute type, then values of attributes of that type shall contain
no context lists. For a given subschema administrative area, there can be only one DIT Context Use for a given attribute
type. A DIT Context Use may be defined to apply to all attribute types, in which case it shall be the only DIT Context
Usein the subschema.

13.10.2 DIT Context Use specification
The abstract syntax of aDIT Context Useis expressed by the following ASN.1 type:

DITContextUse ::= SEQUENCE {

attributeType ATTRIBUTE. &id,

mandatoryContexts [1l] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,

optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
-}

The correspondence between the parts of the definition, as listed in 13.10.1, and the various components of the ASN.1
type defined above, is asfollows:

a) theattributeType component identifies the attribute type to which the DIT Context Use applies; if it
if it applies to any attribute type, the object identifier id-oa-allattributeTypes may be used
(defined in Annex B);

b) the mandatoryContexts component specifies context types that shall be associated with an attribute
value of the given type whenever the attribute is stored. If thisis omitted, then attribute values may exist
without context lists;

Cc) the optionalContexts component specifies context types that may be associated with an attribute
value of the given type whenever the attribute is stored. If this is omitted but mandatoryContexts is
present, then all attribute values shall appear with the mandatory context types and no others. If thisis
omitted and mandatoryContexts is also omitted, it is equivalent to having no DIT Context Use for the
attribute type; that is, attribute values of the given attribute type shall not have associated context lists.

The DIT-CONTEXT-USE-RULE information object class is provided to facilitate the documentation of the DIT Context
Userules:

DIT-CONTEXT-USE-RULE ::= CLASS {
&attributeType ATTRIBUTE.&id UNIQUE,
&Mandatory CONTEXT OPTIONAL,
&Optional CONTEXT OPTIONAL}

WITH SYNTAX {

ATTRIBUTE TYPE &attributeType

[MANDATORY CONTEXTS &Mandatoryl]
[OPTIONAL CONTEXTS &Optionall }
13.11 Friendsdefinition

The definition of a set of friends involves:
a) specifying the anchor attribute that has the set of friends;
b) specifying the set of attributes that are the friends of the anchor.

The FrRIENDS information object classis provided to facilitate the documentation of sets of friends:

FRIENDS ::= CLASS {
&anchor ATTRIBUTE.&id UNIQUE,

62 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

&Friends ATTRIBUTE }
WITH SYNTAX {

ANCHOR &anchor

FRIENDS &Friends }

Any given attribute can only have one set of friendsin any subschema.
Example:

postal FRIENDS ::= {
ANCHOR {postalAddress}
FRIENDS { physicalDeliveryOfficeName |
postalCode |
postOfficeBox |
streetAddress }

13.12 Syntax definitions

While these Directory Specifications specify syntaxes as ASN.1 data type, LDAP assigns object identifier to the
different syntaxes. The following information object class may be used to define LDAP syntaxes.

SYNTAX-NAME ::= CLASS {

&desc UTF8String,

&Type,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

DESC &desc

DIRECTORY SYNTAX &Type

ID &id }

The different fields have the following meeting:
a) thesdesc fieldisused for specifying the LDAP description of the syntax;

b) the eType field is used for specifying the corresponding ASN.1 data type for the syntax as specified or
used by these Directory Specifications; and

¢) thesid fieldisfor specifying the object identifier assigned to the syntax.
Rec. ITU-T X.520 | ISO/IEC 9594-6 defines syntaxes based on this information object class:

14 Directory System Schema

14.1 Overview

The Directory System Schemais a set of definitions and constraints concerning the information that the Directory itself
needs to know in order to operate correctly. This information is specified in terms of subentries and operational
attributes.

NOTE — The system schema enabl es the directory system to, for example:

- prevent the association of subentries of the wrong type with administrative entries (e.g., the creation of a subschema
subentry subordinate to an administrative entry defined only as a security administrative entry);

- prevent the addition of inappropriate operational attributes to an entry or subentry (e.g., a subschema operationa attribute
to aperson's entry).

Formally, the Directory System Schema comprises a set of:

a) Object class definitions that define the attributes that shall or may be present in a subentry of a given
class;

b) Operationa Attribute Type definitions that specify the characteristics of operational attributes known and
used by the Directory.

The complete definition of an operational attribute includes a specification of the way in which the Directory uses and
(if appropriate) provides or manages the attribute in the course of its operation.

The Directory System Schema is distributed, like the DIB itself. Each Administrative Authority establishes the part of
the system schema that will apply for those portions of the DIB administered by the authority.

The Directory System Schema defined in this Directory Specification is an integral part of the Directory System itself.
Each DSA participating in a directory system requires a full knowledge of the system schema established by its

Rec. ITU-T X.501 (10/2012) 63

| SO/l EC 9594-2:2014 (E)

Administrative Authority. The system schema for an Administrative Area may be defined by the Administrative
Authority using the notation defined in this clause.

The Directory System Schemais not regulated by DIT structure or content rules. When an element of system schemais
defined, a specification of how it isused and where it appearsin the DIT is provided.

Certain aspects of the directory system schema are specified in the following subclauses.

The directory system schema required to support directory distribution is specified in clauses 25 through 28.

14.2 System schema supporting the administrative and operational information model

Although subentry and subentryNameForm are specified using the notation of clause 13, subentries are not
regulated by DIT structure or DIT content rules.

14.21 Subentry object class

The subentry object classis a structural object class and is defined as follows:

subentry OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND structural
MUST CONTAIN {commonName |
subtreeSpecification}
LDAP-NAME {"subentry"}
ID id-sc-subentry }

14.2.2 Subentry nameform
The subentryNameForm name form alows entries of class subentry to be named using the commonName attribute:

subentryNameForm NAME-FORM ::= {

NAMES subentry
WITH ATTRIBUTES {commonName }
ID id-nf-subentryNameForm }

No other name form shall be used for subentries.

14.2.3 Subtree Specification operational attribute

The subtreeSpecification operationa attribute type, whose semantics are specified in clause 12, is defined as
follows:

subtreeSpecification ATTRIBUTE ::= {
WITH SYNTAX SubtreeSpecification
USAGE directoryOperation
LDAP-SYNTAX subtreeSpec.&id
LDAP-NAME "subtreeSpecification"
ID id-oa-subtreeSpecification }

This attribute is present in al subentries; each value defines a set of entries (in terms of a portion of an administrative
area possibly with refinement by selection on an object class filter) which may be subject to the policies defined by the
subentry.

NOTE — This permits a single complex policy (e.g., a search-rule) to be directed at many object class combinations, in digoint
regions of an administrative area, while being defined in a single subentry.
14.3 System schema supporting the administrative model

The Administrative Model defined in clause 11 requires that administrative entries contain an administrativeRole
attribute to indicate that the associated administrative areais concerned with one or more administrative roles.

The administrativeRole Operationa attribute typeis specified asfollows:

administrativeRole ATTRIBUTE ::= {
WITH SYNTAX OBJECT-CLASS.&id
EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
LDAP-SYNTAX oid.&id
LDAP-NAME "administrativeRole"
ID id-oa-administrativeRole }

64 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The possible values of an attribute of this type defined by this Directory Specification are:

id-ar-autonomousArea
id-ar-accessControlSpecificArea
id-ar-accessControlInnerArea
id-ar-subschemaAdminSpecificArea
id-ar-collectiveAttributeSpecificArea
id-ar-collectiveAttributeInnerArea
id-ar-contextDefaultSpecificArea
id-ar-serviceSpecificArea
id-ar-pwdAdminSpecificArea

The semantics of these values are defined in clause 12.

The administrativeRole operational attribute is also used to regulate the subentries permitted to be subordinate to
an administrative entry. A subentry not of a class permitted by the administrativeRole attribute may not be
subordinate to the administrative entry.

144 System schema supporting general administrative and operational requirements

The following clauses describe subschema operational attributes which are not attributes in the usual sense (i.e., are not
held within an entry), but may be thought of as 'virtual' attributes, representing information which is derivable (e.g.,
from existing operational attributes, their values, and other information). Such virtual attributes are valid for all entries
within an administrative area. This has the effect that these subschema operational attributes appear to be present in
every entry.

1441 Timestamps

An attribute of the createTimestamp Operational attribute type indicates the time that an entry was created:

createTimestamp ATTRIBUTE ::=
WITH SYNTAX GeneralizedTime
-- as per 46.3 b) or c) of Rec. ITU-T X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation
LDAP-SYNTAX generalizedTime.&id
LDAP-NAME "createTimestamp"

ID id-oa-createTimestamp }

An attribute of themodi fyTimestamp Operational attribute type indicates the time that an entry was last modified:

modifyTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
-- as per 46.3 b) or c) of Rec.ITU-T X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation
LDAP-SYNTAX generalizedTime.&id
LDAP-NAME "modifyTimestamp"

ID id-oa-modifyTimestamp }

An attribute of the subschemaTimestamp operationa attribute type indicates the time that the subschema subentry for
the entry (see 15.3) was created or last modified. It is availablein every entry:

subschemaTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
-- as per 46.3 b) or c) of Rec. ITU-T X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-subschemaTimestamp }

Rec. ITU-T X.501 (10/2012) 65

| SO/l EC 9594-2:2014 (E)

The generalizedTimeMatch and generalizedTimeOrderingMatch matching rules are defined in
Rec. ITU-T X.520 | ISO/IEC 9594-6.

14.4.2 Entry Modifier operational attributes

An attribute of the creatorsName operational attribute type indicates the distinguished name of the Directory user that
created an entry:

creatorsName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
LDAP-SYNTAX dn.&id
LDAP-NAME "creatorsName"
ID id-oa-creatorsName }

An attribute of the modifiersName operational attribute type indicates the distinguished name of the Directory user
that last modified the entry:

modifiersName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
LDAP-SYNTAX dn.&id
LDAP-NAME "modifiersName"
ID id-oa-modifiersName }

14.4.3 Subentry identification operational attributes

An attribute of the subschemaSubentryList operational attribute type identifies the subschema subentry that governs
the entry. It isavailable in every entry:

subschemaSubentryList ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
LDAP-SYNTAX dn.&id
LDAP-NAME {"subschemaSubentry"}
ID id-oa-subschemaSubentryList }

An attribute of the accessControlsubentryList operationa attribute type identifies all access control subentries
that affect the entry. It isavailablein every entry.

accessControlSubentryList ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-accessControlSubentryList }

An attribute of the collectiveAttributeSubentryList operational attribute type identifies all collective attribute
subentries that affect the entry. It isavailablein every entry:

collectiveAttributeSubentryList ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-collectiveAttributeSubentryList }

An attribute of the contextDefaultSubentryList operational attribute type identifies all context default subentries
that affect the entry. It isavailablein every entry:

contextDefaultSubentryList ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName

66 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-contextDefaultSubentryList }

An attribute of the serviceAadminSubentryList operationa attribute type identifies al service administration
subentries, if any, that affect the entry. It isavailable in every entry affected by any such subentry.

serviceAdminSubentryList ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-serviceAdminSubentryList }

An attribute of the pwdAadminSubentryList operationa attribute type identifies the password administration
subentry, if any, that affect the entry. It is available in every entry affected by any such subentry.

pwdAdminSubentryList ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
LDAP-SYNTAX dn.&id
LDAP-NAME "pwdAdminSubentryList"
ID id-oa-pwdAdminSubentryList }

14.4.4 HasSubordinates operational attribute

The hassubordinates operationa attribute indicates whether any subordinate entries exist below the entry holding
this attribute. A value of TRUE indicates that subordinates may exist. A value of FALSE indicates that no subordinates
exist. If this attribute is absent, no information is provided about the existence of subordinate entries. The attribute will
ordinarily disclose the existence of subordinates even if the immediate subordinates are hidden by access controls — to
prevent disclosure of the existence of subordinates, the operational attribute itself shall be protected by access controls.
NOTE — A value of TRUE may be returned when no subordinates exist if all possible subordinates are available only through a

non-specific subordinate reference (see Rec. ITU-T X.518 | ISO/IEC 9594-4) or if the only subordinates are subentries or child
family members.

hasSubordinates ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hasSubordinates }

145 System schema supporting access control

If a subentry contains prescriptive access control information, then its objectclass attribute shall contain the value
accessControlSubentry:

accessControlSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-accessControlSubentry }

A subentry of this object class shall contain precisely one prescriptive ACI attribute of atype consistent with the value
of the accessControlScheme attribute of the corresponding access control specific point.

14.6 System schema supporting the collective attribute model

Subentries supporting collective attribute specific or inner administrative areas are defined as follows:

collectiveAttributeSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-collectiveAttributeSubentry }

A subentry of this object class shall contain at least one collective attribute.

Rec. ITU-T X.501 (10/2012) 67

| SO/l EC 9594-2:2014 (E)

Collective attributes contained within a subentry of this object class are conceptually available for interrogation and
filtering at every entry within the scope of the subentry's subtreeSpecification éttribute, but are administered via
the subentry.

ThecollectiveExclusions operational attribute allows particular collective attributes to be excluded from an entry:

collectiveExclusions ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
ID id-oa-collectiveExclusions }

This attribute is optional for every entry.

The OBJECT IDENTIFIER Value id-oa-excludeAllCollectiveAttributes may be used, by its presence as a
value of the collectiveExclusions attribute, to exclude all collective attributes from an entry.

14.7 System schema supporting context assertion defaults

Subentries providing default values for context assertions are defined as follows:

contextAssertionSubentry OBJECT-CLASS ::= {
KIND auxiliary
MUST CONTAIN {contextAssertionDefaults}
ID id-sc-contextAssertionSubentry }

A subentry of this object class shall contain acontextAssertionDefaults attribute:

contextAssertionDefaults ATTRIBUTE ::= {
WITH SYNTAX TypeAndContextAssertion
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-oa-contextAssertionDefault }

Whenever a context is evaluated and no context assertion is provided by the user, the Directory provides context
assertion defaults equal to the values of this attribute in the context assertion subentry controlling the entry being
accessed, as described in 8.9.2.2.

NOTE — TypeAndContextAssertion iS defined in 7.6 of (and evaluation of it is defined in 7.6.3 of) Rec. ITU-T X.511 |
I SO/IEC 9594-3.

14.8 System schema supporting the service administration model

serviceAdminSubentry OBJECT-CLASS ::= {

KIND auxiliary
MUST CONTAIN {searchRules}
ID id-sc-serviceAdminSubentry }

A subentry of this object class shall contain a searchRules operationa attribute:

searchRules ATTRIBUTE ::= {

WITH SYNTAX SearchRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation
ID id-oa-searchRules }
SearchRuleDescription ::= SEQUENCE {
COMPONENTS OF SearchRule,
name [28] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description [29] UnboundedDirectoryString OPTIONAL,
e}

A value of the searchRules operational attribute is either a search-rule containing actual search restrictions, or itisa
dummy search-rule that specifies no search restrictions at all. This dummy search-rule is identified by having an id of
zero and by having no serviceType component (or any other components of searchrule other than id and dmdz1d).
dmd1d isan identifier for the controlling DMD (see 6.4).

68 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

14.9 System schema supporting password administration

If a subentry holds password policy information, then its objectcClass attribute shall contain the value
pwdAdminSubentry:

pwdAdminSubentry OBJECT-CLASS ::= {
KIND auxiliary
MUST CONTAIN { pwdAttribute }
LDAP -NAME {"pwdAdminSubentry"}
ID id-sc-pwdAdminSubentry }

A subentry of the object class pwdadminsubentry may contain the following attributes pwdModi fyEntryAllowed,
pwdChangeAllowed, pwdMaxAge, pwdExpiryAge, pwdMinLength, pwdVocabulary, pwdAlphabet,
pwdDictionary, pwdExpiryWarning, pwdGraces, pwdFailureDuration, pwdLockoutDuration,
pwdMaxFailures, pwdMaxTimeInHistory, pwdMinTimeInHistory, pwdHistorySlots,
pwdRecentlyExpiredDuration, pwdEncAlg.

pwdAttribute contains the password attribute that is being controlled by the password administration subentry.
Every password attribute can only have at most one password policy that applies to it. If two or more subtree
specifications overlap, then only one of them can apply to each entry in the overlapping space as controlled by the
pwdAdminSubentryList attributein each entry.

pwdAttribute ATTRIBUTE ::= {

WITH SYNTAX ATTRIBUTE. &id
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE

LDAP-SYNTAX oid.&id

LDAP-NAME "pwdAttribute"

ID id-at-pwdAttribute }

One password attribute is currently defined, userPwd which contains a password stored in clear text or encrypted. This
attribute shall have a matching rule for comparison of a proposed password value with the password value stored in the
Directory. For each defined password attribute, two attributes for password history and recently expired password
respectively are needed as well as a matching rule for comparison of a presented password value with a password stored
in the history. The attribute userPwdHistory and the matching rule userpPwdHistoryMatch are defined for the
userPwd password attribute. The attribute userPwdRecentlyExpired and the matching rule
userPwdHistoryMatch are defined for the userpwd using the userpwd type.

If new password attributes using other syntaxes are needed, new attributes and new matching rules will also be defined.
The following parameterized objects can be used for that.

14.9.1 Definition of an history attribute from the password attribute, the history matching rule and an object
identifier

pwdHistory{ATTRIBUTE:passwordAttribute, MATCHING-RULE: historyMatch, OBJECT IDENTIFIER:id}

ATTRIBUTE ::= {

WITH SYNTAX PwdHistory{passwordAttribute}
EQUALITY MATCHING RULE historyMatch
USAGE directoryOperation
ID id}
PwdHistory{ATTRIBUTE:passwordAttribute} ::= SEQUENCE {
time GeneralizedTime,
password passwordAttribute.&Type,
-
14.9.2 Definition of arecently expired password attribute from the password attribute and an object identifier
pwdRecentlyExpired{ATTRIBUTE:passwordAttribute, OBJECT IDENTIFIER:id} ATTRIBUTE ::= {
WITH SYNTAX passwordAttribute. &Type
EQUALITY MATCHING RULE passwordAttribute.&equality-match
SINGLE VALUE TRUE
USAGE directoryOperation
ID id}

14.9.3 Definition of a password history matching rule from the password attribute and an object identifier
pwdHistoryMatch{ATTRIBUTE:passwordAttribute, OBJECT IDENTIFIER:id}

MATCHING-RULE ::= {
SYNTAX passwordAttribute.&Type
ID id}

Rec. ITU-T X.501 (10/2012) 69

| SO/l EC 9594-2:2014 (E)

14.10 System schema supporting hierarchical groups

hierarchylLevel ATTRIBUTE :

WITH SYNTAX

EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE

NO USER MODIFICATION

= {
HierarchyLevel
integerMatch
integerOrderingMatch
TRUE

TRUE

USAGE directoryOperation

ID id-oa-hierarchyLevel }
HierarchyLevel ::= INTEGER
hierarchyBelow ATTRIBUTE ::= {

WITH SYNTAX HierarchyBelow

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hierarchyBelow }
HierarchyBelow ::= BOOLEAN

hierarchyParent ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-oa-hierarchyParent }
hierarchyTop ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE
USAGE directoryOperation
ID id-oa-hierarchyTop }

The hierarchyLevel operational attribute shall be present in any entry that is a member of a hierarchical group. The
Directory shall create and maintain this attribute. The Directory shall delete this attribute when the entry is no longer
member of a hierarchical group. This attribute shall take the value zero for the hierarchical top. This attribute shall not
be present in achild family member.

The hierarchyBelow operationa attribute indicates whether the entry has any hierarchical children. A value of TRUE
indicates that hierarchical children exist. A value of FALSE or the absence of the attribute type indicates that no
hierarchical children exist. The Directory shall create and maintain this attribute. The Directory shall delete this
attribute when the entry is no longer member of a hierarchical group.

The hierarchyParent attribute shall be present in an Add Entry or Modify Entry operation when a new entry or an
existing entry becomes a hierarchical child. The attribute value shall be the distinguished name of the immediately
hierarchical parent. If the immediately hierarchical parent is a compound entry, the value shall be the distinguished
name of the ancestor. Otherwise, the Directory shall return an Update Error with problem parentNotancestor. This
attribute shall not be present in a child family member, in an entry that is not within a hierarchical group, nor an entry
that is the hierarchical top.

The hierarchyTop attribute points to the top entry of the hierarchical group. This attribute is supplied and maintained
by the Directory. The attribute value shall be the distinguished name of the top entry. If the top entry is a compound
entry, the value shall be the distinguished name of the ancestor. This attribute shall not be present in a child family
member, in an entry that is not within ahierarchical group, nor an entry that is the hierarchical top.

NOTE — This attribute provides a unique identification of the hierarchical group to which the entry belongs.

When an entry within a hierarchical group is deleted by a Remove Entry operation, all its hierarchical children are
removed from the hierarchical group.

1411 Maintenance of system schema

It isthe responsibility of DSAs to maintain consistency of subentries and operational attributes with the system schema.
Inconsistency between various aspects of system schema, and between system schema and subentries and operational
attributes, shall not occur.

70 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The Directory executes entry addition and modification procedures whenever a new subentry is added to the DIT or an
existing subentry is modified. The Directory shall determine whether the proposed operation would violate the system
schema; if it does, the modification shall fail.

In particular, the Directory ensures that subentries added to the DIT are consistent with the values of the
administrativeRole dttribute, that the attributes within the subentry are consistent with the values of the subentry's
objectClass dattribute.

The value of the administrativeRole attribute may be modified to permit classes of subentries to be subordinate to
the administrative entry that are not yet present. The value of the administrativeRole attribute shall not be modified
SO asto cause existing subentries to become inconsistent.

The Directory also ensures, where the values of operational attributes are provided by the Directory, that they are
correct.

1412 System schema for first-level subordinates

The Directory enforces the following rules and constraints on entries created immediately subordinate to the DIT root:
— All such entries shall be created as administrative point entries.

— The object class and naming attributes of such entries shall be as specified in Rec. ITU-T X.660 |
ISO/IEC 9834-1.

15 Directory schema administration

15.1 Overview

The overall administration of the directory schema of the global DIT is realized through independent administration of
the subschemas of the autonomous administrative areas of the DIT Domains that constitute the global DIT.

Coordination of the administration of the directory schema at boundaries between DIT Domains is a subject for bilateral
agreement between DM Os and is beyond the scope of this Directory Specification.

The subschema administrative capabilities defined in this clause for the purpose of managing aDIT domain include:
a) creation, deletion and modification of subschema subentries;

b) support of the publication mechanism for the purpose of permitting DSASs to include schema information
in operational binding protocol exchanges and DUAS to retrieve subschema information via DAP,

¢) subschema regulation for the purpose of ensuring that any modify operations will be performed in
accordance with the applicable subschema specification.

152 Policy objects

A subschema policy object may be one of the following:
— asubschemaadministrative area;
— anobject or adias entry within a subschema administrative area;
— auser attribute of such an object or alias entry.

An autonomous administrative area may be designated as a subschema specific administrative area in order to
administer the subschema. This shall be indicated by the presence of the value id-oa-
subschemaAdminSpecificArea in the associated administrative entry's administrativeRole attribute (in addition
to the presence of the value id-oa-autonomousArea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer the subschema of the
specific partitions. In this case, the administrative entries for each of the subschema specific administrative areas are
indicated by the presence of the value id-oa-subschemaAdminSpecificArea In these entries
administrativeRole attributes.

Rec. ITU-T X.501 (10/2012) 71

| SO/l EC 9594-2:2014 (E)

15.3 Policy parameters

Subschema policy parameters are used to express the policies of the subschema Administrative Authority. These
parameters, and the operational attributes used to represent them, are:

— aDIT structure parameter: used to define the structure of the subschema administrative area and to store
information about obsolete DIT structure rules which some entries may have identified as their
governing DIT structure rule. This parameter is represented by the diTstructureRules and
nameForms operational attributes;

— aDIT content parameter: used to define the type of content of object and alias entries contained within
the subschema administrative area and to store information about obsolete DIT content rules which the
Directory may have used in determining the content of some entries. This parameter is represented by the
dITContentRules, objectClasses, attributeTypes, contextTypes, friends, and
dITContextUse Operationa attributes;

— amatching capability parameter: used to define the matching capabilities supported by matching rules as
applied to the attribute types defined in a subschema administrative area. This parameter is represented
by thematchingRules and matchingRuleUse Operational attributes.

A single subschema subentry is used by the subschema authority to administer the subschema for the subschema
administrative area. For this purpose, the subschema subentry contains the operational attributes representing the policy
parameters used to express subschema policies. The subtreeSpecification attribute of a subschema subentry shall
specify the whole subschema administrative areg, i.e., it shall be an empty sequence.

The subschema subentry is specified as follows:

subschema OBJECT-CLASS ::= {

KIND auxiliary

MAY CONTAIN { dITStructureRules |
nameForms |
dITContentRules |
objectClasses |
attributeTypes |
friends |
contextTypes |
dITContextUse |
matchingRules |
matchingRuleUse |
ldapSyntaxes }

ID id-soc-subschema }

The operational attributes of the subschema subentry are defined in 15.7.

154 Policy procedures

There are two policy procedures associated with subschema administration:
— asubschema modification procedure;
— an entry modification procedure.

155 Subschema madification procedures

A subschema authority may administer a subschema in a dynamic fashion, including making restrictive subschema
modifications. This may be accomplished by modifying the values of the subschema operational attributes, using
Directory modify operations, effectively changing the subschema which is in force in the subschema administrative
area. A subschema authority may also create new subschema areas, or remove existing subschema areas by creating or
removing subschema subentries, respectively.

Before the subschema authority extends the DIT structure or DIT content rules by adding a new rule, or by adding an
auxiliary aobject class, or a mandatory or an optiona attribute to an existing rule, the referenced schema information
shall be described in the appropriate attribute in the subschema subentry. Name forms, object classes, attribute types
and matching rules that are referenced (directly or indirectly) by a dITStructureRule, dITContentRule OF by a
matchingRuleUse attribute shall not be removed from the subschema subentry.

The definition of information objects such as object classes, attribute types, matching rules, name forms and LDAP
syntaxes, which have been registered (i.e., assigned a name of type object identifier), are static and cannot be modified.
Changes to the semantics of such information objects require the assignment of new object identifiers.

72 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

DIT structure and DIT content rules may be active or obsolete. Only active rules are used to regulate the DIT. The
identification and preservation of obsolete rulesisan administrative convenience allowing location (and possibly repair)
of entries added under old rules that have since changed.

This obsolete mechanism shall be used where restrictive changes are made to DIT structure or DIT content rules
creating inconsistencies in the DIB; otherwise, the appropriate active rule may be modified directly. The Directory
permits deletion of obsolete rules at any time.

NOTE — The obsolete mechanism provided in subschema operational attributes ensures that all entries with obsolete schema can
be identified and repaired before the obsol ete subschema operational attribute is deleted.

It is the responsibility of the Subschema Administrative Authority to maintain consistency of entries with the active
subschema by means of the Directory abstract service, or by other local means. This may be done at the convenience of
the Subschema Administrative Authority. It is not defined when such an adjustment of inconsistent entries should be
done. However, deletion of obsolete rules prior to the location and repair of inconsistent entries will make this task
more difficult.

15.6 Entry addition and modification procedures

The Directory executes entry addition and modification procedures whenever a new entry is added to the DIT or an
existing entry is modified. The Directory shall determine whether the proposed operation would violate a subschema

policy.

In particular, the Directory shall ensure that entries added to the DIT are consistent with appropriate active DIT
structure and DIT content rules.

The Directory shall allow interrogation of entries which are inconsistent with their active rules.

The Directory enforces active rules when requested to modify the DIB. If an entry is inconsistent with its active rule, a
request to modify the entry shall be permitted if it repairs an existing inconsistency, or does not introduce a new
inconsistency. A request which introduces a new inconsistency shall fail.

For any valid entry in a valid subschema administrative area, there can be only one most subordinate structural object
class in the structural object class superclass chain. When an entry is added to the DIT, the Directory determines this
most subordinate structural object class from the objectclass attribute values provided and permanently associates it
with the entry viathe entry's structuralobjectClass attribute.

When an entry is created, values of the objectclass attribute shall be provided so that the content of the entry is
consistent with the DIT content rule governing the entry. In particular, where a value of the objectclass attribute
identifies a particular object class having superclasses other than top, then values for al of these superclasses shall also
be provided. Otherwise, the Directory operation creating the entry shall fail.

Directory users may subsequently add or delete values of the objectclass attribute for the auxiliary object classes of
an entry. The content of an entry shall remain consistent with the DIT content rule governing the entry following a
change to the values of the objectclass attribute. In particular, where a value of the objectclass attribute
identifies a particular object class having superclasses other than top is added or deleted, then values for all of these
superclasses shall also be added or deleted, except where such superclasses are also present in the superclass chains
associated with other values not being added or deleted respectively.

15.7 Subschema policy attributes

The following subclauses specify the subschema policy operational attributes. These attributes are:

— present in the subschema subentry. The values of these attributes are administered via Directory modify
operations using the distinguished name of the subschema subentry;

— availablefor interrogation in all entries governed by the subschema.

The ASN.1 parameterized type unboundedDirectoryString, Used in the following definitions, is defined in Rec.
ITU-T X.520 | ISO/IEC 9594-6.

The integerFirstComponentMatch and objectIdentifierFirstComponentMatch equality matching rules are
also defined in Rec. ITU-T X.520 | ISO/IEC 9594-6.

For management purposes, a number of human-readable name components and a description component are
optionally allowed as components of a humber of the subschema policy operational attributes defined in the following
subclauses.

Rec. ITU-T X.501 (10/2012) 73

| SO/l EC 9594-2:2014 (E)

A number of subschema policy operational attributes defined in the following subclauses contain an obsolete
component. This component is used to indicate whether the definition is active or obsolete in the subschema
administrative area.

15.7.1 DIT Structure Rulesoperational attribute

The diTstructureRules operational attribute definesthe DIT structure rules which are in force within a subschema:

dITStructureRules ATTRIBUTE ::= {
WITH SYNTAX DITStructureRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX dITStructureRuleDescription.&id
LDAP-NAME "dITStructureRules"
ID id-soa-dITStructureRule }
DITStructureRuleDescription ::= SEQUENCE {
COMPONENTS OF DITStructureRule,
name [1] SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
e}

The diTstructureRules operational attribute is multi-valued; each value defines one DIT structurerule.

The components of DITStructureRule have the same semantics as the corresponding ASN.1 definitionin 13.7.6.

15.7.2 DIT Content Rules operational attribute

The dITcontentRules oOperational attribute defines the DIT content rules which are in force within a subschema.
Each value of the operational attribute istagged by the object identifier of the structural object class to which it pertains:

dITContentRules ATTRIBUTE ::= {
WITH SYNTAX DITContentRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX dITContentRuleDescription.&id
LDAP-NAME "dITContentRules"
ID id-soa-dITContentRules }
DITContentRuleDescription ::= SEQUENCE {
COMPONENTS OF DITContentRule,
name [4] SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
e}

The diTcontentRules oOperationa attribute is multi-valued; each value defines one DIT content rule.
The components of bITContentRule have the same semantics as the corresponding ASN.1 definition in 13.8.2.

15.7.3 Matching Rules operational attribute

ThematchingRules operational attribute specifies the matching rules used within a subschema:

matchingRules ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX matchingRuleDescription.&id
LDAP-NAME "matchingRules"
ID id-soa-matchingRules }

MatchingRuleDescription ::= SEQUENCE {

identifier MATCHING-RULE. &id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,

obsolete BOOLEAN DEFAULT FALSE,

information [0] UnboundedDirectoryString OPTIONAL,
-- describes the ASN.1l syntax
.)

74 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The identifier component of a value of the matchingRules dattribute is the object identifier identifying the
matching rule.

The description component contains anatural language description of the algorithms associated with the rule.
The information component contains the ASN.1 definition of the assertion syntax of therule.

Such an ASN.1 definition shall be given as an optional ASN.1 Imports production, followed by optional ASN.1
Assignment productions, followed by an ASN.1 Type production. All type names defined in Directory modules are
implicitly imported and do not require explicit import. All type names, whether imported or defined via an Assignment,
are local to the definition of this syntax. If the ASN.1 type includes a user-defined constraint and is not one of the
ASN.1 types defined in the Directory modules, then the |ast UserDefinedConstraintParameter Of the constraint
shall be an actual parameter whose governing type is syntaxConstraint and whose value is the object identifier
assigned to the constraint.

SyntaxConstraint ::= OBJECT IDENTIFIER

NOTE 1-The ASN.1 productions Imports, Assignment, and Type are defined in Rec. ITU-T X.680 | ISO/IEC 8824-1.
UserDefinedConstraintParameter iSdefined in Rec. ITU-T X.682 | ISO/IEC 8824-3.

NOTE 2 — A typical ASN.1 definition is simply a Type name.

ThematchingRules operational attribute is multi-valued; each value describes one matching rule.

15.7.4 Attribute Types operational attribute

The attributeTypes operational attribute specifies the attribute types used within a subschema:

attributeTypes ATTRIBUTE ::= {
WITH SYNTAX AttributeTypeDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX attributeTypeDescription.&id
LDAP-NAME "attributeTypes"
ID id-soa-attributeTypes }

AttributeTypeDescription ::= SEQUENCE {

identifier ATTRIBUTE. &id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,

obsolete BOOLEAN DEFAULT FALSE,

information [0] AttributeTypeInformation,

o)

The identifier component of a value of the attributeTypes attribute is the object identifier identifying the
attribute type.

The attributeTypes oOperational attribute is multi-valued; each value describes one attribute type:

AttributeTypeInformation ::= SEQUENCE ({
derivation [0] ATTRIBUTE.&id OPTIONAL,
equalityMatch [1] MATCHING-RULE.&id OPTIONAL,
orderingMatch [2] MATCHING-RULE.&id OPTIONAL,
substringsMatch [3] MATCHING-RULE.&id OPTIONAL,
attributeSyntax [4] UnboundedDirectoryString OPTIONAL,
multi-valued [5] BOOLEAN DEFAULT TRUE,
collective [6] BOOLEAN DEFAULT FALSE,
userModifiable [7] BOOLEAN DEFAULT TRUE,
application AttributeUsage DEFAULT userApplications,

The derivation, equalityMatch, attributeSyntax, multi-valued, collective and application
components have the same semantic as the equivalent pieces of notation introduced by the corresponding information
object class.

The attributeSyntax component contains atext string giving the ASN.1 definition of the attribute's syntax. Such an
ASN.1 definition shall be given as specified for the information component of the Matching Rules operational
attribute.

Rec. ITU-T X.501 (10/2012) 75

| SO/l EC 9594-2:2014 (E)

15.75 Object Classes operational attribute

The objectClasses operational attribute specifies the object classes used within a subschema.

objectClasses ATTRIBUTE ::= {
WITH SYNTAX ObjectClassDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX objectClassDescription.&id
LDAP -NAME "objectClasses"
ID id-soa-objectClasses }
ObjectClassDescription ::= SEQUENCE ({
identifier OBJECT-CLASS.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ObjectClassInformation,
.)

The identifier component of avalue of the objectclasses attribute is the object identifier identifying the object
class.

The objectClasses operational attribute is multi-valued; each value describes one object class:

ObjectClassInformation ::= SEQUENCE {
subclassOf SET SIZE (1l..MAX) OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [3] SET SIZE (1l..MAX) OF ATTRIBUTE.&id OPTIONAL,
optionals [4] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,

oo

The subclassOf, kind, mandatories and optionals components have the same semantics as the corresponding
pieces of notation introduced by the corresponding information object class.

15.7.6 Name Formsoperational attribute

The nameForms operational attribute specifies the name forms used within a subschema.

nameForms ATTRIBUTE ::= {

WITH SYNTAX NameFormDescription

EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation

LDAP-SYNTAX nameFormDescription.&id

LDAP-NAME "nameForms"

ID id-soa-nameForms }

NameFormDescription ::= SEQUENCE {

identifier NAME-FORM. &id,

name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] NameFormInformation,

e}

The identifier component of avalue of the nameForms attribute is the object identifier identifying the object class.

The nameForms operational attribute is multi-valued; each value describes one name form:

NameFormInformation ::= SEQUENCE {
subordinate OBJECT-CLASS.&id,
namingMandatories SET OF ATTRIBUTE.&id,
namingOptionals SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,

oo

The subordinate, namingMandatories and namingOptionals components have the same semantics as the
corresponding pieces of notation introduced by the corresponding information object class.

76 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

15.7.7 Matching Rule Use oper ational attribute

ThematchingRuleUse Operationa attribute is used to indicate the attribute types to which a matching rule appliesin a
subschema:

matchingRuleUse ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleUseDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX matchingRuleUseDescription.&id
LDAP -NAME "matchingRuleUse"
ID id-soa-matchingRuleUse }
MatchingRuleUseDescription ::= SEQUENCE {
identifier MATCHING-RULE. &id,
name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] SET OF ATTRIBUTE.&id,
.o}

The identifier component of a value of the matchingRulesUse attribute is the object identifier identifying the
matching rule.

The information component of avalue identifies the set of attribute types to which the matching rule applies.

15.7.8 Structural Object Class operational attribute type

Every entry inthe DIT hasa structuralobjectClass operational attribute which indicates the structural object class
of the entry:

structuralObjectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
LDAP-SYNTAX oid.&id
LDAP-NAME "structuralObjectClass"
ID id-soa-structuralObjectClass }

15.7.9 Governing Structure Rule operational attribute

Every entry in the DIT, with the exception of administrative point entries that have no subschema subentry, has a
governingStructureRule operationa attribute which indicates the governing structure rule of the entry:

governingStructureRule ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-soa-governingStructureRule }

15.7.10 ContextTypesoperational attribute

The contextTypes oOperational attribute specifies the context types used within a subschema.

contextTypes ATTRIBUTE ::= {

WITH SYNTAX ContextDescription

EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-contextTypes }

ContextDescription ::= SEQUENCE {

identifier CONTEXT.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ContextInformation,

e}

Rec. ITU-T X.501 (10/2012) 77

| SO/l EC 9594-2:2014 (E)

The identifier component of avalue of the contextTypes operationa attribute is the object identifier identifying
the context type.

The contextTypes oOperational attribute is multi-valued; each value describes one context type:

ContextInformation ::= SEQUENCE {
syntax UnboundedDirectoryString,
assertionSyntax UnboundedDirectoryString OPTIONAL,

The syntax and assertionSyntax components have the same semantics as the corresponding pieces of notation
introduced in the corresponding information object class.

The syntax component and the assertionSyntax component each contain atext string giving the ASN.1 definition
of the context syntax and context assertion syntax respectively. Such an ASN.1 definition shall be given as an optional
ASN.1 Imports production, followed by optional ASN.1 Assignment productions, followed by an ASN.1 Type
production. All type names defined in Directory modules are implicitly imported and do not require explicit import. All
type names, whether imported or defined via an Assignment, are local to the definition of this syntax. If the ASN.1 type
includes a user-defined constraint and is not one of the ASN.1 types defined in the Directory modules, then the last
UserDefinedConstraintParameter of the constraint shall be an actual parameter whose governing type is
SyntaxConstraint and whose valueis the object identifier assigned to the constraint.

NOTE 1—-The ASN.1 productions Imports, Assignment, and Type are defined in Rec. ITU-T X.680 | ISO/IEC 8824-1.

UserDefinedConstraintParameter iS defined in Rec. ITU-T X.682 | ISO/IEC 8824-3. syntaxConstraint iS defined
in15.7.3.

NOTE 2 — A typical ASN.1 definition is simply a Type name.

15.7.11 DIT Context Use operational attribute

The dIiTCcontextUse operational attribute is used to indicate the contexts which shall or may be used with an attribute:

dITContextUse ATTRIBUTE ::= {
WITH SYNTAX DITContextUseDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITContextUse }

DITContextUseDescription ::= SEQUENCE {

identifier ATTRIBUTE. &id,
name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] DITContextUseInformation,
}

The identifier component of a value of the dITContextUse Operational attribute is the object identifier of the
attribute type to which it applies. Thevalue id-oa-allattributeTypes indicatesthat it appliesto all attribute types.

The information component of a value identifies the mandatory and optional context types associated with the
attribute type identified by identifier:

DITContextUseInformation ::= SEQUENCE ({
mandatoryContexts [1l] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
e}

15.7.12 Friendsoperational attribute

The friends operationa attribute is used to indicate the sets of attribute types which are friends within a subschema:

friends ATTRIBUTE ::= {
WITH SYNTAX FriendsDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-friends }

FriendsDescription ::= SEQUENCE {

anchor ATTRIBUTE. &id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,

obsolete BOOLEAN DEFAULT FALSE,

78 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

friends [0] SET SIZE (1..MAX) OF ATTRIBUTE.&id,

-}

The anchor component of a value of the friends attribute is the object identifier of the attribute type that is the
anchor to the set of friends. The £riends component of avalue of the friends attribute is the set of object identifiers
of the attribute types that are the friends of the anchor attribute type.

Rec. ITU-T X.501 (10/2012) 79

| SO/l EC 9594-2:2014 (E)

SECTION 7 —DIRECTORY SERVICE ADMINISTRATION

16 Service Administration M odel

This clause provides a model for how an administrative authority can control, constrain and adjust the service both with
respect to what a user can specify in a Search, a Read or Modify Entry request and what information isto be returned.

16.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

16.1.1 effectively present attribute type: An attribute type that is present in at least one non-negated filter item in
each subfilter of a search filter and which fulfils the requirements as specified for that attribute type in the relevant
search-rule. For definitions of negated and non-negated filter items, see 7.8.1 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

16.1.2 governing-search-rule: A search-rule with which a particular operation complies and which has been
selected for governing that operation.

16.1.3 named-service: A collection of service-types that together provide an overal service, e.g., a White Pages
service.

16.1.4 request-attribute-profile: A specification of what is required for afilter item for the corresponding attribute
type to be effectively present.

16.1.5 request-attribute-type: An attribute type that according to a search-rule specification may be represented in
thefilter of a Search operation.

16.1.6 Search-rule: The detailed specification of the service constraints/enhancement aspects provided for a given
service-type primarily intended for a given user-class and tailored to a particular group of users.

16.1.7 service-type: A globally unique identification of a service capability for a particular purpose within a well-
defined scope, e.g., a capability of search for a particular type of entries within an area of the DIT. Not all aspects of a
service-type may be available to all users.

16.1.8 subfilter: A Boolean component of afilter that comprises only logical ANDs of non-negated filter items and
of negated filter items, i.e., that can be expressed informally as NOT (filter-item). Any filter can be expressed in a
canonical form comprising alogical OR of subfilters as discussed in Annex Q.

16.1.9 user-class: Anidentified set of users that due to their functions, position in an organization, etc., can invoke
certain aspects of the service-types within a named-service. Different groups of users identified by their names within a
user-class may see variationsin the service provided. A user group can span user-classes.

16.2 Service-type/user-class model

The Directory Abstract Service as specified in Rec. ITU-T X.511 | ISO/IEC 9594-3 is the representation of all the
service capabilities offered by the Directory Specifications. A service-type is a subset of that service for performing a
particular function, e.g., searching for a particular type of object within a defined scope.

A named-service is a collection of service-types for a particular purpose, e.g., to provide a White Pages service, a
particular type of Y ellow Pages service, etc.

A service-type is redized primarily through the Search operation, but also through other operations that can specify
entry information selection, i.e., Read and Modify Entry operations. For the purpose of service administration, a read
or a modifyEntry request is considered in some respect eguivalent to a search request with subset equa to
baseObject and filter equal toand : {}. Service administration does not affect what information can be modified
by a Modify Entry operation. Thisis solely governed by access control.

An object identifier identifies a service type, thereby giving it a global unique identification. Different user-classes,
dependent on their role, position in the organization, etc., may have somewhat different perceptions of a service-type. A
user-class is identified by an integer that is only required to be unique with a DMD. Different DMDs could assign a
different identifier to what could be considered the same user-class. However, it is expected that administrative
authorities cooperating to provide a common named-service across several DMDs will coordinate the user-group
identifiers. Even for a particular user-class, there may be variations in the service available to users in the class. Such
variations are based on the distinguished names of the users. As an example, users of a particular user-class in one

80 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

country may not have exactly the same view of a service-type as the users of the same user-class in another country,
e.g., to reflect loca privacy laws. The definition of a service-type for a user group is expressed by a search-rule
specifying the details as to how the operation isto be performed.

The service-type and the user-class for which it is primarily intended are indicated in a search-rule.

A user group may span several user-classes. A user within a user-class could possibly also utilize search-rules that were
primarily intended for other user-classes, e.g., users in a user class with a greater capability would also be granted
permissions intended for user-classes that are generally offered lower service capabilities.

A user group is not directly identified by a search-rule, but is indirectly identified by having the Invoke permission to
that search-rule. A user group can invoke any search-rule to which it has the Invoke permission. If a particular user has
the Invoke permission to several search-rules for the same service-type but for different user-groups, the procedures
defined in these Directory Specifications will, everything else being equal, select the search-rule with the highest user-
group identifier. This allows the administrative authority by proper assignment of user-class identifiers to control this
selection.

16.3 Service-specific administrative areas

An autonomous administrative area may be designated as a service-specific administrative area in order to deploy and
administer search-rules. This shall be indicated by the presence of the value id-ar-serviceSpecificArea in the
associated administrative entry's administrativeRole attribute (in addition to the presence of the value id-ar-
autonomousArea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer search-rules in specific
partitions. In this case, the administrative entries for each of the service-specific administrative areas are indicated by
the presence of the value id-ar-serviceSpecificArea in these entries administrativeRole atributes. Service
policies for superior service-specific administrative areas are not relevant subordinate to such an administrative entry.

If such an autonomous administrative area is not partitioned, there is a single service-specific administrative area for
search-rules encompassing the entire autonomous administrative area.

One or more search-rules are represented in the Directory information model by a subentry, termed a service subentry,
whose objectClass attribute contains the value id-sc-serviceAdminSubentry, as defined in 14.8. A subentry of
this class shall be the immediate subordinate of an administrative entry whose administrativeRole attribute
containsthevalue id-ar-serviceSpecificArea.

The evaluation phase of an operation within a service-specific administrative area is among other dependent on what
base object is used for the operation, possibly after alias dereferencing. Search-rules are therefore tied to entries. When
the base object for an operation has been determined, the search-rules tied to that entry are candidates for governing the
search. The ties between search-rules within a subentry and entries within the service-specific administrative area are
established by the subtreespecification operationa attribute of the subentry. The entries identified by the values
of the subtreeSpecification operational attribute are in this way tied to the search-rules placed in the same
subentry.

A particular entry can be associated with search-rules from multiple subentries; these may have the same or different
subtree specifications. Conversely, different parts of the administrative area can be targeted by the one subentry, using
multiple values of the subtree specification.

The arguments of an operation can be validated against a search-rule by using an algorithm called the search-validation
function.

Operation
arguments

TRUE (OK)
——» Or
FAL SE (not OK)

Search-validation
function
Search-rule
e o

X.501(12)_F16

Figure 16 — Sear ch-validation function

Rec. ITU-T X.501 (10/2012) 81

| SO/l EC 9594-2:2014 (E)

An operation is valid and allowed to proceed if, and only if, the search-validation-function yields TRUE for at least one
of the available search-rules associated with the base object for the operation. For a search-rule to be available for an
operation, the requestor must have Invoke permissions to the attribute value that holds the search-rule. If there is only
one available search-rule with which the operation complies, this search-rule is called the governing-search-rule for that
operation, i.e., the search-rule that is used when the operation is further progressed. If there are several such search-
rules, one of these is selected by local choice as the governing-search-rule. The procedure for selecting a governing-
search-rule is given in 19.3.2.2.1 of Rec. ITU-T X.518 | ISO/IEC 9594-4. The governing-search-rule is thereby
permanently associated with the operation for its evaluation within the service-specific administrative area. Thisis aso
the case when part of the operation is carried out by other DSAs holding parts of that service-specific administrative
area

It is the choice of administrative authorities as to whether:

— to collect several search-rules requiring different Invoke permissions into a single subentry (thereby
requiring access control down to attribute value level if these Invoke permissions vary from value to
value); or

— to collect search-rules with the same access control permissions into distinct subentries, so that access
control permissions can be granted on the basis of permissions to the complete attribute; different
subentries can then hold different access control permissions.

If there is no search-rule available for an operation specifying a base object entry within a service-specific
administrative area, or if the search validation function returns FALSE for all available search-rules, the operation is
rejected with an error.

If a service-specific administrative area has no subentries, there are no service constraints associated with that area.

There may be users that should not be limited by service restrictions, e.g., administrators, and there may be entries,
when serving as base object entries, for which restriction is not required, e.g., entries low in the DIT. The administrative
authority can therefore include special search-rules, empty search-rules.

A hierarchical group within a service-specific administrative area has to be completely contained by that area.

The scope of a Search operation cannot cross the border of a service-specific administrative area. Rec. ITU-T X.518 |
| SO/IEC 9594-4 specifies procedures that do not allow a Search operation starting within a particular service-specific
administrative area to go outside that area even when aliases are dereferenced during the search evaluation. Likewise, a
search starting outside a service-specific administrative area cannot spread into that area.

16.4 I ntroduction to search-rules

Search-rules are expressions of policies that, on one hand, constrain and adjust operations that can be carried out in a
region of the DIT, and, on the other hand, assist in their execution by guiding the operation process. A search-rule has
the following main characteristics:

— it gives requirements that an operation shall meet if the operation is to be carried out based on that
search-rule;

— it specifies adjustment of the operation request;

— it provides specification for details of the evaluation of the operation, e.g., by specifying relaxation
policiesif too many or too few entries are found for Search operation; and

— it provides entry information selection specifications.

When a processing of an operation starts, the base entry of the operation corresponds to one or more service subentries
whose subtree-specification values include that base entry. Thereby, potentially a number of candidate-search-rules are
identified. The details of the operation are evaluated against these candidate-search-rules. An operation can only be
executed if a compatible search-rule can be found.

16.5 Subfilters

If asearch-ruleis designed to control the Search operation, it may specify a set of attribute types that may be present in
a filter of a search request. These attribute types are called the request-attribute-types for the search-rule. Other
attribute types shall not be present in the filter in any form, negated or non-negated. This subclause further qualifies
what it means for an attribute type to be present in a search filter. A search-rule also specifies requirements on valid
combinations of request attribute types. It might be a requirement that certain attribute shall be present; it might be a
requirement that at least one out of two attribute types shall be present; it might be a requirement that one attribute type
is not allowed without another being present, etc. To further elaborate on how to express combinations, it is useful to
introduce the concept of subfilters.

82 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

According to propositional calculus, any filter whatsoever can be written as a sequence of subfilters separated by OR
operators. This can be written as:

f:f1+f2+...+fr

where each subfilter, f;, is a sequence of filter items or negated filter items that are separated by AND operators, which
can be written as:

fi =fi1fi2 ... fis
where fj; is either afilter item or its negation.
The subfilter concept is further described in Annex Q.
For afilter to comply with a search-rule, each subfilter shall comply with the search-rule.

For afilter item to effectively represent an attribute type in a subfilter, it is required to comply with the requirements of
the request-attribute-profile for the attribute type. The request-attribute-profiles are part of the search-rule specification.
If at least one filter-item for an attribute type in each subfilter complies with the regquest-attribute-profile for that
attribute type, the attribute type is said to be an effectively-present-attribute-type.

16.6 Filter requirements

For an attribute type to be effectively present in a filter, the attribute type or, if the includesubtypes option of the
request-attribute-profile is set, one of its subtypes shall be present in at least one non-negated filter item of each
subfilter. Such a non-negated filter item shall comply with all of the following requirements:

— It shall be anon-negated filter item that is not one of the following types:
greaterOrEqual,
lessOrEqual,
present Of contextPresence unless explicitly allowed by the request-attribute-profile.
— It shal comply with the request-attribute-profile specification for that attribute type.

— Ifitisan extensibleMatch filter item, the attribute type shall be specified in the type component of
theMatchingRuleAssertion.

NOTE —If this last restriction is not introduced, this filter item could implicitly include an unspecified number of
attribute typesinto the search filter and thereby impair the search validation procedure.

If an attribute type is represented in afilter, it shall be effectively present.

It is alowed to have extensibleMatch filter items without the type component in the filter. Their presence does not
affect the search validation against search-rules. However, such afilter item shall only be applied to attributes whose
types are request-attribute-types, i.e., represented in the governing-search-rule by a request-attribute-profile
(see 16.10.2).

16.7 Attribute infor mation selection based on sear ch-rules

Outside a service-specific administrative area, attribute information returned is selected by the selection component
of the operation request possibly modified by the operationContext oOf the CommonArguments, and any context
defaults established either within a context default specific administrative area or by local context defaults. For a Search
operation, selection of information may also be modified by the matchedvaluesonly component in the
SearchArgument. However, when an operation is controlled by a governing-search-rule, this search-rule may specify
what information is to be returned. When thisis the case, the user attribute information returned shall be the intersection
of what the governing-search-rule specifies and what would have been returned had there been no governing-search-
rule. If the entry information selection in the selection component specifies selection of operational attributes, the
same rule shall apply for operational attributes. If the entry information selection does not specify return of operational
attribute information, operationa attribute information returned shall solely be determined by the governing-search-
rule.

A governing-search-rule may specify what attribute information is to be returned completely independently of what
attribute types may be specified in a search filter.

When information is to be returned based on hierarchical groups, selection of attribute information from such entriesis
based on the principle above, except that matchedvaluesonly specifications have no effect.

NOTE — Family member selection is not governed by the above principle (see 16.10.6).

Rec. ITU-T X.501 (10/2012) 83

| SO/l EC 9594-2:2014 (E)

16.8 Access contr ol aspects of search-rules

Search-rules provide some additional access control capabilities besides those capabilities described in clause 18. In a
service-minded approach, it is necessary to apply restrictions on how operations can be formulated and what
information can be returned. This should be based not only on the identity of the user, but also on the service-type and
the user-class, thereby allowing the administrative authorities to tailor the service based on quality of information,
charging considerations, etc.

The access control capabilities as defined in clause 18 are used for ensuring that only proper user groups can invoke
search-rules. These capabilities can also protect information never to be accessed by particular user groups.

A DSA that caches information originating from a service-specific administrative area may not have search-rules for
controlling the restrictions on that information. As for access control (see 18.8.2), a Security Administrator should be
aware that a DSA with the capability of caching may impose a significant security risk to other DSAs.

16.9 Contexts aspects of search-rules

As context assertions can be part of a filter item for the Search operation, search-rule specifications need to take
contexts into account. Inclusion of contexts into the search-rule brings new capabilities into the contexts feature that
may simplify requirements on DUA and DSA implementations.

The basic context feature allows the user to specify contexts for the Search filter and for entry information selection;
and it allows the administrative authorities to establish context defaults within a context default specific administrative
area. These defaults apply indiscriminately to al users and to all service-types. However, the context feature as
provided by the search-rules alows the user to specify a minimum of context information, and it alows the
administrative authorities to make individual context specifications for each search-rule. In addition, it is possible, as
indicated in 16.8, to provide access control like function through proper design of the search-rule context specification.
Use of context specifications in search-rules could make establishment of context default specific administrative areas
redundant.

16.10 Search-rule specification

The searchrule ASN.1 datatype gives the syntax of a search-rule.

