International Telecommunication Union

ITU-T X.501

TELECOMMUNICATION (11/2008)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Directory

Information technology — Open Systems
Interconnection — The Directory: Models

ITU-T Recommendation X.501

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONSAND SECURITY

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
| P-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSlI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
0S| MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSl APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
Generic applications of ASN.1
OPEN DISTRIBUTED PROCESSING
INFORMATION AND NETWORK SECURITY
SECURE APPLICATIONS AND SERVICES
CYBERSPACE SECURITY
SECURE APPLICATIONS AND SERVICES

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.379
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.889
X.890-X.899
X.900-X.999
X.1000-X.1099
X.1100-X.1199
X.1200-X.1299
X.1300-X.1399

For further details, please refer to the list of ITU-T Recommendations.

INTERNATIONAL STANDARD ISO/IEC 9594-2
ITU-T RECOMMENDATION X.501

I nfor mation technology — Open Systems I nter connection —
The Directory: Models

Summary

ITU-T Recommendation X.501 | ISO/IEC 9594-2 provides a number of different models for the Directory as a
framework for the other ITU-T Recommendations in the X.500 series. The models are the overall (functional) model, the
administrative authority model, generic Directory Information models providing Directory User and Administrative User
views on Directory information, generic Directory System Agent (DSA) and DSA information models and operational
framework and a security model.

Source

ITU-T Recommendation X.501 was approved on 13 November 2008 by ITU-T Study Group 17 (2009-2012) under the
ITU-T Recommendation A.8 procedure. An identical text is also published as | SO/IEC 9594-2.

ITU-T Rec. X.501 (11/2008) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations speciaized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on aworldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii ITU-T Rec. X.501 (11/2008)

http://www.itu.int/ITU-T/ipr/

CONTENTS

Page

SECTION L — GENERAL ..ttuiiiiiiii ettt sttt s e e et s e e et s e e et e e e et b e e e e ean e e e eean e e e ernannane 1
1 o0 0 1
2 N0 g YT = 1= = o= PPN 2
2.1 Identicad Recommendations | International Standards.........c..vveeereisrererninrereriere e rerereeerenns 2

2.2 Paired Recommendations | International Standards equivalent in technical content....................... 2

P2 B © 1 0= g = 1= = o= TP 3

3 D= 1T Tl (o] PPN 3
31 CommUNIiCatioN AEfiNITIONS ... iceuiieeiee e e e e s e s ere s e e e e e s e rrnaeen e rennas 3

3.2 BasiC DireCtory defiNitioNS......c..oiceuieeiieei e eee e e e e e e e e e s e ee e e ee e e e e eenn s ern e ennaenan s 3

3.3 Distributed operation defiNitioNSccuuiieuiiieiiie e e e e e e e e e e eea s 3

34 Replication defiNItIONSccuuiie e et et e e e e e e e e e e e s e e eea s e ee e ae e e e enn s e rna e een e ennn s 3

4 N Lo =7 =1 o RS 4
5 L@0] 177 011 o] 1 PN 4
SECTION 2 — OVERVIEW OF THE DIRECTORY MODELS......ccctuiiiiiiiiieeciee e ecer e eeee e eenn e e eenn e 6
6 1< ot (] 1Y oo L= KT PP 6
L0 R B T 101 o] TP 6

6.2 The DireCtory and iTS USEIS. cuuuieeeieenaeieeiee e et e e s s e ea e e eea s e e s een s e raassean e eensennnseennsennnns 6

6.3 Directory and DSA INnformation MOGEIScuuviiiuiiiiiiiiin et eaa 7

6.4 Directory Administrative Authority MOlcouiiiiiiiiiiiii e 8
SECTION 3—MODEL OF DIRECTORY USER INFORMATION ..ccuuiiiiiiisieeeriseeeerisseernaseeeennssssensnnsaees 9
7 Directory INfOrMatioN BaSe ..uuuiiieiier i s s e e e e s e s e e s e ra e e ea s e ereaern e ernnaren 9
4% R B T 14T o] T PSPPSR 9

A © o] 1= P 10

S T B 1 (= oi (0] VA= 111 4= PR 10

7.4 Directory INformation Tree (DIT) ..ceuueee e e e e e e e e e e e e e e e e e e enn e enans 10

8 DN = oo VA= 011 =TT 11
ST A B = 10 T) o] PP 11

S @Y= = | I ot (R 13

SR I @ o 1< vt o= S = T PP PPPPRPTTPPNE 14

S N 110101 (= Y] - TP PP PPPPRPRTPPNE 16

8.5 ALTDULE VAIUES. .. ceeeceiieeie ettt e e e e e e e s e e s e ra e s e e e e e e rern e e e e e rr e re e rrn s 16

8.6 Attribute TYPE HIErarChi€S. ieeeeee e e e e r e e e e e e e s 16

8.7 Friend altriDULES. ...cce e e e e e r e rr s 17

£ 7R T o 1= £ 17

8.9 MAChING FUIES. ... ettt et e e e e e e e e e e e e ea s e eea e e eeaaeen e eenn s ennaaennannnnnns 18

8.10 ENLIY COHBCHIONS .. ceeieeeieeie ettt et e e e e e e e e e e e e ea e e eea s e eeaaeena s eennsennaaennnaennnnns 21

8.11 Compound entries and families Of ENIIES.iiuiiiiii i e 22

9 =07 N 23
LS8 A B = 70T o] 23

9.2 NAMES TN GENENAl ievuiiiiiiiiiiie et e s s s e e e e e s e ea e s e a e s e a s e e e e e e e rrnaeanerr e 23

9.3 Relative DistingUISNEO NAMESiivuiiiii et s e s e e e e e s e rrn s e e e ennaes 23

LS N =4 To 0= T o P 25

9.5 Namesreturned during OPEraliONSceuuurerernareeenereren e e e rena e e ren e e e ren e e erena e e e renaeeenennnes 25

9.6 Names held as attribute values or used as ParamELersScc.uvvereeiirere e e 25

9.7 DistiNgUISNEO NAIMESiieeieei et e e et e e e e e e e e e e e e e e ra s e eea s e eea s aeenaeeennsennaaeenannnnsns 26

0.8 AlIBS INAITIES. . ceu et et et e et e e et e et e e ra e e e e e ee e e e e e e e e ra e aeea e reaernaeennternaarannaranaas 27

10 HIErarChiCal QrOUPS. ... i ee et et ee et et e e et e e e e e e e e e e e e e e e s e ra e esa e eeaaeean s e ennsananaennnsennnaren 27
05 I T 1 01 g PPN 27

10.2 Hierarchical relationShip..... ... iieeiiiieie e r e e s e e e e e een 28

10.3 Sequential ordering of ahierarchiCal GroUp ...cu.eieeeiiiiiiiiieceie e e ees 28

ITU-T Rec. X.501 (11/2008) iii

SECTION 4 —DIRECTORY ADMINISTRATIVE MODELccuiiiiiiiiiiiiii s

11

12

13

14

15

iv

Directory Administrative Authority
11.1 Definitions......covveevvenneeens
112 OVENVIEW...cvveiireeeeeeniens
(G = o oy

1107070 (< I

11.4 Specific adminiStrative authoritieS........iivuiiiiiie i e e ees
11.5 Administrative areas and adminiStrative POINES ...c...ieeueierunierinieerieserie s e s e s er e eeneeees

11.6 DIT Domain palicies..........
11.7 DMD policieS.....ccuvrernnnnnn.

Model of Directory Administrative and Operational Informationcceeiieiiimiiiiimenineeee e

12.1 Definitions....cccoveeeenvenennes
122 OVENVIEW...oeveeeeeeeveeneenn,
12.3 SUbtreeS....cccevevveerennenn,
12.4 Operationa attributes.........
125 ENtries..ccccveeeveviveeivennnenn,
12.6 Subentries........ccoeevuveennenn.

12.7 Information model for COllECtiVE attriDULES. ...uiu i e e e e e e eas
12.8 Information MOdel fOr CONEXE AEf AUITS.vuieiniiicieeeiie e e s e e s e e s e e sa e saenss

SECTION 6 — THE DIRECTORY SCHEMAottt e s s e e s s aa e

Directory Schema.........cccccevunneee.
13.1 De€finitions......cceeeevennneeeees
132 OVENVIEW...coeveeeeeeeneeees
13.3 Object class definition........
13.4 Attribute type definition
13.5 Matching rule definition
13.6 Relaxations and tightenings.
13.7 DIT structure definition......
13.8 DIT content rule definition..
13.9 Context type definition.......
13.10 DIT Context Use definition.
13.11 Friends definition..............

Directory System Schema.............
141 OVENVIEW....vvueiiiieeereeninns

14.2 System schema supporting the administrative and operational information modelc...ccuuveee.
14.3 System schema supporting the administrative MOde!eeeuiiiiiiiieriir e
14.4 System schema supporting general administrative and operational requirements........c.c.oceueveennneens
14.5 System schema supporting aCCESS CONIOlvvvuieruiiiiiiieri e e e e s e e e e e s e e e e eeeen
14.6 System schema supporting the collective attribute modelooovniiiiiiiii e
14.7 System schema supporting context assertion defaultsoocver e e
14.8 System schema supporting the service administration Model..........ceeeiviriiiiiiiiiiiee s
14.9 System schema supporting hierarchiCal QroUPS.cceuieeunieenierie e e e e e e e e e e e eees
14.10 Maintenance Of SYSIEM SCNEMAL. ... cuu e e e e e e e e e e e e e e e e aeeen
14.11 System schemafor first-level sUDOrdiNaes.c.uiiiiiii e

151 OVEVIEW...cocvveeeeeeneeeees
15.2 Policy objects......cccccevvuneen.
15.3 Policy parameters..............
15.4 Policy procedures..............

155 Subschema modifiCation ProCEOUIESccuuu i e e e e e re e e e e e e e e e e ren e e e ena e e
15.6 Entry addition and modifiCation ProCEOUIES........cuuuiieieru e e e e e e e e e een e eena e

15.7 Subschemapolicy attributes

ITU-T Rec. X.501 (11/2008)

SECTION 7 —DIRECTORY SERVICE ADMINISTRATION ...cvuiiiiiiiiiiiiiieri s nesi s s

16

Service AdMINISration MOieniieiiei e e et e e e e s a s e e e e e e eaaeeans
20 R B 7= 1 o] TP
16.2 Service-typeluser-Class MOELoiiiuiiiiii i e ea e
16.3 Service-Specific admiNiStratiVe @rEaS.cuuuiiiuiiiii st s e s e e e e een
16.4 INtroduction tO SEAICN-TUIES.....ccuuuiiieeiie e e e e e e e e e e e s e e errn s e e erna e e e ennasaens
G o 1 1= = PP
16.6 Filler FOQUITEMENTS . evuieitieei et s e s e e s e e e e s e ra e s e e s e e s e ean e e ean s e eranseraeennnnanen
16.7 Attribute information selection based 0N SEarCh-rUlES.........occvveiiiiiiie e
16.8 Access control aspects of SEarCh-TUIES.......c..u i e
16.9 Contexts aspects Of SEArCN-TUIES.......cuuu e e e e e e e e e e e e e e een e e
16.10 Search-rule SPECITICAIIONieeeeieeeeee e et e e e e e e e e e e e e e e e e en e e e e e e e e eena e e eennaneeens
16.11 Matching restriction defiNitioN. e e e e e e e e e e e e e e e e eees
16.12 Search-validation FUNCHIONiieiie e e e e e e e e e re e e e e e e eeees

SECTION 8 — SECURITY iitiiiitiiiiiiiii i s s s e s e e e e s e ra s eaa s raanes

17

18

19

20

S = ol 1Y 1110 L= I PSP
I R T T 0 T o
17.2 SECUNTY POIICIES covuiiriieii et e st e e e s s e e e e s e e s e s e e e e e s e ea e e ea s e rsanaerasennnanen
17.3 Protection Of DireCtory OPEraliONSuuieeeruieeren e eeren e eeren s eeren s eeresa s eerenseerennseernnnnseees

BaSiC ACCESS COMIIOI ...euiiuiieuiiiieiieete et e et et e e e et e e e e e e s ea s ea s e e e eau e eanseanseaneeaeenseansennsennsenneenneen
ST RS wol oL g To = oo [T 1 o] o [N PPN
18.2 BasiC ACCESS CONIOl MOMELcceuieeiie et e e e e e e e e e e e e e eees
18.3 Access control admMiNiStratiVE IEESiveuuiereieeneeeeaeera e ee e eraaeeeaereaern e aeanserenaaeennaeennaanen
18.4 Representation of Access Control INfOrMatioNcuviiiiiiiiii i e
18.5 ACI operational @ttribULES.iiiuiiiiri e s e e e e e e s e e e e e e ren
18.6 ProteCting the AC cuu i s s e e e e e e e e ren
18.7 Access control and DireCtory OPEratioNS uvuueeersierierereeerunrersieseresereserne s e s s e serneeenarenes
18.8 Access Control DECISION FUNCLIONiiiieeieeeeee e eeeene e e eeees s e eeens s e eeeea s e eeenasseerennseerrnnnsenes
18.9 SIMPlified ACCESS CONMIOl ...ivviiiireiire e e et e e e e e s s e e s e e e e ea s e ereserneernnenen

RUIE-DESEA ACCESS COMIIOl .uuiuniriuiteeureteeretreur et rearen e ea e ea e rarensrarearrarensrarenrrarensrarensrnrensrnrensens
LS RS wo o L= g0 = oo [T 1 o] o I PP
19.2 Rule-based Access CoNtrol MOGE]cuivuiieiiii i e e e e e e s e e e eaeens
19.3 Access CONtrol admMinNiStraliVE GrEAS ...vuuvuirieurenreeenree e reernres e reae e renernrenernrenerarenernrenernrensens
19.4 SECUNTY LBl .uuieiiiiii i s e s e s e e e e e e e e e e e een
e T T @ = T TN
19.6 Access Control and DireCtory OPEratioNSveuuieruiiirieierie et eeesiesese s s s e e e e s e s seneeennsenes
19.7 Access Control DECISION FUNCHONuiiuriueeeeeeereereareuereeessesueeanreasenrerareenresnresnrennrenneennens
19.8 Useof Rule-based and BasiC ACCESS CONEIOueeuveeieiireieeeie e e e e e e e e e e e s eerea e e s e rennees

Data INtEgrity IN StOTA0E uu i evuieri e ettt et st st e e s e s e e e e s e ra e s e s s e e s e raa e e eansersansernnsennnnaren
P22 I R 1 0 o L1 Tox 1 o o I PSPPSR
20.2 Protection of an Entry or Selected AttribULe TYPES....ccuuuiieeeneieieee e e e e e e e eeea
20.3 Context for Protection of aSingle Attribute Value........c..oveeiiiiiii e

SECTION 9 —DSA MODELS......uiiiiiiiiiiii i e s s e e e s e e s rra e

21

21.2 Directory FUNCLIONal MOGEcuiiiiiiii et r e e e ea e eeaes
21.3 Directory Distribution MOGEovevuiiiiiiiiiiici e e e e e e e eeaas

ITU-T Rec. X.501 (11/2008)

Page

Vv

SECTION 10 — DSA INFORMATION MODEL....ccuuiiiiiitiiiiieiinseeesinsssessn s sessa s sessasssssssnsssesssnsssessnsanes 116
22 10T = o = PPN 116
221 DEFINITIONS. c1tuittitteieeetie e e e et e s e ere s e et s s e eera s s e eesa et e e es s resesa s aeeesa e sesesaeaeeesnnaererannerenan 116
V2722 | 0110 o 8o [o PPN 116
22.3 KNOWIEAQE REFEIENCES. ..uuuiiii ittt e e e e s e s e e e e e e e ean e eaans 117
224 MinimuM KNOWIEAGE . .cvuniiiii ittt ettt e e s e s e e s e e s e e s e e a e e ean e e eaans 119
P I e T = =Y I D T P 120
23 Basic Elements of the DSA Information MOE]cooeeueiiiiiiii e e e 120
22 T A I T 111 120
G 32 1 o L1 1o o 120
23.3 DSA Specific Entriesand their NaMESiiiiiii e e e e e e e 121
234 BaSIC ElOMENTS . ievuuiiiirieieeiiie e e e eee e s et s e e e s s e e e e e e e e e e e e e r e e e e e e e a e e e aerrrnaerrnan 122
24 Representation of DSA INfOrMEBLIONceuiieiiii i e e e e e e e e e e e e e e eenaaenen 124
24.1 Representation of Directory User and Operational InfOormationoceeeevvereeninnereeninnerenninneeenns 124
24.2 Representation of KNOwledge REFEIENCESovviruuiiiiiiiiiieieiie e e e s e e e s e s e s e s e s eeenns 125
24.3 Representation of Names and Naming CONEXEScceuuurrerernrrereriereeeee e reenseereeneeereeneeeeeeas 131
SECTION 11 — DSA OPERATIONAL FRAMEWORKuiiiiiiiiieeeie e eeeee e eeee e e eene e e eens s e e eenn s eseenneeees 133
25 L Y1 = Y 133
251 DEFINITIONS. c1tuiieirteieierie s e ettt e e e eree s e et rs s e e era s e e eeea e e sesa s seresa s e eesa e aeeesa e e e rennnaererannerenan 133
P22 1 oo LFTox 1 o o I PP 133
26 Operational DINAINGS ..c..eee et et e e e e e e e e e e e e e eea s e ra s e ea e e rara e e e een e ern e ennaarnan s 133
26.1 GENENEl ..ieeetiiieeiie e e e e e e e e et er et e rra e e rraaereraaerrrnaerennn 133
26.2 Application of the operational framEWOrKcicuuiiiiiiiiiin i 134
PISHCIIS P (=Y o w0 0] o 1= - 1 o o FOR PP PPPRRPR 135
27 Operational binding specification and ManagemeNtceuiiiriiieriii e rra s 136
27.1 Operationa binding type SPECIfiCaiON.ccviiireieee e e e e eeans 136
27.2 Operationa binding ManagemMeENtoceuiiiriiiei e e e s e s e e a e e e e enn e reans 137
27.3 Operationa binding specification teMPIaLeSoeeuiiiieieie e e e e 137
28 Operations for operational binding ManageMENTccuueeeiieii e e e e e e e e re e eeaeeeean s 139
28.1 Application-context defiNitioNiieuiiciii i e 139
28.2 Establish Operationa Binding OPerationccicuuieiiiiiiiiniciins e s e r s e e e e eaans 140
28.3 Modify Operational Binding OPErationcuieuuieiiiiiiiie s ea e r e e e e e eeaes 142
28.4 Terminate Operational Binding OPErationce.ieeuiierrinseriisesinsersneeessesse s e e s erseeesnsessnns 143
28.5 Operational BiniNg ErTOr.......icuuiiiirieirisirissere s essre s s ess s se s s ses e rsesesnsrsnasarsaseesnsensnns 144
28.6 Operationa Binding Management Bind and Unbindcuoviiiiiiiiiiiiiin s s e e 145
ANNEX A — Obj ECt IHENLITIEr USBOE. ... eeruu e ieeeeee e e e e e e e e e e e e e e e s s e e ean s e e eean s anrnna e enennn 146
Annex B — Information Framework iN ASN.Lo e e e e e e e e e e e e e e e e s e e s e ean e aenans 149
Annex C — SubSchema Administration SChemMain ASN.L......couu i e e e e e e e e eeans 159
Annex D — Service AdmMiNiStration INASN.L......ccuuuiiiiirieieeiie e e e rers e rerne s s rern s serean s serernssarrsnasserenns 163
Annex E —Basic ACCESS CONrOl INASN.L ..uuuuiiiiiiiiiiiiii e e s 167
Annex F— DSA Operational Attribute TYPesSin ASN.L ... e e e e e e eenas 171
Annex G — Operational Binding Management in ASNLL e e e e e e e e 174
ANNEX H — ENNANCEO SBCUNTY ..ttt iii it s ettt s st s e e e e e e e e e s e e s e e e e ea e e ea s e eaaseeansernnsanen 178
ANNEX | — The MathemMatiCS Of TIEESuuiiiirriieieriie i e eeie e e e s e e e s s e s e s e e era s e rera s s e rean s e resnsserenneaenennn 181
ANNEX J— NaME DESIGN CrilBlA. . i vvuuiiireieres e rere e s et re s s s e s e e s e e s e e reseraaseraaserseaesnrarsnssernnsennnsenen 182

Vi ITU-T Rec. X.501 (11/2008)

Annex K — Examples of various aspectS Of SChEMAL.......cuuu i e e eeas 184
K.1 Exampleof anattribute hierarchyooooeei i e 184
K.2 Example of asubtree SpeCifiCatioN.cuuiieeieei e et e e e e e e e e e e e eas 184
K.3 SChemMa SPECITiCaLION ...oeee e ieee ettt e e e e e e e e e e e e s e ran e e e e eennaenen 185
O B] I o0 g 1= o 1= PP 186
LR ST D I oo 1= (N 187
Annex L — Overview of basic access CONtrol PEIMISSIONS. ...uuuiiruiereierreeerieserieserr s e s s e e s s eeansesnnsenes 188
N 1 011 oo 1 o PPN 188
L.2 Permissionsrequired fOr OPErationScuuieiueieree e s ere e eee e e eresere s e s e ea e s ea s e rsnserasernaenen 188
L.3 PermisSionS affECHiNG ETONccuuuieeeeeeeeeeie e e ees e e e eee s e e e e e e ren e e e e en s e e een e e enenn s eernnanseees 189
L.4 ENtry [eVel PEIMISSIONSuuiiieeieeeit e eeene e e e eene e e e e e e s e eeas s e e ren s e eeen s e eeena s eennnnnseernnnnseens 189
L.5 ENtry Vel PEIMISSIONSuuieiieieeeie e eeeee e e ees e e e e s e e seas s e e een s e e e ena s e e een s eerennseernnnnseees 190
AnNneX M — EXamples Of 8CCESS COMLIOeuuiiieiiiiiieie et e e e e e e e e e e e s e e e e e s e raa e eea e eea s ernnsaennsarnnns 192
Y0 R 1 g 1o o 0o i o o PPN 192
M.2 Designprinciplesfor BasiC ACCESS CONLION ...uuuiiuuiiiiiiiiiiie i e e e e een 192
1Y/ T Ve oo (8 ox i o R (o 40 o) = T PPN 192
M.4 Policy affecting the definition of specific and iNNEr arEaS........covvvvviiiii i 193
M.5 Policy affecting the definition Of DACDS. .. .cuuiiiri et e e e e eees 195
M.6 Policy expressed in prescriptiVeACH attribULESievuiiiiiiiiii s 197
M.7 Policy expressed in subentry ACI attribDULES.cccvuiiiiiiici e 202
M.8 Policy expressed in entryACH attribULESiiieii e e e 203
M.O ACDF EXAMPIES ..ceeiiieeei e eeeee e e eeer e e e e e e e e e e e res e e e eeaa s eeres s eereaaseereaaseennnnnseernnnnreens 204
M.10 Rule-based ACCESS CONIOI ...cuuiireiiereierareree e e e e e s e e e e e s e rr e s er s reasernaseennsarennaernnsernnsenen 206
AnNneX N — DSE type COMDINGLIONSceuuiiieiiieeeiie et e e e e e e e e e e e e e s e e s e raseeea e era s ennnsaennsernnns 207
ANNex O —Modelling Of KNOWIEAGEiiieieiie it e e s e e s e e e s e e ern e e enennn 209
Annex P— Names held as attribute values or USed @S ParameterSvvviueieriiirinsern s e s s e e e e ees 214
ANNEX Q — SUDFITTENS ..ttt ettt 215
Annex R — Compound entry name patterns and their USE........c..uiiieemnieieee e ee e e e e e e e e e eeeas 216
Annex S—Naming concepts and CONSIABIBLIONS.u.ieuunieeuieeneeen e ereereea e ee e e e e eea e ereasaeraaerasernasaennsernnns 218
I R o 1= (o] VA (= ESY UL PSP 218
S22 A new |00K a NAME rESOIULTION. .. .ceeveiieieeie e e e e e s e e e s e e e e s e s era e s e renn s s e renn e erennn 218
Annex T — Alphabetical index of defiNItioNS........oiiiuiiiiiiiii e e ees 224
Annex U — Amendments and COMTIgENTAL ...vvuuuuiiiiiiririi e e e s 226

ITU-T Rec. X.501 (11/2008) vii

Introduction

This Recommendation | International Standard, together with the other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information that they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typicaly used to facilitate communication between, with or about objects such as application entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

— from different manufacturers;

— under different managements;

— of different levels of complexity; and
— of different ages.

This Recommendation | International Standard provides a number of different models for the Directory as a framework
for the other Recommendations in the ITU-T X.500 series | parts of ISO/IEC 9594. The models are the overall
(functional) model; the administrative authority model, generic Directory Information Models providing Directory User
and Administrative User views on Directory information, generic DSA and DSA information models, an Operational
Framework and a security model.

The generic Directory Information Models describe, for example, how information about objects is grouped to form
Directory entries for those objects and how that information provides names for objects.

The generic DSA and DSA information models and the Operational Framework provide support for Directory
distribution.

This Recommendation | International Standard provides a specialization of the generic Directory Information Models to
support Directory Schema administration.

This Recommendation | International Standard provides the foundation frameworks upon which industry profiles can be
defined by other standards groups and industry forums. Many of the features defined as optional in these frameworks
may be mandated for use in certain environments through profiles. This sixth edition technically revises and enhances,
but does not replace, the fifth edition of this Recommendation | International Standard. Implementations may still claim
conformance to the fifth edition. However, at some point, the fifth edition will not be supported (i.e., reported defects
will no longer be resolved). It is recommended that implementations conform to this sixth edition as soon as possible.

This sixth edition specifies versions 1 and 2 of the Directory protocols.

The first and second editions specified only version 1. Most of the services and protocols specified in this edition are
designed to function under version 1. However, some enhanced services and protocols, e.g., signed errors, will not
function unless all Directory entities involved in the operation have negotiated version 2. Whichever version has been
negotiated, differences between the services and between the protocols defined in the six editions, except for those
specifically assigned to version 2, are accommodated using the rules of extensibility defined in ITU-T Rec. X.519 |
I|SO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, summarizes the usage of ASN.1
object identifiersin the ITU-T X.500-series Recommendations | parts of |SO/IEC 9594.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains al of the definitions associated with the information framework.

Annex C, which is an integral part of this Recommendation | International Standard, provides the subschema
administration schemain ASN.1.

Annex D, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
Service Administration.

Annex E, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
Basic Access Control.

Annex F, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains all the definitions associated with DSA operational attribute types.

Annex G, which isan integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains al the definitions associated with operational binding management operations.

viii ITU-T Rec. X.501 (11/2008)

Annex H, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains all the definitions associated with enhanced security.

Annex |, which is not an integral part of this Recommendation | International Standard, summarizes the mathematical
terminology associated with tree structures.

Annex J, which is not an integral part of this Recommendation | International Standard, describes some criteriathat can
be considered in designing names.

Annex K, which is not an integral part of this Recommendation | International Standard, provides some examples of
various aspects of Schema.

Annex L, which is not an integral part of this Recommendation | International Standard, provides an overview of the
semantics associated with Basic Access Control permissions.

Annex M, which isnot an integral part of this Recommendation | International Standard, provides an extended example
of the use of Basic Access Control.

Annex N, which is not an integral part of this Recommendation | International Standard, describes some DSA specific
entry combinations.

Annex O, which is not an integral part of this Recommendation | International Standard, provides a framework for the
modelling of knowledge.

Annex P, which is not an integral part of this Recommendation | International Standard, describes criteria on whether a
name can be an alternative distinguished name or the primary distinguished name, whether it can contain alternative
values, and whether it can include context information.

Annex Q, which is not an integral part of this Recommendation | International Standard, describes the concept of
subfilters.

Annex R, which is not an integral part of this Recommendation | International Standard, describes recommendations
and examples on how family members can be named.

Annex S, which is not an integral part of this Recommendation | International Standard, gives an introduction to
Naming Concepts and Considerations.

Annex T, which is not an integral part of this Recommendation | International Standard, lists alphabetically the terms
defined in this Recommendation | International Standard.

Annex U, which is not an integral part of this Recommendation | International Standard, lists the amendments and
defect reports that have been incorporated to form this edition of this Recommendation | International Standard.

ITU-T Rec. X.501 (11/2008) iX

| SO/IEC 9594-2:2008 (E)

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

I nformation technology — Open Systems I nter connection —
The Directory: Models

SECTION 1 -GENERAL

1 Scope

The models defined in this Recommendation | International Standard provide a conceptual and terminological
framework for the other ITU-T X.500-series Recommendations | parts of 1SO/IEC 9594 which define various aspects of
the Directory.

The functional and administrative authority models define ways in which the Directory can be distributed, both
functionally and administratively. Generic DSA and DSA information models and an Operational Framework are also
provided to support Directory distribution.

The generic Directory Information Models describe the logical structure of the DIB from the perspective of Directory
and Administrative Users. In these models, the fact that the Directory is distributed, rather than centralized, is not
visible.

This Recommendation | International Standard provides a specialization of the generic Directory Information Models to
support Directory Schema administration.

The other ITU-T Recommendations in the X.500 series | parts of 1SO/IEC 9594 make use of the concepts defined in this
Recommendation | International Standard to define specidizations of the generic information and DSA models to
provide specific information, DSA and operationa models supporting particular directory capabilities (e.g.,
Replication):

a) the service provided by the Directory is described (in ITU-T Rec. X.511 | ISO/IEC 9594-3) in terms of
the concepts of the information framework: this alows the service provided to be somewhat independent
of the physical distribution of the DIB;

b) the distributed operation of the Directory is specified (in ITU-T Rec. X.518 | ISO/IEC 9594-4) so as to
provide that service, and therefore maintain that logical information structure, given that the DIB is in
fact highly distributed;

c) replication capabilities offered by the component parts of the Directory to improve overall Directory
performance are specified (in ITU-T Rec. X.525 | ISO/IEC 9594-9).

The security model establishes a framework for the specification of access control mechanisms. It provides a
mechanism for identifying the access control scheme in effect in a particular portion of the DIT, and it defines three
flexible, specific access control schemes which are suitable for a wide variety of applications and styles of use. The
security model also provides a framework for protecting the confidentiality and integrity of directory operations using
mechanisms such as encryption and digital signatures. This makes use of the framework for authentication defined in
ITU-T Rec. X.509 | ISO/IEC 9594-8 as well as generic upper layers security tools defined in ITU-T Rec. X.830 |
ISO/IEC 11586-1.

DSA models establish a framework for the specification of the operation of the components of the Directory.
Specifically:

a) the Directory functional model describes how the Directory is manifested as a set of one or more
components, each being aDSA;

b) the Directory distribution model describes the principals according to which the DIB entries and
entry-copies may be distributed among DSAS;

¢) the DSA information model describes the structure of the Directory user and operational information
heldinaDSA;

d) the DSA operational framework describes the means by which the definition of specific forms of
cooperation between DSAs to achieve particular objectives (e.g., shadowing) is structured.

ITU-T Rec. X.501 (11/2008) 1

| SO/IEC 9594-2:2008 (E)

2 Nor mative refer ences

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and 1SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations| Inter national Standards

ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model.

ITU-T Recommendation X.500 (2008) | ISO/IEC 9594-1:2008, Information technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

ITU-T Recommendation X.509 (2008) | I SO/IEC 9594-8:2008, Information technology — Open Systems
Interconnection — The Directory: Public-key and attribute certificate frameworks.

ITU-T Recommendation X.511 (2008) | I SO/IEC 9594-3:2008, Information technology — Open Systems
Interconnection — The Directory: Abstract service definition.

ITU-T Recommendation X.518 (2008) | I SO/IEC 9594-4:2008, Information technology — Open Systems
Interconnection — The Directory: Procedures for distributed operation.

ITU-T Recommendation X.519 (2008) | I SO/IEC 9594-5:2008, Information technology — Open Systems
Interconnection — The Directory: Protocol specifications.

ITU-T Recommendation X.520 (2008) | I SO/IEC 9594-6:2008, Information technology — Open Systems
Interconnection — The Directory: Selected attribute types.

ITU-T Recommendation X.521 (2008) | ISO/IEC 9594-7:2008, Information technology — Open Systems
Interconnection — The Directory: Selected object classes.

ITU-T Recommendation X.525 (2008) | | SO/IEC 9594-9:2008, Information technology — Open Systems
Interconnection — The Directory: Replication.

ITU-T Recommendation X.530 (2008) | ISO/IEC 9594-10:2008, Information technology — Open Systems
Interconnection — The Directory: Use of systems management for administration of the Directory.

ITU-T Recommendation X.660 (2008) | I SO/IEC 9834-1:2008, Information technology — Open Systems
Interconnection — Procedures for the operation of OS Registration Authorities: General procedures and
top arcs of the ASN.1 Object Identifier tree.

ITU-T Recommendation X.680 (2008) | ISO/IEC 8824-1:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

ITU-T Recommendation X.681 (2008) | ISO/IEC 8824-2:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.

ITU-T Recommendation X.682 (2008) | ISO/IEC 8824-3:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.

ITU-T Recommendation X.683 (2008) | ISO/IEC 8824-4:2008, Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.

ITU-T Recommendation X.811 (1995) | ISO/IEC 10181-2:1996, |nformation technology — Open Systems
Interconnection — Security frameworks for open systems: Authentication framework.

ITU-T Recommendation X.812 (1995) | ISO/IEC 10181-3:1996, Information technology — Open Systems
Interconnection — Security frameworks for open systems — Access control framework.

ITU-T Recommendation X.813 (1996) | ISO/IEC 10181-4:1997, Information technology — Open Systems
I nter connection — Security frameworks for open systems — Non-repudiation framework.

2.2 Paired Recommendations| International Standards equivalent in technical content

CCITT Recommendation X.800 (1991), Security architecture for Open Systems Interconnection for
CCITT applications.

SO 7498-2:1989, Information processing systems — Open Systems Interconnection — Basic Reference
Model — Part 2: Security Architecture.

ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

2.3 Other references
— |ETF RFC 4510 (2006), Lightweight Directory Access Protocol (LDAP): Technical Specification Road
Map.
3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

31 Communication definitions

Thefollowing terms are defined in ITU-T Rec. X.519 | ISO/IEC 9594-5:
a) application-context;
b) application-entity;
c) application process.

3.2 Basic Directory definitions

The following terms are defined in ITU-T Rec. X.500 | ISO/IEC 9594-1:
a) Directory;
b) Directory Access Protocol;
¢) Directory Information Baseg;
d) Directory Operational Binding Management Protocol;
e) Directory System Protocol;
f) (Directory) user.

3.3 Distributed operation definitions

The following terms are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:
a) accesspoint;
b) hierarchical operational binding;
Cc) name resolution;
d) non-specific hierarchical operational binding;
€) relevant hierarchical operational binding.

34 Replication definitions

The following terms are defined in ITU-T Rec. X.525 | ISO/IEC 9594-9:
a) cache-copy;
b) consumer reference;
c) entry-copy;
d) master DSA;
€) primary shadowing;
f) replicated area;
g) replication;
h) secondary shadowing;
i) shadow consumer;
j) shadow supplier;
k) Shadowed DSA Specific Entry;
[) shadowing;
m) supplier reference.

ITU-T Rec. X.501 (11/2008) 3

| SO/IEC 9594-2:2008 (E)

The definitions of terms defined in this Recommendation | International Standard are included at the beginning of
individual clauses, as appropriate. An index of these termsis provided in Annex T for easy reference.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.
ACDF Access Control Decision Function
ACI Access Control Information
ACIA Access Control Inner Area
ACSA Access Control Specific Area
ADDMD Administration Directory Management Domain
ASN.1 Abstract Syntax Notation One
AVA Attribute Value Assertion
BER (ASN.1) Basic Encoding Rules
DACD Directory Access Control Domain
DAP Directory Access Protocol
DIB Directory Information Base
DISP Directory Information Shadowing Protocol
DIT Directory Information Tree
DMD Directory Management Domain
DMO Domain Management Organization
DOP Directory Operational Binding Management Protocol
DSA Directory System Agent
DSE DSA Specific Entry
DSP Directory System Protocol
DUA Directory User Agent
HOB Hierarchical Operational Binding
LDAP Lightweight Directory Access Protocol
NHOB Non-specific Hierarchical Operational Binding
NSSR Non-Specific Subordinate Reference
PRDMD Private Directory Management Domain
RDN Relative Distinguished Name
RHOB Relevant Hierarchical Operational Binding (aHOB or NHOB, as appropriate)
SDSE Shadowed DSE

5 Conventions

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean ITU-T Rec. X.501 |
| SO/IEC 9594-2. The term "Directory Specifications" shall be taken to mean the X.500-series Recommendations and all
parts of 1SO/IEC 9594.

This Directory Specification uses the term first edition systems to refer to systems conforming to the first edition of the
Directory Specifications, i.e., the 1988 edition of the series of CCITT X.500 Recommendations and the ISO/IEC
9594:1990 edition.

This Directory Specification uses the term second edition systems to refer to systems conforming to the second edition
of the Directory Specifications, i.e., the 1993 edition of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:1995 edition.

This Directory Specification uses the term third edition systems to refer to systems conforming to the third edition of the
Directory Specifications, i.e., the 1997 edition of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:1998 edition.

4 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

This Directory Specification uses the term fourth edition systems to refer to systems conforming to the fourth edition of
the Directory Specifications, i.e., the 2001 editions of ITU-T Recs X.500, X.501, X.511, X.518, X.519, X.520, X.521,
X.525, and X.530, the 2000 edition of ITU-T Rec. X.509, and parts 1-10 of the | SO/IEC 9594:2001 edition.

This Directory Specification uses the term fifth edition systems to refer to systems conforming to the fifth edition of the
Directory Specifications, i.e., the 2005 editions of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:2005 edition.

This Directory Specification uses the term sixth edition systems to refer to systems conforming to the sixth edition of the
Directory Specifications, i.e., the 2008 editions of the series of ITU-T X.500 Recommendations and the ISO/IEC
9594:2008 edition.

This Directory Specification presents ASN.1 notation in bold Helvetica typeface. When ASN.1 types and values are
referenced in normal text, they are differentiated from normal text by presenting them in the bold Helvetica typeface.
The names of procedures, typically referenced when specifying the semantics of processing, are differentiated from
normal text by displaying them in bold Times. Access control permissions are presented in italicized Times.

If the items in a list are numbered (as opposed to using "—" or letters), then the items shall be considered steps in a
procedure.

ITU-T Rec. X.501 (11/2008) 5

| SO/IEC 9594-2:2008 (E)

SECTION 2 - OVERVIEW OF THE DIRECTORY MODELS

6 Directory Models

6.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

6.1.1 administrative authority: An agent of the Domain Management Organization concerned with various
aspects of Directory administration. The term administrative authority (in lower case) refers to the power vested in an
Administrative Authority by the Domain Management Organization to execute policy.

6.1.2 administration directory management domain (ADDMD): A DMD which is managed by an
Administration.

NOTE — The term Administration denotes a public telecommunications administration or other organization offering public
telecommunications services.

6.1.3 directory administrative and operational information: Information used by the Directory for
administrative and operational purposes.

6.1.4 DIT domain: That part of the global DIT held by the DSAsforming aDMD.

6.1.5 directory management domain (DM D): A set of one or more DSAs and zero or more DUASs managed by a
single organization.

6.1.6 domain management or ganization: An organization that manages a DMD (and the associated DIT Domain).
6.1.7 directory user information: Information of interest to users and their applications.

6.1.8 directory system agent (DSA): An OSI application process which is part of the Directory.

6.1.9 (directory) user: The end user of the Directory, i.e., the entity or person which accesses the Directory.

6.1.10 directory user agent (DUA): An OSl application process which represents a user in accessing the Directory.
NOTE — DUAs may also provide arange of local facilities to assist users compose queries and interpret the responses.

6.1.11 LDAP client: An application process which represents a user in accessing the Directory via the Lightweight
Directory Access Protocol (LDAP).

6.1.12 LDAP requestor: A DSA that is capable of issuing requests via the Lightweight Directory Access Protocol
(LDAP) and that is capable of understanding and handling LDAP responses.

6.1.13 LDAP responder: A DSA that is capable of understanding and responding to requests via the Lightweight
Directory Access Protocol (LDAP).

6.1.14 LDAP server: An application process which is part of the Directory, holds a part of the DIB, and which
responds to requests via the Lightweight Directory Access Protocol (LDAP).

6.1.15 private directory management domain (PRDMD): A DMD which is managed by an organization other
than an Administration.

6.2 The Directory and itsusers

The Directory is a repository of information. This repository is known as the Directory Information Base (DIB).
Directory services provided to users are concerned with various kinds of access to thisinformation.

The services provided by the Directory are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3.

A Directory user (e.g., a person or an application-process) obtains Directory services by accessing the Directory. More
precisely, a Directory User Agent (DUA) or a Lightweight Directory Access Protocol (LDAP) client actually accesses
the Directory and interacts with it to obtain the service on behalf of a particular user. The Directory provides one or
more access points at which such accesses can take place. These concepts areillustrated in Figure 1.

A DUA is manifested as an application-process. In any instance of communication, each DUA represents precisely one
directory user.

The Directory is manifested as a set of one or more application-processes known as Directory System Agents (DSAS)
and/or LDAP servers, each of which provides zero, one or more of the access points. For a more detailed description of
DSAs, see21.2.

6 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

NOTE 1 — Some open systems may provide a centralized DUA function retrieving information for the actual users (application-
processes, persons, etc.). Thisis transparent to the Directory.

NOTE 2 — The DUA functions and a DSA can be within the same open system, and it is an implementation choice whether to
make one or more DUAS visible within the OSI Environment as application-entities.

NOTE 3 — A DUA may exhibit local behaviour and structure which is outside the scope of envisaged Directory Specifications.
For example, a DUA which represents a human directory user may provide arange of local facilities to assist its user to compose
queries and interpret the responses.

Access Point

Directory

user

X.501_F01

Figure 1 —AccesstotheDirectory

6.3 Directory and DSA Information Models
6.3.1 Generic Models

Directory information may be classified as either:

— user information, placed in the Directory by, or on behalf of, users; and subsequently administered by, or
on behalf of, users. Section 3 provides amodel of thisinformation; or

— administrative and operational information, held by the Directory to meet various administrative and
operational requirements. Section 5 provides a model of thisinformation. Also provided in Section 5isa
specification of the relationship between the user, administrative and operational information models.

These models, presenting views of the DIB from different perspectives, are referred to as the generic Directory
Information Models.

Directory information models describe how the Directory as a whole represents information. The composition of the
Directory as a set of potentialy cooperating DSAs is abstracted from the model. The DSA information model, on the
other hand, is especially concerned with DSAs and the information that must be held by DSAs in order that the set of
DSAs comprising the Directory may together realize the Directory information model. The DSA Information Model is
provided in clauses 22 through 23.

The DSA information model is a generic model describing the information held by DSAs and the relationship between
thisinformation and the DIB and DIT.

Some, but not al, of the information represented by the DSA information model is accessible viathe Directory abstract
service. Therefore, administration of all of the information described in these Directory Specifications is not possible
via the Directory abstract service. It is envisioned that administration of DSA information will initially be a local
matter, but that eventually some generic system management service will be employed to provide access to all of the
information described in the DSA information model.

6.3.2 Specific information models

Subsequent to the development of generic models for the Directory as a whole and for its components, specific
information models are required for the standardization of particular aspects of the operation of the Directory and its
components.

The generic Directory Information Models establish aframework for the following specific information models:
— an access control information model;
— asubschemainformation model;
— acollective attribute information model.

ITU-T Rec. X.501 (11/2008) 7

| SO/IEC 9594-2:2008 (E)

The generic DSA Information Model in turn establishes aframework for the following specific information models:
— amodel for aDSA's distribution knowledge;
— amode for aDSA's replication knowledge.

6.4 Directory Administrative Authority Model

A Directory Management Domain (DMD) is a set of one or more DSAs and zero or more DUAS managed by a single
organization.

That part of the global DIT held by (the DSAs forming) a DMD is referred to as a DIT Domain. There is a one-to-one
correspondence between DMDs and DIT Domains. The term "DMD" is used when referring to the management of the
functional components of the Directory. The term "DIT Domain" is used when referring to the management of
Directory Information. Two important points regarding this terminology are:

— A DIT Domain consists of one or more digoint subtrees of the DIT (see 11.5). A DIT Domain shall not
contain the root of the global DIT.

— Theterm "DMD" may also be used as a general term when both aspects of management are considered
together.

An organization that manages a DMD (and the associated DIT Domain) is referred to as a Domain Management

Organization (DMO).
NOTE 1—-A DMO may be an Administration (i.e., a public telecommunications administration or other organization offering
public telecommunications services) in which case the managed DMD is said to be an Administration DMD (ADDMD);
otherwiseg, it is a Private DMD (PRDMD). It should be recognized that the provision of support for private directory systems by
ITU-T members falls within the framework of national regulations. Thus, the technical possibilities described may or may not be
offered by an Administration which provides directory services. The internal operation and configuration of private DMDs is not
within the scope of envisaged Directory Specifications.

Figure 2 illustrates the relationship between aDMO, DMD and DIT Domain.

[Domain Management Organization]

Manages Manages

DIT Domain DMD

A
\ 4

(oD
(our)

X.501_F02

Figure 2 — Directory management

Management of a DUA by a DMO implies an ongoing responsibility for service to that DUA, e.g., maintenance, or in
some cases ownership, by the DMO. The DMO may or may not elect to make use of the Directory Specifications to
govern any interactions among DUAs and DSAs which are wholly within the DMD.

An agent of a DMO concerned with various aspects of Directory administration is referred to as an Administrative
Authority. The term administrative authority (in lower case) refers to the power vested in an Administrative Authority
by a DMO to execute palicy.

NOTE 2 — A Directory Administrative Authority Model is specified in Section 4.

A DMD may be assigned an object identifier (aDMD-id) for convenience in reference, for example, in search-rules.

8 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

SECTION 3-MODEL OF DIRECTORY USER INFORMATION

7 Directory Information Base

7.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

711 alias entry: An entry of the class "dlias" containing information used to provide an aternative name for an
object or dias entry.

712 ancestor: The entry at the root of the hierarchy of family members that comprise acompound entry.

713 compound entry: A representation of an object in terms of family members that are hierarchically organized
into one or more families of entries.

714 derived entry: Entry information in a search result containing attribute values obtained by performing ajoin
on data that originated from more than one Directory entry.

7.15 direct superclass: Relative to a subclass — an abject class from which the subclass is directly derived.

7.1.6 directory information base (DIB): The complete set of information to which the Directory provides access,
and which includes al of the pieces of information which can be read or manipulated using the operations of the
Directory.

7.1.7 directory information tree (DIT): The DIB considered as a tree, whose vertices (other than the root) are the
Directory entries.

NOTE — Theterm "DIT" is used instead of "DIB" only in contexts where the tree structure of the information is relevant.
7.1.8 (directory) entry: A named collection of information within the DIB. The DIB is composed of entries.

719 family: A hierarchical subset of family member entries that represents a particular class of information within
a compound entry. The root of each family within a compound entry is the ancestor, but apart from the shared ancestor,
families do not share common members. A family is distinguished from other families within a compound entry by
having a common class (structural object class) for each family member that isimmediately subordinate to the ancestor.

7.1.10 family member: A member of ahierarchical collection of entries that comprise acompound entry.

7.1.11 immediate superior (noun): Relative to a particular entry or object (it shall be clear from the context which
isintended), the immediately superior entry or object.

7.1.12 immediately superior entry: Relative to a particular entry — an entry which is at the initial vertex of anarcin
the DIT whose final vertex isthat of the particular entry.

7.1.13 immediately superior object: Relative to a particular object — an object whose object entry is the immediate
superior of any of the entries (object or aias) for the second object.

7.1.14 object (of interest): Anything in some ‘world’, generally the world of telecommunications and information
processing or some part thereof, which is identifiable (can be named), and which it is of interest to hold information on
in the DIB.

7.1.15 object class: Anidentified family of objects (or conceivable objects) which share certain characteristics.

7.1.16 object entry: An entry which is the primary collection of information in the DIB about an object, and which
can therefore be said to represent that object in the DIB.

7.1.17 related entries: A set of (directory) entries, each of which can be identified as holding information in the DIB
about a particular real-world object of interest. Different entries in the set may contain different types of information
about the real-world object, and may even contain conflicting information.

NOTE 1 —The value of information within a set of related entries depends on the reliability of the identification of each entry
with the real-world.

NOTE 2 — It is possible, but not necessary, for related entries to exist in separate DI Ts and to have identical distinguished names.
Similarly, it is possible for non-related entries to have identical distinguished names; however, it is recommended that identical
distinguished names be used only for related entries.

7.1.18 subclass. Relative to one or more superclasses — an object class derived from one or more superclasses. The
members of the subclass share al the characteristics of the superclasses and additional characteristics possessed by none
of the members of those superclasses.

ITU-T Rec. X.501 (11/2008) 9

| SO/IEC 9594-2:2008 (E)

7.1.19 subordinate: The converse of superior.

7.1.20 superclass. Relative to a subclass — a direct superclass, or superclass to an object class that is a direct
superclass (recursively).

7.1.21 superior: (Applying to entry or object) immediately superior, or superior to one which is immediately
superior (recursively).

7.2 Objects

The purpose of the Directory is to hold, and provide access to, information about objects of interest (objects) which
exist in some 'world'. An object can be anything in that world which isidentifiable (can be named).

NOTE 1 —The'world' is generally that of telecommunications and information processing or some part thereof.

NOTE 2 — The objects known to the Directory may not correspond exactly with the set of ‘real’ things in the world. For example,
area-world person may be regarded as two different objects, a business person and a residential person, as far asthe Directory is
concerned. The mapping is not defined in this Directory Specification, but is a matter for the users and providers of the Directory
in the context of their applications.

An object class is an identified family of objects, or conceivable objects, which share certain characteristics. Every
object belongs to at least one class. An object class may be a subclass of other object classes, in which case the
members of the former class, the subclass, are aso considered to be members of the latter classes, the superclasses.
There may be subclasses of subclasses, etc., to an arbitrary depth.

7.3 Directory entries
The DIB is composed of (Directory) entries. An entry is anamed collection of information.

There are four kinds of entries:

— Object entries: Representing the primary collection of information in the DIB about a particular object.
For any particular object, there is precisely one object entry or compound entry (see 8.10). The object
entry is said to represent the object. An object entry is either a single entry or a compound entry
comprising an aggregate of entries together representing the object.

— Alias entries. Used to provide alternative names for object entries (possibly the ancestor of a compound
entry, but not child family members).

— Subentries: Representing a collection of information in the DIB used to meet administrative and
operational requirements of the Directory. Subentries are discussed in Section 5.

— Family members: Special entries that are components of a compound entry. The ancestor of a compound
entry isalso afamily member.
A user view of the structure of Directory entriesis depicted in Figure 3 and described in 8.2.
Each entry contains an indication of the object classes, and their superclasses, to which the entry belongs.

Some object entries are specialy designated for the purpose of Directory administration. These entries are termed
administrative entries. The Directory user is not normally aware of this, and views these entries in the same way as
other object entries.

7.4 Directory Information Tree (DIT)

In order to satisfy requirements for the distribution and management of a very large DIB, and to ensure that entries can
be unambiguously named and rapidly found, a flat structure is not likely to be feasible. Accordingly, the hierarchical
relationship commonly found among objects (e.g., a person works for a department, which belongs to an organization,
which is headquartered in a country) can be exploited, by the arrangement of the entries into a tree, known as the
Directory Information Tree (DIT).

NOTE — An introduction to the concepts and terminology of tree structures can be found in Annex I.

The component parts of the DIT have the following interpretations:

a) theverticesare the entries. Object entries may be either leaf or non-leaf vertices, whereas alias entries are
always leaf vertices. The root is not an entry as such, but can, where convenient to do so [e.g., in the
definitions of b) and c) below], be viewed as a null object entry [see d) below];

10 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

b) the arcs define the relationship between vertices (and hence entries). An arc from vertex A to vertex B
means that the entry at A is the immediately superior entry (immediate superior) of the entry at B, and
conversely, that the entry at B is an immediately subordinate entry (immediate subordinate) of the entry
at A. The superior entries (superiors) of a particular entry are its immediate superior together with its
superiors (recursively). The subordinate entries (subordinates) of a particular entry are its immediate
subordinates together with their subordinates (recursively);

c) theobject represented by an entry is, or is closely associated with, the naming authority (see clause 8) for
its subordinates;

d) theroot represents the highest level of naming authority for the DIB.

A superior/subordinate relationship between objects can be derived from that between object entries. An object is an
immediately superior object (immediate superior) of another object if and only if the object entry for the first object is
the immediate superior of any of the object entries for the second object. The terms immediately subordinate object,
immediate subordinate, superior and subordinate (applied to objects) have their analogous meanings.

Permitted superior/subordinate rel ationships among objects are governed by the DIT structure definitions (see 13.7).

The Directory maintains, in addition to information concerning Directory entries, additional information regarding
collections of Directory entries. Such collections may be subtrees (of the DIT) or subtree refinements (when not a true
tree structure). See clause 12.

8 Directory entries

8.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

811 anchor attribute: A user attribute having friends, as defined within the relevant subschema. An anchor
attribute can be used to cause friend attributes to be included in the set of attributes to be selected, or considered for
matching in a Search operation, without having to be itself present in an entry.

8.1.2 attribute: Information of a particular type. Entries are composed of attributes.
8.13 user attribute: An attribute representing user information.

814 attribute hierarchy: The aspect of an attribute that permits a user attribute type to be derived from a more
generic user attribute type. The relationship of the two attribute type definitions (which mandates certain behaviour of
attributes corresponding to these attribute types) is thus hierarchical.

8.1.5 attribute subtype (subtype): An attribute type A is related to another attribute type B by the fact that either
A has been derived from B, in which case A isadirect subtype of B, or A has been derived from an attribute type which
isasubtype of B, in which case A isan indirect subtype of B.

8.1.6 attribute supertype (supertype): An attribute type B is related to another attribute type A by the fact that
either A has been derived from B, in which case B is a direct supertype of A, or A has been derived from an attribute
type which isa subtype of B, in which case B is an indirect supertype of A.

8.1.7 attribute type: That component of an attribute which indicates the class of information given by that
attribute.

8.1.8 attribute value: A particular instance of the class of information indicated by an attribute type.

8.1.9 attribute value assertion: A proposition, which may be true, false, or undefined, according to the specified
matching rules for the type, concerning the presence in an entry of an attribute value of a particular type.

8.1.10 auxiliary object class: An object class which is descriptive of entries or classes of entries and is not used for
the structural specification of the DIT.

8.1.11 collective attribute: A user attribute whose values are the same for each member of an entry collection.

8.1.12 context: A property that can be associated with a user attribute value to specify information that can be used
to determine the applicability of the value.

8.1.13 context assertion: A proposition, which may be true or false, regarding a context type and particular context
values for that type, that determines the applicability of an attribute value.

8.1.14 context type: That component of a context which indicates its type or purpose.

ITU-T Rec. X.501 (11/2008) 11

| SO/IEC 9594-2:2008 (E)

8.1.15 context list: The set of contexts associated with an attribute value.
8.1.16 context value: A particular instance of the property indicated by a context type.

8.1.17 derived attribute: An attribute whose value or values is computed in whole or in part rather than directly
stored.

8.1.18 derived object class value: A value of an object class whose presence is not administered by a user but is
computed. Derived object class values are categorized as abstract.

8.1.19 direct attribute reference: Reference (in the Directory and DSA abstract service) to one or more attribute
values using the identifier of their attribute type.

8.1.20 distinguished value: An attribute value in an entry which may appear in the relative distinguished name of
the entry.

8121 dummy attribute: An attribute that is defined as a user attribute but which shall never be present in an entry.
Only an anchor attribute can be a dummy attribute.

8.1.22 entry collection: A collection of entries belonging to an explicitly specified subtree or subtree refinement of
the DIT.

8.1.23 friend attributes: A set of user attributes associated with a specific user attribute (known as an anchor
atribute) by an administrative authority, for inclusion in a set of attributes returned when the anchor attribute is
specified, or used potentially to match a predicate which includes a condition on the anchor attribute.

8.1.24 indirect attribute reference: Reference (in the Directory and DSA abstract service) to one or more attribute
values using the identifier of a supertype of their attribute type.

8.1.25 matchingrule A rule, forming part of the Directory Schema, which allows entries to be selected by making a
particular statement (a matching rule assertion) concerning their attribute values.

8.1.26 matching rule assertion: A proposition, which may be true, false or undefined, concerning the presencein an
entry of attribute values meeting the criteria defined by the matching rule.

8.1.27 operational attribute: An attribute representing operational and/or administrative information.
8.1.28 structural object class: An object class used for the structural specification of the DIT.

8.1.29 structural object class of an entry: With respect to a particular entry, the single structural object class used
to determine the DIT Content Rule and DIT Structure Rule applying to the entry. This object class is indicated by the
structuralObjectClass operational attribute. This object class is the most subordinate object class of the entry's
structural object class superclass chain.

12 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

8.2 Overall structure

Asdepicted in Figure 3, an entry consists of a set of attributes.

ENTRY
Attribute Attribute Attribute
ATTRIBUTE
One or more per entry
ATTRIBUTE
Attribute Attribute
type vaue(s)
ATTRIBUTE VALUE(S)
One or more per attribute
: Distinguished | | Attibute || Attribue
, atribute ' value vaue
vaue I
L I | Context(s) Context(s)
Context(s)
CONTEXT(s).
Zero, one or more per attribute value
CONTEXT LIST
Context Context Context
Context Context
type vaue(s) Fallback

X.501_F03

Figure 3—Structureof an entry

Each attribute provides a piece of information about, or describes a particular characteristic of, the object to which the
entry corresponds.

NOTE 1 — Examples of attributes which might be present in an entry include naming information such as the object's personal
name, and addressing information, such as its telephone number.

An attribute consists of an attribute type, which identifies the class of information given by an attribute, and the
corresponding attribute values, which are the particular instances of that class appearing in the entry. A user attribute
value may have zero, one, or more contexts associated with it in its context list. Operational attribute values shall not
have contexts.

NOTE 2 — Attribute types, attribute values, and contexts are described in 8.4, 8.5 and 8.8 respectively. Operational attributes are
described in clause 12.

Attribute {ATTRIBUTE:SupportedAttributes} ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),

values SET SIZE (0..MAX) OF ATTRIBUTE.&Type ({SupportedAttributes}{ @type}),
valuesWithContext SET SIZE (1..MAX) OF SEQUENCE {
value ATTRIBUTE.&Type ({SupportedAttributes}{ @type}),

contextList SET SIZE (1..MAX) OF Context } OPTIONAL }

An attribute may be designated as single-valued or multi-valued. The Directory shall ensure that single-valued attributes
have only a single value. This value may have a context list to associate properties with the attribute value. Attributesin
storage shall have at least one value, but may at times appear to have zero values when transferred to or from storage
(e.g., because values are hidden by access control).

ITU-T Rec. X.501 (11/2008) 13

| SO/IEC 9594-2:2008 (E)

8.3 Object classes

Object classes are used in the Directory for a number of purposes:
— describing and categorizing objects and the entries that correspond to these objects;
— where appropriate, controlling the operation of the Directory;
— regulating, in conjunction with DIT structure rule specifications, the position of entriesin the DIT;
— regulating, in conjunction with DIT content rule specifications, the attributes that are contained in
entries,

— identifying classes of entry that are to be associated with a particular policy by the appropriate
administrative authority.

Some object classes will be internationally standardized. Others will be defined by national administrative authorities
and/or private organizations. This implies that a number of separate authorities will be responsible for defining object
classes and unambiguously identifying them. This is accomplished by identifying each object class with an object
identifier when the object class is defined. A notation for this purpose is provided in 13.3.3.

NOTE 1 —An administrative authority may use object classes other than the useful object classes defined and registered in the

Directory Specifications. An administrative authority may itself specify and register object classes, for example, to supplement
those defined in the Directory Specifications.

An abject class (a subclass) may be derived from an object class (its direct superclass) which is itself derived from an
even more generic object class. For structural object classes, this process stops at the most generic object class, top. An
ordered set of superclasses up to the most superior object class of an object classisits superclass chain.

An object class may be derived from two or more direct superclasses (superclasses not part of the same superclass
chain). Thisfeature of subclassing istermed multiple inheritance.

The specification of an entry's or family member's object class identifies whether an attribute is mandatory or optional;
this specification also applies to its subclasses. The subclass may be said to inherit the mandatory and optional attribute
specification of its superclass. The specification of a subclass may indicate that an optional attribute of the superclassis
mandatory in the subclass.

If an object class specifies an anchor attribute having friend attributes as optional or mandatory, this automatically
includes friend attributes as optional attributes without necessarily being included in any object class definition or in
any content rule.

An object class may define a dummy attribute as a mandatory or optional attribute if the dummy attribute is an anchor
attribute. If an object class specifies a dummy anchor attribute type as a mandatory or optional attribute, the anchor
attribute shall not appear in an entry of this object class, but if specified as a mandatory attribute, at least one of its
friends attribute shall be present. However, if a non-dummy anchor attribute type is specified as a mandatory attribute
type, an attribute of the anchor attribute type shall be present.

Friend attribute types shall not be present if excluded by content rules.

There are three kinds of object class:
— Abstract Object Classes;
— Structural Object Classes; and

— Auxiliary Object Classes.

NOTE 2 —This Directory Specification does not restrict the definition of subclasses to those of the same kind (i.e., abstract,
structural, or auxiliary); however, administrators should note that interoperability with LDAP servers may be adversely impacted
in some situations, most notably when using structural object classes that are subclasses of auxiliary object classes and vice versa.

Each object class is of precisely one of these kinds, and remains of this kind in whatever situation it is encountered
within the Directory. The definition of each object class shall specify what kind of object that it is.

All entries shall be a member of the object classtop and at least one other object class.
831 Abstract Object Classes

An abstract object class is mainly used to derive other object classes, providing the common characteristics of such
object classes. An entry shall not belong only to abstract object classes.

top isan abstract object class used as a superclass of all structural object classes.

14 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

In addition to its use for deriving other object classes, an abstract object class value can be a derived value; that is, its
presence is computed or inferred by the Directory. For example, the parent object class value for a particular entry is
computed or inferred from the presence of afamily member, of auxiliary object class child, immediately subordinate to
the entry.

8.3.2 Structural Object Classes

An object class defined for use in the structural specification of the DIT is termed a structural object class. Structural
object classes are used in the definition of the structure of the names of the objects for compliant entries.

An object or alias entry is characterized by precisely one structural object class superclass chain which has a single
structural object class as the most subordinate object class. This structural object class is referred to as the structural
object class of the entry.
Structural object classes are related to associated entries:
— an entry conforming to a structural object class shall represent the real-world object constrained by the
object class;

— DIT structure rules only refer to structural object classes; the structural object class of an entry is used to
specify the position of the entry in the DIT;

— the structural object class of an entry is used, along with an associated DIT content rule, to control the
content of an entry.

The structural object class of an entry shall not be changed.

8.3.3 Auxiliary Object Classes

Specific applications using the Directory will frequently find it useful to specify an auxiliary object class which may be
used in the construction of entries of several types. For example, message handling systems make use of the auxiliary
class MHS User (see ITU-T Rec. X.402 | ISO/IEC 10021-2) to specify a package of mandatory and optional message
handling attributes for entry types whose structural object class is variable, e.g., Organizational Person or Residential
Person.

In certain environments, thereis aneed to be able to add to or remove from the list of attributes permitted in an entry of
aparticular, perhaps standardized, class (or classes).

This requirement may be met by the definition and use of an auxiliary object class having semantics, known and
maintained within alocal community, which change from time to time as needed.

This requirement may also be met using the facilities of DIT content rule definitions to dynamicaly (i.e., without
registration) allow the addition or exclusion of attributes from entries at particular pointsin the DIT (see 13.3.3).

Auxiliary object classes are descriptive of entries or classes of entries.

Therefore, besides being a member of the structural object class, an entry may be optionally a member of one or more
auxiliary object classes.

An entry's auxiliary object classes may change over time.

NOTE — The unregistered object class facility, available in the first edition of these Directory Specifications to support the
requirements discussed in this clause, is now deprecated in favour of the use of DIT content rules.

834 Object Class Definition and thefirst edition of this Directory Specification

Object classes defined using the terminology of the first edition of this Directory Specification will not be classified as
one of structural, auxiliary or abstract.

Alias object classes specified using the terminology of the first edition of this Directory Specification may be
considered to be specified as either abstract, auxiliary or structural object classes and deployed in a subschema
accordingly.

ITU-T Rec. X.501 (11/2008) 15

| SO/IEC 9594-2:2008 (E)

8.4 Attribute Types

Some attribute types will be internationally standardized. Other attribute types will be defined by national
administrative authorities and private organizations. This implies that a number of separate authorities will be
responsible for defining types and unambiguously identifying them. This is accomplished by identifying each attribute
type with an object identifier when the type is defined. Using the notation of the ATTRIBUTE information object class
defined in 13.4.8, an attribute type is defined as:

AttributeType ::= ATTRIBUTE.&id
All attributesin an entry shall be of distinct attribute types.

Certain attributes may not be stored and accessible in entries, but are intended to be carried in operations to convey
information, e.g., diagnostics information, that conveniently can be expressed as attributes. Other attributes, called
control attributes, may as part of their definition specify a specia procedure to be executed based on the information in
the attribute. A control attribute may be specified in an operation, placed in entries, etc. See 8.5.3 of ITU-T Rec. X.520 |
I SO/IEC 9594-6 for an example.

There are anumber of attribute types which the Directory knows about and uses for its own purposes. They include:

a) objectClass — An attribute of this type appears in every entry, and indicates the object classes and
superclasses to which the object belongs.

b) aliasedEntryName — An attribute of this type appears in every alias entry, and holds the name (see 8.5)
of the entry which the alias entry references.

These attributes are defined in 13.4.8.

The types of user attributes which shall or which may appear within an object or alias entry are governed by rules
applying to the indicated object classes as well as by the DIT content rule for that entry (see 13.8). The types of
attributes which may appear in a subentry are governed by the rules of the system schema.

Some Directory entries may contain special attributes not normally visible to the Directory User. These attributes are
called operational attributes and are used to meet the administrative and operational requirements of the Directory.
Operational attributes are discussed in more detail in Section 5.

85 Attribute Values

Defining an attribute also involves specifying the syntax, and hence data type, to which every value in such attributes
shall conform. Using the notation of the ATTRIBUTE information object class defined in 13.4.8, an attribute value is
defined as:

AttributeValue ::= ATTRIBUTE.&Type

An attribute value may be designated as a distinguished value, in which case the attribute value can form part of the
relative distinguished name of the entry (see 9.3). It is possible to have multiple distinguished values differentiated by
context, as described in 9.3.

Client-supplied values shall be preserved for storage in the Directory. Comparison values are ephemeral, and shall not
affect the stored value.

8.6 Attribute Type Hierarchies

When defining an attribute type, the characteristics of some more generic attribute type may optionally be employed as
the basis of the definition. The new attribute type is a direct subtype of the more generic attribute type, the supertype,
from which it is derived.

Attribute hierarchies allow access to the DIB with varying degrees of granularity. This is achieved by allowing the
value components of attributes to be accessed by using either their specific attribute type identifier (a direct reference to
the attribute) or by the identifier of a more generic attribute type identifier (an indirect reference).

Semantically related attributes may be placed in a hierarchical relationship, the more specialized being placed
subordinate to the more generalized. Searching for, or retrieving attributes and their values is made easier by quoting
the more generalized attribute type; a filter item so specified is evaluated for the more specialized types as well as for
the quoted type; a context assertion specified for the more generalized attribute type is also applied to the more
specialized type.

16 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Where subordinate specialized types are selected to be returned as part of a search result these types shall be returned if
available. Where the more general types are selected to be returned as part of a search result, both the general and the
specialized types shall be returned, if available. An attribute value shall aways be returned as a value of its own
attribute type.

For an entry to contain a value of an attribute type belonging to an attribute hierarchy, that type shall be explicitly
included either in the definition of an object class to which the entry belongs, or because the DIT content rule applicable
to that entry permitsit.

All of the attribute types in an attribute hierarchy are treated as distinct and unrelated types for the purpose of
administration of the entry and for user modification of entry content.

An attribute value stored in a Directory object or aias entry is of precisely one attribute type. The type is indicated
when the valueis originally added to the entry.

87 Friend attributes

Friend attributes are user attributes specified by an administrative authority as related in some practical way to a
specific anchor attribute. When an anchor attribute is specified in the information to be returned by a Read or Search
operation, the feature permits friend attributes for the anchor attribute to be returned, subject to service and
administrative controls (including access control, search rules, etc.). Similarly, when an anchor attribute is specified in a
filter item within a search predicate, friend attributes can be used to satisfy the predicate if the matching rule for the
friend is compatible with the proposed value.

If an anchor attribute is permitted within an entry by being included in the mandatory or optional lists of object class
values for the entry, friend attributes are also permitted unless excluded by content rules. If the anchor attribute is not a
mandatory attribute, it may be absent in the entry, even if friend attributes are present.

Any user attribute can be designated within a subschema as an anchor attribute.

NOTE 1- As an example of an anchor attribute, consider a hypothetical attribute commsAddr, which has, in a particular
subschema, friend attributes which are communications addresses attribute types, e.g., telephone number, e-mail address, URL,
etc.

The anchor-friend relationship is neither commutative nor transitive:
— If an anchor attribute A has afriend B, it cannot be deduced that A isafriend of B.
— If an anchor attribute A has afriend B, and B has afriend C, it cannot be deduced that C isafriend of A.

If an attribute A is a friend of some anchor attribute, then all subtypes of A are also friends of that anchor attribute.
However, it cannot be deduced that supertypes of A are also friends of that anchor attribute.

Designating an attribute as a friend confers no special access control or search-rule protection unless associated with
membership of the anchor's object class (of which it is automatically a member).

NOTE 2 — At present, access control and search rules make no use of object classes as a means of defining sets of attributes for
special privileges or protections.

8.8 Contexts

The information model may be refined by associating with attribute values properties called contexts. Associated with
any user attribute value may be alist of contexts which provide additional information that can be used to determine the
applicability of the attribute value.

NOTE 1 — For example, contexts can be used to associate a particular language, time, or locale with an attribute value.

Each context consists of a type field, a value field whose syntax is determined by the type, and a fallback flag. Using
the notation of the CONTEXT information object class defined in 13.9, a Context is defined as:

Context ::= SEQUENCE {

contextType CONTEXT.&id ({SupportedContexts}),
contextValues SET SIZE (1..MAX) OF CONTEXT.&Type ({SupportedContexts}{@contextType}),
fallback BOOLEAN DEFAULT FALSE }

contextType isan OBJECT IDENTIFIER, and is specified using the CONTEXT information object class defined in 13.9.
It specifies the particular property represented by the Context.

contextValues is the set of one or more values of the property specified by contextType that are associated with the
particular attribute value.

ITU-T Rec. X.501 (11/2008) 17

| SO/IEC 9594-2:2008 (E)

fallback is used to designate one or more attribute values for specific behaviour in relation to a context type. In addition
to having any specific contextValues of that context type associated with it, an attribute value for which fallback is
TRUE for agiven contextType is:

— considered as being associated with any value of the given contextType for which no other values of the
same attribute are otherwise associated. Thus, a context assertion of this context type that fails to match
any values of the attribute based on the rules for matching contextVvalues shall match with any attribute
value for which fallback is TRUE for this context type.

NOTE 2 — For example, an attempt to select the attribute value associated with a particular language shall yield those values with
fallback set to TRUE if none of the attribute values is otherwise associated with the chosen language.

— considered as a value to preserve during an operation which resets attribute values for a given attribute
type. A Modify (reset value) removes al values of a chosen attribute type which have an associated
context for which the fallback is set FALSE.

NOTE 3 —Modify (reset value) is further described in 11.3.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

An attribute value without contexts, or one whose context list does not contain a context of a specific type, is considered
to be applicable under all context values of that specific type.

NOTE 4 — For example, a selection based on the French context value of a language context shall select an attribute value that
does not have any language context specifically associated with it (as well as those attribute values having the French language
context associated with them specificaly).

All contexts in an attribute value's context list shall be of distinct context types.

Context information associated with attribute values may be retrieved along with the attribute values (eg., to
differentiate between those attribute values). A user of the Directory may also make use of contexts to refine selection
and retrieval of information during Directory operations.

8.9 Matching rules

8.9.1 Overview

Of paramount importance to the Directory is the ability to be able to select a set of entries from the DIB based on
assertions concerning attribute values held by these entries.

A matching rule allows entries to be selected by making a particular assertion concerning their attribute values.

The most primitive type of assertion is the attribute value assertion. More complex assertions may be supported using
matching rule assertions. A matching rule assertion is a proposition, which may be true, false or undefined, concerning
the presence in an entry of attribute values meeting the criteria defined by the matching rule.

An attribute value or matching rule assertion is evaluated based on the matching rule associated with the assertion.

A matching rule is defined through the specification of:
— therange of attribute syntaxes supported by therule;
— the specific types of matches supported by the rule;
— thesyntax required to express an assertion of each specific type of match;

— rulesfor deriving avalue of the assertion syntax from avalue of the attribute syntax, if required.

NOTE — No restrictions are placed on the matching rules that may be defined to support a particular application. However, rules
defined to support one particular application may not be widely supported by DUAs and DSAs. Wherever possible, the matching
rules defined in ITU-T Rec. X.520 | ISO/IEC 9594-6 should be used in preference to the specification of new ones.

Sometimes there will be a one-to-one correspondence between a matching rule and the types of matches supported. For
example, the Directory Abstract Service supports a presence matching rule to detect the presence of an attribute in an
entry.

Sometimes there will be a many-to-many correspondence between a rule and the types of matches supported. For
example, the Directory Abstract Service supports a generic ordering rule allowing greater than or equal and less than or
equal types of matches.

8.9.2 Attribute Value Assertions

An attribute value assertion (AVA) is a proposition, which may be true, false, or undefined, according to the specified
matching rules for the type, concerning the presence in an entry of an attribute value of a particular type. It involves an
attribute type, an asserted attribute value, and optionally an assertion about contexts associated with the attribute value:

AttributeValueAssertion ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),

18 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

assertion ATTRIBUTE.&equality-match.&AssertionType ({SupportedAttributes}{@type}),
assertedContexts CHOICE {
allContexts [0] NULL,

selectedContexts [1] SET SIZE (1..MAX) OF ContextAssertion } OPTIONAL }

ContextAssertion ::= SEQUENCE {
contextType CONTEXT.&id({SupportedContexts}),
contextValues SET SIZE (1..MAX) OF
CONTEXT.&Assertion ({SupportedContexts}{@contextType})}

The syntax of the assertion component of an AVA is determined by the equality matching rule defined for the attribute
type, and may be different from the syntax of the attribute itself.

8.9.2.1 Evaluation of an AVA

AnAVAis
a) undefined, if any of the following holds:
1) theattribute typeis unknown;
2) theattribute type has no equality matching rule;

3) thevalue does not conform to the data type indicated by the syntax of the assertion of the attribute's
equality matching rule;
NOTE — 2) and 3) normally indicate a faulty AVA; 1) however, may occur as alocal situation (e.g., a particular DSA
has not been configured with support for that particular attribute type).

b) true, if the entry contains an attribute of that type, and the attribute contains a value of that value, and the
value contains a context that matches the assertedContexts as described in 8.9.2.2;

c) false otherwise.

8.9.2.2 Useof assertedContextsor context assertion defaults

The inclusion of assertedContexts within an AttributeValueAssertion is optiona. If assertedContexts is specified,
then the assertion shall be evaluated only against those values of the attribute for which the assertedContexts istrue,
asdefined in 8.9.2.3.

If assertedContexts is not provided within an AttributeValueAssertion, then a default context assertion may be
applied in the same manner; that is, the assertion shall be evaluated only against those values of the attribute for which,
as defined in 8.9.2.3, the default context assertion is true. There are three potential sources for a default context
assertion: that specified for the operation as a whole, that available within subentries in the DIT, and that available
locally in the DSA. They are applied as follows:

1) If assertedContexts is not provided within an AttributeValueAssertion, then any context assertion for
the given attribute type which has been supplied for the operation as a whole, as part of
operationContexts asdescribed in 7.3 of ITU-T Rec. X.511 | ISO/IEC 9594-3, shall be applied.

2) If the user has not provided assertedContexts for the AVA and there is no context assertion for the
given attribute type which has been supplied for the operation as a whole, then the default context
assertion for the given attribute type in the context assertion subentries (if any) controlling the entry shall
be applied, asdescribed in 14.7.

