
Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.501
TELECOMMUNICATION (11/93)
STANDARDIZATION SECTOR
OF ITU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS
DIRECTORY

INFORMATION TECHNOLOGY –
OPEN SYSTEMS INTERCONNECTION –
THE DIRECTORY: MODELS

ITU-T Recommendation X.501
Superseded by a more recent version
(Previously “CCITT Recommendation”)

Superseded by a more recent version

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.501 was approved on 16th of
November 1993. The identical text is also published as ISO/IEC International Standard 9594-2.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Subject area Recommendation
series

PUBLIC DATA NETWORKS

Services and Facilities X.1-X.19

Interfaces X.20-X.49

Transmission, Signalling and Switching X.50-X.89

Network Aspects X.90-X.149

Maintenance X.150-X.179

Administrative Arrangements X.180-X.199

OPEN SYSTEMS INTERCONNECTION

Model and Notation X.200-X.209

Service Definitions X.210-X.219

Connection-mode Protocol Specifications X.220-X.229

Connectionless-mode Protocol Specifications X.230-X.239

PICS Proformas X.240-X.259

Protocol Identification X.260-X.269

Security Protocols X.270-X.279

Layer Managed Objects X.280-X.289

Conformance Testing X.290-X.299

INTERWORKING BETWEEN NETWORKS

General X.300-X.349

Mobile Data Transmission Systems X.350-X.369

Management X.370-X.399

MESSAGE HANDLING SYSTEMS X.400-X.499

DIRECTORY X.500-X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600-X.649

Naming, Addressing and Registration X.650-X.679

Abstract Syntax Notation One (ASN.1) X.680-X.699

OSI MANAGEMENT X.700-X.799

SECURITY X.800-X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850-X.859

Transaction Processing X.860-X.879

Remote Operations X.880-X.899

OPEN DISTRIBUTED PROCESSING X.900-X.999

Superseded by a more recent version

Recommendation X.501 (11/93) Superseded by a more recent version i

Contents
Recommendation X.501 (11/93) Superseded by a more recent version

Page

SECTION 1 – GENERAL.. 1

1 Scope .. 1

2 Normative references.. 2

2.1 Identical Recommendations | International Standards...2

2.2 Paired Recommendations | International Standards equivalent in technical content........................... 2

3 Definitions .. 3

3.1 OSI Reference Model Definitions ... 3

3.2 Basic directory definitions... 3

3.3 Distributed operation definitions... 3

3.4 Replication definitions .. 3

4 Abbreviations ... 4

5 Conventions.. 4

SECTION 2 – OVERVIEW OF THE DIRECTORY MODELS ... 5

6 Directory Models.. 5

6.1 Definitions... 5

6.2 The Directory and its Users... 5

6.3 Directory and DSA Information Models ... 6

6.4 Directory Administrative Authority Model... 7

SECTION 3 – MODEL OF DIRECTORY USER INFORMATION .. 8

7 Directory Information Base .. 8

7.1 Definitions... 8

7.2 Objects... 8

7.3 Directory Entries ... 9

7.4 The Directory Information Tree (DIT).. 9

8 Directory Entries... 10

8.1 Definitions... 10

8.2 Overall Structure ... 11

8.3 Object Classes ... 11

8.4 Attribute Types.. 13

8.5 Attribute Values .. 13

8.6 Attribute Type Hierarchies.. 14

8.7 Matching Rules.. 14

8.8 Entry Collections... 16

9 Names... 17

9.1 Definitions... 17

9.2 Names in General .. 17

9.3 Relative Distinguished Names .. 18

9.4 Distinguished Names... 18

9.5 Alias Names .. 19

Superseded by a more recent version

ii Recommendation X.501 (11/93) Superseded by a more recent version

Page

SECTION 4 – DIRECTORY ADMINISTRATIVE MODEL.. 19

10 Directory Administrative Authority model... 19

10.1 Definitions... 19

10.2 Overview ... 20

10.3 Policy... 20

10.4 Specific administrative authorities .. 21

10.5 Administrative areas and administrative points... 21

10.6 DIT Domain policies ... 24

10.7 DMD policies .. 24

SECTION 5 – MODEL OF DIRECTORY ADMINISTRATIVE AND OPERATIONAL INFORMATION 25

11 Model of Directory Administrative and Operational Information.. 25

11.1 Definitions... 25

11.2 Overview ... 25

11.3 Subtrees ... 26

11.4 Operational attributes .. 28

11.5 Entries.. 29

11.6 Subentries .. 29

11.7 Information model for collective attributes ... 31

SECTION 6 – THE DIRECTORY SCHEMA ... 31

12 Directory Schema ... 31

12.1 Definitions... 31

12.2 Overview ... 32

12.3 Object class definition ... 33

12.4 Attribute type definition .. 35

12.5 Matching rule definition.. 38

12.6 DIT structure definition... 39

12.7 DIT content rule definition.. 41

13 Directory System Schema... 42

13.1 Overview ... 42

13.2 System schema supporting the administrative and operational information model 43

13.3 System schema supporting the administrative model..44

13.4 System schema supporting general administrative and operational requirements 44

13.5 System schema supporting access control... 45

13.6 System schema supporting the collective attribute model... 45

13.7 Maintenance of system schema... 45

14 Directory schema administration.. 46

14.1 Overview ... 46

14.2 Policy objects .. 46

14.3 Policy parameters .. 46

14.4 Policy procedures .. 47

14.5 Subschema modification procedures... 47

14.6 Entry addition and modification procedures ... 47

14.7 Subschema policy attributes.. 48

SECTION 7 – SECURITY ... 51

15 Security model.. 51

15.1 Definitions... 51

15.2 Security policies .. 52

Superseded by a more recent version

Recommendation X.501 (11/93) Superseded by a more recent version iii

Page

16 Basic Access Control.. 53
16.1 Scope and application.. 53
16.2 Basic Access Control model.. 53
16.3 Access control administrative areas .. 56
16.4 Representation of Access Control Information ... 58
16.5 The ACI operational attributes .. 62
16.6 Protecting the ACI... 63
16.7 Access control and Directory operations... 63
16.8 Access Control Decision Function .. 63
16.9 Simplified Access Control... 64

SECTION 8 – DSA MODELS .. 65

17 DSA Models ... 65
17.1 Definitions... 65
17.2 Directory Functional Model .. 65
17.3 Directory Distribution Model .. 66

SECTION 9 – DSA INFORMATION MODEL .. 68

18 Knowledge.. 68
18.1 Definitions... 68
18.2 Introduction ... 68
18.3 Knowledge References.. 69
18.4 Minimum Knowledge.. 71
18.5 First Level DSAs... 72

19 Basic Elements of the DSA Information Model ... 72
19.1 Definitions... 72
19.2 Introduction ... 72
19.3 DSA-Specific Entries and their Names ... 73
19.4 Basic Elements .. 74

20 Representation of DSA Information... 75
20.1 Representation of Directory User and Operational Information ... 76
20.2 Representation of Knowledge References... 76
20.3 Representation of Names and Naming Contexts... 82

SECTION 10 – DSA OPERATIONAL FRAMEWORK... 83

21 Overview .. 83
21.1 Definitions... 83
21.2 Introduction ... 84

22 Operational bindings... 84
22.1 General .. 84
22.2 Application of the operational framework .. 85
22.3 States of cooperation ... 86

23 Operational binding specification and management... 87
23.1 Operational binding type specification.. 87
23.2 Operational binding management.. 88
23.3 Operational binding specification templates ... 89

24 Operations for operational binding management.. 91
24.1 Application-context definition .. 91
24.2 Establish Operational Binding operation... 91
24.3 Modify Operational Binding operation ... 93
24.4 Terminate Operational Binding operation... 94
24.5 Operational Binding Error... 95
24.6 Operational Binding Management Bind and Unbind .. 96

Superseded by a more recent version

iv Recommendation X.501 (11/93) Superseded by a more recent version

Page

Annex A – Object identifier usage... 97

Annex B – Information Framework in ASN.1... 99

Annex C – SubSchema Administration Schema in ASN.1.. 104

Annex D – Basic Access Control in ASN.1 .. 107

Annex E – DSA Operational Attribute Types in ASN.1 ... 110

Annex F – Operational Binding Management in ASN.1 ... 113

Annex G – The Mathematics of Trees ... 117

Annex H – Name Design Criteria .. 118

Annex I – Examples of various aspects of schema.. 120

Annex J – Overview of Basic Access Control Permissions... 124

Annex K – Example of Basic Access Control ... 127

Annex L – DSE Type Combinations ... 144

Annex M – Modelling of knowledge... 146

Annex N – Alphabetical index of definitions .. 151

Annex O – Amendments and corrigenda... 153

Superseded by a more recent version

Recommendation X.501 (11/93) Superseded by a more recent version v

Summary

This Recommendation | International Standard provides a number of different models for the Directory as a framework
for the other Recommendations in the X.500 Series. The models are the overall (functional) model, the administrative
authority model, generic Directory Information models providing Directory User and Administrative User views on
Directory information, generic Directory Systems Agent (DSA) and DSA information models and Operational
Framework and a security model.

Superseded by a more recent version

vi Recommendation X.501 (11/93) Superseded by a more recent version

Introduction

This Recommendation | International Standard, together with the other Recommendation | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

– from different manufacturers;

– under different managements;

– of different levels of complexity; and

– of different ages.

This Recommendation | International Standard provides a number of different models for the Directory as a framework
for the other Recommendations in the ITU-T X.500 Series | parts of ISO/IEC 9594. The models are the overall
(functional) model; the administrative authority model, generic Directory Information Models providing Directory User
and Administrative User views on Directory information, generic DSA and DSA information models, an Operational
Framework and a security model.

The generic Directory Information Models describe, for example, how information about objects is grouped to form
Directory entries for those objects and how that information provides names for objects.

The generic DSA and DSA information models and the Operational Framework provide support for Directory
distribution.

This Recommendation | International Standard provides a specialization of the generic Directory Information Models to
support Directory Schema administration.

This second edition technically revises and enhances, but does not replace, the first edition of this Recommendation |
International Standard. Implementations may still claim conformance to the first edition.

This second edition specifies version 1 of the Directory service and protocols. The first edition also specifies version 1.
Differences between the services and between the protocols defined in the two editions are accommodated using the
rules of extensibility defined in this edition of X.519 | ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, summarizes the usage of ASN.1
object identifiers in the ITU-T X.500-Series Recommendations | ISO/IEC 9594.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains all of the definitions associated with the information framework.

Annex C, which is an integral part of this Recommendation | International Standard, provides the subschema
administration schema in ASN.1.

Annex D, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
Basic Access Control.

Annex E, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains all the definitions associated with DSA operational attribute types.

Annex F, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which
contains all the definitions associated with operational binding management operations.

Annex G, which is not an integral part of this Recommendation | International Standard, summarizes the mathematical
terminology associated with tree structures.

Annex H, which is not an integral part of this Recommendation | International Standard, describes some criteria that can
be considered in designing names.

Annex I, which is not an integral part of this Recommendation | International Standard, provides some examples of
various aspects of Schema.

Superseded by a more recent version

Recommendation X.501 (11/93) Superseded by a more recent version vii

Annex J, which is not an integral part of this Recommendation | International Standard, provides an overview of the
semantics associated with Basic Access Control permissions.

Annex K, which is not an integral part of this Recommendation | International Standard, provides an extended example
of the use of Basic Access Control.

Annex L, which is not an integral part of this Recommendation | International Standard, describes some DSA-specific
entry combinations.

Annex M, which is not an integral part of this Recommendation | International Standard, provides a framework for the
modelling of knowledge.

Annex N, which is not an integral part of this Recommendation | International Standard, lists alphabetically the terms
defined in this Recommendation | International Standard.

Annex O, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 1

INTERNATIONAL STANDARD
Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN SYSTEMS INTERCONNECTION –
THE DIRECTORY – PART 2: MODELS

SECTION 1 – GENERAL

1 Scope

The models defined in this Recommendation | International Standard provide a conceptual and terminological
framework for the other ITU-T X.500 Series Recommendations | parts of ISO/IEC 9594 which define various aspects of
the Directory.

The functional and administrative authority models define ways in which the Directory can be distributed, both
functionally and administratively. Generic DSA and DSA information models and an Operational Framework are also
provided to support Directory distribution.

The generic Directory Information Models describe the logical structure of the DIB from the perspective of Directory
and Administrative Users. In these models, the fact that the Directory is distributed, rather than centralized, is not visible.

This Recommendation | International Standard provides a specialization of the generic Directory Information Models to
support Directory Schema administration.

The other ITU-T Recommendations in the X.500 Series | parts of ISO/IEC 9594 make use of the concepts defined in this
Recommendation | International Standard to define specializations of the generic information and DSA models to
provide specific information, DSA and operational models supporting particular directory capabilities (e.g. Replication):

a) the service provided by the Directory is described (in ITU-T Rec. X.511 | ISO/IEC 9594-3) in terms of
the concepts of the information framework: this allows the service provided to be somewhat independent
of the physical distribution of the DIB;

b) the distributed operation of the Directory is specified (in ITU-T Rec. X.518 | ISO/IEC 9594-4) so as to
provide that service, and therefore maintain that logical information structure, given that the DIB is in fact
highly distributed;

c) replication capabilities offered by the component parts of the Directory to improve overall Directory
performance are specified (in ITU-T Rec. X.525 | ISO/IEC 9594-9).

The security model establishes a framework for the specification of access control mechanisms. It provides a mechanism
for identifying the access control scheme in effect in a particular portion of the DIT, and it defines two flexible, specific
access control schemes which are suitable for a wide variety of applications and styles of use. The security model is
concerned solely with control of access to the Directory information, not control of access to the DSA application-entity
holding the information.

DSA models establish a framework for the specification of the operation of the components of the Directory.
Specifically:

a) the Directory functional model describes how the Directory is manifested as a set of one or more
components, each being a DSA;

b) the Directory distribution model describes the principals according to which the DIB entries and entry-
copies may be distributed among DSAs;

c) the DSA information model describes the structure of the Directory user and operational information held
in a DSA;

d) the DSA operational framework describes the means by which the definition of specific forms of
cooperation between DSAs to achieve particular objectives (e.g. shadowing) is structured.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

2 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard part. At the time of publication, the editions
indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on
this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994, Information technology – Open Systems
Interconnection – The Directory: Overview of concepts, models and services.

– ITU-T Recommendation X.509 (1993) | ISO/IEC 9594-8:1994, Information technology – Open Systems
Interconnection – The Directory: Authentication framework.

– ITU-T Recommendation X.511 (1993) | ISO/IEC 9594-3:1994, Information technology – Open Systems
Interconnection – The Directory: Abstract service definition.

– ITU-T Recommendation X.518 (1993) | ISO/IEC 9594-4:1994, Information technology – Open Systems
Interconnection – The Directory: Procedures for distributed operation.

– ITU-T Recommendation X.519 (1993) | ISO/IEC 9594-5:1994, Information technology – Open Systems
Interconnection –The Directory: Protocol specifications.

– ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994, Information technology – Open Systems
Interconnection –The Directory: Selected attribute types.

– ITU-T Recommendation X.521 (1993) | ISO/IEC 9594-7:1994, Information technology – Open Systems
Interconnection –The Directory: Selected object classes.

– ITU-T Recommendation X.525 (1993) | ISO/IEC 9594-9:1994, Information technology – Open Systems
Interconnection – The Directory: Replication.

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

– ITU-T Recommendation X.8111) | ISO/IEC 10181-1:...1), Information technology – Open Systems
Interconnection – Security Frameworks in Open Systems: Authentication framework.

– ITU-T Recommendation X.8121) | ISO/IEC 10181-2:...1), Information technology – Open Systems
Interconnection – Security Frameworks in Open Systems – Access control framework.

– ITU-T Recommendation X.8131) | ISO/IEC 10181-3:...1), Information technology – Open Systems
Interconnection – Security Frameworks in Open Systems – Non-repudiation framework.

2.2 Paired Recommendations | International Standards equivalent in technical content

– CCITT Recommendation X.200 (1988), Reference Model of Open Systems Interconnection for CCITT
Applications.

ISO 7498:1984/Corr.1: 1988, Information processing systems – Open Systems Interconnection – Basic
Reference Model.

– CCITT Recommendation X.800 (1991), Security architecture for Open Systems Interconnection for
CCITT applications.

– ISO 7498-2:1987, Information processing systems – Open Systems Interconnection – Basic Reference
Model – Part 2: Security Architecture.

1) Presently at the stage of draft.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 3

3 Definitions

For the purposes of this ITU-T Recommendation | International Standard, the following definitions apply.

3.1 OSI Reference Model Definitions

The following terms are defined in CCITT Rec. X.200 | ISO 7498:

a) application-context;

b) application-entity;

c) application-process.

3.2 Basic directory definitions

The following terms are defined in ITU-T Rec. X.500 | ISO/IEC 9594-1:

a) Directory;

b) Directory Access Protocol;

c) Directory Information Base;

d) Directory Operational Binding Protocol;

e) Directory System Protocol;

f) (Directory) user.

3.3 Distributed operation definitions

The following terms are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:

a) access point;

b) hierarchical operational binding;

c) name resolution;

d) non-specific hierarchical operational binding;

e) relevant hierarchical operational binding.

3.4 Replication definitions

The following terms are defined in ITU-T Rec. X.525 | ISO/IEC 9594-9:

a) cache-copy;

b) consumer reference;

c) entry-copy;

d) master DSA;

e) primary shadowing;

f) replicated area;

g) replication;

h) secondary shadowing;

i) shadow consumer;

j) shadow supplier;

k) Shadowed DSA-Specific Entry;

l) shadowing;

m) supplier reference.

The definitions of terms defined in this Recommendation | International Standard are included at the beginning of
individual clauses, as appropriate. An index of these terms is provided in Annex N for easy reference.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

4 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

4 Abbreviations

ACDF Access Control Decision Function

ACI Access Control Information

ACIA Access Control Inner Area

ACSA Access Control Specific Area

ADDMD Administration Directory Management Domain

ASN.1 Abstract Syntax Notation 1

AVA attribute value assertion

BER (ASN.1) Basic Encoding Rules

DACD Directory Access Control Domain

DAP Directory Access Protocol

DIB Directory Information Base

DISP Directory Information Shadow Protocol

DIT Directory Information Tree

DMD Directory Management Domain

DMO Domain Management Organization

DOP Directory Operational Binding Management Protocol

DSA Directory System Agent

DSE DSA-Specific Entry

DSP Directory System Protocol

DUA Directory User Agent

HOB Hierarchical Operational Binding

NHOB Non-specific Hierarchical Operational Binding

NSSR Non-Specific Subordinate Reference

PRDMD Private Directory Management Domain

RHOB Relevant Hierarchical Operational Binding (i.e. either a HOB or NHOB, as appropriate)

RDN Relative Distinguished Name

SDSE Shadowed DSE

5 Conventions

With minor exceptions this Directory Specification has been prepared according to the “Presentation of ITU-T/ISO/IEC
common text” guidelines in the Guide for ITU-T and ISO/IEC JTC 1 Cooperation, March 1993.

The term “Directory Specification” (as in “this Directory Specification”) shall be taken to mean ITU-T Rec. X.501 |
ISO/IEC 9594-2. The term “Directory Specifications” shall be taken to mean the X.500-Series Recommendations and all
parts of ISO/IEC 9594.

This Directory Specification uses the term “1988 edition systems” to refer to systems conforming to the previous (1988)
edition of the Directory Specifications, i.e. the 1988 edition of the series of ITU-T X.500 Recommendations and the
ISO/IEC 9594:1990 edition. Systems conforming to the current Directory Specifications are referred to as “1993 edition
systems”.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 5

SECTION 2 – OVERVIEW OF THE DIRECTORY MODELS

6 Directory Models

6.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

6.1.1 administrative authority: An agent of the Domain Management Organization concerned with various aspects
of Directory administration. The term administrative authority (in lower case) refers to the power vested in an
Administrative Authority by the Domain Management Organization to execute policy.

6.1.2 administration directory management domain (ADDMD): A DMD which is managed by an
Administration.

NOTE 1 – The term Administration denotes a public telecommunications administration or other organization offering
public telecommunications services.

6.1.3 directory administrative and operational information: Information used by the Directory for administrative
and operational purposes.

6.1.4 DIT domain: That part of the global DIT held by the DSAs- forming a DMD.

6.1.5 directory management domain (DMD): A set of one or more DSAs and zero or more DUAs managed by a
single organization.

6.1.6 domain management organization: An organization that manages a DMD (and the associated DIT Domain).

6.1.7 directory user information: Information of interest to users and their applications.

6.1.8 directory system agent (DSA): An OSI application process which is part of the Directory.

6.1.9 (directory) user: The end user of the Directory, i.e. the entity or person which accesses the Directory.

6.1.10 directory user agent (DUA): An OSI application process which represents a user in accessing the Directory.

NOTE 2 – DUAs may also provide a range of local facilities to assist users compose queries and interpret the responses.

6.1.11 private directory management domain (PRDMD): A DMD which is managed by an organization other than
an Administration.

6.2 The Directory and its Users

The Directory is a repository of information. This repository is known as the Directory Information Base (DIB).
Directory services provided to users are concerned with various kinds of access to this information.

The services provided by the Directory are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3.

A Directory user (e.g. a person or an application-process) obtains Directory services by accessing the Directory. More
precisely, a Directory User Agent (DUA) actually accesses the Directory and interacts with it to obtain the service on
behalf of a particular user. The Directory provides one or more access points at which such accesses can take place.
These concepts are illustrated in Figure 1.

A DUA is manifested as an application-process. In any instance of communication each DUA represents precisely one
directory user.

The Directory is manifested as a set of one or more application-processes known as Directory System Agents (DSAs),
each of which provides one or more of the access points. For a more detailed description of DSAs see 17.2.

NOTES

1 Some open systems may provide a centralized DUA function retrieving information for the actual users (application-
processes, persons, etc.). This is transparent to the Directory.

2 The DUA functions and a DSA can be within the same open system, and it is an implementation choice whether to
make one or more DUAs visible within the OSI Environment as application-entities.

3 A DUA may exhibit local behavior and structure which is outside the scope of envisaged Directory Specifications For
example, a DUA which represents a human directory user may provide a range of local facilities to assist its user to compose queries
and interpret the responses.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

6 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

TISO3220-94/d01

Directory
user

DUA

Access Point

The Directory

Figure 1 – Access to the Directory

FIGURE 1/X.501...[D01] = 7 CM

6.3 Directory and DSA Information Models

6.3.1 Generic Models

Directory information may be classified as either:

– user information, placed in the Directory by, or on behalf of, users; and subsequently administered by, or
on behalf of, users. Section 3 provides a model of this information, or;

– administrative and operational information, held by the Directory to meet various administrative and
operational requirements. Section 5 provides a model of this information. Also provided in Section 5 is a
specification of the relationship between the user, administrative and operational information models.

These models, presenting views of the DIB from different perspectives, are referred to as the generic Directory
Information Models.

Directory information models describe how the Directory as a whole represents information. The composition of the
Directory as a set of potentially cooperating DSAs is abstracted from the model. The DSA information model, on the
other hand, is especially concerned with DSAs and the information that must be held by DSAs in order that the set of
DSAs comprising the Directory may together realize the Directory information model. The DSA Information Model is
provided in clauses 18 through 20.

The DSA information model is a generic model describing the information held by DSAs and the relationship between
this information and the DIB and DIT.

Some, but not all, of the information represented by the DSA information model is accessible via the Directory abstract
service. Therefore, administration of all of the information described in these Directory Specifications is not possible via
the Directory abstract service. It is envisioned that administration of DSA information will initially be a local matter, but
that eventually some generic system management service will be employed to provide access to all of the information
described in the DSA information model.

6.3.2 Specific Information Models

Subsequent to the development of generic models for the Directory as a whole and for its components, specific
information models are required for the standardisation of particular aspects of the operation of the Directory and its
components.

The generic Directory Information Models establish a framework for the following specific information models:

– an access control information model;

– a subschema information model;

– a collective attribute information model.

The generic DSA Information Model in turn establishes a framework for the following specific information models:

– a model for a DSA’s distribution knowledge;

– a model for a DSA’s replication knowledge.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 7

6.4 Directory Administrative Authority Model

A Directory Management Domain (DMD) is a set of one or more DSAs and zero or more DUAs managed by a single
organization.

That part of the global DIT held by (the DSAs forming) a DMD is referred to as a DIT Domain. There is a one to one
correspondence between DMDs and DIT Domains. The term DMD is used when referring to the management of the
functional components of the Directory. The term DIT Domain is used when referring to the management of Directory
Information. Two important points regarding this terminology are:

– A DIT Domain consists of one or more disjoint subtrees of the DIT (see 10.5). A DIT Domain shall not
contain the root of the global DIT.

– The term DMD may also be used as a general term when both aspects of management are considered
together.

An organization that manages a DMD (and the associated DIT Domain) is referred to as a Domain Management
Organization (DMO).

NOTE – A DMO may be an Administration (i.e. a public telecommunications administration or other organization offering
public telecommunications services) in which case the managed DMD is said to be an Administration DMD (ADDMD); otherwise it
is a Private DMD (PRDMD). It should be recognized that the provision of support for private directory systems by ITU-T members
falls within the framework of national regulations. Thus, the technical possibilities described may or may not be offered by an
Administration which provides directory services. The internal operation and configuration of private DMDs is not within the scope of
envisaged Directory Specifications.

Figure 2 illustrates the relationship between a DMO, DMD and DIT Domain.

TISO3230-94/d02

Domain Management Organization

Manages Manages

DIT Domain DMD

DUA

DSA

DSA

DSA

DUA

Figure 2 – Directory Management

FIGURE 2/X.501...[D02] = 9 CM

Management of a DUA by a DMO implies an ongoing responsibility for service to that DUA, e.g. maintenance, or in
some cases ownership, by the DMO. The DMO may or may not elect to make use of the Directory Specifications to
govern any interactions among DUAs and DSAs which are wholly within the DMD.

An agent of a DMO concerned with various aspects of Directory administration is referred to as an Administrative
Authority. The term administrative authority (in lower case) refers to the power vested in an Administrative Authority by
a DMO to execute policy.

NOTE – A Directory Administrative Authority Model is specified in Section 4.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

8 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

SECTION 3 – MODEL OF DIRECTORY USER INFORMATION

7 Directory Information Base

7.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

7.1.1 alias entry: An entry of the class “alias” containing information used to provide an alternative name for an
object or alias entry.

7.1.2 direct superclass: Relative to a subclass – an object class from which the subclass is directly derived.

7.1.3 directory information base (DIB): The complete set of information to which the Directory provides access,
and which includes all of the pieces of information which can be read or manipulated using the operations of the
Directory.

7.1.4 directory information tree (DIT): The DIB considered as a tree, whose vertices (other than the root) are the
Directory entries.

NOTE – The term DIT is used instead of DIB only in contexts where the tree structure of the information is relevant.

7.1.5 (directory) entry: A named collection of information within the DIB. The DIB is composed of entries.

7.1.6 immediate superior (noun): Relative to a particular entry or object (it shall be clear from the context which is
intended), the immediately superior entry or object.

7.1.7 immediately superior

7.1.8 (entry): Relative to a particular entry – an entry which is at the initial vertex of an arc in the DIT whose final
vertex is that of the particular entry.

7.1.9 (object): Relative to a particular object – an object whose object entry is the immediate superior of any of the
entries (object or alias) for the second object.

7.1.10 object (of interest): Anything in some ‘world’, generally the world of telecommunications and information
processing or some part thereof, which is identifiable (can be named), and which it is of interest to hold information on
in the DIB.

7.1.11 object class: An identified family of objects (or conceivable objects) which share certain characteristics.

7.1.12 object entry: An entry which is the primary collection of information in the DIB about an object, and which
can therefore be said to represent that object in the DIB.

7.1.13 subclass: Relative to one or more superclasses – an object class derived from one or more superclasses. The
members of the subclass share all the characteristics of the super classes and additional characteristics possessed by none
of the members of those superclasses.

7.1.14 subordinate: The converse of superior.

7.1.15 superclass: Relative to a subclass – a direct superclass, or superclass to an object class that is a direct
superclass (recursively).

7.1.16 superior: (Applying to entry or object) immediately superior, or superior to one which is immediately superior
(recursively).

7.2 Objects

The purpose of the Directory is to hold, and provide access to, information about objects of interest (objects) which exist
in some ‘world’. An object can be anything in that world which is identifiable (can be named).

NOTES

1 The ‘world’ is generally that of telecommunications and information processing or some part thereof.

2 The objects known to the Directory may not correspond exactly with the set of ‘real’ things in the world. For
example, a real-world person may be regarded as two different objects, a business person and a residential person, as far as the
Directory is concerned. The mapping is not defined in this Directory Specification, but is a matter for the users and providers of the
Directory in the context of their applications.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 9

An object class is an identified family of objects, or conceivable objects, which share certain characteristics. Every
object belongs to at least one class. An object class may be a subclass of other object classes, in which case the members
of the former class, the subclass, are also considered to be members of the latter classes, the superclasses. There may be
subclasses of subclasses, etc., to an arbitrary depth.

7.3 Directory Entries

The DIB is composed of (Directory) entries. An entry is a named collection of information.

There are three kinds of entries:

– Object entries – Representing the primary collection of information in the DIB about a particular object.
For any particular object there is precisely one object entry. The object entry is said to represent the
object;

– Alias entries – Used to provide alternative names for object entries;

– Subentries – Representing a collection of information in the DIB used to meet administrative and
operational requirements of the Directory. Subentries are discussed in Section 5.

A user view of the structure of directory entries is depicted in Figure 3 and described in 8.2.

Each entry contains an indication of the object classes, and their superclasses, to which the entry belongs.

Some object entries are specially designated for the purpose of Directory administration. These entries are termed
administrative entries. The Directory user is not normally aware of this, and views these entries in the same way as other
object entries.

7.4 The Directory Information Tree (DIT)

In order to satisfy requirements for the distribution and management of a very large DIB, and to ensure that entries can
be unambiguously named and rapidly found, a flat structure is not likely to be feasible. Accordingly, the hierarchical
relationship commonly found among objects (e.g. a person works for a department, which belongs to an organization,
which is headquartered in a country) can be exploited, by the arrangement of the entries into a tree, known as the
Directory Information Tree (DIT).

NOTE – An introduction to the concepts and terminology of tree structures can be found in Annex G.

The component parts of the DIT have the following interpretations:

a) the vertices are the entries. Object entries may be either leaf or non-leaf vertices, whereas alias entries are
always leaf vertices. The root is not an entry as such, but can, where convenient to do so [e.g. in the
definitions of b) and c) below], be viewed as a null object entry [see d) below];

b) the arcs define the relationship between vertices (and hence entries). An arc from vertex A to vertex B
means that the entry at A is the immediately superior entry (immediate superior) of the entry at B, and
conversely, that the entry at B is an immediately subordinate entry (immediate subordinate) of the entry at
A. The superior entries (superiors) of a particular entry are its immediate superior together with its
superiors (recursively). The subordinate entries (subordinates) of a particular entry are its immediate
subordinates together with their subordinates (recursively);

c) the object represented by an entry is, or is closely associated with, the naming authority (see clause 8) for
its subordinates;

d) the root represents the highest level of naming authority for the DIB.

A superior/subordinate relationship between objects can be derived from that between object entries. An object is an
immediately superior object (immediate superior) of another object if and only if the object entry for the first object is
the immediate superior of any of the object entries for the second object. The terms immediately subordinate object,
immediate subordinate, superior and subordinate (applied to objects) have their analogous meanings.

Permitted superior/subordinate relationships among objects are governed by the DIT structure definitions (see 12.3).

The Directory maintains, in addition to information concerning Directory entries, additional information regarding
collections of Directory entries. Such collections may be subtrees (of the DIT) or subtree refinements (when not a true
tree structure). See clause 11.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

10 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

8 Directory Entries

8.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

8.1.1 attribute: Information of a particular type. Entries are composed of attributes.

8.1.2 user attribute: An attribute representing user information.

8.1.3 attribute hierarchy: The aspect of an attribute that permits a user attribute type to be derived from a more
generic user attribute type. The relationship of the two attribute type definitions (which mandates certain behaviour of
attributes corresponding to these attribute types) is thus hierarchical.

8.1.4 attribute subtype (subtype): An attribute type A is related to another attribute type B by the fact that either A
has been derived from B, in which case A is a direct subtype of B, or A has been derived from an attribute type which is
a subtype of B, in which case A is an indirect subtype of B.

8.1.5 attribute supertype (supertype): An attribute type B is related to another attribute type A by the fact that
either A has been derived from B, in which case B is a direct supertype of A, or A has been derived from an attribute
type which is a subtype of B, in which case B is an indirect supertype of A.

8.1.6 attribute type: That component of an attribute which indicates the class of information given by that attribute.

8.1.7 attribute value: A particular instance of the class of information indicated by an attribute type.

8.1.8 attribute value assertion: A proposition, which may be true, false, or undefined, according to the specified
matching rules for the type, concerning the presence in an entry of an attribute value of a particular type.

8.1.9 auxiliary object class: An object class which is descriptive of entries or classes of entries and is not used for
the structural specification of the DIT.

8.1.10 collective attribute: A user attribute whose values are the same for each member of an entry collection.

8.1.11 direct attribute reference: Reference (in the Directory and DSA abstract service) to one or more attribute
values using the identifier of their attribute type.

8.1.12 distinguished value: An attribute value in an entry which has been designated to appear in the relative
distinguished name of the entry.

8.1.13 entry collection: A collection of entries belonging to an explicitly specified subtree or subtree refinement of
the DIT.

8.1.14 indirect attribute reference: Reference (in the Directory and DSA abstract service) to one or more attribute
values using the identifier of a supertype of their attribute type.

8.1.15 matching rule: A rule, forming part of the Directory Schema, which allows entries to be selected by making a
particular statement (a matching rule assertion) concerning their attribute values.

8.1.16 matching rule assertion: A proposition, which may be true, false or undefined, concerning the presence in an
entry of attribute values meeting the criteria defined by the matching rule.

8.1.17 operational attribute: An attribute representing operational and/or administrative information.

8.1.18 structural object class: An object class used for the structural specification of the DIT.

8.1.19 structural object class of an entry: With respect to a particular entry, the single structural object class used to
determine the DIT Content Rule and DIT Structure Rule applying to the entry. This object class is indicated by the
structuralObjectClass operational attribute. This object class is the most subordinate object class of the entry’s
structural object class superclass chain.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 11

8.2 Overall Structure

As depicted in Figure 3, an entry consists of a set of attributes.

• • •

• • •

TISO3240-94/d03

Attribute

ATTRIBUTE

Attribute Attribute

Attribute
Type

Attribute
Value(s)

Distinguished
Attribute
Value

Attribute
Value

Figure 3 – Structure of an entry

ENTRY

ATTRIBUTE VALUE(S)

Attribute
Value

FIGURE 3/X.501...[D03] = 10 CM

Each attribute provides a piece of information about, or describes a particular characteristic of, the object to which the
entry corresponds.

NOTE 1 – Examples of attributes which might be present in an entry include naming information such as the object’s
personal name, and addressing information, such as its telephone number.

An attribute consists of an attribute type, which identifies the class of information given by an attribute, and the
corresponding attribute values, which are the particular instances of that class appearing in the entry.

Attribute ::= SEQUENCE {

type ATTRIBUTE.&id ({ SupportedAttributes }),

values SET SIZE (1 .. MAX) OF ATTRIBUTE.&TYPE ({ SupportedAttributes}{@type})}

NOTE 2 – Attribute types and attribute values are described in 8.4. and 8.5 respectively.

An attribute may be designated as single valued or multi-valued. The Directory shall ensure that single valued attributes
have only one value.

8.3 Object Classes

Object classes are used in the Directory for a number of purposes:

– describing and categorising objects and the entries that correspond to these objects;

– where appropriate, controlling the operation of the Directory;

– regulating, in conjunction with DIT structure rule specifications, the position of entries in the DIT;

– regulating, in conjunction with DIT content rule specifications, the attributes that are contained in entries;

– identifying classes of entry that are to be associated with a particular policy by the appropriate
administrative authority.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

12 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Some object classes will be internationally standardized. Others will be defined by national administrative authorities
and/or private organizations. This implies that a number of separate authorities will be responsible for defining object
classes and unambiguously identifying them. This is accomplished by identifying each object class with an object
identifier when the object class is defined. A notation for this purpose is provided in 12.3.3.

NOTE – An administrative authority may use object classes other than the useful object classes defined and registered in
the Directory Specifications. An administrative authority may itself specify and register object classes, for example to supplement
those defined in the Directory Specifications

An object class (a subclass) may be derived from an object class (its direct superclass) which is itself derived from an
even more generic object class. For structural object classes, this process stops at the most generic object class, top. An
ordered set of superclasses up to the most superior object class of an object class is its superclass chain.