SearchRule ::= SEQUENCE {
COMPONENTS OF SearchRuleId,

serviceType [1] OBJECT IDENTIFIER OPTIONAL,
userClass [2] INTEGER OPTIONAL,
inputAttributeTypes [3] SEQUENCE SIZE (0..MAX) OF RequestAttribute OPTIONAL,
attributeCombination [4] AttributeCombination DEFAULT and:{},
outputAttributeTypes [5] SEQUENCE SIZE (1..MAX) OF ResultAttribute OPTIONAL,
defaultControls [6] ControlOptions OPTIONAL,
mandatoryControls [7] ControlOptions OPTIONAL,
searchRuleControls [8] ControlOptions OPTIONAL,
familyGrouping [9] FamilyGrouping OPTIONAL,
familyReturn [10] FamilyReturn OPTIONAL,
relaxation [11] RelaxationPolicy OPTIONAL,
additionalControl [12] SEQUENCE SIZE (1..MAX) OF AttributeType OPTIONAL,
allowedSubset [13] AllowedSubset DEFAULT '111'B,
imposedSubset [14] ImposedSubset OPTIONAL,
entryLimit [15] EntryLimit OPTIONAL,
}
SearchRuleId ::= SEQUENCE {
id INTEGER,

dmdId [0] OBJECT IDENTIFIER }

AllowedSubset ::= BIT STRING {baseObject(0), oneLevel(l), wholeSubtree(2)}

ImposedSubset ::= ENUMERATED {baseObject(0), oneLevel(l), wholeSubtree(2),...}

RequestAttribute ::= SEQUENCE {

attributeType ATTRIBUTE. &id ({SupportedAttributes}),
includeSubtypes [0] BOOLEAN DEFAULT FALSE,
selectedValues [1] SEQUENCE SIZE (0..MAX) OF ATTRIBUTE.&Type
({supportedattributes}{@attributeType}) OPTIONAL,
defaultValues [2] SEQUENCE SIZE (0..MAX) OF SEQUENCE {
entryType OBJECT-CLASS.&id OPTIONAL,

84 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

values SEQUENCE OF ATTRIBUTE.&Type
({supportedattributes}{@attributeType}),
...} OPTIONAL,

contexts [3] SEQUENCE SIZE (0..MAX) OF ContextProfile OPTIONAL,
contextCombination [4] ContextCombination DEFAULT and:{},
matchingUse [5] SEQUENCE SIZE (l1l..MAX) OF MatchingUse OPTIONAL,
cee }

ContextProfile ::= SEQUENCE {

contextType CONTEXT. &id ({SupportedContexts}),
contextValue SEQUENCE SIZE (1..MAX) OF CONTEXT.&Assertion
({supportedContexts}{@contextType}) OPTIONAL,

ContextCombination ::= CHOICE {
context [0] CONTEXT.&id ({SupportedContexts}),
and [1] SEQUENCE OF ContextCombination,
or [2] SEQUENCE OF ContextCombination,
not [3] ContextCombination,
e}
MatchingUse ::= SEQUENCE {
restrictionType MATCHING-RESTRICTION. &id ({SupportedMatchingRestrictions}),

restrictionValue MATCHING-RESTRICTION.&Restriction
({supportedMatchingRestrictions}{@restrictionType}),

-- Definition of the following information object set is deferred, perhaps to
-- standardized profiles or to protocol implementation conformance statements.
-- The set is required to specify a table constraint on the components of

-- SupportedMatchingRestrictions

SupportedMatchingRestrictions MATCHING-RESTRICTION ::= {...}

AttributeCombination ::= CHOICE {
attribute [0] AttributeType,

and [1] SEQUENCE OF AttributeCombination,
or [2] SEQUENCE OF AttributeCombination,
not [3] AttributeCombination,
e}
ResultAttribute ::= SEQUENCE {
attributeType ATTRIBUTE. &id ({SupportedAttributes}),
outputValues CHOICE {
selectedValues SEQUENCE OF ATTRIBUTE.&Type

({supportedAttributes}{@attributeType}),
matchedValuesOnly NULL } OPTIONAL,

contexts [0] SEQUENCE SIZE (1..MAX) OF ContextProfile OPTIONAL,
cee }

ControlOptions ::= SEQUENCE ({
serviceControls [0] ServiceControlOptions DEFAULT {},
searchOptions [1] SearchControlOptions DEFAULT {searchAliases},

hierarchyOptions [2] HierarchySelections OPTIONAL,

oo

EntryLimit ::= SEQUENCE {
default INTEGER,

max INTEGER,
e }

RelaxationPolicy ::= SEQUENCE {
basic [0] MRMapping DEFAULT {},

tightenings [1] SEQUENCE SIZE (1..MAX) OF MRMapping OPTIONAL,
relaxations [2] SEQUENCE SIZE (1l..MAX) OF MRMapping OPTIONAL,

maximum [3] INTEGER OPTIONAL, -- mandatory if tightenings is present
minimum [4] INTEGER DEFAULT 1,
cee }
MRMapping ::= SEQUENCE {
mapping [0] SEQUENCE SIZE (1l..MAX) OF Mapping OPTIONAL,

Rec. ITU-T X.501 (10/2012)

85

| SO/l EC 9594-2:2014 (E)

substitution [1] SEQUENCE SIZE (1..MAX) OF MRSubstitution OPTIONAL,

-}
Mapping ::= SEQUENCE {
mappingFunction OBJECT IDENTIFIER (CONSTRAINED BY {-- shall be an--
-- object identifier of a mapping-based matching algorithm -- }),
level INTEGER DEFAULT O,
-}
MRSubstitution ::= SEQUENCE {
attribute AttributeType,

oldMatchingRule [0] MATCHING-RULE.&id OPTIONAL,
newMatchingRule [1] MATCHING-RULE.&id OPTIONAL,

-}
16.10.1 Search-ruleidentification components

The id component allows for the unique identification of search-rules within aDMD. The value zero is reserved for the
empty search-rule. The purpose of an empty search rule is described in 16.3.

The amdxd component gives a unique identification of the DMD that has established the search-rule. This component
together with id permits the definition of a unique, global identification of a search-rule.

NOTE — How this uniqueness is to be policed is outside the scope of this specification.

The id component (with the value of zero) and the dmdid components are the only components relevant for the empty
search-rule.

The serviceType component is an object identifier that identifies the service-type supported by this search-rule. This
component shall always be present except for an empty search-rule.

The userclass component indicates the user-class for which the search-rule is primarily intended. For a given service-
type, there can be several search-rules specifying the same user-class. This component shall always be present except
for an empty search-rule.

16.10.2 Request-attribute-profiles

The inputAttributeTypes component shall specify request-attribute-profiles for all attribute types that shall or may
be represented in a search filter. If a search filter includes a filter item for an attribute type not represented by a
request-attribute-profile, the search validation against this search-rule fails. The Requestattribute data type
specifies the requirement on afilter item for the attribute type specified in the filter item to be effectively present. If this
component is absent, the search-rule does not put any restriction on the presence of attribute types, i.e., any operation
complies with this component. If the component is present, but empty, only a read request, amodi fyEntry request or
asearch request with default filter (anda : { }) complieswith this component.

The following subcomponents are relevant for all operation types controlled by search-rules:

a) TheattributeType Subcomponent specifies the attribute type for which this specification applies. It is
the only mandatory subcomponent. There can only be one Requestattribute Specification for agiven
attribute type within a search-rule. If this is the only subcomponent, except possibly for the
includeSubtypes subcomponent, there are no restrictions on search filter items for this attribute type,
except that if such filter items are in the filter, at least one of them shall be non-negated.

b) The includesubtypes subcomponent specifies that this request-attribute-profile can be satisfied by a
filter item for a subtype of this attribute type.

The following subcomponents are only relevant for the Search operation:

C¢) The selectedvalues subcomponent provides a set of attribute values of the type given in
attributeType. If this attribute type is represented in the filter, there shall be at |east one non-negated
filter item for this attribute type that matches at least one value of this subcomponent. Otherwise, this
attribute type is not effectively present in the filter.

If this subcomponent is absent, the above matching evaluatesto TRUE.

If an empty set of attribute valuesis given, this attribute type can only be effectively present in:
— apresent filter itemif the contexts subcomponent is not present; or

— acontextPresent filter itemif the contexts subcomponent is present.

d) The defaultvalues Subcomponent does not affect the evaluation of a search request against the
search-rule, but controls the Search operation when a search-rule has been selected as the governing-

86 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

search-rule. This component provides a set of attribute values of the type given in attributeType. If a
filter item using this attribute type is defined within the filter, but there is no attribute of this type present
in an entry (or afamily grouping), then thisfilter item evaluates to TRUE (or to FAL SE if negated) if the
filter item matches one of the values in this subcomponent. If this subcomponent is absent, there are no
default values.

If this component is present, but empty, it indicates that this component takes all possible values, i.e., a
filter item for this attribute type always evaluates to TRUE (or to FALSE if negated) if the attribute type
isabsent in an entry.

NOTE 1 — This reflects the situation where a filter item shall be ignored if an attribute of the type referenced is
absent.

If an entry holds an attribute of thistype, normal matching against this attribute is done.

€) The contexts subcomponent specifies the context types that are allowed to be represented in a filter
item for this attribute type. A particular context type shall not be represented more than once in this
subcomponent.

— If the subcomponent is absent, any context information may be present in a filter item for this
attribute type.

— If the subcomponent is present, only context types specified by this subcomponent may be present
in a filter item for this attribute type. If it is an empty sequence, no context information may be
present in afilter item for this attribute type.

— If only a context type is specified, any context value of that type may be present in the context
assertion.

— If context values for a given context type are present in this subcomponent, only those values may
be present in a corresponding context assertion in afilter item.

If the context specification in the filter item does not comply with the above, the filter item does not
comply with the request-attribute-profile for the attribute type.

f) The contextCombination subcomponent specifies the valid combination of the context types as listed
in the contexts subcomponent within this request-attribute-profile. If this subcomponent is absent,
there is no restriction on the combination of these context types. If an invalid combination of context
types is present, the filter item does not comply with the request-attribute-profile for the attribute type.
This component may specify that certain context types shall unconditionally be present.

g) ThematchingUse subcomponent is used to specify possible constraints on the use of the applicable
matching rule, e.g., minimum lengths for substring matching. The applicable matching rule is the one
that actually is going to be used before any relaxation but after a possible basic substitution. The details
on the restrictions and how they are evaluated are described as part of the restriction specification. If this
subcomponent specifies a matching restriction defined for the matching rule to be used, it is checked
whether this matching restriction is violated or whether unsupported aspects of the matching rule have to
be applied. If that is the case, then:

— if the performExactly Search control option is not set, the implementation may use alocal rule on
how to apply the matching rule in a different way;
NOTE 2 — Such a local rule requires a customization capability to be applied for the matching rule in
guestion.
— if the performExactly Search control option is set or it is not possible to apply alocal rule, the
search reguest does not comply with this search-rule.

16.10.3 Attribute combinations

The attributeCombination component specifies the valid combination of the request-attribute-types as listed in the
inputAttributeTypes component. If this component is absent or has the default value (and : { }), thereis no
restriction on the combination of request-attribute-type and all relevant types of operations comply with this component.
If an invalid combination of request-attribute-types is present, the search validation against this search-rule fails. This
component may specify that certain attribute types shall unconditionally be effectively present in the filter. This
component shall be absent if inputAttributeTypes is absent or empty. If this component is present and has a
non-default value, only a Search operation with a non-default filter can potentially comply with this component.

16.10.4 Attributesin theresult

The outputAttributeTypes component specifies what attribute types (or their subtypes if the
noSubtypeSelection Service control option is not set) will potentially be present in the result, subject to access
control (see 16.7). If a matched entry or compound entry does not contain any of the attributes defined in this

Rec. ITU-T X.501 (10/2012) 87

| SO/l EC 9594-2:2014 (E)

component, it is not included in the result. A similar rule applies for individual family member marked as the result of
the matching or through operations specified by control attributes in the additionalcControl component. If such a
family member holds none of the attribute types defined by this component, this corresponds to the family member and
all its subordinates being explicitly unmarked. The Resultattribute data type specifies the details about how such
an attribute type shall be represented in the result. This component does not affect search validation. If absent, the
search-rule does not affect the entry information selection except as possibly specified by the familyReturn and
additionalControl components. This component has the following subcomponents:

a) TheattributeType subcomponent specifies the attribute type for which this specification applies. It is
the only mandatory subcomponent. There can only be one Resultattribute Specification for a given
attribute type within a search-rule.

b) The outputvalues subcomponent specifies what attribute values of this attribute type are candidates
for being returned. The set of values may be further restricted by the context subcomponent, entry
information selection as provided by the requestor, access contral, etc. If this subcomponent is absent, al
the attribute values are candidates. The selectedvalues choice provides a set of attribute values of the
type given in attributeType. Only those values listed are candidates for attribute values to be
returned. The matchedvaluesonly choice specifies that only those attribute values of the attribute that
contributed to the filter returning TRUE via filter items other than present are candidates for being
returned (see 10.2.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3 for a definition of the term "contributed").

¢) The context subcomponent holds a set of context profiles that specify what attribute value information
isreturned for this attribute type.

— If this subcomponent is absent, the search-rule does not make any restrictions on what attribute
values can be returned based on contexts.

— If a context type is not included in this subcomponent, no context information of this type is
returned with any returned attribute value of this attribute type.

— If acontext profile does not include the contextvalue datatype, al context values of the context
type are returned with each attribute value.

— If one or more context profiles include the contextvalue data type, each such context profile is
treated as a ContextaAssertion t0 be applied against the attribute values as specified in 8.9.2.4.
Only those attribute values for which this evaluation yields TRUE for all such context types are
returned. If this selection results in no value being returned for this attribute type, the attribute is not
included in the result. Likewise, if this selection results in no information left for an entry, this entry
is not returned.

— If dl returned attribute values of this attribute type have the same { context type, context value} pair
to be returned, such a context value is removed from all the attribute values. If that |eaves a context
without any context value, it is completely removed.

NOTE — This will permit a service to be tailored in such a way that a user with simple equipment in
most cases can receive information without contexts.

16.10.5 Service and search controls

The defaultControls component, if present, is used to specify setting of bits not explicitly set for an operation in the
ServiceControlOptions Within the service controls of the operation argument, and if the operation is a Search, the
SearchControlOptions and HierarchySelections. If any specific option is absent, the defaultControls
element, if present, is used.

If al the hierarchyOptions subcomponent is absent in defaultControls, Or the defaultControls iS absent,
hierarchy selection shall not be used. If the hierarchySelection cOmponent is present in a search argument and
specifies anything than self, the search validation against this search-rule fails. Corresponding elements in
mandatoryControls and searchRuleControls shall be omitted.

If the defaultControls component is completely absent, it shall be considered to take the standard default value
{ serviceControls { }, searchOptions {searchAliases} }.

The mandatoryControls component specifies, by setting specific bits, the bitstring options that shall be present as
specified in defaultControls; if any bit specified by mandatoryControls differsin the user-supplied options from
defaultControls, the search validation against this search-rule fails. Bits not specified by the
mandatoryControls component are taken as zero. If the operation is a Read or Modify Entry operation, only the
serviceControls subcomponent is considered.

The searchRuleControls component specifies, by setting specific hits, the bitstring options that are to be taken from
the defaultControls rather than from the user-supplied options. Bits not specified by the searchRuleControls

88 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

component are taken as zero. If the operation is a Read or Modify Entry operation, only the serviceControls

subcomponent is considered.
NOTE —If the user supplies Uy o p in @ Search operation, and the default bits are Dg ¢ N, the result of applying the
defaultControls component is a bit string Co ¢, y Where bits O to p are taken from U and the remaining ones from D. The
search validation against this search-rule fails if the bitstring C&M is not equal to D&M, where C means Co o n , ‘&' represents a
bitwise-AND operation, and My, n iS the bitstring specified by mandatorycontrols. Otherwise, the value of options that is
used is (C&~S | D& S) where Sisthe bitstring specified by searchRulecontrols, ~Sisits bitwise negation, and | represents a
bitwise-OR operation. This last manipulation has the effect of excising the bits indicated by searchrRulecControls and
replacing them with the default bit values. The familyGrouping component specifies a family grouping specification that, if
present, takes precedence over (i.e., substitutes for) the familyGrouping in the CcommonArguments of the search argument.

16.10.6 Family specifications

The familyGrouping component specifies a family grouping selection that, if present, takes precedence over (i.e.,
substitutes for) the familyGrouping Of the CommonArguments Of the search argument.

The familyReturn component specifies family member return selection. It adjusts the specification given by the
familyReturn in the EntryInformationSelection (Or its default) of the search argument. The search-rule
specification takes precedence with respect to the specification in memberselect component, while the search
argument specification takes precedence with respect to familySelect component, i.e., if the familySelect
component is present in the search argument, a possible familySelect component in the search-rule shall be
ignored.

16.10.7 Control of relaxation

The relaxation component defines the relaxation policy using the RelaxationPolicy construct. The same
construct may be included in a search reguest in the relaxation component. The procedure associated with this
construct is described here, covering both the case where it isincluded in a search-rule and the case where it is included
in a search request. If RelaxationPolicy isincluded in both the search-rule and in the search request, additional
specifications are given in 10.2.2 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

The RelaxationPolicy hasthe following subcomponents:

a) The basic subcomponent, if present, defines MRMapping, i.e, a set of matching-rule substitutions
and/or mapping-based matching functions that are applied to a search filter for the first evaluation (i.e.,
without tightening or relaxation). This permits the selection of a more appropriate match than the original
match. Omission of the item or supplying it with an empty set causes all the normal matching rules
without applying any mapping-based matching to be used for the first evaluation.

b) The tightenings subcomponent, if present, comprises a sequence of substitutions and of mappings,

each defined by MRMapping, that are to be applied in the order given, one at the time, if the matched
entries are too numerous (greater than max imum).

¢) Therelaxations Subcomponent, if present, comprises a sequence of substitutions and mappings, each
defined by MrRMapping, that are to be applied in the order given, one at the time, if the matched entries
are too few (less than minimum).

d) Themaximum subcomponent shall always be present if tightenings is present, and then specifies the
number of entries found above which atightening is to be applied.

€) The minimum subcomponent specifies the number of entries found for which (or below which) a
relaxation is to be applied; if absent, it defaults to zero.
NOTE 1 — Relaxation/tightening is not affected by the performExactly search control option.

Matching rule substitutions and mappings are defined by MrRMapping €lements, each of which consists of a sequence-of

Mapping €lements and a sequence-of MRSubstitution elements. The sequence orders of these elements have no
significance.

A Mapping element has the following components:

d) The mappingFunction component identifies a mapping-based mapping function with associated
mapping table to be applied.

b) The 1evel component identifies the level of relaxation (or tightening if negative) to be applied for the
mapping-based matching. This component shall be ignored if the susercontrol is set for the mapping-
based matching and the extendedarea search control isincluded in the search request, in which case
the value specified in extendedarea is applied.

NOTE 2 — For the basic substitution and mapping, the 1evel should in many cases be set to zero.

Rec. ITU-T X.501 (10/2012) 89

| SO/l EC 9594-2:2014 (E)

A MRSubstitution element has the following components:
ad) attribute describesthe attribute to which the substitution is to be applied.

b) oldmMatchingRule iSthe matching rulethat isto be substituted for. If absent, it applies to the previously
applicable matching rule of the specified type for the attribute, if there is one. For basic substitution, or if
basic substitution is not performed, for the first relaxation/tightening substitution, the applicable
matching is the one that would otherwise have been used. For subsequent substitutions, the applicable
matching rule is the one brought in by the previous substitution. If this subcomponent specifies a
matching rule that is not the previously applicable matching rule, then no substitution is performed.

NOTE 3—As an example, if the filter item is of type equality and thereby selecting an equality matching rule, and this
subcomponent specifies a substring matching rule, then no substitution is performed.

C) newMatchingRule iSthe object identifier for the substitute matching rule that is to be used in place of
the old matching rule. If absent, any corresponding filter-items are evaluated as TRUE for a non-negated
item, and FAL SE for anegated item (i.e., in accordance with id-mr-nullMatch).

The following applies only for matching rule substitution specified in a search request. If a matching
rule is specified for which there is a matching restriction for the attribute type (see 16.10.2, item g)) that
will make the search request non-compliant with the governing-search-rule; or an unsupported or
incompatible matching rule is specified, the substitution is abandoned and no further substitution is
performed for the attribute type.

NOTE 4 — It is assumed that a DSA will not allow invalid substitutions to be present in a search-rule.

One attribute can have multiple MRSubstitution €lements in an MRMapping provided that the combination of
attribute and oldMatchingRule (if present) is unique. When oldMatchingRule iS absent in one MRSubstitution,
but is present in another MRSubstitution, the latter takes precedence in mapping the matching rule defined by
oldMatchingRule.

16.10.8 Additional control component

The additionalControl component allows the effect of a governing-search-rule to be adapted to a specific
environment where additional control of a Search operation is required. It specifies one or more control attribute types.
The semantics, syntax and placement of such a control attribute type referenced by this component shall be defined as
part of the control attribute definition. Such a specification may be made outside these Directory Specifications. A
control attribute specified includes a part of its definition procedures to be executed based on the information provided
by the control attribute.

This component does not affect the search-validation function.

A control attribute could be placed in such way that it affects several entries, e.g., in a service-specific administrative
point or in a service administration subentry. It can also be placed in individual entries. When a control attribute is
placed in individual entries, it can only affect entry information selection for those entries. A control attribute may
result in certain entries or family members being explicitly unmark, which will prevent their presence in the Search
result.
NOTE 1—By placing a control attribute in the service-specific administrative point, the control attribute can affect the way
matching is performed. As an example, an attribute type specified in afilter item can be mapped into or supplemented by a set of
attribute types (“friendly” attribute types) against which matching can be performed in some defined way, e.g., to obtain the same
effect provided by attribute subtyping. Similarly, a control attribute could adjust the entry information returned.

NOTE 2 — By placing a control attribute in agiven entry, it is possible to take individua requirements into account, e.g., to cover
personal data protection requirements.

If compound entries are been marked or unmarked as the result of the processing of one or more control attributes, this
shall be done before applying the family return specification (as specified by the familyReturn in the
EntryInformationSelection Or as overridden by the familyReturn search-rule component). If the explicit
unmarking results in no member of a compound entry being returned, the compound entry is completely removed from
the result.

16.10.9 Miscellaneous components

The allowedsubset component specifies the valid choices of the Search request subset specification. This search-
rule component is ignored if the imposedsubset Search-rule component is present and the usesubset Search control
isnot set in a search request. Asdefault, any subset choiceis possible. If the subset parameter of a search request
does not specify a value compatible with this search-rule component, the search validation against this search-rule fails.
For aRead or Modify Entry operation to comply with this component, it must include the value baseobject.

The imposedsubset component specifies a subset that substitutes the subset specification in a search request. If
this component is not present or if the usesubset search control is set in the search request, no substitution is

90 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

performed and the restriction expressed by the allowedsubset is exercised. This component shall be ignored when
evaluating aread Or modi fyEntry request against a search-rule.

The entryLimit component has two subcomponents. The default subcomponent indicates the size limit to be
imposed by the Directory if the sizeLimit Service control is not set. The max subcomponent indicates the maximum
allowable value for the sizeLimit Service control. If exceeded, the effective sizeLimit iSreduced to thismax value.
This component shall be ignored when evaluating a read or modi fyEntry request against a search-rule.

16.10.10 ASN.1 information object classes

The SEARCH-RULE, REQUEST-ATTRIBUTE and RESULT-ATTRIBUTE information object classes are provided to
facilitate the documentation of search-rules:

SEARCH-RULE ::= CLASS {
&dmdId OBJECT IDENTIFIER,
&serviceType OBJECT IDENTIFIER OPTIONAL,
&userClass INTEGER OPTIONAL,
&InputAttributeTypes REQUEST-ATTRIBUTE OPTIONAL,
&combination AttributeCombination OPTIONAL,
&OutputAttributeTypes RESULT-ATTRIBUTE OPTIONAL,
&defaultControls ControlOptions OPTIONAL,
&mandatoryControls ControlOptions OPTIONAL,
&searchRuleControls ControlOptions OPTIONAL,
&familyGrouping FamilyGrouping OPTIONAL,
&familyReturn FamilyReturn OPTIONAL,
&additionalControl AttributeType OPTIONAL,
&relaxation RelaxationPolicy OPTIONAL,
&allowedSubset AllowedSubset DEFAULT 'l111'B,
&imposedSubset ImposedSubset OPTIONAL,
&entryLimit EntryLimit OPTIONAL,
&id INTEGER UNIQUE }
WITH SYNTAX {
DMD ID &dmdId
[SERVICE-TYPE &serviceTypel
[USER-CLASS &userClass]
[INPUT ATTRIBUTES &InputAttributeTypes]
[COMBINATION &combination]
[OUTPUT ATTRIBUTES &OutputAttributeTypes]
[DEFAULT CONTROL &defaultControls]
[MANDATORY CONTROL &mandatoryControls]
[SEARCH-RULE CONTROL &searchRuleControls]
[FAMILY-GROUPING &familyGrouping]
[FAMILY-RETURN &familyReturn]
[ADDITIONAL CONTROL &additionalControl]
[RELAXATION &relaxation]
[ALLOWED SUBSET &allowedSubset]
[IMPOSED SUBSET &imposedSubset]
[ENTRY LIMIT &entryLimit]
ID &id }
REQUEST-ATTRIBUTE ::= CLASS {
&attributeType ATTRIBUTE. &id,
&SelectedValues ATTRIBUTE. &Type OPTIONAL,
&DefaultValues SEQUENCE {
entryType OBJECT-CLASS.&id OPTIONAL,
values SEQUENCE OF ATTRIBUTE.&Type } OPTIONAL,
&contexts SEQUENCE OF ContextProfile OPTIONAL,
&contextCombination ContextCombination OPTIONAL,
&MatchingUse MatchingUse OPTIONAL,
&includeSubtypes BOOLEAN DEFAULT FALSE }
WITH SYNTAX {
ATTRIBUTE TYPE &attributeType
[SELECTED VALUES &SelectedValues]
[DEFAULT VALUES &DefaultValues]
[CONTEXTS &contexts]
[CONTEXT COMBINATION &contextCombination]
[MATCHING USE &MatchingUsel]
[INCLUDE SUBTYPES &includeSubtypes] }
RESULT-ATTRIBUTE ::= CLASS {

Rec. ITU-T X.501 (10/2012) 91

| SO/l EC 9594-2:2014 (E)

&attributeType ATTRIBUTE. &id,

&outputValues CHOICE {
selectedValues SEQUENCE OF ATTRIBUTE.&Type,
matchedValuesOnly NULL } OPTIONAL,

&contexts ContextProfile OPTIONAL }

WITH SYNTAX {

ATTRIBUTE TYPE &attributeType

[OUTPUT VALUES &outputValues]

[CONTEXTS &contexts] }

16.11 Matchingrestriction definition

An administrative authority may want to put restrictions on how a matching rule is applied. As an example, arestriction
on a substring matching rule may specify minimum lengths on substrings provided in a search filter item. Such a
restriction is of a permanent nature and has no dynamic characteristics, asit is the case for search relaxation.

Within a service-specific administrative area, restrictions can be applied by the proper construction of search rules, and
thisisthe only place where matching restrictions can be introduced.

Matching restrictions may be defined as values of the MATCHING-RESTRICTION information object class:

MATCHING-RESTRICTION ::= CLASS {

&Restriction,

&Rules MATCHING-RULE. &id,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

RESTRICTION &Restriction

RULES &Rules

ID &id }

For amatching rule restriction that is defined using this information object class:
a) &Restriction iSthe syntax for the matching restriction to be applied;

b) &Rules isthe set of matching rules to which this restriction can be applied. The restrictions can only be
specified for a basic matching rule, i.e., does not include the sParentMatchingRules field in its
definition;

C¢) &idistheobjectidentifier assignedtoit.

Several matching restrictions can be defined for any one matching rule, but only one can be applied in a given situation.

16.12 Search-validation function

The search-validation function is an abstract function that is used to determine the compatibility of a search request with
aparticular search-rule. The search-validation function yields TRUE if the search request complies with the search-rule.
Otherwise, it yields FALSE. For a search request to comply with a search-rule:

— dtribute types other than those represented by the inputattributeTypes shall not be present in any
form in the search filter, negated or non-negated;

— if anattribute typeis present in afilter, it shall also be effectively present;
NOTE — Thisimpliesthat an attribute type shall not be only represented by negated filter items.

— the condition for the effective presence of request attributes as specified by the search-rule
attributeCombination component shall be fulfilled;

— if there are request-attribute-profiles that include the selectedvalues subcomponent, the
corresponding attributes shall only be represented by non-negated filter items;

— the subset specification in the search argument shall comply with the search-rule subset specification;

— the mandatory control as specified by the mandatoryControls component shall be exactly as in
defaultControls for the search-rule.

For an attribute type represented by one or more filter items in a subfilter to be effectively present in that subfilter, at
least one of the filter items shall comply with the Requestattribute specification for that attribute type, i.e.:

— thefilter items shall be of type as specified in 16.6;

— if the selectedvalues subcomponent is present and non-empty in the request-attribute-profile, the
filter item shall match this subcomponent;

92 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

— the context specification in the filter item shall comply with the context specifications in the request-
attribute-profile;

— the matching rule specification in the filter item shall comply with the matching rule specificationsin the
request-attribute-profile; and

— any matching restriction shall be fulfilled.
The detailed search-validation procedure is specified in clause 13 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

Rec. ITU-T X.501 (10/2012) 93

| SO/l EC 9594-2:2014 (E)

SECTION 8 — SECURITY

17 Security model

171 Definitions
This Directory Specification makes use of the following terms defined in Rec ITU-T. X.800 | ISO 7498-2
(formerly:CCITT. X.800 | ISO 7498-2).
— access control;
— authentication;
— security policy;
— confidentiality;
— integrity.
The following terms are defined in this Directory Specification:

17.1.1 access control scheme: The means by which access to Directory information and potentially to access rights
themselves may be controlled.

17.1.2 protected item: An element of Directory information to which access can be separately controlled. The
protected items of the Directory are entries, attributes, attribute values and names.

17.2 Security policies

The Directory exists in an environment where various administrative authorities control access to their portion of the
DIB. Such access is generaly in conformance with some administration-controlled security policy (see
Rec. ITU-T X.509 | ISO/IEC 9594-8).

Two aspects or components of the security policy which effect access to the Directory are the authentication procedures
and the access control scheme.

NOTE — Clause 18 defines two access control schemes known as Basic Access Control and Simplified Access Control, and
clause 19 defines Rule-based Access Control. These schemes may be used in conjunction with local administrative controls;
however, since loca administrative policy has no standardized representation, it cannot be communicated in shadowed
information.

17.21 Authentication procedures and mechanisms
Authentication procedures and mechanisms in the context of the Directory include the methods to verify and propagate
where necessary:
— theidentity of DSAsand Directory users,
— theidentity of the origin of information received at an access point.
NOTE 1-The administrative authority may sipulate different provisions for the authentication of administrative users as
compared to provisions for the authentication of non-administrative users.
General-use authentication procedures are defined in Rec. ITU-T X.509 | ISO/IEC 9594-8 and can be used in
conjunction with the access control schemes defined in this Directory Specification to enforce security policy.
NOTE 2 — Future editions of the Directory Specifications may define other access control schemes.
NOTE 3 —Loca administrative policy may stipulate that authentication taking place in certain other DSAs (e.g., DSAs in other
DMDs) isto be disregarded.

In general, there will be a mapping function from the authenticated identity (e.g., human user identity as authenticated
by an authentication exchange) to the access control identity (e.g., the distinguished name of an entry, together with an
optional unique identifier, representing the user). A particular security policy may state that the authenticated identity
and the access control identity are the same.

17.2.2 Access control scheme

The definition of an access control scheme in the context of the Directory includes methods to:
— specify access control information (ACI);

94 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

— enforce access rights defined by that access control information;
— maintain access control information.

The enforcement of access rights applies to controlling access to:
— Directory information related to names,
— Directory user information;
— Directory operational information including access control information.

Administrative authorities may make use of all or parts of any standardized access control scheme in implementing their
security policies, or may freely define their own schemes at their discretion.

However, administrative authorities may stipulate separate provisions for the protection of some or all of the Directory
operational information. Administrative authorities are not required to provide ordinary users with the means to detect
provisions for the protection of operational information.

NOTE 1 —Administrative policy may grant or deny any form of access to particular attributes (e.g., operational attributes)
irrespective of access controls which may otherwise apply.

The Directory provides a means for the access control scheme in force in a particular portion of the DIB to be identified
through the use of the operational attribute accesscontrolscheme. The scope of such a scheme is defined by an
Access Control Specific Area (ACSA), which is a specific administrative area that is the responsibility of the
corresponding Security Authority. This attribute is placed in the Administrative Entry for the corresponding
Administrative Point. Only administrative entries for Access Control Specific Points are alowed to contain an
accessControlScheme attribute.

NOTE 2 —If this operationa attribute is missing with respect to access to a given entry, then the DSA shall behave as for a first
edition DSA (i.e, itisalocal matter to determine an access control mechanism and its effect on operations, results and errors).

accessControlScheme ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-aca-accessControlScheme }

Any subentry or entry in an ACSA is permitted to contain entry ACI if and only if such ACI is permitted and consistent
with the value of the accessControlscheme attribute of the corresponding ACSA.

17.3 Protection of Directory operations
There are two forms of protection available for Directory operations: confidentiality and integrity.

Confidentiaity is available only on a point-to-point basis through the use of Transport Layer Security (TLS), which
may be invoked for the Internet Directly Mapped (IDM) Directory protocols, for the Open Systems Interconnection
(OSl) Transport Layer on top of the Transmission Control Protocol (TCP) and for LDAP. TLS is not available for a
pure OSI Directory protocol stack. It is noted that point-to-point protection may be inadequate in a distributed
environment; however, end-to-end confidentiality is only provided through the protection of the attributes themselves.

Integrity is provided in two ways. Point-to-point integrity may be provided for IDM Directory protocols and for LDAP
through the use of TLS. End-to-end integrity may be provided by signing and optionally chaining signed Directory
operations using OPTIONALLY - PROTECTED as specified below. The PDUs containing the Directory operations are not
protected; rather, the arguments, results, and errors are protected. There is no mechanism for providing a secure
persistent record of events such as DAP operations.

OPTIONALLY-PROTECTED iS a parameterized data type where the parameter is a data type whose values may, at the
option of the generator, be accompanied by their digital signature. This capability is specified by means of the following
type:

OPTIONALLY-PROTECTED{Type} ::= CHOICE {
unsigned Type,
signed SIGNED{Type} }

The OPTIONALLY-PROTECTED-SEQ iS used instead of oPTIONALLY-PROTECTED When the protected data type is a
sequence data type that is not tagged.

OPTIONALLY-PROTECTED-SEQ{Type} ::= CHOICE {
unsigned Type,
signed [0] SIGNED{Type} }

Rec. ITU-T X.501 (10/2012) 95

| SO/l EC 9594-2:2014 (E)

The sIGNED parameterized data type, which describes the signed form of the information, is specified in 6.1 of
Rec. ITU-T X.509 | ISO/IEC 9594-8.

When the signed dternative is taken, the information shall be DER encoded (see 6.2 of Rec. ITU-T X.509 |
I SO/IEC 9594-8) following the principles specified in 6.3 of Rec. ITU-T X.509 | |SO/IEC 9594-8.

18 Basic Access Control

18.1 Scope and application

This clause defines one specific access control scheme (of possibly many) for the Directory. The access control scheme
defined herein is identified with the accessControlScheme operationa attribute by giving it the value
basic-access-control. Clause 17.2.2 describes which entries contain the accessControlScheme operational
attribute.

NOTE — An access control scheme known as "Simplified Access Control” is specified in 18.9. It is defined as a subset of the
Basic Access Control scheme. When Simplified Access Control is used, the accessControlscheme operational attribute shall
havethevalue simplified-access-control. Additional access control schemes known as"Rule-based Access Control" are
specified in clause 19.

The scheme defined here is only concerned with providing means of controlling access to the Directory information
within the DIB (potentially including tree structure and access control information). It does not address controlling
access for the purpose of communication with a DSA application-entity. Control of access to information means the
prevention of unauthorized detection, disclosure, or modification of that information.

18.2 Basic Access Control model

The Basic Access Control model for the Directory defines, for every Directory operation, one or more points at which
access control decisions take place. Each access control decision involves:

— that element of Directory information being accessed, called the protected item;
— the user requesting the operation, called the requestor;
— aparticular right necessary to complete a portion of the operation, called the permission;

— one or more operational attributes that collectively contain the security policy governing access to that
item, called ACI items.

Thus, the basic access control model defines:
— theprotected items;
— theuser classes;
— the permission categories required to perform each Directory operation;
— the scope of application and syntax of ACI items;
— the basic agorithm, called the Access Control Decision Function (ACDF), used to decide whether a
particular requestor has a particular permission by virtue of applicable ACI items.

18.2.1 Protected items

A protected item is an element of Directory information to which access can be separately controlled. The protected
items of the Directory are entries, attributes, attribute values and names. For convenience in specifying access control
policies, Basic Access Control provides the means to identify collections of related items, such as attributes in an entry
or al attribute values of a given attribute, and to specify a common protection for them.

18.2.2 Accesscontrol permissionsand their scope
Accessis controlled by granting or denying permissions. The permission categories are described in 18.2.3 and 18.2.4.

The scope of access controls can be a single entry or a collection of entries that are logically related by being within the
scope of asubentry for a particular administrative point.

96 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Permission categories are generally independent. Since all Directory entries have a relative position within the DIT,
access to user and operational information always involves some form of accessto DIT related information. Thus, there
are two main forms of access control decision associated with a Directory operation: access to entries as named objects
(referred to as entry access); and access to attributes containing user and operational information (referred to as
attribute access). For many Directory operations, both forms of permission are required. In addition, where applicable,
separate permissions control the name or error type returned. Some important aspects of permissions categories, forms
of access, and access control decision making are as follows:

a) To perform Directory operations on entire entries (e.g., read an entry or add an entry), it is usually
necessary for permission to be granted with respect to the attributes and values contained within that
entry. Exceptions are permissions controlling entry renaming and removal: in neither case is attribute or
attribute value permissions taken into account.

b) To perform Directory operations that require access to attributes or attribute values, it is necessary to
have entry access permission to the entry or entries that contain those attributes or values.

NOTE 1 - Theremoval of an entry or of an attribute does not require access to the contents of the entry or of the
attribute.

c) The decision whether or not to permit entry access is strictly determined by the position of the entry in
the DIT, in terms of its distinguished name, and is independent of how the Directory locates that entry.

d) A design principle of Basic Access Control is that access may be allowed only when there is an explicitly
provided grant present in the access control information used by the Directory to make the access control
decision. Granting one form of access (e.g., entry access) never automatically or implicitly grants the
other form (e.g., attribute access). In order to administer meaningful Directory access control policies, it
isthus usually necessary to explicitly set access policy for both forms of access.

NOTE 2 — Certain combinations of grants or denials areillogical, but it is the responsibility of users, rather than
the Directory, to ensure that such combinations are absent.

NOTE 3 - Consistent with the above design principle, granting or denying permissions for an attribute value
does not automatically control access to the related attribute. Moreover, in order to access an attribute value(s) in
the course of a Directory interrogation operation, a user must be granted access to both the attribute type and its
value(s).

€) Theonly default access decision provided in the model is to deny access in the absence of explicit access
control information that grants access.

f) A denia specified in access control information always overrides agrant, all other factors being equal.

g) A particular DSA may not have the access control information governing the Directory data it caches.
Security Administrators should be aware that a DSA with the capability of caching may pose a
significant security risk to other DSAS, in that it may reveal information to unauthorized users.

h) For the purposes of interrogation, collective attributes that are associated with an entry are protected
precisely asif they were attributes that form part of the entry.
NOTE 4 — For the purposes of madification, collective attributes are associated with the subentry that holds

them, not with entries within the scope of the subentry. Modify-related access controls are therefore not relevant
to collective attributes, except when they apply to the collective attribute and its values within the subentry.

18.2.3 Permission categoriesfor entry access

The permission categories used to control entry access are Read, Browse, Add, Remove, Modify, Rename,
DiscloseOnError, Export, and Import and ReturnDN. Their use is described in more detail in Rec. ITU-T X.511 |
ISO/IEC 9594-3. Annex M provides an overview of their meaning in general situations. This subclause introduces the
categories by briefly indicating the intent associated with the granting of each. The actua influence of a particular
granted permission on access control decisions are, however, determined by the full context of the ACDF and access
control decision points for each Directory operation.

a) Read, if granted, permits read access for Directory operations which specifically name an entry (i.e., as
opposed to the List and Search operations) and provides visibility to the information contained in the
entry to which it applies.

b) Browse, if granted, permits entries to be accessed using Directory operations which do not explicitly
provide the name of the entry.

¢) Add, if granted, permits creation of an entry in the DIT subject to controls on all attributes and attribute
values to be placed in the new entry at time of creation.

NOTE 1 —In order to add an entry, permission shall also be granted to add at least the mandatory attributes and
their values.

NOTE 2 —There is no specific "add subordinate permission”. Permission to add an entry is controlled using
prescriptiveACI operational attributes as described in 18.3.

Rec. ITU-T X.501 (10/2012) 97

| SO/l EC 9594-2:2014 (E)

d) Remove, if granted, permits the entry to be removed from the DIT regardless of controls on attributes or
attribute values within the entry.

e) Modify, if granted, permits the information contained within an entry to be modified.

NOTE 3 —In order to modify information contained within an entry other than the distinguished name attribute
values, appropriate attribute and value permissions shall also be granted.

f) Granting Rename is necessary for an entry to be renamed with a new RDN, taking into account the
consequential changes to the distinguished names of subordinate entries, if any; if the name of the
superior is unchanged, the grant is sufficient.

NOTE 4 —In order to rename an entry, there are no prerequisite permissions to contained attributes or values,
including the RDN attributes; this is true even when the operation causes new attribute values to be added or
removed as aresult of the changes of RDN.

g) DiscloseOnError, if granted, permits the name of an entry to be disclosed in an error (or empty) result.

h) Export, if granted, permits an entry and its subordinates (if any) to be exported; that is, removed from the
current location and placed in a new location subject to the granting of suitable permissions at the
destination. If the last RDN is changed, Rename is also required at the current location.

NOTE 5 — In order to export an entry or its subordinates, there are no prerequisite permissions to contained
attributes or values, including the RDN attributes; this is true even when the operation causes attribute values to
be added or removed as a result of the changes of RDN.

i) Import, if granted, permits an entry and its subordinates, if any, to be imported; that is, removed from
some other location and placed at the location to which the permission applies (subject to the granting of
suitable permissions at the source location).

NOTE 6 —In order to import an entry or its subordinates, there are no prerequisite permissions to contained
attributes or values, including the RDN attributes; this is true even when the operation causes attribute values to
be added or removed as a result of the changes of RDN.

i) ReturnDN, if granted, allows the distinguished name of the entry to be disclosed in an operation result.

18.24 Permission categoriesfor attribute and attribute value access

The permission categories used to control attribute and attribute value access are Compare, Read, FilterMatch, Add,
Remove, and DiscloseOnError. They are described in more detail in Rec. ITU-T X.511 | ISO/IEC 9594-3. Annex M
provides an overview of their meaning in general situations. This subclause introduces the categories by briefly
indicating the intent associated with the granting of each. The actual influence of a particular granted permission on
access control decisions are, however, determined by the full context of the ACDF and access control decision points
for each type of Directory operation.

a) Compare, if granted, permits attributes and values to be used in a Compare operation.

b) Read, if granted, permits attributes and values to be returned as entry information in a Read or Search
access operation.

c) FilterMatch, if granted, permits evaluation of afilter within a search criterion.

d) Add, if granted for an attribute, permits adding an attribute subject to being able to add all specified
attribute values. If granted for an attribute value, it permits adding a value to an existing attribute.

e) Remove, if granted for an attribute, permits removing an attribute complete with all of its values. If
granted for an attribute value, it permits the attribute value to be removed from an existing attribute.

f) DiscloseOnError, if granted for an attribute, permits the presence of the attribute to be disclosed by an
attribute or security error. If granted for an attribute value, it permits the presence of the attribute value to
be disclosed by an attribute or security error.

g) Invoke, if granted, the object (always an operationa attribute or a value of an operational attribute) to
which the permission applies can be invoked on behalf of the authenticated user by the DSA. The
function carried out by invocation is attribute-dependent. No other permissions are required for user for
the operational attribute or on the entry/subentry that holdsiit.

18.3 Access control administrative ar eas

The DIT is partitioned into subtrees termed "autonomous administrative areas’, each of which is under the
administrative authority of a single Domain Management Organization. It may be further partitioned into subtrees
termed "specific administrative areas’ for the purposes of specific aspects of administration; aternatively, the whole of
an autonomous administrative area may comprise a single specific administrative area. Each such specific
administrative areais the responsibility of a corresponding specific administrative authority. A particular administrative
area may be shared by several specific administrative authorities. See clause 11.

98 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

18.3.1 Accesscontrol areas and Directory Access Control Domains

In the case of access control, the specific administrative authority is a Security Authority, and the specific
administrative area is termed an "Access Control Specific Area' (ACSA). The root of the ACSA istermed an "Access
Control Specific Point". Each Access Control Specific Point is represented in the DIT by an Administrative Entry which
includes access-control-specific-area as a vaue of itS administrativeRole oOperationa attribute; it has
(potentially) one or more subentries which contain access control information. Similarly, each Access Control Inner
Point is represented in the DIT by an Administrative Entry which contains access-control-inner-area asavalue
of itsadministrativeRole oOperationa attribute; it also has (potentialy) one or more subentries which contain access
control information. Each such administrative entry which has a subentry containing prescriptive ACI information has
basic-access-control, simplified-access-control, Or other relevant value as a vaue of its
accessControlScheme operational attribute. Each subentry that belongs to an Access Control Specific Point and
which contains access control information has accessControlSubentry as a vaue of its object class attribute. An
administrative entry and its subentries may hold operational attributes (such as access control information) which relate,
respectively, to the administrative point (and possibly its subentries) and to collections of entries (within the
administrative area) defined by the subentry subtreeSpecification.

The accessControlscheme attribute shall be present if and only if the holding administrative entry is an access
control specific entry. An administrative entry can never be both an access control specific and an access control inner
entry; corresponding values can therefore never be present simultaneously in the administrativeRole attribute.

The scope of a subentry that contains access control information, as defined by its subtreesSpecification (Which
may include subtree refinements), is termed a Directory Access Control Domain (DACD).

NOTE — A DACD can contain zero entries, and can encompass entries that have not yet been added to the DIT.

The Security Authority may permit an Access Control Specific Area to be partitioned into subtrees termed inner
(administrative) areas. Each such inner areaistermed an "Access Control Inner Area' (ACIA) with access-control-
inner-area as the value of the administrativeRole oOperationa attribute. Each subentry of the corresponding
administrative point that contains prescriptive ACI has, as before, an accessControlSubentry Vvalue within its
object class attribute.

The scope (subtreeSpecification) specified in a subentry within an ACIA is also a DACD and contains entries
inside the associated Access Control Inner Area.

ACIAs dlow a degree of delegation of access control authority within the ACSA. The authority for the ACSA still
retains authority within the ACIA since the ACI in the subentries of the ACSA's administrative point apply as well as
the ACI in the subentries of the relevant ACIAs (clause 18.6 explains how the ACSA controls authority).

In summary, in evaluating access controls, the type of access control scheme (e.g., Basic Access Control) is indicated
by the accesscontrolscheme attribute value of the relevant access control specific entry; the role of each relevant
administrative entry within the ACSA is indicated by itS administrativeRole dattribute values; the presence of
prescriptive access control in a particular subentry is indicated by an accessControlSubentry Vaue in its object
class attribute.

Subentries, like other entries, can hold an entryacz attribute for protection of its own contents.

18.3.2 Associating controlswith administrative areas

Access to a given entry is (potentially) controlled by the totality of superior access control administrative points (both
inner and specific) up to and including the first non-inner access control administrative point or Autonomous
Administrative Point encountered moving up the DIT from the entry towards the root. Access Control Specific Points
superior to this access control administrative point have no effect on access control to the given entry.

NOTE 1 — An Autonomous Administrative Point is considered implicitly to be an Access Control Specific Point for the purpose
of this description, even if it is not associated with any prescriptive controls.

Some important points regarding the association between access controls and administrative areas are;

a) Access controls for Directory information may apply to only selected entries, or may have scope
extending throughout portions of the DIB that are logically related by a common security policy and a
common Access Control administration.

b) Access control may be imposed on entries within ACSAs or within ACIAs by placing
prescriptiveACI attributes (see 18.5) within one or more subentries of the corresponding Access
Control Administrative Entry, with scope defined by an appropriate subtreeSpecification.

NOTE 2 —prescriptiveAct attributes are not collective attributes. There are a number of significant differences
between prescriptiveacI and collective attributes:

Rec. ITU-T X.501 (10/2012) 99

| SO/l EC 9594-2:2014 (E)

100

d)

f)

9)

— dthough aprescriptiveact attribute may affect access control decisions for each entry within the scope of
the subentry that holdsit, the prescriptiveact attributeis not considered to supply accessible information to
any such entry or to bein any sense a part of such an entry;

- prescriptiveAcI attributes are associated with the access control aspects of administration, and are
associated with Access Control Specific and Inner Points, not with entry-collection administrative points;

— the purpose of a prescriptiveactI attribute is to express a policy that influences across a defined set of
entries, while the purpose of a collective attribute is to provide information that associates a user-accessible set
of attributes within a defined set of entries;

- prescriptiveAcI attributes represent policy information that will, in general, not be widely accessible by
ordinary users. Administrative users who need to access prescriptiveAcI information can access them as
operational attributes within subentries.

A prescriptiveACI operationa attribute contains Aciitems (see 18.4.1) common to al entries
within the scope of the subentry, i.e., DACD, in which the prescriptiveact occurs. A DACD
normally contains entries inside the associated Access Control Specific Area (but can contain no entries
at al).

Although particular acttems may specify attributes or values as protected items, aACIItems are
logically associated with entries. The particular set of AcIItems associated with an entry and with the
contents of that entry isacombination of:

— AcIitems that apply to that particular entry, specified as values of the entryaci operational
attribute, if present (see 18.5.2);

— ACIItems fromprescriptiveAcI operational attributes applicable to the entry by virtue of being
placed in subentries of administrative entries whose scope includes the particular entry (see 18.5.1).

Each entry (controlled by entryact and/or prescriptiveacI) necessarily falls within one and only
one ACSA.. Each such entry may also fall within one or more ACIAs nested inside the ACSA containing
the entry. The prescriptiveact that potentially affects the outcome of access control decisions for a
given entry are located within subentries (of the administrative entry) for the ACSA and for each ACIA
containing the entry. Other subentries cannot affect access control decisions regarding that entry.

If an entry is within the scope of more than one DACD, the complete set of aciItems that may
potentially affect access control decisions regarding that entry includes all prescriptiveacI item
attributes of those DACDs, in addition to any entryAct attributes in the entry itself. An example is
shown in Figure 17. The effective access control at entry E1 is a combination of the prescriptiveAcI
for DACD1, DACD2, DACD3, and entryac1 (if present) in entry E1. The effective access control at
entry E2 is a combination of the prescriptiveact for DACD1 and DACD3, and entryact (if
present) in entry E2.
NOTE 3 — Protection of access control information is described in 18.6.

The subtreeSpecification attribute in each subentry defines a collection of entries within an
administrative area. Since a subtreeSpecification may define a subtree refinement, DACDs may
arbitrarily overlap within the intersection of their respective administrative areas. For simplicity,
Figure 17 does not show administrative points, subentries, or administrative areas; however, it may be
considered as three DACDs in the same ACSA with each DACD corresponding to a single subentry of
the administrative point for that ACSA (and there are no ACIAS). Alternatively, Figure 17 may be
considered in the context of asingle ACSA containing a single ACIA where DACDL is congruent to the
ACSA and DACD3 is congruent to the ACIA (DACD1 and DACD2 would correspond to subentries of
the ACSA administrative point and DACD3 would correspond to a subentry of the ACIA administrative
point). An administrative areais congruent to a DACD when the collection of entries in the DACD is the
same as the collection of entries in the implicitly defined subtree corresponding to the administrative
area. See the example in Annex N for figures depicting the relationship between administrative entries,
administrative areas, subentries and DACDs.

Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

DACD1

X501(12)_F17

Figure 17 — Effective Access Control using DACDs

184 Representation of Access Control I nformation

18.4.1 ASN.1for Access Control I nformation

Access Control Information is represented as a set of AcTItems, Where each AcIItem grants or denies permissionsin
regard to certain specified users and protected items.

In ASN.1, theinformation is expressed as:

ACIItem ::= SEQUENCE {

identificationTag UnboundedDirectoryString,
precedence Precedence,
authenticationLevel AuthenticationLevel,
itemOrUserFirst CHOICE {
itemFirst [0] SEQUENCE {
protectedItems ProtectedItems,
itemPermissions SET OF ItemPermission,
Y
userFirst [1] SEQUENCE {
userClasses UserClasses,
userPermissions SET OF UserPermission,
Y
Y
e}

Precedence ::= INTEGER(0..255,...)

ProtectedItems ::= SEQUENCE {
entry
allUserAttributeTypes
attributeType
allAttributeValues

allUserAttributeTypesAndvValues
attributeValue

selfvalue

rangeOfValues
maxValueCount

maxImmSub

[0l
[1]
[2]
[31

[4]
[5]

[6]

[71
[8]

[91]

NULL OPTIONAL,

NULL OPTIONAL,

SET SIZE (1..MAX)
OPTIONAL,

SET SIZE (1..MAX)
OPTIONAL,

NULL OPTIONAL,

SET SIZE (1..MAX)
OPTIONAL,

SET SIZE (1..MAX)
OPTIONAL,

Filter OPTIONAL,

SET SIZE (1..MAX)
OPTIONAL,

INTEGER OPTIONAL,

OF

OF

OF

OF

OF

AttributeType

AttributeType

AttributeTypeAndValue

AttributeType

MaxValueCount

Rec. ITU-T X.501 (10/2012)

101

| SO/l EC 9594-2:2014 (E)

restrictedBy [10] SET SIZE (1..MAX) OF RestrictedValue
OPTIONAL,
contexts [11] SET SIZE (1..MAX) OF ContextAssertion
OPTIONAL,
classes [12] Refinement OPTIONAL,
e}
MaxValueCount ::= SEQUENCE {
type AttributeType,
maxCount INTEGER,
RestrictedValue ::= SEQUENCE {
type AttributeType,
valuesIn AttributeType,
e}
UserClasses ::= SEQUENCE {
allUsers [0] NULL OPTIONAL,
thisEntry [1] NULL OPTIONAL,
name [2] SET SIZE (l1l..MAX) OF NameAndOptionalUID OPTIONAL,

userGroup [3] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,
-- dn component shall be the name of an
-- entry of GroupOfUniqueNames

subtree [4] SET SIZE (l1..MAX) OF SubtreeSpecification OPTIONAL,
ItemPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,
-- defaults to precedence in ACIItem
userClasses UserClasses,
grantsAndDenials GrantsAndDenials,
UserPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,
-- defaults to precedence in ACIItem
protectedItems ProtectedItems,
grantsAndDenials GrantsAndDenials,
AuthenticationLevel ::= CHOICE {
basicLevels SEQUENCE {
level ENUMERATED {none(0), simple(1l), strong(2),...},
localQualifier INTEGER OPTIONAL,
signed BOOLEAN DEFAULT FALSE,
other EXTERNAL,

GrantsAndDenials ::= BIT STRING {
-- permissions that may be used in conjunction
-- with any component of ProtectedItems
grantAdd (0),
denyAdd (1),
grantDiscloseOnError (2),
denyDiscloseOnError (3),

grantRead (4),
denyRead (5),
grantRemove (6),
denyRemove (7),

-- permissions that may be used only in conjunction
-- with the entry component

grantBrowse (8),

denyBrowse (9),

grantExport (10),
denyExport (11),
grantImport (12),
denyImport (13),
grantModify (14),
denyModify (15),

102 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

grantRename (16),
denyRename (17),
grantReturnDN (18),
denyReturnDN (19),

-- permissions that may be used in conjunction
-- with any component, except entry, of ProtectedItems

grantCompare (20),
denyCompare (21),
grantFilterMatch (22),
denyFilterMatch (23),
grantInvoke (24) ,
denyInvoke (25) }

18.4.2 Description of AClItem Parameters

18.4.2.1 Identification Tag

identificationTag iS Used to identify a particular aciItem. This is used to discriminate among individual
aciItems for the purposes of protection, management and administration.

18.4.2.2 Precedence

Precedence is used to control the relative order in which acziztems are considered during the course of making an
access control decision in accordance with 18.8. acz1tems having higher precedence values may prevail over others
with lower precedence values, other factors being equal. Precedence values are integers and are compared as such.

Precedence can be used by a superior authority within the Security Authority to permit partial delegation of access
control policy setting within an ACSA. This can be achieved by the superior authority setting a general policy at ahigh
precedence and authorizing users representing the subordinate authority (e.g., associated with an ACIA) to create and
modify ACI with alower precedence, in order to tailor the genera policy for specific purposes. The partial delegation
thus requires the means for the superior authority to limit the maximum precedence which the subordinate authority can
assign to ACI under its control.

Basic Access Control does not specify or describe how to limit the maximum precedence that can be used by a
subordinate authority. Thisisto be done by local means.

18.4.2.3 Authentication L evel

AuthenticationLevel definesthe minimum requestor security level required for thisacIItem. It hastwo forms:

— DbasicLevels Which indicates the level of authentication, optionally qualified by positive or negative
integer localQualifier, and whether the request isrequired to be signed;

— other: an externaly defined measure.

When basicLevels iSUSed, an AuthenticationLevel consisting of a level and optional localQualifier shal
be assigned to the requestor by the DSA according to local policy. For a requestor's authentication level to meet or
exceed a minimum requirement, the requestor's 1evel shall meet or exceed that specified in the aciItem, and in
addition the requestor's 1ocalQualifier shal be arithmetically greater than or equal to that of the aczitem. Strong
authentication of the requestor is considered to exceed a requirement for simple or no authentication, and simple
authentication exceeds a requirement for no authentication. For access control purposes, the "simple" authentication
level requires a password; the case of identification only, with no password supplied, is considered "none". If a
localQualifier is not specified in the acIItem, then the requestor need not have a corresponding value (if such a
valueis present, it isignored). In addition to meeting or exceeding above requirements, the request shall be signed if the
ACIItem SPecifies signed equal TRUE.