3) If there is no context assertion through steps 1) and 2) above, the DSA may apply a locally-defined
default context assertion for the given attribute type. Such a default shall typically reflect local
parameters, such as the language or location of the place of deployment of the DSA, or the current time
of day, but may be tailored differently by the DSA for each DUA to which it responds.

4) If no context assertion is available from any of these sources, then the assertion shall be evaluated
against all values of the attribute.

8.9.2.3 Evaluation of assertedContexts

assertedContexts istrueif:

a) allContexts is specified (this permits a context assertion to override any default context assertion that
might otherwise be applied if assertedContexts were omitted from the AttributeValueAssertion); or

b) each ContextAssertion in selectedContexts istrue as described in 8.9.2.4.

assertedContexts isfalse otherwise.

ITU-T Rec. X.501 (11/2008) 19

| SO/IEC 9594-2:2008 (E)

8.9.2.4 Evaluation of a ContextAssertion

A ContextAssertion istrue for a particular attribute valueiif:

a) theattribute value has a context of the same contextType of the ContextAssertion and any of the stored
contextValues of that context matches with any of the asserted contextValues according to the
definition of how amatch is determined for that contextType; or

b) the attribute value contains no contexts of the asserted contextType; or

c) none of the other attribute values for the attribute satisfies the ContextAssertion according to 1) or 2)
in 8.9.2.2 above, but the attribute value does contain a context of the asserted contextType with the
fallback set to TRUE.

A ContextAssertion is false otherwise.

8.9.3 Attribute Type Assertions

An attribute type assertion is a proposition, which may be true, false, or undefined, according to the associated contexts.

AttributeTypeAssertion ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
assertedContexts SEQUENCE SIZE (1..MAX) OF ContextAssertion OPTIONAL }

8.9.3.1 Evaluation of an attribute type assertion

An attribute type assertion is:
a) undefined, if the attribute type is unknown or if the attribute is not present in the entry;

b) TRUE, if the entry contains an attribute of that type, and the attribute contains one or more values that
contain a context that matches the assertedContexts as described in 8.9.3.2;

c) FALSE, otherwise.

8.9.3.2 Useof assertedContextsor context assertion defaults

The inclusion of assertedContexts within an AttributeTypeAssertion is optional. If assertedContexts is specified,
the assertedContexts shall be true for at least one attribute value according to the rules defined in 8.9.2.4.

If assertedContexts is not provided within an AttributeTypeAssertion, then a default context assertion may be
applied in the same manner; that is, the default context assertion shall be true for at least one attribute value according
to the rules defined in 8.9.2.4. The potential sources for a default context assertion are as specified in 8.9.2.2.

8.9.4 Built-in Matching Rule Assertions

A number of categories of related matching rules, whose semantics are generally understood and applicable to values of
many different types of attributes, are understood by the Directory:

— present;

— equality;

— substrings;

— ordering;

— approximate match.

Syntax for asserting certain types of matches associated with these categories of matching rules has been built into the
Directory Abstract Service:

— apresent syntax for the present rule;

— anequality syntax for equality rules;

— greaterOrEqual and lessOrEqual syntaxes for ordering rules;
— initial, any and final syntaxesfor substringsrules;

— anapproximateMatch syntax for approximate matching rules.

The present syntax may be used for any attribute of any type. The present match tests for the presence of any value of a
particular type.

20 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Specific equality, substrings and ordering matching rules may be associated with an attribute type when it is defined.
These specific rules are used when evaluating assertions of the equality, ordering and substrings rules made using the
syntax built-in to the Directory Abstract Service. If specific rules are not provided, then assertions made concerning
these attributes are undefined.

The approximateMatch syntax supports an approximate matching rule whose definition is alocal matter to aDSA.

8.9.5 Matching rule requirements

In order for the Directory to behave in a consistent and well-defined manner, it is necessary that certain restrictions be
placed upon the matching rules that shall be used in conjunction with the syntax that has been built into the Directory
Abstract Service.

For an equality matching rule in which the syntax of the assertion is different from the attribute syntax to which the
matching rule applies, rules for deriving a value of the syntax of the assertion from a value of the attribute syntax shall
be supplied.

Equality matching rules for attributes used for naming shall be transitive, commutative and have an assertion syntax
identical to the attribute syntax.

A transitive matching rule is characterized by the fact that if a value a matches a value b; and if that value b matches a
third value c; then value a matches value ¢ using the rule.

A commutative matching rule is characterized by the fact that if a value a matches avalue b, then that value b matches
the value a. The attribute presentationAddress is an example of an attribute supporting an attribute syntax whose
matching rule is not commutative.

With respect to a specific attribute type, the equality and ordering rules (if both present) shall always be related in at
least the following respect: two values are equal using the equality relation if and only if they are equal using the
ordering relation. In addition, the ordering relation shall be well-ordered; that is, for all x, y and z for which x precedes
y and y precedes z according to the relation, then x precedes z.

NOTE — These requirements imply that when ordering is defined, it also defines equality.

With respect to a specific attribute type, the equality and substrings rule (if both present) shall always be related in at
least the following respect: for all x and y that match according to the equality relation, then for all values z of the
substring relation, the result of evaluating the assertion against the value x equals the result of evaluating the assertion
against the value y. That is, two values that are indistinguishable using the equality relation are aso indistinguishable
using the substrings relation.

8.9.6 Object Identifier and Distinguished Name equality matching rules

There are a number of equality matching rules used to evaluate attribute value assertions which the Directory knows
about and uses for its own purposes. They include:

— objectldentifierMatch: Thisruleis used to match attributes with Objectldentifier syntax.
— distinguishedNameMatch: Thisruleisused to match attributes with DistinguishedName syntax.

8.10 Entry collections
8.10.1 Overview

A collection of object and alias entries may have certain common characteristics (e.g., certain attributes that have the
same value for each entry of the collection) because of some common characteristic or shared relationship of the
corresponding objects. Such a grouping of entriesistermed an "entry collection”.

Entry collections may contain object and alias entries that are related by their position in the DIT. These collections are
specified as subtrees or subtree refinements as described in Section 5.

An entry may belong to several entry collections subject to administrative limitations imposed in Section 5.

8.10.2 Collective Attributes
When user attributes are shared by the entries of an entry collection, they are termed collective attributes.

It is also permissible that the same collective attribute be independently associated with two or more of these
collections. In such cases, the entry's collective attribute has multiple values. Collective attributes shall, therefore,
always be specified as multi-valued.

Although they appear to users of the Directory interrogation operations as entry attributes, collective attributes are
treated differently from entry attributes in the Directory information model. This difference is manifested to users of the

ITU-T Rec. X.501 (11/2008) 21

| SO/IEC 9594-2:2008 (E)

Directory modification operations in that collective attributes cannot be administered (i.e., modified) via the entries in
which they appear but shall be administered via their associated subentries.

NOTE — The independent sources of these values are not manifested to the users of the Directory interrogation operations.

For a collective attribute to appear in an entry, the presence of that attribute type must be permitted according to the
DIT content rule governing the entry.

Entries may specifically exclude a particular collective attribute. This is achieved through the use of the
collectiveExclusions attribute, described in 12.7 and defined in 14.6.

8.11 Compound entriesand families of entries

A compound entry is a specia entry that comprises family member entries. These family members form a hierarchy and
thereby provide hierarchically organized information about the object represented by the compound entry. The
compound entry is represented in the DIT by an ancestor family member, which is at the root of a tree containing the
family members.

Family members can themselves be organized into one or more families for the purposes of filtering and information
retrieval. Each family is a subtree; distinct families have no common family members apart from the shared root that is
the ancestor. A family thus comprises an ancestor plus a set of subordinate family members.

A family is, beside the ancestor, composed of all of the immediately subordinate family members being of the same
structural object class. Their subordinate members, if any, are aso part of the same family independent of their
structural object classes.

These concepts areillustrated in Figure 4.

The same
entry
(ancestor)

structural
object class A

Compound
entry

structural
object class B

X.501_F04

Figure 4 — Families of entries

A family member that is a child within afamily tree is marked with the auxiliary object class child. The presence of the
child object class value for an entry causes the immediately superior entry automatically to be marked with the abstract
object class value parent. An entry that is both a parent and a child within a family tree is marked with both object
class values. The ancestor is the only family member that is not of object class child. The construction of compound
entriesis carried out by marking entries with child object class values.

Each subordinate of a non-ancestor family member shall itself be a family member, and marked with a child object
classvalue.

The ASN.1 definition of these object classes can be found in 13.3.3.

All family members of a compound entry shall be placed in the same naming context as the ancestor. Family members
are not permitted to be alias entries. An alias shall not point to a child family member.

22 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

9 Names

9.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

9.1.1 alias, aliasname: An aternative name for an object, provided by the use of alias entries.

9.1.2 (alias) dereferencing: The process of converting an object's alias name to its distinguished name.

9.1.3 distinguished name (of an entry): Every object entry, alias entry, and subentry has at |least one distinguished
name. If any RDN for the entry or any superior entry includes an attribute for which there exist multiple distinguished
values differentiated by context (as described in 9.3), then the entry shall have multiple distinguished names
differentiated by context. The primary distinguished name is that distinguished name in which each RDN has the
primary distinguished value of each contributing attribute as the main value in the RDN construct.

9.14 (directory) name: A construct that singles out a particular object from all other objects. A name shall be
unambiguous (that is, denote just one object); however, it need not be unique (that is, be the only name which
unambiguously denotes the object).

9.15 (entry) name: A construct that singles out a particular entry from all other entries.

9.1.6 local member name: A name for a family member constructed by the sequence of RDNs from the ancestor
down to the member in question not including the RDN for the ancestor.

9.1.7 naming authority: An authority responsible for the allocation of namesin some region of the DIT.

9.1.8 purported name: A construct which is syntactically a name, but which has not (yet) been shown to be avalid
name.

9.1.9 relative distinguished name (RDN): A set of one or more attribute type and value pairs, each of which
matches a distinct distinguished attribute value of the entry.

9.2 Namesin general

A (directory) name is a construct that identifies a particular object from among the set of all objects. A name shall be
unambiguous, that is, denotes just one object. However, a name need not be unique, that is, be the only name that
unambiguously denotes the object. A (directory) name also identifies an entry. This entry is either an object entry that
represents the object or an alias entry which contains information that helps the Directory to locate the entry that
represents the object.

NOTE 1 —The set of names of an object thus comprises the set of aias names for the object, together with the distinguished
names of the object.

An object can be assigned a distinguished name without being represented by an entry in the Directory, but this nameis
then the name its object entry would have had were it represented in the Directory.

Syntactically, each name for an object or entry is an ordered sequence of relative distinguished names (see 9.3).
Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence
NOTE 2 — Names which are formed in other ways than as described herein are a possible future extension.

Each initial sub-sequence of the name of an object is aso the name of an object. The sequence of objects so identified,
starting with the root and ending with the object being named, is such that each is the immediate superior of that which
followsit in the sequence.

A purported name is a construct which is syntactically a name, but which has not (yet) been shown to be avalid name.

9.3 Relative Distinguished Names

Each object and entry has at least one relative distinguished name (RDN). An RDN of an object or alias entry consists
of a set of attribute type and value (with optional context list) pairs, each of which matches, using the equality matching
rule and the applicable context matching rule, a distinct distinguished attribute value of the entry.

ITU-T Rec. X.501 (11/2008) 23

| SO/IEC 9594-2:2008 (E)

Any attribute contributing to an RDN may have more than one distinguished value, differentiated by context, as
described below. This provides aternative RDNs for the same object. Within an attribute's set of distinguished values
(differentiated by context), precisely one of them is designated the primary distinguished value. The primary relative
distinguished name of an object comprises the set of primary distinguished values from the set of attributes that
comprise the RDN. When conveyed in protocol, each attribute in an RDN signals the primary distinguished value (if it
is present) and may optionally include a context for the value and additional alternative attribute values with context. In
this case, each attribute value with its context matches a distinct distinguished attribute value of the entry for the
attribute type according to the applicable equality matching rule and context matching rules.

NOTE 1 — The equality matching rule can be used because for naming attributes, the attribute syntax and the assertion syntax of

the equality matching rule are the same. Similarly, for contexts that may be used to differentiate distinguished values in a naming
attribute, the context syntax and the context assertion syntax are the same.

The RDNs of al of the entries with a particular immediate superior are distinct irrespective of any associated context
lists. It is the responsibility of the relevant naming authority for an entry to ensure that this is so by appropriately
assigning distinguished attribute values. Allocation of RDNSs is considered an administrative undertaking that may or
may not require some negotiation between involved organizations or administrations. This Directory Specification does
not provide such a negotiation mechanism, and makes no assumption asto how it is performed.

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndDistinguishedValue

AttributeTypeAndDistinguishedValue ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),

value ATTRIBUTE.&Type({SupportedAttributes}{ @type}),

primaryDistinguished BOOLEAN DEFAULT TRUE,

valuesWithContext SET SIZE (1..MAX) OF SEQUENCE {
distingAttrValue [0] ATTRIBUTE.&Type ({SupportedAttributes}{@type}) OPTIONAL,
contextList SET SIZE (1..MAX) OF Context } OPTIONAL }

The set that forms an RDN contains exactly one AttributeTypeAndDistinguishedValue for each attribute which
contains distinguished valuesin the entry; that is, a given attribute type cannot appear twice in the same RDN.

An attribute value that has been designated to appear in an RDN is called a distinguished value. There may be other
values of the same attribute that are not distinguished values and thus may not be used in an RDN. An attribute may
have multiple distinguished values only if they are differentiated by associated context. This allows an object to have
aternative names differentiated by contexts. This is the only case where an attribute may have more than one
distinguished value. In that case, the distinguished values shall have context lists containing the same context type(s),
the context values of which shall provide that only one of the distinguished values is applicable given any specific
context.

An RDN for agiven entry is formed by using one distinguished value from each attribute that has distinguished values.
The simplest case is an entry that has one distinguished value; it thus has one RDN, formed by using that distinguished
value. More than one attribute in an entry may contribute to the RDN. If each contributing attribute has only one
distinguished value, then the entry has a single RDN, formed by using the distinguished value for each attribute. If any
of the contributing attributes has multiple distinguished values differentiated by context, then the entry has
multiple RDNs, each formed by using one of the possible combinations in which one distinguished value is chosen for
each attribute type forming the RDN.

Each RDN for an entry shall contain a type and value pair for each given attribute type forming part of the RDN.
primaryDistinguished is used to indicate that the value is the primary distinguished value of that attribute type.
valuesWithContext is used to convey the context list for the distinguished attribute value in value when necessary to
do so. It isaso used to convey in asingle RDN, some or al of the other distinguished values of the same attribute type.
Each distingAttrValue is accompanied by its contextList. The distingAttrValue is only omitted for the distinguished
value that appearsin value; thisis how the context list for that value is made present in the RDN.

One and only one of the distinguished values for a given attribute type in an entry shall be considered the primary
digtinguished value for that attribute type. This value shal be wused as the value in the
AttributeTypeAndDistinguishedValue when forming the primary relative distinguished name of the object (see 9.8
and 9.6). The primary relative distinguished name is an RDN in which the primary distinguished values for each
attribute in the RDN appear in the value components of each AttributeTypeAndDistinguishedValue in the RDN.
Context and alternative distinguished values may appear in the valuesWithContext component of each
AttributeTypeAndDistinguishedValue.

The RDN may be modified, if necessary, by the complete replacement of all the distinguished values of al contributing
attributes.

24 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Family members, like other entries, have RDNs. An RDN can consist of multiple attribute type and value pairs. Only
primary RDNs can be used. The local member name of a family member is the sequence of RDNs from the ancestor
down to that member. The local member name of the ancestor is an empty sequence.
NOTE 2 — RDNs are intended to be long-lived so that the users of the Directory can store the distinguished names of objects
(e.g., inthe Directory itself) without concerns for their obsolescence. Thus RDNs should be changed cautiously.
NOTE 3 — Changing the RDN of anon-leaf entry automatically changes the name of subordinate entries.
NOTE 4 — The context in which a particular attribute type and value forming part of an RDN is applicable is independent of the
contexts associated with any other part of that RDN or other RDNs in a distinguished name.

NOTE 5 — For example, a valid distinguished name for an entry can be formed by combining an RDN designated as the
Language = French variant of that entry's RDN with the Language = English DN of its superior entry.

9.4 Name matching

It is often necessary in the operation of the Directory to determine if two names match. This requires that corresponding
RDNSs be matched. The general approach to name matching is described here; specific approaches for particular uses for
name matches are described, where appropriate.

A purported RDN is said to match atarget RDN if each AttributeTypeAndDistinguishedValue in the purported RDN
matches with the AttributeTypeAndDistinguishedValue for the same attribute type in the target RDN. There is a
match if the purported value or any distingAttrValue of the purported AttributeTypeAndDistinguishedValue matches
either the target value or any distingAttrValue in the target AttributeTypeAndDistinguishedValue.
primaryDistinguished, if present in either the purported or target AttributeTypeAndDistinguishedValue, is ignored
for matching.

NOTE 1 — The equality matching rule can be used because, for naming attributes, the attribute syntax and the assertion syntax of

the equality matching rule are the same.

NOTE 2—-There is no guarantee that every distinguished value for a given naming attribute is present in the
AttributeTypeAndDistinguishedValue for that attribute type in a given RDN. Two RDNs for the same object could be formed
using different distinguished values (differentiated by context) for the same attribute type. If there is no overlap in the sets of
distinguished values for a given attribute that each uses, then they will fail to match, even though the purported RDN and
target RDN are alternative RDNs for the same object. How this could occur, and the impact of this, depends on the reason for
name matching (e.g., name resolution, access control, filtering).

If matching attribute values are not found as a result of the above, then the RDNs do not match. If matching attribute
values are found, then there shall also be a match between associated contexts for those values, if present, before the
attribute type and value pairs are considered to match. Each context in the purported attribute value's context list is
considered a context assertion against the matching target attribute value's context list, and shall evaluate to true as
described in 8.9.2.4 in order for the contexts to be considered a match. fallback in the purported contexts is ignored
when forming the context assertions.

NOTE 3 —The purported contexts can be used as context assertions in this way because the context assertion syntax is the same
as the context syntax for context types that may be used with distinguished values.

If valuesWithContext is not present in a purported RDN, then context assertions supplied as part of the operation, or
defaults that are set up to be applied to an operation shall also be applied as described in 8.9.2.2. The exception to thisis
for the case of name matching during name resolution during a Directory operation; in that case, no context assertions
are applied if noneis available in valueswithContext.

9.5 Names returned during oper ations

Many Directory operations return the name of an entry. When an operation returns a name for an entry, or names for
multiple entries, it shall return the primary distinguished name for each entry and may return, in addition, alternative
distinguished name information and context information (see 7.7 of ITU-T Rec. X.511 | ISO/IEC 9594-3).

9.6 Names held as attribute values or used as parameters

Where aname is held as an attribute value within some other attribute, or passed as an attribute value in some exchange
(e.g., an dias pointer), there is always the question of whether the name held can be an aternative distinguished name
or shall be the primary distinguished name, whether it can contain alternative distinguished values, and whether it can
include context information. Specific restrictions are mentioned where necessary throughout these Directory
Specifications.
NOTE — Annex O includes suggestions for improving interoperability with pre-third edition systems and ensuring predictable
behaviour in regard to using contexts with names.

ITU-T Rec. X.501 (11/2008) 25

| SO/IEC 9594-2:2008 (E)

9.7 Distinguished Names

The distinguished name of a given object is defined as that name which consists of the sequence of the RDNSs of the
entry which represents the object and those of al of its superior entries (in descending order). Because of the one-to-one
correspondence between objects and object entries, the distinguished name of an object is the distinguished name of the
object entry.

NOTE 1 - It is preferable that the distinguished names of objects which humans have to deal with be user-friendly.

NOTE 2 —I1TU-T Rec. X.650 | ISO/IEC 7498-3 defines the concept of a primitive name. A distinguished name can be used as a

primitive name for the object it identifies.

NOTE 3 — Because only the object entry and its superiors are involved, distinguished names of objects can never involve alias
entries.

Alias entries also have distinguished names; however, this name cannot be the distinguished name of an object. When
this distinction needs to be made, the complete term "distinguished name of an alias entry” is used. The distinguished
name of an alias entry is defined, as for the distinguished name of an object entry, to be the sequence of RDNSs of the
alias entry and those of al of its superior entries (in descending order).

It also proves convenient to define the ‘distinguished name' of the root, although this can never be the distinguished
name of an object. The distinguished name of the root is defined to be an empty sequence.

If any attribute contributing to an RDN within the distinguished name for an object has multiple distinguished values
differentiated by contexts, then that object has multiple distinguished names. Each unambiguously identifies the object.
The primary distinguished name is that distinguished name for which every RDN is a primary RDN. When conveyed in
protocol, the primary distinguished name is formed by using the primary distinguished value as value in the
AttributeTypeAndDistinguishedValue for each attribute in each RDN forming the name. Alternative distinguished
names are formed by using aternative distinguished values for attributes in one or more RDNSs. In some uses for a
name, the primary distinguished name shall be used. In other cases, alternative distinguished names may be used. Since
the AttributeTypeAndDistinguishedValue in RDNs may include aternate distinguished vaues in the
valuesWithContext component, any distinguished name may include alternative values within its RDNs.

NOTE 4 — The distinguished name is said to include aternative names when an RDN includes multiple distinguished values for
any contributing attribute.

Context information may be included with a distinguished name in the valueswithContext component within any
RDN. Wherever names are used throughout these Directory Specifications, it is specified if the name shall be the
primary distinguished name, if the name may include alternative values, and if context information may be included.
Where there is no explicit statement, aternative distinguished names may be used, and the name may include
aternative values and/or context information.

NOTE 5—Any requirement to use a primary distinguished name in protocol instead of an alternative distinguished name need
not be reflected to the end user.

26 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

An example which illustrates the concepts of RDN and distinguished name appearsin Figure 5.

RDN Distinguished Name
ROOT
{3
Countries
C=GB {C =GB}

=

Organizationg

é * El O = Telecom {C =GB, O =Telecom}

Organizational\Units

|ﬁ ﬁ (OU = Sales, {C =GB, O = Telecom,
L = Ipswich) (OU = Sales, L = Ipswich)}
Peopl
Fopie {C =GB, O =Telecom,
[j CN = Smith (OU = Sales, L = Ipswich),

CN = Smith}

X.501_F05

Figure5— Determination of distinguished names

9.8 Alias Names

An alias, or an alias name, for an object is a an aternative name for an object or object entry which is provided by the
use of alias entries.

Each alias entry contains, within the aliasedEntryName attribute, a name of some object. The distinguished name of
the alias entry is thus also a name for this object.

NOTE 1 — The name within the aliasedEntryName is said to be pointed to by the alias. It does not have to be the distinguished
name of any entry.

NOTE 2 — The AliasedEntryName attribute value may be the primary distinguished name or any aternative distinguished name
if such exists. Consistency and interworking with pre-third DSAs may be affected if the primary distinguished nameis not used.

The conversion of an alias name to an object name is termed (alias) "dereferencing” and comprises the systematic
replacement of alias names, where found within a purported name, by the value of the corresponding
aliasedEntryName attribute. The process may require the examination of more than one alias entry.

Any particular entry in the DIT may have zero or more alias names. It therefore follows that several alias entries may
point to the same entry. An alias entry may point to an entry that is not aleaf entry and may point to another alias entry.

An dlias entry shall have no subordinates, so that an alias entry is always aleaf entry.
Every dias entry shall belong to the alias object classwhich isdefined in 13.3.3.

Family members are not permitted to be alias entries.

10 Hierarchical groups

10.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:
10.1.1 hierarchical child: For an entry, ahierarchical child isan entry for which it isahierarchical parent.

10.1.2 hierarchical group: A hierarchical group is a collection of entries, including compound entries, that forms a
logical tree that is not necessarily related to the DIT.

10.1.3 hierarchical leaf: Thisisan entry within ahierarchical group that has no hierarchical children.

ITU-T Rec. X.501 (11/2008) 27

| SO/IEC 9594-2:2008 (E)

10.1.4 hierarchical level: An integer that gives the distance from an entry within a hierarchical group to the
hierarchical top in form of the number of hierarchical links between the entry and the hierarchical top.

10.1.5 hierarchical link: This is a general term for the logical relationship between two entries that have a
hierarchical immediate parent/immediate child relationship.

10.1.6 hierarchical parent: For an entry, the hierarchica parents are the immediately hierarchical parent, its
immediately hierarchical parent, recursively all the way up to and including the hierarchical top.

10.1.7 hierarchical sibling: For an entry, the hierarchical siblings are the entries having the same immediately
hierarchical parent asitself.

10.1.8 hierarchical sibling-child: For an entry, its hierarchical sibling-children are the complete set of hierarchical
children, at al lower levels, of its hierarchical siblings.

10.1.9 hierarchical top: Thisisthe entry within a hierarchical group that is the root of the hierarchy. A hierarchical
top has no immediately hierarchical parent.

10.1.10 immediately hierarchical child: For an entry, an immediately hierarchical child is an entry for which it isthe
immediately hierarchical parent. This immediately hierarchical child does not need to be an immediately subordinate
entry within the DIT.

10.1.11 immediately hierarchical parent: For an entry, its immediately hierarchical parent is the entry, that within
the hierarchical group, is its immediately superior entry. The immediately hierarchical parent does not need to be the
immediately superior entry within the DIT.

10.2 Hierarchical relationship

Directory entries have a hierarchical relationship in the way they are placed in the DIT. However, entries may also have
hierarchical relationships not reflected in the DIT structure. As an example, a dynamic organization may not want to
reflect its current organization directly in the DIT, as it may require frequent changes to the DIT structure. There is
therefore a requirement in the Directory to be able to reflect hierarchical relationships independent of the DIT structure.
Hierarchical groups form such relationships. A hierarchical group forms a logical tree with a root caled the
hierarchical top.

By referring to hierarchical relationships, it is possible in a Search operation to retrieve information not only from a
given entry, but also from other entries within the same hierarchical group.

A compound entry is considered a single entry in the context of hierarchical groups. A child family member cannot be
part of ahierarchical group inits own right.
NOTE — Hierarchical groups are intended to permit modelling of collections of distinct objects that have logicaly informal

relationships, and particularly relationships that are, or could be, temporary. Compound entries, in contrast, model objects that
comprise sub-objects that are conveniently considered as a hierarchy.

To describe navigation within a hierarchical group, it is convenient to define terms for the relationships that a given
entry has with other entries within the group. Thisis done in 10.1. Some of these defined terms for direct relationships
are parallel to those defined for entry relationships within the DIT (immediately hierarchical child, hierarchical child,
immediately hierarchical parent and hierarchical parent). However, it is also convenient to define terms for more
distant relationships. In some situations, a user may want to retrieve information for hierarchical siblings, and even for
their hierarchical children (hierarchical sibling-children).

An entry can only be amember of asingle hierarchical group at one time.

An entry that is part of a hierarchical group holds operational attributes as defined in 14.9. These operational attributes
reflect the relationship with other entries within the group, including the hierarchical level of the entry within the group.
When a compound entry is part of a hierarchical group, the ancestor holds these operational attributes.

A hierarchical group has to be completely outside any service-specific administrative area (see 16.3) or has to be
completely contained within a service-specific administrative area. A hierarchical group shal be confined to a
single DSA. The Directory service shall detect and prevent attempts to break these rules.

10.3 Sequential ordering of a hierarchical group

In some situation, e.g., when transmitting a hierarchical group, a sequential ordering rule is required. The sequential
order of ahierarchical group comes from following all the strands of the hierarchical group as follows:

a) Thetop entry isthefirst entry in the sequence followed by the remaining entries within a complete strand
going down from top to a hierarchical leaf. Itisalocal choice which strands to select as the first one.

28 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

b) The next strand to be selected is one that has not previously been selected and which has the maximum

0)

number of entries common with the previous selected strand. If several strands are identical in that

respect, selection is a local matter. Only those entries not previoudly included are included in the
sequence.

The procedure in b) is repeated until all strands have been included.

ITU-T Rec. X.501 (11/2008) 29

| SO/IEC 9594-2:2008 (E)

SECTION 4 — DIRECTORY ADMINISTRATIVE MODEL

11 Directory Administrative Authority model

111 Definitions

For the purposes of this Directory Specification, the following definitions apply:

11.1.1 administrative area: A subtree of the DIT considered from the perspective of administration.
11.1.2 administrative entry: An entry located at an administrative point.

11.1.3 administrative point: The root vertex of an administrative area.

11.1.4 administrative user: A representative of an Administrative Authority. The full definition of the
administrative user concept is outside the scope of this Directory Specification.

11.1.5 autonomous administrative area: A subtree of the DIT whose entries are all administered by the same
Administrative Authority. Autonomous administrative areas are non-overlapping.

11.1.6 DIT domain administrative authority: An Administrative Authority in its role as the entity having
responsibility for the administration of a part of the DIT.

11.1.7 DIT domain policy: An expression of the general goals and acceptable procedures for a DIT Domain.

11.1.8 DMD administrative authority: An Administrative Authority in its role as the entity responsible for the
administration of aDMD.

11.1.9 DMD palicy: A policy governing the operation of the DSAsin aDMD.
11.1.10 DMO policy: A policy defined by aDMO, expressed in terms of DMD and DIT Domain policies.

11.1.11 inner administrative area: A specific administrative area whose scope is wholly contained within the scope
of another specific administrative area of the same type.

11.1.12 policy: An expression by an Administrative Authority of general goals and acceptable procedures.
11.1.13 policy attribute: A generic term for any Directory operational attribute which expresses policy.
11.1.14 policy object: An entity with which a policy is concerned.

11.1.15 policy procedure: A rule defining how a set of policy objects should be considered and what actions should
be taken as aresult of this consideration.

11.1.16 policy parameter: A policy procedure is characterized by certain policy parameters which are subject to
configuration (i.e., choice) by an Administrative Authority.

11.1.17 specific administrative area: A subset (in the form of a subtree) of an autonomous administrative area
defined for a particular aspect of administration: access control, subschema or entry collection administration. When
defined, specific administrative areas of a particular kind partition an autonomous administrative area.

11.1.18 specific administrative point: The root vertex of a specific administrative area.

11.2 Overview

A fundamental objective of the Directory information model is to consider well-defined collections of entries so that
they may be administered consistently as a unit. This clause clarifies the nature and scope of the authorities responsible
for that administration and the means by which their authority is exercised.

The concept of policy, defined in 11.3, provides the mechanism by which Administrative Authorities exercise control of
the Directory.

Some aspects of the Directory Administrative Model are supported by the Model of Directory Administrative and
Operational Information (see clause 12). This is to allow the modelling of information required for the regulation of
Directory user information and for other administrative purposes.

Other aspects of the Directory Administrative Model require support for the distribution of administrative and
operational information among the component parts of the Directory, i.e., DSAs. Clauses 22 through 24 describe a DSA
Information Model to support these requirements.

30 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

11.3 Policy

A policy is an expression by an Administrative Authority, acting as an agent of the DMO, of general goals and
acceptable procedures. A policy is defined in terms of rules that are to be enforced (by the Directory, if appropriate) and
in terms of aspects within which an administrative user has some degree of freedom of action and specific
responsibilities.
An Administrative Authority expresses DMO policy in terms of:

— DIT Domain Policy;

— DMD Palicy.

These policies may be expressed as policy attributes. A model of DIT policiesis defined in 11.6.

NOTE — Clause 14 defines the system schema necessary to support the administration of collective attributes. Clause 15 defines a
framework for supporting subschema administration policies. Clause 17 defines aframework supporting access control policies.

DMD policies relate specificaly to DSAs as components of the distributed Directory. These DMD policies are
described in 11.7 which defines amodel for DSA administration.

Finally, there are policies which relate to external matters (such as bilateral agreements between DMOs) and are
therefore not further described here.

A policy object is an entity with which apolicy is concerned (e.g., a subschema administrative areais a policy object).

A policy procedureis arule defining how a set of policy objects should be considered and what actions should be taken
(and under what circumstances) as a result of this consideration (e.g., clause 15 defines subschema administration
policy procedures).

A policy procedure is characterized by certain policy parameters which are subject to configuration (i.e., choice) by an
Administrative Authority.

Operational attributes are used to represent policy parameters. The values of such an attribute form an expression of
some or all of the policy parameter it represents.

114 Specificadministrative authorities

The administration of a DIT Domain involves the execution of five functions related to different aspects of
administration:

— naming administration;

— subschema administration;

— security administration;

— collective attribute administration;
— service administration.

A specific Administrative Authority is an Administrative Authority in its role as the entity responsible for one of these
specific aspects of DIT Domain policy.

The term Naming Authority (see clause 9) identifies the role of the Administrative Authority as it pertains to the
alocation of names and administration of the structure of these names. A role of the Subschema Authority is to
implement these naming structures in the subschema.

The term Subschema Authority identifies the role of the Administrative Authority as it pertains to the establishment,
administration and execution of the subschema policy controlling the naming and content of entriesin a DIT Domain.
Clause 15 describes Directory support of Subschema Administration.

The term Security Authority (see ITU-T Rec. X.509 | ISO/IEC 9594-8) identifies the role of the Administrative
Authority as it pertains to the establishment, administration and execution of a security policy governing the behaviour
of the Directory with respect to entriesin aDIT Domain.

The term Collective Attribute Authority identifies the role of the Administrative Authority as it pertains to the
establishment and administration of collective attributes (see 12.7) in aDIT Domain.

The term Service Authority identifies the role of the Administrative Authority as it pertains to the establishment and
administration of service constraints and adjustment.

ITU-T Rec. X.501 (11/2008) 31

| SO/IEC 9594-2:2008 (E)

115 Administrative areas and administrative points

11.5.1 Autonomous administrative areas

Each entry in the DIT is administered by precisely one Administrative Authority (which may operate in different roles).
An autonomous administrative area is a subtree of the DIT whose entries are all administered by the same
Administrative Authority.

The DIT Domain may be partitioned into one or more non-overlapping autonomous administrative areas.

The set of one or more autonomous administrative areas for which a DMO has administrative authority is its DIT
Domain. Thisisrepresented in Figure 6.

AutOQomous
Area (‘(\ A)

X.501_F06

Figure6—A DIT Domain

11.5.2 Specific administrative areas

In the same way that an Administrative Authority may operate in a specific role, entries in an administrative area may
be considered in terms of a specific administrative function. When viewed in this context, an administrative area is
termed a specific administrative area. There are five kinds of specific administrative area:

— subschema administrative aress;

— access control administrative areas;

— collective-attribute administrative areas,
— context default administrative areas;

— service administrative areas.

An autonomous administrative area may be considered as implicitly defining a single specific administrative area for
each specific aspect of administration. In this case, there is a precise correspondence between each such specific
administrative area and the autonomous administrative area.

Alternatively, for each specific aspect of administration, the autonomous administrative area may be partitioned into
non-overlapping specific administrative areas.

If so partitioned for a particular aspect of administration, each entry of the autonomous administrative area is contained
in one and only one specific administrative area of that aspect.

A specific Administrative Authority is responsible for each specific administrative area If, for a particular
administrative aspect, an autonomous administrative area is not partitioned, a specific Administrative Authority is
responsible for that administrative aspect for the entire autonomous administrative area.

11.5.3 Inner administrative areas

For the purpose of security or collective attribute administration, inner (administrative) areas within these kinds of
specific administrative areas may be defined:

a) torepresent alimited form of delegation; or

b) for administrative or operational convenience (e.g., where the administrative point of a subtree isin a
DSA other than the one holding the entries within the subtree, that subtree may be designated as an inner
areato alow administration viathe local DSA).

32 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

An inner administrative area may be nested within another inner administrative area.

Inner areas represent areas of limited autonomy. Entries in inner areas are administered by the specific Administrative
Authorities of the specific administrative areas within which they are contained, and also by the Administrative
Authorities of the inner areas within which they are contained. The former authorities have overall control of the
policies regulating these entries, while the latter authorities have (limited) control over those aspects of policy delegated
to them by the former.

The rules for nested inner areas, should they be permitted, shall be defined as part of the definition of the specific
administrative aspect within which they are contained.

1154 Adminigtrative points

The specification of the extent of an autonomous administrative area is implicit and consists of the identification of a
point in the DIT (the root of the autonomous administrative area's subtree), an autonomous administrative point, from
which the administrative area proceeds downwards until another autonomous administrative point is encountered, at
which another autonomous area begins.

NOTE 1 — The immediate subordinates of the root of the DIT are autonomous administrative points.

Where an autonomous administrative area is not partitioned for a specific aspect of administration, then the
administrative area for that aspect coincides with the autonomous administrative area. In this case, the autonomous
administrative point is also the specific administrative point for this aspect of administration.

Where an autonomous administrative area is partitioned for a specific aspect of administration, then the specification of
the extent of each specific administrative area consists of the identification of the root of the specific administrative
area's subtree, a specific administrative point, from which the specific administrative area proceeds downwards until
another specific administrative point (of the same administrative aspect) is encountered, at which another specific
administrative area begins.

Specific administrative areas are always bounded by the autonomous administrative area they partition.

A particular administrative point may be the root of an autonomous administrative area and may be the root of one or
more specific administrative areas.

The specification of the extent of an inner administrative area (within a specific administrative area) consists of the
identification of the root of the inner administrative areas subtree, an inner administrative point. An inner
administrative areais bounded by the specific administrative areawithin which it is defined.

An administrative point corresponding to the root of an autonomous administrative area represents a DIT Domain
(and DSA) boundary. That is, its immediate superior in the DIT must be under the administrative authority of
another DMD.

NOTE 2 —Thisimplies that aDMO cannot arbitrarily partition aDIT Domain into autonomous administrative areas.

An administrative point is represented in the Directory information model by an entry holding an administrativeRole
attribute. The values of this attribute identify the type of administrative point. This attribute is defined in 14.3.

Clauses 22 through 24 describe how administrative areas are mapped onto DSAs and the DSA information model.

Figure 7 depicts an autonomous administrative area which has been partitioned into two specific administrative areas
for a specific aspect of administration (e.g., access control). In one specific administrative area, a nested inner
administrative area has been created (e.g., because the subtree isto be held in a different DSA from the remainder of the
specific administrative area).

Figure 7 uses the abbreviations AAP (Autonomous Administrative Point), SAP (Specific Administrative Point) and IAP
(Inner Administrative point).

ITU-T Rec. X.501 (11/2008) 33

| SO/IEC 9594-2:2008 (E)

Administrative
/AN point (AAP & SAP)
\

Autonomous)
administrative —— , Spec{nﬁc .
area administrative
.
1/
/
l/)
Inner TAP/ Spec_1ﬁc .
administrative /AZ:; a(.imlnlstratlve
area \/ ! 7 area
A 7/
//—fh 7/
1/ 1 / \
Y2 mnnnmi WAV 7 \

X.501_F07

Figure 7 — Administrative points and areas

1155 Administrative entries

An entry located at an administrative point is an administrative entry. Administrative entries may have special entries,
called subentries, as immediate subordinates. The administrative entry and its associated subentries are used to control
the entries encompassed by the associated administrative area.

Where inner administrative areas are used, the scopes of these areas may overlap.

Therefore, for each specific aspect of administrative authority, a definition is required of the method of combination of
administrative information when it is possible for entries to be included in more than one subtree or subtree refinement
associated with an inner area defined for that aspect.

NOTE — It is not necessary for an administrative point to represent each specific aspect of administrative authority. For example,
there might be an administrative point, subordinate to the root of the autonomous administrative area, which is used for access
control purposes only.

11.6 DIT Domain policies

A DIT Domain policy has the following components: DIT policy objects, DIT policy procedures, and DIT policy
parameters.

An operationa attribute that represents a DIT policy parameter is termed a DIT policy attribute (e.g., subschema
administration operational attributes defined in clause 14 are DIT Domain policy attributes).

For a particular DSA, the possible values of a policy parameter may not correspond to distinct, realizable courses of
action for that component. This may be the case, for example, when the DSA lacks the technical capability to perform
all aspects of the policy procedure (e.g., implement a particular access control scheme). To be well-defined, a policy
procedure shall take such circumstances into account as part of its definition.

Specific DIT Domain policy objects and attributes are defined in clause 15 to support subschema administration.

117 DMD policies

A DMD policy is a policy that pertains to the operation of one or more of the DSAs in the DMD. A DMD policy may
apply either to all the DSAs in the DMD in a uniform manner, to a subset of the DSAs in the DMD, or it may apply to
one specific DSA.

One sort of DMD policy is to restrict or otherwise control the Directory and DSA abstract service provided by one or
more DSAs.

34 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Examples of such restrictions are:

a)
b)
0)

d)

Limiting the basic service provided to Directory (i.e., non-administrative) users to interrogation
operations only.

Limiting the service provided to users accessing the DSA indirectly, via chaining, including distinctions
based on whether the user request traversed a trusted path.

Limitations on requests accepted from users accessing the DSA directly when chaining is required to
DSAsin the DMD known to be subject to limitations of the kind indicated in the previous point.

Constraints on the kinds of searches certain users can perform, and on the characteristics of such searches
(e.g., relaxation policies).

ITU-T Rec. X.501 (11/2008) 35

| SO/IEC 9594-2:2008 (E)

SECTION 5-MODEL OF DIRECTORY ADMINISTRATIVE
AND OPERATIONAL INFORMATION

12 Model of Directory Administrative and Operational Information

12.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

1211 base The root vertex of the subtree or subtree refinement produced by the evaluation of a subtree
specification.

12.1.2 chop: A set of assertions concerning the names of the subordinates of a base.

12.1.3 directory operational attribute: An operationa attribute defined and visible in the Directory Administrative
and Operational information model.

12.1.4 directory system schema: The set of rules and constraints concerning operational attributes and subentries.

12.1.5 entry: A Directory entry or extended Directory entry, depending on the context (either users and their
applications or administration and operation of the Directory) in which the term is used.

12.1.6 subentry: A specia sort of entry, known by the Directory, used to hold information associated with a subtree
or subtree refinement.

12.1.7 subtree: A collection of object and alias entries situated at the vertices of atree. The prefix "sub" emphasizes
that the base (or root) vertex of thistree is usualy subordinate to the root of the DIT.

12.1.8 subtree refinement: An explicitly specified subset of the entries in a subtree, where the entries are not
located at the vertices of a single subtree.

12.1.9 subtree specification: The explicit specification of a subtree or subtree refinement. A subtree specification
consists of zero or more of the specification elements base, chop and specification filter. The definition is termed
"explicit" (in contrast to that of an administrative area) because the portion of the DIT subordinate to the base that is
included in the subtree or subtree refinement is explicitly specified.

12.2 Overview

From an administrative perspective, user information held in the DIB is supplemented by administrative and operational
information represented by:

— operational attributes, which represent information used to control the operation of the Directory (e.g.,
access control information) or used by the Directory to represent some aspect of its operation (e.g., time
stamp information); and

— subentries, which associate the values of a set of attributes (e.g., collective attributes) with entries within
the scope of the subentry. The scope of a subentry is a subtree or subtree refinement.

This information, illustrated in Figure 8, may be placed in the Directory by administrative authorities or by DSAs, and
isused by the Directory in the course of its operation.

Two mechanisms in the Directory abstract service that relate to this view of Directory information are:
— EntryinformationSelection permits the selection of operational attributesin an entry; and

— the subentries service control permits the List and Search operations to apply either to object and alias
entries or to subentries.

Access to operational information, as for user information, may be limited by an access control mechanism.

Entries are made visible to Directory users via the Directory abstract service, but their relationships to the DSAs that
ultimately hold them are not. The DSA information model, described in clauses 22 through 24, expresses the mapping
of these entries onto the information repositories of DSAS.

36 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

ADMINISTRATIVE ENTRY

Adminigtrative

Point (AP) ‘ User Operational

attributes attributes

SUBENTRY

SUBENTRY

User Operational
Adminigtrative

attributes attributes
AreX(AA) "

ENTRY

User Operational

attributes attributes
. X.501_F08

Figure 8 —Model of Directory Administrative and Operational I nformation

12.3 Subtrees
12.3.1 Overview

A subtree is a collection of object and alias entries situated at the vertices of a tree. Subtrees do not contain subentries.
The prefix "sub", in subtree, emphasizes that the base (or root) vertex of this tree is usually subordinate to the root of
the DIT.

A subtree begins at some vertex and extends to some identifiable lower boundary, possibly extending to leaves. A
subtree is aways defined within a context which implicitly bounds the subtree. For example, the vertex and lower
boundaries of a subtree defining a replicated area are bounded by a naming context. Similarly, the scope of a subtree
defining a specific administrative areais limited to the context of an enclosing autonomous administrative area.

12.3.2 Subtree specification

Subtree specification is the definition of a subset of the entries below a specified vertex which forms the base of the
subtree or subtree refinement.

The vertex and/or the lower boundary of the subtree may be implicitly specified, in which case they are determined by
the context within which the subtree is used.

The vertex and/or the lower boundary may be explicitly specified using the mechanism specified in this clause. This
mechanism may also be used to specify subtree refinements which are not true tree structures.

NOTE — The topological concept of a (sub)tree is useful in considering such specifications, although a particular specification
may determine a collection of entries that are not located at the vertices of a single (sub)tree. The term subtree refinement is
preferred when the entries of the collection are not so located.

Specification of a subtree consists of three optional elements of specification which identify the base of the subtree, and
then reduce the collection of subordinate entries. These elements of specification are:

a) Base — The root vertex of the subtree or subtree refinement produced by the evaluation of a subtree
specification;

b) Chop— A set of assertions concerning the names of the subordinate entries; and

c) Specification filter — A proper subset of the assertive capability of afilter applied to the subordinates.

The specification of a subtree or subtree refinement may be represented by the following ASN.1 type:

SubtreeSpecification ::= SEQUENCE {

base [O] LocalName DEFAULT { },
COMPONENTS OF ChopSpecification,
specificationFilter [4] Refinement OPTIONAL }

-- empty segquence specifies whole administrative area

ITU-T Rec. X.501 (11/2008) 37

| SO/IEC 9594-2:2008 (E)

The three components of this sequence correspond to the three specification elements identified above.

Where a value of SubtreeSpecification identifies a collection of entries that are located at the vertices of a single
subtree, the collection istermed a "subtree"; otherwise, the collection is termed a " subtree refinement".

The SubtreeSpecification type provides a general purpose mechanism for the specification of subtrees and subtree
refinements. Any particular use of this mechanism defines the specific semantics of precisely what is specified and may
impose limitations or constraints on the components of SubtreeSpecification.

When each of the components of SubtreeSpecification is absent (i.e., a value of type SubtreeSpecification which is
an empty sequence, {}), the subtree so specified is implicitly determined by the context within which the
SubtreeSpecification is used.

These terms are illustrated in Figure 9, for the case where subtrees are deployed within the context of administrative
areas.

A Administrative

/E\ Point (AP)
Local name j\
Subtree
EEEEER AP
P /
AHAdMinistrativel
HFATedl(AA)
Subtree
refinement @ AA

X.501_F09

Figure 9 — Specification of Subtreesand Subtree Refinements
within the context of Administrative Areas

12.3.3 Base

The base component of SubtreeSpecification represents the root vertex of the subtree or subtree refinement. This may
be an entry which is subordinate to the root vertex of the identified scope or may be the root vertex of the identified
scope itsalf (the default).

The relative name of the root vertex of the subtree with respect to the root vertex of the identified scope is a value of
type LocalName:

LocalName ::= RDNSequence

Note that the root vertex of the identified scope and the root vertex of the subtree coincide when LocalName is omitted
from SubtreeSpecification.

RDNSs used to name the root vertex of the subtree shall be primary RDNSs.
12.34 Chop Specification

The ChopSpecification component consists of a set of assertions concerning the names of the subordinates of a base. It
consists of avalue of type ChopSpecification:

ChopSpecification ::= SEQUENCE {

specificExclusions [1] SET SIZE (1..MAX) OF CHOICE {
chopBefore [0] LocalName,
chopAfter [1] LocalName } OPTIONAL,
minimum [2] BaseDistance DEFAULT 0,
maximum [3] BaseDistance OPTIONAL }

This type is intended to permit the specification of a tree structure (or subset thereof) starting at the base by two
methods, specific exclusions and base distance.

Where any attribute in an RDN in chopBefore or chopAfter has multiple distinguished values differentiated by
context, the primary distinguished value shall be used as the value in the RDN in LocalName.

38 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

12.3.4.1 Specific Exclusions

The specificExclusions component has two forms, chopBefore and chopAfter, which may be used individually or in
combination.

The chopBefore component defines a list of exclusions, each in terms of some limit point which is to be excluded,
along with its subordinates, from the subtree or subtree refinement. The limit points are the entries identified by a
LocalName, relative to the base.

The chopAfter component defines a list of exclusions, each in terms of some limit point whose subordinates are to be
excluded from the subtree or subtree refinement. The limit points are the entries identified by a LocalName, relative to
the base.

12.3.4.2 Minimum and Maximum

These components allow exclusion of all entries that are superior to entries that are minimum RDN arcs below the base,
as well as entries which are subordinate to entries that are maximum RDN arcs below the base. These distances are
expressed by values of the type BaseDistance:

BaseDistance ::= INTEGER (0..MAX)

For the purpose of chop specifications, a compound entry is counted as a single entry. In a compound entry, all family
members are counted as having the same base distance as the ancestor, since they are al part of the same logical entry.

A value of minimum equal to zero (the default), corresponds to the base. An absent maximum component indicates that
no lower limit should be imposed on the subtree or subtree refinement.

12.35 Specification Filter

The specificationFilter component consists of a proper subset of the assertive capability of a filter (see ITU-T
Rec. X.511 | ISO/IEC 9594-3) applied to the subordinates of a base. Only entries for which the filter evaluates to true
are included in the resulting subtree refinement. It consists of avalue of type Refinement:

Refinement ::= CHOICE {

item [0] OBJECT-CLASS.&id,

and [1] SET SIZE (1..MAX) OF Refinement,
or [2] SET SIZE (1..MAX) OF Refinement,
not [3] Refinement }

A Refinement evaluates to TRUE as if it were a filter making an equality assertion regarding values of the attribute
type objectClass only.

If a family member is excluded from a subtree by this specification, all its subordinate family members are also
excluded.

12.4 Operational attributes

There are three varieties of operational attributes: Directory operational attributes, DSA shared operational attributes,
and DSA specific operational attributes.

Directory operational attributes occur in the Directory information model and are used to represent control information
(e.g., access control information) or other information provided by the Directory (e.g., an indication of whether an entry
isaleaf or non-leaf entry).

DSA shared operational attributes occur only in the DSA Information Model, and are not visible at al in the Directory
Information Models.

DSA specific operational attributes occur only in the DSA Information Model, and are not visible at all in the Directory
Information Models.

NOTE — These are described in clauses 23 through 24.

The definition and use of each operational attribute is a matter for specification in the appropriate Directory
Specification.

ITU-T Rec. X.501 (11/2008) 39

| SO/IEC 9594-2:2008 (E)

12.5 Entries
12.5.1

From an administrative perspective, user information held in an entry may be supplemented by administrative and
operational information represented by operational attributes.

Overview

The Directory uses the object class attribute and DIT content rules applicable to an entry to control the user attributes
required and permitted in the entry. The operational attributes of an entry are governed by the Directory system schema
(see clause 14) applicable to the entry.

1252

Although not normally visible, the directory operational attributes within entries may be made visible to authorized
(e.g., administrative) users of the directory abstract service. Certain operationa attributes (e.g., entryACl, or
modifyTimestamp) might also be available to ordinary users.

Accessto operational attributes

12.6 Subentries

126.1

A subentry is a special kind of entry immediately subordinate to an administrative point. It contains attributes that
pertain to a subtree (or subtree refinement) associated with its administrative point. The subentries and their
administrative point are part of the same naming context (see clause 21).

Overview

A single subentry may serve all or several aspects of administrative authority. Alternatively, a specific aspect of
administrative authority may be handled through one or more of its own subentries. At most, one subentry is permitted
for a subschema administrative authority. Access control and collective attribute authorities may have severa
subentries.

A subentry is not considered in List and Search operations unless the subentries service control is included in the
request.

A subentry shall not have subordinates.

The structure of a subentry corresponding to an administrative point is depicted in Figure 10.

ADMINISTRATIVE ENTRY

User Operational
attributes attributes
Subentry Subentry
SUBENTRY
Subentry Subtree Object
RDN specification class Attribute Attribute
attribute attribute attribute

A subentry consists of:

40

acommonName attribute, specified in ITU-T Rec. X.520 | ISO/IEC 9594-6 which contains the RDN of

the subentry;

asubtreeSpecification attribute, specified in clause 14;
an objectClass attribute, specified in clause 13, which indicates the purpose(s) of the subentry in the

Figure 10 — Structure of a Subentry

operation of the Directory;

ITU-T Rec. X.501 (11/2008)

X.501_F10

| SO/IEC 9594-2:2008 (E)

— other attributes, depending on the values of the objectClass attribute.

Subentries may also contain operational attributes with appropriate semantics (see 12.6.4).

12.6.2 Subentry RDN attribute

The commonName attribute used as the subtree identifier serves to distinguish the various subentries that may be
defined as immediate subordinates of a specific administrative entry.
NOTE — The value of this attribute might be selected to serve as a mnemonic to representatives of the Administrative Authority.

The commonName attribute for a subentry shall not contain multiple distinguished values differentiated by context;
only asingle distinguished value is permitted.

12.6.3 Subtree Specification attribute

The subtreeSpecification attribute defines the collection of entries within the administrative area with which the
subtree is concerned.

12.6.4 Useof Object Classattribute
The content of a subentry is regulated by the values of the subentry's objectClass attribute.

The objectClass attribute of all subentries shall contain the value subentry. The subentry object class is a structural
object class, defined in clause 14, used to include the commonName, subtreeSpecification and objectClass attributes
in al subentries.

In order to regulate the remaining attributes, the other values of the objectClass attribute, representing the auxiliary
object classes allowed for the subentry, shall be used.

The definition of the semantics of one of these values includes an identification and specification of zero or more
attribute types that shall or may appear in the subentry when the objectClass attribute assumes the value. The definition
of the semantics of avalue for the objectClass attribute shall include:

— anindication of whether an entry may be included in more than one subtree or subtree refinement
associated with the particular purpose (e.g., it may not be permitted in the case of subschema, but may
be permitted for access control); and if so

— theeffects of the combination of associated subentry attributes, if any.

A subentry of a particular object class may only be subordinate to an administrative entry if the administrativeRole
attribute permits that class of subentry as a subordinate.

As for object and alias entries, information held in a subentry may be supplemented by administrative and operational
information represented by operational attributes. For example, a subentry is permitted to contain entry ACI, provided
only that this ACI is permitted by and consistent with the value of the accessControlScheme attribute of the
corresponding access control specific point. Similarly, a subentry may contain amodify Timestamp.

12.6.5 Other subentry attributes

The remaining attributes within a subentry depend on the values of the objectClass attribute. For example, a
subschema attribute may only be placed in asubentry if itsobjectClass attribute has subschema as one of its values.

12.7 I nformation model for collective attributes

An autonomous administrative area may be designated as a collective attribute specific administrative area in order
todeploy and administer collective attributes. This shall be indicated by the presence of the value
id-ar-collectiveAttributeSpecificArea in the associated administrative entry's administrativeRole attribute (in addition
to the presence of the value autonomousArea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer collective attributes in the
specific partitions. In this case, the administrative entries for each of the collective attribute specific administrative areas
are indicated by the presence of the value id-at-collectiveAttributeSpecificArea in these entries administrativeRole
attributes.

If such an autonomous administrative area is not partitioned, there is a single specific administrative area for collective
attributes encompassing the entire autonomous administrative area.

Additionally, a specific administrative area defined for the purpose of collective attribute administration may be further
divided into nested inner areas for the same purpose. The administrativeRole attribute of the administrative entries for
each such inner administrative area shall indicate this by the presence of the valueid-ar-collectiveAttributelnnerArea.

ITU-T Rec. X.501 (11/2008) 41

| SO/IEC 9594-2:2008 (E)

An entry collection and its associated collective attributes are represented in the Directory information model by a
subentry, termed a collective attribute subentry, whose objectClass attribute has the value
id-sc-collectiveAttributeSubentry, as defined in clause 14. A subentry of this class may be the immediate subordinate
of an administrative entry whose administrativeRole attribute contains the value
id-ar-collectiveAttributeSpecificArea or id-ar-collectiveAttributelnnerArea.

Where there are different entry collections within a given collective attribute area, each shall have its own subentry.

The entry collection itself is defined by the value of the subtreeSpecification operational attribute of the subentry. This

value defines the scope of the collective attribute subentry. The user attributes of the subentry are the collective

attributes of the entry collection.
NOTE 1 — Because subtree refinement is based on object class, the association of collective attributes with object entries can be
done in a manner that naturally extends the schema for these entries. For example, the organizationalPerson entries of an
organization might be extended with a set of collective attributes appropriate for al persons affiliated with the organization by
the creation of a subentry whose associated subtree is refined to include only organizationalPerson entries and which contains
the organization's set of collective attributes. Additionally, a DIT Content Rule for such entries would need to be defined to allow
collective attributes to become visible in the entries.

Collective attribute types and non-collective attribute types differ semantically. An attribute type capable of expressing
collective semantics shall be designated as a collective attribute type at the time of its definition.

NOTE 2 — Merging procedures employed by the Directory in the case of independent sources of values of a collective attribute
type are described in ITU-T Rec. X.511 | ISO/IEC 9594-3.

Collective attributes may be excluded from appearing in a particular entry through use of the collectiveExclusions
attribute defined in clause 14.

12.8 I nformation model for context defaults

An autonomous administrative area may be designated as a context default specific administrative area in order
to deploy and administer context defaults. This shall be indicated by the presence of the vaue
id-ar-contextDefaultSpecificArea in the associated administrative entry's administrativeRole attribute (in addition to
the presence of the value id-ar-autonomousArea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer context defaults in the
specific partitions. In this case, the administrative entries for each of the context default specific areas are indicated by
the presence of the value id-ar-contextDefaultSpecificArea in these entries' administrativeRole attribute.

If an autonomous administrative areais not partitioned, there is a single specific administrative area for context defaults
encompassing the entire autonomous administrative area.

Context defaults are represented in the Directory Information model by a subentry, termed a context default subentry,
whose objectClass attribute has the value id-sc-contextAssertionSubentry as defined in 14.7. A subentry of this class
may be the immediate subordinate of an administrative entry whose administrativeRole attribute contains the value
id-ar-contextDefaultSpecificArea.

The context default subentry defines a set of context assertions, any one of which is applied whenever there is no
context assertion applicable to a given attribute type specified by the user when accessing the portion of the DIT defined
by the subtreeSpecification operational attribute of the subentry. Application of default context assertions is described
in8.9.2.2, and in 7.6.1 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

42 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

SECTION 6 — THE DIRECTORY SCHEMA

13 Directory Schema

13.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:
13.1.1 attribute syntax: The ASN.1 data type used to represent values of an attribute.

13.1.2 directory schema: The set of rules and constraints concerning DIT structure, DIT content, DIT context use,
object classes, and attribute types, syntaxes and matching rules which characterize the DIB. The Directory Schema is
manifested as a set of non-overlapping subschemas each governing entries of an autonomous administrative area (or a
subschema specific partition thereof). The Directory schema is concerned only with Directory User Information.

13.1.3 (directory) subschema: The set of rules and constraints concerning DIT structure, DIT content, object classes
and attribute types, syntaxes and matching rules which characterize the DIB entries within an autonomous
administrative area (or a subschema specific partition thereof).

13.1.4 DIT content rule: A rule governing the content of entries of a particular structural object class. It specifies
the auxiliary object classes and additional attribute types permitted to appear, or excluded from appearing, in entries of
the indicated structural object class.

13.1.5 DIT context use: A rule governing the context types that may be associated with attribute values of particular
attribute types. It specifies the permitted and the mandatory context types for the attribute type.

13.1.6 DIT structure rule: A rule governing the structure of the DIT by specifying a permitted superior to
subordinate entry relationship. A structure rule relates a name form, and therefore a structural object class, to superior
structure rules. This permits entries of the structural object class identified by the name form to exist in the DIT as
subordinates to entries governed by the indicated superior structure rules.

13.1.7 governing structure rule (of an entry): With respect to a particular entry, the single DIT structure rule that
appliesto the entry. Thisruleisindicated by the governingStructureRule operational attribute.

13.1.8 name form: A name form specifies a permissible RDN for entries of a particular structural object class. A
name form identifies a named object class and one or more attribute types to be used for naming (i.e., for the RDN).
Name forms are primitive pieces of specification used in the definition of DIT structure rules.
NOTE — Name forms are registered and have global scope. DIT structure rules are not registered and have the scope of the
administrative area with which they are associated.

13.1.9 superior structure rule: With respect to a particular entry, the DIT structure rule governing the entry's
superior.

13.2 Overview

The Directory Schema is a set of definitions and constraints concerning the structure of the DIT, the possible ways
entries are named, the information that can be held in an entry, the attributes used to represent that information and their
organization into hierarchies to facilitate search and retrieval of the information and the ways in which values of
attributes may be matched in attribute value and matching rule assertions.

NOTE 1 — The schema enables the Directory system to, for example:
— prevent the creation of subordinate entries of the wrong object-class (e.g., a country as a subordinate of a person);

— prevent the addition of attribute-types to an entry inappropriate to the object-class (e.g., a seriad number to a person's
entry);

— prevent the addition of an attribute value of a syntax not matching that defined for the attribute-type (e.g., a printable
string to a bit string).

Formally, the Directory Schema comprises a set of:
a) Name Form definitions that define primitive naming relations for structural object classes,

b) DIT Sructure Rule definitions that define the names that entries may have and the ways in which the
entries may be related to one another in the DIT;

¢) DIT Content Rule definitions that extend the specification of allowable attributes for entries beyond those
indicated by the structural object classes of the entries;

ITU-T Rec. X.501 (11/2008) 43

| SO/IEC 9594-2:2008 (E)

d) Object Class definitions that define the basic set of mandatory and optional attributes that shall be
present, and may be present, respectively, in an entry of a given class, and which indicate the kind of
object class that is being defined (see 7.3);

€) Attribute Type definitions that identify the object identifier by which an attribute is known, its syntax,
associated matching rules, whether it is an operational attribute and if so its type, whether it is a
collective attribute, whether it is permitted to have multiple values and whether or not it is derived from
another attribute type;

f) Matching Rule definitions that define matching rules;

g) DIT Context Use definitions that govern the context types that may be associated with attribute values of
any particular attribute type.

Figure 11 illustrates the relationships between schema and subschema definitions on the one side, and the DIT,
directory entries, attributes, and attribute values on the other.

s N
Directory rulesfor N Directory
Schema e Information Tree
| J
uses l T belong to
e \
Subschema rulesfor - Subschema
DIT Structure Rule "l Adminigtrative Areas
| J
uses | 1 bel ong to
(Name Form h
DIT Content Rule rulesfor > Entries
Object Class
o /
use | 1 bel ong to
(i) lesfor
Attribute Types ru _)
DIT Context Use 7 Attributes
. J/
use l T belong to
" I | f
ASN.1 type rulesfor -
Matching Rule 7 Values
| J

X.501_F11

Figure 11 — Overview of Directory Schema

Figure 11 isinterpreted as follows:
— theitemslisted vertically on the |eft represent elements of schema;

— theitems listed vertically on the right represent instances of corresponding schema items, instantiated
according to the rules defined by these schemaitems;

— therelationship between items of schemaisillustrated by the "uses' relationship;

— the relationship between instances of different aspects of schema is illustrated using the "belong to"
relationship.

The Directory Schema is distributed, like the DIB itself. It is manifested as a set of non-overlapping subschemas each
governing entries of an autonomous administrative area (or a subschema specific partition thereof). A subschema
administrative authority establishes the rules and constraints constituting the subschema.

The subschema administrative authority may elect to use individual elements of the Directory Schema having global
scope which are defined in these Directory Specifications: name forms, object classes and attributes (types and
matching rules). It may also choose to define alternatives to these elements more appropriate to its own environment or
it may choose some intermediate approach, using both standardized and proprietary schema elements.

The subschema administrative authority defines those schema elements whose scope is limited to the subschema: DIT
structure rules, DIT content rules, and DIT context use. In addition, the subschema administrative authority may also
specify which matching rules are applicable to which attribute types.

44 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The Directory Schema is concerned only with directory user information. Although some support for the specification
of operational information is provided in the notation defined in this clause, the regulation of Directory Administrative
and Operationa Information is the concern of the Directory System Schema.

NOTE 2 — The Directory System Schemais described in clause 14.

133 Object class definition

The definition of an object classinvolves:
a) indicating which classes this object classisto be a subclass of;
b) indicating what kind of object classis being defined;

¢) listing the mandatory attribute types that an entry of the object class shall contain in addition to the
mandatory attribute types of all its superclasses;

d) listing the optional attribute types that an entry of the object class may contain in addition to the optional
attributes of all its superclasses;
€) assigning an object identifier for the object class.
NOTE — Collective attributes shall not appear in the attribute types of an object class definition.

1331 Subclassing

There are restrictions on subclassing, namely:
— only abstract object classes shall be superclasses of other abstract object classes.

There is one special object class, of which every structural object classis a subclass. This object classis called top. top
is an abstract object class.

13.3.2 Object classattribute

Every entry shall contain an attribute of type objectClass to identify the object classes and superclasses to which the
entry belongs. The definition of this attribute is given in 13.4.8. This attribute is multi-valued.

There shall be one value of the objectClass attribute for the entry's structural object class and a value for each of its
superclasses. top may be omitted.

An entry's structural object classes shall not be changed. The initial values of the objectClass attribute are provided by
the user when the entry is created.

Where auxiliary object classes are used, an entry may contain values of the objectClass attribute for the auxiliary
object classes and their superclasses alowed by a DIT content rule. If a value for an alowed auxiliary object class is
present, then values for the superclasses of the auxiliary object class shall also be present.

Where the objectClass attribute contains an object identifier value for an auxiliary object class, then the entry shall
contain the mandatory attributes indicated by that object class.

NOTE 1 — The requirement that the objectClass attribute be present in every entry is reflected in the definition of top.

NOTE 2 — Because an object class is considered to belong to all its superclasses, each member of the chain of superclasses up to
top is represented by avaluein the objectClass attribute (and any value in the chain may be matched by afilter).

NOTE 3 — Access Control restrictions may be placed on modification of the objectClass attribute.

In conjunction with the applicable DIT content rules, the Directory enforces the defined object class for every entry in
the DIB. Any attempt to modify an entry that would violate the entry's object class definition that is not explicitly
allowed by the entry's DIT content rule shall fail.

NOTE 4 — In particular, the Directory will ordinarily prevent:

a) attribute types absent from an entry's structural object class definition and not permitted by the entry's DIT content rule
being added to an entry of that object class;

b) anentry being created with one or more absent mandatory attribute types for an object class of the entry;
¢) amandatory attribute type for the object class of the entry being deleted.

13.3.3 Object class specification
Object classes may be defined as values of the OBJECT-CLASS information object class:

OBJECT-CLASS ::= CLASS{
&Superclasses OBJECT-CLASS OPTIONAL,
&kind ObjectClassKind DEFAULT structural,
&MandatoryAttributes ATTRIBUTE OPTIONAL,
&Optional Attributes ATTRIBUTE OPTIONAL,

ITU-T Rec. X.501 (11/2008) 45

| SO/IEC 9594-2:2008 (E)

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SUBCLASS OF &Superclasses |

[KIND &kind]

[MUST CONTAIN &MandatoryAttributes]

[MAY CONTAIN &OptionalAttributes]

ID &id }

ObjectClassKind ::= ENUMERATED {
abstract 0),
structural (1),
auxiliary 2)}

For an object class which is defined using this information object class:
a) &Superclasses isthe set of object classes which are its direct superclasses;
b) &kind isitskind;
C¢) &MandatoryAttributes isthe set of attributes which entries of that class shall contain;

d) &OptionalAttributes is the set of attributes which entries of that class may contain, except that if an
attribute appears in both the mandatory and optional sets, it shall be considered mandatory;

€) &id istheobject identifier assigned toit.
The object classes previously mentioned (top and alias) are defined below:

top OBJECT-CLASS ::= {

KIND abstract
MUST CONTAIN { objectClass }
ID id-oc-top }

alias OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN { aliasedEntryName }
ID id-oc-alias }
NOTE 1—The object class alias does not specify appropriate attribute types for the RDN of an aias entry. Administrative
Authorities may specify subclasses of the class alias which specify useful attribute types for RDNs of alias entries.

parent OBJECT-CLASS ::= {

KIND abstract

ID id-oc-parent }
child OBJECT-CLASS ::= {

KIND auxiliary

ID id-oc-child }

Neither the parent nor the child object classes shall be combined with the alias object class to form an alias entry.

The parent object class is derived by the presence of an immediately subordinate family member, marked by the
presence of a child object class value. It may not be directly administered. The child object class vaue may only be
added or removed when the result is consistent with the architecture of compound entries (e.g., the subordinates of
family members shall always have a child object class).

NOTE 2 — The object classes parent and child do not specify any appropriate attribute types for the RDNs of family members.
Thiswill be done in the normal way viathe appropriate structural object classes and name forms for these entries.

13.4 Attributetype definition

The definition of an attribute type involves:

a) optionaly indicating that the attribute type is a subtype of a previously defined attribute type, its direct
supertype;

b) specifying the attribute syntax for the attribute type;

c) optionaly indicating the equality, ordering and/or substring matching rule(s) for the attribute type;
d) indicating whether an attribute of this type shall have only one or may have more than one value;
e) indicating whether the attribute type is operational or user;

f) optionally indicating that a user attribute typeis collective;

g) optionaly indicating that an operational attribute is not user modifiable;

46 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

h) for operational attributes, indicating the application;
i) assigning an object identifier to the attribute type.

Any user attribute can be identified by an administrative authority as an anchor attribute, having friend attributes.
Therefore, the attribute type definition does not identify the friends of an anchor attribute. This may vary from
subschema to subschema.

13.4.1 Operational attributes

Some operational attributes are under direct user control. In other cases, the operational attribute's values are controlled
by the Directory. In the latter case, the definition of the operational attribute shall indicate that no user modifications to
the attribute values are permitted.

The specification of an operational attribute type shall indicate its application, which shall be one of the following:
— Directory operationa attribute (e.g., access control attributes);
— DSA shared operational attribute (e.g., a master-access-point attribute);
— DSA gspecific operational attribute (e.g., a copy-status attribute).

13.4.2 Attribute hierarchies

An attribute hierarchy shall contain either user attributes or operational attributes but not both. It follows that a user
attribute shall not be derived from an operational attribute, and that an operational attribute shall not be derived from a
user attribute.

An operational attribute that is a subtype of another operational attribute shall have the same application as its
supertype.

If an attribute type is not a subtype of another attribute type, the attribute syntax and matching rules (if applicable) shall
be specified in the attribute type definition. Specifying an attribute syntax shall be done by directly specifying the
ASN.1 datatype.

If an attribute type is a subtype of an indicated type, the definition need not specify an attribute syntax, in which case its
attribute syntax is that of its direct supertype. If the attribute syntax is indicated and the attribute has a direct supertype,
the indicated syntax shall be compatible with the supertype's syntax, i.e., every possible value satisfying the attribute's
syntax shall also satisfy the supertype's syntax.

If an attribute type is a subtype of another attribute type, the matching rules applicable to the supertype are applicable to
the subtype, unless extended or modified in the definition of the subtype. A matching rule defined for a supertype may
not be removed when defining a subtype.

13.4.3 Friend attributes

The list of friends of an anchor attribute shall only contain user attributes. The relationship imposes no restraints
whatever on the semantics, syntax, or other characteristics of afriend attribute.

NOTE — An anchor attribute may be defined as a dummy attribute.

13.44 Collective attributes
An operational attribute shall not be defined to be collective.

A user attribute may be defined to be collective. This indicates that the same attribute values will appear in the entries
of an entry collection subject to the use of the collectiveExclusions attribute.

Collective attributes shall be multi-valued.

13.45 Derived attributes

A derived attribute is one that contains information using the syntax of attribute information, but where the values are
computed as returned rather than being held in the DIB.

The family-information derived attribute is introduced for use in the Directory service for the containment of family
information. Its characteristics are defined in 7.7.1 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

DSAs may aso use derived attribute technology to provide other attributes. For example, all operational attributes that
include the AccessPoint value of a specific DSA may (and probably should) derive the value from a single source of
the information, which may be suitably administered.

ITU-T Rec. X.501 (11/2008) 47

| SO/IEC 9594-2:2008 (E)

13.4.6 Attribute syntax

If an equality matching rule is specified for the attribute type, the Directory shall ensure that the correct attribute syntax
isused for every value of this attribute type.

13.4.7 Matchingrules

Equality, ordering and substrings matching rules may be indicated in the attribute type definition. The same matching
rule may be used for one or more of these types of matchesif the semantics of the rule allows for more than one of these
different types of matches.

NOTE 1 — Thisfact should be reflected in the definition of the indicated matching rule.
If no equality matching ruleisindicated, the Directory:

a) treats values of this attribute as having type ANY, i.e., the Directory may not check that those values
conform with the data type or any other rule indicated for the attribute;

b) does not permit the attribute to be used for naming;

¢) doesnot allow individual values of multi-valued attributes to be added or removed,;
d) doesnot perform comparisons of values of the attribute;

e) will not attempt to evaluate AVAs using values of such an attribute type.

If an equality matching rule isindicated, the Directory:

a) treatsvalues of this attribute as having the type defined in the & Type field in the attribute's definition (or
that of the attribute from which the attribute is derived);

b) will use the indicated equality matching rule for the purpose of evaluating attribute value assertions
concerning the attribute;

¢) will only match a presented value of a suitable data type as specified in the attribute type definition.

NOTE 2 — This subclause applies equally to an attribute whose equality matching rule uses an assertion syntax different from the
syntax of the attribute type.

If no ordering matching rule is indicated, the Directory shall treat any assertion of an ordering match using the syntax
provided by the Directory Abstract Service as undefined.

If no substrings matching rule is indicated, the Directory shall treat any assertion of a substring match using the syntax
provided by the Directory Abstract Service as undefined.

An attribute type shall only specify matching rules whose definition applies to the attribute's attribute syntax.

13.4.8 Attribute definition
Attributes may be defined as values of the ATTRIBUTE information object class:

ATTRIBUTE ::= CLASS {

&derivation ATTRIBUTE OPTIONAL,

&Type OPTIONAL, -- either &Type or &derivation required --

&equality-match MATCHING-RULE OPTIONAL,

&ordering-match MATCHING-RULE OPTIONAL,

&substrings-match MATCHING-RULE OPTIONAL,

&single-valued BOOLEAN DEFAULT FALSE,

&collective BOOLEAN DEFAULT FALSE,

&dummy BOOLEAN DEFAULT FALSE,

-- operational extensions --

&no-user-modification BOOLEAN DEFAULT FALSE,

&usage AttributeUsage DEFAULT userApplications,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SUBTYPE OF &derivation]

[WITH SYNTAX &Type]

[EQUALITY MATCHING RULE &equality-match]

[ORDERING MATCHING RULE &ordering-match]

[SUBSTRINGS MATCHING RULE &substrings-match]

[SINGLE VALUE &single-valued]

[COLLECTIVE &collective]

[DUMMY &dummy |

[NO USER MODIFICATION &no-user-modification]

[USAGE &usage]

ID &id }

48 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

AttributeUsage ::= ENUMERATED {

userApplications 0),
directoryOperation),
distributedOperation (2),
dSAOperation 3}

For an attribute which is defined using this information object class:
a) &derivation isthe attribute, if any, of which it is a subtype;
b) &Type isitsattribute syntax. This shall be an ASN.1 type;
C) &equality-match isitsequality matching rule (if any);
d) &ordering-match isits ordering matching rule (if any);
€) &substrings-match isits substrings matching rule (if any);
f) &single-valued is TRUE if it issingle valued, and false otherwise;
g) &collective isTRUEif itisacollective attribute, and false otherwise;
h) &dummy isTRUE if it isadummy attribute, and FALSE otherwise;
i) &no-user-modification is TRUE if it is an operational attribute which cannot be modified by the user;

j) &usage indicates the operational usage of the attribute. userApplications means it is a user attribute,
directoryOperation, distributedOperation, and dSAOperation mean it is a directory, distributed, or
DSA operationa attribute respectively;

k) &id isthe object identifier assigned to it.

The attribute types defined in the first edition of this Directory Specification, which are known to and used by the
Directory for its own purposes, are defined as follows:

objectClass ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectldentifierMatch

ID id-at-objectClass }
aliasedEntryName ATTRIBUTE ::={

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

ID id-at-aliasedEntryName }

NOTE — The matching rules referred to in these definitions are themselves defined in 13.5.2.