An object class may be derived from two or more direct superclasses (superclasses not part of the same superclass
chain). This feature of subclassing is termed multiple inheritance.

The specification of an object class identifies whether an attribute is mandatory or optional; this specification also
applies to its subclasses. The subclass may be said to inherit the mandatory and optional attribute specification of its
superclass. The specification of a subclass may indicate that an optional attribute of the superclass is mandatory in the
subclass.

There are three kinds of object class:

– Abstract Object Classes;

– Structural Object Classes; and

– Auxiliary Object Classes.

Each object class is of precisely one of these kinds, and remains of this kind in whatever situation it is encountered
within the Directory. The definition of each object class must specify what kind of object that it is.

All entries shall be a member of the object class top and at least one other object class.

8.3.1 Abstract Object Classes

An abstract object class is used to derive other object classes, providing the common characteristics of such object
classes. An entry shall not belong only to abstract object classes.

top is an abstract object class used as a superclass of all structural object classes.

8.3.2 Structural Object Classes

An object class defined for use in the structural specification of the DIT is termed a structural object class. Structural
object classes are used in the definition of the structure of the names of the objects for compliant entries.

An object or alias entry is characterised by precisely one structural object class superclass chain which has a single
structural object class as the most subordinate object class. This structural object class is referred to as the structural
object class of the entry.

Structural object classes are related to associated entries:

– an entry conforming to a structural object class shall represent the real-world object constrained by the
object class;

– DIT structure rules only refer to structural object classes; the structural object class of an entry is used to
specify the position of the entry in the DIT;

– the structural object class of an entry is used, along with an associated DIT content rule, to control the
content of an entry.

The structural object class of an entry shall not be changed.

8.3.3 Auxiliary Object Classes

Specific applications using the Directory will frequently find it useful to specify an auxiliary object class which may be
used in the construction of entries of several types. For example, message handling systems make use of the auxiliary
class MHS User (see CCITT Rec. X.402 | ISO/IEC 10021-2) to specify a package of mandatory and optional message
handling attributes for entry types whose structural object class is variable, e.g. Organizational Person or Residential
Person.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 13

In certain environments, there is a need to be able to add to or remove from the list of attributes permitted in an entry of a
particular, perhaps standardized, class (or classes).

This requirement may be met by the definition and use of an auxiliary object class having semantics, known and
maintained within a local community, which change from time to time as needed.

This requirement may also be met using the facilities of DIT content rule definitions to dynamically (i.e. without
registration) allow the addition or exclusion of attributes from entries at particular points in the DIT (see 12.3.3).

Auxiliary object classes are descriptive of entries or classes of entries.

Therefore, besides being a member of the structural object class, an entry may be optionally a member of one or more
auxiliary object classes.

An entry’s auxiliary object classes may change over time.

NOTE – The unregistered object class facility, available in the 1988 edition of these Directory Specifications to support the
requirements discussed in this clause, is now deprecated in favour of the use of DIT content rules.

8.3.4 Object Class Definition and the 1988 Edition of this Directory Specification

Object classes defined using the terminology of the 1988 edition of this Directory Specification will not be classified as
one of structural, auxiliary or abstract.

Alias object classes specified using the terminology of the 1988 edition of this Directory Specification may be
considered to be specified as either abstract, auxiliary or structural object classes and deployed in a subschema
accordingly.

8.4 Attribute Types

Some attribute types will be internationally standardized. Other attribute types will be defined by national administrative
authorities and private organizations. This implies that a number of separate authorities will be responsible for defining
types and unambiguously identifying them. This is accomplished by identifying each attribute type with an object
identifier when the type is defined. Using the notation of the ATTRIBUTE information object class defined in 12.4.6,
an attribute type is defined as:

AttributeType ::= ATTRIBUTE.&id

All attributes in an entry shall be of distinct attribute types.

There are a number of attribute types which the Directory knows about and uses for its own purposes. They include:

a) objectClass – An attribute of this type appears in every entry, and indicates the object classes and
superclasses to which the object belongs.

b) aliasedEntryName – An attribute of this type appears in every alias entry, and holds the name (see 8.5)
of the entry which the alias entry references.

These attributes are defined in 12.4.6.

The types of user attributes which shall or which may appear within an object or alias entry are governed by rules
applying to the indicated object classes as well as by the DIT content rule for that entry (see 12.7). The types of
attributes which may appear in a subentry are governed by the rules of the system schema.

Some Directory entries may contain special attributes not normally visible to the Directory User. These attributes are
called operational attributes and are used to meet the administrative and operational requirements of the Directory.
Operational attributes are discussed in more detail in Section 5.

8.5 Attribute Values

Defining an attribute also involves specifying the syntax, and hence data type, to which every value in such attributes
shall conform. Using the notation of the ATTRIBUTE information object class defined in clause 12.4.6, an attribute
value is defined as:

AttributeValue ::= ATTRIBUTE.&Type

At most one of the values of an attribute may be designated as a distinguished value, in which case the attribute value
appears in the relative distinguished name (see 9.3) of the entry.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

14 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

8.6 Attribute Type Hierarchies

When defining an attribute type, the characteristics of some more generic attribute type may optionally be employed as
the basis of the definition. The new attribute type is a direct subtype of the more generic attribute type, the supertype,
from which it is derived.

Attribute hierarchies allow access to the DIB with varying degrees of granularity. This is achieved by allowing the value
components of attributes to be accessed by using either their specific attribute type identifier (a direct reference to the
attribute) or by the identifier of a more generic attribute type identifier (an indirect reference).

Semantically related attributes may be placed in a hierarchical relationship, the more specialized being placed
subordinate to the more generalized. Searching for, or retrieving attributes and their values is made easier by quoting the
more generalized attribute type; a filter item so specified is evaluated for the more specialized types as well as for the
quoted type.

Where subordinate specialized types are selected to be returned as part of a search result these types shall be returned if
available. Where the more general types are selected to be returned as part of a search result both the general and the
specialized types shall be returned, if available. An attribute value shall always be returned as a value of its own attribute
type.

For an entry to contain a value of an attribute type belonging to an attribute hierarchy, that type must be explicitly
included either in the definition of an object class to which the entry belongs, or because the DIT content rule applicable
to that entry permits it.

All of the attribute types in an attribute hierarchy are treated as distinct and unrelated types for the purpose of
administration of the entry and for user modification of entry content.

An attribute value stored in a Directory object or alias entry is of precisely one attribute type. The type is indicated when
the value is originally added to the entry.

8.7 Matching Rules

8.7.1 Overview

Of paramount importance to the Directory is the ability to be able to select a set of entries from the DIB based on
assertions concerning attribute values held by these entries.

A matching rule allows entries to be selected by making a particular assertion concerning their attribute values.

The most primitive type of assertion is the attribute value assertion. More complex assertions may be supported using
matching rule assertions. A matching rule assertion is a proposition, which may be true, false or undefined, concerning
the presence in an entry of attribute values meeting the criteria defined by the matching rule.

An attribute value or matching rule assertion is evaluated based on the matching rule associated with the assertion.

A matching rule is defined through the specification of:

– the range of attribute syntaxes supported by the rule;

– the specific types of matches supported by the rule;

– the syntax required to express an assertion of each specific type of match;

– rules for deriving a value of the assertion syntax from a value of the attribute syntax, if required.

NOTE – No restrictions are placed on the matching rules that may be defined to support a particular application. However,
rules defined to support one particular application may not be widely supported by DUAs and DSAs. Wherever possible the matching
rules defined in ITU-T Rec. X.520 | ISO/IEC 9594-6 should be used in preference to the specification of new ones.

Sometimes there will be a one to one correspondence between a matching rule and the types of matches supported. For
example, the Directory Abstract Service supports a presence matching rule to detect the presence of an attribute in an
entry.

Sometimes there will be a many to many correspondence between a rule and the types of matches supported. For
example, the Directory Abstract Service supports a generic ordering rule allowing greater than or equal and less than or
equal types of matches.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 15

8.7.2 Attribute Value Assertions

An attribute value assertion (AVA) is a proposition, which may be true, false, or undefined, according to the specified
matching rules for the type, concerning the presence in an entry of an attribute value of a particular type. It involves an
attribute type and an attribute value:

AttributeValueAssertion := SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),

assertion ATTRIBUTE.&equality-match.&AssertionType ({SupportedAttributes}{@type})}

The syntax of the assertion component of an AVA is determined by the equality matching rule defined for the attribute
type, and may be different from the syntax of the attribute itself.

An AVA is:

a) undefined, if any of the following hold:

1) the attribute type is unknown,

2) the attribute type has no equality matching rule,

3) the value does not conform to the data type indicated by the syntax of the assertion of the attribute’s
equality matching rule;

NOTE – 2) and 3) normally indicate a faulty AVA; 1) however, may occur as a local situation (e.g. a
particular DSA has not been configured with support for that particular attribute type).

b) true, if the entry contains an attribute of that type, one of whose values matches that value;

c) false, otherwise.

8.7.3 Built-in Matching Rule Assertions

A number of categories of related matching rules, whose semantics are generally understood and applicable to values of
many different types of attributes, are understood by the Directory:

– present;

– equality;

– substrings;

– ordering;

– approximate match.

Syntax for asserting certain types of matches associated with these categories of matching rules has been built into the
Directory Abstract Service:

– a present syntax for the present rule;

– an equality syntax for equality rules;

– greaterOrEqual and lessOrEqual syntaxes for ordering rules;

– initial, any and final syntaxes for substrings rules;

– an approximateMatch syntax for approximate matching rules.

The present syntax may be used for any attribute of any type. The present match tests for the presence of any value of a
particular type.

Specific equality, substrings and ordering matching rules may be associated with an attribute type when it is defined.
These specific rules are used when evaluating assertions of the equality, ordering and substrings rules made using the
syntax built-in to the Directory Abstract Service. If specific rules are not provided, then assertions made concerning
these attributes are undefined.

The approximateMatch syntax supports an approximate matching rule whose definition is a local matter to a DSA.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

16 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

8.7.4 Matching Rule Requirements

In order for the Directory to behave in a consistent and well defined manner, it is necessary that certain restrictions be
placed upon the matching rules that shall be used in conjunction with the syntax that has been built into the Directory
Abstract Service.

For an equality matching rule in which the syntax of the assertion is different from the attribute syntax to which the
matching rule applies, rules for deriving a value of the syntax of the assertion from a value of the attribute syntax shall
be supplied.

Equality matching rules for attributes used for naming shall be transitive, commutative and have an assertion syntax
identical to the attribute syntax.

A transitive matching rule is characterized by the fact that if a value a matches a value b; and if that value b matches a
third value c; then value a must necessarily match value c using the rule.

A commutative matching rule is characterized by the fact that if a value a matches a value b then that value b must
necessarily match the value a. The attribute presentationAddress is an example of an attribute supporting an attribute
syntax whose matching rule is not commutative.

With respect to a specific attribute type, the equality and ordering rules (if both present) must always be related in at
least the following respect: two values are equal using the equality relation if and only if they are equal using the
ordering relation. In addition, the ordering relation must be well-ordered; that is, for all x, y and z for which x precedes y
and y precedes z according to the relation, then x must precede z.

NOTE – These requirements imply that when ordering is defined, it also defines equality.

With respect to a specific attribute type, the equality and substrings rule (if both present) must always be related in at
least the following respect: for all x and y that match according to the equality relation, then for all values z of the
substring relation, the result of evaluating the assertion against the value x must equal the result of evaluating the
assertion against the value y. That is, two values that are indistinguishable using the equality relation must also be
indistinguishable using the substrings relation.

8.7.5 Object Identifier and Distinguished Name equality matching rules

There are a number of equality matching rules used to evaluate attribute value assertions which the Directory knows
about and uses for its own purposes. They include:

– objectIdentifierMatch. This rule is used to match attributes with ObjectIdentifier syntax.

– distinguishedNameMatch. This rule is used to match attributes with DistinguishedName syntax.

8.8 Entry Collections

8.8.1 Overview

A collection of object and alias entries may have certain common characteristics (e.g. certain attributes that have the
same value for each entry of the collection) because of some common characteristic or shared relationship of the
corresponding objects. Such a grouping of entries is termed an entry collection.

Entry collections may contain object and alias entries that are related by their position in the DIT. These collections are
specified as subtrees or subtree refinements as described in Section 5.

An entry may belong to several entry collections subject to administrative limitations imposed in Section 5.

8.8.2 Collective Attributes

When user attributes are shared by the entries of an entry collection, they are termed collective attributes

It is also permissible that the same collective attribute be independently associated with two or more of these collections.
In such cases the entry’s collective attribute has multiple values. Collective attributes shall, therefore, always be
specified as multi-valued.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 17

Although they appear to users of the Directory interrogation operations as entry attributes, collective attributes are
treated differently from entry attributes in the Directory information model. This difference is manifested to users of the
Directory modification operations in that collective attributes cannot be administered (i.e. modified) via the entries in
which they appear but must be administered via the their associated subentries.

NOTE – The independent sources of these values is not manifested to the users of the Directory interrogation operations.

For a collective attribute to appear in an entry, the presence of that attribute type must be permitted according to the DIT
content rule governing the entry.

Entries may specifically exclude a particular collective attribute. This is achieved through the use of the
collectiveExclusions attribute, described in 11.7 and defined in 13.6.

9 Names

9.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

alias, alias name: An alternative name for an object, provided by the use of alias entries.

(alias) dereferencing: The process of converting an object’s alias name to its distinguished name.

distinguished name (of an entry): The name of an entry which is formed from the sequence of the RDNs of the entry
and each of its superior entries. Every object entry, alias entry and subentry has precisely one distinguished name.

(directory) name: A construct that singles out a particular object from all other objects. A name shall be unambiguous
(that is, denote just one object), however it need not be unique (that is, be the only name which unambiguously denotes
the object).

(entry) name: A construct that singles out a particular entry from all other entries.

purported name: A construct which is syntactically a name, but which has not (yet) been shown to be a valid name.

naming authority: An authority responsible for the allocation of names in some region of the DIT.

relative distinguished name (RDN): A set of one or more attribute type and value pairs, each of which matches a
distinct distinguished attribute value of the entry.

9.2 Names in General

A (directory) name is a construct that identifies a particular object from among the set of all objects. A name shall be
unambiguous, that is, denotes just one object. However, a name need not be unique, that is, be the only name that
unambiguously denotes the object. A (directory) name also identifies an entry. This entry is either an object entry that
represents the object or an alias entry which contains information that helps the Directory to locate the entry that
represents the object.

NOTE – The set of names of an object thus comprises the set of alias names for the object, together with the distinguished
name of the object.

An object can be assigned a distinguished name without being represented by an entry in the Directory, but this name is
then the name its object entry would have had were it represented in the Directory.

Syntactically, each name for an object or entry is an ordered sequence of relative distinguished names (see 9.3).

Name ::= CHOICE { - - only one possibility for now - - rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF

RelativeDistinguishedName

DistinguishedName ::= RDNSequence

NOTE – Names which are formed in other ways than as described herein are a possible future extension.

Each initial subsequence of the name of an object is also the name of an object. The sequence of objects so identified,
starting with the root and ending with the object being named, is such that each is the immediate superior of that which
follows it in the sequence.

A purported name is a construct which is syntactically a name, but which has not (yet) been shown to be a valid name.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

18 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

9.3 Relative Distinguished Names

Each object and entry has a relative distinguished name (RDN). An RDN of an object or alias entry consists of a set of
attribute type and value pairs, each of which matches, using the equality matching rule, a distinct distinguished attribute
value of the entry.

NOTE 1 – The equality matching rule can be used because for naming attributes, the attribute syntax and the assertion
syntax of the equality matching rule are the same.

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE

type ATTRIBUTE.&id ({SupportedAttributes}),

value ({ATTRIBUTE.&Type ({SupportedAttributes}{@type})}

The set contains exactly one attribute type and value pair for each distinguished value in the entry; no two attribute type
and value pairs can thus refer to the same attribute.

The RDNs of all of the entries with a particular immediate superior are distinct. It is the responsibility of the relevant
naming authority for an entry to ensure that this is so by appropriately assigning distinguished attribute values.

NOTE 2 – Frequently, an entry will contain a single distinguished value (and the RDN will thus comprise a single type and
value pair); however, under certain circumstances (in order to differentiate), additional values (and hence attribute type and value
pairs) may be used.

A single value instance of any appropriate attribute type may form part of the RDN, depending on the nature of the
object class denoted. Allocation of RDNs is considered an administrative undertaking that may or may not require some
negotiation between involved organizations or administrations. This Directory Specification does not provide such a
negotiation mechanism, and makes no assumption as to how it is performed. The RDN may be modified if necessary by
complete replacement.

NOTE 3 – RDNs are intended to be long-lived so that the users of the Directory can store the distinguished names of
objects (e.g. in the Directory itself) without concerns for their obsolescence. Thus RDNs should be changed cautiously.

NOTE 4 – Changing the RDN of a non-leaf entry automatically changes the corresponding RDN of subordinate entries.

9.4 Distinguished Names

The distinguished name of a given object is defined as that name which consists of the sequence of the RDNs of the
entry which represents the object and those of all of its superior entries (in descending order). Because of the one to one
correspondence between objects and object entries, the distinguished name of an object is the distinguished name of the
object entry.

NOTES

1 It is preferable that the distinguished names of objects which humans have to deal with be user-friendly.

2 ISO 7498-3 defines the concept of a primitive name. A distinguished name can be used as a primitive name for the
object it identifies because:

a) it is unambiguous;

b) it is unique; and

c) the semantics of its internal structure (a sequence of RDNs) need not (but of course may) be understood by the
user of the Directory.

3 Because only the object entry and its superiors are involved, distinguished names of objects can never involve alias
entries.

Alias entries also have distinguished names; however, this name cannot be the distinguished name of an object. When
this distinction needs to be made, the complete term “distinguished name of an alias entry” is used. The distinguished
name of an alias entry is defined, as for the distinguished name of an object entry, to be the sequence of RDNs of the
alias entry and those of all of its superior entries (in descending order).

It also proves convenient to define the ‘distinguished name’ of the root, although this can never be the distinguished
name of an object. The distinguished name of the root is defined to be the null sequence.

An example which illustrates the concepts of RDN and distinguished name appears in Figure 4.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 19

TISO3250-94/d04

ROOT

RDN Distinguished Name

{ }

Countries

Organizations

Organizational Units

People

CN = Smith

(OU = Sales,
L = Ipswich)

O = Telecom

C = GB {C = GB}

{C = GB, O = Telecom,
(OU = Sales, L = Ipswich)}

[C = GB, O = Telecom}

{C = GB, O = Telecom,
(OU = Sales, L = Ipswich),
CN = Smith}

Figure 4 – Determination of Distinguished Names

FIGURE 4/X.501...[D04] = 8.5 CM

9.5 Alias Names

An alias, or an alias name, for an object is a an alternative name for an object or object entry which is provided by the
use of alias entries.

Each alias entry contains, within the aliasedEntryName attribute, a name of some object. The distinguished name of the
alias entry is thus also a name for this object .

NOTE – The name within the aliasedEntryName is said to be pointed to by the alias. It does not have to be the
distinguished name of any entry.

The conversion of an alias name to an object name is termed (alias) dereferencing and comprises the systematic
replacement of alias names, where found within a purported name, by the value of the corresponding aliasedEntryName
attribute. The process may require the examination of more than one alias entry.

Any particular entry in the DIT may have zero or more alias names. It therefore follows that several alias entries may
point to the same entry. An alias entry may point to an entry that is not a leaf entry and may point to another alias entry.

An alias entry shall have no subordinates, so that an alias entry is always a leaf entry.

Every alias entry shall belong to the alias object class which is defined in 12.3.3.

SECTION 4 – DIRECTORY ADMINISTRATIVE MODEL

10 Directory Administrative Authority model

10.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

10.1.1 administrative area: A subtree of the DIT considered from the perspective of administration.

10.1.2 administrative entry: An entry located at an administrative point.

10.1.3 administrative point: The root vertex of an administrative area.

10.1.4 administrative user: A representative of an Administrative Authority. The full definition of the administrative
user concept is outside the scope of this Directory Specification.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

20 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

10.1.5 autonomous administrative area: A subtree of the DIT whose entries are all administered by the same
Administrative Authority. Autonomous administrative areas are non-overlapping.

10.1.6 DIT domain administrative authority: An Administrative Authority in its role as the entity having
responsibility for the administration of a part of the DIT.

10.1.7 DIT domain policy: An expression of the general goals and acceptable procedures for a DIT Domain.

10.1.8 DMD administrative authority: An Administrative Authority in its role as the entity responsible for the
administration of a DMD.

10.1.9 DMD policy: A policy governing the operation of the DSAs in a DMD.

10.1.10 DMO policy: A policy defined by a DMO, expressed in terms of DMD and DIT Domain policies.

10.1.11 inner administrative area: A specific administrative area whose scope is wholly contained within the scope
of another specific administrative area of the same type.

10.1.12 policy: An expression by an Administrative Authority of general goals and acceptable procedures.

10.1.13 policy attribute: A generic term for any Directory operational attribute which expresses policy.

10.1.14 policy object: An entity with which a policy is concerned.

10.1.15 policy procedure: A rule defining how a set of policy objects should be considered and what actions should
be taken as a result of this consideration.

10.1.16 policy parameter: A policy procedure is characterised by certain policy parameters which are subject to
configuration (i.e. choice) by an Administrative Authority.

10.1.17 specific administrative area: A subset (in the form of a subtree) of an autonomous administrative area
defined for a particular aspect of administration: access control, subschema or entry collection administration. When
defined, specific administrative areas of a particular kind partition an autonomous administrative area.

10.1.18 specific administrative point: The root vertex of a specific administrative area.

10.2 Overview

A fundamental objective of the Directory information model is to consider well-defined collections of entries so that
they may be administered consistently as a unit. This clause clarifies the nature and scope of the authorities responsible
for that administration and the means by which their authority is exercised.

The concept of policy, defined in 10.3, provides the mechanism by which Administrative Authorities exercise control of
the Directory.

Some aspects of the Directory Administrative Model are supported by the Model of Directory Administrative and
Operational Information (see clause 11). This is to allow the modeling of information required for the regulation of
Directory user information and for other administrative purposes.

Other aspects of the Directory Administrative Model require support for the distribution of administrative and
operational information among the component parts of the Directory, i.e. DSAs. Clauses 18 through 20 describe a DSA
Information Model to support these requirements.

10.3 Policy

A policy is an expression by an Administrative Authority, acting as an agent of the DMO, of general goals and
acceptable procedures. A policy is defined in terms of rules that are to be enforced (by the Directory, if appropriate) and
in terms of aspects within which an administrative user has some degree of freedom of action and specific
responsibilities.

An Administrative Authority expresses DMO policy in terms of:

– DIT Domain Policy;

– DMD Policy.
These policies may be expressed as policy attributes. A model of DIT policies is defined in 10.6.

NOTE – Clause 13 defines the system schema necessary to support the administration of collective attributes. Clause 14
defines a framework for supporting subschema administration policies. Clause 16 defines a framework supporting access control
policies.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 21

DMD policies relate specifically to DSAs as components of the distributed Directory. These DMD policies are described
in 10.7 which defines a model for DSA administration.

Finally there are policies which relate to external matters (such as bilateral agreements between DMOs) and are therefore
not further described here.

A policy object is an entity with which a policy is concerned (e.g. a subschema administrative area is a policy object).

A policy procedure is a rule defining how a set of policy objects should be considered and what actions should be taken
(and under what circumstances) as a result of this consideration (e.g. clause 14 defines subschema administration policy
procedures).

A policy procedure is characterised by certain policy parameters which are subject to configuration (i.e. choice) by an
Administrative Authority.

Operational attributes are used to represent policy parameters. The values of such an attribute form an expression of
some or all of the policy parameter it represents.

10.4 Specific administrative authorities

The administration of a DIT Domain involves the execution of four functions related to different aspects of
administration:

– naming administration;

– subschema administration;

– security administration;

– collective attribute administration.

A specific Administrative Authority is an Administrative Authority in its role as the entity responsible for one of these
specific aspects of DIT Domain policy.

The term Naming Authority (see clause 9) identifies the role of the Administrative Authority as it pertains to the
allocation of names and administration of the structure of these names. A role of the Subschema Authority is to
implement these naming structures in the subschema.

The term Subschema Authority identifies the role of the Administrative Authority as it pertains to the establishment,
administration and execution of the subschema policy controlling the naming and content of entries in a DIT Domain.
Clause 14 describes Directory support of Subschema Administration.

The term Security Authority (see ITU-T Rec. X.509 | ISO/IEC 9594-8) identifies the role of the Administrative Authority
as it pertains to the establishment, administration and execution of a security policy governing the behaviour of the
Directory with respect to entries in a DIT Domain.

The term Collective Attribute Authority identifies the role of the Administrative Authority as it pertains to the
establishment and administration of collective attributes (see 11.7) in a DIT Domain.

10.5 Administrative areas and administrative points

10.5.1 Autonomous administrative areas

Each entry in the DIT is administered by precisely one Administrative Authority (which may operate in different roles).
An autonomous administrative area is a subtree of the DIT whose entries are all administered by the same
Administrative Authority.

The DIT Domain may be partitioned into one or more non-overlapping autonomous administrative areas.

The set of one or more autonomous administrative areas for which a DMO has administrative authority is its DIT
Domain. This is represented in Figure 5.

10.5.2 Specific administrative areas

In the same way that an Administrative Authority may operate in a specific role, entries in an administrative area may be
considered in terms of a specific administrative function. When viewed in this context an administrative area is termed a
specific administrative area. There are three kinds of specific administrative area:

– subschema administrative areas;

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

22 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

– access control administrative areas;

– collective-attribute administrative areas.

TISO3260-94/d05

AA AA
Autonomous

Area (AA)

DIT
Domain

Figure 5 – A DIT Domain

FIGURE 5/X.501...[D05] = 8 CM

An autonomous administrative area may be considered as implicitly defining a single specific administrative area for
each specific aspect of administration. In this case there is a precise correspondence between each such specific
administrative area and the autonomous administrative area.

Alternatively, for each specific aspect of administration, the autonomous administrative area may be partitioned into
non-overlapping specific administrative areas.

If so partitioned for a particular aspect of administration, each entry of the autonomous administrative area is contained
in one and only one specific administrative area of that aspect.

A specific Administrative Authority is responsible for each specific administrative area. If, for a particular administrative
aspect, an autonomous administrative area is not partitioned, a specific Administrative Authority is responsible for that
administrative aspect for the entire autonomous administrative area.

10.5.3 Inner administrative areas

For the purpose of security or collective attribute administration, inner (administrative) areas within these kinds of
specific administrative areas may be defined:

a) to represent a limited form of delegation; or

b) for administrative or operational convenience (e.g. where the administrative point of a subtree is in a DSA
other than the one holding the entries within the subtree, that subtree may be designated as an inner area
to allow administration via the local DSA).

An inner administrative area may be nested within another inner administrative area.

Inner areas represent areas of limited autonomy. Entries in inner areas are administered by the specific Administrative
Authorities of the specific administrative areas within which they are contained, and also by the Administrative
Authorities of the inner areas within which they are contained. The former authorities have overall control of the policies
regulating these entries while the latter authorities have (limited) control over those aspects of policy delegated to them
by the former.

The rules for nested inner areas, should they be permitted, must be defined as part of the definition of the specific
administrative aspect within which they are contained.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 23

10.5.4 Administrative points

The specification of the extent of an autonomous administrative area is implicit and consists of the identification of a
point in the DIT (the root of the autonomous administrative area’s subtree), an autonomous administrative point, from
which the administrative area proceeds downwards until another autonomous administrative point is encountered, at
which another autonomous area begins.

NOTE 1 – The immediate subordinates of the root of the DIT are autonomous administrative points.

Where an autonomous administrative area is not partitioned for a specific aspect of administration, then the
administrative area for that aspect coincides with the autonomous administrative area. In this case, the autonomous
administrative point is also the specific administrative point for this aspect of administration.

Where an autonomous administrative area is partitioned for a specific aspect of administration, then the specification of
the extent of each specific administrative area consists of the identification of the root of the specific administrative
area’s subtree, a specific administrative point, from which the specific administrative area proceeds downwards until
another specific administrative point (of the same administrative aspect) is encountered, at which another specific
administrative area begins.

Specific administrative areas are always bounded by the autonomous administrative area they partition.

A particular administrative point may be the root of an autonomous administrative area and may be the root of one or
more specific administrative areas.

The specification of the extent of an inner administrative area (within a specific administrative area) consists of the
identification of the root of the inner administrative area’s subtree, an inner administrative point. An inner administrative
area is bounded by the specific administrative area within which it is defined.

An administrative point corresponding to the root of an autonomous administrative area represents a DIT Domain (and
DSA) boundary. That is, its immediate superior in the DIT must be under the administrative authority of another DMD.

NOTE 2 – This implies that a DMO cannot arbitrarily partition a DIT Domain into autonomous administrative areas.

An administrative point is represented in the Directory information model by an entry holding an administrativeRole
attribute. The values of this attribute identify the type of administrative point. This attribute is defined in 13.3.

Clauses 18 through 20 describe how administrative areas are mapped onto DSAs and the DSA information model.

Figure 6 depicts an autonomous administrative area which has been partitioned into two specific administrative areas for
a specific aspect of administration (e.g. access control). In one specific administrative area, a nested inner administrative
area has been created (e.g. because the subtree is to be held in a different DSA from the remainder of the specific
administrative area).

Figure 6 uses the abbreviations AAP (autonomous administrative point), SAP (specific administrative point) and IAP
(inner administrative point).

10.5.5 Administrative entries

An entry located at an administrative point is an administrative entry. Administrative entries may have special entries,
called subentries, as immediate subordinates. The administrative entry and its associated subentries are used to control
the entries encompassed by the associated administrative area.

Where inner administrative areas are used, the scopes of these areas may overlap.

Therefore, for each specific aspect of administrative authority, a definition is required of the method of combination of
administrative information when it is possible for entries to be included in more than one subtree or subtree refinement
associated with an inner area defined for that aspect.

NOTE – It is not necessary for an administrative point to represent each specific aspect of administrative authority. For
example, there might be an administrative point, subordinate to the root of the autonomous administrative area, which is used for
access control purposes only.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

24 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

TISO3270-94/d06

Autonomous
Administrative

Area

Inner
Administrative

Area

IAP

Administrative
Point (AAP & SAP)

Specific
Administraive

Area

SAP

Specific
Administrative

Area

Figure 6 – Administrative Points and Areas

FIGURE 6/X.501...[D06] = 7.5 CM

10.6 DIT Domain policies

A DIT Domain policy has the following components: DIT policy objects, DIT policy procedures, and DIT policy
parameters.

An operational attribute that represents a DIT policy parameter is termed a DIT policy attribute (e.g. subschema
administration operational attributes defined in clause 13 are DIT Domain policy attributes).

For a particular DSA, the possible values of a policy parameter may not correspond to distinct, realisable courses of
action for that component. This may be the case, for example, when the DSA lacks the technical capability to perform all
aspects of the policy procedure (e.g. implement a particular access control scheme). To be well-defined, a policy
procedure must take such circumstances into account as part of its definition.

Specific DIT Domain policy objects and attributes are defined in clause 14 to support subschema administration.

10.7 DMD policies

A DMD policy is a policy that pertains to the operation of one or more of the DSAs in the DMD. A DMD policy may
apply either to all the DSAs in the DMD in a uniform manner, to a subset of the DSAs in the DMD, or it may apply to
one specific DSA.

One sort of DMD policy is to restrict or otherwise control the Directory and DSA abstract service provided by one or
more DSAs.

Examples of such restrictions are:

1) Limiting the basic service provided to Directory (i.e. non-administrative) users to interrogation operations
only, in accordance with CCITT Recommendation F.500.

2) Limiting the service provided to users accessing the DSA indirectly, via chaining, including distinctions
based on whether the user request traversed a trusted path.

3) Limitations on requests accepted from users accessing the DSA directly when chaining is required to
DSAs in the DMD known to be subject to limitations of the kind indicated in the previous point.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 25

SECTION 5 – MODEL OF DIRECTORY ADMINISTRATIVE AND OPERATIONAL
INFORMATION

11 Model of Directory Administrative and Operational Information

11.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

11.1.2 base: The root vertex of the subtree or subtree refinement produced by the evaluation of a subtree
specification.

11.1.3 chop: A set of assertions concerning the names of the subordinates of a base.

11.1.4 directory operational attribute: An operational attribute defined and visible in the Directory Administrative
and Operational information model.

11.1.5 directory system schema: The set of rules and constraints concerning operational attributes and subentries.

11.1.6 entry: A Directory entry or extended Directory entry, depending on the context (either users and their
applications or administration and operation of the Directory) in which the term is used.

11.1.7 subentry: A special sort of entry, known by the Directory, used to hold information associated with a subtree
or subtree refinement.

11.1.8 subtree: A collection of object and alias entries situated at the vertices of a tree. The prefix “sub” emphasizes
that the base (or root) vertex of this tree is usually subordinate to the root of the DIT.

11.1.9 subtree refinement: An explicitly specified subset of the entries in a subtree, where the entries are not located
at the vertices of a single subtree.

11.1.10 subtree specification: The explicit specification of a subtree or subtree refinement. A subtree specification
consists of zero or more of the specification elements base, chop and specification filter. The definition is termed explicit
(in contrast to that of an administrative area) because the portion of the DIT subordinate to the base that is included in
the subtree or subtree refinement is explicitly specified.

11.2 Overview

From an administrative perspective, user information held in the DIB is supplemented by administrative and operational
information represented by:

– operational attributes, which represent information used to control the operation of the Directory (e.g.
access control information) or used by the Directory to represent some aspect of its operation (e.g. time
stamp information); and

– subentries, which associate the values of a set of attributes (e.g. collective attributes) with entries within
the scope of the subentry. The scope of a subentry is a subtree or subtree refinement.

This information, illustrated in Figure 7, may be placed in the Directory by administrative authorities or by DSAs, and is
used by the Directory in the course of its operation.

Two mechanisms in the Directory abstract service that have been added in this edition of the Directory Specifications
that relate to this view of Directory information are:

– EntryInformationSelection has been extended to permit the selection of operational attributes in an
entry; and

– the subentries service control has been added to permit the list and search operations to apply either to
object and alias entries or to subentries.

Access to operational information, as for user information, may be limited by an access control mechanism.

Entries are made visible to Directory users via the Directory abstract service, but their relationships to the DSAs that
ultimately hold them are not. The DSA information model, described in clauses 21 through 24, expresses the mapping of
these entries onto the information repositories of DSAs.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

26 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

TISO3280-94/d07

ADMINISTRATIVE ENTRY

User
Attributes

Operational
Attributes

SUBENTRY

SUBENTRY

ENTRY

Administrative
Area (AA)

User
Attributes

Operational
Attributes

Administrative
Point (AP)

AP

User
Attributes

Operational
Attributes

Figure 7 – Model of Directory Administrative and Operational Information

FIGURE 7/X.501...[D07] = 9.5 CM

11.3 Subtrees

11.3.1 Overview

A subtree is a collection of object and alias entries situated at the vertices of a tree. Subtrees do not contain subentries.
The prefix “sub”, in subtree, emphasizes that the base (or root) vertex of this tree is usually subordinate to the root of
the DIT.

A subtree begins at some vertex and extends to some identifiable lower boundary, possibly extending to leaves. A
subtree is always defined within a context which implicitly bounds the subtree. For example, the vertex and lower
boundaries of a subtree defining a replicated area are bounded by a naming context. Similarly, the scope of a subtree
defining a specific administrative area is limited to the context of an enclosing autonomous administrative area.

11.3.2 Subtree specification

Subtree specification is the definition of a subset of the entries below a specified vertex which forms the base of the
subtree or subtree refinement.

The vertex and/or the lower boundary of the subtree may be implicitly specified, in which case they are determined by
the context within which the subtree is used.

The vertex and/or the lower boundary may be explicitly specified using the mechanism specified in this clause. This
mechanism may also be used to specify subtree refinements which are not true tree structures.

NOTE – The topological concept of a (sub)tree is useful in considering such specifications, although a particular
specification may determine a collection of entries that are not located at the vertices of a single (sub)tree. The term subtree
refinement is preferred when the entries of the collection are not so located.

Specification of a subtree consists of three optional elements of specification which identify the base of the subtree, and
then reduce the collection of subordinate entries. These elements of specification are:

a) Base – The root vertex of the subtree or subtree refinement produced by the evaluation of a subtree
specification;

b) Chop – A set of assertions concerning the names of the subordinate entries; and

c) Specification filter – A proper subset of the assertive capability of a filter applied to the subordinates.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 27

The specification of a subtree or subtree refinement may be represented by the following ASN.1 type:

SubtreeSpecification ::= SEQUENCE {

base [0] LocalName DEFAULT { },

COMPONENTS OF ChopSpecification,

specificationFilter [4] Refinement OPTIONAL }

-- empty sequence specifies whole administrative area

The three components of this sequence correspond to the three specification elements identified above.