When other is used, an appropriate AuthenticationLevel shall be assigned to the requestor by the DSA according
to loca policy. The form of this authenticationLevel and the method by which it is compared with the
AuthenticationLevel inthe ACl isaloca matter.
NOTE 1 — An authentication level associated with an explicit denia indicates the minimum level to which a requestor shall be
authenticated in order not to be denied access. For example, an aczItem that denies accessto a particular user class and requires

strong authentication will deny accessto all requestors who cannot prove, by means of a strongly authenticated identity, that they
arenot in that user class.

NOTE 2 — The DSA may base authentication level on factors other than values received in protocol exchanges.

Rec. ITU-T X.501 (10/2012) 103

| SO/l EC 9594-2:2014 (E)

18.4.2.4 itemFirst and user First Parameters

Each aciItem contains achoice of itemFirst Or userFirst. The choice allows grouping of permissions depending
on whether they are most conveniently grouped by user classes or by protected items. itemFirst and userFirst are
equivalent in the sense that they capture the same access control information; however, they organize that information
differently. The choice between them is based on administrative convenience. The parameters used in itemFirst oOr
userFirst are described below.

a) ProtectedItems define the items to which the specified access controls apply. It is defined as a set
selected from the following:

entry means the entry contents as a whole. In case of a family member, it aso means the entry
content of each subordinate family member within the same compound attribute. It does not
necessarily include the information in these entries. This element shall be ignored if the classes
element is present, since this latter element selects protected entries (and subordinate family
members) on the basis of their object class.

allUserAttributeTypes Mmeans all user attribute type information associated with the entry, but
not values associated with those attributes.

allUserAttributeTypesAndvValues means all user attribute information associated with the
entry, including al values of all user attributes.

attributeType Means attribute type information pertaining to specific attributes but not values
associated with the type.

allAttributevValues means all attribute value information pertaining to specific attributes.
attributevValue means a specific value of specific attributes.

selfvalue means the attribute value assertion corresponding to the current requestor. The
protected item selfvalue applies only when the access controls are to be applied with respect to a
specific authenticated user. It can only apply in the specific case where the attribute specified is of
DistinguishedName Of uniqueMember Syntax and the attribute value within the specified
attribute matches the distinguished name of the originator of the operation.

NOTE 1-allUserAttributeTypes and allUserAttributeTypesAndvalues 00 not include operational

attributes, which should be specified on a per attribute basis, using attributeType, allAttributevValues Of
attributeValue.

rangeOfValues means any attribute value which matches the specified filter, i.e., for which the
specified filter evaluated on that attribute value would return TRUE.
NOTE 2 — Thefilter is not evaluated on any entries in the DIB; it is evaluated using the semantics defined in 7.8

of Rec. ITU-T X.511 | ISO/IEC 9594-3, operating on a fictitious entry that contains only the single attribute
value which isthe protected item.

The following items provide constraints that may disable the granting of certain permissions to protected
itemsin the same SEQUENCE:

maxValueCount restricts the maximum number of attribute values allowed for a specified attribute
type. It is examined if the protected item is an attribute value of the specified type and the
permission sought is add. Values of that attribute in the entry are counted without regard to context
or access control and as though the operation which adds the values were successful. If the number
of valuesin the attribute exceeds maxcount, the ACI item is treated as not granting add access.

maxImmSub restricts the maximum number of immediate subordinates of the superior entry to an
entry being added or imported. It is examined if the protected item is an entry, the permission
sought is add or import, and the immediate superior entry is in the same DSA as the entry being
added or imported. Immediate subordinates of the superior entry are counted without regard to
context or access control as though the entry addition or importing were successful. If the number of
subordinates exceeds maxImmSub, the ACI item is treated as not granting add or import access.

restrictedBy restricts values added to the attribute type to being values that are aready present
in the same entry as values of the attribute valuesin. It is examined if the protected item is an
attribute value of the specified type and the permission sought is add. Values of the valuesin
attribute are checked without regard to context or access control and as though the operation which
adds the values were successful. If the value to be added is not present in valuesin, the ACI item
is treated as not granting add access.

contexts restricts values added to the entry to having context lists that satisfy all of the context
assertionsin contexts. It isexamined if the protected item is an attribute value and the permission
sought is add. If the value to be added does not satisfy the context assertions, the ACI item is treated

104 Rec. ITU-T X.501 (10/2012)

b)

d)

e

f)

| SO/l EC 9594-2:2014 (E)

as not granting add access; if it does satisfy all of them, the ACI item is treated as not denying add
access.

NOTE 3 - Thisisonly relevant when the permission sought is add, and all context assertions shall be satisfied. It
does not provide for general use of contexts to differentiate protected items for other permissions.

- classes meansthe contents of entries (possibly afamily member) which are restricted to those that
have object class values that satisfy the predicate defined by Refinement (See 12.3.5), together (in
the case of an ancestor or other family member) with the entry contents as a whole of each
subordinate family member entry; it does not necessarily include the information in these entries.

NOTE 4 — By therulesfor entry and classes, al family members inherit the access control of the ancestor or

of superior family members within the same family. This does not preclude family members being subject to
further policies from entryACI oOr prescriptiveacI that increase or decrease protection.

UserClasses defines aset of zero or more users the permissions apply to. The set of usersis selected
from the following:

— allusers meansevery directory user (with possible requirementsfor authenticationLevel).

— thisEntry means the user with the same distinguished name as the entry being accessed, or if the
entry is a member of a family, then additionally the user with the distinguished name of the
ancestor.

— name iSthe user with the specified distinguished name (with an optional unique identifier).

— userGroup iS the set of users who are members of the groupofNames Or groupOfUniqueNames
entry, identified by the specified distinguished name (with an optional unique identifier). Members
of a group of unique names are treated as individual object names, and not as the names of other
groups of unique names. How group membership is determined is described in 18.4.2.5.

— subtree is the set of users whose distinguished names fall within the definition of the (unrefined)
subtree.

SubtreeSpecification iS used to specify a subtree relative to the root entry named in base. The
base represents the distinguished name of the root of subtree. The subtree extends to the leaves of the
DIT unless otherwise specified in chop. The use of a specificationFilter component is not
permitted; if present, it shall be ignored.
NOTE 5 — subtreespecification does not alow subtree refinement because a refinement might require a
DSA to use a distributed operation in order to determine if agiven user isin a particular user class. Basic Access
Control is designed to avoid remote operations in the course of making an access control decision. Membership
in a subtree whose definition includes only base and chop can be evaluated locally, whereas membership in a
subtree definition using specificationFilter can only be evaluated by obtaining information from the user's
entry which is potentially in another DSA.

ItemPermission contains acollection of usersand their permissions with respect to ProtectedItems
within an itemFirst specification. The permissions are specified in grantsAndbDenials as discussed
in item f) of this subclause. Each of the permissions specified in grantsAndpenials is considered to
have the precedence level specified in precedence for the purpose of evaluating access control
information as discussed in 18.8. If precedence is omitted within ItemPermission, then precedence
istaken from the precedence specified for the AcTItem (See 18.4.2.2).

UserPermission contains acollection of protected items and the associated permissions with respect to
userClasses Within a userFirst gpecification. The protected items are specified in
protectedItems as discussed in 184.2. The associated permissions are specified in
grantsAndDenials as discussed in item f) of this subclause. Each of the permissions specified in
grantsAndDenials iS considered to have the precedence level specified in precedence for the
purpose of evaluating access control information as discussed in 18.8. If precedence is omitted within
UserPermission, the precedence is taken from the precedence specified for the acirtem
(see 18.4.2.2).

GrantsAndDenials Specify the access rights that are granted or denied in the AczItem Specification.
The precise semantics of these permissions with respect to each protected item is discussed in
Rec. ITU-T X.511 | ISO/IEC 9594-3.

Rec. ITU-T X.501 (10/2012) 105

| SO/l EC 9594-2:2014 (E)

g) UniqueIdentifier may be used by the authentication mechanism to distinguish between instances of
distinguished name reuse. The value of the unique identifier is assigned by the authentication authority
according to its policy and is provided by the authenticating DSA. If this field is present, then for an
accessing user to match the name user class of an aAcIItem that grants permissions, in addition to the
requirement that the user's distinguished name match the specified distinguished name, the authentication
of the user shall yield an associated unique identifier, and that value shall match for equality with the
specified value.

NOTE 6 —When authentication is based on supplied securityParameters, the unique identifier associated
with the user may be taken from the subjectUniqueIdentifier field of the sender's certificate in the
optional certificationPath.

18.4.2.5 Determining group membership

Determining whether a given requestor is a group member requires checking two criteria. Also, the determination may
be constrained if the group definition is not known locally. The criteria for membership and the treatment of non-local
groups are discussed below.

a) A DSA isnot required to perform a remote operation to determine whether the requestor belongs to a
particular group for the purposes of Basic Access Control. If membership in the group cannot be
evauated, the DSA shall assume that the requestor does not belong to the group if the ACI item grants
the permission sought, and does belong to the group if it denies the permission sought.

NOTE 1 — Access control administrators should beware of basing access controls on membership of non-localy

available groups or groups which are available only through replication (and which may, therefore, be out of
date).

NOTE 2 — For performance reasons, it is usually impractical to retrieve group membership from remote DSAs as
part of the evaluation of access controls. However, in certain circumstances it may be practical, and a DSA is
permitted, for example, to perform remote operations to obtain or refresh alocal copy of a group entry or use the
Compare operation to check membership prior to applying this clause.

b) In order to determine whether the requestor is a member of a userGroup user class, the following
criteria apply:

— The entry named by the userGroup specification shall be an instance of the object class
groupOfNames Of groupOfUniqueNames.

— Thename of the requestor shall be avalue of the member Or uniqueMember attribute of that entry.
NOTE 3 —Values of the member Or uniqueMember attribute that do not match the name of the requestor are

ignored, even if they represent the names of groups of which the originator could be found to be a member.
Hence, nested groups are not supported when evaluating access controls.

185 ACI operational attributes

Access control information is stored in the Directory as an operational attribute of entries and subentries. The
operational attribute is multi-valued, which allows ACI to be represented as a set of aAcI1tems (defined in 18.4).

185.1 Prescriptive access control information

A Prescriptive ACI attribute is defined as an operational attribute of a subentry. It contains access control information
applicable to entries within that subentry's scope:

prescriptiveACI ATTRIBUTE ::= {

WITH SYNTAX ACIItem

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation

ID id-aca-prescriptiveACI }

185.2 Entry access control information

An Entry ACI attribute is defined as operational attributes of an entry. It contains access control information applicable
to the entry in which it appears, and that entry's contents:

entryACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-entryACI }

106 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

1853 Subentry ACI

Subentry ACI attributes are defined as operational attributes of administrative entries, and provide access control
information that applies to each of the subentries of the corresponding administrative point. Prescriptive ACI within the
subentries of a particular administrative point never applies to the same or any other subentry of that administrative
point, but can be applicable to the subentries of subordinate administrative points. Subentry ACI attributes are
contained only in administrative points and do not affect any element of the DIT other than immediately subordinate
subentries.

In evaluating access control for a specific subentry, the ACI that shall be considered is:
— the entryact within the subentry itself (if any);
— the subentryact within the associated administrative entry (if any);

— prescriptiveACI associated with other relevant administrative points within the same access control
specific area (if any).

subentryACI ATTRIBUTE ::= {
WITH SYNTAX ACITItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-subentryACI }

18.6 Protecting the ACI

ACI operational attributes may be subjected to the same protection mechanisms as ordinary attributes. Some important
related points are;

a) The identificationTag provides an identifier for each AczItem. Thistag can be used to remove a
specific acTItem Value, or to protect it by prescriptive or entry ACI.

NOTE 1 — Directory rules ensure that only one acIrtem per access control attribute possesses any specific
identificationTag Value.

b) The creation of subentries for an Administrative Entry may be access controlled by means of the
subentryACI operationa attribute in the Administrative Entry.

NOTE 2 — The right to create prescriptive access controls may also be governed directly by security policy; this
provision is required to create access controls in new autonomous administrative areas.

18.7 Accesscontrol and Directory operations

Each Directory operation involves making a series of access control decisions on the various protected items that the
operation accesses.

For some operations (e.g., Modify operations), each such access control decision must grant access for the operation to
succeed; if access is denied to any protected item, the whole operation fails. For other operations, protected items to
which access is denied are simply omitted from the operation result and processing continues.

If the requested access is denied, further access control decisions may be needed to determine if the user has
DiscloseOnError Permissions to the protected item. Only if DiscloseonError permission is granted may the
Directory respond with an error that reveals the existence of the protected item; in all other cases, the Directory acts so
asto conceal the existence of the protected item.

The access control requirements for each operation, i.e., the protected items and the access permission required to
access each protected item, are specified in Rec. ITU-T X.511 | ISO/IEC 9594-3.

The agorithm by which any particular access control decision is madeis specified in 18.8.

18.8 Access Control Decision Function

This subclause specifies how an access control decision is made for any particular protected item. It provides a
conceptua description of the Access Control Decision Function (ACDF) for basic-access-control. It describes
how ACI items are processed in order to decide whether to grant or deny a particular requestor a specified permission
to agiven protected item.

Rec. ITU-T X.501 (10/2012) 107

| SO/l EC 9594-2:2014 (E)

18.8.1 Inputsand outputs

For each invocation of the ACDF, theinputs are:

a) the requestor's Distinguished Name (as defined in 7.3 of Rec. ITU-T X.511 | ISO/IEC 9594-3), unique
identifier, and authentication level, or as many of these as are available;

b) the protected item (an entry, an attribute, or an attribute value) being considered at the current decision
point for which the ACDF was invoked;

c) therequested permission category specified for the current decision point;

d) the ACI items associated with the entry containing (or which is) the protected item. Protected items are
described in 18.4.2.4. The scope of influence for ACI items within a prescriptiveacTI attribute is
described in 18.3.2 and 18.5.1. The scope of influence for ACI items within an entryact attribute is
described in 18.3.2 and 18.5.2. The scope of influence for ACI items within a subentryact attributeis
described in 18.5.3.

When an entry is afamily member, it also inherits the access control of the ancestor or of superior family
members within the same family. This does not preclude family members being subject to further
policiesfrom entryACI Or prescriptiveAcCI that increase or decrease protection.

In addition, if the ACI items include any of the protected item constraints described in 18.4.2.4, the whole entry and the
number of immediate subordinates of its superior entry may aso be required as inputs.

The output is adecision to grant or deny access to the protected item.

In any particular instance of making an access control decision, the outcome shall be the same as if the stepsin 18.8.2
through 18.8.4 were performed.

18.8.2 Tuples

For each ACI value in the ACI items of 18.8.1 d), expand the value into a set of tuples, one tuple for each element of
the itemPermissions and userPermissions Sets. Collect all tuples from all ACI values into a single set. Each
tuple contains the following items:

(userClasses, authenticationLevel, protectedItems, grantsAndDenials, precedence)

For any tuple whose grantsAndpenials specify both grants and denials, replace the tuple with two tuples—one
specifying only grants and the other specifying only denials.

18.8.3 Discarding non-relevant tuples

Perform the following stepsto discard all non-relevant tuples:
1) Discard al tuplesthat do not include the requestor in the tuple€'suserclass (18.4.2.4 b)) asfollows:

— For tuples that grant access, discard all tuples that do not include the requestor's identity in the
tupless userClasses eement taking into account uniqueIdentifier elements if relevant.
Where atuple specifies auniqueIdentifier, a matching value shall be present in the requestor's
identity if the tuple is not to be discarded. Discard tuples that specify an authentication level higher
than that associated with the requestor in accordance with 18.4.2.3.

— For tuples that deny access, retain all tuples that include the requestor in the tuple's userclasses
element, taking into account uniqueIdentifier €lements if relevant. Also retain al tuples that
deny access and which specify an authentication level higher than that associated with the requestor
in accordance with 18.4.2.3. All other tuples that deny access are discarded.

NOTE 1 — The second requirement in the second sub-item above (i.e., to retain any tuple that denies
access and also specifies an authentication level higher than that associated with the requestor) reflects
the fact that the requestor has not adequately proved non-membership in the user class for which the
denial is specified.

2) Discard all tuples that do not include the protected item in protectedItems (18.4.2.4 @)).

3) Examine al tuples that include the maxvalueCount, maxImmSub, restrictedBy, Of contexts.
Discard all such tuples which grant access and which do not satisfy any of these constraints (18.4.2.4 a)).

4) Discard all tuples that do not include the requested permission as one of the set bits in
grantsAndDenials (18.4.1, 18.4.2.4f)).

NOTE 2 —The order in which discarding of non-relevant tuples is performed does not change the output of
the ACDF.

108 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

18.84 Selecting highest precedence, most specific tuples

Perform the following steps to select those tuples of highest precedence and specificity:

1) Discard al tupleshaving aprecedence less than the highest remaining precedence.

2) If more than one tuple remains, choose the tuples with the most specific user class. If there are any tuples
matching the requestor with UserClasses element name Or thisEntry, discard all other tuples.
Otherwiseg, if there are any tuples matching userGroup, discard al other tuples. Otherwise, if there are
any tuples matching subtree, discard all other tuples.

3) If more than one tuple remains, choose the tuples with the most specific protected item. If the protected
itemis an attribute and there are tuples that specify the attribute type explicitly, discard all other tuples. If
the protected item is an attribute value, and there are tuples that specify the attribute value explicitly,
discard all other tuples. A protected item which is a rangeofvalues is to be treated as specifying an
attribute value explicitly.

Grant accessif and only if one or more tuples remain and all grant access. Otherwise deny access.

18.9 Simplified Access Control
18.9.1 Introduction

This subclause describes the functionality of an access control scheme, known as Simplified Access Control, that is
designed to provide a subset of functionality found in Basic Access Control.

18.9.2 Definition of Simplified Access Control functionality

The functionality of Simplified Access Control is defined as follows:

a) access control decisions shall be made only on the basis of AcIItem values of prescriptiveAcI and
subentryACI operational attributes.

NOTE 1 —entryact, if present, shall not be used to make access control decisions.

b) access control specific administrative areas shall be supported. Access control inner administrative areas
shall not be used. Particular access decisions shall be made on the basis of aczitem values obtained
from asingle Administrative Point, or from subentries of that Administrative Point.

NOTE 2 —Values of prescriptiveAcI attributes appearing in subentries of Administrative Points containing

NO id-ar-accessControlSpecificArea Administrative Role attribute value shall not be used to make
access control decisions.

c) dl other provisions shal be as defined for basic access control.

19 Rule-based Access Control

19.1 Scope and application

This clause defines a specific access control scheme (of possibly many) for the Directory. The access control scheme
defined herein isidentified with the accessControlscheme operational attribute by giving it the value rule-based-
access-control 0Or if used in conjunction with the basic or simplified access control schemes defined in clause 18,
rule-and-basic-access-control Of rule-and-simple-access-control. Clause 17.2.2 describes which
entries contain the accessControlScheme Operationa attribute.

The scheme defined here is only concerned with controlling access to the Directory information within the DIB
(potentially including tree structure and access control information). It does not address controlling access for the
purpose of communication with another DSA or LDAP server. Control of access to information means the prevention
of unauthorized detection, disclosure, or modification of that information.

Rec. ITU-T X.501 (10/2012) 109

| SO/l EC 9594-2:2014 (E)

19.2 Rule-based Access Control model

There may be environments where information relating to the clearance (instead of identity) of the requestor is used in
determining whether or not access to an attribute value is to be denied. This is defined as Rule-based Access Control
and uses administratively imposed access control policy rules in determining when access is to be denied to certain
contents of the Directory. If access is denied under Rule-based Access Control, it cannot be allowed under other access
control schemes. The Rule-based Access Control model identifies the information used in determining whether access
isto be denied. Thisis applied to every operation. Each access control decision involves:

a) Access control information associated with the attribute values being accessed. This access control
information is called a security label.

b) Access control information associated with the user requesting the operation. This access control
information is called the clearance. The user requesting the operation is called the requestor.

¢) Ruleswhich define whether an access is authorized given a security label and a clearance, called security
policies.

See Figure 18.

Access control decision
Access request

t
Requestor argumen P> Grant/deny

Operation, DN,
authentication level,
and clearance

Access decision
grant/deny

Protected Security label

item X 501(12)_F18

%

Access control policy rules

Figure 18 — Rule-based Access Control Decision M odel

The security label(s) can be securely associated with attribute values by binding the label to the information through the
use of a digital signature or other integrity mechanism. A security label is a property of the attribute value and is
associated with the value as a context.

The clearance is needed to enable a comparison to be made against the security label. The clearance can be bound to the
Distinguished Name of the requestor through a public-key certificate with a subjectDirectoryAttributes
extension or through an attribute certificate. The means selected for providing the clearance is a matter for the security
policy in effect.

NOTE — The use of other clearance information (e.g., that associated with any intermediate DSAs which may have chained the
operation), is outside the scope of this Directory Specification.

The security rules to be applied in making an access control decision are defined as part of the security policy. The
security policy is either identified in the security label or defined for the environment containing the labelled object.

19.3 Access control administrative ar eas

As for basic access control (see 18.3), the DIT is divided into administrative areas including Access Control Specific
Areas (ACSAS). The administrative entry for an ACSA identifies the labelling security policies (access rules) that are
applicable for that administrative area as well as the applicable access control scheme (rule-based-access-
control Of rule-and-basic-access-control Of rule-and-simple-access-control Or some other access
control scheme).

194 Security Label

19.4.1 Introduction
Security labels may be used to associate security-relevant information with attributes within the Directory.

110 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Security labels may be assigned to an attribute value in line with the security policy in force for that attribute. The
security policy may aso define how security labels are to be used to enforce that security policy.

A security label comprises a set of elements optionally including a security policy identifier, a security classification, a
privacy mark, and a set of security categories. The security label is bound to the attribute value using a digital signature
or another integrity mechanism.

19.4.2 Administration of Security Labels
A security label is assigned to an attribute value by an administrative function before being placed in the Directory.

This administrative function is responsible for assigning security labels to attribute values in line with the security
policy in forcefor the ACSA.

The binding of a security label is protected using a digital signature or another integrity mechanism. This protection is
applied by the administrative function, or creator of the attribute value.

19.4.3 Labedled Attribute Values

A security label context associates a security |abel with an attribute value. Only a single label can be associated with an
attribute value. That is, the security label context is single-valued. In addition, matching rules for the security label
context are not supported.

NOTE — The concept of contextsis introduced in 8.8.

attributeValueSecurityLabelContext CONTEXT ::= {
WITH SYNTAX SignedSecuritylLabel -- At most one security label context can
-- be assigned to an attribute value
ID id-avc-attributeValueSecurityLabelContext }

SignedSecurityLabel ::= SIGNED{SignedSecurityLabelContent}

SignedSecurityLabelContent ::= SEQUENCE {
attHash HASH{AttributeTypeAndValue},
issuer Name OPTIONAL, -- name of labelling authority
keyIdentifier KeyIdentifier OPTIONAL,
securityLabel SecurityLabel,

-}
SecurityLabel ::= SET {
security-policy-identifier SecurityPolicyIdentifier OPTIONAL,
security-classification SecurityClassification OPTIONAL,
privacy-mark PrivacyMark OPTIONAL,
security-categories SecurityCategories OPTIONAL,

.o}

(ALL EXCEPT ({ -- none, at least one component shall be present --}))
SecurityPolicyIdentifier ::= OBJECT IDENTIFIER
SecurityClassification ::= INTEGER {

unmarked (0),
unclassified (1),
restricted (2),
confidential (3),
secret (4),
top-secret (5)}

PrivacyMark ::= PrintableString(SIZE (1..MAX))

SecurityCategories ::= SET SIZE (1l..MAX) OF SecurityCategory

This context is not used to filter or select particular attributes, as for other contexts, and the mechanisms associated with
contexts (fallback, default context values, etc.) are not used to apply rule-based access control.

The attHash component contains the resulting value of applying a cryptographic hashing procedure to DER-encoded
octets, as defined in Rec. ITU-T X.509 | ISO/IEC 9594-8.

The issuer component conveys the name of the labelling authority.

The keyIdentifier component may be the identifier of a certified public key as held in the Subject Public Key
Identifier extension field defined in Rec. ITU-T X.509 | ISO/IEC 9594-8 or the identifier of a symmetric key and
associated security control information.

Rec. ITU-T X.501 (10/2012) 111

| SO/l EC 9594-2:2014 (E)

The securityLabel component is composed of a set of elements optionally including a security policy identifier, a
security classification, a privacy mark, and a set of security categories as defined in 8.5.9 of Rec. ITU-T X.411 |
I|SO/IEC 10021-4.

195 Clearance

A clearance attribute associates a clearance with anamed entity including DUASs.

clearance ATTRIBUTE ::= {
WITH SYNTAX Clearance
ID id-at-clearance }
Clearance ::= SEQUENCE {
policyId OBJECT IDENTIFIER,
classList ClassList DEFAULT {unclassified},

securityCategories SET SIZE (1..MAX) OF SecurityCategory OPTIONAL,

ClassList ::= BIT STRING {
unmarked (0),
unclassified (1),
restricted (2),
confidential (3),
secret (4),
topSecret (5)}

SecurityCategory ::= SEQUENCE {
type [0] SECURITY-CATEGORY.&id({SecurityCategoriesTable}),
value [1] EXPLICIT SECURITY-CATEGORY.&Type ({SecurityCategoriesTable}{@type}),

SECURITY-CATEGORY ::= TYPE-IDENTIFIER
SecurityCategoriesTable SECURITY-CATEGORY ::= {...}

The policyId component conveys an identifier that may be used to identify the security policy in force to which the
clearance classList and securityCategories relates.

The classList component includes alist of classifications that are associated with the named entity.

The securityCategories (see 8.5.9 of Rec. ITU-T X.411 | ISO/IEC 10021-4) component, if present, provides
further restrictions within the context of aclassnist.
NOTE — A clearance is securely bound to a named entity using an attribute certificate (Rec. ITU-T X.509 | ISO/IEC 9594-8), a

public-key certificate extension field (e.g., within the subjectDirectoryAttribute extension) (Rec. ITU-T X.509 |
ISO/IEC 9594-8), or by means outside the scope of this Directory Specification.

196 AccessControl and Directory operations

Each Directory operation involves making a series of access control decisions on the attribute values that the operation
accesses.

For some operations (e.g., the Remove Entry operation), even though the operation may appear to have succeeded if
access is denied to one or more attribute values, the hidden attributes would remain in the Directory. For other
operations, protected items to which access is denied are simply omitted from the operation result and processing
continues.

The access control requirements for each operation are specified in Rec. ITU-T X.511 | ISO/IEC 9594-3.

The agorithm by which any particular access control decision is made is specified as:

— If access to dl the attribute values of an entry is denied under rule-based-access-control, the
accessisdenied to that entry for all operations.

— If access to dl the attribute values of an attribute is denied under rule-based-access-control, the
access isdenied to that attribute for all operations.

— Rule-based access control affects operations on reading attribute values (e.g., Read, Search) in that the
attribute value is not visible (the operation is carried out as though the attribute value is not present) if
accessis denied to the attribute value.

112 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

— Rule-based access control affects operations which involve removing an entry (e.g., Remove Entry) in
that they do not remove those attribute values to which accessis denied.

— Rule-based access control affects operations which involve removing an attribute type (e.g., Modify
Entry — Remove Attribute) in that they do not remove those attribute values to which accessis denied.

— Rule-based access control affects operations which involve removing an attribute value (e.g., Modify
Entry — Remove Value) in that these operations fail if the access is denied to the attribute value.

19.7 Access Control Decision Function

This subclause specifies how an access control decision is made for any particular attribute value. It provides a
conceptual description of the Access Control Decision Function (ACDF) for rule-based-access-control. It
describes how a clearance and a security label are processed in order to decide whether to grant or deny a particular
reguestor a specified permission to a given attribute value. The decision function applies the security policy rules which
establish whether an access is authorized on an attribute value given its security label and the requestor's clearance. The
definition of the security rules is outside the scope of these Directory Specifications. A simplified example of security
policy rulesfor rule-based-access-control isgivenin M.10.

For each invocation of the ACDF, theinputs are:
a) therequestor's clearance (as defined in 19.5);
b) attribute value being considered at the current decision point for which the ACDF was invoked;
¢) thesecurity policy in force for the access-control-specific area;
d) security label bound to the attribute value.

The output is a decision whether to deny access to the attribute value.

For any particular instance of making an access control decision, the outcome shall be the same as if the steps in 19.6
were performed.

19.8 Use of Rule-based and Basic Access Control

If both rule-based and basic access control are in effect, the order in which they are applied is alocal matter, except that
if accessis denied to the entry, an attribute type or an attribute value by either mechanism, it shall not be granted by the
other mechanism. In this respect, DiscloseOnError (see 18.2.3 and 18.2.4) permission of basic-access-control iS
apermission that shall not override adeny of rule-based-access-control.

20 Data Integrity in Storage

20.1 Introduction

In some situations, the Directory may not give sufficient assurance that data is unchanged in storage, regardless of
access controls. The integrity of data stored in the Directory may be validated using digital signatures held as part of the
Directory Information. Either the digital signature of an entry or selected attributes within an entry may be held as an
attribute (see 20.2), or the digital signature of asingle attribute value may be held in a context (see 20.3).

NOTE — Confidentiality of attribute valuesis outside the scope of this specification.

20.2 Protection of an Entry or Selected Attribute Types

Data integrity of attributes in storage is provided through the use of digital signatures held alongside the attributes they
are protecting. The integrity of awhole entry, or of all attribute values for selected attributesin an entry, is protected by
an attribute holding a digital signature of al the attribute values being protected.

This digital signatureis created by an authority or directory user responsible for placing the information in the directory
entry. The digital signature can be validated by any user reading the attribute values for the entry. The directory service
itself is not involved in the creation or validation of the digital signature held in this attribute.

This integrity mechanism protects the integrity of directory attributes both in storage and during transfer between
components of the Directory (DSAs and DUAS). This integrity mechanism does not depend on the security of the
directory service itself.

Digital signatures applied to the whole entry do not include operational, collective attributes or the
attributeIntegrityInfo itself. Any attribute value contexts are included.

Rec. ITU-T X.501 (10/2012) 113

| SO/l EC 9594-2:2014 (E)

The following defines an attribute type to hold a digital signature, along with associated control information, which
provides integrity of awhole entry or al values of selected attribute types.

attributeIntegrityInfo ATTRIBUTE ::= {
WITH SYNTAX AttributeIntegrityInfo
SINGLE VALUE TRUE

ID id-at-attributeIntegrityInfo }
AttributeIntegrityInfo ::= SIGNED{AttributeIntegrityInfoContent}
AttributeIntegrityInfoContent ::= SEQUENCE {
scope Scope, -- Identifies the attributes protected
signer Signer OPTIONAL, -- Authority or data originators name
attribsHash AttribsHash, -- Hash value of protected attributes
Signer ::= CHOICE ({

thisEntry [0] EXPLICIT ThisEntry,
thirdParty [1] SpecificallyIdentified,

o)

ThisEntry ::= CHOICE {
onlyOne NULL,
specific IssuerAndSerialNumber,

)

IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serial CertificateSerialNumber,

o)

SpecificallyIdentified ::= SEQUENCE {
name GeneralName,
issuer GeneralName OPTIONAL,
serial CertificateSerialNumber OPTIONAL }
(WITH COMPONENTS { ..., issuer PRESENT, serial PRESENT } |
(WITH COMPONENTS { ..., issuer ABSENT, serial ABSENT }))

Scope ::= CHOICE ({
wholeEntry [0] NULL, -- Signature protects all attribute values in this entry

selectedTypes [1] SelectedTypes,
-- Signature protects all attribute values of the selected attribute types

SelectedTypes ::= SEQUENCE SIZE (1..MAX) OF AttributeType

AttribsHash ::= HASH{HashedAttributes}

HashedAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}
-- Attribute type and values with associated context values for the selected Scope

integrityInfo OBJECT-CLASS ::= {
SUBCLASS OF {top}

KIND auxiliary
MUST CONTAIN {attributeIntegrityInfo}
ID id-oc-integrityInfo }

AnattributeIntegrityInfo Value can be created in three different ways:

a) An administrative authority can create and sign the value, and the public key to verify the signature is
known by off-line means.

b) The owner of the entry, i.e., the object represented by the entry, can create and sign the value. If the
owner has several certificates, or expected to have that in the future, the certificate has to be identified by
the CA issuing the certificate together with the certificate serial number.

c) A third party may create and sign the value. The name of the signer, the name of the CA issuing the
certificate and the certificate serial number is required.

114 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

If the scope is wholeEntry, all the applicable attributes shall be ordered as specified for a set-of type in 6.2 of Rec.
ITU-T X.509 | ISO/IEC 9594-8. If scope is selectedTypes, the ordering shall be the same as the one given in the
SelectedTypes

NOTE 1—If a user does not retrieve all the complete attributes that are defined within the Scope data type, it will not be
possible for the user to verify the integrity of the attributes.

The creator of the attributeIntegrityInfo attribute shall, when creating the attribsHash data type, use DER
encoding (see 6.2 of Rec. ITU-T X.509 | ISO/IEC 9594-8) of the attributes ordering the attributes as specified above,
and then create the hash from the resulting encoding.

NOTE 2 — The creator needs to have full knowledge of all the attribute syntaxes to create the hash.

The verifier of the integrity shall produce its own version of AttribsHash using the same procedure as above for
retrieved attributes, and then compare the result with the valuein the at tribsHash component.

NOTE 3 —The verification is only possibleif the verifier has full knowledge of al the attribute syntaxes.

An entry that shall hold an attributeIntegrityInfo attribute shall include the integrityInfo auxiliary object-
class.

20.3 Context for Protection of a Single Attribute Value

The following defines a context to hold a digital signature, along with associated control information, which provides
integrity for a single attribute value. Any attribute value contexts are included in the integrity check, excluding the
context used to hold signatures.

attributeValueIntegrityInfoContext CONTEXT ::= {

WITH SYNTAX AttributeValuelIntegrityInfo

ID id-avc-attributeValueIntegrityInfoContext }
AttributeValueIntegrityInfo ::= SIGNED{AttributeValueIntegrityInfoContent}

AttributeValueIntegrityInfoContent ::= SEQUENCE {

signer Signer OPTIONAL, -- Authority or data originators name
aVIHash AVIHash, -- Hash value of protected attribute
AVIHash ::= HASH{AttributeTypeValueContexts}

-- Attribute type and value with associated context values

AttributeTypeValueContexts ::= SEQUENCE {

type ATTRIBUTE. &id ({SupportedAttributes}),
value ATTRIBUTE. &Type ({SupportedAttributes}{@type}),
contextList SET SIZE (1..MAX) OF Context OPTIONAL,

}

The contextList shall be ordered as specified for a set-of typein 6.2 of Rec. ITU-T X.509 | ISO/IEC 9594-8.

Rec. ITU-T X.501 (10/2012) 115

| SO/l EC 9594-2:2014 (E)

SECTION 9 —DSA MODELS

21 DSA Models

This clause is concerned with general models describing various aspects of the components comprising the Directory,
Directory System Agents (DSAS). Subsequent clauses treat additional DSA models.

21.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

2111 DIB fragment: The portion of the DIB that is held by one master DSA, comprising one or more naming
contexts.

2112 context prefix: The sequence of RDNs leading from the Root of the DIT to the initial vertex of a naming
context; corresponds to the distinguished name of that vertex.

21.1.3 naming context: A subtree of entries held in asingle master DSA.

21.2 Directory Functional Model

The Directory is manifested as a set of one or more application-processes known as Directory System Agents (DSAS)
and/or LDAP servers. Each DSA provides zero, one or more of the access points. Each LDAP server provides one or
more access points. Thisisillustrated in Figure 19. Where the Directory is composed of more than one DSA or LDAP
server, it is said to be distributed. The procedures for the operation of the Directory when it is distributed are specified
in Rec. ITU-T X.518 | ISO/IEC 9594-4.

The Directory

<o
>

X.501(12)_F19

Figure 19 — The Directory Provided by Multiple DSAs

NOTE1—-A DSA will likely exhibit local behaviour and structure which is outside the scope of envisaged Directory
Specifications. For example, a DSA which is responsible for holding some or &l of the information in the DIB will normally do
so by means of a database, the interface to which isalocal matter.

A particular pair of application-processes which need to interact in the provision of directory services may be located in
different open systems. Such an interaction is carried out by means of Directory protocols, as specified in
Rec. ITU-T X.519 | ISO/IEC 9594-5, or by means of the Lightweight Directory Access Protocol (LDAP), as specified
in |[ETF RFC 4510.

NOTE 2 - LDAP server behaviours are specified in IETF RFC 4510 and may differ from DSA behaviours specified in this
clause.

Clause 23 specifies the models that are used as the basis for specifying the distributed aspects of the Directory. A
framework for the specification of operational models concerned with particular aspects of the operation of the
components of the Directory, DSAS, is provided in clauses 25 through 28.

116 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

21.3 Directory Distribution M odel

This subclause defines the principles according to which the DIB can be distributed across multiple DSAs.
NOTE 1 —The DIB may also be distributed across any number of LDAP servers, which may or may not coexist with one or more

DSAs. LDAP servers and their characteristics and behaviours are specified in IETF RFC 4510 and may differ from DSA
characteristics and behaviours specified in this clause.

Each entry within the DIB is administered by one, and only one, DSA's Administrator who is said to have
administrative authority for that entry. Maintenance and management of an entry shall take placein aDSA administered
by the administrative authority for the entry. This DSA isthe master DSA for the entry.

Each master DSA within the Directory holds a fragment of the DIB. The DIB fragment held by a master DSA is
described in terms of the DIT and comprises one or more naming contexts. A naming context is a subtree of the DIT, all
entries of which have a common administrative authority and are held in the same master DSA. A naming context starts
at a vertex of the DIT (other than the root) and extends downwards to leaf and/or non-leaf vertices. Such vertices
congtitute the border of the naming context. The superior of the starting vertex of a naming context is not held in that
master DSA. Subordinates of the non-leaf vertices belonging to the border denote the start of further naming contexts.
NOTE 2 —-The DIT is therefore partitioned into disoint naming contexts, each under the administrative authority of a single
master DSA.
NOTE 3 — A naming context in itself is not an administrative area having an administrative point or an explicit subtree
specification, but it may coincide with an administrative area.

A family of entries shall reside in a single naming context.

It is possible for a master DSA's administrator to have administrative authority for severa disjoint naming contexts. For
every naming context for which a master DSA has administrative authority, it shall logically hold the sequence of
RDNSs which lead from the root of the DIT to the initial vertex of the subtree comprising the naming context. This
sequence of RDNsis called the context prefix of the naming context.

A master DSA's administrator may delegate administrative authority for any immediate subordinates of any entry held
locally to another master DSA. A master DSA that delegated authority is called a superior DSA and the context that
holds the superior entry of one for which the administrative authority was delegated, is called the superior naming
context. Delegation of administrative authority begins with the root and proceeds downwards in the DIT; that is, it can
only occur from an entry to its subordinates.

Figure 20 illustrates a hypothetical DIT logically partitioned into five naming contexts (hamed A, B, C, D and E), which
are physicaly distributed over three DSAs (DSA 1, DSA 2, and DSA 3).

From the example, it can be seen that the naming contexts held by particular master DSAs may be configured so as to
meet a wide range of operational requirements. Certain master DSAs may be configured to hold those entries that
represent higher level naming domains within some logical part(s) of the DIB, the organizational structure of a large
company say, but not necessarily all the subordinate entries. Alternatively, master DSAs may be configured to hold
only those naming contexts representing primarily leaf entries.

From the above definitions, the limiting case for a naming context can be either a single entry or the whole of the DIT.

Whilst the logical to physical mapping of the DIT onto master DSASs is potentially arbitrary, the task of information
location and management is simplified if the master DSAs are configured to hold a small number of naming contexts.

DSAs may hold entry-copies as well as entries. Shadowed entries, the only sort of entry-copy considered in the
Directory Specifications, are maintained by means of the shadowing service described in Rec. ITU-T X.525 |
I SO/IEC 9594-9. In addition to this standardized sort of replicated information, two additional non-standardized sorts of
entry-copy may be encountered in the Directory.

— Copiesof an entry may be stored in other DSA(s) through bilateral agreement.

— Copies of an entry may be acquired by storing (locally and dynamically) a cache-copy of an entry which
results from a request.
NOTE 4 — The means by which these copies are maintained and managed is not defined in these Directory Specifications. Due to

more precise handling of features like access control, it is recommended that the shadow service be used instead of using
cached-copies.

Rec. ITU-T X.501 (10/2012) 117

| SO/l EC 9594-2:2014 (E)

Root
DSA2
C=ww C=VV DSA3
DSA1

Context A Context B ™S Context D
Context C
O =DEF
O=ABC
ou=6G Context E
ou=J OouU =K
ou =1
CN=I CN=m CN=n

N = N = N =
c o CN=p CN=g X.501(12)_F20

. DIB object entry
O DIB alias entry

Figure 20 — Hypothetical DIT

A DSA holding an entry-copy is a shadow DSA for that entry. A shadow DSA may hold a copy of a naming context or a
portion thereof. The specification of the portion of a naming context that is shadowed is termed a unit of replication.

As described in 9.2 of Rec. ITU-T X.525 | ISO/IEC 9594-9, a unit or replication is defined within the Directory
information model, and a specification mechanism is provided. The shadowing mechanism in the Directory is based on
the definition of the subset of the DIT that will be shadowed. This subset is called unit of replication. The unit of
replication comprises a three-part specification which defines the scope of the portion of the DIT to be replicated, the
attributes to be replicated within that scope, and the requirements for subordinate knowledge. The unit of replication
also implicitly causes the shadowed information to include policy information in the form of operational attributes held
in entries and subentries (e.g., access control information) which isto be used to correctly perform Directory operations.
The prefix information to be included begins at an autonomous administrative point and extends to the replication base
entry.

The originator of a Directory request is informed (via fromEntry) as to whether information returned in response to a
request is from an entry-copy or not. A service control, dontUseCopy, iS defined which alows the user to prohibit the
use of entry-copies to satisfy the request (although copy information may be used in name resolution).

In order for a DUA to begin processing a request, it shall hold some information, specifically the presentation address,
about at least one DSA that it can contact initially. How it acquires and holds this information is alocal matter.

During the process of modification of entries, it is possible that the Directory may become inconsistent. This will be
particularly likely if modification involves aliases or aliased objects which may be in different DSAs. The inconsistency
shall be corrected by specific administrator action, for example, to delete aliases if the corresponding aliased objects
have been deleted. The Directory continues to operate during this period of inconsistency.

118 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

SECTION 10 - DSA INFORMATION MODEL

22 Knowledge

221 Definitions
For the purposes of this Directory Specification, the following definitions apply:
2211 category: A characteristic of a knowledge reference that qualifiesit as identifying a master or a shadow DSA.

22.1.2 commonly usable: A characteristic of areplicated areathat permits general distribution of the access point of
the DSA holding it; acommonly usable replicated areais normally a complete shadow copy of a naming context.

22.1.3 cross reference: A knowledge reference containing information about a DSA that holds an entry or entry-
copy. Thisisused for optimization. The entry need have no superior or subordinate relationship to any entry in the DSA
holding the cross reference.

2214 DIT bridge knowledge reference: A knowledge reference containing information about a DSA that holds
entries in a different DIT. The entry need have no superior or subordinate relationship to any entry in the DSA holding
the other DIT.

22.1.5 immediate superior reference: A knowledge reference containing information about a DSA that holds the
naming context (or a commonly usable replicated area derived from it) that is immediately superior to one held by the
DSA for which the knowledge referenceis relevant.

22.1.6 knowledge (information): DSA operational information held by a DSA that it uses to locate remote entry or
entry-copy information.

22.1.7 knowledge reference: Knowledge which associates, either directly or indirectly, a DIT entry or entry-copy
with the DSA in which it is located.

22.1.8 master knowledge: Knowledge of the master DSA for a naming context.

22.19 non-specific subordinate reference: A knowledge reference containing information about a DSA that holds
one or more unspecified subordinate entries or entry-copies.

22.1.10 referencepath: A continuous sequence of knowledge references.
22.1.11 root naming context: The set of subordinate references of the root to be held by thefirst level DSAs.

22.1.12 shadow knowledge: Knowledge of one or more shadow DSAs for a naming context (if the knowledge is
specific) or contexts (if non-specific).

22.1.13 subordinate reference: A knowledge reference containing information about a DSA that holds a specific
subordinate entry or entry-copy.

22.1.14 superior reference: A knowledge reference containing information about a DSA considered capable of
resolving (i.e., finding any entry within) the whole of the DIT.

22.2 Introduction

The DIB is distributed across a large number of master DSAS, each holding and having administrative authority for a
DIB fragment. The principles governing this distribution are specified in 21.3.

In addition, these and other DSAs may hold copies of portions of the DIB.

It is a requirement of the Directory that, for particular modes of user interaction, the distribution of the directory be
rendered transparent, thereby giving the effect that the whole of the DIB appears to be within each and every DSA.

In order to support this operational requirement, it is necessary that each DSA be able to gain access to the information
held in the DIB associated with any name (i.e., any object's distinguished or alias names). If the DSA does not itself
hold an object entry or object entry-copy associated with the name, it shall be able to interact with a DSA that does,
either directly or indirectly by means of direct and/or indirect interactions with other DSAS.

When the Directory user indicates that entry-copy information shall not be used to satisfy his request, the DSA
servicing the request must be able to gain access, directly or indirectly, to the master DSA holding the entry information
associated with the name supplied in the user's request.

Rec. ITU-T X.501 (10/2012) 119

| SO/l EC 9594-2:2014 (E)

This clause defines knowledge as that DSA operationa information required to achieve these technical objectives.
Subsequent clauses specify the representation of knowledge in the context of a general DSA information model.
NOTE — The preceding statements represent technical objectives of the Directory. Readlization of these technical objectives

depends on other matters (e.g., policy matters) in addition to a consistent configuration of knowledge in DSAs. Clauses 25
through 28 establish a framework to address some of these matters.

Annex P contains an illustration of the modelling of knowledge. The illustration is based on the hypothetical DIT given
in Figure 20.

22.3 Knowledge References

Knowledge is that operational information held by a DSA that represents a partial description of the distribution of entry
and entry-copy information held in other DSAs. Knowledge is used by a DSA to determine an appropriate DSA to
contact when arequest received from a DUA or another DSA cannot be satisfied with locally held information.

Knowledge consists of knowledge references. A knowledge reference associates, either directly or indirectly, the name
of aDirectory entry with a DSA holding the entry or a copy of the entry.

2231 Knowledge Categories
There are two categories of knowledge reference: master knowledge references and shadow knowledge references.
Master knowledge is knowledge of the access point of the master DSA for anaming context.

Shadow knowledge is knowledge of DSAs holding replicated Directory information; it may be distributed by shadow
suppliers to shadow consumers by means of the replication procedures described in Rec. ITU-T X.525 |
ISO/IEC 9594-9. Shadow knowledge is knowledge of the access point of a set of one or more shadow DSAs for a
replicated area (a naming context or a portion thereof).

A DSA that is the object of shadow knowledge shall hold a commonly usable replicated area. One form of replicated
area that is commonly usable is a complete shadow copy of a naming context. An incomplete shadow copy of a naming
context held by a DSA may be commonly usable if it is sufficiently complete to satisfy the interrogation requests that
users commonly make to the DSA. It isthe responsibility of the administrative authority who causes shadow knowledge
of a DSA holding an incomplete copy of a naming context to be distributed that the replicated area be commonly
usable.

A given DSA may hold both master and shadow knowledge, the latter involving multiple shadow DSAS, regarding a
particular naming context. The specific knowledge used in the processing of arequest received from a DUA or another
DSA, eg., in the name resolution process, is determined by a DSA specific selection procedure whereby the DSA
computes, based on any non-standardized criteria deemed appropriate by the administrative authority, an access point of
aDSA capable of progressing the request.
NOTE — The Directory Specifications do not constrain how master and shadow knowledge is used by DSAs (other than
indirectly through constraints on DSA behaviour, for example, the dontusecopy and copyshallbo Service controls as
specified in Rec. ITU-T X.511 | ISO/IEC 9594-3).

22.3.2 Knowledge Reference Types

The knowledge possessed by a DSA is defined in terms of a set of one or more knowledge references where each
reference associates, either directly or indirectly, entries (or entry-copies) of the DIB with the DSA which holds those
entries (or entry-copies).

A DSA may hold the following types of knowledge reference:

superior references;

— immediate superior references;

— subordinate references;

— non-specific subordinate references; and
— cross references.

A knowledge reference of a particular type shall be either a master or shadow knowledge reference.

In addition, a DSA that participates in shadowing as a shadow supplier and/or consumer may hold one or more of the
following types of knowledge reference:

— supplier references; and
— consumer references.

These knowledge reference types are described below.

120 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

22.3.2.1 Superior References

A superior reference consists of
— the Access Point of aDSA.

Each non-first level DSA (see 22.5) shall maintain at |east one superior reference. The superior reference shall form part
of areference path to the root. Unless some method outside the standard is employed to ensure this, for example within
a DMD, this shall be accomplished by referring to a DSA which holds a naming context or replicated area whose
context prefix has fewer RDNs than the context prefix with fewest RDNs held by the DSA holding the reference.

22.3.2.2 Immediate Superior References

An immediate superior reference consists of:

— the context prefix of a naming context that is immediately superior to one held (as entries or
entry-copies) by the DSA holding the reference;

— the Access Point of the DSA holding that naming context (as entries or entry-copies).

Immediate superior references are an optiona reference type that only occur when there is a hierarchical operationa
binding to the referenced DSA (see clause 24 in Rec. ITU-T X.518 | ISO/IEC 9594-4). In the absence of such explicit
operational bindings, an immediate superior naming context may be referenced by means of a cross reference.

22.3.2.3 Subordinate References

A subordinate reference consists of':

— acontext prefix corresponding to a naming context immediately subordinate to one held (as entries or
entry-copies) by the DSA holding the reference;

— the Access Point of the DSA holding that naming context (as entries or entry-copies).

All naming contexts immediately subordinate to naming contexts held by a master DSA shall be represented by
subordinate references (or non-specific subordinate references as described in 22.3.2.4).

In the case where a DSA holds entry-copies, the subordinate naming contexts may or may not be represented,
depending on the shadowing agreement in effect.

22.3.2.4 Non-Specific Subordinate Refer ences

A non-specific subordinate reference consists of:

— the Access Points of a DSA that holds the entries (or entry-copies) of one or more immediately
subordinate Naming Contexts.

This type of reference is optional, to allow for the case in which a DSA is known to contain some subordinate entries
(or entry-copies) but the specific RDNs of those entries (or entry-copies) is not known.

For each naming context that it holds, a master DSA may hold zero or more non-specific subordinate references. DSAs
accessed via a non-specific reference shall be able to resolve the request directly (either success or failure). In the event
of failure, aserviceError reporting a problem of unableToProceed is returned to the requestor.

In the case where a DSA holds entry-copies, the non-specific subordinate references may or may not be represented,
depending on the shadowing agreement in effect.

22.3.2.5 CrossReferences

A cross reference consists of:
— aContext Prefix;
— the Access Point of a DSA which holds the entries or entry-copies for that naming context.

This type of reference is optional and serves to optimize Name Resolution. A DSA may hold any number (including
zero) of cross references.

22.3.2.6 Supplier References

A supplier reference held by a shadow consumer DSA consists of:

— the context prefix of the naming context from which the replicated area received from the shadow
supplier is derived;

— the identifier of the shadowing agreement that the shadow consumer has established with a shadow
supplier;

Rec. ITU-T X.501 (10/2012) 121

| SO/l EC 9594-2:2014 (E)

— the Access Point of the shadow supplier DSA;
— anindication of whether the shadow supplier of the replicated areais or is not the master; and
— optionally, the access point of the master DSA if the supplier is not the master.

22.3.2.7 Consumer References

A consumer reference held by a shadow supplier DSA consists of :

— the context prefix of a naming context from which the replicated area provided by the shadow supplier is
derived;

— theidentifier of the shadowing agreement that the shadow supplier has established with a consumer; and
— the Access Point of the shadow consumer DSA.

22.4 Minimum Knowledge
It isaproperty of the Directory that each entry can be accessed independently of where arequest is generated.

It is also a property of the Directory that, to achieve adequate levels of performance and availability, some requests can
be satisfied using a copy of an entry, while other requests may only be satisfied using the entry itself (i.e., the
information held at the master DSA for the entry).

To realize these location independence properties of the Directory, each DSA shall maintain a minimum quantity of
knowledge which depends on the particular configuration of the DSA.

The objective of these minimum requirements is to permit the distributed name resolution process to establish a
reference path, as a continuous sequence of master knowledge references, to al naming contexts within the Directory.

It is aso arequirement that the minimum knowledge consists of references that can be processed by the DSA (see 12.3
of Rec. ITU-T X.519 | ISO/IEC 9594-5).

Beyond these minimum requirements, additional knowledge may be employed to establish other reference paths to
copies of naming contexts. Cross reference knowledge (master and shadow) may be employed to establish optimized
reference paths to naming contexts and copies of naming contexts.

The minimum knowledge requirements for DSAs are specified in 22.4.1-22.4.4.

2241 Superior Knowledge

Each DSA that is not a first level DSA shall maintain at least one superior reference. Additional superior references
may be held for operational reasons as aternative paths to the root of the DIT.

22.4.2 Subordinate Knowledge

A DSA that isthe master DSA of a naming context shall maintain subordinate or non-specific subordinate references of
category master knowledge to each master DSA holding (as master) an immediately subordinate naming context.

2243 Supplier Knowledge

For each shadow supplier DSA that suppliesit with areplicated area, a shadow consumer DSA shall maintain a supplier
reference. If the shadow consumer's subordinate knowledge for the copy of the naming context is incomplete, it shall
use its supplier reference to establish a reference path to subordinate information. This procedure is described in
clause 20 of Rec. ITU-T X.518 | ISO/IEC 9594-4.

2244 Consumer Knowledge

For each shadow consumer DSA that it supplies with a replicated area, a shadow supplier DSA shall maintain a
consumer reference.

225 First Level DSAs

The DSA referenced by a superior reference assumes the burden of establishing areference path to all of the DIT that is
unknown to the referring DSA. A DSA referenced by other DSAs may itself maintain one or more superior references.
This recursive superior referral process stops at a set of first level DSAs upon whom the ultimate responsibility for the
establishment of reference pathsfalls.

A first level DSA is characterized as follows:
a) it doesnot hold asuperior reference;

122 Rec. ITU-T X.501 (10/2012)

| SO/IEC 9594-2:2014 (E)
b) it may hold one or more naming contexts immediately subordinate to the root of the DIT (as master or
shadow DSA for the naming context); and

¢) it holds subordinate references (of category master and/or shadow) and non-specific subordinate
references (of category master and/or shadow) which account for all the naming contexts immediately
subordinate to the root of the DIT which it does not itself hold.

The administrative authorities for first level DSAs are jointly responsible for the administration of the immediate
subordinates of the root of the DIT. This set of subordinate references is called the root naming context. The procedures
governing this joint root naming context are determined by multilateral agreements which are outside the scope of these
Directory Specifications.

The subordinate references making up the root naming context are conceptually placed in DSA specific entries (DSES)
immediately subordinate to the root DSE (see 24.2). The DSE type shall be subr.

NOTE — In arelated entries environment, it is possible that some first-level entries will have the same name, creating multiple
DITs. The administrative authorities for the associated first level DSASs are jointly responsible for the administration of these
DITs.

To limit the quantity of interrogation requests that might be directed to a master first level DSA (i.e., aDSA that isa
master for a naming context immediately subordinate to the root of the DIT), it is possible to establish shadow first level
DSAs for that master first level DSA. Such shadow DSAs hold copies of the entries and the root naming context held in
its master (or supplier) first level DSA. They therefore may serve as a superior reference for non-first level DSAs.

22.6 Knowledgereferencesto LDAP servers

LDAP does not have the concept of knowledge references. However, DSA may have knowledge references to LDAP
servers in the form of subordinate references, non-specific subordinate references and cross references. An LDAP
server may also beincluded in the root context held by first level DSAS.

Thereferences to an LDAP server may be both of category master and/or shadow.

23 Basic Elements of the DSA I nformation M odel

23.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:
2311 DSA information tree: The set of all DSEs held by a DSA when viewed from the perspective of their names.

23.1.2 DSA shared attribute: An operationa attribute in the DSA information model associated with a particular
name whose value or values, if held by several DSAS, are identical (except during periods of transient inconsistency).

23.1.3 DSA specific attribute: An operational attribute in the DSA information model associated with a particular
name whose value or values, if held by several DSAS, need not be identical.

2314 DSA specific entry (DSE): The information held by a DSA that is associated with a particular name; the DSE
may (but need not) contain the information associated with the corresponding Directory entry.

2315 DSE type: Anindication of the particular purpose of a DSE; a DSE may serve multiple purposes and thus
have multiple types.

23.2 Introduction

The Directory information model describes how the Directory as a whole represents information about objects having a
distinguished name and optionally alias names. In its description of the DIT, entries and attributes, the composition of
the Directory as a set of potentially cooperating DSAsiis abstracted from the model.