The objectClass and aliasedEntryName attributes are defined as user attributes even though they are used for
Directory operations and semantically should be defined as operational. This is because these attributes were defined as
user attributes before the operationa attribute concept and must remain as user attributes to facilitate interworking
between systems implementing different editions of this Directory Specification.

135 Matching rule definition
1351 Overview

The definition of a matching rule involves:
a) optionaly defining the parent matching rules from which the present matching rule may be derived,;
b) defining the syntax of an assertion of the matching rule;
c) specifying the different types of matches supported by the rule;

d) defining the appropriate rules for evaluating a presented assertion with respect to target attribute values
held in the DIB;

€) assigning an object identifier to the matching rule.

A matching rule shall be used to evaluate attribute value assertions of attributes indicating the rule as their equality
matching rule. The syntax used in the attribute value assertion (i.e., the assertion component of the attribute value
assertion) is the matching rule's assertion syntax.

A matching rule may apply to many different types of attributes with different attribute syntaxes.

ITU-T Rec. X.501 (11/2008) 49

| SO/IEC 9594-2:2008 (E)

The definition of a matching rule shall include a specification of the syntax of an assertion of the matching rule and the
way in which values of this syntax are used to perform a match. This does not require afull specification of the attribute
syntax to which the matching rule may apply. A definition of a matching rule for use with attributes with different
ASN.1 syntaxes shall specify how matches shall be performed.

The applicability of defined matching rules to the attributes contained in a subschema specification (over and above the
matching rules used in the definition of these attribute types) is indicated through the subschema specification
operational attribute matchingRuleUse, defined in 15.7.7.

13.5.2 Matching rule definition
Matching rules may be defined as values of the MATCHING-RULE information object class:

MATCHING-RULE ::= CLASS {

&ParentMatchingRules MATCHING-RULE OPTIONAL,

&AssertionType OPTIONAL,

&uniqueMatchindicator ATTRIBUTE OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[PARENT &ParentMatchingRules]

[SYNTAX &AssertionType]

[UNIQUE-MATCH-INDICATOR &uniqueMatchlindicator]

ID &id }

For amatching rule which is defined using this information object class:

a) &ParentMatchingRules field is used if the matching rule being defined combines the characteristics of
two or more other matching rules. It is given as a set of two or more object identifiers for the matching
rules that supply the basic characteristics of the matching rule being defined (e.g., matching algorithm); it
shall be omitted for a basic matching rule.

b) &AssertionType is the syntax for an assertion using this matching rule; if it is omitted, the assertion
syntax is the same syntax as that of the attribute the rule is applied to unless the matching rule specifies
otherwise. If it is present, it may specify arestriction on the parent matching rule(s) if present, but in this
case it shall be compatible with the syntax for the parent matching rule(s) (i.e., a value complying with
&AssertionType shall also comply with &AssertionType for the parent matching rule(s)).

Cc) &uniqueMatchindicator is a notification attribute type. When present, unique matching is required. For
a mapping-based matching rule (see 13.6), that means mapping against the mapping table shall yield an
unambiguous result. If there are multiple matches against the mapping table, the search request shall be
regjected with a serviceError with problem ambiguousKeyAttributes. In addition, a notification
attribute of the type specified by thisfield shall be placed in CommonResults of the error returned.

NOTE 1 — Such a situation can occur in geographical matching when, for example, an assertion can specify "Newton"

asalocality in the United Kingdom,; there are many distinct towns with this name, which need to be distinguished by a
qualifier (e.g., "Newton, Cambs").

d) &id istheobject identifier assigned toit.
If two or more matching rules are used for ParentMatchingRules, the result is a combined matching rule that returns a
result, for values that are compatible with AssertionType, as prescribed by the following rule:

a) if theresult of any parent matching ruleis TRUE, the combined matching rule shall return TRUE;

b) otherwise, if the result of any parent matching rule is FALSE, the combined matching rule shall return
FALSE; or

¢) otherwise, the combined matching rule shall return undefined.

The following table shows the rules of combination of two matching rules A and B; the table could in principle be
extended into multiple dimensions, with similar result patterns, to cover the case of three or more parent matching rules:

Rule A
TRUE FALSE UNDEFINED
TRUE TRUE TRUE TRUE
Rule B FALSE TRUE FALSE FALSE
UNDEFINED TRUE FALSE UNDEFINED

By combining matching rules as specified above, it is possible to obtain valid matching in cases where the matching
would otherwise fail.

50 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

NOTE 2 — A specific case of the use of a parent matching rule is with the combination of an arbitrary matching rule with the
specia matching rule ignorelfAbsentMatch. The latter causes a filter-item to return TRUE if the attribute is absent; if it is
present, the normal rules apply. This enables a search filter to examine entries when some attributes specified in the search filter
are absent. See 8.7.1 of ITU-T Rec. X.520 | ISO/IEC 9594-6.

The objectidentifierMatch matching rule is defined as follows:

objectldentifierMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
ID id-mr-objectldentifierMatch }

A presented value of type object identifier matches a target value of type object identifier if and only if they both have
the same number of integral components, and each integral component of the first is equal to the corresponding
component of the second. This matching rule is inherent in the definition of the ASN.1 type object identifier.
objectldentifierMatch is an equality matching rule.

The distinguishedNameMatch is defined as follows:

distinguishedNameMatch MATCHING-RULE ::= {
SYNTAX DistinguishedName
ID id-mr-distinguishedNameMatch }

A presented distinguished name value matches a target distinguished name value if and only if all of the following are
true:

a) thenumber of RDNsin each is the same;
b) corresponding RDNs have the same number of AttributeTypeAndValue;

c) corresponding AttributeTypeAndValue (i.e., those in corresponding RDNs and with identical attribute
types) have attribute values which match as described in 9.4.

distinguishedNameMatch isan equality matching rule.

13.6 Relaxations and tightenings

Relaxation and tightening are functions that in a systematic way modify the matching of one or more filter items. If
relaxation is performed, the modification of the matching is done in such away as to increase the likelihood of having
more matched entries. Relaxation is performed when the number of matched entries is below a certain minimum.
Tightening is performed in a similar way when the number of matched entries is above a certain maximum. There are
two modes of relaxation/tightening:

a) thematching rule applied for a particular attribute type can be replaced by matching rule substitution in a
stepwise fashion until the required effect is achieved or the possibilities have been exhausted as detailed
in 13.6.1; and

b) the relaxation/tightening can be applied as part of a mapping-based matching as detailed in 13.6.2.
13.6.1 Matching rule substitution

The matching rule substitution can be controlled by a governing-search-rule within a service-specific administrative
area (see 16.10.7). It can aso be controlled by the user in the search request (see 10.2.1 of ITU-T Rec. X.511 |
I SO/IEC 9594-3). In both cases, the RelaxationPolicy construct, as defined in 16.10, controls the substitution.

Relaxation/tightening by matching rule substitution modifies the action of a filter by systematically substituting the
previously applicable matching rules for selected attributes onto matching rules that provide looser (or tighter)
matching. Having relaxed, or tightened by matching rule substitution, the whole of the search process is re-evaluated on
the same set of entries within the scope of the search. Re-evaluation can continue until no more relaxations exist, or
until a satisfactory return (less than or equal to maximum, or more than minimum, by reference to the controlling
RelaxationPolicy elements) is made.

The result is that the filter remains the same for each re-evaluation, but the individual matching rules used to evaluate
the filter undergo a substitution as necessary (see Figure 12). Relaxation may either be evaluated on a DSA by-DSA
basis, using no coordinated relaxation between DSAS, or may aternatively use the chainedRelaxation component of
ChainingArguments to define what relaxation is to be used.

ITU-T Rec. X.501 (11/2008) 51

| SO/IEC 9594-2:2008 (E)

Search A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4

relaxation —p Matching rule mapping

e T T T T T T I

Filter evaluation on local
part of DIT

X.501_F12

Figure 12 —Matching rule substitution

When a relaxation policy is to be used, the DSA before starting a local search makes a basic substitution for each
attribute type for which a basic substitution is defined, as specified by the relaxation policy.
NOTE 1 — A particular useful application of basic substitution is, as an example, for the localityName attribute type to substitute

the caselgnoreSubstringMatch matching rule with the generalwordMatch matching rule in situations where this matching rule
is more appropriate and the user is expected to formulate asubstrings filter item accordingly.

If too few entries result from the search, as applied to this particular DSA, the first relaxation policy is applied; if too
few entries still result, the next relaxation policy is applied; and so on.

Similarly, if too many entries result from the search, the first tightening policy is applied in a similar fashion. There is
no reversal from atightening to arelaxation, or vice versa.

A relaxation applied by one set of MRSubstitution for a particular attribute applies until countermanded by another
MRMapping. The countermanding can be explicit by specifying the matching rule, or implicit by omitting the
oldMatchingRule identifier.

If arelaxed evaluation is performed due to too few results from the previous evaluation, and if too many results are
returned from the relaxed evaluation, some or al of the results from the relaxed evaluation shall be returned. If a
tightened evaluation is performed due to too many results from the previous evaluation, and if too few are returned from
the tightened evaluation, some or al of the results from the previous evaluation shall be returned. In either case, the
relaxation or tightening process stops.

An applicable relaxation policy applies both to filter or extendedFilter, as appropriate.

NOTE 2 — Because relaxation allows filter item evaluations to be relaxed or tightened for the ordinary filter, the need for
extended filters to achieve more complex filtering is diminished.

A DSA may supply the proposedRelaxation notification attribute (see 6.13.15 of ITU-T Rec. X.520 | ISO/IEC 9594-6)
in a search result within the notification subcomponent of the PartialOutcomeQualifier. The information here can
then in a subsequent search request be used as a user-supplied relaxation policy.

As an ultimate case of relaxation, a policy can cause a particular filter item to be evaluated as TRUE (or FALSE, if the
filter-item is negated) in accordance with the nullMatch matching rule.

Within a service specific administrative area, validation against search-rules is performed after possible basic
substitutions have been made, as dictated by the search-rule against which the search request is being evaluated. A
governing-search-rule is selected prior to any subsequent matching rule substitution, including possible basic
substitutions specified in the search request.

13.6.2 Mapping-based matching

Mapping-based matching is relevant for the Search operation when the users' conception of the real world may in
several ways differ from the idealized model often used by the Directory. As an example, users notions of locality
names and how localities relate to each other may be quite different from how localities are represented in the
Directory. To bridge that gap and to improve the rate of successful searches, it is essential to have a mapping between
the users conception of some real-world objects, including their mutual relationships, and the Directory model for the
same objects. The same mapping should aso allow for "fuzzy" matching, i.e., alowing some attribute values to reflect
more than their precise definition.

NOTE 1—As an example, a user may specify alocation name in the filter, but the object being looked for may be close to the
border in a neighbouring location.

The mapping-based matching is applicable to geographical aspects of White Pages searches, business category aspects
of Yellow Pages searches, etc.

52 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The mapping-based matching employs some intermediate table, a mapping table, in order to control the mapping. The
exact behaviour of a mapping-based matching and the structure of the mapping table are local matters. However, the
basic principle for the technique is common asillustrated in Figure 13.

M apping-based matching Mapped
filter items
Mappable
filter items R
for specified o _ E
attribute types List of possible >
matchable . >
> values Mapping >
> (Intermediate algorithm >
> table) Result
; N
j X.501_F13

Figure 13 — Mapping-based matching

Using this technique, filter items for designated attribute types (mappable filter items) go through a mapping process
using a mapping table and some kind of mapping algorithm. This mapping results in some new filter items called
mapped filter items as replacements for the mappable filter items. In exception cases, the mapping is not performed and
information is returned as to the exact nature of the exception.

The number of mapped filter items does not need to be the same as the number of mappable filter items, and will in
general be different.

A filter item of type extensibleMatch with the type specification absent cannot be a mappablefilter item.

A mapping-based mapping may be local to a DSA. If the Search evaluation is distributed, other DSAs participating in
the evaluation phase of a Search may apply their own mapping-based mapping. However, the mapping used can be
conveyed to other DSAs in the chainedRelaxation component of the Chained Arguments.

NOTE 2—-To be able to provide a consistent service to users, administrators of DSAs potentially participating in a distributed
Search evaluation should consider harmonizing their mapping tables and functions.

Figure 14 illustrates the principle behind the establishment of the mapping function between the real world and the
Directory model of that world. Users have some perception of the real world. This perception may not consider al
aspects of the real world. The aspects of the real world that have some importance for how a user formulates a Search
request constitute a model of the real world. This model then forms the basis for how the mapping is performed. The
precise model of the real world has to be based on experience and is likely to require regular updates based on observed
search behaviour by users.

List of
User possible Mapping
perception matchable algorithm
values Entries
J
Model of the real world A

the Real World
X.501_F14

Figure 14 — Information derivation

ITU-T Rec. X.501 (11/2008) 53

| SO/IEC 9594-2:2008 (E)

This model of the real world may only involve a subset of the attribute types used by a user in a Search request, and
possibly only a single attribute type is relevant. As an example, in considering a model of the real world with respect to
localities, only locality-related attribute types would be relevant to consider. Filter items not referring to such attribute
types are not mapped, but are retained and used together with the mapped filter items for entry match.

A model of the real world is used for establishing a mapping table of matchable values, i.e., a set of values to be
potentially matched against the mappable filter items. How this mapping table of matchable values is established is a
local matter. Matching against this mapping table can then result in zero or more matches. Each match results in one or
more mapped filter items. The mapping algorithm determines how the mapped filter items are applied against entries.
How thisis doneis aloca matter. It could be based on values of traditional attributes in the entries or it could be based
on values planted in the entries that have no meaning outside the Directory, e.g., numeric identifiers.

The way mapping is employed and the resulting mapped filter items are handled is conveniently specified by referring
to subfilters as defined in 16.5 and further detailed in Annex Q. The concept of subfilters is only used here as a
descriptive tool. An implementation can use any other algorithm giving the same result.

Each subfilter is evaluated against the mapping table, and the resulting mapped filter items are combined with the non-
mapped filter items in away determined by the detailed mapping algorithm. The resulting matched entries are the union
of the entries matched by each of the subfilters.

NOTE 3 —In many situations, the mappable filter items will be replaced by alogical OR of the mapped filter items.

There are in principle two different modes of mapping. Each mappable filter item could be mapped one at the time, or
multiple combinable mappable filter items could be used to satisfy a single match against the mapping table. Multiple
filter items are applicable to a single mapping-based match if and only if they are combinable filter items; that is to say,
contained as elements within a single subfilter.
NOTE 4 — For example, two separate geographical names ANDed together in a subfilter can be used to specify a single
geographical location of useful size, where the use of a single geographical name may specify an ambiguous or oversize
geographical location.

The matching of a filter item against the mapping table is performed using the matching rule implied or specified by
that filter item, possibly after a basic matching rule substitution either specified in the governing-search-rule (if any)
and in the search request.
NOTE 5—This could involve a complex matching rule like generalwWordMatch defined in ITU-T Rec. X.520 | ISO/IEC 9594-6
allowing word rotation, word truncation, approximate word match, etc.
NOTE 6 — These Directory Specifications do not specify how an implementation combines the relevant matching rules into a
combined matching. It is expected that implementation may restrict what combinations of filter items and matching rules that are
supported.

If the matching attempted by a filter item or combinable filter items against the mapping table does not result in any
match for any subfilter, i.e., the match yields a FALSE or undefined result, it will result in zero mapped filter items. If
there are mappable filter itemsin every subfilter, the Search would yield no result. An error shall then be returned to the
user.

In some situations, e.g., in geographical zonal matching, it is a requirement that the matching against the mapping table
yields a single, unambiguous result. If a subfilter matches more than one entry in the mapping table or if different
subfilters match different entries in the mapping table, the search may return too many unwanted entries. Instead,
information is returned to the user to alow a new and better targeted search request to be initiated.

NOTE 7 —In asimpler situation, the mappable filter items are just checked against the mapping table. If this match is successful,
the mappabl e filter items are used unchanged.

The mapping can be dynamic in the sense that the mapping can be adjusted (relaxed) if the search yields zero or too few
matched entries. The details on how such a relaxation is performed are outside the scope of these Directory
Specifications. These are determined by loca requirements. The relaxation can be performed in steps, potentially
causing more entries to be found. The relaxation shall be done in such away that when one additional step in relaxation
istaken, all entries returned from previous steps are returned together with potentially some new entries.

The relaxation is performed in steps by specifying different levels of relaxation. A level of zero corresponds to no
relaxation. Level one corresponds to a first level of relaxation, etc. Figure 15 is an abstract way of illustrating this
stepwise relaxation mechanism. What the different levels of relaxations exactly imply is not defined by these Directory
Specifications. The relaxation level can be controlled by the RelaxationPolicy construct, which may be supplied in a
search-rule, in a search request, or both. This allows the relaxation of the mapping-based mapping and relaxation by
matching rule substitutions to be synchronized with each other, as both can be determined from each step of relaxation
as specified by the RelaxationPolicy.

54 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

413121

X.501_F15

Figure 15 — Sear ch relaxation

The extendedArea search control is an integer that provides an alternative way of controlling the level of relaxation for
a mapping-based matching algorithm. It is part of the customization of a mapping-based mapping algorithm whether it
can be controlled by this search control.

If the extendedArea search control present in a search request and its use is allowed for a mapping-based agorithm,
any level specification in the RelaxationPolicy, whether included in the search or the governing-search-rule, is
ignored.

The includeAllAreas search control option specifies the mode of relaxation when this is controlled by the
extendedArea search control. If this option is set, the relaxing is performed as described above, i.e., potentially more
entries are returned for higher levels of relaxation (inclusive relaxation). If this option is not set, the user is only
interested in the result corresponding to the incremental relaxation (exclusive relaxation). The latter could be
interesting, if the user is stepwise relaxing and is not interested in getting entries that were returned in previous results,
but only additional entries resulting from the latest step of relaxation.

NOTE 8 — There is no guarantee (particularly with a complex filter) that the user will not get some entries received previously,

nor that all entries that could be of interest will be returned. For example, looking for French restaurants in Winkfield could fail;

relaxing to look for all restaurants in the Winkfield area but excluding Winkfield would then cause the mixed-cuisine White Hart
Inn restaurant in Winkfield to be left out of the search results.

Some mapping-based matching algorithms may not support exclusive relaxation or may be customized not to alow it.
In this case, the includeAllAreas search control option shall be ignored for that mapping function and a possible
relaxation shall be performed as an inclusive relaxation.

In some environments, it may also be relevant to be able to specify anegative level for relaxation, which corresponds to
atightening of the matching. In this case, the includeAllAreas search control option has no significance and is ignored,
if present. Tightening may not be relevant for all types of mapping-based matching.

A DSA may simultaneously support several mapping functions, i.e., hold multiple mapping tables with corresponding
mapping algorithms. The reasons for multiple mapping functions could be:

a) The mapping function to be done is dependent on the type of application. Geographical zonal matching
(see 8.8 of ITU-T Rec. X.520 | ISO/IEC 9594-6) is a particular important application of mapping-based
matching. Other examples are mapping-based matching for Yellow Pages searches, bibliographic
searches, etc.

b) Within a particular application, the detailed specification for how the mapping is performed may vary
dependent on specific conditions. As an example, the mapping for geographical zonal matching may
depend on the geographical area (e.g., as reflected by the baseObject of the Search) or by the type of
search the user is attempting, i.e., based on information in the search filter. As another example, mapping
may depend on the language used in the request.

If multiple mapping functions are simultaneously applicable and the execution of one of these results in an exception
condition that shall be reported to the user, an implementation is not required to check whether multiple exceptions exist
(but it may do so).

A mapping-based mapping specification (see later) determines whether the extendedArea search control shal be
applicable for the mapping function in question. If several mapping functions are active for the same Search operation
and some of those can be controlled by extendedArea search control, they all perform simultaneous relaxation or
tightening according to the extendedArea search control, and if applicable, also to the includeAllAreas search control
option.
NOTE 9 — The example given earlier shows that using includeAllAreas with more than one mapping-based mapping can give
riseto difficulties.

ITU-T Rec. X.501 (11/2008) 55

| SO/IEC 9594-2:2008 (E)

If the extendedArea search control specifies a level of relaxation or tightening not supported by the DSA for some of
the mapping functions affected by that search control, then the DSA shall perform the mapping based on best effort. If
the extendedArea search control specifies alevel of relaxation or tightening not supported by the DSA for any of the
mapping functions affected by that search control, a searchServiceProblem notification attribute with the value id-pr-
unavailableRelaxationLevel shall be returned in the notification parameter of CommonResults.

NOTE 10-If the evaluation of a Search operation is distributed across multiple DSAs, such DSAs may employ different
mapping functions giving inconsistent result unless some coordination among the DSAs is established.

Although the details of mapping-based matching are local matters, it is possible to define the overall characteristics of
mapping-based matching by defining a special type of matching rules called mapping-based matching rules. Such a
matching rule is defined as an instance of the MATCHING-RULE information object class. However, it is different from
traditional matching rules in the sense that it does not specify matching in the traditiona sense and therefore does not
specify syntax for the matching. However, as part of its definition it gives specifications of its purpose, how it is applied
and how exception conditions are handled. The specific behaviour of a mapping-based matching rule can partly be
described by an instance of the ASN.1 information object class derived from the below generic (parameterized)
MAPPING-BASED-MATCHING information object class. This information object class is only intended to specify those
aspects that are potentially customizable. This Directory Specification does not dictate how and where an instance of
such an information object classis stored, just that it is made available to the DSA in some way.

MAPPING-BASED-MATCHING
{ SelectedBy, BOOLEAN:combinable, MappingResult, OBJECT IDENTIFIER:matchingRule } ::=
CLASS {

&selectBy SelectedBy OPTIONAL,
&ApplicableTo ATTRIBUTE,
&subtypesincluded BOOLEAN DEFAULT TRUE,
&combinable BOOLEAN (combinable),
&mappingResults MappingResult OPTIONAL,
&userControl BOOLEAN DEFAULT FALSE,
&exclusive BOOLEAN DEFAULT TRUE,
&matching-rule MATCHING-RULE.&id (matchingRule),
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SELECT BY &selectBy |
APPLICABLE TO &ApplicableTo
[SUBTYPES INCLUDED &subtypesincluded]
COMBINABLE &combinable
[MAPPING RESULTS &mappingResults]
[USER CONTROL &userControl]
[EXCLUSIVE &exclusive]
MATCHING RULE &matching-rule
ID &id }

The MAPPING-BASED-MATCHING information object class has the following field specifications:

a) The &selectBy field is a dummy reference for a specification of how an instance of a specialization of
the information object classis selected for a mapping-based mapping. The specialized information object
class shall, if applicable, specify an ASN.1 type determining together with a textual description on how
the selection is to be performed. This component shall be ignored if the user in the search regquest
supplies a non-empty mapping component of the RelaxationPolicy construct.

NOTE 11 —1In principle, several instances possibly of different derived information object classes can be
selected by the same search request.

b) The &ApplicableTo field specifies what filter items shall be considered mappable filter items by
specifying the attribute types for such filter items. Any filter item for an attribute type listed by this
subcomponent is subject to mapping-based matching. This component shall always be present. Attribute
types listed by this component may not necessarily all be present in the filter. The value is determined by
the information object instance of a specialization of this information object class.

¢) The &subtypesincluded field is a value of boolean type which specifies whether an instance of a
derived information object class can accept subtypes of &ApplicableTo attributes, in addition to the
specified attribute types. If absent, subtypes are permitted, provided that they are not turned off by other
mechanisms. The value is determined by the information object instance of the derived information
object class.

56 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

d) The&combinable field is a value of boolean type that, if TRUE, permits the mapping-based matching to
use multiple combinable filter items in the satisfaction of the match against the mapping table. The
combinable is a dummy reference for the value of this component to be determined by a specialization
of thisinformation object class.

€) The &mappingResults field is dummy reference for a specification on how exception conditions are
reported. The derived information object class shall specify an ASN.1 type for reporting relevant
exception conditions.

f) The &userControl field is a value of boolean type which specifies whether an instance of a derived
information object class and its associated mapping-based matching rule can be controlled by the
extendedArea search control.

NOTE 12 — If several mapping-based matchings are simultaneously being applied, it may be appropriate to let
only one of these allow use of the extendedArea search control.

g) The &exclusive field is a value of boolean type which specifies whether an instance of a derived
information object class and its associated mapping-based matching rule allows exclusive relaxation to
be performed. The value, if present, is determined by the information object instance of the derived
information object class. If the value is FALSE or if the DSA does not support exclusive matching for
this mapping-based matching, this particular mapping shall act as if the includeAllAreas search control
option were set.

NOTE 13 - If several mapping-based matchings are simultaneously being applied, it may be appropriate to let
only one of these allow exclusive relaxation.

h) The &matching-rule field is a value of object identifier type identifying the matching-based matching
rule for which this instance provides additional specification and which shall be applied for the mapping-
based matching. The matchingRule dummy reference for the value of this component is to be
determined by a specialization of thisinformation object class. The matching rule specified shall be used
for the particular mapping-based matching.

i) The&id fieldisan object identifier allocated to the particular mapping-based mapping.

13.7 DIT structure definition

13.7.1 Overview

A fundamental aspect of the Directory schema is the specification of where an entry of a particular class may be placed
in the DIT and how it should be named, considering:

— thehierarchical relationship of entriesinthe DIT (DIT structurerules);
— theattribute or attributes used to form the RDN of the entry (name forms).

13.7.2 Name form definition

The definition of aname form involves:
a) specifying the named object class;

b) indicating the mandatory attributes to be used for the RDNs for entries of this object class where this
name form applies,

¢) indicating the optional attributes, if any, that may be used for the RDNs for entries of this object class
where this name form applies;

d) assigning an object identifier for the name form.

If different sets of naming attributes are required for entries of a given structural object class, then a name form shall be
specified for each distinct set of attributes to be used for naming.

Only structural object classes are used in name forms.

For entries of a particular structural object class to exist in a portion of the DIB, at least one name form for that object
class shall be contained in the applicable part of the schema. The schema contains additional name forms as required.

The RDN attribute (or attributes) need not be chosen from the list of permitted attributes of the structural object class as
specified in its structural or alias object class definition.
NOTE — Naming attributes are governed by DIT content rules and DIT context use in the same way as other attributes.

A name form is only a primitive element of the full specification required to constrain the form of the DIT to that
required by the administrative and naming authorities that determine the naming policies of a given region of the DIT.
The remaining aspects of the specification of DIT structure are discussed in 13.7.5.

ITU-T Rec. X.501 (11/2008) 57

| SO/IEC 9594-2:2008 (E)

13.7.3 Nameform specification

Name forms may be defined as values of the NAME-FORM information object class:

NAME-FORM ::= CLASS {

&namedObjectClass OBJECT-CLASS,

&MandatoryAttributes ATTRIBUTE,

&OptionalAttributes ATTRIBUTE OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

NAMES &namedObjectClass

WITH ATTRIBUTES &MandatoryAttributes

[AND OPTIONALLY &OptionalAttributes]

ID &id }

For a name form which is defined using this information object class:
a) &namedObjectClass isthe structural object class it names,
b) &MandatoryAttributes isthe set of attributes which shall be present in the RDN of the entry it governs;
c) &OptionalAttributes isthe set of attributes which may be present in the RDN of the entry it governs;
d) &id istheobjectidentifier assigned toit.

All attribute types in the mandatory and optional lists shall be different.

13.7.4 Structural object class of an entry

Some subschema specifications will include name forms for no more than one structural object class per structural
object class superclass chain represented in the subschema.

Some subschema specifications may include name forms for more than one structural object class per structural object
class superclass chain represented in the subschema.

In either case, with respect to a particular entry, only the most subordinate structural object class in the structural
superclass chain present in the entry's objectClass attribute determines the DIT content rule and DIT structure rule
applying to the entry. This class is referred to as the structural object class of the entry and is indicated by the
structuralObjectClass operational attribute.

13.7.5 DIT structureruledefinition

A DIT structure rule is a specification provided by the subschema administrative authority which the Directory uses to
control the placement and naming of entries within the scope of the subschema. Each object and dlias entry is governed
by asingle DIT structure rule. A subschema governing a subtree of the DIT will typically contain several DIT structure
rules permitting several types of entries within the subtree.

A DIT structure rule definition includes:
a) aninteger identifier which is unique within the scope of the subschema;
b) anindication of the name form for entries governed by the DIT structure rule;
c) theset of allowed superior structure rules, if required.

The set of DIT structure rules for a subschema specifies the forms of distinguished names for entries governed by the
subschema.

A DIT structure rule allows entries in a given subschema to subscribe to a particular name form. The form of the
last RDN component of an entry's DistinguishedName is determined by the name form of the DIT structure rule
governing the entry.

The namedObjectClass component of the name form (the name form's object class) corresponds to the structural
object class of the entry.

A DIT structure rule shall only permit entries belonging to the structural object class identified by its associated name
form. It does not permit entries belonging to any of the subclasses of the structural object class.

With respect to a particular entry, the DIT structure rule governing the entry is termed the entry's governing structure
rule. Thisrule may be identified by examining the entry's governingStructureRule attribute.

With respect to a particular entry, the DIT structure rule governing the entry's superior is termed the entry's superior
structurerule.

58 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)
An entry may only exist in the DIT as a subordinate to another entry (the superior) if aDIT structure rule exists in the
governing subschema which:
— indicates aname form for the structural object class of the entry; and

— dther includes the entry's superior structure rule as a possible superior structure rule or does not specify
asuperior structure rule, in which case the entry shall be a subschema administrative point.

If an entry which is itself a subschema administrative point is not included for the purposes of subschema
administration in its subschema subentry, then the subschema from the immediately superior subschema administrative
areais used to govern the entry.

Entries which are administrative point entries but have no subschema subentry (e.g., newly created administrative point
entries) have no governing structure rule. The Directory shall not allow subordinates to be created below such entries
until a subschema subentry has been added.

If an entry is converted to a new subschema administrative point, then the governing structure rule of all entries in the
new subschema administrative area is automatically changed to that implied by the new subschema.

13.7.6 DIT structurerule specification
The abstract syntax of aDIT structure rule is expressed by the following ASN.1 type:

DITStructureRule ::= SEQUENCE {

ruleldentifier Ruleldentifier ,
-- shall be unique within the scope of the subschema
nameForm NAME-FORM.&id,

superiorStructureRules SET SIZE (1..MAX) OF Ruleldentifier OPTIONAL }

Ruleldentifier ::= INTEGER

The correspondence between the parts of the definition, as listed in 13.7.5, and the various components of the ASN.1
type defined above, is asfollows:

a) theruleldentifier component identifiesthe DIT structure rule uniquely within a subschema;

b) the nameForm component of the DIT structure rule specifies the name form for entries governed by the
DIT structurerule;

c) thesuperiorStructureRules component identifies permitted superior structure rules for entries governed
by the rule. If this component is omitted, then the DIT structure rule applies to a subschema
administrative point.

The STRUCTURE-RULE information object classis provided to facilitate the documentation of DIT structure rules:

STRUCTURE-RULE ::= CLASS{

&nameForm NAME-FORM,
&SuperiorStructureRules STRUCTURE-RULE OPTIONAL,
&id Ruleldentifier }

WITH SYNTAX {
NAME FORM &nameForm
[SUPERIOR RULES &SuperiorStructureRules]
ID &id }

13.8 DIT content rule definition
13.8.1 Overview

A DIT content rule specifies the permissible content of entries of a particular structural object class via the
identification of an optional set of auxiliary object classes, mandatory, optional and precluded attributes. Collective
attributes shall be included in DIT Content rules if they are to be permitted in an entry.

A DIT content rule definition includes:
a) anindication of the structural object class to which it applies;
b) optionaly, anindication of the auxiliary object classes allowed for entries governed by therule;

c) optionaly, an indication of the mandatory attributes, over and above those called for by the structural
and auxiliary object classes, required for entries governed by the DIT content rule;

d) optionaly, an indication of the optional attributes, over and above those called for by the structural and
auxiliary object classes, permitted for entries governed by the DIT content rule;

ITU-T Rec. X.501 (11/2008) 59

| SO/IEC 9594-2:2008 (E)

e) optionaly, an indication of optional attribute(s) from the entry's structural and auxiliary object classes
which are precluded from appearing in entries governed by the rule.
For any valid subschema specification, there is at most one DIT content rule for each structural object class.

Every entry in the DIT is governed by at most one DIT content rule. This rule may be identified by examining the value
of the entry's structuralObjectClass attribute.

If no DIT content rule is present for a structural object class, then entries of that class shall contain only the attributes
permitted by the structural object class definition.

The DIT content rules of superclasses of the structural object class for an entry do not apply to that entry.

AsaDIT content rule is associated with a structural object class, it follows that all entries of the same structural object
classwill have the same DIT content rule regardless of the DIT structure rule governing their locationin the DIT.

An entry governed by a DIT content rule may, in addition to the structural object class of the DIT structure rule, be
associated with a subset of the auxiliary object classes identified by the DIT content rule. This association is reflected in
the entry's objectClass attribute.

An entry's content shall be consistent with the object classesindicated by itsobjectClass attribute in the following way:

— mandatory attributes of object classes indicated by the objectClass attribute shall always be present in
the entry;

— optional attributes (not indicated as additional optional or mandatory in the DIT content rule) of auxiliary
object classes indicated by the DIT content rule may only be present if the objectClass attribute
indicates these auxiliary object classes.

Mandatory attributes associated with the structural or indicated auxiliary object classes shall not be precluded in aDIT
content rule.

13.8.2 DIT content rule specification
The abstract syntax of aDIT content rule is expressed by the following ASN.1 type:

DITContentRule ::= SEQUENCE {

structuralObjectClass OBJECT-CLASS.&id,

auxiliaries SET SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL,
mandatory [1] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
optional [2] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
precluded [3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL }

The correspondence between the parts of the definition, as listed in 13.8.1, and the various components of the ASN.1
type defined above, is asfollows:
a) thestructuralObjectClass component identifies the structural object class to which the DIT content rule
applies;
b) the auxiliaries component identifies the auxiliary object classes alowed for an entry to which the DIT
content rule applies;

¢) the mandatory component specifies user attribute types which an entry to which the DIT content rule
applies shall contain in addition to those which it shall contain according to its structural and auxiliary
object classes;

d) the optional components specify user attribute types which an entry to which the DIT content rule
applies may contain in addition to those which it may contain according to its structural and auxiliary
object classes;

e) the precluded component specifies a subset of the optional user attribute types of the structural and
auxiliary object classes which are precluded from an entry to which the DIT content rule applies.

NOTE — Content rules for directly identified attributes (e.g., attributes in the mandatory, optional, and precluded lists) apply
rules only to the attributes that they specify, and not to subtypes and friend attributes.

The CONTENT-RULE information object classis provided to facilitate the documentation of DIT content rules:

CONTENT-RULE ::= CLASS{

&structuralClass OBJECT-CLASS.&id UNIQUE,

&Auxiliaries OBJECT-CLASS OPTIONAL,
&Mandatory ATTRIBUTE OPTIONAL,
&Optional ATTRIBUTE OPTIONAL,
&Precluded ATTRIBUTE OPTIONAL }

60 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

WITH SYNTAX {
STRUCTURAL OBJECT-CLASS &structuralClass
[AUXILIARY OBJECT-CLASSES &Auxiliaries]

[MUST CONTAIN &Mandatory]
[MAY CONTAIN &Optional]
[MUST-NOT CONTAIN &Precluded] }

13.9 Context type definition

The definition of a context type involves:
a) specifying the syntax of the context;
b) specifying the syntax of a context assertion;
c) optionaly specifying a default value for the context;
d) defining the semantics of the context;
e) specifying how matches are done;
f) specifying behaviour in the absence of a context value; and
g) assigning an object identifier to the context type.

13.9.1 Context Value matching

A presented context assertion matches a stored context value of the same context type according to the description of
matching which is part of the context definition.

13.9.2 Context definition
Contexts are defined using the CONTEXT information object class:

CONTEXT ::= CLASS {

&Type,

&DefaultValue OPTIONAL,

&Assertion OPTIONAL,

&absentMatch BOOLEAN DEFAULT TRUE,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

WITH SYNTAX &Type

[DEFAULT-VALUE &DefaultValue]

[ASSERTED AS &Assertion]

[ABSENT-MATCH &absentMatch]

ID &id }

A DEFAULT-VALUE will cancel out effect (1) of ABSENT-MATCH. Effect (2) of ABSENT-MATCH could be assumed
for any context defined with aDEFAULT-VALUE, in which case the ABSENT-MATCH field could be dispensed with.

If &defaultvValue is specified, then entry modification regquests to add values with contexts will behave in a manner
consistent with the following preprocessing and post-processing specification.
NOTE — A DSA is not obligated to implement the exact sequence of steps below, so long as the end result exhibits the same
externally observable behaviour.
Preprocessing

For each modifyEntry request to add values with contexts, remove values with contexts or remove all values with
contexts. For each context type applicable to the attribute type, if the context type is defined with a &defaultValue,
then:

1) if the context type is not explicitly listed in the request, add the context type with the &defaultvalue to
the request;

2) for each stored attribute value of the attribute type, if the attribute value does not have the context type,
then add the context type with the &defaultValue to the attribute value.

ITU-T Rec. X.501 (11/2008) 61

| SO/IEC 9594-2:2008 (E)

Normal Processing
Post-processing

For each modifyEntry request to add values with contexts, remove values with contexts or remove all values with
contexts. For each context type applicable to the attribute type, if the context type is defined with a &defaultvalue, then
for each stored attribute value of the attribute type,

3) if the attribute value does not have the context type, then remove the attribute value;

4) if the attribute value has the context type and the only context value of that context type is the
&defaultValue, remove the context (but not the attribute value).

If the &Assertion is omitted, the context assertion syntax isthe same as & Type.

Specifying &absentMatch as FALSE in a context definition has the following two effects:

a) An attribute value that does not have a context of the specified context type is treated as though it has no
values of that context type. That is, if an attribute value contains no contexts of an asserted contextType,
then the ContextAssertion evaluatesto FALSE.

b) The fallback component of context values of such a context type is treated as being set to FALSE
regardless of its actual setting.

When a context is defined, the specification shall include a description of the semantics of the context, and how a match
is evaluated.

ITU-T Rec. X.520 | ISO/IEC 9594-6 specifies selected Context Definitions.

13.10 DIT Context Use definition

13.10.1 Overview

A DIT Context Use is a specification provided by the subschema administrative authority to specify the permissible
context types that may be stored with an attribute, and the mandatory context types that shall be stored with an attribute.

A DIT Context Use definition includes:
a) anindication of the attribute type to which it applies;

b) optionaly, an indication of the mandatory context types that shall be associated with values of the
attribute type whenever the attribute is stored;

c) optionaly, an indication of the optional context types that may be associated with values of the attribute
type whenever the attribute is stored.

If no DIT Context Use definition is present for a given attribute type, then values of attributes of that type shall contain
no context lists. For a given subschema administrative area, there can be only one DIT Context Use for a given attribute
type. A DIT Context Use may be defined to apply to all attribute types, in which case it shall be the only DIT Context
Usein the subschema.

13.10.2 DIT Context Use specification
The abstract syntax of aDIT Context Useis expressed by the following ASN.1 type:

DITContextUse ::= SEQUENCE {

attributeType ATTRIBUTE.&id,
mandatoryContexts [1] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL }

The correspondence between the parts of the definition, as listed in 13.10.1, and the various components of the ASN.1
type defined above, is asfollows:

a) theattributeType component identifies the attribute type to which the DIT Context Use applies, or any
attribute type (id-oa-allAttributeTypes);

b) the mandatoryContexts component specifies context types that shall be associated with an attribute
value of the given type whenever the attribute is stored. If thisis omitted, then attribute values may exist
without context lists;

62 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

¢) the optionalContexts component specifies context types that may be associated with an attribute value
of the given type whenever the attribute is stored. If this is omitted but mandatoryContexts is present,
then all attribute values shall appear with the mandatory context types and no others. If this is omitted
and mandatoryContexts is also omitted, it is equivalent to having no DIT Context Use for the attribute
type; that is, attribute values of the given attribute type shall not have associated context lists.

The DIT-CONTEXT-USE-RULE information object class is provided to facilitate the documentation of the DIT Context
Userules:

DIT-CONTEXT-USE-RULE ::= CLASS {

&attributeType ATTRIBUTE.&id UNIQUE,

&Mandatory CONTEXT OPTIONAL,

&Optional CONTEXT OPTIONAL }
WITH SYNTAX {

ATTRIBUTE TYPE &attributeType

[MANDATORY CONTEXTS &Mandatory]

[OPTIONAL CONTEXTS &Optional]}

13.11 Friendsdefinition

The definition of a set of friendsinvolves:
a) specifying the anchor attribute that has the set of friends;
b) specifying the set of attributes that are the friends of the anchor.

The FRIENDS information object class is provided to facilitate the documentation of sets of friends:

FRIENDS ::= CLASS {

&anchor ATTRIBUTE.&id UNIQUE,
&Friends ATTRIBUTE }
WITH SYNTAX {
ANCHOR &anchor
FRIENDS &Friends }

Any given attribute can only have one set of friends in any subschema.

Example:

postal FRIENDS ::={
ANCHOR {postalAddress}
FRIENDS { physicalDeliveryOfficeName |
postalCode |
postOfficeBox |
streetAddress }

14 Directory System Schema

14.1 Overview

The Directory System Schema is a set of definitions and constraints concerning the information that the Directory itself
needs to know in order to operate correctly. This information is specified in terms of subentries and operational
attributes.

NOTE — The system schema enables the directory system to, for example:

- prevent the association of subentries of the wrong type with administrative entries (e.g., the creation of a subschema
subentry subordinate to an administrative entry defined only as a security administrative entry);

- prevent the addition of inappropriate operational attributes to an entry or subentry (e.g., a subschema operationa attribute
to a person's entry).

Formally, the Directory System Schema comprises a set of:

a) Object class definitions that define the attributes that shall or may be present in a subentry of a given
class,

b) Operationa Attribute Type definitions that specify the characteristics of operational attributes known and
used by the Directory.

The complete definition of an operational attribute includes a specification of the way in which the Directory uses and
(if appropriate) provides or manages, the attribute in the course of its operation.

ITU-T Rec. X.501 (11/2008) 63

| SO/IEC 9594-2:2008 (E)

The Directory System Schema is distributed, like the DIB itself. Each Administrative Authority establishes the part of
the system schemathat will apply for those portions of the DIB administered by the authority.

The Directory System Schema defined in this Directory Specification is an integral part of the Directory System itself.
Each DSA participating in a directory system requires a full knowledge of the system schema established by its
Administrative Authority. The system schema for an Administrative Area may be defined by the Administrative
Authority using the notation defined in this clause.

The Directory System Schemais not regulated by DIT structure or content rules. When an element of system schemais
defined, a specification of how it is used and where it appearsin the DIT is provided.

Certain aspects of the directory system schema are specified in the following subclauses.

The directory system schema required to support directory distribution is specified in clauses 25 through 28.

142 System schema supporting the administrative and oper ational infor mation model

Although subentry and subentryNameForm are specified using the notation of clause 13, subentries are not regulated
by DIT structure or DIT content rules.

14.21 Subentry object class

The subentry object classisastructura object class and is defined as follows:

subentry OBJECT-CLASS ::={
SUBCLASS OF {top}

KIND structural
MUST CONTAIN { commonName | subtreeSpecification }
ID id-sc-subentry }

14.2.2 Subentry nameform

The subentryNameForm name form allows entries of class subentry to be named using the commonName attribute:

subentryNameForm NAME-FORM ::= {

NAMES subentry
WITH ATTRIBUTES { commonName }
ID id-nf-subentryNameForm }

No other name form shall be used for subentries.

14.2.3 Subtree Specification operational attribute

The subtreeSpecification operational attribute, whose semantics are specified in clause 12, is defined as follows:

subtreeSpecification ATTRIBUTE ::= {

WITH SYNTAX SubtreeSpecification
USAGE directoryOperation
ID id-oa-subtreeSpecification }

This attribute is present in all subentries; each value defines a set of entries (in terms of a portion of an administrative
area possibly with refinement by selection on an object class filter) which may be subject to the policies defined by the
subentry.

NOTE — This permits a single complex policy (e.g., a search-rule) to be directed at many object class combinations, in digoint
regions of an administrative area, while being defined in a single subentry.
143 System schema supporting the administrative model

The Administrative Model defined in clause 11 requires that administrative entries contain an administrativeRole
attribute to indicate that the associated administrative areais concerned with one or more administrative roles.

The administrativeRole operational attribute is specified asfollows:

administrativeRole ATTRIBUTE ::= {

WITH SYNTAX OBJECT-CLASS.&id
EQUALITY MATCHING RULE objectldentifierMatch
USAGE directoryOperation

ID id-oa-administrativeRole }

64 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)
The values of this attribute defined by this Directory Specification are:

id-ar-autonomousArea
id-ar-accessControlSpecificArea
id-ar-accessControlinnerArea
id-ar-subschemaAdminSpecificArea
id-ar-collectiveAttributeSpecificArea
id-ar-collectiveAttributelnnerArea
id-ar-contextDefaultSpecificArea
id-ar-serviceSpecificArea

The semantics of these values are defined in clause 12.

The administrativeRole operational attribute is also used to regulate the subentries permitted to be subordinate to an
administrative entry. A subentry not of a class permitted by the administrativeRole attribute may not be subordinate to
the administrative entry.

144 System schema supporting general administrative and operational requirements

The following clauses describe subschema operational attributes which are not attributes in the usual sense (i.e., are not
held within an entry), but may be thought of as 'virtual' attributes, representing information which is derivable (e.g.,
from existing operational attributes, their values, and other information). Such virtual attributes are valid for all entries
within an administrative area. This has the effect that these subschema operational attributes appear to be present in
every entry.

1441 Timestamps

The createTimestamp indicates the time that an entry was created:

createTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
-- asper 46.3b) or ¢) of ITU-T Rec. X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-createTimestamp }

The modifyTimestamp indicates the time that an entry was last modified:

modifyTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
-- asper 46.3 b) or c) of ITU-T Rec. X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-modifyTimestamp }

The subschemaTimestamp indicates the time that the subschema subentry for the entry (see 15.3) was created or last
modified. It isavailablein every entry:

subschemaTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime
-- asper 46.3 b) or c) of ITU-T Rec. X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-subschemaTimestamp }

The generalizedTimeMatch and generalizedTimeOrderingMatch matching rules are defined in ITU-T Rec. X.520 |
I|SO/IEC 9594-6.

14.4.2 Entry Modifier operational attributes
The creatorsName operational attribute indicates the distinguished name of the Directory user that created an entry:

ITU-T Rec. X.501 (11/2008) 65

| SO/IEC 9594-2:2008 (E)

creatorsName ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-creatorsName }

The modifiersName operational attribute indicates the distinguished name of the Directory user that last modified the
entry:

modifiersName ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-modifiersName }

These operational attributes shall use the primary distinguished name.

14.4.3 Subentry identification operational attributes

The subschemaSubentryList operationa attribute identifies the subschema subentry that governs the entry. It is
available in every entry:

subschemaSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-subschemaSubentryList }

The accessControlSubentryList operational attribute identifies all access control subentries that affect the entry. It is
available in every entry.

accessControlSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-accessControlSubentryList }

The collectiveAttributeSubentryList operational attribute identifies all collective attribute subentries that affect the
entry. Itisavailablein every entry:

collectiveAttributeSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-collectiveAttributeSubentryList }

The contextDefaultSubentryList operational attribute identifies all context default subentries that affect the entry. It is
available in every entry:

contextDefaultSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-contextDefaultSubentryList }

The serviceAdminSubentryList operational attribute identifies all service administration subentries, if any, that affect
the entry. It isavailable in every entry affected by any such subentry.

serviceAdminSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch

66 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-serviceAdminSubentryList }

1444 HasSubordinates operational attribute

The hasSubordinates operational attribute indicates whether any subordinate entries exist below the entry holding this
attribute. A value of TRUE indicates that subordinates may exist. A value of FALSE indicates that no subordinates exist.
If this attribute is absent, no information is provided about the existence of subordinate entries. The attribute will
ordinarily disclose the existence of subordinates even if the immediate subordinates are hidden by access controls — to
prevent disclosure of the existence of subordinates, the operational attribute itself shall be protected by access controls.
NOTE — A value of TRUE may be returned when no subordinates exist if all possible subordinates are available only through a

non-specific subordinate reference (see ITU-T Rec. X.518 | ISO/IEC 9594-4) or if the only subordinates are subentries or child
family members.

hasSubordinates ATTRIBUTE ::={

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hasSubordinates }

145 System schema supporting access control

If a subentry contains prescriptive access control information, then its objectClass attribute shall contain the value
accessControlSubentry:

accessControlSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-accessControlSubentry }

A subentry of this object class shall contain precisely one prescriptive ACI attribute of atype consistent with the value
of the accessControlScheme attribute of the corresponding access control specific point.

14.6 System schema supporting the collective attribute model

Subentries supporting collective attribute specific or inner administrative areas are defined as follows:

collectiveAttributeSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-collectiveAttributeSubentry }

A subentry of this object class shall contain at |east one collective attribute.

Collective attributes contained within a subentry of this object class are conceptually available for interrogation and
filtering at every entry within the scope of the subentry's subtreeSpecification attribute, but are administered via the
subentry.

The collectiveExclusions operationa attribute allows particular collective attributes to be excluded from an entry:

collectiveExclusions ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectldentifierMatch
USAGE directoryOperation

ID id-oa-collectiveExclusions }

This attribute is optional for every entry.

The OBJECT IDENTIFIER vaue id-oa-excludeAllCollectiveAttributes may be used, by its presence as a value of the
collectiveExclusions attribute, to exclude all collective attributes from an entry.

147 System schema supporting context assertion defaults

Subentries providing default values for context assertions are defined as follows:
contextAssertionSubentry OBJECT-CLASS ::= {

KIND auxiliary
MUST CONTAIN {contextAssertionDefaults}

ITU-T Rec. X.501 (11/2008) 67

| SO/IEC 9594-2:2008 (E)

ID id-sc-contextAssertionSubentry }

A subentry of this object class shall contain a contextAssertionDefaults attribute:

contextAssertionDefaults ATTRIBUTE ::= {

WITH SYNTAX TypeAndContextAssertion
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-oa-contextAssertionDefault }

Whenever a context is evaluated and no context assertion is provided by the user, the Directory provides context
assertion defaults equal to the values of this attribute in the context assertion subentry controlling the entry being
accessed, as described in 8.9.2.2.

NOTE — TypeAndContextAssertion is defined in 7.6 of (and evaluation of it is defined in 7.6.3 of) ITU-T Rec. X.511 |
ISO/IEC 9594-3.

14.8 System schema supporting the service administration model

serviceAdminSubentry OBJECT-CLASS ::= {
KIND auxiliary
MUST CONTAIN {searchRules}
ID id-sc-serviceAdminSubentry }

A subentry of this object class shall contain asearchRules operational attribute:

searchRules ATTRIBUTE ::={

WITH SYNTAX SearchRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation

ID id-oa-searchRules }

SearchRuleDescription ::= SEQUENCE {

COMPONENTS OF SearchRule,
name [28] SET SIZE (1 .. MAX) OF UnboundedDirectoryString OPTIONAL,
description [29] UnboundedDirectoryString OPTIONAL }

A value of the searchRules operational attribute is either a search-rule containing actual search restrictions, or it is a
dummy search-rule that specifies no search restrictions at all. This dummy search-rule is identified by having an id of
zero and by having no serviceType component (or any other components of SearchRule other than id and dmdid).
dmdld is an identifier for the controlling DMD (see 6.4).

14.9 System schema supporting hierar chical groups

hierarchyLevel ATTRIBUTE ::= {

WITH SYNTAX HierarchyLevel

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderingMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hierarchyLevel }
HierarchyLevel ::= INTEGER

hierarchyBelow ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE
SINGLE VALUE

NO USER MODIFICATION
USAGE

ID

HierarchyBelow ::= BOOLEAN

hierarchyParent ATTRIBUTE ::= {

68

WITH SYNTAX

EQUALITY MATCHING RULE
SINGLE VALUE

USAGE

ITU-T Rec. X.501 (11/2008)

HierarchyBelow
booleanMatch

TRUE

TRUE
directoryOperation
id-oa-hierarchyBelow }

DistinguishedName
distinguishedNameMatch
TRUE

directoryOperation

| SO/IEC 9594-2:2008 (E)

ID id-oa-hierarchyParent }
hierarchyTop ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-oa-hierarchyTop }

The hierarchyLevel operational attribute shall be present in any entry that is a member of a hierarchical group. The
Directory shall create and maintain this attribute. The Directory shall delete this attribute when the entry is no longer
member of a hierarchical group. This attribute shall take the value zero for the hierarchical top. This attribute shall not
be present in a child family member.

The hierarchyBelow operational attribute indicates whether the entry has any hierarchical children. A value of TRUE
indicates that hierarchical children exist. A value of FALSE or the absence of the attribute type indicates that no
hierarchical children exist. The Directory shall create and maintain this attribute. The Directory shal delete this
attribute when the entry is no longer member of a hierarchical group.

The hierarchyParent attribute shall be present in an Add Entry or Modify Entry operation when a new entry or an
existing entry becomes a hierarchical child. The attribute value shall be the distinguished name of the immediately
hierarchical parent. If the immediately hierarchical parent is a compound entry, the value shall be the distinguished
name of the ancestor. Otherwise, the Directory shall return an Update Error with problem parentNotAncestor. This
attribute shall not be present in a child family member, in an entry that is not within a hierarchical group, nor an entry
that is the hierarchical top.

The hierarchyTop attribute points to the top entry of the hierarchical group. This attribute is supplied and maintained
by the Directory. The attribute value shall be the distinguished name of the top entry. If the top entry is a compound
entry, the value shall be the distinguished name of the ancestor. This attribute shall not be present in a child family
member, in an entry that is not within a hierarchical group, nor an entry that is the hierarchical top.

NOTE — This attribute provides a unique identification of the hierarchical group to which the entry belongs.

When an entry within a hierarchical group is deleted by a Remove Entry operation, al its hierarchical children are
removed from the hierarchical group.

1410 Maintenance of system schema

It isthe responsibility of DSAs to maintain consistency of subentries and operational attributes with the system schema.
Inconsistency between various aspects of system schema, and between system schema and subentries and operational
attributes, shall not occur.

The Directory executes entry addition and modification procedures whenever a new subentry is added to the DIT or an
existing subentry is modified. The Directory shall determine whether the proposed operation would violate the system
schema; if it does, the modification shall fail.

In particular, the Directory ensures that subentries added to the DIT are consistent with the values of the
administrativeRole attribute, that the attributes within the subentry are consistent with the values of the subentry's
objectClass attribute.

The value of the administrativeRole attribute may be modified to permit classes of subentries to be subordinate to the
administrative entry that are not yet present. The value of the administrativeRole attribute shall not be modified so as
to cause existing subentries to become inconsistent.

The Directory aso ensures, where the values of operational attributes are provided by the Directory, that they are
correct.

1411 System schemafor first-level subordinates

The Directory enforces the following rules and constraints on entries created immediately subordinate to the DIT root:
— All such entries shall be created as administrative point entries.

— The object class and naming attributes of such entries shall be as specified in ITU-T Rec. X.660 |
ISO/IEC 9834-1.

ITU-T Rec. X.501 (11/2008) 69

| SO/IEC 9594-2:2008 (E)

15 Directory schema administration

15.1 Overview

The overall administration of the directory schema of the global DIT is realized through independent administration of
the subschemas of the autonomous administrative areas of the DIT Domains that constitute the global DIT.

Coordination of the administration of the directory schema at boundaries between DIT Domainsis a subject for bilateral
agreement between DM Os and is beyond the scope of this Directory Specification.

The subschema administrative capabilities defined in this clause for the purpose of managing a DIT domain include:
a) creation, deletion and modification of subschema subentries;

b) support of the publication mechanism for the purpose of permitting DSASs to include schema information
in operational binding protocol exchanges and DUAS to retrieve subschema information via DAP,

¢) subschema regulation for the purpose of ensuring that any modify operations will be performed in
accordance with the applicable subschema specification.

15.2 Policy objects

A subschema policy object may be one of the following:
— asubschemaadministrative area;
— anobject or dias entry within a subschema administrative areg;
— auser attribute of such an object or aias entry.

An autonomous administrative area may be designated as a subschema specific administrative area in order to
administer the subschema. This shall be indicated by the presence of the value id-oa-subschemaAdminSpecificArea
in the associated administrative entry's administrativeRole attribute (in addition to the presence of the value
id-oa-autonomousArea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer the subschema of the
specific partitions. In this case, the administrative entries for each of the subschema specific administrative areas are
indicated by the presence of the value id-oa-subschemaAdminSpecificArea in these entries administrativeRole
attributes.

153 Policy parameters

Subschema policy parameters are used to express the policies of the subschema Administrative Authority. These
parameters, and the operational attributes used to represent them, are:

— aDIT gtructure parameter: used to define the structure of the subschema administrative area and to store
information about obsolete DIT structure rules which some entries may have identified as their
governing DIT structure rule. This parameter is represented by the dITStructureRules and nameForms
operational attributes;

— aDIT content parameter: used to define the type of content of object and alias entries contained within
the subschema administrative area and to store information about obsolete DIT content rules which the
Directory may have used in determining the content of some entries. This parameter is represented by the
dITContentRules, objectClasses, attributeTypes, contextTypes, friends, and dITContextUse
operational attributes;

— amatching capability parameter: used to define the matching capabilities supported by matching rules as
applied to the attribute types defined in a subschema administrative area. This parameter is represented
by the matchingRules and matchingRuleUse operational attributes.

A single subschema subentry is used by the subschema authority to administer the subschema for the subschema
administrative area. For this purpose, the subschema subentry contains the operational attributes representing the policy
parameters used to express subschema policies. The subtreeSpecification attribute of a subschema subentry shall
specify the whole subschema administrative area, i.e., it shall be an empty sequence.

The subschema subentry is specified as follows:

subschema OBJECT-CLASS ::= {
KIND auxiliary
MAY CONTAIN {
dITStructureRules |

70 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

nameForms |
diTContentRules |
objectClasses |
attributeTypes |
friends |
contextTypes |
dITContextUse |
matchingRules |
matchingRuleUse }
ID id-soc-subschema}

The operational attributes of the subschema subentry are defined in 15.7.

154 Policy procedures

There are two policy procedures associated with subschema administration:
— asubschema modification procedure;
— anentry modification procedure.

155 Subschema madification procedures

A subschema authority may administer a subschema in a dynamic fashion, including making restrictive subschema
modifications. This may be accomplished by modifying the values of the subschema operational attributes, using
Directory modify operations, effectively changing the subschema which is in force in the subschema administrative
area. A subschema authority may also create new subschema areas, or remove existing subschema areas by creating or
removing subschema subentries, respectively.

Before the subschema authority extends the DIT structure or DIT content rules by adding a new rule, or by adding an
auxiliary object class, or a mandatory or an optiona attribute to an existing rule, the referenced schema information
shall be described in the appropriate attribute in the subschema subentry. Name forms, object classes, attribute types
and matching rules that are referenced (directly or indirectly) by a dITStructureRule, diTContentRule or by a
matchingRuleUse attribute shall not be removed from the subschema subentry.

The definition of information objects such as object classes, attribute types, matching rules and name forms which have
been registered (i.e., assigned a name of type object identifier) are static and cannot be modified. Changes to the
semantics of such information objects require the assignment of new object identifiers.

DIT structure and DIT content rules may be active or obsolete. Only active rules are used to regulate the DIT. The
identification and preservation of obsolete rulesisan administrative convenience allowing location (and possibly repair)
of entries added under old rules that have since changed.

This obsolete mechanism shall be used where restrictive changes are made to DIT structure or DIT content rules
creating inconsistencies in the DIB; otherwise, the appropriate active rule may be modified directly. The Directory
permits deletion of obsolete rules at any time.

NOTE — The obsolete mechanism provided in subschema operational attributes ensures that all entries with obsolete schema can
be identified and repaired before the obsol ete subschema operational attribute is deleted.

It is the responsibility of the Subschema Administrative Authority to maintain consistency of entries with the active
subschema by means of the Directory abstract service, or by other local means. This may be done at the convenience of
the Subschema Administrative Authority. It is not defined when such an adjustment of inconsistent entries should be
done. However, deletion of obsolete rules prior to the location and repair of inconsistent entries will make this task
more difficult.

15.6 Entry addition and modification procedures

The Directory executes entry addition and modification procedures whenever a new entry is added to the DIT or an
existing entry is modified. The Directory shall determine whether the proposed operation would violate a subschema

policy.

In particular, the Directory shall ensure that entries added to the DIT are consistent with appropriate active DIT
structure and DIT content rules.

The Directory shall alow interrogation of entries which are inconsistent with their active rules.

The Directory enforces active rules when requested to modify the DIB. If an entry is inconsistent with its active rule, a
request to modify the entry shall be permitted if it repairs an existing inconsistency, or does not introduce a new
inconsistency. A request which introduces a new inconsistency shall fail.

ITU-T Rec. X.501 (11/2008) 71

| SO/IEC 9594-2:2008 (E)

For any valid entry in a valid subschema administrative area, there can be only one most subordinate structural object
class in the structural object class superclass chain. When an entry is added to the DIT, the Directory determines this
most subordinate structural object class from the objectClass attribute values provided and permanently associates it
with the entry viathe entry's structuralObjectClass attribute.

When an entry is created, values of the objectClass attribute shall be provided so that the content of the entry is
consistent with the DIT content rule governing the entry. In particular, where a value of the objectClass attribute
identifies a particular object class having superclasses other than top, then values for all of these superclasses shall also
be provided. Otherwise, the Directory operation creating the entry shall fail.

Directory users may subsequently add or delete values of the objectClass attribute for the auxiliary object classes of an
entry. The content of an entry shall remain consistent with the DIT content rule governing the entry following a change
to the values of the objectClass attribute. In particular, where avalue of the objectClass attribute identifies a particular
object class having superclasses other than top is added or deleted, then values for all of these superclasses shall also be
added or deleted, except where such superclasses are also present in the superclass chains associated with other values
not being added or deleted respectively.

15.7 Subschema palicy attributes

The following subclauses specify the subschema policy operational attributes. These attributes are;

— present in the subschema subentry. The values of these attributes are administered via Directory modify
operations using the distinguished name of the subschema subentry;

— availablefor interrogation in all entries governed by the subschema.

The ASN.1 parameterized type UnboundedDirectoryString, used in the following definitions, is defined in ITU-T
Rec. X.520 | ISO/IEC 9594-6.

The integerFirstComponentMatch and objectldentifierFirstComponentMatch equality matching rules are aso
defined in ITU-T Rec. X.520 | ISO/IEC 9594-6.

For management purposes, a number of human-readable name components and a description component are
optionally allowed as components of a humber of the subschema policy operational attributes defined in the following
subclauses.

A number of subschema policy operational attributes defined in the following subclauses contain an obsolete
component. This component is used to indicate whether the definition is active or obsolete in the subschema
administrative area.

15.7.1 DIT Structure Rulesoperational attribute

ThedITStructureRules operational attribute definesthe DIT structure rules which are in force within a subschema:

dITStructureRules ATTRIBUTE ::= {

WITH SYNTAX DITStructureRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation

ID id-soa-dITStructureRule }

DITStructureRuleDescription ::= SEQUENCE {
COMPONENTS OF DITStructureRule,

name [1] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }

ThedITStructureRules operational attribute is multi-valued; each value defines one DIT structurerule.
The components of dITStructureRule have the same semantics as the corresponding ASN.1 definition in 13.7.6.

15.7.2 DIT Content Rules operational attribute

The dITContentRules operational attribute defines the DIT content rules which are in force within a subschema. Each
value of the operational attribute istagged by the object identifier of the structural object classto which it pertains:

dITContentRules ATTRIBUTE ::= {

WITH SYNTAX DITContentRuleDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-dITContentRules }

72 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

DITContentRuleDescription ::= SEQUENCE {
COMPONENTS OF DITContentRule,

name [4] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }

The dITContentRules operational attribute is multi-valued; each value defines one DIT content rule.

The components of dITContentRule have the same semantics as the corresponding ASN.1 definition in 13.8.2.

15.7.3 Matching Rules operational attribute

The matchingRules operational attribute specifies the matching rules used within a subschema:

matchingRules ATTRIBUTE ::= {

WITH SYNTAX MatchingRuleDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-matchingRules }

MatchingRuleDescription ::= SEQUENCE {

identifier MATCHING-RULE.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] UnboundedDirectoryString OPTIONAL }

-- describes the ASN.1 syntax

The identifier component of a value of the matchingRules attribute is the object identifier identifying the matching
rule.

The description component contains a natural language description of the a gorithms associated with the rule.
Theinformation component contains the ASN.1 definition of the assertion syntax of therule.

Such an ASN.1 definition shall be given as an optiona ASN.1 Imports production, followed by optional ASN.1
Assignment productions, followed by an ASN.1 Type production. All type names defined in Directory modules are
implicitly imported and do not require explicit import. All type names, whether imported or defined via an Assignment,
are local to the definition of this syntax. If the ASN.1 type includes a user-defined constraint and is not one of the
ASN.1 types defined in the Directory modules, then the last UserDefinedConstraintParameter of the constraint shall
be an actual parameter whose governing type is SyntaxConstraint and whose value is the object identifier assigned to
the constraint.

SyntaxConstraint ::= OBJECT IDENTIFIER

NOTE 1—-The ASN.1 productions Imports, Assignment, and Type are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.
UserDefinedConstraintParameter isdefined in ITU-T Rec. X.682 | ISO/IEC 8824-3.

NOTE 2 — A typical ASN.1 definition is simply a Type name.

The matchingRules operational attribute is multi-valued; each value describes one matching rule.

15.7.4 Attribute Types operational attribute
The attributeTypes operational attribute specifies the attribute types used within a subschema:

attributeTypes ATTRIBUTE ::= {

WITH SYNTAX AttributeTypeDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-attributeTypes }

AttributeTypeDescription ::= SEQUENCE {
identifier ATTRIBUTE.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [O] AttributeTypelnformation }

Theidentifier component of avalue of the attributeTypes attribute is the object identifier identifying the attribute type.

ITU-T Rec. X.501 (11/2008) 73

| SO/IEC 9594-2:2008 (E)
TheattributeTypes operational attribute is multi-valued; each value describes one attribute type:

AttributeTypelnformation ::= SEQUENCE {

derivation [0] ATTRIBUTE.&id OPTIONAL,

equalityMatch [1] MATCHING-RULE.&id OPTIONAL,

orderingMatch [2] MATCHING-RULE.&id OPTIONAL,

substringsMatch [3] MATCHING-RULE.&id OPTIONAL,

attributeSyntax [4] UnboundedDirectoryString OPTIONAL,

multi-valued [5] BOOLEAN DEFAULT TRUE,

collective [6] BOOLEAN DEFAULT FALSE,
userModifiable [7] BOOLEAN DEFAULT TRUE,

application AttributeUsage DEFAULT userApplications }

The derivation, equalityMatch, attributeSyntax, multi-valued, collective and application components have the same
semantic as the equivalent pieces of notation introduced by the corresponding information object class.

The attributeSyntax component contains a text string giving the ASN.1 definition of the attribute's syntax. Such an
ASN.1 definition shall be given as specified for theinformation component of the Matching Rules operational attribute.

1575 Object Classes operational attribute

The objectClasses operational attribute specifies the object classes used within a subschema.

objectClasses ATTRIBUTE ::= {

WITH SYNTAX ObjectClassDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-objectClasses }

ObjectClassDescription ::= SEQUENCE {

identifier OBJECT-CLASS.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,

Theidentifier component of avalue of the objectClasses attribute is the object identifier identifying the object class.

The objectClasses operational attribute is multi-valued; each value describes one object class:

ObjectClassIinformation ::= SEQUENCE ({

subclassOf SET SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
optionals [4] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL }

The subclassOf, kind, mandatories and optionals components have the same semantics as the corresponding pieces
of notation introduced by the corresponding information object class.

15.7.6 Name Formsoperational attribute

The nameForms operationa attribute specifies the name forms used within a subschema.

nameForms ATTRIBUTE ::= {

WITH SYNTAX NameFormDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-nameForms }

NameFormDescription ::= SEQUENCE {

identifier NAME-FORM.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,

obsolete BOOLEAN DEFAULT FALSE,

information [O] NameFormInformation }

Theidentifier component of avalue of the nameForms attribute is the object identifier identifying the object class.

ThenameForms operational attribute is multi-valued; each value describes one name form:
NameFormiInformation ::= SEQUENCE {

subordinate OBJECT-CLASS.&id,
namingMandatories SET OF ATTRIBUTE.&id,

74 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

namingOptionals SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL }

The subordinate, mandatoryNamingAttributes and optionalNamingAttributes components have the same semantics
as the corresponding pieces of notation introduced by the corresponding information object class.

15.7.7 Matching Rule Use operational attribute

The matchingRuleUse operational attribute is used to indicate the attribute types to which a matching rule appliesin a
subschema:

matchingRuleUse ATTRIBUTE ::= {

WITH SYNTAX MatchingRuleUseDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-matchingRuleUse }

MatchingRuleUseDescription ::= SEQUENCE {

identifier MATCHING-RULE.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [O] SET OF ATTRIBUTE.&id }

The identifier component of avalue of the matchingRulesUse attribute is the object identifier identifying the matching
rule.

Theinformation component of avalue identifies the set of attribute types to which the matching rule applies.

15.7.8 Structural Object Class operational attribute

Every entry in the DIT has a structuralObjectClass operational attribute which indicates the structural object class of
the entry:

structuralObjectClass ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectldentifierMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-soa-structuralObjectClass }

1579 Governing Structure Rule operational attribute

Every entry in the DIT, with the exception of administrative point entries that have no subschema subentry, has a
governingStructureRule operational attribute which indicates the governing structure rule of the entry:

governingStructureRule ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-soa-governingStructureRule }

15.7.10 ContextTypesoperational attribute

The contextTypes operational attribute specifies the context types used within a subschema.

contextTypes ATTRIBUTE ::= {

WITH SYNTAX ContextDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-contextTypes }

ContextDescription ::= SEQUENCE {

identifier CONTEXT.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] Contextinformation }

ITU-T Rec. X.501 (11/2008) 75

| SO/IEC 9594-2:2008 (E)

The identifier component of a value of the contextTypes operational attribute is the object identifier identifying the
context type.

The contextTypes operational attribute is multi-valued; each value describes one context type:

ContextIinformation ::= SEQUENCE {
syntax UnboundedDirectoryString,
assertionSyntax UnboundedDirectoryString OPTIONAL }

The syntax and assertionSyntax components have the same semantics as the corresponding pieces of notation
introduced in the corresponding information object class.

The syntax component and the assertionSyntax component each contain a text string giving the ASN.1 definition of
the context syntax and context assertion syntax respectively. Such an ASN.1 definition shall be given as an optional
ASN.1 Imports production, followed by optional ASN.1 Assignment productions, followed by an ASN.1 Type
production. All type names defined in Directory modules are implicitly imported and do not require explicit import. All
type names, whether imported or defined via an Assignment, are local to the definition of this syntax. If the ASN.1 type
includes a user-defined constraint and is not one of the ASN.1 types defined in the Directory modules, then the last
UserDefinedConstraintParameter of the constraint shall be an actua parameter whose governing type is
SyntaxConstraint and whose value is the object identifier assigned to the constraint.

NOTE 1—-The ASN.1 productions Imports, Assignment, and Type are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

UserDefinedConstraintParameter isdefined in ITU-T Rec. X.682 | ISO/IEC 8824-3. SyntaxConstraint is defined in 15.7.3.

NOTE 2 — A typical ASN.1 definition is simply a Type name.

15.7.11 DIT Context Use operational attribute
The dITContextUse operational attribute is used to indicate the contexts which shall or may be used with an attribute:

dITContextUse ATTRIBUTE ::= {

WITH SYNTAX DITContextUseDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITContextUse }

DITContextUseDescription ::= SEQUENCE {
identifier ATTRIBUTE.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] DITContextUselnformation }

The identifier component of a value of the diITContextUse operational attribute is the object identifier of the attribute
type to which it applies. The valueid-oa-allAttributeTypes indicates that it appliesto all attribute types.

Theinformation component of a value identifies the mandatory and optional context types associated with the attribute
typeidentified by identifier:
DITContextUselnformation ::= SEQUENCE ({

mandatoryContexts [1] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,

optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL }

15.7.12 Friendsoperational attribute

Thefriends operational attribute is used to indicate the sets of attribute types which are friends within a subschema:

friends ATTRIBUTE ::= {

WITH SYNTAX FriendsDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-friends }

FriendsDescription ::= SEQUENCE {

anchor ATTRIBUTE.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,

friends [0] SET SIZE (1..MAX) OF ATTRIBUTE.&id }

76 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)
The anchor component of avalue of the friends attribute is the object identifier of the attribute type that is the anchor

to the set of friends. The friends component of a value of the friends attribute is the set of object identifiers of the
attribute types that are the friends of the anchor attribute type.

ITU-T Rec. X.501 (11/2008) 77

| SO/IEC 9594-2:2008 (E)

SECTION 7 —DIRECTORY SERVICE ADMINISTRATION

16 Service Administration M odel

This clause provides a model for how an administrative authority can control, constrain and adjust the service both with
respect to what a user can specify in a Search, a Read or Modify Entry request and what information isto be returned.

16.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

16.1.1 effectively present attribute type: An attribute type that is present in at least one non-negated filter item in
each subfilter of a search filter and which fulfils the requirements as specified for that attribute type in the relevant
search-rule. For definitions of negated and non-negated filter items, see 7.8.1 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

16.1.2 governing-search-rule: A search-rule with which a particular operation complies and which has been
selected for governing that operation.

16.1.3 named-service: A collection of service-types that together provide an overall service, e.g., a White Pages
service.

16.1.4 request-attribute-profile: A specification of what is required for afilter item for the corresponding attribute
type to be effectively present.

16.1.5 request-attribute-type: An attribute type that according to a search-rule specification may be represented in
the filter of a Search operation.

16.1.6 Search-rule: The detailed specification of the service constraints/enhancement aspects provided for a given
service-type primarily intended for a given user-class and tailored to a particular group of users.

16.1.7 service-type: A globaly unique identification of a service capability for a particular purpose within a well-
defined scope, e.g., a capability of search for a particular type of entries within an area of the DIT. Not all aspects of a
service-type may be availableto all users.

16.1.8 subfilter: A Boolean component of afilter that comprises only logical ANDs of non-negated filter items and
of negated filter items, i.e., that can be expressed informally as NOT (filter-item). Any filter can be expressed in a
canonical form comprising alogical OR of subfilters as discussed in Annex Q.

16.1.9 user-class: An identified set of users that due to their functions, position in an organization, etc., can invoke
certain aspects of the service-types within a named-service. Different groups of users identified by their names within a
user-class may see variationsin the service provided. A user group can span user-classes.

16.2 Service-type/user-class model

The Directory Abstract Service as specified in ITU-T Rec. X.511 | ISO/IEC 9594-3 is the representation of all the
service capabilities offered by the Directory Specifications. A service-type is a subset of that service for performing a
particular function, e.g., searching for a particular type of object within a defined scope.

A named-service is a collection of service-types for a particular purpose, e.g., to provide a White Pages service, a
particular type of Y ellow Pages service, etc.

A service-type is realized primarily through the Search operation, but also through other operations that can specify
entry information selection, i.e., Read and Modify Entry operations. For the purpose of service administration, aread or
a modifyEntry request is considered in some respect equivalent to a search request with subset equal to baseObject
and filter equal to and : {}. Service administration does not affect what information can be modified by a Modify Entry
operation. Thisis solely governed by access control.

An object identifier identifies a service type, thereby giving it a global unique identification. Different user-classes,
dependent on their role, position in the organization, etc., may have somewhat different perceptions of a service-type. A
user-class is identified by an integer that is only required to be unique with a DMD. Different DMDs could assign a
different identifier to what could be considered the same user-class. However, it is expected that administrative
authorities cooperating to provide a common named-service across several DMDs will coordinate the user-group
identifiers. Even for a particular user-class, there may be variations in the service available to users in the class. Such
variations are based on the distinguished names of the users. As an example, users of a particular user-class in one
country may not have exactly the same view of a service-type as the users of the same user-class in another country,
e.g., to reflect local privacy laws. The definition of a service-type for a user group is expressed by a search-rule
specifying the details as to how the operation is to be performed.

78 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The service-type and the user-class for which it is primarily intended are indicated in a search-rule.

A user group may span several user-classes. A user within a user-class could possibly also utilize search-rules that were
primarily intended for other user-classes, e.g., users in a user class with a greater capability would also be granted
permissions intended for user-classes that are generally offered lower service capabilities.