Where a value of SubtreeSpecification identifies a collection of entries that are located at the vertices of a single
subtree, the collection is termed a subtree, otherwise the collection is termed a subtree refinement.

The SubtreeSpecification type provides a general purpose mechanism for the specification of subtrees and subtree
refinements. Any particular use of this mechanism defines the specific semantics of precisely what is specified and may
impose limitations or constraints on the components of SubtreeSpecification.

When each of the components of SubtreeSpecification is absent (i.e. a value of type SubtreeSpecification which is an
empty sequence, {}), the subtree so specified is implicitly determined by the context within which the
SubtreeSpecification is used.

These terms are illustrated in Figure 8, for the case where subtrees are deployed within the context of administrative
areas.

TISO3290-94/d08

Local
Name

Subtree

Administrative
Point (AP)

Subtree
Refinement

AA

Administrative
Area (AA)

Figure 8 – Specification of Subtrees and Subtree Refinements
within the context of Administrative Areas

AP

FIGURE 8/X.501...[D08] = 7.5 CM

11.3.3 Base

The base component of SubtreeSpecification represents the root vertex of the subtree or subtree refinement. This may
be an entry which is subordinate to the root vertex of the identified scope or may be the root vertex of the identified
scope itself (the default).

The relative name of the root vertex of the subtree with respect to the root vertex of the identified scope is a value of
type LocalName:

LocalName ::= RDNSequence

Note that the root vertex of the identified scope and the root vertex of the subtree coincide when LocalName is omitted
from SubtreeSpecification.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

28 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

11.3.4 ChopSpecification

The ChopSpecification component consists of a set of assertions concerning the names of the subordinates of a base. It
consists of a value of type ChopSpecification:

ChopSpecification ::= SEQUENCE {

specificExclusions [1] SET OF CHOICE {

chopBefore [0] LocalName,

chopAfter [1] LocalName } OPTIONAL,

minimum [2] BaseDistance DEFAULT 0,

maximum [3] BaseDistance OPTIONAL}

This type is intended to permit the specification of a tree structure (or subset thereof) starting at the base by two methods,
specific exclusions and base distance.

11.3.4.1 Specific Exclusions

The specificExclusions component has two forms, chopBefore and chopAfter, which may be used individually or in
combination.

The chopBefore component defines a list of exclusions, each in terms of some limit point which is to be excluded, along
with its subordinates, from the subtree or subtree refinement. The limit points are the entries identified by a LocalName,
relative to the base .

The chopAfter component defines a list of exclusions, each in terms of some limit point whose subordinates are to be
excluded from the subtree or subtree refinement. The limit points are the entries identified by a LocalName, relative to
the base .

11.3.4.2 Minimum and Maximum

These components allow exclusion of all entries that are superior to entries that are minimum RDN arcs below the base
as well as entries which are subordinate to entries that are maximum RDN arcs below the base. These distances are
expressed by values of the type BaseDistance:

BaseDistance ::= INTEGER (0 .. MAX)

A value of minimum equal to zero (the default), corresponds to the base. An absent maximum component indicates that
no lower limit should be imposed on the subtree or subtree refinement.

11.3.5 Specification Filter

The specificationFilter component consists of a proper subset of the assertive capability of a filter (see ITU-T
Rec. X.511 | ISO/IEC 9594-3) applied to the subordinates of a base. Only entries for which the filter evaluates to true are
included in the resulting subtree refinement. It consists of a value of type Refinement:

Refinement ::= CHOICE {

item [0] OBJECT-CLASS.&id,

and [1] SET OF Refinement ,

or [2] SET OF Refinement,

not [3] Refinement }

A Refinement evaluates to TRUE as if it were a filter making an equality assertion regarding values of the attribute type
objectClass only.

11.4 Operational attributes

There are three varieties of operational attribute: Directory operational attributes, DSA-shared operational attributes, and
DSA-specific operational attributes.

Directory operational attributes occur in the Directory information model and are used to represent control information
(e.g. access control information) or other information provided by the Directory (e.g. an indication of whether an entry is
a leaf or non-leaf entry).

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 29

DSA-shared operational attributes occur only in the DSA Information Model, and are not visible at all in the Directory
Information Models.

DSA-specific operational attributes occur only in the DSA Information Model, and are not visible at all in the Directory
Information Models.

NOTE – These are described in clauses 19 through 20.

The definition and use of each operational attribute is a matter for specification in the appropriate Directory
Specification.

11.5 Entries

11.5.1 Overview

From an administrative perspective, user information held in an entry may be supplemented by administrative and
operational information represented by operational attributes.

The Directory uses the object class attribute and DIT content rules applicable to an entry to control the user attributes
required and permitted in the entry. The operational attributes of an entry are governed by the Directory system schema
(see clause 13) applicable to the entry.

11.5.2 Access to operational attributes

Although not normally visible, the directory operational attributes within entries may be made visible to authorized
(e.g. administrative) users of the directory abstract service. Certain operational attributes (e.g. entryACI, or
modifyTimestamp) might also be available to ordinary users.

11.6 Subentries

11.6.1 Overview

A subentry is a special kind of entry immediately subordinate to an administrative point. It contains attributes that pertain
to a subtree (or subtree refinement) associated with its administrative point. The subentries and their administrative point
are part of the same naming context (see clause 17).

A single subentry may serve all or several aspects of administrative authority. Alternatively, a specific aspect of
administrative authority may be handled through one or more of its own subentries. At most one subentry is permitted
for a subschema administrative authority. Access control and collective attribute authorities may have several subentries.

A subentry is not considered in list and search operations unless the subentries service control is included in the
request.

A subentry shall not have subordinates.

The structure of a subentry corresponding to an administrative point is depicted in Figure 9.

A subentry consists of:

– A commonName attribute, specified in ITU-T Rec. X.521 | ISO/IEC 9594-6 which contains the RDN of
the subentry;

– A subtreeSpecification attribute, specified in clause 13;

– An objectClass attribute, specified in clause 12, which indicates the purpose(s) of the subentry in the
operation of the Directory;

– Other attributes, depending on the values of the objectClass attribute.

Subentries may also contain operational attributes with appropriate semantics (see 11.6.4).

11.6.2 Subentry RDN attribute

The commonName attribute used as the subtree identifier serves to distinguish the various subentries that may be
defined as immediate subordinates of a specific administrative entry.

NOTE – The value of this attribute might be selected to serve as a mnemonic to representatives of the Administrative
Authority.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

30 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

 ...

TISO3300-94/d09

User
Attributes

ADMINISTRATIVE ENTRY

Operational
Attributes

Subentry Subentry

SUBENTRY

Subentry
RDN

Attribute

Subtree
Specification

Attribute

Object
Class

Attribute
Attribute Attribute

Figure 9 – Structure of a Subentry

FIGURE 9/X.501...[D09] = 8.5 CM

11.6.3 Subtree Specification attribute

The subtreeSpecification attribute defines the collection of entries within the administrative area with which the subtree
is concerned.

11.6.4 Use of the Object Class attribute

The content of a subentry is regulated by the values of the subentry’s objectClass attribute.

The objectClass attribute of all subentries shall contain the value subentry. The subentry object class is a structural
object class, defined in clause 13, used to include the commonName, subtreeSpecification and objectClass attributes
in all subentries.

In order to regulate the remaining attributes, the other values of the objectClass attribute, representing the auxiliary
object classes allowed for the subentry, shall be used.

The definition of the semantics of one of these values includes an identification and specification of zero or more
attribute types that must or may appear in the subentry when the objectClass attribute assumes the value. The definition
of the semantics of a value for the objectClass attribute shall include:

– an indication of whether an entry may be included in more than one subtree or subtree refinement
associated with the particular purpose (e.g. it may not be permitted in the case of subschema, but may be
permitted for access control); and if so,

– the effects of the combination of associated subentry attributes, if any.

A subentry of a particular object class may only be subordinate to an administrative entry if the administrativeRole
attribute permits that class of subentry as a subordinate.

As for object and alias entries, information held in a subentry may be supplemented by administrative and operational
information represented by operational attributes. For example, a subentry is permitted to contain entry ACI, provided
only that this ACI is permitted by and consistent with the value of the accessControlScheme attribute of the
corresponding access control specific point. Similarly, a subentry may contain a modifyTimestamp.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 31

11.6.5 Other subentry attributes

The remaining attributes within a subentry depend on the values of the objectClass attribute. For example, a subschema
attribute may only be placed in a subentry if its objectClass attribute has subschema as one of its values.

11.7 Information model for collective attributes

An autonomous administrative area may be designated as a collective attribute specific administrative area in order to
deploy and administer collective attributes. This shall be indicated by the presence of the value id-ar-
collectiveAttributeSpecificArea in the associated administrative entry’s administrativeRole attribute (in addition to
the presence of the value autonomousArea, and possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer collective attributes in the
specific partitions. In this case, the administrative entries for each of the collective attribute specific administrative areas
are indicated by the presence of the value id-at-collectiveAttributeSpecificArea in these entries’ administrativeRole
attributes.

If such an autonomous administrative area is not partitioned, there is a single specific administrative area for collective
attributes encompassing the entire autonomous administrative area.

Additionally, a specific administrative area defined for the purpose of collective attribute administration may be further
divided into nested inner areas for the same purpose. The administrativeRole attribute of the administrative entries for
each such inner administrative area shall indicate this by the presence of the value id-ar-collectiveAttributeInnerArea.

An entry collection and its associated collective attributes are represented in the Directory information model by a
subentry, termed a collective attribute subentry, whose objectClass attribute has the value id-sc-
collectiveAttributeSubentry, as defined in clause 13. A subentry of this class may be the immediate subordinate of an
administrative entry whose administrativeRole attribute contains the value id-ar-collectiveAttributeSpecificArea or
id-ar-collectiveAttributeInnerArea.

Where there are different entry collections within a given collective attribute area, each must have its own subentry.

The entry collection itself is defined by the value of the subtreeSpecification operational attribute of the subentry. This
value defines the scope of the collective attribute subentry. The user attributes of the subentry are the collective attributes
of the entry collection.

NOTE 1 – Because subtree refinement is based on object class, the association of collective attributes with object entries
can be done in a manner that naturally extends the schema for these entries. For example, the organizationalPerson entries of an
organization might be extended with a set of collective attributes appropriate for all persons affiliated with the organization by the
creation of a subentry whose associated subtree is refined to include only organizationalPerson entries and which contains the
organization’s set of collective attributes. Additionally, a DIT Content Rule for such entries would need to be defined to allow
collective attributes to become visible in the entries.

Collective attribute types and non-collective attribute types differ semantically. An attribute type capable of expressing
collective semantics must be designated as a collective attribute type at the time of its definition.

NOTE 2 – Merging procedures employed by the Directory in the case of independent sources of values of a collective
attribute type are described in ITU-T Rec. X.511 | ISO/IEC 9594-3.

Collective attributes may be excluded from appearing in a particular entry through use of the collectiveExclusions
attribute defined in clause 13.

SECTION 6 – THE DIRECTORY SCHEMA

12 Directory Schema

12.1 Definitions

For the purposes of this Directory Specification, the following definitions apply:

12.1.1 attribute syntax: The ASN.1 data type used to represent values of an attribute.

12.1.2 directory schema: The set of rules and constraints concerning DIT structure, DIT content, object classes and
attribute types, syntaxes and matching rules which characterize the DIB. The Directory Schema is manifested as a set of
non-overlapping subschemas each governing entries of an autonomous administrative area (or a subschema specific
partition thereof). The Directory schema is concerned only with Directory User Information.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

32 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

12.1.3 (directory) subschema: The set of rules and constraints concerning DIT structure, DIT content, object classes
and attribute types, syntaxes and matching rules which characterize the DIB entries within an autonomous administrative
area (or a subschema specific partition thereof).

12.1.4 DIT content rule: A rule governing the content of entries of a particular structural object class. It specifies the
auxiliary object classes and additional attribute types permitted to appear, or excluded from appearing, in entries of the
indicated structural object class.

12.1.5 DIT structure rule: A rule governing the structure of the DIT by specifying a permitted superior to
subordinate entry relationship. A structure rule relates a name form, and therefore a structural object class, to superior
structure rules. This permits entries of the structural object class identified by the name form to exist in the DIT as
subordinates to entries governed by the indicated superior structure rules.

12.1.6 governing structure rule (of an entry): With respect to a particular entry, the single DIT structure rule that
applies to the entry. This rule is indicated by the governingStructureRule operational attribute.

12.1.7 name form: A name form specifies a permissible RDN for entries of a particular structural object class. A
name form identifies a named object class and one or more attribute types to be used for naming (i.e. for the RDN).
Name forms are primitive pieces of specification used in the definition of DIT structure rules.

NOTE – Name forms are registered and have global scope. DIT structure rules are not registered and have the scope of the
administrative area with which they are associated.

12.1.8 superior structure rule: With respect to a particular entry, the DIT structure rule governing the entry’s
superior.

12.2 Overview

The Directory Schema is a set of definitions and constraints concerning the structure of the DIT, the possible ways
entries are named, the information that can be held in an entry, the attributes used to represent that information and their
organization into hierarchies to facilitate search and retrieval of the information and the ways in which values of
attributes may be matched in attribute value and matching rule assertions.

NOTE 1 – The schema enables the Directory system to, for example:

– prevent the creation of subordinate entries of the wrong object-class (e.g. a country as a subordinate of a
person);

– prevent the addition of attribute-types to an entry inappropriate to the object-class (e.g. a serial number to
a person’s entry);

– prevent the addition of an attribute value of a syntax not matching that defined for the attribute-type
(e.g. a printable string to a bit string).

Formally, the Directory Schema comprises a set of:

a) Name Form definitions that define primitive naming relations for structural object classes;

b) DIT Structure Rule definitions that define the names that entries may have and the ways in which the the
entries may be related to one another in the DIT;

c) DIT Content Rule definitions that extend the specification of allowable attributes for entries beyond those
indicated by the structural object classes of the entries;

d) Object Class definitions that define the basic set of mandatory and optional attributes that shall be present,
and may be present, respectively, in an entry of a given class, and which indicate the kind of object class
that is being defined (see 7.3);

e) Attribute Type definitions that identify the object identifier by which an attribute is known, its syntax,
associated matching rules, whether it is an operational attribute and if so its type, whether it is a collective
attribute, whether it is permitted to have multiple values and whether or not it is derived from another
attribute type;

f) Matching Rule definitions that define matching rules.

Figure 10 illustrates the relationships between schema and subschema definitions on the one side, and the DIT, directory
entries, attributes, and attribute values on the other.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 33

TISO3310-94/d10

Directory
Schema

Subschema
DIT Structure Rule

Name Form
DIT Content Rule

Object Class

Attribute Types

ANS. 1 type
Matching Rule

Directory
Information Tree

Subschema
Administrative Areas

Entries

Attributes

Values

uses

uses

use

use

rules for

rules for

rules for

rules for

rules for

Figure 10 – Overview of Directory Schema

belong to

belong to

belong to

belong to

FIGURE 10/X.501...[D10] = 10 CM

Figure 10 is interpreted as follows:

– the items listed vertically on the left represent elements of schema;

– the items listed vertically on the right represent instances of corresponding schema items, instantiated
according to the rules defined by these schema items;

– the relationship between items of schema is illustrated by the “uses” relationship;

– the relationship between instances of different aspects of schema is illustrated using the “belong to”
relationship.

The Directory Schema is distributed, like the DIB itself. It is manifested as a set of non-overlapping subschemas each
governing entries of an autonomous administrative area (or a subschema specific partition thereof). A subschema
administrative authority establishes the rules and constraints constituting the subschema.

The subschema administrative authority may elect to use individual elements of the Directory Schema having global
scope which are defined in these Directory Specifications: name forms, object classes and attributes (types and matching
rules). It may also choose to define alternatives to these elements more appropriate to its own environment or it may
choose some intermediate approach, using both standardised and proprietary schema elements.

The subschema administrative authority defines those schema elements whose scope is limited to the subschema: DIT
structure and content rules. In addition, the subschema administrative authority may also specify which matching rules
are applicable to which attribute types.

The Directory Schema is concerned only with directory user information. Although some support for the specification of
operational information is provided in the notation defined in this clause, the regulation of Directory Administrative and
Operational Information is the concern of the Directory System Schema.

NOTE 2 – The Directory System Schema is described in clause 13.

12.3 Object class definition

The definition of an object class involves:

a) indicating which classes this object class is to be a subclass of;

b) indicating what kind of object class is being defined;

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

34 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

c) listing the mandatory attribute types that an entry of the object class shall contain in addition to the
mandatory attribute types of all its superclasses;

d) listing the optional attribute types that an entry of the object class may contain in addition to the optional
attributes of all its superclasses;

e) assigning an object identifier for the object class.

NOTE – Collective attributes shall not appear in the attribute types of an object class definition.

12.3.1 Subclassing

There are restrictions on subclassing, namely:

– only abstract object classes shall be superclasses of other abstract object classes.

There is one special object class, of which every structural object class is a subclass. This object class is called top. top
is an abstract object class.

12.3.2 The object class attribute

Every entry shall contain an attribute of type objectClass to identify the object classes and superclasses to which the
entry belongs. The definition of this attribute is given in 12.4.6. This attribute is multi-valued.

There shall be one value of the objectClass attribute for the entry’s structural object class and a value for each of its
superclasses. top may be omitted.

An entry’s structural object classes shall not be changed. The initial values of the objectClass attribute are provided by
the user when the entry is created.

Where auxiliary object classes are used, an entry may contain values of the objectClass attribute for the auxiliary object
classes and their superclasses allowed by a DIT content rule. If a value for an allowed auxiliary object class is present,
then values for the superclasses of the auxiliary object class shall also be present.

Where the objectClass attribute contains an object identifier value for an auxiliary object class, then the entry shall
contain the mandatory attributes indicated by that object class.

NOTE 1 – The requirement that the objectClass attribute be present in every entry is reflected in the definition of top.

NOTE 2 – Because an object class is considered to belong to all its superclasses, each member of the chain of superclasses
up to top is represented by a value in the objectClass attribute (and any value in the chain may be matched by a filter).

NOTE 3 – Access Control restrictions may be placed on modification of the objectClass attribute.

In conjunction with the applicable DIT content rules, the Directory enforces the defined object class for every entry in
the DIB. Any attempt to modify an entry that would violate the entry’s object class definition that is not explicitly
allowed by the entry’s DIT content rule shall fail.

NOTE 4 – in particular, the Directory will ordinarily prevent:

a) attribute types absent from an entry’s structural object class definition and not permitted by the entry’s
DIT content rule being added to an entry of that object class;

b) an entry being created with one or more absent mandatory attribute types for an object class of the entry;

c) a mandatory attribute type for the object class of the entry being deleted.

12.3.3 Object class specification

Object classes may be defined as values of the OBJECT-CLASS information object class:

OBJECT-CLASS ::= CLASS {
&Superclasses OBJECT-CLASS OPTIONAL,
&kind ObjectClassKind DEFAULT structural,
&MandatoryAttributes ATTRIBUTE OPTIONAL,
&OptionalAttributes ATTRIBUTE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SUBCLASS OF &Superclasses]
[KIND &kind]
[MUST CONTAIN &MandatoryAttributes]
[MAY CONTAIN &OptionalAttributes]
ID &id }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 35

ObjectClassKind ::= ENUMERATED {
abstract (0),
structural (1),
auxiliary (2) }

For an object class which is defined using this information object class:

a) &Superclasses is the set of object classes which are its direct superclasses;

b) &kind is its kind;

c) &MandatoryAttributes is the set of attributes which entries of that class must contain;

d) &OptionalAttributes is the set of attributes which entries of that class may contain, except that if an
attribute appears in both the mandatory and optional sets, it shall be considered mandatory;

e) &id is the object identifier assigned to it.

The object classes previously mentioned (top and alias) are defined below:

top OBJECT-CLASS ::= {
KIND abstract
MUST CONTAIN { objectClass }
ID id-oc-top }

alias OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { aliasedEntryName }
ID id-oc-alias }

NOTE – The object class alias does not specify appropriate attribute types for the RDN of an alias entry. Administrative
Authorities may specify subclasses of the class alias which specify useful attribute types for RDNs of alias entries.

12.4 Attribute type definition

The definition of an attribute type involves:

a) optionally indicating that the attribute type is a subtype of a previously defined attribute type, its direct
supertype;

b) specifying the attribute syntax for the attribute type;

c) optionally indicating the equality, ordering and/or substring matching rule(s) for the attribute type;

d) indicating whether an attribute of this type shall have only one or may have more than one value;

e) indicating whether the attribute type is operational or user;

f) optionally indicating that a user attribute type is collective;

g) optionally indicating that an operational attribute is not user modifiable;

h) for operational attributes, indicating the application;

i) assigning an object identifier to the attribute type.

12.4.1 Operational attributes

Some operational attributes are under direct user control. In other cases the operational attribute’s values are controlled
by the Directory. In the latter case, the definition of the operational attribute shall indicate that no user modifications to
the attribute values are permitted.

The specification of an operational attribute type shall indicate its application, which shall be one of the following:

– Directory operational attribute (e.g. access control attributes);

– DSA-shared operational attribute (e.g. a master-access-point attribute);

– DSA-specific operational attribute (e.g. a copy-status attribute).

12.4.2 Attribute hierarchies

An attribute hierarchy shall contain either user attributes or operational attributes but not both. It follows that a user
attribute shall not be derived from an operational attribute and that an operational attribute shall not be derived from a
user attribute.

An operational attribute that is a subtype of another operational attribute shall have the same application as its supertype.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

36 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

If an attribute type is not a subtype of another attribute type, the attribute syntax and matching rules (if applicable) shall
be specified in the attribute type definition. Specifying an attribute syntax shall be done by directly specifying the ASN.1
data type.

If an attribute type is a subtype of an indicated type, the definition need not specify an attribute syntax, in which case its
attribute syntax is that of its direct supertype. If the attribute syntax is indicated and the attribute has a direct supertype,
the indicated syntax must be compatible with the supertype’s syntax, i.e. every possible value satisfying the attribute’s
syntax must also satisfy the supertype’s syntax.

If an attribute type is a subtype of another attribute type, the matching rules applicable to the supertype are applicable to
the subtype, unless extended or modified in the definition of the subtype. A matching rule defined for a supertype may
not be removed when defining a subtype.

12.4.3 Collective attributes

An operational attribute shall not be defined to be collective.

A user attribute may be defined to be collective. This indicates that the same attribute values will appear in the entries of
an entry collection subject to the use of the collectiveExclusions attribute.

Collective attributes shall be multi-valued.

12.4.4 Attribute syntax

If an equality matching rule is specified for the attribute type, the Directory shall ensure that the correct attribute syntax
is used for every value of this attribute type.

12.4.5 Matching rules

Equality, ordering and substrings matching rules may be indicated in the attribute type definition. The same matching
rule may be used for one or more of these types of matches if the semantics of the rule allows for more than one of these
different types of matches.

NOTE 1 – This fact must be reflected in the definition of the indicated matching rule.

If no equality matching rule is indicated, the Directory:

a) treats values of this attribute as having type ANY, i.e. the Directory may not check that those values
conform with the data type or any other rule indicated for the attribute;

b) does not permit the attribute to be used for naming;

c) does not allow individual values of multi-valued attributes to be added or removed;

d) does not perform comparisons of values of the attribute;

e) will not attempt to evaluate AVAs using values of such an attribute type.

If an equality matching rule is indicated, the Directory:

a) treats values of this attribute as having the type defined in the &Type field in the attribute’s definition (or
that of the attribute from which the attribute is derived);

b) will use the indicated equality matching rule for the purpose of evaluating attribute value assertions
concerning the attribute;

c) will only match a presented value of a suitable data type as specified in the attribute type definition.

NOTE 2 – This subclause applies equally to an attribute whose equality matching rule uses an assertion syntax different
from the syntax of the attribute type.

If no ordering matching rule is indicated the Directory shall treat any assertion of an ordering match using the syntax
provided by the Directory Abstract Service as undefined.

If no substrings matching rule is indicated the Directory shall treat any assertion of an substring match using the syntax
provided by the Directory Abstract Service as undefined.

An attribute type shall only specify matching rules whose definition apply to the attribute’s attribute syntax.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 37

12.4.6 Attribute definition

Attributes may be defined as values of the ATTRIBUTE information object class:

ATTRIBUTE ::= CLASS {
&derivation ATTRIBUTE OPTIONAL,
&Type OPTIONAL, -- either &Type or &derivation required --
&equality-match MATCHING-RULE OPTIONAL,
&ordering-match MATCHING-RULE OPTIONAL,
&substrings-match MATCHING-RULE OPTIONAL,
&single-valued BOOLEAN DEFAULT FALSE,
&collective BOOLEAN DEFAULT FALSE,
-- operational extensions --
&no-user-modification BOOLEAN DEFAULT FALSE,
&usage AttributeUsage DEFAULT userApplications,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SUBTYPE OF &derivation]
[WITH SYNTAX &Type]
[EQUALITY MATCHING RULE &equality-match]
[ORDERING MATCHING RULE &ordering-match]
[SUBSTRINGS MATCHING RULE &substrings-match]
[SINGLE VALUE &single-valued]
[COLLECTIVE &collective]
[NO USER MODIFICATION &no-user-modification]
[USAGE &usage]
ID &id }

AttributeUsage ::= ENUMERATED {
userApplications (0),
directoryOperation (1),
distributedOperation (2),
dSAOperation (3) }

For an attribute which is defined using this information object class:

a) &derivation is the attribute, if any, of which it is a subtype;

b) &Type is its attribute syntax. This shall be an ASN.1 type;

c) &equality-match is its equality matching rule (if any);

d) &ordering-match is its ordering matching rule (if any);

e) &substrings-match is its substrings matching rule (if any);

f) &single-valued is TRUE if it is single valued, and false otherwise;

g) &collective is TRUE if it is a collective attribute, and false otherwise;

h) &no-user-modification is TRUE if it is an operational attribute which cannot be modified by the user.

i) &usage indicates the operational usage of the attribute. userApplications means it is a user attribute,
directoryOperation, distributedOperation, and dSAOperation mean it is a directory, distributed, or
DSA-operational attribute respectively.

j) &id is the object identifier assigned to it.

The attribute types defined in the 1988 edition of this Directory Specification which are known to and used by the
Directory for its own purposes are defined as follows:

objectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
ID id-at-objectClass }

aliasedEntryName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
ID id-at-aliasedEntryName }

NOTE – The matching rules referred to in these definitions are themselves defined in 12.5.2.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

38 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

The objectClass and aliasedEntryName attributes are defined as user attributes even though they are used for Directory
operations and semantically should be defined as operational. This is because these attributes were defined as user
attributes before the operational attribute concept and must remain as user attributes to facilitate interworking between
systems implementing different editions of this Directory Specification.

12.5 Matching rule definition

12.5.1 Overview

The definition of a matching rule involves:

a) defining the syntax of an assertion of the matching rule;

b) specifying the different types of matches supported by the rule;

c) defining the appropriate rules for evaluating a presented assertion with respect to target attribute values
held in the DIB;

d) assigning an object identifier to the matching rule.

A matching rule shall be used to evaluate attribute value assertions of attributes indicating the rule as their equality
matching rule. The syntax used in the attribute value assertion (i.e. the assertion component of the attribute value
assertion) is the matching rule’s assertion syntax.

A matching rule may apply to many different types of attributes with different attribute syntaxes.

The definition of a matching rule shall include a specification of the syntax of an assertion of the matching rule and the
way in which values of this syntax are used to perform a match. This does not require a full specification of the attribute
syntax to which the matching rule may apply. A definition of a matching rule for use with attributes with different
ASN.1 syntaxes shall specify how matches shall be performed.

The applicability of defined matching rules to the attributes contained in a subschema specification (over and above the
matching rules used in the definition of these attribute types) is indicated through the subschema specification
operational attribute matchingRuleUse, defined in 14.7.7.

12.5.2 Matching rule definition

Matching rules may be defined as values of the MATCHING-RULE information object class:

MATCHING-RULE ::= CLASS {
&AssertionType OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SYNTAX &AssertionType]
ID &id}

For a matching rule which is defined using this information object class:

a) &AssertionType is the syntax for an assertion using this matching rule; if it is omitted, the assertion
syntax is the same syntax as that of the attribute the rule is applied to;

b) &id is the object identifier assigned to it.

The objectIdentifierMatch matching rule is defined as follows:

objectIdentifierMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
ID id-mr-objectIdentifierMatch }

A presented value of type object identifier matches a target value of type object identifier if and only if they both have
the same number of integral components and each integral component of the first is equal to the corresponding
component of the second. This matching rule is inherent in the definition of the ASN.1 type object identifier.
objectIdentifierMatch is an equality matching rule.

The distinguishedNameMatch is defined as follows:

distinguishedNameMatch MATCHING-RULE ::= {
SYNTAX DistinguishedName
ID id-mr-distinguishedNameMatch }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 39

A presented distinguished name value matches a target distinguished name value if and only if all of the following are
true:

a) the number of RDNs in each is the same;

b) corresponding RDNs have the same number of AVAs;

c) corresponding AVAs (i.e. those in corresponding RDNs and with identical attribute types) have attribute
values which match for equality (in such a match, the attribute values take the same roles - i.e. as
presented or target value - as the distinguished name which contains them in the overall match).

distinguishedNameMatch is an equality matching rule.

12.6 DIT structure definition

12.6.1 Overview

A fundamental aspect of the Directory schema is the specification of where an entry of a particular class may be placed
in the DIT and how it should be named, considering:

– the hierarchical relationship of entries in the DIT (DIT structure rules);

– the attribute or attributes used to form the RDN of the entry (name forms).

12.6.2 Name form definition

The definition of a name form involves:

a) specifying the named object class;

b) indicating the mandatory attributes to be used for the RDNs for entries of this object class where this
name form applies;

c) indicating the optional attributes if any that may be used for the RDNs for entries of this object class
where this name form applies;

d) assigning an object identifier for the name form.

If different sets of naming attributes are required for entries of a given structural object class, then a name form must be
specified for each distinct set of attributes to be used for naming.

Only structural object classes are used in name forms.

For entries of a particular structural object class to exist in a portion of the DIB, at least one name form for that object
class shall be contained in the applicable part of the schema. The schema contains additional name forms as required.

The RDN attribute (or attributes) need not be chosen from the list of permitted attributes of the structural object class as
specified in its structural or alias object class definition.

NOTE – Naming attributes are governed by DIT content rules in the same way as other attributes.

A name form is only a primitive element of the full specification required to constrain the form of the DIT to that
required by the administrative and naming authorities that determine the naming policies of a given region of the DIT.
The remaining aspects of the specification of DIT structure are discussed in 12.6.5.

12.6.3 Name form specification

Name forms may be defined as values of the NAME-FORM information object class:

NAME-FORM ::= CLASS {
&namedObjectClass OBJECT-CLASS,
&MandatoryAttributes ATTRIBUTE,
&OptionalAttributes ATTRIBUTE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
NAMES &namedObjectClass
WITH ATTRIBUTES &MandatoryAttributes
[AND OPTIONALLY &OptionalAttributes]
ID &id }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

40 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

For a name form which is defined using this information object class:

a) &namedObjectClass is the structural object class it names;

b) &MandatoryAttributes is the set of attributes which must be present in the RDN of the entry it governs;

c) &OptionalAttributes is the set of attributes which may be present in the RDN of the entry it governs;

d) &id is the object identifier assigned to it.

All attribute types in the mandatory and optional lists shall be different.

12.6.4 The structural object class of an entry

Some subschema specifications will include name forms for no more than one structural object class per structural object
class superclass chain represented in the subschema.

Some subschema specifications may include name forms for more than one structural object class per structural object
class superclass chain represented in the subschema.

In either case, with respect to a particular entry, only the most subordinate structural object class in the structural
superclass chain present in the entry’s objectClass attribute determines the DIT content rule and DIT structure rule
applying to the entry. This class is referred to as the structural object class of the entry and is indicated by the
structuralObjectClass operational attribute.

12.6.5 DIT structure rule definition

A DIT structure rule is a specification provided by the subschema administrative authority which the Directory uses to
control the placement and naming of entries within the scope of the subschema. Each object and alias entry is governed
by a single DIT structure rule. A subschema governing a subtree of the DIT will typically contain several DIT structure
rules permitting several types of entries within the subtree.

A DIT structure rule definition includes:

a) an integer identifier which is unique within the scope of the subschema;

b) an indication of the name form for entries governed by the DIT structure rule;

c) the set of allowed superior structure rules, if required.

The set of DIT structure rules for a subschema specify the forms of distinguished names for entries governed by the
subschema.

A DIT structure rule allows entries in a given subschema to subscribe to a particular name form. The form of the last
RDN component of an entry’s DistinguishedName is determined by the name form of the DIT structure rule governing
the entry.

The namedObjectClass component of the name form (the name form’s object class) corresponds to the structural object
class of the entry.

A DIT structure rule shall only permit entries belonging to the structural object class identified by its associated name
form. It does not permit entries belonging to any of the subclasses of the structural object class.

With respect to a particular entry, the DIT structure rule governing the entry is termed the entry’s governing structure
rule. This rule may be identified by examining the entry’s governingStructureRule attribute.

With respect to a particular entry, the DIT structure rule governing the entry’s superior is termed the entry’s superior
structure rule.

An entry may only exist in the DIT as a subordinate to another entry (the superior) if a DIT structure rule exists in the
governing subschema which:

– indicates a name form for the structural object class of the entry, and;

– either includes the entry’s superior structure rule as a possible superior structure rule or does not specify a
superior structure rule, in which case the entry must be a subschema administrative point.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

Recommendation X.501 (11/93) Superseded by a more recent version 41

12.6.6 DIT structure rule specification

The abstract syntax of a DIT structure rule is expressed by the following ASN.1 type:

DITStructureRule ::= SEQUENCE {
ruleIdentifier RuleIdentifier ,

-- must be unique within the scope of the subschema
nameForm NAME-FORM.&id,
superiorStructureRules SET OF RuleIdentifier OPTIONAL }

RuleIdentifier ::= INTEGER

The correspondence between the parts of the definition, as listed in 12.6.5, and the various components of the ASN.1
type defined above, is as follows:

a) the ruleIdentifier component identifies the DIT structure rule uniquely within a subschema;

b) the nameForm component of the DIT structure rule specifies the name form for entries governed by the
DIT structure rule;

c) the superiorStructureRules component identifies permitted superior structure rules for entries governed
by the rule. If this component is omitted, then the DIT structure rule applies to an autonomous
administrative point.

The STRUCTURE-RULE information object class is provided to facilitate the documentation of DIT structure rules:

STRUCTURE-RULE ::= CLASS {
&nameForm NAME-FORM,
&SuperiorStructureRules STRUCTURE-RULE OPTIONAL,
&id RuleIdentifier UNIQUE }

WITH SYNTAX {
NAME FORM &nameForm
[SUPERIOR RULES &SuperiorStructureRules]
ID &id}

12.7 DIT content rule definition

12.7.1 Overview

A DIT content rule specifies the permissible content of entries of a particular structural object class via the identification
of an optional set of auxiliary object classes, mandatory, optional and precluded attributes. Collective attributes shall be
included in DIT Content rules if they are to be permitted in an entry.

A DIT content rule definition includes:

a) an indication of the structural object class to which it applies;

b) optionally, an indication of the auxiliary object classes allowed for entries governed by the rule;

c) optionally, an indication of the mandatory attributes, over and above those called for by the structural and
auxiliary object classes, required for entries governed by the DIT content rule;

d) optionally, an indication of the optional attributes, over and above those called for by the structural and
auxiliary object classes, permitted for entries governed by the DIT content rule;

e) optionally, an indication of optional attribute(s) from the entry’s structural and auxiliary object classes
which are precluded from appearing in entries governed by the rule.

For any valid subschema specification, there is at most one DIT content rule for each structural object class.

Every entry in the DIT is governed by at most one DIT content rule. This rule may be identified by examining the value
of the entry’s structuralObjectClass attribute.

If no DIT content rule is present for a structural object class, then entries of that class shall contain only the attributes
permitted by the structural object class definition.

The DIT content rules of superclasses of the structural object class for an entry do not apply to that entry.

As a DIT content rule is associated with a structural object class, it follows that all entries of the same structural object
class will have the same DIT content rule regardless of the DIT structure rule governing their location in the DIT.

An entry governed by a DIT content rule may, in addition to the structural object class of the DIT structure rule, be
associated with a subset of the auxiliary object classes identified by the DIT content rule. This association is reflected in
the entry’s objectClass attribute.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

42 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

An entry’s content must be consistent with the object classes indicated by its objectClass attribute in the following way:

– mandatory attributes of object classes indicated by the objectClass attribute shall always be present in the
entry;

– optional attributes (not indicated as additional optional or mandatory in the DIT content rule)of auxiliary
object classes indicated by the DIT content rule may only be present if the objectClass attribute indicates
these auxiliary object classes.