The DSA information model, on the other hand, is especially concerned with DSAs and the information that must be
held by DSAs in order that the set of DSAs comprising the Directory may together realize the Directory information
model. It is concerned with:

— how Directory information (object and alias entries and subentries) is mapped onto DSAS,

— how copies of Directory information may be held by DSAS;

— the operational information required by DSAs to perform name resolution and operation evaluation; and
— the operational information required by DSAs to engage in shadowing and to use shadowed information.

Rec. ITU-T X.501 (10/2012) 123

| SO/l EC 9594-2:2014 (E)

The purpose for modelling a representation of DSA operational information such as knowledge is to establish the
general framework for management access to DSA operational information.

23.3 DSA Specific Entriesand their Names

In the DSA information model, the information repositories holding the information associated with a particular name
are termed DSA Specific Entries (DSES). Directory entries exist in the DSA information model only as information
elements from which DSEs may be composed. Operational attributes specific to the DSA information model comprise
the other variety of information element from which DSEs may be composed.

If a DSA holds any information concerning a name directly (i.e., information held in a repository identified by the
name), it is said to know or have knowledge of that name.

For each name known by a DSA, all the information held by the DSA directly associated with the name other than the
name itself is represented by one DSE. This latter information (i.e., the RDN and its relationship to the DIT) is not
represented explicitly as attributes in the DSA information model; the set of names known by a DSA constitute an
implicit fabric on which the associated DSEs can be considered to be attached.

NOTE — One consequence of the way the DSA information model handles names is that, for DSEs that are not of type entry,
alias or subentry, the AVA(Ss) expressing the RDN of the DSE is not modelled as held in (an) attribute(s).

The set of al names known by a DSA, together with the information associated with each name, when viewed from the
perspective of these names, is termed the DSA information tree for that DSA. A DSA information tree is depicted in
Figure 21.

Root DSE
Root @
‘ DSA-specific
attributes
DSE
Adel,g: ittra,z ;e Directory DSA-shared DSA-specific
(AP) entry attributes attributes
DSE
Subentry @
‘ ‘ Directory DSA-shared DSA-specific
subentry attributes attributes
AP
DSE (e.g., for subordinate references)
‘ ‘ ‘ ‘ ‘ ‘ ‘ DSA-shared DSA-specific
attributes attributes
X.501(12)_F21

Figure21 — A DSA Information Tree

The minimum information that a DSA may associate with a name, and thus know the name, consists of an expression of
the purpose for which the name is known (i.e., the role played by the name in the operation of the DSA knowing it).
This purpose is represented in the DSA information model by the DSA specific attribute, dseType.

In addition, a DSE may hold other information associated with the name such as an entry or entry-copy, DSA shared
attributes and DSA specific attributes.

A DSE may represent a Directory entry directly, a portion of an entry or no Directory information. The information held
in aDSE varies, depending on its type or purpose. In general, the following sorts of DSEs may occur in DSASs.

124 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

— A DSE directly representing a Directory entry contains the user and operational attributes corresponding
to that Directory entry (as depicted in DSE 2 in Figure 21). The DSE may also contain DSA shared and
DSA specific attributes.

— A DSE representing a portion of an entry (as a result of shadowing) contains some of the user and
operational attributes corresponding to the Directory entry, DSA specific attributes and may also contain
DSA shared attributes.

— A subentry DSE representing, for example prescriptive ACI or collective attributes, contains the relevant
user and operational attributes corresponding to a Directory subentry (as depicted in DSE 3 in Figure 21).
The DSE may also contain DSA shared and DSA specific attributes.

— A DSE representing no Directory entry information contains only DSA shared and/or DSA specific
attributes (as depicted in DSEs 1 and 4 in Figure 21). For example, a DSE representing a subordinate
reference may have a DSA shared attribute that indicates the master access point and a DSA specific
attribute to indicate that the DSE is a subordinate reference.

NOTE 3—-The DSE is a conceptua entity which facilitates the specification and modelling of information components in a

consistent and convenient way. Although DSEs are said to "hold" or "store" information, this is not intended to impose any
particular constraints or data structure on implementations.

23.4 Basic Elements

A DSE is comprised of three basic elements: the DSE type, some number of DSA operational attributes (the DSE type
is one of these) and optionally an entry or entry-copy.

234.1 DSA Operational Attributes

Two varieties of operational attribute occur in the DSA information model that do not correspond to information in
Directory entries. Those are DSA shared and DSA specific attributes.

A DSA shared attribute is an operational attribute in the DSA information model associated with a particular name
whose value or values, if held by several DSAS, are identical (except during periods of transient inconsistency). A DSA
may hold a shadow-copy of a DSA shared attribute.

A DSA specific attribute is an operationa attribute in the DSA information model associated with a particular name
whose value or values, if held by several DSAS, need not be identical. A DSA specific attribute represents operational
information that is specific to the functioning of the DSA holding it. A DSA cannot hold a shadow-copy of a
DSA specific attribute.

NOTE — While a shadow-supplier DSA may provide a shadow-consumer DSA with a DSA specific attribute, thisis conceptually

not a shadow-copy of information held by the supplier but, rather, information produced by the supplier for the consumer which
the consumer may then use and modify.

2342 DSE Types

The type of a DSE, represented in the DSA information model by the DSA specific operational éttribute dseType,
indicates the particular purpose (or role) of aDSE. This purpose isindicated by the named bits of the single value of the
dseType atribute. As a DSE may serve several purposes, several named bits of the dseType attribute may be set to
represent these purposes. A number of combinations of named bits that are likely to occur are specified in Annex O.

The phrase "a DSE of type x" is used in the Directory Specifications to indicate that the named bit x of the DSE's
dseType dattribute has been set. For a DSE of type x, other named bits may or may not be set, as required. The aternate
phrase "the DSE type includes x" may also be used.

The syntactic specification of the dseType oOperational attribute may be expressed using the attribute notation as
follows:

dseType ATTRIBUTE ::= {
WITH SYNTAX DSEType
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-dseType }

This DSA specific operational attribute is managed by the DSA itself.

Rec. ITU-T X.501 (10/2012) 125

| SO/l EC 9594-2:2014 (E)

The ASN.1 type that represents the syntax of the possible values of the dseType attribute isbsEType. Itsdefinitionis:

DSEType ::= BIT STRING {

root (0), -- root DSE

glue (1), -- represents knowledge of a name only

cp (2), -- context prefix

entry (3), -- object entry

alias (4), -- alias entry

subr (5), -- subordinate reference

nssr (6), -- non-specific subordinate reference

supr (7), -- superior reference

Xr (8), -- cross reference

admPoint (9), -- administrative point

subentry (10), -- subentry

shadow (11), -- shadow copy

immSupr (13), -- immediate superior reference

rhob (14), -- rhob information

sa (15), -- subordinate reference to alias entry

dsSubentry (16), -- DSA Specific subentry

familyMember (17), -- family member

ditBridge (18)} -- DIT bridge reference
--writeableCopy (19) writeable copy (currently not used)

The values of DSEType are:

a)

b)

0)
d)
€
)
9)

0)
p)
o)
r

root: The root DSE contains DSA specific attributes, used by the DSA, that characterize that DSA as a
whole. The name corresponding to the root DSE is the degenerate name consisting of a sequence of zero
RDNSs.

NOTE - Information that characterizes a DSA that is to be made available via the Directory abstract service is
contained in the DSA's entry. A DSA may, but need not, hold its own entry or a copy of its own entry.

glue: A glue DSE represents knowledge of aname only. A DSA holding a context prefix DSE or a cross
reference DSE may hold glue DSES to represent the names of the superiors of the context prefix or cross
reference DSE if no other operational information (e.g., knowledge) is associated with those names. This
isillustrated in Figure 22. A DSE of type glue shall not have any other psEType bit set.

cp: The DSE representing the context prefix of a naming context.

entry: A DSE that holds an object entry.

alias: A DSE that holds an alias entry.

subr: A DSE that holds a specific knowledge attribute to represent a subordinate reference.

nssr: A DSE that holds a non-specific knowledge attribute to represent a non-specific subordinate
reference.

supr: A DSE that holds a specific knowledge attribute to represent the DSASs superior references.
xr: A DSE that holds a specific knowledge attribute to represent a cross reference.

admPoint: A DSE corresponding to an administrative point.

subentry: A DSE that holds a subentry.

shadow: A DSE that holds a shadow-copy of an entry (or part of an entry) or other information
(e.g., knowledge) received from a shadow-supplier; this named bit is set by the shadow consumer.

immSupr: A DSE that holds a specific knowledge attribute to represent an immediate superior reference.

rhob: A DSE that holds administrative point and subentry information received from a superior DSA in
a Relevant Hierarchical Operationa Binding (i.e., in either a Hierarchical Operational Binding or a Non-
specific Hierarchical Binding as described in clauses 24 and 25 of Rec. ITU-T X.518 | ISO/IEC 9594-4).

sa: A qualifier of a subr DSE indicating that the subordinate naming context entry isan alias.
dssSubentry: A DSE that holds a DSA specific subentry.

familyMember: A DSE that holds afamily member.

ditBridge: A DSE that holdsaDIT bridge reference.

The use of this operationa attribute to represent aspects of the DSA information model is described in clause 23.

126 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

24 Representation of DSA Information

This clause treats the representation of DSA information. It describes the representation of DSA operational information
(knowledge), Directory user information and Directory operational information.

24.1 Representation of Directory User and Operational Information

This clause specifies the representation of Directory user and Directory operational information in the DSA information
model.

24.1.1 Object Entry

An object entry is represented by a DSE of type entry which contains the user and Directory operational attributes
associated with the Directory entry. The name of the DSE is the name of the object entry (i.e., the object's distinguished
name).

If the DSE holds a copy of the entry, the DSE type includes shadow.

2412 AliasEntry

An dlias entry is represented by a DSE of type alias which contains the attributes associated with the alias entry (i.e.,
the RDN attributes and the aliased object name attribute). The name of the DSE is the name of the alias entry.

If the DSE holds a copy of the alias entry, the DSE type includes shadow.

24.1.3 Administrative Point

An administrative point is represented by a DSE of type admPoint Which contains the attributes associated with the
administrative point. The name of the DSE is the name of the administrative point.

If the DSE represents an entry, the DSE type includes entry. If the DSE holds a copy of the administrative point
information, the DSE type includes shadow.

2414 Subentry

A subentry is represented by a DSE of type subentry Which contains the operational and user information associated
with the subentry. The name of the DSE is the name of the subentry.

If the DSE holds a copy of the subentry, the DSE type is subentry and shadow.

2415 Family member

A family member (including the ancestor) is represented by a DSE of type £amilyMember. The ancestor aso is of DSE
type entry; it isthe only family member that is permitted to have this DSE type.

24.2 Representation of Knowledge References

A knowledge reference consists of a DSE of an appropriate type which holds a correspondingly appropriate DSA
operational attribute and which is identified by a name bearing a defined relationship to the naming context held by the
referenced DSA.

The name of this DSE shall be the primary distinguished name and may include aternative names and context
information if they are present in the context prefix of the naming context held by the referenced DSA. In the case of a
DSE that holds a shadow, the name of the DSE may include a subset of the alternative names. In the case of a DSE that
is not a copy, the name of the DSE shall include all distinguished names.

NOTE — Name resolution is enhanced if every distinguished value (and thus every alternative distinguished name) is present.

2421 Knowledge Attribute Types

DSA operationa attributes are defined in the DSA information model to expressa DSA's:
— knowledge of its own access point;
— superior knowledge;
— gpecific knowledge (its subordinate references);
— non-specific knowledge (its non-specific subordinate references);
— knowledge of its supplier(s), optionally including the master, if it is a shadow consumer;
— knowledge of its consumer(s) if it is a shadow supplier;

Rec. ITU-T X.501 (10/2012) 127

| SO/l EC 9594-2:2014 (E)
— knowledge of secondary shadows, if it is a shadow supplier; and
— knowledge of another DIT.
Object Identifier values are assigned in Annex F for these operational attributes.
24.2.1.1 My Access Point

ThemyaccessPoint oOperational attribute typeis used by a DSA to represent its own access point. It isa DSA specific
attribute. All DSAs shall hold this attribute in their root DSE. It is single-valued and managed by the DSA itself.

myAccessPoint ATTRIBUTE ::= {
WITH SYNTAX AccessPoint
EQUALITY MATCHING RULE accessPointMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-myAccessPoint }

The ASN.1 type AccessPoint is defined in Rec. ITU-T X.518 | ISO/IEC 9594-4. Its ASN.1 specification is
reproduced here for the convenience of the reader.

AccessPoint ::= SET (
ae-title [0] Name,
address [1] PresentationAddress,

protocolInformation [2] SET SIZE (1l..MAX) OF ProtocolInformation OPTIONAL,
-- [6] Not to be used

-}
How a DSA obtains the information held in myAccessPoint isnot described in the Directory Specifications.
An attribute of themyaccessPoint attribute type shall be held in a DSE of type root.

The information held in myaccessPoint may be employed in the DOP when establishing or modifying an operational
binding.

24.2.1.2 Superior Knowledge

The superiorknowledge operational attribute type is used by a non-first level DSA to represent its superior
references. It is a DSA specific attribute. All non-first level DSAs shall hold this attribute in their root DSE. It is multi-
valued and managed by the DSA itself.

superiorKnowledge ATTRIBUTE ::= {
WITH SYNTAX AccessPoint
EQUALITY MATCHING RULE accessPointMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-superiorKnowledge }

A DSA may acquire the information held in superiorknowledge by means not described in the Directory
Specifications. It might also construct it from its immediate superior references, e.g., from its immediate superior
reference whose context prefix has the least number of RDNsin its name.

The superiorKnowledge dttributetypeisheldin a DSE of type root.

The information held in superiorknowledge may be employed by a DSA when constructing a continuation
reference returned in a DAP or DSP referral or when performing chaining.

24.2.1.3 Specific Knowledge

Specific knowledge consists of the access points for the master DSA of a naming context and/or shadow DSASs for that
naming context. It is specific because the context prefix of the naming context is known and associated with the access
point information. Specific knowledge is represented by the specificknowledge operationa attribute type. It is a
DSA shared attribute, is single-valued, and managed by the DSA itself.

specificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-specificKnowledge }

128 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The ASN.1 type MasterAndShadowAccessPoints iS defined in Rec. ITU-T X.518 | ISO/IEC 9594-4. Its ASN.1
specification is reproduced here for the convenience of the reader.

MasterAndShadowAccessPoints ::= SET SIZE (1l..MAX) OF MasterOrShadowAccessPoint
MasterOrShadowAccessPoint ::= SET {
COMPONENTS OF AccessPoint,
category [3] ENUMERATED ({
master (0),
shadow (1)} DEFAULT master,

chainingRequired [5] BOOLEAN DEFAULT FALSE,

A DSA may acquire the information held in specificKnowledge by means not described in the Directory
Specifications. In the case of a cross reference (DSE of type xr), it might also construct it from information received in
the crossReference component of chainingResults of a DSP reply. In the case of a subordinate reference (DSE
of type subr), it might construct it from information received in the DOP when establishing or modifying aHOB.

The specificKnowledge dttribute type is held in a DSE of type subr, immSupr, Or xr. It is used by a DSA to
represent subordinate, immediate superior and cross references.

The information held in specificknowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral (or when performing chaining) and when constructing Shadowed DSA Specific
Entries (SDSES) of type subr, immSupr, or xr provided in the DISP.

24.2.1.4 Non-Specific Knowledge

Non-specific knowledge consists of the access points for the master DSA of one or more naming contexts and/or
shadow DSASs for the same one or more naming contexts. It is non-specific because the context prefixes of the naming
context(s) is (are) not known. The immediate superior of the naming context(s) is known, however, and the access point
information is associated with its name. Non-specific knowledge is represented by the nonspecificKnowledge
operationa attribute type. It isa DSA shared attribute, is multi-valued and managed by the DSA itself.

nonSpecificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-nonSpecificKnowledge }

The MasterandShadowAccessPoints value consists of an access point for a master DSA holding one or more
subordinate naming contexts, and zero or more access points of DSAs holding shadows of some or all of these naming
contexts.

A DSA may acquire the information held in nonsSpecificknowledge by means not described in the Directory
Specifications. In the case of a non-specific subordinate reference (DSE of type nssr), it might also construct it from
information received in the DOP when establishing or modifying a NHOB.

The nonspecificKnowledge ditribute type is held in a DSE of type nssr. It is used to represent non-specific
subordinate references.

The information held in nonspecificKknowledge may be employed by a DSA when constructing a continuation
reference returned in aDAP or DSP referral (or when performing chaining) and when constructing SDSEs of typenssr
provided in the DISP.

24.2.1.5 Supplier Knowledge

The supplier knowledge of a shadow consumer DSA consists of the access point(s) and shadowing agreement
identifier(s) for its supplier(s) of a copy (or copies) of areplicated area. Optionally, if the supplier is not the master of
the naming context from which a replicated area is derived, the access point of the master may be included in supplier
knowledge. Supplier knowledge is represented by the supplierKnowledge oOperationa attribute type. It is
DSA specific, multi-valued and managed by the DSA itself.

The ASN.1 syntax for a value of supplierKnowledge iS SupplierInformation. A value of this attribute is
composed of a shadow supplier DSA's access point and the agreement 1D of the shadowing agreement between the
supplier DSA and the consumer DSA holding the DSA specific attribute (expressed as a value of the type
SupplierOrConsumer), an indication of whether the supplier of the replicated area is or is not the master of the
naming context from which it is derived, and, if not, optionally, the access point of the master DSA.

Rec. ITU-T X.501 (10/2012) 129

| SO/l EC 9594-2:2014 (E)

SupplierOrConsumer ::= SET {
COMPONENTS OF AccessPoint, -- supplier or consumer
agreementID [3] OperationalBindinglID,
-}
SupplierInformation ::= SET {
COMPONENTS OF SupplierOrConsumer, -- supplier
supplier-is-master [4] BOOLEAN DEFAULT TRUE,

non-supplying-master [5] AccessPoint OPTIONAL,

supplierKnowledge ATTRIBUTE ::= {
WITH SYNTAX SupplierInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-supplierKnowledge }

A DSA may acquire the information held in supplierknowledge by means not described in the Directory
Specifications. A shadow consumer DSA might also construct it from information received in the DOP when
establishing or modifying a shadowing agreement.

The supplierKnowledge attribute type is held in a DSE of type cp. It is used to represent one or more supplier
references. All shadow consumer DSAs shall hold avalue of this attribute for each shadowing agreement they engagein
as a consumer.

The information held in supplierknowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral. The agreementID component (its type, operationalBindingID, is defined in
28.2) of supplierknowledge isrequired in the operations of the DOP for managing a shadowing agreement and in all
the DISP operations.

24.2.1.6 Consumer Knowledge

The consumer knowledge of a shadow supplier DSA consists of the access point(s) and shadowing agreement
identifier(s) for the consumer(s) of a copy (or copies) of a naming context provided to them by the supplier. Consumer
knowledge is represented by the consumerknowledge Operationa attribute type. It is DSA specific, multi-valued and
managed by the DSA itself.

The ASN.1 syntax for a value of consumerkKnowledge iS ConsumerInformation (Which has the same syntax as
SupplierOrConsumer, but refers to a consumer access point).

ConsumerInformation ::= SupplierOrConsumer -- consumer
consumerKnowledge ATTRIBUTE ::= {
WITH SYNTAX ConsumerInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-consumerkKnowledge }

A DSA may acquire the information held in consumerknowledge by means not described in the Directory
Specifications. A shadow supplier DSA might also construct it from information received in the DOP when establishing
or modifying shadowing agreements.

The consumerKnowledge éttribute type is held in a DSE of type cp. It is used to represent one or more consumer
references. All shadow supplier DSAs shall hold a value of this attribute for each shadowing agreement they engage in
asasupplier.

The agreementID component of consumerKnowledge iS required in the operations of the DOP for managing a
shadowing agreement and in all the DISP operations.

24.2.1.7 Secondary Shadow Knowledge

Secondary shadow knowledge consists of information a supplier DSA (e.g., a master DSA) may choose to maintain
regarding consumer DSAs that are engaged in secondary shadowing from its perspective. Secondary shadow knowledge
is represented by the secondaryshadows operational attribute type. It is DSA specific, multiple-valued and managed
by the DSA itself. The ASN.1 syntax for a value of secondaryShadows iS SupplierAndConsumers. It consists of
the access point of a shadow supplier and alist of its direct consumers.

130 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

SupplierAndConsumers ::= SET {
COMPONENTS OF AccessPoint, -- supplier
consumers [3] SET OF AccessPoint,
-}
secondaryShadows ATTRIBUTE ::= {
WITH SYNTAX SupplierAndConsumers
EQUALITY MATCHING RULE supplierAndConsumersMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-secondaryShadows }

The consumers component of SuppliersAndConsumers contains only access points of DSAs that hold commonly
usabl e copies of areplicated area.

A supplier DSA may obtain the information required to construct values of this attribute from a consumer DSA by
following the procedure described in 23.1.1 of Rec. ITU-T X.518 | ISO/IEC 9594-4.

The secondaryshadows dattribute typeis held in a DSE of type cp.

Support for secondary shadow knowledge is optional.
24.2.1.8 DIT Bridge Knowledge

A master DSA of a naming context in another DIT is represented by a ditBridgeKnowledge, Which consists of a
domain identifier and its access point. The diTBridgeKnowledge oOperational attribute contains the
DITBridgeKnowledge Of all known such DSAs. It is a multi-valued, DSA shared attribute and is managed by the
DSA administrator. This attribute is held in a DSE of type root, which additionally gets the DSE type ditBridge for
DIT bridge reference.

ditBridgeKnowledge ATTRIBUTE ::= {
WITH SYNTAX DitBridgeKnowledge
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-ditBridgeKnowledge }

The ASN.1 type pitBridgeKnowledge iS defined in Rec. ITU-T X.518 | ISO/IEC 9594-4. Its ASN.1 specification is
reproduced here for the convenience of the reader.

DitBridgeKnowledge ::= SEQUENCE {
domainLocalID UnboundedDirectoryString OPTIONAL,
accessPoints MasterAndShadowAccessPoints,

-}

The information held in ditBridgeknowledge Will be employed by the DSA when performing a Search operation
involving related entries.

24.2.1.9 Matching Rules

Four equality matching rules for the preceding knowledge attributes are specified below. They apply to attributes with
syntaxes of types AccessPoint, MasterAndShadowAccessPoints, SupplierInformation,
ConsumerInformation and SuppliersAndConsumers.

24.2.1.9.1 AccessPoint Match
The Access Point Match ruleis specified as:

accessPointMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-accessPointMatch }

The accessPointMatch matching rule applies to attribute values of type accesspPoint. A vaue of the assertion
syntax is derived from a value of the attribute syntax by using the value of the [0] context specific tag (Name)
component. Two values are considered to match for equality if the Name component of each match using the matching
procedure for DistinguishedName Values.

Rec. ITU-T X.501 (10/2012) 131

| SO/l EC 9594-2:2014 (E)

24.2.1.9.2 Master And Shadow Access Points Match
The Master and Shadow Access Point Match equality matching rule is specified as:

masterAndShadowAccessPointsMatch MATCHING-RULE ::= {
SYNTAX SET OF Name
ID id-kmr-masterShadowMatch }

The masterAndShadowAccessPointsMatch matching rule applies to attributes of type
MasterAndShadowAccessPoints. A value of the assertion syntax is derived from a value of the attribute syntax by
removing the category and address components of each SgT in the SET OF MasterOrShadowAccessPoints.
Two such values are considered to match for equality if both values have the same number of seT oF elements, and,
after ordering the seT oF elements of each in any convenient fashion, the ae-title component of each pair of SET
oF elements matches using the matching procedure for distinguishedNameMatch.

24.2.1.9.3 Supplier or Consumer Information Match

The Supplier or Consumer Information Match rule is specified as:

supplierOrConsumerInformationMatch MATCHING-RULE ::= {
SYNTAX SET {
ae-title [0] Name,
agreement-identifier [2] INTEGER}
ID id-kmr-supplierConsumerMatch }

The supplierOrConsumerInformationMatch matching rule applies to attribute values of type
SupplierInformation Of ConsumerInformation (and other attributes having values compatible with
SupplierInformation Of ConsumerInformation). A value of the assertion syntax is derived from a value of the
attribute syntax by selecting the seT components with tags that match the seT components of the assertion syntax. Two
such values are considered to match for equality if the ae-title component of each (after removing the explicit [0]
tag information) matches using the matching procedure for DistinguishedName values and the identifier
component contained in the agreement component of each (after removing the explicit [2] and SEQUENCE tag
information) matches using the matching procedure for INTEGER values.

24.2.1.9.4 Suppliersand Consumers Match
The Supplier and Consumers Match rule is specified as:

supplierAndConsumersMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-supplierConsumersMatch }

The Supplier and Consumers Match rule applies to attribute values of type supplierAndConsumers (and other
attributes having values compatible with SupplieraAndConsumers). Two such values are considered to match for
equality if the ae-title component of each (after removing the explicit [0] tag information) matches using the
matching procedure for bistinguishedName values.

2422 Knowledge Reference Types

This subclause specifies the representation of knowledge in the DSA information model.

24.2.2.1 Self Reference

A saf reference represents a DSA's knowledge of its own access point. It is represented by a value of the attribute
myAccessPoint held in the DSA'sroot DSE, a DSE of type root.

24.2.2.2 Superior Reference

A superior reference is represented by a DSE of type supr and root which contains a superiorknowledge attribute.
Since a superiorKnowledge attribute value may contain access points of severa DSAS, it may therefore represent
several superior references.

24.2.2.3 Immediate Superior Reference

An immediate superior reference is represented by a DSE of type immsupr which contains a specificKnowledge
attribute. The name of the DSE holding the attribute corresponds to the context prefix of the naming context held by the
referenced superior DSA.

132 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Since a specificKnowledge dttribute value may contain access points of several DSAS, it may therefore represent
several immediate superior references, at most one of category master and zero or more of category shadow.

If the DSE holding the immediate superior reference is received from a shadow supplier, the DSE type includes
shadow.

24.2.2.4 Subordinate Reference

A subordinate reference is represented by a DSE of type subr which contains a specificknowledge attribute. The
name of the DSE holding the attribute corresponds to the context prefix of the relevant naming context held by the
referenced subordinate DSA.

Since a specificKnowledge dttribute value may contain access points of several DSAS, it may therefore represent
several subordinate references, at most one of category master and zero or more of category shadow.

If the DSE holding the subordinate reference is shadowed information, received from a shadow supplier, the DSE type
includes shadow.

The DSE may aso include immsupr in a DSA holding two naming contexts, one superior to the other, which are
separated by a third single-entry naming context held in another DSA. An example of this situation is depicted in
Annex P.

24.2.2.5 Non-Specific Subordinate Reference

A non-specific subordinate reference is represented by a DSE of type nssr (and entry normally) which contains a
nonSpecificKnowledge dattribute. The name of the DSE holding the attribute corresponds to the name formed by
eliminating the final RDN of the context prefixes of the naming context held by the referenced subordinate DSAs.

Since a nonsSpecificKnowledge dattribute value may contain access points of several DSAS, it may therefore
represent several non-specific subordinate references, at most one of category master and zero or more of category
shadow. Each nonspecificknowledge éttribute value represents a related set of non-specific subordinate references
—the DSAs of category shadow hold one or more replicated areas derived from the naming context(s) held by the DSA
of category master.

If the DSE holding the non-specific subordinate reference is shadowed information, received from a shadow-supplier,
the DSE type includes shadow.

The DSE includes shadow in the situation of a shadow DSA when the DSE corresponds to an entry for which the
master DSA has non-specific subordinate knowledge and for which only the nonspecificknowledge attribute for the
non-specific subordinate reference is shadowed.

The DSE includes cp and shadow in the situation of a shadow DSA whose replicated area does not include the context
prefix entry and the master DSA for the naming context has non-specific subordinate knowledge for the context prefix.

The DSE includes admPoint and shadow in the situation of a shadow DSA when the DSE corresponds to an
administrative point, the entry information for the administrative point is not shadowed, and the master DSA for the
naming context has non-specific subordinate knowledge for the administrative point.

When the administrative point coincides with a context prefix in the preceding two cases, the DSE may include
admPoint, cp and shadow.

24.2.2.6 Cross Reference

A cross reference is represented by a DSE of type xr which contains a specificknowledge attribute. The name of
the DSE holding the attribute corresponds to the context prefix of the naming context held by the referenced DSA.

Since a specificKnowledge attribute value may contain access points of severa DSAS, it may therefore represent
several cross references, at most one of category master and zero or more of category shadow.

24.2.2.7 Supplier Reference

A supplier reference is represented by a DSE of type ep which contains a supplierKnowledge attribute. The name of
the DSE holding the attribute corresponds to the context prefix of the shadowed naming context.

Since a supplierKnowledge attribute may have severa values, it may represent several supplier references. Each
attribute value represents one supplier reference.

Rec. ITU-T X.501 (10/2012) 133

| SO/l EC 9594-2:2014 (E)

24.2.2.8 Consumer Reference

A consumer reference is represented by a DSE of type cp which contains a consumerknowledge attribute. The name
of the DSE holding the attribute corresponds to the context prefix of the shadowed naming context.

Since a consumerkKnowledge attribute may have severa values, it may represent several consumer references. Each
attribute value represents one consumer reference.

24.3 Representation of Names and Naming Contexts

24.3.1 Namesand Glue DSEs

As described in 23.3, the minimum information that a DSA may associate with a name is the purpose for which it holds
the name, represented by a DSE holding a value of the attribute dseType. When a DSE contains only such a minimal
information, its DSE type shall be glue. In this case, the DSE shall not hold an entry or subentry (or a shadow-copy of
an entry or subentry) or a DSA shared attribute.

Glue DSEs arise in the DSA information model to represent names that are known by a DSA as a consequence of
holding information associated with other names. For example, consider the cross reference depicted in Figure 22. The
DSA holding this cross reference also "knows' (in the sense described in 23.3) the names that are superior to the
context prefix name associated with the cross reference. When no other information is associated with such superior
names, they are represented in the DSA information model by glue DSEs.

24.3.2 Naming Contexts

A naming context consists of a context prefix, a subtree of zero or more entries subordinate to the context prefix (the
root of the subtree), and, if there are naming contexts subordinate to it, subordinate and/or non-specific subordinate
references sufficient to constitute full subordinate knowledge.

A context prefix is represented by a DSE of type cp. If the context prefix corresponds to an entry, the DSE type
includes entry. If it corresponds to an alias, the DSE type includes alias. If the context prefix corresponds to an
administrative point, the DSE type includes admPoint.

The subtree of entries and subentries subordinate to the context prefix is represented by DSES as described in 24.1.1
to 24.1.5.

The representation of the subordinate knowledge of the naming context is represented by DSES as described in 24.2.2.

A replicated area (a shadow-copy of all or part of a naming context) is represented as above except that the DSE type
includes shadow in each DSE for which user or operational attributes are received from the shadow supplier. In the
case of incomplete replicated areas, DSEs of type glue may occur to represent a bridge between the separate pieces of
the shadowed information. No user or operational attributes are associated with these (or any) glue DSEs.

2433 Example

Figure 22 illustrates an example of the mapping of a portion of the DIT (that corresponding to a naming context) onto
the information tree of a DSA. In addition to the naming context information itself, the DSA's root DSE containing its
superior reference (this is not the DSA information tree for a first level DSA), a glue DSE and a DSE representing a
reference (either a cross reference or an immediate superior reference) to an immediately superior naming context are
also depicted.

134 Rec. ITU-T X.501 (10/2012)

Other
subordinates

Il Object entry

A Aliasentry

DIT subtree corresponding
to a Naming Context

Figure22 —

| SO/l EC 9594-2:2014 (E)

Root + supr

I::' Glue

Xr (or immSupr)

B | cp+entry

Entry + nssr

Enty | B2 | |[ERIT4

(=] (&=][2]
Entry Alias Subr

Knowledge attribute
B Object/dlias entry

[Jose

DSA information tree
for the Naming Context

X.501(12)_F22

DSEsfor a Naming Context

Rec. ITU-T X.501 (10/2012)

135

| SO/l EC 9594-2:2014 (E)

SECTION 11 - DSA OPERATIONAL FRAMEWORK

25 Overview

25.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

25.1.1 cooperative state: With respect to a second DSA, the state of a DSA for which an operational binding
instance has been established and has not been terminated.

25.1.2 directory operational framework: Provides the framework from which specific operational models
concerned with particular aspects (e.g., shadowing or creating a naming context) of the operation of the components of
the Directory (DSAS) may be derived by application of the framework. It factors out common elements which are
present in all interactions between Directory components.

25.1.3 non-cooperative state: With respect to a second DSA, the state of a DSA prior to the establishment or after
the termination of an operational binding instance.

2514 operational binding: A mutual understanding between two DSAS that, once established, expresses their
"agreement" subsequently to engage in some sort of interaction.

25.1.5 operational binding establishment: The process of establishing an operational binding instance.
25.1.6 operational binding instance: An operational binding of a specific type between two DSAS.

25.1.7 operational binding management: The process of establishing, terminating or modifying an instance of an
operational binding. This management may be achieved viainformation exchanges defined by Directory Specifications,
viaexchanges defined in other Specifications, or by other means.

25.1.8 operational binding modification: The process of modifying an operational binding instance.
25.1.9 operational binding termination: The process of terminating an operational binding instance.

25.1.10 operational binding type: A particular type of operational binding specified for some distinct purpose, that
expresses the "agreement” of two DSASs to engage in specific types of interaction (e.g., shadowing).

25.2 Introduction

This Directory Specification defines application protocol information exchanges and associated DSA procedures that
define the distributed operation of the Directory. Clauses 25 through 28 define a DSA operational framework which
models certain common elements in these information exchanges and procedures.

Two DSAs interact in a cooperative manner because, in addition to their technical capacity to exchange information and
perform procedures associated with these exchanges, each has been configured to accept certain interactions with the
other.

These clauses are concerned with the expression of a common framework for the specification of the structure of the
elements of the cooperation between two DSAS.

One objective of this framework is that it be sufficiently general to account for al of the forms of DSA cooperation to
be defined in this and future editions of these Directory Specifications. The framework is used within these Directory
Specifications to define shadowing and hierarchical operational binding types.

26 Operational bindings

26.1 General

This clause is concerned with the definition of a general framework, the DSA operational framework, within which the
specification of the nature of the cooperative interactions of components of the Directory (DSAS) may be structured in
order to achieve acommonly agreed objective.

136 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The general framework factors out common features which characterize al interactions between DSAs. By applying the
DSA operationa framework to specific aspects of cooperative interaction between DSAS, the resulting specifications
will be both concise and consistent so that the overall number of mechanisms a DSA shall support will be reduced.

The mutual understanding between two DSAs that, once established, expresses their "agreement” subsequently to
engage in some sort of interaction is termed an operational binding. Two DSAs may share as many operational binding
instances of a specific type as are required.

The DSA operationa framework provides a common approach to the definition of an operational binding type. An
operational binding type is a particular type of operational binding specified for some distinct purpose, that expresses
the "agreement" of two DSASs to engage in specific types of interaction (e.g., shadowing). This interaction alows
operations from awell-defined set to be invoked by one or the other party to the agreement.

Two particular DSAs that have reached such an "agreement" share an operational binding instance of a specific
operationa binding type. They are said to be in the cooperative state of that instance of an operational binding type.

Prior to the establishment or after the termination of an operational binding instance, two DSAs are said to be in the
non-cooper ative state.

Operational binding management is the process of establishing, terminating or modifying an instance of an operational
binding. This management may be achieved via information exchanges defined by these Directory Specifications, via
exchanges defined in other Specifications, or by other means.

These general concepts are depicted in Figure 23.

@ Q
X.501(12)_F23

Agreement @ Operatlons
C] Operational binding — Initiation

Figure 23 — An operational binding

26.2 Application of the operational framework

The application of the DSA operational framework to define an operational binding type is concerned with the
following basic elements:

a) twoDSAs
b) an"agreement” of the service that one DSA will provide to another DSA;

c) aset of one or more operations, together with the accompanying procedures a DSA shall follow, through
which the service can be realized;

d) aspecification of the DSA interactions needed to manage the agreement.

The relationship of these basic elements is expressed by an operational binding. An operational binding comprises the
set of these basic elements that are involved to represent the abstract agreement in technical terms. It represents the
environment, governed by an "agreement"”, in which one DSA provides a defined service to the other (and vice versa).

2621 TwoDSAs

The DSA operational framework provides a structure within which the interaction of one DSA with another and the
procedures they consequently execute may be specified.

The two DSAs may each play an identical role in the operational binding, in which case both DSAs may manage the
operational binding, both DSAs may invoke the same operations on each other, and both DSAs are constrained to
follow the same set of procedures. Thisis termed a symmetric operational binding.

Rec. ITU-T X.501 (10/2012) 137

| SO/l EC 9594-2:2014 (E)

Alternatively, each DSA may play a different role in the operational binding, so that different sets of operations and
procedures apply to each DSA. Either or both of the DSAs may be involved in managing the operational binding. This
is termed an asymmetric operational binding.

26.2.2 Theagreement

An "agreement” is a mutual understanding reached between the administrative authorities of two DSASs about a service
that shall be provided by one DSA to the other (and/or vice versa). The "agreement” is initially negotiated by the
administrative authorities of the DSAs by means outside of the scope of these Directory Specifications.

Parameters of this "agreement” can be formalized by the recording in a DSA of an ASN.1 data type for use in a protocol
exchange in the management of the operational binding. In this way, both DSAS reach a mutual understanding of the
service that each is providing to the other.

26.2.3 Operations

Operations are the basic medium that DSAs use to interact. A pair of DSAs will pass on one or more operations
between themselves, in order to provide the agreed-to service.

Whilst a DSA may be technically capable of supporting a large number of operations, it may only be willing to
cooperate with another DSA in the processing of a small number of these operations, or in the processing of operations
that only have particular values set for certain parameters.

The definition of an operational binding type requires the enumeration of the operations that can be exchanged. It also
allows restrictions to be placed on the values of parameters defined within the operations.

26.24 Management of the agreement

The framework provides generic operations for managing an instance of an operational binding. These operations
provide for the establishment, modification and termination of an operational binding.

The application of the framework to the specification of a particular operational binding type requires the initiator of
each of the three management operations to be specified and also requires the procedures to be defined for each of
establishment, modification and termination. Whenever a management operation is applied to an operational binding of
the specified type, the DSA shall follow the corresponding procedure.

26.3 States of cooperation

The generic operational model defines two states of cooperation, as governed by an instance of a particular operational
binding type, between two DSAS as seen by one DSA with respect to the other DSA and three transitions between these
states. Each identified instance of an operational binding type shared by two DSAs has its own states of cooperation.
The states of cooperation are:

a) Non-cooperative state: A particular identified instance of an operational binding type has not been
established or has been terminated between the two DSAs. The interaction between the two DSAs (with
respect to the identified instance of an operational binding type) is not defined. A DSA contacted by
another with whom it is in a non-cooperative state may, for example, refuse to engage in any interaction
at al, or it may be prepared to service the request.

b) Cooperative state: There is an instance of an operational binding of the type in question between the two
DSAs. Their cooperative behaviour is governed by the definition of the operational binding type and its
specific parameters and associated procedures.

The transitions between these two states of cooperation may be invoked in two ways. by standardized protocol
interactions or by other means.

The interactions between two DSAS to manage an instance of an operational binding (e.g., to establish and terminate a
shadowing agreement) are distinct from their potential interactions as governed by the binding (e.g., the interaction to
update a unit of replication).

The state transitions are as follows:

a) The establishment transition creates an instance of an operational binding of a particular type between
two DSAS, resulting in the movement from the non-cooperative to the cooperative state.

b) The termination transition destroys a particular instance of an operational binding of a particular type
between two DSAS, resulting in the movement from the cooperative to the non-cooperative state.

¢) The modification transition modifies the parameters of a particular instance of an operational binding
between two DSAS, resulting in the movement from the cooperative state to the cooperative state.

138 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

These generic states and transitions are illustrated in Figure 24.

Non-cooperdive
sde '\
Establishment Termination
Cooperative J
state 1\

w| cation
X.501(12)_F24

Figure 24 — States of cooperation

27 Operational binding specification and management

27.1 Operational binding type specification

When applying the framework to define a specific type of operational binding, the following characteristics of the type
shall be specified:

a)

b)

0)

d)

€)

f)

Symmetry
A specification of the respective roles of the DSAsthat are party to the operational binding.

Operational bindings may be symmetric, in which case the role of one DSA is interchangeable with the
other and both DSAs exhibit the same external interactions. They may aso be asymmetric, in which case
each DSA plays a distinct role and both DSAs exhibit different externa interactions. In this latter case,
the Directory operational framework distinguishes the two abstract roles as "ROLE-A" and "ROLE-B".

Each of the abstract roles "ROLE-A" and "ROLE-B" have to be associated with a concrete role with
defined semantics (e.g., "ROLE-A" as shadow supplier, "ROLE-B" as shadow consumer).

Agreement

A definition of the semantics and representation of the components of the "agreement". This information
parameterizes the specific instance of an operational binding between two DSASs.

Initiator

A definition which of the two abstract roles "ROLE-A" and "ROLE-B" is alowed to initiate the
establishment, modification or termination of an operational binding of this type.

Management procedures

A set of procedures that a DSA shall follow when the operational binding of this type is established,
modified or terminated.

Type identification

This identifies the type of DSA interaction that is determined by the operational binding. These
identifiers are object identifier values.

Application-contexts, operations and procedures

This identifies the set of application-contexts whose operations (or a subset thereof) may be employed
during the cooperative phase of the operational binding.

For each operation referenced by the operationa binding type, a description of the procedures to be
followed by a DSA if the operation isinvoked is required (this may be done by reference to another part
of these Directory Specifications).

For those operational bindings that are to be managed using the generic operational binding management operations
provided in this clause, the binding type shall be specified using the three information object classes
OPERATIONAL-BINDING, OP-BINDING-COOP and orP-BIND-ROLE defined in this clause.

Rec. ITU-T X.501 (10/2012) 139

| SO/l EC 9594-2:2014 (E)

27.2 Operational binding management

In general, the management of an operational binding requires initially the establishment of an operational binding
instance. This may optionally be followed by one or more modifications to some or all of the parameters of the initial
agreement, and finally may involve the termination of the operational binding instance. The precise details of how an
instance may be managed are defined during the definition of the operational binding type. This type definition requires
the specification of:

a) theinitiator of each of the management operations (this can be either, both, or neither of the two DSAS);
b) the parametersfor each of the management operations; and
¢) the proceduresthat each DSA shall follow for each of the management operations.

During the establishment of an operational binding instance, an operational binding instance identifier (binding id) is
created. This identifier, when combined with the distinguished names of the two DSAs involved in the operational
binding, will form a unique identifier for the binding instance. All management operations subsequent to the
establishment of the operational binding instance will use the binding id to identify which operational binding instance
is being modified or terminated.

The initiator of the establish operation aways transfers the parameters of the "agreement” to the second DSA. In
addition, the initiator may also transfer some establishment parameters which are specific to its role in the operational
binding. If the responding DSA is willing to enter into the operational binding, it may return in the result establishment
parameters which are specific to its role. If the responding DSA is unwilling to enter into the operational binding, it
shall return an error, which may optionally contain an agreement with a revised set of parameters. Thisis depicted in
Figure 25 in the case where Role A and in Figure 26 in the case where Role B isthe initiator of the establish operation.

Result (p,_)

: T

Establish (a, pg _, A)
DSAA
Error (@)

a Agreement o N
b Establishment parameter

X.501(12)_F25

Figure 25— DSA with Role A initiating establishment

Result (pg _, »)

Establish (a, ps_, g)
DSAA
Error (@)

a Agreement o
b Establishment parameter

X.501(12)_F26

Figure 26 — DSA with Role B initiating establishment

27.3 Operational binding specification templates

For the definition of a specific type of operational binding, the following three ASN.1 information object classes may
be used as templates. They allow those parts of the operational binding type that can be formalized to be specified by
the use of ASN.1. Other aspects of the operational binding type, such as the procedures a DSA has to follow when an
operationa binding is established or terminated, have to be specified by some other means (this can be done in a
manner similar to the informal description of the DSA procedures during the name resolution process described in
Rec. ITU-T X.518 | ISO/IEC 9594-4).

140 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

2731 Operational binding infor mation object class

OPERATIONAL-BINDING ::= CLASS {
&Agreement ,
&Cooperation OP-BINDING-COOP,
&both OP-BIND-ROLE OPTIONAL,
&roleA OP-BIND-ROLE OPTIONAL,
&roleB OP-BIND-ROLE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
AGREEMENT &Agreement
APPLICATION CONTEXTS &Cooperation
[SYMMETRIC &bothl]
[ASYMMETRIC
[ROLE-A &roleAl
[ROLE-B &roleBl]]
ID &id }

The OPERATIONAL-BINDING information object class serves as a specification template for an operational binding
type. A variable notation is defined for this class to simplify its use as a template. The correspondence between the
definition of an operational binding type and the fields of the variable notation is as follows:

a) The ASN.1 type of the agreement parameter that is used for this type of operational binding is that
referenced by the AGREEMENT field.

b) The application contexts and the operations of these application-contexts that are employed within the
cooperation phase of an operational binding instance of the defined type are those enumerated following
the apPLICATION-CONTEXTS field. All operations of alisted application-context are selected unless the
optional appLIES TO field is present and followed by alist of references to operations that are selected
from the application context. This list is an object class set composed of instances of the oPERATION
information object class.

¢) Theclassof the operational binding is defined by the syMMETRIC or AsYMMETRIC fields. In the case of a
symmetric operational binding, the term symMeTRIC iS followed by a single information object of class
oP-BIND-ROLE that is valid for both roles of the operational binding. In the case of an asymmetric
operational binding, the term asymMmeETRIC is followed by two information objects of class op-BIND-
ROLE, one referenced by the subfield RoLE-2a and the other by ROLE-B.

d) The object identifier value that serves to identify this type of operational binding is defined by the Ip
field.

27.3.2 Operational binding cooperation information object class

OP-BINDING-COOP ::= CLASS {
&applContext APPLICATION-CONTEXT,
&Operations OPERATION OPTIONAL }

WITH SYNTAX {

&applContext
[APPLIES TO &Operations] }

The orp-BINDING-cooP information object class serves as a specification template for the identification of the
operations of a named application context, some aspect of which is determined by the operational binding. An instance
of this class is meaningful only within the context of a particular operational binding type. A variable notation is
defined for this class to simplify its use as a template. The correspondence between the definition of an operational
binding type and the fields of the variable notation is as follows:

a) The applcontext field identifies an application context, some or al of whose operations are in some
way determined by an operational binding.

b) TheapprLIEs To field, if present, identifies the particular operations to which the operational binding
applies. If the field is absent, the operational binding applies to all the operations of the
application-context.

Rec. ITU-T X.501 (10/2012) 141

| SO/l EC 9594-2:2014 (E)

27.3.3 Operational binding role information object class

OP-BIND-ROLE ::= CLASS {
&establish BOOLEAN DEFAULT FALSE,
&EstablishParam,
&modify BOOLEAN DEFAULT FALSE,
&ModifyParam OPTIONAL,
&terminate BOOLEAN DEFAULT FALSE,
&TerminateParam OPTIONAL }

WITH SYNTAX {
[ESTABLISHMENT-INITIATOR &establishl]
ESTABLISHMENT-PARAMETER &EstablishParam
[MODIFICATION-INITIATOR &modify]
[MODIFICATION-PARAMETER &ModifyParam]
[TERMINATION-INITIATOR &terminatel
[TERMINATION-PARAMETER &TerminateParam] }

The op-BIND-ROLE information object class serves as a specification template for roles of an operational binding type.
An instance of this class is meaningful only within the context of a particular operational binding type. A variable
notation is defined for this class to simplify its use as a template. The correspondence between the definition of an
operational binding role and the fields of the variable notation is as follows:

d) The ESTABLISHMENT-INITIATOR field indicates whether the DSA assuming the defined role may
initiate the establishment of an operational binding of a particular type.

b) The EsTABLISHMENT-PARAMETER field definesthe ASN.1 type for the parameters exchanged by a DSA
assuming the defined role when an instance of the operational binding type is established. If no
parameters are to be exchanged, then the NuLL ASN.1 type shall be specified.

¢) The MopIFICATION-INITIATOR field indicates whether the DSA assuming the defined role may
initiate the modification of an operational binding of a particular type.

d) The MopiFicaTioN-PARAMETER field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is modified.

€) The TERMINATION-INITIATOR field indicates whether the DSA assuming the defined role may
terminate the establishment of an operational binding of a particular type.

f) The TERMINATION-PARAMETER field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is terminated.

These Directory Specifications define three Operational Binding information objects as expressed by the following
information object set.

OpBindingSet OPERATIONAL-BINDING ::= {
shadowOperationalBinding |
hierarchicalOperationalBinding |
nonSpecificHierarchicalOperationalBinding }

Additional operational binding types may be defined in the future.

28 Operationsfor operational binding management

This clause defines a set of operations that can be used to establish, modify and terminate operational bindings of
various types. These operations are generic in the way that they can be used to manage operational bindings of any type.
The specification of these operations makes use of the definitions provided for a certain type of operational binding by
application of the OPERATIONAL -BINDING information object class template.

NOTE — By using this facility, arbitrary types of operational bindings may be managed. These operations (together with the

associated application-context) provide a means of extensibility concerning DSA interactions. New types of operational bindings
may be defined in the future which extend the functionality that is provided between DSAS.

28.1 Application-context definition

The set of operations for managing operational binding instances can be used for the definition of an application-context
in the following two ways:

a) An application-context may be constructed containing only the operations for operational binding
management. An application-context for generic operational binding management is defined in Rec.
ITU-T X.519 | ISO/IEC 9594-5.

142 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The operations that may be exchanged during the cooperative phase of the operational binding form one
or more separate application-contexts.

b) The set of operations can be imported into the module used to define a specific application-context. The
operational binding management operations can then be used together with the operations of the
cooperative phase within a single application-context.

NOTE — The first approach is useful in the case where a specialized component of a DSA wants to use an association solely for
managing the set of operational bindings of that DSA, and it is not prepared to accept any of the operations defined for the co-
operative phase (e.g., Update Shadow).

28.2 Establish Operational Binding operation

2821 Establish Operational Binding syntax

The Establish Operational Binding operation allows establishment of an operational binding instance of a predefined
type between two DSAs. This is achieved through the transfer of the establishment parameters and the terms of
agreement which were defined in the definition of the operational binding type. The arguments of the operation may be
signed (see 17.3) by the requestor. If the target component of the SecurityParameters (See 7.10 of Rec. ITU-T
X.511 | ISO/IEC 9594-3) in the request is set to signed and a result is to be returned, the result may be signed.
Otherwise, the result shall not be signed.

In the case of a symmetrical operationa binding, either of the two DSAs may take the initiative to establish an
operational binding instance of the predefined type.

In the case of an asymmetrical operational binding, just one of the rolesis designated to initiate the establishment of an
operational binding, or either of the two DSAs may take the initiative depending on the definition of the operational
binding type.

establishOperationalBinding OPERATION ::= {
ARGUMENT EstablishOperationalBindingArgument
RESULT EstablishOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-establishOperationalBinding }

EstablishOperationalBindingArgument ::=
OPTIONALLY-PROTECTED-SEQ { EstablishOperationalBindingArgumentData }

EstablishOperationalBindingArgumentData ::= SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, Role A initiates, or Role B initiates
initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({opBindingSet}{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({opBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({opBindingSet}{@bindingType}) },
agreement [6] OPERATIONAL-BINDING.&Agreement
({opBindingSet}{@bindingType}),
valid [7] Validity DEFAULT {},
securityParameters [8] SecurityParameters OPTIONAL,
}
OperationalBindingID ::= SEQUENCE ({
identifier INTEGER,
version INTEGER,
}
OpBindingSet OPERATIONAL-BINDING ::= {

shadowOperationalBinding |
hierarchicalOperationalBinding |
nonSpecificHierarchicalOperationalBinding }

Validity ::= SEQUENCE {
validFrom [0] CHOICE {
now [0] NULL,
time [1] Time,

Rec. ITU-T X.501 (10/2012) 143

| SO/l EC 9594-2:2014 (E)

...} DEFAULT now:NULL,

validUntil [1] CHOICE {
explicitTermination [0] NULL,
time [1] Time,
e } DEFAULT explicitTermination:NULL,
-}

Time ::= CHOICE {

utcTime UTCTime,

generalizedTime GeneralizedTime,
-}

EstablishOperationalBindingResult ::=
OPTIONALLY-PROTECTED-SEQ { EstablishOperationalBindingResultData }

EstablishOperationalBindingResultData ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id({OpBindingSet}),

bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, Role A replies, or Role B replies
initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam

({opBindingSet}{@bindingType}),
roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam

({opBindingSet}{@bindingType}),
roleB-replies [5] OPERATIONAL-BINDING.&roleB.&EstablishParam

({opBindingSet}{@bindingType})} OPTIONAL,

o7

COMPONENTS OF CommonResultsSeq }

28.2.2 Establish Operational Binding arguments

The bindingType component shall specify which type of operationa binding is to be established. An operational
binding type is defined by an instance of the oOPERATIONAL-BINDING information object class which assigns an object
identifier value to the operational binding type. If the receiver does not recognize or support the operational binding
type, it shall return an operationalBindingError With problem unsupportedBindingType.

The bindingID component, when present, shall hold an identification of the new operational binding instance. If the
bindingID is absent within the operation argument, the responding DSA shall assign an ID to the operational binding
instance and return it in the bindingID component of the EstablishOperationalBindingResult data type. In
either case, when establishing an operational binding, both the identifier and version components of the
OperationalBindingID value shall be assigned and issued by the DSA making the assignment. The identifier
component of the operationalBindingID data type shall be unique for all operational bindings between any two
DSAs. However, the DSA not making the assignment shall accept an identifier component that is only unique
within a specific operational binding type. If the identifier component specifies an identifier aready in use for the
particular binding type, the responding DSA shall return an operationalBindingError With problem
duplicatelID.

NOTE — A pre-edition 5 system may not follow the above rule for assigning identities.
The accessPoint component shall specify the access point of the initiator for subsequent interactions.

The initiator component shall specify the role the DSA issuing the Establish Operational Binding operation
assumes. The semantics of the roles are defined as part of the definition of the operational binding type. It is a choice of
three alternatives:

— The symmetric aternative shall be taken if the type of operational binding requires identical roles for
the two DSAs. The establishment parameter for the initiating DSA is determined by the op-BIND-ROLE
associated with the symmeTRIC field of the instance of the oPERATIONAL-BINDING information object
class. If this alternative is chosen in the request, but the operational binding type specifies asymmetric

roles, then the responding DSA shal return an operationalBindingError With problem
notAllowedForRole.

— The rolea-initiates aternative may be taken if both roles may be the initiator of an asymmetric
operational binding and it shall be taken when only the initiating DSA may take ROLE-A. The
establishment parameter for the initiating DSA is determined by the op-BIND-ROLE associated with the
ROLE-A field of the instance of the oPERATIONAL-BINDING information object class. If the DSA in
ROLE-A is not alowed to initiate the operationa binding, the responding DSA shall return an

144 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

operationalBindingError With problem notAllowedForRole. If the responding system does not
accept the role allocation, it shall return an operationalBindingError With problem
roleAssignment.

— The roleB-initiates aternative may be taken if both roles may be the initiator of an asymmetric
operational binding and it shall be taken when only the initiating DSA may take ROLE-B. The
establishment parameter for the initiating DSA is determined by the op-BIND-ROLE associated with the
ROLE-B field of the instance of the OPERATIONAL-BINDING information object class. If the DSA in
ROLE-B is not alowed to initiate the operational binding, the responding DSA shal return an
operationalBindingError With problem notAllowedForRole. If the responding DSA does not
accept the role allocation, it shall return an operationalBindingError Wwith problem
roleAssignment.

If for any of the three aternatives the data type for establishment parameters is the nunn. ASN.1 type, where it
according to the operational binding type should be another data type, then the responding DSA shall return an
operationalBindingError With problem parametersMissing.

The agreement component, when present, shall specify the terms of agreement governing the operational binding
instance. Its actual content depends on the type of operational binding to be established. The ASN.1 type for this
parameter is defined by the AGrReeMENT field of the oPERATIONAL-BINDING information object for the operational
binding type.

Thevalid component shall specify the duration of the operational binding.

— ThevalidFrom subcomponent shall specify the starting time of the operational binding instance. If the
now alternative is taken, the operational binding becomes active when the operation has successfully
completed. If the time alternative is taken, the operational binding becomes active at the specified time.
If the receiving DSA cannot accept the starting time, e.g., the starting time makes no sense or for other
reasons, it shall return an operationalBindingError With problem invalidstartTime.