A user group is not directly identified by a search-rule, but is indirectly identified by having the Invoke permission to
that search-rule. A user group can invoke any search-rule to which it has the Invoke permission. If a particular user has
the Invoke permission to several search-rules for the same service-type but for different user-groups, the procedures
defined in these Directory Specifications will, everything else being equal, select the search-rule with the highest user-
group identifier. This alows the administrative authority by proper assignment of user-class identifiers to control this
selection.

16.3 Service-gpecific administrative areas

An autonomous administrative area may be designated as a service-specific administrative area in order to deploy and
administer search-rules. This shall beindicated by the presence of the valueid-ar-serviceSpecificArea in the associated
administrative entry's administrativeRole attribute (in addition to the presence of the value id-ar-autonomousArea,
and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer search-rules in specific
partitions. In this case, the administrative entries for each of the service-specific administrative areas are indicated by
the presence of the value id-ar-serviceSpecificArea in these entries' administrativeRole attributes. Service policies for
superior service-specific administrative areas are not relevant subordinate to such an administrative entry.

If such an autonomous administrative area is not partitioned, there is a single service-specific administrative area for
search-rules encompassing the entire autonomous administrative area.

One or more search-rules are represented in the Directory information model by a subentry, termed a service subentry;,
whose objectClass attribute contains the value id-sc-serviceAdminSubentry, as defined in 14.8. A subentry of this
class shall be the immediate subordinate of an administrative entry whose administrativeRole attribute contains the
valueid-ar-serviceSpecificArea.

The evaluation phase of an operation within a service-specific administrative area is among other dependent on what
base object is used for the operation, possibly after aias dereferencing. Search-rules are therefore tied to entries. When
the base object for an operation has been determined, the search-rules tied to that entry are candidates for governing the
search. The ties between search-rules within a subentry and entries within the service-specific administrative area are
established by the subtreeSpecification operationa attribute of the subentry. The entries identified by the values of the
subtreeSpecification operational attribute are in thisway tied to the search-rules placed in the same subentry.

A particular entry can be associated with search-rules from multiple subentries; these may have the same or different
subtree specifications. Conversely, different parts of the administrative area can be targeted by the one subentry, using
multiple values of the subtree specification.

The arguments of an operation can be validated against a search-rule by using an algorithm called the search-validation
function.

operation
arguments

TRUE (OK)
or
FALSE (not OK)

search-validation
function
search-rule

X.501_F16

Figure 16 — Sear ch-validation function

An operation is valid and allowed to proceed if, and only if, the search-validation-function yields TRUE for at least one
of the available search-rules associated with the base object for the operation. For a search-rule to be available for an
operation, the requestor must have Invoke permissions to the attribute value that holds the search-rule. If there is only
one available search-rule with which the operation complies, this search-rule is called the governing-search-rule for that
operation, i.e., the search-rule that is used when the operation is further progressed. If there are several such search-
rules, one of these is selected by local choice as the governing-search-rule. The procedure for selecting a governing-

ITU-T Rec. X.501 (11/2008) 79

| SO/IEC 9594-2:2008 (E)

search-rule is given in 19.3.2.2.1 of ITU-T Rec. X.518 | ISO/IEC 9594-4. The governing-search-rule is thereby
permanently associated with the operation for its evaluation within the service-specific administrative area. Thisis also
the case when part of the operation is carried out by other DSAs holding parts of that service-specific administrative
area.

It is the choice of administrative authorities as to whether:

— to collect severa search-rules requiring different Invoke permissions into a single subentry (thereby
requiring access control down to attribute value level if these Invoke permissions vary from value to
value); or

— to collect search-rules with the same access control permissions into distinct subentries, so that access
control permissions can be granted on the basis of permissions to the complete attribute; different
subentries can then hold different access control permissions.

If there is no search-rule available for an operation specifying a base object entry within a service-specific
administrative area, or if the search validation function returns FALSE for all available search-rules, the operation is
rejected with an error.

If a service-specific administrative area has no subentries, there are no service constraints associated with that area.

There may be users that should not be limited by service restrictions, e.g., administrators, and there may be entries,
when serving as base object entries, for which restriction is not required, e.g., entries low in the DIT. The administrative
authority can therefore include special search-rules, empty search-rules.

A hierarchical group within a service-specific administrative area has to be completely contained by that area.

The scope of a Search operation cannot cross the border of a service-specific administrative area. ITU-T Rec. X.518 |
| SO/IEC 9594-4 specifies procedures that do not allow a Search operation starting within a particular service-specific
administrative area to go outside that area even when aliases are dereferenced during the search evaluation. Likewise, a
search starting outside a service-specific administrative area cannot spread into that area.

16.4 I ntroduction to search-rules

Search-rules are expressions of policies that, on one hand, constrain and adjust operations that can be carried out in a
region of the DIT, and, on the other hand, assist in their execution by guiding the operation process. A search-rule has
the following main characteristics:

— it gives requirements that an operation shall meet if the operation is to be carried out based on that
search-rule;

— it specifies adjustment of the operation request;

— it provides specification for details of the evaluation of the operation, e.g., by specifying relaxation
policiesif too many or too few entries are found for Search operation; and

— it provides entry information selection specifications.

When a processing of an operation starts, the base entry of the operation corresponds to one or more service subentries
whose subtree-specification values include that base entry. Thereby, potentially a number of candidate-search-rules are
identified. The details of the operation are evaluated against these candidate-search-rules. An operation can only be
executed if a compatible search-rule can be found.

16.5 Subfilters

If asearch-ruleis designed to control the Search operation, it may specify a set of attribute types that may be present in
a filter of a search request. These attribute types are called the request-attribute-types for the search-rule. Other
attribute types shall not be present in the filter in any form, negated or non-negated. This subclause further qualifies
what it means for an attribute type to be present in a search filter. A search-rule also specifies requirements on valid
combinations of request attribute types. It might be a requirement that certain attribute shall be present; it might be a
requirement that at least one out of two attribute types shall be present; it might be a requirement that one attribute type
is not allowed without another being present, etc. To further elaborate on how to express combinations, it is useful to
introduce the concept of subfilters.

According to propositional calculus, any filter whatsoever can be written as a sequence of subfilters separated by OR
operators. This can be written as:

f:f1+f2+...+fr

80 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

where each subfilter, f;, is a sequence of filter items or negated filter items that are separated by AND operators, which
can be written as:

fi =fi1fi2 ... fis
where f;; is either afilter item or its negation.
The subfilter concept is further described in Annex Q.
For afilter to comply with a search-rule, each subfilter shall comply with the search-rule.

For afilter item to effectively represent an attribute type in a subfilter, it is required to comply with the requirements of
the request-attribute-profile for the attribute type. The request-attribute-profiles are part of the search-rule specification.
If at least one filter-item for an attribute type in each subfilter complies with the request-attribute-profile for that
attribute type, the attribute type is said to be an effectively-present-attribute-type.

16.6 Filter requirements

For an attribute type to be effectively present in a filter, the attribute type or, if the includeSubtypes option of the
request-attribute-profile is set, one of its subtypes shall be present in at least one non-negated filter item of each
subfilter. Such a non-negated filter item shall comply with al of the following requirements:

— It shal be anon-negated filter item that is not one of the following types:
greaterOrEqual;
lessOrEqual;
present or contextPresence unless explicitly allowed by the request-attribute-profile.
— It shal comply with the request-attribute-profile specification for that attribute type.

— Ifitisan extensibleMatch filter item, the attribute type shall be specified in the type component of the
MatchingRuleAssertion.

NOTE — If this last restriction is not introduced, this filter item could implicitly include an unspecified number of
attribute typesinto the search filter and thereby impair the search validation procedure.

If an attribute type is represented in afilter, it shall be effectively present.

It is allowed to have extensibleMatch filter items without the type component in the filter. Their presence does not
affect the search validation against search-rules. However, such afilter item shall only be applied to attributes whose
types are request-attribute-types, i.e., represented in the governing-search-rule by a request-attribute-profile
(see 16.10.2).

16.7 Attribute information selection based on sear ch-rules

Outside a service-specific administrative area, attribute information returned is selected by the selection component of
the operation request possibly modified by the operationContext of the CommonArguments, and any context defaults
established either within a context default specific administrative area or by local context defaults. For a Search
operation, selection of information may aso be modified by the matchedvaluesOnly component in the
SearchArgument. However, when an operation is controlled by a governing-search-rule, this search-rule may specify
what information isto be returned. When thisis the case, the user attribute information returned shall be the intersection
of what the governing-search-rule specifies and what would have been returned had there been no governing-search-
rule. If the entry information selection in the selection component specifies selection of operational attributes, the same
rule shall apply for operationa attributes. If the entry information selection does not specify return of operational
attribute information, operationa attribute information returned shall solely be determined by the governing-search-
rule.

A governing-search-rule may specify what attribute information is to be returned completely independently of what
attribute types may be specified in asearch filter.

When information is to be returned based on hierarchical groups, selection of attribute information from such entriesis
based on the principle above, except that matchedValuesOnly specifications have no effect.

NOTE — Family member selection is not governed by the above principle (see 16.10.6).

16.8 Access contr ol aspects of search-rules

Search-rules provide some additional access control capabilities besides those capabilities described in clause 18. In a
service-minded approach, it is necessary to apply restrictions on how operations can be formulated and what
information can be returned. This should be based not only on the identity of the user, but also on the service-type and

ITU-T Rec. X.501 (11/2008) 81

| SO/IEC 9594-2:2008 (E)

the user-class, thereby alowing the administrative authorities to tailor the service based on quality of information,
charging considerations, etc.

The access control capabilities as defined in clause 18 are used for ensuring that only proper user groups can invoke
search-rules. These capabilities can also protect information never to be accessed by particular user groups.

A DSA that caches information originating from a service-specific administrative area may not have search-rules for
controlling the restrictions on that information. As for access control (see 18.8.2), a Security Administrator should be
aware that a DSA with the capability of caching may impose a significant security risk to other DSAs.

16.9 Contexts aspects of search-rules

As context assertions can be part of a filter item for the Search operation, search-rule specifications need to take
contexts into account. Inclusion of contexts into the search-rule brings new capabilities into the contexts feature that
may simplify requirements on DUA and DSA implementations.

The basic context feature allows the user to specify contexts for the Search filter and for entry information selection;
and it allows the administrative authorities to establish context defaults within a context default specific administrative
area. These defaults apply indiscriminately to al users and to all service-types. However, the context feature as
provided by the search-rules allows the user to specify a minimum of context information, and it alows the
administrative authorities to make individual context specifications for each search-rule. In addition, it is possible, as
indicated in 16.8, to provide access control like function through proper design of the search-rule context specification.
Use of context specifications in search-rules could make establishment of context default specific administrative areas
redundant.

16.10 Search-rule specification
The SearchRule ASN.1 data type gives the syntax of a search-rule.

SearchRule ::= SEQUENCE {

COMPONENTS OF SearchRuleld,
serviceType [1] OBJECT IDENTIFIER OPTIONAL,
userClass [2] INTEGER OPTIONAL,
inputAttributeTypes [3] SEQUENCE SIZE (0..MAX) OF RequestAttribute OPTIONAL,
attributeCombination [4] AttributeCombination DEFAULT and : {},
outputAttributeTypes [5] SEQUENCE SIZE (1..MAX) OF ResultAttribute OPTIONAL,
defaultControls [6] ControlOptions OPTIONAL,
mandatoryControls [7] ControlOptions OPTIONAL,
searchRuleControls [8] ControlOptions OPTIONAL,
familyGrouping [9] FamilyGrouping OPTIONAL,
familyReturn [10] FamilyReturn OPTIONAL,
relaxation [11] RelaxationPolicy OPTIONAL,
additionalControl [12] SEQUENCE SIZE (1..MAX) OF AttributeType OPTIONAL,
allowedSubset [13] AllowedSubset DEFAULT '111'B,
imposedSubset [14] ImposedSubset OPTIONAL,
entryLimit [15] EntryLimit OPTIONAL }
SearchRuleld ::= SEQUENCE ({
id INTEGER,
dmdld [0] OBJECT IDENTIFIER }

AllowedSubset ::= BIT STRING { baseObject (0), oneLevel (1), wholeSubtree (2) }
ImposedSubset ::= ENUMERATED { baseObject (0), oneLevel (1), wholeSubtree (2) }

RequestAttribute ::= SEQUENCE {

attributeType ATTRIBUTE.&id ({ SupportedAttributes }),
includeSubtypes [0 BOOLEAN DEFAULT FALSE,
selectedValues [1] SEQUENCE SIZE (0..MAX) OF ATTRIBUTE.&Type
({ SupportedAttributes H{ @attributeType }) OPTIONAL,
defaultValues [2] SEQUENCE SIZE (0..MAX) OF SEQUENCE {
entryType OBJECT-CLASS.&id OPTIONAL,
values SEQUENCE OF ATTRIBUTE.&Type
({ SupportedAttributes }{ @attributeType })} OPTIONAL,
contexts [3] SEQUENCE SIZE (0..MAX) OF ContextProfile OPTIONAL,
contextCombination [4] ContextCombination DEFAULT and : {},
matchingUse [5] SEQUENCE SIZE (1..MAX) OF MatchingUse OPTIONAL }

82 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

ContextProfile ::= SEQUENCE {
contextType CONTEXT.&id({SupportedContexts}),
contextValue SEQUENCE SIZE (1..MAX) OF CONTEXT.&Assertion
({SupportedContextsl{@contextType}) OPTIONAL }

ContextCombination ::= CHOICE {

context [0] CONTEXT.&id({SupportedContexts}),
and [1] SEQUENCE OF ContextCombination,
or [2] SEQUENCE OF ContextCombination,
not [3] ContextCombination }

MatchingUse ::= SEQUENCE {
restrictionType MATCHING-RESTRICTION.&id ({SupportedMatchingRestrictions}),
restrictionValue MATCHING-RESTRICTION.&Restriction
({SupportedMatchingRestrictions}{@restrictionType}) }

-- Definition of the following information object set is deferred, perhaps to standardized
-- profiles or to protocol implementation conformance statements. The set isrequired to
-- specify a table constraint on the components of SupportedMatchingRestrictions

SupportedMatchingRestrictions MATCHING-RESTRICTION ::= { ...}

AttributeCombination ::= CHOICE {

attribute [0] AttributeType,
and [1] SEQUENCE OF AttributeCombination,
or [2] SEQUENCE OF AttributeCombination,
not [3] AttributeCombination }
ResultAttribute ::= SEQUENCE {
attributeType ATTRIBUTE.&id ({ SupportedAttributes }),
outputValues CHOICE {
selectedValues SEQUENCE OF ATTRIBUTE.&Type
({ SupportedAttributes }{ @attributeType }),
matchedValuesOnly NULL } OPTIONAL,
contexts [O] SEQUENCE SIZE (1..MAX) OF ContextProfile OPTIONAL }
ControlOptions ::= SEQUENCE {
serviceControls [0] ServiceControlOptions DEFAULT{},
searchOptions [1] SearchControlOptions DEFAULT { searchAliases },
hierarchyOptions [2] HierarchySelections OPTIONAL }
EntryLimit ::= SEQUENCE {
default INTEGER,
max INTEGER }

RelaxationPolicy ::= SEQUENCE ({
basic [O] MRMapping DEFAULT { },
tightenings [1] SEQUENCE SIZE (1..MAX) OF MRMapping OPTIONAL,
relaxations [2] SEQUENCE SIZE (1..MAX) OF MRMapping OPTIONAL,
maximum [3] INTEGER OPTIONAL, -- mandatory if tightenings is present
minimum [4] INTEGER DEFAULT 1}

MRMapping ::= SEQUENCE {
mapping [O] SEQUENCE SIZE (1..MAX) OF Mapping OPTIONAL,
substitution [1] SEQUENCE SIZE (1..MAX) OF MRSubstitution ~ OPTIONAL }

Mapping ::= SEQUENCE {

mappingFunction OBJECT IDENTIFIER (CONSTRAINED BY { -- shall be an
-- object identifier of a mapping-based matching algorithm--}),
level INTEGER DEFAULTO0}

MRSubstitution ::= SEQUENCE {
attribute AttributeType,
oldMatchingRule [0] MATCHING-RULE.&id OPTIONAL,
newMatchingRule [1] MATCHING-RULE.&id OPTIONAL }

16.10.1 Search-ruleidentification components

Theid component allows for the unique identification of search-rules within aDMD. The value zero is reserved for the
empty search-rule. The purpose of an empty search rule is described in 16.3.

ITU-T Rec. X.501 (11/2008) 83

| SO/IEC 9594-2:2008 (E)

The dmdIid component gives a unique identification of the DMD that has established the search-rule. This component
together with id permits the definition of aunique, global identification of a search-rule.

NOTE — How this uniquenessis to be policed is outside the scope of this specification.

The id component (with the value of zero) and the dmdid components are the only components relevant for the empty
search-rule.

The serviceType component is an object identifier that identifies the service-type supported by this search-rule. This
component shall always be present except for an empty search-rule.

The userClass component indicates the user-class for which the search-rule is primarily intended. For a given service-
type, there can be several search-rules specifying the same user-class. This component shall always be present except
for an empty search-rule.

16.10.2 Request-attribute-profiles

The inputAttributeTypes component shall specify request-attribute-profiles for al attribute types that shall or may be
represented in asearch filter. If asearch filter includes afilter item for an attribute type not represented by a request-
attribute-profile, the search validation against this search-rule fails. The RequestAttribute data type specifies the
requirement on a filter item for the attribute type specified in the filter item to be effectively present. If this component
is absent, the search-rule does not put any restriction on the presence of attribute types, i.e., any operation complies with
this component. If the component is present, but empty, only aread request, amodifyEntry request or asearch request
with default filter (and : { }) complies with this component.

The following subcomponents are relevant for all operation types controlled by search-rules:

a) TheattributeType subcomponent specifies the attribute type for which this specification applies. It isthe
only mandatory subcomponent. There can only be one RequestAttribute specification for a given
atribute type within a search-rule. If this is the only subcomponent, except possibly for the
includeSubtypes subcomponent, there are no restrictions on search filter items for this attribute type,
except that if such filter items are in thefilter, at least one of them shall be non-negated.

b) The includeSubtypes subcomponent specifies that this request-attribute-profile can be satisfied by a
filter item for a subtype of this attribute type.

The following subcomponents are only relevant for the Search operation:

¢) TheselectedValues subcomponent provides a set of attribute values of the type given in attributeType.
If this attribute type is represented in the filter, there shall be at |east one non-negated filter item for this
attribute type that matches at least one value of this subcomponent. Otherwise, this attribute type is not
effectively present in the filter.

If this subcomponent is absent, the above matching evaluates to TRUE.

If an empty set of attribute valuesis given, this attribute type can only be effectively present in:
— apresent filter item if the Contexts subcomponent is not present; or

— acontextPresent filter item if the Contexts subcomponent is present.

d) Thedefaultvalues subcomponent does not affect the evaluation of a search request against the search-
rule, but controls the Search operation when a search-rule has been selected as the governing-search-rule.
This component provides a set of attribute values of the type given in attributeType. If afilter item using
this attribute type is defined within the filter, but there is no attribute of this type present in an entry (or a
family grouping), then this filter item evaluates to TRUE (or to FALSE if negated) if the filter item
matches one of the values in this subcomponent. If this subcomponent is absent, there are no default
values.

If this component is present, but empty, it indicates that this component takes all possible values, i.e., a
filter item for this attribute type always evaluates to TRUE (or to FAL SE if negated) if the attribute type
isabsent in an entry.

NOTE 1 — This reflects the situation where a filter item shall be ignored if an attribute of the type referenced is
absent.

If an entry holds an attribute of thistype, normal matching against this attribute is done.

€) Thecontexts subcomponent specifies the context types that are allowed to be represented in afilter item
for this attribute type. A particular context type shall not be represented more than once in this
subcomponent.

— If the subcomponent is absent, any context information may be present in a filter item for this
attribute type.

84 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

— If the subcomponent is present, only context types specified by this subcomponent may be present
in a filter item for this attribute type. If it is an empty sequence, no context information may be
present in afilter item for this attribute type.

— If only a context type is specified, any context value of that type may be present in the context
assertion.

— If context values for a given context type are present in this subcomponent, only those values may
be present in a corresponding context assertion in afilter item.

If the context specification in the filter item does not comply with the above, the filter item does not
comply with the request-attribute-profile for the attribute type.

f) ThecontextCombination subcomponent specifies the valid combination of the context types aslisted in
the contexts subcomponent within this request-attribute-profile. If this subcomponent is absent, there is
no restriction on the combination of these context types. If an invalid combination of context types is
present, the filter item does not comply with the request-attribute-profile for the attribute type. This
component may specify that certain context types shall unconditionally be present.

g) The matchingUse subcomponent is used to specify possible constraints on the use of the applicable
matching rule, e.g., minimum lengths for substring matching. The applicable matching rule is the one
that actually is going to be used before any relaxation but after a possible basic substitution. The details
on the restrictions and how they are evaluated are described as part of the restriction specification. If this
subcomponent specifies a matching restriction defined for the matching rule to be used, it is checked
whether this matching restriction is violated or whether unsupported aspects of the matching rule have to
be applied. If that is the case, then:

— if the performExactly search control option is not set, the implementation may use a local rule on
how to apply the matching rulein a different way;

NOTE 2 — Such a loca rule requires a customization capability to be applied for the matching rule in
question.

— if the performExactly search control option is set or it is not possible to apply a local rule, the
search request does not comply with this search-rule.

16.10.3 Attribute combinations

The attributeCombination component specifies the valid combination of the request-attribute-types as listed in the
inputAttributeTypes component. If this component is absent or has the default value (and : {}), there is no restriction
on the combination of request-attribute-type and al relevant types of operations comply with this component. If an
invalid combination of request-attribute-types is present, the search validation against this search-rule fails. This
component may specify that certain attribute types shall unconditionally be effectively present in the filter. This
component shall be absent if inputAttributeTypes is absent or empty. If this component is present and has a
non-default value, only a Search operation with a non-default filter can potentially comply with this component.

16.10.4 Attributesin theresult

The outputAttributeTypes component specifies what attribute types (or their subtypes if the noSubtypeSelection
service control option is not set) will potentially be present in the result, subject to access control (see 16.7). If a
matched entry or compound entry does not contain any of the attributes defined in this component, it is not included in
the result. A similar rule applies for individual family member marked as the result of the matching or through
operations specified by control attributes in the additionalControl component. If such a family member holds none of
the attribute types defined by this component, this corresponds to the family member and al its subordinates being
explicitly unmarked. The ResultAttribute data type specifies the details about how such an attribute type shall be
represented in the result. This component does not affect search validation. If absent, the search-rule does not affect the
entry information selection except as possibly specified by the familyReturn and additionalControl components. This
component has the following subcomponents:

a) TheattributeType subcomponent specifies the attribute type for which this specification applies. It isthe
only mandatory subcomponent. There can only be one ResultAttribute specification for a given attribute
type within a search-rule.

ITU-T Rec. X.501 (11/2008) 85

| SO/IEC 9594-2:2008 (E)

b) The outputVvalues subcomponent specifies what attribute values of this attribute type are candidates for
being returned. The set of values may be further restricted by the context subcomponent, entry
information selection as provided by the requestor, access control, etc. If this subcomponent is absent, all
the attribute values are candidates. The selectedValues choice provides a set of attribute values of the
type given in attributeType. Only those values listed are candidates for attribute values to be returned.
The matchedValuesOnly choice specifies that only those attribute values of the attribute that contributed
to the filter returning TRUE via filter items other than present are candidates for being returned
(see 10.2.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3 for a definition of the term "contributed").

¢) Thecontext subcomponent holds a set of context profiles that specify what attribute value information is
returned for this attribute type.

— If this subcomponent is absent, the search-rule does not make any restrictions on what attribute
values can be returned based on contexts.

— If a context type is not included in this subcomponent, no context information of this type is
returned with any returned attribute value of this attribute type.

— If acontext profile does not include the contextValue data type, al context values of the context
type are returned with each attribute value.

— If one or more context profiles include the contextValue data type, each such context profile is
treated as a ContextAssertion to be applied against the attribute values as specified in 8.9.2.4. Only
those attribute values for which this evaluation yields TRUE for all such context types are returned.
If this selection results in no value being returned for this attribute type, the attribute is not included
in the result. Likewise, if this selection results in no information left for an entry, this entry is not
returned.

— If dl returned attribute values of this attribute type have the same { context type, context value} pair
to be returned, such a context value is removed from all the attribute values. If that |eaves a context
without any context value, it is completely removed.

NOTE — This will permit a service to be tailored in such a way that a user with simple equipment in
most cases can receive information without contexts.

16.10.5 Service and search controls

The defaultControls component, if present, is used to specify setting of bits not explicitly set for an operation in the
ServiceControlOptions within the service controls of the operation argument, and if the operation is a Search, the
SearchControlOptions and HierarchySelections. If any specific option is absent, the defaultControls element, if
present, is used.

If al the hierarchyOptions subcomponent is absent in defaultControls, or the defaultControls is absent, hierarchy
selection shall not be used. If the hierarchySelection component is present in a search argument and specifies
anything than self, the search validation against this search-rule fails. Corresponding elements in mandatoryControls
and searchRuleControls shall be omitted.

If the defaultControls component is completely absent, it shall be considered to take the standard default value
{ serviceControls { }, searchOptions {searchAliases} }.

The mandatoryControls component specifies, by setting specific bits, the bitstring options that shall be present as
specified in defaultControls; if any hit specified by mandatoryControls differs in the user-supplied options from
defaultControls, the search validation against this search-rule fails. Bits not specified by the mandatoryControls
component are taken as zero. If the operation is a Read or Modify Entry operation, only the serviceControls
subcomponent is considered.

The searchRuleControls component specifies, by setting specific bits, the bitstring options that are to be taken from
the defaultControls rather than from the user-supplied options. Bits not specified by the searchRuleControls
component are taken as zero. If the operation is a Read or Modify Entry operation, only the serviceControls
subcomponent is considered.

NOTE —If the user supplies Ug , p in @ Search operation, and the default bits are Dg 1, n, the result of applying the
defaultControls component is a bit string Cq, n Where bits O to p are taken from U and the remaining ones from D. The search
validation against this search-rule fails if the bitstring C&M is not equal to D&M, where C means Cy o n , ‘&' represents a
bitwise-AND operation, and My, y IS the bitstring specified by mandatoryControls. Otherwise, the value of options that is used
is (C&~S | D&S) where S is the bitstring specified by searchRuleControls, ~S is its bitwise negation, and | represents a
bitwise-OR operation. This last manipulation has the effect of excising the bits indicated by searchRuleControls and replacing
them with the default bit values. The familyGrouping component specifies a family grouping specification that, if present, takes
precedence over (i.e., substitutes for) the familyGrouping in the CommonArguments of the search argument.

86 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

16.10.6 Family specifications

The familyGrouping component specifies a family grouping selection that, if present, takes precedence over (i.e.,
substitutes for) the familyGrouping of the CommonArguments of the search argument.

The familyReturn component specifies family member return selection. It adjusts the specification given by the
familyReturn in the EntryinformationSelection (or its default) of the search argument. The search-rule specification
takes precedence with respect to the specification in memberSelect component, while the search argument
specification takes precedence with respect to familySelect component, i.e., if the familySelect component is present in
the search argument, a possible familySelect component in the search-rule shall beignored.

16.10.7 Control of relaxation

The relaxation component defines the relaxation policy using the RelaxationPolicy construct. The same construct may
be included in asearch request in the relaxation component. The procedure associated with this construct is described
here, covering both the case where it isincluded in a search-rule and the case where it isincluded in asearch request. If
RelaxationPolicy is included in both the search-rule and in the search request, additional specifications are given in
10.2.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

The RelaxationPolicy has the following subcomponents:

a) The basic subcomponent, if present, defines MRMapping, i.e., a set of matching-rule substitutions
and/or mapping-based matching functions that are applied to asearch filter for the first evaluation (i.e.,
without tightening or relaxation). This permits the selection of a more appropriate match than the origina
match. Omission of the item or supplying it with an empty set causes al the normal matching rules
without applying any mapping-based matching to be used for the first evaluation.

b) Thetightenings subcomponent, if present, comprises a sequence of substitutions and of mappings, each
defined by MRMapping, that are to be applied in the order given, one at the time, if the matched entries
are too numerous (greater than maximum).

¢) The relaxations subcomponent, if present, comprises a sequence of substitutions and mappings, each
defined by MRMapping, that are to be applied in the order given, one at the time, if the matched entries
are too few (less than minimum).

d) The maximum subcomponent shall always be present if tightenings is present, and then specifies the
number of entries found above which atightening is to be applied.

€) The minimum subcomponent specifies the number of entries found for which (or below which) a
relaxation isto be applied; if absent, it defaults to zero.

NOTE 1 — Relaxation/tightening is not affected by the performExactly search control option.

Matching rule substitutions and mappings are defined by MRMapping elements, each of which consists of a sequence-
of Mapping elements and a sequence-of MRSubstitution elements. The sequence orders of these elements have no
significance.

A Mapping element has the following components:

a) The mappingFunction component identifies a mapping-based mapping function with associated
mapping table to be applied.

b) The level component identifies the level of relaxation (or tightening if negative) to be applied for the
mapping-based matching. This component shall be ignored if the &userControl is set for the mapping-
based matching and the extendedArea search control is included in the search request, in which case
the value specified in extendedArea is applied.

NOTE 2 — For the basic substitution and mapping, the level should in many cases be set to zero.

A MRSubstitution element has the following components:
a) attribute describes the attribute to which the substitution is to be applied.

b) oldMatchingRule is the matching rule that is to be substituted for. If absent, it applies to the previously
applicable matching rule of the specified type for the attribute, if there is one. For basic substitution, or if
basic substitution is not performed, for the first relaxation/tightening substitution, the applicable
matching is the one that would otherwise have been used. For subsequent substitutions, the applicable
matching rule is the one brought in by the previous substitution. If this subcomponent specifies a
matching rule that is not the previously applicable matching rule, then no substitution is performed.

NOTE 3—As an example, if the filter item is of type equality and thereby selecting an equality matching rule, and this
subcomponent specifies a substring matching rule, then no substitution is performed.

ITU-T Rec. X.501 (11/2008) 87

| SO/IEC 9594-2:2008 (E)

¢) newMatchingRule is the object identifier for the substitute matching rule that is to be used in place of
the old matching rule. If absent, any corresponding filter-items are evaluated as TRUE for a non-negated
item, and FAL SE for anegated item (i.e., in accordance with id-mr-nullMatch).

The following applies only for matching rule substitution specified in a search request. If a matching
rule is specified for which there is a matching restriction for the attribute type (see 16.10.2, item @)) that
will make the search request non-compliant with the governing-search-rule; or an unsupported or
incompatible matching rule is specified, the substitution is abandoned and no further substitution is
performed for the attribute type.

NOTE 4 — It is assumed that a DSA will not allow invalid substitutions to be present in a search-rule.

One attribute can have multiple MRSubstitution elementsin an MRMapping provided that the combination of attribute
and oldMatchingRule (if present) is unique. When oldMatchingRule is absent in one MRSubstitution, but is present in
another MRSubstitution, the latter takes precedence in mapping the matching rule defined by oldMatchingRule.

16.10.8 Additional control component

The additionalControl component allows the effect of a governing-search-rule to be adapted to a specific environment
where additional control of a Search operation is required. It specifies one or more control attribute types. The
semantics, syntax and placement of such a control attribute type referenced by this component shall be defined as part
of the control attribute definition. Such a specification may be made outside these Directory Specifications. A control
attribute specified includes a part of its definition procedures to be executed based on the information provided by the
control attribute.

This component does not affect the search-validation function.

A control attribute could be placed in such way that it affects severa entries, e.g., in a service-specific administrative
point or in a service administration subentry. It can also be placed in individual entries. When a control attribute is
placed in individual entries, it can only affect entry information selection for those entries. A control attribute may
result in certain entries or family members being explicitly unmark, which will prevent their presence in the Search
result.
NOTE 1—By placing a control attribute in the service-specific administrative point, the control attribute can affect the way
matching is performed. As an example, an attribute type specified in afilter item can be mapped into or supplemented by a set of

attribute types ("friendly" attribute types) against which matching can be performed in some defined way, e.g., to obtain the same
effect provided by attribute subtyping. Similarly, a control attribute could adjust the entry information returned.

NOTE 2 — By placing a control attribute in agiven entry, it is possible to take individual requirements into account, e.g., to cover
personal data protection regquirements.

If compound entries are been marked or unmarked as the result of the processing of one or more control attributes, this
shal be done before applying the family return specification (as specified by the familyReturn in the
EntryInformationSelection or as overridden by the familyReturn search-rule component). If the explicit unmarking
resultsin no member of acompound entry being returned, the compound entry is completely removed from the result.

16.10.9 Miscellaneous components

The allowedSubset component specifies the valid choices of the Search request subset specification. This search-rule
component isignored if the imposedSubset search-rule component is present and the useSubset search control is not
set in asearch request. As default, any subset choiceis possible. If the subset parameter of asearch request does not
specify a value compatible with this search-rule component, the search validation against this search-rule fails. For a
Read or Modify Entry operation to comply with this component, it must include the value baseObject.

TheimposedSubset component specifies asubset that substitutes the subset specification in asearch request. If this
component is not present or if the useSubset search control is set in the search request, no substitution is performed
and the restriction expressed by the allowedSubset is exercised. This component shall be ignored when evaluating a
read or modifyEntry request against a search-rule.

The entryLimit component has two subcomponents. The default subcomponent indicates the size limit to be imposed
by the Directory if the sizeLimit service control is not set. The max subcomponent indicates the maximum allowable
value for the sizeLimit service control. If exceeded, the effective sizeLimit is reduced to this max value. This
component shall be ignored when evaluating aread or modifyEntry request against a search-rule.

16.10.10 ASN.1 information object classes

The SEARCH-RULE, REQUEST-ATTRIBUTE and RESULT-ATTRIBUTE information object classes are provided to
facilitate the documentation of search-rules:

88 ITU-T Rec. X.501 (11/2008)

SEARCH-RULE ::= CLASS {

&dmdld
&serviceType
&userClass
&InputAttributeTypes
&combination
&OutputAttributeTypes
&defaultControls
&mandatoryControls
&searchRuleControls
&familyGrouping
&familyReturn
&additionalControl
&relaxation
&allowedSubset
&imposedSubset
&entryLimit

&id

WITH SYNTAX {

DMD ID
[SERVICE-TYPE

[USER-CLASS

[INPUT ATTRIBUTES

[COMBINATION

[OUTPUT ATTRIBUTES
[DEFAULT CONTROL

[MANDATORY CONTROL
[SEARCH-RULE CONTROL

[FAMILY-GROUPING
[FAMILY-RETURN

[ADDITIONAL CONTROL

[RELAXATION

[ALLOWED SUBSET
[IMPOSED SUBSET
[ENTRY LIMIT

ID

REQUEST-ATTRIBUTE ::= CLASS {

&attributeType
&SelectedValues
&DefaultValues

&contexts
&contextCombination
&MatchingUse
&includeSubtypes

WITH SYNTAX {

ATTRIBUTE TYPE
[SELECTED VALUES
[DEFAULT VALUES

[CONTEXTS

[CONTEXT COMBINATION

[MATCHING USE
[INCLUDE SUBTYPES

RESULT-ATTRIBUTE ::= CLASS {

&attributeType
&outputValues
selectedValues

matchedValuesOnly

&contexts

WITH SYNTAX {

ATTRIBUTE TYPE
[OUTPUT VALUES
[CONTEXTS

| SO/IEC 9594-2:2008 (E)

OBJECT IDENTIFIER,

OBJECT IDENTIFIER OPTIONAL,
INTEGER OPTIONAL,
REQUEST-ATTRIBUTE OPTIONAL,
AttributeCombination OPTIONAL,
RESULT-ATTRIBUTE OPTIONAL,
ControlOptions OPTIONAL,
ControlOptions OPTIONAL,
ControlOptions OPTIONAL,
FamilyGrouping OPTIONAL,
FamilyReturn OPTIONAL,
AttributeType OPTIONAL,
RelaxationPolicy OPTIONAL,

AllowedSubset
ImposedSubset
EntryLimit
INTEGER UNIQUE }

OPTIONAL,
OPTIONAL,

&dmdld

&serviceType]
&userClass |
&InputAttributeTypes]
&combination]
&OutputAttributeTypes]
&defaultControls]
&mandatoryControls]
&searchRuleControls]
&familyGrouping]
&familyReturn]
&additionalControl]
&relaxation]
&allowedSubset]
&imposedSubset]
&entryLimit]

&id }

ATTRIBUTE.&id,
ATTRIBUTE.&Type
SEQUENCE {
entryType OBJECT-CLASS.&id
valuesSEQUENCE OF ATTRIBUTE.&Type }
SEQUENCE OF ContextProfile
ContextCombination
MatchingUse
BOOLEAN

&attributeType
&SelectedValues]
&DefaultValues]
&contexts |
&contextCombination]
&MatchingUse |
&includeSubtypes]}

ATTRIBUTE.&id,

DEFAULT '111'B,

OPTIONAL,

OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
DEFAULT FALSE}

CHOICE {

SEQUENCE OF ATTRIBUTE.&Type,

NULL } OPTIONAL,
ContextProfile OPTIONAL }

&attributeType
&outputValues]
&contexts]}

ITU-T Rec. X.501 (11/2008) 89

| SO/IEC 9594-2:2008 (E)

16.11 Matching restriction definition

An administrative authority may want to put restrictions on how a matching rule is applied. As an example, arestriction
on a substring matching rule may specify minimum lengths on substrings provided in a search filter item. Such a
restriction is of a permanent nature and has no dynamic characteristics, asit is the case for search relaxation.

Within a service-specific administrative area, restrictions can be applied by the proper construction of search-rules, and
thisisthe only place where matching restrictions can be introduced.

Matching restrictions may be defined as values of the MATCHING-RESTRICTION information object class:

MATCHING-RESTRICTION ::= CLASS {

&Restriction,

&Rules MATCHING-RULE.&id,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

RESTRICTION &Restriction

RULES &Rules

ID &id }

For amatching rule restriction that is defined using this information object class:
a) &Restriction isthe syntax for the matching restriction to be applied;

b) &Rules isthe set of matching rules to which this restriction can be applied. The restrictions can only be
specified for a basic matching rule, i.e, does not include the &ParentMatchingRules field in its
definition;

c) &id istheobject identifier assigned toit.

Several matching restrictions can be defined for any one matching rule, but only one can be applied in a given situation.

16.12 Search-validation function

The search-validation function is an abstract function that is used to determine the compatibility of a search request with
aparticular search-rule. The search-validation function yields TRUE if the search request complies with the search-rule.
Otherwise, it yields FALSE. For a search request to comply with a search-rule:

— atribute types other than those represented by the inputAttributeTypes shall not be present in any form
in the search filter, negated or non-negated;

— if anattribute typeis present in afilter, it shall also be effectively present;
NOTE — Thisimplies that an attribute type shall not be only represented by negated filter items.

— the condition for the effective presence of request attributes as specified by the search-rule
attributeCombination component shall be fulfilled;

— if there are request-attribute-profiles that include the selectedValues subcomponent, the corresponding
attributes shall only be represented by non-negated filter items;

— thesubset specification in the search argument shall comply with the search-rule subset specification;

— the mandatory control as specified by the mandatoryControls component shall be exactly as in
defaultControls for the search-rule.

For an attribute type represented by one or more filter items in a subfilter to be effectively present in that subfilter, at
least one of the filter items shall comply with the RequestAttribute specification for that attribute type, i.e.:

— thefilter items shall be of type as specified in 16.6;

— if the selectedValues subcomponent is present and non-empty in the request-attribute-profile, the filter
item shall match this subcomponent;

— the context specification in the filter item shall comply with the context specifications in the request-
attribute-profile;

— the matching rule specification in the filter item shall comply with the matching rule specificationsin the
reguest-attribute-profile; and

— any matching restriction shall be fulfilled.
The detailed search-validation procedure is specified in clause 13 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

90 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

SECTION 8 — SECURITY

17 Security model

17.1 Definitions

This Directory Specification makes use of the following terms defined in CCITT Rec. X.800 | SO 7498-2:
— access control;
— authentication;
— security policy;
— confidentiality;
— integrity.
The following terms are defined in this Directory Specification:

17.1.1 access control scheme: The means by which access to Directory information and potentially to access rights
themselves may be controlled.

17.1.2 protected item: An element of Directory information to which access can be separately controlled. The
protected items of the Directory are entries, attributes, attribute values and names.

17.2 Security policies

The Directory exists in an environment where various administrative authorities control access to their portion of the
DIB. Such access is generaly in conformance with some administration-controlled security policy (see ITU-T
Rec. X.509 | ISO/IEC 9594-8).

Two aspects or components of the security policy which effect access to the Directory are the authentication procedures
and the access control scheme.

NOTE — Clause 18 defines two access control schemes known as Basic Access Control and Simplified Access Control, and
clause 19 defines Rule-based Access Control. These schemes may be used in conjunction with local administrative controls;
however, since loca administrative policy has no standardized representation, it cannot be communicated in shadowed
information.

17.2.1 Authentication proceduresand mechanisms
Authentication procedures and mechanisms in the context of the Directory include the methods to verify and propagate
where necessary:

— theidentity of DSAs and Directory users;

— theidentity of the origin of information received at an access point.
NOTE 1-—The administrative authority may sipulate different provisions for the authentication of administrative users as
compared to provisions for the authentication of non-administrative users.

General-use authentication procedures are defined in ITU-T Rec. X.509 | ISO/IEC 9594-8 and can be used in
conjunction with the access control schemes defined in this Directory Specification to enforce security policy.

NOTE 2 — Future editions of the Directory Specifications may define other access control schemes.

NOTE 3 —Local administrative policy may stipulate that authentication taking place in certain other DSAs (e.g., DSAs in other
DMDs) isto be disregarded.

In general, there will be a mapping function from the authenticated identity (e.g., human user identity as authenticated
by an authentication exchange) to the access control identity (e.g., the distinguished name of an entry, together with an
optional unique identifier, representing the user). A particular security policy may state that the authenticated identity
and the access control identity are the same.

For names in the access control identity, primary distinguished names shall be used. Similarly, where access control
uses names in its specification of grants and denial, primary distinguished names shall be used.

17.2.2 Access control scheme

The definition of an access control scheme in the context of the Directory includes methods to:
— specify access control information (ACI);
— enforce access rights defined by that access control information;

ITU-T Rec. X.501 (11/2008) 91

| SO/IEC 9594-2:2008 (E)

— maintain access control information.

The enforcement of access rights applies to controlling access to:
— Directory information related to names,
— Directory user information;
— Directory operational information including access control information.

Administrative authorities may make use of al or parts of any standardized access control scheme in implementing their
security policies, or may freely define their own schemes at their discretion.

However, administrative authorities may stipulate separate provisions for the protection of some or all of the Directory
operational information. Administrative authorities are not required to provide ordinary users with the means to detect
provisions for the protection of operational information.

NOTE 1 —Administrative policy may grant or deny any form of access to particular attributes (e.g., operational attributes)
irrespective of access controls which may otherwise apply.

The Directory provides a means for the access control scheme in force in a particular portion of the DIB to be identified
through the use of the operational attribute accessControlScheme. The scope of such a scheme is defined by an
Access Control Specific Area (ACSA), which is a specific administrative area that is the responsibility of the
corresponding Security Authority. This attribute is placed in the Administrative Entry for the corresponding
Administrative Point. Only administrative entries for Access Control Specific Points are alowed to contain an
accessControlScheme attribute.

NOTE 2 —If this operationa attribute is missing with respect to access to a given entry, then the DSA shall behave as for a first
edition DSA (i.e, itisalocal matter to determine an access control mechanism and its effect on operations, results and errors).

accessControlScheme ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectldentifierMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-aca-accessControlScheme }

Any subentry or entry in an ACSA is permitted to contain entry ACI if and only if such ACI is permitted and consi stent
with the value of the accessControlScheme attribute of the corresponding ACSA.

17.3 Protection of Directory operations
There are two forms of protection available for Directory operations. confidentiality and integrity.

Confidentiality is available only on a point-to-point basis through the use of TLS, which may be invoked for the IDM
Directory protocols, for OSlI Transport Layer on top of TCP and for LDAP. TLS is not available for a pure OSl
Directory protocol stack. It is noted that point-to-point protection may be inadequate in a distributed environment;
however, end-to-end confidentiality is only provided through the protection of the attributes themselves.

Integrity is provided in two ways. Point-to-point integrity may be provided for IDM Directory protocols and for LDAP
through the use of TLS. End-to-end integrity may be provided by signing and optionally chaining signed Directory
operations other than LDAP using OPTIONALLY-PROTECTED as specified below. The PDUs containing the Directory
operations are not protected; rather, the arguments, results, and errors are protected. There is no mechanism for
providing a secure persistent record of events such as DAP operations. LDAP operations are not protected by means of
this Directory Specification.

NOTE — The experimental |IETF RFC 2649 "An LDAP Control and Schema for Holding Operation Signatures’, proposes a
mechanism for signing PDUs containing LDAP operations and for providing a secure persistent record of those operations.

OPTIONALLY-PROTECTED is a parameterized data type where the parameter is a data type whose values may, at the
option of the generator, be accompanied by their digital signature. This capability is specified by means of the following

type:

OPTIONALLY-PROTECTED { Type } ::= CHOICE{
unsigned Type,
signed SIGNED {Type} }

The OPTIONALLY-PROTECTED-SEQ is used instead of OPTIONALLY-PROTECTED when the protected data typeisa
sequence data type that is not tagged.

OPTIONALLY-PROTECTED-SEQ { Type } ::= CHOICE {

unsigned Type,
signed [O] SIGNED { Type } }

92 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The SIGNED parameterized data type, which describes the form of the signed form of the information, is specified in
ITU-T Rec. X.509 | ISO/IEC 9594-8.

18 Basic Access Control

18.1 Scopeand application

This clause defines one specific access control scheme (of possibly many) for the Directory. The access control scheme
defined herein is identified with the accessControlScheme operational attribute by giving it the value
basic-access-control. Subclause 17.2.2 describes which entries contain the accessControlScheme operational
attribute.

NOTE — An access control scheme known as "Simplified Access Control” is specified in 18.9. It is defined as a subset of the
Basic Access Control scheme. When Simplified Access Control is used, the accessControlScheme operational attribute shall
have the value simplified-access-control. Additional access control schemes known as "Rule-based Access Control" are
specified in clause 19.

The scheme defined here is only concerned with providing means of controlling access to the Directory information
within the DIB (potentially including tree structure and access control information). It does not address controlling
access for the purpose of communication with a DSA application-entity. Control of access to information means the
prevention of unauthorized detection, disclosure, or modification of that information.

18.2 Basic Access Control model

The Basic Access Control model for the Directory defines, for every Directory operation, one or more points at which
access control decisions take place. Each access control decision involves:

— that element of Directory information being accessed, called the protected item;
— the user requesting the operation, called the requestor;
— aparticular right necessary to complete a portion of the operation, called the permission;

— one or more operational attributes that collectively contain the security policy governing access to that
item, called ACI items.

Thus, the basic access control model defines:
— theprotected items;
— theuser classes;
— the permission categories required to perform each Directory operation;
— the scope of application and syntax of ACI items;
— the basic agorithm, called the Access Control Decision Function (ACDF), used to decide whether a
particular requestor has a particular permission by virtue of applicable ACI items.

18.2.1 Protected items

A protected item is an element of Directory information to which access can be separately controlled. The protected
items of the Directory are entries, attributes, attribute values and names. For convenience in specifying access control
policies, Basic Access Control provides the means to identify collections of related items, such as attributes in an entry
or al attribute values of a given attribute, and to specify a common protection for them.

18.2.2 Accesscontrol permissionsand their scope
Accessis controlled by granting or denying permissions. The permission categories are described in 18.2.3 and 18.2.4.

The scope of access controls can be a single entry or a collection of entries that are logically related by being within the
scope of asubentry for a particular administrative point.

ITU-T Rec. X.501 (11/2008) 93

| SO/IEC 9594-2:2008 (E)

Permission categories are generally independent. Since all Directory entries have a réelative position within the DIT,
access to user and operational information always involves some form of access to DIT related information. Thus, there
are two main forms of access control decision associated with a Directory operation: access to entries as named objects
(referred to as entry access); and access to attributes containing user and operational information (referred to as
attribute access). For many Directory operations, both forms of permission are required. In addition, where applicable,
separate permissions control the name or error type returned. Some important aspects of permissions categories, forms
of access, and access control decision making are as follows:

a) To perform Directory operations on entire entries (e.g., read an entry or add an entry), it is usualy
necessary for permission to be granted with respect to the attributes and values contained within that
entry. Exceptions are permissions controlling entry renaming and removal: in neither case is attribute or
attribute value permissions taken into account.

b) To perform Directory operations that require access to attributes or attribute values, it is necessary to
have entry access permission to the entry or entries that contain those attributes or values.

NOTE 1 - The removal of an entry or of an attribute does not require access to the contents of the entry or of the
attribute.

¢) The decision whether or not to permit entry access is strictly determined by the position of the entry in
the DIT, in terms of its distinguished name, and is independent of how the Directory locates that entry.

d) A design principle of Basic Access Control is that access may be allowed only when there is an explicitly
provided grant present in the access control information used by the Directory to make the access control
decision. Granting one form of access (e.g., entry access) never automatically or implicitly grants the
other form (e.g., attribute access). In order to administer meaningful Directory access control policies, it
isthus usually necessary to explicitly set access policy for both forms of access.

NOTE 2 — Certain combinations of grants or denias areillogical, but it is the responsibility of users, rather than
the Directory, to ensure that such combinations are absent.

NOTE 3 — Consistent with the above design principle, granting or denying permissions for an attribute value
does not automatically control access to the related attribute. Moreover, in order to access an attribute value(s) in
the course of a Directory interrogation operation, a user must be granted access to both the attribute type and its
value(s).
e) Theonly default access decision provided in the model is to deny access in the absence of explicit access
control information that grants access.

f) A denia specified in access control information always overrides agrant, all other factors being equal.

g) A particular DSA may not have the access control information governing the Directory data it caches.
Security Administrators should be aware that a DSA with the capability of caching may pose a
significant security risk to other DSAS, in that it may reveal information to unauthorized users.

h) For the purposes of interrogation, collective attributes that are associated with an entry are protected
precisely asif they were attributes that form part of the entry.
NOTE 4 — For the purposes of modification, collective attributes are associated with the subentry that holds

them, not with entries within the scope of the subentry. Modify-related access controls are therefore not relevant
to collective attributes, except when they apply to the collective attribute and its values within the subentry.

18.2.3 Permission categoriesfor entry access

The permission categories used to control entry access are Read, Browse, Add, Remove, Modify, Rename,
DiscloseOnError, Export, and Import and ReturnDN. Their use is described in more detail in ITU-T Rec. X.511 |
ISO/IEC 9594-3. Annex L provides an overview of their meaning in general situations. This subclause introduces the
categories by briefly indicating the intent associated with the granting of each. The actual influence of a particular
granted permission on access control decisions are, however, determined by the full context of the ACDF and access
control decision points for each Directory operation.

a) Read, if granted, permits read access for Directory operations which specifically name an entry (i.e., as
opposed to the List and Search operations) and provides visibility to the information contained in the
entry to which it applies.

b) Browse, if granted, permits entries to be accessed using Directory operations which do not explicitly
provide the name of the entry.

¢) Add, if granted, permits creation of an entry in the DIT subject to controls on all attributes and attribute
values to be placed in the new entry at time of creation.

NOTE 1 —In order to add an entry, permission shall also be granted to add at least the mandatory attributes and
their values.

NOTE 2 —There is no specific "add subordinate permission”. Permission to add an entry is controlled using
prescriptiveACI operational attributes as described in 18.3.

94 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

d) Remove, if granted, permits the entry to be removed from the DIT regardless of controls on attributes or
attribute values within the entry.

e) Modify, if granted, permits the information contained within an entry to be modified.

NOTE 3 —1In order to modify information contained within an entry other than the distinguished name attribute
values, appropriate attribute and value permissions shall also be granted.

f) Granting Rename is necessary for an entry to be renamed with a new RDN, taking into account the
consequential changes to the distinguished names of subordinate entries, if any; if the name of the
superior is unchanged, the grant is sufficient.

NOTE 4 —In order to rename an entry, there are no prerequisite permissions to contained attributes or values,
including the RDN attributes; this is true even when the operation causes new attribute values to be added or
removed as aresult of the changes of RDN.

g) DiscloseOnError, if granted, permits the name of an entry to be disclosed in an error (or empty) result.

h) Export, if granted, permits an entry and its subordinates (if any) to be exported; that is, removed from the
current location and placed in a new location subject to the granting of suitable permissions at the
destination. If the last RDN is changed, Rename is also required at the current location.

NOTE 5 — In order to export an entry or its subordinates, there are no prerequisite permissions to contained

attributes or values, including the RDN attributes; this is true even when the operation causes attribute values to
be added or removed as aresult of the changes of RDN.

i) Import, if granted, permits an entry and its subordinates, if any, to be imported; that is, removed from
some other location and placed at the location to which the permission applies (subject to the granting of
suitable permissions at the source location).

NOTE 6 —In order to import an entry or its subordinates, there are no prerequisite permissions to contained

attributes or values, including the RDN attributes; this is true even when the operation causes attribute values to
be added or removed as a result of the changes of RDN.

i) ReturnDN, if granted, allows the distinguished name of the entry to be disclosed in an operation result.

18.24 Permission categoriesfor attribute and attribute value access

The permission categories used to control attribute and attribute value access are Compare, Read, FilterMatch, Add,
Remove, and DiscloseOnError. They are described in more detail in ITU-T Rec. X.511 | ISO/IEC 9594-3. Annex L
provides an overview of their meaning in general situations. This subclause introduces the categories by briefly
indicating the intent associated with the granting of each. The actual influence of a particular granted permission on
access control decisions are, however, determined by the full context of the ACDF and access control decision points
for each type of Directory operation.

a) Compare, if granted, permits attributes and values to be used in a Compare operation.

b) Read, if granted, permits attributes and values to be returned as entry information in a Read or Search
access operation.

c) FilterMatch, if granted, permits evaluation of afilter within a search criterion.

d) Add, if granted for an attribute, permits adding an attribute subject to being able to add all specified
attribute values. If granted for an attribute value, it permits adding a value to an existing attribute.

e) Remove, if granted for an attribute, permits removing an attribute complete with all of its values. If
granted for an attribute value, it permits the attribute value to be removed from an existing attribute.

f) DiscloseOnError, if granted for an attribute, permits the presence of the attribute to be disclosed by an
attribute or security error. If granted for an attribute value, it permits the presence of the attribute value to
be disclosed by an attribute or security error.

g) Invoke, if granted, the object (always an operationa attribute or a value of an operational attribute) to
which the permission applies can be invoked on behaf of the authenticated user by the DSA. The
function carried out by invocation is attribute-dependent. No other permissions are required for user for
the operational attribute or on the entry/subentry that holdsiit.

18.3 Access control administrative areas

The DIT is partitioned into subtrees termed "autonomous administrative areas’, each of which is under the
administrative authority of a single Domain Management Organization. It may be further partitioned into subtrees
termed "specific administrative areas" for the purposes of specific aspects of administration; aternatively, the whole of
an autonomous administrative area may comprise a single specific administrative area. Each such specific
administrative areais the responsihility of a corresponding specific administrative authority. A particular administrative
areamay be shared by several specific administrative authorities. See clause 11.

ITU-T Rec. X.501 (11/2008) 95

| SO/IEC 9594-2:2008 (E)

18.3.1 Accesscontrol areasand Directory Access Control Domains

In the case of access control, the specific administrative authority is a Security Authority, and the specific
administrative area is termed an "Access Control Specific Area' (ACSA). The root of the ACSA istermed an "Access
Control Specific Point". Each Access Control Specific Point is represented in the DIT by an Administrative Entry which
includes access-control-specific-area as a value of its administrativeRole operationa attribute; it has (potentially)
one or more subentries which contain access control information. Similarly, each Access Control Inner Point is
represented in the DIT by an Administrative Entry which contains access-control-inner-area as a value of its
administrativeRole operational attribute; it also has (potentially) one or more subentries which contain access control
information. Each such administrative entry which has a subentry containing prescriptive ACl information has
basic-access-control, simplified-access-control, or other relevant value as a value of its accessControlScheme
operationa attribute. Each subentry that belongs to an Access Control Specific Point and which contains access control
information has accessControlSubentry as a value of its object class attribute. An administrative entry and its
subentries may hold operational attributes (such as access control information) which relate, respectively, to the
administrative point (and possibly its subentries) and to collections of entries (within the administrative area) defined by
the subentry subtreeSpecification.

The accessControlScheme attribute shall be present if and only if the holding administrative entry is an access control
specific entry. An administrative entry can never be both an access control specific and an access control inner entry;
corresponding values can therefore never be present simultaneously in the administrativeRole attribute.

The scope of a subentry that contains access control information, as defined by its subtreeSpecification (which may
include subtree refinements), is termed a Directory Access Control Domain (DACD).

NOTE — A DACD can contain zero entries, and can encompass entries that have not yet been added to the DIT.

The Security Authority may permit an Access Control Specific Area to be partitioned into subtrees termed inner
(administrative) areas. Each such inner area is termed an "Access Control Inner Area' (ACIA) with access-control-
inner-area as the value of the administrativeRole operational attribute. Each subentry of the corresponding
administrative point that contains prescriptive ACI has, as before, an accessControlSubentry value within its object
class attribute.

The scope (subtreeSpecification) specified in a subentry within an ACIA is also a DACD and contains entries inside
the associated Access Control Inner Area.

ACIAs dlow a degree of delegation of access control authority within the ACSA. The authority for the ACSA ill
retains authority within the ACIA since the ACI in the subentries of the ACSA's administrative point apply as well as
the ACI in the subentries of the relevant ACIAs (subclause 18.6 explains how the ACSA controls authority).

In summary, in evaluating access controls, the type of access control scheme (e.g., Basic Access Control) is indicated
by the accessControlScheme attribute value of the relevant access control specific entry; the role of each relevant
administrative entry within the ACSA is indicated by its administrativeRole attribute values; the presence of
prescriptive access control in a particular subentry is indicated by an accessControlSubentry value in its object class
attribute.

Subentries, like other entries, can hold an entryACI attribute for protection of its own contents.

18.3.2 Associating controls with administrative areas

Access to a given entry is (potentially) controlled by the totality of superior access control administrative points (both
inner and specific) up to and including the first non-inner access control administrative point or Autonomous
Administrative Point encountered moving up the DIT from the entry towards the root. Access Control Specific Points
superior to this access control administrative point have no effect on access control to the given entry.

NOTE 1 — An Autonomous Administrative Point is considered implicitly to be an Access Control Specific Point for the purpose
of this description, even if it is not associated with any prescriptive controls.

Some important points regarding the association between access controls and administrative areas are:

a) Access controls for Directory information may apply to only selected entries, or may have scope
extending throughout portions of the DIB that are logically related by a common security policy and a
common Access Control administration.

b) Access control may be imposed on entries within ACSAs or within ACIAs by placing prescriptiveACI
attributes (see 18.5) within one or more subentries of the corresponding Access Control Administrative
Entry, with scope defined by an appropriate subtreeSpecification.

NOTE 2 —prescriptiveACI attributes are not collective attributes. There are a number of significant differences
between prescriptiveACI and collective attributes:

96 ITU-T Rec. X.501 (11/2008)

0)

d)

e

f)

9)

| SO/IEC 9594-2:2008 (E)

— dthough a prescriptiveACI attribute may affect access control decisions for each entry within the scope of
the subentry that holds it, the prescriptiveACI attribute is not considered to supply accessible information to
any such entry or to bein any sense a part of such an entry;

— prescriptiveACI attributes are associated with the access control aspects of administration, and are associated
with Access Control Specific and Inner Points, not with entry-collection administrative points;

— thepurpose of aprescriptiveACI attribute isto express a policy that influences across a defined set of entries,
while the purpose of a collective attribute is to provide information that associates a user-accessible set of
attributes within a defined set of entries;

— prescriptiveACI attributes represent policy information that will, in general, not be widely accessible by
ordinary users. Administrative users who need to access prescriptiveACl information can access them as
operational attributes within subentries.

A prescriptiveACI operational attribute contains AClitems (see 18.4.1) common to al entries within the
scope of the subentry, i.e.,, DACD, in which the prescriptiveACI occurs. A DACD normally contains
entries inside the associated Access Control Specific Area (but can contain no entries at all).

Although particular ACIlltems may specify attributes or values as protected items, AClitems are logically
associated with entries. The particular set of ACIlitems associated with an entry and with the contents of
that entry is a combination of:

— AClitems that apply to that particular entry, specified as values of the entryACI operational
attribute, if present (see 18.5.2);

— AClitems from prescriptiveACI operational attributes applicable to the entry by virtue of being
placed in subentries of administrative entries whose scope includes the particular entry (see 18.5.1).

Each entry (controlled by entryACI and/or prescriptiveACI) necessarily falls within one and only one
ACSA. Each such entry may also fall within one or more ACIAs nested inside the ACSA containing the
entry. The prescriptiveACI that potentially affects the outcome of access control decisions for a given
entry are located within subentries (of the administrative entry) for the ACSA and for each ACIA
containing the entry. Other subentries cannot affect access control decisions regarding that entry.

If an entry is within the scope of more than one DACD, the complete set of ACllitems that may
potentially affect access control decisions regarding that entry includes al prescriptiveACI item
attributes of those DACDs, in addition to any entryACI attributes in the entry itself. An example is
shown in Figure 17. The effective access control at entry E1 is a combination of the prescriptiveACI for
DACD1, DACD2, DACDS, and entryACI (if present) in entry E1. The effective access control at entry
E2 is a combination of the prescriptiveACI for DACD1 and DACD3, and entryACI (if present) in
entry E2.

NOTE 3 — Protection of access control information is described in 18.6.

The subtreeSpecification attribute in each subentry defines a collection of entries within an
administrative area. Since a subtreeSpecification may define a subtree refinement, DACDs may
arbitrarily overlap within the intersection of their respective administrative areas. For simplicity,
Figure 17 does not show administrative points, subentries, or administrative areas; however, it may be
considered as three DACDs in the same ACSA with each DACD corresponding to a single subentry of
the administrative point for that ACSA (and there are no ACIAS). Alternatively, Figure 17 may be
considered in the context of asingle ACSA containing asingle ACIA where DACDL is congruent to the
ACSA and DACD3 is congruent to the ACIA (DACD1 and DACD2 would correspond to subentries of
the ACSA administrative point and DACD3 would correspond to a subentry of the ACIA administrative
point). An administrative area is congruent to a DACD when the collection of entriesin the DACD isthe
same as the collection of entries in the implicitly defined subtree corresponding to the administrative
area. See the example in Annex M for figures depicting the relationship between administrative entries,
administrative areas, subentries and DACDs.

ITU-T Rec. X.501 (11/2008) 97

| SO/IEC 9594-2:2008 (E)

oz DACD1

| bACD2

[DACD3

m
[

X.501_F17

Figure 17 — Effective Access Control using DACDs

184 Representation of Access Control I nformation

18.4.1 ASN.1for Access Control I nformation

Access Control Information is represented as a set of AClitems, where each ACIltem grants or denies permissions in
regard to certain specified users and protected items.

In ASN.1, theinformation is expressed as:

AClltem ::= SEQUENCE {

identificationTag UnboundedDirectoryString,
precedence Precedence,
authenticationLevel AuthenticationLevel,
itemOrUserFirst CHOICE {
itemFirst [O] SEQUENCE {
protecteditems Protectedltems,
itemPermissions SET OF ItemPermission },
userFirst [1] SEQUENCE {
userClasses UserClasses,
userPermissions SET OF UserPermission } } }

Precedence ::= INTEGER (0..255)

Protectedltems ::= SEQUENCE ({

entry [0] NULL OPTIONAL,
allUserAttributeTypes [1] NULL OPTIONAL,
attributeType [2] SET SIZE (1..MAX) OF AttributeType OPTIONAL,
allAttributeValues [3] SET SIZE (1..MAX) OF AttributeType OPTIONAL,
allUserAttributeTypesAndValues [4] NULL OPTIONAL,
attributeValue [5] SET SIZE (1..MAX) OF AttributeTypeAndValue OPTIONAL,
selfvValue [6] SET SIZE (1..MAX) OF AttributeType OPTIONAL,
rangeOfValues [7] Filter OPTIONAL,
maxValueCount [8] SET SIZE (1..MAX) OF MaxValueCount OPTIONAL,
maximmSub [9] INTEGER OPTIONAL,
restrictedBy [10] SET SIZE (1..MAX) OF RestrictedValue OPTIONAL,
contexts [11] SET SIZE (1..MAX) OF ContextAssertion OPTIONAL,
classes [12] Refinement OPTIONAL }
MaxValueCount ::= SEQUENCE {
type AttributeType,
maxCount INTEGER }

98 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

RestrictedValue ::= SEQUENCE {
type AttributeType,
valuesin AttributeType }
UserClasses ::= SEQUENCE {
allUsers [0] NULL OPTIONAL,
thisEntry [1] NULL OPTIONAL,
name [2] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,
userGroup [3] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,
-- dn component shall be the name of an
-- entry of GroupOfUniqueNames
subtree [4] SET SIZE (1..MAX) OF SubtreeSpecification OPTIONAL }

temPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,
-- defaults to precedence in ACllitem
userClasses UserClasses,
grantsAndDenials GrantsAndDenials }

UserPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,
-- defaults to precedence in ACllitem
protecteditems Protectedltems,
grantsAndDenials GrantsAndDenials }

AuthenticationLevel ::= CHOICE {
basicLevels SEQUENCE {

level ENUMERATED { none (0), simple (1), strong (2) },
localQualifier INTEGER OPTIONAL,
signed BOOLEAN DEFAULT FALSE },

other EXTERNAL }

GrantsAndDenials ::= BIT STRING {
-- permissions that may be used in conjunction
-- with any component of Protectedltems

grantAdd 0),
denyAdd (),
grantDiscloseOnError 2),
denyDiscloseOnError 3),
grantRead 4,
denyRead 5),
grantRemove (6),
denyRemove),

-- permissions that may be used only in conjunction
-- with the entry component

grantBrowse (8),

denyBrowse 9),

grantExport (10),
denyExport (12),
grantimport (12),
denylmport (13),
grantModify (14),
denyModify (15),
grantRename (16),
denyRename an,
grantReturnDN (18),
denyReturnDN (19),

-- permissions that may be used in conjunction
-- with any component, except entry, of Protectedltems

grantCompare (20),
denyCompare (20),
grantFilterMatch (22),
denyFilterMatch (23),
grantinvoke (24),
denylnvoke (25) }
AttributeTypeAndValue ::= SEQUENCE {

type
value

ATTRIBUTE.&id ({SupportedAttributes}),
ATTRIBUTE.&Type({SupportedAttributes}{ @type}) }

ITU-T Rec. X.501 (11/2008)

99

| SO/IEC 9594-2:2008 (E)
18.4.2 Description of AClItem Parameters

18.4.2.1 ldentification Tag

identificationTag is used to identify a particular ACllitem. This is used to discriminate among individual AClitems for
the purposes of protection, management and administration.

18.4.2.2 Precedence

Precedence is used to control the relative order in which AClitems are considered during the course of making an
access control decision in accordance with 18.8. ACIitems having higher precedence values may prevail over others
with lower precedence values, other factors being equal. Precedence values are integers and are compared as such.

Precedence can be used by a superior authority within the Security Authority to permit partial delegation of access
control policy setting within an ACSA. This can be achieved by the superior authority setting a general policy at ahigh
precedence and authorizing users representing the subordinate authority (e.g., associated with an ACIA) to create and
modify ACI with alower precedence, in order to tailor the general policy for specific purposes. The partial delegation
thus requires the means for the superior authority to limit the maximum precedence which the subordinate authority can
assign to ACI under its control.

Basic Access Control does not specify or describe how to limit the maximum precedence that can be used by a
subordinate authority. Thisisto be done by local means.

18.4.2.3 Authentication L evel

AuthenticationLevel defines the minimum requestor security level required for this AClitem. It has two forms:

— basicLevels which indicates the level of authentication, optionally qualified by positive or negative
integer localQualifier, and whether the request is required to be signed;

— other; an externally defined measure.

When basicLevels is used, an AuthenticationLevel consisting of alevel and optional localQualifier shall be assigned
to the regquestor by the DSA according to local policy. For a requestor's authentication level to meet or exceed a
minimum requirement, the requestor's level shall meet or exceed that specified in the AClitem, and in addition the
requestor's localQualifier shall be arithmetically greater than or equal to that of the ACIitem. Strong authentication of
the requestor is considered to exceed a requirement for simple or no authentication, and simple authentication exceeds a
requirement for no authentication. For access control purposes, the "simple" authentication level requires a password;
the case of identification only, with no password supplied, is considered "none". If alocalQualifier is not specified in
the AClltem, then the requestor need not have a corresponding value (if such a value is present, it is ignored). In
addition to meeting or exceeding above requirements, the request shall be signed if the AClitem specifies signed equal
TRUE.

When other is used, an appropriate AuthenticationLevel shall be assigned to the requestor by the DSA according to
local policy. The form of this AuthenticationLevel and the method by which it is compared with the
AuthenticationLevel inthe ACl isaloca matter.
NOTE 1 — An authentication level associated with an explicit denial indicates the minimum level to which a regquestor shall be
authenticated in order not to be denied access. For example, an AClitem that denies access to a particular user class and requires

strong authentication will deny accessto all requestors who cannot prove, by means of a strongly authenticated identity, that they
arenot in that user class.

NOTE 2 — The DSA may base authentication level on factors other than values received in protocol exchanges.

18.4.2.4 itemFirst and user First Parameters

Each AClitem contains a choice of itemFirst or userFirst. The choice alows grouping of permissions depending on
whether they are most conveniently grouped by user classes or by protected items. itemFirst and userFirst are
equivalent in the sense that they capture the same access control information; however, they organize that information
differently. The choice between them is based on administrative convenience. The parameters used in itemFirst or
userFirst are described below.

a) Protectedltems define the items to which the specified access controls apply. It is defined as a set
selected from the following:

— entry means the entry contents as a whole. In case of a family member, it also means the entry
content of each subordinate family member within the same compound attribute. It does not
necessarily include the information in these entries. This element shall be ignored if the classes
element is present, since this latter element selects protected entries (and subordinate family
members) on the basis of their object class.

100 ITU-T Rec. X.501 (11/2008)

b)

| SO/IEC 9594-2:2008 (E)

allUserAttributeTypes means al user attribute type information associated with the entry, but not
values associated with those attributes.

allUserAttributeTypesAndValues means al user attribute information associated with the entry,
including all values of all user attributes.

attributeType means attribute type information pertaining to specific attributes but not values
associated with the type.

allAttributeValues means all attribute value information pertaining to specific attributes.
attributeValue means a specific value of specific attributes.

selfvalue means the attribute value assertion corresponding to the current requestor. The protected
item selfVvalue applies only when the access controls are to be applied with respect to a specific
authenticated user. It can only apply in the specific case where the attribute specified is of
DistinguishedName or uniqueMember syntax and the attribute value within the specified attribute
matches the distinguished name of the originator of the operation.

NOTE 1 —allUserAttributeTypes and allUserAttributeTypesAndValues do not include operational attributes,
which should be specified on a per attribute basis, using attributeType, allAttributeValues or attributeValue.

rangeOfValues means any attribute value which matches the specified filter, i.e., for which the
specified filter evaluated on that attribute value would return TRUE.
NOTE 2 — Thefilter is not evaluated on any entries in the DIB; it is evaluated using the semantics defined in 7.8
of ITU-T Rec. X.511 | ISO/IEC 9594-3, operating on a fictitious entry that contains only the single attribute
value which isthe protected item.

The following items provide constraints that may disable the granting of certain permissions to protected
itemsin the same SEQUENCE:

maxValueCount restricts the maximum number of attribute values allowed for a specified attribute
type. It is examined if the protected item is an attribute value of the specified type and the
permission sought is add. Values of that attribute in the entry are counted without regard to context
or access control and as though the operation which adds the values were successful. If the number
of valuesin the attribute exceeds maxCount, the ACI item is treated as not granting add access.

maximmSub restricts the maximum number of immediate subordinates of the superior entry to an
entry being added or imported. It is examined if the protected item is an entry, the permission
sought is add or import, and the immediate superior entry is in the same DSA as the entry being
added or imported. Immediate subordinates of the superior entry are counted without regard to
context or access control as though the entry addition or importing were successful. If the number of
subordinates exceeds maximmSub, the ACI itemis treated as not granting add or import access.

restrictedBy restricts values added to the attribute type to being values that are already present in
the same entry as values of the attribute valuesin. It is examined if the protected item is an attribute
value of the specified type and the permission sought is add. Vaues of the valuesin éttribute are
checked without regard to context or access control and as though the operation which adds the
values were successful. If the value to be added is not present in valuesin, the ACI item istreated as
not granting add access.

contexts restricts values added to the entry to having context lists that satisfy all of the context
assertions in contexts. It is examined if the protected item is an attribute value and the permission
sought is add. If the value to be added does not satisfy the context assertions, the ACI item is treated
as not granting add access; if it does satisfy all of them, the ACI item is treated as not denying add
access.

NOTE 3 - Thisisonly relevant when the permission sought is add, and all context assertions shall be satisfied. It
does not provide for general use of contexts to differentiate protected items for other permissions.

classes means the contents of entries (possibly a family member) which are restricted to those that
have object class values that satisfy the predicate defined by Refinement (see 12.3.5), together (in
the case of an ancestor or other family member) with the entry contents as a whole of each
subordinate family member entry; it does not necessarily include the information in these entries.
NOTE 4 — By therules for entry and classes, al family members inherit the access control of the ancestor or of

superior family members within the same family. This does not preclude family members being subject to
further policies from entryACI or prescriptiveACI that increase or decrease protection.

UserClasses defines a set of zero or more users the permissions apply to. The set of users is selected
from the following:

allUsers means every directory user (with possible requirements for authenticationLevel).

ITU-T Rec. X.501 (11/2008) 101

| SO/IEC 9594-2:2008 (E)

d)

e

f)

0)

— thisEntry means the user with the same distinguished name as the entry being accessed, or if the
entry is a member of a family, then additionally the user with the distinguished name of the
ancestor.

— name isthe user with the specified distinguished name (with an optional unique identifier).

— userGroup isthe set of users who are members of the groupOfUniqueNames entry, identified by
the specified distinguished name (with an optional unique identifier). Members of a group of unique
names are treated as individual object names, and not as the names of other groups of unique names.
How group membership is determined is described in 18.4.2.5.

— subtree is the set of users whose distinguished names fall within the definition of the (unrefined)
subtree.

Names used to specify a user, group or subtree shall be primary distinguished names. Context and

aternative distinguished values shall not be included. The access control decision function is not

required to determine the primary distinguished name for aternative nameswith which it is supplied.
NOTE 5—This means that if a requestor has supplied an aternative name that has not been subsequently
resolved by the Directory to the primary distinguished name, access control based on primary distinguished
names may fail to recognize the requestor as belonging to the user class granted or denied access.

SubtreeSpecification is used to specify a subtree relative to the root entry named in base. The base
represents the distinguished name of the root of subtree. The subtree extends to the leaves of the DIT
unless otherwise specified in chop. The use of a specificationFilter component is not permitted; if
present, it shall be ignored.
NOTE 6 — SubtreeSpecification does not alow subtree refinement because a refinement might require a DSA
to use a distributed operation in order to determine if a given user is in a particular user class. Basic Access
Control is designed to avoid remote operations in the course of making an access control decision. Membership
in a subtree whose definition includes only base and chop can be evaluated localy, whereas membership in a
subtree definition using specificationFilter can only be evaluated by obtaining information from the user's entry
which is potentially in another DSA.

ItemPermission contains a collection of users and their permissions with respect to Protectedltems
within an itemFirst specification. The permissions are specified in grantsAndDenials as discussed in
item f) of this subclause. Each of the permissions specified in grantsAndDenials is considered to have
the precedence level specified in precedence for the purpose of evaluating access control information as
discussed in 18.8. If precedence is omitted within ItemPermission, then precedence is taken from the
precedence specified for the AClitem (see 18.4.2.2).

UserPermission contains a collection of protected items and the associated permissions with respect to
userClasses within a userFirst specification. The protected items are specified in protecteditems as
discussed in 18.4.2. The associated permissions are specified in grantsAndDenials as discussed in item
f) of this subclause. Each of the permissions specified in grantsAndDenials is considered to have the
precedence level specified in precedence for the purpose of evaluating access control information as
discussed in 18.8. If precedence is omitted within UserPermission, the precedence is taken from the
precedence specified for the AClitem (see 18.4.2.2).