Mandatory attributes associated with the structural or indicated auxiliary object classes shall not be precluded in a DIT
content rule.

12.7.2 DIT content rule specification

The abstract syntax of a DIT content rule is expressed by the following ASN.1 type:

DITContentRule ::= SEQUENCE {
structuralObjectClass OBJECT-CLASS.&id,
auxiliaries SET OF OBJECT-CLASS.&id OPTIONAL,
mandatory [1] SET OF ATTRIBUTE.&id OPTIONAL,
optional [2] SET OF ATTRIBUTE.&id OPTIONAL,
precluded [3] SET OF ATTRIBUTE.&id OPTIONAL }

The correspondence between the parts of the definition, as listed in 12.7.1, and the various components of the ASN.1
type defined above, is as follows:

a) the structuralObjectClass component identifies the structural object class to which the DIT content rule
applies;

b) the auxiliaries component identifies the auxiliary object classes allowed for an entry to which the DIT
content rule applies;

c) the mandatory component specifies user attribute types which an entry to which the DIT content rule
applies shall contain in addition to those which it shall contain according to its structural and auxiliary
object classes;

d) the optional components specify user attribute types which an entry to which the DIT content rule applies
may contain in addition to those which it may contain according to its structural and auxiliary object
classes;

e) the precluded component specifies a subset of the optional user attribute types of the structural and
auxiliary object classes which are precluded from an entry to which the DIT content rule applies.

The CONTENT-RULE information object class is provided to facilitate the documentation of DIT content rules:

CONTENT-RULE ::= CLASS {
&structuralClass OBJECT-CLASS.&id UNIQUE,
&Auxiliaries OBJECT-CLASS OPTIONAL,
&Mandatory ATTRIBUTE OPTIONAL,
&Optional ATTRIBUTE OPTIONAL,
&Precluded ATTRIBUTE OPTIONAL }

WITH SYNTAX {
STRUCTURAL OBJECT-CLASS &structuralClass
[AUXILIARY OBJECT-CLASSES &Auxiliaries]
[MUST CONTAIN &Mandatory]
[MAY CONTAIN &Optional]
[MUST-NOT CONTAIN &Precluded] }

13 Directory System Schema

13.1 Overview

The Directory System Schema is a set of definitions and constraints concerning the information that the Directory itself
needs to know in order to operate correctly. This information is specified in terms of subentries and operational
attributes.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 43

NOTE – The system schema enables the directory system to, for example:

– prevent the association of subentries of the wrong type with administrative entries (e.g. the creation of a
subschema subentry subordinate to an administrative entry defined only as a security administrative entry.);

– prevent the addition of inappropriate operational attributes to an entry or subentry (e.g. a subschema
operational attribute to a person’s entry).

Formally, the Directory System Schema comprises a set of:

a) Object class definitions that define the attributes that shall or may be present in a subentry of a given
class;

b) Operational Attribute Type definitions that specify the characteristics of operational attributes known and
used by the Directory.

The complete definition of an operational attribute includes a specification of the way in which the Directory uses and (if
appropriate) provides or manages, the attribute in the course of its operation.

The Directory System Schema is distributed, like the DIB itself. Each Administrative Authority establishes the part of
the system schema that will apply for those portions of the DIB administered by the authority.

The Directory System Schema defined in this Directory Specification is an integral part of the Directory System itself.
Each DSA participating in a directory system requires a full knowledge of the system schema established by its
Administrative Authority. The system schema for an Administrative Area may be defined by the Administrative
Authority using the notation defined in this clause.

The Directory System Schema is not regulated by DIT structure or content rules. When an element of system schema is
defined, a specification of how it is used and where it appears in the DIT is provided.

Certain aspects of the directory system schema are specified in the following subclauses.

The directory system schema required to support directory distribution is specified in clauses 21 through 24.

13.2 System schema supporting the administrative and operational information model

Although subentry and subentryNameForm are specified using the notation of clause 12, subentries are not regulated by
DIT structure or DIT content rules.

13.2.1 The Subentry object class

The subentry object class is a structural object class and is defined as follows:

subentry OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND structural
MUST CONTAIN { commonName | subtreeSpecification }
ID id-sc-subentry }

13.2.2 The Subentry name form

The subentryNameForm name form allows entries of class subentry to be named using the commonName attribute:

subentryNameForm NAME-FORM ::= {
NAMES subentry
WITH ATTRIBUTES { commonName }
ID id-nf-subentryNameForm }

No other name form shall be used for subentries.

13.2.3 The Subtree Specification operational attribute

The subtreeSpecification operational attribute, whose semantics are specified in clause 10, is defined as follows:

subtreeSpecification ATTRIBUTE ::= {
WITH SYNTAX SubtreeSpecification
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-oa-subtreeSpecification }

This attribute is present in all subentries.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

44 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

13.3 System schema supporting the administrative model

The Administrative Model defined in clause 10 requires that administrative entries contain an administrativeRole
attribute to indicate that the associated administrative area is concerned with one or more administrative roles.

The administrativeRole operational attribute is specified as follows:

administrativeRole ATTRIBUTE ::= {
WITH SYNTAX OBJECT-CLASS.&id
EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
ID id-oa-administrativeRole }

The values of this attribute defined by this standard are:

id-ar-autonomousArea
id-ar-accessControlSpecificArea
id-ar-accessControlInnerArea
id-ar-subschemaAdminSpecificArea
id-ar-collectiveAttributeSpecificArea
id-ar-collectiveAttributeInnerArea

The semantics of these values are defined in clause 11.

The administrativeRole operational attribute is also used to regulate the subentries permitted to be subordinate to an
administrative entry. A subentry not of a class permitted by the administrativeRole attribute may not be subordinate to the
administrative entry.

13.4 System schema supporting general administrative and operational requirements

13.4.1 Timestamps

The createTimestamp indicates the time that an entry was created:

createTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime

-- as per 34.3 b) or c) of CCITT Rec. X.208 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-createTimestamp }

The modifyTimeStamp indicates the time that an entry was last modified:

modifyTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime

-- as per 34.3 b) or c) of CCITT Rec. X.208 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-modifyTimestamp }

The generalizedTimeMatch and generalizedTimeOrderingMatch matching rules are defined in ITU-T Rec. X.521 |
ISO/IEC 9594-6.

13.4.2 Entry Modifier operational attributes

The creatorsName operational attribute indicates the distinguished name of the Directory user that created an entry:

creatorsName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-creatorsName }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 45

The modifiersName operational attribute indicates the distinguished name of the Directory user that last modified the
entry:

modifiersName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-modifiersName }

13.5 System schema supporting access control

13.5.1 Access control subentries

If a subentry contains prescriptive access control information, then its objectClass attribute shall contain the value
accessControlSubentry:

accessControlSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-accessControlSubentry }

A subentry of this object class shall contain precisely one prescriptive ACI attribute of a type consistent with the value of
the id-sc-accessControlScheme attribute of the corresponding access control specific point.

13.6 System schema supporting the collective attribute model

Subentries supporting collective attribute specific or inner administrative areas are defined as follows:

collectiveAttributeSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-collectiveAttributeSubentry }

A subentry of this object class shall contain at least one collective attribute.

Collective attributes contained within a subentry of this object class are conceptually available for interrogation and
filtering at every entry within the scope of the subentry’s subtreeSpecification attribute, but are administered via the
subentry.

The collectiveExclusions operational attribute allows particular collective attributes to be excluded from an entry:

collectiveExclusions ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
ID id-oa-collectiveExclusions }

This attribute is optional for every entry.

The OBJECT IDENTIFIER value id-oa-excludeAllCollectiveAttributes may be used, by its presence as a value of the
collectiveExclusions attribute, to exclude all collective attributes from an entry.

13.7 Maintenance of system schema

It is the responsibility of DSAs to maintain consistency of subentries and operational attributes with the system schema.
Inconsistency between various aspects of system schema, and between system schema and subentries and operational
attributes, shall not occur.

The Directory executes entry addition and modification procedures whenever a new subentry is added to the DIT or an
existing subentry is modified. The Directory shall determine whether the proposed operation would violate the system
schema; if it does the modification shall fail.

In particular, the Directory ensures that subentries added to the DIT are consistent with the values of the
administrativeRole attribute, that the attributes within the subentry are consistent with the values of the subentry’s
objectClass attribute.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

46 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

The value of the administrativeRole attribute may be modified to permit classes of subentries to be subordinate to the
administrative entry that are not yet present. The value of the administrativeRole attribute shall not be modified so as to
cause existing subentries to become inconsistent.

The Directory also ensures, where the values of operational attributes are provided by the Directory, that they are
correct.

14 Directory schema administration

14.1 Overview

The overall administration of the directory schema of the global DIT is realized through independent administration of
the subschemas of the autonomous administrative areas of the DIT Domains that constitute the global DIT.

Coordination of the administration of the directory schema at boundaries between DIT Domains is a subject for bilateral
agreement between DMOs and is beyond the scope of this Directory Specification.

The subschema administrative capabilities defined in this clause for the purpose of managing a DIT domain include:

1) creation, deletion and modification of subschema subentries;

2) support of the publication mechanism for the purpose of permitting DSAs to include schema information
in operational binding protocol exchanges and DUAs to retrieve subschema information via DAP;

3) subschema regulation for the purpose of ensuring that any modify operations will be performed in
accordance with the applicable subschema specification.

14.2 Policy objects

A subschema policy object may be one of the following:

– a subschema administrative area;

– an object or alias entry within a subschema administrative area;

– a user attribute of such an object or alias entry.

An autonomous administrative area may be designated as a subschema specific administrative area in order to administer
the subschema. This shall be indicated by the presence of the value id-oa-subschemaAdminSpecificArea in the associated
administrative entry’s administrativeRole attribute (in addition to the presence of the value id-oa-autonomousArea, and
possibly other values).

Such an autonomous administrative area may be partitioned in order to deploy and administer the subschema of the
specific partitions. In this case, the administrative entries for each of the subschema specific administrative areas are
indicated by the presence of the value id-oa-subschemaAdminSpecificArea in these entries’ administrativeRole attributes.

14.3 Policy parameters

Subschema policy parameters are used to express the policies of the subschema Administrative Authority. These
parameters, and the operational attributes used to represent them, are:

– a DIT structure parameter: used to define the structure of the subschema administrative area and to store
information about obsolete DIT structure rules which some entries may have identified as their governing
DIT structure rule. This parameter is represented by the dITStructureRules and nameForms operational
attributes;

– a DIT content parameter: used to define the type of content of object and alias entries contained within the
subschema administrative area and to store information about obsolete DIT content rules which the
Directory may have used in determining the content of some entries. This parameter is represented by the
dITContentRules, objectClasses and attributeTypes operational attributes;

– a matching capability parameter: used to define the matching capabilities supported by matching rules as
applied to the attributes types defined in a subschema administrative area. This parameter is represented
by the matchingRules and matchingRuleUse operational attributes.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 47

A single subschema subentry is used by the subschema authority to administer the subschema for the subschema
administrative area. For this purpose the subschema subentry contains the operational attributes representing the policy
parameters used to express subschema policies.

The subschema subentry is specified as follows:

subschema OBJECT-CLASS ::= {
KIND auxiliary
MAY CONTAIN {

dITStructureRules |
nameForms |
dITContentRules |
objectClasses |
attributeTypes |
matchingRules |
matchingRuleUse }

ID id-sc-subschema }

The operational attributes of the subschema subentry are defined in 14.7.

14.4 Policy procedures

There are two policy procedures associated with subschema administration:

– a subschema modification procedure;

– an entry modification procedure.

14.5 Subschema modification procedures

A subschema authority may administer a subschema in a dynamic fashion, including making restrictive subschema
modifications. This may be accomplished by modifying the values of the subschema operational attributes, using
Directory modify operations, effectively changing the subschema which is in force in the subschema administrative area

Before the subschema authority extends the DIT structure or DIT content rules by adding a new rule, or by adding an
auxiliary object class, or a mandatory or an optional attribute to an existing rule, the referenced schema information shall
be described in the appropriate attribute in the subschema subentry. Name forms, object classes, attribute types and
matching rules that are referenced (directly or indirectly) by a dITStructureRule, dITContentRule or by a
matchingRuleUse attribute shall not be removed from the subschema subentry.

The definition of information objects such as object classes, attribute types, matching rules and name forms which have
been registered (i.e. assigned a name of type object identifier) are static and cannot be modified. Changes to the
semantics of such information objects requires the assignment of new object identifiers.

DIT structure and DIT content rules may be active or obsolete. Only active rules are used to regulate the the DIT. The
identification and preservation of obsolete rules is an administrative convenience allowing location (and possibly repair)
of entries added under old rules that have since changed.

This obsolete mechanism shall be used where restrictive changes are made to DIT structure or DIT content rules creating
inconsistencies in the DIB, otherwise the appropriate active rule may be modified directly. The Directory permits
deletion of obsolete rules at any time.

NOTE – The obsolete mechanism provided in subschema operational attributes ensures that all entries with obsolete
schema can be identified and repaired before the obsolete subschema operational attribute is deleted.

It is the responsibility of the Subschema Administrative Authority to maintain consistency of entries with the active
subschema by means of the Directory abstract service, or by other local means. This may be done at the convenience of
the Subschema Administrative Authority. It is not defined when such an adjustment of inconsistent entries should be
done. However, deletion of obsolete rules prior to the location and repair of inconsistent entries will make this task more
difficult.

14.6 Entry addition and modification procedures

The Directory executes entry addition and modification procedures whenever a new entry is added to the DIT or an
existing entry is modified. The Directory must determine whether the proposed operation would violate a subschema
policy.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

48 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

In particular, the Directory shall ensure that entries added to the DIT are consistent with appropriate active DIT structure
and DIT content rules.

The Directory shall allow interrogation of entries which are inconsistent with their active rules.

The Directory enforces active rules when requested to modify the DIB. If an entry is inconsistent with its active rule, a
request to modify the entry shall be permitted if it repairs an existing inconsistency, or does not introduce a new
inconsistency. A request which introduces a new inconsistency shall fail.

For any valid entry in a valid subschema administrative area, there can be only one most subordinate structural object
class in the structural object class superclass chain. When an entry is added to the DIT, the Directory determines this
most subordinate structural object class from the objectClass attribute values provided and permanently associates it with
the entry via the entry’s structuralObjectClass attribute.

When an entry is created, values of the objectClass attribute shall be provided so that the content of the entry is consistent
with the DIT content rule governing the entry. In particular, where a value of the objectClass attribute identifies a
particular object class having superclasses other than top, then values for all of these superclasses must also be provided.
Otherwise the Directory operation creating the entry shall fail.

Directory users may subsequently add or delete values of the objectClass attribute for the auxiliary object classes of an
entry. The content of an entry shall remain consistent with the DIT content rule governing the entry following a change
to the values of the objectClass attribute. In particular, where a value of the objectClass attribute identifies a particular
object class having superclasses other than top is added or deleted, then values for all of these superclasses must also be
added or deleted, except where such superclasses are also present in the superclass chains associated with other values
not being added or deleted respectively.

14.7 Subschema policy attributes

The following subclauses specify the subschema policy operational attributes. These attributes are:

– present in the subschema subentry. The values of these attributes are administered via Directory modify
operations using the distinguished name of the subschema subentry;

– available for interrogation in all entries governed by the subschema.

The ASN.1 parameterized type DirectoryString { ub-schema }, used in the following definitions, is defined in ITU-T
Rec. X.520 | ISO/IEC 9594-6.

The integerFirstComponentMatch and objectIdentifierFirstComponentMatch equality matching rules are also defined in
ITU-T Rec. X.520 | ISO/IEC 9594-6.

For management purposes, a number of human readable name components and a description component are optionally
allowed as components of a number of the subschema policy operational attributes defined in the following subclauses.

A number of subschema policy operational attributes defined in the following clauses contain an obsolete component.
This component is used to indicate whether the definition is active or obsolete in the subschema administrative area.

14.7.1 DIT Structure Rules operational attribute

The dITStructureRules operational attribute defines the DIT structure rules which are in force within a subschema:

dITStructureRules ATTRIBUTE ::= {
WITH SYNTAX DITStructureRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITStructureRule }

DITStructureRuleDescription ::= SEQUENCE {
COMPONENTS OF DITStructureRule,
name [1] SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }

The dITStructureRules operational attribute is multi-valued; each value defines one DIT structure rule.

The components of dITStructureRule have the same semantics as the corresponding ASN.1 definition in 12.6.6.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 49

14.7.2 DIT Content Rules operational attribute

The dITContentRules operational attribute defines the DIT content rules which are in force within a subschema. Each
value of the operational attribute is tagged by the object identifier of the structural object class to which it pertains:

dITContentRules ATTRIBUTE ::= {
WITH SYNTAX DITContentRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITContentRules }

DITContentRuleDescription ::= SEQUENCE {
COMPONENTS OF DITContentRule,
name [4] SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema }OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }

The dITContentRules operational attribute is multi-valued; each value defines one DIT content rule.

The components of dITContentRule have the same semantics as the corresponding ASN.1 definition in 12.7.2.

14.7.3 Matching Rules operational attribute

The matchingRules operational attribute specifies the matching rules used within a subschema:

matchingRules ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-matchingRules }

MatchingRuleDescription ::= SEQUENCE {
identifier MATCHING-RULE.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] DirectoryString { ub-schema } }

-- describes the ASN.1 syntax

The identifier component of a value of the matchingRules attribute is the object identifier identifying the matching rule.

The information component contains the ASN.1 definition of the attribute syntaxes to which the matching rule applies,
and a natural language description of the algorithms associated with the rule.

The matchingRules operational attribute is multi-valued; each value describes one matching rule.

14.7.4 Attribute Types operational attribute

The attributeTypes operational attribute specifies the attribute types used within a subschema:

attributeTypes ATTRIBUTE ::= {
WITH SYNTAX AttributeTypeDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-attributeTypes }

AttributeTypeDescription ::= SEQUENCE {
identifier ATTRIBUTE.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] AttributeTypeInformation }

The identifier component of a value of the attributeTypes attribute is the object identifier identifying the attribute type.

The attributeTypes operational attribute is multi-valued; each value describes one attribute type:

AttributeTypeInformation ::= SEQUENCE {
derivation [0] ATTRIBUTE.&id OPTIONAL,
equalityMatch [1] MATCHING-RULE.&id OPTIONAL,
orderingMatch [2] MATCHING-RULE.&id OPTIONAL,

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

50 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

substringsMatch [3] MATCHING-RULE.&id OPTIONAL,
attributeSyntax [4] DirectoryString { ub-schema } OPTIONAL,
multi-valued [5] BOOLEAN DEFAULT TRUE,
collective [6] BOOLEAN DEFAULT FALSE,
userModifiable [7] BOOLEAN DEFAULT TRUE,
application AttributeUsage OPTIONAL }

The derivation, equalityMatch, attributeSyntax, multi-valued, collective and application components have the same
semantic as the equivalent pieces of notation introduced by the corresponding information object class.

NOTE – The data type of the type reference is identified by a text string. Identifying the data type in a machine processable
form is for further study.

14.7.5 Object Classes operational attribute

The objectClasses operational attribute specifies the object classes used within a subschema.

objectClasses ATTRIBUTE ::= {
WITH SYNTAX ObjectClassDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-objectClasses }

ObjectClassDescription ::= SEQUENCE {
identifier OBJECT-CLASS.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ObjectClassInformation }

The identifier component of a value of the objectClasses attribute is the object identifier identifying the object class.

The objectClasses operational attribute is multi-valued; each value describes one object class:

ObjectClassInformation ::= SEQUENCE {
subclassOf SET OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [3] SET OF ATTRIBUTE.&id OPTIONAL,
optionals [4] SET OF ATTRIBUTE.&id OPTIONAL }

The subclassOf, kind, mandatories and optionals components have the same semantics as the corresponding pieces of
notation introduced by the corresponding information object class.

14.7.6 Name Forms operational attribute

The nameForms operational attribute specifies the name forms used within a subschema.

nameForms ATTRIBUTE ::= {
WITH SYNTAX NameFormDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-nameForms }

NameFormDescription ::= SEQUENCE {
identifier NAME-FORM.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] NameFormInformation }

The identifier component of a value of the nameForms attribute is the object identifier identifying the object class.

The nameForms operational attribute is multi-valued; each value describes one name form:

NameFormInformation ::= SEQUENCE {
subordinate OBJECT-CLASS.&id,
namingMandatories SET OF ATTRIBUTE.&id,
namingOptionals SET OF ATTRIBUTE.&id OPTIONAL }

The subordinate, mandatoryNamingAttributes and optionalNamingAttributes components have the same semantics as the
corresponding pieces of notation introduced by the corresponding information object class.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 51

14.7.7 Matching Rule Use operational attribute

The matchingRuleUse operational attribute is used to indicate the attribute types to which a matching rule applies in a
subschema:

matchingRuleUse ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleUseDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-matchingRuleUse }

MatchingRuleUseDescription ::= SEQUENCE {
identifier MATCHING-RULE.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] SET OF ATTRIBUTE.&id }

The identifier component of a value of the matchingRulesUse attribute is the object identifier identifying the matching
rule.

The information component of a value identifies the set of attribute types to which the matching rule applies.

14.7.8 Structural Object Class operational attribute

Every entry in the DIT has a structuralObjectClass operational attribute which indicates the structural object class of the
entry:

structuralObjectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-soa-structuralObjectClass }

14.7.9 Governing Structure Rule operational attribute

Every entry in the DIT has a governingStructureRule operational attribute which indicates the governing structure rule of
the entry:

governingStructureRule ATTRIBUTE ::= {
WITH SYNTAX INTEGER
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-soa-governingStructureRule }

SECTION 7 – SECURITY

15 Security model

15.1 Definitions

This Directory Specification makes use of the following terms defined in CCITT Rec. X.200 and ISO/IEC 7498-2:

– access control;

– authentication;

– security policy.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

52 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

The following terms are defined in this Directory Specification:

access control scheme: The means by which access to Directory information and potentially to access rights themselves
may be controlled.

protected item: An element of Directory information to which access can be separately controlled. The protected items
of the Directory are entries, attributes, attribute values, and names.

15.2 Security policies

The Directory exists in an environment where various administrative authorities control access to their portion of the
DIB. Such access is generally in conformance with some administration controlled security policy (see ITU-T
Rec. X.509 | ISO/IEC 9594-8).

Two aspects or components of the security policy which effect access to the Directory are the authentication procedures
and the access control scheme.

NOTE – Clause 16 defines two access control schemes known as Basic Access Control and Simplified Access Control.
These schemes may be used in conjunction with local administrative controls; however, since local administrative policy has no
standardized representation, it cannot be communicated in shadowed information.

15.2.1 Authentication procedures and mechanisms

Authentication procedures and mechanisms in the context of the Directory include the methods to verify and propagate
where necessary:

– the identity of DSAs and Directory users;

– the identity of the origin of information received at an access point.

NOTE 1 – The administrative authority may stipulate different provisions for the authentication of administrative users as
compared to provisions for the authentication of non-administrative users.

General-use authentication procedures are defined in ITU-T Rec. X.509 | ISO/IEC 9594-8 and can be used in
conjunction with the access control schemes defined in this Directory Specification to enforce security policy.

NOTE 2 – Future editions of the Directory Specifications may define other access control schemes.

NOTE 3 – Local administrative policy may stipulate that authentication taking place in certain other DSAs (e.g. DSAs in
other DMDs) is to be disregarded.

In general, there will be a mapping function from the authenticated identity (e.g. human user identity as authenticated by
an authentication exchange) to the access control identity (e.g. the distinguished name of an entry, together with an
optional unique identifier, representing the user). This mapping does not fall within the scope of this Directory
Specification. However, a particular security policy may state that the authenticated identity and the access control
identity are the same.

15.2.2 Access control scheme

The definition of an access control scheme in the context of the Directory includes methods to:

– specify access control information (ACI);

– enforce access rights defined by that access control information;

– maintain access control information.

The enforcement of access rights applies to controlling access to:

– Directory information related to names;

– Directory user information;

– Directory operational information including access control information.

Administrative authorities may make use of all or parts of any standardized access control scheme in implementing their
security policies, or may freely define their own schemes at their discretion.

However, administrative authorities may stipulate separate provisions for the protection of some or all of the Directory
operational information. Administrative authorities are not required to provide ordinary users with the means to detect
provisions for the protection of operational information.

NOTE 1 – Administrative policy may grant or deny any form of access to particular attributes (e.g. operational attributes)
irrespective of access controls which may otherwise apply.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 53

The Directory provides a means for the access control scheme in force in a particular portion of the DIB to be identified
through the use of the operational attribute accessControlScheme. The scope of such a scheme is defined by an Access
Control Specific Area (ACSA), which is a specific administrative area that is the responsibility of the corresponding
Security Authority. This attribute is placed in the Administrative Entry for the corresponding Administrative Point. Only
administrative entries for Access Control Specific Points are allowed to contain an accessControlScheme attribute.

NOTE 2 – If this operational attribute is missing with respect to access to a given entry, then the DSA shall behave as for a
1988 edition DSA (i.e. it is a local matter to determine an access control mechanism and its effect on operations, results, and errors).

accessControlScheme ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-aca-accessControlScheme }

Any subentry or entry in an ACSA is permitted to contain entry ACI if and only if such ACI is permitted and consistent
with the value of the accessControlScheme attribute of the corresponding ACSA.

16 Basic Access Control

16.1 Scope and application

This clause defines one specific access control scheme (of possibly many) for the Directory. The access control scheme
defined herein is identified with the accessControlScheme operational attribute by giving it the value basic-access-control.
Subclause 15.2.2 describes which entries contain the accessControlScheme operational attribute.

NOTE – Another access control scheme known as “Simplified Access Control” is specified in 16.9. It is defined as a subset
of the Basic Access Control scheme scheme. When Simplified Access Control is used, the accessControlScheme operational attribute
shall have the value simplified-access-control.

The scheme defined here is only concerned with providing means of controlling access to the Directory information
within the DIB (potentially including tree structure and access control information). It does not address controlling
access for the purpose of communication with a DSA application-entity. Control of access to information means the
prevention of unauthorized detection, disclosure, or modification of that information.

16.2 Basic Access Control model

The Basic Access Control model for the Directory defines, for every Directory operation, one or more points at which
access control decisions take place. Each access control decision involves:

– that element of Directory information being accessed, called the protected item;

– the user requesting the operation, called the requestor;

– a particular right necessary to complete a portion of the operation, called the permission;

– one or more operational attributes that collectively contain the security policy governing access to that
item, called ACI items.

Thus, the basic access control model defines:

– the protected items;

– the user classes;

– the permission categories required to perform each Directory operation;

– the scope of application and syntax of ACI items;

– the basic algorithm, called the Access Control Decision Function (ACDF), used to decide whether a
particular requestor has a particular permission by virtue of applicable ACI items.

16.2.1 Protected items

A protected item is an element of Directory information to which access can be separately controlled. The protected
items of the Directory are entries, attributes, attribute values, and names. For convenience in specifying access control
policies, Basic Access Control provides the means to identify collections of related items, such as attributes in an entry
or all attribute values of a given attribute, and to specify a common protection for them.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

54 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

16.2.2 Access control permissions and their scope

Access is controlled by granting or denying permissions. The permission categories are described in 16.2.3 and 16.2.4.

The scope of access controls can be a single entry or a collection of entries that are logically related by being within the
scope of a subentry for a particular administrative point.

Permission categories are generally independent. Since all Directory entries have a relative position within the DIT,
access to user and operational information always involves some form of access to DIT related information. Thus, there
are two main forms of access control decision associated with a Directory operation: access to entries as named objects
(referred to as entry access); and access to attributes containing user and operational information (referred to as attribute
access). For many Directory operations, both forms of permission are required. In addition, where applicable, separate
permissions control the name or error type returned. Some important aspects of permissions categories, forms of access,
and access control decision making are as follows:

a) To perform Directory operations on entire entries (e.g. read an entry or add an entry), it is usually
necessary for permission to be granted with respect to the attributes and values contained within that
entry. Exceptions are permissions controlling entry renaming and removal: in neither case is attribute or
attribute value permissions taken into account.

b) To perform Directory operations that require access to attributes or attribute values, it is necessary to have
entry access permission to the entry or entries that contain those attributes or values.

NOTE 1 – The removal of an entry or of an attribute does not require access to the contents of the entry or of
the attribute.

c) The decision whether or not to permit entry access is strictly determined by the position of the entry in the
DIT, in terms of its distinguished name, and is independent of how the Directory locates that entry.

d) A design principle of Basic Access Control is that access may be allowed only when there is an explicitly
provided grant present in the access control information used by the Directory to make the access control
decision. Granting one form of access (e.g. entry access) never automatically or implicitly grants the other
form (e.g. attribute access). In order to administer meaningful Directory access control policies, it is thus
usually necessary to explicitly set access policy for both forms of access.

NOTE 2 – Certain combinations of grants or denials are illogical, but it is the responsibility of users, rather than
the Directory, to ensure that such combinations are absent.

NOTE 3 – Consistent with the above design principle, granting or denying permissions for an attribute value
does not automatically control access to the related attribute. Moreover, in order to access an attribute value(s) in the
course of a Directory interrogation operation, a user must be granted access to both the attribute type and its value(s).

e) The only default access decision provided in the model is to deny access in the absence of explicit access
control information that grants access.

f) A denial specified in access control information always overrides a grant, all other factors being equal.

g) A particular DSA may not have the access control information governing the Directory data it caches.
Security Administrators should be aware that a DSA with the capability of caching may pose a significant
security risk to other DSAs, in that it may reveal information to unauthorized users.

h) For the purposes of interrogation, collective attributes that are associated with an entry are protected
precisely as if they were attributes part of the entry.

NOTE 4 – For the purposes of modification, collective attributes are associated with the subentry that holds
them, not with entries within the scope of the subentry. Modify–related access controls are therefore not relevant to
collective attributes, except when they apply to the collective attribute and its values within the subentry.

16.2.3 Permission categories for entry access

The permission categories used to control entry access are Read, Browse, Add, Remove, Modify, Rename,
DiscloseOnError, Export, and Import and ReturnDN. Their use is described in more detail in ITU-T Rec. X.511 |
ISO/IEC 9594-3. Annex J provides an overview of their meaning in general situations. This subclause introduces the
categories by briefly indicating the intent associated with the granting of each. The actual influence of a particular
granted permission on access control decisions must, however, be understood in the full context of the ACDF and access
control decision points for each Directory operation.

a) Read, if granted, permits read access for Directory operations which specifically name an entry (i.e. as
opposed to the List and Search operations) and provides visibility to the information contained in the
entry to which it applies.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 55

b) Browse, if granted, permits entries to be accessed using Directory operations which do not explicitly
provide the name of the entry.

c) Add, if granted, permits creation of an entry in the DIT subject to controls on all attributes and attribute
values to be placed in the new entry at time of creation.

NOTE 1 – In order to add an entry, permission must also be granted to add at least the mandatory attributes and
their values.

NOTE 2 – There is no specific “add subordinate permission”. Permission to add an entry is controlled using
prescriptiveACI operational attributes as described in 16.3.

d) Remove, if granted, permits the entry to be removed from the DIT regardless of controls on attributes or
attribute values within the entry.

e) Modify, if granted, permits the information contained within an entry to be modified.

NOTE 3 – In order to modify information contained within an entry other than the distinguished name attribute
values, appropriate attribute and value permissions must also be granted.

f) Granting Rename is necessary for an entry to be renamed with a new RDN, taking into account the
consequential changes to the distinguished names of subordinate entries, if any; if the name of the
superior is unchanged, the grant is sufficient.

NOTE 4 – In order to rename an entry, there are no prerequisite permissions to contained attributes or values,
including the RDN attributes; this is true even when the operation causes new attribute values to be added or removed
as a result of the changes of RDN.

g) DiscloseOnError, if granted, permits the name of an entry to be disclosed in an error (or empty) result;

h) Export, if granted, permits an entry and its subordinates (if any) to be exported; that is, removed from the
current location and placed in a new location subject to the granting of suitable permissions at the
destination. If the last RDN is changed, Rename is also required at the current location.

NOTE 5 – In order to export an entry or its subordinates, there are no prerequisite permissions to contained
attributes or values, including the RDN attributes; this is true even when the operation causes attribute values to be
added or removed as a result of the changes of RDN;

i) Import, if granted, permits an entry and its subordinates, if any, to be imported; that is, removed from
some other location and placed at the location to which the permission applies (subject to the granting of
suitable permissions at the source location).

NOTE 6 – In order to import an entry or its subordinates, there are no prerequisite permissions to contained
attributes or values, including the RDN attributes; this is true even when the operation causes attribute values to be
added or removed as a result of the changes of RDN;

j) ReturnDN, if granted, allows the distinguished name of the entry to be disclosed in an operation result.

16.2.4 Permission categories for attribute and attribute value access

The permission categories used to control attribute and attribute value access are Compare, Read, FilterMatch, Add,
Remove, and DiscloseOnError. They are described in more detail in ITU-T Rec. X.511 | ISO/IEC 9594-3. Annex J
provides an overview of their meaning in general situations. This subclause introduces the categories by briefly
indicating the intent associated with the granting of each. The actual influence of a particular granted permission on
access control decisions must, however, be understood in the full context of the ACDF and access control decision
points for each Directory operation.

a) Compare, if granted, permits attributes and values to be used in a compare operation.

b) Read, if granted, permits attributes and values to be returned as entry information in a read or search
access operation.

c) FilterMatch, if granted, permits evaluation of a filter within a search criterion.

d) Add, if granted for an attribute, permits adding an attribute subject to being able to add all specified
attribute values. If granted for an attribute value, it permits adding a value to an existing attribute.

e) Remove, if granted for an attribute, permits removing an attribute complete with all of its values. If
granted for an attribute value, it permits the attribute value to be removed from an existing attribute.

f) DiscloseOnError, if granted for an attribute, permits the presence of the attribute to be disclosed by an
attribute or security error. If granted for an attribute value, it permits the presence of the attribute value to
be disclosed by an attribute or security error.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

56 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

16.3 Access control administrative areas

The DIT is partitioned into subtrees termed autonomous administrative areas, each of which is under the administrative
authority of a single Domain Management Organization. It may be further partitioned into subtrees termed specific
administrative areas for the purposes of specific aspects of administration; alternatively, the whole of an autonomous
administrative area may comprise a single specific administrative area. Each such specific administrative area is the
responsibility of a corresponding specific administrative authority. A particular administrative area may be shared by
several specific administrative authorities. See clause 10.

16.3.1 Access control areas and Directory Access Control Domains

In the case of access control, the specific administrative authority is a Security Authority, and the specific administrative
area is termed an Access Control Specific Area (ACSA). The root of the ACSA is termed an Access Control Specific
Point. Each Access Control Specific Point is represented in the DIT by an Administrative Entry which includes access-
control-specific-area as a value of its administrativeRole operational attribute; it has (potentially) one or more subentries
which contain access control information. Similarly, each Access Control Inner Point is represented in the DIT by an
Administrative Entry which contains access-control-inner-area as a value of its administrativeRole operational attribute; it
also has (potentially) one or more subentries which contain access control information. Each such administrative entry
which has a subentry containing prescriptive ACI information has basic-access-control, simplified-access-control, or other
relevant value as a value of its accessControlScheme operational attribute. Each subentry that is an Access Control
Specific Point and which contains access control information, has accessControlSubentry as a value of its object-class
attribute. An administrative entry and its subentries may hold operational attributes (such as access control information)
which relate, respectively, to the administrative point (and possibly its subentries) and to collections of entries (within
the administrative area) defined by the subentry subtreeSpecification.

The accessControlScheme attribute shall be present if and only if the holding administrative entry is an access control
specific entry. An administrative entry can never be both an access control specific and an access control inner entry;
corresponding values can therefore never be present simultaneously in the administrativeRole attribute.

The scope of a subentry that contains access control information, as defined by its subtreeSpecification (which may
include subtree refinements), is termed a Directory Access Control Domain (DACD).

NOTE – A DACD can contain zero entries, and can encompass entries that have not yet been added to the DIT.

The Security Authority may permit an Access Control Specific Area to be partitioned into subtrees termed inner
(administrative) areas. Each such inner area is termed an Access Control Inner Area (ACIA) with access-control-inner-
area as the value of the administrativeRole operational attribute. Each subentry of the corresponding administrative point
that contains prescriptive ACI has, as before, an accessControlSubentry value within its object class attribute.

The scope (subtreeSpecification) specified in a subentry within an ACIA is also a DACD and contains entries inside the
associated Access Control Inner Area.

ACIAs allow a degree of delegation of access control authority within the ACSA. The authority for the ACSA still
retains authority within the ACIA since the ACI in the subentries of the ACSA’s administrative point apply as well as
the ACI in the subentries of the relevant ACIAs (subclause 16.6 explains how the ACSA controls authority).