— The validuntil shall specify the time that the operational binding instance is terminated. If the
explicitTermination aternative is taken, the operational binding is active until explicitly
terminated. If the time alternative is taken, the operational binding is terminated at the time specified. If
the receiving DSA cannot accept the ending time, e.g., the ending time makes no sense or for other
reasons, it shall return an operationalBindingError With problem invalidEndTime.

When avalue of Time in the uTcTime Syntax, the value of the two-digit year field shall be normalised into a four-digit
year value as follows;

— If the 2-digit value is 00 through 49 inclusive, the value shall have 2000 added to it.
— If the 2-digit value is 50 through 99 inclusive, the value shall have 1900 added to it.

The use of GeneralizedTime may prevent interworking with implementations unaware of the possibility of choosing
either uTcTime OF GeneralizedTime. It isthe responsibility of those specifying the domains in which this Directory
Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shall
uTCcTime be used for representing dates beyond 2049.

If thevalidity datatypeisan empty sequence or if the valid component is not present, then the operational binding
isvalid from the current time and until it is explicitly terminated.

The securityParameters component shall be present if the request is signed or if the result or error is requested to
be signed.

28.2.3 Establish Operational Binding results
If the Establish Operational Binding operation succeeds, the result shall be returned.
ThebindingType component shall have the same value as that provided by the establishment initiator.

The bindingID component shall hold a valid identification of the established operational binding instance if the
corresponding component of the request was absent (see 28.2.2). Otherwise, it may be present, but shall then echo the
value in the request.

The accessPoint component shall specify the access point of the responding DSA for subsequent interactions.

The initiator component shall specify the role that the responding DSA assumes. The semantics of the roles are
defined as part of the definition of the operational binding type. It is a choice of three alternatives:

Rec. ITU-T X.501 (10/2012) 145

| SO/l EC 9594-2:2014 (E)

— The symmetric alternative shall be taken if the corresponding alternative was taken in the received
reguest. The establishment parameter for the responding DSA is the same as given in the request.

— The rolea-replies dternative shall be taken, if the initiating DSA took the ROLE-B. The
establishment parameter for the responding DSA is determined by the or-BIND-ROLE associated with
roLE-A field of the instance of oPERATIONAL-BINDING information object class.

— TheroleB-replies aternative shall be taken if the initiating DSA took ROLE-A. The establishment
parameter for the responding DSA is determined by the op-BIND-ROLE associated with RoLE-B field of
the instance of OPERATIONAL-BINDING information object class.

If the result is to be signed by the responding DSA, the securityParameters component of CommonResultsSeq
shall be present.

28.3 Modify Operational Binding operation

2831 Modify Operational Binding syntax

The Modify Operational Binding operation is used to modify an established operational binding. The right to modify is
indicated by the MmopIFICcaTION INITIATOR field(s) within the definition of the operational binding type using the
OP-BIND-ROLE and OPERATIONAL-BINDING information object.

The components of an operational binding that can be modified are the content of the agreement for the operational
binding and its period of validity. Further, a modification parameter can be specified by the initiator of the Modify
Operational Binding operation. The arguments of the operation may be signed (see 17.3) by the requestor. If the
target component of the securityParameters (See 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) in the request is
set to signed and aresult is to be returned, the result may be signed. Otherwise, the result shall not be signed.

If the initiator of the Modify Operational Binding operation according to the operational binding type is not allowed to
be the initiator, the responding DSA shall return an operationalBindingError With problem
notAllowedForRole

modifyOperationalBinding OPERATION ::= {
ARGUMENT ModifyOperationalBindingArgument
RESULT ModifyOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-modifyOperationalBinding }

ModifyOperationalBindingArgument ::=
OPTIONALLY-PROTECTED-SEQ { ModifyOperationalBindingArgumentData }

ModifyOperationalBindingArgumentData ::= SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
bindingID [1] OperationalBindinglID,
accessPoint [2] AccessPoint OPTIONAL,
-- symmetric, Role A initiates, or Role B initiates
initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&ModifyParam

({opBindingSet}{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&ModifyParam

({opBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&ModifyParam

({opBindingSet}{@bindingType})} OPTIONAL,

newBindingID [6] OperationalBindinglID,
newAgreement [7] OPERATIONAL-BINDING.&Agreement
({opBindingSet}{@bindingType}) OPTIONAL,
valid [8] Modifiedvalidity OPTIONAL,
securityParameters [9] SecurityParameters OPTIONAL,
..}

146 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

ModifiedValidity ::= SEQUENCE {
validFrom [0] CHOICE {
now [0] NULL,
time [1] Time,
...} DEFAULT now:NULL,
validUntil [1] CHOICE {
explicitTermination [0] NULL,
time [1] Time,
unchanged [2] NULL,
... } DEFAULT unchanged:NULL,
-}
ModifyOperationalBindingResult ::= CHOICE {
null NULL,
protected [1] OPTIONALLY-PROTECTED-SEQ{ ModifyOperationalBindingResultData },
-}
ModifyOperationalBindingResultData ::= SEQUENCE {
newBindingID OperationalBindingID,
bindingType OPERATIONAL-BINDING.&id ({OpBindingSet}),
newAgreement OPERATIONAL-BINDING. &Agreement ({OpBindingSet}{@.bindingType}),
valid Validity OPTIONAL,

.7

o7

COMPONENTS OF CommonResultsSeq

}
28.3.2 Modify Operational Binding argument

The bindingType component shall specify which type of operationa binding is to be modified. If no operational
binding of the specified type has been established between the two DSAS, the responding DSA shall return an
operationalBindingError\Nnh[NOUEH]invalidBindingType.

The bindingID component shall specify the operational binding instance to be modified. If the bindingID is
unknown to the responding DSA, it shall return an operationalBindingError With problem invalidip.

The accesspPoint component, if present, shall specify the initiator's access point for subsequent interactions. This
component shall be present, if the access point is changed.

The initiator component, when present, shall specify the role that the DSA issuing the Modify Operational Binding
operation assumed during the Establish Operational Binding operation. This component shall be present if the
MODIFICATION-PARAMETER Of the initiator's or-BIND-ROLE information object for the taken aternative is present.
Otherwise, it shall be absent. If the chosen role is not the correct one, the responding DSA shal return an
operationalBindingError With problem roleAssignment.

The newBindingID component shall hold the revised identifier of the operational binding instance. The version
component of newBindingID shall be greater than that of bindingID. The identifier Subcomponent shall remain
unchanged. If the identifier subcomponent in this component is different from the identifier subcomponent of
bindingID component, the responding DSA shal return an operationalBindingError With problem
invalidNewID.

The newagreement component, if present, shall contain the modified terms of agreement governing the operational
binding instance. The ASN.1 type for this parameter is defined by the AGREEMENT field of the OPERATIONAL-BINDING
information object class template of the operational binding type. If newagreement iS not present, the agreement is
not changed by the operation.

The valid component, if present, may be used to indicate arevised period of validity for the atered agreement. If the
valid component is absent, the validFrom component is presumed to have the value now and the validuntil
component is assumed unchanged. If the validFrom component is present and refersto an instant of time in the future,
the current agreement remains in effect until that time, unless operational binding is explicitly terminated before that
time.

The securityParameters component shall be present if the request is signed or if the result or error is requested to
be signed.

Rec. ITU-T X.501 (10/2012) 147

| SO/l EC 9594-2:2014 (E)

28.3.3 Modify Operational Binding results

If the Modify Operational Binding operation succeeds, the result shall be returned.

The newBindingID component shall echo the newBindingID component in the request.
ThebindingType component shall echo the bindingType component in the request.
The newAgreement component shall echo the newAgreement component in the request.
Thevalid component shall echo the valid component in the request.

If the result is to be signed by the responding DSA, the securityParameters component of CommonResultsSeq
shall be present.

It is not possible for the responding DSA to return the modification parameter defined for its role to the modification
initiator.

28.4 Terminate Operational Binding operation

284.1 Terminate Operational Binding syntax

The Terminate Operational Binding operation is used to request the termination of an established operational binding
instance. The right to request termination is indicated by the TERMINATION INITIATOR field(s) within the definition
of the operational binding type using the oP-BIND-ROLE and OPERATIONAL-BINDING information object class
templates. The arguments of the operation may be signed (see 17.3) by the requestor. If the target component of the
SecurityParameters (See 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) in the request is set to signed and aresult is
to be returned, the result may be signed. Otherwise, the result shall not be signed.

If the initiator of the Terminate Operational Binding operation according to the operational binding type is not allowed
to be the initiator, the responding DSA shal return an operationalBindingError With problem
notAllowedForRole

terminateOperationalBinding OPERATION ::= {
ARGUMENT TerminateOperationalBindingArgument
RESULT TerminateOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-terminateOperationalBinding }

TerminateOperationalBindingArgument ::=
OPTIONALLY-PROTECTED-SEQ { TerminateOperationalBindingArgumentData }

TerminateOperationalBindingArgumentData ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindinglID,
-- symmetric, Role A initiates, or Role B initiates
initiator CHOICE {
symmetric [2] OPERATIONAL-BINDING.&both.&TerminateParam
({opBindingSet}{@bindingType}),
roleA-initiates [3] OPERATIONAL-BINDING.&roleA.&TerminateParam
({opBindingSet}{@bindingType}),
roleB-initiates [4] OPERATIONAL-BINDING.&roleB.&TerminateParam
({opBindingSet}{@bindingType})} OPTIONAL,
terminateAt [5] Time OPTIONAL,
securityParameters [6] SecurityParameters OPTIONAL,
.}

148 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

TerminateOperationalBindingResult ::= CHOICE {
null [0] NULL,
protected [1] OPTIONALLY-PROTECTED-SEQ{ TerminateOperationalBindingResultData },
-}
TerminateOperationalBindingResultData ::= SEQUENCE {
bindingID OperationalBindingID,
bindingType OPERATIONAL-BINDING. &id ({OpBindingSet}),
terminateAt GeneralizedTime OPTIONAL,

o7

7

COMPONENTS OF CommonResultsSeq }

28.4.2 Terminate Operational Binding argument

The bindingType component shall specify which type of operational binding is to be terminated. If no operational
binding of the specified type has been established between the two DSAS, the responding DSA shall return an
operationalBindingError With problem invalidBindingType.

The bindingID component shall specify the operational binding instance to be terminated. The version component
present in the bindingID shall be ignored. If there are supplicate IDs for different binding types, then the combination
of bindingType and bindingID components shall be used for identifying the operational binding to be terminated. If
it is not possible to locate an existing operational binding between the two DSAs where the hinding type and the
binding id fit the combination of the bindingType and bindingID components in the request, the responding DSA
shall return an operationalBindingError With problem invalidBindingType.

The initiator component, when present, shall specify the role that the DSA issuing the Terminate Operational
Binding operation assumed during the Establish Operational Binding operation. This component shall be present if the
TERMINATION-PARAMETER Of the initiator's op-BIND-ROLE information object for the taken aternative is present.
Otherwise, it shall be absent.

The terminateat component, when present, shall specify atime at which the operational binding shall terminate. If
this component is not present, the operational binding terminates at the completion of the operation.

The securityParameters component shall be present if the request is signed or if the result or error is requested to
be signed.

28.4.3 Terminate Operational Binding result

If the Terminate Operational Binding operation succeeds, the result shall be returned.

The newBindingID component shall echo the newBindingID component in the request.
ThebindingType component shall echo the bindingType cOomponent in the request.
The terminateat component shall echo the terminateat component in the request.

If the result is to be signed by the responding DSA, the securityParameters component of CommonResultsSeq
shall be present.

It is not possible for the responding DSA to return the termination parameter defined for its role to the termination
initiator.

28.5 Operational Binding Error

An Operational Binding Error reports a problem related to the usage of operations for management of operationa
bindings. If the arguments of the operation were signed (see 17.3) by the requestor or if the errorProtection
parameter of the securityParameters datatype was set to signed in the request, then the error parameters may be
signed. Otherwise, they shall not be signed.

operationalBindingError ERROR ::= {
PARAMETER OPTIONALLY-PROTECTED-SEQ {OpBindingErrorParam}
CODE id-err-operationalBindingError }
OpBindingErrorParam ::= SEQUENCE {
problem [0] ENUMERATED {
invalidID (0),
duplicatelID (1),

unsupportedBindingType (2),

Rec. ITU-T X.501 (10/2012) 149

| SO/l EC 9594-2:2014 (E)

notAllowedForRole (3),
parametersMissing (4),
roleAssignment (5),
invalidStartTime (6),
invalidEndTime (7),
invalidAgreement (8),

currentlyNotDecidable (9),
modificationNotAllowed (10),

invalidBindingType (11),
invalidNewID (12),
...)
bindingType [1] OPERATIONAL-BINDING.&id({OpBindingSet}) OPTIONAL,

agreementProposal [2] OPERATIONAL-BINDING.&Agreement

retryAt

o7

o7

({opBindingSet}{@bindingType}) OPTIONAL,
[3] Time OPTIONAL,

COMPONENTS OF CommonResultsSeq }

The values of problem have the following meanings:

a)

b)

c)
d)

€)

f)

9)

h)

)

k)

1)

m)

invalidID: The operationa binding ID given in the request is not known by the receiving DSA or isin
the wrong state for the requested operation.

duplicateID: The operational binding ID given in the establishment request already exists at the
responder. This may be caused by a prior attempt to establish an operational binding instance when the
result was lost and initiator has repeated the establishment request.

unsupportedBindingType: The requested operational binding typeis not supported by the DSA.

notAllowedForRole: A management operation on the operational binding instance has been requested
which is not alowed for the role that the requestor plays (e.g., a Terminate Operational Binding
operation has been issued by a DSA that takes a role which is not allowed to initiate the termination of
the operationa binding instance).

parametersMissing: Any required establishment or termination parameters that are defined for the
type of operational binding are missing.

roleAssignment: The requested role assignment for an asymmetric operational binding instance has
not been accepted.

invalidstartTime: The specified starting time for the operational binding instance has not been
accepted.

invalidEndTime: The specified termination time for the operational binding instance has not been
accepted.

invalidAgreement: The terms of agreement for the requested operational binding instance have not
been accepted. The terms of agreement that would be accepted by the responding DSA can be returned in

agreementProposal.

currentlyNotDecidable: The DSA is not able to decide on-line about the establishment or
modification of the requested operational binding instance. A time when the request should be repeated
can begivenin retryat.

modificationNotAllowed: The Modify Operational Binding operation is rejected since modification
is not permitted for this binding instance.

invalidBindingType: A modifyOperationalBinding Of @ terminateOperationalBinding
reguest specifies an operational binding type not established between the two DSAs in question.

invalidNewID: The new binding ID given in the requestisinvalid.

The bindingType component shall be the same as that transmitted by the invoker of the failed operational binding
management operation.

he agreementProposal component shall only be used in response to an establishOperationalBinding request
to propose arevised set of agreement parameters as described in 28.2.

The retryat component shall be used only in conjunction with the problem value currentlyNotDecidable tO
indicate a time when the EstablishOperationalBinding Of modifyOperationalBinding request should be

retried.

150 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The commonResultsSeq component (see 7.4 of Rec. ITU-T X.511 | ISO/JEC 9594-3) includes
SecurityParameters. The SecurityParameters component (see 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3)
shall be included in the commonResultsseq if the parameter of the error isto be signed by the responder.

28.6 Operational Binding Management Bind and Unbind

The DSA Operational Binding Management Bind and DSA Operational Binding Management UnBind operations,
defined in 28.6.1 and 28.6.2, are used by a DSA at the beginning and end of a particular period of operational binding
management activity.

28.6.1 DSA Operational Binding Management Bind
A DSA Operational Binding Management Bind operation is used to begin a period of operational binding management.
dSAOperationalBindingManagementBind OPERATION ::= dSABind

The components of the dsaoperationalManagementBind are identical to their counterparts in dsaBind (see Rec.
ITU-T X.518 | ISO/IEC 9594-4).

28.6.2 DSA Operational Binding Management Unbind

The unbinding at the end a period of providing operational binding management is for the OSI environment specified in
7.6.4 and 7.6.5 of Rec. ITU-T X.519 | ISO/IEC 9594-5 and for the TCP/IP environment in 9.2.2 of Rec. ITU-T X.519 |
I SO/IEC 9594-5.

Rec. ITU-T X.501 (10/2012) 151

| SO/l EC 9594-2:2014 (E)

SECTION 12 — INTERWORKING WITH LDAP

29 Overview

29.1 Definitions

29.1.1 LDAP requestor: A DSA that is capable of issuing requests via the Lightweight Directory Access Protocol
(LDAP) and that is capable of understanding and handling LDAP responses.

29.1.2 LDAP responder: A DSA that is capable of understanding and processing requests initiated by LDAP
clients.

29.2 Introduction

LDAP servers that make part of a distributed directory contain their part of the distributed DIT. Naming across all DSA
and LDAP servers requires to be coordinated.

As discussed in 6.2, a DSA that is directly connected to (having an application-association with) a DUA or an LDAP
client is acting as a bound DSA.
The support of an LDAP client using the LDAP protocol by a DSA may be provided in two distinct ways:

— AnLDAP-DAP gateway is provided between the LDAP client and the DSA; or

— TheDSA actsasan LDAP server by supporting the LDAP protocol.

An LDAP-DAP gateway is outside the scope of these Directory Specifications.

A DSA that is able to handle LDAP operations is called a LDAP responder. An LDAP responder may be a DSA that
also acts as bound DSA or it may be a DSA that receives an LDAP request being imbedded in an 1dapTransport
request (see Rec. ITU-T X.511 | ISO/IEC 9594-3).

An LDAP server is added to a directory infrastructure by connecting to a DSA. A DSA that in this way acts as the
interface to an LDAP is acting as an LDAP requestor and shall in the communication with the LDAP server act as an
LDAP client. An LDAP responder may receive a request that is initiated by a DUA, but is to be forwarded to an
adjacent LDAP server meaning that it has to convert a DAP request to an LDAP request and subsequently convert a
possible LDAP result to a DAP result or error.

152 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

30 L DAP interworking model

30.1 L DAP interworking scenarios

Y LDAP
server LDAP
responder

X.501(12)_F27

Figure 27 — LDAP interworking scenarios

Figure 27 illustrates a possible directory infrastructure comprised of interconnected DUAs, LDAP clients, DSAs and
LDAP servers.

Figure 27 also illustrates different interworking scenarios:

a) A request initiated by an LDAP client may be processed by a DSA (LDAP responder), not acting as the
bound DSA for the LDAP client.

NOTE — If the LDAP responder is also acting as the bound DSA for the same operation, the procedures is outside the scope of
these Directory Specifications, but is determined entirely by the LDAP specifications.

b) A request initiated by an LDAP client may be processed by an LDAP server accessed through a DSA
acting as LDAP requestor, where this LDAP requestor is different from the bound DSA for a particular
operation. If the DSA is acting both as bound DSA and as LDAP requestor for the same operation, the
DSA acts according to the LDAP specifications.

c) A requestinitiated by aDUA may be processed by an LDAP server.

30.2 Overview of bound DSA handling L DAP operations

This subclause is only concerned with the situation where a DSA acting as a bound DSA receives an LDAP request. It
considers two situations:

— therequest is to be forwarded to an LDAP server towards which the DSA also acts as LDAP requestor;
and

— therequest isto be forwarded into the Directory infrastructure, i.e., it has to be forwarded to some other
DSA.
When the request is to be forwarded to an adjacent LDAP server, the DSA forwards the request unchanged to the LDAP
server and returns the result(s) unchanged to the LDAP client, with the following exceptions:
a) Itshal useitsown nameinthe LDAPbindRequest.

b) It needs to generate a unique value for MessageID for each request sent to the LDAP server. This value
will typically be different from the value provided in the received request.

¢) An unknown Unsolicited Notification received from the LDAP server shall be ignored. The DSA may
act on a Notice of Disconnection by generating an LDAP response with LDAPResult With resultCode
having the value unavailable for each adjacent LDAP client with outstanding requests.

Rec. ITU-T X.501 (10/2012) 153

| SO/IEC 9594-2:2014 (E)
When the LDAP request is to be forwarded into the Directory infrastructure, then the DSA may act as a proxy for the
LDAP client in the following areas:

a) The DSA may sign the generated 1dapTranport request using it own credentials and may set the
target component of the securityParameters (See 7.10 of Rec. ITU-T X.511 | ISO/IEC 9594-3) to
signed to request the result to be signed.

b) Fill the ServiceControls data type according to local policy for the DSA (see 12.1.2 of Rec. ITU-T X.511
| ISO/IEC 9594-3).

¢) Veify signatures on received results.
d) Persuade returned referrals on behalf of the LDAP client.
€) Preparereceived results for transmission to the LDAP client.

30.3 General LDAP requestor characteristics

The LDAP server considers the DSA as an LDAP client and the DSA must act accordingly.
a) Itshall useitsown nameinthe LDAPbindRequest.

b) It needs to generate a unique value for MessageID for each request sent to the LDAP server. It cannot
copy the value provided in InvokeId (or the MessageID). Otherwise uniqueness cannot be guaranteed
as regquests may come from multiple DUAs and/or LDAP clients. The DSA needs to maintain a mapping
between MessageID values sent to the LDAP server and the InvokeId (Or MessageID) values received
in requests (similar to normal DSA behaviour when chaining messages on the DSP).

¢) Thereceipt of an unknown LDAP Controls value shall be ignored.

d) An unknown Unsolicited Notification received from the LDAP server shall be ignored. The DSA may
act on a Notice of Disconnection by generating an LDAP response with LbaAPResult With resultCode
with value unavailable for each outstanding request from an LDAP client if the request is not an
LDAP search request or isan LDAP search request, where the LDAP server istheinitial performer.

304 L DAP extension mechanisms

30.4.1 General

Extension LDAP mechanisms are described below and are documented in attributes held by the root DSE of the DAP
server (see 31.1.4, 31.1.5 and 31.1.8). A DSA acting as LDAP requestor may read these attributes to learn about the
capabilities of an LDAP server. A DSA acting as an LDAP responder may also hold such attributes in the root DSE.

30.4.2 LDAPcontrols

As described in 4.1.11 of IETF RFC 4511, LDAP uses controls to add new capabilities to operations. A Control
specification is given an object identifier. An LDAP server maintains an attribute of type supportedcontrol holding
the object identifiers of the controlsit supportsin requests (see 31.1.5).

30.4.3 LDAP extended operations

As described in 4.12 of IETF RFC 4511, LDAP have a mechanism for extended operations. Such extended operations
are given an object identifier. An LDAP server maintains an attribute of type supportedExtension holding the object
identifiers of the extended operationsit supports (see 31.1.4).

30.44 LDAP extended features

LDAP have a mechanism for extended features. Such extended features are given an object identifier. An LDAP server
maintains an attribute of type supportedfFeatures holding the object identifiers of the extended features it supports
(see 31.1.8).

31 L DAP specific system schema

311 Operational Attributetypesfrom IETF RFC 4512

31.1.1 Introduction

IETF RFC 4512 defines a number of DSA specific operationa attributes relevant for a DSA acting as LDAP responder
or for DSA functioning as LDAP requestor. Attributes of these types, when present, shall be placed in the root DSE.

154 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Only abrief description of the attribute typesis given here. Detailed information may be found in IETF RFC 4512.

A DSA acting as abound DSA toward an LDAP, or as a DSA responder, may support some or all of the attribute types
listed in this clause.

NOTE 1 — If the bound DSA for an LDAP client is not the same as the LDAP responder, the LDAP operational attributes
supported by the bound DSA may nhot be supported by the LDAP responder, causing return of unexpected errors.

NOTE 2 — Attributes of the attribute types listed in this clause, when present, are held in the root DSE. When an LDAP client or
aDUA accesses the root DSE using an empty distinguished name, it always accesses the root DSA of the bound DSA.

A DSA acting as LDAP requestor may read some or al of the attributes in the root DSE of adjacent LDAP servers to
adapt to the capabilities of those LDAP servers.

NOTE 3 — As the root DSE does not hold an attribute of type objectClass, the standard LDAP way of emulating a Read
operation cannot be used. Instead, an LDAP searches with an OR'ed filter specifying the presence of the attribute types of
interest. If an LDAP server is known to support the feature defined in IETF RFC 4526, the LDAP requestor may use the
simplified filter specified in this RFC for ‘ absolute true’.

31.1.2 Naming contexts

An attribute of type namingContexts lists the context prefixes of holds the distinguished names of the naming context
held by an LDAP server.

namingContexts ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName
USAGE dSAOperation
LDAP-SYNTAX dn.&id

LDAP-NAME "namingContexts"

ID id-lat-namingContexts }

31.1.3 Alternative server

An attribute of type altserver liststhe URLSreferring to alternative servers.

altServer ATTRIBUTE ::= {
WITH SYNTAX IAS5String
USAGE directoryOperation
LDAP-SYNTAX ia58tring.&id
LDAP-NAME "altServer"
ID id-lat-altServer }

31.1.4 Supported extension

An attribute of type supportedExtension lists object identifiersidentifying the extended operations.

supportedExtension ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

USAGE dSAOperation

LDAP-SYNTAX oid.&id

LDAP-NAME "supportedExtension"

ID id-lat-supportedExtension }

31.1.5 Supported control

An attribute of type supportedcControl lists object identifiers identifying the request controls the server supports.

supportedControl ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
USAGE dSAOperation
LDAP-SYNTAX oid.&id
LDAP-NAME "supportedControl"
ID id-lat-supportedControl }

31.1.6 Supported SASL Mechanisms

An attribute of type supportedsaALsMechanisms lists the SASL mechanisms that the server recognizes and/or
supports.

supportedSASLMechanisms ATTRIBUTE ::= {

WITH SYNTAX DirectoryString{ub-saslMechanism}
USAGE dSAOperation
LDAP-SYNTAX directoryString.&id

Rec. ITU-T X.501 (10/2012) 155

| SO/l EC 9594-2:2014 (E)

LDAP-NAME "supportedSASLMechanisms"
ID id-lat-supportedSASLMechanisms }

31.1.7 Supported LDAP version

An attribute of type supportedLDAPVersion liststhe versions of LDAP that the server supports.

supportedLDAPVersion ATTRIBUTE ::= {
WITH SYNTAX INTEGER
USAGE dSAOperation
LDAP-SYNTAX integer.&id
LDAP-NAME "supportedLDAPVersion"
ID id-lat-supportedLDAPVersion }

31.1.8 Supported features
An attribute of type supportedFeatures lists object identifiers identifying elective features that the server supports.

supportedFeatures ATTRIBUTE ::=

WITH SYNTAX OBJECT IDENTIFIER

USAGE dSAOperation

LDAP-SYNTAX oid.&id

LDAP-NAME "supportedFeatures"

ID id-oat-supportedFeatures }

31.1.9 LDAP Syntaxes
An attribute of type 1dapSyntaxes lists supported LDAP syntaxes.

ldapSyntaxes ATTRIBUTE ::= {
WITH SYNTAX LdapSyntaxDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX ldapSyntaxDescription. &id
LDAP-NAME {"1dapSyntax"}
ID id-soa-ldapSyntaxes }
LdapSyntaxDescription ::= SEQUENCE {
identifier SYNTAX-NAME. &id,
description UnboundedDirectoryString OPTIONAL,
e}

156 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Annex A

Object identifier usage

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex documents the upper reaches of the object identifier subtree in which all of the object identifiers assigned in
the Directory Specificationsreside. It does so by providing an ASN.1 module called UsefulDefinitions in which al
non-leaf nodes in the subtree are assigned names.

UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}
DEFINITIONS ::=
BEGIN

EXPORTS All

The types and values defined in this module are exported for use in the other ASN.1l
modules contained within these Directory Specifications, and for the use of other
applications which will use them to access Directory services. Other applications
may use them for their own purposes, but this will not constrain extensions and
modifications needed to maintain or improve the Directory service.

::= OBJECT IDENTIFIER
ID ::= {joint-iso-itu-t ds(5)}

The following definition is for ASN.1l definitions moved from
Rec. ITU-T X.660 | ISO/IEC 9834-1:

ID ::= {joint-iso-itu-t registration-procedures(17) module(l) directory-defs(2)}

The following defition is for ASN.1l definitions of LDAP schema

internet ID ::= {iso(l) identified-organization(3) dod(6) internet (1)}
ldap-dir ID ::= {internet directory(1l)}

ldap-enterprise ID = {internet private(4) enterprise(1)}

1dap-x509 ID ::= {ldap-dir x509(15)}

ldap-openLDAP ID ::= {ldap-enterprise openLDAP(4203) ldap(1l)}

openLDAP-attributes ID
openLDAP-controls IDp

{1dap-openLDAP attributeType(3)}
{1dap-openLDAP controls(10)}

e s e es ss es e es s ss es e e ee
s e e es es ss e ee s ss es s e se

ldap-wall ID = {ldap-enterprise wahl (1466) }

ldap-dynExt ID ::= {ldap-wall 101 119}

ldap-attr ID ::= {ldap-wall 101 120}

ldap-match ID ::= {ldap-wall 109 114}

ldap-syntax ID ::= {ldap-wall 115 121 1}

cosine ID ::= {itu-t(0) data(9) pss(2342) ucl(19200300) pilot(100)}
cosineAttr ID ::= {cosine pilotAttributeType (1)}

categories of information object

module ID ::= {ds 1}
serviceElement ID ::= {ds 2}
applicationContext ID ::= {ds 3}
attributeType ID ::= {ds 4}
attributeSyntaxVendor ID ::= {ds 5}
-- This arc will not be used by these Directory Specifications
objectClass ID ::= {ds 6}
-- attributeSet ID ::= {ds 7}
algorithm ID ::= {ds 8}
abstractSyntax ID ::= {ds 9}
-- object ID ::= {ds 10}
-- port ID ::= {ds 11}
dsaOperationalAttribute ID ::= {ds 12}
matchingRule ID ::= {ds 13}
knowledgeMatchingRule ID ::= {ds 14}
nameForm ID ::= {ds 15}
group ID ::= {ds 16}
subentry ID ::= {ds 17}
operationalAttributeType ID ::= {ds 18}

Rec. ITU-T X.501 (10/2012) 157

| SO/l EC 9594-2:2014 (E)

operationalBinding ID ::= {ds 19}
schemaObjectClass ID ::= {ds 20}
schemaOperationalAttribute ID ::= {ds 21}
administrativeRoles ID ::= {ds 23}
accessControlAttribute ID ::= {ds 24}
--rosObject ID ::= {ds 25}
--contract ID ::= {ds 26}
- -package ID ::= {ds 27}
accessControlSchemes ID ::= {ds 28}
certificateExtension ID ::= {ds 29}
managementObject ID ::= {ds 30}
attributeValueContext ID ::= {ds 31}
-- securityExchange ID ::= {ds 32}
idmProtocol ID ::= {ds 33}
problem ID ::= {ds 34}
notification ID ::= {ds 35}
matchingRestriction ID ::= {ds 36} -- None are currently defined
controlAttributeType ID ::= {ds 37}
keyPurposes ID ::= {ds 38}
passwordQuality ID ::= {ds 39}
attributeSyntax ID ::= {ds 40}
-- modules
usefulDefinitions ID ::= {module usefulDefinitions(0) 7}
informationFramework ID :: {module informationFramework (1) 7}
directoryAbstractService ID ::= {module directoryAbstractService(2) 7}
distributedOperations ID ::= {module distributedOperations(3) 7}
-- protocolObjectIdentifiers ID ::= {module protocolObjectIdentifiers(4) 7}
selectedAttributeTypes ID ::= {module selectedAttributeTypes(5) 7}
selectedObjectClasses ID ::= {module selectedObjectClasses(6) 7}
authenticationFramework ID ::= {module authenticationFramework(7) 7}
algorithmObjectIdentifiers ID ::= {module algorithmObjectIdentifiers(8) 7}
directoryObjectIdentifiers ID ::= {module directoryObjectIdentifiers(9) 7}
-- upperBounds ID ::= {module upperBounds(10) 7}
-- dap ID ::= {module dap(11l) 7}
-- dsp ID ::= {module dsp(12) 7}
distributedDirectoryOIDs ID ::= {module distributedDirectoryOIDs(13) 7}
directoryShadowOIDs ID ::= {module directoryShadowOIDs (14) 7}
directoryShadowAbstractService ID ::= {module
directoryShadowAbstractService(15) 7}
-- disp ID ::= {module disp(16) 7}
-- dop ID ::= {module dop(17) 7}
opBindingManagement ID ::= {module opBindingManagement (18) 7}
opBindingOIDs ID ::= {module opBindingOIDs(19) 7}
hierarchicalOperationalBindings ID ::= {module
hierarchicalOperationalBindings (20) 7}
dsaOperationalAttributeTypes ID ::= {module
dsaOperationalAttributeTypes (22) 7}
schemaAdministration ID ::= {module schemaAdministration(23) 7}
basicAccessControl ID ::= {module basicAccessControl (24) 7}
directoryOperationalBindingTypes ID ::= {module
directoryOperationalBindingTypes (25) 7}
certificateExtensions ID ::= {module certificateExtensions(26) 7}
directoryManagement ID ::= {module directoryManagement (27) 7}
enhancedSecurity ID ::= {module enhancedSecurity(28) 7}
-- directorySecurityExchanges ID ::= {module
-- directorySecurityExchanges (29) 7}
iDMProtocolSpecification ID ::= {module iDMProtocolSpecification(30) 7}
directoryIDMProtocols ID ::= {module directoryIDMProtocols(31l) 7}
attributeCertificateDefinitions ID ::= {module
attributeCertificateDefinitions (32) 7}
serviceAdministration ID ::= {module serviceAdministration(33) 7}
ldapAttributes ID ::= {module ldapAttributes(34) 7}
commonProtocolSpecification ID ::= {module
commonProtocolSpecification(35) 7}
oSIProtocolSpecification ID ::= {module oSIProtocolSpecification(36) 7}
directoryOSIProtocols ID ::= {module directoryOSIProtocols(37) 7}
ldapSystemSchema ID ::= {module ldapSystemSchema(38) 7}
passwordPolicy ID ::= {module passwordPolicy (39) 7}

158 Rec. ITU-T X.501 (10/2012)

-- synonyms

id-oc

id-at

id-as

id-mr

id-nf

id-sc

id-oa

id-ob
id-doa
id-kmr
id-soc
id-soa
id-ar
id-aca
id-ac

-- id-rosObject
-- id-contract
-- id-package
id-acScheme
id-ce
id-mgt
id-ave

-- id-se
id-idm
id-pr
id-not
id-mre
id-cat
id-kp

id-pq
id-ats
--id-1lc
id-asx
id-1sx
id-1ldx
id-lat
id-1lmr
id-oat
id-coat

-- LDAP syntax object identifiers

--userpwdMatch
--userPwdHisoricMatch

-- LDAP control object identifiers

--pwdControl
--pwdResponse

-- obsolete module identifiers

-- usefulDefinition

-- informationFramework

-- directoryAbstractService
-- distributedOperations

-- protocolObjectIdentifiers
-- selectedAttributeTypes

-- selectedObjectClasses

-- authenticationFramework

-- algorithmObjectIdentifiers
-- directoryObjectIdentifiers
-- upperBounds

-- dap

-- dsp

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

ID
ID

ID
ID

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

-- distributedDirectoryObjectIdentifiers ID

-- unused module identifiers

6 6 s ee es ss e s e ee ss ss e e es es se s s 68 ss es s e ss es s s e es ss e e s s ss e se ee

6 00 e 66 68 es es ee ee es ss ss e s 68 es es s 68 S8 es es e e Ss es e e s s es e s s s es es e ee

T

:

| SO/l EC 9594-2:2014 (E)

objectClass
attributeType
abstractSyntax
matchingRule

nameForm

subentry
operationalAttributeType
operationalBinding
dsaOperationalAttribute
knowledgeMatchingRule
schemaObjectClass
schemaOperationalAttribute
administrativeRoles
accessControlAttribute
applicationContext
rosObject

contract

package
accessControlSchemes
certificateExtension
managementObject
attributeValueContext
securityExchange
idmProtocol

problem

notification
matchingRestriction
controlAttributeType
keyPurposes
passwordQuality
attributeSyntax
ldapControl
attributeSyntax
ldap-syntax

ldap-x509

ldap-attr

ldap-match
openLDAP-attributes
cosineAttr

{id-1s 0}
{id-1s 1}

{id-1c 0}
{id-1c 1}

{module 0}
{module 1}
{module 2}
{module 3}
{module 4}
{module 5}
{module 6}
{module 7}
{module 8}
{module 9}
{module 10}
{module 11}
{module 12}
{module 13}

Rec. ITU-T X.501 (10/2012)

159

| SO/l EC 9594-2:2014 (E)

directoryShadowOIDs
directoryShadowAbstractService
disp

dop

opBindingManagement
opBindingOIDs
hierarchicalOperationalBindings
dsaOperationalAttributeTypes
schemaAdministration
basicAccessControl
operationalBindingOIDs

END -- UsefulDefinitions

160

Rec. ITU-T X.501 (10/2012)

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

e ss es ee e

o se e e
1]

o o0

{module
{module
{module
{module
{module
{module
{module
{module
{module
{module
{module

14}
15}
16}
17}
18}
19}
20}
22}
23}
24}
25}

| SO/l EC 9594-2:2014 (E)

Annex B

Information framework in ASN.1

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex provides a summary of al the ASN.1 type, value and macro definitions contained in this Directory
Specification. The definitions form the ASN.1 module InformationFramework.

InformationFramework {joint-iso-itu-t ds(5) module(l) informationFramework(l) 7}
DEFINITIONS ::=
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within these Directory Specifications, and for the use of other
-- applications which will use them to access Directory services. Other applications
-- may use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2
directoryAbstractService, id-ar, id-at, id-mr, id-nf, id-oa, id-oc,
id-sc, selectedAttributeTypes, serviceAdministration

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l)usefulDefinitions(0) 7}

SearchRule
FROM ServiceAdministration serviceAdministration

-- from Rec. ITU-T X.511 | ISO/IEC 9594-3

TypeAndContextAssertion
FROM DirectoryAbstractService directoryAbstractService

-- from Rec. ITU-T X.520 | ISO/IEC 9594-6
booleanMatch, commonName, dn, generalizedTime, generalizedTimeMatch,
generalizedTimeOrderingMatch, integerFirstComponentMatch, integerMatch,
integerOrderingMatch, objectIdentifierFirstComponentMatch, oid, subtreeSpec,
UnboundedDirectoryString
FROM SelectedAttributeTypes selectedAttributeTypes;
-- attribute data types

Attribute {ATTRIBUTE:SupportedAttributes} ::= SEQUENCE {

type ATTRIBUTE. &id ({SupportedAttributes}),
values SET SIZE (0..MAX) OF ATTRIBUTE.&Type ({SupportedAttributes}{@type}),
valuesWithContext SET SIZE (1..MAX) OF SEQUENCE {

value ATTRIBUTE. &Type ({SupportedAttributes}{@type}) .,

contextList SET SIZE (l1l..MAX) OF Context,

...} OPTIONAL,

AttributeType ::= ATTRIBUTE.&id
AttributeValue ::= ATTRIBUTE.&Type

Context ::= SEQUENCE {

contextType CONTEXT.&id ({SupportedContexts}),
contextValues
SET SIZE (1..MAX) OF CONTEXT.&Type ({SupportedContexts}{@contextType}),
fallback BOOLEAN DEFAULT FALSE,
e}

AttributeValueAssertion ::= SEQUENCE {

Rec. ITU-T X.501 (10/2012) 161

| SO/l EC 9594-2:2014 (E)

type ATTRIBUTE. &id ({SupportedAttributes}),
assertion ATTRIBUTE. &equality-match.&AssertionType
({SupportedAttributes}{e@type}),
assertedContexts CHOICE {
allContexts [0] NULL,
selectedContexts [1] SET SIZE (1l..MAX) OF ContextAssertion } OPTIONAL,

)

ContextAssertion ::= SEQUENCE {
contextType CONTEXT. &id ({SupportedContexts}),
contextValues SET SIZE (1..MAX) OF
CONTEXT. &Assertion ({SupportedContexts}{@contextType}),

AttributeTypeAssertion ::= SEQUENCE {
type ATTRIBUTE. &id ({SupportedAttributes}),
assertedContexts SEQUENCE SIZE (1l..MAX) OF ContextAssertion OPTIONAL,
cee }

-- Definition of the following information object set is deferred, perhaps to

-- standardized profiles or to protocol implementation conformance statements. The set
-- is required to specify a table constraint on the values component of Attribute, the
-- value component of AttributeTypeAndValue, and the assertion component of

-- AttributeValueAssertion.

SupportedAttributes ATTRIBUTE ::= {objectClass | aliasedEntryName, ...}

-- Definition of the following information object set is deferred, perhaps to

-- standardized profiles or to protocol implementation conformance statements. The set
-- is required to specify a table constraint on the context specifications.
SupportedContexts CONTEXT ::= {...}

-- naming data types

Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::= SET SIZE (1l..MAX) OF AttributeTypeAndValue

AttributeTypeAndvValue ::= SEQUENCE {

type ATTRIBUTE. &id ({SupportedAttributes}),
value ATTRIBUTE. &Type ({SupportedAttributes}{@type}),
cee }

-- subtree data types

SubtreeSpecification ::

= SEQUENCE {
base [0l

LocalName DEFAULT {},
COMPONENTS OF ChopSpecification,
specificationFilter [4] Refinement OPTIONAL,
e}

-- empty sequence specifies whole administrative area
LocalName ::= RDNSequence

ChopSpecification ::= SEQUENCE {
specificExclusions [1] SET SIZE (1..MAX) OF CHOICE {
chopBefore [0] LocalName,
chopAfter [1] LocalName,
...} OPTIONAL,

minimum [2] BaseDistance DEFAULT O,
maximum [3] BaseDistance OPTIONAL,

BaseDistance ::= INTEGER(0..MAX)

Refinement ::= CHOICE {

162 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

item [0] OBJECT-CLASS.&id,
and [1] SET SIZE (1..MAX) OF Refinement,

or [2] SET SIZE (1..MAX) OF Refinement,

not [3] Refinement,

e}
-- OBJECT-CLASS information object class specification
OBJECT-CLASS ::= CLASS {

&Superclasses OBJECT-CLASS OPTIONAL,

&kind ObjectClassKind DEFAULT structural,

&MandatoryAttributes ATTRIBUTE OPTIONAL,
&OptionalAttributes ATTRIBUTE OPTIONAL,

&ldapName SEQUENCE SIZE(1l..MAX) OF UTF8String OPTIONAL,

&ldapDesc UTF8String OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SUBCLASS OF &Superclasses]

[KIND &kind]

[MUST CONTAIN &MandatoryAttributes]

[MAY CONTAIN &OptionalAttributes]

[LDAP-NAME &ldapName]

[LDAP-DESC &ldapDesc]

ID &id }

ObjectClassKind ::= ENUMERATED {
abstract (0),
structural (1),
auxiliary (2)}

-- object classes

top OBJECT-CLASS ::= {

KIND abstract
MUST CONTAIN {objectClass}
LDAP-NAME {"top"}

ID id-oc-top }

alias OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {aliasedEntryName}
LDAP-NAME {ralias"}
ID id-oc-alias }

parent OBJECT-CLASS ::= {

KIND abstract

ID id-oc-parent }
child OBJECT-CLASS ::= {

KIND auxiliary

ID id-oc-child }

-- ATTRIBUTE information object class specification

ATTRIBUTE ::= CLASS {

&derivation ATTRIBUTE OPTIONAL,

&Type OPTIONAL, -- either &Type or &derivation required
&equality-match MATCHING-RULE OPTIONAL,

&ordering-match MATCHING-RULE OPTIONAL,

&substrings-match MATCHING-RULE OPTIONAL,

&single-valued BOOLEAN DEFAULT FALSE,

&collective BOOLEAN DEFAULT FALSE,

&dummy BOOLEAN DEFAULT FALSE,

-- operational extensions

&no-user-modification BOOLEAN DEFAULT FALSE,

&usage AttributeUsage DEFAULT userApplications,
&ldapSyntax SYNTAX-NAME. &id OPTIONAL,

&ldapName SEQUENCE SIZE(1l..MAX) OF UTF8String OPTIONAL,
&ldapDesc UTF8String OPTIONAL,

&obsolete BOOLEAN DEFAULT FALSE,

&id OBJECT IDENTIFIER UNIQUE }

Rec. ITU-T X.501 (10/2012) 163

| SO/l EC 9594-2:2014 (E)

WITH SYNTAX {
[SUBTYPE OF &derivation]
[WITH SYNTAX &Typel
[EQUALITY MATCHING RULE &equality-matchl]
[ORDERING MATCHING RULE &ordering-match]
[SUBSTRINGS MATCHING RULE &substrings-match]

[SINGLE VALUE &single-valued]
[COLLECTIVE &collective]

[DUMMY &dummy]

[NO USER MODIFICATION &no-user-modification]
[USAGE &usagel

[LDAP-SYNTAX &ldapSyntax]
[LDAP-NAME &ldapName]

[LDAP-DESC &ldapDesc]

[OBSOLETE &obsolete]

ID &id }

AttributeUsage ::= ENUMERATED {

userApplications (0),
directoryOperation (1),
distributedOperation (2),
dSAOperation (3),
e}
-- attributes
objectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
LDAP-SYNTAX oid.&id
LDAP-NAME {"objectClass"}
ID id-at-objectClass }
aliasedEntryName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
LDAP-SYNTAX dn.&id
LDAP-NAME {"aliasedObjectName"}
ID id-at-aliasedEntryName }

-- MATCHING-RULE information object class specification

MATCHING-RULE ::= CLASS {
&ParentMatchingRules MATCHING-RULE OPTIONAL,
&AssertionType OPTIONAL,
&uniqueMatchIndicator ATTRIBUTE OPTIONAL,
&ldapSyntax SYNTAX-NAME. &id OPTIONAL,
&ldapName SEQUENCE SIZE(l..MAX) OF UTF8String OPTIONAL,
&ldapDesc UTF8String OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
[PARENT &ParentMatchingRules]
[SYNTAX &AssertionTypel
[UNIQUE-MATCH-INDICATOR &uniqueMatchIndicator]
[LDAP-SYNTAX &ldapSyntax]
[LDAP-NAME &ldapName]
[LDAP-DESC &ldapDesc]
ID &id }

-- matching rules

objectIdentifierMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
LDAP-SYNTAX oid.&id
LDAP-NAME {"objectIdentifierMatch"}
ID id-mr-objectIdentifierMatch }
distinguishedNameMatch MATCHING-RULE ::= {
SYNTAX DistinguishedName

LDAP-SYNTAX dn.&id

164 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

LDAP-NAME {"distinguishedNameMatch"}
ID id-mr-distinguishedNameMatch }

-- MATCHING-RULE information object class specification

MAPPING-BASED-MATCHING

{SelectedBy, BOOLEAN:combinable, MappingResult, OBJECT IDENTIFIER:matchingRule} ::=

CLASS {
&selectBy SelectedBy OPTIONAL,
&ApplicableTo ATTRIBUTE,
&subtypesIncluded BOOLEAN DEFAULT TRUE,
&combinable BOOLEAN (combinable) ,
&mappingResults MappingResult OPTIONAL,
&userControl BOOLEAN DEFAULT FALSE,
&exclusive BOOLEAN DEFAULT TRUE,
&matching-rule MATCHING-RULE. &id (matchingRule),
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
[SELECT BY &selectByl]
APPLICABLE TO &ApplicableTo
[SUBTYPES INCLUDED &subtypesIncluded]
COMBINABLE &combinable
[MAPPING RESULTS &mappingResults]
[USER CONTROL &userControl]
[EXCLUSIVE &exclusivel
MATCHING RULE &matching-rule
ID &id }

-- NAME-FORM information object class specification

NAME-FORM ::= CLASS {
&namedObjectClass OBJECT-CLASS,
&MandatoryAttributes ATTRIBUTE,
&OptionalAttributes ATTRIBUTE OPTIONAL,

&ldapName SEQUENCE SIZE(l..MAX) OF UTF8String OPTIONAL,
&ldapDesc UTF8String OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
NAMES &namedObjectClass
WITH ATTRIBUTES &MandatoryAttributes
[AND OPTIONALLY &OptionalAttributes]
[LDAP-NAME &ldapName]
[LDAP-DESC &ldapDesc]
ID &id }

-- STRUCTURE-RULE class and DIT structure rule data types

DITStructureRule ::= SEQUENCE {

ruleIdentifier Ruleldentifier,
-- shall be unique within the scope of the subschema
nameForm NAME-FORM. &id,
superiorStructureRules SET SIZE (1l..MAX) OF RuleIdentifier OPTIONAL,
o)
RuleIdentifier ::= INTEGER
STRUCTURE-RULE ::= CLASS {
&nameForm NAME-FORM,
&SuperiorStructureRules STRUCTURE-RULE.&id OPTIONAL,
&id RuleIdentifier }
WITH SYNTAX {
NAME FORM &nameForm
[SUPERIOR RULES &SuperiorStructureRules]
ID &id }

-- DIT content rule data type and CONTENT-RULE class

DITContentRule ::= SEQUENCE {
structuralObjectClass OBJECT-CLASS.&id,
auxiliaries SET SIZE (1l..MAX) OF OBJECT-CLASS.&id OPTIONAL,

Rec. ITU-T X.501 (10/2012)

165

| SO/l EC 9594-2:2014 (E)

mandatory [1] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
optional [2] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
precluded [3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
o)

CONTENT-RULE ::= CLASS {
&structuralClass OBJECT-CLASS.&id UNIQUE,
&Auxiliaries OBJECT-CLASS OPTIONAL,
&Mandatory ATTRIBUTE OPTIONAL,
&Optional ATTRIBUTE OPTIONAL,
&Precluded ATTRIBUTE OPTIONAL }

WITH SYNTAX {
STRUCTURAL OBJECT-CLASS &structuralClass
[AUXILIARY OBJECT-CLASSES &Auxiliaries]

[MUST CONTAIN &Mandatory]

[MAY CONTAIN &Optionall

[MUST-NOT CONTAIN &Precluded] }
CONTEXT ::= CLASS ({

&Type,

&defaultValue &Type OPTIONAL,

&Assertion OPTIONAL,

&absentMatch BOOLEAN DEFAULT TRUE,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

WITH SYNTAX &Type

[DEFAULT-VALUE &defaultValuel

[ASSERTED AS &Assertion]

[ABSENT-MATCH &absentMatch]

ID &id }

DITContextUse ::= SEQUENCE {

attributeType ATTRIBUTE. &id,
mandatoryContexts [1] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
)
DIT-CONTEXT-USE-RULE ::= CLASS {
&attributeType ATTRIBUTE. &id UNIQUE,
&Mandatory CONTEXT OPTIONAL,
&Optional CONTEXT OPTIONAL}
WITH SYNTAX {
ATTRIBUTE TYPE &attributeType

[MANDATORY CONTEXTS &Mandatoryl]
[OPTIONAL CONTEXTS &Optional] }

FRIENDS ::= CLASS {
&anchor ATTRIBUTE.&id UNIQUE,
&Friends ATTRIBUTE }
WITH SYNTAX {
ANCHOR &anchor
FRIENDS &Friends }

SYNTAX-NAME ::= CLASS {

&ldapDesc UTF8String,

&Type OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

LDAP-DESC &ldapDesc

[DIRECTORY SYNTAX &Typel

ID &id }

-- system schema information objects

-- object classes

subentry OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND structural
MUST CONTAIN {commonName |

subtreeSpecification}

166 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

LDAP-NAME {"subentry"}

ID id-sc-subentry }
subentryNameForm NAME-FORM ::= {

NAMES subentry

WITH ATTRIBUTES {commonName }

ID id-nf-subentryNameForm }
subtreeSpecification ATTRIBUTE ::= {

WITH SYNTAX SubtreeSpecification

USAGE directoryOperation

LDAP-SYNTAX subtreeSpec.&id

LDAP-NAME {"subtreeSpecification"}

ID id-oa-subtreeSpecification }

administrativeRole ATTRIBUTE ::= {

WITH SYNTAX OBJECT-CLASS.&id

EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
LDAP-SYNTAX oid.&id

LDAP-NAME {"administrativeRole"}

ID id-oa-administrativeRole }

createTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
-- as per 46.3 b) or c) of Rec. ITU-T X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

LDAP-SYNTAX generalizedTime.&id

LDAP-NAME {"createTimestamp"}

ID id-oa-createTimestamp }
modifyTimestamp ATTRIBUTE ::= {

WITH SYNTAX GeneralizedTime

-- as per 46.3 b) or c) of Rec. ITU-T X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

LDAP-SYNTAX generalizedTime.&id

LDAP-NAME {"modifyTimestamp"}

ID id-oa-modifyTimestamp }
subschemaTimestamp ATTRIBUTE ::= {

WITH SYNTAX GeneralizedTime

-- as per 46.3 b) or c) of Rec. ITU-T X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-subschemaTimestamp }
creatorsName ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

LDAP-SYNTAX dn.&id

LDAP-NAME {"creatorsName"}

ID id-oa-creatorsName }
modifiersName ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

Rec. ITU-T X.501 (10/2012) 167

| SO/l EC 9594-2:2014 (E)

NO USER MODIFICATION TRUE

USAGE directoryOperation

LDAP-SYNTAX dn.&id

LDAP-NAME {"modifiersName"}

ID id-oa-modifiersName }
subschemaSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

LDAP-SYNTAX dn.&id

LDAP-NAME {"subschemaSubentry"}

ID id-oa-subschemaSubentryList }
accessControlSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-accessControlSubentryList }

collectiveAttributeSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-collectiveAttributeSubentryList }
contextDefaultSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-contextDefaultSubentryList }
serviceAdminSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-serviceAdminSubentryList }
pwdAdminSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

LDAP-SYNTAX dn.&id

LDAP-NAME {"pwdAdminSubentryList"}

ID id-oa-pwdAdminSubentryList }

hasSubordinates ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hasSubordinates }
accessControlSubentry OBJECT-CLASS ::= {

KIND auxiliary

ID id-sc-accessControlSubentry }
collectiveAttributeSubentry OBJECT-CLASS ::= {

KIND auxiliary

ID id-sc-collectiveAttributeSubentry }
collectiveExclusions ATTRIBUTE ::= {

168 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectIdentifierMatch

USAGE directoryOperation

ID id-oa-collectiveExclusions }
contextAssertionSubentry OBJECT-CLASS ::= {

KIND auxiliary

MUST CONTAIN {contextAssertionDefaults}

ID id-sc-contextAssertionSubentry }
contextAssertionDefaults ATTRIBUTE ::= {

WITH SYNTAX TypeAndContextAssertion

EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

USAGE directoryOperation

ID id-oa-contextAssertionDefault }
serviceAdminSubentry OBJECT-CLASS ::= {

KIND auxiliary

MUST CONTAIN {searchRules}

ID id-sc-serviceAdminSubentry }

searchRules ATTRIBUTE ::= {

WITH SYNTAX SearchRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation

ID id-oa-searchRules }

SearchRuleDescription ::= SEQUENCE {
COMPONENTS OF SearchRule,
name [28] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description [29] UnboundedDirectoryString OPTIONAL,

oo

pwdAdminSubentry OBJECT-CLASS ::= {
KIND auxiliary
MUST CONTAIN { pwdAttribute }
LDAP -NAME {"pwdAdminSubentry"}
ID id-sc-pwdAdminSubentry }
pwdAttribute ATTRIBUTE ::= {
WITH SYNTAX ATTRIBUTE. &id
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
LDAP-SYNTAX oid.&id
LDAP-NAME {"pwdAttribute"}
ID id-at-pwdAttribute }

pwdHistory{ATTRIBUTE:passwordAttribute, MATCHING-RULE: historyMatch, OBJECT IDENTIFIER:id}
ATTRIBUTE ::= {

WITH SYNTAX PwdHistory{passwordAttribute}
EQUALITY MATCHING RULE historyMatch

USAGE directoryOperation

ID id}

PwdHistory{ATTRIBUTE:passwordAttribute} ::= SEQUENCE {
time GeneralizedTime,
password passwordAttribute.&Type,

pwdRecentlyExpired{ATTRIBUTE:passwordAttribute, OBJECT IDENTIFIER:id} ATTRIBUTE ::= {
WITH SYNTAX passwordAttribute. &Type
EQUALITY MATCHING RULE passwordAttribute.&equality-match
SINGLE VALUE TRUE
USAGE directoryOperation
ID id}
pwdHistoryMatch{ATTRIBUTE:passwordAttribute, OBJECT IDENTIFIER:id}
MATCHING-RULE ::= {
SYNTAX passwordAttribute.&Type
ID id}

Rec. ITU-T X.501 (10/2012) 169

| SO/l EC 9594-2:2014 (E)

hierarchyLevel ATTRIBUTE ::= {
WITH SYNTAX HierarchyLevel
EQUALITY MATCHING RULE integerMatch
ORDERING MATCHING RULE integerOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hierarchyLevel }
HierarchyLevel ::= INTEGER
hierarchyBelow ATTRIBUTE ::= {

WITH SYNTAX HierarchyBelow

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation
ID id-oa-hierarchyBelow }
HierarchyBelow ::= BOOLEAN
hierarchyParent ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-oa-hierarchyParent }

hierarchyTop ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE
SINGLE VALUE

USAGE

DistinguishedName
distinguishedNameMatch
TRUE
directoryOperation

ID id-oa-hierarchyTop }
-- object identifier assignments

-- object classes

id-oc-top OBJECT IDENTIFIER ::= {id-oc 0}
id-oc-alias OBJECT IDENTIFIER ::= {id-oc 1}
id-oc-parent OBJECT IDENTIFIER ::= {id-oc 28}
id-oc-child OBJECT IDENTIFIER ::= {id-oc 29}
-- attributes

id-at-objectClass OBJECT IDENTIFIER ::= {id-at 0}
id-at-aliasedEntryName OBJECT IDENTIFIER ::= {id-at 1}
id-at-pwdAttribute OBJECT IDENTIFIER ::= {id-at 84}
-- matching rules

id-mr-objectIdentifierMatch OBJECT IDENTIFIER ::= {id-mr 0}
id-mr-distinguishedNameMatch OBJECT IDENTIFIER ::= {id-mr 1}
-- operational attributes

id-oa-excludeAllCollectiveAttributes OBJECT IDENTIFIER ::= {id-oa 0}
id-oa-createTimestamp OBJECT IDENTIFIER ::= {id-oa 1}
id-oa-modifyTimestamp OBJECT IDENTIFIER ::= {id-oa 2}
id-oa-creatorsName OBJECT IDENTIFIER ::= {id-oa 3}
id-oa-modifiersName OBJECT IDENTIFIER ::= {id-oa 4}
id-oa-administrativeRole OBJECT IDENTIFIER ::= {id-oa 5}
id-oa-subtreeSpecification OBJECT IDENTIFIER ::= {id-oa 6}
id-oa-collectiveExclusions OBJECT IDENTIFIER ::= {id-oa 7}
id-oa-subschemaTimestamp OBJECT IDENTIFIER ::= {id-oa 8}
id-oa-hasSubordinates OBJECT IDENTIFIER ::= {id-oa 9}
id-oa-subschemaSubentryList OBJECT IDENTIFIER ::= {id-oa 10}
id-oa-accessControlSubentryList OBJECT IDENTIFIER ::= {id-oa 11}
id-oa-collectiveAttributeSubentryList OBJECT IDENTIFIER ::= {id-oa 12}

170 Rec. ITU-T X.501 (10/2012)

id-oa-contextDefaultSubentryList
id-oa-contextAssertionDefault
id-oa-serviceAdminSubentryList
id-oa-searchRules
id-oa-hierarchyLevel
id-oa-hierarchyBelow
id-oa-hierarchyParent
id-oa-hierarchyTop
id-oa-pwdAdminSubentryList
id-oa-pwdStartTime
id-oa-pwdExpiryTime
id-oa-pwdEndTime
id-oa-pwdFails
id-oa-pwdFailureTime
id-oa-pwdGracesUsed
id-oa-userPwdHistory
id-oa-userPwdRecentlyExpired
id-oa-pwdModifyEntryAllowed
id-oa-pwdChangeAllowed
id-oa-pwdMaxAge
id-oa-pwdExpiryAge
id-oa-pwdMinLength
id-oa-pwdVocabulary
id-oa-pwdAlphabet
id-oa-pwdDictionaries
id-oa-pwdExpiryWarning
id-oa-pwdGraces
id-oa-pwdFailureDuration
id-oa-pwdLockoutDuration
id-oa-pwdMaxFailures
id-oa-pwdMaxTimeInHistory
id-oa-pwdMinTimeInHistory
id-oa-pwdHistorySlots
id-oa-pwdRecentlyExpiredDuration
id-oa-pwdEncAlg
id-oa-allAttributeTypes

subentry classes

id-sc-subentry
id-sc-accessControlSubentry
id-sc-collectiveAttributeSubentry
id-sc-contextAssertionSubentry
id-sc-serviceAdminSubentry
id-sc-pwdAdminSubentry

Name forms

id-nf-subentryNameForm

administrative roles

id-ar-autonomousArea
id-ar-accessControlSpecificArea
id-ar-accessControlInnerArea
id-ar-subschemaAdminSpecificArea
id-ar-collectiveAttributeSpecificArea
id-ar-collectiveAttributeInnerArea
id-ar-contextDefaultSpecificArea
id-ar-serviceSpecificArea
id-ar-pwdAdminSpecificArea

END -- InformationFramework

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

IDENTIFIER

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

e ss e ee es es es e

@0 66 e s e ee es ss e e se se ss e e s s ss es e e ss ss e ee e ss e

e ss e ee e ee

.