GrantsAndDenials specify the access rights that are granted or denied in the ACIltem specification. The
precise semantics of these permissions with respect to each protected item is discussed in ITU-T
Rec. X.511 | ISO/IEC 9594-3.

Uniqueldentifier may be used by the authentication mechanism to distinguish between instances of
distinguished name reuse. The value of the unique identifier is assigned by the authentication authority
according to its policy and is provided by the authenticating DSA. If this field is present, then for an
accessing user to match the name user class of an AClitem that grants permissions, in addition to the
requirement that the user's distinguished name match the specified distinguished name, the authentication
of the user shall yield an associated unique identifier, and that value shall match for equality with the
specified value.

NOTE 7 —When authentication is based on supplied SecurityParameters, the unique identifier associated with

the user may be taken from the subjectUniqueldentifier field of the sender's Certificate in the optional
CertificationPath.

18.4.2.5 Determining group membership

Determining whether a given requestor is a group member requires checking two criteria. Also, the determination may
be constrained if the group definition is not known locally. The criteria for membership and the treatment of non-local
groups are discussed below.

a)

A DSA is not required to perform a remote operation to determine whether the requestor belongs to a
particular group for the purposes of Basic Access Control. If membership in the group cannot be

102 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

evauated, the DSA shall assume that the requestor does not belong to the group if the ACI item grants
the permission sought, and does belong to the group if it denies the permission sought.

NOTE 1 — Access control administrators should beware of basing access controls on membership of non-locally
available groups or groups which are available only through replication (and which may, therefore, be out of
date).

NOTE 2 — For performance reasons, it is usually impractical to retrieve group membership from remote DSAs as
part of the evaluation of access controls. However, in certain circumstances it may be practical, and a DSA is
permitted, for example, to perform remote operations to obtain or refresh alocal copy of a group entry or use the
Compare operation to check membership prior to applying this clause.
b) Inorder to determine whether the requestor isa member of auserGroup user class, the following criteria
apply:
— The entry named by the userGroup specification shall be an instance of the object class
groupOfNames or groupOfUniqueNames.
— Thename of the requestor shall be avalue of the member or uniqueMember attribute of that entry.

NOTE 3 —Values of the member or uniqueMember attribute that do not match the name of the requestor are
ignored, even if they represent the names of groups of which the originator could be found to be a member.
Hence, nested groups are not supported when evaluating access controls.

NOTE 4 —Names used in member or uniqueMember shall be primary distinguished names. Context, and
alternative values with context, shall not be included.

185 ACI operational attributes

Access control information is stored in the Directory as an operational attribute of entries and subentries. The
operational attribute is multi-valued, which allows ACI to be represented as a set of AClitems (defined in 18.4).

18.5.1 Prescriptive access control information

A Prescriptive ACI attribute is defined as an operational attribute of a subentry. It contains access control information
applicable to entries within that subentry's scope:

prescriptiveACI ATTRIBUTE ::= {

WITH SYNTAX AClitem

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation

ID id-aca-prescriptiveACl }

18.5.2 Entry access control information

An Entry ACI attribute is defined as operational attributes of an entry. It contains access control information applicable
to the entry in which it appears, and that entry's contents:

entryACl ATTRIBUTE ::= {

WITH SYNTAX AClltem

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation

ID id-aca-entryACl }

1853 Subentry ACI

Subentry ACI attributes are defined as operational attributes of administrative entries, and provide access control
information that applies to each of the subentries of the corresponding administrative point. Prescriptive ACI within the
subentries of a particular administrative point never applies to the same or any other subentry of that administrative
point, but can be applicable to the subentries of subordinate administrative points. Subentry ACI attributes are
contained only in administrative points and do not affect any element of the DIT other than immediately subordinate
subentries.

In evaluating access control for a specific subentry, the ACI that shall be considered is:
— theentryACI within the subentry itself (if any);
— thesubentryACI within the associated administrative entry (if any);
— prescriptiveACI associated with other relevant administrative points within the same access control
specific area (if any).

subentryACI ATTRIBUTE ::= {
WITH SYNTAX AClitem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch

ITU-T Rec. X.501 (11/2008) 103

| SO/IEC 9594-2:2008 (E)

USAGE directoryOperation
ID id-aca-subentryACl }

18.6 Protecting the ACI

ACI operational attributes may be subjected to the same protection mechanisms as ordinary attributes. Some important
related points are;
a) TheidentificationTag provides an identifier for each AClitem. Thistag can be used to remove a specific
AClitem value, or to protect it by prescriptive or entry ACI.
NOTE 1 — Directory rules ensure that only one AClitem per access control attribute possesses any specific
identificationTag value.
b) The creation of subentries for an Administrative Entry may be access controlled by means of the
subentryACI operational attribute in the Administrative Entry.

NOTE 2 — The right to create prescriptive access controls may aso be governed directly by security policy; this
provision is required to create access controls in new autonomous administrative areas.

18.7 Accesscontrol and Directory operations

Each Directory operation involves making a series of access control decisions on the various protected items that the
operation accesses.

For some operations (e.g., Modify operations), each such access control decision must grant access for the operation to
succeed; if access is denied to any protected item, the whole operation fails. For other operations, protected items to
which access is denied are simply omitted from the operation result and processing continues.

If the requested access is denied, further access control decisions may be needed to determine if the user has
DiscloseOnError permissions to the protected item. Only if DiscloseOnError permission is granted may the Directory
respond with an error that reveals the existence of the protected item; in all other cases, the Directory acts so as to
conceal the existence of the protected item.

The access control requirements for each operation, i.e., the protected items and the access permission required to
access each protected item, are specified in ITU-T Rec. X.511 | ISO/IEC 9594-3.

The agorithm by which any particular access control decision is made is specified in 18.8.

18.8 Access Control Decision Function

This subclause specifies how an access control decision is made for any particular protected item. It provides a
conceptua description of the Access Control Decision Function (ACDF) for basic-access-control. It describes how
ACI items are processed in order to decide whether to grant or deny a particular requestor a specified permission to a
given protected item.

18.8.1 Inputsand outputs

For each invocation of the ACDF, theinputs are:

a) the requestor's Distinguished Name (as defined in 7.3 of ITU-T Rec. X.511 | ISO/IEC 9594-3), unique
identifier, and authentication level, or as many of these as are available;

b) the protected item (an entry, an attribute, or an attribute value) being considered at the current decision
point for which the ACDF was invoked;

¢) therequested permission category specified for the current decision point;

d) the ACI items associated with the entry containing (or which is) the protected item. Protected items are
described in 18.4.2.4. The scope of influence for ACI items within a prescriptiveACI attribute is
described in 18.3.2 and 18.5.1. The scope of influence for ACI items within an entryACI attribute is
described in 18.3.2 and 18.5.2. The scope of influence for ACI items within a subentryACI attribute is
described in 18.5.3.

When an entry is afamily member, it also inherits the access control of the ancestor or of superior family
members within the same family. This does not preclude family members being subject to further
policies from entryACI or prescriptiveACI that increase or decrease protection.

In addition, if the ACI items include any of the protected item constraints described in 18.4.2.4, the whole entry and the
number of immediate subordinates of its superior entry may also be required as inputs.

The output is adecision to grant or deny access to the protected item.

104 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

In any particular instance of making an access control decision, the outcome shall be the same as if the stepsin 18.8.2
through 18.8.4 were performed.

18.8.2 Tuples

For each ACI value in the ACI items of 18.8.1 d), expand the value into a set of tuples, one tuple for each element of
the itemPermissions and userPermissions sets. Collect all tuples from al ACI values into a single set. Each tuple
contains the following items:

(userClasses, authenticationLevel, protecteditems, grantsAndDenials, precedence)

For any tuple whose grantsAndDenials specify both grants and denials, replace the tuple with two tuples—one
specifying only grants and the other specifying only denials.

18.8.3 Discarding non-relevant tuples

Perform the following stepsto discard all non-relevant tuples:
1) Discard al tuplesthat do not include the requestor in the tuple'suserClass (18.4.2.4 b)) asfollows:

— For tuples that grant access, discard all tuples that do not include the requestor's identity in the
tuples's userClasses element taking into account uniqueldentifier elements if relevant. Where a
tuple specifies a uniqueldentifier, a matching value shall be present in the requestor's identity if the
tuple is not to be discarded. Discard tuples that specify an authentication level higher than that
associated with the requestor in accordance with 18.4.2.3.

— For tuples that deny access, retain al tuples that include the requestor in the tuple's userClasses
element, taking into account uniqueldentifier elements if relevant. Also retain all tuples that deny
access and which specify an authentication level higher than that associated with the requestor in
accordance with 18.4.2.3. All other tuples that deny access are discarded.

NOTE 1 — The second requirement in the second sub-item above (i.e., to retain any tuple that denies
access and also specifies an authentication level higher than that associated with the requestor) reflects

the fact that the requestor has not adequately proved non-membership in the user class for which the
denial is specified.

2) Discard all tuplesthat do not include the protected item in protecteditems (18.4.2.4 a)).

3) Examine al tuples that include the maxVvalueCount, maximmsSub, restrictedBy, or contexts. Discard
all such tuples which grant access and which do not satisfy any of these constraints (18.4.2.4 a)).

4) Discard al tuples that do not include the requested permission as one of the set bits in
grantsAndDenials (18.4.1, 18.4.2.41)).

NOTE 2 —The order in which discarding of non-relevant tuples is performed does not change the output of
the ACDF.

18.84 Selecting highest precedence, most specific tuples

Perform the following steps to select those tuples of highest precedence and specificity:
1) Discard al tuples having aprecedence less than the highest remaining precedence.

2) If more than one tuple remains, choose the tuples with the most specific user class. If there are any tuples
matching the requestor with UserClasses element name or thisEntry, discard al other tuples.
Otherwise, if there are any tuples matching UserGroup, discard all other tuples. Otherwise, if there are
any tuples matching subtree, discard all other tuples.

3) If more than one tuple remains, choose the tuples with the most specific protected item. If the protected
itemis an attribute and there are tuples that specify the attribute type explicitly, discard al other tuples. If
the protected item is an attribute value, and there are tuples that specify the attribute value explicitly,
discard all other tuples. A protected item which is a rangeOfValues is to be treated as specifying an
attribute value explicitly.

Grant accessif and only if one or more tuples remain and all grant access. Otherwise deny access.

189 Simplified Access Control

18.9.1 Introduction

This subclause describes the functionality of an access control scheme, known as Simplified Access Control, that is
designed to provide a subset of functionality found in Basic Access Control.

ITU-T Rec. X.501 (11/2008) 105

| SO/IEC 9594-2:2008 (E)

18.9.2 Definition of Simplified Access Control functionality

The functionality of Simplified Access Control is defined as follows:

a) access control decisions shall be made only on the basis of ACIlitem values of prescriptiveACI and
subentryACI operational attributes.
NOTE 1 —entryACl, if present, shall not be used to make access control decisions.

b) access control specific administrative areas shall be supported. Access control inner administrative areas
shall not be used. Particular access decisions shall be made on the basis of AClitem values obtained from
asingle Administrative Point, or from subentries of that Administrative Point.

NOTE 2 —Values of prescriptiveACI attributes appearing in subentries of Administrative Points containing no

id-ar-accessControlSpecificArea Administrative Role attribute value shall not be used to make access control
decisions.

¢) dl other provisions shall be as defined for basic access control.

19 Rule-based Access Control

19.1 Scopeand application

This clause defines a specific access control scheme (of possibly many) for the Directory. The access control scheme
defined herein is identified with the accessControlScheme operational attribute by giving it the value rule-based-
access-control or if used in conjunction with the basic or simplified access control schemes defined in clause 18, rule-
and-basic-access-control or rule-and-simple-access-control. Subclause 17.2.2 describes which entries contain the
accessControlScheme operational attribute.

The scheme defined here is only concerned with controlling access to the Directory information within the DIB
(potentially including tree structure and access control information). It does not address controlling access for the
purpose of communication with a DSA application-entity. Control of access to information means the prevention of
unauthorized detection, disclosure, or modification of that information.

19.2 Rule-based Access Control model

There may be environments where information relating to the clearance (instead of identity) of the requestor is used in
determining whether or not access to an attribute value is to be denied. This is defined as Rule-based Access Control
and uses administratively imposed access control policy rules in determining when access is to be denied to certain
contents of the Directory. If access is denied under Rule-based Access Control, it cannot be allowed under other access
control schemes. The Rule-based Access Control model identifies the information used in determining whether access
isto be denied. Thisis applied to every operation. Each access control decision involves:

a) Access control information associated with the attribute values being accessed. This access control
information is called a security label.

b) Access control information associated with the user requesting the operation. This access control
information is called the clearance. The user requesting the operation is called the requestor.

¢) Ruleswhich define whether an access is authorized given a security label and a clearance, called security

policies.
See Figure 18.
Access Control Decision
Requestor >
access request grant/deny
argument

operation,
DN, L access decision
authentication leve, grant/deny
and clearance

Protected R

item security X.501_F18
label f

access control policy rules

106 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Figure 18 — Rule-based Access Control Decision M odel

The security label(s) can be securely associated with attribute values by binding the label to the information through the
use of a digital signature or other integrity mechanism. A security label is a property of the attribute value and is
associated with the value as a context.

The clearance is needed to enable a comparison to be made against the security label. The clearance can be bound to the
Distinguished Name of the requestor through a certificate extension field (subject Directory attribute) or through an
attribute certificate. The means selected for providing the clearance is a matter for the security policy in effect.

NOTE — The use of other clearance information (e.g., that associated with any intermediate DSAs which may have chained the
operation), is outside the scope of this Directory Specification.

The security rules to be applied in making an access control decision are defined as part of the security policy. The
security policy is either identified in the security label or defined for the environment containing the labelled object.

19.3 Access control administrative ar eas

As for basic access control (see 18.3), the DIT is divided into administrative areas including Access Control Specific
Areas. The administrative entry for an ACSA identifies the labelling security policies (access rules) that are applicable
for that administrative area as well as the applicable access control scheme (rule-based-access-control or rule-and-
basic-access-control or rule-and-simple-access-control or some other access control scheme).

194 Security L abel

19.4.1 Introduction
Security labels may be used to associate security-relevant information with attributes within the Directory.

Security labels may be assigned to an attribute value in line with the security policy in force for that attribute. The
security policy may aso define how security labels are to be used to enforce that security policy.

A security label comprises a set of elements optionally including a security policy identifier, a security classification, a
privacy mark, and a set of security categories. The security label isbound to the attribute value using a digital signature
or other integrity mechanism.

19.4.2 Administration of Security Labels
A security labdl is assigned to an attribute value by an administrative function before being placed in the Directory.

This administrative function is responsible for assigning security labels to attribute values in line with the security
policy in force for the ACSA.

The binding of a security label is protected using a digital signature or other integrity mechanism. This protection is
applied by the administrative function, or creator of the attribute value.

19.4.3 Labelled Attribute Values

A security label context associates a security label with an attribute value. Only a single label can be associated with an
attribute value. That is, the security label context is single-valued. In addition, matching rules for the security label
context are not supported.

NOTE — The concept of contextsis introduced in 8.8.

attributeValueSecurityLabelContext CONTEXT ::={

WITH SYNTAX SignedSecurityLabel -- At most one security label context can be assigned to an
-- attribute value
ID id-avc-attributeValueSecurityLabelContext }

SignedSecurityLabel ::= SIGNED { SignedSecurityLabelContent }

SignedSecurityLabelContent ::= SEQUENCE {

attHash HASH {AttributeTypeAndValue},

issuer Name OPTIONAL, -- name of labelling authority
keyldentifier Keyldentifier OPTIONAL,

securityLabel SecurityLabel }

SecurityLabel ::= SET {
security-policy-identifier SecurityPolicyldentifier OPTIONAL,

ITU-T Rec. X.501 (11/2008) 107

| SO/IEC 9594-2:2008 (E)

security-classification SecurityClassification OPTIONAL,
privacy-mark PrivacyMark OPTIONAL,
security-categories SecurityCategories OPTIONAL }

(ALL EXCEPT ({-- none, at least one component shall be present --}))
SecurityPolicyldentifier ::= OBJECT IDENTIFIER

SecurityClassification ::= INTEGER {

unmarked 0),
unclassified (2),
restricted 2),
confidential 3),
secret 4,
top-secret %)}

PrivacyMark ::= PrintableString (SIZE (1..MAX))

SecurityCategories ::= SET SIZE (1..MAX) OF SecurityCategory

This context is not used to filter or select particular attributes, as for other contexts, and the mechanisms associated with
contexts (fallback, default context values, etc.) are not used to apply rule-based access control.

The attHash component contains the resulting value of applying a cryptographic hashing procedure to DER-encoded

octets, asdefined in ITU-T Rec. X.509 | ISO/IEC 9594-8.

Theissuer component conveys the name of the labelling authority.

The keyldentifier component may be the identifier of a certified public key as held in the Subject Public Key Identifier
extension field defined in ITU-T Rec. X.509 | ISO/IEC 9594-8 or the identifier of a symmetric key and associated

security control information.

The securityLabel component is composed of a set of elements optionally including a security policy identifier, a
security classification, a privacy mark, and a set of security categories as defined in 8.5.9 of ITU-T Rec. X.411 |

ISO/IEC 10021-4.

19.5 Clearance

A clearance attribute associates a clearance with a named entity including DUAS.
clearance ATTRIBUTE ::= {

WITH SYNTAX Clearance

ID id-at-clearance }

Clearance ::= SEQUENCE {

policyld OBJECT IDENTIFIER,
classlList ClassList DEFAULT {unclassified},
securityCategories SET SIZE (1..MAX) OF SecurityCategory OPTIONAL }
ClassList ::= BIT STRING {
unmarked 0),
unclassified (2),
restricted 2),
confidential),
secret 4,
topSecret 5)}
SecurityCategory ::= SEQUENCE {
type [O] SECURITY-CATEGORY.&id ({SecurityCategoriesTable}),
value [1] EXPLICIT SECURITY-CATEGORY.&Type ({SecurityCategoriesTable} {@type}) }

SECURITY-CATEGORY ::= TYPE-IDENTIFIER

SecurityCategoriesTable SECURITY-CATEGORY ::={ ...}

The policyld component conveys an identifier that may be used to identify the security policy in force to which the

clearance classList and securityCategories relates.

The classList component includes alist of classificationsthat are associated with the named entity.

108 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The securityCategories (see 8.5.9 of ITU-T Rec. X.411 | ISO/IEC 10021-4) component, if present, provides further
restrictions within the context of aclassList.

NOTE — A clearance is securely bound to a named entity using an Attribute Certificate (ITU-T Rec. X.509 | ISO/IEC 9594-8), a
public key Certificate extension field (e.g., within the SubjectDirectoryAttribute extension) (ITU-T Rec. X.509 |
ISO/IEC 9594-8), or means outside the scope of this Directory Specification.

19.6 AccessControl and Directory operations

Each Directory operation involves making a series of access control decisions on the attribute values that the operation
accesses.

For some operations (e.g., the Remove Entry operation), even though the operation may appear to have succeeded if
access is denied to one or more attribute values, the hidden attributes would remain in the Directory. For other
operations, protected items to which access is denied are simply omitted from the operation result and processing
continues.

The access control requirements for each operation are specified in ITU-T Rec. X.511 | ISO/IEC 9594-3.

The algorithm by which any particular access control decision is made is specified as:

— If access to al the attribute values of an entry is denied under rule-based-access-control, the access is
denied to that entry for all operations.

— If accessto all the attribute values of an attribute is denied under rule-based-access-control, the access
isdenied to that attribute for all operations.

— Rule-based access control affects operations on reading attribute values (e.g., Read, Search) in that the
attribute value is not visible (the operation is carried out as though the attribute value is not present) if
access is denied to the attribute value.

— Rule-based access control affects operations which involve removing an entry (e.g., Remove Entry) in
that they do not remove those attribute values to which accessis denied.

— Rule-based access control affects operations which involve removing an attribute type (e.g., Modify
Entry — Remove Attribute) in that they do not remove those attribute values to which accessis denied.

— Rule-based access control affects operations which involve removing an attribute value (e.g., Modify
Entry — Remove Value) in that these operationsfail if the accessis denied to the attribute value.

19.7 Access Control Decision Function

This subclause specifies how an access control decision is made for any particular attribute value. It provides a
conceptual description of the Access Control Decision Function (ACDF) for rule-based-access-control. It describes
how a clearance and a security label are processed in order to decide whether to grant or deny a particular requestor a
specified permission to a given attribute value. The decision function applies the security policy rules which establish
whether an access is authorized on an attribute value given its security label and the requestor's clearance. The
definition of the security rules is outside the scope of the Directory Specifications. A simplified example of security
policy rulesfor rule-based-access-control isgivenin M.10.
For each invocation of the ACDF, the inputs are:

a) therequestor's clearance (as defined in 19.5);

b) attribute value being considered at the current decision point for which the ACDF was invoked;

c) thesecurity policy in force for the access-control-specific area;

d) security label bound to the attribute value.
The output is a decision whether to deny access to the attribute value.

For any particular instance of making an access control decision, the outcome shall be the same as if the stepsin 19.6
were performed.

19.8 Use of Rule-based and Basic Access Control

If both rule-based and basic access control are in effect, the order in which they are applied is alocal matter, except that
if accessis denied to the entry, an attribute type or an attribute value by either mechanism, it shall not be granted by the
other mechanism. In this respect, DiscloseOnError (see 18.2.3 and 18.2.4) permission of basic-access-control is a
permission that shall not override a deny of rule-based-access-control.

ITU-T Rec. X.501 (11/2008) 109

| SO/IEC 9594-2:2008 (E)

20 Data Integrity in Storage

20.1 Introduction

In some situations, the Directory may not give sufficient assurance that data is unchanged in storage, regardless of
access controls. The integrity of data stored in the Directory may be validated using digital signatures held as part of the
Directory Information. Either the digital signature of an entry or selected attributes within an entry may be held as an
attribute (see 20.2), or the digital signature of a single attribute value may be held in a context (see 20.3).

NOTE — Confidentiality of attribute values is outside the scope of this specification.

20.2 Protection of an Entry or Selected Attribute Types

Data integrity of attributes in storage is provided through the use of digital signatures held alongside the attributes they
are protecting. The integrity of awhole entry, or of al attribute values for selected attributes in an entry, is protected by
an attribute holding a digital signature of al the attribute values being protected.

This digital signature is created by an authority or directory user responsible for placing the information in the directory
entry. The digital signature can be validated by any user reading the attribute values for the entry. The directory service
itself is not involved in the creation or validation of the digital signature held in this attribute.

This integrity mechanism protects the integrity of directory attributes both in storage and during transfer between
components of the Directory (DSAs and DUAS). This integrity mechanism does not depend on the security of the
directory service itself.

Digital signatures applied to the whole entry do not include operational, collective attributes or the
attributelntegritylnfo itself. Any attribute value contexts are included.

The following defines an attribute type to hold a digital signature, along with associated control information, which
provides integrity of awhole entry or all values of selected attribute types.

attributelntegritylnfo ATTRIBUTE ::= {

WITH SYNTAX Attributelntegrityinfo

SINGLE VALUE TRUE

ID id-at-attributelntegrityInfo }
Attributelntegritylnfo ::= SIGNED { AttributelntegritylnfoContent }

AttributelntegrityinfoContent ::= SEQUENCE {

scope Scope, -- Identifies the attributes protected
signer SigherOPTIONAL, -- Authority or data originators name
attribsHash AttribsHash } -- Hash value of protected attributes

Signer ::= CHOICE {
thisEntry [0] EXPLICIT ThisEntry,
thirdParty [1] Specificallyldentified }

ThisEntry ::= CHOICE ({
onlyOne NULL,
specific IssuerAndSerialNumber }

IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serial CertificateSerialNumber }

Specificallyldentified ::= SEQUENCE ({

name GeneralName,
issuer GeneralName OPTIONAL,
serial CertificateSerialNumber OPTIONAL }

(WITH COMPONENTS{ ..., issuer PRESENT, serial PRESENT } |
(WITH COMPONENTS{ ..., issuer ABSENT, serial ABSENT }))

Scope ::= CHOICE {
wholeEntry [O] NULL, -- Signature protects all attribute values in this entry

selectedTypes [1] SelectedTypes
-- Sgnature protects all attribute values of the selected attribute types
}

SelectedTypes ::= SEQUENCE SIZE (1..MAX) OF AttributeType

110 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

AttribsHash ::= HASH { HashedAttributes }

HashedAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute
-- Attribute type and values with associated context values for the selected Scope

integritylnfo OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND auxiliary

MUST CONTAIN { attributelntegrityInfo }
ID id-oc-integrityInfo }

An AttributelntegrityInfo value can be created in three different ways:

a) An administrative authority can create and sign the value, and the public key to verify the signature is
known by off-line means.

b) The owner of the entry, i.e., the object represented by the entry, can create and sign the value. If the
owner has several certificates, or expected to have that in the future, the certificate has to be identified by
the CA issuing the certificate together with the certificate serial number.

c) A third party may create and sign the value. The name of the signer, the name of the CA issuing the
certificate and the certificate serial number isrequired.

If the scope is wholeEntry, al the applicable attributes shall be ordered as specified for a set-of typein 6.1 of ITU-T
Rec. X.509 | ISO/IEC 9594-8. If scope is selectedTypes, the ordering shall be the same as the one given in the
SelectedTypes.

NOTE 1—If a user does not retrieve all the complete attributes that are defined within the Scope data type, it will not be
possible for the user to verify the integrity of the attributes.

The creator of the attributelntegrityinfo attribute shall, when creating the AttribsHash data type, use DER encoding
(see 6.1 of ITU-T Rec. X.509 | ISO/IEC 9594-8) of the attributes ordering the attributes as specified above, and then
create the hash from the resulting encoding.

NOTE 2 — The creator needs to have full knowledge of all the attribute syntaxes to create the hash.

The verifier of the integrity shall produce its own version of AttribsHash using the same procedure as above for
retrieved attributes, and then compare the result with the value in the attribsHash component.

NOTE 3 —The verification is only possibleif the verifier has full knowledge of al the attribute syntaxes.
An entry that shall hold an attributeintegrityInfo attribute shall include the integrityinfo auxiliary object-class.

20.3 Context for Protection of a Single Attribute Value

The following defines a context to hold a digital signature, along with associated control information, which provides
integrity for a single attribute value. Any attribute value contexts are included in the integrity check, excluding the
context used to hold signatures.

attributeValuelntegrityInfoContext CONTEXT ::= {
WITH SYNTAX AttributeValuelntegritylnfo
ID id-avc-attributeValuelntegritylnfoContext }

AttributeValuelntegritylnfo ::= SIGNED { AttributeValuelntegritylnfoContent }

AttributeValuelntegritylnfoContent ::= SEQUENCE {
signer SignerOPTIONAL, -- Authority or data originators name
aVIHash AVIHash } -- Hash value of protected attribute

AVIHash ::= HASH { AttributeTypeValueContexts }
-- Attribute type and value with associated context values

AttributeTypeValueContexts ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRIBUTE.&Type ({SupportedAttributes}{@type}),
contextList SET SIZE (1..MAX) OF Context OPTIONAL }

The contextList shall be ordered as specified for a set-of typein 6.1 of ITU-T Rec. X.509 | ISO/IEC 9594-8.

ITU-T Rec. X.501 (11/2008) 111

| SO/IEC 9594-2:2008 (E)

SECTION 9 —DSA MODELS

21 DSA Models

This clause is concerned with general models describing various aspects of the components comprising the Directory,
Directory System Agents (DSAS). Subsequent clauses treat additional DSA models.

21.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

21.1.1 DIB fragment: The portion of the DIB that is held by one master DSA, comprising one or more naming
contexts.

21.1.2 context prefix: The sequence of RDNs leading from the Root of the DIT to the initia vertex of a naming
context; corresponds to the distinguished name of that vertex.

21.1.3 naming context: A subtree of entries held in asingle master DSA.

21.2 Directory Functional M odel

The Directory is manifested as a set of one or more application-processes known as Directory System Agents (DSAS)
and/or LDAP servers. Each DSA provides zero, one or more of the access points. Each LDAP server provides one or
more access points. Thisisillustrated in Figure 19. Where the Directory is composed of more than one DSA or LDAP
server, it is said to be distributed. The procedures for the operation of the Directory when it is distributed are specified

inITU-T Rec. X.518 | ISO/IEC 9594-4.
m

X.501_F19

Figure 19 — The Directory Provided by Multiple DSAs

NOTE1—-A DSA will likely exhibit local behaviour and structure which is outside the scope of envisaged Directory
Specifications. For example, a DSA which is responsible for holding some or all of the information in the DIB will normally do
so by means of a database, the interface to which is alocal matter.

A particular pair of application-processes which need to interact in the provision of directory services may be located in
different open systems. Such an interaction is carried out by means of Directory protocols, as specified in ITU-T Rec.
X.519 | ISO/IEC 9594-5, or by means of the Lightweight Directory Access Protocol (LDAP), as specified in IETF
RFC 4510.

NOTE 2 — LDAP server behaviours are specified in IETF RFC 4510 and may differ from DSA behaviours specified in this
clause.

Clause 23 specifies the models that are used as the basis for specifying the distributed aspects of the Directory. A
framework for the specification of operational models concerned with particular aspects of the operation of the
components of the Directory, DSAS, is provided in clauses 25 through 28.

112 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

21.3 Directory Distribution M odel

This subclause defines the principles according to which the DIB can be distributed across multiple DSAs.

NOTE 1 —The DIB may also be distributed across any number of LDAP servers, which may or may not coexist with one or more
DSAs. LDAP servers and their characteristics and behaviours are specified in IETF RFC 4510 and may differ from DSA
characteristics and behaviours specified in this clause.

Each entry within the DIB is administered by one, and only one, DSA's Administrator who is said to have
administrative authority for that entry. Maintenance and management of an entry shall take placein aDSA administered
by the administrative authority for the entry. This DSA isthe master DSA for the entry.

Each master DSA within the Directory holds a fragment of the DIB. The DIB fragment held by a master DSA is

described in terms of the DIT and comprises one or more naming contexts. A naming context is a subtree of the DIT, all

entries of which have a common administrative authority and are held in the same master DSA. A naming context starts

at a vertex of the DIT (other than the root) and extends downwards to leaf and/or non-leaf vertices. Such vertices

congtitute the border of the naming context. The superior of the starting vertex of a naming context is not held in that

master DSA. Subordinates of the non-leaf vertices belonging to the border denote the start of further naming contexts.
NOTE 2—-The DIT is therefore partitioned into digoint naming contexts, each under the administrative authority of a single
master DSA.

NOTE 3 — A naming context in itself is not an administrative area having an administrative point or an explicit subtree
specification, but it may coincide with an administrative area.

A family of entries shall reside in a single naming context.

It is possible for a master DSA's administrator to have administrative authority for several disjoint naming contexts. For
every naming context for which a master DSA has administrative authority, it shall logically hold the sequence of
RDNSs which lead from the root of the DIT to the initial vertex of the subtree comprising the naming context. This
sequence of RDNsis called the context prefix of the naming context.

NOTE 4 — The primary distinguished name of the naming context shall be used as the context prefix. Contexts and alternative
values with context may optionally be included in the RDNs.

A master DSA's administrator may delegate administrative authority for any immediate subordinates of any entry held
locally to another master DSA. A master DSA that delegated authority is called a superior DSA and the context that
holds the superior entry of one for which the administrative authority was delegated, is called the superior naming
context. Delegation of administrative authority begins with the root and proceeds downwards in the DIT; that is, it can
only occur from an entry to its subordinates.

Figure 20 illustrates a hypothetical DIT logically partitioned into five naming contexts (named A, B, C, D and E), which
are physicaly distributed over three DSAs (DSA 1, DSA 2, and DSA 3).

From the example, it can be seen that the naming contexts held by particular master DSAs may be configured so as to
meet a wide range of operational requirements. Certain master DSAs may be configured to hold those entries that
represent higher level naming domains within some logical part(s) of the DIB, the organizational structure of a large
company say, but not necessarily all the subordinate entries. Alternatively, master DSAs may be configured to hold
only those naming contexts representing primarily leaf entries.

From the above definitions, the limiting case for a naming context can be either a single entry or the whole of the DIT.

Whilst the logical to physical mapping of the DIT onto master DSAs is potentially arbitrary, the task of information
location and management is simplified if the master DSAs are configured to hold a small number of naming contexts.

DSAs may hold entry-copies as well as entries. Shadowed entries, the only sort of entry-copy considered in the
Directory Specifications, are maintained by means of the shadowing service described in ITU-T Rec. X.525 |
I SO/IEC 9594-9. In addition to this standardized sort of replicated information, two additional non-standardized sorts of
entry-copy may be encountered in the Directory.

— Copiesof an entry may be stored in other DSA(s) through bilateral agreement.

— Copies of an entry may be acquired by storing (locally and dynamically) a cache-copy of an entry which
results from a request.

NOTE 5 — The means by which these copies are maintained and managed is not defined in these Directory Specifications. Due to
more precise handling of features like access control, it is recommended that the shadow service be used instead of using
cached-copies.

ITU-T Rec. X.501 (11/2008) 113

| SO/IEC 9594-2:2008 (E)

Root
DSA2

C=wWWwW C=VV

DSA3
DSA1
/ Context A Context B N Context D
Context C
O =DEF

0 =ABC

Context E
ou=J OU=K

ou=1
CN=1 CN=m CN=n

CN=0o CN=p CN=¢q

X.501_F20

’ DIB object entry
O DIB alias entry

Figure 20 — Hypothetical DIT

A DSA holding an entry-copy is a shadow DSA for that entry. A shadow DSA may hold a copy of a naming context or a
portion thereof. The specification of the portion of a naming context that is shadowed is termed a unit of replication.

As described in 9.2 of ITU-T Rec. X.525 | ISO/IEC 9594-9, a unit or replication is defined within the Directory
information model, and a specification mechanism is provided. The shadowing mechanism in the Directory is based on
the definition of the subset of the DIT that will be shadowed. This subset is called unit of replication. The unit of
replication comprises a three-part specification which defines the scope of the portion of the DIT to be replicated, the
attributes to be replicated within that scope, and the requirements for subordinate knowledge. The unit of replication
also implicitly causes the shadowed information to include policy information in the form of operational attributes held
in entries and subentries (e.g., access control information) which isto be used to correctly perform Directory operations.
The prefix information to be included begins at an autonomous administrative point and extends to the replication base
entry.

The originator of a Directory request is informed (via fromEntry) as to whether information returned in response to a
request is from an entry-copy or not. A service control, dontUseCopy, is defined which allows the user to prohibit the
use of entry-copies to satisfy the request (although copy information may be used in name resolution).

NOTE 6 — Such name resolution will fail in some instances for a valid aternative name when resolved against a copy held in a

pre-third edition DSA, or in alater edition DSA holding a copy with incomplete name information, where an RDN includes an
attribute type for which there are multiple distinguished values differentiated by context.

In order for a DUA to begin processing a request, it shall hold some information, specifically the presentation address,
about at least one DSA that it can contact initially. How it acquires and holds this information is alocal matter.

During the process of modification of entries, it is possible that the Directory may become inconsistent. This will be
particularly likely if modification involves aliases or aliased objects which may be in different DSAs. The inconsistency
shall be corrected by specific administrator action, for example, to delete aliases if the corresponding aliased objects
have been deleted. The Directory continues to operate during this period of inconsistency.

114 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

SECTION 10 - DSA INFORMATION MODEL

22 Knowledge

22.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:
22.1.1 category: A characteristic of a knowledge reference that qualifiesit as identifying a master or a shadow DSA.

22.1.2 commonly usable: A characteristic of areplicated areathat permits general distribution of the access point of
the DSA holding it; acommonly usable replicated areais normally a complete shadow copy of a naming context.

22.1.3 cross reference: A knowledge reference containing information about a DSA that holds an entry or entry-
copy. Thisisused for optimization. The entry need have no superior or subordinate relationship to any entry in the DSA
holding the cross reference.

2214 DIT bridge knowledge reference: A knowledge reference containing information about a DSA that holds
entriesin a different DIT. The entry need have no superior or subordinate relationship to any entry in the DSA holding
the other DIT.

22.15 immediate superior reference: A knowledge reference containing information about a DSA that holds the
naming context (or a commonly usable replicated area derived from it) that is immediately superior to one held by the
DSA for which the knowledge reference is rel evant.

22.1.6 knowledge (information): DSA operational information held by a DSA that it uses to locate remote entry or
entry-copy information.

22.1.7 knowledge reference: Knowledge which associates, either directly or indirectly, a DIT entry or entry-copy
with the DSA in which it is located.

22.1.8 master knowledge: Knowledge of the master DSA for a naming context.

22.1.9 non-specific subordinate reference: A knowledge reference containing information about a DSA that holds
one or more unspecified subordinate entries or entry-copies.

22.1.10 referencepath: A continuous sequence of knowledge references.
22.1.11 root naming context: The set of subordinate references of the root to be held by thefirst level DSAs.

22.1.12 shadow knowledge: Knowledge of one or more shadow DSAs for a naming context (if the knowledge is
specific) or contexts (if non-specific).

22.1.13 subordinate reference: A knowledge reference containing information about a DSA that holds a specific
subordinate entry or entry-copy.

22.1.14 superior reference: A knowledge reference containing information about a DSA considered capable of
resolving (i.e., finding any entry within) the whole of the DIT.

22.2 Introduction

The DIB is distributed across a large number of master DSAS, each holding and having administrative authority for a
DIB fragment. The principles governing this distribution are specified in 21.3.

In addition, these and other DSAs may hold copies of portions of the DIB.

It is a requirement of the Directory that, for particular modes of user interaction, the distribution of the directory be
rendered transparent, thereby giving the effect that the whole of the DIB appears to be within each and every DSA.

In order to support this operational requirement, it is necessary that each DSA be able to gain access to the information
held in the DIB associated with any name (i.e., any object's distinguished or alias names). If the DSA does not itself
hold an object entry or object entry-copy associated with the name, it shall be able to interact with a DSA that does,
either directly or indirectly by means of direct and/or indirect interactions with other DSAS.

When the Directory user indicates that entry-copy information shall not be used to satisfy his request, the DSA
servicing the request must be able to gain access, directly or indirectly, to the master DSA holding the entry information
associated with the name supplied in the user's request.

ITU-T Rec. X.501 (11/2008) 115

| SO/IEC 9594-2:2008 (E)

This clause defines knowledge as that DSA operationa information required to achieve these technical objectives.
Subsequent clauses specify the representation of knowledge in the context of a general DSA information model.

NOTE — The preceding statements represent technical objectives of the Directory. Realization of these technical objectives
depends on other matters (e.g., policy matters) in addition to a consistent configuration of knowledge in DSAs. Clauses 25
through 28 establish a framework to address some of these matters.

Annex O contains an illustration of the modelling of knowledge. The illustration is based on the hypothetical DIT given
in Figure 20.

22.3 Knowledge References

Knowledge is that operational information held by a DSA that represents a partial description of the distribution of entry
and entry-copy information held in other DSAs. Knowledge is used by a DSA to determine an appropriate DSA to
contact when a request received from a DUA or another DSA cannot be satisfied with locally held information.

Knowledge consists of knowledge references. A knowledge reference associates, either directly or indirectly, the name
of aDirectory entry with aDSA holding the entry or a copy of the entry.

Names used in knowledge references, whether as context prefixes, DSA names or entry names, shall be primary
distinguished values. Context, and alternative values with context, may also be included in RDNSs.

NOTE — Name resolution may fail for avalid alternative name when knowledge references are held in pre-third DSAs which do
not recognize multiple distinguished values differentiated by context, or in DSAs not holding all the alternative distinguished
names in knowledge references or entry-copies.

2231 Knowledge Categories
There are two categories of knowledge reference: master knowledge references and shadow knowledge references.
Master knowledge is knowledge of the access point of the master DSA for anaming context.

Shadow knowledge is knowledge of DSAs holding replicated Directory information; it may be distributed by shadow
suppliers to shadow consumers by means of the replication procedures described in ITU-T Rec. X.525 |
ISO/IEC 9594-9. Shadow knowledge is knowledge of the access point of a set of one or more shadow DSAs for a
replicated area (a naming context or a portion thereof).

A DSA that is the object of shadow knowledge shall hold a commonly usable replicated area. One form of replicated
areathat is commonly usable is a complete shadow copy of a naming context. An incomplete shadow copy of a naming
context held by a DSA may be commonly usable if it is sufficiently complete to satisfy the interrogation requests that
users commonly make to the DSA. It isthe responsibility of the administrative authority who causes shadow knowledge
of a DSA holding an incomplete copy of a naming context to be distributed that the replicated area be commonly
usable.

A given DSA may hold both master and shadow knowledge, the latter involving multiple shadow DSAS, regarding a
particular naming context. The specific knowledge used in the processing of a request received from a DUA or another
DSA, eg., in the name resolution process, is determined by a DSA specific selection procedure whereby the DSA
computes, based on any non-standardized criteria deemed appropriate by the administrative authority, an access point of
aDSA capable of progressing the request.

NOTE — The Directory Specifications do not constrain how master and shadow knowledge is used by DSAs (other than
indirectly through constraints on DSA behaviour, for example, the dontUseCopy and copyShallDo service controls as specified
in ITU-T Rec. X.511 | ISO/IEC 9594-3).

22.3.2 Knowledge Reference Types

The knowledge possessed by a DSA is defined in terms of a set of one or more knowledge references where each
reference associates, either directly or indirectly, entries (or entry-copies) of the DIB with the DSA which holds those
entries (or entry-copies).
A DSA may hold the following types of knowledge reference:

— superior references,

— immediate superior references;

— subordinate references,

— non-specific subordinate references; and

— cross references.

116 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

A knowledge reference of a particular type shall be either a master or shadow knowledge reference.

In addition, a DSA that participates in shadowing as a shadow supplier and/or consumer may hold one or more of the
following types of knowledge reference:

— supplier references; and
— consumer references.

These knowledge reference types are described below.

22.3.2.1 Superior References

A superior reference consists of:
— the Access Point of aDSA.

Each non-first level DSA (see 22.5) shall maintain at |east one superior reference. The superior reference shall form part
of areference path to the root. Unless some method outside the standard is employed to ensure this, for example within
a DMD, this shall be accomplished by referring to a DSA which holds a naming context or replicated area whose
context prefix has fewer RDNs than the context prefix with fewest RDNs held by the DSA holding the reference.

22.3.2.2 Immediate Superior References

An immediate superior reference consists of:

— the context prefix of a naming context that is immediately superior to one held (as entries or
entry-copies) by the DSA holding the reference;

— the Access Point of the DSA holding that naming context (as entries or entry-copies).

Immediate superior references are an optiona reference type that only occur when there is a hierarchical operationa
binding to the referenced DSA (see clause 24 in ITU-T Rec. X.518 | ISO/IEC 9594-4). In the absence of such explicit
operational bindings, an immediate superior naming context may be referenced by means of a cross reference.

22.3.2.3 Subordinate References

A subordinate reference consists of:

— acontext prefix corresponding to a naming context immediately subordinate to one held (as entries or
entry-copies) by the DSA holding the reference;

— the Access Point of the DSA holding that naming context (as entries or entry-copies).

All naming contexts immediately subordinate to naming contexts held by a master DSA shall be represented by
subordinate references (or non-specific subordinate references as described in 22.3.2.4).

In the case where a DSA holds entry-copies, the subordinate naming contexts may or may hot be represented,
depending on the shadowing agreement in effect.

22.3.2.4 Non-Specific Subordinate References

A non-specific subordinate reference consists of:

— the Access Points of a DSA that holds the entries (or entry-copies) of one or more immediately
subordinate Naming Contexts.

This type of reference is optional, to allow for the case in which a DSA is known to contain some subordinate entries
(or entry-copies) but the specific RDNs of those entries (or entry-copies) is not known. This type of reference cannot be
used to reference LDAP servers.

For each naming context that it holds, a master DSA may hold zero or more non-specific subordinate references. DSAs
accessed via a non-specific reference shall be able to resolve the request directly (either success or failure). In the event
of failure, aserviceError reporting a problem of unableToProceed is returned to the requestor.

In the case where a DSA holds entry-copies, the non-specific subordinate references may or may not be represented,
depending on the shadowing agreement in effect.

22.3.2.5 Cross References

A cross reference consists of:
— aContext Prefix;
— the Access Point of a DSA which holds the entries or entry-copies for that naming context.

ITU-T Rec. X.501 (11/2008) 117

| SO/IEC 9594-2:2008 (E)

This type of reference is optional and serves to optimize Name Resolution. A DSA may hold any number (including
zero) of cross references.

22.3.2.6 Supplier References

A supplier reference held by a shadow consumer DSA consists of:

— the context prefix of the naming context from which the replicated area received from the shadow
supplier is derived,;

— the identifier of the shadowing agreement that the shadow consumer has established with a shadow
supplier;

— the Access Point of the shadow supplier DSA;
— anindication of whether the shadow supplier of the replicated areais or is not the master; and
— optionally, the access point of the master DSA if the supplier is not the master.

22.3.2.7 Consumer References

A consumer reference held by a shadow supplier DSA consists of

— the context prefix of a naming context from which the replicated area provided by the shadow supplier is
derived;

— theidentifier of the shadowing agreement that the shadow supplier has established with a consumer; and
— the Access Point of the shadow consumer DSA.

224 Minimum Knowledge
It isaproperty of the Directory that each entry can be accessed independently of where arequest is generated.

It is also a property of the Directory that, to achieve adequate levels of performance and availability, some requests can
be satisfied using a copy of an entry, while other requests may only be satisfied using the entry itself (i.e., the
information held at the master DSA for the entry).

To realize these location independence properties of the Directory, each DSA shall maintain a minimum quantity of
knowledge which depends on the particular configuration of the DSA.

The objective of these minimum requirements is to permit the distributed name resolution process to establish a
reference path, as a continuous sequence of master knowledge references, to al naming contexts within the Directory.

It is also arequirement that the minimum knowledge consists of references that can be processed by the DSA (see 12.3
of ITU-T Rec. X.519 | ISO/IEC 9594-5).

Beyond these minimum requirements, additional knowledge may be employed to establish other reference paths to
copies of naming contexts. Cross reference knowledge (master and shadow) may be employed to establish optimized
reference paths to naming contexts and copies of naming contexts.

The minimum knowledge requirements for DSAs are specified in 22.4.1-22.4.4.

2241 Superior Knowledge

Each DSA that is not a first level DSA shall maintain at least one superior reference. Additional superior references
may be held for operational reasons as alternative paths to the root of the DIT.

2242 Subordinate Knowledge

A DSA that is the master DSA of a naming context shall maintain subordinate or non-specific subordinate references of
category master knowledge to each master DSA holding (as master) an immediately subordinate naming context.

2243 Supplier Knowledge

For each shadow supplier DSA that suppliesit with areplicated area, a shadow consumer DSA shall maintain a supplier
reference. If the shadow consumer's subordinate knowledge for the copy of the naming context is incomplete, it shall
use its supplier reference to establish a reference path to subordinate information. This procedure is described in
clause 20 of ITU-T Rec. X.518 | ISO/IEC 9594-4.

2244 Consumer Knowledge

For each shadow consumer DSA that it supplies with a replicated area, a shadow supplier DSA shall maintain a
consumer reference.

118 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

225 First Level DSAs

The DSA referenced by a superior reference assumes the burden of establishing areference path to al of the DIT that is
unknown to the referring DSA. A DSA referenced by other DSAs may itself maintain one or more superior references.
This recursive superior referral process stops at a set of first level DSAs upon whom the ultimate responsibility for the
establishment of reference paths falls.
A first level DSA is characterized as follows:

a) itdoesnot hold asuperior reference;

b) it may hold one or more naming contexts immediately subordinate to the root of the DIT (as master or
shadow DSA for the naming context); and

¢) it holds subordinate references (of category master and/or shadow) and non-specific subordinate
references (of category master and/or shadow) which account for all the naming contexts immediately
subordinate to the root of the DIT which it does not itself hold.

The administrative authorities for first level DSAs are jointly responsible for the administration of the immediate
subordinates of the root of the DIT. This set of subordinate references is called root naming context. The procedures
governing this joint root naming context are determined by multilateral agreements which are outside the scope of these
Directory Specifications.

NOTE — In arelated entries environment, it is possible that some first-level entries will have the same name, creating multiple
DITs. The administrative authorities for the associated first level DSASs are jointly responsible for the administration of these
DITs.

To limit the quantity of interrogation requests that might be directed to a master first level DSA (i.e., aDSA that isa
master for a naming context immediately subordinate to the root of the DIT), it is possible to establish shadow first level
DSAsfor that master first level DSA. Such shadow DSAs hold copies of the entries and the root naming context held in
its master (or supplier) first level DSA. They therefore may serve as a superior reference for non-first level DSAs.

23 Basic Elements of the DSA Information M odel

231 Definitions
For the purposes of this Directory Specification, the following definitions apply:
23.1.1 DSA information tree: The set of all DSEs held by a DSA when viewed from the perspective of their names.

23.1.2 DSA shared attribute: An operational attribute in the DSA information model associated with a particular
name whose value or values, if held by several DSAS, are identical (except during periods of transient inconsistency).

23.1.3 DSA specific attribute: An operational attribute in the DSA information model associated with a particular
name whose value or values, if held by several DSAS, need not be identical.

2314 DSA specific entry (DSE): Theinformation held by aDSA that is associated with a particular name; the DSE
may (but need not) contain the information associated with the corresponding Directory entry.

2315 DSE type: An indication of the particular purpose of a DSE; a DSE may serve multiple purposes and thus
have multiple types.

23.2 Introduction

The Directory information model describes how the Directory as a whole represents information about objects having a
distinguished name and optionally alias names. In its description of the DIT, entries and attributes, the composition of
the Directory as a set of potentially cooperating DSAs is abstracted from the model.

The DSA information model, on the other hand, is especially concerned with DSAs and the information that must be
held by DSAs in order that the set of DSAs comprising the Directory may together realize the Directory information
model. It is concerned with:

— how Directory information (object and aias entries and subentries) is mapped onto DSAS,

— how copies of Directory information may be held by DSAS;

— theoperational information required by DSAS to perform name resolution and operation evaluation; and
— the operational information required by DSAs to engage in shadowing and to use shadowed information.

ITU-T Rec. X.501 (11/2008) 119

| SO/IEC 9594-2:2008 (E)

The purpose for modelling a representation of DSA operational information such as knowledge is to establish the
general framework for management access to DSA operationa information.

23.3 DSA Specific Entries and their Names

In the DSA information model, the information repositories holding the information associated with a particular name
are termed DSA Specific Entries (DSES). Directory entries exist in the DSA information model only as information
elements from which DSEs may be composed. Operational attributes specific to the DSA information model comprise
the other variety of information element from which DSEs may be composed.

If a DSA holds any information concerning a name directly (i.e., information held in a repository identified by the
name), it is said to know or have knowledge of that name.

For each name known by a DSA, all the information held by the DSA directly associated with the name other than the
name itself is represented by one DSE. This latter information (i.e., the RDN and its relationship to the DIT) is not
represented explicitly as attributes in the DSA information model; the set of names known by a DSA congtitute an
implicit fabric on which the associated DSEs can be considered to be attached.

NOTE 1 — One consequence of the way the DSA information model handles names is that, for DSEs that are not of type entry,
aias or subentry, the AVA(s) expressing the RDN of the DSE is not modelled as held in (an) attribute(s).

Where alternative names exist because of naming attributes having multiple distinguished values differentiated by
context, a single DSE represents all the information held by the DSA about all the aternative names. This is modelled
in the DSA information model as a single name with context-specific variants, rather than as separate names.
NOTE 2 — For consistent name resolution and interworking with pre-third DSAs, every DSA shall have information about at
least the primary distinguished values of all attributes contributing to a name, and desirably as many of the alternative
distinguished values as possible.

The set of al names known by a DSA, together with the information associated with each name, when viewed from the
perspective of these names, is termed the DSA information tree for that DSA. A DSA information tree is depicted in
Figure 21.

Root DSE
Root @
| | DSA-specific
~~~~~~~~~~ attributes
1 DSE
Adm;g:ﬁtrzﬂ\s)a ” Directory DSA-shared DSA-specific
__________ entry attributes attributes
DSE
Subsntry ,,,,,,,, @
[ | | | Directory DSA-shared DSA-specific
~~~~~~~ subentry attributes attributes
AP Nl
ﬁ DSE (e.g., for subordinate references)
[] | | [| DSA-shared DSA-specific
attributes attributes

X.501_F21

Figure21 — A DSA Information Tree

120 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The minimum information that a DSA may associate with a name, and thus know the name, consists of an expression of
the purpose for which the name is known (i.e., the role played by the name in the operation of the DSA knowing it).
This purpose is represented in the DSA information model by the DSA specific attribute, dseType.

In addition, a DSE may hold other information associated with the name such as an entry or entry-copy, DSA shared
attributes and DSA specific attributes.

A DSE may represent a Directory entry directly, a portion of an entry or no Directory information. The information held
in aDSE varies, depending on its type or purpose. In general, the following sorts of DSEs may occur in DSAS.

— A DSE directly representing a Directory entry contains the user and operational attributes corresponding
to that Directory entry (as depicted in DSE 2 in Figure 21). The DSE may also contain DSA shared and
DSA specific attributes.

— A DSE representing a portion of an entry (as a result of shadowing) contains some of the user and
operational attributes corresponding to the Directory entry, DSA specific attributes and may also contain
DSA shared attributes.

— A subentry DSE representing, for example prescriptive ACI or collective attributes, contains the relevant
user and operationa attributes corresponding to a Directory subentry (as depicted in DSE 3 in
Figure 21). The DSE may also contain DSA shared and DSA specific attributes.

— A DSE representing no Directory entry information contains only DSA shared and/or DSA specific
attributes (as depicted in DSEs 1 and 4 in Figure 21). For example, a DSE representing a subordinate
reference may have a DSA shared attribute that indicates the master access point and a DSA specific
attribute to indicate that the DSE is a subordinate reference.

NOTE 3—-The DSE is a conceptua entity which facilitates the specification and modelling of information components in a

consistent and convenient way. Although DSEs are said to "hold" or "store" information, this is not intended to impose any
particular constraints or data structure on implementations.

23.4 Basic Elements

A DSE is comprised of three basic elements: the DSE type, some number of DSA operational attributes (the DSE type
is one of these) and optionally an entry or entry-copy.

2341 DSA Operational Attributes

Two varieties of operational attribute occur in the DSA information model that do not correspond to information in
Directory entries. Those are DSA shared and DSA specific attributes.

A DSA shared attribute is an operational attribute in the DSA information model associated with a particular name
whose value or values, if held by several DSAS, are identical (except during periods of transient inconsistency). A DSA
may hold a shadow-copy of a DSA shared attribute.

A DSA specific attribute is an operational attribute in the DSA information model associated with a particular name
whose value or values, if held by several DSAS, need not be identical. A DSA specific attribute represents operational
information that is specific to the functioning of the DSA holding it. A DSA cannot hold a shadow-copy of a
DSA specific attribute.

NOTE — While a shadow-supplier DSA may provide a shadow-consumer DSA with a DSA specific attribute, thisis conceptually

not a shadow-copy of information held by the supplier but, rather, information produced by the supplier for the consumer which
the consumer may then use and modify.

234.2 DSE Types

The type of a DSE, represented in the DSA information model by the DSA specific operational attribute dseType,
indicates the particular purpose (or role) of a DSE. This purpose isindicated by the named bits of the single value of the
dseType attribute. As a DSE may serve severa purposes, several named bits of the dseType attribute may be set to
represent these purposes. A number of combinations of named bits that are likely to occur are specified in Annex N.

The phrase "a DSE of type X" is used in the Directory Specifications to indicate that the named bit x of the DSE's
dseType attribute has been set. For a DSE of type x, other named bits may or may not be set, as required. The alternate
phrase "the DSE type includes x" may also be used.

The syntactic specification of the dseType operational attribute may be expressed using the attribute notation as
follows:

dseType ATTRIBUTE ::= {

WITH SYNTAX DSEType
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE

ITU-T Rec. X.501 (11/2008) 121

| SO/IEC 9594-2:2008 (E)

NO USER MODIFICATION TRUE

USAGE

ID

dSAOperation
id-doa-dseType }

This DSA specific operational attribute is managed by the DSA itself.

The ASN.1 type that represents the syntax of the possible values of the dseType attribute is DSEType. Its definition is:

DSEType ::= BIT STRING {
root 0), -- root DSE --
glue (2), -- represents knowledge of a name only --
cp 2), -- context prefix --
entry), -- object entry --
alias 4, -- alias entry --
subr 5), -- subordinate reference --
nssr (6), -- non-specific subordinate reference --
supr), -- superior reference --
Xr (8), -- cross reference --
admPoint 9), -- administrative point --
subentry (20), -- subentry --
shadow (12), -- shadow copy --
immSupr (13), -- immediate superior reference --
rhob (14), -- rhob information --
sa (15), -- subordinate reference to alias entry --
dsSubentry (16), -- DSA Specific subentry --
familyMember a7), -- family member --
ditBridge (18), -- DIT bridge reference --
writeableCopy (19)} -- writeable copy --

Thevalues of DSEType are:

a) root: Theroot DSE contains DSA specific attributes, used by the DSA, that characterize that DSA as a
whole. The name corresponding to the root DSE is the degenerate name consisting of a sequence of zero
RDNs.

NOTE 1 — Information that characterizes a DSA that is to be made available via the Directory abstract serviceis
contained in the DSA's entry. A DSA may, but need not, hold its own entry or a copy of its own entry.

b) glue: A glue DSE represents knowledge of a name only. A DSA holding a context prefix DSE or a cross
reference DSE may hold glue DSESs to represent the names of the superiors of the context prefix or cross
reference DSE if no other operational information (e.g., knowledge) is associated with those names. This
isillustrated in Figure 22. A DSE of type glue shall not have any other DSEType bit set.

¢) cp: The DSE representing the context prefix of a naming context.

d) entry: A DSE that holds an object entry.

€) alias: A DSE that holds an alias entry.

f) subr: A DSE that holds a specific knowledge attribute to represent a subordinate reference.

g) nssr: A DSE that holds a non-specific knowledge attribute to represent a non-specific subordinate
reference.

h) supr: A DSE that holds a specific knowledge attribute to represent the DSAs superior references.

i) xr: A DSE that holds a specific knowledge attribute to represent a cross reference.

j) admPoint: A DSE corresponding to an administrative point.

K) subentry: A DSE that holds a subentry.

) shadow: A DSE that holds a shadow-copy of an entry (or part of an entry) or other information
(e.g., knowledge) received from a shadow-supplier; this named bit is set by the shadow consumer.

m) immSupr: A DSE that holds a specific knowledge attribute to represent an immediate superior reference.

n) rhob: A DSE that holds administrative point and subentry information received from a superior DSA ina
Relevant Hierarchical Operational Binding (i.e., in either a Hierarchical Operational Binding or a Non-
specific Hierarchical Binding as described in clauses 24 and 25 of ITU-T Rec. X.518 | ISO/IEC 9594-4).

0) sa: A qudifier of asubr DSE indicating that the subordinate naming context entry is an alias.

p) dsSubentry: A DSE that holds aDSA specific subentry.

q) familyMember: A DSE that holds afamily member.

r) ditBridge: A DSE that holdsaDIT bridge reference.

122 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

s) writeableCopy: A DSE that holds a writeable copy of an entry or other information (e.g., knowledge)
that is replicated in a multiple master implementation.

NOTE 2 — Certain Directory operations require the ability to identify a single master for any given entry.

Therefore, in a multiple master implementation, all but one of the master copies of each entry shall be of this

DSE type; exactly one of the master copies shall not be of this DSE type in order for it to function as the primary
master when such operation is necessary.

The use of this operational attribute to represent aspects of the DSA information model is described in clause 23.

24 Representation of DSA Information

This clause treats the representation of DSA information. It describes the representation of DSA operational information
(knowledge), Directory user information and Directory operational information.

24.1 Representation of Directory User and Operational Information

This clause specifies the representation of Directory user and Directory operational information in the DSA information
model.

24.1.1 Object Entry

An object entry is represented by a DSE of type entry which contains the user and Directory operational attributes
associated with the Directory entry. The name of the DSE is the name of the object entry (i.e., the object’s distinguished
name).

If the DSE holds a copy of the entry, the DSE type includes shadow.

If the name of the object entry includes any aternative distinguished names differentiated by context, the name of the
DSE may aso include those alternative distinguished names differentiated by context. In the case of a DSE that holds a
shadow of the entry, the name of the DSE may include a subset of the alternative distinguished names. In the case of a
DSE that is not a copy, the name of the DSE shall include all distinguished names.

NOTE — For consistency and interworking with pre-third DSASs, the name of a DSE holding a copy shall include at least the

primary distinguished value of any naming attribute. Thus the copy has at least the primary distinguished name of the object
entry. Name resolution is enhanced if every distinguished value (and thus every alternative distinguished name) is present.

2412 AliasEntry

An dlias entry is represented by a DSE of type alias which contains the attributes associated with the alias entry (i.e.,
the RDN attributes and the aliased object name attribute). The name of the DSE is the name of the dias entry.

If the DSE holds a copy of the dlias entry, the DSE type includes shadow.

If the name of the dlias entry includes any alternative distinguished names differentiated by context, the name of the
DSE may also include those alternative distinguished names differentiated by context. In the case of a DSE that holds a
shadow of the alias entry, the name of the DSE may include a subset of the alternative distinguished names. In the case
of aDSE that is not a copy, the name of the DSE shall include all distinguished names.

NOTE — For consistency and interworking with pre-third DSASs, the name of a DSE holding a copy shall include at least the

primary distinguished value of any naming attribute. Thus the copy has at least the primary distinguished name of the alias entry.
Name resolution is enhanced if every distinguished value (and thus every alternative distinguished name) is present.

24.1.3 Administrative Point

An administrative point is represented by a DSE of type admPoint which contains the attributes associated with the
administrative point. The name of the DSE is the name of the administrative point.

If the DSE represents an entry, the DSE type includes entry. If the DSE holds a copy of the administrative point
information, the DSE type includes shadow.

If the name of the administrative point includes any alternative distinguished names differentiated by context, the name
of the DSE may aso include those alternative distinguished names differentiated by context. In the case of a DSE that
holds a shadow of the administrative point, the name of the DSE may include a subset of the aternative distinguished
names. In the case of a DSE that is not a copy, the name of the DSE shall include all distinguished names.
NOTE — For consistency and interworking with pre-third DSAs, the name of a DSE holding a copy shall include at least the
primary distinguished value of any naming attribute. Thus the copy has at least the primary distinguished name of the

administrative point. Name resolution is enhanced if every distinguished value (and thus every alternative distinguished name) is
present.

ITU-T Rec. X.501 (11/2008) 123

| SO/IEC 9594-2:2008 (E)

2414 Subentry

A subentry is represented by a DSE of type subentry which contains the operational and user information associated
with the subentry. The name of the DSE is the name of the subentry.

If the DSE holds a copy of the subentry, the DSE type is subentry and shadow.

2415 Family member

A family member (including the ancestor) is represented by a DSE of type familyMember. The ancestor also is of DSE
type entry; it isthe only family member that is permitted to have this DSE type.

24.2 Representation of Knowledge Refer ences

A knowledge reference consists of a DSE of an appropriate type which holds a correspondingly appropriate DSA
operationa attribute and which is identified by a name bearing a defined relationship to the naming context held by the
referenced DSA.

The name of this DSE shall be the primary distinguished name and may include aternative names and context
information if they are present in the context prefix of the naming context held by the referenced DSA. In the case of a
DSE that holds a shadow, the name of the DSE may include a subset of the alternative names. In the case of a DSE that
is not a copy, the name of the DSE shall include all distinguished names.

NOTE — Name resolution is enhanced if every distinguished value (and thus every alternative distinguished name) is present.

2421 Knowledge Attribute Types

DSA operational attributes are defined in the DSA information model to expressaDSA's;
— knowledge of its own access point;
— superior knowledge;
— specific knowledge (its subordinate references);
— non-specific knowledge (its non-specific subordinate references);
— knowledge of its supplier(s), optionally including the master, if it is a shadow consumer;
— knowledge of its consumer(s) if it is a shadow supplier;
— knowledge of secondary shadows, if it is a shadow supplier; and
— knowledge of another DIT.

Object Identifier values are assigned in Annex F for these operational attributes.
24.2.1.1 My Access Point

The myAccessPoint operational attribute type is used by a DSA to represent its own access point. It is a DSA specific
attribute. All DSAs shall hold this attribute in their root DSE. It is single-valued and managed by the DSA itself.

myAccessPoint ATTRIBUTE ::= {

WITH SYNTAX AccessPoint

EQUALITY MATCHING RULE accessPointMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-myAccessPoint }

The ASN.1 type AccessPoint is defined in ITU-T Rec. X.518 | ISO/IEC 9594-4. Its ASN.1 specification is reproduced
here for the convenience of the reader.

AccessPoint ::= SET {

ae-title [0] Name,
address [1] PresentationAddress
protocolinformation [2] SET SIZE (1..MAX) OF Protocolinformation OPTIONAL }

NOTE — The Name in the ae-title may be the primary distinguished name or an aternative distinguished name; however,
consistency and interworking with pre-third DSAs is enhanced if the primary distinguished nameis used.

How a DSA obtains the information held in myAccessPoint is not described in the Directory Specifications.

The myAccessPoint attribute typeisheld in a DSE of typeroot.

124 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The information held in myAccessPoint may be employed in the DOP when establishing or modifying an operational
binding.

24.2.1.2 Superior Knowledge

The superiorKnowledge operational attribute type is used by a non-first level DSA to represent its superior references.
It isa DSA specific attribute. All non-first level DSAs shall hold this attribute in their root DSE. It is multi-valued and
managed by the DSA itself.

superiorknowledge ATTRIBUTE ::= {

WITH SYNTAX AccessPoint

EQUALITY MATCHING RULE accessPointMatch

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-superiorKnowledge }

A DSA may acquire the information held in superiorknowledge by means not described in the Directory
Specifications. It might also construct it from its immediate superior references, e.g., from its immediate superior
reference whose context prefix has the least number of RDNsin its name.

The superiorKnowledge attribute typeis held in a DSE of typeroot.

The information held in superiorkKnowledge may be employed by a DSA when constructing a continuation reference
returned in aDAP or DSP referral or when performing chaining.

24.2.1.3 Specific Knowledge

Specific knowledge consists of the access points for the master DSA of a naming context and/or shadow DSAs for that
naming context. It is specific because the context prefix of the naming context is known and associated with the access
point information. Specific knowledge is represented by the specificknowledge operational attribute type. It is a
DSA shared attribute, is single-valued, and managed by the DSA itself.

specificKnowledge ATTRIBUTE ::= {

WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE distributedOperation

ID id-doa-specificknowledge }

The ASN.1 type MasterAndShadowAccessPoints is defined in ITU-T Rec. X.518 | ISO/IEC 9594-4. Its ASN.1
specification is reproduced here for the convenience of the reader.

MasterAndShadowAccessPoints ::= SET OF MasterOrShadowAccessPoint

MasterOrShadowAccessPoint ::= SET {

COMPONENTS OF AccessPoint,
category [3] ENUMERATED {

master 0),

shadow (1)} DEFAULT master,
chainingRequired [5] BOOLEAN DEFAULT FALSE}

A DSA may acquire the information held in specificKknowledge by means not described in the Directory
Specifications. In the case of a cross reference (DSE of type xr), it might also construct it from information received in
the crossReference component of ChainingResults of a DSP reply. In the case of a subordinate reference (DSE of
type subr), it might construct it from information received in the DOP when establishing or modifying a HOB.

The specificKknowledge attribute type is held in a DSE of type subr, immSupr, or xr. It is used by a DSA to represent
subordinate, immediate superior and cross references.

The information held in specificKknowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral (or when performing chaining) and when constructing Shadowed DSA Specific
Entries (SDSEs) of type subr, immSupr, or xr provided in the DISP.

24.2.1.4 Non-Specific Knowledge

Non-specific knowledge consists of the access points for the master DSA of one or more naming contexts and/or
shadow DSAs for the same one or more naming contexts. It is non-specific because the context prefixes of the naming
context(s) is (are) not known. The immediate superior of the naming context(s) is known, however, and the access point

ITU-T Rec. X.501 (11/2008) 125

| SO/IEC 9594-2:2008 (E)

information is associated with its name. Non-specific knowledge is represented by the nonSpecificKknowledge
operationa attribute type. Itisa DSA shared attribute, is multi-valued and managed by the DSA itself.

nonSpecificKknowledge ATTRIBUTE ::= {

WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
NO USER MODIFICATION TRUE

USAGE distributedOperation

ID id-doa-nonSpecificKknowledge }

The MasterAndShadowAccessPoints value consists of an access point for a master DSA holding one or more
subordinate naming contexts, and zero or more access points of DSAs holding shadows of some or all of these naming
contexts.

A DSA may acquire the information held in nonSpecificknowledge by means not described in the Directory
Specifications. In the case of a non-specific subordinate reference (DSE of type nssr), it might also construct it from
information received in the DOP when establishing or modifying a NHOB.

The nonSpecificKknowledge attribute type is held in a DSE of type nssr. It is used to represent non-specific
subordinate references.

The information held in nonSpecificknowledge may be employed by a DSA when constructing a continuation
reference returned in a DAP or DSP referral (or when performing chaining) and when constructing SDSEs of type nssr
provided in the DISP.

24.2.15 Supplier Knowledge

The supplier knowledge of a shadow consumer DSA consists of the access point(s) and shadowing agreement
identifier(s) for its supplier(s) of a copy (or copies) of areplicated area. Optionally, if the supplier is not the master of
the naming context from which a replicated area is derived, the access point of the master may be included in supplier
knowledge. Supplier knowledge is represented by the supplierKnowledge operationa attribute type. It is DSA specific,
multi-valued and managed by the DSA itself.

The ASN.1 syntax for avalue of supplierKnowledge is Supplierinformation. A value of this attribute is composed of
a shadow supplier DSA's access point and the agreement ID of the shadowing agreement between the supplier DSA and
the consumer DSA holding the DSA specific attribute (expressed as a value of the type SupplierOrConsumer), an
indication of whether the supplier of the replicated area is or is not the master of the naming context from which it is
derived, and, if not, optionaly, the access point of the master DSA.

SupplierOrConsumer ::= SET {

COMPONENTS OF AccessPoint,-- supplier or consumer --
agreementID [3] OperationalBindingID }

Supplierinformation ::= SET {
COMPONENTS OF SupplierOrConsumer, -- supplier --
supplier-is-master [4] BOOLEAN DEFAULT TRUE,

non-supplying-master [5] AccessPoint OPTIONAL }

supplierKnowledge ATTRIBUTE ::= {

WITH SYNTAX Supplierinformation

EQUALITY MATCHING RULE supplierOrConsumerinformationMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-supplierKnowledge }

A DSA may acquire the information held in supplierknowledge by means not described in the Directory
Specifications. A shadow consumer DSA might also construct it from information received in the DOP when
establishing or modifying a shadowing agreement.

The supplierKnowledge attribute type is held in a DSE of type cp. It is used to represent one or more supplier
references. All shadow consumer DSAs shall hold avalue of this attribute for each shadowing agreement they engage in
as a consumer.

The information held in supplierKnowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral. The agreementID component (its type, OperationalBindingID, is defined in 28.2)
of supplierKnowledge is required in the operations of the DOP for managing a shadowing agreement and in al the
DISP operations.

126 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

24.2.1.6 Consumer Knowledge

The consumer knowledge of a shadow supplier DSA consists of the access point(s) and shadowing agreement
identifier(s) for the consumer(s) of a copy (or copies) of a naming context provided to them by the supplier. Consumer
knowledge is represented by the consumerknowledge operational attribute type. It is DSA specific, multi-valued and
managed by the DSA itself.

The ASN.1 syntax for a value of consumerKnowledge is Consumerinformation (which has the same syntax as
SupplierOrConsumer, but refersto a consumer access point).

Consumerinformation ::= SupplierOrConsumer -- consumer --

consumerKnowledge ATTRIBUTE ::= {

WITH SYNTAX Consumerinformation

EQUALITY MATCHING RULE supplierOrConsumerinformationMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-consumerKnowledge }

A DSA may acquire the information held in consumerkKnowledge by means not described in the Directory
Specifications. A shadow supplier DSA might also construct it from information received in the DOP when establishing
or modifying shadowing agreements.

The consumerKnowledge attribute type is held in a DSE of type cp. It is used to represent one or more consumer
references. All shadow supplier DSAs shall hold a value of this attribute for each shadowing agreement they engage in
asasupplier.

The agreementlD component of consumerKnowledge is required in the operations of the DOP for managing a
shadowing agreement and in all the DISP operations.

24.2.1.7 Secondary Shadow K nowledge

Secondary shadow knowledge consists of information a supplier DSA (e.g., a master DSA) may choose to maintain
regarding consumer DSAs that are engaged in secondary shadowing from its perspective. Secondary shadow knowledge
is represented by the secondaryShadows operational attribute type. It is DSA specific, multiple-valued and managed
by the DSA itself. The ASN.1 syntax for a value of secondaryShadows is SupplierAndConsumers. It consists of the
access point of a shadow supplier and alist of its direct consumers.

SupplierAndConsumers ::= SET {
COMPONENTS OF AccessPoint, -- supplier --
consumers [3] SET OF AccessPoint }

secondaryShadows ATTRIBUTE ::= {

WITH SYNTAX SupplierAndConsumers
EQUALITY MATCHING RULE supplierAndConsumersMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-secondaryShadows }

The consumers component of SuppliersAndConsumers contains only access points of DSAS that hold commonly
usable copies of areplicated area.

A supplier DSA may obtain the information required to construct values of this attribute from a consumer DSA by
following the procedure described in 23.1.1 of ITU-T Rec. X.518 | ISO/IEC 9594-4.

The secondaryShadows attribute typeis held in a DSE of typecp.
Support for secondary shadow knowledge is optional.

24.2.1.8 DIT Bridge Knowledge

A master DSA of a naming context in another DIT is represented by a ditBridgeKnowledge, which consists of a
domain identifier and its access point. The dITBridgeKnowledge operational attribute contains the
DITBridgeKnowledge of al known such DSAs. It is a multi-valued, DSA shared attribute and is managed by the DSA
administrator. This attribute is held in a DSE of type root, which additionally gets the DSE type ditBridge for DIT
bridge reference.

ITU-T Rec. X.501 (11/2008) 127

| SO/IEC 9594-2:2008 (E)

ditBridgeKnowledge ATTRIBUTE ::= {

WITH SYNTAX DitBridgeKnowledge

EQUALITY MATCHING RULE directoryStringFirstComponentMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-ditBridgeKnowledge }

The ASN.1 type DitBridgeKnowledge is defined in ITU-T Rec. X.518 | ISO/IEC 9594-4. Its ASN.1 specification is
reproduced here for the convenience of the reader.

DitBridgeKnowledge ::= SEQUENCE {
domainLocallD UnboundedDirectoryString OPTIONAL,
accessPoints MasterAndShadowAccessPoints }

The information held in ditBridgeKnowledge will be employed by the DSA when performing a Search operation
involving related entries.

24.2.1.9 Matching Rules

Four equality matching rules for the preceding knowledge attributes are specified below. They apply to attributes with
syntaxes of types AccessPoint, MasterAndShadowAccessPoints, Supplierinformation, Consumerinformation and
SuppliersAndConsumers.

24.2.1.9.1 Access Point Match
The Access Point Match ruleis specified as:

accessPointMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-accessPointMatch }

The accessPointMatch matching rule applies to attribute values of type AccessPoint. A value of the assertion syntax
is derived from avalue of the attribute syntax by using the value of the [0] context specific tag (Name) component. Two
values are considered to match for equality if the Name component of each match using the matching procedure for
DistinguishedName values.

24.2.1.9.2 Master And Shadow Access Points Match
The Master and Shadow Access Point Match equality matching rule is specified as:

masterAndShadowAccessPointsMatch MATCHING-RULE ::= {
SYNTAX SET OF Name
ID id-kmr-masterShadowMatch }

The masterAndShadowAccessPointsMatch matching rule applies to atributes of type
MasterAndShadowAccessPoints. A value of the assertion syntax is derived from a value of the attribute syntax by
removing the category and address components of each SET in the SET OF MasterOrShadowAccessPoints. Two
such values are considered to match for equality if both values have the same number of SET OF elements, and, after
ordering the SET OF elements of each in any convenient fashion, the ae-title component of each pair of SET OF
elements matches using the matching procedure for distinguishedNameMatch.