In summary, in evaluating access controls, the type of access control scheme (e.g. Basic Access Control) is indicated by
the accessControlScheme attribute value of the relevant access control specific entry; the role of each relevant
administrative entry within the ACSA is indicated by its administrativeRole attribute values; the presence of prescriptive
access control in a particular subentry is indicated by an accessControlSubentry value in its object class attribute.

Subentries, like other entries, can hold an entryACI attribute for protection of its own contents.

16.3.2 Associating controls with administrative areas

Access to a given entry is (potentially) controlled by the totality of superior access control administrative points (both
inner and specific) up to and including the first non-inner access control administrative point or Autonomous
Administrative Point encountered moving up the DIT from the entry towards the root. Access Control Specific Points
superior to this access control administrative point have no effect on access control to the given entry.

NOTE 1 – An Autonomous Administrative Point is considered implicitly to be an Access Control Specific Point for the
purpose of this description, even if it is not associated with any prescriptive controls.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 57

Some important points regarding the association between access controls and administrative areas are:

a) Access controls for Directory information may apply to only selected entries, or may have scope
extending throughout portions of the DIB that are logically related by a common security policy and a
common Access Control administration.

b) Access control may be imposed on entries within ACSAs or within ACIAs by placing prescriptiveACI
attributes (see 16.5) within one or more subentries of the corresponding Access Control Administrative
Entry, with scope defined by an appropriate subtreeSpecification.

NOTE 2 – prescriptiveACI attributes are not collective attributes. There are a number of significant differences
between prescriptiveACI and collective attributes:

– although a prescriptiveACI attribute may affect access control decisions for each entry within the scope of the
subentry that holds it, the prescriptiveACI attribute is not considered to supply accessible information to any
such entry or to be in any sense a part of such an entry;

– prescriptiveACI attributes are associated with the access control aspects of administration, and are associated
with Access Control Specific and Inner Points, not with entry-collection administrative points;

– The purpose of a prescriptiveACI attribute is to express a policy that influences across a defined set of entries,
while the purpose of a collective attribute is to provide information that associates a user–accessible set of
attributes within a defined set of entries;

– prescriptiveACI attributes represent policy information that will, in general, not be widely accessible by
ordinary users. Administrative users who need to access prescriptiveACI information can access them as
operational attributes within subentries.

c) A prescriptiveACI operational attribute contains ACIItems (see 16.4.1) common to all entries within the
scope of the subentry, i.e. DACD, in which the prescriptiveACI occurs. A DACD normally contains
entries inside the associated Access Control Specific Area (but can contain no entries at all).

d) Although particular ACIItems may specify attributes or values as protected items, ACIItems are
logically associated with entries. The particular set of ACIItems associated with an entry is a combination
of:

– ACIItems that apply to that particular entry, specified as values of the entryACI operational
attribute, if present (see 16.5.2);

– ACIItems from prescriptiveACI operational attributes applicable to the entry by virtue of being
placed in subentries of administrative entries whose scope includes the particular entry (see 16.5.1).

e) Each entry (controlled by entryACI and/or prescriptiveACI) necessarily falls within one and only one
ACSA. Each such entry may also fall within one or more ACIAs nested inside the ACSA containing the
entry. The prescriptiveACI that potentially affects the outcome of access control decisions for a given
entry are located within subentries (of the administrative entry) for the ACSA and for each ACIA
containing the entry. Other subentries cannot affect access control decisions regarding that entry.

f) If an entry is within the scope of more than one DACD, the complete set of ACIItems that may
potentially affect access control decisions regarding that entry includes all prescriptiveACI item
attributes of those DACDs, in addition to any entryACI attributes in the entry itself. An example is
shown in Figure 11. The effective access control at entry E1 is a combination of the prescriptiveACI for
DACD1, DACD2, DACD3, and entryACI (if present) in entry E1. The effective access control at entry
E2 is a combination of the prescriptiveACI for DACD1 and DACD3, and entryACI (if present) in
entry E2.

NOTE – Protection of access control information is described in 16.6.

g) The subtreeSpecification attribute in each subentry defines a collection of entries within an
administrative area. Since a subtreeSpecification may define a subtree refinement, DACDs may
arbitrarily overlap within the intersection of their respective administrative areas. For simplicity,
Figure 11 does not show administrative points, subentries, or administrative areas; however, it may be
considered as three DACDs in the same ACSA with each DACD corresponding to a single subentry of
the administrative point for that ACSA (and there are no ACIAs). Alternatively, Figure 11 may be
considered in the context of a single ACSA containing a single ACIA where DACD1 is congruent to the
ACSA and DACD3 is congruent to the ACIA (DACD1 and DACD2 would correspond to subentries of
the ACSA administrative point and DACD3 would correspond to a subentry of the ACIA administrative
point). An administrative area is congruent to a DACD when the collection of entries in the DACD is the
same as the collection of entries in the implicitly defined subtree corresponding to the administrative area.
See the example in Annex K for figures depicting the relationship between administrative entries,
administrative areas, subentries, and DACDs.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

58 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

TISO3320-94/d11

DACD-2

DACD-1

DACD-3

E1

E2

Figure 11 – Effective Access Control using DACDs

FIGURE 11...[D11] = 10.25 CM

16.4 Representation of Access Control Information

16.4.1 ASN.1 for Access Control Information

Access Control Information is represented as a set of ACIItems, where each ACIItem grants or denies permissions in
regard to certain specified users and protected items.

In ASN.1 the information is expressed as:

ACIItem ::= SEQUENCE {
identificationTag DirectoryString { ub-tag },
precedence Precedence,
authenticationLevel AuthenticationLevel,
itemOrUserFirst CHOICE {

itemFirst [0] SEQUENCE {
protectedItems ProtectedItems,
itemPermissions SET OF ItemPermission },

userFirst [1] SEQUENCE {
userClasses UserClasses,
userPermissions SET OF UserPermission }}}

Precedence ::= INTEGER (0..255)

ProtectedItems ::= SEQUENCE {
entry [0] NULL OPTIONAL,
allUserAttributeTypes [1] NULL OPTIONAL,
attributeType [2] SET OF AttributeType OPTIONAL,
allAttributeValues [3] SET OF AttributeType OPTIONAL,
allUserAttributeTypesAndValues [4] NULL OPTIONAL,
attributeValue [5] SET OF AttributeTypeAndValue OPTIONAL,
selfValue [6] SET OF AttributeType OPTIONAL }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 59

UserClasses ::= SEQUENCE {
allUsers [0] NULL OPTIONAL,
thisEntry [1] NULL OPTIONAL,
name [2] SET OF NameAndOptionalUID OPTIONAL,
userGroup [3] SET OF NameAndOptionalUID OPTIONAL,

-- dn component must be the name of an
-- entry of GroupOfUniqueNames

subtree [4] SET OF SubtreeSpecification OPTIONAL}

ItemPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,

-- defauflts to precedence in ACIItem --
userClasses UserClasses,
grantsAndDenials GrantsAndDenials }

UserPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,

-- defaults to precedence in ACIItem
protectedItems ProtectedItems,
grantsAndDenials GrantsAndDenials }

AuthenticationLevel ::= CHOICE {
basicLevels SEQUENCE {

level ENUMERATED { none (0), simple (1), strong (2) },
localQualifier INTEGER OPTIONAL},

other EXTERNAL }

GrantsAndDenials ::= BIT STRING {
-- permissions that may be used in conjunction with
-- with any component of ProtectedItems
grantAdd (0),
denyAdd (1),
grantDiscloseOnError (2),
denyDiscloseOnError (3),
grantRead (4),
denyRead (5),
grantRemove (6),
denyRemove (7),
-- permissions that may be used only in conjunction
-- with the entry component
grantBrowse (8),
denyBrowse (9),
grantExport (10),
denyExport (11),
grantImport (12),
denyImport (13),
grantModify (14),
denyModify (15),
grantRename (16),
denyRename (17),
grantReturnDN (18),
denyReturnDN (19),
-- permissions that may be used in conjunction
-- with any component, except entry, of ProtectedItems
grantCompare (20),
denyCompare (21),
grantFilterMatch (22),
denyFilterMatch (23) }

16.4.2 Description of ACIItem Parameters

16.4.2.1 IdentificationTag

identificationTag is used to identify a particular ACIItem. This is used to discriminate among individual ACIItems for
the purposes of protection, management, and administration.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

60 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

16.4.2.2 Precedence

Precedence is used to control the relative order in which ACIItems are considered during the course of making an
access control decision in accordance with 16.8. ACIItems having higher precedence values may prevail over others
with lower precedence values, other factors being equal. Precedence values are integers and are compared as such.

Precedence can be used by a superior authority within the Security Authority to permit partial delegation of access
control policy setting within an ACSA. This can be achieved by the superior authority setting a general policy at a high
precedence and authorizing users representing the subordinate authority (e.g. associated with an ACIA) to create and
modify ACI with a lower precedence, in order to tailor the general policy for specific purposes. The partial delegation
thus requires the means for the superior authority to limit the maximum precedence which the subordinate authority can
assign to ACI under its control.

Basic Access Control does not specify or describe how to limit the maximum precedence that can be used by a
subordinate authority. This must be done by local means.

16.4.2.3 AuthenticationLevel

AuthenticationLevel defines the minimum requestor authentication level required for this ACIItem. It has two forms:

– basicLevels which indicates the level of authentication, optionally qualified by positive or negative
integer localQualifier;

– other – an externally defined measure.

When basicLevels is used, an AuthenticationLevel consisting of a level and optional localQualifier shall be assigned to the
requestor by the DSA according to local policy. For a requestor’s authentication level to exceed a minimum
requirement, the requestor’s level must meet or exceed that specified in the ACIItem, and in addition the requestor’s
localQualifier must be arithmetically greater than or equal to that of the ACIItem. Strong authentication of the requestor
is considered to exceed a requirement for simple or no authentication, and simple authentication exceeds a requirement
for no authentication. For access control purposes, the “simple” authentication level requires a password; the case of
identification only, with no password supplied, is considered “none”. If a localQualifier is not specified in the ACIItem,
then the requestor need not have a corresponding value (if such a value is present it is ignored).

When other is used, an appropriate AuthenticationLevel shall be assigned to the requestor by the DSA according to local
policy. The form of this AuthenticationLevel and the method by which it is compared with the AuthenticationLevel in the
ACI is a local matter.

NOTES

1 An authentication level associated with an explicit denial indicates the minimum level to which a requestor must be
authenticated in order not to be denied access. For example, an ACIItem that denies access to a particular user class and requires
strong authentication will deny access to all requestors who cannot prove, by means of a strongly authenticated identity, that they are
not in that user class.

2 The DSA may base authentication level on factors other than values received in protocol exchanges.

16.4.2.4 itemFirst and userFirst Parameters

Each ACIItem contains a choice of itemFirst or userFirst. The choice allows grouping of permissions depending on
whether they are most conveniently grouped by user classes or by protected items. itemFirst and userFirst are
equivalent in the sense that they capture the same access control information; however they organize that information
differently. The choice between them is based on administrative convenience. The parameters used in itemFirst or
userFirst are described below.

a) ProtectedItems define the items to which the specified access controls apply. It is defined as a set
selected from the following:

– entry means the entry contents as a whole and does not necessarily include the information in the
entry.

– allUserAttributeTypes means all user attribute type information associated with the entry, but not
values associated with those attributes.

– allUserAttributeTypesAndValues means all user attribute information associated with the entry,
including all values of all user attributes.

– attributeType means attribute type information pertaining to specific attributes but not values
associated with the type.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 61

– allAttributeValues means all attribute value information pertaining to specific attributes.

– attributeValue means a specific value of specific attributes.

– selfValue means the attribute value assertion corresponding to the current requestor. The protected
item selfValue applies only when the access controls are to be applied with respect to a specific
authenticated user. It can only apply in the specific case where the attribute specified is of
DistinguishedName or uniqueMember syntax and the attribute value within the specified attribute
matches the distinguished name of the originator of the operation.

NOTE 1 – allUserAttributeTypes and allUserAttributeTypesAndValues do not include operational
attributes, which should be specified on a per attribute basis, using attributeType, allAttributeValues or
attributeValue.

b) UserClasses defines a set of zero or more users the permissions apply to. The set of users is selected from
the following:

– allUsers means every directory user (with possible requirements for authenticationLlevel).

– thisEntry means the user with the same distinguished name as the entry being accessed.

– name is the user with the specified distinguished name (with an optional unique identifier).

– userGroup is the set of users who are members of the groupOfUniqueNames entry, identified by the
specified distinguished name (with an optional unique identifier). Members of a group of unique
names are treated as individual object names, and not as the names of other groups of unique names.
How group membership is determined; is described in 16.4.2.5.

– subtree is the set of users whose distinguished names fall within the definition of the (unrefined)
subtree.

c) SubtreeSpecification is used to specify a subtree relative to the root entry named in base. The base
represents the distinguished name of the root of subtree. The subtree extends to the leaves of the DIT
unless otherwise specified in chop. The use of a specificationFilter component is not permitted; if present,
it shall be ignored.

NOTE 2 – SubtreeSpecification does not allow subtree refinement because a refinement might require a DSA to
use a distributed operation in order to determine if a given user is in a particular user class. Basic Access Control is
designed to avoid remote operations in the course of making an access control decision. Membership in a subtree
whose definition includes only base and chop can be evaluated locally, whereas membership in a subtree definition
using specificationFilter can only be evaluated by obtaining information from the user’s entry which is potentially in
another DSA.

d) ItemPermission contains a collection of users and their permissions with respect to ProtectedItems
within an itemFirst specification. The permissions are specified in grantsAndDenials as discussed in
item f) of this subclause. Each of the permissions specified in grantsAndDenials is considered to have
the precedence level specified in precedence for the purpose of evaluating access control information as
discussed in 16.8. If precedence is omitted within ItemPermission then precedence is taken from the
precedence specified for the ACIItem (see 16.4.2.2.).

e) UserPermission contains a collection of protected items and the associated permissions with respect to
userClasses within a userFirst specification. The protected items are specified in protectedItems as
discussed in 16.4.5. The associated permissions are specified in grantsAndDenials as discussed in item f)
of this subclause. Each of the permissions specified in grantsAndDenials is considered to have the
precedence level specified in precedence for the purpose of evaluating access control information as
discussed in 16.8. If precedence is omitted within UserPermission, the precedence is taken from the
precedence specified for the ACIItem (see 16.4.2.2.).

f) GrantsAndDenials specify the access rights that are granted or denied in the ACIItem specification. The
precise semantics of these permissions with respect to each protected item is discussed in ITU-T
Rec. X.511 | ISO/IEC 9594-3.

g) UniqueIdentifier may be used by the authentication mechanism to distinguish between instances of
distinguished name reuse. The value of the unique identifier is assigned by the authentication authority
according to its policy and is provided by the authenticating DSA. If this field is present, then for an
accessing user to match the name user class of an ACIItem that grants permissions, in addition to the
requirement that the user’s distinguished name match the specified distinguished name, the authentication
of the user must yield an associated unique identifier, and that value must match for equality with the
specified value.

NOTE 3 – When authentication is based on supplied SecurityParameters, the unique identifier associated with
the user may be taken from the subjectUniqueIdentifier field of the sender’s Certificate in the optional
CertificationPath.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

62 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

16.4.2.5 Determining group membership

Determining whether a given requestor is a group member requires checking two criteria. Also, the determination may
be constrained if the group definition is not known locally. The criteria for membership and the treatment of non–local
groups are discussed below.

a) A DSA is not required to perform a remote operation to determine whether the requestor belongs to a
particular group for the purposes of Basic Access Control. If membership in the group cannot be
evaluated, the DSA shall assume that the requestor does not belong to the group if the ACI item grants the
permission sought, and does belong to the group if it denies the permission sought.

NOTE 1 – Access control administrators must beware of basing access controls on membership of non-locally
available groups or groups which are available only through replication (and which may, therefore, be out of date).

NOTE 2 – For performance reasons it is usually impractical to retrieve group membership from remote DSAs
as part of the evaluation of access controls. However, in certain circumstances it may be practical, and a DSA is
permitted, for example, to perform remote operations to obtain or refresh a local copy of a group entry or use the
Compare operation to check membership prior to applying this clause.

b) In order to determine whether the requestor is a member of a userGroup user class, the following criteria
apply:

– The entry named by the userGroup specification must be an instance of the object class
groupOfNames or groupOfUniqueNames.

– The name of the requestor must be a value of the member or uniqueMember attribute of that entry.
NOTE 3 – Values of the member or uniqueMember attribute that do not match the name of the requestor

are ignored, even if they represent the names of groups of which the originator could be found to be a member.
Hence, nested groups are not supported when evaluating access controls.

16.5 The ACI operational attributes

Access control information is stored in the Directory as an operational attribute of entries and subentries. The
operational attribute is multi-valued, which allows ACI to be represented as a set of ACIItems (defined in 16.4).

16.5.1 Prescriptive access control information

A Prescriptive ACI attribute is defined as an operational attributes of a subentry. It contains access control information
applicable to entries within that subentry’s scope:

prescriptiveACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-prescriptiveACI }

16.5.2 Entry access control information

An Entry ACI attribute is defined as operational attributes of an entry. It contains access control information applicable
to the entry in which it appears, and that entry’s contents:

entryACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-entryACI }

16.5.3 SubentryACI

Subentry ACI attributes are defined as operational attributes of administrative entries, and provide access control
information that applies to each of the subentries of the corresponding administrative point. Prescriptive ACI within the
subentries of a particular administrative point never applies to the same or any other subentry of that administrative
point, but can be applicable to the subentries of subordinate administrative points. Subentry ACI attributes are contained
only in administrative points and do not affect any element of the DIT other than immediately subordinate subentries.

In evaluating access control for a specific subentry, the ACI that must be considered is:

– the entryACI within the subentry itself (if any);

– the subentryACI within the associated administrative entry (if any);

– prescriptiveACI associated with other relevant administrative points within the same access control
specific area (if any).

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 63

subentryACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-subentryACI }

16.6 Protecting the ACI

ACI operational attributes may be subjected to the same protection mechanisms as ordinary attributes. Some important
related points are:

a) The identificationTag provides an identifier for each ACIItem. This tag can be used to remove a specific
ACIItem value, or to protect it by prescriptive or entry ACI.

NOTE 1 – Directory rules ensure that only one ACIItem per access control attribute possesses any specific
identificationTag value.

b) The creation of subentries for an Administrative Entry may be access controlled by means of the
subentryACI operational attribute in the Administrative Entry.

NOTE 2 – The right to create prescriptive access controls may also be governed directly by security policy; this
provision is required to create access controls in new autonomous administrative areas.

16.7 Access control and Directory operations

Each Directory operation involves making a series of access control decisions on the various protected items that the
operation accesses.

For some operations (e.g. Modify operations), each such access control decision must grant access for the operation to
succeed; if access is denied to any protected item, the whole operation fails. For other operations, protected items to
which access is denied are simply omitted from the operation result and processing continues.

If the requested access is denied, further access control decisions may be needed to determine if the user has
DiscloseOnError permissions to the protected item. Only if DiscloseOnError permission is granted may the Directory
respond with an error that reveals the existence of the protected item; in all other cases the Directory acts so as to
conceal the existence of the protected item.

The access control requirements for each operation, i.e. the protected items and the access permission required to access
each protected item, are specified in ITU-T Rec. X.511 | ISO/IEC 9594-3.

The algorithm by which any particular access control decision is made is specified in 16.8.

16.8 Access Control Decision Function

This subclause specifies how an access control decision is made for any particular protected item. It provides a
conceptual description of the Access Control Decision Function (ACDF) for basic-access-control. It describes how
ACI items are processed in order to decide whether to grant or deny a particular requestor a specified permission to a
given protected item.

16.8.1 Inputs and outputs

For each invocation of the ACDF, the inputs are

a) the requestor’s Distinguished Name (as defined in 7.3 of ITU-T Rec. X.511 | ISO/IEC 9594-3), unique
identifier, and authentication level, or as many of these as are available;

b) the protected item (an entry, an attribute, or an attribute value) being considered at the current decision
point for which the ACDF was invoked;

c) the requested permission category specified for the current decision point;

d) the ACI items associated with the entry containing (or which is) the protected item. Protected items are
described in 16.4.2.4. The scope of influence for ACI items within a prescriptiveACI attribute is
described in 16.3.2 and 16.5.1. The scope of influence for ACI items within an entryACI attribute is
described in 16.3.2 and 16.5.2. The scope of influence for ACI items within a subentryACI attribute is
described in 16.5.3.

The output is a decision to grant or deny access to the protected item.

In any particular instance of making an access control decision, the outcome shall be the same as if the steps in 16.8.2
through 16.8.4 were performed.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

64 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

16.8.2 Tuples

For each ACI value in the ACI items of 16.8.1.d), expand the value into a set of tuples, one tuple for each element of the
itemPermissions and userPermissions sets. Collect all tuples from all ACI values into a single set. Each tuple contains
the following items:

(userClasses, authenticationLevel, protectedItems, grantsAndDenials, precedence)

For any tuple whose grantsAndDenials specify both grants and denials, replace the tuple with two tuples – one
specifying only grants and the other specifying only denials.

16.8.3 Discarding non-relevant tuples

Perform the following steps to discard all non-relevant tuples:

1) Discard all tuple that do not include the requestor in the tuple’s userClass [16.4.2.4 b)] as follows:

– For tuples that grant access discard all tuples that do not include the requestor’s identity in the
tuples’s userClasses element taking into account uniqueIdentifier elements if relevant. Where a tuple
specifies a uniqueIdentifier, a matching value must be present in the requestor’s identity if the tuple is
not to be discarded. Discard tuples that specify an authentication level higher than that associated
with the requestor in accordance with 16.4.2.3.

– For tuples that deny access, retain all tuples that include the requestor in the tuple’s userClasses
element, taking into account uniqueIdentifier elements if relevant. Also retain all tuples that deny
access and which specify an authentication level higher than that associated with the requestor in
accordance with 16.4.2.3. All other tuples that deny access are discarded.

NOTE 1 – The second requirement in the second sub-item above (i.e. to retain any tuple that denies access
and also specifies an authentication level higher than that associated with the requestor) reflects the fact that the
requestor has not adequately proved non–membership in the user class for which the denial is specified.

2) Discard all tuples that do not include the protected item in protectedItems [16.4.2.4 a)].

3) Discard all tuples that do not include the requested permission as one of the set bits in grantsAndDenials
[16.4.1, 16.4.2.4 f)].

NOTE 2 – The order in which discarding of non–relevant tuples is performed does not change the output of
the ACDF.

16.8.4 Selecting highest precedence, most specific tuples

Perform the following steps to select those tuples of highest precedence and specificity:

1) Discard all tuples having a precedence less than the highest remaining precedence.

2) If more than one tuple remains, choose the tuples with the most specific user class. If there are any tuples
matching the requestor with UserClasses element name or thisEntry, discard all other tuples. Otherwise if
there are any tuples matching UserGroup, discard all other tuples. Otherwise if there are any tuples
matching subtree, discard all other tuples.

3) If more than one tuple remains, choose the tuples with the most specific protected item. If the protected
item is an attribute and there are tuples that specify the attribute type explicitly, discard all other tuples. If
the protected item is an attribute value, and there are tuples that specify the attribute value explicitly,
discard all other tuples.

Grant access if and only if one or more tuples remain and all grant access. Otherwise deny access.

16.9 Simplified Access Control

16.9.1 Introduction

This subclause describes the functionality of an access control scheme, known as Simplified Access Control, that is
designed to provide a subset of functionality found in Basic Access Control.

16.9.2 Definition of Simplified Access Control functionality

The functionality of Simplified Access Control is defined as follows:

a) access control decisions shall be made only on the basis of ACIItem values of prescriptiveACI and
subentryACI operational attributes.

NOTE 1 – entryACI, if present, shall not be used to make access control decisions.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 65

b) access control specific administrative areas shall be supported. Access control inner administrative areas
shall not be used. Particular access decisions shall be made on the basis of ACIItem values obtained from a
single Administrative Point, or from subentries of that Administrative Point.

NOTE 2 – Values of prescriptiveACI attributes appearing in subentries of Administrative Points containing no
id-ar-accessControlSpecificArea Administrative Role attribute value shall not be used to make access control decisions.

c) all other provisions shall be as defined for basic access control.

SECTION 8 – DSA MODELS

17 DSA Models

This clause is concerned with general models describing various aspects of the components comprising the Directory,
Directory System Agents (DSAs). Subsequent clauses treat additional DSA models.

17.1 Definitions

For the purposes of this Directory Specification, the following definitions apply.

context prefix: The sequence of RDNs leading from the Root of the DIT to the initial vertex of a naming context;
corresponds to the distinguished name of that vertex.

DIB fragment: The portion of the DIB that is held by one master DSA, comprising one or more naming contexts.

naming context: A subtree of entries held in a single master DSA.

17.2 Directory Functional Model

The Directory is manifested as a set of one or more application-processes known as Directory System Agents (DSAs),
each of which provides zero, one, or more of the access points. This is illustrated in Figure 12 Where the Directory is
composed of more than one DSA, it is said to be distributed. The procedures for the operation of the Directory when it is
distributed are specified in ITU-T Rec. X.518 | ISO/IEC 9594-4.

TISO3330-94/d12

DSA

DSA

DSA

DSA

The Directory

Figure 12 – The Directory Provided by Multiple DSAs

FIGURE 12...[D12] = 8.82 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

66 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

NOTE – A DSA will likely exhibit local behavior and structure which is outside the scope of envisaged Directory
Specifications. For example, a DSA which is responsible for holding some or all of the information in the DIB will normally do so by
means of a database, the interface to which is a local matter.

A particular pair of application-processes which need to interact in the provision of directory services (either a DUA and
a DSA, or two DSAs) may be located in different open systems. Such an interaction is carried out by means of OSI
Directory protocols, as specified in ITU-T Rec. X.519 | ISO/IEC 9594-5.

Clause 17 specifies the models that are used as the basis for specifying the distributed aspects of the Directory. A
framework for the specification of operational models concerned with particular aspects of the operation of the
components of the Directory, DSAs, is provided in clauses 21 through 24.

17.3 Directory Distribution Model

This subclause defines the principles according to which the DIB can be distributed.

Each entry within the DIB is administered by one, and only one, DSA’s Administrator who is said to have administrative
authority for that entry. Maintenance and management of an entry shall take place in a DSA administered by the
administrative authority for the entry. This DSA is the master DSA for the entry.

Each master DSA within the Directory holds a fragment of the DIB. The DIB fragment held by a master DSA is
described in terms of the DIT and comprises one or more naming contexts. A naming context is a subtree of the DIT, all
entries of which have a common administrative authority and are held in the same master DSA. A naming context starts
at a vertex of the DIT (other than the root) and extends downwards to leaf and/or non-leaf vertices. Such vertices
constitute the border of the naming context. The superior of the starting vertex of a naming context is not held in that
master DSA. Subordinates of the non-leaf vertices belonging to the border denote the start of further naming contexts.

NOTES

1 The DIT is therefore partitioned into disjoint naming contexts, each under the administrative authority of a single
master DSA.

2 A naming context in itself is not an administrative area having an administrative point or an explicit subtree
specification, but it may coincide with an administrative area.

It is possible for a master DSA’s administrator to have administrative authority for several disjoint naming contexts. For
every naming context for which a master DSA has administrative authority, it shall logically hold the sequence of RDNs
which lead from the root of the DIT to the initial vertex of the subtree comprising the naming context. This sequence of
RDNs is called the context prefix of the naming context.

A master DSA’s administrator may delegate administrative authority for any immediate subordinates of any entry held
locally to another master DSA. A master DSA that delegated authority is called a superior DSA and the context that
holds the superior entry of one for which the administrative authority was delegated, is called the superior naming
context. Delegation of administrative authority begins with the root and proceeds downwards in the DIT; that is, it can
only occur from an entry to its subordinates.

Figure 13 illustrates a hypothetical DIT logically partitioned into five naming contexts (named A, B, C, D and E), which
are physically distributed over three DSAs (DSA1, DSA2, and DSA3).

From the example it can be seen that the naming contexts held by particular master DSAs may be configured so as to
meet a wide range of operational requirements. Certain master DSAs may be configured to hold those entries that
represent higher level naming domains within some logical part(s) of the DIB, the organizational structure of a large
company say, but not necessarily all the subordinate entries. Alternatively, master DSAs may be configured to hold only
those naming contexts representing primarily leaf entries.

From the above definitions, the limiting case for a naming context can be either a single entry or the whole of the DIT.

Whilst the logical to physical mapping of the DIT onto master DSAs is potentially arbitrary, the task of information
location and management is simplified if the master DSAs are configured to hold a small number of naming contexts.

DSAs may hold entry-copies as well as entries. Shadowed entries, the only sort of entry-copy considered in the
Directory Specifications, are maintained by means of the shadowing service described in ITU-T Rec. X.525 | ISO/IEC
9594-9. In addition to this standardized sort of replicated information, two additional non-standardized sorts of entry-
copy may be encountered in the Directory.

– Copies of an entry may be stored in other DSA(s) through bilateral agreement.

– Copies of an entry may be acquired by storing (locally and dynamically) a cache-copy of an entry which
results from a request.

NOTE – The means by which these copies are maintained and managed is not defined in these Directory specifications.
Due to more precise handling of features like access control, it is recommended that the shadow service be used instead of using
cached copies.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 67

TISO3340-94/d13

DSA1

DSA2

Root

DSA3C = WW C = VV

Context A Context B
Context D

Context C

O = ABC

OU = G OU = H

CN = I CN = m CN = n

CN = o CN = p CN = q

DIB object entry

DIB alias entry

Context E

OU = I

OU = J OU = K

O = DEF

Figure 13 – Hypothetical DIT

FIGURE 13...[D13] = 11.82 CM

A DSA holding an entry-copy is a shadow DSA for that entry. A shadow DSA may hold a copy of a naming context or a
portion thereof. The specification of the portion of a naming context that is shadowed is termed a unit of replication.

As described in 9.2 of ITU-T Rec. X.525 | ISO/IEC 9594-9, a unit or replication is defined within the Directory
information model, and a specification mechanism is provided. The shadowing mechanism in the Directory is based on
the definition of the subset of the DIT that will be shadowed. This subset is called unit of replication. The unit of
replication comprises a three-part specification which defines the scope of the portion of the DIT to be replicated, the
attributes to be replicated within that scope, and the requirements for subordinate knowledge. The unit of replication also
implicitly causes the shadowed information to include policy information in the form of operational attributes held in
entries and subentries (e.g. access control information) which is to be used to correctly perform Directory operations.
The prefix information to be included begins at an autonomous administrative point and extends to the replication base
entry.

The originator of a Directory request is informed (via fromEntry) as to whether information returned in response to a
request is from an entry-copy or not. A service control, dontUseCopy, is defined which allows the user to prohibit the use
of entry-copies to satisfy the request (although copy information may be used in name resolution.).

In order for a DUA to begin processing a request it shall hold some information, specifically the presentation address,
about at least one DSA that it can contact initially. How it acquires and holds this information is a local matter.

During the process of modification of entries it is possible that the Directory may become inconsistent. This will be
particularly likely if modification involves aliases or aliased objects which may be in different DSAs. The inconsistency
shall be corrected by specific administrator action, for example to delete aliases if the corresponding aliased objects have
been deleted. The Directory continues to operate during this period of inconsistency.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

68 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

SECTION 9 – DSA INFORMATION MODEL

18 Knowledge

18.1 Definitions

For the purposes of this Directory Specification, the following definitions apply.

18.1.1 category: A characteristic of a knowledge reference that qualifies it as identifying a master or a shadow DSA.

18.1.2 commonly usable: A characteristic of a replicated area that permits general distribution of the access point of
the DSA holding it; a commonly usable replicated area is normally a complete shadow copy of a naming context.

18.1.3 cross reference: A knowledge reference containing information about a DSA that holds an entry or entry-
copy. This is used for optimization. The entry need have no superior or subordinate relationship to any entry in the DSA
holding the cross reference.

18.1.4 immediate superior reference: A knowledge reference containing information about a DSA that holds the
naming context (or a commonly usable replicated area derived from it) that is immediately superior to one held by the
DSA for which the knowledge reference is relevant.

18.1.5 knowledge (information): DSA operational information held by a DSA that it uses to locate remote entry or
entry-copy information.

18.1.6 knowledge reference: Knowledge which associates, either directly or indirectly, a DIT entry or entry copy
with the DSA in which it is located.

18.1.7 master knowledge: Knowledge of the master DSA for a naming context.

18.1.8 non-specific subordinate reference: A knowledge reference containing information about a DSA that holds
one or more unspecified subordinate entries or entry-copies.

18.1.9 reference path: A continuous sequence of knowledge references.

18.1.10 shadow knowledge: Knowledge of one or more shadow DSAs for a naming context (if the knowledge is
specific) or contexts (if nonspecific).

18.1.11 subordinate reference: A knowledge reference containing information about a DSA that holds a specific
subordinate entry or entry-copy.

18.1.12 superior reference: A knowledge reference containing information about a DSA considered capable of
resolving (i.e. finding any entry within) the whole of the DIT.

18.2 Introduction

The DIB is distributed across a large number of master DSAs, each holding and having administrative authority for a
DIB fragment. The principles governing this distribution are specified in 17.3.

In addition, these and other DSAs may hold copies of portions of the DIB.

It is a requirement of the Directory that, for particular modes of user interaction, the distribution of the directory be
rendered transparent, thereby giving the effect that the whole of the DIB appears to be within each and every DSA.

In order to support this operational requirement, it is necessary that each DSA be able to gain access to the information
held in the DIB associated with any name (i.e any object’s distinguished or alias names). If the DSA does not itself hold
an object entry or object entry-copy associated with the name, it must be able to interact with a DSA that does, either
directly or indirectly by means of direct and/or indirect interactions with other DSAs.

When the Directory user indicates that entry-copy information shall not be used to satisfy his request, the DSA servicing
the request must be able to gain access, directly or indirectly, to the master DSA holding the entry information associated
with the name supplied in the user’s request.

This clause defines knowledge as that DSA operational information required to achieve these technical objectives.
Subsequent clauses specify the representation of knowledge in the context of a general DSA information model.

NOTE – The preceding statements represent technical objectives of the Directory. Realization of these technical objectives
depends on other matters (e.g. policy matters) in addition to a consistent configuration of knowledge in DSAs. Clauses 21 through 24
establishes a framework to address some of these matters.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 69

Annex M contains an illustration of the modelling of knowledge. The illustration is based on the hypothetical DIT given
in Figure 13.

18.3 Knowledge References

Knowledge is that operational information held by a DSA that represents a partial description of the distribution of entry
and entry-copy information held in other DSAs. Knowledge is used by a DSA to determine an appropriate DSA to
contact when a request received from a DUA or another DSA cannot be satisfied with locally held information.

Knowledge consists of knowledge references. A knowledge reference associates, either directly or indirectly, the name
of a Directory entry with a DSA holding the entry or a copy of the entry.

18.3.1 Knowledge Categories

There are two categories of knowledge reference, master knowledge references and shadow knowledge references.

Master knowledge is knowledge of the access point of the master DSA for a naming context.

Shadow knowledge is knowledge of DSAs holding replicated Directory information; it may be distributed by shadow
suppliers to shadow consumers by means of the replication procedures described in ITU-T Rec. X.525 |
ISO/IEC 9594-9. Shadow knowledge is knowledge of the access point of a set of one or more shadow DSAs for a
replicated area (a naming context or a portion thereof).

A DSA that is the object of shadow knowledge shall hold a commonly usable replicated area. One form of replicated
area that is commonly usable is a complete shadow copy of a naming context. An incomplete shadow copy of a naming
context held by a DSA may be commonly usable if it is sufficiently complete to satisfy the interrogation requests that
users commonly make to the DSA. It is the responsibility of the administrative authority who causes shadow knowledge
of a DSA holding an incomplete copy of a naming context to be distributed that the replicated area be commonly usable.

A given DSA may hold both master and shadow knowledge, the latter involving multiple shadow DSAs, regarding a
particular naming context. The specific knowledge used in the processing of a request received from a DUA or another
DSA, e.g. in the name resolution process, is determined by a DSA-specific selection procedure whereby the DSA
computes, based on any nonstandardized criteria deemed appropriate by the administrative authority, an access point of a
DSA capable of progressing the request.

NOTE – The Directory Specifications do not constrain how master and shadow knowledge is used by DSAs (other than
indirectly through constraints on DSA behavior, for example, the dontUseCopy and copyShallDo service controls as specified in
ITU-T Rec. X.511 | ISO/IEC 9594-3).

18.3.2 Knowledge Reference Types

The knowledge possessed by a DSA is defined in terms of a set of one or more knowledge references where each
reference associates, either directly or indirectly, entries (or entry copies) of the DIB with the DSA which hold those
entries (or entry copies).