66 es e e e es ss es e

®6 66 e s s ee es ss e e ee ss ss s s s es ss e e s ss es s 60 e ss ss e 60 e es ss e e ee

e eo eo 00 e e
n

| SO/l EC 9594-2:2014 (E)

{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa
{id-oa

{id-sc
{id-sc
{id-sc
{id-sc
{id-sc
{id-sc

{id-nf

{id-ar
{id-ar
{id-ar
{id-ar
{id-ar
{id-ar
{id-ar
{id-ar
{id-ar

13}
14}
15}
16}
17}
18}
19}
20}
21}
22}
23}
24}
25}
26}
27}
28}
29}
30}
31}
32}
33}
34}
35}
36}
37}
38}
39}
40}
41}
42}
43}
44}
45}
46}
47}
48}

X.509 |Part8
X.509 |Parts8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8
X.509 |Part8

Rec. ITU-T X.501 (10/2012)

171

| SO/l EC 9594-2:2014 (E)

Annex C

Subschema administration in ASN.1

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex contains the ASN.1 type, value and information object definitions for subschema administration as defined
in clause 15, in the form of an ASN.1 module, schemaAdministration.

SchemaAdministration {joint-iso-itu-t ds(5) module(l) schemaAdministration(23) 7}
DEFINITIONS ::=
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within the Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2

id-soa, id-soc, informationFramework, ldapSystemSchema, selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

ATTRIBUTE, AttributeUsage, CONTEXT, DITContentRule, DITStructureRule, MATCHING-RULE,
NAME-FORM, OBJECT-CLASS, ObjectClassKind, objectIdentifierMatch, SYNTAX-NAME
FROM InformationFramework informationFramework

ldapSyntaxes
FROM LdapSystemSchema ldapSystemSchema

-- from Rec. ITU-T X.520 | ISO/IEC 9594-6

attributeTypeDescription, dITContentRuleDescription, dITStructureRuleDescription,
integer, integerFirstComponentMatch, integerMatch, matchingRuleDescription,
matchingRuleUseDescription, nameFormDescription, objectClassDescription,
objectIdentifierFirstComponentMatch, oid, UnboundedDirectoryString

FROM SelectedAttributeTypes selectedAttributeTypes;

subschema OBJECT-CLASS ::= {

KIND auxiliary

MAY CONTAIN { dITStructureRules |
nameForms |
dITContentRules |
objectClasses |
attributeTypes |
friends |
contextTypes |
dITContextUse |
matchingRules |
matchingRuleUse |
ldapSyntaxes }

LDAP-NAME {"subschema"}

ID id-soc-subschema }

dITStructureRules ATTRIBUTE ::= {

WITH SYNTAX DITStructureRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation

LDAP-SYNTAX dITStructureRuleDescription.&id
LDAP-NAME {"dITStructureRules"}

ID id-soa-dITStructureRule }

DITStructureRuleDescription ::= SEQUENCE {

172 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

COMPONENTS OF DITStructureRule,

name [1] SET SIZE (l1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
e}
dITContentRules ATTRIBUTE ::= {
WITH SYNTAX DITContentRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX dITContentRuleDescription.&id
LDAP-NAME {"dITContentRules"}
ID id-soa-dITContentRules }
DITContentRuleDescription ::= SEQUENCE {
COMPONENTS OF DITContentRule,
name [4] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
e}
matchingRules ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX matchingRuleDescription.&id
LDAP-NAME {"matchingRules"}
ID id-soa-matchingRules }

MatchingRuleDescription ::= SEQUENCE {

identifier MATCHING-RULE. &id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,

obsolete BOOLEAN DEFAULT FALSE,

information [0] UnboundedDirectoryString OPTIONAL,
-- describes the ASN.1l syntax

)

attributeTypes ATTRIBUTE ::= {
WITH SYNTAX AttributeTypeDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX attributeTypeDescription.&id
LDAP-NAME {"attributeTypes"}
ID id-soa-attributeTypes }

AttributeTypeDescription ::= SEQUENCE {

identifier ATTRIBUTE. &id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] AttributeTypeInformation,
..}
AttributeTypeInformation ::= SEQUENCE {
derivation [0] ATTRIBUTE.&id OPTIONAL,
equalityMatch [1] MATCHING-RULE. &id OPTIONAL,
orderingMatch [2] MATCHING-RULE.&id OPTIONAL,
substringsMatch [3] MATCHING-RULE.&id OPTIONAL,
attributeSyntax [4] UnboundedDirectoryString OPTIONAL,
multi-valued [5] BOOLEAN DEFAULT TRUE,
collective [6] BOOLEAN DEFAULT FALSE,
userModifiable [71 BOOLEAN DEFAULT TRUE,
application AttributeUsage DEFAULT userApplications,
objectClasses ATTRIBUTE ::= {
WITH SYNTAX ObjectClassDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
LDAP-SYNTAX objectClassDescription.&id

Rec. ITU-T X.501 (10/2012)

173

174

| SO/l EC 9594-2:2014 (E)

LDAP-NAME
ID

ObjectClassDescription

nameForms ATTRIBUTE

WITH SYNTAX
EQUALITY MATCHING
USAGE

LDAP-SYNTAX
LDAP-NAME

ID

NameFormDescription

identifier
name
description
obsolete
information

o)

[o]

NameFormInformation

subordinate
namingMandatories
namingOptionals

WITH SYNTAX
EQUALITY MATCHING
USAGE

LDAP-SYNTAX
LDAP-NAME

IDp

MatchingRuleUseDescription :

identifier
name
description
obsolete
information

)

[0l

structuralObjectClass ATTRIBUTE

WITH SYNTAX
EQUALITY MATCHING
SINGLE VALUE

NO USER MODIFICATION

USAGE
LDAP-SYNTAX
LDAP-NAME
ID

governingStructureRule ATTRIBUTE :

WITH SYNTAX
EQUALITY MATCHING
SINGLE VALUE

NO USER MODIFICATION

{"objectClasses"}
id-soa-objectClasses }

SEQUENCE {

identifier OBJECT-CLASS.&id,
name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ObjectClassInformation,
oo}

ObjectClassInformation ::= SEQUENCE {
subclassOf SET SIZE (1l..MAX) OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
optionals [4] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
)

n
~

NameFormDescription
objectIdentifierFirstComponentMatch
directoryOperation
nameFormDescription. &id
{"nameForms"}

id-soa-nameForms }

RULE

::= SEQUENCE {

NAME-FORM. &id,

SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
UnboundedDirectoryString OPTIONAL,
BOOLEAN DEFAULT FALSE,
NameFormInformation,

s e=

SEQUENCE {

OBJECT-CLASS. &id,

SET OF ATTRIBUTE.&id,

SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,

matchingRuleUse ATTRIBUTE ::= {

MatchingRuleUseDescription
objectIdentifierFirstComponentMatch
directoryOperation
matchingRuleUseDescription.&id
{"matchingRuleUse"}
id-soa-matchingRuleUse }

RULE

SEQUENCE {

MATCHING-RULE. &id,

SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
UnboundedDirectoryString OPTIONAL,
BOOLEAN DEFAULT FALSE,
SET OF ATTRIBUTE.&id,

ri= {

OBJECT IDENTIFIER
objectIdentifierMatch

TRUE

TRUE

directoryOperation

oid.&id
{"structuralObjectClass"}
id-soa-structuralObjectClass }

RULE

= {
INTEGER
RULE integerMatch
TRUE
TRUE

Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

USAGE directoryOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"governingStructureRule"}

ID id-soa-governingStructureRule }
contextTypes ATTRIBUTE ::= {

WITH SYNTAX ContextDescription

EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

USAGE directoryOperation

ID id-soa-contextTypes }

ContextDescription ::= SEQUENCE {

identifier CONTEXT.&id,
name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ContextInformation,
e}
ContextInformation ::= SEQUENCE {
syntax UnboundedDirectoryString,
assertionSyntax UnboundedDirectoryString OPTIONAL,
.o}
dITContextUse ATTRIBUTE ::= {
WITH SYNTAX DITContextUseDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITContextUse }
DITContextUseDescription ::= SEQUENCE ({
identifier ATTRIBUTE. &id,
name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] DITContextUseInformation,
e}

DITContextUseInformation ::= SEQUENCE {
mandatoryContexts [1] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,

optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
o)
friends ATTRIBUTE ::= {
WITH SYNTAX FriendsDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-friends }
FriendsDescription ::= SEQUENCE {
anchor ATTRIBUTE. &id,
name SET SIZE (1l..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
friends [0] SET SIZE (1..MAX) OF ATTRIBUTE.&id,
e}

-- object identifier assignments
-- schema object classes
id-soc-subschema OBJECT IDENTIFIER ::= {id-soc 1}

-- schema operational attributes

id-soa-dITStructureRule OBJECT IDENTIFIER ::= {id-soa 1}
id-soa-dITContentRules OBJECT IDENTIFIER ::= {id-soa 2}
id-soa-matchingRules OBJECT IDENTIFIER ::= {id-soa 4}
id-soa-attributeTypes OBJECT IDENTIFIER ::= {id-soa 5}
id-soa-objectClasses OBJECT IDENTIFIER ::= {id-soa 6}
id-soa-nameForms OBJECT IDENTIFIER ::= {id-soa 7}

Rec. ITU-T X.501 (10/2012)

175

| SO/l EC 9594-2:2014 (E)

id-soa-matchingRuleUse
id-soa-structuralObjectClass
id-soa-governingStructureRule
id-soa-contextTypes
id-soa-dITContextUse
id-soa-friends

END --

176

SchemaAdministration

Rec. ITU-T X.501 (10/2012)

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER
IDENTIFIER

8}

10}
11}
12}
13}

(Thisannex forms an integral part of this Recommendation | International Standard.)

Annex D

| SO/l EC 9594-2:2014 (E)

Serviceadministration in ASN.1

This annex contains the ASN.1 type, value and information object definitions for subschema administration as defined
in clause 16 in the form of an ASN.1 module, ServiceAdministration.

ServiceAdministration {joint-iso-itu-t ds(5) module(l) serviceAdministration(33) 7}

DEFINITIONS

BEGIN

EXPORTS All

The types and values defined in this module are exported for use in the other ASN.1

modules contained within these Directory Specifications,
applications which will use them to access Directory services.
use them for their own purposes,

modifications needed to maintain or improve the Directory service.

IMPORTS

-- from Rec. ITU-T X.501 | ISO/IEC 9594-2

directoryAbstractService,

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions (0)

ATTRIBUTE, AttributeType,

SupportedAttributes,

FROM InformationFramework informationFramework

informationFramework

CONTEXT, MATCHING-RULE,

SupportedContexts

-- from Rec. ITU-T X.511 | ISO/IEC 9594-3

FamilyGrouping,
ServiceControlOptions

FamilyReturn,

HierarchySelections,

OBJECT-CLASS,

SearchControlOptions,

FROM DirectoryAbstractService directoryAbstractService;

{

[1]
[2]

OBJECT IDENTIFIER
INTEGER

-- types

SearchRule ::= SEQUENCE
COMPONENTS OF SearchRuleId,
serviceType
userClass
inputAttributeTypes

attributeCombination

[31
[4]

SEQUENCE SIZE (0..MAX) OF RequestAttribute

AttributeCombination

and for the use of other
Other applications may
but this will not constrain extensions and

7}

OPTIONAL,
OPTIONAL,

OPTIONAL,

DEFAULT and:{},

Rec. ITU-T X.501 (10/2012)

outputAttributeTypes [5] SEQUENCE SIZE (1..MAX) OF ResultAttribute OPTIONAL,
defaultControls [6] ControlOptions OPTIONAL,
mandatoryControls [7] ControlOptions OPTIONAL,
searchRuleControls [8] ControlOptions OPTIONAL,
familyGrouping [9] FamilyGrouping OPTIONAL,
familyReturn [10] FamilyReturn OPTIONAL,
relaxation [11] RelaxationPolicy OPTIONAL,
additionalControl [12] SEQUENCE SIZE (1l..MAX) OF AttributeType OPTIONAL,
allowedSubset [13] AllowedSubset DEFAULT '111'B,
imposedSubset [14] ImposedSubset OPTIONAL,
entryLimit [15] EntryLimit OPTIONAL,
SearchRuleId ::= SEQUENCE ({
id INTEGER,
dmdId [0] OBJECT IDENTIFIER }
AllowedSubset ::= BIT STRING {baseObject(0), oneLevel(l), wholeSubtree(2)}
ImposedSubset ::= ENUMERATED {baseObject(0), oneLevel(l), wholeSubtree(2),...}
RequestAttribute ::= SEQUENCE {

177

| SO/l EC 9594-2:2014 (E)

attributeType ATTRIBUTE. &id ({SupportedAttributes}),
includeSubtypes [0] BOOLEAN DEFAULT FALSE,
selectedValues [1] SEQUENCE SIZE (0..MAX) OF ATTRIBUTE.&Type
({supportedattributes}{@attributeType}) OPTIONAL,
defaultValues [2] SEQUENCE SIZE (0..MAX) OF SEQUENCE ({
entryType OBJECT-CLASS.&id OPTIONAL,
values SEQUENCE OF ATTRIBUTE.&Type

({supportedAttributes}{@attributeType}),
...} OPTIONAL,

contexts [3] SEQUENCE SIZE (0..MAX) OF ContextProfile OPTIONAL,

contextCombination [4] ContextCombination DEFAULT and:{},

matchingUse [5] SEQUENCE SIZE (1l..MAX) OF MatchingUse OPTIONAL,
ContextProfile ::= SEQUENCE {

contextType CONTEXT. &id ({SupportedContexts}),
contextValue SEQUENCE SIZE (1..MAX) OF CONTEXT.&Assertion
({supportedContexts}{@contextType}) OPTIONAL,

ContextCombination ::= CHOICE {
context [0] CONTEXT.&id ({SupportedContexts}),
and [1] SEQUENCE OF ContextCombination,
or [2] SEQUENCE OF ContextCombination,
not [3] ContextCombination,
e}
MatchingUse ::= SEQUENCE {
restrictionType MATCHING-RESTRICTION. &id ({SupportedMatchingRestrictions}),

restrictionValue MATCHING-RESTRICTION.&Restriction
({supportedMatchingRestrictions}{@restrictionType}),

-- Definition of the following information object set is deferred, perhaps to
-- standardized profiles or to protocol implementation conformance statements.
-- The set is required to specify a table constraint on the components of

-- SupportedMatchingRestrictions

SupportedMatchingRestrictions MATCHING-RESTRICTION ::= {...}

AttributeCombination ::= CHOICE {
attribute [0] AttributeType,

and [1] SEQUENCE OF AttributeCombination,
or [2] SEQUENCE OF AttributeCombination,
not [3] AttributeCombination,
.o}
ResultAttribute ::= SEQUENCE {
attributeType ATTRIBUTE. &id ({SupportedAttributes}),
outputValues CHOICE {
selectedValues SEQUENCE OF ATTRIBUTE.&Type

({supportedAttributes}{@attributeType}),
matchedValuesOnly NULL } OPTIONAL,

contexts [0] SEQUENCE SIZE (1..MAX) OF ContextProfile OPTIONAL,
o)

ControlOptions ::= SEQUENCE ({
serviceControls [0] ServiceControlOptions DEFAULT {},
searchOptions [1] SearchControlOptions DEFAULT {searchAliases},
hierarchyOptions [2] HierarchySelections OPTIONAL,

EntryLimit ::= SEQUENCE {
default INTEGER,
max INTEGER,
.)

RelaxationPolicy ::= SEQUENCE {
basic [0] MRMapping DEFAULT {},

tightenings [1] SEQUENCE SIZE (1..MAX) OF MRMapping OPTIONAL,
relaxations [2] SEQUENCE SIZE (l1l..MAX) OF MRMapping OPTIONAL,

178 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

maximum [3] INTEGER OPTIONAL, -- mandatory if tightenings is present
minimum [4] INTEGER DEFAULT 1,
e}
MRMapping ::= SEQUENCE {
mapping [0] SEQUENCE SIZE (1l..MAX) OF Mapping OPTIONAL,
substitution [1] SEQUENCE SIZE (1..MAX) OF MRSubstitution OPTIONAL,
oo}
Mapping ::= SEQUENCE {
mappingFunction OBJECT IDENTIFIER (CONSTRAINED BY {-- shall be an--
-- object identifier of a mapping-based matching algorithm -- }),
level INTEGER DEFAULT O,
e}
MRSubstitution ::= SEQUENCE {
attribute AttributeType,
oldMatchingRule [0] MATCHING-RULE.&id OPTIONAL,
newMatchingRule [1] MATCHING-RULE.&id OPTIONAL,
e}

-- ASN.1l information object classes

SEARCH-RULE ::= CLASS ({

WITH SYNTAX {

&dmdId OBJECT IDENTIFIER,
&serviceType OBJECT IDENTIFIER OPTIONAL,
&userClass INTEGER OPTIONAL,
&InputAttributeTypes REQUEST-ATTRIBUTE OPTIONAL,
&combination AttributeCombination OPTIONAL,
&OutputAttributeTypes RESULT-ATTRIBUTE OPTIONAL,
&defaultControls ControlOptions OPTIONAL,
&mandatoryControls ControlOptions OPTIONAL,
&searchRuleControls ControlOptions OPTIONAL,
&familyGrouping FamilyGrouping OPTIONAL,
&familyReturn FamilyReturn OPTIONAL,
&additionalControl AttributeType OPTIONAL,
&relaxation RelaxationPolicy OPTIONAL,
&allowedSubset AllowedSubset DEFAULT '1l11'B,
&imposedSubset ImposedSubset OPTIONAL,
&entryLimit EntryLimit OPTIONAL,
&id INTEGER UNIQUE }
WITH SYNTAX {
DMD ID &dmdId
[SERVICE-TYPE &serviceTypel
[USER-CLASS &userClass]
[INPUT ATTRIBUTES &InputAttributeTypes]
[COMBINATION &combination]
[OUTPUT ATTRIBUTES &OutputAttributeTypes]
[DEFAULT CONTROL &defaultControls]
[MANDATORY CONTROL &mandatoryControls]
[SEARCH-RULE CONTROL &searchRuleControls]
[FAMILY-GROUPING &familyGroupingl
[FAMILY-RETURN &familyReturn]
[ADDITIONAL CONTROL &additionalControl]
[RELAXATION &relaxation]
[ALLOWED SUBSET &allowedSubset]
[IMPOSED SUBSET &imposedSubset]
[ENTRY LIMIT &entryLimit]
ID &id }
REQUEST-ATTRIBUTE ::= CLASS {

&attributeType ATTRIBUTE. &id,
&SelectedValues ATTRIBUTE. &Type OPTIONAL,
&DefaultValues SEQUENCE {

entryType OBJECT-CLASS.&id OPTIONAL,

values SEQUENCE OF ATTRIBUTE.&Type } OPTIONAL,
&contexts SEQUENCE OF ContextProfile OPTIONAL,
&contextCombination ContextCombination OPTIONAL,
&MatchingUse MatchingUse OPTIONAL,
&includeSubtypes BOOLEAN DEFAULT FALSE }

Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

ATTRIBUTE TYPE &attributeType
[SELECTED VALUES &SelectedValues]
[DEFAULT VALUES &DefaultValues]
[CONTEXTS &contexts]
[CONTEXT COMBINATION &contextCombinationl]
[MATCHING USE &MatchingUse]
[INCLUDE SUBTYPES &includeSubtypes] }
RESULT-ATTRIBUTE ::= CLASS {
&attributeType ATTRIBUTE. &id,
&outputValues CHOICE {
selectedValues SEQUENCE OF ATTRIBUTE.&Type,
matchedValuesOnly NULL }
&contexts ContextProfile
WITH SYNTAX {
ATTRIBUTE TYPE &attributeType
[OUTPUT VALUES &outputValues]
[CONTEXTS &contexts] }

MATCHING-RESTRICTION ::= CLASS {
&Restriction,

&Rules MATCHING-RULE. &id,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

RESTRICTION &Restriction

RULES &Rules

ID &id }
END -- ServiceAdministration

180 Rec. ITU-T X.501 (10/2012)

OPTIONAL,
OPTIONAL }

| SO/l EC 9594-2:2014 (E)

Annex E

Basic Access Control in ASN.1

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex provides a summary of al of the ASN.1 type and value definitions for Basic Access Control. The definitions
form the ASN.1 module BasicAccessControl.

BasicAccessControl {joint-iso-itu-t ds(5) module(l) basicAccessControl (24) 7}
DEFINITIONS ::=
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within these Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS

-- from Rec. ITU-T X.501 | ISO/IEC 9594-2
directoryAbstractService, id-aca, id-acScheme, informationFramework,
selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}
ATTRIBUTE, AttributeType, AttributeTypeAndValue, ContextAssertion, DistinguishedName,
MATCHING-RULE, objectIdentifierMatch, Refinement, SubtreeSpecification,
SupportedAttributes

FROM InformationFramework informationFramework

-- from Rec. ITU-T X.511 | ISO/IEC 9594-3

Filter
FROM DirectoryAbstractService directoryAbstractService

-- from Rec. ITU-T X.520 | ISO/IEC 9594-6
directoryStringFirstComponentMatch, NameAndOptionalUID,
UnboundedDirectoryString, UniqueIdentifier

FROM SelectedAttributeTypes selectedAttributeTypes;

accessControlScheme ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectIdentifierMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-aca-accessControlScheme }
-- types

ACIItem ::= SEQUENCE {

identificationTag UnboundedDirectoryString,
precedence Precedence,
authenticationLevel AuthenticationLevel,
itemOrUserFirst CHOICE {
itemFirst [0] SEQUENCE {
protectedItems ProtectedItems,
itemPermissions SET OF ItemPermission,
Y
userFirst [1] SEQUENCE {
userClasses UserClasses,
userPermissions SET OF UserPermission,
Y
...)
e}

Rec. ITU-T X.501 (10/2012) 181

| SO/l EC 9594-2:2014 (E)

Precedence ::= INTEGER(0..255,...)
ProtectedItems ::= SEQUENCE {
entry [0] NULL OPTIONAL,
allUserAttributeTypes [1] NULL OPTIONAL,
attributeType [2] SET SIZE (1l..MAX) OF AttributeType
OPTIONAL,
allAttributeValues [3] SET SIZE (1..MAX) OF AttributeType
OPTIONAL,
allUserAttributeTypesAndValues [4] NULL OPTIONAL,
attributeValue [5] SET SIZE (l1l..MAX) OF AttributeTypeAndValue
OPTIONAL,
selfValue [6] SET SIZE (1..MAX) OF AttributeType
OPTIONAL,
rangeOfValues [7] Filter OPTIONAL,
maxValueCount [8] SET SIZE (l1l..MAX) OF MaxValueCount
OPTIONAL,
maxImmSub [9] INTEGER OPTIONAL,
restrictedBy [10] SET SIZE (1l..MAX) OF RestrictedValue
OPTIONAL,
contexts [11] SET SIZE (1..MAX) OF ContextAssertion
OPTIONAL,
classes [12] Refinement OPTIONAL,
oo}
MaxValueCount ::= SEQUENCE {
type AttributeType,
maxCount INTEGER,
e}
RestrictedValue ::= SEQUENCE {
type AttributeType,
valuesIn AttributeType,
e}
UserClasses ::= SEQUENCE {
allUsers [0] NULL OPTIONAL,
thisEntry [1] NULL OPTIONAL,
name [2] SET SIZE (l1l..MAX) OF NameAndOptionalUID OPTIONAL,

userGroup [3] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,
-- dn component shall be the name of an
-- entry of GroupOfUniqueNames

subtree [4] SET SIZE (1l..MAX) OF SubtreeSpecification OPTIONAL,
ItemPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,
-- defaults to precedence in ACIItem
userClasses UserClasses,
grantsAndDenials GrantsAndDenials,
UserPermission ::= SEQUENCE ({
precedence Precedence OPTIONAL,
-- defaults to precedence in ACIItem
protectedItems ProtectedItems,
grantsAndDenials GrantsAndDenials,
AuthenticationLevel ::= CHOICE {
basicLevels SEQUENCE {
level ENUMERATED {none(0), simple(1l), strong(2),...},
localQualifier INTEGER OPTIONAL,
signed BOOLEAN DEFAULT FALSE,
other EXTERNAL,
GrantsAndDenials ::= BIT STRING {

-- permissions that may be used in conjunction

182 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

-- with any component of ProtectedItems
grantAdd (0),
denyAdd (1),
grantDiscloseOnError (2),
denyDiscloseOnError (3),

grantRead (4),
denyRead (5),
grantRemove (6),
denyRemove (7),

-- permissions that may be used only in conjunction
-- with the entry component

grantBrowse (8),

denyBrowse (9),

grantExport (10),
denyExport (11),
grantImport (12),
denyImport (13),
grantModify (14),
denyModify (15),
grantRename (16),
denyRename (17),
grantReturnDN (18),
denyReturnDN (19),

-- permissions that may be used in conjunction
-- with any component, except entry, of ProtectedItems

grantCompare (20),

denyCompare (21),

grantFilterMatch (22),

denyFilterMatch (23),

grantInvoke (24),

denyInvoke (25) }
-- attributes

prescriptiveACI ATTRIBUTE ::= {

WITH SYNTAX ACIItem

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation

ID id-aca-prescriptiveACI }

entryACI ATTRIBUTE ::= {

WITH SYNTAX ACIItem

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation

ID id-aca-entryACI }

subentryACI ATTRIBUTE ::= {

WITH SYNTAX ACIItem

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation

ID id-aca-subentryACI }

-- object identifier assignments

-- attributes

id-aca-accessControlScheme OBJECT IDENTIFIER ::= {id-aca 1}
id-aca-prescriptiveACI OBJECT IDENTIFIER ::= {id-aca 4}
id-aca-entryACI OBJECT IDENTIFIER ::= {id-aca 5}
id-aca-subentryACI OBJECT IDENTIFIER ::= {id-aca 6}

-- access control schemes

basicAccessControlScheme OBJECT IDENTIFIER {id-acScheme 1}
simplifiedAccessControlScheme OBJECT IDENTIFIER {id-acScheme 2}
rule-based-access-control OBJECT IDENTIFIER {id-acScheme 3}

rule-and-basic-access-control OBJECT IDENTIFIER
rule-and-simple-access-control OBJECT IDENTIFIER

{id-acScheme 4}
{id-acScheme 5}

e es e e ee

END -- BasicAccessControl

Rec. ITU-T X.501 (10/2012) 183

| SO/l EC 9594-2:2014 (E)

Annex F

DSA operational attributetypesin ASN.1

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type and value definitions contained in clauses 23 and 24 in the form of an ASN.1
module, DsAOperationalAttributeTypes.

DSAOperationalAttributeTypes {joint-iso-itu-t ds(5) module(1)
dsaOperationalAttributeTypes (22) 7}

DEFINITIONS ::=

BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within these Directory Specifications, and for the use of other

-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2
distributedOperations, id-doa, id-kmr, informationFramework,opBindingManagement,
selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

ATTRIBUTE, MATCHING-RULE, Name
FROM InformationFramework informationFramework

OperationalBindingID
FROM OperationalBindingManagement opBindingManagement

-- from Rec. ITU-T X.518 | ISO/IEC 9594-4

AccessPoint, DitBridgeKnowledge, MasterAndShadowAccessPoints
FROM DistributedOperations distributedOperations

-- from Rec. ITU-T X.520 | ISO/IEC 9594-6
bitStringMatch, directoryStringFirstComponentMatch
FROM SelectedAttributeTypes selectedAttributeTypes ;

dseType ATTRIBUTE ::= {

WITH SYNTAX DSEType
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-dseType }

DSEType ::= BIT STRING {

root (0), -- root DSE

glue (1), -- represents knowledge of a name only
cp (2), -- context prefix

entry (3), -- object entry

alias (4), -- alias entry

subr (5), -- subordinate reference

nssr (6), -- non-specific subordinate reference
supr (7), -- superior reference

Xr (8), -- cross reference

admPoint (9), -- administrative point

subentry (10), -- subentry

shadow (11), -- shadow copy

immSupr (13), -- immediate superior reference

rhob (14), -- rhob information

184 Rec. ITU-T X.501 (10/2012)

sa (15), -- subordinate reference to alias entry

dsSubentry (16), -- DSA Specific subentry

familyMember (17), -- family member

ditBridge (18)} -- DIT bridge reference
--writeableCopy (19) writeable copy (currently not used)
myAccessPoint ATTRIBUTE ::= {

WITH SYNTAX AccessPoint

EQUALITY MATCHING RULE accessPointMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-myAccessPoint }
superiorKnowledge ATTRIBUTE ::= {

WITH SYNTAX AccessPoint

EQUALITY MATCHING RULE accessPointMatch

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-superiorkKnowledge }

specificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-specificknowledge }

nonSpecificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-nonSpecificKnowledge }

SupplierOrConsumer ::= SET {

COMPONENTS OF AccessPoint, -- supplier or consumer

agreementID [3] OperationalBindinglID,
SupplierInformation ::= SET {

COMPONENTS OF SupplierOrConsumer, -- supplier

supplier-is-master [4] BOOLEAN DEFAULT TRUE,

non-supplying-master [5] AccessPoint OPTIONAL,

supplierKnowledge ATTRIBUTE ::= {
WITH SYNTAX SupplierInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation
ID id-doa-supplierknowledge }
ConsumerInformation ::= SupplierOrConsumer -- consumer

consumerKnowledge ATTRIBUTE ::= {
WITH SYNTAX ConsumerInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-consumerkKnowledge }
SupplierAndConsumers ::= SET {

COMPONENTS OF AccessPoint, -- supplier

consumers [3] SET OF AccessPoint,
secondaryShadows ATTRIBUTE ::= {

WITH SYNTAX SupplierAndConsumers

EQUALITY MATCHING RULE supplierAndConsumersMatch

| SO/l EC 9594-2:2014 (E)

Rec. ITU-T X.501 (10/2012)

185

| SO/l EC 9594-2:2014 (E)

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-secondaryShadows }
ditBridgeKnowledge ATTRIBUTE ::= {

WITH SYNTAX DitBridgeKnowledge

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-ditBridgeKnowledge }

-- matching rules

accessPointMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-accessPointMatch }

masterAndShadowAccessPointsMatch MATCHING-RULE ::= {
SYNTAX SET OF Name
ID id-kmr-masterShadowMatch }

supplierOrConsumerInformationMatch MATCHING-RULE ::= {
SYNTAX SET {

ae-title [0] Name,
agreement-identifier [2] INTEGER}
ID id-kmr-supplierConsumerMatch }

supplierAndConsumersMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-supplierConsumersMatch }

-- object identifier assignments

-- dsa operational attributes

id-doa-dseType OBJECT IDENTIFIER ::= {id-doa
id-doa-myAccessPoint OBJECT IDENTIFIER ::= {id-doa
id-doa-superiorKnowledge OBJECT IDENTIFIER ::= {id-doa
id-doa-specificKnowledge OBJECT IDENTIFIER ::= {id-doa
id-doa-nonSpecificKnowledge OBJECT IDENTIFIER ::= {id-doa
id-doa-supplierKnowledge OBJECT IDENTIFIER ::= {id-doa
id-doa-consumerKnowledge OBJECT IDENTIFIER ::= {id-doa
id-doa-secondaryShadows OBJECT IDENTIFIER ::= {id-doa
id-doa-ditBridgeKnowledge OBJECT IDENTIFIER ::= {id-doa
-- knowledge matching rules

id-kmr-accessPointMatch OBJECT IDENTIFIER ::= {id-kmr
id-kmr-masterShadowMatch OBJECT IDENTIFIER ::= {id-kmr
id-kmr-supplierConsumerMatch OBJECT IDENTIFIER ::= {id-kmr
id-kmr-supplierConsumersMatch OBJECT IDENTIFIER ::= {id-kmr

END -- DSAOperationalAttributeTypes

186 Rec. ITU-T X.501 (10/2012)

2}

| SO/l EC 9594-2:2014 (E)

Annex G

Operational binding management in ASN.1

(Thisannex forms an integral part of this Recommendation | International Standard.)

This annex includes all of the ASN.1 type, value and information object class definitions regarding Operational
Bindings relevant to this Directory Specification in the form of the ASN.1 module

OperationalBindingManagement.

OperationalBindingManagement {joint-iso-itu-t ds(5) module (1)
opBindingManagement (18) 7}

DEFINITIONS ::=

BEGIN

-- EXPORTS All
-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within these Directory Specifications, and for the use of other
-- applications which will use them to access Directory services. Other applications may
-- use them for their own purposes, but this will not constrain extensions and
-- modifications needed to maintain or improve the Directory service.
IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2

directoryAbstractService, directoryShadowAbstractService,
distributedOperations, directoryOSIProtocols, enhancedSecurity,
hierarchicalOperationalBindings, commonProtocolSpecification

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

OPTIONALLY-PROTECTED-SEQ
FROM EnhancedSecurity enhancedSecurity

hierarchicalOperationalBinding, nonSpecificHierarchicalOperationalBinding
FROM HierarchicalOperationalBindings hierarchicalOperationalBindings

-- from Rec. ITU-T X.511 | ISO/IEC 9594-3

CommonResultsSeq, securityError, SecurityParameters
FROM DirectoryAbstractService directoryAbstractService

-- from Rec. ITU-T X.518 | ISO/IEC 9594-4

AccessPoint, dSABind
FROM DistributedOperations distributedOperations

-- from Rec. ITU-T X.519 | ISO/IEC 9594-5
id-err-operationalBindingError, id-op-establishOperationalBinding,
id-op-modifyOperationalBinding, id-op-terminateOperationalBinding,
OPERATION, ERROR

FROM CommonProtocolSpecification commonProtocolSpecification

APPLICATION-CONTEXT
FROM DirectoryOSIProtocols directoryOSIProtocols

-- from Rec. ITU-T X.525 | ISO/IEC 9594-9

shadowOperationalBinding
FROM DirectoryShadowAbstractService directoryShadowAbstractService ;

-- bind and unbind
dSAOperationalBindingManagementBind OPERATION ::= dSABind

OPERATIONAL-BINDING ::= CLASS {
&Agreement ’

Rec. ITU-T X.501 (10/2012) 187

| SO/l EC 9594-2:2014 (E)

&Cooperation OP-BINDING-COOP,
&both OP-BIND-ROLE OPTIONAL,
&roleA OP-BIND-ROLE OPTIONAL,
&roleB OP-BIND-ROLE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
AGREEMENT &Agreement
APPLICATION CONTEXTS &Cooperation
[SYMMETRIC &bothl]
[ASYMMETRIC
[ROLE-A &roleA]
[ROLE-B &roleB]]
ID &id }
OP-BINDING-COOP ::= CLASS {

&applContext APPLICATION-CONTEXT,
&Operations OPERATION OPTIONAL }
WITH SYNTAX {
&applContext
[APPLIES TO &Operations] }

OP-BIND-ROLE ::= CLASS {

&establish BOOLEAN DEFAULT FALSE,
&EstablishParam,

&modify BOOLEAN DEFAULT FALSE,
&ModifyParam OPTIONAL,

&terminate BOOLEAN DEFAULT FALSE,
&TerminateParam OPTIONAL }

WITH SYNTAX {
[ESTABLISHMENT-INITIATOR &establishl]
ESTABLISHMENT -PARAMETER &EstablishParam
[MODIFICATION-INITIATOR &modify]
[MODIFICATION-PARAMETER &ModifyParam]
[TERMINATION-INITIATOR &terminatel]
[TERMINATION-PARAMETER &TerminateParam] }

-- operations, arguments and results

establishOperationalBinding OPERATION ::= {
ARGUMENT EstablishOperationalBindingArgument

RESULT EstablishOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-establishOperationalBinding }

EstablishOperationalBindingArgument ::=
OPTIONALLY-PROTECTED-SEQ { EstablishOperationalBindingArgumentData }

EstablishOperationalBindingArgumentData ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, Role A initiates, or Role B initiates
initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({opBindingSet}{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({opBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({opBindingSet}{@bindingType}) },
agreement [6] OPERATIONAL-BINDING.&Agreement
({opBindingSet}{@bindingType}),
valid [7] Validity DEFAULT {},
securityParameters [8] SecurityParameters OPTIONAL,
e}
OpBindingSet OPERATIONAL-BINDING ::= {

shadowOperationalBinding |
hierarchicalOperationalBinding |
nonSpecificHierarchicalOperationalBinding }

OperationalBindingID ::= SEQUENCE ({

188 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

identifier INTEGER,

version INTEGER,
cee }
Validity ::= SEQUENCE {

validFrom [0] CHOICE {
now [0] NULL,
time [1] Time,
...} DEFAULT now:NULL,

validUntil [1] CHOICE {
explicitTermination [0] NULL,
time [1] Time,

... } DEFAULT explicitTermination:NULL,

Time ::= CHOICE {

utcTime UTCTime,
generalizedTime GeneralizedTime,
EstablishOperationalBindingResult ::= OPTIONALLY-PROTECTED-SEQ {

EstablishOperationalBindingResultData }

EstablishOperationalBindingResultData ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id({OpBindingSet}),

bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, Role A replies, or Role B replies
initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam

({opBindingSet}{@bindingType}),
roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam

({opBindingSet}{@bindingType}),
roleB-replies [5] OPERATIONAL-BINDING.&roleB.&EstablishParam

({opBindingSet}{@bindingType}) },

« e oy

COMPONENTS OF CommonResultsSeq }
modifyOperationalBinding OPERATION ::= {

ARGUMENT ModifyOperationalBindingArgument

RESULT ModifyOperationalBindingResult

ERRORS {operationalBindingError | securityError}

CODE id-op-modifyOperationalBinding }

ModifyOperationalBindingArgument ::=
OPTIONALLY-PROTECTED-SEQ { ModifyOperationalBindingArgumentData }

ModifyOperationalBindingArgumentData ::= SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
bindingID [1] OperationalBindinglID,
accessPoint [2] AccessPoint OPTIONAL,
-- symmetric, Role A initiates, or Role B initiates
initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&ModifyParam

({opBindingSet}{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&ModifyParam

({opBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&ModifyParam

({opBindingSet}{@bindingType})} OPTIONAL,

newBindingID [6] OperationalBindingID,
newAgreement [7] OPERATIONAL-BINDING.&Agreement
({opBindingSet}{@bindingType}) OPTIONAL,
valid [8] ModifiedValidity OPTIONAL,
securityParameters [9] SecurityParameters OPTIONAL,
L)
ModifiedValidity ::= SEQUENCE {
validFrom [0] CHOICE {
now [0] NULL,
time [1] Time,

Rec. ITU-T X.501 (10/2012)

189

| SO/l EC 9594-2:2014 (E)

...} DEFAULT now:NULL,

validUntil [1] CHOICE {
explicitTermination [0] NULL,
time [1] Time,
unchanged [2] NULL,
... } DEFAULT unchanged:NULL,
e}
ModifyOperationalBindingResult ::= CHOICE {
null NULL,
protected [l1] OPTIONALLY-PROTECTED-SEQ{ ModifyOperationalBindingResultData },
e}
ModifyOperationalBindingResultData ::= SEQUENCE {
newBindingID OperationalBindingID,
bindingType OPERATIONAL-BINDING.&id ({OpBindingSet}),
newAgreement OPERATIONAL-BINDING. &Agreement ({OpBindingSet}{@.bindingType}),
valid Validity OPTIONAL,

oo ey

e oy

COMPONENTS OF CommonResultsSeq

}
terminateOperationalBinding OPERATION ::= {
ARGUMENT TerminateOperationalBindingArgument
RESULT TerminateOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-terminateOperationalBinding }

TerminateOperationalBindingArgument ::=

T e=

OPTIONALLY-PROTECTED-SEQ { TerminateOperationalBindingArgumentData }

TerminateOperationalBindingArgumentData ::= SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id({OpBindingSet}),
bindingID [1] OperationalBindinglID,
-- symmetric, Role A initiates, or Role B initiates
initiator CHOICE {
symmetric [2] OPERATIONAL-BINDING.&both.&TerminateParam
({opBindingSet}{@bindingType}),
roleA-initiates [3] OPERATIONAL-BINDING.&roleA.&TerminateParam
({opBindingSet}{@bindingType}),
roleB-initiates [4] OPERATIONAL-BINDING.&roleB.&TerminateParam
({opBindingSet}{@bindingType})} OPTIONAL,
terminateAt [5] Time OPTIONAL,
securityParameters [6] SecurityParameters OPTIONAL,
L)
TerminateOperationalBindingResult ::= CHOICE {
null NULL,

protected [1] OPTIONALLY-PROTECTED-SEQ{ TerminateOperationalBindingResultData },

)

TerminateOperationalBindingResultData ::= SEQUENCE {

bindingID OperationalBindingID,
bindingType OPERATIONAL-BINDING.&id ({OpBindingSet}),
terminateAt GeneralizedTime OPTIONAL,

e e ey

e e ey

COMPONENTS OF CommonResultsSeq }

-- errors and parameters

operationalBindingError ERROR ::= {
PARAMETER OPTIONALLY-PROTECTED-SEQ {OpBindingErrorParam}
CODE id-err-operationalBindingError }
OpBindingErrorParam ::= SEQUENCE {
problem [0] ENUMERATED ({
invalidID (0),
duplicatelID (1),

unsupportedBindingType (2),

190 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

notAllowedForRole (3),
parametersMissing (4),
roleAssignment (5),
invalidStartTime (6),
invalidEndTime (7),
invalidAgreement (8),

currentlyNotDecidable (9),
modificationNotAllowed (10),

invalidBindingType (11),
invalidNewID (12),
...)
bindingType [1] OPERATIONAL-BINDING.&id({OpBindingSet}) OPTIONAL,

agreementProposal [2] OPERATIONAL-BINDING.&Agreement
({opBindingSet}{@bindingType}) OPTIONAL,

retryAt [3] Time OPTIONAL,
COMPONENTS OF CommonResultsSeq }
END -- OperationalBindingManagement

Rec. ITU-T X.501 (10/2012) 191

| SO/l EC 9594-2:2014 (E)

Annex H

Enhanced security in ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard.)
EnhancedSecurity {joint-iso-itu-t ds(5) modules(l) enhancedSecurity(28) 7}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS All
IMPORTS
-- from Rec. ITU-T X.501 | ISO/IEC 9594-2
authenticationFramework, basicAccessControl, certificateExtensions,
id-at, id-avec, id-mr, id-oc, informationFramework
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}
Attribute{}, ATTRIBUTE, AttributeType, AttributeTypeAndValue, Context, CONTEXT,
Name, OBJECT-CLASS, objectIdentifierMatch, SupportedAttributes, top
FROM InformationFramework informationFramework

-- from Rec. ITU-T X.509 | ISO/IEC 9594-8

CertificateSerialNumber, HASH{}, SIGNED{}
FROM AuthenticationFramework authenticationFramework

GeneralName, KeyIdentifier
FROM CertificateExtensions certificateExtensions ;

OPTIONALLY-PROTECTED{Type} ::= CHOICE {
unsigned Type,
signed SIGNED{Type} }

OPTIONALLY-PROTECTED-SEQ{Type} ::= CHOICE {

unsigned Type,
signed [0] SIGNED{Type} }
attributeValueSecurityLabelContext CONTEXT ::= {
WITH SYNTAX SignedSecurityLabel -- At most one security label context can
-- be assigned to an attribute value
ID id-avc-attributeValueSecurityLabelContext }

SignedSecurityLabel ::= SIGNED{SignedSecurityLabelContent}

SignedSecurityLabelContent ::= SEQUENCE {
attHash HASH{AttributeTypeAndvalue},
issuer Name OPTIONAL, -- name of labelling authority
keyIdentifier KeyIdentifier OPTIONAL,
securityLabel SecurityLabel,

)

SecurityLabel ::= SET ({
security-policy-identifier SecurityPolicyIdentifier OPTIONAL,

security-classification SecurityClassification OPTIONAL,
privacy-mark PrivacyMark OPTIONAL,
security-categories SecurityCategories OPTIONAL,

(ALL EXCEPT ({ -- none, at least one component shall be present --}))

SecurityPolicyIdentifier ::= OBJECT IDENTIFIER

SecurityClassification ::= INTEGER {

unmarked (0),
unclassified (1),
restricted (2),
confidential (3),
secret (4),

192 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

top-secret (5)}
PrivacyMark ::= PrintableString(SIZE (1..MAX))
SecurityCategories ::= SET SIZE (1..MAX) OF SecurityCategory
clearance ATTRIBUTE ::= {

WITH SYNTAX Clearance

ID id-at-clearance }
Clearance ::= SEQUENCE {

policyId OBJECT IDENTIFIER,

classList ClassList DEFAULT {unclassified},

securityCategories SET SIZE (1..MAX) OF SecurityCategory OPTIONAL,

ClassList ::= BIT STRING {
unmarked (0),
unclassified (1),
restricted (2),
confidential (3),
secret (4),
topSecret (5)}
SecurityCategory ::= SEQUENCE {
type [0] SECURITY-CATEGORY.&id({SecurityCategoriesTable}),

value [1] EXPLICIT SECURITY-CATEGORY.&Type ({SecurityCategoriesTable}{@type}),

cee }
SECURITY-CATEGORY ::= TYPE-IDENTIFIER
SecurityCategoriesTable SECURITY-CATEGORY ::= {...}
attributeIntegrityInfo ATTRIBUTE ::= {

WITH SYNTAX AttributeIntegrityInfo

SINGLE VALUE TRUE

ID id-at-attributeIntegrityInfo }

AttributeIntegrityInfo ::= SIGNED{AttributeIntegrityInfoContent}

AttributeIntegrityInfoContent ::= SEQUENCE {

scope Scope, -- Identifies the attributes protected
signer Signer OPTIONAL, -- Authority or data originators name
attribsHash AttribsHash, -- Hash value of protected attributes

Signer ::= CHOICE {
thisEntry [0] EXPLICIT ThisEntry,
thirdParty [1] SpecificallyIdentified,

c)

ThisEntry ::= CHOICE {
onlyOne NULL,
specific IssuerAndSerialNumber,

)

IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serial CertificateSerialNumber,

)

SpecificallyIdentified ::= SEQUENCE {
name GeneralName,
issuer GeneralName OPTIONAL,
serial CertificateSerialNumber OPTIONAL }

(WITH COMPONENTS { ..., issuer PRESENT, serial PRESENT } |
(WITH COMPONENTS { ..., issuer ABSENT, serial ABSENT }))
Scope ::= CHOICE {
wholeEntry [0] NULL, -- Signature protects all attribute values in this entry

selectedTypes [1l] SelectedTypes,

Rec. ITU-T X.501 (10/2012)

193

| SO/l EC 9594-2:2014 (E)

-- Signature protects all attribute values of the selected attribute types

SelectedTypes ::= SEQUENCE SIZE (1..MAX) OF AttributeType
AttribsHash ::= HASH{HashedAttributes}

HashedAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}
-- Attribute type and values with associated context values for the selected Scope

integrityInfo OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND auxiliary
MUST CONTAIN {attributeIntegrityInfo}
ID id-oc-integrityInfo }

attributeValueIntegrityInfoContext CONTEXT ::= {
WITH SYNTAX AttributeValuelIntegrityInfo
ID id-avc-attributevValueIntegrityInfoContext }

AttributeValueIntegrityInfo ::= SIGNED{AttributeValueIntegrityInfoContent}

AttributeValueIntegrityInfoContent ::= SEQUENCE {
signer Signer OPTIONAL, -- Authority or data originators name
aVIHash AVIHash, -- Hash value of protected attribute

)

AVIHash ::= HASH{AttributeTypeValueContexts}
-- Attribute type and value with associated context wvalues

AttributeTypeValueContexts ::= SEQUENCE {
type ATTRIBUTE. &id ({SupportedAttributes}),
value ATTRIBUTE. &Type ({SupportedAttributes}{@type}),
contextList SET SIZE (1..MAX) OF Context OPTIONAL,
cee }

-- Object identifier assignments
-- object classes

id-oc-integrityInfo OBJECT IDENTIFIER ::= {id-oc 40}

-- attributes

id-at-clearance OBJECT IDENTIFIER 55}
-- id-at-defaultDirQop OBJECT IDENTIFIER 56}
id-at-attributeIntegrityInfo OBJECT IDENTIFIER 57}
-- id-at-confKeyInfo OBJECT IDENTIFIER 60}
-- matching rules

-- id-mr-readerAndKeyIDMatch OBJECT IDENTIFIER ::= {id-mr 43}
-- contexts

id-avc-attributeValueSecurityLabelContext OBJECT IDENTIFIER ::= {id-avc 3}
id-avc-attributeValueIntegrityInfoContext OBJECT IDENTIFIER ::= {id-avc 4}

END -- EnhancedSecurity

194 Rec. ITU-T X.501 (10/2012)

Annex |

LDAP system schema

| SO/l EC 9594-2:2014 (E)

(Thisannex forms an integral part of this Recommendation | International Standard.)

LdapSystemSchema {joint-iso-itu-t ds(5) module(l) ldapSystemSchema(38) 7}

DEFINITIONS
BEGIN

-- EXPORTS All

-- The types and values defined in this module are exported for use in the other ASN.1

-- modules contained within the Directory Specifications,
-- applications which will use them to access Directory services.
-- may use them for their own purposes,

and for the use of other

Other applications

but this will not constrain extensions and

-- modifications needed to maintain or improve the Directory service.

IMPORTS
-- from Rec. ITU-T X.501

directoryAbstractService,
selectedAttributeTypes

| ISO/IEC 9594-2

id-lat, id-oat,

informationFramework,

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(l) usefulDefinitions(0) 7}

ATTRIBUTE, DistinguishedName,

SYNTAX-NAME

FROM InformationFramework informationFramework

-- from Rec. ITU-T X.511

ub-saslMechanism

| ISO/IEC 9594-3

FROM DirectoryAbstractService directoryAbstractService

-- from Rec. ITU-T X.520

| ISO/IEC 9594-6

directoryString, DirectoryString{}, dn, ia5String, integer, ldapSyntaxDescription,

objectIdentifierFirstComponentMatch,

FROM SelectedAttributeTypes selectedAttributeTypes;

namingContexts ATTRIBUTE ::
WITH SYNTAX
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

altServer ATTRIBUTE ::= {
WITH SYNTAX
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

supportedExtension ATTRIBUT
WITH SYNTAX
USAGE
LDAP-SYNTAX
LDAP-NAME
ID

= {

DistinguishedName
dSAOperation

dn.&id
{"namingContexts"}
id-lat-namingContexts }

IAS5String
dSAOperation
ia5String.&id
{"altServer"}
id-lat-altServer }

E ::= {

OBJECT IDENTIFIER
dSAOperation

oid.&id
{"supportedExtension"}
id-lat-supportedExtension }

supportedControl ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

USAGE dSAOperation

LDAP-SYNTAX oid.&id

LDAP-NAME {"supportedControl"}

ID id-lat-supportedControl }
supportedSASLMechanisms ATTRIBUTE ::= {

WITH SYNTAX DirectoryString{ub-saslMechanism}

USAGE dSAOperation

oid, UnboundedDirectoryString

Rec. ITU-T X.501 (10/2012)

195

| SO/l EC 9594-2:2014 (E)

LDAP-SYNTAX directoryString.&id
LDAP-NAME {"supportedSASLMechanisms"}
ID id-lat-supportedSASLMechanisms }

supportedLDAPVersion ATTRIBUTE ::= {

WITH SYNTAX INTEGER

USAGE dSAOperation

LDAP-SYNTAX integer.&id

LDAP-NAME {"supportedLDAPVersion"}

ID id-lat-supportedLDAPVersion }

supportedFeatures ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

USAGE dSAOperation

LDAP-SYNTAX oid.&id

LDAP-NAME {"supportedFeatures"}

IDp id-oat-supportedFeatures }
ldapSyntaxes ATTRIBUTE ::= {

WITH SYNTAX LdapSyntaxDescription

EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch

USAGE directoryOperation

LDAP-SYNTAX ldapSyntaxDescription. &id

LDAP-NAME {"1dapsSyntax"}

ID id-soa-ldapSyntaxes }
LdapSyntaxDescription ::= SEQUENCE {

identifier SYNTAX-NAME. &id,

description UnboundedDirectoryString OPTIONAL,

e}
-- Attributes
id-lat-namingContexts OBJECT IDENTIFIER ::
id-lat-altServer OBJECT IDENTIFIER ::
id-lat-supportedExtension OBJECT IDENTIFIER ::
id-lat-supportedControl OBJECT IDENTIFIER ::
id-lat-supportedSASLMechanisms OBJECT IDENTIFIER ::
id-lat-supportedLDAPVersion OBJECT IDENTIFIER ::
id-soa-1ldapSyntaxes OBJECT IDENTIFIER ::
id-oat-supportedFeatures OBJECT IDENTIFIER ::
END -- LdapSystemSchema

196 Rec. ITU-T X.501 (10/2012)

{id-1lat
{id-1lat
{id-1lat
{id-1lat
{id-1lat
{id-1lat
{id-1lat

{id-oat

| SO/I EC 9594-2:2014 (E)
Annex J

The mathematics of trees

(Thisannex does not form an integral part of this Recommendation | International Standard.)