24.2.1.9.3 Supplier or Consumer Information Match

The Supplier or Consumer Information Match rule is specified as:

supplierOrConsumerinformationMatch MATCHING-RULE ::= {
SYNTAX SET{

ae-title [0] Name,
agreement-identifier [2] INTEGER }
ID id-kmr-supplierConsumerMatch }

The supplierOrConsumerinformationMatch matching rule applies to attribute values of type Supplierinformation or
Consumerinformation (and other attributes having values compatible with Supplierinformation or
Consumerinformation). A value of the assertion syntax is derived from a value of the attribute syntax by selecting the
SET components with tags that match the SET components of the assertion syntax. Two such values are considered to
match for equality if the ae-title component of each (after removing the explicit [0] tag information) matches using the
matching procedure for DistinguishedName values and the identifier component contained in the agreement
component of each (after removing the explicit [2] and SEQUENCE tag information) matches using the matching
procedure for INTEGER values.

128 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

24.2.1.9.4 Suppliersand ConsumersMatch
The Supplier and Consumers Match rule is specified as:

supplierAndConsumersMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-supplierConsumersMatch }

The Supplier and Consumers Match rule applies to attribute values of type SupplierAndConsumers (and other
atributes having values compatible with SupplierAndConsumers). Two such values are considered to match for
equality if the ae-title component of each (after removing the explicit [0] tag information) matches using the matching
procedure for DistinguishedName values.

2422 Knowledge Reference Types

This subclause specifies the representation of knowledge in the DSA information model.

24.2.2.1 Self Reference

A salf reference represents a DSA's knowledge of its own access point. It is represented by a value of the attribute
myAccessPoint held in the DSA'sroot DSE, a DSE of typeroot.

24.2.2.2 Superior Reference

A superior reference is represented by a DSE of type supr and root which contains a superiorkKnowledge attribute.
Since a superiorKnowledge attribute value may contain access points of several DSAs, it may therefore represent
several superior references.

24.2.2.3 Immediate Superior Reference

An immediate superior reference is represented by a DSE of type immSupr which contains a specificKnowledge
attribute. The name of the DSE holding the attribute corresponds to the context prefix of the naming context held by the
referenced superior DSA.

Since a specificknowledge attribute value may contain access points of several DSAS, it may therefore represent
several immediate superior references, at most one of category master and zero or more of category shadow.

If the DSE holding the immediate superior reference is received from a shadow supplier, the DSE type includes
shadow.

24.2.2.4 Subordinate Reference

A subordinate referenceis represented by a DSE of type subr which contains a specificknowledge attribute. The name
of the DSE holding the attribute corresponds to the context prefix of the relevant naming context held by the referenced
subordinate DSA.

Since a specificknowledge attribute value may contain access points of several DSAS, it may therefore represent
several subordinate references, at most one of category master and zero or more of category shadow.

If the DSE holding the subordinate reference is shadowed information, received from a shadow supplier, the DSE type
includes shadow.

The DSE may also include immSupr in a DSA holding two naming contexts, one superior to the other, which are
separated by a third single-entry naming context held in another DSA. An example of this situation is depicted in
Annex O.

24.2.2.5 Non-Specific Subordinate Reference

A non-specific subordinate reference is represented by a DSE of type nssr (and entry normally) which contains a
nonSpecificKknowledge attribute. The name of the DSE holding the attribute corresponds to the name formed by
eliminating the final RDN of the context prefixes of the naming context held by the referenced subordinate DSAS.

NOTE — NSSRs cannot reference LDAP servers.

Since anonSpecificknowledge attribute value may contain access points of several DSAS, it may therefore represent
several non-specific subordinate references, at most one of category master and zero or more of category shadow.
Each nonSpecificknowledge attribute value represents a related set of non-specific subordinate references — the DSAs
of category shadow hold one or more replicated areas derived from the naming context(s) held by the DSA of category
master.

If the DSE holding the non-specific subordinate reference is shadowed information, received from a shadow-supplier,
the DSE type includes shadow.

ITU-T Rec. X.501 (11/2008) 129

| SO/IEC 9594-2:2008 (E)

The DSE includes shadow in the situation of a shadow DSA when the DSE corresponds to an entry for which the
master DSA has non-specific subordinate knowledge and for which only the nonSpecificknowledge attribute for the
non-specific subordinate reference is shadowed.

The DSE includes cp and shadow in the situation of a shadow DSA whose replicated area does not include the context
prefix entry and the master DSA for the naming context has non-specific subordinate knowledge for the context prefix.

The DSE includes admPoint and shadow in the situation of a shadow DSA when the DSE corresponds to an
administrative point, the entry information for the administrative point is not shadowed, and the master DSA for the
naming context has non-specific subordinate knowledge for the administrative point.

When the administrative point coincides with a context prefix in the preceding two cases, the DSE may include
admPoint, cp and shadow.

24.2.2.6 CrossReference

A cross reference is represented by a DSE of type xr which contains a specificKnowledge attribute. The name of the
DSE holding the attribute corresponds to the context prefix of the naming context held by the referenced DSA.

Since a specificKknowledge attribute value may contain access points of severa DSAs, it may therefore represent
several cross references, at most one of category master and zero or more of category shadow.

24.2.2.7 Supplier Reference

A supplier reference is represented by a DSE of type cp which contains a supplierknowledge attribute. The name of
the DSE holding the attribute corresponds to the context prefix of the shadowed naming context.

Since a supplierKnowledge attribute may have several values, it may represent several supplier references. Each
attribute value represents one supplier reference.

24.2.2.8 Consumer Reference

A consumer reference is represented by a DSE of type cp which contains a consumerKnowledge attribute. The name
of the DSE holding the attribute corresponds to the context prefix of the shadowed naming context.

Since a consumerKnowledge attribute may have severa values, it may represent several consumer references. Each
attribute value represents one consumer reference.

24.3 Representation of Names and Naming Contexts

24.3.1 Namesand Glue DSEs

As described in 23.3, the minimum information that a DSA may associate with a name is the purpose for which it holds
the name, represented by a DSE holding a value of the attribute dseType. When a DSE contains only such a minimal
information, its DSE type shall be glue. In this case, the DSE shall not hold an entry or subentry (or a shadow-copy of
an entry or subentry) or a DSA shared attribute.

Glue DSEs arise in the DSA information model to represent names that are known by a DSA as a consequence of
holding information associated with other names. For example, consider the cross reference depicted in Figure 22. The
DSA holding this cross reference also "knows' (in the sense described in 23.3) the names that are superior to the
context prefix name associated with the cross reference. When no other information is associated with such superior
names, they are represented in the DSA information model by glue DSEs.

24.3.2 Naming Contexts

A naming context consists of a context prefix, a subtree of zero or more entries subordinate to the context prefix (the
root of the subtree), and, if there are naming contexts subordinate to it, subordinate and/or non-specific subordinate
references sufficient to constitute full subordinate knowledge.

A context prefix is represented by a DSE of type cp. If the context prefix corresponds to an entry, the DSE type
includes entry. If it corresponds to an alias, the DSE type includes alias. If the context prefix corresponds to an
administrative point, the DSE type includes admPoint.

The subtree of entries and subentries subordinate to the context prefix is represented by DSEs as described in 24.1.1
t0 24.1.5.

The representation of the subordinate knowledge of the naming context is represented by DSEs as described in 24.2.2.

130 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

A replicated area (a shadow-copy of all or part of a naming context) is represented as above except that the DSE type
includes shadow in each DSE for which user or operationa attributes are received from the shadow supplier. In the
case of incomplete replicated areas, DSEs of type glue may occur to represent a bridge between the separate pieces of
the shadowed information. No user or operational attributes are associated with these (or any) glue DSEs.

2433 Example

Figure 22 illustrates an example of the mapping of a portion of the DIT (that corresponding to a naming context) onto
the information tree of a DSA. In addition to the naming context information itself, the DSA's root DSE containing its
superior reference (this is not the DSA information tree for afirst level DSA), a glue DSE and a DSE representing a

reference (either a cross reference or an immediate superior reference) to an immediately superior naming context are
also depicted.

@) Root + supr

@) xr (or immSupr)
cp + entry
Entlyl B3 | | entry + nssr
E=Ri=1
Other Entry Alias subr
subordinates

Knowledge attribute

[| Object entry

A Alias entry

DIT Subtree corresponding
to a Naming Context

B3 Object/alias entry
DSE

X.501_F22

DSA Information Tree
for the Naming Context

Figure 22 —DSEsfor a Naming Context

ITU-T Rec. X.501 (11/2008)

131

| SO/IEC 9594-2:2008 (E)

SECTION 11 - DSA OPERATIONAL FRAMEWORK

25 Overview

25.1 Definitions
For the purposes of this Directory Specification, the following definitions apply:

25.1.1 cooperative state: With respect to a second DSA, the state of a DSA for which an operational binding
instance has been established and has not been terminated.

25.1.2 directory operational framework: Provides the framework from which specific operational models
concerned with particular aspects (e.g., shadowing or creating a naming context) of the operation of the components of
the Directory (DSAs) may be derived by application of the framework. It factors out common elements which are
present in al interactions between Directory components.

25.1.3 non-cooperative state: With respect to a second DSA, the state of a DSA prior to the establishment or after
the termination of an operational binding instance.

25.1.4 operational binding: A mutua understanding between two DSAs that, once established, expresses their
"agreement" subsequently to engage in some sort of interaction.

25.1.5 operational binding establishment: The process of establishing an operational binding instance.
25.1.6 operational binding instance: An operational binding of a specific type between two DSAS.

25.1.7 operational binding management: The process of establishing, terminating or modifying an instance of an
operational binding. This management may be achieved viainformation exchanges defined by Directory Specifications,
viaexchanges defined in other Specifications, or by other means.

25.1.8 operational binding modification: The process of modifying an operational binding instance.
25.1.9 operational binding termination: The process of terminating an operational binding instance.

25.1.10 operational binding type: A particular type of operational binding specified for some distinct purpose, that
expresses the "agreement” of two DSAs to engage in specific types of interaction (e.g., shadowing).

25.2 Introduction

The Directory Specifications define application protocol information exchanges and associated DSA procedures that
define the distributed operation of the Directory. Clauses 25 through 28 define a DSA operational framework which
models certain common elements in these information exchanges and procedures.

Two DSAs interact in a cooperative manner because, in addition to their technical capacity to exchange information and
perform procedures associated with these exchanges, each has been configured to accept certain interactions with the
other.

These clauses are concerned with the expression of a common framework for the specification of the structure of the
elements of the cooperation between two DSAS.

One objective of this framework is that it be sufficiently general to account for al of the forms of DSA cooperation to
be defined in this and future editions of the Directory Specifications. The framework is used within the Directory
Specifications to define shadowing and hierarchical operational binding types.

26 Operational bindings

26.1 General

This clause is concerned with the definition of a general framework, the DSA operational framework, within which the
specification of the nature of the cooperative interactions of components of the Directory (DSAS) may be structured in
order to achieve acommonly agreed objective.

The general framework factors out common features which characterize all interactions between DSAs. By applying the
DSA operationa framework to specific aspects of cooperative interaction between DSAS, the resulting specifications
will be both concise and consistent so that the overall number of mechanisms a DSA shall support will be reduced.

132 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

The mutual understanding between two DSAs that, once established, expresses their "agreement” subsequently to
engage in some sort of interaction is termed an operational binding. Two DSAs may share as many operational binding
instances of a specific type as are required.

The DSA operationa framework provides a common approach to the definition of an operational binding type. An
operational binding type is a particular type of operational binding specified for some distinct purpose, that expresses
the "agreement” of two DSAS to engage in specific types of interaction (e.g., shadowing). This interaction alows
operations from awell-defined set to be invoked by one or the other party to the agreement.

Two particular DSAs that have reached such an "agreement" share an operational binding instance of a specific
operationa binding type. They are said to be in the cooperative state of that instance of an operational binding type.

Prior to the establishment or after the termination of an operational binding instance, two DSAs are said to be in the
non-cooper ative state.

Operational binding management is the process of establishing, terminating or modifying an instance of an operational
binding. This management may be achieved via information exchanges defined by Directory Specifications, via
exchanges defined in other Specifications, or by other means.

These general concepts are depicted in Figure 23.

X.501_F23

Agreement V A@m Operations

C] Operational binding —» Initiation

Figure 23 — An operational binding

26.2 Application of the operational framework

The application of the DSA operational framework to define an operational binding type is concerned with the
following basic elements:

a) twoDSAs
b) an"agreement" of the service that one DSA will provide to another DSA;

c) aset of one or more operations, together with the accompanying procedures a DSA shall follow, through
which the service can be realized;

d) aspecification of the DSA interactions needed to manage the agreement.
The relationship of these basic elements is expressed by an operational binding. An operational binding comprises the

set of these basic elements that are involved to represent the abstract agreement in technical terms. It represents the
environment, governed by an "agreement", in which one DSA provides a defined service to the other (and vice versa).

2621 TwoDSAs

The DSA operational framework provides a structure within which the interaction of one DSA with another and the
procedures they consequently execute may be specified.

The two DSAs may each play an identical role in the operational binding, in which case both DSAs may manage the
operationa binding, both DSAs may invoke the same operations on each other, and both DSAs are constrained to
follow the same set of procedures. Thisistermed a symmetric operationa binding.

Alternatively, each DSA may play a different role in the operational binding, so that different sets of operations and
procedures apply to each DSA. Either or both of the DSAs may be involved in managing the operational binding. This
istermed an asymmetric operational binding.

ITU-T Rec. X.501 (11/2008) 133

| SO/IEC 9594-2:2008 (E)

26.2.2 Theagreement

An "agreement" is a mutual understanding reached between the administrative authorities of two DSAs about a service
that shall be provided by one DSA to the other (and/or vice versa). The "agreement” is initially negotiated by the
administrative authorities of the DSAs by means outside of the scope of the Directory Specifications.

Parameters of this "agreement" can be formalized by the recording in aDSA of an ASN.1 data type for use in a protocol
exchange in the management of the operationa binding. In this way, both DSAs reach a mutual understanding of the
service that each is providing to the other.

26.2.3 Operations

Operations are the basic medium that DSAS use to interact. A pair of DSAS will pass on one or more operations
between themselves, in order to provide the agreed-to service.

Whilst a DSA may be technically capable of supporting a large number of operations, it may only be willing to
cooperate with another DSA in the processing of a small number of these operations, or in the processing of operations
that only have particular values set for certain parameters.

The definition of an operational binding type requires the enumeration of the operations that can be exchanged. It also
alows restrictions to be placed on the values of parameters defined within the operations.

26.24 Management of the agreement

The framework provides generic operations for managing an instance of an operational binding. These operations
provide for the establishment, modification and termination of an operational binding.

The application of the framework to the specification of a particular operational binding type requires the initiator of
each of the three management operations to be specified and also requires the procedures to be defined for each of
establishment, modification and termination. Whenever a management operation is applied to an operational binding of
the specified type, the DSA shall follow the corresponding procedure.

26.3 States of cooper ation

The generic operational model defines two states of cooperation, as governed by an instance of a particular operational
binding type, between two DSAs as seen by one DSA with respect to the other DSA and three transitions between these
states. Each identified instance of an operational binding type shared by two DSASs has its own states of cooperation.
The states of cooperation are:

a) Non-cooperative state: A particular identified instance of an operational binding type has not been
established or has been terminated between the two DSAs. The interaction between the two DSASs (with
respect to the identified instance of an operational binding type) is not defined. A DSA contacted by
another with whom it is in a non-cooperative state may, for example, refuse to engage in any interaction
at al, or it may be prepared to service the request.

b) Cooperative state: There is an instance of an operational binding of the type in question between the two
DSAs. Their cooperative behaviour is governed by the definition of the operational binding type and its
specific parameters and associated procedures.

The transitions between these two states of cooperation may be invoked in two ways: by standardized protocol
interactions or by other means.

The interactions between two DSAS to manage an instance of an operational binding (e.g., to establish and terminate a
shadowing agreement) are distinct from their potential interactions as governed by the binding (e.g., the interaction to
update a unit of replication).

The state transitions are as follows:

a) The establishment transition creates an instance of an operational binding of a particular type between
two DSAS, resulting in the movement from the non-cooperative to the cooperative state.

b) The termination transition destroys an instance of an operational binding of a particular type between
two DSAS, resulting in the movement from the cooperative to the non-cooperative state.

¢) Themodification transition modifies the parameters of an instance of an operational binding between two
DSAs, resulting in the movement from the cooperative state to the cooperative state.

134 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

These generic states and transitions areillustrated in Figure 24.

Non-cooperative

state '\
Establishment Termination
Cooperative /

state

Modification

X.501_F24

Figure 24 — States of cooperation

27 Operational binding specification and management

27.1 Operational binding type specification

When applying the framework to define a specific type of operational binding, the following characteristics of the type
shall be specified:

a)

b)

0)

d)

€)

f)

Symmetry
A specification of the respective roles of the DSAs that are party to the operational binding.

Operational bindings may be symmetric, in which case the role of one DSA is interchangeable with the
other and both DSAs exhibit the same external interactions. They may also be asymmetric, in which case
each DSA plays a distinct role and both DSAs exhibit different external interactions. In this latter case,
the Directory operational framework distinguishes the two abstract roles as "ROLE-A" and "ROLE-B".

Each of the abstract roles "ROLE-A" and "ROLE-B" have to be associated with a concrete role with
defined semantics (e.g., "ROLE-A" as shadow supplier, "ROLE-B" as shadow consumer).

Agreement

A definition of the semantics and representation of the components of the "agreement”. This information
parameterizes the specific instance of an operational binding between two DSAS.

Initiator

A definition which of the two abstract roles "ROLE-A" and "ROLE-B" is allowed to initiate the
establishment, modification or termination of an operational binding of thistype.

Management procedures

A set of procedures that a DSA shall follow when the operational binding of this type is established,
modified or terminated.

Type identification

This identifies the type of DSA interaction that is determined by the operational binding. These
identifiers are object identifier values.

Application-contexts, operations and procedures

This identifies the set of application-contexts whose operations (or a subset thereof) may be employed
during the cooperative phase of the operational binding.

For each operation referenced by the operational binding type, a description of the procedures to be
followed by a DSA if the operation isinvoked is required (this may be done by reference to another part
of these Directory Specifications).

For those operational bindings that are to be managed using the generic operational binding management operations
provided in this clause, the binding type shall be specified using the three information object classes OPERATIONAL-
BINDING, OP-BINDING-COOP and OP-BIND-ROLE defined in this clause.

ITU-T Rec. X.501 (11/2008) 135

| SO/IEC 9594-2:2008 (E)

27.2 Operational binding management

In general, the management of an operational binding requires initially the establishment of an operational binding
instance. This may optionally be followed by one or more modifications to some or all of the parameters of the initial
agreement, and finally may involve the termination of the operational binding instance. The precise details of how an
instance may be managed are defined during the definition of the operational binding type. This type definition requires
the specification of:

a) theinitiator of each of the management operations (this can be either, both, or neither of the two DSAS);
b) the parametersfor each of the management operations; and
¢) the proceduresthat each DSA shall follow for each of the management operations.

During the establishment of an operational binding instance, an operational binding instance identifier (binding id) is
created. This identifier, when combined with the distinguished names of the two DSAs involved in the operational
binding, will form a unique identifier for the binding instance. All management operations subsequent to the
establishment of the operational binding instance will use the binding id to identify which operational binding instance
is being modified or terminated.

The initiator of the establish operation aways transfers the parameters of the "agreement” to the second DSA. In
addition, the initiator may also transfer some establishment parameters which are specific to its role in the operationa
binding. If the responding DSA is willing to enter into the operational binding, it may return in the result establishment
parameters which are specific to its role. If the responding DSA is unwilling to enter into the operational binding, it
shall return an error, which may optionally contain an agreement with a revised set of parameters. This is depicted in
Figure 25 in the case where Role A and in Figure 26 in the case where Role B is the initiator of the establish operation.

Result (p, ,)

Establish (a, pg ,)

Error (a")

X.501_F25

a Agreement
b Establishment parameter

Figure 25— DSA with Role A initiating establishment

Result (pB ~>A)

Establish (a, p, ,)

Error (a")

X.501_F26

a Agreement
b Establishment parameter

Figure 26 — DSA with Role B initiating establishment

27.3 Operational binding specification templates

For the definition of a specific type of operational binding, the following three ASN.1 information object classes may
be used as templates. They allow those parts of the operational binding type that can be formalized to be specified by
the use of ASN.1. Other aspects of the operational binding type, such as the procedures a DSA has to follow when an

136 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

operational binding is established or terminated, have to be specified by some other means (this can be done in a
manner similar to the informal description of the DSA procedures during the name resolution process described in
ITU-T Rec. X.518 | ISO/IEC 9594-4).

27.3.1 Operational binding information object class

OPERATIONAL-BINDING ::= CLASS {

&Agreement,
&Cooperation OP-BINDING-COOP,
&both OP-BIND-ROLE OPTIONAL,
&roleA OP-BIND-ROLE OPTIONAL,
&roleB OP-BIND-ROLE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
AGREEMENT &Agreement
APPLICATION CONTEXTS &Cooperation
[SYMMETRIC &both]
[ASYMMETRIC
[ROLE-A &roleA]
[ROLE-B &roleB]
ID &id }

The OPERATIONAL-BINDING information object class serves as a specification template for an operational binding
type. A variable notation is defined for this class to simplify its use as a template. The correspondence between the
definition of an operational binding type and the fields of the variable notation is as follows:

a) The ASN.1 type of the agreement parameter that is used for this type of operational binding is that
referenced by the AGREEMENT field.

b) The application contexts and the operations of these application-contexts that are employed within the
cooperation phase of an operational binding instance of the defined type are those enumerated following
the APPLICATION-CONTEXTS field. All operations of a listed application-context are selected unless
the optional APPLIES TO field is present and followed by a list of references to operations that are
selected from the application context. This list is an object class set composed of instances of the
OPERATION information object class.

¢) The class of the operational binding is defined by the SYMMETRIC or ASYMMETRIC fields. In the case
of a symmetric operational binding, the term SYMMETRIC is followed by a single information object of
class OP-BIND-ROLE that is valid for both roles of the operational binding. In the case of an asymmetric
operational binding, the term ASYMMETRIC is followed by two information objects of class OP-BIND-
ROLE, one referenced by the subfield ROLE-A and the other by ROLE-B.

d) The object identifier value that serves to identify this type of operational binding is defined by the ID
field.

27.3.2 Operational binding cooper ation information object class

OP-BINDING-COOP ::= CLASS{
&applContext APPLICATION-CONTEXT,
&Operations OPERATION OPTIONAL }
WITH SYNTAX {
&applContext
[APPLIES TO &Operations] }

The OP-BINDING-COOP information object class serves as a specification template for the identification of the
operations of a named application context, some aspect of which is determined by the operational binding. An instance
of this class is meaningful only within the context of a particular operational binding type. A variable notation is
defined for this class to simplify its use as a template. The correspondence between the definition of an operational
binding type and the fields of the variable notation is as follows:

a) TheapplContext field identifies an application context, some or all of whose operations are in some way
determined by an operational binding.

b) The APPLIES TO field, if present, identifies the particular operations to which the operational binding
applies. If the field is absent, the operational binding applies to all the operations of the
application-context.

ITU-T Rec. X.501 (11/2008) 137

| SO/IEC 9594-2:2008 (E)
27.3.3 Operational binding role information object class

OP-BIND-ROLE ::= CLASS {

&establish BOOLEAN DEFAULT FALSE,
&EstablishParam OPTIONAL,
&modify BOOLEAN DEFAULT FALSE,
&ModifyParam OPTIONAL,
&terminate BOOLEAN DEFAULT FALSE,
&TerminateParam OPTIONAL }
WITH SYNTAX {
[ESTABLISHMENT-INITIATOR &establish]
[ESTABLISHMENT-PARAMETER &EstablishParam]
[MODIFICATION-INITIATOR &modify]
[MODIFICATION-PARAMETER &ModifyParam]
[TERMINATION-INITIATOR &terminate |
[TERMINATION-PARAMETER &TerminateParam]}

The OP-BIND-ROLE information object class serves as a specification template for roles of an operational binding type.
An instance of this class is meaningful only within the context of a particular operational binding type. A variable
notation is defined for this class to simplify its use as a template. The correspondence between the definition of an
operationa binding role and the fields of the variable notation is as follows:

a) The ESTABLISHMENT INITIATOR field indicates whether the DSA assuming the defined role may
initiate the establishment of an operational binding of a particular type.

b) The ESTABLISHMENT PARAMETER field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is established.

¢) The MODIFICATION INITIATOR field indicates whether the DSA assuming the defined role may initiate
the modification of an operational binding of a particular type.

d) The MODIFICATION PARAMETER field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is modified.

€) The TERMINATION INITIATOR field indicates whether the DSA assuming the defined role may
terminate the establishment of an operational binding of a particular type.

f) The TERMINATION PARAMETER field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is terminated.

28 Operationsfor operational binding management

This clause defines a set of operations that can be used to establish, modify and terminate operational bindings of
various types. These operations are generic in the way that they can be used to manage operational bindings of any type.
The specification of these operations makes use of the definitions provided for a certain type of operational binding by
application of the OPERATIONAL-BINDING information object class template.
NOTE — By using this facility, arbitrary types of operational bindings may be managed. These operations (together with the
associated application-context) provide a means of extensibility concerning DSA interactions. New types of operational bindings
may be defined in the future which extend the functionality that is provided between DSAs.

28.1 Application-context definition

The set of operations for managing operational binding instances can be used for the definition of an application-context
in the following two ways:

1) An application-context may be constructed containing only the operations for operational binding
management. An application-context for generic operational binding management is defined in
ITU-T Rec. X.519 | ISO/IEC 9594-5.

The operations that may be exchanged during the cooperative phase of the operational binding form one
or more separate application-contexts.

2) The set of operations can be imported into the module used to define a specific application-context. The
operational binding management operations can then be used together with the operations of the
cooperative phase within a single application-context.

NOTE — The first approach is useful in the case where a specialized component of a DSA wants to use an association solely for

managing the set of operational bindings of that DSA, and it is not prepared to accept any of the operations defined for the co-
operative phase (e.g., Update Shadow).

138 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

28.2 Establish Operational Binding operation

The Establish Operational Binding operation allows establishment of an operational binding instance of a predefined
type, between two DSAs. This is achieved through the transfer of the establishment parameters and the terms of
agreement which were defined in the definition of the operational binding type. The arguments of the operation may be
signed (see 17.3) by the requestor. If so requested, the responder may sign the results.

In the case of a symmetrical operational binding, either of the two DSAs may take the initiative to establish an
operational binding instance of the predefined type.

In the case of an asymmetrical operational binding, either the DSA assuming "ROLE-A" or "ROLE-B" establishes the
operational binding, depending on the specific definition of the operational binding type.

establishOperationalBinding OPERATION ::= {

ARGUMENT EstablishOperationalBindingArgument

RESULT EstablishOperationalBindingResult

ERRORS {operationalBindingError | securityError}

CODE id-op-establishOperationalBinding }
EstablishOperationalBindingArgument ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),

bindingID [1] OperationalBindingID OPTIONAL,

accessPoint [2] AccessPoint,

-- symmetric, Role A initiates, or Role B initiates --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSetH{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
agreement [6] OPERATIONAL-BINDING.&Agreement
({OpBindingSet{@bindingType}),
valid [7] Validity DEFAULT { },
securityParameters [8] SecurityParameters OPTIONAL }}

OpBindingSet OPERATIONAL-BINDING ::= {
shadowOperationalBinding |
hierarchicalOperationalBinding |
nonSpecificHierarchicalOperationalBinding }

OperationalBindingID ::= SEQUENCE {
identifier INTEGER,
version INTEGER }

The component bindingType states which type of operational binding is to be established. Operational binding types
are defined by the use of the OPERATIONAL-BINDING information object class template which assigns an object
identifier value to the operational binding type. The bindingType is taken from the ID field of one of the instances of an
operational binding type referenced by OpBindingSet. This set is a paameter of
EstablishOperationalBindingArgument, a parameterized type.

The initiating DSA may assign an identification to the operational binding instance via the bindingID component. If
bindingID is absent within the operation argument, the responding DSA shall assign an ID to the operational binding
instance and return it in the bindinglD component of the establishOperationalBindingResult. In either case, when
establishing an operational binding, both the identifier and version components of the OperationalBindinglD value
shall be assigned and issued by the DSA making the assignment.

The component accessPoint specifies the access point of the initiator for subsegquent interactions.

The role that the DSA issuing the Establish Operational Binding operation assumes is indicated by the CHOICE type
with the options symmetric, roleA-initiates, and roleB-initiates. The CHOICE option governs the particular
establishment parameters employed by the initiating and responding DSAs. The semantics of the roles are defined as
part of the definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the
ESTABLISHMENT PARAMETER of the initiator's OP-BIND-ROLE information object class template. The CHOICE
typeis omitted if establishment of the operational binding type requires no establishment parameter from the initiator.

ITU-T Rec. X.501 (11/2008) 139

| SO/IEC 9594-2:2008 (E)

The component agreement contains the terms of agreement governing the operational binding instance. Its actual
content depends on the type of operational binding to be established. The ASN.1 type for this parameter is defined by
the AGREEMENT field of the OPERATIONAL-BINDING information object class template of the operational binding

type.

The duration that the operational binding instance shall exist is defined in valid. The starting time of the existence of the
operational binding instance is specified in validFrom and the time that the operational binding instance isterminated is
giveninvalidUntil.

Validity ::= SEQUENCE {
validFrom [0] CHOICE {

now [0] NULL,
time [1] Time } DEFAULT now : NULL,
validUntil [1] CHOICE {
explicitTermination [O] NULL,
time [1] Time } DEFAULT explicitTermination : NULL }

Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime }

Before avalue of Time isused in any comparison operation and if the syntax of Time has been chosen asthe UTCTime
type, the value of the two-digit year field shall be rationalized into a four-digit year value as follows:

— If the 2-digit value is 00 through 49 inclusive, the value shall have 2000 added to it.

— If the 2-digit value is 50 through 99 inclusive, the value shall have 1900 added to it.
The use of GeneralizedTime may prevent interworking with implementations unaware of the possibility of choosing
either UTCTime or GeneralizedTime. It is the responsibility of those specifying the domains in which this Directory

Specification will be used, e.g., profiling groups, as to when the GeneralizedTime may be used. In no case shal
UTCTime be used for representing dates beyond 2049.

If the Establish Operational Binding operation succeeds, the following result is returned and, may be signed (see 17.3)
by the responder.

EstablishOperationalBindingResult ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

bindingType [O] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,

-- symmetric, Role Areplies, or Role B replies --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet}{@bindingType}),
roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSet}{@bindingType}),
roleB-replies [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
COMPONENTS OF CommonResultsSeq } }

The bindingType component is contained within the result to indicate the type of operational binding for use within the
CHOICE element. Its value is the same as that provided by the establishment initiator and is taken from the ID field of
one of the instances of an operational binding type referenced by OpBindingSet. This set is a parameter of
EstablishOperationalBindingResult, a parameterized type.

The identification of the established operational binding instance may be returned in bindingID. It shall be used to
identify this operational binding instance in any subsequent Modify or Terminate Operational Binding operation, and
may be used in any other operation that is executed within the cooperative phase of the established operational binding
instance.

The component accessPoint specifies the access point of the responder for subsequent interactions.

The initiating DSA may assign an identification to the operationa binding instance via the bindinglD component. |f
bindingID is absent within the operation argument, the responding DSA shall assign an ID to the operational binding
instance and return it in the bindinglD component of the establishOperationalBindingResult.

Therole that the DSA replying to the Establish Operational Binding operation assumesis indicated by the CHOICE type
with the options symmetric, roleA-initiates and roleB-initiates. The semantics of the roles are defined as part of the
definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the ESTABLISHMENT

140 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

PARAMETER of the responder's OP-BIND-ROLE information object class template. The CHOICE type is omitted if
establishment of the operational binding type requires no establishment parameter from the responder.

28.3 Modify Operational Binding operation

The Modify Operational Binding operation is used to modify an established operational binding. The right to modify is
indicated by the MODIFICATION INITIATOR field(s) within the definition of the operationa binding type using the
OP-BIND-ROLE and OPERATIONAL-BINDING information object class templates.

The components of an operational binding that can be modified are the content of the agreement for the operational
binding and its period of validity. Further, a modification parameter can be specified by the initiating role. The
arguments of the operation may be signed (see 17.3) by the requestor. If so requested, the responder may sign the result.

modifyOperationalBinding OPERATION ::= {

ARGUMENT ModifyOperationalBindingArgument

RESULT ModifyOperationalBindingResult

ERRORS { operationalBindingError | securityError }

CODE id-op-modifyOperationalBinding }
ModifyOperationalBindingArgument ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),

bindingID [1] OperationalBindingID,

accessPoint [2] AccessPoint OPTIONAL,

-- symmetric, Role A initiates, or Role B initiates --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&ModifyParam
({OpBindingSet{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&ModifyParam
({OpBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&ModifyParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
newBindingID [6] OperationalBindingID,
newAgreement [7] OPERATIONAL-BINDING.&Agreement
({OpBindingSet}{@bindingType}) OPTIONAL,
valid [8] Validity OPTIONAL,
securityParameters [9] SecurityParameters OPTIONAL }}

The component bindingType states which type of operational binding is to be modified. The bindingType is taken
from the ID field of one of the instances of an operational binding type referenced by OpBindingSet. This set is a
parameter of ModifyOperationalBindingArgument, a parameterized type.

The identification of the operational binding instance to be modified is given by bindingID. The revised identifier of the
operational binding instance is given by newBindingID. The version component of newBindingID shall be greater than
that of bindinglID.

The optional component accessPoint is present if the initiator's access point for subsequent interactions is to be
changed.

The role that the DSA issuing the Modify Operational Binding operation assumes is indicated by the CHOICE type with
the options symmetric, roleA-initiates and roleB-initiates. The semantics of the roles are defined as part of the
definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the MODIFICATION
PARAMETER of the initiator's OP-BIND-ROLE information object class template. The CHOICE type is omitted if
modification of the operational binding type requires no modification parameter from the initiator.

The component newAgreement, if present, contains the modified terms of agreement governing the operational binding
instance. The ASN.1 type for this parameter is defined by the AGREEMENT field of the OPERATIONAL-BINDING
information object class template of the operational binding type. If newAgreement is not present, the parameters of
the agreement are not changed by the operation.

The optional valid component may be used to indicate arevised period of validity for the altered agreement. If the valid
component is absent, the validFrom component is presumed to have the value now and the validUntil component is
assumed to be unchanged. If the validFrom component is present and refers to an instant of time in the future, the
current agreement remains in effect until that time.

If the Modify Operational Binding operation succeeds, the following result is returned and, may be signed (see 17.3) by
the responder:

ModifyOperationalBindingResult ::= CHOICE {
null [O] NULL,

ITU-T Rec. X.501 (11/2008) 141

| SO/IEC 9594-2:2008 (E)

protected [1] OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

newBindingID OperationalBindingID,

bindingType OPERATIONAL-BINDING.&id ({OpBindingSet}),

newAgreement OPERATIONAL-BINDING.&Agreement
({OpBindingSet}{@.bindingType}),

valid Validity OPTIONAL,

COMPONENTS OF CommonResultsSeq } } }

It is not possible for the responding DSA to return the modification parameter defined for its role to the modification
initiator.

284 Terminate Operational Binding operation

The Terminate Operational Binding operation is used to request the termination of an established operationa binding
instance. The right to request termination is indicated by the TERMINATION INITIATOR field(s) within the definition of
the operational binding type using the OP-BIND-ROLE and OPERATIONAL-BINDING information object class
templates. The arguments of the operation may be signed (see 17.3) by the requestor. If so requested, the responder may
sign the result.

terminateOperationalBinding OPERATION ::= {

ARGUMENT TerminateOperationalBindingArgument
RESULT TerminateOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-terminateOperationalBinding }
TerminateOperationalBindingArgument ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID,
-- symmetric, Role A initiates, or Role B initiates --
initiator CHOICE {
symmetric [2] OPERATIONAL-BINDING.&both.&TerminateParam
({OpBindingSet{@bindingType}),
roleA-initiates [3] OPERATIONAL-BINDING.&roleA.&TerminateParam
({OpBindingSet{@bindingType}),
roleB-initiates [4] OPERATIONAL-BINDING.&roleB.&TerminateParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
terminateAt [5] Time OPTIONAL,
securityParameters [6] SecurityParameters OPTIONAL } }

The component bindingType states which type of operational binding is to be terminated. The bindingType is taken
from the ID field of one of the instances of an operational binding type referenced by OpBindingSet. This set is a
parameter of TerminateOperationalBindingArgument, a parameterized type.

The identification of the operational binding instance to be terminated is given by bindingID. The version component
present in the bindingID isignored.

The role that the DSA issuing the Terminate Operational Binding operation assumes is indicated by the CHOICE type
with the options symmetric, roleA-initiates and roleB-initiates. The semantics of the roles are defined as part of the
definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the TERMINATION
PARAMETER of the initiator's OP-BIND-ROLE information object class template. The CHOICE type is omitted if
termination of the operationa binding type requires no termination parameter from the initiator.

If the operational binding is not to be terminated immediately, a delayed termination time can defined in terminateAt.

If the Terminate Operational Binding operation succeeds, the following result is returned and, may be signed (see 17.3)
by the responder:

TerminateOperationalBindingResult ::= CHOICE {

null [O] NULL,

protected [1] OPTIONALLY-PROTECTED-SEQ { SEQUENCE {
bindingID OperationalBindingID,
bindingType OPERATIONAL-BINDING.&id ({OpBindingSet}),
terminateAt GeneralizedTime OPTIONAL,
COMPONENTS OF CommonResultsSeq } } }

It is not possible for the responding DSA to return the termination parameter defined for its role to the termination
initiator.

142 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

28.5 Operational Binding Error

An Operational Binding Error reports a problem related to the usage of operations for management of operational
bindings. The parameter of the error may be signed (see 17.3) by the responder.

operationalBindingError ERROR ::= {

PARAMETER OPTIONALLY-PROTECTED-SEQ { OpBindingErrorParam }
CODE id-err-operationalBindingError }
OpBindingErrorParam ::= SEQUENCE {
problem [0] ENUMERATED {
invalidID (0),
duplicatelD Q),
unsupportedBindingType (2),
notAllowedForRole 3),
parametersMissing (4),
roleAssignment (5),
invalidStartTime (6),
invalidEndTime (7),
invalidAgreement (8),
currentlyNotDecidable (9),
modificationNotAllowed (10) },
bindingType [1] OPERATIONAL-BINDING.&id ({OpBindingSet}) OPTIONAL,
agreementProposal [2] OPERATIONAL-BINDING.&Agreement

retryAt

({OpBindingSet}{@bindingType}) OPTIONAL,
[3] Time OPTIONAL,

COMPONENTS OF CommonResultsSeq }

The values of problem have the following meanings:

a)

b)

0)
d)

e

f)

9)
h)

)

k)

invalidiD: The operational binding ID given in the request is not known by the receiving DSA or isin
the wrong state for the requested operation.

duplicatelD: The operational binding ID given in the establishment request aready exists at the
responder. This may be caused by a prior attempt to establish an operational binding instance when the
result was lost and initiator has repeated the establishment request.

unsupportedBindingType: The requested operational binding typeis not supported by the DSA.

notAllowedForRole: A management operation on the operational binding instance has been requested
which is not alowed for the role that the requestor plays (e.g., a Terminate Operational Binding
operation has been issued by a DSA that takes a role which is not allowed to initiate the termination of
the operational binding instance).

parametersMissing: Any required establishment or termination parameters that are defined for the type
of operational binding are missing.

roleAssignment: The requested role assignment for an asymmetric operational binding instance has not
been accepted.

invalidStartTime: The specified starting time for the operational binding instance has not been accepted.

invalidEndTime: The specified termination time for the operational binding instance has not been
accepted.

invalidAgreement: The terms of agreement for the requested operational binding instance have not been
accepted. The terms of agreement that would be accepted by the responding DSA can be returned in
agreementProposal.

currentlyNotDecidable: The DSA is not able to decide on-line about the establishment or modification
of the requested operational binding instance. A time when the request should be repeated can be given
inretryAt.

modificationNotAllowed: The Modify Operational Binding operation is rejected since modification is
not permitted for this binding instance.

The bindingType component shall be the same as that transmitted by the invoker of the failed operational binding
management operation.

The agreementProposal component shall only be used in response to an EstablishOperationalBinding request to
propose arevised set of agreement parameters as described in 28.2.

The retryAt component shall be used only in conjunction with the problem value currentlyNotDecidable to indicate a

time when the

EstablishOperationalBinding or ModifyOperationalBinding request should be retried.

ITU-T Rec. X.501 (11/2008) 143

| SO/IEC 9594-2:2008 (E)

The CommonResultsSeq component (see 7.4 of ITU-T Rec. X.511 | ISO/IEC 9594-3) includes SecurityParameters.
The SecurityParameters component (see 7.10 of ITU-T Rec. X.511 | ISO/IEC 9594-3) shall be included in the
CommonResultsSeq if the parameter of the error isto be signed by the responder.

28.6 Operational Binding Management Bind and Unbind

The DSA Operational Binding Management Bind and DSA Operational Binding Management UnBind operations,
defined in 28.6.1 and 28.6.2, are used by a DSA at the beginning and end of a particular period of operationa binding
management activity.

Protection for the dSAOperationalBindingManagementBind and dSAOperationalBindingManagementUnbind shall
be equivalent to the protection applied to the DSABind and DSAUnbind operations.

28.6.1 DSA Operational Binding Management Bind
A DSA Operational Binding Management Bind operation is used to begin a period of operational binding management.

dSAOperationalBindingManagementBind OPERATION ::= directoryBind

The components of the dSAOperationalManagementBind are identical to their counterparts in directoryBind
(see ITU-T Rec. X.511 | ISO/IEC 9594-3) with the following differences.

28.6.1.1 Initiator Credentials

The Credentials of the DirectoryBindArgument alows information identifying the AE-Title of the initiating DSA to
be sent to the responding DSA. The AE-title shall be in the form of a Directory Distinguished Name.

28.6.1.2 Responder Credentials

The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the responding DSA to be
sent to theinitiating DSA. The AE-title shall be in the form of a Distinguished Name.

28.6.2 DSA Operational Binding Management Unbind

The unbinding at the end a period of providing operational binding management is for the OSI environment specified in
7.6.4and 7.6.5 of ITU-T Rec. X.519 | ISO/IEC 9594-5 and for the TCP/IP environment in 9.2.2 of ITU-T Rec. X.519 |
I SO/IEC 9594-5.

144 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex A

Object identifier usage
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex documents the upper reaches of the object identifier subtree in which all of the object identifiers assigned in
the Directory Specifications reside. It does so by providing an ASN.1 module called UsefulDefinitions in which all
non-leaf nodesin the subtree are assigned names.

UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTSAII --

-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

ID

OBJECT IDENTIFIER

ds ID {joint-iso-itu-t ds(5)}

-- categories of information object --

module ID = {ds 1}
serviceElement ID = {ds 2}
applicationContext ID = {ds 3}
attributeType ID = {ds 4}
attributeSyntax ID = {ds 5}
objectClass ID = {ds 6}
-- attributeSet ID = {ds 7}
algorithm ID = {ds 8}
abstractSyntax ID = {ds 9}
-- object ID = {ds 10}
-- port ID = {ds 11}
dsaOperational Attribute ID = {ds 12}
matchingRule ID = {ds 13}
knowledgeMatchingRule ID = {ds 14}
nameForm ID = {ds 15}
group ID = {ds 16}
subentry ID = {ds 17}
operationalAttributeType ID = {ds 18}
operationalBinding ID = {ds 19}
schemaObjectClass ID = {ds 20}
schemaOperationalAttribute ID = {ds 21}
administrativeRoles ID = {ds 23}
accessControlAttribute ID = {ds 24}
- -rosObject ID = {ds 25}
- -contract ID = {ds 26}
-- package ID = {ds 27}
accessControlSchemes ID = {ds 28}
certificateExtension ID = {ds 29}
managementObject ID = {ds 30}
attributeValueContext ID = {ds 31}
-- securityExchange ID = {ds 32}
idmProtocol ID = {ds 33}
problem ID = {ds 34}
notification ID = {ds 35}
matchingRestriction ID = {ds 36} -- None are currently defined by this
-- specification
controlAttributeType ID = {ds 37}
keyPurposes ID = {ds 38}
-- modules --
usefulDefinitions ID = {module usefulDefinitions(0) 6}

ITU-T Rec. X.501 (11/2008) 145

| SO/IEC 9594-2:2008 (E)

informationFramework
directoryAbstractService
distributedOperations

-- protocol Objectldentifiers
selectedAttributeTypes
selectedObjectClasses
authenticationFramework
algorithmObijectldentifiers
directoryObjectldentifiers

-- upperBounds ID
- dap

- dq)

distributedDirectoryOIDs
directoryShadowOIDs
directoryShadowAbstractService ID
--disp

-- dop

opBindingManagement
opBindingOIDs
hierarchicalOperationalBindings
dsaOperational AttributeTypes
schemaAdministration
basicAccessControl
directoryOperationalBindingTypes
certificateExtensions
directoryManagement
enhancedSecurity

-- directorySecurityExchanges
iDMProtocolSpecification
directoryIDMProtocols
attributeCertificateDefinitions
serviceAdministration

ID
ID
ID
ID
ID
ID
ID
ID
ID

ID
ID
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

{module informationFramework(1) 6}
{module directoryAbstractService(2) 6}
{module distributedOperations(3) 6}
{module protocol Objectldentifiers(4) 6}
{module selectedAttributeTypes(5) 6}
{module selectedObjectClasses(6) 6}
{module authenticationFramework(7) 6}
{module algorithmObjectldentifiers(8) 6}
{module directoryObjectldentifiers(9) 6}

{ modul e upperBounds(10) 6}

{module dap(11) 6}

{module dsp(12) 6}

{module distributedDirectoryOIDs(13) 6}
{module directoryShadowOIDs(14) 6}

{module directoryShadowAbstractService(15) 6}

{module disp(16) 6}

{module dop(17) 6}

{module opBindingManagement(18) 6}

{module opBindingOIDs(19) 6}

{module hierarchicalOperationalBindings(20) 6}
{module dsaOperational AttributeTypes(22) 6}
{module schemaAdministration(23) 6}

{module basicAccessControl(24) 6}

{module directoryOperationalBindingTypes(25) 6}
{module certificateExtensions(26) 6}

{module directoryManagement(27) 6}

{module enhancedSecurity (28) 6}

{module directorySecurityExchanges (29) 6}

{module iDMProtocolSpecification(30) 6}
{module directoryIDMProtocols(31) 6}

{module attributeCertificateDefinitions(32) 6}
{module serviceAdministration(33) 6}

-- the following definition is for a module that holds external Iy defl ned schema elements not defined

-- using formal ASN.1 notation
externalDefinitions
commonProtocolSpecification
oSIProtocolSpecification
directoryOSIProtocols

-- synonyms --

id-oc

id-at

id-as

id-mr

id-nf

id-sc

id-oa

id-ob

id-doa
id-kmr
id-soc
id-soa

id-ar

id-aca

id-ac

-- id-rosObject
-- id-contract ID
-- id-package
id-acScheme
id-ce

id-mgt
id-avc

--id-se
id-idm

id-pr

id-not

id-mre
id-cat

id-kp

146 ITU-T Rec. X.501 (11/2008)

ID
ID
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

{module externalDefinitions(34) 6}

{module commonProtocolSpecification (35) 6}
{module oSIProtocolSpecification (36) 6}
{module directoryOSIProtocols (37) 6}

objectClass
attributeType
abstractSyntax
matchingRule
nameForm

subentry
operationalAttributeType
operationalBinding
dsaOperational Attribute
knowledgeMatchingRule
schemaObjectClass
schemaOperational Attribute
administrativeRoles
accessControlAttribute
applicationContext
rosObject

contract

package
accessControlSchemes
certificateExtension
managementObject
attributeValueContext
securityExchange
idmProtocol

problem

notification
matchingRestriction
controlAttributeType
keyPurposes

| SO/IEC 9594-2:2008 (E)

-- obsolete module identifiers --

- useful Definition ID n= {module 0}
-- informationFramework ID = {module 1}

-- directoryAbstractService ID = {module 2}
-- distributedOperations ID = {module 3}
- protocol Objectldentifiers ID = {module 4}
- selectedAttributeTypes ID = {module 5}
- sel ectedObjectClasses ID = {module 6}
-- authenticationFramework 1D = {module 7}
- algorithmObjectidentifiers ID = {module 8}
- directoryObjectldentifiers ID = {module 9}
- upperBounds ID = {module 10}
- dap ID = {module 11}
-- dsp ID = {module 12}
-- distributedDirectoryObjectldentifiers ID = {module 13}

-- unused module identifiers --

-- directoryShadowOIDs 1D = {module 14}
-- directoryShadowAbstractService ID = {module 15}
- disp ID = {module 16}
- dop ID n= {module 17}
- opBindingManagement ID = {module 18}

- opBindingOIDs ID n= {module 19}
-- hierarchical Operational Bindings ID = {module 20}
-- dsaOperational AttributeTypes ID = {module 22}
-- schemaAdministration ID = {module 23}
- basicAccessControl ID = {module 24}
- operational BindingOIDs ID = {module 25}

END -- UsefulDefinitions

ITU-T Rec. X.501 (11/2008) 147

| SO/IEC 9594-2:2008 (E)

Annex B

Information Framework in ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex provides a summary of al the ASN.1 type, value and macro definitions contained in this Directory
Specification. The definitions form the ASN.1 module InformationFramework.

InformationFramework {joint-iso-itu-t ds(5) module(1) informationFramework(1) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTSAII --
-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.
IMPORTS
-- from ITU-T Rec. X.501 | ISO/IEC 9594-2
directoryAbstractService, id-ar, id-at, id-mr, id-nf, id-0a, id-oc, id-sc,
selectedAttributeTypes, serviceAdministration
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

SearchRule
FROM ServiceAdministration serviceAdministration

-- from ITU-T Rec. X.511 | ISO/IEC 9594-3

TypeAndContextAssertion
FROM DirectoryAbstractService directoryAbstractService

-- from ITU-T Rec. X.520 | ISO/IEC 9594-6
booleanMatch, commonName, generalizedTimeMatch,
generalizedTimeOrderingMatch, integerFirstComponentMatch, integerMatch,
integerOrderingMatch, objectldentifierFirstComponentMatch, UnboundedDirectoryString
FROM SelectedAttributeTypes selectedAttributeTypes ;
-- attribute data types --

Attribute {ATTRIBUTE:SupportedAttributes} ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),
values SET SIZE (0..MAX) OF ATTRIBUTE.&Type ({SupportedAttributes{ @type}),
valuesWithContext SET SIZE (1..MAX) OF SEQUENCE {

value ATTRIBUTE.&Type ({SupportedAttributes}{ @type}),

contextList SET SIZE (1..MAX) OF Context } OPTIONAL }

AttributeType ::= ATTRIBUTE.&id
AttributeValue ::= ATTRIBUTE.&Type

Context ::= SEQUENCE {

contextType CONTEXT.&id ({SupportedContexts}),
contextValues SET SIZE (1..MAX) OF CONTEXT.&Type ({SupportedContexts}{@contextType}),
fallback BOOLEAN DEFAULT FALSE }
AttributeValueAssertion ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
assertion ATTRIBUTE.&equality-match.&AssertionType ({SupportedAttributes{ @type}),
assertedContexts CHOICE {
allContexts [0] NULL,

selectedContexts [1] SET SIZE (1..MAX) OF ContextAssertion } OPTIONAL }

ContextAssertion ::= SEQUENCE {

148 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

contextType CONTEXT.&id({SupportedContexts}),
contextValues SET SIZE (1..MAX) OF
CONTEXT.&Assertion ({SupportedContexts}{@contextType})}

AttributeTypeAssertion ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),

assertedContexts SEQUENCE SIZE (1..MAX) OF ContextAssertion OPTIONAL }
-- Definition of the following information object set is deferred, perhaps to standardized
-- profiles or to protocol implementation conformance statements. The set isrequired to
-- specify a table constraint on the values component of Attribute, the value component
-- of AttributeTypeAndValue, and the assertion component of AttributeVal ueAssertion.
SupportedAttributes ATTRIBUTE ::= { objectClass | aliasedEntryName, ... }
-- Definition of the following information object set is deferred, perhaps to standardized
-- profiles or to protocol implementation conformance statements. The set isrequired to
-- gpecify a table constraint on the context specifications

SupportedContexts CONTEXT ::= { ...}

-- haming data types --

Name ::= CHOICE { -- only one possibility for now -- rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndDistinguishedValue

AttributeTypeAndDistinguishedValue ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRIBUTE.&Type({SupportedAttributes}{ @type}),
primaryDistinguished BOOLEAN DEFAULT TRUE,
valuesWithContext SET SIZE (1..MAX) OF SEQUENCE {
distingAttrvalue [0] ATTRIBUTE.&Type ({SupportedAttributes{@type}) OPTIONAL
contextList SET SIZE (1..MAX) OF Context } OPTIONAL }
-- subtree data types --

SubtreeSpecification ::= SEQUENCE {
base [O] LocalName DEFAULT { },
COMPONENTS OF ChopSpecification,
specificationFilter [4] Refinement OPTIONAL }
-- empty sequence specifies whole administrative area

LocalName ::= RDNSequence

ChopSpecification ::= SEQUENCE {

specificExclusions [1] SET SIZE (1..MAX) OF CHOICE {
chopBefore [0] LocalName,
chopAfter [1] LocalName } OPTIONAL,
minimum [2] BaseDistance DEFAULT 0,
maximum [3] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

Refinement ::= CHOICE {

item [0] OBJECT-CLASS.&id,

and [1] SET SIZE (1..MAX) OF Refinement,
or [2] SET SIZE (1..MAX) OF Refinement,
not [3] Refinement }

-- OBJECT-CLASS information object class specification --

OBJECT-CLASS n= CLASS{
&Superclasses OBJECT-CLASS OPTIONAL,
&kind ObjectClassKind DEFAULT structural,

ITU-T Rec. X.501 (11/2008)

149

| SO/IEC 9594-2:2008 (E)

&MandatoryAttributes
&Optional Attributes
&id

WITH SYNTAX {
[SUBCLASS OF

ATTRIBUTE OPTIONAL,
ATTRIBUTE OPTIONAL,
OBJECT IDENTIFIER UNIQUE }

&Superclasses |

[KIND &kind]
[MUST CONTAIN &MandatoryAttributes]
[MAY CONTAIN &OptionalAttributes]
ID &id }
ObjectClassKind ::= ENUMERATED {
abstract 0),
structural (1),
auxiliary 2)}
-- object classes --
top OBJECT-CLASS ::= {
KIND abstract

MUST CONTAIN

{ objectClass }

ID id-oc-top }

alias OBJECT-CLASS ::= {
SUBCLASS OF
MUST CONTAIN

{top}
{ aliasedEntryName }

ID id-oc-alias }

parent OBJECT-CLASS ::=
KIND

abstract

ID id-oc-parent }

child OBJECT-CLASS ::= {
KIND

auxiliary

ID id-oc-child }

-- ATTRIBUTE information object class specification --

ATTRIBUTE ::= CLASS {
&derivation
&Type
&equality-match
&ordering-match
&substrings-match
&single-valued
&collective
&dummy

-- operational extensions --
&no-user-modification

&usage
&id
WITH SYNTAX {
[SUBTYPE OF
[WITH SYNTAX

[EQUALITY MATCHING RULE
[ORDERING MATCHING RULE
[SUBSTRINGS MATCHING RULE

[SINGLE VALUE

ATTRIBUTE OPTIONAL,

OPTIONAL, -- either &Type or &derivation required --
MATCHING-RULE OPTIONAL,
MATCHING-RULE OPTIONAL,
MATCHING-RULE OPTIONAL,

BOOLEAN DEFAULT FALSE,
BOOLEAN DEFAULT FALSE,
BOOLEAN DEFAULT FALSE,

BOOLEAN DEFAULT FALSE,
AttributeUsage DEFAULT userApplications,
OBJECT IDENTIFIER UNIQUE }

&derivation]
&Type]
&equality-match]
&ordering-match |
&substrings-match]
&single-valued]

[COLLECTIVE &collective]
[DUMMY &dummy |
[NO USER MODIFICATION &no-user-modification]
[USAGE &usage |
ID &id }
AttributeUsage ::= ENUMERATED {
userApplications 0),
directoryOperation 2),
distributedOperation 2),
dSAOperation 3)}

150 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

-- attributes --

objectClass ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectldentifierMatch

ID id-at-objectClass }
aliasedEntryName ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

SINGLE VALUE TRUE

ID id-at-aliasedEntryName }

-- MATCHING-RULE information object class specification --

MATCHING-RULE ::= CLASS {

&ParentMatchingRules MATCHING-RULE OPTIONAL,

&AssertionType OPTIONAL,

&uniqueMatchindicator ATTRIBUTE OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[PARENT &ParentMatchingRules]

[SYNTAX &AssertionType]

[UNIQUE-MATCH-INDICATOR &uniqueMatchlindicator]

ID &id }

-- matching rules --

objectldentifierMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
ID id-mr-objectldentifierMatch }

distinguishedNameMatch MATCHING-RULE ::= {
SYNTAX DistinguishedName
ID id-mr-distinguishedNameMatch }

MAPPING-BASED-MATCHING
{ SelectedBy, BOOLEAN:combinable, MappingResult, OBJECT IDENTIFIER:matchingRule } ::=
CLASS {

&selectBy SelectedBy OPTIONAL,
&ApplicableTo ATTRIBUTE,
&subtypesincluded BOOLEAN DEFAULT TRUE,
&combinable BOOLEAN (combinable),
&mappingResults MappingResult OPTIONAL,
&userControl BOOLEAN DEFAULT FALSE,
&exclusive BOOLEAN DEFAULT TRUE,
&matching-rule MATCHING-RULE.&id (matchingRule),
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SELECT BY &selectBy]
APPLICABLE TO &ApplicableTo
[SUBTYPES INCLUDED &subtypesincluded]
COMBINABLE &combinable
[MAPPING RESULTS &mappingResults]
[USER CONTROL &userControl]
[EXCLUSIVE &exclusive]
MATCHING RULE &matching-rule
ID &id }

-- NAME-FORM information object class specification --

NAME-FORM ::= CLASS {

&namedObjectClass OBJECT-CLASS,
&MandatoryAttributes ATTRIBUTE,
&OptionalAttributes ATTRIBUTE OPTIONAL,

ITU-T Rec. X.501 (11/2008)

151

| SO/IEC 9594-2:2008 (E)

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

NAMES &namedObjectClass

WITH ATTRIBUTES &MandatoryAttributes

[AND OPTIONALLY &OptionalAttributes]

ID &id }

-- STRUCTURE-RULE class and DIT structure rule data types --

DITStructureRule ::= SEQUENCE {

ruleldentifier Ruleldentifier ,
-- shall be unique within the scope of the subschema

nameForm NAME-FORM.&id,

superiorStructureRules SET SIZE (1..MAX) OF Ruleldentifier OPTIONAL }
Ruleldentifier ::= INTEGER
STRUCTURE-RULE ::= CLASS{

&nameForm NAME-FORM,

&SuperiorStructureRules STRUCTURE-RULE OPTIONAL,

&id Ruleldentifier }
WITH SYNTAX {

NAME FORM &nameForm

[SUPERIOR RULES &SuperiorStructureRules |

ID &id }

-- DIT content rule data type and CONTENT-RULE class

DITContentRule ::= SEQUENCE {

structuralObjectClass OBJECT-CLASS.&id,
auxiliaries SET SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL,
mandatory [1] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
optional [2] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,
precluded [3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL }
CONTENT-RULE ::= CLASS{
&structuralClass OBJECT-CLASS.&id UNIQUE,
&Auxiliaries OBJECT-CLASS OPTIONAL,
&Mandatory ATTRIBUTE OPTIONAL,
&Optional ATTRIBUTE OPTIONAL,
&Precluded ATTRIBUTE OPTIONAL }
WITH SYNTAX {
STRUCTURAL OBJECT-CLASS &structuralClass
[AUXILIARY OBJECT-CLASSES &Auxiliaries]
[MUST CONTAIN &Mandatory]
[MAY CONTAIN &Optional]
[MUST-NOT CONTAIN &Precluded] }
CONTEXT ::= CLASS {
&Type,
&DefaultValue OPTIONAL,
&Assertion OPTIONAL,
&absentMatch BOOLEAN DEFAULT TRUE,
&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {
WITH SYNTAX &Type
[DEFAULT-VALUE &DefaultValue]
[ASSERTED AS &Assertion]
[ABSENT-MATCH &absentMatch]
ID &id }
DITContextUse ::= SEQUENCE {
attributeType ATTRIBUTE.&id,
mandatoryContexts [1] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,
optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL }
DIT-CONTEXT-USE-RULE ::= CLASS {
&attributeType ATTRIBUTE.&id UNIQUE,
&Mandatory CONTEXT OPTIONAL,

152 ITU-T Rec. X.501 (11/2008)

&Optional CONTEXT OPTIONAL }
WITH SYNTAX {

ATTRIBUTE TYPE &attributeType

[MANDATORY CONTEXTS &Mandatory]

[OPTIONAL CONTEXTS &Optional]}
FRIENDS ::= CLASS {

&anchor ATTRIBUTE.&id UNIQUE,

&Friends ATTRIBUTE }
WITH SYNTAX {

ANCHOR &anchor

FRIENDS &Friends }

-- system schema information objects --
-- object classes --

subentry OBJECT-CLASS ::={
SUBCLASS OF {top}

KIND structural
MUST CONTAIN { commonName | subtreeSpecification }
ID id-sc-subentry }
subentryNameForm NAME-FORM ::= {
NAMES subentry
WITH ATTRIBUTES { commonName }
ID id-nf-subentryNameForm }

subtreeSpecification ATTRIBUTE ::= {

WITH SYNTAX SubtreeSpecification
USAGE directoryOperation
ID id-oa-subtreeSpecification }

administrativeRole ATTRIBUTE ::= {

WITH SYNTAX OBJECT-CLASS.&id
EQUALITY MATCHING RULE objectldentifierMatch
USAGE directoryOperation

ID id-oa-administrativeRole }

createTimestamp ATTRIBUTE ::= {

WITH SYNTAX GeneralizedTime

-- asper 46.3b) or ¢) of ITU-T Rec. X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-createTimestamp }

modifyTimestamp ATTRIBUTE ::= {

WITH SYNTAX GeneralizedTime

-- asper 46.3 b) or c) of ITU-T Rec. X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-modifyTimestamp }

subschemaTimestamp ATTRIBUTE ::= {

WITH SYNTAX GeneralizedTime

-- asper 46.3 b) or c) of ITU-T Rec. X.680 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-subschemaTimestamp }

creatorsName ATTRIBUTE ::= {

| SO/IEC 9594-2:2008 (E)

ITU-T Rec. X.501 (11/2008) 153

| SO/IEC 9594-2:2008 (E)

WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-creatorsName }

modifiersName ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-modifiersName }

subschemaSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-subschemaSubentryList }

accessControlSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-accessControlSubentrylList }

collectiveAttributeSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-collectiveAttributeSubentryList }
contextDefaultSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-contextDefaultSubentryList }
serviceAdminSubentryList ATTRIBUTE ::= {

WITH SYNTAX DistinguishedName

EQUALITY MATCHING RULE distinguishedNameMatch

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-serviceAdminSubentryList }

hasSubordinates ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-oa-hasSubordinates }

accessControlSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-accessControlSubentry }

collectiveAttributeSubentry OBJECT-CLASS ::= {

KIND auxiliary

ID id-sc-collectiveAttributeSubentry }
collectiveExclusions ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectldentifierMatch

154 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

USAGE directoryOperation
ID id-oa-collectiveExclusions }

contextAssertionSubentry OBJECT-CLASS ::= {

KIND auxiliary
MUST CONTAIN {contextAssertionDefaults}
ID id-sc-contextAssertionSubentry }

contextAssertionDefaults ATTRIBUTE ::= {

WITH SYNTAX TypeAndContextAssertion
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-oa-contextAssertionDefault }

serviceAdminSubentry OBJECT-CLASS ::= {

KIND auxiliary
MUST CONTAIN {searchRules}
ID id-sc-serviceAdminSubentry }

searchRules ATTRIBUTE ::={

WITH SYNTAX SearchRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation

ID id-oa-searchRules }

SearchRuleDescription ::= SEQUENCE {

COMPONENTS OF SearchRule,
name [28] SET SIZE (1 .. MAX) OF UnboundedDirectoryString OPTIONAL,
description [29] UnboundedDirectoryString OPTIONAL }

hierarchyLevel ATTRIBUTE ::= {
WITH SYNTAX
EQUALITY MATCHING RULE
ORDERING MATCHING RULE
SINGLE VALUE
NO USER MODIFICATION
USAGE
ID

HierarchyLevel ::= INTEGER

hierarchyBelow ATTRIBUTE ::= {
WITH SYNTAX
EQUALITY MATCHING RULE
SINGLE VALUE
NO USER MODIFICATION
USAGE
ID

HierarchyBelow ::= BOOLEAN

hierarchyParent ATTRIBUTE ::= {
WITH SYNTAX
EQUALITY MATCHING RULE
SINGLE VALUE
USAGE
ID

hierarchyTop ATTRIBUTE ::= {
WITH SYNTAX
EQUALITY MATCHING RULE
SINGLE VALUE
USAGE
ID

-- object identifier assignments --
-- object classes --

id-oc-top

OBJECT IDENTIFIER

HierarchylLevel
integerMatch
integerOrderingMatch
TRUE

TRUE
directoryOperation
id-oa-hierarchylLevel }

HierarchyBelow
booleanMatch

TRUE

TRUE
directoryOperation
id-oa-hierarchyBelow }

DistinguishedName
distinguishedNameMatch
TRUE

directoryOperation
id-oa-hierarchyParent }

DistinguishedName
distinguishedNameMatch
TRUE

directoryOperation
id-oa-hierarchyTop }

{id-oc 0}

ITU-T Rec. X.501 (11/2008)

155

| SO/IEC 9594-2:2008 (E)

id-oc-alias
id-oc-parent
id-oc-child

-- attributes --

id-at-objectClass
id-at-aliasedEntryName

-- matching rules --

id-mr-objectldentifierMatch
id-mr-distinguishedNameMatch

-- operational attributes --

id-oa-excludeAllCollectiveAttributes
id-oa-createTimestamp
id-oa-modifyTimestamp
id-oa-creatorsName
id-oa-modifiersName
id-oa-administrativeRole
id-oa-subtreeSpecification
id-oa-collectiveExclusions
id-oa-subschemaTimestamp
id-oa-hasSubordinates
id-oa-subschemaSubentryList
id-oa-accessControlSubentryList
id-oa-collectiveAttributeSubentryList
id-oa-contextDefaultSubentryList
id-oa-contextAssertionDefault
id-oa-serviceAdminSubentryList
id-oa-searchRules
id-oa-hierarchylLevel
id-oa-hierarchyBelow
id-oa-hierarchyParent
id-oa-hierarchyTop

-- subentry classes --

id-sc-subentry
id-sc-accessControlSubentry
id-sc-collectiveAttributeSubentry
id-sc-contextAssertionSubentry
id-sc-serviceAdminSubentry

-- Name forms --
id-nf-subentryNameForm
-- administrative roles --

id-ar-autonomousArea
id-ar-accessControlSpecificArea
id-ar-accessControllnnerArea
id-ar-subschemaAdminSpecificArea
id-ar-collectiveAttributeSpecificArea
id-ar-collectiveAttributelnnerArea
id-ar-contextDefaultSpecificArea
id-ar-serviceSpecificArea

END -- InformationFramework

156 ITU-T Rec. X.501 (11/2008)

OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER

OBJECT IDENTIFIER
OBJECT IDENTIFIER

OBJECT IDENTIFIER
OBJECT IDENTIFIER

OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER

OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER

OBJECT IDENTIFIER

OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER
OBJECT IDENTIFIER

{id-oc 1}
{id-oc 28}
{id-oc 29}

{id-at 0}
{id-at 1}

{id-mr O}
{id-mr 1}

{id-oa 0}
{id-oa 1}
{id-oa 2}
{id-oa 3}
{id-oa 4}
{id-oa 5}
{id-oa 6}
{id-oa 7}
{id-oa 8}
{id-oa 9}
{id-oa 10}
{id-oa 11}
{id-oa 12}
{id-0oa 13}
{id-oa 14}
{id-oa 15}
{id-oa 16}
{id-oa 17}
{id-oa 18}
{id-oa 19}
{id-oa 20}

{id-sc 0}
{id-sc 1}
{id-sc 2}
{id-sc 3}
{id-sc 4}

{id-nf 16}

{id-ar 1}
{id-ar 2}
{id-ar 3}
{id-ar 4}
{id-ar 5}
{id-ar 6}
{id-ar 7}
{id-ar 8}

| SO/IEC 9594-2:2008 (E)

Annex C

SubSchema Administration Schemain ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex contains the ASN.1 type, value and information object definitions for subschema administration as defined

in clause 15 in the form of an ASN.1 module, SchemaAdministration.

SchemaAdministration {joint-iso-itu-t ds(5) module(1) schemaAdministration(23) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTSAII --

-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
-- from ITU-T Rec. X.501 | ISO/IEC 9594-2

id-soa, id-soc, informationFramework, selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

ATTRIBUTE, AttributeUsage, CONTEXT, DITContentRule, DITStructureRule, MATCHING-RULE,
NAME-FORM, OBJECT-CLASS, ObjectClassKind, objectldentifierMatch
FROM InformationFramework informationFramework

-- from ITU-T Rec. X.520 | ISO/IEC 9594-6

integerFirstComponentMatch, integerMatch,
objectldentifierFirstComponentMatch, UnboundedDirectoryString
FROM SelectedAttributeTypes selectedAttributeTypes ;

subschema OBJECT-CLASS ::= {

KIND auxiliary

MAY CONTAIN {
dITStructureRules |
nameForms |
diTContentRules |
objectClasses |
attributeTypes |
friends |
contextTypes |
dITContextUse |
matchingRules |
matchingRuleUse }

ID id-soc-subschema}

dITStructureRules ATTRIBUTE ::= {

WITH SYNTAX DITStructureRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation

ID id-soa-dITStructureRule }

DITStructureRuleDescription ::= SEQUENCE {
COMPONENTS OF DITStructureRule,

name [1] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }

dITContentRules ATTRIBUTE ::= {

WITH SYNTAX DITContentRuleDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ITU-T Rec. X.501 (11/2008) 157

| SO/IEC 9594-2:2008 (E)
ID id-soa-dITContentRules }

DITContentRuleDescription ::= SEQUENCE {
COMPONENTS OF DITContentRule,

name [4] SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }
matchingRules ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-matchingRules }

MatchingRuleDescription ::= SEQUENCE {

identifier MATCHING-RULE.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,

description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] UnboundedDirectoryString OPTIONAL }

-- describes the ASN.1 syntax

attributeTypes ATTRIBUTE ::= {

WITH SYNTAX AttributeTypeDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-attributeTypes }

AttributeTypeDescription ::= SEQUENCE {
identifier ATTRIBUTE.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [O] AttributeTypelnformation }

AttributeTypelnformation ::= SEQUENCE {

derivation [0] ATTRIBUTE.&id OPTIONAL,
equalityMatch [1] MATCHING-RULE.&id OPTIONAL,
orderingMatch [2] MATCHING-RULE.&id OPTIONAL,
substringsMatch [3] MATCHING-RULE.&id OPTIONAL,
attributeSyntax [4] UnboundedDirectoryString OPTIONAL,
multi-valued [5] BOOLEAN DEFAULT TRUE,
collective [6] BOOLEAN DEFAULT FALSE,
userModifiable [7] BOOLEAN DEFAULT TRUE,
application AttributeUsage DEFAULT userApplications }
objectClasses ATTRIBUTE ::= {
WITH SYNTAX ObjectClassDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-objectClasses }

ObjectClassDescription ::= SEQUENCE {

identifier OBJECT-CLASS.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [O] ObjectClassInformation }

ObjectClassIinformation ::= SEQUENCE {

subclassOf SET SIZE (1..MAX) OF OBJECT-CLASS.&id OPTIONAL,

kind ObjectClassKind DEFAULT structural,

mandatories [3] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL,

optionals [4] SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL }
nameForms ATTRIBUTE ::= {

WITH SYNTAX NameFormDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch

USAGE directoryOperation

ID id-soa-nameForms }

158 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

NameFormDescription ::= SEQUENCE {

identifier NAME-FORM.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,

obsolete BOOLEAN DEFAULT FALSE,

information [0] NameFormiInformation }

NameForminformation ::= SEQUENCE {

subordinate OBJECT-CLASS.&id,

namingMandatories SET OF ATTRIBUTE.&id,

namingOptionals SET SIZE (1..MAX) OF ATTRIBUTE.&id OPTIONAL }
matchingRuleUse ATTRIBUTE ::= {

WITH SYNTAX MatchingRuleUseDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch

USAGE directoryOperation

ID id-soa-matchingRuleUse }

MatchingRuleUseDescription ::= SEQUENCE {

identifier MATCHING-RULE.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [O] SET OF ATTRIBUTE.&id }
structuralObjectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectldentifierMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-soa-structuralObjectClass }

governingStructureRule ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE directoryOperation

ID id-soa-governingStructureRule }

contextTypes ATTRIBUTE ::= {

WITH SYNTAX ContextDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation

ID id-soa-contextTypes }

ContextDescription ::= SEQUENCE {

identifier CONTEXT.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] Contextinformation }

ContextIinformation ::= SEQUENCE {
syntax UnboundedDirectoryString,
assertionSyntax UnboundedDirectoryString OPTIONAL }

dITContextUse ATTRIBUTE ::= {
WITH SYNTAX DITContextUseDescription
EQUALITY MATCHING RULE objectldentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITContextUse }

DITContextUseDescription ::= SEQUENCE {
identifier ATTRIBUTE.&id,
name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,

ITU-T Rec. X.501 (11/2008)

159

| SO/IEC 9594-2:2008 (E)
information [O] DITContextUselnformation }

DITContextUselnformation ::= SEQUENCE ({

mandatoryContexts [1] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL,

optionalContexts [2] SET SIZE (1..MAX) OF CONTEXT.&id OPTIONAL }
friends ATTRIBUTE ::= {

WITH SYNTAX FriendsDescription

EQUALITY MATCHING RULE objectldentifierFirstComponentMatch

USAGE directoryOperation

ID id-soa-friends }

FriendsDescription ::= SEQUENCE {

anchor ATTRIBUTE.&id,

name SET SIZE (1..MAX) OF UnboundedDirectoryString OPTIONAL,
description UnboundedDirectoryString OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,

friends [0] SET SIZE (1..MAX) OF ATTRIBUTE.&id }

-- object identifier assignments --
-- schema object classes --
id-soc-subschema OBJECT IDENTIFIER n= {id-soc 1}

-- schema operational attributes --

id-soa-dITStructureRule OBJECT IDENTIFIER = {id-soa 1}
id-soa-dITContentRules OBJECT IDENTIFIER = {id-soa 2}
id-soa-matchingRules OBJECT IDENTIFIER = {id-soa 4}
id-soa-attributeTypes OBJECT IDENTIFIER = {id-soa 5}
id-soa-objectClasses OBJECT IDENTIFIER = {id-soa 6}
id-soa-nameForms OBJECT IDENTIFIER = {id-soa 7}
id-soa-matchingRuleUse OBJECT IDENTIFIER = {id-soa 8}
id-soa-structuralObjectClass OBJECT IDENTIFIER = {id-soa 9}
id-soa-governingStructureRule OBJECT IDENTIFIER = {id-soa 10}
id-soa-contextTypes OBJECT IDENTIFIER = {id-soa 11}
id-soa-dITContextUse OBJECT IDENTIFIER = {id-soa 12}
id-soa-friends OBJECT IDENTIFIER = {id-soa 13}

END -- SchemaAdministration

160 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex D

Service Administration in ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex contains the ASN.1 type, value and information object definitions for subschema administration as defined
in clause 16 in the form of an ASN.1 module, ServiceAdministration.