A DSA may hold the following types of knowledge reference:

– a superior reference;

– immediate superior references;

– subordinate references;

– non-specific subordinate references, and

– cross references.

A knowledge reference of a particular type shall be either a master or shadow knowledge reference.

In addition, a DSA that participates in shadowing as a shadow supplier and/or consumer may hold one or more of the
following types of knowledge reference:

– supplier references; and

– consumer references.

These knowledge reference types are described below.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

70 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

18.3.2.1 Superior Reference

A superior reference consists of

– the Access Point of a DSA.

Each non-first level DSA (see 18.5) maintains precisely one superior reference. The superior reference shall form part of
a reference path to the root. Unless some method outside the standard is employed to ensure this, for example within a
DMD, this shall be accomplished by referring to a DSA which holds a naming context or replicated area whose context
prefix has fewer RDNs than the context prefix with fewest RDNs held by the DSA holding the reference.

18.3.2.2 Immediate Superior References

An immediate superior reference consists of

– the context prefix of a naming context that is immediately superior to one held (as entries or entry-copies)
by the DSA holding the reference;

– the Access Point of the DSA holding that naming context (as entries or entry-copies).

Immediate superior references are an optional reference type that only occur when there is a hierarchical operational
binding to the referenced DSA (see clause 24 in ITU-T Rec. X.518 | ISO/IEC 9594-4). In the absence of such explicit
operational bindings, an immediate superior naming context may be referenced by means of a cross reference.

18.3.2.3 Subordinate References

A subordinate reference consists of

– a context prefix corresponding to a naming context immediately subordinate to one held (as entries or
entry-copies) by the DSA holding the reference;

– the Access Point of the DSA holding that naming context (as entries or entry copies).

All naming contexts immediately subordinate to naming contexts held by a master DSA shall be represented by
subordinate references (or non-specific subordinate references as described in 18.3.2.4).

In the case where a DSA holds entry-copies, the subordinate naming contexts may or may not be represented, depending
on the shadowing agreement in effect.

18.3.2.4 Non-Specific Subordinate References

A non-specific subordinate reference consists of

– the Access Points of a DSA that holds the entries (or entry copies) of one or more immediately
subordinate Naming Contexts.

This type of reference is optional, to allow for the case in which a DSA is known to contain some subordinate entries (or
entry-copies) but the specific RDNs of those entries (or entry-copies) is not known.

For each naming context that it holds, a master DSA may hold zero or more non-specific subordinate references. DSAs
accessed via a non-specific reference shall be able to resolve the request directly (either success or failure). In the event
of failure, a serviceError reporting a problem of unableToProceed is returned to the requestor.

In the case where a DSA holds entry-copies, the non-specific subordinate references may or may not be represented,
depending on the shadowing agreement in effect.

18.3.2.5 Cross References

A cross reference consists of

– a Context Prefix;

– the Access Point of a DSA which holds the entries or entry-copies for that naming context.

This type of reference is optional and serves to optimize Name Resolution. A DSA may hold any number (including
zero) of cross references.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 71

18.3.2.6 Supplier References

A supplier reference held by a shadow consumer DSA consists of

– the context prefix of the naming context from which the replicated area received from the shadow
supplier is derived;

– the identifier of the shadowing agreement that the shadow consumer has established with a shadow
supplier;

– the Access Point of the shadow supplier DSA;

– an indication of whether the shadow supplier of the replicated area is or is not the master; and

– optionally, the access point of the master DSA if the supplier is not the master.

18.3.2.7 Consumer References

A consumer reference held by a shadow supplier DSA consists of

– the context prefix of a naming context from which the replicated area provided by the shadow supplier is
derived;

– the identifier of the shadowing agreement that the shadow supplier has established with a consumer; and

– the Access Point of the shadow consumer DSA.

18.4 Minimum Knowledge

It is a property of the Directory that each entry can be accessed independently of where a request is generated.

It is also a property of the Directory that, to achieve adequate levels of performance and availability, some requests can
be satisfied using a copy of an entry, while other requests may only be satisfied using the entry itself (i.e. the information
held at the master DSA for the entry).

To realize these location independence properties of the Directory, each DSA must maintain a minimum quantity of
knowledge which depends on the particular configuration of the DSA.

The objective of these minimum requirements is to permit the distributed name resolution process to establish a
reference path, as a continuous sequence of master knowledge references, to all naming contexts within the Directory.

Beyond these minimum requirements, additional knowledge may be employed to establish other reference paths to
copies of naming contexts. Cross reference knowledge (master and shadow) may be employed to establish optimized
reference paths to naming contexts and copies of naming contexts.

The minimum knowledge requirements for DSAs are specified in 18.4.1-18.4.4.

18.4.1 Superior Knowledge

Each DSA that is not a first level DSA shall maintain a single superior reference.

18.4.2 Subordinate Knowledge

A DSA that is the master DSA of a naming context shall maintain subordinate or non-specific subordinate references of
category master knowledge to each master DSA holding (as master) an immediately subordinate naming context.

18.4.3 Supplier Knowledge

For each shadow supplier DSA that supplies it with a replicated area, a shadow consumer DSA shall maintain a supplier
reference. If the shadow consumer’s subordinate knowledge for the copy of the naming context is incomplete, it shall
use its supplier reference to establish a reference path to subordinate information. This procedure is described in clause
18 of ITU-T Rec. X.518 | ISO/IEC 9594-4.

18.4.4 Consumer Knowledge

For each shadow consumer DSA that it supplies with a replicated area, a shadow supplier DSA shall maintain a
consumer reference.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

72 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

18.5 First Level DSAs

The DSA referenced by a superior reference assumes the burden of establishing a reference path to all of the DIT that is
unknown to the referring DSA. A DSA referenced by other DSAs may itself maintain a superior reference. This
recursive superior referral process stops at a set of first level DSAs upon whom the ultimate responsibility for the
establishment of reference paths falls.

A first level DSA is characterized as follows:

a) it does not hold a superior reference;

b) it may hold one or more naming contexts immediately subordinate to the root of the DIT (as master or
shadow DSA for the naming context); and

c) it holds a subordinate reference (of category master and/or shadow) for each naming context immediately
subordinate to the root of the DIT that it does not itself hold.

The administrative authorities for first level DSAs are jointly responsible for the administration of the immediate
subordinates of the root of the DIT. The procedures governing this joint administration are determined by multilateral
agreements which are outside the scope of the Directory Specifications.

To limit the quantity of interrogation requests that might be directed to a master first level DSA (i.e. a DSA that is a
master for a naming context immediately subordinate to the root of the DIT), it is possible to establish shadow first level
DSAs for that master first level DSA. Such shadow DSAs hold copies of the entries and subordinate references
immediately subordinate to the root held in its master (or supplier) first level DSA. They therefore may serve as the
superior reference for non-first level DSAs.

19 Basic Elements of the DSA Information Model

19.1 Definitions

19.1.1 DSA information tree: The set of all DSEs held by a DSA when viewed from the perspective of their names.

19.1.2 DSA-shared attribute: An operational attribute in the DSA information model associated with a particular
name whose value or values, if held by several DSAs, are identical (except during periods of transient inconsistency).

19.1.3 DSA-specific attribute: An operational attribute in the DSA information model associated with a particular
name whose value or values, if held by several DSAs, need not be identical.

19.1.4 DSA-specific entry (DSE): The information held by a DSA that is associated with a particular name; the DSE
may (but need not) contain the information associated with the corresponding Directory entry.

19.1.5 DSE type: An indication of the particular purpose of a DSE; a DSE may serve multiple purposes and thus
have multiple types.

19.2 Introduction

The Directory information model describes how the Directory as a whole represents information about objects having a
distinguished name and optionally alias names. In its description of the DIT, entries and attributes, the composition of
the Directory as a set of potentially cooperating DSAs is abstracted from the model.

The DSA information model, on the other hand, is especially concerned with DSAs and the information that must be
held by DSAs in order that the set of DSAs comprising the Directory may together realize the Directory information
model. It is concerned with:

– how Directory information (object and alias entries and subentries) is mapped onto DSAs;

– how copies of Directory information may be held by DSAs;

– the operational information required by DSAs to perform name resolution and operation evaluation; and

– the operational information required by DSAs to engage in shadowing and to use shadowed information.

The purpose for modelling a representation of DSA operational information such as knowledge is to establish the
general framework for management access to DSA operational information.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 73

19.3 DSA-Specific Entries and their Names

In the DSA information model, the information repositories holding the information associated with a particular name
are termed DSA-Specific Entries (DSEs). Directory entries exist in the DSA information model only as information
elements from which DSEs may be composed. Operational attributes specific to the DSA information model comprise
the other variety of information element from which DSEs may be composed.

If a DSA holds any information concerning a name directly (i.e. information held in a repository identified by the name),
it is said to know or have knowledge of that name.

For each name known by a DSA, all the information held by the DSA directly associated with the name other than the
name itself is represented by one DSE. This latter information (i.e. the RDN and its relationship to the DIT) is not
represented explicitly as attributes in the DSA information model; the set of names known by a DSA constitute an
implicit fabric on which the associated DSEs can be considered to be attached.

NOTE – One consequence of the way the DSA information model handles names is that, for DSEs that are not of type
entry, alias or subentry, the AVA(s) expressing the RDN of the DSE is not modelled as held in (an) attribute(s).

The set of all names known by a DSA, together with the information associated with each name, when viewed from the
perspective of these names, is termed the DSA information tree for that DSA. A DSA information tree is depicted in
Figure 14.

4

3

2

1

TISO3350-94/d14

Root

Root DSE

DSA-Specific
Attributes

DSA-Specific
Attributes

DSA-Specific
Attributes

DSA-Specific
Attributes

DSE

DSE (e.g. for subordinate references)

Directory
Entry

Directory
Subentry

DSA-Shared
Attributes

DSA-Shared
Attributes

DSA-Shared
Attributes

DSE

Subentry

Administrative
Point (AP)

AP

Figure 14 – A DSA Information Tree

FIGURE 14...[D14] = 11.53 CM

The minimum information that a DSA may associate with a name, and thus know the name, consists of an expression of
the purpose for which the name is known (i.e. the role played by the name in the operation of the DSA knowing it). This
purpose is represented in the DSA information model by the DSA-specific attribute, dseType.

In addition, a DSE may hold other information associated with the name such as an entry or entry-copy, DSA-shared
attributes and DSA-specific attributes.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

74 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

A DSE may represent a Directory entry directly, a portion of an entry or no Directory information. The information held
in a DSE varies, depending on its type or purpose. In general, the following sorts of DSEs may occur in DSAs.

– A DSE directly representing a Directory entry contains the user and operational attributes corresponding
to that Directory entry (as depicted in DSE _ in Figure 14). The DSE may also contain DSA-shared and
DSA-specific attributes.

– A DSE representing a portion of an entry (as a result of shadowing) contains some of the user and
operational attributes corresponding to the Directory entry, DSA-specific attributes and may also contain
DSA-shared attributes.

– A subentry DSE representing, for example prescriptive ACI or collective attributes, contains the relevant
user and operational attributes corresponding to a Directory subentry (as depicted in DSE Æ in Figure
14). The DSE may also contain DSA-shared and DSA-specific attributes.

– A DSE representing no Directory entry information contains only DSA-shared and/or DSA specific
attributes (as depicted in DSEs ¨ and Ø in Figure 14). For example, a DSE representing a subordinate
reference may have a DSA-shared attribute that indicates the master access point and a DSA-specific
attribute to indicate that the DSE is a subordinate reference.

NOTE – The DSE is a conceptual entity which facilitates the specification and modelling of information components in a
consistent and convenient way. Although DSEs are said to “hold” or “store” information, this is not intended to impose any particular
constraints or data structure on implementations.

19.4 Basic Elements

A DSE is comprised of three basic elements, the DSE type, some number of DSA operational attributes (the DSE type is
one of these) and optionally an entry or entry-copy.

19.4.1 DSA Operational Attributes

Two varieties of operational attribute occur in the DSA information model that do not correspond to information in
Directory entries. Those are DSA-shared and DSA-specific attributes.

A DSA-shared attribute is an operational attribute in the DSA information model associated with a particular name
whose value or values, if held by several DSAs, are identical (except during periods of transient inconsistency). A DSA
may hold a shadow-copy of a DSA-shared attribute.

A DSA-specific attribute is an operational attribute in the DSA information model associated with a particular name
whose value or values, if held by several DSAs, need not be identical. A DSA-specific attribute represents operational
information that is specific to the functioning of the DSA holding it. A DSA cannot hold a shadow-copy of a DSA-
specific attribute.

NOTE – While a shadow-supplier DSA may provide a shadow-consumer DSA with a DSA-specific attribute, this is
conceptually not a shadow-copy of information held by the supplier but, rather, information produced by the supplier for the
consumer which the consumer may then use and modify.

19.4.2 DSE Types

The type of a DSE, represented in the DSA information model by the DSA-specific operational attribute dseType,
indicates the particular purpose (or role) of a DSE. This purpose is indicated by the named bits of the single value of the
dseType attribute. As a DSE may serve several purposes, several named bits of the dseType attribute may be set to
represent these purposes. A number of combinations of named bits that are likely to occur are specified in Annex M.

The phrase “a DSE of type x” is used in the Directory Specifications to indicate that the named bit x of the DSE’s
dseType attribute has been set. For a DSE of type x, other named bits may or may not be set, as required. The alternate
phrase “the DSE type includes x” may also be used.

The syntactic specification of the dseType operational attribute may be expressed using the attribute notation as follows:

dseType ATTRIBUTE ::= {
WITH SYNTAX DSEType
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-dseType }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 75

This DSA-specific operational attribute is managed by the DSA itself.

The ASN.1 type that represents the syntax of the possible values of the dseType attribute is DSEType. Its definition is:

DSEType ::= BIT STRING {
root (0), --root DSE --
glue (1), -- represents knowledge of a name only --
cp (2), -- context prefix --
entry (3), -- object entry --
alias (4), -- alias entry --
subr (5), -- subordinate reference --
nssr (6), -- non-specific subordinate reference --
supr (7), -- superior reference --
xr (8), -- cross reference --
admPoint (9), -- administrative point --
subentry (10), -- subentry --
shadow (11), -- shadow copy --
immSupr (13), -- immediate superior reference --
rhob (14), -- rhob information --
sa (15)} -- subordinate reference to alias entry --

The values of DSEType are:

a) root: The root DSE contains DSA-specific attributes, used by the DSA, that characterize that DSA as a
whole. The name corresponding to the root DSE is the degenerate name consisting of a sequence of zero
RDNs.

NOTE – Information that characterizes a DSA that is to be made available via the Directory abstract service is
contained in the DSA’s entry. A DSA may, but need not, hold its own entry or a copy of its own entry.

b) glue: A glue DSE represents knowledge of a name only. A DSA holding a context prefix DSE or a cross
reference DSE may hold glue DSEs to represent the names of the superiors of the context prefix or cross
reference DSE if no other operational information (e.g. knowledge) is associated with those names. This
is illustrated in Figure 14. A DSE of type glue shall not have any other DSEType bit set.

c) cp: The DSE representing the context prefix of a naming context.

d) entry: A DSE that holds an object entry.

e) alias: A DSE that holds an alias entry.

f) subr: A DSE that holds a specific knowledge attribute to represent a subordinate reference.

g) nssr: A DSE that holds a non-specific knowledge attribute to represent a non-specific subordinate
reference.

h) supr: A DSE that holds a specific knowledge attribute to represent the DSAs superior reference.

i) xr: A DSE that holds a specific knowledge attribute to represent a cross reference.

j) admPoint: A DSE corresponding to an administrative point.

k) subentry: A DSE that holds a subentry.

l) shadow: A DSE that holds a shadow-copy of an entry (or part of an entry) or other information
(e.g. knowledge) received from a shadow-supplier; this named bit is set by the shadow consumer.

m) immSupr: A DSE that holds a specific knowledge attribute to represent a immediate superior reference.

n) rhob: A DSE that holds administrative point and subentry information received from a superior DSA in a
Relevant Hierarchical Operational Binding (i.e. in either a Hierarchical Operational Binding or a Non-
specific Hierarchical Binding as described in clauses 24 and 25 of ITU-T Rec. X.518 | ISO/IEC 9594-4).

o) sa: A qualifier of a subr DSE indicating that the subordinate naming context entry is an alias.

The use of this operational attribute to represent aspects of the DSA information model is described in clause 19.

20 Representation of DSA Information

This clause treats the representation of DSA information. It describes the representation of DSA operational information
(knowledge), Directory user information and Directory operational information.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

76 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

20.1 Representation of Directory User and Operational Information

This clause specifies the representation of Directory user and Directory operational information in the DSA information
model.

20.1.1 Object Entry

An object entry is represented by a DSE of type entry which contains the user and Directory operational attributes
associated with the Directory entry. The name of the DSE is the name of the object entry (i.e. the object’s distinguished
name).

If the DSE holds a copy of the entry, the DSE type includes shadow.

20.1.2 Alias Entry

An alias entry is represented by a DSE of type alias which contains the attributes associated with the alias entry (i.e. the
RDN attributes and the aliased object name attribute). The name of the DSE is the name of the alias entry.

If the DSE holds a copy of the alias entry, the DSE type includes shadow.

20.1.3 Administrative Point

An administrative point is represented by a DSE of type admPoint which contains the attributes associated with the
administrative point. The name of the DSE is the name of the administrative point.

If the DSE represents an entry, the DSE type includes entry. If the DSE holds a copy of the administrative point
information, the DSE type includes shadow.

20.1.4 Subentry

A subentry is represented by a DSE of type subentry which contains the operational and user information associated with
the subentry. The name of the DSE is the name of the subentry.

If the DSE holds a copy of the subentry, the DSE type is subentry and shadow.

20.2 Representation of Knowledge References

A knowledge reference consists of a DSE of an appropriate type which holds a correspondingly appropriate DSA
operational attribute and which is identified by a name bearing a defined relationship to the naming context held by the
referenced DSA.

20.2.1 Knowledge Attribute Types

DSA operational attributes are defined in the DSA information model to express a DSA’s:

– knowledge of its own access point;

– superior knowledge;

– specific knowledge (its subordinate references);

– non-specific knowledge (its non-specific subordinate references)

– knowledge of its supplier(s), optionally including the master, if it is a shadow consumer;

– knowledge of its consumer(s) if it is a shadow supplier; and

– knowledge of secondary shadows, if it is a shadow supplier.

Object Identifier values are assigned in Annex E for these operational attributes.

20.2.1.1 My Access Point

The myAccessPoint operational attribute type is used by a DSA to represent its own access point. It is a DSA-specific
attribute. All DSAs shall hold this attribute in their root DSE. It is single valued and managed by the DSA itself.

myAccessPoint ATTRIBUTE ::= {
WITH SYNTAX AccessPoint
EQUALITY MATCHING RULE accessPointMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-myAccessPoint }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 77

The ASN.1 type AccessPoint is defined in ITU-T Rec. X.518 | ISO/IEC 9594-4. Its ASN.1 specification is reproduced
here for the convenience of the reader.

AccessPoint ::= SET {
ae-title [0] Name,
address [1] PresentationAddress
protocolInformation [2] SET OF ProtocolInformation OPTIONAL }

How a DSA obtains the information held in myAccessPoint is not described in the Directory Specifications.

The myAccessPoint attribute type is held in a DSE of type root.

The information held in myAccessPoint may be employed in the DOP when establishing or modifying an operational
binding.

20.2.1.2 Superior Knowledge

The superiorKnowledge operational attribute type is used by a non-first level DSA to represent its superior reference. It is
a DSA-specific attribute. All non-first level DSAs shall hold this attribute in their root DSE. It is single valued and
managed by the DSA itself.

superiorKnowledge ATTRIBUTE ::= {
WITH SYNTAX AccessPoint
EQUALITY MATCHING RULE accessPointMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-superiorKnowledge }

A DSA may acquire the information held in superiorKnowledge by means not described in the Directory Specifications.
It might also construct it from its immediate superior references, e.g. from its immediate superior reference whose
context prefix has the least number of RDNs in its name.

The superiorKnowledge attribute type is held in a DSE of type root.

The information held in superiorKnowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral or when performing chaining.

20.2.1.3 Specific Knowledge

Specific knowledge consists of the access points for the master DSA of a naming context and/or shadow DSAs for that
naming context. It is specific because the context prefix of the naming context is known and associated with the access
point information. Specific knowledge is represented by the specificKnowledge operational attribute type. It is a DSA-
shared attribute, is single valued, and managed by the DSA itself.

specificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-specificKnowledge }

The ASN.1 type MasterAndShadowAccessPoints is defined in ITU-T Rec. X.518 | ISO/IEC 9594-4. Its ASN.1
specification is reproduced here for the convenience of the reader.

MasterAndShadowAccessPoints ::= SET OF MasterOrShadowAccessPoint

MasterOrShadowAccessPoint ::= SET {
COMPONENTS OF AccessPoint,
category [3] ENUMERATED {

master (0),
shadow (1) } DEFAULT master }

A DSA may acquire the information held in specificKnowledge by means not described in the Directory Specifications. In
the case of a cross reference (DSE of type xr), it might also construct it from information received in the crossReference
component of ChainingResults of a DSP reply. In the case of a subordinate reference (DSE of type subr), it might
construct it from information received in the DOP when establishing or modifying a HOB.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

78 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

The specificKnowledge attribute type is held in a DSE of type subr, immSupr, or xr. It is used by a DSA to represent
subordinate, immediate superior and cross references.

The information held in specificKnowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral (or when performing chaining) and when constructing Shadowed DSA Specific
Entries (SDSEs) of type subr, immSupr, or xr provided in the DISP.

20.2.1.4 Non Specific Knowledge

Non-specific knowledge consists of the access points for the master DSA of one or more naming contexts and/or shadow
DSAs for the same one or more naming contexts. It is non-specific because the context prefixes of the naming context(s)
is (are) not known. The immediate superior of the naming context(s) is known, however, and the access point
information is associated with its name. Non-specific knowledge is represented by the nonSpecificKnowledge operational
attribute type. It is a DSA-shared attribute, is multiple valued and managed by the DSA itself.

nonSpecificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-nonSpecificKnowledge }

The MasterAndShadowAccessPoints value consists of an access point for a master DSA holding one or more subordinate
naming contexts, and zero or more access points of DSAs holding shadows of some or all of these naming contexts.

A DSA may acquire the information held in nonSpecificKnowledge by means not described in the Directory
Specifications. In the case of a non-specific subordinate reference (DSE of type nssr), it might also construct it from
information received in the DOP when establishing or modifying a NHOB.

The nonSpecificKnowledge attribute type is held in a DSE of type nssr. It is used to represent non-specific subordinate
references.

The information held in nonSpecificKnowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral (or when performing chaining) and when constructing SDSEs of type nssr provided in
the DISP.

20.2.1.5 Supplier Knowledge

The supplier knowledge of a shadow consumer DSA consists of the access point(s) and shadowing agreement
identifier(s) for its supplier(s) of a copy (or copies) of a replicated area. Optionally, if the supplier is not the master of the
naming context from which a replicated area is derived, the access point of the master may be included in supplier
knowledge. Supplier knowledge is represented by the supplierKnowledge operational attribute type. It is DSA-specific,
multiple valued and managed by the DSA itself.

The ASN.1 syntax for a value of supplierKnowledge is SupplierInformation. A value of this attribute is composed of a
shadow supplier DSA’s access point and the agreement ID of the shadowing agreement between the supplier DSA and
the consumer DSA holding the DSA-specific attribute (expressed as a value of the type SupplierOrConsumer), an
indication of whether the supplier of the replicated area is or is not the master of the naming context from which it is
derived, and, if not, optionally, the access point of the master DSA.

SupplierOrConsumer ::= SET {
COMPONENTS OF AccessPoint, -- supplier or consumer --
agreementID [3] OperationalBindingID }

SupplierInformation ::= SET {
COMPONENTS OF SupplierOrConsumer, -- supplier --
supplier-is-master [4] BOOLEAN DEFAULT TRUE,
non-supplying-master [5] AccessPoint OPTIONAL }

supplierKnowledge ATTRIBUTE ::= {
WITH SYNTAX SupplierInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-supplierKnowledge }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 79

A DSA may acquire the information held in supplierKnowledge by means not described in the Directory Specifications.
A shadow consumer DSA might also construct it from information received in the DOP when establishing or modifying
a shadowing agreement.

The supplierKnowledge attribute type is held in a DSE of type cp. It is used to represent one or more supplier references.
All shadow consumer DSAs shall hold a value of this attribute for each shadowing agreement they engage in as a
consumer.

The information held in supplierKnowledge may be employed by a DSA when constructing a continuation reference
returned in a DAP or DSP referral. The agreementID component (its type, OperationalBindingID, is defined in 23.2) of
supplierKnowledge is required in the operations of the DOP for managing a shadowing agreement and in all the DISP
operations.

20.2.1.6 Consumer Knowledge

The consumer knowledge of a shadow supplier DSA consists of the access point(s) and shadowing agreement
identifier(s) for the consumer(s) of a copy (or copies) of a naming context provided to them by the supplier. Consumer
knowledge is represented by the consumerKnowledge operational attribute type. It is DSA-specific, multiple valued and
managed by the DSA itself.

The ASN.1 syntax for a value of consumerKnowledge is ConsumerInformation (which has the same syntax as
SupplierOrConsumer, but refers to a consumer access point).

ConsumerInformation ::= SupplierOrConsumer -- consumer --

consumerKnowledge ATTRIBUTE ::= {
WITH SYNTAX ConsumerInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-consumerKnowledge }

A DSA may acquire the information held in consumerKnowledge by means not described in the Directory Specifications.
A shadow supplier DSA might also construct it from information received in the DOP when establishing or modifying
shadowing agreements.

The consumerKnowledge attribute type is held in a DSE of type cp. It is used to represent one or more consumer
references. All shadow supplier DSAs shall hold a value of this attribute for each shadowing agreement they engage in
as a supplier.

The agreementID component of consumerKnowledge is required in the operations of the DOP for managing a shadowing
agreement and in all the DISP operations.

20.2.1.7 Secondary Shadow Knowledge

Secondary shadow knowledge consists of information a supplier DSA (e.g. a master DSA) may choose to maintain
regarding consumer DSAs that are engaged in secondary shadowing from its perspective. Secondary shadow knowledge
is represented by the secondaryShadows operational attribute type. It is DSA-specific, multiple valued and managed by
the DSA itself. The ASN.1 syntax for a value of secondaryShadows is SupplierAndConsumers. It consists of the access
point of a shadow supplier and a list of its direct consumers.

SupplierAndConsumers ::= SET {
COMPONENTS OF AccessPoint, -- supplier --
consumers [3] SET OF AccessPoint }

secondaryShadows ATTRIBUTE ::= {
WITH SYNTAX SupplierAndConsumers
EQUALITY MATCHING RULE supplierAndConsumersMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-secondaryShadows }

The consumers component of SuppliersAndConsumers contains only access points of DSAs that hold commonly
usable copies of a replicated area.

A supplier DSA may obtain the information required to construct values of this attribute from a consumer DSA by
following the procedure described in 21.1.1 of ITU-T Rec. X.518 | ISO/IEC 9594-8.

The secondaryShadows attribute type is held in a DSE of type cp.

Support for secondary shadow knowledge is optional.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

80 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

20.2.1.8 Matching Rules

Four equality matching rules for the preceding knowledge attributes are specified below. They apply to attributes with
syntaxes of types AccessPoint, MasterAndShadowAccessPoints, SupplierInformation, ConsumerInformation and
SuppliersAndConsumers.

20.2.1.8.1 Access Point Match

The Access Point Match rule is specified as

accessPointMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-accessPointMatch }

The accessPointMatch matching rule applies to attribute values of type AccessPoint. A value of the assertion syntax is
derived from a value of the attribute syntax by using the value of the [0] context specific tag (Name) component. Two
values are considered to match for equality if the Name component of each match using the matching procedure for
DistinguishedName values.

20.2.1.8.2 Master And Shadow Access Points Match

The Master and Shadow Access Point Match equality matching rule is specified as

masterAndShadowAccessPointsMatch MATCHING-RULE ::= {
SYNTAX SET OF Name
ID id-kmr-masterShadowMatch }

The masterAndShadowAccessPointsMatch matching rule applies to attributes of type MasterAndShadowAccessPoints. A
value of the assertion syntax is derived from a value of the attribute syntax by removing the category and address
components of each SET in the SET OF MasterOrShadowAccessPoints. Two such values are considered to match for
equality if both values have the same number of SET OF elements, and, after ordering the SET OF elements of each in
any convenient fashion, the ae-title component of each pair of SET OF elements matches using the matching procedure
for distinguishedNameMatch.

20.2.1.8.3 Supplier or Consumer Information Match

The Supplier or Consumer Information Match rule is specified as

supplierOrConsumerInformationMatch MATCHING-RULE ::= {
SYNTAX SET {

ae-title [0] Name ,
agreement-identifier [2] INTEGER }

ID id-kmr-supplierConsumerMatch }

The supplierOrConsumerInformationMatch matching rule applies to attribute values of type SupplierInformation or
ConsumerInformation (and other attributes having values compatible with SupplierInformation or ConsumerInformation).
A value of the assertion syntax is derived from a value of the attribute syntax by selecting the SET components with tags
that match the SET components of the assertion syntax. Two such values are considered to match for equality if the
ae-title component of each (after removing the explicit [0] tag information) matches using the matching procedure for
DistinguishedName values and the identifier component contained in the agreement component of each (after removing
the explicit [2] and SEQUENCE tag information) matches using the matching procedure for INTEGER values.

20.2.1.8.4 Suppliers And Consumers Match

The Supplier and Consumers Match rule is specified as

supplierAndConsumersMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-supplierConsumersMatch }

The Supplier and Consumers Match rule applies to attribute values of type SupplierAndConsumers (and other attributes
having values compatible with SupplierAndConsumers). Two such values are considered to match for equality if the
ae-title component of each (after removing the explicit [0] tag information) matches using the matching procedure for
DistinguishedName values.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 81

20.2.2 Knowledge Reference Types

This subclause specifies the representation of knowledge in the DSA information model.

20.2.2.1 Self Reference

A self reference represents a DSA’s knowledge of its own access point. It is represented by a value of the attribute
myAccessPoint held in the DSA’s root DSE, a DSE of type root.

20.2.2.2 Superior Reference

A superior reference is represented by a DSE of type supr and root which contains a superiorKnowledge attribute.

20.2.2.3 Immediate Superior Reference

An immediate superior reference is represented by a DSE of type immSupr which contains a specificKnowledge attribute.
The name of the DSE holding the attribute corresponds to the context prefix of the naming context held by the
referenced superior DSA.

Since a specificKnowledge attribute value may contain access points of several DSAs, it may therefore represent several
immediate superior references, at most one of category master and zero or more of category shadow.

If the DSE holding the immediate superior reference is received from a shadow supplier, the DSE type includes shadow.

20.2.2.4 Subordinate Reference

A subordinate reference is represented by a DSE of type subr which contains a specificKnowledge attribute. The name of
the DSE holding the attribute corresponds to the context prefix of the relevant naming context held by the referenced
subordinate DSA.

Since a specificKnowledge attribute value may contain access points of several DSAs, it may therefore represent several
subordinate references, at most one of category master and zero or more of category shadow.

If the DSE holding the subordinate reference is shadowed information, received from a shadow supplier, the DSE type
includes shadow.

The DSE may also include immSupr in a DSA holding two naming contexts, one superior to the other, which are
separated by a third single-entry naming context held in another DSA. An example of this situation is depicted in
Annex M.

20.2.2.5 Non-Specific Subordinate Reference

A non-specific subordinate reference is represented by a DSE of type nssr (and entry normally) which contains a
nonSpecificKnowledge attribute. The name of the DSE holding the attribute corresponds to the name formed by
eliminating the final RDN of the context prefixes of the naming context held by the referenced subordinate DSAs.

Since a nonSpecificKnowledge attribute value may contain access points of several DSAs, it may therefore represent
several non-specific subordinate references, at most one of category master and zero or more of category shadow. Each
nonSpecificKnowledge attribute value represents a related set of non-specific subordinate references – the DSAs of
category shadow hold one or more replicated areas derived from the naming context(s) held by the DSA of category
master.

If the DSE holding the non-specific subordinate reference is shadowed information, received from a shadow supplier,
the DSE type includes shadow.

The DSE includes shadow in the situation of a shadow DSA when the DSE corresponds to an entry for which the master
DSA has non-specific subordinate knowledge and for which only the nonSpecificKnowledge attribute for the non-specific
subordinate reference is shadowed.

The DSE includes cp and shadow in the situation of a shadow DSA whose replicated area does not include the context
prefix entry and the master DSA for the naming context has non-specific subordinate knowledge for the context prefix.

The DSE includes admPoint and shadow in the situation of a shadow DSA when the DSE corresponds to an
administrative point, the entry information for the administrative point is not shadowed, and the master DSA for the
naming context has non-specific subordinate knowledge for the administrative point.

When the administrative point coincides with a context prefix in the preceding two cases, the DSE may include
admPoint, cp and shadow.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

82 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

20.2.2.6 Cross Reference

A cross reference is represented by a DSE of type xr which contains a specificKnowledge attribute. The name of the DSE
holding the attribute corresponds to the context prefix of the naming context held by the referenced DSA.

Since a specificKnowledge attribute value may contain access points of several DSAs, it may therefore represent several
cross references, at most one of category master and zero or more of category shadow.

20.2.2.7 Supplier Reference

A supplier reference is represented by a DSE of type cp which contains a supplierKnowledge attribute. The name of the
DSE holding the attribute corresponds to the context prefix of the shadowed naming context.

Since a supplierKnowledge attribute may have several values, it may represent several supplier references. Each attribute
value represents one supplier reference.

20.2.2.8 Consumer Reference

A consumer reference is represented by a DSE of type cp which contains a consumerKnowledge attribute. The name of
the DSE holding the attribute corresponds to the context prefix of the shadowed naming context.

Since a consumerKnowledge attribute may have several values, it may represent several consumer references. Each
attribute value represents one consumer reference.

20.3 Representation of Names and Naming Contexts

20.3.1 Names and Glue DSEs

As described in 19.3, the minimum information that a DSA may associate with a name is the purpose for which it holds
the name, represented by a DSE holding a value of the attribute dseType. When a DSE contains only such a minimal
information, its DSE type shall be glue. In this case the DSE shall not hold an entry or subentry (or a shadow-copy of an
entry or subentry) or a DSA-shared attribute.

Glue DSEs arise in the DSA information model to represent names that are known by a DSA as a consequence of
holding information associated with other names. For example, consider the cross reference depicted in Figure 14. The
DSA holding this cross reference also “knows” (in the sense described in 19.3) the names that are superior to the context
prefix name associated with the cross reference. When no other information is associated with such superior names, they
are represented in the DSA information model by glue DSEs.

20.3.2 Naming Contexts

A naming context consists of a context prefix, a subtree of zero or more entries subordinate to the context prefix (the
root of the subtree), and, if there are naming contexts subordinate to it, subordinate and/or non-specific subordinate
references sufficient to constitute full subordinate knowledge.

A context prefix is represented by a DSE of type cp. If the context prefix corresponds to an entry, the DSE type includes
entry. If it corresponds to an alias, the DSE type includes alias. If the context prefix corresponds to an administrative
point, the DSE type includes admPoint.

The subtree of entries and subentries subordinate to the context prefix is represented by DSEs as described in 20.1
to 20.4.

The representation of the subordinate knowledge of the naming context is represented by DSEs as described in 20.2.2.

A replicated area (a shadow copy of all or part of a naming context) is represented as above except that the DSE type
includes shadow in each DSE for which user or operational attributes are received from the shadow supplier. In the case
of incomplete replicated areas, DSEs of type glue may occur to represent a bridge between the separate pieces of the
shadowed information. No user or operational attributes are associated with these (or any) glue DSEs.

20.3.3 Example

Figure 15 illustrates an example of the mapping of a portion of the DIT (that corresponding to a naming context) onto
the information tree of a DSA. In addition to the naming context information itself, the DSA’s root DSE containing its
superior reference (this is not the DSA information tree for a first level DSA), a glue DSE and a DSE representing a
reference (either a cross reference or an immediate superior reference) to an immediately superior naming context are
also depicted.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 83

TISO3360-94/d15

Object entry

Alias entry

Other
subordinates Knowledge attribute

Object/alias entry

DSE

Entry Alias subr

entry + nssr

cp + entry

xr (or immSupr)

Glue

Root + supr

Entry

DSA Information Tree
for the Naming Context

DIT Subtree corresponding
to a Naming Context

Figure 15 – DSEs for a Naming Context

FIGURE 15...[D15] = 11.46 CM

SECTION 10 – DSA OPERATIONAL FRAMEWORK

21 Overview

21.1 Definitions

21.1.1 directory operational framework: Provides the framework from which specific operational models
concerned with particular aspects (e.g. shadowing or creating a naming context) of the operation of the components of
the Directory (DSAs) may be derived by application of the framework. It factors out common elements which are
present in all interactions between Directory components.