A treeis a set of points, called vertices, and a set of directed lines, called arcs; each arc aleads from a vertex V to a
vertex V'. For example, the tree in Figure J.1 has seven vertices; labelled V* through V', and six arcs, labelled
a* through &°.

N
w

a ® 9

X.501(12)_FJ.1

Figure J.1 — Example of treewith seven vertices

Two vertices V' and V are said to be the initial and final vertices, respectively, of an arc afrom V to V'. For example,
V? and V? are the initial and final vertices, respectively, of arc & Severa different arcs may have the same initial
vertex, but not the same final vertex. For example, arcs a* and a® have the same initial vertex, V!, but no two arcsin the
figure have the same final vertex.

The vertex that is not the final vertex of any arc is often referred to as the root vertex, or even more informally as the
"root" of the tree. For example, in Figure J.1, V* isthe root.

A vertex that is not the initial vertex of any arc is often referred to informally as a leaf vertex, or even more informally,
asa"leaf" of the tree graph. For example, vertices V3, V® and V are leaves.

An oriented path from avertex V to avertex V' is a set of arcs (&, &, ..., @) (n > 1) such that V isthe initial vertex of
arc a, V' isthe final vertex of arc &', and the final vertex of arc & is also the initial vertex of arc &** for 1 < k < n. For
example, the oriented path from vertex V! to vertex V° is the set of arcs (&%, &', @). The term "path" should be
understood to denote an oriented path from the root to a vertex.

Rec. ITU-T X.501 (10/2012) 197

| SO/l EC 9594-2:2014 (E)

Annex K

Name design criteria

(Thisannex does not form an integral part of this Recommendation | International Standard.)

The information framework is very general, and allows for arbitrary variety of entries and attributes within the DIT.
Since, as defined there, names are closely related to paths through the DIT, this means that arbitrary variety in namesis
possible. This annex suggests criteria to be considered in the design of names. The appropriate criteria have been used
in the design of the recommended name forms which are to be found in Rec. ITU-T X.521 | ISO/IEC 9594-7. It is
suggested that the criteria also be used, where appropriate, in designing the names for objects to which the
recommended name forms do not apply.

Presently, only one criterion is addressed; that of user-friendliness.
NOTE — Not all names need to be user-friendly.

The remainder of this annex discusses the concept of user friendliness applied to names.

Names with which human beings deal directly should be user-friendly. A user-friendly name is one that takes the
human user's point of view, not the computer's. It is one that is easy for people to deduce, remember and understand,
rather than one that is easy for computers to interpret.

The goal of user-friendliness can be stated somewhat more precisely in terms of the following two principles:

— A human being usually should be able to correctly guess an object's user-friendly name on the basis of
information about the object that he naturally possesses. For example, one should be able to guess a
business person's name given only the information about her casually acquired through normal business
association.

— When an object's name is ambiguously specified, the Directory should recognize that fact rather than
conclude that the name identifies one particular object. For example, where two people have the same
last name, the last name alone should be considered as inadequate identification of either party.

The following subgoals follow from the goal of user-friendliness:

a) Names should not artificially remove natural ambiguities. For example, if two people share the last name
"Jones', neither should be required to answer to "WJones' or "Jones2". Instead, the naming convention
should provide a user-friendly means of discriminating between the entities. For example, it might
require first name and middleinitial in addition to last name.

b) Names should admit common abbreviations and common variations in spelling. For example, if one is
employed by the Conway Steel Corporation and the name of one's employer figures in one's name, any
of the names "Conway Steel Corporation”, "Conway Steel Corp.”, "Conway Steel”, and "CSC" should
suffice to identify the organization in question.

¢) In certain cases, alias names can be used: to direct the search for a particular entry, in order to be more
user-friendly, or to reduce the scope of a search. The following example demonstrates the use of an aias
name for such a purpose: As shown in Figure K.1, the branch office in Osaka can aso be identified with
the name { C = Japan, L = Osaka, O = ABC, OU = Osaka-branch }.

d) [If names are multi-part, both the number of mandatory parts and the number of optiona parts should be
relatively small and thus easy to remember.

e) If namesare multi-part, the precise order in which those parts appear should generally be immaterial.
f) User-friendly names should not involve computer addresses.

g) Incertain cases, contexts can be used to provide aternative names. For example, as shown in Figure K.2,
the person Jones can be identified by { O = "XYZ", OU = "Research", CN ="Jones'} when the context is
Language = English, and {O = "XYZ", OU = "Recherche", CN = "Jones'} when the context is
Language = French.

198 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

OU = Osaka-branch
[| xs01022)_Fk2

Figure K.1—Aliasing example

0=XYX

OU = Research Recherche
Language = English, Language = French

CN = Jones
X.501(12)_FK.2

Figure K .2 — Example of context variations of a name

Rec. ITU-T X.501 (10/2012) 199

| SO/l EC 9594-2:2014 (E)

Annex L

Examples of various aspects of schema

(Thisannex does not form an integral part of this Recommendation | International Standard.)

L.1 Example of an attribute hierarchy

Figure L.1 shows a simple hierarchy of values of a generic telephoneNumber attribute, values of which are
represented as contained in the outer set. Two specific attribute types are derived from the generic type,
workTelephoneNumber and homeTelephoneNumber. Values of these types are represented as contained in the inner
sets.

A value of type homeTelephoneNumber iScontained in both the inner set representing homeTelephoneNumber and
the outer set representing telephoneNumber, but not the inner set representing workTelephoneNumber ValUes.

A DIT structure rule could be defined which permits entries to contain values of al three types shown in Figure L.1.
Another rule could be defined permitting entries to contain only values of type telephoneNumber.

T
T T
= % T
T
. T
P X.501(12)_FL.1

T Avalue having telephoneNumberSyntax
O homeTel ephoneNumber
@ workTel ephoneNumber
) TelephoneNumber

FigureL.1—Hierarchy of telephone number attribute value

L.2 Example of a subtree specification

The following is an example illustrating the specification of subtrees. Consider the portion of the DIT represented in
FigureL.2.

Subtree 1 and subtree 2 are specified with respect to the administrative point having name a. The identifiers b1, c2, d3,
etc., represent local name values with respect to the administrative point a.

Subtree 1 may be specified as:

subtreel SubtreeSpecification ::= {
specificExclusions { chopBefore bl } }

Subtree 2 may be specified as:

subtree2 SubtreeSpecification ::= {
base bl }

Suppose that the entries identified in Figure L.2 with local names el, €2, etc., represent organizational person entries. A
subtree refinement could be specified to include all of these entries in the administrative area as.

subtree-refinementl SubtreeSpecification ::= {
specificationFilter
item id-oc-organizationalPerson }

This could be further refined to include only the organizational personsin subtree 2 as:

200 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

subtree2-refinement SubtreeSpecification ::= {
base bl,
specificationFilter
item id-oc-organizationalPerson }

AP
5 Y e e Y \
bl do b3

[| | I [[\ [\

d3 c2 c3 d10
Subtree 2 [- i [s 1

7 s @@

Subtree 1

X501(12)_FL.2

O Subtree refinement 1

Figure L .2 — Subtree specification example

L.3 Schema specification

L.3.1 Object classes and nameforms

The following object classes, defined in Rec. ITU-T X.521 | ISO/IEC 9594-7, are used within a particular subschema
administrative area:

— organization;
— organizationalUnit,

— organizationalPerson.

A name form is not required for the administrative entry, which will be the only entry in the subschema of object class
organization. Thefollowing name forms, defined in Rec. ITU-T X.521 | ISO/IEC 9594-7, are used to include entries

of classorganizationalUnit and organizationalPerson:
- orgNameForm,
- orgUnitNameForm,

- orgPersonNameForm.

L.3.2 DIT structurerules

The following structure rules are defined to specify atree structure as shown in Figure L.3. Figure L.3 illustrates which
rule may be used to add entries at the various pointsin the DIT.

rule-0 STRUCTURE-RULE: := {
NAME FORM orgNameForm
ID o}
rule-1 STRUCTURE-RULE: := {
NAME FORM orgUnitNameForm
SUPERIOR RULES { rule-0 }
ID 1}

rule-2 STRUCTURE-RULE::= {

NAME FORM orgUniNameForm
SUPERIOR RULES { rule-1 }
ID 2}

Rec. ITU-T X.501 (10/2012) 201

| SO/l EC 9594-2:2014 (E)

rule-3 STRUCTURE-RULE::= {

NAME FORM orgUniNameForm
SUPERIOR RULES { rule-2 }
ID 3}

rule-4 STRUCTURE-RULE::= {
NAME FORM orgPersonNameForm
SUPERIOR RULES { rule-1, rule-2, rule-3 }
ID 4}

@ani zation
- Rule#1

Organizational
unit

Rule#4 Rule #2

Organi zational Organizational

person unit
o Ruli# 4 - Rulﬂ# 3
Organi zational Organi zational
person unit
o Ruess N

Organi zational
person

X.501(12)_FL.3

FigureL.3— Example subschema

L.4 DIT content rules

The subschema administrator has the following two requirements to add supplemental information to entries in the
subschema administrative area:

— adl organizationalPerson and organizationalUnit entries should have the
organizationalTelephoneNumber atribute. This attribute should be returned when the Directory is
queried for telephoneNumbers;

— dl organizationalPerson entrieswill have the new attribute manager.

The following attribute types are defined to meet these requirements:

manager ATTRIBUTE ::= {
WITH SYNTAX BOOLEAN
. .EQUALITY MATCHING RULE booleanMatch
SINGLE VALUE TRUE
ID id-ex-managerAttribute }

organizationalTelephoneNumber ATTRIBUTE ::= {

SUBTYPE OF telephoneNumber
COLLECTIVE TRUE
ID id-ex-organizationalTelephoneNumber }

Thefollowing DIT content rules are defined to meet these requirements:

organizationRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS id-oc-organization }

organizationalUnitRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS id-oc-organizationalUnit
MAY CONTAIN { organizationalTelephoneNumber } }

organizationalPersonRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS id-oc-organizationalPerson
MUST CONTAIN { manager }
MAY CONTAIN { organizationalTelephoneNumber } }

202 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

L5 DIT context use

The subschema administrator has the requirement to implement an international organization's policy that mandates the
use of the Locale context to differentiate between different values for the title and description attribute types within the
organization's administrative area. Furthermore, since the organization rotates duties on a regular basis, the use of the
temporal context with titlesis desirable in the entries for certain people.

Thefollowing DIT context rules are defined to meet these requirements:

descriptionContextRule DIT-CONTEXT-USE-RULE ::= {
ATTRIBUTE TYPE description
MANDATORY CONTEXTS { locale } }
titleContextRule DIT-CONTEXT-USE-RULE ::= {
ATTRIBUTE TYPE title
MANDATORY CONTEXT { localeContext }
OPTIONAL CONTEXTS { temporalContext } }

Rec. ITU-T X.501 (10/2012) 203

| SO/l EC 9594-2:2014 (E)

Annex M

Overview of basic access control permissions

(Thisannex does not form an integral part of this Recommendation | International Standard.)

M.1 I ntroduction

This annex isinformative and is intended to provide an overview of the meaning of various combinations of operations,
protected items and permission categories. In cases where there is a perceived difference between this overview and the
specification provided in the body of this Directory Specification, the normative text in the body shall be definitive.

Table M.1 relates Directory operations to the entry and attribute access controls to provide an overview of the
permission categories that must be granted in order to allow the operation to succeed.

Table M.2 provides an overview of the RerurnDN and DiscloseOnError permission categories and how grants and

denials relate to various protocol elements.

Table M.3 provides an overview of the semantics associated with grants and denials of entry access controls.

Table M .4 provides an overview of the semantics associated with grants and denials of attribute access controls.

M.2 Permissionsrequired for operations
Table M.1 —Directory information permissionsrequired
according to Directory operation
Dlrectqry Entry Protected Item Permissions Requir ed Attribute And Att_rlt_)ute Valuc_e Protected Item
Operation Per missions Required
Compare Read Compare for attribute being compared
Compare for attribute value being compared
Read Read and ReturnDN for distinguished name Read for any attribute type information returned
Read for any attribute values returned
List Browse and ReturnDN for all subordinate entries for None
which an RDN is returned
Search Browse for entries in the search scope that are potential | FilterMatch for attribute type and value information, if
can(_:ii dat_&s for selection; ReturnDN for each returned any, used to evaluate afilter item as TRUE or FALSE
distinguished name Read for any attribute type information returned
Read for any attribute values returned
Add Entry Add Add for all attribute types specified
Add for all attribute values specified
Remove Remove None
Entry
Modify Modify Add for all attributes being added
Entry Add for all attribute values being added
Remove for attributes being removed
Remove for al attribute values being removed
ModifyDN Rename at the original location if only thelast RDN is | None
changed
Export to move a subtree from the original location
Import to relocate a subtree at the destination location
204 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

M.3 Permissions affecting error
Table M .2 — Permissions affecting error and namereturn
Permission Protocol elements affected M eaning

ReturnDN EntryInformation If granted, may return actual Distinguished Name.
CompareResult If denied, prohibits return of actual Distinguished Name.
ListResult By local policy, avalid alias name may be returned instead.
SearchResult
NameError
ContinuationReference

DiscloseOnError | nameError If granted, permits return an error that may disclose that the
updateError protected item exists.
attributeError If denied, requires the Directory to conceal the existence of the
securityError protected item.

M.4 Entry level permissions
Table M.3—Entry level permissionsand meaning
Permission Meaning

Read If granted, allows Directory Read or Compare operations on the entry, but does not, by itself, authorize
return of any attribute information from that entry.

If denied, prevents Read or Compare operations on the entry.

Browse If granted, permits the entry to participate as a candidate for selection in the scope of aList or Search
operation.

If denied, excludes that entry from the scope of any Search or List operation.

Add If granted, permits the entry itself, exclusive of its attributes, to be added. Add is only meaningful as
prescriptive ACI.

If denied, prevents addition of the entry.
Modify If granted, permits Modify operations on the entry.
If denied, prevents Modify operations on the entry.

Remove If granted, permits the entry to be removed, irrespective of any attribute considerations.
If denied, prevents removal of the entry.

Rename If granted, allows the RDN of the entry to be changed, and, optionally, an old value removed and a new
value added, irrespective of attribute or attribute value protection that might be applicable to that entry, by
means of a ModifyDN operation subject to Import and Export permissions as appropriate.

If denied, prevents the RDN of the entry from being changed.

Import If granted, allows entries, including all subordinates, to be relocated at the designated |ocation in the DIT
inaModifyDN operation. Import is only meaningful as prescriptive ACI.

If denied, prevents relocation of an entry with subordinates at the indicated point in the DIT using a
ModifyDN operation.

Export If granted, permits a ModifyDN operation to relocate the entry, including all subordinates, to a designated
point someplace else in the DIT. The requestor must have Import permission at the target location.

If denied, prevents relocation of the entry and its subordinates in a single ModifyDN operation.

ReturnDN If granted, permits return of the Distinguished Name of entry in an operation result.

If denied, prohibits return of distinguished name. By local policy, avalid alias hame may be returned
instead.

DiscloseOnError | If granted, permits return of an error that may disclose existence of the entry.

If denied, requires the Directory to conceal existence of the entry. DiscloseOnError, of itself, does not
deny ability to detect the entry by other means for which the appropriate permissions are granted.

Rec. ITU-T X.501 (10/2012) 205

| SO/l EC 9594-2:2014 (E)

M.5

Entry level permissions

Table M .4 — Attribute level permissions and meaning

Permission

Protected item
category

Meaning

Read

Attribute Type

If granted, allows information about that attribute type to be returned in a Read or
Search operation. Although a prerequisite for reading values for that attribute, it
grants no rights to any values of that attribute, of itself.

If denied, prevents return of information about that attribute type in Read or Search
operations. In effect, this denies all values as well.

Read

Attribute Value

If granted, allows designated value(s) of an attribute type to be returned in a Read
or Search operation. It grants no rights to the attribute type itself. Read permission
to the attribute type is also required in order to read avalue.

If denied, prevents return of designated values of that attribute type in Read or
Search operations. It does not, of itself, deny access to other values, or the attribute
type itself.

Compare

Attribute Type

If granted, allows Compare operations to test for the attribute type. Although a
prerequisite to comparing values, it does not, of itself, permit compare operations
of the attribute values.

If denied, prevents Compare operations from testing that attribute. This prevents
testing for all values.

Compare

Attribute Value

If granted, allows Compare operations to test for the designated value of the
designated type. It grants no rights to the attribute type itself. Compare permission
to the attribute type is also required in order to compare avalue.

If denied, prevents Compare operations from testing for the designated value.

FilterMatch

Attribute Type

If granted, permits the attribute type to be used in evaluation of a Search filter item.
Itisaprerequisite for including values of that type in filter evaluations, but does
not, of itself, grant rightsto any values.

If denied, prevents use of that attribute type, including any of its values, in
evaluating afilter item.

FilterMatch

Attribute Value

If granted, permits the attribute value(s) to be used in evaluation of a Search filter
item. FilterMatch is also required for the attribute type for a successful evaluation.

If denied, prevents use of the value(s) in evaluation of afilter item.

Add

Attribute Type

If granted, permits the designated attribute type to be added. Grants no rights to
add any attribute values.

If denied, prevents addition of the designated attribute type, and, as a consequence,
any values.

Add

Attribute Value

If granted, permits the designated attribute values to be added. No rights to add the
typeitself are granted. Conversely, no rights to add the attribute type are needed to
add a value to an existing attribute.

If denied, prevents addition of the designated attribute val ues.

Remove

Attribute Type

If granted, permits the designated attribute type and all of its values to be removed
in aModify operation. Does not, of itself, grant the right to remove individual
values.

If denied, prevents removal of the attribute type in aModify operation.

Remove

Attribute Value

If granted, permits the designated attribute values to be removed in a Modify
operation. Remove permission to the attribute type is also needed to remove the
last attribute value.

If denied, prevents removal of the designated attribute valuesin a Modify
operation.

DiscloseOnError

Attribute Type

If granted, permits return of an error that may disclose the existence of the
attribute.

If denied, requires the Directory to conceal the existence of the attribute.
DiscloseOnError, of itself, does not deny ability to detect the attribute type by
other means for which the appropriate permissions are granted.

DiscloseOnError

Attribute Value

If granted, permits return of an error that may disclose the existence of the attribute
value.

If denied, requires the Directory to conceal the existence of the attribute value.
DiscloseOnError, of itself, does not deny the ability to detect the attribute value(s)
by other means for which the appropriate permissions are granted.

206 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Annex N

Examples of access control

(Thisannex does not form an integral part of this Recommendation | International Standard.)

N.1 I ntroduction

This annex is for information and tutorial purposes only. It addresses three primary topics. design principles that are
important in the architecture of the basic access control mechanism; an extended example of basic access control; and a
short example for rule-based access control. Detailed information on basic access control and rule-based access control
is provided in clauses 18 and 19 of this Directory Specification and in Rec. ITU-T X.511 | ISO/IEC 9594-3.

N.2 Design principlesfor Basic Access Control

This subclause presents several of the most important design principles used in the architecture of Basic Access
Control. To facilitate referencing, each principleislabelled (e.g., PR-1).

PR-1: Generdly, permissions associated with Userclasses Of higher specificity override permissions associated
with userclasses Of less specificity. This principle applies when the permissions have the same precedence level.
Specificity, in this principle, measures how explicitly a requestor's name relates to a particular UserClasses
specification; allusers is of lowest specificity while name is very specific. This principle is manifest in 18.8.4 2). It
facilitates situations where policy about default permissions (expressed in terms of less specific Userclasses) is
selectively overridden by permissions associated with a more specific Userclasses specification.

PR-2: Generally, permissions associated with ProtectedItems Of higher specificity override permissions
associated with ProtectedItems Of less specificity. This principle applies when the permissions have the same
precedence level and the same userclasses specificity. Specificity, in this principle, is a measure of how explicitly
the Protecteditems specification relates to the exact item to which access is sought. For example, when the target
protected item is a specific attribute value, allAttributeValues and allUserAttributeTypesAndValues are
less specific than attributevalue. This principle is manifest in 18.8.4 3). It facilitates situations where policy about
default permissions (expressed in terms of less specific ProtectedItems) is selectively overridden by permissions
associated with a more specific ProtectedItems specification.

PR-3: Basic Access Control is modelled as completely independent of the name resolution process except in the
case of alias dereferencing. Except for alias dereferencing, access control decisions occur only after the Directory has
successfully located a suitable DSA containing the target protected item. A corollary principle is that Basic Access
Control has no effect on how the Directory generates subrequests and it has no effect on how the Directory performs
name resol ution associated with subrequests (except in the case of alias dereferencing).

PR-4: precedence Can be used to enforce the relationship between a superior and a subordinate authority such that
the superior can override controls set by the subordinate. For example: let SE1 denote a subentry of the administrative
entry for an ACSA, say ACSA-1; similarly, let SE2 denote a subentry of the administrative entry for an ACIA inside of
ACSA-1. Limits on the Precedence occurring in SE2 may be specified by the ACSA-1 authority such that
prescriptiveACTI in SE2 cannot countermand prescriptive ACI in SE1. Also, limits on Precedence for entryac:
(within ACSA-1) can be specified such that entryacI cannot countermand prescriptive controls set in SE1. This
principle facilitates implementation of partial delegation of authority.

NOTE — The Directory Specification presumes that a method of limiting precedence for authorities associated with inner areas
will be implemented. However, the Directory Specification does not define (or describe) how precedence isto be limited.

PR-5. Basic Access Control never passively grants access, each decision to grant access is based on explicitly
specified access control information. A corollary principle is that granting one form of access never implies permission
to perform another form of access. These principles are consistent with a more general security design principle known
asleast privilege.

PR-6: In the absence of any prescriptiveACI, entryACI OF subentryACI On which to base a decision, the
ACDF will deny access. All other decision parameters being equal, denials override grants (e.g., in the situation where
there are aciItems that grant and others that deny and where the precedence and specificity are equal, the denial
prevails).

Rec. ITU-T X.501 (10/2012) 207

| SO/l EC 9594-2:2014 (E)

N.3 Introduction to example

Figure N.1 depicts the DIT subtree of a fictitious company, Z Computer Corporation (ZCC), used throughout the
example. The naming structure in Figure N.1 follows the suggestionsin Rec. ITU-T X.521 | ISO/IEC 9594-7, Annex B.
The node with distinguished name {C=US, O=ZCC} is an administrative entry and is the autonomous administrative
point for ZCC; it therefore defines the beginning of an Autonomous Administrative Area (AAA). The contents of an
AAA isanimplicitly defined subtree beginning at the autonomous administrative point and ending at either leaf nodes
or when another autonomous administrative point is encountered. Since there are no other autonomous administrative
points below { C=US, O=ZCC}, the AAA contains all the nodes below {C=US} in Figure N.1. The structural object
class for {C=US, O=ZCC} is organization; it also has an auxiliary object class of certificationAuthority.
The auxiliary object classis present to help support strong authentication where needed.

0=zcC
(AAA,ACSA)

+ OU=Admin @® OU=R&D + OU=Sales 6

i :

o i
CN=0Ops CN=Cauchy }

CN=Ops OU=West OU=BRC OU=East
(ACIA) (ACSA) (ACIA)
i CN=Noether L CN=Galois
CN=Cayley CN=Peirce

.

X501(12)_FN.1

FigureN.1—-DIT branch for the Z Computer Corporation (ZCC)

Below the autonomous administrative point there are three subtrees. Administration (Admin), Research and
Development (R&D), and Sales. The root of each of the subtrees is an entry with structural object class
organizationalUnit and auxiliary object class certificationAuthority. The R&D subtree contains entries of
structural object class organizationalUnit, corresponding to remote sites, under which appear leaf objects of
structural class organizationalPerson. Only a few representative objects of class organizationalPerson are
shown. All objects of structural class organizationaluUnit have an auxiliary object class of
certificationAuthority. All objects of structural class organizationalPerson have an auxiliary object class
of strongAuthenticationUser. These auxiliary object classes help support strong authentication where needed.

The object with distinguished name {C=US, O=ZCC, OU=Admin, CN=Ops} is of structura object class
groupOfUniqueNames; itS uniqueMember attribute values include namespace administrators. One name it contains
is {C=US, 0O=ZCC, OU=Admin, CN=Cauchy}. There are two other such objects. {C=US, 0O=ZCC, OU=R&D,
CN=0ps} has members responsible for maintaining entries in the R&D subtree; and {C=US, O=ZCC, CN=0ps} has
members responsible for entries that are immediately subordinate to { C=US, O=ZCC}. The user with distinguished
name { C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley} is a member of the latter two groups.

The two trapezoidsin Figure N.1 represent partial subtrees, the details of which are not important for the example.

N.4 Policy affecting the definition of specific and inner areas

To support Basic Access Control, two types of administrative areas may be established within an AAA: Access Control
Specific Area (ACSA) and Access Control Inner Area (ACIA). An administrative area of either type is established by
assigning the appropriate value to the administrative-role atribute in the administrative entry that is to serve as

208 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

the root vertex for the area. The content of an ACSA is an implicitly defined subtree that begins at the root vertex and
extends down to leaf objects or until the root of another ACSA is encountered. Also, the boundary of an ACSA never
extends beyond the lower boundary of the enclosing AAA. In the case of an ACIA, the lower boundary will occur upon
encountering either aleaf entry or the boundary of the enclosing ACSA. Nested ACIAs have the same lower boundary
and that boundary is the same as the lower boundary for the enclosing ACSA.

ZCC has established a policy that affects the number and types of administrative areas needed within the AAA. The
first such policy is that the organizational unit known as Basic Research Consortium (BRC) is delegated complete
authority for establishing prescriptive access control attributes to control entries in the subtree with root vertex { C=US,
0O=ZCC, OU=R&D, OU=BRC}. To facilitate the implementation of the policy, the root { C=US, O=ZCC, OU=R&D,
OU=BRC} has been designated as an administrative entry with administrative role id-ar-
accessControlSpecificArea. The lower boundary of the resulting ACSA is implicitly defined by the occurrence
of leaf entries.

NOTE — An ACSA embodies the concept of complete delegation of authority because access decisions depend on ACI occurring
inside the ACSA containing the target protected item and are unaffected by ACI occurring outside that ACSA.

Furthermore, the ACSA described above is the only instance of complete delegation of access control authority within
ZCC. However, a consequence of the Directory Administrative Model is that when there is at least one ACSA in an
AAA, each (and every) object in the AAA shall be contained in one (and only one) ACSA. This requirement can be
stated more clearly in terms of set theory where each ACSA and the associated AAA are viewed as sets of entries: the
set intersection of each pair of ACSAs is empty and the set union of all ACSAs s equal to the AAA. Therefore, in the
example, at least one additional ACSA is needed to contain the objects that are in the AAA but outside the BRC
subtree. Because there is only one instance of complete delegation within the AAA, the AAA root is also the beginning
of an ACSA that contains all the entriesin the AAA except those in the BRC subtree.

The resulting ACSAs are depicted as ACSA-1 and ACSA-2 in Figure N.2. In Figure N.2, also notice that since
administrative areas are (implicitly defined) subtrees, each areaincludesits root vertex. The content of ACSA-1 extends
downward from itsroot to leaf objects or until the root vertex of another ACSA is encountered (asis the case at { C=US,
0O=ZCC, OU=R&D, OU=BRC}). In this example, there are no autonomous administrative points below {C=US,
0O=ZCC} and therefore the lower boundary of the AAA is defined entirely by leaf objects. The remainder of this
example will focus on access control within ACSA-1 (ACSA-2 will not be discussed further). Also for simplicity, this
example does not discuss control of the subordinates under { C=US, O=ZCC, OU=Sales}.

ACSA-1 |
| 0=ZCC 1
| C’) (AAA,ACSA) |
1 + OU=Admin @ OU=R&D + OU=Sales CN:‘ODS |
i CN=Ops CN=Cauchy 3
S 3 ACSA-2 | |
‘ ‘ w !
| CN=Ops OU=West | OU=BRC | | OU=East !
| (ACIA) ! (ACSA) 3 (ACIA) :
| ! |
| | | |
| o | | o
; CN=Noether } ! CN=Galois |
i CN=Cayley ! | CN=Peirce !
b e L L __________ a

X.501(12)_FN.2

Figure N.2 — Access Control Specific Areas

Rec. ITU-T X.501 (10/2012) 209

| SO/l EC 9594-2:2014 (E)

Another ZCC policy affecting the definition of administrative areas is that the Western R& D organizational unit is
delegated partial authority for access control operational attributes affecting the entries in the subtree with root vertex
{C=US, 0=ZCC, OU=R& D, OU=West}. The policy is best implemented by making the root of the R& D West subtree
an administrative point with administrative role id-ar-accessControlInnerArea. ThiS means prescriptive access
controls for that subtree will, in general, be a combination of controls defined in the subentries of the root of that subtree
and controls defined in the subentries of the root of the enclosing ACSA (ACSA-1). The content of the resulting ACIA
is an implicitly defined subtree with root at { C=US, O=ZCC, OU=R&D, OU=West} and extending down until leaf
objects are encountered. Since an ACIA is asubtree, its content includes the root vertex of that subtree.

A similar policy holds for the R&D East organizational unit. The corresponding ACIA has root vertex at {C=US,
0O=ZCC, OU=R&D, OU=East}. Figure N.3 depicts the two ACIAs within ACSA-1. The ACIA for R&D West is
labelled ACIA-1; the onefor R& D East islabelled ACIA-2.

‘ ACSA-1 |
o=zccC i
(AAA,ACSA) |
| + OU=Admin @® OU=R&D + OU=Sales CN=0ps |
1 CN=Ops CN=Cauchy |
' CN=Ops ACIA-1 ACIA-2
| OU=West OU=East i
3 (ACIA) (ACIA) 3
l CN=Noether CN=Galois }
; CN=Cayley CN=Peirce i
T

X.501(12)_FN.3

Figure N.3 —Access Control Inner Areas

N.5 Policy affecting the definition of Directory Access Control Domains (DACDS)

Prescriptive access controls are defined in subentries (with object class accessControlsubentry) oOf access control
administrative entries. Each such subentry has an associated subtreeSpecification attribute that defines the set of
entries in the scope of the subentry. The entries contained in the scope may form a subtree or may form a subtree
refinement. In the context of Basic Access Control, the scope of an access control subentry is called a Directory Access
Control Domain (DACD). Security authorities using Basic Access Control should be careful not to confuse the concept
of administrative area with the concept of DACD. This subclause begins with an examination of the differences and
relationships between administrative areas and DACDs and then proceeds to discuss ZCC policy that gives rise to
individual DACDs.

The basic distinctions between administrative areas and DACDs can be summarized as follows.

— An administrative area is an implicitly defined subtree with its root at an administrative entry and
extending downward as described in N.4. Such an areais said to be implicitly defined because there is no
standardized attribute in the Directory that specifies its boundary; the DIT is logically examined to
determine the boundary of an administrative area. An administrative areais never a subtree refinement.

NOTE 1 — A consequence of the way in which administrative areas are defined is that for each entry affected by

Basic Access Control, there shall be exactly one ACSA containing the entry (even if the entry is not included in
any DACD within the ACSA).

— A DACD isasubtree or subtree refinement explicitly defined in the subtreespecification attribute
of asubentry with object class accessControlSubentry.

210 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

— ACSAs and ACIAs are used by the ACDF to determine which prescriptive access controls (i.e., which
access control subentries) potentially affect the outcome of a given access control decision. ACSAs are
used to implement full delegation of authority for access control. ACIAs are used to implement partial
delegation of authority for access control.

— A DACD isused to specify which entries (or potential entries) may be affected by the associated access
control subentry.

Other important aspects of administrative areas and DACDs and how they relate to each other include the following
observations.

— Each DACD is defined in a subentry of a particular administrative entry which is, in turn, the root vertex
of some administrative area. This association between a DACD, a subentry, an administrative entry, and
an administrative area allows the determination, for a given DACD, of the associated administrative
area (see N.5.1). The set of entries contained in the DACD may be a proper or improper subset of the
entries contained in the associated administrative area.

NOTE 2 — The terms proper subset and improper subset are borrowed from mathematical set theory. The set Ais
aproper subset of set B if and only if every element of A is also an element of B and thereis at least one element
of B that is not an element of A. The set A is an improper subset of B if and only if both sets contain exactly the
same elements.

— Inthe case where the set of entriesin the DACD is an improper subset of the entries in the associated
administrative area, the DACD and the administrative area are said to be congruent. However, even
when such congruence occurs, the DACD and the administrative area continue to serve fundamentally
different purposes (areas determine which subentries are allowed to potentially affect the outcome of a
specific access control decision while each DACD specifies exactly which entries are affected by the
prescriptive controls in a given subentry).

— The DACD can never contain entries that are outside the associated administrative area.

— The ACDF is designed to be robust in the sense that even if the subtreeSpecification defining a
DACD has within its scope entries outside the associated administrative area, access control decisions
regarding those entries will be unaffected. This aspect of robustness is manifest in the ACDF procedure
for determining which subentries potentially effect a given decision (see 18.3.2 and 18.8.1 d)).

— DACDs defined in subentries of the same administrative entry may freely overlap within the common
associated administrative area

— ACSASs never overlap; every ACIA is properly nested within an ACSA. Properly nested means the
entries in an enclosed area form a proper subset of the entries in the enclosing area. Also, an ACIA may
contain one or more properly nested ACIASs.

— Where administrative areas are nested, DACDs associated with an enclosing area may freely overlap
DACDs associated with any enclosed area. The enclosing area may be an ACSA or an ACIA, while the
enclosed areais aways an ACIA.

Each DACD is associated with an aspect of policy that affects one or more entries or potentia entries. The entries that
are affected by a particular aspect of policy form a DACD. The DACD for a particular aspect of policy should be
associated with the administrative area controlled by the authority responsible for enforcing that aspect of policy.

In the example, there are several aspects of policy to be enforced by the authority that controls ACSA-1. There are, for
instance, "default” controls that apply to objects throughout ACSA-1. Such controls are assigned a precedence and
level of specificity that allows them to be easily overridden by other prescriptive controls or entryact attributes.
There is also policy that applies only to immediate subordinates of { C=US, O=ZCC} (within ZCC, such entries are
referred to as administrative level entries). There is also a policy that applies only to the entries that have structural
object classorganizationalPerson.

All entriesin ACSA-1 are included in the DACD associated with default controls. The DACD is therefore defined to be
asubtree with base vertex at { C=US, O=ZCC} and a chop Specification that excludes the subtree with root at { C=US,
0O=ZCC, OU=R&D, OU=BRC}. The resulting DACD is congruent to ACSA-1 and is depicted as DACD-1 in
Figure N.4.

NOTE 3 — See 18.3.2 g) for the meaning of congruent in this context.

Also within ACSA-1, the DACD to control organizationalPerson entriesis asubtree refinement with base vertex
a {C=US, 0O=ZCC} and a specificationFilter that includes only the entries with objectclass of
organizationalPerson (See subtree-refinementl inL.2). ThisDACD isdepicted as DACD-2 in Figure N.4.

Rec. ITU-T X.501 (10/2012) 211

| SO/l EC 9594-2:2014 (E)

A third DACD within ACSA-1 isrelated to controlling administrative level entries (i.e., immediate subordinates, other
than subentries, of the organizational root entry). This DACD is a (chopped) subtree with base vertex at {C=US,
O=ZCC} and a chop specification that includes only the immediate subordinates, other than subentries, of { C=US,
O=ZCC}. This DACD isdepicted as DACD-5 in Figure N.4.

For ACIA-1, aDACD is required to handle an aspect of policy that has been delegated to the authority controlling the
inner area. The delegated authority affects only subordinates of { C=US, O=ZCC, OU=R&D, OU=West} and therefore
the DACD isnot congruent to ACIA-1. The DACD islabelled DACD-3 in Figure N.4.

For ACIA-2, there is only one DACD required; however, the delegated authority affects all entries in ACIA-2 and
therefore the DACD is congruent to ACIA-2. The DACD islabelled DACD-4 in Figure N.4.

C=US | DACD-1 |
B s e e |
| o) O=ZCC |
| (AAA,ACSA) |
|
| |
| |
(R % | DbACD-5 |
} |
| @ ou=Admin @ OU=R&D @ Ou-Sales @ CN=Ops !
CN=SE_DACD5 | |
CN=SE_DACD2 !
CN=SE_DACD1 ; !
| |
r-— - - T T T T T T T T T T T T T T |
| |
| |
i @ :
| CN=0Ops 1
} CN=Cauchy |
| |
| i | DACD-4 |
| |
w OU=West OU=Eagt w
| . |
' CN=Ops (ACIA) (o) (ACIA) |
| DACD-3 ;
|
| |
| | e |
| ° ° |
| ® | CnN=Noether o CN=Galois |
|
: CN=Cayley CN=Pearce |
| |
| CN=SE_DACD3 PS :
|
; CN=SE_DACD |
L |
@ Administrative point @ | Userentry in DACD-2) Subentry

X.501(12)_FN.4

Figure N.4 —Directory Access Control Domains

N.5.1 Administrative ar ea associated with each DACD

Each subentry used in the example is shown in Figure N.4. This subclause summarizes the location of each subentry
and also indicates the administrative area that is associated with each DACD.

DACD-1, DACD-2, and DACD-5 are defined in subentries to { C=US, O=ZCC} which is the administrative entry that
defines the root vertex of ACSA-1. Therefore, these three DACDs are said to be associated with ACSA-1. The name of
the subentry defining DACD-1 is {C=US, C=ZCC, CN=SE_DACD1}. The other subentries have similar names that
indicate which DACD they define.

DACD-3 is defined in a subentry to { C=US, O=ZCC, OU=R&D, OU=West} which is the administrative entry that is
the root vertex of ACIA-1. Therefore, DACD-4 is associated with ACIA-1.

DACD-4 is defined in a subentry to {C=US, O=ZCC, OU=R&D, OU=East} which is the administrative entry that
defines the root vertex of ACIA-2. Therefore, DACD-4 is associated with ACIA-2.

212 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

N.6 Policy expressed in prescriptiveACI attributes

This subclause contains a detailed description of access control policy applicable to each DACD in ACSA-1. The
policy discussed in this example should be considered a partia policy that is simplified for ease of presentation. In
particular, there is no discussion related to how passwords are controlled since, in general, passwords represent a
special case of access control; aso thereis no discussion of the DiscloseOnError or ReturnDN permissions.

The policy discussed in this subclause is presented in terms of policy fragments that facilitate understanding of how
prescriptiveACI attributes are used to collectively enforce the overall policy. Each fragment is given a reference
label that is used in later subclauses; the labels are of the form PF-n where n is a sequential integer. For each DACD,
thereis also an indication of how the applicable policy fragments could be expressed in terms of one or more subentries
(containing prescriptiveACT attributes).

N.6.1 prescriptiveACI for DACD-1

One of the main purposes of DACD-1 is to enforce policy fragments that are concerned with "default" access control.
Such policy fragments provide backstop controls that apply when there is no other control that is higher in precedence
or specificity. Specificity is discussed under design principles PR-1 and PR-2in N.2.

ZCC has stated their policy with regard to public access in terms of default policy rules which may be overridden for
certain entries that need more restrictive control. The default policy is stated in PF-1 and PF-2. Note that, according to
ZCC policy, those who implement the policy are responsible for ensuring that any deviation from the default rules is
more restrictive than the default rules.

PF-1: Employees are to be distinguished from the general public. Public access rights, in general, shall be limited
according to @ and b) below; however, public access may be more restricted for specific entries (it is never less
restricted).

a) Entries may be located by common name. Search on common name is permitted to accommodate
approximate match and alternate names. In particular, search based on telephone number is not allowed
to the general public, but is permitted to those inside the organization. Search results may disclose all
values of commonName.

b) The only public attributes ae commonName, telephoneNumber, components from
postalAttributeSet, and facsimileTelephoneNumber.

PF-2: General Public access may be unauthenticated, but an identity shall be presented.

ZCC also uses default policy rules to express their general policy with regard to employee access. Deviations from the
default policy rules may be more restrictive or may be less restrictive. The default policy is stated in PF-3 and PF-4.

PF-3: Employees, in general, enjoy read and search access to most attributes of most entries.

PF-4: Simple authentication is required for employee access that does not modify (in any way) the contents of
ACSA-1.

There are also some policy fragments applying to DACD-1 that are not treated as defaults. Two examples of such
fragments are given in PF-5 and PF-6; they are related to administration of entries.

PF-5. {C=US, O=ZCC, CN=Cauchy} is "superuser", authorized to access all data and perform any necessary
operations.

PF-6. Strong authentication is required to make any modification to the contents of the ACSA-1.

One or more subentries to { C=US, O=ZCC} can be used to implement the policy fragments for DACD-1. Each such
subentry would have the same subtreeSpecification With base of {C=US, O=ZCC} and a chop specification to
exclude the OU=BRC subtree. Each such subentry would also contain a prescriptiveacI attribute that implements
some subset of the policy fragments for DACD-1. For the purposes of the example, it is assumed that a single subentry
is used to capture al prescriptive controls associated with DACD-1 (there is no compelling technical reason to use
more than one). To facilitate referencing, this subentry is referred to as SE DACD1. The prescriptiveAcI attribute
in SE_DACDL1 has severa values; the design of each valueis discussed in the remainder of this subclause.

The number of values occurring in a prescriptiveAcI attribute depends partly on how the policy fragments are
grouped for convenience into itemFirst and userFirst values (either style may be used in any given situation); it
also depends on how access control for the prescriptive controls themselvesisto be handled.

For example, part of implementing PF-1 requires public users (i.e., allusers) to be granted al of the following
permissions:

a) Browsefor the protected item entry;

Rec. ITU-T X.501 (10/2012) 213

| SO/IEC 9594-2:2014 (E)
b)
0)
These permissions are necessary (but are not sufficient — see Note 1) to implement PF-1. Since there are three protected

items (entry, attributeType and allAttributeValues) and just one user class (allusers), it seems most
natural to useasingle Actitem of theuserFirst style but the itemFirst style could be used instead.

NOTE 1 —The permissions discussed above would also be sufficient to allow search on commonName if the following two
conditions are simultaneously satisfied:

FilterMatch and Read for protected item attributeType {commonName};

FilterMatch and Read for protected item allattributevValues {commonName}.

a) there are no other relevant AClItems with higher precedence or specificity that deny any of the Browse
or FilterMatch permissions listed above; and
b) there are no other values for the prescriptiveACl attribute in SE_DACD1 that deny any of the Browse

Read or FilterMatch permissions listed above.

Alternatively, three separate act1tems could be used: one for each of the protected items. This alternative allows each
ACIItem t0O have separate access control; each has an identificationTag that is unique (with respect to the other
identificationTags for other values in the same prescriptiveacI attribute) and which can be referenced in
another actrtem where the protected item is attributevalue and the associated attribute value assertion specifies
the identificationTag Of the value to be protected. Note that using attributevalue in this way takes advantage
of the particular equality matching rule defined for prescriptiveact attributes (see 18.5.1). Examples of protecting
ACI arediscussed in detail later in the example.

For the purpose of the example, six values for the prescriptiveact attribute in SE_ DACD1 are used to implement
policy fragments PF-1 through PF-4. The design of each of the three values is summarized below.

NOTE 2 — Each protected item in the design summaries below have a label to facilitate referencing. The label is in parentheses
and isitalicized (e.g., Al, A2, Bl).

NOTE 3 — The example uses four levels of precedence: 10, 20, 30 and 40.

identificationTag: Public Access - Enable entry access for List and Search on
common name"

Precedence: 10

UserClasses: { allusers }

authenticationLevel: none

ProtectedItems: { (a1) entry }

grantsAndDenials: { grantBrowse }

identificationTag:

"Public Access - Enable filter access for Search"

Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none
ProtectedItems: { (B1) attributeType { commonName },
(B2) allAttributeValues { commonName },
(B3) attributeType { objectClass },
(B4) allAttributeValues { objectClass } }
grantsAndDenials: { grantFilterMatch }

identificationTag:

"Public Access - Enable entry access for Read and
Compare operations"

Precedence: 10

UserClasses: { allusers }
authenticationLevel: none
ProtectedItems: { (c1) entry }
grantsAndDenials: { grantRead }

identificationTag:

"Public Access - Enable attribute access for interrogation

operations"
Precedence: 10
UserClasses: { allUusers }
authenticationLevel: none
ProtectedItems: { (D1) attributeType { commonName,
postalAttributesSet,
telephoneNumber,
facsimileTelephoneNumber } ,
(D2) allAttributeValues { commonName,
postalAttributesSet,
telephoneNumber,
facsimileTelephoneNumber } }
grantsAndDenials: { grantRead, grantCompare }
214 Rec. ITU-T X.501 (10/2012)

identificationTag:

| SO/l EC 9594-2:2014 (E)

"Employee Access - Enable attribute access for interrogation

operations"
Precedence: 10
UserClasses: subtree with base { C=US, 0=ZCC } and chop to

authenticationLevel:

exclude O=BRC subtree
simple

ProtectedItems: { (E1) allUserAttributeTypesAndvValues }
grantsAndDenials: { grantRead, grantCompare }

identificationTag: "Employee Access - Enable filter access for Search"
Precedence: 10

UserClasses: subtree with base { C=US, 0=2CC } and chop to

authenticationLevel:

ProtectedItems:
grantsAndDenials:

exclude O=BRC subtree

simple

{ (F1) allUserAttributeTypesAndvValues }
{ grantFilterMatch }

NOTE 4 — Permissions for employees are the union of permissions for the public and permissions specific to employees. The
above acritem values for employee access are strongly coupled to values associated with public access. This strong coupling
could be avoided, if necessary, by repeating each of the values for public access (each repeated value would have a new
UserClasses that specifies only employees).

There are two other values of the attribute which are related to implementing policy regarding how entries are
administered (PF-5 and PF-6). For simplicity, this example assumes that access control attributes are the only
operational attributes present in the AAA. The design of the two valuesis summarized below.

identificationTag: "Cauchy is superuser (Part 1)"
. .Precedence: 40
UserClasses: user { C=US, 0=ZCC, OU=Admin, CN=Cauchy }
uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (61) entry }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantBrowse, grantModify,

grantRename}

identificationTag: "Cauchy is superuser (Part 2)"
Precedence: 40

UserClasses: user { C=US, 0=2ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (H1) allUserAttributeTypesAndvValues,
(H2) attributeType { entryACI },
(H3) allAttributeValues { entryACI } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,

grantFilterMatch }

Note that the above two values are necessary, but not sufficient, to make Cauchy a superuser. They are not sufficient
because they do not enable Cauchy's control over subentries of the administrative point for ACSA-1; there are two
reasons why thisistrue. First, prescriptive ACI does not apply to the subentry in which it appears. Second, prescriptive
ACI placed in a subentry, say subentry-1, cannot be used to control subentries that are siblings of subentry-1. Therefore,
it is necessary to place subentryacI in the entry corresponding to the administrative point for ACSA-1 such that
Cauchy is alowed to administer his authority over the subentries of that administrative point. The necessary
subentryAcI isdiscussed in N.7.

Note also that the authority granted in the above two values of prescriptive ACI allow Cauchy to administer full control
over the subentries associated with administrative points that are subordinate to the administrative point for ACSA-1.

N.6.2 prescriptiveACI for DACD-2

DACD-2 is defined in a subentry of the administrative entry for ACSA-1. DACD-2 is concerned with controlling
entries with object class organizationalPerson. The following policy fragment isrelevant.

PF-7: Only members of the namespace administration group {C=US, O=ZCC, OU=Admin, CN=Ops} can add,
delete, or rename user entries. However, they are only permitted to add mandatory attributes to a new entry (an entry
containing only mandatory attributesis referred as aminimal entry).

Thefollowing two valuesin the prescriptiveact attribute of SE_DACD2 implement PF-7.

Rec. ITU-T X.501 (10/2012) 215

| SO/l EC 9594-2:2014 (E)

NOTE — Renaming of entries, in the context of PF-7, is understood to mean renaming without changing the immediate superior.
For simplicity, this example does not address the more complicated case where renaming involves changing the immediate
superior of the renamed entry (and its subordinates); in this case, Import and Export permissions shall be considered.

identificationTag: "Minimal leaf entry administration (Part 1)"
Precedence: 20

UserClasses: userGroup { C=US, 0=2ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

ProtectedItems: { (J1) entry,

(J2) attributeType {commonName, surname },
(J3) allAttributeValues {commonName, surname } }

grantsAndDenials: { grantAdd, grantRemove }

identificationTag: "Minimal leaf entry administration (Part 2)"
Precedence: 20

UserClasses: userGroup { C=US, 0=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

ProtectedItems: { (k1) entry }

grantsAndDenials: { grantRename }

N.6.3 prescriptiveACI for DACD-3

DACD-3 is defined in a subentry to the administrative entry for ACIA-1. It implements policy fragments regarding
policy that has been partially delegated to ACIA-1. An example is that the policy for ACIA-1 regarding
telephoneNumber IS different from that provided in default policy within DACD-1. Within DACD-3,
telephoneNumber iS not regarded to be a public accessitem. Thisis reflected in the following policy fragment.

PF-8: The only public attributes within ACIA-1 are commonName, COMPONeNts from postalAttributeSet, and
facsimileTelephoneNumber.

The following value in the prescriptiveacI attribute of the subentry {C=US, O=ZCC, OU=R&D, OU=West,
CN=SE_DACD3} implements PF-8.

identificationTag: "Delegated control of public access"
Precedence: 10

UserClasses: { allusers }

authenticationLevel: none

ProtectedItems: { (L1)attributeType { telephoneNumber } }
grantsAndDenials: { denyRead, denyCompare, denyFilterMatch }

The R&D West organization is also delegated authority to implement self-administration for entries of object class
organizationalPerson. Thepolicy isreflected in the following fragment.

PF-9: Employees of R&D West may administer values within their own Directory entry for the following attribute
types. telephoneNumber, commonName, and facsimileNumber; however, they may not modify or remove the
telephone number value supplied by the administration.

The first part of PF-9 is reflected in the two acTtItems below. The restriction on removal of a particular value of
telephoneNumber iSimplemented using entryact asdescribed in M.8.

identificationTag: "Self-Administration of R&D West employee entries (Part 1)"

Precedence: 20

UserClasses: thisEntry

authenticationLevel: strong

ProtectedItems: { (M1) entry }

grantsAndDenials: { grantModify }

identificationTag: "Self-Administration of R&D West employee entries (Part 2)"

Precedence: 20

UserClasses: thisEntry

authenticationLevel: strong

ProtectedItems: { (N1) attributeType { commonName,
postalAttributesSet,
telephoneNumber,

facsimileTelephoneNumber },
(N2)allAttributeValues { commonName,
postalAttributesSet,
telephoneNumber,

216 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

facsimileTelephoneNumber } }
..grantsAndDenials: { grantAdd, grantRemove }

PF-10: The group with members identified in { C=US, O=ZCC, OU=R&D, CN=Ops} are responsible for general
maintenance of user attributes for entriesin ACIA-1; however, they may not modify subentries located inside ACIA-1.

Thefirst part of this policy isreflected in the following AcIItem:

identificationTag: "R&D general administration (Part 1)"

Precedence: 20

UserClasses: userGroup { C=US, 0=2ZCC, OU=R&D, CN=Ops }
authenticationLevel: strong

ProtectedItems: (P1)entry }

grantsAndDenials: { grantModify, grantAdd, grantRemove, grantBrowse,

grantRead, grantRename }

identificationTag: "R&D general administration (Part 2)"

Precedence: 20

UserClasses: userGroup { C=US, 0=2ZCC, OU=R&D, CN=Ops }

authenticationLevel: strong

ProtectedItems: { (Q1)allUserAttributeTypesAndValues }

grantsAndDenials: { grantAdd, grantRemove, grantRead, grantFilterMatch,
grantCompare}

The restriction with regard to subentries is handled by not including any subentryacz values in the administrative
entry for ACIA-1 that allow the access.

N.6.4 prescriptiveACI for DACD-4

DACD-4 is defined in a subentry to the administrative entry for ACIA-2. As such, it implements policy fragments
regarding policy that has been partially delegated to ACIA-2.

For simplicity, DACD-4 is not discussed further.

N.6.5 prescriptiveACI for DACD-5

DACD-5 is defined in a subentry to the administrative point for ACSA-1. This DACD is used to control access to al
immediate subordinates, other than subentries, of the organizational root. In particular, the following policy applies.

PF-11: The Operations Group {C=US, O=ZCC, CN=Ops} is responsible for administration of all entries that are
immediately subordinate to { C=US, O=ZCC}.

PF-11 isexpressed in the following ACIItem values.

identificationTag: "Control of administrative level entries (Part 1)"
Precedence: 40

UserClasses: userGroup { C=US, 0=2ZCC, CN=Ops }

authenticationLevel: strong

ProtectedItems: { (R1) entry }

grantsAndDenials: { grantRead, grantBrowse, grantRemove, grantAdd, grantRename,

grantModify }

identificationTag: "Control of administrative level entries (Part 2)"
Precedence: 40

UserClasses: userGroup { C=US, 0=2ZCC, CN=Ops }
authenticationLevel: strong

ProtectedItems: { (81) allUserAttributeTypesAndvalues,

(82) attributeType { entryACI },
(83) allattributeValues { entryacCI } }
grantsAndDenials: { grantRead, grantRemove, grantAdd, grantCompare,
grantFilterMatch }

N.7 Policy expressed in subentryACI attributes
N.7.1 subentryACI in theadministrative entry for ACSA-1

PF-5 is manifested in a combination of prescriptiveaAcI and subentryAcCI; the associated prescriptiveAcCI has
already been described in N.6.1. To enable Cauchy to administer the subentries of the administrative point for ACSA-1

Rec. ITU-T X.501 (10/2012) 217

| SO/l EC 9594-2:2014 (E)

(and any subentries for administrative points subordinate to the administrative point for ACSA-1), it is necessary to
place the following subentryAcI valuesin the entry corresponding to the administrative point for ACSA-1.

identificationTag: "Cauchy is superuser (Part 3)"
Precedence: 40
UserClasses: user { C=US, 0=2ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong

ProtectedItems: { (61) entry }

grantsAndDenials: { grantAdd, grantRead, grantRemove, grantBrowse, grantModify,
grantRename}

identificationTag: "Cauchy is superuser (Part 4)"

Precedence: 40

UserClasses: user { C=US, 0=ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (H1) allUserAttributeTypesAndValues,
(H2) attributeType { entryACI },
(H3) allAttributeValues { entryACI } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,
grantFilterMatch }

N.7.2 subentryACI in theadministrative entry for ACIA-1
A subentryACI attributeis placed in the root vertex of ACIA-1 to implement the following policy fragment.
PF-12: The user with common name Cayley is responsible for managing all prescriptiveac: defined in ACIA-1.

Thefollowing two valuesin the subentryAcT attribute implement PF-12.

identificationTag: "Cayley manages subentries in ACIA-1 (Part 1)"
Precedence: 20

UserClasses: user { C=US, 0=ZCC, OU=R&D, OU=West, CN=Cayley }
authenticationLevel: strong

ProtectedItems: { (T1) entry }

grantsAndDenials: { grantRead, grantBrowse, grantRemove, grantAdd,

grantRename, grantModify }

identificationTag: "Cayley manages subentries in ACIA-1 (Part 2)"
Precedence: 20
UserClasses: user { C=US, 0=2ZCC, OU=R&D, OU=West, CN=Cayley }
authenticationLevel: strong
ProtectedItems: { (U1) attributeType { prescriptiveACI },

(U2) allAttributeValues { prescriptiveACI } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,

grantFilterMatch }

N.8 Policy expressed in entryACI attributes

PF-9 requires that each R&D West employee be alowed to manage all values of telephoneNumber in hisher
Directory entry with the restriction that they may not modify or remove a particular value supplied by administration.
To enforce the restriction, the administration adds an entryac1 value to each entry at the time that the restricted
telephone number is added to the entry. The entryac vaueis summarized as follows:

identificationTag: "Restrict self-administration of telephone numbers"

Precedence: 30

UserClasses: thisEntry

authenticationLevel: none

ProtectedItems: { (v1) attributeValue { telephoneNumber = value supplied by
administration } }

grantsAndDenials: { denyRemove }

Note that since users cannot modify the entryaca attribute (it is not part of self-administration as defined in PF-9), the
above control cannot be overridden by the user.

The following policy fragment is an example of using entryaci to implement a self-administration for a group entry.