ServiceAdministration {joint-iso-itu-t ds(5) module(1) serviceAdministration(33) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTSAII --

-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
-- from ITU-T Rec. X.501 | ISO/IEC 9594-2

directoryAbstractService, informationFramework
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

ATTRIBUTE, AttributeType, CONTEXT, MATCHING-RULE, OBJECT-CLASS,
SupportedAttributes, SupportedContexts
FROM InformationFramework informationFramework

-- from ITU-T Rec. X.511 | ISO/IEC 9594-3

FamilyGrouping, FamilyReturn, HierarchySelections, SearchControlOptions,
ServiceControlOptions
FROM DirectoryAbstractService directoryAbstractService ;

- types -

SearchRule ::= SEQUENCE ({

COMPONENTS OF SearchRuleld,

serviceType [1] OBJECT IDENTIFIER OPTIONAL,
userClass [2] INTEGER OPTIONAL,
inputAttributeTypes [3] SEQUENCE SIZE (0..MAX) OF RequestAttribute OPTIONAL,
attributeCombination [4] AttributeCombination DEFAULT and : {},
outputAttributeTypes [5] SEQUENCE SIZE (1..MAX) OF ResultAttribute OPTIONAL,
defaultControls [6] ControlOptions OPTIONAL,
mandatoryControls [7] ControlOptions OPTIONAL,
searchRuleControls [8] ControlOptions OPTIONAL,
familyGrouping [9] FamilyGrouping OPTIONAL,
familyReturn [10] FamilyReturn OPTIONAL,
relaxation [11] RelaxationPolicy OPTIONAL,
additionalControl [12] SEQUENCE SIZE (1..MAX) OF AttributeType OPTIONAL,
allowedSubset [13] AllowedSubset DEFAULT '111'B,
imposedSubset [14] ImposedSubset OPTIONAL,
entryLimit [15] EntryLimit OPTIONAL }
SearchRuleld ::= SEQUENCE {
id INTEGER,
dmdld [0] OBJECT IDENTIFIER }

AllowedSubset ::= BIT STRING { baseObject (0), oneLevel (1), wholeSubtree (2) }

ImposedSubset ::= ENUMERATED { baseObject (0), oneLevel (1), wholeSubtree (2) }

RequestAttribute ::= SEQUENCE {

attributeType

ATTRIBUTE.&id ({ SupportedAttributes }),

ITU-T Rec. X.501 (11/2008) 161

| SO/IEC 9594-2:2008 (E)

includeSubtypes [0] BOOLEAN DEFAULT FALSE,
selectedValues [1] SEQUENCE SIZE (0..MAX) OF ATTRIBUTE.&Type
({ SupportedAttributes H{ @attributeType }) OPTIONAL,
defaultValues [2] SEQUENCE SIZE (0..MAX) OF SEQUENCE {
entryType OBJECT-CLASS.&id OPTIONAL,
values SEQUENCE OF ATTRIBUTE.&Type
({ SupportedAttributes H{ @attributeType })} OPTIONAL,
contexts [3] SEQUENCE SIZE (0..MAX) OF ContextProfile OPTIONAL,
contextCombination [4] ContextCombination DEFAULT and : { },
matchingUse [5] SEQUENCE SIZE (1..MAX) OF MatchingUse OPTIONAL }
ContextProfile ::= SEQUENCE {
contextType CONTEXT.&id({SupportedContexts}),
contextValue SEQUENCE SIZE (1..MAX) OF CONTEXT.&Assertion

({SupportedContexts{{@contextType}) OPTIONAL }

ContextCombination ::= CHOICE {

context [0] CONTEXT.&id({SupportedContexts}),
and [1] SEQUENCE OF ContextCombination,
or [2] SEQUENCE OF ContextCombination,
not [3] ContextCombination }

MatchingUse ::= SEQUENCE {
restrictionType MATCHING-RESTRICTION.&id ({SupportedMatchingRestrictions}),
restrictionValue MATCHING-RESTRICTION.&Restriction
({SupportedMatchingRestrictions}{@restrictionType}) }

-- Definition of the following information object set is deferred, perhaps to standardized
-- profiles or to protocol implementation conformance statements. The set isrequired to
-- specify a table constraint on the components of SupportedMatchingRestrictions

SupportedMatchingRestrictions MATCHING-RESTRICTION ::= { ...}

AttributeCombination ::= CHOICE {

attribute [O] AttributeType,
and [1] SEQUENCE OF AttributeCombination,
or [2] SEQUENCE OF AttributeCombination,
not [3] AttributeCombination }
ResultAttribute ::= SEQUENCE {
attributeType ATTRIBUTE.&id ({ SupportedAttributes }),
outputValues CHOICE {
selectedValues SEQUENCE OF ATTRIBUTE.&Type
({ SupportedAttributes }{ @attributeType }),
matchedValuesOnly NULL } OPTIONAL,
contexts [O] SEQUENCE SIZE (1..MAX) OF ContextProfile OPTIONAL }
ControlOptions ::= SEQUENCE {
serviceControls [O] ServiceControlOptions DEFAULT { },
searchOptions [1] SearchControlOptions DEFAULT { searchAliases },
hierarchyOptions [2] HierarchySelections OPTIONAL }
EntryLimit ::= SEQUENCE {
default INTEGER,
max INTEGER }

RelaxationPolicy ::= SEQUENCE ({
basic [O] MRMapping DEFAULT { },
tightenings [1] SEQUENCE SIZE (1..MAX) OF MRMapping OPTIONAL,
relaxations [2] SEQUENCE SIZE (1..MAX) OF MRMapping OPTIONAL,
maximum [3] INTEGER OPTIONAL, -- mandatory if tightenings is present
minimum [4] INTEGER DEFAULT 1}

MRMapping ::= SEQUENCE {
mapping [0] SEQUENCE SIZE (1..MAX) OF Mapping OPTIONAL,
substitution [1] SEQUENCE SIZE (1..MAX) OF MRSubstitution OPTIONAL }

Mapping ::= SEQUENCE {

mappingFunction OBJECT IDENTIFIER (CONSTRAINED BY { -- shall be an
-- object identifier of a mapping-based matching algorithm--}),

162 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

INTEGER DEFAULT 0}

level
MRSubstitution ::= SEQUENCE {
attribute
oldMatchingRule [O]
newMatchingRule [1]
-- ASN.1 information object classes --

SEARCH-RULE ::= CLASS {

&dmdld

&serviceType

&userClass

&InputAttributeTypes

&combinati

on

&OutputAttributeTypes
&defaultControls
&mandatoryControls
&searchRuleControls
&familyGrouping
&familyReturn

&additional
&relaxation

Control

AttributeType,
MATCHING-RULE.&id OPTIONAL,
MATCHING-RULE.&id OPTIONAL }

OBJECT IDENTIFIER,

&allowedSubset
&imposedSubset

&entryLimit

&id
WITH SYNTAX {
DMD ID

[SERVICE-TYPE

[USER-CLASS

[INPUT ATTRIBUTES

[COMBINATION

[OUTPUT ATTRIBUTES

[DEFAULT

CONTROL

[MANDATORY CONTROL
[SEARCH-RULE CONTROL

[FAMILY-G
[FAMILY-R

ROUPING
ETURN

[ADDITIONAL CONTROL
[RELAXATION
[ALLOWED SUBSET

[IMPOSED

SUBSET

[ENTRY LIMIT

ID

REQUEST-ATTRIBUTE ::= CLASS {

&attributeType
&SelectedValues
&DefaultValues

&contexts

&contextCombination
&MatchingUse
&includeSubtypes

WITH SYNTAX {

ATTRIBUTE TYPE
[SELECTED VALUES

[DEFAULT

VALUES

[CONTEXTS

[CONTEXT COMBINATION
[MATCHING USE

[INCLUDE SUBTYPES

RESULT-ATTRIBUTE ::= CLASS {

&attributeType
&outputValues

selectedValues

OBJECT IDENTIFIER OPTIONAL,
INTEGER OPTIONAL,
REQUEST-ATTRIBUTE OPTIONAL,
AttributeCombination OPTIONAL,
RESULT-ATTRIBUTE OPTIONAL,
ControlOptions OPTIONAL,
ControlOptions OPTIONAL,
ControlOptions OPTIONAL,
FamilyGrouping OPTIONAL,
FamilyReturn OPTIONAL,
AttributeType OPTIONAL,
RelaxationPolicy OPTIONAL,
AllowedSubset DEFAULT '111'B,
ImposedSubset OPTIONAL,
EntryLimit OPTIONAL,
INTEGER UNIQUE }

&dmdid

&serviceType]

&userClass |

&InputAttributeTypes]
&combination]
&OutputAttributeTypes]
&defaultControls]
&mandatoryControls]
&searchRuleControls]
&familyGrouping]
&familyReturn]
&additionalControl]
&relaxation]
&allowedSubset]
&imposedSubset]
&entryLimit]

&id }

ATTRIBUTE.&id,
ATTRIBUTE.&Type
SEQUENCE {
entryType OBJECT-CLASS.&id
valuesSEQUENCE OF ATTRIBUTE.&Type }
SEQUENCE OF ContextProfile
ContextCombination
MatchingUse
BOOLEAN

&attributeType
&SelectedValues]
&DefaultValues]
&contexts |
&contextCombination]
&MatchingUse |
&includeSubtypes]}

ATTRIBUTE.&id,
CHOICE {

SEQUENCE OF ATTRIBUTE.&Type,

ITU-T Rec. X.501 (11/2008)

OPTIONAL,

OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
DEFAULT FALSE}

163

| SO/IEC 9594-2:2008 (E)

matchedValuesOnly NULL } OPTIONAL,
&contexts ContextProfile OPTIONAL }
WITH SYNTAX {
ATTRIBUTE TYPE &attributeType
[OUTPUT VALUES &outputValues]
[CONTEXTS &contexts |}

MATCHING-RESTRICTION ::= CLASS {

&Restriction,

&Rules MATCHING-RULE.&id,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

RESTRICTION &Restriction

RULES &Rules

ID &id }

END -- ServiceAdministration

164 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex E

Basic Access Control in ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex provides a summary of all of the ASN.1 type and value definitions for Basic Access Control. The definitions
form the ASN.1 module BasicAccessControl.

BasicAccessControl {joint-iso-itu-t ds(5) module(1) basicAccessControl(24) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTSAII --

-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
-- from ITU-T Rec. X.501 | ISO/IEC 9594-2

directoryAbstractService, id-aca, id-acScheme, informationFramework,
selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

ATTRIBUTE, AttributeType, ContextAssertion, DistinguishedName, MATCHING-RULE,
objectldentifierMatch, Refinement, SubtreeSpecification, SupportedAttributes
FROM InformationFramework informationFramework

-- from ITU-T Rec. X.511 | ISO/IEC 9594-3

Filter
FROM DirectoryAbstractService directoryAbstractService

-- from ITU-T Rec. X.520 | ISO/IEC 9594-6
directoryStringFirstComponentMatch, NameAndOptionalUID,

UnboundedDirectoryString, Uniqueldentifier
FROM SelectedAttributeTypes selectedAttributeTypes

accessControlScheme ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectldentifierMatch
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-aca-accessControlScheme }
- ’[ypes -
AClltem ::= SEQUENCE {
identificationTag UnboundedDirectoryString,
precedence Precedence,
authenticationLevel AuthenticationLevel,
itemOrUserFirst CHOICE {
itemFirst [0] SEQUENCE {
protecteditems Protectedltems,
itemPermissions SET OF ItemPermission },
userFirst [1] SEQUENCE {
userClasses UserClasses,
userPermissions SET OF UserPermission } } }

Precedence ::= INTEGER (0..255)

Protectedltems ::= SEQUENCE ({

ITU-T Rec. X.501 (11/2008) 165

| SO/IEC 9594-2:2008 (E)

entry [0] NULL
OPTIONAL,
allUserAttributeTypes [1] NULL
OPTIONAL,
attributeType [2] SET SIZE (1..MAX) OF AttributeType
allAttributeValues [3] SET SIZE (1..MAX) OF AttributeType
allUserAttributeTypesAndValues [4] NULL
attributeValue [5] SET SIZE (1..MAX) OF AttributeTypeAndValue
selfValue [6] SET SIZE (1..MAX) OF AttributeType
rangeOfValues [7] Filter
maxValueCount [8] SET SIZE (1..MAX) OF MaxValueCount
maximmSub [9] INTEGER
restrictedBy [10] SET SIZE (1..MAX) OF RestrictedValue
contexts [11] SET SIZE (1..MAX) OF ContextAssertion
classes [12] Refinement

}

MaxValueCount ::= SEQUENCE {
type AttributeType,
maxCount INTEGER }

RestrictedValue ::= SEQUENCE {
type AttributeType,
valuesin AttributeType }

UserClasses ::= SEQUENCE {
allUsers [0] NULL OPTIONAL,
thisEntry [1] NULL OPTIONAL,
name [2] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,
userGroup [3] SET SIZE (1..MAX) OF NameAndOptionalUID OPTIONAL,

-- dn component shall be the name of an
-- entry of GroupOfUniqueNames

subtree [4] SET SIZE (1..MAX) OF SubtreeSpecification OPTIONAL }

IltemPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,

-- defaults to precedence in ACllitem

userClasses UserClasses,
grantsAndDenials GrantsAndDenials }

UserPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,

-- defaults to precedence in ACllitem

protecteditems Protectedltems,
grantsAndDenials GrantsAndDenials }

AuthenticationLevel ::= CHOICE {
basicLevels SEQUENCE {
level
localQualifier
signed
other EXTERNAL }
GrantsAndDenials ::= BIT STRING {
-- permissions that may be used in conjunction
-- with any component of Protectedltems

grantAdd 0),
denyAdd),
grantDiscloseOnError 2),
denyDiscloseOnError 3),
grantRead 4),
denyRead (5),
grantRemove (6),
denyRemove),

-- permissions that may be used only in conjunction
-- with the entry component

grantBrowse (8),
denyBrowse 9),
grantExport (20),
denyExport (11),

166 ITU-T Rec. X.501 (11/2008)

ENUMERATED { none (0), simple (1), strong (2) },
INTEGER OPTIONAL,
BOOLEAN DEFAULT FALSE },

OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL

grantimport (12),
denylmport (13),
grantModify (14),
denyModify (15),
grantRename (16),
denyRename a7),
grantReturnDN (18),
denyReturnDN (19),

-- permissions that may be used in conjunction
-- with any component, except entry, of Protectedltems

grantCompare (20),

denyCompare (21),

grantFilterMatch (22),

denyFilterMatch (23),

grantinvoke (24),

denylnvoke (25) }
AttributeTypeAndValue ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),

value ATTRIBUTE.&Type({SupportedAttributes}{ @type}) }
-- attributes --

prescriptiveACI ATTRIBUTE ::= {

WITH SYNTAX AClitem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-prescriptiveACl }
entryACl ATTRIBUTE ::= {
WITH SYNTAX AClltem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-entryACl }
subentryACl ATTRIBUTE ::= {
WITH SYNTAX AClltem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-subentryACl }

-- object identifier assignments --

-- attributes --

id-aca-accessControlScheme OBJECT IDENTIFIER =
id-aca-prescriptiveACl OBJECT IDENTIFIER =
id-aca-entryACI OBJECT IDENTIFIER =
id-aca-subentryACI OBJECT IDENTIFIER =

-- access control schemes

basicAccessControlScheme OBJECT IDENTIFIER =
simplifiedAccessControlScheme OBJECT IDENTIFIER =
rule-based-access-control OBJECT IDENTIFIER =
rule-and-basic-access-control OBJECT IDENTIFIER =
rule-and-simple-access-control OBJECT IDENTIFIER =

END -- BasicAccessControl

ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

{id-acal}
{id-aca4}
{id-aca5}
{id-aca 6}

{id-acScheme 1}
{id-acScheme 2}
{id-acScheme 3}
{id-acScheme 4}
{id-acScheme 5}

167

| SO/IEC 9594-2:2008 (E)

Annex F

DSA Operational Attribute Typesin ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type and value definitions contained in clauses 23 and 24 in the form of an ASN.1
module, DSAOperational AttributeTypes.

DSAOperational AttributeTypes {joint-iso-itu-t ds(5) module(1) dsaOperational AttributeTypes(22) 6}
DEFINITIONS ::=
BEGIN
-- EXPORTSAII --
-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.
IMPORTS
-- from ITU-T Rec. X.501 | ISO/IEC 9594-2
distributedOperations, id-doa, id-kmr, informationFramework, opBindingManagement,
selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

ATTRIBUTE, MATCHING-RULE, Name
FROM InformationFramework informationFramework

OperationalBindingID
FROM OperationalBindingManagement opBindingManagement

-- from ITU-T Rec. X.518 | ISO/IEC 9594-4

AccessPoint, DitBridgeKnowledge, MasterAndShadowAccessPoints
FROM DistributedOperations distributedOperations

-- from ITU-T Rec. X.520 | ISO/IEC 9594-6

bitStringMatch, directoryStringFirstComponentMatch
FROM SelectedAttributeTypes selectedAttributeTypes ;

dseType ATTRIBUTE ::= {

WITH SYNTAX DSEType
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-dseType }
DSEType ::= BIT STRING {
root 0), -- root DSE --
glue (2), -- represents knowledge of a name only --
cp 2), -- context prefix --
entry), -- object entry --
alias 4, -- alias entry --
subr %), -- subordinate reference --
nssr (6), -- non-specific subordinate reference --
supr), -- superior reference --
Xr (8), -- cross reference --
admPoint 9), -- administrative point --
subentry (20), -- subentry --
shadow (112), -- shadow copy --
immSupr (13), -- immediate superior reference --
rhob (14), -- rhob information --
sa (15), -- subordinate reference to alias entry --
dsSubentry (16), -- DSA Specific subentry --

168 ITU-T Rec. X.501 (11/2008)

familyMember a7), -- family member --

ditBridge (18), -- DIT bridge reference --

writeableCopy (19)} -- writeable copy --
myAccessPoint ATTRIBUTE ::= {

WITH SYNTAX AccessPoint

EQUALITY MATCHING RULE accessPointMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-myAccessPoint }
superiorknowledge ATTRIBUTE ::= {

WITH SYNTAX AccessPoint

EQUALITY MATCHING RULE accessPointMatch

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-superiorKnowledge }

specificKknowledge ATTRIBUTE ::= {

WITH SYNTAX MasterAndShadowAccessPoints

EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch

SINGLE VALUE TRUE

NO USER MODIFICATION TRUE

USAGE distributedOperation

ID id-doa-specificKknowledge }
nonSpecificKnowledge ATTRIBUTE ::= {

WITH SYNTAX MasterAndShadowAccessPoints

EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch

NO USER MODIFICATION TRUE

USAGE distributedOperation

ID id-doa-nonSpecificKknowledge }

SupplierOrConsumer ::= SET {

COMPONENTS OF AccessPoint,-- supplier or consumer --
agreementID [3] OperationalBindingID }

Supplierinformation ::= SET {
COMPONENTS OF SupplierOrConsumer, -- supplier --
supplier-is-master [4] BOOLEAN DEFAULT TRUE,

non-supplying-master [5] AccessPoint OPTIONAL }

supplierKnowledge ATTRIBUTE ::= {

WITH SYNTAX Supplierinformation

EQUALITY MATCHING RULE supplierOrConsumerinformationMatch

NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-supplierKnowledge }
Consumerinformation ::= SupplierOrConsumer -- consumer --

consumerkKnowledge ATTRIBUTE ::= {

WITH SYNTAX Consumerinformation

EQUALITY MATCHING RULE supplierOrConsumerinformationMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-consumerKnowledge }

SupplierAndConsumers ::= SET {
COMPONENTS OF AccessPoint, -- supplier --
consumers [3] SET OF AccessPoint }

secondaryShadows ATTRIBUTE ::= {

WITH SYNTAX SupplierAndConsumers
EQUALITY MATCHING RULE supplierAndConsumersMatch
NO USER MODIFICATION TRUE

USAGE dSAOperation

ID id-doa-secondaryShadows }

| SO/IEC 9594-2:2008 (E)

ITU-T Rec. X.501 (11/2008) 169

| SO/IEC 9594-2:2008 (E)

ditBridgeKnowledge ATTRIBUTE ::= {

WITH SYNTAX

EQUALITY MATCHING RULE
NO USER MODIFICATION
USAGE

ID

-- matching rules --

DitBridgeKnowledge
directoryStringFirstComponentMatch
TRUE

dSAOperation
id-doa-ditBridgeKnowledge }

accessPointMatch MATCHING-RULE ::= {

SYNTAX Name

ID id-kmr-accessPointMatch }

masterAndShadowAccessPointsMatch MATCHING-RULE ::= {

SYNTAX SET OF Name

ID id-kmr-masterShadowMatch }

supplierOrConsumerinformationMatch MATCHING-RULE ::= {

SYNTAX SET{
ae-title
agreement-identifier

[0] Name,
[2] INTEGER }

ID id-kmr-supplierConsumerMatch }

supplierAndConsumersMatch MATCHING-RULE ::= {

SYNTAX Name

ID id-kmr-supplierConsumersMatch }

-- object identifier assignments --

-- dsa operational attributes --

id-doa-dseType
id-doa-myAccessPoint
id-doa-superiorKnowledge
id-doa-specificKknowledge
id-doa-nonSpecificKknowledge
id-doa-supplierKnowledge
id-doa-consumerKnowledge
id-doa-secondaryShadows
id-doa-ditBridgeKnowledge

-- knowledge matching rules --

id-kmr-accessPointMatch
id-kmr-masterShadowMatch
id-kmr-supplierConsumerMatch
id-kmr-supplierConsumersMatch

END -- DSAOperationalAttributeTypes

170

ITU-T Rec. X.501 (11/2008)

OBJECT IDENTIFIER = {id-doa 0}
OBJECT IDENTIFIER = {id-doa 1}
OBJECT IDENTIFIER = {id-doa 2}
OBJECT IDENTIFIER = {id-doa 3}
OBJECT IDENTIFIER = {id-doa 4}
OBJECT IDENTIFIER = {id-doa 5}
OBJECT IDENTIFIER = {id-doa 6}
OBJECT IDENTIFIER = {id-doa 7}
OBJECT IDENTIFIER = {id-doa 8}
OBJECT IDENTIFIER = {id-kmr 0}
OBJECT IDENTIFIER = {id-kmr 1}
OBJECT IDENTIFIER = {id-kmr 2}
OBJECT IDENTIFIER = {id-kmr 3}

| SO/IEC 9594-2:2008 (E)

Annex G

Operational Binding Management in ASN.1
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type, value and information object class definitions regarding Operational
Bindings relevant to this Directory Specification in the form of the ASN.1 module OperationalBindingManagement.

OperationalBindingManagement {joint-iso-itu-t ds(5) module(1) opBindingManagement(18) 6}
DEFINITIONS ::=
BEGIN

-- EXPORTSAII --

-- The types and val ues defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS

-- from ITU-T Rec. X.501 | ISO/IEC 9594-2

directoryAbstractService, directoryShadowAbstractService, distributedOperations,
directoryOSIProtocols, enhancedSecurity, hierarchicalOperationalBindings,
commonProtocolSpecification

FROM UsefulDefinitions {joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

OPTIONALLY-PROTECTED-SEQ
FROM EnhancedSecurity enhancedSecurity

hierarchicalOperationalBinding, nonSpecificHierarchicalOperationalBinding
FROM HierarchicalOperationalBindings hierarchicalOperationalBindings

-- from ITU-T Rec. X.511 | ISO/IEC 9594-3

CommonResultsSeq, directoryBind, securityError, SecurityParameters
FROM DirectoryAbstractService directoryAbstractService

-- from ITU-T Rec. X.518 | ISO/IEC 9594-4

AccessPoint
FROM DistributedOperations distributedOperations

-- from ITU-T Rec. X.519 | ISO/IEC 9594-5

id-err-operationalBindingError, id-op-establishOperationalBinding,
id-op-modifyOperationalBinding, id-op-terminateOperationalBinding,
OPERATION, ERROR

FROM CommonProtocolSpecification commonProtocolSpecification

APPLICATION-CONTEXT
FROM DirectoryOSIProtocols directoryOSIProtocols

-- from ITU-T Rec. X.525 | ISO/IEC 9594-9

shadowOperationalBinding
FROM DirectoryShadowAbstractService directoryShadowAbstractService

-- bind and unbind --
dSAOperationalBindingManagementBind OPERATION ::= directoryBind

OPERATIONAL-BINDING ::= CLASS {

&Agreement,

&Cooperation OP-BINDING-COOP,

&both OP-BIND-ROLE OPTIONAL,
&roleA OP-BIND-ROLE OPTIONAL,

ITU-T Rec. X.501 (11/2008) 171

| SO/IEC 9594-2:2008 (E)

&roleB
&id
WITH SYNTAX {
AGREEMENT
APPLICATION CONTEXTS
[SYMMETRIC
[ASYMMETRIC
[ROLE-A
[ROLE-B
ID

OP-BINDING-COOP
&applContext
&Operations

WITH SYNTAX {
&applContext
[APPLIES TO

;2= CLASS {

OP-BIND-ROLE ::= CLASS{
&establish
&EstablishParam
&modify
&ModifyParam
&terminate
&TerminateParam

WITH SYNTAX {
[ESTABLISHMENT-INITIATOR
[ESTABLISHMENT-PARAMETER
[MODIFICATION-INITIATOR
[MODIFICATION-PARAMETER
[TERMINATION-INITIATOR
[TERMINATION-PARAMETER

-- operations, arguments and results --

establishOperationalBinding OPERATION

ARGUMENT
RESULT
ERRORS
CODE

EstablishOperationalBindingArgument
bindingType [O]
bindingID [1]
accessPoint [2]

OP-BIND-ROLE OPTIONAL,
OBJECT IDENTIFIER UNIQUE }

&Agreement
&Cooperation
&both]

&roleA]
&roleB]
&id }

APPLICATION-CONTEXT,
OPERATION OPTIONAL }

&Operations] }

BOOLEAN DEFAULT FALSE,
OPTIONAL,

BOOLEAN DEFAULT FALSE,
OPTIONAL,

BOOLEAN DEFAULT FALSE,

OPTIONAL }

&establish]

&EstablishParam]

&modify]

&ModifyParam]
&terminate |
&TerminateParam]}

=

EstablishOperationalBindingArgument
EstablishOperationalBindingResult
{operationalBindingError | securityError}
id-op-establishOperationalBinding }

::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {
OPERATIONAL-BINDING.&id ({OpBindingSet}),
OperationalBindingID OPTIONAL,

AccessPoint,

-- symmetric, Role A initiates, or Role B initiates --

initiator CHOICE {
symmetric

roleA-initiates

roleB-initiates

agreement [6]
valid [7]
securityParameters [8]

OpBindingSet OPERATIONAL-BIN
shadowOperationalBinding |
hierarchicalOperationalBinding |

[3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet{@bindingType}),

[4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSet{@bindingType}),

[5] OPERATIONAL-BINDING.&roleB.&EstablishParam

({OpBindingSet}{@bindingType}) } OPTIONAL,

OPERATIONAL-BINDING.&Agreement
({OpBindingSetl{@bindingType}),

Validity DEFAULT { },

SecurityParameters OPTIONAL } }

{

DING ::

nonSpecificHierarchicalOperationalBinding }

OperationalBindingID ::= SEQUENCE {
identifier INTEGER,
version INTEGER }

Validity ::= SEQUENCE {
validFrom [0]
now

CHOICE {

172 ITU-T Rec. X.501 (11/2008)

[0] NULL,

| SO/IEC 9594-2:2008 (E)

time [1] Time } DEFAULT now : NULL,
validUntil [1] CHOICE {
explicitTermination [O] NULL,
time [1] Time } DEFAULT explicitTermination : NULL }

Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime }

EstablishOperationalBindingResult ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

bindingType [O] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,

-- symmetric, Role Areplies, or Role B replies --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet{@bindingType}),
roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSet{@bindingType}),
roleB-replies [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
COMPONENTS OF CommonResultsSeq } }

modifyOperationalBinding OPERATION ::= {
ARGUMENT ModifyOperationalBindingArgument

RESULT ModifyOperationalBindingResult

ERRORS { operationalBindingError | securityError }

CODE id-op-modifyOperationalBinding }
ModifyOperationalBindingArgument ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),

bindingID [1] OperationalBindingID,

accessPoint [2] AccessPoint OPTIONAL,

-- symmetric, Role A initiates, or Role B initiates --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&ModifyParam
({OpBindingSet}{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&ModifyParam
({OpBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&ModifyParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
newBindingID [6] OperationalBindingID,
newAgreement [7] OPERATIONAL-BINDING.&Agreement
({OpBindingSet}{@bindingType}) OPTIONAL,
valid [8] Validity OPTIONAL,

securityParameters [9] SecurityParameters OPTIONAL } }

ModifyOperationalBindingResult ::= CHOICE {

null [O] NULL,

protected [1] OPTIONALLY-PROTECTED-SEQ { SEQUENCE {
newBindingID OperationalBindingID,
bindingType OPERATIONAL-BINDING.&id ({OpBindingSet}),
newAgreement OPERATIONAL-BINDING.&Agreement

({OpBindingSet}{@.bindingType}),

valid Validity OPTIONAL,
COMPONENTS OF CommonResultsSeq } } }

terminateOperationalBinding OPERATION ::= {
ARGUMENT TerminateOperationalBindingArgument

RESULT TerminateOperationalBindingResult

ERRORS {operationalBindingError | securityError}

CODE id-op-terminateOperationalBinding }
TerminateOperationalBindingArgument ::= OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),

bindingID [1] OperationalBindinglID,

-- symmetric, Role A initiates, or Role B initiates --

initiator CHOICE {

symmetric [2] OPERATIONAL-BINDING.&both.&TerminateParam

({OpBindingSetH{@bindingType}),

ITU-T Rec. X.501 (11/2008)

173

| SO/IEC 9594-2:2008 (E)
roleA-initiates
roleB-initiates

terminateAt
securityParameters

(5]
(6]

TerminateOperationalBindingResult ::
null [O] NULL,
protected [1]

bindingID
bindingType
terminateAt

OPERATIONAL-BINDING.&roleA.&TerminateParam
({OpBindingSet{@bindingType}),
OPERATIONAL-BINDING.&roleB.&TerminateParam
({OpBindingSet}{@bindingType}) } OPTIONAL,
Time OPTIONAL,

SecurityParameters OPTIONAL } }

(3]
(4]

CHOICE {

OPTIONALLY-PROTECTED-SEQ { SEQUENCE {

OperationalBindingID,
OPERATIONAL-BINDING.&id ({OpBindingSet}),
GeneralizedTime OPTIONAL,

COMPONENTS OF CommonResultsSeq }}}

-- errors and parameters --

operationalBindingError ERROR ::= {

PARAMETER OPTIONALLY-PROTECTED-SEQ { OpBindingErrorParam }
CODE id-err-operationalBindingError }
OpBindingErrorParam ::= SEQUENCE {
problem [0] ENUMERATED {
invalidID (0),
duplicatelD Q),
unsupportedBindingType (2),
notAllowedForRole 3),
parametersMissing (4),
roleAssignment (5),
invalidStartTime (6),
invalidEndTime (7),
invalidAgreement (8),
currentlyNotDecidable (9),
modificationNotAllowed (20) },
bindingType [1] OPERATIONAL-BINDING.&id ({OpBindingSet}) OPTIONAL,
agreementProposal [2] OPERATIONAL-BINDING.&Agreement
({OpBindingSet}{@bindingType}) OPTIONAL,
retryAt [3] Time OPTIONAL,
COMPONENTS OF CommonResultsSeq }

END -- OperationalBindingManagement

174 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex H

Enhanced security
(Thisannex forms an integral part of this Recommendation | International Standard)

This module is known to contain invalid specifications. Part of this module is therefore deprecated. The deprecated part
is indicated by ASN.1 comment items. A future edition will either remove the deprecated specifications or provide
updated specifications.

EnhancedSecurity {joint-iso-itu-t ds(5) modules(1) enhancedSecurity(28) 6}
DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTSAII --

IMPORTS

-- from ITU-T Rec. X.501 | ISO/IEC 9594-2

authenticationFramework, basicAccessControl, certificateExtensions, id-at, id-avc, id-mr,
id-oc, informationFramework
FROM UsefulDefinitions { joint-iso-itu-t ds(5) module(1) usefulDefinitions(0) 6}

Attribute{}, ATTRIBUTE, AttributeType, Context, CONTEXT, MATCHING-RULE, Name,
OBJECT-CLASS, objectldentifierMatch, SupportedAttributes, top
FROM InformationFramework informationFramework

AttributeTypeAndValue
FROM BasicAccessControl basicAccessControl

-- from ITU-T Rec. X.509 | ISO/IEC 9594-8

CertificateSerialNumber, HASH{}, SIGNED{}
FROM AuthenticationFramework authenticationFramework

GeneralName, Keyldentifier
FROM CertificateExtensions certificateExtensions

)

OPTIONALLY-PROTECTED { Type } ::= CHOICE {

unsigned Type,
signed SIGNED {Type} }
OPTIONALLY-PROTECTED-SEQ { Type } ::= CHOICE {
unsigned Type,
signed [O] SIGNED { Type } }
attributeValueSecurityLabelContext CONTEXT ::={
WITH SYNTAX SignedSecurityLabel -- At most one security label context can be assigned to an
-- attribute value
ID id-avc-attributeValueSecurityLabelContext }

SignedSecurityLabel ::= SIGNED { SignedSecurityLabelContent }

SignedSecurityLabelContent ::= SEQUENCE {

attHash HASH {AttributeTypeAndValue},

issuer Name OPTIONAL, -- name of labelling authority
keyldentifier Keyldentifier OPTIONAL,

securityLabel SecurityLabel }

SecurityLabel ::= SET {
security-policy-identifier SecurityPolicyldentifier OPTIONAL,

security-classification SecurityClassification OPTIONAL,
privacy-mark PrivacyMark OPTIONAL,
security-categories SecurityCategories OPTIONAL }

(ALL EXCEPT ({-- none, at least one component shall be present --}))

ITU-T Rec. X.501 (11/2008) 175

| SO/IEC 9594-2:2008 (E)
SecurityPolicyldentifier ::= OBJECT IDENTIFIER

SecurityClassification ::= INTEGER {

unmarked 0),
unclassified (1),
restricted 2),
confidential),
secret @),
top-secret 5)}

PrivacyMark ::= PrintableString (SIZE (1..MAX))
SecurityCategories ::= SET SIZE (1..MAX) OF SecurityCategory
clearance ATTRIBUTE ::= {

WITH SYNTAX Clearance

ID id-at-clearance }

Clearance ::= SEQUENCE {

policyld OBJECT IDENTIFIER,
classlList ClassList DEFAULT {unclassified},
securityCategories SET SIZE (1..MAX) OF SecurityCategory OPTIONAL }
ClassList ::= BIT STRING {
unmarked 0),
unclassified (2),
restricted 2),
confidential 3),
secret 4,
topSecret %)}
SecurityCategory ::= SEQUENCE {
type [O] SECURITY-CATEGORY.&id ({SecurityCategoriesTable}),
value [1] EXPLICIT SECURITY-CATEGORY.&Type ({SecurityCategoriesTable} {@type}) }

SECURITY-CATEGORY ::= TYPE-IDENTIFIER
SecurityCategoriesTable SECURITY-CATEGORY ::={ ...}
attributelntegrityinfo ATTRIBUTE ::= {

WITH SYNTAX AttributelntegrityInfo

SINGLE VALUE TRUE

ID id-at-attributelntegrityInfo }
AttributelntegrityIlnfo ::= SIGNED { AttributelntegritylnfoContent }

AttributelntegritylnfoContent ::= SEQUENCE {

scope Scope, -- Identifies the attributes protected
signer SignerOPTIONAL, -- Authority or data originators name
attribsHash AttribsHash } -- Hash value of protected attributes

Signer ::= CHOICE {
thisEntry [0] EXPLICIT ThisEntry,
thirdParty [1] Specificallyldentified }

ThisEntry ::= CHOICE {
onlyOne NULL,
specific IssuerAndSerialNumber }

IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serial CertificateSerialNumber }

Specificallyldentified ::= SEQUENCE {

name GeneralName,
issuer GeneralName OPTIONAL,
serial CertificateSerialNumber OPTIONAL }

(WITH COMPONENTS{ ..., issuer PRESENT, serial PRESENT } |
(WITH COMPONENTS { ..., issuer ABSENT, serial ABSENT }))

176 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Scope ::= CHOICE {

wholeEntry [O] NULL, -- Signature protects all attribute values in this entry

selectedTypes [1] SelectedTypes

-- Sgnature protects all attribute values of the selected attribute types

}
SelectedTypes ::= SEQUENCE SIZE (1..MAX) OF AttributeType
AttribsHash ::= HASH { HashedAttributes }

HashedAttributes ::= SEQUENCE SIZE (1..MAX) OF Attribute{{SupportedAttributes}}
-- Attribute type and values with associated context values for the selected Scope

integritylnfo OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND auxiliary

MUST CONTAIN { attributelntegrityInfo }
ID id-oc-integrityInfo }

attributeValuelntegritylInfoContext CONTEXT ::= {
WITH SYNTAX AttributeValuelntegrityInfo
ID id-avc-attributeValuelntegrityInfoContext }

AttributeValuelntegritylnfo ::= SIGNED { AttributeValuelntegritylnfoContent }
AttributeValuelntegritylnfoContent ::= SEQUENCE {
Signer SignerOPTIONAL, -- Authority or data originators name
aVIHash AVIHash } -- Hash value of protected attribute

AVIHash ::= HASH { AttributeTypeValueContexts }
-- Attribute type and value with associated context values

AttributeTypeValueContexts ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRIBUTE.&Type ({SupportedAttributes}{ @type}),
contextList SET SIZE (1..MAX) OF Context OPTIONAL }

-- Object identifier assignments --

-- object classes --

id-oc-integrityIlnfo OBJECT IDENTIFIER::= {id-oc 40}
-- attributes --

id-at-clearance OBJECT IDENTIFIER::= {id-at 55}
-- id-at-defaultDir Qop OBJECT IDENTIFIER ::= {id-at 56}
id-at-attributelntegrityInfo OBJECT IDENTIFIER::= {id-at 57}
-- id-at-confKeylnfo OBJECT IDENTIFIER ::= {id-at 60}
-- matching rules --

-- id-mr-reader AndKeyl DMatch OBJECT IDENTIFIER ::= {id-mr 43}
-- contexts--

id-avc-attributeValueSecurityLabelContext OBJECT IDENTIFIER::= {id-avc 3}
id-avc-attributeValuelntegrityInfoContext OBJECT IDENTIFIER::= {id-avc 4}

END -- EnhancedSecurity

ITU-T Rec. X.501 (11/2008) 177

| SO/IEC 9594-2:2008 (E)

Annex |

The Mathematics of Trees
(This annex does not form an integral part of this Recommendation | International Standard)

A tree is a set of points, called vertices, and a set of directed lines, called arcs; each arc a leads from a vertex V to a
vertex V'. For example, the tree in Figure |.1 has seven vertices; labelled V! through V', and six arcs, labelled
a’ through &°.

2 3

\%
- @ - @
>

) 4

X.501_FIl.1

Two vertices V' and V are said to be the initial and final vertices, respectively, of an arc afrom V to V'. For example,
V? and V2 are the initial and final vertices, respectively, of arc &. Several different arcs may have the same initial
vertex, but not the same final vertex. For example, arcs a* and a® have the same initial vertex, V*, but no two arcs in the
figure have the same final vertex.

The vertex that is not the final vertex of any arc is often referred to as the root vertex, or even more informally as the
"root" of the tree. For example, in Figure 1.1, V* isthe root.

A vertex that is not the initial vertex of any arc is often referred to informally as aleaf vertex, or even more informally,
asa"leaf" of the tree graph. For example, vertices V3, V® and V' are leaves.

An oriented path from a vertex V to avertex V' isaset of arcs (&, &, ..., @) (n > 1) such that V isthe initial vertex of
arc a, V' isthefinal vertex of arc &, and the final vertex of arc & is also the initial vertex of arc &** for 1 < k < n. For
example, the oriented path from vertex V' to vertex V° is the set of arcs (&°, &', @). The term "path" should be
understood to denote an oriented path from the root to a vertex.

178 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex J

Name Design Criteria
(This annex does not form an integral part of this Recommendation | International Standard)

The information framework is very general, and allows for arbitrary variety of entries and attributes within the DIT.
Since, as defined there, names are closely related to paths through the DIT, this means that arbitrary variety in namesis
possible. This annex suggests criteria to be considered in the design of names. The appropriate criteria have been used
in the design of the recommended name forms which are to be found in ITU-T Rec. X.521 | ISO/IEC 9594-7. It is
suggested that the criteria also be used, where appropriate, in designing the names for objects to which the
recommended name forms do not apply.

Presently, only one criterion is addressed; that of user-friendliness.
NOTE — Not al names need to be user-friendly.

The remainder of this annex discusses the concept of user friendliness applied to names.

Names with which human beings deal directly should be user-friendly. A user-friendly name is one that takes the
human user's point of view, not the computer's. It is one that is easy for people to deduce, remember and understand,
rather than onethat is easy for computers to interpret.

The goa of user-friendliness can be stated somewhat more precisely in terms of the following two principles:

— A human being usually should be able to correctly guess an object's user-friendly name on the basis of
information about the object that he naturally possesses. For example, one should be able to guess a
business person's name given only the information about her casually acquired through normal business
association.

— When an object's name is ambiguously specified, the Directory should recognize that fact rather than
conclude that the name identifies one particular object. For example, where two people have the same
last name, the last name alone should be considered as inadequate identification of either party.

The following subgoals follow from the goal of user-friendliness:

a) Names should not artificially remove natural ambiguities. For example, if two people share the last name
"Jones', neither should be required to answer to "WJones' or "Jones2". Instead, the naming convention
should provide a user-friendly means of discriminating between the entities. For example, it might
require first name and middleinitial in addition to last name.

b) Names should admit common abbreviations and common variations in spelling. For example, if one is
employed by the Conway Steel Corporation and the name of one's employer figures in one's name, any
of the names "Conway Steel Corporation”, "Conway Stedl Corp.", "Conway Steel”, and "CSC" should
suffice to identify the organization in question.

¢) In certain cases, dias names can be used: to direct the search for a particular entry, in order to be more
user-friendly, or to reduce the scope of a search. The following example demonstrates the use of an alias
name for such a purpose: As shown in Figure J.1, the branch office in Osaka can also be identified with
the name { C = Japan, L = Osaka, O = ABC, OU = Osaka-branch }.

d) If names are multi-part, both the number of mandatory parts and the number of optiona parts should be
relatively small and thus easy to remember.

e) If namesare multi-part, the precise order in which those parts appear should generally be immaterial.
f) User-friendly names should not involve computer addresses.

g) In certain cases, contexts can be used to provide aternative names. For example, as shown in Figure J.2,
the person Jones can be identified by {O ="XYZ", OU ="Research”, CN ="Jones'} when the context is
Language = English, and {O = "XYZ", OU = "Recherche’, CN = "Jones'} when the context is
Language = French.

ITU-T Rec. X.501 (11/2008) 179

| SO/IEC 9594-2:2008 (E)

OU = Osaka-branch
X.501_FJ.1

FigureJ.1 - Aliasing example

O0=XYX

OU = Research Recherche
Language = English, Language = French

CN = Jones

X.501_FJ.2

Figure J.2 — Example of context variations of a name

180 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex K

Examples of various aspects of schema
(This annex does not form an integral part of this Recommendation | International Standard)

K.l Example of an attribute hierarchy

Figure K.1 shows a simple hierarchy of values of a generic telephoneNumber attribute, values of which are
represented as contained in the outer set. Two specific attribute types are derived from the generic type,
workTelephoneNumber and homeTelephoneNumber. Values of these types are represented as contained in the inner
sets.

A value of type homeTelephoneNumber is contained in both the inner set representing homeTelephoneNumber and
the outer set representing telephoneNumber, but not the inner set representing workTelephoneNumber values.

A DIT structure rule could be defined which permits entries to contain values of all three types shown in Figure K.1.
Another rule could be defined permitting entries to contain only values of type telephoneNumber.

X.501_FK.1

T A value having telephoneNumberSyntax
(> homeTelephoneNumber
> workTelephoneNumber
(D TelephoneNumber

Figure K.1—Hierarchy of telephone number attributevalue

K.2 Example of a subtree specification

The following is an example illustrating the specification of subtrees. Consider the portion of the DIT represented in
FigureK.2.

Subtree 1 and subtree 2 are specified with respect to the administrative point having name a. The identifiers b1, c2, d3,
etc., represent local name values with respect to the administrative point a.

Subtree 1 may be specified as:

subtreel SubtreeSpecification ::={
specificExclusions { chopBefore b1} }

Subtree 2 may be specified as:

subtree2 SubtreeSpecification ::={
base b1}

Suppose that the entries identified in Figure K.2 with local names €1, €2, etc., represent organizational person entries. A
subtree refinement could be specified to include all of these entriesin the administrative area as:

subtree-refinementl SubtreeSpecification ::={
specificationFilter
item id-oc-organizationalPerson }

This could be further refined to include only the organizational personsin subtree 2 as;

ITU-T Rec. X.501 (11/2008) 181

| SO/IEC 9594-2:2008 (E)

subtree2-refinement SubtreeSpecification = {
base b1,
specificationFilter
item id-oc-organizationalPerson }

bl
I'"_"_I_"_"T—L"I'"_"_T_"_"'I

dld2 d3 d4@

Subtree 2

X.501_FK.2

O Subtree refinement 1

Figure K.2 — Subtree specification example

K.3 Schema specification

K.3.1 Object classes and name forms

The following object classes, defined in ITU-T Rec. X.521 | ISO/IEC 9594-7, are used within a particular subschema
administrative area:

— organization;
— organizationalUnit;

— organizationalPerson.

A name form is not required for the administrative entry, which will be the only entry in the subschema of object class
organization. The following name forms, defined in ITU-T Rec. X.521 | ISO/IEC 9594-7, are used to include entries of
class organizationalUnit and organizationalPerson:

— orgNameForm,;
— orgUnitNameForm;

— orgPersonNameForm.

K.3.2 DIT structurerules

The following structure rules are defined to specify atree structure as shown in Figure K.3. Figure K.3 illustrates which
rule may be used to add entries at the various pointsin the DIT.

rule-0 STRUCTURE-RULE::={

NAME FORM orgNameForm
ID 0}
rule-1 STRUCTURE-RULE::={
NAME FORM orgUnitNameForm
SUPERIOR RULES {rule-0}
ID 1}
rule-2 STRUCTURE-RULE::={
NAME FORM orgUniNameForm
SUPERIOR RULES {rule-1}
ID 2}

182 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

rule-3 STRUCTURE-RULE::={

NAME FORM orgUniNameForm
SUPERIOR RULES {rule-2}
ID 3}

rule-4 STRUCTURE-RULE::={
NAME FORM orgPersonNameForm
SUPERIOR RULES {rule-1, rule-2, rule-3}
ID 4}

Rule#1
Organizational
Unit

Rule# 4 Rule #2

Organizational Organizational
Person Unit

Rule# 4 Rule# 3

Organizational Organizational
Person Unit

Rule#4
Organizational
Person

Figure K.3 — Example subschema

X.501_FK.3

K.4 DIT content rules

The subschema administrator has the following two requirements to add supplemental information to entries in the
subschema administrative area:

- dal organizationalPerson and organizationalUnit entries should have the
organizationalTelephoneNumber attribute. This attribute should be returned when the Directory is
queried for telephoneNumbers;

— dl organizationalPerson entries will have the new attribute manager.

The following attribute types are defined to meet these requirements:

manager ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-ex-managerAttribute }

organizationalTelephoneNumber ATTRIBUTE ::= {

SUBTYPE OF telephoneNumber
COLLECTIVE TRUE
ID id-ex-organizationalTelephoneNumber }

Thefollowing DIT content rules are defined to meet these requirements:

organizationRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS id-oc-organization }

organizationalUnitRule CONTENT-RULE ::= {

STRUCTURAL OBJECT CLASS id-oc-organizationalUnit
MAY CONTAIN { organizationalTelephoneNumber } }

ITU-T Rec. X.501 (11/2008) 183

| SO/IEC 9594-2:2008 (E)

organizationalPersonRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS id-oc-organizationalPerson
MUST CONTAIN { manager }
MAY CONTAIN { organizationalTelephoneNumber } }

K.5 DIT context use

The subschema administrator has the requirement to implement an international organization's policy that mandates the
use of the locale context to differentiate between different values for the title and description attribute types within the
organization's administrative area. Furthermore, since the organization rotates duties on a regular basis, the use of the
temporal context with titlesis desirable in the entries for certain people.

Thefollowing DIT context rules are defined to meet these requirements:

descriptionContextRule DIT-CONTEXT-USE-RULE ::= {

ATTRIBUTE TYPE description

MANDATORY CONTEXTS {locale}}
titleContextRule DIT-CONTEXT-USE-RULE ::= {

ATTRIBUTE TYPE title

MANDATORY CONTEXTS { localeContext }

OPTIONAL CONTEXTS {temporalContext } }

184 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex L

Overview of basic access control permissions
(This annex does not form an integral part of this Recommendation | International Standard)

L.1 I ntroduction

This annex is informative and is intended to provide an overview of the meaning of various combinations of operations,
protected items and permission categories. In cases where there is a perceived difference between this overview and the
specification provided in the body of this Directory Specification, the normative text in the body shall be definitive.

Table L.1 relates Directory operations to the entry and attribute access controls to provide an overview of the
permission categories that must be granted in order to allow the operation to succeed.

Table L.2 provides an overview of the ReturnDN and DiscloseOnError permission categories and how grants and
denialsrelate to various protocol elements.

Table L.3 provides an overview of the semantics associated with grants and denials of entry access controls.

Table L.4 provides an overview of the semantics associated with grants and denials of attribute access controls.
L.2 Permissionsrequired for operations

TableL.1—Directory information permissionsrequired
according to Directory operation

Directory - : Attribute And Attribute Value Protected Item
Operation Entry Protected Item Permissions Required Permissions Required
Compare Read Comparefor attribute being compared
Comparefor attribute value being compared
Read Read and ReturnDN for distinguished name Read for any attribute typeinformation returned
Read for any attribute valuesreturned
List Browse and ReturnDN for all subordinate entriesfor | None
which an RDN isreturned
Search Browse for entriesin the search scopethat are FilterMatch for attribute type and value
potential candidatesfor selection; ReturnDN for information, if any, used to evaluate a filter item as
each returned distinguished name TRUE or FALSE
Read for any attribute typeinformation returned
Read for any attribute valuesreturned
Add Entry | Add Add for all attribute types specified
Add for all attribute values specified
Remove Remove None
Entry
Modify Modify Add for all attributes being added
Entry Add for all attribute values being added
Remove for attributes being removed
Removefor all attribute values being removed
M odifyDN Rename at the original location if only thelast RDN | None
ischanged
Export to move a subtree from the original location
Import to relocate a subtree at the destination
location

ITU-T Rec. X.501 (11/2008) 185

| SO/IEC 9594-2:2008 (E)

L.3 Per missions affecting error

Table L.2 — Permissions affecting error and namereturn

Permission Protocol elements affected Meaning

ReturnDN Entrylnformation If granted, may return actual Distinguished Name.
E&megﬁ?wlt If denied, prohibits return of actual Distinguished Name.
SearchResult By local policy, a valid alias hname may bereturned instead.
NameError
ContinuationReference

DiscloseOnError NameError If granted, permitsreturn an error that may disclose that the
UpdateError protected item exists.

AttributeError

SecurityError If denied, requiresthe Directory to conceal the existence of the

protected item.

L.4 Entry level permissions

TableL.3—Entry level permissions and meaning

Permission Meaning

Read If granted, allows Directory Read or Compar e operationson the entry, but does not, by
itself, authorize return of any attribute information from that entry.
If denied, prevents Read or Compar e operationson theentry.

Browse If granted, permitsthe entry to participate asa candidate for selection in the scope of a
List or Search operation.

If denied, excludesthat entry from the scope of any Search or List operation.

Add If granted, permitsthe entry itself, exclusive of its attributes, to be added. Add isonly
meaningful as prescriptive ACI.

If denied, prevents addition of the entry.

Modify If granted, per mits M odify operationson the entry.
If denied, prevents M odify operations on the entry.

Remove If granted, permitsthe entry to be removed, irrespective of any attribute considerations.
If denied, preventsremoval of the entry.

Rename If granted, allowsthe RDN of the entry to be changed, and, optionally, an old value
removed and a new value added, irrespective of attribute or attribute value protection
that might be applicable to that entry, by means of a M odifyDN operation subject to
Import and Export permissions as appropriate.

If denied, preventsthe RDN of the entry from being changed.

Import If granted, allows entries, including all subordinates, to be relocated at the designated
location in the DIT in a ModifyDN operation. | mport isonly meaningful as prescriptive
ACI.

If denied, preventsrelocation of an entry with subordinates at the indicated point in the
DIT using a ModifyDN operation.

Export If granted, permitsa ModifyDN operation to relocate the entry, including all
subordinates, to a designated point someplace elsein the DIT. Therequestor must have
Import permission at the target location.

If denied, preventsrelocation of the entry and its subordinatesin a single M odifyDN
operation.

ReturnDN

If granted, permitsreturn of the Distinguished Name of entry in an operation result.

If denied, prohibitsreturn of distinguished name. By local policy, a valid alias name may
bereturned instead.

DiscloseOnError

If granted, permitsreturn of an error that may disclose existence of the entry.

If denied, requiresthe Directory to conceal existence of the entry. DiscloseOnError, of
itself, does not deny ability to detect the entry by other meansfor which the appropriate

186 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Permission

Meaning

permissionsare granted.

L5 Entry level permissions

TableL .4 —Attributelevel permissionsand meaning

Permission

Protected item
category

Meaning

Read

Attribute Type

If granted, allowsinformation about that attribute typeto be returned
in a Read or Search operation. Although a prerequisitefor reading
valuesfor that attribute, it grantsno rightsto any values of that
attribute, of itself.

If denied, preventsreturn of information about that attributetypein
Read or Search operations. In effect, thisdeniesall valuesaswell.

Read

Attribute Value

If granted, allows designated value(s) of an attributetypeto be
returned in a Read or Search operation. It grantsno rightstothe
attribute type itself. Read permission to the attribute type is also
reguired in order toread avalue.

If denied, preventsreturn of designated values of that attributetype
in Read or Search operations. It does not, of itself, deny accessto
other values, or the attribute type itself.

Compare

Attribute Type

If granted, allows Compar e oper ationsto test for the attribute type.
Although a prerequisite to comparing values, it does not, of itself,
permit compar e oper ations of the attribute values.

If denied, prevents Compar e operations from testing that attribute.
Thispreventstesting for all values.

Compare

Attribute Value

If granted, allows Compar e operationsto test for the designated value
of thedesignated type. It grantsno rightsto the attribute typeitself.
Compare permission to the attribute typeisalso required in order to
compare avalue.

I f denied, prevents Compar e operations from testing for the
designated value.

FilterMatch

Attribute Type

If granted, permitsthe attributetypeto be used in evaluation of a
Sear ch filter item. It isa prerequisite for including values of that type
in filter evaluations, but does not, of itself, grant rightsto any values.

If denied, prevents use of that attribute type, including any of its
values, in evaluating a filter item.

FilterMatch

Attribute Value

If granted, permitsthe attribute value(s) to be used in evaluation of a
Search filter item. FilterMatch isalso required for the attribute type
for a successful evaluation.

If denied, prevents use of the value(s) in evaluation of afilter item.

Add Attribute Type If granted, permitsthe designated attribute type to be added. Grants
norightsto add any attribute values.
If denied, prevents addition of the designated attribute type, and, asa
consequence, any values.

Add Attribute Value | If granted, permitsthe designated attribute valuesto be added. No

rightsto add thetypeitself are granted. Conversely, norightsto add
the attribute type are needed to add a value to an existing attribute.

If denied, prevents addition of the designated attribute values.

ITU-T Rec. X.501 (11/2008) 187

| SO/IEC 9594-2:2008 (E)

Permission Protected item Meaning
category

Remove Attribute Type If granted, permitsthe designated attribute type and all of itsvaluesto
beremoved in a Modify operation. Does not, of itself, grant theright
to removeindividual values.
If denied, preventsremoval of the attribute typein a Modify
operation.

Remove AttributeValue | If granted, permitsthe designated attribute valuesto beremoved in a

Modify operation. Remove permission to the attribute typeisalso
needed to removethelast attribute value.

If denied, preventsremoval of the designated attribute valuesin a
Modify operation.

DiscloseOnError

Attribute Type

If granted, permitsreturn of an error that may disclose the existence
of the attribute.

If denied, requiresthe Directory to conceal the existence of the
attribute. DiscloseOnError, of itself, does not deny ability to detect the
attribute type by other meansfor which the appropriate per missions
aregranted.

DiscloseOnError

Attribute Value

If granted, permitsreturn of an error that may disclose the existence
of the attribute value.

If denied, requiresthe Directory to conceal the existence of the
attribute value. DiscloseOnError, of itself, does not deny the ability to
detect the attribute value(s) by other meansfor which the
appropriate permissions are granted.

188 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex M

Examples of access control
(This annex does not form an integral part of this Recommendation | International Standard)

M.1 I ntroduction

This annex is for information and tutorial purposes only. It addresses three primary topics: design principles that are
important in the architecture of the basic access control mechanism; an extended example of basic access control; and a
short example for rule-based access control. Detailed information on basic access control and rule-based access control
isprovided in clauses 18 and 19 of this Directory Specification and in ITU-T Rec. X.511 | ISO/IEC 9594-3.

M.2 Design principlesfor Basic Access Control

This subclause presents several of the most important design principles used in the architecture of Basic Access
Control. To facilitate referencing, each principleislabelled (e.g., PR-1).

PR-1. Generally, permissions associated with UserClasses of higher specificity override permissions associated
with UserClasses of less specificity. This principle applies when the permissions have the same precedence level.
Specificity, in this principle, measures how explicitly a requestor's name relates to a particular UserClasses
specification; allUsers is of lowest specificity while name is very specific. This principle is manifest in 18.8.4 2). It
facilitates situations where policy about default permissions (expressed in terms of less specific UserClasses) is
selectively overridden by permissions associated with a more specific UserClasses specification.

PR-2: Generally, permissions associated with Protectedltems of higher specificity override permissions associated
with Protecteditems of less specificity. This principle applies when the permissions have the same precedence level
and the same UserClasses specificity. Specificity, in this principle, is a measure of how explicitly the Protectedltems
specification relates to the exact item to which access is sought. For example, when the target protected item is a
specific attribute value, allAttributevalues and allUserAttributeTypesAndValues are less specific than
attributeVvalue. This principle is manifest in 18.8.4 3). It facilitates situations where policy about default permissions
(expressed in terms of less specific Protecteditems) is selectively overridden by permissions associated with a more
specific Protecteditems specification.

PR-3: Basic Access Control is modelled as completely independent of the name resolution process except in the
case of alias dereferencing. Except for alias dereferencing, access control decisions occur only after the Directory has
successfully located a suitable DSA containing the target protected item. A corollary principle is that Basic Access
Control has no effect on how the Directory generates subrequests and it has no effect on how the Directory performs
name resol ution associated with subrequests (except in the case of dias dereferencing).

PR-4: Precedence can be used to enforce the relationship between a superior and a subordinate authority such that
the superior can override controls set by the subordinate. For example: let SE1 denote a subentry of the administrative
entry for an ACSA, say ACSA-1; similarly, let SE2 denote a subentry of the administrative entry for an ACIA inside of
ACSA-1. Limits on the Precedence occurring in SE2 may be specified by the ACSA-1 authority such that
prescriptiveACI in SE2 cannot countermand prescriptive ACI in SE1. Also, limits on Precedence for entryACI
(within ACSA-1) can be specified such that entryACI cannot countermand prescriptive controls set in SE1. This
principle facilitates implementation of partial delegation of authority.

NOTE — The Directory Specification presumes that a method of limiting precedence for authorities associated with inner areas
will be implemented. However, the Directory Specification does not define (or describe) how precedence is to be limited.

PR-5. Basic Access Control never passively grants access, each decision to grant access is based on explicitly
specified access control information. A corollary principle is that granting one form of access never implies permission
to perform another form of access. These principles are consistent with a more general security design principle known
asleast privilege.

PR-6: In the absence of any prescriptiveACI, entryACI or subentryACl on which to base a decision, the ACDF
will deny access. All other decision parameters being equal, denials override grants (e.g., in the situation where there
are AClitems that grant and others that deny and where the Precedence and specificity are equal, the denial prevails).

M.3 Introduction to example

Figure M.1 depicts the DIT subtree of a fictitious company, Z Computer Corporation (ZCC), used throughout the
example. The naming structure in Figure M.1 follows the suggestions in ITU-T Rec. X.521 | ISO/IEC 9594-7,
Annex B. The node with distinguished name {C=US, O=ZCC} is an administrative entry and is the autonomous
administrative point for ZCC; it therefore defines the beginning of an Autonomous Administrative Area (AAA). The
contents of an AAA is an implicitly defined subtree beginning at the autonomous administrative point and ending at

ITU-T Rec. X.501 (11/2008) 189

| SO/IEC 9594-2:2008 (E)

either leaf nodes or when another autonomous administrative point is encountered. Since there are no other autonomous
administrative points below {C=US, O=ZCC}, the AAA contains al the nodes below {C=US} in FigureM.1. The
structural object class for {C=US, O=ZCC} is organization; it also has an auxiliary object class of
certificationAuthority. The auxiliary object classis present to help support strong authentication where needed.

Cc=ys "7~~~ T~~~ T TTTTTTTTTTTTTTT T 1
T T 1 KOPHOPATHBHASI ATMUHHUCTPATABHAST :
I 0=ZCC OBJIACTD |
|
i ®) (AAA. ACSA) :
|

1
|

1
|
I OU=Admin @ OU=R&D OU=Sales ‘ !
I CN=Ops :
I I
! I
|
I CN=Ops CN=Cauchy :
|

1
|
I @ :
: CN=0ps OU=West OU=BRC OU=East I
| (ACIA) (ACSA) (ACIA) :
|

1
| O o
i CN=Noether CN=Galois,
: CN=Cayley CN=Peirce |
__ 1

X.501_FM.1

FigureM.1—-DIT branch for the Z Computer Corporation (ZCC)

Below the autonomous administrative point there are three subtrees: Administration (Admin), Research and
Development (R&D), and Sales. The root of each of the subtrees is an entry with structural object class
organizationalUnit and auxiliary object class certificationAuthority. The R&D subtree contains entries of structural
object class organizationalUnit, corresponding to remote sites, under which appear leaf objects of structural class
organizationalPerson. Only a few representative objects of class organizationalPerson are shown. All objects of
structural class organizationalUnit have an auxiliary object class of certificationAuthority. All objects of structural
class organizationalPerson have an auxiliary object class of strongAuthenticationUser. These auxiliary object
classes help support strong authentication where needed.

The object with distinguished name {C=US, O=zZCC, OU=Admin, CN=Ops} is of structura object class
groupOfUniqueNames; its uniqgueMember attribute values include namespace administrators. One name it containsis
{C=US, O=ZCC, OU=Admin, CN=Cauchy}. There are two other such objects. { C=US, O=ZCC, OU=R& D, CN=Ops}
has members responsible for maintaining entries in the R&D subtree; and { C=US, O=ZCC, CN=0Ops} has members
responsible for entries that are immediately subordinate to {C=US, O=ZCC}. The user with distinguished name
{C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley} isamember of the latter two groups.

The two trapezoidsin Figure M.1 represent partial subtrees, the details of which are not important for the example.

M.4 Policy affecting the definition of specific and inner areas

To support Basic Access Control, two types of administrative areas may be established within an AAA: Access Control
Specific Area (ACSA) and Access Control Inner Area (ACIA). An administrative area of either type is established by
assigning the appropriate value to the administrative-role attribute in the administrative entry that is to serve as the
root vertex for the area. The content of an ACSA is an implicitly defined subtree that begins at the root vertex and
extends down to leaf objects or until the root of another ACSA is encountered. Also, the boundary of an ACSA never
extends beyond the lower boundary of the enclosing AAA. In the case of an ACIA, the lower boundary will occur upon
encountering either aleaf entry or the boundary of the enclosing ACSA. Nested ACIAs have the same lower boundary
and that boundary is the same as the lower boundary for the enclosing ACSA.

190 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

ZCC has established a policy that affects the number and types of administrative areas needed within the AAA. The
first such policy is that the organizational unit known as Basic Research Consortium (BRC) is delegated complete
authority for establishing prescriptive access control attributes to control entries in the subtree with root vertex { C=US,
0O=ZCC, OU=R&D, OU=BRC}. To facilitate the implementation of the policy, the root { C=US, O=ZCC, OU=R&D,
OU=BRC} has been designated as an administrative entry with administrative role id-ar-accessControlSpecificArea.
The lower boundary of the resulting ACSA isimplicitly defined by the occurrence of leaf entries.

NOTE — An ACSA embodies the concept of complete delegation of authority because access decisions depend on ACI occurring
inside the ACSA containing the target protected item and are unaffected by ACI occurring outside that ACSA.

Furthermore, the ACSA described above is the only instance of complete delegation of access control authority within
ZCC. However, a consequence of the Directory Administrative Model is that when there is at least one ACSA in an
AAA, each (and every) object in the AAA shall be contained in one (and only one) ACSA. This requirement can be
stated more clearly in terms of set theory where each ACSA and the associated AAA are viewed as sets of entries: the
set intersection of each pair of ACSAsis empty and the set union of all ACSAsis equal to the AAA. Therefore, in the
example, at least one additional ACSA is needed to contain the objects that are in the AAA but outside the BRC
subtree. Because there is only one instance of complete delegation within the AAA, the AAA root is also the beginning
of an ACSA that contains all the entriesin the AAA except those in the BRC subtree.

The resulting ACSAs are depicted as ACSA-1 and ACSA-2 in Figure M.2. In Figure M.2, also notice that since
administrative areas are (implicitly defined) subtrees, each areaincludes its root vertex. The content of ACSA-1 extends
downward from its root to leaf objects or until the root vertex of another ACSA is encountered (asis the case at { C=US,
0O=ZCC, OU=R&D, OU=BRC}). In this example, there are no autonomous administrative points below {C=US,
0O=ZCC} and therefore the lower boundary of the AAA is defined entirely by leaf objects. The remainder of this
example will focus on access control within ACSA-1 (ACSA-2 will not be discussed further). Also for simplicity, this
example does not discuss control of the subordinates under { C=US, O=ZCC, OU=Sales} .

o ‘
) . ACSA-1 :
! 8 0=7CC !
i (AAA, ACSA) :
|
| s :
| OU=Admin @ OU=R&D OU=Sales ~ !
| CN=0Ops :
[I
[I
|
| CN=0Ops CN=Cauchy :
| r—d—————_—_—_———————

: I
. @ : ACSA2Z | :
. |

| CN=0ps OU=West : OU=BRC | OU=East '
| (ACIA) , (ACSA) ! (ACIA) :
|]
I ‘ I : ‘ :
| |
| CN=Noether | : CN=Galois:
: CN=Cayley : | CN=Peirce |
________________________ S |

X.501_FM.2

Figure M.2 — Access Control Specific Areas

Another ZCC policy affecting the definition of administrative areas is that the Western R&D organizationa unit is
delegated partial authority for access control operationa attributes affecting the entries in the subtree with root vertex
{C=US, 0=ZCC, OU=R& D, OU=West}. The policy is best implemented by making the root of the R& D West subtree
an administrative point with administrative role id-ar-accessControlinnerArea. This means prescriptive access
controls for that subtree will, in general, be a combination of controls defined in the subentries of the root of that subtree
and controls defined in the subentries of the root of the enclosing ACSA (ACSA-1). The content of the resulting ACIA
is an implicitly defined subtree with root at { C=US, O=ZCC, OU=R&D, OU=West} and extending down until leaf
objects are encountered. Since an ACIA is asubtree, its content includes the root vertex of that subtree.

ITU-T Rec. X.501 (11/2008) 191

| SO/IEC 9594-2:2008 (E)

A similar policy holds for the R&D East organizational unit. The corresponding ACIA has root vertex at {C=US,
0O=ZCC, OU=R&D, OU=East}. Figure M.3 depicts the two ACIAs within ACSA-1. The ACIA for R&D West is
labelled ACIA-1; the onefor R& D East islabelled ACIA-2.

C=US (~~TTTTTTTT T T TTTTT T T T T
: o) O-7CC :
. (AAA, ACSA) I
| I
| |
! OU=Admin @ OU=R&D OU=Sales O '
I CN=0Ops :
: I
' :
|
: CN=Ops CN=Cauchy :
|]
| ‘ :
| CN=Ops ACIA-1 ACIA-2 ,
! g, OU=West rq, OU=East :
I \7 (ACIA) "\ 27 (ACIA) |
1
’ |
|
[CN=Noether CN=Galois :
: CN=Cayley CN=Peirce :
|
L e —————— — — d

X.501_FM.3

Figure M .3 —Access Control Inner Areas

M.5 Policy affecting the definition of DACDs

Prescriptive access controls are defined in subentries (with object class accessControlSubentry) of access control
administrative entries. Each such subentry has an associated subtreeSpecification attribute that defines the set of
entries in the scope of the subentry. The entries contained in the scope may form a subtree or may form a subtree
refinement. In the context of Basic Access Control, the scope of an access control subentry is called a Directory Access
Control Domain (DACD). Security authorities using Basic Access Control should be careful not to confuse the concept
of administrative area with the concept of DACD. This subclause begins with an examination of the differences and
relationships between administrative areas and DACDs and then proceeds to discuss ZCC policy that gives rise to
individual DACDs.

The basic distinctions between administrative areas and DACDs can be summarized as follows.

— An administrative area is an implicitly defined subtree with its root a an administrative entry and
extending downward as described in M.4. Such an area is said to be implicitly defined because there is
no standardized attribute in the Directory that specifies its boundary; the DIT is logically examined to
determine the boundary of an administrative area. An administrative areais never a subtree refinement.

NOTE 1 - A consequence of the way in which administrative areas are defined is that for each entry affected by

Basic Access Control, there shall be exactly one ACSA containing the entry (even if the entry is not included in
any DACD withinthe ACSA).

— A DACD is asubtree or subtree refinement explicitly defined in the subtreeSpecification attribute of a
subentry with object class accessControlSubentry.

— ACSAs and ACIAs are used by the ACDF to determine which prescriptive access controls (i.e., which
access control subentries) potentially effect the outcome of a given access control decision. ACSAs are
used to implement full delegation of authority for access control. ACIAs are used to implement partial
delegation of authority for access control.

— A DACD isused to specify which entries (or potential entries) may be affected by the associated access
control subentry.

192 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Other important aspects of administrative areas and DACDs and how they relate to each other include the following
observations.

— Each DACD isdefined in a subentry of a particular administrative entry which is, in turn, the root vertex
of some administrative area. This association between a DACD, a subentry, an administrative entry, and
an administrative area allows the determination, for a given DACD, of the associated administrative
area (see M.5.1). The set of entries contained in the DACD may be a proper or improper subset of the
entries contained in the associated administrative area.

NOTE 2 — The terms proper subset and improper subset are borrowed from mathematical set theory. The set Ais
aproper subset of set B if and only if every element of A isalso an element of B and there is at least one element
of B that is not an element of A. The set A is an improper subset of B if and only if both sets contain exactly the
same elements.

— Inthe case where the set of entriesin the DACD is an improper subset of the entries in the associated
administrative area, the DACD and the administrative area are said to be congruent. However, even
when such congruence occurs, the DACD and the administrative area continue to serve fundamentally
different purposes (areas determine which subentries are alowed to potentialy effect the outcome of a
specific access control decision while each DACD specifies exactly which entries are affected by the
prescriptive controls in agiven subentry).

— The DACD can never contain entries that are outside the associated administrative area.

— The ACDF isdesigned to be robust in the sense that even if the subtreeSpecification defining a DACD
has within its scope entries outside the associated administrative area, access control decisions regarding
those entries will be unaffected. This aspect of robustness is manifest in the ACDF procedure for
determining which subentries potentially effect a given decision (see 18.3.2 and 18.8.1 d)).

— DACDs defined in subentries of the same administrative entry may freely overlap within the common
associated administrative area.

— ACSAs never overlap; every ACIA is properly nested within an ACSA. Properly nested means the
entries in an enclosed area form a proper subset of the entries in the enclosing area. Also, an ACIA may
contain one or more properly nested ACIAS.

— Where administrative areas are nested, DACDs associated with an enclosing area may freely overlap
DACDs associated with any enclosed area. The enclosing area may be an ACSA or an ACIA, while the
enclosed areais always an ACIA.

Each DACD is associated with an aspect of policy that affects one or more entries or potential entries. The entries that
are affected by a particular aspect of policy form a DACD. The DACD for a particular aspect of policy should be
associated with the administrative area controlled by the authority responsible for enforcing that aspect of policy.

In the example, there are several aspects of policy to be enforced by the authority that controls ACSA-1. There are, for
instance, "default" controls that apply to objects throughout ACSA-1. Such controls are assigned a precedence and
level of specificity that allows them to be easily overridden by other prescriptive controls or entryACI attributes. There
isalso policy that applies only to immediate subordinates of { C=US, O=ZCC} (within ZCC, such entries are referred to
as administrative level entries). There is also a policy that applies only to the entries that have structural object class
organizationalPerson.

All entriesin ACSA-1 are included in the DACD associated with default controls. The DACD is therefore defined to be
a subtree with base vertex at { C=US, O=ZCC} and achop specification that excludes the subtree with root at { C=US,
0O=ZCC, OU=R&D, OU=BRC}. The resulting DACD is congruent to ACSA-1 and is depicted as DACD-1 in
Figure M 4.

NOTE 3 — See 18.3.2 g) for the meaning of congruent in this context.

Also within ACSA-1, the DACD to control organizationalPerson entries is a subtree refinement with base vertex at
{C=US, O=ZCC} and a specificationFilter that includes only the entries with objectClass of organizationalPerson
(see subtree-refinementl in K.2). This DACD is depicted as DACD-2 in Figure M .4.

A third DACD within ACSA-1 isrelated to controlling administrative level entries (i.e., immediate subordinates, other
than subentries, of the organizational root entry). This DACD is a (chopped) subtree with base vertex at {C=US,
0O=ZCC} and a chop specification that includes only the immediate subordinates, other than subentries, of {C=US,
O=ZCC}. ThisDACD isdepicted as DACD-5 in Figure M .4.

For ACIA-1, aDACD is required to handle an aspect of policy that has been delegated to the authority controlling the
inner area. The delegated authority affects only subordinates of { C=US, O=ZCC, OU=R&D, OU=West} and therefore
the DACD is not congruent to ACIA-1. The DACD islabelled DACD-3 in Figure M 4.

For ACIA-2, there is only one DACD required; however, the delegated authority affects al entries in ACIA-2 and
therefore the DACD is congruent to ACIA-2. The DACD islabelled DACD-4 in Figure M 4.

ITU-T Rec. X.501 (11/2008) 193

| SO/IEC 9594-2:2008 (E)

| DACD-1
| o) 0-2CC
! (AAA, ACSA)
|
Ll _éj _______ | | pAcD-5
|| @ ou=Admin @ OU=R&D @ oU=Ses @ CN=Ops
CN=SE_DACD5 |
CN=SE_DACD2 :
|

CN=SE_DACD1

|
|
|
|
|
|
|
I l | DACD4
|
OU=Eagt
' ®
: CN=Ops C) (ACIA)
|
|
: | |
. o o
|
| @ cn-Noeher L CN=Galdis
: CN=Cayley CN=Peirce
|
. CN=SE_DACD3 ®
: CN=SE_DACD4 !
@ Administrative Point @ | User entry in DACD-2 @ Subentry

X.501_FM.4

Figure M .4 —Directory Access Control Domains

M.5.1 Administrative area associated with each DACD

Each subentry used in the example is shown in Figure M.4. This subclause summarizes the location of each subentry
and also indicates the administrative area that is associated with each DACD.

DACD-1, DACD-2, and DACD-5 are defined in subentries to { C=US, O=ZCC} which is the administrative entry that
defines the root vertex of ACSA-1. Therefore, these three DACDs are said to be associated with ACSA-1. The name of
the subentry defining DACD-1 is { C=US, C=ZCC, CN=SE_DACDZ1}. The other subentries have similar names that
indicate which DACD they define.

DACD-3 is defined in a subentry to { C=US, O=ZCC, OU=R&D, OU=West} which is the administrative entry that is
theroot vertex of ACIA-1. Therefore, DACD-4 is associated with ACIA-1.

DACD-4 is defined in a subentry to { C=US, O=ZCC, OU=R&D, OU=East} which is the administrative entry that
defines the root vertex of ACIA-2. Therefore, DACD-4 is associated with ACIA-2.