21.1.2 operational binding: A mutual understanding between two DSAs that, once established, expresses their
“agreement” subsequently to engage in some sort of interaction.

21.1.3 operational binding type: A particular type of operational binding specified for some distinct purpose, that
expresses the “agreement” of two DSAs to engage in specific types of interaction (e.g. shadowing).

21.1.4 operational binding instance: An operational binding of a specific type between two DSAs.

21.1.5 operational binding establishment: The process of establishing an operational binding instance.

21.1.6 operational binding modification: The process of modifying an operational binding instance.

21.1.7 operational binding termination: The process of terminating an operational binding instance.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

84 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

21.1.8 operational binding management: The process of establishing, terminating or modifying an instance of an
operational binding. This management may be achieved via information exchanges defined by Directory Specifications,
via exchanges defined in other Specifications, or by other means.

21.1.9 cooperative state: With respect to a second DSA, the state of a DSA for which an operational binding instance
has been established and has not been terminated.

21.1.10 non-cooperative state: With respect to a second DSA, the state of a DSA prior to the establishment or after
the termination of an operational binding instance.

21.2 Introduction

The Directory Specifications define application protocol information exchanges and associated DSA procedures that
define the distributed operation of the Directory. Clauses 21 through 24 define a DSA operational framework which
models certain common elements in these information exchanges and procedures.

Two DSAs interact in a cooperative manner because, in addition to their technical capacity to exchange information and
perform procedures associated with these exchanges, each has been configured to accept certain interactions with the
other.

These clauses are concerned with the expression of a common framework for the specification of the structure of the
elements of the cooperation between two DSAs.

One objective of this framework is that it be sufficiently general to account for all of the forms of DSA cooperation to be
defined in this and future editions of the Directory Specifications. The framework is used within the Directory
Specifications to define shadowing and hierarchical operational binding types.

22 Operational bindings

22.1 General

This clause is concerned with the definition of a general framework, the DSA operational framework, within which the
specification of the nature of the cooperative interactions of components of the Directory (DSAs) may be structured in
order to achieve a commonly agreed objective.

The general framework factors out common features which characterizes all interactions between DSAs. By applying the
DSA operational framework to specific aspects of cooperative interaction between DSAs, the resulting specifications
will be both concise and consistent so that the overall number of mechanisms a DSA must support will be reduced.

The mutual understanding between two DSAs that, once established, expresses their “agreement” subsequently to
engage in some sort of interaction is termed an operational binding. Two DSAs may share as many operational binding
instances of a specific type as are required.

The DSA operational framework provides a common approach to the definition of an operational binding type. An
operational binding type is a particular type of operational binding specified for some distinct purpose, that expresses the
“agreement” of two DSAs to engage in specific types of interaction (e.g. shadowing). This interaction allows operations
from a well defined set to be invoked by one or the other party to the agreement.

Two particular DSAs that have reached such an “agreement” share an operational binding instance of a specific
operational binding type. They are said to be in the cooperative state of that instance of an operational binding type.

Prior to the establishment or after the termination of an operational binding instance, two DSAs are said to be in the non-
cooperative state.

Operational binding management is the process of establishing, terminating or modifying an instance of an operational
binding. This management may be achieved via information exchanges defined by Directory Specifications, via
exchanges defined in other Specifications, or by other means.

These general concepts are depicted in Figure 16.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 85

TISO3370-94/d16

DSA
A

DSA
B

Agreement

Operational binding

Operations

Initiation

Figure 16 – An operational binding

FIGURE 16/X.501...[D16] = 9 CM

22.2 Application of the operational framework

The application of the DSA operational framework to define an operational binding type is concerned with the following
basic elements:

a) two DSAs;

b) an “agreement” of the service that one DSA will provide to another DSA;

c) a set of one or more operations, together with the accompanying procedures a DSA shall follow, through
which the service can be realized;

d) a specification of the DSA interactions needed to manage the agreement.

The relationship of these basic elements is expressed by an operational binding. An operational binding comprises the
set of these basic elements that are involved to represent the abstract agreement in technical terms. It represents the
environment, governed by an “agreement”, in which one DSA provides a defined service to the other (and vice versa).

22.2.1 Two DSAs

The DSA operational framework provides a structure within which the interaction of one DSA with another and the
procedures they consequently execute may be specified.

The two DSAs may each play an identical role in the operational binding, in which case both DSAs may manage the
operational binding, both DSAs may invoke the same operations on each other, and both DSAs are constrained to follow
the same set of procedures. This is termed a symmetric operational binding.

Alternatively, each DSA may play a different role in the operational binding, so that different sets of operations and
procedures apply to each DSA. Either or both of the DSAs may be involved in managing the operational binding. This is
termed an asymmetric operational binding.

22.2.2 The agreement

An “agreement” is a mutual understanding reached between the administrative authorities of two DSAs about a service
that shall be provided by one DSA to the other (and/or vice versa). The “agreement” is initially negotiated by the
administrative authorities of the DSAs by means outside of the scope of the Directory Specifications.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

86 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Parameters of this “agreement” can be formalized by the recording in a DSA of an ASN.1 data type for use in a protocol
exchange in the management of the operational binding. In this way both DSAs reach a mutual understanding of the
service that each is providing to the other.

22.2.3 Operations

Operations are the basic medium that DSAs use to interact. A pair of DSAs will pass on one or more operations between
themselves, in order to provide the agreed to service.

Whilst a DSA may be technically capable of supporting a large number of operations, it may only be willing to
cooperate with another DSA in the processing of a small number of these operations, or in the processing of operations
that only have particular values set for certain parameters.

The definition of an operational binding type requires the enumeration of the operations that can be exchanged. It also
allows restrictions to be placed on the values of parameters defined within the operations.

22.2.4 Management of the agreement

The framework provides generic operations for managing an instance of an operational binding. These operations
provide for the establishment, modification and termination of an operational binding.

The application of the framework to the specification of a particular operational binding type, requires the initiator of
each of the three management operations to be specified and also requires the procedures to be defined for each of
establishment, modification and termination. Whenever a management operation is applied to an operational binding of
the specified type, the DSA shall follow the corresponding procedure.

22.3 States of cooperation

The generic operational model defines two states of cooperation, as governed by an instance of a particular operational
binding type, between two DSAs as seen by one DSA with respect to the other DSA and three transitions between these
states. Each identified instance of an operational binding type shared by two DSAs has its own states of cooperation. The
states of cooperation are:

a) Non-cooperative state – A particular identified instance of an operational binding type has not been
established or has been terminated between the two DSAs. The interaction between the two DSAs (with
respect to the identified instance of an operational binding type) is not defined. A DSA contacted by
another with whom it is in a non-cooperative state may, for example, refuse to engage in any interaction at
all, or it may be prepared to service the request.

b) Cooperative state – There is an instance of an operational binding of the type in question between the two
DSAs. Their cooperative behavior is governed by the definition of the operational binding type and its
specific parameters and associated procedures.

The transitions between these two states of cooperation may be invoked in two ways: by standardized protocol
interactions or by other means.

The interactions between two DSAs to manage an instance of an operational binding (e.g. to establish and terminate a
shadowing agreement) are distinct from their potential interactions as governed by the binding (e.g. the interaction to
update a unit of replication).

The state transitions are as follows:

a) The establishment transition creates an instance of an operational binding of a particular type between two
DSAs, resulting in the movement from the non-cooperative to the cooperative state.

b) The termination transition destroys an instance of an operational binding of a particular type between two
DSAs, resulting in the movement from the cooperative to the non-cooperative state.

c) The modification transition modifies the parameters of an instance of an operational binding between two
DSAs, resulting in the movement from the cooperative state to the cooperative state.

These generic states and transitions are illustrated in Figure 17.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 87

TISO3380-94/d17

Non-cooperative
state

Cooperative
state

Modification

Establishment Termination

Figure 17 – States of cooperation

FIGURE 17/X.501...[D17] = 8.5 CM

23 Operational binding specification and management

23.1 Operational binding type specification

When applying the framework to define a specific type of operational binding, the following characteristics of the type
shall be specified:

a) Symmetry

A specification of the respective roles of the DSAs that are party to the operational binding.

Operational bindings may be symmetric, in which case the role of one DSA is interchangeable with the
other and both DSAs exhibit the same external interactions. They may also be asymmetric, in which case
each DSA plays a distinct role and both DSAs exhibit different external interactions. In this latter case the
Directory operational framework distinguishes the two abstract roles as “ROLE-A” and “ROLE-B”.

Each of the abstract roles “ROLE-A” and “ROLE-B” have to be associated with a concrete role with
defined semantics (e.g. “ROLE-A” as shadow supplier, “ROLE-B” as shadow consumer).

b) Agreement

A definition of the semantics and representation of the components of the “agreement”. This information
parameterizes the specific instance of an operational binding between two DSAs.

c) Initiator

A definition which of the two abstract roles “ROLE-A” and “ROLE-B” is allowed to initiate the
establishment, modification or termination of an operational binding of this type.

d) Management procedures

A set of procedures that a DSA shall follow when the operational binding of this type is established,
modified or terminated.

e) Type identification

This identifies the type of DSA interaction that is determined by the operational binding. These identifiers
are object identifier values.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

88 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

f) Application-contexts, operations and procedures

This identifies the set of application-contexts whose operations (or a subset thereof) may be employed
during the co-operative phase of the operational binding.

For each operation referenced by the operational binding type a description of the procedures to be
followed by a DSA if the operation is invoked is required (this may be done by reference to another part
of these Directory Specifications).

For those operational bindings that are to be managed using the generic operational binding management operations
provided in this clause, the binding type shall be specified using the three information object classes OPERATIONAL-
BINDING, OP-BIND-COOP and OP-BIND-ROLE defined in this clause.

23.2 Operational binding management

In general, the management of an operational binding requires initially the establishment of an operational binding
instance. This may optionally be followed by one or more modifications to some or all of the parameters of the initial
agreement, and finally may involve the termination of the operational binding instance. The precise details of how an
instance may be managed are defined during the definition of the operational binding type. This type definition requires
the specification of:

a) the initiator of each of the management operations (this can be either, both, or neither of the two DSAs);

b) the parameters for each of the management operations; and

c) the procedures that each DSA must follow for each of the management operations.

During the establishment of an operational binding instance, an operational binding instance identifier (binding id) is
created. This identifier, when combined with the distinguished names of the two DSAs involved in the operational
binding, will form a unique identifier for the binding instance. All management operations subsequent to the
establishment of the operational binding instance will use the binding id to identify which operational binding instance is
being modified or terminated.

The initiator of the establish operation always transfers the parameters of the “agreement” to the second DSA. In
addition the initiator may also transfer some establishment parameters which are specific to its role in the operational
binding. If the responding DSA is willing to enter into the operational binding, it may return in the result establishment
parameters which are specific to its role. If the responding DSA is unwilling to enter into the operational binding, it shall
return an error, which may optionally contain an agreement with a revised set of parameters. This is depicted in
Figure 18 in the case where role A and in Figure 19 in the case where role B is the initiator of the establish operation.

TISO3390-94/d18

DSA A DSA B

Result (p)

Establish (a, p) A →B

B →A

Error (a′)

a Agreement
p Establishment parameter

Figure 18 – DSA with Role A initiating establishment

FIGURE 18/X.501...[D18] = 9 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 89

TISO3400-94/d19

DSA A DSA B

Result (p)

Establish (a, p) B →Α

A →Β

Error (a′)

a Agreement
p Establishment parameter

Figure 19 – DSA with Role B initiating establishment

FIGURE 19/X.501...[D19] = 9 CM

23.3 Operational binding specification templates

For the definition of a specific type of operational binding the following three ASN.1 information object classes may be
used as templates. They allow those parts of the operational binding type that can be formalized to be specified by the
use of ASN.1. Other aspects of the operational binding type, such as the procedures a DSA has to follow when an
operational binding is established or terminated have to be specified by some other means (this can be done in a
manner similar to the informal description of the DSA procedures during the name resolution process described in
ITU-T Rec. X.518 | ISO/IEC 9594-4).

23.3.1 Operational binding information object class

OPERATIONAL-BINDING ::= CLASS {

&Agreement,

&Cooperation OP-BINDING-COOP,

&both OP-BIND-ROLE OPTIONAL,

&roleA OP-BIND-ROLE OPTIONAL,

&roleB OP-BIND-ROLE OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

AGREEMENT &Agreement

APPLICATION CONTEXTS &Cooperation

[SYMMETRIC &both]

[ASYMMETRIC

[ROLE-A &roleA]

[ROLE-B &roleB]]

ID &id }

The OPERATIONAL-BINDING information object class serves as a specification template for an operational binding
type. A variable notation is defined for this class to simplify its use as a template. The correspondence between the
definition of an operational binding type and the fields of the variable notation is as follows:

a) The ASN.1 type of the agreement parameter that is used for this type of operational binding is that
referenced by the “AGREEMENT” field.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

90 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

b) The application contexts and the operations of these application-contexts that are employed within the co-
operation phase of an operational binding instance of the defined type are those enumerated following the
“APPLICATION-CONTEXTS” field. All operations of a listed application-context are selected unless
the optional “APPLIES TO” field is present and followed by a list of references to operations that are
selected from the application context. This list is an object class set composed of instances of the
OPERATION information object class.

c) The class of the operational binding is defined by the “SYMMETRIC” or “ASYMMETRIC” fields. In the
case of a symmetric operational binding, the term “SYMMETRIC” is followed by a single information
object of class OP-BIND-ROLE that is valid for both roles of the operational binding. In the case of an
asymmetric operational binding, the term “ASYMMETRIC” is followed by two information objects of
class OP-BIND-ROLE, one referenced by the subfield “ROLE-A” and the other by “ROLE-B”.

d) The object identifier value that serves to identify this type of operational binding is defined by the “ID”
field.

23.3.2 Operational binding cooperation information object class

OP-BINDING-COOP ::= CLASS {
&applContext APPLICATION-CONTEXT,
&Operations OPERATION OPTIONAL }

WITH SYNTAX {
&applContext
[APPLIES TO &Operations]}

The OP-BIND-COOP information object class serves as a specification template for the identification of the operations
of a named application context, some aspect of which is determined by the operational binding. An instance of this class
is meaningful only within the context of a particular operational binding type. A variable notation is defined for this
class to simplify its use as a template. The correspondence between the definition of an operational binding type and the
fields of the variable notation is as follows:

a) The applContext field identifies an application context, some or all of whose operations are in some way
determined by an operational binding.

b) The “APPLIES TO” field, if present, identifies the particular operations to which the operational binding
applies. If the field is absent, the operational binding applies to all the operations of the application
context.

23.3.3 Operational binding role information object class

OP-BIND-ROLE ::= CLASS {
&establish BOOLEAN DEFAULT FALSE,
&EstablishParam OPTIONAL,
&modify BOOLEAN DEFAULT FALSE,
&ModifyParam OPTIONAL,
&terminate BOOLEAN DEFAULT FALSE,
&TerminateParam OPTIONAL }

WITH SYNTAX {
[ESTABLISHMENT-INITIATOR &establish]
[ESTABLISHMENT-PARAMETER &EstablishParam]
[MODIFICATION-INITIATOR &modify]
[MODIFICATION-PARAMETER &ModifyParam]
[TERMINATION-INITIATOR &terminate]
[TERMINATION-PARAMETER &TerminateParam]}

The OP-BIND-ROLE information object class serves as a specification template for roles of an operational binding type.
An instance of this class is meaningful only within the context of a particular operational binding type. A variable
notation is defined for this class to simplify its use as a template. The correspondence between the definition of an
operational binding role and the fields of the variable notation is as follows:

a) The “ESTABLISHMENT INITIATOR” field indicates whether the DSA assuming the defined role may
initiate the establishment of an operational binding of a particular type.

b) The “ESTABLISHMENT PARAMETER” field defines the ASN.1 type exchanged by a DSA assuming
the defined role when an instance of the operational binding type is established.

c) The “MODIFICATION INITIATOR” field indicates whether the DSA assuming the defined role may
initiate the modification of an operational binding of a particular type.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 91

d) The “MODIFICATION PARAMETER” field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is modified.

e) The “TERMINATION INITIATOR” field indicates whether the DSA assuming the defined role may
terminate the establishment of an operational binding of a particular type.

f) The “TERMINATION PARAMETER” field defines the ASN.1 type exchanged by a DSA assuming the
defined role when an instance of the operational binding type is terminated.

24 Operations for operational binding management

This clause defines a set of operations that can be used to establish, modify and terminate operational bindings of various
types. These operations are generic in the way that they can be used to manage operational bindings of any type. The
specification of these operations make use of the definitions provided for a certain type of operational binding by
application of the OPERATIONAL-BINDING information object class template.

NOTE – By using this facility, arbitrary types of operational bindings may be managed. These operations (together with
the associated application-context) provide a means of extensibility concerning DSA interactions. New types of operational bindings
may be defined in the future which extend the functionality that is provided between DSAs.

24.1 Application-context definition

The set of operations for managing operational binding instances can be used for the definition of an application context
in the following two ways:

1) An application-context may be constructed containing only the operations for operational binding
management. An application context for generic operational binding management is defined in ITU-T
Rec. X.519 | ISO/IEC 9594-5.

The operations that may be exchanged during the co-operative phase of the operational binding form one
or more separate application contexts.

2) The set of operations can be imported into the module used to define a specific application-context. The
operational binding management operations can then be used together with the operations of the co-
operative phase within a single application context.

NOTE – The first approach is useful in the case where a specialized component of a DSA wants to use an
association solely for managing the set of operational bindings of that DSA, and it is not prepared to accept any of the
operations defined for the co-operative phase (e.g. updateShadow).

24.2 Establish Operational Binding operation

The Establish Operational Binding operation allows establishment of a operational binding instance of a pre-defined
type, between two DSAs. This is achieved through the transfer of the establishment parameters and the terms of
agreement which were defined in the definition of the operational binding type.

In the case of a symmetrical operational binding, either of the two DSAs may take the initiative to establish an
operational binding instance of the pre-defined type.

In the case of an asymmetrical operational binding, either the DSA assuming “ROLE-A” or “ROLE-B” establishes the
operational binding, depending on the specific definition of the operational binding type.

establishOperationalBinding OPERATION ::= {
ARGUMENT EstablishOperationalBindingArgument
RESULT EstablishOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-establishOperationalBinding }

EstablishOperationalBindingArgument ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, role A initiates, or role B initiates --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet}{@bindingType}),

roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSet}{@bindingType}),

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

92 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({OpBindingSet}{@bindingType})} OPTIONAL,

agreement [6] OPERATIONAL-BINDING.&Agreement
({OpBindingSet}{@bindingType}),

valid [7] Validity DEFAULT { } }

OpBindingSet OPERATIONAL-BINDING ::= {
shadowOperationalBinding |
hierarchicalOperationalBinding |
nonSpecificHierarchicalOperationalBinding }

OperationalBindingID ::= SEQUENCE {
identifier INTEGER,
version INTEGER }

The component bindingType states which type of operational binding is to be established. Operational binding types are
defined by the use of the OPERATIONAL-BINDING information object class template which assigns an object
identifier value to the operational binding type. The bindingType is taken from the “ID” field of one of the instances of
an operational binding type referenced by OpBindingSet. This set is a parameter of
EstablishOperationalBindingArgument, a parameterized type.

The initiating DSA may assign an identification to the operational binding instance via the bindingID component. If
bindingID is absent within the operation argument, the responding DSA shall assign an ID to the operational binding
instance and return it in the bindingID component of the establishOperationalBindingResult. In either case, when
establishing an operational binding both the identifier and version components of the OperationalBindingID value
must be assigned and issued by the DSA making the assignment.

The component accessPoint specifies the access point of the initiator for subsequent interactions.

The role that the DSA issuing the Establish Operational Binding operation assumes is indicated by the CHOICE type
with the options symmetric, roleA-initiates, and roleB-initiates. The CHOICE option governs the particular
establishment parameters employed by the initiating and responding DSAs. The semantics of the roles are defined as part
of the definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the
“ESTABLISHMENT PARAMETER” of the initiator’s OP-BIND-ROLE information object class template. The
CHOICE type is omitted if establishment of the operational binding type requires no establishment parameter from the
initiator.

The component agreement contains the terms of agreement governing the operational binding instance. Its actual
content depends on the type of operational binding to be established. The ASN.1 type for this parameter is defined by the
“AGREEMENT” field of the OPERATIONAL-BINDING information object class template of the operational binding
type.

The duration that the operational binding instance shall exist is defined in valid. The starting time of the existence of the
operational binding instance is specified in validFrom and the time that the operational binding instance is terminated is
given in validUntil.

Validity ::= SEQUENCE {
validFrom [0] CHOICE {

now [0] NULL,
time [1] UTCTime } DEFAULT now : NULL,

validUntil [1] CHOICE {
explicitTermination [0] NULL,
time [1] UTCTime } DEFAULT explicitTermination : NULL }

If the Establish Operational Binding operation succeeds, the following result is returned:

EstablishOperationalBindingResult ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, role A replies , or role B replies --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet}{@bindingType}),

roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSet}{@bindingType}),

roleB-replies [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({OpBindingSet}{@bindingType})} OPTIONAL}

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 93

The bindingType component is contained within the result to indicate the type of operational binding for use within the
CHOICE element. Its value is the same as that provided by the establishment initiator and is taken from the “ID” field
of one of the instances of an operational binding type referenced by OpBindingSet. This set is a parameter of
EstablishOperationalBindingResult, a parameterized type.

The identification of the established operational binding instance may be returned in bindingID. It shall be used to
identify this operational binding instance in any subsequent Modify or Terminate Operational Binding operation, and
may be used in any other operation that is executed within the co-operative phase of the established operational binding
instance.

NOTE – In the Terminate Operational Binding operation only the identifier component of OperationalBindingID is
present.

The component accessPoint specifies the access point of the responder for subsequent interactions.

The initiating DSA may assign an identification to the operational binding instance via the bindingID component. If
bindingID is absent within the operation argument, the responding DSA shall assign an ID to the operational binding
instance and return it in the bindingID component of the establishOperationalBindingResult.

The role that the DSA replying to the Establish Operational Binding operation assumes is indicated by the CHOICE
type with the options symmetric, roleA-initiates and roleB-initiates. The semantics of the roles are defined as part of
the definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the
“ESTABLISHMENT PARAMETER” of the responder’s OP-BIND-ROLE information object class template. The
CHOICE type is omitted if establishment of the operational binding type requires no establishment parameter from the
responder.

24.3 Modify Operational Binding operation

The Modify Operational Binding operation is used to modify an established operational binding. The right to modify is
indicated by the “MODIFICATION INITIATOR” field(s) within the definition of the operational binding type using the
OP-BIND-ROLE and OPERATIONAL-BINDING information object class templates.

The components of an operational binding that can be modified are the content of the agreement for the operational
binding and its period of validity. Further, a modification parameter can be specified by the initiating role.

modifyOperationalBinding OPERATION ::= {
ARGUMENT ModifyOperationalBindingArgument
RESULT ModifyOperationalBindingResult
ERRORS { operationalBindingError | securityError }
CODE id-op-modifyOperationalBinding }

ModifyOperationalBindingArgument ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID,
accessPoint [2] AccessPoint OPTIONAL,
-- symmetric, role A initiates, or role B initiates --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&ModifyParam
({OpBindingSet}{@bindingType}),

roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&ModifyParam
({OpBindingSet}{@bindingType}),

roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&ModifyParam
({OpBindingSet}{@bindingType})} OPTIONAL,

newBindingID [6] OperationalBindingID,
newAgreement [7] OPERATIONAL-BINDING.&Agreement

({OpBindingSet}{@bindingType}),
valid [8] Validity OPTIONAL}

The component bindingType states which type of operational binding is to be modified. The bindingType is taken from
the “ID” field of one of the instances of an operational binding type referenced by OpBindingSet. This set is a
parameter of ModifyOperationalBindingArgument, a parameterized type.

The identification of the operational binding instance to be modified is given by bindingID. The revised identifier of the
operational binding instance is given by newBindingID. The version component of newBindingID must be greater than
that of bindingID.

The optional component accessPoint is present if the initiator’s access point for subsequent interactions is to be
changed.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

94 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

The role that the DSA issuing the Modify Operational Binding operation assumes is indicated by the CHOICE type
with the options symmetric, roleA-initiates and roleB-initiates. The semantics of the roles are defined as part of the
definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the “MODIFICATION
PARAMETER” of the initiator’s OP-BIND-ROLE information object class template. The CHOICE type is omitted if
modification of the operational binding type requires no modification parameter from the initiator.

The component newAgreement, if present, contains the modified terms of agreement governing the operational binding
instance. The ASN.1 type for this parameter is defined by the “AGREEMENT” field of the OPERATIONAL-
BINDING information object class template of the operational binding type. If newAgreement is not present, the
parameters of the agreement are not changed by the operation.

The optional valid component may be used to indicate a revised period of validity for the altered agreement. If the valid
component is absent, the validFrom component is presumed to have the value now and the validUntil component is
assumed to be unchanged. If the validFrom component is present and refers to an instant of time in the future, the
current agreement remains in effect until that time.

If the Modify Operational Binding operation succeeds, a NULL result is returned:

ModifyOperationalBindingResult ::= NULL

It is not possible for the responding DSA to return the modification parameter defined for its role to the modification
initiator.

24.4 Terminate Operational Binding operation

The Terminate Operational Binding operation is used to request the termination of an established operational binding
instance. The right to request termination is indicated by the “TERMINATION INITIATOR” field(s) within the
definition of the operational binding type using the OP-BIND-ROLE and OPERATIONAL-BINDING information object
class templates.

terminateOperationalBinding OPERATION ::= {
ARGUMENT TerminateOperationalBindingArgument
RESULT TerminateOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-terminateOperationalBinding }

TerminateOperationalBindingArgument ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID,

-- symmetric, role A initiates, or role B initiates --
initiator CHOICE {

symmetric [2] OPERATIONAL-BINDING.&both.&TerminateParam
({OpBindingSet}{@bindingType}),

roleA-initiates [3] OPERATIONAL-BINDING.&roleA.&TerminateParam
({OpBindingSet}{@bindingType}),

roleB-initiates [4] OPERATIONAL-BINDING.&roleB.&TerminateParam
({OpBindingSet}{@bindingType})} OPTIONAL,

terminateAt [5] UTCTime OPTIONAL}

The component bindingType states which type of operational binding is to be terminated. The bindingType is taken
from the “ID” field of one of the instances of an operational binding type referenced by OpBindingSet. This set is a
parameter of TerminateOperationalBindingArgument, a parameterized type.

The identification of the operational binding instance to be terminated is given by bindingID. Only the identifier
component of the bindingID need be supplied by the initiator. If the version component is present in the bindingID, it
is ignored.

The role that the DSA issuing the Terminate Operational Binding operation assumes is indicated by the CHOICE type
with the options symmetric, roleA-initiates and roleB-initiates. The semantics of the roles are defined as part of the
definition of the operational binding type. The ASN.1 type of the CHOICE is determined by the “TERMINATION
PARAMETER” of the initiator’s OP-BIND-ROLE information object class template. The CHOICE type is omitted if
termination of the operational binding type requires no termination parameter from the initiator.

If the operational binding is not to be terminated immediately, a delayed termination time can defined in terminateAt.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 95

If the Terminate Operational Binding operation succeeds, a NULL result is returned:

TerminateOperationalBindingResult ::= NULL

It is not possible for the responding DSA to return the termination parameter defined for its role to the termination
initiator.

24.5 Operational Binding Error

An Operational Binding Error reports a problem related to the usage of operations for management of operational
bindings

operationalBindingError ERROR ::= {
PARAMETER OpBindingErrorParam
CODE id-err-operationalBindingError }

OpBindingErrorParam ::= SEQUENCE {
problem [0] ENUMERATED {

invalidID (0),
duplicateID (1),
unsupportedBindingType (2),
notAllowedForRole (3),
parametersMissing (4),
roleAssignment (5),
invalidStartTime (6),
invalidEndTime (7),
invalidAgreement (8),
currentlyNotDecidable (9),
modificationNotAllowed (10)},

bindingType [1] OPERATIONAL-BINDING.&id ({OpBindingSet}) OPTIONAL,
agreementProposal [2] OPERATIONAL-BINDING.&Agreement

({OpBindingSet}{@bindingType}) OPTIONAL,
retryAt [3] UTCTime OPTIONAL }

The values of problem have the following meanings:

a) invalidID: The operational binding ID given in the request is not known by the receiving DSA.

b) duplicateID: The operational binding ID given in the establishment request already exists at the
responder. This may be caused by a prior attempt to establish an operational binding instance when the
result was lost and initiator has repeated the establishment request.

c) unsupportedBindingType: The requested operational binding type is not supported by the DSA.

d) notAllowedForRole: A management operation on the operational binding instance has been requested
which is not allowed for the role that the requestor plays (e.g. a Terminate Operational Binding operation
has been issued by a DSA that takes a role which is not allowed to initiate the termination of the
operational binding instance).

e) parametersMissing: Any required establishment or termination parameters that are defined for the type
of operational binding are missing.

f) roleAssignment: The requested role assignment for an asymmetric operational binding instance has not
been accepted.

g) invalidStartTime: The specified starting time for the operational binding instance has not been accepted.

h) invalidEndTime: The specified termination time for the operational binding instance has not been
accepted.

i) invalidAgreement: The terms of agreement for the requested operational binding instance have not been
accepted. The terms of agreement that would be accepted by the responding DSA can be returned in
agreementProposal.

j) currentlyNotDecidable: The DSA is not able to decide on-line about the establishment or modification of
the requested operational binding instance. A time when the request should be repeated can be given in
retryAt.

k) modificationNotAllowed: The Modify Operational Binding operation is rejected since modification is
not permitted for this binding instance.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

96 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

The bindingType component shall be the same as that transmitted by the invoker of the failed operational binding
management operation.

The agreementProposal component shall only be used in response to an EstablishOperationalBinding operation to
propose a revised set of agreement parameters as described in 23.2.

The retryAt component shall be used only in conjunction with the problem value currentlyNotDecidable to indicate a
time when the EstablishOperationalBinding or ModifyOperationalBinding operation should be retried.

24.6 Operational Binding Management Bind and Unbind

The DSAOperationalBindingManagementBind and DSAOperationalBindingManagementUnBind operations,
defined in 24.6.1 and 24.6.2, are used by a DSA at the beginning and end of a particular period of operational binding
management activity.

24.6.1 DSA Operational Binding Management Bind

A dSAOperationalBindingManagementBind operation is used to begin a period of operational binding management.

dSAOperationalBindingManagementBind OPERATION ::= directoryBind

The components of the dSAOperationalManagementBind are identical to their counterparts in directoryBind (see
ITU-T Rec. X.511 | ISO/IEC 9594-3) with the following differences.

24.6.1.1 Initiator Credentials

The Credentials of the DirectoryBindArgument allows information identifying the AE-Title of the initiating DSA to
be sent to the responding DSA. The AE-title shall be in the form of a Directory Distinguished Name.

24.6.1.2 Responder Credentials

The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the responding DSA to be
sent to the initiating DSA. The AE-title shall be in the form of a Distinguished Name.

24.6.2 DSA Operational Binding Management Unbind

A dSAOperationalManagementUnbind operation is used to end a period of providing operational binding
management.

dSAOperationalBindingManagementUnbind OPERATION ::= directoryUnbind

There are no arguments, results or errors.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 97

Annex A

Object identifier usage
(This annex forms an integral part of this Recommendation | International Standard)

This annex documents the upper reaches of the object identifier subtree in which all of the object identifiers assigned in
the Directory Specifications reside. It does so by providing an ASN.1 module called “UsefulDefinitions” in which all
non-leaf nodes in the subtree are assigned names.

UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

ID ::= OBJECT IDENTIFIER

ds ID ::= {joint-iso-ccitt ds(5)}

-- categories of information object --

module ID ::= {ds 1}
serviceElement ID ::= {ds 2}
applicationContext ID ::= {ds 3}
attributeType ID ::= {ds 4}
attributeSyntax ID ::= {ds 5}
objectClass ID ::= {ds 6}
-- attributeSet ID ::= {ds 7}
algorithm ID ::= {ds 8}
abstractSyntax ID ::= {ds 9}
-- object ID ::= {ds 10}
-- port ID ::= {ds 11}
dsaOperationalAttribute ID ::= {ds 12}
matchingRule ID ::= {ds 13}
knowledgeMatchingRule ID ::= {ds 14}
nameForm ID ::= {ds 15}
group ID ::= {ds 16}
subentry ID ::= {ds 17}
operationalAttributeType ID ::= {ds 18}
operationalBinding ID ::= {ds 19}
schemaObjectClass ID ::= {ds 20}
schemaOperationalAttribute ID ::= {ds 21}
administrativeRoles ID ::= {ds 23}
accessControlAttribute ID ::= {ds 24}
rosObject ID ::= {ds 25}
contract ID ::= {ds 26}
package ID ::= {ds 27}
accessControlSchemes ID ::= {ds 28}

-- modules --

usefulDefinitions ID ::= {module usefulDefinitions(0) 2}
informationFramework ID ::= {module informationFramework(1) 2}
directoryAbstractService ID ::= {module directoryAbstractService(2) 2}
distributedOperations ID ::= {module distributedOperations(3) 2}
protocolObjectIdentifiers ID ::= {module protocolObjectIdentifiers (4) 2}
selectedAttributeTypes ID ::= {module selectedAttributeTypes(5) 2}
selectedObjectClasses ID ::= {module selectedObjectClasses(6) 2}
authenticationFramework ID ::= {module authenticationFramework(7) 2}
algorithmObjectIdentifiers ID ::= {module algorithmObjectIdentifiers(8) 2}
directoryObjectIdentifiers ID ::= {module directoryObjectIdentifiers(9) 2}
upperBounds ID ::= {module upperBounds(10) 2}
dap ID ::= {module dap(11) 2}

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

98 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

dsp ID ::= {module dsp(12) 2}
distributedDirectoryOIDs ID ::= {module distributedDirectoryOIDs(13) 2}
directoryShadowOIDs ID ::= {module directoryShadowOIDs(14) 2}
directoryShadowAbstractService ID ::= {module directoryShadowAbstractService(15) 2}
disp ID ::= {module disp(16) 2}
dop ID ::= {module dop(17) 2}
opBindingManagement ID ::= {module opBindingManagement(18) 2}
opBindingOIDs ID ::= {module opBindingOIDs(19) 2}
hierarchicalOperationalBindings ID ::= {module hierarchicalOperationalBindings(20) 2}

dsaOperationalAttributeTypes ID ::= {module dsaOperationalAttributeTypes(22) 2}
schemaAdministration ID ::= {module schemaAdministration(23) 2}
basicAccessControl ID ::= {module basicAccessControl(24) 2}
directoryOperationalBindingTypes

ID ::= {module directoryOperationalBindingTypes(25) 2}
-- synonyms --

id-oc ID ::= objectClass
id-at ID ::= attributeType
id-as ID ::= abstractSyntax
id-mr ID ::= matchingRule
id-nf ID ::= nameForm
id-sc ID ::= subentry
id-oa ID ::= operationalAttributeType
id-ob ID ::= operationalBinding
id-doa ID ::= dsaOperationalAttribute
id-kmr ID ::= knowledgeMatchingRule
id-soc ID ::= schemaObjectClass
id-soa ID ::= schemaOperationalAttribute
id-ar ID ::= administrativeRoles
id-aca ID ::= accessControlAttribute
id-ac ID ::= applicationContext
id-rosObject ID ::= rosObject
id-contract ID ::= contract
id-package ID ::= package
id-acScheme ID ::= accessControlSchemes

-- obsolete module identifiers --

-- usefulDefinitions ID ::= {module 0}
-- informationFramework ID ::= {module 1}
-- directoryAbstractService ID ::= {module 2}
-- distributedOperations ID ::= {module 3}
-- protocolObjectIdentifiers ID ::= {module 4}
-- selectedAttributeTypes ID ::= {module 5}
-- selectedObjectClasses ID ::= {module 6}
-- authenticationFramework ID ::= {module 7}
-- algorithmObjectIdentifiers ID ::= {module 8}
-- directoryObjectIdentifiers ID ::= {module 9}
-- upperBounds ID ::= {module 10}
-- dap ID ::= {module 11}
-- dsp ID ::= {module 12}
-- distributedDirectoryObjectIdentifiers
-- ID ::= {module 13}
-- unused module identifiers --

-- directoryShadowOIDs ID ::= {module 14}
-- directoryShadowAbstractService ID ::= {module 15}
-- disp ID ::= {module 16}
-- dop ID ::= {module 17}
-- opBindingManagement ID ::= {module 18}
-- opBindingOIDs ID ::= {module 19}
-- hierarchicalOperationalBindings ID ::= {module 20}

-- dsaOperationalAttributeTypes ID ::= {module 22}
-- schemaAdministration ID ::= {module 23}
-- basicAccessControl ID ::= {module 24}
-- operationalBindingOIDs ID ::= {module 25}
END

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 99

Annex B

Information Framework in ASN.1
(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a summary of all of the ASN.1 type, value and macro definitions contained in this Directory
Specification. The definitions form the ASN.1 module InformationFramework.