218 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

PF-13: Theentry {C=US, O=ZCC, OU=Admin, CN=Ops} is a"self-administered" group entry; this means that each
member of the group may remove their name from the group or change their name in the group. They may not remove
or rename the group itself.

PF-13 isimplemented by an entryaca attribute in the entry { C=US, O=ZCC, OU=Admin, CN=Ops} with two values
as summarized below.

identificationTag: "self-administration of the Administrative Ops group (Part 1)"
Precedence: 30

UserClasses: userGroup { C=US, 0=2ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

ProtectedItems: { (W1) entry }

grantsAndDenials: { grantModify }

identificationTag: "self-administration of the Administrative Ops group (Part 2)"
Precedence: medium

UserClasses: userGroup { C=US, 0=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

ProtectedItems: { (x1) selfvalue { uniqueMember } }

grantsAndDenials: { grantRemove, grantAdd }

N.9 ACDF examples

N.9.1 Public accessread

A member of the genera public, with distinguished name {C=GB, O=XC, CN=Smith} attempts a Read operation
reguesting telephone number values for user Cayley. The access control decisions for the operation are defined in Rec.
ITU-T X.511 | ISO/IEC 9594-3. Assuming there is no alias dereferencing involved in name resolution, the first decision
point is to determine if Read permission for the target entry is granted; this decision is based on the following inputs to
the ACDF:

— reguested permission: Read;

— originator: { C=GB, O=XC, CN=Smith} with no unique identifier;

— authentication level: none;

— protected item: entry{ C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley};
— tuplesshownin Table N.1

TableN.1
User ltem Permission Grant or Precedence Authentication

Deny level
allUsers (Alentry Browse G 10 None
allUsers (Bl)commonName type FilterMatch G 10 None
allUsers (B2)commonName values FilterMatch G 10 None
allUsers (B3)objectclass type FilterMatch G 10 None
allUsers (B4)objectclass values FilterMatch G 10 None
allUsers (Clentry Read G 10 None
allUsers (D1)commonName type Read G 10 None
allUsers (Dl)postalattributeSet type Read G 10 None
allUsers (D1)telephoneNumber type Read G 10 None
allUsers (D1)facsimileTelephoneNo type Read G 10 None
allUsers (D2)commonName Values Read G 10 None
allUsers (D2)postalattributeset values Read G 10 None
allUsers (D2)telephoneNumber Values Read G 10 None
allUsers (D2)facsimileTelephoneNo Read G 10 None
allUsers values Read D 10 None
allUsers (L1)telephoneNumber type Compare D 10 None
allUsers (L1)telephoneNumber type FilterMatch D 10 None

(L1)telephoneNumber type

The protected target entry is in the scope of DACD-1, DACD-2, and DACD-3 (see Figure N.4). It has N0 entryacCTI.
The three DACDs contribute the tuples (applicable to the specified originator) shown in Table N.1 to the ACDF
procedure described in 18.8.

The ACDF, after discarding non-relevant rows, ends up with just two rows to consider: row 4 which grants Read on the
entry and row 13 which denies Read on the entry. The ACDF therefore denies access.

Rec. ITU-T X.501 (10/2012) 219

| SO/l EC 9594-2:2014 (E)

NOTE — For simplicity, this example does not address permissions and procedures associated with error conditions. However, in
the above case of denied access, the behaviour of the responding DSA would be governed by 18.2.3 or 18.4.1 and would involve
using the ACDF again to determine if DiscloseOnError is granted for the target entry.

N.9.2 Public access search

A member of the general public, with distinguished name {C=GB, O=XC, CN=Smith} attempts a Search operation
requesting all values of al attributes for all users (wholesubtree) subordinate to base object {C=US, O=ZCC,
OU=R&D, OU=West}; the filter Specifies FilterItem equality: objectClass = organizationalPerson.
The access control decision points for the operation are defined in 10.2.6 of Rec. ITU-T X.511 | ISO/IEC 9594-3.

N.9.2.1 Check each entry in the search scope for proper entry permission

For each entry in the search scope, assuming there is no aias dereferencing involved in name resolution, the first
decision point isto determine if Browse is granted for that entry. For the first such entry, the ACDF inputs are:

— requested permission: Browsg;

— originator: { C=GB, O=XC, CN=Smith};

— uniqueidentifier: none;

— authentication level: none;

— protected item: entry{ C=US, O=ZCC, OU=R&D, OU=West};
— tuplesshownin Table N.2.

Since the entry being checked is included in DACD-1 only, the initial set of tuples gathered by the ACDF is shown in
Table N.2. Note that thereisno entryacI to consider.

The ACDF procedure of discarding rows from Table N.2 results in only the first row being retained; the ACDF
therefore grants the requested access.

Similarly, the ACDF will grant Browse for each entry in the scope of the Search.

TableN.2
User ltem Permission Grant or Precedence Authentication

Deny level
allUsers (Alentry Browse G 10 None
allUsers (B1l)commonName type FilterMatch G 10 None
allUsers (B2)commonName values FilterMatch G 10 None
allUsers (B3)objectclass type FilterMatch G 10 None
allUsers (B4)objectclass values FilterMatch G 10 None
allUsers (Clentry Read G 10 None
allUsers (D1)commonName type Read G 10 None
allUsers (Dl)postalattributeSet type Read G 10 None
allUsers (D1)telephoneNumber type Read G 10 None
allUsers (D1)facsimileTelephoneNo type Read G 10 None
allUsers (D2)commonName Values Read G 10 None
allUsers (D2)postalattributesSet values Read G 10 None
allUsers (D2)telephoneNumber Values Read G 10 None
allUsers (D2)facsimileTelephoneNo Read G 10 None

values

N.9.2.2 Check for satisfaction of Filter

For each entry in the search scope for which Browse is granted, the next decision point isto determine if FilterMatch is
granted on the objectcClass éttribute. For thefirst such entry, the ACDF inputs are:

— requested permission: Browse;

— originator: { C=GB, O=XC, CN=Smith};

— uniqueidentifier: none;

— authentication level: none;

— protected item: entry{ C=US, O=ZCC, OU=R&D, OU=West};
— tuplesshownin Table M.2.

220 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

The ACDF will discard all rows of Table N.2 except for row 4; the access will, therefore, be granted. Next, the Search
operation will check to see if any of the values of the objectcClass attribute equal organizationalPerson. Since
the entry being checked is an organizational unit entry, the Filter will evaluate to FALSE.

Similarly, the Filter will evaluate to FALSE for the entry with CN=SE_DACD3.

For the other two entries in the scope of the Search (CN=Cayley, CN=Noether), the Filter will evaluate to TRUE. For
each of these entries, the next access control decision is to determine if Filterltem is granted for the attribute value that
caused the Filter to be evaluated as TRUE. Because these entries are included in both DACD-1, DACD-2, and
DACD-3, the initial set of tuples input to the ACDF is Table M.1. Row 5 of Table N.1 grants the requested access for
both entries.

Hence, the Search result contains information from the entries for Cayley and Noether. Additional access control
decisions for these two entries are essentially the same as shown in the example of public Read in N.9.1.

N.10 Rule-based access control

To illustrate the use of rule-based access control, the following example of security rules is identified (note thisis for
illustrative purposes only and does not necessarily represent any complete real world policy).

The possible security label values are a hierarchical set: unmarked, unclassified, restricted, confidential, secret,
top-secret.

The clearance values are a hierarchical maximum class values: unmarked, unclassified, restricted, confidential, secret,
top-secret.

NOTE — These rules may be extended by communities to cover further privilege information carried in Privacy Mark or Security
Categories.

The accessrules are that:

a) accessisgranted if the Clearancelevel is greater than or equal to the Label level.
b) accessisdenied if the Clearance level islessthan the Label level.

Rec. ITU-T X.501 (10/2012) 221

| SO/l EC 9594-2:2014 (E)

Annex O

DSE type combinations

(Thisannex does not form an integral part of this Recommendation | International Standard.)

Table O.1 specifies a number of DSE type combinations (i.e., combinations of the named bits of the dseType attribute)
that are likely to occur when applying the DSA information model to DSA in the absence of shadowing. The table is
provided to help clarify the DSA information model. Support for these (or other DSE type combinations) is not
mandated by this Directory Specification.

Table O.1 — Defined DSE type combinationsin the absence of shadowing

. family
DSE type admPoint cp supr | nssr sa member Comments

Root v v Root DSE for afirst level DSA. First level DSA with
an nssr if nssr bit set. Root DSE for anon-first level if
DSA is supr bit set.

Glue Glue DSE.

Entry v v v v Object entry DSE; also an administrative point if
admPoint bit set; context prefix if cp bit set; nssr if
nssr bit set.

Alias Aliasentry DSE.

Subentry v Subentry DSE.

subr v Subordinate reference DSE; subordinate reference
pointsto aliasif sa bit is set.

immSupr v Immediate superior reference.

Xr Crossreference DSE.

NOTE — The DSE type subr and immsupr may also occur (possibly with the additional bit admpoint), although it isnot

convenient to represent it in the table. Subentry and administrative point information maintained by RHOBs ar e indicated

by the presence of the rhob bit.

The first column of the table designates the DSE types which need not combine with any other DSE type to express the
function of a DSE. For example, a DSE may be found with only the entry bit set. The second through sixth columns
indicate by a tick mark (v') additional DSE type bits that may also be set in addition to the bit designated in the first
column. These hits may be set independently. For example, an entry DSE may also have the nssr bit, the admpoint
and cp bits, or several other combinations of the admPoint, cp and nssr bits set. The final column describes the
various DSE type combinations indicated in its table row.

Table 0.2 specifies a number of additional DSE type combinations that are likely to occur when shadowing occurs. As
in the case of the previous table, the first column of the table designates the DSE types which need not, in a shadow
DSA for the DSE, combine with any other DSE type to express the function of a DSE. The second through sixth
columns indicate by atick mark (v') additional DSE type bits that may also be set in addition to the bit designated in the
first column. These bits may be set independently.

222 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Table O.2 — Defined DSE type combinations in the absence of shadowing

. family
DSE type admPoint cp | supr | nssr | ember Comments

Root v Root DSE for shadow first level DSA with annssr.

Entry v v v v Object entry DSE; also an administrative point if
admPoint bit set; context prefix if cp bit set; nssrif
nssr bit set.

Alias v Alias entry DSE.

Subentry Subentry DSE.

subr v Subordinate reference DSE; subordinate reference
pointsto aliasif sa bit is set.

immSupr v v Immediate superior reference.

admPoint v v v Administrative point DSE without user attributes
(entry not shadowed); also context prefix if ep bit set;
alsonssr if nssr bit set.

Cp v v v Context prefix DSE (entry not shadowed); also nssr if
nssr bit set.

nssr v Nssr DSE (entry not shadowed).

NOTE — The shadow bit is set in all casesin the table (and therefore not explicitly represented). As in the case of Table
0.1, the DSE type subr, immsupr and shadow may also occur (possibly with the additional bit admpPoint). Finally, for
DSEs with the subr and/or immSupr bits set, the entry and shadow bits may also occur as shadowed entry information is
overlaid on knowledge information maintained either by RHOBs or shadowing.

Rec. ITU-T X.501 (10/2012) 223

| SO/l EC 9594-2:2014 (E)

Annex P

Modelling of knowledge

(Thisannex does not form an integral part of this Recommendation | International Standard.)

The following example illustrates a hypothetical DIT, its potential mapping onto three DSASs, and the information the
DSAswould have to maintain (including knowledge information) to support the mapping.

In Figures P.1 and P.2 below, the following symbols are used.

‘ Object entry Extelnt. of aqtonomous
administrative area

A Alias entry
O Extent of naming context

. Subentry X.501(12)_FP.0

Figure P.1 depicts the hypothetical DIT. It is partitioned into four autonomous administrative areas. the degenerate
cases of the single entries { C=WW?} and {C=VV} and the two subtrees rooted at { C=WW, O=ABC} and {C=VV,
O=DEF}. Oneentry, { C=VV, O=DEF, OU=K}, isan dias of the object entry { C=WW, O=ABC, OU=l}.

Root

CN=BB

Autonomous
administrative area BB

CN=l CN=m CN=n X.501(12)_FP.1
Autonomous
administrative areaAA CN=0 CN=p CN=q

Figure P.1 —Hypothetical DIT

Figure P.2 depicts the partitioning of the hypothetical DIT into five naming contexts (A, B, C, D and E) and their
mapping onto three DSAs (DSA 1, DSA 2 and DSA 3). In the figure, DSA 1 holds context C, DSA 2 holds contexts A,
B and E, and DSA 3 holds context D.

The knowledge held by the three DSAs is as follows: DSA 1 employs DSA 2 as its superior reference and has a non-
specific subordinate reference to DSA 2 for information subordinate to { C=WW, O=ABC}. DSA 2 isafirst level DSA
and maintains a subordinate reference to DSA 1 for context C and an immediate superior reference to it for the context
immediately superior to context E. DSA 2 maintains a subordinate reference to DSA 3 for context D. DSA 3 aso
employs DSA 2 asits superior reference and has a cross reference to DSA 2 for context E.

224 Rec. ITU-T X.501 (10/2012)

| SO/IEC 9594-2:2014 (E)

Root

Context A Context B

Context C Context D

X501(12)_FP2

DSA1 DSA2 DSA3

Figure P.2 —Hypothetical DIT mapped onto three DSAs

Figures P.3 through P.6 depict the information held in each of the DSAs (i.e., the DSA information tree of each DSA) to
support this configuration. The following symbols are employed in these figures.

@ Entry DSE @) Root DSE
A AliasDSE (O GlueDSE
[l subentry DSE \/ subr DSE
() Also DSE type x xr DSE

X.501(12)_FP.3a

Figure P.3 illustrates the DSA information tree of DSA 1.

Root

C=ww

(cp+ admPoint + nssr + entry)
CN=AA

X.501(12)_FP.3
CN=l CN=m CN=n

Figure P.3 - DSA information treefor DSA 1

Since DSA lisnot afirst level DSA, its root DSE holds a superior reference, which in this example is the access point
for DSA 2. ThisDSE isof type root + supr.

DSA 1 holds one glue DSE to represent its knowledge of the name { C=WW}.

The autonomous administrative area AA is subdivided into two naming contexts C and E, with context C held in
DSA 1. For the sake of simplicity in this example, it is assumed that the specific administrative areas relative to access
control and subschema information coincide, and that there is a single access control domain and a single subschema for
the entire autonomous administrative area. A consequence of this is that only a single (multi-purpose) subentry is
required for each of the autonomous administrative areas of the example.

Rec. ITU-T X.501 (10/2012) 225

| SO/l EC 9594-2:2014 (E)

For DSA 1 the DSE at { C=WW, O=ABC}, representing the administrative point for AA, the context prefix for context
C and a non-specific subordinate reference to DSA 2, is of type entry + cp + admPoint + nssr. The area
operational information is held in the subentry { C=WW, O=ABC, CN=AA}.

DSA 1 holds the following entries contained in context C: { C=WW, O=ABC, OU=G}, {C=WW, O=ABC, OU=H},
{C=WW, O=ABC, OU=G, CN=l}, { C=WW, O=ABC, OU=G, CN=m} and { C=WW, O=ABC, OU=G, CN=n}.

Figure P.4 illustrates one potential DSA information tree for DSA 2.

Root

(cp + admPoint) C=VV
(cp + admPoint + entry)

O=ABC (admPoint + immSupr + rhob) O=DEF

(cp + entry)

X.501(12)_FP.4
CN=o0 CN=p CN=q

Figure P.4 — DSA information treefor DSA 2

In this hypothetical situation, DSA 2 isafirst level DSA, soits root DSE does not hold a superior reference.

The two degenerate autonomous administrative areas, { C=WW} and {C=VV} are represented by DSEs of type cp +
entry + admPoint.

Subordinate knowledge of the DIT is represented by two subordinate reference DSEs, { C=WW, O=ABC} and {C=VV,
O=DEF}. In the former case, this DSE is of type subr + admPoint + immSupr + rhob for reasons that will be
described next.

In Figure P.4, DSA 2 is configured assuming that a single subentry holds the area operational information regarding
AA. This requires that a copy of the subentry be present at DSA 2 (for reasonable performance). One way to
accomplish thisis by establishing a NHOB between DSA 1 and DSA 2 to maintain a copy of the subentry. In this case
the area operational information is held in the DSE named { C=WW, O=ABC, CN=AA} which is of type subentry +
rhob. The administrative-role atribute held in the DSE at { C=WW, O=ABC} isprovided to DSA 2 from DSA 1
as part of the NHOB. For this reason the DSE is of type admPoint + rhob.

Finally the naming context E is held as the context prefix DSE { C=WW, O=ABC, OU=l) which is of type cp +
entry and the three entry DSEs { C=WW, O=ABC, OU=I, CN=0}, { C=WW, O=ABC, OU=I, CN=p} and { C=WW,
O=ABC, OU=I, CN=q}.

An aternative means of configuring DSA 2 isillustrated in Figure P.5.

226 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

O=ABC O=DEF

(cp + admPoint + entry)
CN=AA

X.501(12)_FP.5
CN=o0 CN=p CN=q
Figure P.5 —Alternative DSA information treefor DSA 2

This differs from the configuration depicted in Figure P.4 only in the handling of the area operational information,
motivated, perhaps, by adesire to avoid having to maintain a NHOB with DSA 1.

The strategy in this case is to partition AA (i.e., partition the domain access control information — and similarly the
subschema information) into two autonomous administrative areas, one coinciding with context C and the other with
context E.

In this case the context prefix DSE { C=WW, O=ABC, OU=I} aso becomes an administrative point, the DSE type
being cp + admPoint + entry. Instead of a shadowed subentry supplied by DSA 1 as part of a NHOB, the reduced
area operationa information is held in the subentry { C=WW, O=ABC, OU=I, CN=AA}.

Figure P.6 illustrates the DSA information tree of DSA 3.

o=ABCc ()
CN=BB

OuU=K

Oou=l X.501(12)_FP.6
Figure P.6 — DSA information treefor DSA 3

Like DSA 1, DSA 3isnot afirst level DSA. Itsroot DSE holds a superior reference, which in this example is the access
point for DSA 2. ThisDSE isof type root + supr.

DSA 2 holds one glue DSE to represent its knowledge of the name {C=VV}.

The autonomous administrative area BB coincides with the naming context D. For the sake of simplicity in this example
it is assumed, as in the case of the autonomous administrative area AA, that the specific administrative areas relative to
access control and subschema information coincide, and that there is a single access control domain and a single
subschema for the entire autonomous administrative area. Thus only a single (multi-purpose) subentry is required for
each of the autonomous administrative areas of the example.

For DSA 3, the DSE at {C=VV, O=DEF}, representing the administrative point for BB and the context prefix for
context D, is of type entry + cp + admPoint. The area operationa information is held in the subentry {C=VV,
O=DEF, CN=BB}.

DSA 3 holds one object and one alias entry contained in context D: {C=VV, O=DEF, OU=J}, (of type entry) and
{C=VV, O=DEF, OU=K} (of type alias and containing an attribute aliasedEntryName having the value { C=WW,
O=ABC, OU=l}).

Finally, DSA 3 holds a cross reference to context E, a DSE of type xr with name { C=WW, O=ABC, OU=l}.

Rec. ITU-T X.501 (10/2012) 227

| SO/l EC 9594-2:2014 (E)

Annex Q

Subfilters

(Thisannex does not form an integral part of this Recommendation | International Standard.)

A filter can be converted into a set of subfilters by progressive expansion using deMorgan's rules. (These rules work for
the three-valued logic used for filter.) Consider a filter to be a tree where non-leaf nodes correspond to each and{},
or{}, not{}, and each |leaf-node is a filter-item. Each arc represents an element in the and{}, or{}, not{}; in the case
of not{}, there can be only one such arc.

First progress each not{} to the leaves by using the rules:
not{and{X,y,z}} isthe same as or{not{x}, not{y}, not{z}}
not{or{X,y,z}} isthe same as and{not{X}, not{y}, not{z}}
not{not{x}} isthe same as x
leaving the notsto apply directly to the filter items.
Then reduce the tree by combining ands and ors and move the ands in the direction of the leaves by using the rules:
and{and{X,y,z}, p, q} isthe same as and{ X,y,z,p,q}
or{ox{Xx,\y,z}, p, q} isthe same as ox{ X,y,z,p,q}
and{or{X,y,z}, p, g} isthe same as or{and{Xx,p,q}, and{y,p,q}, and{ z,p,q} }
and(X,y,z} isthe same as and{ any ordering of x,y,z}
or(Xx,y,Z} isthe same as ox{any ordering of x,y,z}
and{} iSTRUE, so that or{and{},x,y,zZ} isaways TRUE and and{and{},x,y,z} isthe same as and{x,y,z}

or{} isFALSE, sothat and{ or{},X,y,z} isaways FALSE and or{ox{},x,y,z} isthe same asor{X,y,z}
NOTE — The notation {x,y,z} (etc.) as used here means a set of zero, one, or more members, such asx, y, and z.

By progressive application of these rules, thefilter is eventually converted into a canonical form:
or{and{py, P>... },and{q, 9 ... } ...}
where each p; or q; is either afilter item F or anegated filter item not{ F}.

Each and{py, p, ... } isthen asubfilter of the origina filter.

228 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Annex R

Compound entry name patternsand their use

(Thisannex does not form an integral part of this Recommendation | International Standard.)

The concept of local member name is introduced in 9.3. This Directory Specification does not put any constraints on
how names can be alocated beyond what is determined by structure rules. However, in some situations establishing a
naming pattern for family members is essential to achieve a wanted effect. In its simple form, similar family members
from different compound entries could have identical local member names. As an example, a family member holding a
telephone number and its associated characteristics (use, tariff, restrictions, etc.) could have the same local member
name in different compound entries. This is essential when compound entries are members of hierarchical groups
(see 7.13 of Rec. ITU-T X.511 | ISO/IEC 9594-3). A pattern can also be established by letting the RDN for a family
member reflect what information that member holds. As an example, a communications address (e.g., a telephone
number or e-mail address) could have an RDN equal to { comAdressName = telephonel } or { comAdressName =
emailAddress3 }. All, say, telephone number family members can then be located by performing initial substring
matching on the RDN.

The below example for use of name pattern is also an example on the use of control attributes referenced by the
additionalControl Search-rule component (see 16.10.8). This example should clearly be understood as an example
and not as a specification that can be implemented or to which other specifications can formally refer. It is solely given
as an example on how a control attribute could be constructed and what specifications could be associated with such a
control attribute.

A search-rule controls the behaviour of a search with a specific area of the DIT. This service is adapted to the particular
accessing user. However, "owners' of entries, e.g., subscribers being represented by subscriber entries, may have
individual, possibly legal requirements on how the service associated with that particular entry should be constrained
and adjusted. Such individual requirements could be;

a) Information in an entry may be supplied in different languages. However, the owner of the entry may
regquest that, e.g., addressing information shall be returned in a particular language independent of what
language the accessing user uses in the search request and what the accessing user might request. This
function cannot be provided by the context function.

b) An owner of an entry may request that a fake or an alternative address is returned even when the
accessing user matched on the real one.

¢) When an accessing user matches on one telephone number, he/she will get all or a selection of telephone
numbers together with associated information.

Such individual constraints and adjustments could be exercised by the sample markingRules control attribute. This
atribute is intended to be held by an entry or an ancestor of a compound entry within a service specific administrative
area. It has the following definition:

markingRules ATTRIBUTE ::= {
WITH SYNTAX MarkingRule
USAGE directoryOperation
ID id-oa-xx }

MarkingRule ::= SEQUENCE {
searchRules SEQUENCE SIZE (1 .. MAX) OF INTEGER OPTIONAL,
markingStrands [0] Filter DEFAULT and : { },
localName [11] SEQUENCE SIZE (1 .. MAX) OF FilterItem OPTIONAL,
explicitUnmark [2] Filter OPTIONAL }

A value of themarkingRules control attribute represents a rule for marking and unmarking of members of compound
entries that have been matched during the Search evaluation and for eliminating matched non-family entries from the
output.

The searchRules component indicates to which search-rules the particular value of this attribute applies. If the
governing-search-rule has an id equal to one of the values in this component, then the remarking as specified by this
control attribute value shall be applied. A given search-rule can be represented in several values of this attribute type. If
the component is missing, the marking-rule applies for all search rules.

Rec. ITU-T X.501 (10/2012) 229

| SO/l EC 9594-2:2014 (E)

ThemarkingStrands component isonly relevant if the familyGrouping during the matching was either strand or
multiStrand. It indicates what condition should be present for a possible marking of strands. The filter of this
component is evaluated against each strand whose members all have been marked as participating members as the result
of the search filter match. It evaluates to TRUE if at least one strand evaluates to TRUE. Matching follows the same
rules as specified in 7.8 of Rec. ITU-T X.511 | ISO/IEC 9594-3. If this component is absent, it defaults to a filter that
always evaluates to TRUE.

The localName component is only relevant if the familyGrouping during the matching was either strand or
multiStrand and the markingStrands evauates to TRUE. It then indicates what strands shall have its family
members marked as participating members by selecting zero or more family members. A family member is elected if its
local member name has the same number of RDNSs as the number of filter items in this component and if each filter
item matches one by one the corresponding RDN. A filter item matches an RDN if it matches an AVA of that RDN.
Any strand going through a selected family member has all its family members marked as participating.

The explicitunmark component specifies afilter that, if matching an entry or a family member, causes that entry or
family member to be explicitly unmarked. Explicit unmarking is only relevant for entries and family members that have
been selected for return in a search result. If afamily member is explicitly unmarked and if the family grouping during
the search filter matching was not entryonly, then all family entries subordinate to the explicit unmarked member are
also explicitly unmarked. Explicitly unmarking a non-family entry means deleting that entry from the result as if it had
not been matched. Explicit unmarking of afamily member means that such a member shall not be included in the result.

The evaluation of themarkingRules control attribute is performed as a two-phase-process.

The first phase is only performed if familyGrouping during the matching was either strand or multistrand and
the £amilyReturn in the entry information selection isnot contributingEntriesOnly.

In the first phase, only compound entries that have been matched during the search filter evaluation that fulfil all the
following conditions are considered:

a) theancestor holds amarkingRules control attribute;

b) one or more values are applicable for the governing-search-rule and which include the localName
component.

Additional members are then marked as participating members as specified above.

In the second phase, all family members now marked as participating members and all non-family entries are checked
for the presence of the markingRules control attribute type, and then whether the attribute has one or more values
applicable for the governing search-rule. If o, the explicitunmark component, if present, is evaluated. If it evaluates
to TRUE for afamily member, it is explicitly unmarked, i.e., it is neither marked as participating nor contributing. All
subordinate family members are also similarly explicitly unmarked. If it is a non-family entry, explicit unmarking has
the same effect asif the search filter had not matched the entry.

230 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Annex S

Naming concepts and consider ations

(Thisannex does not form an integral part of this Recommendation | International Standard.)

S1 History tellsus...

Since the first edition of these Directory Specifications was first published in 1988, innumerable changes have taken
place in the information industry. Some of these changes were foreseen and anticipated; others were not. Accordingly,
much of what is currently published in these Directory Specifications is as applicable today as it was in 1988, while
other parts of it clearly are not. In this annex, we will identify key concepts in both sets that require consideration at this
time.

S11 Original conceptsthat are still valid

Fortunately, many of the original Directory concepts that are till valid are those most fundamental to the original
specification. Specifically:

— it is ill valid to think in terms of a Directory being a collection of entries, each of which holds
information in the form of attributes describing a particular real-world object;

— itisaso still vaid to think in terms of Directory entries as named entities, and to think of those names as
being arranged in a hierarchy that represents some reasonable taxonomy by which the associated real-
world objects may be arranged;

— itisdtll valid to provide for flexibility in naming and to alow delegation of naming authority along
hierarchical lines;

— it isdtill valid to expect these entries to be distributed across a (potentially very large) set of directory
servers,

— it isstll valid to expect the Directory, given some arhitrary piece of data about a real-world object, to
quickly find an entry describing the object itself; and

— itisstill valid to think of this arbitrary piece of data as being either the name of the entry or some non-
naming attribute contained within the entry.

S1.2 Original conceptsthat are no longer valid

Degpite this list of fundamental concepts that till hold true, there are also fundamental concepts that, in light of the
experience of the past decade or so, can no longer be held as valid. Some of these concepts have already been adapted
within these Directory Specifications, while others have not. Those that have changed include the following:

— It is no longer valid to expect any given real-world object to be described by exactly one entry (i.e.,
related entries exist).

— Security considerations notwithstanding, it is no longer valid to expect naming knowledge contained
within the Directory to be sufficient to reach all named entries in the Directory (i.e., multiple DITs exist).

— Itisno longer valid to think of naming knowledge contained within the Directory as the only way to
reach a particular named entry (i.e., it is possible to employ services externa to the Directory to assist in
the location of a named entry).

— Itisno longer valid to think of distinguished names as always uniquely naming a single entry (i.e., the
same DN may be used to name entries held in two or more DITS).

— When given an arbitrary piece (of which there is expected to be one instance) of non-naming data about
an object that may be in one of several directory servers, it is no longer valid to expect a distributed
search to be the only mechanism that can be used to locate the desired entry (i.e., there is a requirement
to have a single server locally and deterministically identify the associated entry, regardliess of whether
that entry is held by that server).

S.2 A new look at name resolution

Because naming is so fundamental to the successful operation of a Directory service, and because certain fundamental
assumptions about the nature of a directory service have now been drawn into question, this subclause will take a look
at the subject of name resolution. This subclause first takes a critical 1ook at name resolution as it exists, and proposes
that the current name resolution model is no longer sufficient to satisfy all directory requirements. The subclause
continues by proposing an aternative way of extending the model to accommodate those needs, while retaining
backward compatibility with existing systems.

Rec. ITU-T X.501 (10/2012) 231

| SO/l EC 9594-2:2014 (E)

S21 The explicit knowledge model

Since they were first published, these Directory Specifications have provided for distributed name resolution.
Conceptually, each DSA that participates in a given namespace is required to maintain minimal naming knowledge to
ensure that distributed name resolution can occur in a predictable fashion across the entire DIT (subject, of course, to
the ability to actually reach all the participating servers). Specifically, the minimum knowledge consists of superior and
subordinate knowledge references, giving the DIT a sense of "well-connectedness' for lack of a better term. Using this
model, any DSA involved in resolving a purported name will know with certainty which of the following three
conditions is met:

— the purported name falls within a naming context held by this DSA;
— the purported name falls within a subordinate namespace known to this DSA; or
— neither of the above.

In the first instance, this DSA will complete the name resolution process by either identifying the entry or determining
its non-existence. In the second instance, name resolution will continue by following a subordinate reference to another
DSA. In the third instance, name resolution will continue by following a superior reference if such a superior reference
exists, else it will terminate. As long as the DIT is well-connected, name resolution will always result in a definitive
answer. The entry either existsin a particular DSA or it does not exist.

Figure S.1 depicts a sample scenario in which name resolution is proceeding based on the name of an entry held in
DSA 2 as shown. In the figure, knowledge references are depicted with dashed line arrows. Note that DSA 3, although
holding a naming context subordinate to DSA 2, has a superior reference to DSA 1, which holds the root naming
context. Depending on the DSA involved, name resolution will proceed as follows:

— For DSA 1, name resolution will follow a subordinate reference to DSA 2.

— For DSA 2, name resolution will find the named entry.

— For DSA 3, name resolution will follow a superior reference to DSA 1 and proceed as above.
— For DSA 4, name resolution will follow a superior reference to DSA 1 and proceed as above.

In all cases, name resolution will find the named entry.

DSA 4

DSA3 Entry matching purported name

X.501(12)_FS-1

FigureS.1

It is worth noting that, although some optimizations are available, the success of the answer does not vary. Two obvious
optimizations include the use of an immediate superior reference in DSA 3 (avoiding the need to traverse DSA 1 to get
to DSA 2), and including a cross reference in DSA 4, allowing name resolution to proceed directly from DSA 4 to
DSA 2 (again avoiding the traversal of DSA 1). In any case, name resolution in this example, regardless of staring
point, will always result in the same answer.

Unfortunately, as mentioned above, a well-connected DIT can no longer be assumed. Multiple DITs exist, sometimes
including duplicate DNs. Setting aside the possibility of duplicate names for the moment, we have a situation like the
one shown in Figure S.2. In this example, we have two DITs, each of which is well-connected within itself, but neither
of which has knowledge of the other. One DIT, as in the previous example, consists of those entries held by DSA 1
through DSA 4. The second DIT consists of those entries held by DSA 5 and DSA 6. Note that it could still be
reasonable to consider thisa single DIT since all DNs are distinct relative a conceptua root. However, what makes this
distinct from a well-connected single DIT is the fact that DSA 1 and DSA 5 lack complete knowledge of the naming
contexts subordinate to the root.

232 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

DSA 4

Entry matching purported name

X.501(12)_FS-2

FigureS.2

As shown in the figure, when given the name of the entry indicated, name resolution works as follows:
— DSA 1through DSA 4 dl fail to find the entry.
— DSA 5and DSA 6 successfully find the entry.

The failure to find the entry may or may not be a problem, depending on the requirements at hand. The rest of this
discussion addresses those situations for which it is a problem.

In looking for a solution, it appears reasonable at first glance to explore the use of a cross reference or some similar
structure. Consider, for example, the use of a cross reference giving DSA 4 knowledge of the naming context in DSA 6.
Thisisillustrated in Figure S.3.

Entry matching purported name

X.501(12)_FS-3

FigureS.3

A quick analysis of this approach shows the following scenarios:
— Nameresolution in DSA 1 through DSA 3 would fail.
— Nameresolution in DSA 4 through DSA 6 would succeed.

While this may at first appear to be no more or less acceptable than the previous scenario, there is a key difference:
name resol ution within the scope of awell-connected DIT view now gives inconsistent results.

To give consistent results, there are two options available using existing knowledge structures. One approach is to use
multiple cross references such that each DSA in the "from" view has a cross reference to the desired naming context.
This concept is shown in Figure S.4. Note that in this scenario, name resolution within the left-hand view will
consistently find any name within the naming context held by DSA 6. Note that namesin DSA 5 cannot be found in this
manner, and note that namesin DSA 1 through DSA 4 are still inaccessibleto DSA 5 and DSA 6.

Rec. ITU-T X.501 (10/2012) 233

| SO/l EC 9594-2:2014 (E)

Entry matching purported name
X.501(12)_FS-4

FigureS.4

There may be a problem, however, in the way the cross reference is implemented in DSA 1. That is, from the
perspective of DSA 1, the naming context referred to in DSA 5 may actually be subordinate to an entry it believes it
holds. Specificaly, if DSA 1 believes itself to be authoritative for the root naming context, this cross reference may
actually need to be a subordinate reference, which leads us to the second option.

The second option for providing consistent name resolution from the left-hand view into DSA 6's naming context is to
create a root-level subordinate reference in DSA 1. This is depicted in Figure S.5. If implemented in this manner, any
crossreferencesin DSA 2, DSA 3, or DSA 4 will merely be optimizations.

Entry matching purported name

X.501(12)_FS-5

Figure S.5

Extending this concept one more step, as shown in Figure S.6 raises some interesting questions. In this figure, DSA 1
has complete subordinate knowledge of the naming contexts held by all 6 DSAs, while DSA 5 only has knowledge of
the naming contexts held by DSA 5 or DSA 6. Note that if DSA 5 were given subordinate knowledge of the naming
contexts held by DSA 2 and DSA 4, the entire picture would once again represent a well-connected view of the DIT.
However, thisis not the case. What has happened, in essence, is the distinction between a well-connected, single DIT
and multiple DITs has been blurred, creating a situation that is not adequately modelled in the current directory
specification. In avery practical sense, thisis a picture of what has been deployed in many environments.

Entry matching purported name

X.501(12)_FS-6

Figure S.6

234 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

To see what other complications await us, let us now consider the case in which a single DN exists in more than one
DIT. A simple scenario is shown in Figure S.7. In this example, aDIT is shown as existing in DSA 5. The namespace in
this new DIT partially overlaps that of the previous example, but introduces some new names as well. In particular, the
arrow points to an entry which, along with its parent, shares its name with an entry in DSA 2. The pairs of entries that
share names may or may not hold the same information, so they should not be considered to be the same entry.

DSA 5

DSA3 Entry matching purported name

X.501(12)_FS-7

FigureS.7

In the absence of any references between these two DITs, name resolution is very predictable. Within a particular DIT,
it will dwaysyield the same result. Introducing references creates specia problems:

— A cross reference from DSA 2 to DSA 5 or from DSA 5 to DSA 2 will never be followed, since they
each believe they hold the naming context of interest.

— A crossreference from either DSA 3 or DSA 4 to DSA 5 will take precedence over superior references.

— Behaviour in the presence of both a cross reference from DSA 3 to DSA 5 and an immediate superior
reference from DSA 3 to DSA 2 is non-deterministic.

— Behaviour in the presence of a subordinate reference from DSA 1 to both DSA 2 and DSA 5 is
non-deterministic.

Clearly, these problems are not desirable. There are additional scenarios that could be considered; however, the
problems listed above are sufficient to render this approach unacceptable. Unfortunately, the situations that lead to this
particular type of naming and knowledge distribution scenario are far too frequent in the real world to ignore.
Consequently, some form of extension is needed. The remainder of this subclause discusses an alternative approach.

S22 Name resolution with implicit knowledge

In all of the discussions above, name resolution relied entirely upon explicit knowledge references held by DSAs.
Outside the Directory Specifications (most notably in the 1ETF), work began several years ago on a concept for
resolving names in part through the use of implicit knowledge. That is, there is a body of work that uses information
contained within the DN itself to partialy resolve the name prior to the client's initial contact with a DSA.
Conceptually, provided the name contains enough information, the DSA first contacted will be able to provide a
definitive answer; it either contains the named entry or knows with certainty that such an entry does not exist.

This concept is shown below in Figure S.8. This figure is identical to Figure S.1 with the exception that the DSAs in
this figure contain no knowledge references. Instead, knowledge is implicit within the DN, and is resolved through the
use of a service external to the directory, shown here as the proverbial black box. Note that this black box is able to
provide pointers to al naming contexts except the root. The location of the root cannot be determined in this fashion
since the null DN associated with the root lacks any implicit knowledge of its whereabouts.

Rec. ITU-T X.501 (10/2012) 235

| SO/l EC 9594-2:2014 (E)

DSA 4

DSA3 Entry matching purported name

X.501(12)_FS-8

FigureS.8

Now, consider the drawing in Figure S.9, which corresponds to the DIT views shown in Figure S.2. In this scenario,
assuming the same implicit knowledge model, the same black box service is able to point to the naming contexts added
to the right of the picture. In contrast to the situation in Figure S.2, the naming contexts in DSA 5 and DSA 6 do not
create a distinctly different view. Assuming the requisite connectivity isin place, all six DSAs appear to be in the same
view, even though thereis no explicit knowledge among any of the DSAs.

Entry matching purported name

X.501(12)_FS-9

FigureS.9

The earliest published work on this topic is IETF RFC 22471, which defines a mapping between Distinguished Names
and the Domain Name System (DNS). Additional documents have been published since then, and others are under
development. To date, all published work on this topic has been based on the use of a special naming attribute, known
as the domainComponent (dc) attribute.

Simplified for the sake of discussion, the work on this subject has led to the development of a concept whereby DNs
constructed using the dc attribute in their most significant RDNs can be implicitly resolved, using DNS as the external
black box service, to a DSA holding the naming context. That DSA is then contacted, and name resolution is completed
inthat DSA.

1 |ETFRFC 2247 (1998), Using Domains in LDAP/X.500 Distinguished Names.

236 Rec. ITU-T X.501 (10/2012)

| SO/l EC 9594-2:2014 (E)

Annex T

Alphabetical index of definitions

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This annex alphabeticaly lists al of the terms defined in this Directory Specification together with a cross reference to
the clause in which they are defined.

Rec. ITU-T X.501 (10/2012) 237

| SO/l EC 9594-2:2014 (E)

A

238

access control schemecooeevveeeienee clause 17
Administration Directory Management
DOMAIN....cciiirirere e clause 6
administrative area.........ccccceeevvreveeeeenne. clause 11
Administrative Authority............ccccceeeeee. clause 6
administrative entryccoceveeeeveeeenne. clause 11
administrative point..........cccccoeverenene. clause 11
administrative USErcccevvveeeeneeeenn. clause 11
ANBS oo clause 9
AIAS ENLTY .o clause 7
dias dereferencing.......ccccoeeveeeeevevesesceeeeseenens see
dereferencing
AIASNAME....oiceece e seedlias
ANCESION ...ttt e clause 7
AITDULE. ... clause 8
attribute hierarchy ... clause 8
attribute subtype (subtype)ccccceuenee clause 8
attribute supertype (SUpertype) clause 8
atribute SyNtaXccceeeeeveveveneveesennne, clause 13
aAtribUtE tYPE...oveecee e clause 8
atribute value........ccoovveeeevenenecce clause 8
atribute value assertion.........ccceeeeveenenne. clause 8
autonomous administrative area............ clause 11
auxiliary object €lass........ccoevvereeieeinennns clause 8
DESE.....ciiie e clause 12
(o (=0 0] VRO clause 22
ChOP .o clause 12
collective attribute..........ccoovvvrenievecninnne clause 8
commonly usable..........cccoovvvreneeieennnne. clause 22
€compPoUNd ENLIYcc.eeeereerererere e eeeeeens clause 7
CONEEXL ..ot clause 8
context assertion........covvvveeeneeeeeenens clause 8
CONEXE ISt e clause 8
CONEEXTE PrEfiX...eevereeereerieerereee e clause 21
CONLEXE TYPL vt clause 8
CONLEXE VAU ..o clause 8
CoOperative State......ccoeeveeeeereeriene e clause 25
CrOSS FEfEreNCe....ccvveeeerieei e clause 22
dereferencing.......ccooeeeeeeeeenenene e clause 9
derived attribute............ccocooiininiiine clause 8
derived entry.......ccoeeeeeerenieneeeee clause 7
derived object classvalue........................ clause 8
DIB fragment........ccccceveveievenesesennenns clause 21
direct attribute reference..........cccvcevenenee clause 8
direct SUPErclasscccevvverenenvieneennnn clause7
Directory administrative and operational
INfOrMation........ccceoeverieeenenecnierieenne clause 6
DIreCtory entrycccoeeveerererenenenennene clause 7
Directory Information Base (DIB) clause 7
Directory Information Tree (DIT) clause 7
Directory Management Domain (DMD) . clause 6
directory name.........coceeeeeeeienene s clause 9
Directory operationa attribute clause 12
directory operational framework clause 25
Directory Schema........cccccoee e, clause 13
Directory Subschema........ccoovevveeeennns clause 13
Directory system schema...........c.......... clause 12
Directory System Agent (DSA)............... clause 6
DIreCtory USESccviveerinieenerieesieeee clause 6
Directory User Agent (DUA)cccun.... clause 6

Rec. ITU-T X.501 (10/2012)

Directory user informationcccce.e... clause 6
disoined view (of the DIT)ccccovevenee clause 22
distinguished name...........ccocccvevninenenn. clause 9
distinguished value...........cccoeorincinnenn. clause 8
DIT bridge knowledge reference........... clause 22
DIT content rule..........cooeeerenenieenien clause 13
DIT Context USe......ccccoveeereneeieien clause 13
DIT DOM&IN....cceiiiiiirieiniereeeneeeeie s clause 6
DIT Domain Administrative Authority clause 11
DIT Domain policy......ccccceeeeveeeveerennenn. clause 11
DIT Structure Rule..........ccooevvenenerinnns clause 13
DMD Administrative Authority............ clause 10
D)1V D2 oo I Tox Y clause 11
DMO POlICY..coveeeerieieiiicenie e clause 11
domain management organization........... clause 6
DSA information treeccoceeeeevveveennene clause 23
DSA shared attributeccccceveeenee clause 23
DSA specific attribute..........ccoceeeeeenee clause 23
DSA specific entry......ccccevevenevenennne clause 23
(D15 1Y o L= R clause 23
dummy attribute.........cccccoevveieveieie e, clause 8
effectively present attribute type............ clause 16
ENEY e clause 12
entry collectionccecvevvvvecicceecccesenn, clause 8
ENETY NAME ... clause 9
FaMIlY .o clause 7
family member.........ocoooviinininie clause 7
friend attributes..........cooeveveeivievciieinns clause 8
governing-search-rule.........cccccocevvinnens clause 16
governing structurerule........cccoceeeevenens clause 13
hierarchical childcccoceovinevnnnnnne, clause 10
hierarchical group......cccceeeeeverererennenn clause 10
hierarchical leafccoeeveieveieene clause 10
hierarchical level.........ccccceoeveveienen clause 10
hierarchical link........cccccoeeviiiiieeieene, clause 10
hierarchical parentcccceeeveieiennne clause 10
hierarchical Siblingccccooeiiiinin clause 10
hierarchical sibling-child....................... clause 10
hierarchical top......ccccceevvevevccece e clause 10
hierarchical immediately child............... clause 10
hierarchical immediately parent............. clause 10
immediate(ly) SUPEXior.......ccoevvvvererreennn. clause 7
immediate superior reference................. clause 22
indirect attribute reference...........cccoveee. clause 8
inner administrative area..........c..cooveve... clause 11
knowledge (information)ccceee.e. clause 22
knowledge reference.........cccccevevevevnnne clause 22
local member name.........c.ccocvevverreniennn clause 9
LDAP CENt....coveiviieirieee e clause 6
LDAP reqUESLOrcccovreereereeeeeereenieseens clause 6
LDAP responderccccoveeveeerieeieeieenenns clause 6
LDAP SEIVEN ..o clause 6
master knowledge.......cccccvvevvrvvnrennne, clause 22
MaChing rulecccocevvviv v clause 8
matching rule assertion.........ccoceeeeecvereenen. clause 8
NaMEd-SErVICE ..oovvvrerereeerieee clause 16
Naming authoritycccocevveevienercneneenn clause 9
NaMING CONEEXEcovvrveveriieiriiieerieeees clause 21

| SO/l EC 9594-2:2014 (E)

NaME fOrM ... clause 13
non-cooperative state..........cvvvvvrvrennens clause 25
non-specific subordinate reference........ clause 22
object (Of INtErest)ccoceveevereverecniene clause 7
ODJECE ClaSSceevereeeeiereeee e clause 7
OBJECE ENEIY .. clause 7
operational attribute............ccoceeeiinnnene clause 8
operational binding..........ccoceveeneiinene. clause 25
operational binding establishment.......... clause 25
operational binding instance.................. clause 25
operational binding management........... clause 25
operational binding modification........... clause 25
operational binding termination............. clause 25
operational binding type........c.ccccooeveeene clause 25
10! [T clause 11
policy attribute..........ccccceveverieveninrennens clause 11
policy ObJECtooveeeeeeeeree e clause 11
policy procedure..........ccooveverenenenennnn. clause 11
policy parametercoceevvereeerienenennnn. clause 11
Private Directory Management Domain clause 6
protected item........ccoceerierire e clause 17
purported NAME..........cccceeeererereenere e clause 9
referencepath ..o clause 22
related entries.......ccceeveeeeeeveresere e, clause 7
relative distinguished name...................... clause 9
reguest-attribute-profile............cccceeeeee. clause 16
request-attribute-type..........ccoceveeenennnn. clause 16
SEAICh-TUIE ... clause 16
SEIVICETYPE . clause 16
shadow knowledge.........cccoeevererenuene. clause 22
specific administrative area................... clause 11
specific administrative point.................. clause 11
structural object class.......ccocecvveveevieiennnns clause 8
structural object class of an entry clause 8
SUDCIBSS....cveeeeeerieeeie e clause 7
SUDENLIY ..o clause 12
SUBFIIEEr . clause 16
SUDLYPE .. see attribute subtype
SUbOrdinate........ccvvveeeieeeeee e clause 7
subordinate referencecocceceeeeereennnne clause 22
Subschema..........cc....... see Directory Subschema
SUBLIEE ... clause 12
subtree refinementcccceevveeenenenns clause 12
subtree specification.........ccccceevveveennne. clause 12
SUPENCIBSS ..ottt clause 7
(ST o< Lo clause 7
SUPErior referenCe.......cvvvvvereceeeeeenns clause 22
superior structure rule.........cceeeeevenene. clause 13
SUPEIYPE .o See attribute supertype
USeEr attribute.......ccoveeevereceeeeee clause 8
USEN-ClaSS....ceeeereiieeriee e clause 16

Rec. ITU-T X.501 (10/2012) 239

| SO/l EC 9594-2:2014 (E)

Annex U

Amendmentsand corrigenda

(Thisannex does not form an integral part of this Recommendation | International Standard.)

This edition of this Directory Specification includes the following amendments to the previous edition that were
balloted and approved by | SO/IEC:

— Amendment 1 for Password Policy Support;
— Amendment 2 for Communications Support Enhancements; and
— Amendment 3 for Directory-1dM Support.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects
documented in Defect Reports. against the sixth edition of this Directory Specification:

— Technical Corrigendum 1 (covering Defect Reports 339 and 346);
— Technical Corrigendum 2 (covering Defect Reports 357, 359, 360, 361, 363, 370 and 371); and
— Technical Corrigendum 3 (covering Defect Reports 378, 379, and 387).

240 Rec. ITU-T X.501 (10/2012)

SeriesA
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-tel ephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Terminals and subjective and objective assessment methods

Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Glaobal information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2014

	ITU-T Rec. X.501 (10/2012) –
Information technology - Open Systems Interconnection - The Directory: Models
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Other references

	3 Definitions
	3.1 Communication definitions
	3.2 Basic Directory definitions
	3.3 Distributed operation definitions
	3.4 Replication definitions

	4 Abbreviations
	5 Conventions
	6 Directory Models
	6.1 Definitions
	6.2 The Directory and its users
	6.3 Directory and DSA Information Models
	6.4 Directory Administrative Authority Model

	7 Directory Information Base
	7.1 Definitions
	7.2 Objects
	7.3 Directory entries
	7.4 Directory Information Tree (DIT)

	8 Directory entries
	8.1 Definitions
	8.2 Overall structure
	8.3 Object classes
	8.4 Attribute types
	8.5 Attribute values
	8.6 Attribute type hierarchies
	8.7 Friend attributes
	8.8 Contexts
	8.9 Matching rules
	8.10 Entry collections
	8.11 Compound entries and families of entries

	9 Names
	9.1 Definitions
	9.2 Names in general
	9.3 Relative distinguished name
	9.4 Name matching
	9.5 Distinguished names
	9.6 Alias names

	10 Hierarchical groups
	10.1 Definitions
	10.2 Hierarchical relationship
	10.3 Sequential ordering of a hierarchical group

	11 Directory Administrative Authority model
	11.1 Definitions
	11.2 Overview
	11.3 Policy
	11.4 Specific administrative authorities
	11.5 Administrative areas and administrative points
	11.7 DMD policies

	12 Model of Directory Administrative and Operational Information
	12.1 Definitions
	12.2 Overview
	12.3 Subtrees
	12.4 Operational attributes
	12.5 Entries
	12.6 Subentries
	12.7 Information model for collective attributes
	12.8 Information model for context defaults

	13 Directory Schema
	13.1 Definitions
	13.2 Overview
	13.3 Object class definition
	13.4 Attribute type definition
	13.5 Matching rule definition
	13.6 Relaxation and tightening
	13.7 DIT structure definition
	13.8 DIT content rule definition
	13.9 Context type definition
	13.10 DIT Context Use definition
	13.11 Friends definition
	13.12 Syntax definitions

	14 Directory System Schema
	14.1 Overview
	14.2 System schema supporting the administrative and operational information model
	14.3 System schema supporting the administrative model
	14.4 System schema supporting general administrative and operational requirements
	14.5 System schema supporting access control
	14.6 System schema supporting the collective attribute model
	14.7 System schema supporting context assertion defaults
	14.8 System schema supporting the service administration model
	14.9 System schema supporting password administration
	14.10 System schema supporting hierarchical groups
	14.11 Maintenance of system schema
	14.12 System schema for first-level subordinates

	15 Directory schema administration
	15.1 Overview
	15.2 Policy objects
	15.3 Policy parameters
	15.4 Policy procedures
	15.5 Subschema modification procedures
	15.6 Entry addition and modification procedures
	15.7 Subschema policy attributes

	16 Service Administration Model
	16.1 Definitions
	16.2 Service-type/user-class model
	16.3 Service-specific administrative areas
	16.4 Introduction to search-rules
	16.5 Subfilters
	16.6 Filter requirements
	16.7 Attribute information selection based on search-rules
	16.8 Access control aspects of search-rules
	16.9 Contexts aspects of search-rules
	16.10 Search-rule specification
	16.11 Matching restriction definition
	16.12 Search-validation function

	17 Security model
	17.1 Definitions
	17.2 Security policies
	17.3 Protection of Directory operations

	18 Basic Access Control
	18.1 Scope and application
	18.2 Basic Access Control model
	18.3 Access control administrative areas
	18.4 Representation of Access Control Information
	18.5 ACI operational attributes
	18.6 Protecting the ACI
	18.7 Access control and Directory operations
	18.8 Access Control Decision Function
	18.9 Simplified Access Control

	19 Rule-based Access Control
	19.1 Scope and application
	19.2 Rule-based Access Control model
	19.3 Access control administrative areas
	19.4 Security Label
	19.5 Clearance
	19.6 Access Control and Directory operations
	19.7 Access Control Decision Function
	19.8 Use of Rule-based and Basic Access Control

	20 Data Integrity in Storage
	20.1 Introduction
	20.2 Protection of an Entry or Selected Attribute Types
	20.3 Context for Protection of a Single Attribute Value

	21 DSA Models
	21.1 Definitions
	21.2 Directory Functional Model
	21.3 Directory Distribution Model

	22 Knowledge
	22.1 Definitions
	22.2 Introduction
	22.3 Knowledge References
	22.4 Minimum Knowledge
	22.5 First Level DSAs
	22.6 Knowledge references to LDAP servers

	23 Basic Elements of the DSA Information Model
	23.1 Definitions
	23.2 Introduction
	23.3 DSA Specific Entries and their Names
	23.4 Basic Elements

	24 Representation of DSA Information
	24.1 Representation of Directory User and Operational Information
	24.2 Representation of Knowledge References
	24.3 Representation of Names and Naming Contexts

	25 Overview
	25.1 Definitions
	25.2 Introduction

	26 Operational bindings
	26.1 General
	26.2 Application of the operational framework
	26.3 States of cooperation

	27 Operational binding specification and management
	27.1 Operational binding type specification
	27.2 Operational binding management
	27.3 Operational binding specification templates

	28 Operations for operational binding management
	28.1 Application-context definition
	28.2 Establish Operational Binding operation
	28.3 Modify Operational Binding operation
	28.4 Terminate Operational Binding operation
	28.5 Operational Binding Error
	28.6 Operational Binding Management Bind and Unbind

	29 Overview
	29.1 Definitions
	29.2 Introduction

	30 LDAP interworking model
	30.1 LDAP interworking scenarios
	30.2 Overview of bound DSA handling LDAP operations
	30.3 General LDAP requestor characteristics
	30.4 LDAP extension mechanisms

	31 LDAP specific system schema
	31.1 Operational Attribute types from IETF RFC 4512

	Annex
 A – Object identifier usage
	Annex B –
Information framework in ASN.1
	Annex C –
Subschema administration in ASN.1
	Annex D –
Service administration in ASN.1
	Annex E –
Basic Access Control in ASN.1
	Annex F –
DSA operational attribute types in ASN.1
	Annex G –
Operational binding management in ASN.1
	Annex H –
 Enhanced security in ASN.1
	Annex I –
LDAP system schema
	Annex J –
The mathematics of trees
	Annex K –
Name design criteria
	Annex L –
Examples of various aspects of schema
	L.1 Example of an attribute hierarchy
	L.2 Example of a subtree specification
	L.3 Schema specification
	L.4 DIT content rules
	L.5 DIT context use

	Annex M –
Overview of basic access control permissions
	M.1 Introduction
	M.2 Permissions required for operations
	M.3 Permissions affecting error
	M.4 Entry level permissions
	M.5 Entry level permissions

	Annex N –
Examples of access control
	N.1 Introduction
	N.2 Design principles for Basic Access Control
	N.3 Introduction to example
	N.4 Policy affecting the definition of specific and inner areas
	N.5 Policy affecting the definition of Directory Access Control Domains (DACDs)
	N.6 Policy expressed in prescriptiveACI attributes
	N.7 Policy expressed in subentryACI attributes
	N.8 Policy expressed in entryACI attributes
	N.9 ACDF examples
	N.10 Rule-based access control

	Annex O –
DSE type combinations
	Annex P –
Modelling of knowledge
	Annex Q –
Subfilters
	Annex R –
 Compound entry name patterns and their use
	Annex S –
Naming concepts and considerations
	S.1 History tells us –
	S.2 A new look at name resolution

	Annex T –
Alphabetical index of definitions
	Annex U –
Amendments and corrigenda