M.6 Policy expressed in prescriptiveACl attributes

This subclause contains a detailed description of access control policy applicable to each DACD in ACSA-1. The
policy discussed in this example should be considered a partial policy that is simplified for ease of presentation. In
particular, there is no discussion related to how passwords are controlled since, in general, passwords represent a
special case of access control; also there is no discussion of the DiscloseOnError or ReturnDN permissions.

The policy discussed in this subclause is presented in terms of policy fragments that facilitate understanding of how
prescriptiveACI attributes are used to collectively enforce the overall policy. Each fragment is given a reference label
that isused in later subclauses; the labels are of the form PF-n where n is a sequential integer. For each DACD, thereis
also an indication of how the applicable policy fragments could be expressed in terms of one or more subentries
(containing prescriptiveACI attributes).

194 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

M.6.1 prescriptiveACI for DACD-1

One of the main purposes of DACD-1 is to enforce policy fragments that are concerned with "default" access control.
Such policy fragments provide backstop controls that apply when there is no other control that is higher in precedence
or specificity. Specificity is discussed under design principles PR-1 and PR-2in M.2.

ZCC has stated their policy with regard to public access in terms of default policy rules which may be overridden for
certain entries that need more restrictive control. The default policy is stated in PF-1 and PF-2. Note that, according to
ZCC policy, those who implement the policy are responsible for ensuring that any deviation from the default rules is
more restrictive than the default rules.

PF-1: Employees are to be distinguished from the general public. Public access rights, in general, shall be limited
according to @ and b) below; however, public access may be more restricted for specific entries (it is never less
restricted).

a) Entries may be located by common name. Search on common name is permitted to accommodate
approximate match and alternate names. In particular, search based on telephone number is not allowed
to the general public, but is permitted to those inside the organization. Search results may disclose all
values of commonName.

b) The only public attributes are commonName, telephoneNumber, components from postalAttributeSet,
and facsimileTelephoneNumber.

PF-2: General Public access may be unauthenticated, but an identity shall be presented.

ZCC also uses default policy rules to express their general policy with regard to employee access. Deviations from the
default policy rules may be more restrictive or may be less restrictive. The default policy is stated in PF-3 and PF-4.

PF-3; Employess, in general, enjoy read and search access to most attributes of most entries.

PF-4: Simple authentication is required for employee access that does not modify (in any way) the contents of
ACSA-1L.

There are also some policy fragments applying to DACD-1 that are not treated as defaults. Two examples of such
fragments are given in PF-5 and PF-6; they are related to administration of entries.

PF-5. {C=US, O=ZCC, CN=Cauchy} is "superuser", authorized to access al data and perform any necessary
operations.

PF-6: Strong authentication is required to make any modification to the contents of the ACSA-1.

One or more subentries to { C=US, O=ZCC} can be used to implement the policy fragments for DACD-1. Each such
subentry would have the same subtreeSpecification with base of {C=US, O=ZCC} and a chop specification to
exclude the OU=BRC subtree. Each such subentry would also contain a prescriptiveACI attribute that implements
some subset of the policy fragments for DACD-1. For the purposes of the example, it is assumed that a single subentry
is used to capture all prescriptive controls associated with DACD-1 (there is no compelling technical reason to use
more than one). To facilitate referencing, this subentry is referred to as SE DACD1. The prescriptiveAC! attribute in
SE_DACD1 has severa values; the design of each value is discussed in the remainder of this subclause.

The number of values occurring in aprescriptiveACI attribute depends partly on how the policy fragments are grouped
for convenience into itemFirst and userFirst values (either style may be used in any given situation); it also depends
on how access control for the prescriptive controls themselves is to be handled.

For example, part of implementing PF-1 requires public users (i.e., allUsers) to be granted all of the following
permissions.

a) Browsefor the protected item entry;

b) FilterMatch and Read for protected item attributeType {commonName};

¢) FilterMatch and Read for protected item allAttributeValues {commonName}.
These permissions are necessary (but are not sufficient — see Note 1) to implement PF-1. Since there are three protected

items (entry, attributeType and allAttributeValues) and just one user class (allUsers), it seems most natural to use a
single AClitem of the userFirst style but theitemFirst style could be used instead.

NOTE 1 —The permissions discussed above would aso be sufficient to allow search on commonName if the following two
conditions are simultaneously satisfied:

a) there are no other relevant AClltems with higher precedence or specificity that deny any of the Browse
or FilterMatch permissions listed above; and

b) there are no other values for the prescriptiveACl attribute in SE_DACD1 that deny any of the Browse
Read or FilterMatch permissions listed above.

ITU-T Rec. X.501 (11/2008) 195

| SO/IEC 9594-2:2008 (E)

Alternatively, three separate ACIlitems could be used: one for each of the protected items. This alternative alows each
AClitem to have separate access control; each has an identificationTag that is unique (with respect to the other
identificationTags for other values in the same prescriptiveACI attribute) and which can be referenced in another
ACllitem where the protected item is attributeValue and the associated attribute value assertion specifies the
identificationTag of the value to be protected. Note that using attributeValue in this way takes advantage of the
particular equality matching rule defined for prescriptiveACI attributes (see 18.5.1). Examples of protecting ACI are
discussed in detail later in the example.

For the purpose of the example, six values for the prescriptiveACI attribute in SE DACD1 are used to implement
policy fragments PF-1 through PF-4. The design of each of the three values is summarized below.

NOTE 2 — Each protected item in the design summaries below have a label to facilitate referencing. The label is in parentheses
andisitalicized (e.g., Al, A2, B1).

NOTE 3 — The example uses four levels of precedence: 10, 20, 30 and 40.

196

identificationTag:

"Public Access — Enable entry access for List and Search on
common name"

Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none

Protectedltems:
grantsAndDenials:

identificationTag:

{(Al) entry}
{ grantBrowse }

"Public Access — Enable filter access for Search"

Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none

Protectedltems:

grantsAndDenials:

identificationTag:

{ (B1) attributeType { commonName },
(B2) allAttributeValues { commonName },
(B3) attributeType { objectClass },

(B4) allAttributeValues { objectClass } }

{ grantFilterMatch }

"Public Access — Enable entry access for Read and
Compare operations"

Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none

Protectedltems:
grantsAndDenials:

identificationTag:
Precedence:
UserClasses:

authenticationLevel:

Protectedltems:

grantsAndDenials:

identificationTag:
Precedence:
UserClasses:

authenticationLevel:

Protectedltems:
grantsAndDenials:

identificationTag:
Precedence:
UserClasses:

{(Cl)entry}
{ grantRead }

"Public Access — Enable attribute access for interrogation operations”

10

{ allUsers }

none

{(D1) attributeType { commonName,

postalAttributeSet,

telephoneNumber,

facsimileTelephoneNumber } ,

(D2) allAttributeValues { commonName,
postalAttributeSet,
telephoneNumber,
facsimileTelephoneNumber } }

{ grantRead, grantCompare }

"Employee Access — Enable attribute access for interrogation operations”
10

subtree with base { C=US, O=ZCC } and chop to

exclude O=BRC subtree

simple

{ (E1) allUserAttributeTypesAndValues }

{ grantRead, grantCompare }

"Employee Access — Enable filter access for Search”
10

subtree with base { C=US, O=ZCC } and chop to
exclude O=BRC subtree

ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

authenticationLevel: simple
Protectedltems: { (F1) allUserAttributeTypesAndValues }
grantsAndDenials: { grantFilterMatch }

NOTE 4 — Permissions for employees are the union of permissions for the public and permissions specific to employees. The
above ACIItem values for employee access are strongly coupled to values associated with public access. This strong coupling
could be avoided, if necessary, by repeating each of the values for public access (each repeated value would have a new
UserClasses that specifies only employees).

There are two other values of the attribute which are related to implementing policy regarding how entries are
administered (PF-5 and PF-6). For simplicity, this example assumes that access control attributes are the only
operational attributes present in the AAA. The design of the two valuesis summarized below.

identificationTag: "Cauchy is superuser (Part 1)"

Precedence: 40

UserClasses: user { C=US, 0=ZCC, OU=Admin, CN=Cauchy }
uniqueldentifier = 12345

authenticationLevel: strong

Protectedltems: {(G1)entry}

grantsAndDenials: { grantAdd, grantRead, grantRemove, grantBrowse, grantModify,

grantRename}

identificationTag: "Cauchy is superuser (Part 2)"

Precedence: 40

UserClasses: user { C=US, 0=ZCC, OU=Admin, CN=Cauchy }
uniqueldentifier = 12345

authenticationLevel: strong

Protectedltems: { (H1) allUserAttributeTypesAndValues,

(H2) attributeType { entryACl },
(H3) allAttributeValues { entryACl } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,
grantFilterMatch }

Note that the above two values are necessary, but not sufficient, to make Cauchy a superuser. They are not sufficient
because they do not enable Cauchy's control over subentries of the administrative point for ACSA-1; there are two
reasons why thisis true. First, prescriptive ACI does not apply to the subentry in which it appears. Second, prescriptive
ACI placed in a subentry, say subentry-1, cannot be used to control subentries that are siblings of subentry-1. Therefore,
it is necessary to place subentryACI in the entry corresponding to the administrative point for ACSA-1 such that
Cauchy is allowed to administer his authority over the subentries of that administrative point. The necessary
subentryACI isdiscussed in M.7.

Note also that the authority granted in the above two values of prescriptive ACI alow Cauchy to administer full control
over the subentries associated with administrative points that are subordinate to the administrative point for ACSA-1.

M.6.2 prescriptiveACI for DACD-2

DACD-2 is defined in a subentry of the administrative entry for ACSA-1. DACD-2 is concerned with controlling
entries with object class organizationalPerson. The following policy fragment is relevant.

PF-7: Only members of the namespace administration group {C=US, O=ZCC, OU=Admin, CN=Ops} can add,
delete, or rename user entries. However, they are only permitted to add mandatory attributes to a new entry (an entry
containing only mandatory attributesis referred as aminimal entry).

Thefollowing two valuesin the prescriptiveACI attribute of SE_ DACD2 implement PF-7.

NOTE — Renaming of entries, in the context of PF-7, is understood to mean renaming without changing the immediate superior.
For simplicity, this example does not address the more complicated case where renaming involves changing the immediate
superior of the renamed entry (and its subordinates); in this case, Import and Export permissions shall be considered.

identificationTag: "Minimal leaf entry administration (Part 1)"
Precedence: 20

UserClasses: userGroup { C=US, O=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

Protectedltems: { (31) entry,

(J2) attributeType {commonName, surname },
(J3) allAttributeValues {commonName, surname } }
grantsAndDenials: { grantAdd, grantRemove }

ITU-T Rec. X.501 (11/2008) 197

| SO/IEC 9594-2:2008 (E)

identificationTag: "Minimal leaf entry administration (Part 2)"
Precedence: 20

UserClasses: userGroup { C=US, O=2ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

Protectedltems: { (K1) entry}

grantsAndDenials: { grantRename }

M.6.3 prescriptiveACI for DACD-3

DACD-3 is defined in a subentry to the administrative entry for ACIA-1. It implements policy fragments regarding
policy that has been partially delegated to ACIA-1. An example is that the policy for ACIA-1 regarding
telephoneNumber is different from that provided in default policy within DACD-1. Within DACD-3,
telephoneNumber is not regarded to be a public accessitem. Thisisreflected in the following policy fragment.

PF-8. The only public attributes within ACIA-1 are commonName, components from postalAttributeSet, and
facsimileTelephoneNumber.

The following value in the prescriptiveACI attribute of the subentry {C=US, 0O=ZCC, OU=R&D, OU=West,
CN=SE_DACD3} implements PF-8.

identificationTag: "Delegated control of public access"
Precedence: 10

UserClasses: { allUsers }

authenticationLevel: none

Protectedltems: { (L1)attributeType { telephoneNumber } }
grantsAndDenials: { denyRead, denyCompare, denyFilterMatch }

The R&D West organization is also delegated authority to implement self-administration for entries of object class
organizationalPerson. The policy isreflected in the following fragment.

PF-9: Employees of R&D West may administer values within their own Directory entry for the following attribute
types. telephoneNumber, commonName, and facsimileNumber; however, they may not modify or remove the
telephone number value supplied by the administration.

The first part of PF-9 is reflected in the two AClitems below. The restriction on removal of a particular value of
telephoneNumber isimplemented using entryACI as described in M.8.

identificationTag:
Precedence:
UserClasses:
authenticationLevel:
Protectedltems:
grantsAndDenials:

identificationTag:

"Self-Administration of R&D West employee entries (Part 1)"
20

thisEntry

strong

{(M1)entry}
{ grantModify }

"Self-Administration of R&D West employee entries (Part 2)"

Precedence: 20
UserClasses: thisEntry
authenticationLevel: strong

Protectedltems:

grantsAndDenials:

{ (N1) attributeType { commonName,
postalAttributeSet,
telephoneNumber,
facsimileTelephoneNumber },
(N2)allAttributeValues { commonName,
postalAttributeSet,
telephoneNumber,
facsimileTelephoneNumber } }

{ grantAdd, grantRemove }

PF-10: The group with members identified in {C=US, O=ZCC, OU=R&D, CN=Ops} are responsible for general
maintenance of user attributes for entriesin ACIA-1; however, they may not modify subentries located inside ACIA-1.

Thefirst part of this policy is reflected in the following AClitem:

198

identificationTag:

"R&D general administration (Part 1)"

Precedence: 20
UserClasses: userGroup { C=US, 0O=ZCC, OU=R&D, CN=0Ops }
authenticationLevel: strong

ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Protectedltems: {(P1)entry}

grantsAndDenials: { grantModify, grantAdd, grantRemove, grantBrowse,
grantRead, grantRename }

identificationTag: "R&D general administration (Part 2)"

Precedence: 20

UserClasses: userGroup { C=US, O=ZCC, OU=R&D, CN=0Ops }

authenticationLevel: strong

Protectedltems: { (Q1)allUserAttributeTypesAndValues }

grantsAndDenials: { grantAdd, grantRemove, grantRead, grantFilterMatch,

grantCompare}

The restriction with regard to subentries is handled by not including any subentryACI values in the administrative
entry for ACIA-1 that allow the access.

M.6.4 prescriptiveACI for DACD-4

DACD-4 is defined in a subentry to the administrative entry for ACIA-2. As such, it implements policy fragments
regarding policy that has been partially delegated to ACIA-2.

For simplicity, DACD-4 is not discussed further.

M.6.5 prescriptiveACI for DACD-5

DACD-5 is defined in a subentry to the administrative point for ACSA-1. This DACD is used to control access to al
immediate subordinates, other than subentries, of the organizational root. In particular, the following policy applies.

PF-11: The Operations Group {C=US, O=ZCC, CN=0ps} is responsible for administration of all entries that are
immediately subordinate to { C=US, O=ZCC}.

PF-11 is expressed in the following AClitem values.

identificationTag: "Control of administrative level entries (Part 1)"

Precedence: 40

UserClasses: userGroup { C=US, O=ZCC, CN=0Ops }

authenticationLevel: strong

Protectedltems: {(R1)entry}

grantsAndDenials: { grantRead, grantBrowse, grantRemove, grantAdd, grantRename,

grantModify }

identificationTag: "Control of administrative level entries (Part 2)"
Precedence: 40

UserClasses: userGroup { C=US, O=ZCC, CN=0Ops }
authenticationLevel: strong

Protectedltems: { (S1) allUserAttributeTypesAndValues,

(S2) attributeType { entryACI },
(S3) allAttributeValues { entryACl } }
grantsAndDenials: { grantRead, grantRemove, grantAdd, grantCompare,
grantFilterMatch }

M.7 Policy expressed in subentryACI attributes

M.7.1 subentryAClI in theadministrative entry for ACSA-1

PF-5 is manifested in a combination of prescriptiveACI and subentryACI; the associated prescriptiveACI has already
been described in M.6.1. To enable Cauchy to administer the subentries of the administrative point for ACSA-1 (and
any subentries for administrative points subordinate to the administrative point for ACSA-1), it is necessary to place the
following subentryACI values in the entry corresponding to the administrative point for ACSA-1.

identificationTag: "Cauchy is superuser (Part 3)"
Precedence: 40
UserClasses: user { C=US, O=ZCC, OU=Admin, CN=Cauchy }
uniqueldentifier = 12345
authenticationLevel: strong
Protectedltems: {(G1l)entry}
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantBrowse, grantModify,

grantRename}

ITU-T Rec. X.501 (11/2008) 199

| SO/IEC 9594-2:2008 (E)

identificationTag: "Cauchy is superuser (Part 4)"

Precedence: 40

UserClasses: user { C=US, 0=ZCC, OU=Admin, CN=Cauchy }
uniqueldentifier = 12345

authenticationLevel: strong

Protectedltems: { (H1) allUserAttributeTypesAndValues,

(H2) attributeType { entryACl },
(H3) allAttributeValues { entryACl } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,
grantFilterMatch }

M.7.2 subentryACI in theadministrative entry for ACIA-1

A subentryACI attributeis placed in the root vertex of ACIA-1 to implement the following policy fragment.
PF-12: The user with common name Cayley is responsible for managing all prescriptiveACI defined in ACIA-1.
The following two values in the subentryACI attribute implement PF-12.

identificationTag: "Cayley manages subentries in ACIA-1 (Part 1)"
Precedence: 20

UserClasses: user { C=US, 0O=ZCC, OU=R&D, OU=West, CN=Cayley }
authenticationLevel: strong

Protectedltems: {(T1)entry}

grantsAndDenials: { grantRead, grantBrowse, grantRemove, grantAdd,

grantRename, grantModify }

identificationTag: "Cayley manages subentries in ACIA-1 (Part 2)"
Precedence: 20
UserClasses: user { C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley }
authenticationLevel: strong
Protectedltems: { (U1) attributeType { prescriptiveACl },

(U2) allAttributeValues { prescriptiveAClI } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,

grantFilterMatch }

M.8 Policy expressed in entryACI attributes

PF-9 requires that each R&D West employee be allowed to manage al values of telephoneNumber in hisher
Directory entry with the restriction that they may not modify or remove a particular value supplied by administration.
To enforce the restriction, the administration adds an entryACI value to each entry at the time that the restricted
telephone number is added to the entry. The entryACI value is summarized as follows:

identificationTag: "Restrict self-administration of telephone numbers”
Precedence: 30

UserClasses: thisEntry

authenticationLevel: none

Protectedltems: { (V1) attributeValue { telephoneNumber = value supplied by

administration } }
grantsAndDenials: { denyRemove }

Note that since users cannot modify the entryACI attribute (it is not part of self-administration as defined in PF-9), the
above control cannot be overridden by the user.

The following policy fragment is an example of using entryACI to implement a self-administration for a group entry.

PF-13: Theentry {C=US, O=ZCC, OU=Admin, CN=Ops} is a"self-administered" group entry; this means that each
member of the group may remove their name from the group or change their name in the group. They may not remove
or rename the group itself.

PF-13 isimplemented by an entryACI attribute in the entry { C=US, O=ZCC, OU=Admin, CN=Ops} with two values as
summarized below.

identificationTag: "self-administration of the Administrative Ops group (Part 1)"
Precedence: 30

200 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

UserClasses: userGroup { C=US, O=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

Protectedltems: {(W1)entry}

grantsAndDenials: { grantModify }

identificationTag: "self-administration of the Administrative Ops group (Part 2)"
Precedence: medium

UserClasses: userGroup { C=US, 0=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

Protectedltems: { (X1) selfvalue { uniqueMember } }

grantsAndDenials: { grantRemove, grantAdd }

M.9 ACDF examples

M.9.1 Public accessread

A member of the general public, with distinguished name {C=GB, O=XC, CN=Smith} attempts a Read operation
requesting telephone number values for user Cayley. The access control decisions for the operation are defined in
ITU-T Rec. X.511 | ISO/IEC 9594-3. Assuming there is no alias dereferencing involved in name resolution, the first
decision point is to determine if Read permission for the target entry is granted; this decision is based on the following
inputs to the ACDF:

— reguested permission: Read;

— originator: { C=GB, O=XC, CN=Smith} with no unique identifier;

— authentication level: none;

— protected item: entry{ C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley};
— tuplesshownin Table M.1

TableM.1
User Item Permission Grant or Precedence Authentication
Deny level
allusers (Al)entry Browse G 10 None
allusers (B1)commonName type FilterMatch G 10 None
allusers (B2)commonName values FilterMatch G 10 None
allusers (B3)objectClass type FilterMatch G 10 None
allusers (B4)objectClass values FilterMatch G 10 None
allusers (Cl)entry Read G 10 None
allusers (D1)commonName type Read G 10 None
allusers (D1)postalAttributeSet type Read G 10 None
allusers (D1)telephoneNumber type Read G 10 None
allusers (D1)facsimileTelephoneNo type Read G 10 None
allusers (D2)commonName values Read G 10 None
allusers (D2)postalAttributeSet values Read G 10 None
allusers (D2)telephoneNumber values Read G 10 None
allusers (D2)facsimileTelephoneNo values Read G 10 None
allusers (L1)telephoneNumber type Read D 10 None
allusers (L1)telephoneNumber type Compare D 10 None
allusers (L1)telephoneNumber type FilterMatch D 10 None

The protected target entry is in the scope of DACD-1, DACD-2, and DACD-3 (see Figure M.4). It has no entryACI.
The three DACDs contribute the tuples (applicable to the specified originator) shown in Table M.1 to the ACDF
procedure described in 18.8.

The ACDF, after discarding non-relevant rows, ends up with just two rows to consider: row 4 which grants Read on the
entry and row 13 which denies Read on the entry. The ACDF therefore denies access.

NOTE — For simplicity, this example does not address permissions and procedures associated with error conditions. However, in
the above case of denied access, the behaviour of the responding DSA would be governed by 18.2.3 or 18.4.1 and would involve
using the ACDF again to determine if DiscloseOnError is granted for the target entry.

M.9.2 Public access search

A member of the general public, with distinguished name { C=GB, O=XC, CN=Smith} attempts a Search operation
requesting al values of all attributes for all users (wholeSubtree) subordinate to base object {C=US, O=ZCC,

ITU-T Rec. X.501 (11/2008) 201

| SO/IEC 9594-2:2008 (E)

OU=R&D, OU=West}; the filter specifies Filterltem equality: objectClass = organizationalPerson. The access
control decision points for the operation are defined in 10.2.6 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

M.9.2.1 Check each entry in the Search scope for proper entry permission

For each entry in the search scope, assuming there is no alias dereferencing involved in name resolution, the first
decision point isto determine if Browse is granted for that entry. For the first such entry, the ACDF inputs are:

— requested permission: Browse;

— originator; { C=GB, O=XC, CN=Smith};

— uniqueidentifier: none;

— authentication level: none;

— protected item: entry{ C=US, O=ZCC, OU=R&D, OU=West};
— tuplesshown in Table M.2.

Since the entry being checked is included in DACD-1 only, the initial set of tuples gathered by the ACDF is shown in
Table M.2. Note that there is no entryACI to consider.

The ACDF procedure of discarding rows from Table M.2 results in only the first row being retained; the ACDF
therefore grants the requested access.

Similarly, the ACDF will grant Browse for each entry in the scope of the Search.

TableM.2
User ltem Permission Grant or Precedence Authentication
Deny level
allusers (Al)entry Browse G 10 None
allusers (B1)commonName type FilterMatch G 10 None
allusers (B2)commonName values FilterMatch G 10 None
allusers (B3)objectClass type FilterMatch G 10 None
allusers (B4)objectClass values FilterMatch G 10 None
allusers (Cl)entry Read G 10 None
allusers (D1)commonName type Read G 10 None
allusers (D1)postalAttributeSet type Read G 10 None
allusers (D1)telephoneNumber type Read G 10 None
allusers (D1)facsimileTelephoneNo type Read G 10 None
allusers (D2)commonName values Read G 10 None
allusers (D2)postalAttributeSet values Read G 10 None
allusers (D2)telephoneNumber values Read G 10 None
allusers (D2)facsimileTelephoneNo values Read G 10 None

M.9.2.2 Check for satisfaction of Filter

For each entry in the search scope for which Browse is granted, the next decision point isto determine if FilterMatch is
granted on the objectClass attribute. For the first such entry, the ACDF inputs are:

— requested permission: Browse;

— originator; { C=GB, O=XC, CN=Smith};

— uniqueidentifier: none;

— authentication level: none;

— protected item: entry{ C=US, O=ZCC, OU=R&D, OU=West};
— tuplesshownin Table M.2.

The ACDF will discard al rows of Table M.2 except for row 4; the access will, therefore, be granted. Next, the Search
operation will check to see if any of the values of the objectClass attribute equal organizationalPerson. Since the
entry being checked is an organizational unit entry, the Filter will evaluate to FALSE.

Similarly, the Filter will evaluate to FALSE for the entry with CN=SE_DACD?3.

For the other two entries in the scope of the Search (CN=Cayley, CN=Noether), the Filter will evaluate to TRUE. For
each of these entries, the next access control decision is to determine if Filterltem is granted for the attribute value that
caused the Filter to be evaluated as TRUE. Because these entries are included in both DACD-1, DACD-2, and
DACD-3, theinitia set of tuples input to the ACDF is Table M.1. Row 5 of Table M.1 grants the requested access for
both entries.

202 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Hence, the Search result contains information from the entries for Cayley and Noether. Additional access control
decisions for these two entries are essentially the same as shown in the example of public Read in M.9.1.

M.10 Rule-based Access Control

To illustrate the use of rule-based access control, the following example of security rules is identified (note this is for
illustrative purposes only and does not necessarily represent any complete real world policy).

The possible security label values are a hierarchical set: unmarked, unclassified, restricted, confidential, secret,
top-secret.

The clearance values are a hierarchical maximum class values. unmarked, unclassified, restricted, confidential, secret,
top-secret.

NOTE — These rules may be extended by communities to cover further privilege information carried in Privacy Mark or Security
Categories.

The access rules are that:
a) accessisgranted if the Clearance level is greater than or equal to the Label level.
b) accessisdenied if the Clearance level islessthan the Label level.

ITU-T Rec. X.501 (11/2008) 203

| SO/IEC 9594-2:2008 (E)

Annex N

DSE type combinations
(This annex does not form an integral part of this Recommendation | International Standard)

Table N.1 specifies a number of DSE type combinations (i.e., combinations of the named bits of the dseType attribute)
that are likely to occur when applying the DSA information model to DSA in the absence of shadowing. The table is
provided to help clarify the DSA information model. Support for these (or other DSE type combinations) is not
mandated by this Directory Specification.

Table N.1 - Defined DSE type combinationsin the absence of shadowing

. family
DSE type admPoint cp supr | nssr sa member Comments

Root v v Root DSE for afirst level DSA. First level DSA with
an nssr if nssr bit set. Root DSE for a non-first level if
DSA issupr bit set.

Glue Glue DSE.

Entry v v v v Object entry DSE; also an administrative point if
admPoint bit set; context prefix if cp bit set; nssr if
nssr bit set.

Alias Aliasentry DSE.

Subentry v Subentry DSE.

subr v Subordinate reference DSE; subordinate reference
pointsto aliasif sa bit is set.

immSupr v Immediate superior reference.

Xr Crossreference DSE.

NOTE — The DSE type subr and immSupr may also occur (possibly with the additional bit admPoint), although it is not

convenient to represent it in the table. Subentry and administrative point information maintained by RHOBs areindicated

by the presence of therhob bit.

The first column of the table designates the DSE types which need not combine with any other DSE type to express the
function of a DSE. For example, a DSE may be found with only the entry bit set. The second through sixth columns
indicate by a tick mark (v') additional DSE type bits that may also be set in addition to the bit designated in the first
column. These bits may be set independently. For example, an entry DSE may also have the nssr hit, the admPoint
and cp bits, or several other combinations of the admPoint, cp and nssr bits set. The final column describes the various
DSE type combinations indicated in its table row.

Table N.2 specifies a number of additional DSE type combinations that are likely to occur when shadowing occurs. As
in the case of the previous table, the first column of the table designates the DSE types which need not, in a shadow
DSA for the DSE, combine with any other DSE type to express the function of a DSE. The second through sixth
columns indicate by atick mark (v') additional DSE type bits that may also be set in addition to the bit designated in the
first column. These bits may be set independently.

204 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Table N.2 — Defined DSE type combinationsin the absence of shadowing

. family
DSE type admPoint cp supr | nssr sa member Comments

Root v Root DSE for shadow first level DSA with an nssr.

Entry v v v v Object entry DSE; also an administrative point if
admPoint bit set; context prefix if cp bit set; nssr if
nssr bit set.

Alias 4 Aliasentry DSE.

Subentry Subentry DSE.

subr v Subordinate reference DSE; subordinate reference
pointsto aliasif sa bit is set.

immSupr v v Immediate superior reference.

admPoint v v v Administrative point DSE without user attributes
(entry not shadowed); also context prefix if cp bit set;
also nssr if nssr bit set.

Cp 4 v v Context prefix DSE (entry not shadowed); also nssr if
nssr bit set.

nssr v Nssr DSE (entry not shadowed).

NOTE — The shadow bit is set in all cases in the table (and therefore not explicitly represented). Asin the case of Table
N.1, the DSE type subr, immSupr and shadow may also occur (possibly with the additional bit admPoint). Finally, for
DSEs with the subr and/or immSupr bits set, the entry and shadow bits may also occur as shadowed entry information is
overlaid on knowledge information maintained either by RHOBs or shadowing.

ITU-T Rec. X.501 (11/2008) 205

| SO/IEC 9594-2:2008 (E)

Annex O

Modelling of knowledge

(This annex does not form an integral part of this Recommendation | International Standard)

The following example illustrates a hypothetical DIT, its potential mapping onto three DSAs, and the information the
DSAswould have to maintain (including knowledge information) to support the mapping.

In Figures O.1 and O.2 below, the following symbols are used.

. Object entry Exte.nt. of autonomous
administrative area
A Alias entry

O Extent of naming context
. Subentry X.501_FO.0

Figure O.1 depicts the hypothetical DIT. It is partitioned into four autonomous administrative areas. the degenerate
cases of the single entries { C=WW} and {C=VV} and the two subtrees rooted at { C=WW, O=ABC} and {C=VV,
O=DEF}. One entry, { C=VV, O=DEF, OU=K}, isan dlias of the object entry { C=WW, O=ABC, OU=l}.

Root

CN=BB

OU=K Autonomous

administrative area BB

CN=n

CN=l

Autonomous
Kadministrative area AA CN=o0 CN=p CN=q

Figure O.1 —Hypothetical DIT

CN=m

X.501_FO.1

Figure O.2 depicts the partitioning of the hypothetical DIT into five naming contexts (A, B, C, D and E) and their
mapping onto three DSAs (DSA 1, DSA 2 and DSA 3). In the figure DSA 1 holds context C, DSA 2 holds contexts A,
B and E, and DSA 3 holds context D.

The knowledge held by the three DSAs is as follows: DSA 1 employs DSA 2 as its superior reference and has a non-
specific subordinate reference to DSA 2 for information subordinate to { C=WW, O=ABC}. DSA 2 isafirst level DSA
and maintains a subordinate reference to DSA 1 for context C and an immediate superior reference to it for the context
immediately superior to context E. DSA 2 maintains a subordinate reference to DSA 3 for context D. DSA 3 also
employs DSA 2 as its superior reference and has a cross reference to DSA 2 for context E.

206 ITU-T Rec. X.501 (11/2008)

Root

Context A Context B

Context C

DSA1l DSA2

Figure 0.2 —Hypothetical DIT mapped onto three DSAs

| SO/IEC 9594-2:2008 (E)

Context D

X.501_FO.2

DSA3

Figures 0.3 through O.6 depict the information held in each of the DSAs (i.e., the DSA information tree of each DSA)

to support this configuration. The following symbols are employed in these figures.

@ ety DSE @) Root DSE
A AliassDsE (O GluebseE
[l suventry DSE \/ subr DSE
() Also DSE type x xr DSE

X.501_FO.3a

Figure O.3 illustrates the DSA information tree of DSA 1.

Root

(cp + admPoint + nssr + entry)
CN=AA

X.501_FO.3
CN=1 CN=m CN=n

Figure O.3—-DSA information treefor DSA 1

Since DSA lisnot afirst level DSA, its root DSE holds a superior reference, which in this example is the access point

for DSA 2. This DSE is of typeroot + supr.
DSA 1 holds one glue DSE to represent its knowledge of the name { C=WW}.

The autonomous administrative area AA is subdivided into two naming contexts C and E, with context C held in
DSA 1. For the sake of simplicity in this example, it is assumed that the specific administrative areas relative to access
control and subschema information coincide, and that there is a single access control domain and a single subschema for
the entire autonomous administrative area. A consequence of this is that only a single (multi-purpose) subentry is

required for each of the autonomous administrative areas of the example.

ITU-T Rec. X.501 (11/2008) 207

| SO/IEC 9594-2:2008 (E)

For DSA 1 the DSE at { C=WW, O=ABC}, representing the administrative point for AA, the context prefix for context
C and a non-specific subordinate reference to DSA 2, is of type entry + cp + admPoint + nssr. The area operational
information is held in the subentry { C=WW, O=ABC, CN=AA}.

DSA 1 holds the following entries contained in context C: { C=WW, O=ABC, OU=G}, {C=WW, O=ABC, OU=H},
{C=WW, O=ABC, OU=G, CN=l}, { C=WW, O=ABC, OU=G, CN=m} and { C=WW, O=ABC, OU=G, CN=n}.

Figure O.4 illustrates one potential DSA information tree for DSA 2.

Root

(cp + admPoint) C=VV
(cp + admPoint + entry)

(admPoint + immSupr + rhob)

O=ABC O=DEF

(cp + entry)

X.501_FO.4

CN=o CN=p CN=q

Figure 0.4 —DSA information treefor DSA 2

In this hypothetical situation, DSA 2 isafirst level DSA, so itsroot DSE does not hold a superior reference.

The two degenerate autonomous administrative areas, { C=WW?} and {C=VV} are represented by DSEs of type cp +
entry + admPoint.

Subordinate knowledge of the DIT is represented by two subordinate reference DSEs, { C=WW, O=ABC} and {C=VV,
O=DEF}. In the former case, this DSE is of type subr + admPoint + immSupr + rhob for reasons that will be
described next.

In Figure O.4, DSA 2 is configured assuming that a single subentry holds the area operationa information regarding
AA. This requires that a copy of the subentry be present at DSA 2 (for reasonable performance). One way to
accomplish thisis by establishing a NHOB between DSA 1 and DSA 2 to maintain a copy of the subentry. In this case
the area operational information is held in the DSE named { C=WW, O=ABC, CN=AA} which is of type subentry +
rhob. The administrative-role attribute held in the DSE at { C=WW, O=ABC} is provided to DSA 2 from DSA 1 as
part of the NHOB. For this reason the DSE is of type admPoint + rhob.

Finally the naming context E is held as the context prefix DSE { C=WW, O=ABC, OU=l) which is of type cp + entry
and the three entry DSEs { C=WW, O=ABC, OU=I, CN=0}, { C=WW, O=ABC, OU=I, CN=p} and { C=WW, O=ABC,
OuU=l, CN=q}.

An aternative means of configuring DSA 2 isillustrated in Figure O.5.

208 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

O=ABC O=DEF

(cp + admPoint + entry)
CN=AA

X.501_FO.5

CN=o0 CN=p CN=q

Figure O.5 - Alternative DSA information treefor DSA 2

This differs from the configuration depicted in Figure O.4 only in the handling of the area operational information,
motivated, perhaps, by adesire to avoid having to maintain a NHOB with DSA 1.

The strategy in this case is to partition AA (i.e., partition the domain access control information — and similarly the
subschema information) into two autonomous administrative areas, one coinciding with context C and the other with
context E.

In this case the context prefix DSE { C=WW, O=ABC, OU=I} aso becomes an administrative point, the DSE type
being cp + admPoint + entry. Instead of a shadowed subentry supplied by DSA 1 as part of a NHOB, the reduced area
operational information is held in the subentry { C=WW, O=ABC, OU=I, CN=AA}.

Figure O.6 illustrates the DSA information tree of DSA 3.

o=ABc()
CN=BB

OU=K

ouU=I X.501_FO.6

Figure 0.6 —DSA information treefor DSA 3

Like DSA 1, DSA 3isnot afirst level DSA. Itsroot DSE holds a superior reference, which in this example is the access
point for DSA 2. ThisDSE isof typeroot + supr.

DSA 2 holds one glue DSE to represent its knowledge of the name {C=VV}.

The autonomous administrative area BB coincides with the naming context D. For the sake of simplicity in this example
it is assumed, as in the case of the autonomous administrative area AA, that the specific administrative areas relative to
access control and subschema information coincide, and that there is a single access control domain and a single
subschema for the entire autonomous administrative area. Thus only a single (multi-purpose) subentry is required for
each of the autonomous administrative areas of the example.

For DSA 3, the DSE at {C=VV, O=DEF}, representing the administrative point for BB and the context prefix for
context D, is of type entry + cp + admPoint. The area operational information is held in the subentry { C=VV, O=DEF,
CN=BB}.

ITU-T Rec. X.501 (11/2008) 209

| SO/IEC 9594-2:2008 (E)

DSA 3 holds one object and one alias entry contained in context D: {C=VV, O=DEF, OU=J}, (of type entry) and
{C=VV, O=DEF, OU=K} (of type alias and containing an attribute aliasedEntryName having the value { C=WW,

O=ABC, OU=l}).
Finally, DSA 3 holds a cross reference to context E, a DSE of type xr with name { C=WW, O=ABC, OU=l}.

210 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex P

Names held as attribute values or used as parameters
(This annex does not form an integral part of this Recommendation | International Standard)

Where aname is held as an attribute value within some other attribute, or passed as an attribute value in some exchange
(e.g., an dlias pointer), there is always the question of whether the name held can be an aternative distinguished name
or the primary distinguished name, whether it can contain aternative values, and whether it can include context
information. Specific restrictions are mentioned, where necessary, throughout these Directory Specifications. In general,
there are no restrictions on the name that is stored as an attribute value; however, to facilitate interworking with older
systems and provide predictable results, the following suggestions are made:

When the value of an operational attribute is a name of an object (e.g., creatorsName), the name shall be the primary
distinguished name of that object. Alternative values and context information are not necessary but may be included.

When an attribute type and value pair in an RDN within the name includes multiple distinguished values using
valuesWithContext, the primary distinguished value should be wused as the value in the
AttributeTypeAndDistinguishedValue so that interworking with older systemsis predictable.

When the value of a user attribute is a name (e.g., member of a group of names, see Also), it may be any aternative
distinguished name, multiple aternative names, or all alternative names, but using the primary distinguished name is
recommended so that interworking with older systems is predictable. Also, contexts and alternative values are not
generally useful if included in such referencing attributes.

When the attribute is part of the DSA information tree and is used in name resolution (e.g., knowledge references), it
shall be the primary distinguished name and each RDN should carry contexts and all alternative distinguished valuesin
the AttributeTypeAndDistinguishedValue for each attribute, to enhance name resolution and so that interworking with
older systemsis predictable.

ITU-T Rec. X.501 (11/2008) 211

| SO/IEC 9594-2:2008 (E)

Annex Q

Subfilters
(This annex does not form an integral part of this Recommendation | International Standard)

A filter can be converted into a set of subfilters by progressive expansion using deMorgan's rules. (These rules work for
the three-valued logic used for filter.) Consider afilter to be a tree where non-leaf nodes correspond to each and{},
or{}, not{}, and each leaf-node is a filter-item. Each arc represents an element in the and{}, or{}, not{}; in the case of
not{}, there can be only one such arc.

First progress each not{} to the leaves by using the rules:
not{and{x,y,z}} isthe same asor{not{x}, not{y}, not{z}}
not{or{x,y,z}} isthe same asand{not{x}, not{y}, not{z}}
not{not{x}} isthe same as x
leaving the nots to apply directly to thefilter items.
Then reduce the tree by combining ands and ors and move the andsin the direction of the leaves by using the rules:
and{and{x,y,z}, p, q} isthe same asand{ x,y,z,p,q}
or{or{x,y,z}, p, q} isthesame asor{ x,y,z,p,q}
and{or{x,y,z}, p, } isthe same as or{and{x,p,q}, and{y,p,q}, and{zp,q}}
and(X,y,z} isthe same asand{any ordering of x,y,z}
or(x,y,z} isthe same as or{ any ordering of x,y,z}
and{} isTRUE, so that or{and{},x,y,z} isalways TRUE and and{and{},x,y,z} isthe same asand{x,y,z}

or{} isFALSE, so that and{or{},x,y,z} isaways FALSE and or{or{},x,y,z} isthe sameasor{x,y,z}
NOTE — The notation {x,y,z} (etc.) as used here means a set of zero, one, or more members, such asx, y, and z.

By progressive application of these rules, the filter is eventually converted into a canonical form:
or{and{py, p2... },and{q, G ... } ...}
where each p; or g is either afilter item F or a negated filter item not{F}.

Each and{py, p2 ... } isthen asubfilter of the original filter.

212 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex R

Compound entry name patternsand their use
(This annex does not form an integral part of this Recommendation | International Standard)

The concept of local member name is introduced in 9.3. This Directory Specification does not put any constraints on
how names can be alocated beyond what is determined by structure rules. However, in some situations establishing a
naming pattern for family members is essential to achieve a wanted effect. In its smple form, similar family members
from different compound entries could have identical local member names. As an example, a family member holding a
telephone number and its associated characteristics (use, tariff, restrictions, etc.) could have the same local member
name in different compound entries. This is essential when compound entries are members of hierarchical groups
(see7.13 of ITU-T Rec. X.511 | ISO/IEC 9594-3). A pattern can also be established by letting the RDN for a family
member reflect what information that member holds. As an example, a communications address (e.g., a telephone
number or e-mail address) could have an RDN equal to { comAdressName = telephonel } or { comAdressName =
emailAddress3 }. All, say, telephone number family members can then be located by performing initial substring
matching on the RDN.

The below example for use of name pattern is also an example on the use of control attributes referenced by the
additionalControl search-rule component (see 16.10.8). This example should clearly be understood as an example and
not as a specification that can be implemented or to which other specifications can formally refer. It is solely given as
an example on how a control attribute could be constructed and what specifications could be associated with such a
control attribute.

A search-rule controls the behaviour of a search with a specific area of the DIT. This service is adapted to the particular
accessing user. However, "owners' of entries, e.g., subscribers being represented by subscriber entries, may have
individual, possibly legal requirements on how the service associated with that particular entry should be constrained
and adjusted. Such individual requirements could be:

a) Information in an entry may be supplied in different languages. However, the owner of the entry may
regquest that, e.g., addressing information shall be returned in a particular language independent of what
language the accessing user uses in the search request and what the accessing user might request. This
function cannot be provided by the context function.

b) An owner of an entry may request that a fake or an aternative address is returned even when the
accessing user matched on the real one.

¢) When an accessing user matches on one telephone number, he/she will get all or a selection of telephone
numbers together with associated information.

Such individual constraints and adjustments could be exercised by the sample markingRules control attribute. This
attribute is intended to be held by an entry or an ancestor of a compound entry within a service specific administrative
area. It has the following definition:

markingRules ATTRIBUTE ::= {

WITH SYNTAX MarkingRule
USAGE directoryOperation
ID id-oa-xx }

MarkingRule ::= SEQUENCE {

searchRules SEQUENCE SIZE (1 .. MAX) OF INTEGER = OPTIONAL,
markingStrands [O] Filter DEFAULT and :{},
localName [1] SEQUENCE SIZE (1 .. MAX) OF Filterltem OPTIONAL,
explicitUnmark [2] Filter OPTIONAL }

A value of the markingRules control attribute represents a rule for marking and unmarking of members of compound
entries that have been matched during the Search evaluation and for eliminating matched non-family entries from the
output.

The searchRules component indicates to which search-rules the particular value of this attribute applies. If the
governing-search-rule has an id equal to one of the values in this component, then the remarking as specified by this
control attribute value shall be applied. A given search-rule can be represented in several values of this attribute type. If
the component is missing, the marking-rule applies for all search rules.

ITU-T Rec. X.501 (11/2008) 213

| SO/IEC 9594-2:2008 (E)

The markingStrands component is only relevant if the familyGrouping during the matching was either strand or
multiStrand. It indicates what condition should be present for a possible marking of strands. The filter of this
component is evaluated against each strand whose members all have been marked as participating members as the result
of the search filter match. It evaluates to TRUE if at least one strand evaluates to TRUE. Matching follows the same
rules as specified in 7.8 of ITU-T Rec. X.511 | ISO/IEC 9594-3. If this component is absent, it defaults to a filter that
always evaluatesto TRUE.

The localName component is only relevant if the familyGrouping during the matching was either strand or
multiStrand and the markingStrands evaluates to TRUE. It then indicates what strands shall have its family members
marked as participating members by selecting zero or more family members. A family member is elected if its local
member name has the same number of RDNSs as the number of filter items in this component and if each filter item
matches one by one the corresponding RDN. A filter item matches an RDN if it matches an AVA of that RDN. Any
strand going through a selected family member has all its family members marked as participating.

The explicitUnmark component specifies a filter that, if matching an entry or a family member, causes that entry or
family member to be explicitly unmarked. Explicit unmarking is only relevant for entries and family members that have
been selected for return in asearch result. If afamily member is explicitly unmarked and if the family grouping during
the search filter matching was not entryOnly, then al family entries subordinate to the explicit unmarked member are
also explicitly unmarked. Explicitly unmarking a non-family entry means deleting that entry from the result as if it had
not been matched. Explicit unmarking of afamily member means that such a member shall not be included in the result.

The evaluation of the markingRules control attribute is performed as a two-phase-process.

The first phase is only performed if familyGrouping during the matching was either strand or multiStrand and the
familyReturn in the entry information selection is not contributingEntriesOnly.

In the first phase, only compound entries that have been matched during the search filter evaluation that fulfil all the
following conditions are considered:

a) theancestor holdsamarkingRules control attribute;

b) one or more values are applicable for the governing-search-rule and which include the localName
component.

Additional members are then marked as partici pating members as specified above.

In the second phase, all family members now marked as participating members and all non-family entries are checked
for the presence of the markingRules control attribute type, and then whether the attribute has one or more values
applicable for the governing search-rule. If so, the explicitUnmark component, if present, is evaluated. If it evaluates to
TRUE for a family member, it is explicitly unmarked, i.e., it is neither marked as participating nor contributing. All
subordinate family members are also similarly explicitly unmarked. If it is a non-family entry, explicit unmarking has
the same effect as if the search filter had not matched the entry.

214 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

Annex S

Naming concepts and consider ations
(This annex does not form an integral part of this Recommendation | International Standard)

S1 History tellsus...

Since the first edition of these Directory Specifications was first published in 1988, innumerable changes have taken
place in the information industry. Some of these changes were foreseen and anticipated; others were not. Accordingly,
much of what is currently published in these Directory Specifications is as applicable today as it was in 1988, while
other parts of it clearly are not. In this annex, we will identify key concepts in both sets that require consideration at
thistime.

S11 Original conceptsthat are still valid

Fortunately, many of the origina Directory concepts that are till valid are those most fundamenta to the original
specification. Specifically:

— it is ill valid to think in terms of a Directory being a collection of entries, each of which holds
information in the form of attributes describing a particular real-world object;

— itisaso still valid to think in terms of Directory entries as named entities, and to think of those names as
being arranged in a hierarchy that represents some reasonable taxonomy by which the associated real-
world objects may be arranged;

— itis dtll valid to provide for flexibility in naming and to alow delegation of naming authority along
hierarchical lines;

— it isdtll valid to expect these entries to be distributed across a (potentially very large) set of directory
servers;

— it isstill valid to expect the Directory, given some arbitrary piece of data about a real-world object, to
quickly find an entry describing the object itself; and

— itisdtill valid to think of this arbitrary piece of data as being either the name of the entry or some non-
naming attribute contained within the entry.

S12 Original conceptsthat areno longer valid

Despite this list of fundamental concepts that till hold true, there are also fundamental concepts that, in light of the
experience of the past decade or so, can no longer be held as valid. Some of these concepts have already been adapted
within these Directory Specifications, while others have not. Those that have changed include the following:

— Itis no longer valid to expect any given real-world object to be described by exactly one entry (i.e.,
related entries exist).

— Security considerations notwithstanding, it is no longer valid to expect naming knowledge contained
within the Directory to be sufficient to reach all named entries in the Directory (i.e., multiple DITs exist).

— Itis no longer valid to think of naming knowledge contained within the Directory as the only way to
reach a particular named entry (i.e., it is possible to employ services external to the Directory to assist in
the location of anamed entry).

— Itisnolonger valid to think of distinguished names as always uniquely naming a single entry (i.e., the
same DN may be used to name entries held in two or more DITS).

— When given an arbitrary piece (of which there is expected to be one instance) of non-naming data about
an object that may be in one of several directory servers, it is no longer valid to expect a distributed
search to be the only mechanism that can be used to locate the desired entry (i.e., there is a requirement
to have a single server locally and deterministically identify the associated entry, regardless of whether
that entry is held by that server).

S.2 A new look at name resolution

Because naming is so fundamental to the successful operation of a Directory service, and because certain fundamental
assumptions about the nature of a directory service have now been drawn into question, this subclause will take a look
at the subject of name resolution. This subclause first takes a critical ook at name resolution as it exists, and proposes
that the current name resolution model is no longer sufficient to satisfy all directory requirements. The subclause
continues by proposing an aternative way of extending the model to accommodate those needs, while retaining
backward compatibility with existing systems.

ITU-T Rec. X.501 (11/2008) 215

| SO/IEC 9594-2:2008 (E)

S21 The explicit knowledge model

Since they were first published, these Directory Specifications have provided for distributed name resolution.
Conceptually, each DSA that participates in a given namespace is required to maintain minimal naming knowledge to
ensure that distributed name resolution can occur in a predictable fashion across the entire DIT (subject, of course, to
the ability to actually reach al the participating servers). Specifically, the minimum knowledge consists of superior and
subordinate knowledge references, giving the DIT a sense of "well-connectedness' for lack of a better term. Using this
model, any DSA involved in resolving a purported name will know with certainty which of the following three
conditions is met:

— the purported name falls within a naming context held by this DSA;
— the purported name falls within a subordinate namespace known to this DSA; or
— neither of the above.

In the first instance, this DSA will complete the name resolution process by either identifying the entry or determining
its non-existence. In the second instance, name resolution will continue by following a subordinate reference to another
DSA. In the third instance, name resolution will continue by following a superior reference if such a superior reference
exists, else it will terminate. As long as the DIT is well-connected, name resolution will always result in a definitive
answer. The entry either existsin a particular DSA or it does not exist.

Figure S.1 depicts a sample scenario in which name resolution is proceeding based on the name of an entry held in
DSA 2 as shown. In the figure, knowledge references are depicted with dashed line arrows. Note that DSA 3, although
holding a naming context subordinate to DSA 2, has a superior reference to DSA 1, which holds the root naming
context. Depending on the DSA involved, name resolution will proceed as follows:

— For DSA 1, name resolution will follow a subordinate reference to DSA 2.

— For DSA 2, name resolution will find the named entry.

— For DSA 3, name resolution will follow a superior reference to DSA 1 and proceed as above.
— For DSA 4, name resolution will follow a superior reference to DSA 1 and proceed as above.

In all cases, name resolution will find the named entry.

DSA 4

DSA3 Entry matching purported name

X.501_FS-1

FigureS.1

It isworth noting that, although some optimizations are available, the success of the answer does not vary. Two obvious
optimizations include the use of an immediate superior reference in DSA 3 (avoiding the need to traverse DSA 1 to get
to DSA 2), and including a cross reference in DSA 4, allowing name resolution to proceed directly from DSA 4 to
DSA 2 (again avoiding the traversal of DSA 1). In any case, name resolution in this example, regardless of staring
point, will always result in the same answer.

Unfortunately, as mentioned above, a well-connected DIT can no longer be assumed. Multiple DITs exist, sometimes
including duplicate DNs. Setting aside the possibility of duplicate names for the moment, we have a situation like the
one shown in Figure S.2. In this example, we have two DITs, each of which is well-connected within itself, but neither
of which has knowledge of the other. One DIT, as in the previous example, consists of those entries held by DSA 1
through DSA 4. The second DIT consists of those entries held by DSA 5 and DSA 6. Note that it could still be
reasonable to consider thisa single DIT since all DNs are distinct relative a conceptual root. However, what makes this
distinct from a well-connected single DIT is the fact that DSA 1 and DSA 5 lack complete knowledge of the naming
contexts subordinate to the root.

216 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)
DSA5

DSA 6

DSA 4

Entry matching purported name

X.501_FS-2

FigureS.2

As shown in the figure, when given the name of the entry indicated, name resolution works as follows:
— DSA 1through DSA 4 dl fail to find the entry.
— DSA 5and DSA 6 successfully find the entry.

The failure to find the entry may or may not be a problem, depending on the requirements at hand. The rest of this
discussion addresses those situations for which it is a problem.

In looking for a solution, it appears reasonable at first glance to explore the use of a cross reference or some similar
structure. Consider, for example, the use of a cross reference giving DSA 4 knowledge of the naming context in DSA 6.
Thisisillustrated in Figure S.3.

DSA 4

Entry matching purported name

X.501_FS-3

FigureS.3

A quick analysis of this approach shows the following scenarios:
— Nameresolution in DSA 1 through DSA 3 would fail.
— Nameresolution in DSA 4 through DSA 6 would succeed.

While this may at first appear to be no more or less acceptable than the previous scenario, there is a key difference:
name resol ution within the scope of awell-connected DIT view now gives inconsistent results.

To give consistent results, there are two options available using existing knowledge structures. One approach is to use
multiple cross references such that each DSA in the "from™" view has a cross reference to the desired naming context.
This concept is shown in Figure S.4. Note that in this scenario, name resolution within the left-hand view will
consistently find any name within the naming context held by DSA 6. Note that namesin DSA 5 cannot be found in this
manner, and note that namesin DSA 1 through DSA 4 are still inaccessibleto DSA 5 and DSA 6.

ITU-T Rec. X.501 (11/2008) 217

| SO/IEC 9594-2:2008 (E)

Entry matching purported name
X.501_Fs-4

FigureS.4

There may be a problem, however, in the way the cross reference is implemented in DSA 1. That is, from the
perspective of DSA 1, the naming context referred to in DSA 5 may actually be subordinate to an entry it believes it
holds. Specificaly, if DSA 1 believes itsalf to be authoritative for the root naming context, this cross reference may
actually need to be a subordinate reference, which leads us to the second option.

The second option for providing consistent name resolution from the left-hand view into DSA 6's naming context is to
create a root-level subordinate reference in DSA 1. This is depicted in Figure S.5. If implemented in this manner, any
crossreferencesin DSA 2, DSA 3, or DSA 4 will merely be optimizations.

Entry matching purported name

X.501_FS-5

Figure S5

Extending this concept one more step, as shown in Figure S.6 raises some interesting questions. In this figure, DSA 1
has complete subordinate knowledge of the naming contexts held by al 6 DSAs, while DSA 5 only has knowledge of
the naming contexts held by DSA 5 or DSA 6. Note that if DSA 5 were given subordinate knowledge of the naming
contexts held by DSA 2 and DSA 4, the entire picture would once again represent a well-connected view of the DIT.
However, thisis not the case. What has happened, in essence, is the distinction between a well-connected, single DIT
and multiple DITs has been blurred, creating a situation that is not adequately modelled in the current directory
specification. In avery practical sense, thisisa picture of what has been deployed in many environments.

Entry matching purported name

X.501_FS-6

Figure S.6

218 ITU-T Rec. X.501 (11/2008)

| SO/IEC 9594-2:2008 (E)

To see what other complications await us, let us now consider the case in which a single DN exists in more than one
DIT. A simple scenario is shown in Figure S.7. In thisexample, aDIT is shown as existing in DSA 5. The namespace in
this new DIT partialy overlaps that of the previous example, but introduces some new names aswell. In particular, the
arrow points to an entry which, along with its parent, shares its name with an entry in DSA 2. The pairs of entries that
share names may or may not hold the same information, so they should not be considered to be the same entry.

DSA S

DSA 4

DSA3 Entry matching purported name

X.501_FS-7

FigureS.7

In the absence of any references between these two DITs, name resolution is very predictable. Within a particular DIT,
it will dwaysyield the same result. Introducing references creates special problems:

— A cross reference from DSA 2 to DSA 5 or from DSA 5 to DSA 2 will never be followed, since they
each believe they hold the naming context of interest.

— A crossreference from either DSA 3 or DSA 4 to DSA 5 will take precedence over superior references.

— Behaviour in the presence of both a cross reference from DSA 3 to DSA 5 and an immediate superior
reference from DSA 3 to DSA 2 is non-deterministic.

— Behaviour in the presence of a subordinate reference from DSA 1 to both DSA 2 and DSA 5 is
non-deterministic.

Clearly, these problems are not desirable. There are additional scenarios that could be considered; however, the
problems listed above are sufficient to render this approach unacceptable. Unfortunately, the situations that lead to this
particular type of naming and knowledge distribution scenario are far too frequent in the real world to ignore.
Consequently, some form of extension is needed. The remainder of this subclause discusses an alternative approach.

S22 Name resolution with implicit knowledge

In all of the discussions above, name resolution relied entirely upon explicit knowledge references held by DSAs.
Outside the Directory Specifications (most notably in the IETF), work began several years ago on a concept for
resolving names in part through the use of implicit knowledge. That is, there is a body of work that uses information
contained within the DN itself to partialy resolve the name prior to the client's initial contact with a DSA.
Conceptually, provided the name contains enough information, the DSA first contacted will be able to provide a
definitive answer; it either contains the named entry or knows with certainty that such an entry does not exist.

This concept is shown below in Figure S.8. This figure is identical to Figure S.1 with the exception that the DSAs in
this figure contain no knowledge references. Instead, knowledge is implicit within the DN, and is resolved through the
use of a service external to the directory, shown here as the proverbia black box. Note that this black box is able to
provide pointers to al naming contexts except the root. The location of the root cannot be determined in this fashion
since the null DN associated with the root lacks any implicit knowledge of its whereabouts.

ITU-T Rec. X.501 (11/2008) 219

| SO/IEC 9594-2:2008 (E)

X.501_FS-8

FigureS.8

Now, consider the drawing in Figure S.9, which corresponds to the DIT views shown in Figure S.2. In this scenario,
assuming the same implicit knowledge model, the same black box service is able to point to the naming contexts added
to the right of the picture. In contrast to the situation in Figure S.2, the naming contexts in DSA 5 and DSA 6 do not
create a distinctly different view. Assuming the requisite connectivity isin place, all six DSAs appear to be in the same
view, even though there is no explicit knowledge among any of the DSAs.

Entry matching purported name

X.501_FS-9

FigureS.9

The earliest published work on this topic is IETF RFC 22471, which defines a mapping between Distinguished Names
and the Domain Name System (DNS). Additional documents have been published since then, and others are under
development. To date, all published work on this topic has been based on the use of a special naming attribute, known
as the domainComponent (dc) attribute.

Simplified for the sake of discussion, the work on this subject has led to the development of a concept whereby DNs
constructed using the dc attribute in their most significant RDNs can be implicitly resolved, using DNS as the external
black box service, to a DSA holding the naming context. That DSA is then contacted, and name resolution is completed
inthat DSA.

1 |ETFRFC 2247 (1998), Using Domains in LDAP/X.500 Distinguished Names.

220 ITU-T Rec. X.501 (11/2008)

Annex T

| SO/IEC 9594-2:2008 (E)

Alphabetical index of definitions
(This annex does not form an integral part of this Recommendation | International Standard)

This annex alphabeticaly lists al of the terms defined in this Directory Specification together with a cross reference to
the clause in which they are defined.

A

access control Schemecvvveeevvveeneeenns clause 17
Administration Directory Management

[D]0] 0 7= 1 o F T clause 6
administrative area.........cccceeeeevecneenen. clause 11
Administrative AUthOrity........c.ccccecevenene. clause 6
administrative entryccoceeeeenenne clause 11
administrative point..........ccocceeeeeeereeneene clause 11
administrative USErccoeeveevieeneneencns clause 11
ANBS oo clause 9
2 Lo Y= 411 Y clause 7
dias dereferencing.......ccccoeevvvieveveveseeeeereenens see

dereferencing

AIBSNAME.....cci e seedlias
ANCESLON ...t clause 7
AITDULE.....ceeeeeeee e clause 8
attribute hierarchy..........ccooveveveeieeieciennns clause 8
attribute subtype (subtype)ccccceeuenene clause 8
attribute supertype (SUpertype)c.cc..... clause 8
atribute SYNtaXccceeeveerereveneeneenenns clause 13
atribute type......coeveeviereren clause 8
atribute value........cccccoveeeeeecieceeecee clause 8
attribute value assertion...........c.cccceeeeene clause 8
autonomous administrative area............ clause 11
auxiliary object class........ccocvevveeeciennnns clause 8
DESE....ceie clause 12
CAEGONY .. clause 22
ChOP .. clause 12
collective attribute............ccoceveenerienienenne clause 8
commonly usable........ccccevvvvreeeneennnne. clause 22
€omMPOUNd ENLTYccvevierreee e clause 7
(00001 (=4 TSRS clause 8
context aSSErtioncoevereeerenerenieenens clause 8
(o0 011 (W 11 SRS clause 8
CONEEXE PrefiX....cvrereeirieirerieeee e clause 21
CONLEXT EYPL .. clause 8
CONEXE VAIUB ... clause 8
cooperative State......ccoovvveeeeeeereeneeienns clause 25
CrOSS FEfEreNCe....covveeerieeesieseeese s clause 22
dereferenCing.......cccovveeveneeneneesene clause 9
derived attribute.........ccovvveivincciee, clause 8
derived entry.......cccveeeevecnceneseseeee clause 7
derived object classvaue.........c.cccvueneee. clause 8
DIB fragment.........cccoovevvevvivrienerieereeneens clause 21
direct attribute reference..........c.cceevevenee clause 8
direct sUPErclass.......cccovvrevvereencnicennes clause 7
Directory administrative and operational

INfOrMation........cccceverenenenceeeiene clause 6
Directory entryccoceeeeeeveeeeeeeseeieeseenn clause 7
Directory Information Base (DIB) clause 7
Directory Information Tree (DIT) clause 7

Directory Management Domain (DMD) . clause 6

directory Nname.......ccocvveevceeeeseesere e, clause 9
Directory operational attribute............... clause 12
directory operational framework clause 25
Directory Schema........ccccooceveieiencnnnne clause 13
Directory Subschema.........cccccceveniennne clause 13
Directory system schema............cc........ clause 12
Directory System Agent (DSA)............... clause 6
DIreCtOry USEScccvvvveveereereeeeeeneenee e clause 6
Directory User Agent (DUA)ccceueuee clause 6
Directory user informationc.ccc...... clause 6
disoined view (of the DIT)cccevuneee. clause 22
distinguished name...........ccccoocevinernniene. clause 9
distinguished value...........ccccocerenirennnne clause 8
DIT bridge knowledge reference........... clause 22
DIT content rule.......ccoceveevereneneenienens clause 13
DIT Context USe.......ccoovvreeenenecnienens clause 13
DIT DOM@IN....coriirinieiriinenereeneeesieneens clause 6
DIT Domain Administrative Authority clause 11
DIT DOmain policy........ccoerererereenenens clause 11
DIT Structure RUle........ccooeveiiieeee clause 13
DMD Administrative Authority............ clause 10
DMD POlIiCY..cccoeiieeiecieeeceece e clause 11
[D]\Y [@ 1 o o I Tox Y 2SS clause 11
domain management organization........... clause 6
DSA information treecocceveveennenns clause 23
DSA shared attributeccccoceevveeenene clause 23
DSA specific attribute.........ccoocvvveeennee. clause 23
DSA specific entry......ccoceeeeveiereneniene clause 23
DSEtYPe...coeeeeieeeere e clause 23
dummy attribute........cccccoveveiie e, clause 8
effectively present attribute type............ clause 16
< 011 YRR clause 12
entry collectionccovevvvecevcccce e, clause 8
ENEIY NAME ..o e clause 9
faMilY .o clause 7
family member........ccovvvevevevice e clause 7
friend attributes.........cccoceveeveive e, clause 8
governing-search-rule.........cccccovevvvuennene clause 16
governing structurerule.........ccocovevrenene clause 13
hierarchical childcccccocevvnvrennnnnn clause 10
hierarchical group........cccoeevvirecnennnne, clause 10
hierarchical leafcccooeieviiiiiiin clause 10
hierarchical level..........ccccooiiiiininene clause 10
hierarchical linK........cccoovvveininnine, clause 10
hierarchical parentcccccevevvvcvennene clause 10
hierarchical siblingcccccevvvivvvvene clause 10
hierarchical sibling-child...................... clause 10
hierarchical topcccoevviveinincene clause 10
hierarchical immediately child............... clause 10
hierarchical immediately parent............. clause 10

ITU-T Rec. X.501 (11/2008) 221

| SO/IEC 9594-2:2008 (E)

222

immediate(ly) SUPENIOrccevveeeeeeenenne clause 7
immediate superior reference................. clause 22
indirect attribute reference....................... clause 8
inner administrative area...........ccceeeeeee. clause 11
knowledge (information)............ccc..e..... clause 22
knowledge reference..........ccccoeveinienene clause 22
local member NAMecccceevveeeeeerenine clause 9
LDAPClieNt. ..o clause 6
LDAP requestor.........c.ccooeverenereeeeneennes clause 6
LDAP responder........cccceeeereeneneneenennens clause 6
LDAP SEIVEN ... clause 6
master knowledge.........cooovevneneinienenn clause 22
MALChING FUIE ... clause 8
matching rule assertion...........cccceeeeveeene clause 8
Named-ServiCe cocvvvveereeeeieeeeneenen, clause 16
Naming authority.........coceeeverrereienenienens clause 9
NaMIiNg CONLEXLcccevererereeieeeereenn, clause 21
NAME FOIM ..o clause 13
non-cooperative state..........ceevevveivernnnnn. clause 25
non-specific subordinate reference........ clause 22
object (Of iNterest)ccevvvevvvvevereceeens clause 7
ObJECt ClasSccvvevvrere e clause 7
ODJECE ENLIY ... clause 7
operational attribute............ccoeevineeene. clause 8
operational binding.........c.ccccceeeienennne clause 25
operational binding establishment.......... clause 25
operational binding instance.................. clause 25
operational binding management........... clause 25
operational binding modification........... clause 25
operational binding termination............. clause 25
operational binding type........c.ccoeeevenns clause 25
10! [T 2 clause 11
policy attribute.........cccooevevereneienereenn clause 11
policy OBJeCtc.ocvvviiiiee clause 11
policy procedure...........ccooevenerenennennnn. clause 11
policy parameterccoevevenenienenieenns clause 11
Private Directory Management Domain clause 6
protected item.........cccoeveveceececceceseenn, clause 17
purported NAME.........ccceevveveveeeeeereeeens clause 9
referencepath oo, clause 22
related entrieS.......ccovveveeevenee e clause 7
relative distinguished name.................... clause 9
regquest-attribute-profile.........cccceeveennen. clause 16
request-attribute-type.........coeeeeerereenen clause 16
SEACH-TUIE ... clause 16
SEIVICETYPE v clause 16
shadow knowledge..........cccveveenenennns clause 22
specific administrative area................... clause 11
specific administrative point.................. clause 11
structural object class.......cocevererieeienenne clause 8
structural object class of an entry clause 8
SUDCIBSS.....oeeeeieieisieee s clause 7
SUDENLIY ..o clause 12
SUDFITEEN ..cveeeieeee e clause 16
SUDLYPE . see attribute subtype
SUbOrdinatecocveveevevreese e clause 7
subordinate referenceccoceveeeeeennne clause 22

ITU-T Rec. X.501 (11/2008)

Subschema........ccceeee see Directory Subschema
SUBLIEE. ..o clause 12
subtreerefinement ... vvnieieenen. clause 12
subtree specificationccovererennene clause 12
SUPENCIESS....ceeeeeeeeeieeeee e clause 7
LU0 g o clause 7
SUPENOF FEfEreNCe....ccevveveeceee e, clause 22
superior structurerule........ccoeevvvvrennene clause 13
SUPEIYPE....oervveerrrrereeeren see attribute supertype
USer attribute........covvveeiieceee clause 8
USEN-ClaSS ..o clause 16

| SO/IEC 9594-2:2008 (E)

Annex U

Amendmentsand corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendment to the previous edition that was balloted
and approved by ISO/IEC:

— Amendment 3 for Communications support enhancements.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects
documented in Defect Reports. against the 5th edition of this Directory Specification:

— Technical Corrigendum 1 (covering Defect Reports 317 and 318); and
— Technical Corrigendum 2 (covering Defect Report 328).

ITU-T Rec. X.501 (11/2008) 223

SeriesA
SeriesD
SeriesE
SeriesF
SeriesG
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
Series O
Series P
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-tel ephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommunication management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2009

	ITU-T Rec. X.501 (11/2008) – Information technology - Open Systems Interconnection - The Directory: Models
	Summary
	Source
	FOREWORD
	CONTENTS
	SECTION 1 – GENERAL
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Other references

	3 Definitions
	3.1 Communication definitions
	3.2 Basic Directory definitions
	3.3 Distributed operation definitions
	3.4 Replication definitions

	4 Abbreviations
	5 Conventions
	SECTION 2 – OVERVIEW OF THE DIRECTORY MODELS
	6 Directory Models
	6.1 Definitions
	6.2 The Directory and its users
	6.3 Directory and DSA Information Models
	6.4 Directory Administrative Authority Model

	SECTION 3 – MODEL OF DIRECTORY USER INFORMATION
	7 Directory Information Base
	7.1 Definitions
	7.2 Objects
	7.3 Directory entries
	7.4 Directory Information Tree (DIT)

	8 Directory entries
	8.1 Definitions
	8.2 Overall structure
	8.3 Object classes
	8.4 Attribute Types
	8.5 Attribute Values
	8.6 Attribute Type Hierarchies
	8.7 Friend attributes
	8.8 Contexts
	8.9 Matching rules
	8.10 Entry collections
	8.11 Compound entries and families of entries

	9 Names
	9.1 Definitions
	9.2 Names in general
	9.3 Relative Distinguished Names
	9.4 Name matching
	9.5 Names returned during operations
	9.6 Names held as attribute values or used as parameters
	9.7 Distinguished Names
	9.8 Alias Names

	10 Hierarchical groups
	10.1 Definitions
	10.2 Hierarchical relationship
	10.3 Sequential ordering of a hierarchical group

	SECTION 4 – DIRECTORY ADMINISTRATIVE MODEL
	11 Directory Administrative Authority model
	11.1 Definitions
	11.2 Overview
	11.3 Policy
	11.4 Specific administrative authorities
	11.5 Administrative areas and administrative points
	11.6 DIT Domain policies
	11.7 DMD policies

	SECTION 5 – MODEL OF DIRECTORY ADMINISTRATIVE AND OPERATIONAL INFORMATION
	12 Model of Directory Administrative and Operational Information
	12.1 Definitions
	12.2 Overview
	12.3 Subtrees
	12.4 Operational attributes
	12.5 Entries
	12.6 Subentries
	12.7 Information model for collective attributes
	12.8 Information model for context defaults

	SECTION 6 – THE DIRECTORY SCHEMA
	13 Directory Schema
	13.1 Definitions
	13.2 Overview
	13.3 Object class definition
	13.4 Attribute type definition
	13.5 Matching rule definition
	13.6 Relaxations and tightenings
	13.7 DIT structure definition
	13.8 DIT content rule definition

	14 Directory System Schema
	14.1 Overview
	14.2 System schema supporting the administrative and operational information model
	14.3 System schema supporting the administrative model
	14.4 System schema supporting general administrative and operational requirements
	14.5 System schema supporting access control
	14.6 System schema supporting the collective attribute model
	14.7 System schema supporting context assertion defaults
	14.8 System schema supporting the service administration model
	14.9 System schema supporting hierarchical groups
	14.10 Maintenance of system schema
	14.11 System schema for first-level subordinates

	15 Directory schema administration
	15.1 Overview
	15.2 Policy objects
	15.3 Policy parameters
	15.4 Policy procedures
	15.5 Subschema modification procedures
	15.6 Entry addition and modification procedures
	15.7 Subschema policy attributes

	SECTION 7 – DIRECTORY SERVICE ADMINISTRATION
	16 Service Administration Model
	16.1 Definitions
	16.2 Service-type/user-class model
	16.3 Service-specific administrative areas
	16.4 Introduction to search-rules
	16.5 Subfilters
	16.6 Filter requirements
	16.7 Attribute information selection based on search-rules
	16.8 Access control aspects of search-rules
	16.9 Contexts aspects of search-rules
	16.10 Search-rule specification
	16.11 Matching restriction definition
	16.12 Search-validation function

	SECTION 8 – SECURITY
	17 Security model
	17.1 Definitions
	17.2 Security policies
	17.3 Protection of Directory operations

	18 Basic Access Control
	18.1 Scope and application
	18.2 Basic Access Control model
	18.3 Access control administrative areas
	18.4 Representation of Access Control Information
	18.5 ACI operational attributes
	18.6 Protecting the ACI
	18.7 Access control and Directory operations
	18.8 Access Control Decision Function
	18.9 Simplified Access Control

	19 Rule-based Access Control
	19.1 Scope and application
	19.2 Rule-based Access Control model
	19.3 Access control administrative areas
	19.4 Security Label
	19.5 Clearance
	19.6 Access Control and Directory operations
	19.7 Access Control Decision Function
	19.8 Use of Rule-based and Basic Access Control

	20 Data Integrity in Storage
	20.1 Introduction
	20.2 Protection of an Entry or Selected Attribute Types
	20.3 Context for Protection of a Single Attribute Value

	SECTION 9 – DSA MODELS
	21 DSA Models
	21.1 Definitions
	21.2 Directory Functional Model
	21.3 Directory Distribution Model

	SECTION 10 - DSA INFORMATION MODEL
	22 Knowledge
	22.1 Definitions
	22.2 Introduction
	22.3 Knowledge References
	22.4 Minimum Knowledge
	22.5 First Level DSAs

	23 Basic Elements of the DSA Information Model
	23.1 Definitions
	23.2 Introduction
	23.3 DSA Specific Entries and their Names
	23.4 Basic Elements

	24 Representation of DSA Information
	24.1 Representation of Directory User and Operational Information
	24.2 Representation of Knowledge References
	24.3 Representation of Names and Naming Contexts

	SECTION 11 – DSA OPERATIONAL FRAMEWORK
	25 Overview
	25.1 Definitions
	25.2 Introduction

	26 Operational bindings
	26.1 General
	26.2 Application of the operational framework
	26.3 States of cooperation

	27 Operational binding specification and management
	27.1 Operational binding type specification
	27.2 Operational binding management
	27.3 Operational binding specification templates

	28 Operations for operational binding management
	28.1 Application-context definition
	28.2 Establish Operational Binding operation
	28.3 Modify Operational Binding operation
	28.4 Terminate Operational Binding operation
	28.5 Operational Binding Error
	28.6 Operational Binding Management Bind and Unbind

	Annex A – Object identifier usage
	Annex B – Information Framework in ASN.1
	Annex C – SubSchema Administration Schema in ASN.1
	Annex D – Service Administration in ASN.1
	Annex E – Basic Access Control in ASN.1
	Annex F – DSA Operational Attribute Types in ASN.1
	Annex G – Operational Binding Management in ASN.1
	Annex H – Enhanced security
	Annex I – The Mathematics of Trees
	Annex J – Name Design Criteria
	Annex K – Examples of various aspects of schema
	K.1 Example of an attribute hierarchy
	K.2 Example of a subtree specification
	K.3 Schema specification
	K.4 DIT content rules
	K.5 DIT context use

	Annex L – Overview of basic access control permissions
	L.1 Introduction
	L.2 Permissions required for operations
	L.3 Permissions affecting error
	L.4 Entry level permissions
	L.5 Entry level permissions

	Annex M – Examples of access control
	M.1 Introduction
	M.2 Design principles for Basic Access Control
	M.3 Introduction to example
	M.4 Policy affecting the definition of specific and inner areas
	M.5 Policy affecting the definition of DACDs
	M.6 Policy expressed in prescriptiveACI attributes
	M.7 Policy expressed in subentryACI attributes
	M.8 Policy expressed in entryACI attributes
	M.9 ACDF examples
	M.10 Rule-based Access Control

	Annex N – DSE type combinations
	Annex O – Modelling of knowledge
	Annex P – Names held as attribute values or used as parameters
	Annex Q – Subfilters
	Annex R – Compound entry name patterns and their use
	Annex S – Naming concepts and considerations
	S.1 History tells us –
	S.2 A new look at name resolution

	Annex T – Alphabetical index of definitions
	Annex U – Amendments and corrigenda