InformationFramework {joint-iso-ccitt ds(5) module(1) informationFramework(1) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
id-oc, id-at, id-mr, id-oa, id-sc, id-ar, selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

commonName, generalizedTimeMatch, generalizedTimeOrderingMatch
FROM SelectedAttributeTypes selectedAttributeTypes ;

-- attribute data types --

Attribute ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
values SET SIZE (1 .. MAX) OF ATTRIBUTE.&Type ({SupportedAttributes}{@type})}

AttributeType ::= ATTRIBUTE.&id

AttributeValue ::= ATTRIBUTE.&Type

AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRIBUTE.&Type ({SupportedAttributes}{@type})}

AttributeValueAssertion ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
assertion ATTRIBUTE.&equality-match.&AssertionType ({SupportedAttributes}{@type})}

-- Definition of the following information object set is deferred, perhaps to standardized
-- profiles or to protocol implementation conformance statements. The set is required to
-- specify a table constraint on the values component of Attribute, the value component
-- of AttributeTypeAndValue, and the assertion component of AttributeValueAssertion.

SupportedAttributes ATTRIBUTE ::= { objectClass | aliasedEntryName, ... }

-- naming data types --

Name ::= CHOICE { -- only one possibility for now --
rdnSequence RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::= SET SIZE (1 .. MAX) OF AttributeTypeAndValue

-- subtree data types --

SubtreeSpecification ::= SEQUENCE {
base [0] LocalName DEFAULT { },
COMPONENTS OF ChopSpecification,
specificationFilter [4] Refinement OPTIONAL }
-- empty set specifies whole administrative area

LocalName ::= RDNSequence

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

100 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

ChopSpecification ::= SEQUENCE {
specificExclusions [1] SET OF CHOICE {

chopBefore [0] LocalName,
chopAfter [1] LocalName } OPTIONAL,

minimum [2] BaseDistance DEFAULT 0,
maximum [3] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0 .. MAX)

Refinement ::= CHOICE {
item [0] OBJECT-CLASS.&id,
and [1] SET OF Refinement ,
or [2] SET OF Refinement,
not [3] Refinement }

-- OBJECT-CLASS information object class specification --

OBJECT-CLASS ::= CLASS {
&Superclasses OBJECT-CLASS OPTIONAL,
&kind ObjectClassKind DEFAULT structural,
&MandatoryAttributes ATTRIBUTE OPTIONAL,
&OptionalAttributes ATTRIBUTE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SUBCLASS OF &Superclasses]
[KIND &kind]
[MUST CONTAIN &MandatoryAttributes]
[MAY CONTAIN &OptionalAttributes]
ID &id }

ObjectClassKind ::= ENUMERATED {
abstract (0),
structural (1),
auxiliary (2) }

-- object classes --

top OBJECT-CLASS ::= {
KIND abstract
MUST CONTAIN { objectClass }
ID id-oc-top }

alias OBJECT-CLASS ::= {
SUBCLASS OF { top }
MUST CONTAIN { aliasedEntryName }
ID id-oc-alias }

-- ATTRIBUTE information object class specification --

ATTRIBUTE ::= CLASS {
&derivation ATTRIBUTE OPTIONAL,
&Type OPTIONAL, -- either &Type or &derivation required --
&equality-match MATCHING-RULE OPTIONAL,
&ordering-match MATCHING-RULE OPTIONAL,
&substrings-match MATCHING-RULE OPTIONAL,
&single-valued BOOLEAN DEFAULT FALSE,
&collective BOOLEAN DEFAULT FALSE,
-- operational extensions --
&no-user-modification BOOLEAN DEFAULT FALSE,
&usage AttributeUsage DEFAULT userApplications,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SUBTYPE OF &derivation]
[WITH SYNTAX &Type]
[EQUALITY MATCHING RULE &equality-match]
[ORDERING MATCHING RULE &ordering-match]
[SUBSTRINGS MATCHING RULE &substrings-match]
[SINGLE VALUE &single-valued]
[COLLECTIVE &collective]
[NO USER MODIFICATION &no-user-modification]
[USAGE &usage]
ID &id }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 101

AttributeUsage ::= ENUMERATED {
userApplications (0),
directoryOperation (1),
distributedOperation (2),
dSAOperation (3) }

-- attributes --

objectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
ID id-at-objectClass }

aliasedEntryName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
ID id-at-aliasedEntryName }

-- MATCHING-RULE information object class specification --

MATCHING-RULE ::= CLASS {
&AssertionType OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
[SYNTAX &AssertionType]
ID &id}

-- matching rules --

objectIdentifierMatch MATCHING-RULE ::= {
SYNTAX OBJECT IDENTIFIER
ID id-mr-objectIdentifierMatch }

distinguishedNameMatch MATCHING-RULE ::= {
SYNTAX DistinguishedName
ID id-mr-distinguishedNameMatch }

-- NAME-FORM information object class specification --

NAME-FORM ::= CLASS {
&namedObjectClass OBJECT-CLASS,
&MandatoryAttributes ATTRIBUTE,
&OptionalAttributes ATTRIBUTE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
NAMES &namedObjectClass
WITH ATTRIBUTES &MandatoryAttributes
[AND OPTIONALLY &OptionalAttributes]
ID &id }

-- STRUCTURE-RULE class and DIT structure rule data types --

STRUCTURE-RULE ::= CLASS {
&nameForm NAME-FORM,
&SuperiorStructureRules STRUCTURE-RULE OPTIONAL,
&id RuleIdentifier UNIQUE }

WITH SYNTAX {
NAME FORM &nameForm
[SUPERIOR RULES &SuperiorStructureRules]
ID &id }

DITStructureRule ::= SEQUENCE {
ruleIdentifier RuleIdentifier ,

-- must be unique within the scope of the subschema
nameForm NAME-FORM.&id,
superiorStructureRules SET OF RuleIdentifier OPTIONAL }

RuleIdentifier ::= INTEGER

-- CONTENT-RULE class and DIT content rule data types --

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

102 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

CONTENT-RULE ::= CLASS {
&structuralClass OBJECT-CLASS.&id UNIQUE,
&Auxiliaries OBJECT-CLASS OPTIONAL,
&Mandatory ATTRIBUTE OPTIONAL,
&Optional ATTRIBUTE OPTIONAL,
&Precluded ATTRIBUTE OPTIONAL }

WITH SYNTAX {
STRUCTURAL OBJECT-CLASS &structuralClass
[AUXILIARY OBJECT-CLASSES &Auxiliaries]
[MUST CONTAIN &Mandatory]
[MAY CONTAIN &Optional]
[MUST-NOT CONTAIN &Precluded] }

DITContentRule ::= SEQUENCE {
structuralObjectClass OBJECT-CLASS.&id,
auxiliaries SET OF OBJECT-CLASS.&id OPTIONAL,
mandatory [1] SET OF ATTRIBUTE.&id OPTIONAL,
optional [2] SET OF ATTRIBUTE.&id OPTIONAL,
precluded [3] SET OF ATTRIBUTE.&id OPTIONAL }

-- system schema information objects --

-- object classes --

subentry OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND structural
MUST CONTAIN { commonName | subtreeSpecification }
ID id-sc-subentry }

accessControlSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-accessControlSubentry }

collectiveAttributeSubentry OBJECT-CLASS ::= {
KIND auxiliary
ID id-sc-collectiveAttributeSubentry }

-- attributes --

createTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime

-- as per clause 34.3 b) and c) of CCITT Rec. X.208 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-createTimestamp }

modifyTimestamp ATTRIBUTE ::= {
WITH SYNTAX GeneralizedTime

-- as per clause 34.3 b) and c) of CCITT Rec. X.208 | ISO/IEC 8824-1
EQUALITY MATCHING RULE generalizedTimeMatch
ORDERING MATCHING RULE generalizedTimeOrderingMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-modifyTimestamp }

creatorsName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-oa-creatorsName }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 103

modifiersName ATTRIBUTE ::= {
WITH SYNTAX DistinguishedName
EQUALITY MATCHING RULE distinguishedNameMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE irectoryOperation
ID id-oa-modifiersName }

administrativeRole ATTRIBUTE ::= {
WITH SYNTAX OBJECT-CLASS.&id
EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
ID id-oa-administrativeRole }

subtreeSpecification ATTRIBUTE ::= {
WITH SYNTAX SubtreeSpecification
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-oa-subtreeSpecification }

collectiveExclusions ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
USAGE directoryOperation
ID id-oa-collectiveExclusions }

-- object identifier assignments --

-- object classes --

id-oc-top OBJECT IDENTIFIER ::= {id-oc 0}
id-oc-alias OBJECT IDENTIFIER ::= {id-oc 1}

-- attributes --

id-at-objectClass OBJECT IDENTIFIER ::= {id-at 0}
id-at-aliasedEntryName OBJECT IDENTIFIER ::= {id-at 1}

-- matching rules --

id-mr-objectIdentifierMatch OBJECT IDENTIFIER ::= {id-mr 0}
id-mr-distinguishedNameMatch OBJECT IDENTIFIER ::= {id-mr 1}

-- operational attributes --

id-oa-excludeAllCollectiveAttributes OBJECT IDENTIFIER ::= {id-oa 0}
id-oa-createTimestamp OBJECT IDENTIFIER ::= {id-oa 1}
id-oa-modifyTimestamp OBJECT IDENTIFIER ::= {id-oa 2}
id-oa-creatorsName OBJECT IDENTIFIER ::= {id-oa 3}
id-oa-modifiersName OBJECT IDENTIFIER ::= {id-oa 4}
id-oa-administrativeRole OBJECT IDENTIFIER ::= {id-oa 5}
id-oa-subtreeSpecification OBJECT IDENTIFIER ::= {id-oa 6}
id-oa-collectiveExclusions OBJECT IDENTIFIER ::= {id-oa 7}

-- subentry classes --

id-sc-subentry OBJECT IDENTIFIER ::= {id-sc 0}
id-sc-accessControlSubentry OBJECT IDENTIFIER ::= {id-sc 1}
id-sc-collectiveAttributeSubentr OBJECT IDENTIFIER ::= {id-sc 2}

-- administrative roles --

id-ar-autonomousArea OBJECT IDENTIFIER ::= {id-ar 1}
id-ar-accessControlSpecificArea OBJECT IDENTIFIER ::= {id-ar 2}
id-ar-accessControlInnerArea OBJECT IDENTIFIER ::= {id-ar 3}
id-ar-subschemaAdminSpecificArea OBJECT IDENTIFIER ::= {id-ar 4}
id-ar-collectiveAttributeSpecificArea OBJECT IDENTIFIER ::= {id-ar 5}
id-ar-collectiveAttributeInnerArea OBJECT IDENTIFIER ::= {id-ar 6}

END

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

104 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex C

SubSchema Administration Schema in ASN.1
(This annex forms an integral part of this Recommendation | International Standard)

This annex contains the ASN.1 type, value and information object definitions for subschema administration in the form
of an ASN.1 module, SchemaAdministration.

SchemaAdministration {joint-iso-ccitt ds(5) module(1) schemaAdministration(23) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, selectedAttributeTypes, upperBounds, id-soc, id-soa

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

OBJECT-CLASS, ATTRIBUTE, MATCHING-RULE, DITStructureRule, DITContentRule,
ObjectClassKind, AttributeUsage, NAME-FORM, objectIdentifierMatch

FROM InformationFramework informationFramework

DirectoryString {}, integerFirstComponentMatch, integerMatch,
objectIdentifierFirstComponentMatch

FROM SelectedAttributeTypes selectedAttributeTypes

ub-schema
FROM UpperBounds upperBounds ;

-- types --

DITStructureRuleDescription ::= SEQUENCE {
COMPONENTS OF DITStructureRule,
name [1] SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE }

DITContentRuleDescription ::= SEQUENCE {
COMPONENTS OF DITContentRule,
name [4] SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema }OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE}

MatchingRuleDescription ::= SEQUENCE {
identifier MATCHING-RULE.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] DirectoryString { ub-schema } }

-- describes the ASN.1 syntax

AttributeTypeDescription ::= SEQUENCE {
identifier ATTRIBUTE.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] AttributeTypeInformation }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 105

AttributeTypeInformation ::= SEQUENCE {
derivation [0] ATTRIBUTE.&id OPTIONAL,
equalityMatch [1] MATCHING-RULE.&id OPTIONAL,
orderingMatch [2] MATCHING-RULE.&id OPTIONAL,
substringsMatch [3] MATCHING-RULE.&id OPTIONAL,
attributeSyntax [4] DirectoryString { ub-schema } OPTIONAL,
multi-valued [5] BOOLEAN DEFAULT TRUE,
collective [6] BOOLEAN DEFAULT FALSE,
userModifiable [7] BOOLEAN DEFAULT TRUE,
application AttributeUsage OPTIONAL }

ObjectClassDescription ::= SEQUENCE {
identifier OBJECT-CLASS.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ObjectClassInformation }

ObjectClassInformation ::= SEQUENCE {
subclassOf SET OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [3] SET OF ATTRIBUTE.&id OPTIONAL,
optionals [4] SET OF ATTRIBUTE.&id OPTIONAL }

NameFormDescription ::= SEQUENCE {
identifier NAME-FORM.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] NameFormInformation }

NameFormInformation ::= SEQUENCE {
subordinate OBJECT-CLASS.&id,
namingMandatories SET OF ATTRIBUTE.&id,
namingOptionals SET OF ATTRIBUTE.&id OPTIONAL }

MatchingRuleUseDescription ::= SEQUENCE {
identifier MATCHING-RULE.&id,
name SET OF DirectoryString { ub-schema } OPTIONAL,
description DirectoryString { ub-schema } OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] SET OF ATTRIBUTE.&id }

-- object classes --

subschema OBJECT-CLASS ::= {
KIND auxiliary
MAY CONTAIN {

dITStructureRules |
nameForms |
dITContentRules |
objectClasses |
attributeTypes |
matchingRules |
matchingRuleUse }

ID id-soc-subschema }

-- attributes --

dITStructureRules ATTRIBUTE ::= {
WITH SYNTAX DITStructureRuleDescription
EQUALITY MATCHING RULE integerFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITStructureRule }

dITContentRules ATTRIBUTE ::= {
WITH SYNTAX DITContentRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-dITContentRules }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

106 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

matchingRules ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-matchingRules }

attributeTypes ATTRIBUTE ::= {
WITH SYNTAX AttributeTypeDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-attributeTypes }

objectClasses ATTRIBUTE ::= {
WITH SYNTAX ObjectClassDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-objectClasses }

nameForms ATTRIBUTE ::= {
WITH SYNTAX NameFormDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation

matchingRuleUse ATTRIBUTE ::= {
WITH SYNTAX MatchingRuleUseDescription
EQUALITY MATCHING RULE objectIdentifierFirstComponentMatch
USAGE directoryOperation
ID id-soa-matchingRuleUse }

structuralObjectClass ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-soa-structuralObjectClass }

governingStructureRule ATTRIBUTE ::= {
WITH SYNTAX INTEGER
EQUALITY MATCHING RULE integerMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE directoryOperation
ID id-soa-governingStructureRule }

-- object identifier assignments --

-- schema object classes --

id-soc-subschema OBJECT IDENTIFIER ::= {id-soc 1}

-- schema operational attributes --

id-soa-dITStructureRule OBJECT IDENTIFIER ::= {id-soa 1}
id-soa-dITContentRules OBJECT IDENTIFIER ::= {id-soa 2}
id-soa-matchingRules OBJECT IDENTIFIER ::= {id-soa 4}
id-soa-attributeTypes OBJECT IDENTIFIER ::= {id-soa 5}
id-soa-objectClasses OBJECT IDENTIFIER ::= {id-soa 6}
id-soa-nameForms OBJECT IDENTIFIER ::= {id-soa 7}
id-soa-matchingRuleUse OBJECT IDENTIFIER ::= {id-soa 8}
id-soa-structuralObjectClass OBJECT IDENTIFIER ::= {id-soa 9}
id-soa-governingStructureRule OBJECT IDENTIFIER ::= {id-soa 10}

END

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 107

Annex D

Basic Access Control in ASN.1
(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a summary of all of the ASN.1 type and value definitions for Basic Access Control. The definitions
form the ASN.1 module BasicAccessControl.

BasicAccessControl {joint-iso-ccitt ds(5) module(1) basicAccessControl(24) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
id-aca, id-acScheme, informationFramework, upperBounds, selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

ATTRIBUTE, AttributeType, AttributeTypeAndValue, DistinguishedName, SubtreeSpecification,
MATCHING-RULE, objectIdentifierMatch

FROM InformationFramework informationFramework

ub-tag
FROM UpperBounds upperBounds

UniqueIdentifier, NameAndOptionalUID, directoryStringFirstComponentMatch,
DirectoryString

FROM SelectedAttributeTypes selectedAttributeTypes ;

-- types --

ACIItem ::= SEQUENCE {
identificationTag DirectoryString { ub-tag },
precedence Precedence,
authenticationLevel AuthenticationLevel,
itemOrUserFirst CHOICE {

itemFirst [0] SEQUENCE {
protectedItems ProtectedItems,
itemPermissions SET OF ItemPermission },

userFirst [1] SEQUENCE {
userClasses UserClasses,
userPermissions SET OF UserPermission }}}

Precedence ::= INTEGER (0..255)

ProtectedItems ::= SEQUENCE {
entry [0] NULL OPTIONAL,
allUserAttributeTypes [1] NULL OPTIONAL,
attributeType [2] SET OF AttributeType OPTIONAL,
allAttributeValues [3] SET OF AttributeType OPTIONAL,
allUserAttributeTypesAndValues [4] NULL OPTIONAL,
attributeValue [5] SET OF AttributeTypeAndValue OPTIONAL,
selfValue [6] SET OF AttributeType OPTIONAL }

UserClasses ::= SEQUENCE {
allUsers [0] NULL OPTIONAL,
thisEntry [1] NULL OPTIONAL,
name [2] SET OF NameAndOptionalUID OPTIONAL,
userGroup [3] SET OF NameAndOptionalUID OPTIONAL,

-- dn component must be the name of an
-- entry of GroupOfUniqueNames

subtree [4] SET OF SubtreeSpecification OPTIONAL}

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

108 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

ItemPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,

-- defaults to precedence in ACIItem --
userClasses UserClasses,
grantsAndDenials GrantsAndDenials }

UserPermission ::= SEQUENCE {
precedence Precedence OPTIONAL,

-- defaults to precedence in ACIItem
protectedItems ProtectedItems,
grantsAndDenials GrantsAndDenials }

AuthenticationLevel ::= CHOICE {
basicLevels SEQUENCE {

level ENUMERATED { none (0), simple (1), strong (2) },
localQualifier INTEGER OPTIONAL},

other EXTERNAL }

GrantsAndDenials ::= BIT STRING {
-- permissions that may be used in conjunction
-- with any component of ProtectedItems
grantAdd (0),
denyAdd (1),
grantDiscloseOnError (2),
denyDiscloseOnError (3),
grantRead (4),
denyRead (5),
grantRemove (6),
denyRemove (7),
-- permissions that may be used only in conjunction
-- with the entry component
grantBrowse (8),
denyBrowse (9),
grantExport (10),
denyExport (11),
grantImport (12),
denyImport (13),
grantModify (14),
denyModify (15),
grantRename 16),
denyRename (17),
grantReturnDN (18),
denyReturnDN (19),
-- permissions that may be used in conjunction
-- with any component, except entry, of ProtectedItems
grantCompare (20),
denyCompare (21),
grantFilterMatch (22),
denyFilterMatch (23) }

-- attributes --

accessControlScheme ATTRIBUTE ::= {
WITH SYNTAX OBJECT IDENTIFIER
EQUALITY MATCHING RULE objectIdentifierMatch
SINGLE VALUE TRUE
USAGE directoryOperation
ID id-aca-accessControlScheme }

prescriptiveACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-prescriptiveACI }

entryACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-entryACI }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 109

subentryACI ATTRIBUTE ::= {
WITH SYNTAX ACIItem
EQUALITY MATCHING RULE directoryStringFirstComponentMatch
USAGE directoryOperation
ID id-aca-subentryACI }

-- object identifier assignments --

-- attributes --

id-aca-accessControlScheme OBJECT IDENTIFIER ::= { id-aca 1 }
id-aca-prescriptiveACI OBJECT IDENTIFIER ::= { id-aca 4 }
id-aca-entryACI OBJECT IDENTIFIER ::= { id-aca 5 }
id-aca-subentryACI OBJECT IDENTIFIER ::= { id-aca 6 }

-- access control schemes --

basicAccessControlScheme OBJECT IDENTIFIER ::= { id-acScheme 1 }
simplifiedAccessControlScheme OBJECT IDENTIFIER ::= { id-acScheme 2 }

END

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

110 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex E

DSA Operational Attribute Types in ASN.1
(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type and value definitions contained in clauses 10 through 20 in the form of an
ASN.1 module, DSAOperationalAttributeTypes.

DSAOperationalAttributeTypes {joint-iso-ccitt ds(5) module(1) dsaOperationalAttributeTypes(22) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
id-doa, id-kmr, informationFramework, distributedOperations, opBindingManagement,
selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2 }

ATTRIBUTE, MATCHING-RULE, Name
FROM InformationFramework informationFramework

OperationalBindingID
FROM OperationalBindingManagement opBindingManagement

AccessPoint, MasterAndShadowAccessPoints
FROM DistributedOperations distributedOperations

bitStringMatch
FROM SelectedAttributeTypes selectedAttributeTypes ;

-- data types --

DSEType ::= BIT STRING {
root (0), --root DSE --
glue (1), -- represents knowledge of a name only --
cp (2), -- context prefix --
entry (3), -- object entry --
alias (4), -- alias entry --
subr (5), -- subordinate reference --
nssr (6), -- non-specific subordinate reference --
supr (7), -- superior reference --
xr (8), -- cross reference --
admPoint (9), -- administrative point --
subentry (10), -- subentry --
shadow (11), -- shadow copy --
immSupr (13), -- immediate superior reference --
rhob (14), -- rhob information --
sa (15)} -- subordinate reference to alias entry --

SupplierOrConsumer ::= SET {
COMPONENTS OF AccessPoint, -- supplier or consumer --
agreementID [3] OperationalBindingID }

SupplierInformation ::= SET {
COMPONENTS OF SupplierOrConsumer, -- supplier --
supplier-is-master [4] BOOLEAN DEFAULT TRUE,
non-supplying-master [5] AccessPoint OPTIONAL }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 111

ConsumerInformation ::= SupplierOrConsumer -- consumer --

SupplierAndConsumers ::= SET {
COMPONENTS OF AccessPoint, -- supplier --
consumers [3] SET OF AccessPoint }

-- attribute types --

dseType ATTRIBUTE ::= {
WITH SYNTAX DSEType
EQUALITY MATCHING RULE bitStringMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-dseType }

myAccessPoint ATTRIBUTE ::= {
WITH SYNTAX AccessPoint
EQUALITY MATCHING RULE accessPointMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-myAccessPoint }

superiorKnowledge ATTRIBUTE ::= {
WITH SYNTAX AccessPoint
EQUALITY MATCHING RULE accessPointMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-superiorKnowledge }

specificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
SINGLE VALUE TRUE
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-specificKnowledge }

nonSpecificKnowledge ATTRIBUTE ::= {
WITH SYNTAX MasterAndShadowAccessPoints
EQUALITY MATCHING RULE masterAndShadowAccessPointsMatch
NO USER MODIFICATION TRUE
USAGE distributedOperation
ID id-doa-nonSpecificKnowledge }

supplierKnowledge ATTRIBUTE ::= {
WITH SYNTAX SupplierInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-supplierKnowledge }

consumerKnowledge ATTRIBUTE ::= {
WITH SYNTAX ConsumerInformation
EQUALITY MATCHING RULE supplierOrConsumerInformationMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-consumerKnowledge }

secondaryShadows ATTRIBUTE ::= {
WITH SYNTAX SupplierAndConsumers
EQUALITY MATCHING RULE supplierAndConsumersMatch
NO USER MODIFICATION TRUE
USAGE dSAOperation
ID id-doa-secondaryShadows }

-- matching rules --

accessPointMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-accessPointMatch }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

112 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

masterAndShadowAccessPointsMatch MATCHING-RULE ::= {
SYNTAX SET OF Name
ID id-kmr-masterShadowMatch }

supplierOrConsumerInformationMatch MATCHING-RULE ::= {
SYNTAX SET {

ae-title [0] Name,
agreement-identifier [2] INTEGER }

ID id-kmr-supplierConsumerMatch }

supplierAndConsumersMatch MATCHING-RULE ::= {
SYNTAX Name
ID id-kmr-supplierConsumersMatch }

-- object identifier assignments --

-- dsa operational attributes --

id-doa-dseType OBJECT IDENTIFIER ::= {id-doa 0}
id-doa-myAccessPoint OBJECT IDENTIFIER ::= {id-doa 1}
id-doa-superiorKnowledge OBJECT IDENTIFIER ::= {id-doa 2}
id-doa-specificKnowledge OBJECT IDENTIFIER ::= {id-doa 3}
id-doa-nonSpecificKnowledge OBJECT IDENTIFIER ::= {id-doa 4}
id-doa-supplierKnowledge OBJECT IDENTIFIER ::= {id-doa 5}
id-doa-consumerKnowledge OBJECT IDENTIFIER ::= {id-doa 6}
id-doa-secondaryShadows OBJECT IDENTIFIER ::= {id-doa 7}

-- knowledge matching rules --

id-kmr-accessPointMatch OBJECT IDENTIFIER ::= {id-kmr 0}
id-kmr-masterShadowMatch OBJECT IDENTIFIER ::= {id-kmr 1}
id-kmr-supplierConsumerMatch OBJECT IDENTIFIER ::= {id-kmr 2}
id-kmr-supplierConsumersMatch OBJECT IDENTIFIER ::= {id-kmr 3}

END

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 113

Annex F

Operational Binding Management in ASN.1
(This annex forms an integral part of the Recommendation | International Standard)

This annex includes all of the ASN.1 type, value and information object class definitions regarding Operational Bindings
relevant to this Directory Specification in the form of the ASN.1 module OperationalBindingManagement.

OperationalBindingManagement {joint-iso-ccitt ds(5) module(1) opBindingManagement(18) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
directoryShadowAbstractService, hierarchicalOperationalBindings,
dop, directoryAbstractService, distributedOperations

FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}

shadowOperationalBinding
FROM DirectoryShadowAbstractService directoryShadowAbstractService

hierarchicalOperationalBinding, nonSpecificHierarchicalOperationalBinding
FROM HierarchicalOperationalBindings hierarchicalOperationalBindings

OPERATION, ERROR
FROM Remote-Operations-Information-Objects

{joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}

APPLICATION-CONTEXT
FROM Remote-Operations-Information-Objects-extensions {joint-iso-ccitt

remote-operations(4) informationObjects-extensions(8) version1(0)}

id-op-establishOperationalBinding, id-op-modifyOperationalBinding,
id-op-terminateOperationalBinding, id-err-operationalBindingError

FROM DirectoryOperationalBindingManagementProtocol dop

directoryBind, directoryUnbind, securityError
FROM DirectoryAbstractService directoryAbstractService

AccessPoint
FROM DistributedOperations distributedOperations ;

-- bind and unbind --

dSAOperationalBindingManagementBind OPERATION ::= directoryBind

dSAOperationalBindingManagementUnbind OPERATION ::= directoryUnbind

-- operations, arguments, and results --

establishOperationalBinding OPERATION ::= {
ARGUMENT EstablishOperationalBindingArgument
RESULT EstablishOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-establishOperationalBinding }

EstablishOperationalBindingArgument ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, role A initiates, or role B initiates --

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

114 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

initiator CHOICE {
symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam

({OpBindingSet}{@bindingType}),
roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&EstablishParam

({OpBindingSet}{@bindingType}),
roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&EstablishParam

({OpBindingSet}{@bindingType})} OPTIONAL,
agreement [6] OPERATIONAL-BINDING.&Agreement

({OpBindingSet}{@bindingType}),
valid [7] Validity DEFAULT { } }

OperationalBindingID ::= SEQUENCE {
identifier INTEGER,
version INTEGER }

Validity ::= SEQUENCE {
validFrom [0] CHOICE {

now [0] NULL,
time [1] UTCTime } DEFAULT now : NULL,

validUntil [1] CHOICE {
explicitTermination [0] NULL,
time [1] UTCTime } DEFAULT explicitTermination : NULL }

EstablishOperationalBindingResult ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID OPTIONAL,
accessPoint [2] AccessPoint,
-- symmetric, role A replies , or role B replies --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&EstablishParam
({OpBindingSet}{@bindingType}),

roleA-replies [4] OPERATIONAL-BINDING.&roleA.&EstablishParam
({OpBindingSet}{@bindingType}),

roleB-replies [5] OPERATIONAL-BINDING.&roleB.&EstablishParam
({OpBindingSet}{@bindingType})} OPTIONAL}

modifyOperationalBinding OPERATION ::= {
ARGUMENT ModifyOperationalBindingArgument
RESULT ModifyOperationalBindingResult
ERRORS { operationalBindingError | securityError }
CODE id-op-modifyOperationalBinding }

ModifyOperationalBindingArgument ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID,
accessPoint [2] AccessPoint OPTIONAL,
-- symmetric, role A initiates, or role B initiates --
initiator CHOICE {

symmetric [3] OPERATIONAL-BINDING.&both.&ModifyParam
({OpBindingSet}{@bindingType}),

roleA-initiates [4] OPERATIONAL-BINDING.&roleA.&ModifyParam
({OpBindingSet}{@bindingType}),

roleB-initiates [5] OPERATIONAL-BINDING.&roleB.&ModifyParam
({OpBindingSet}{@bindingType})} OPTIONAL,

newBindingID [6] OperationalBindingID,
newAgreement [7] OPERATIONAL-BINDING.&Agreement

({OpBindingSet}{@bindingType}),
valid [8] Validity OPTIONAL}

ModifyOperationalBindingResult ::= NULL

terminateOperationalBinding OPERATION ::= {
ARGUMENT TerminateOperationalBindingArgument
RESULT TerminateOperationalBindingResult
ERRORS {operationalBindingError | securityError}
CODE id-op-terminateOperationalBinding }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 115

TerminateOperationalBindingArgument ::= SEQUENCE {
bindingType [0] OPERATIONAL-BINDING.&id ({OpBindingSet}),
bindingID [1] OperationalBindingID,
-- symmetric, role A initiates, or role B initiates --
initiator CHOICE {

symmetric [2] OPERATIONAL-BINDING.&both.&TerminateParam
({OpBindingSet}{@bindingType}),

roleA-initiates [3] OPERATIONAL-BINDING.&roleA.&TerminateParam
({OpBindingSet}{@bindingType}),

roleB-initiates [4] OPERATIONAL-BINDING.&roleB.&TerminateParam
({OpBindingSet}{@bindingType})} OPTIONAL,

terminateAt [5] UTCTime OPTIONAL}

TerminateOperationalBindingResult ::= NULL

-- errors and parameters --

operationalBindingError ERROR ::= {
PARAMETER OpBindingErrorParam
CODE id-err-operationalBindingError }

OpBindingErrorParam ::= SEQUENCE {
problem [0] ENUMERATED {

invalidID (0),
duplicateID (1),
unsupportedBindingType (2),
notAllowedForRole (3),
parametersMissing (4),
roleAssignment (5),
invalidStartTime (6),
invalidEndTime (7),
invalidAgreement (8),
currentlyNotDecidable (9),
modificationNotAllowed (10)},

bindingType [1] OPERATIONAL-BINDING.&id ({OpBindingSet}) OPTIONAL,
agreementProposal [2] OPERATIONAL-BINDING.&Agreement

({OpBindingSet}{@bindingType}) OPTIONAL,
retryAt [3] UTCTime OPTIONAL }

-- information object classes --

OPERATIONAL-BINDING ::= CLASS {
&Agreement,
&Cooperation OP-BINDING-COOP,
&both OP-BIND-ROLE OPTIONAL,
&roleA OP-BIND-ROLE OPTIONAL,
&roleB OP-BIND-ROLE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {
AGREEMENT &Agreement
APPLICATION CONTEXTS &Cooperation
[SYMMETRIC &both]
[ASYMMETRIC

[ROLE-A &roleA]
[ROLE-B &roleB]]

ID &id}

OP-BINDING-COOP ::= CLASS {
&applContext APPLICATION-CONTEXT,
&Operations OPERATION OPTIONAL }

WITH SYNTAX {
&applContext
[APPLIES TO &Operations]}

OP-BIND-ROLE ::= CLASS {
&establish BOOLEAN DEFAULT FALSE,
&EstablishParam OPTIONAL,
&modify BOOLEAN DEFAULT FALSE,
&ModifyParam OPTIONAL,
&terminate BOOLEAN DEFAULT FALSE,
&TerminateParam OPTIONAL }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

116 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

WITH SYNTAX {
[ESTABLISHMENT-INITIATOR &establish]
[ESTABLISHMENT-PARAMETER &EstablishParam]
[MODIFICATION-INITIATOR &modify]
[MODIFICATION-PARAMETER &ModifyParam]
[TERMINATION-INITIATOR &terminate]
[TERMINATION-PARAMETER &TerminateParam]}

OpBindingSet OPERATIONAL-BINDING ::= {
shadowOperationalBinding |
hierarchicalOperationalBinding |
nonSpecificHierarchicalOperationalBinding }

END

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 117

Annex G

The Mathematics of Trees

(This annex does not form an integral part of this Recommendation | International Standard)

TISO3410-94/d20

a

a a

V

V

V

V

V

V
V a

a

a

1

1

3

3
2

2

4
4

5
5

7
6

6

FIGURE 20/X.501...[D20] = 6 CM

A tree is a set of points, called vertices, and a set of directed lines, called arcs; each arc a leads from a vertex V to a
vertex V’. For example, the tree in the figure has seven vertices; labelled V1 through V7, and six arcs, labelled
a1 through a6.

Two vertices V and V’ are said to be the initial and final vertices, respectively, of an arc a from V to V’. For example,
V2 and V3 are the initial and final vertices, respectively, of arc a2. Several different arcs may have the same initial
vertex, but not the same final vertex. For example, arcs a1 and a3 have the same initial vertex, V1, but no two arcs in the
figure have the same final vertex.

The vertex that is not the final vertex of any arc is often referred to as the root vertex, or even more informally as the
“root” of the tree. For example, in the figure, V1 is the root.

A vertex that is not the initial vertex of any arc is often referred to informally as a leaf vertex, or even more informally,
as a “leaf” of the tree graph. For example, vertices V3, V6, and V7 are leaves.

An oriented path from a vertex V to a vertex V’ is a set of arcs (a1, a2, ..., an) (n ≥ 1) such that V is the initial vertex of
arc a1, V’ is the final vertex of arc an, and the final vertex of arc ak is also the initial vertex of arc ak+1 for 1 ≤ k < n. For
example, the oriented path from vertex V1 to vertex V6 is the set of arcs (a3, a4, a5). The term “path” should be
understood to denote an oriented path from the root to a vertex.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

118 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex H

Name Design Criteria
(This annex does not form an integral part of this Recommendation | International Standard)

The information framework is very general, and allows for arbitrary variety of entries and attributes within the DIT.
Since, as defined there, names are closely related to paths through the DIT, this means that arbitrary variety in names is
possible. This annex suggests criteria to be considered in the design of names. The appropriate criteria have been used in
the design of the recommended name forms which are to be found in ITU-T Rec. X.521 | ISO/IEC 9594-7. It is
suggested that the criteria also be used, where appropriate, in designing the names for objects to which the recommended
name forms do not apply.

Presently, only one criterion is addressed; that of user-friendliness.

NOTE – Not all names need to be user-friendly.

The remainder of this annex discusses the concept of user friendliness applied to names.

Names with which human beings must deal directly should be user-friendly. A user-friendly name is one that takes the
human user’s point of view, not the computer’s. It is one that is easy for people to deduce, remember, and understand,
rather than one that is easy for computers to interpret.

The goal of user-friendliness can be stated somewhat more precisely in terms of the following two principles:

– A human being usually should be able to correctly guess an object’s user-friendly name on the basis of
information about the object that he naturally possesses. For example, one should be able to guess a
business person’s name given only the information about her casually acquired through normal business
association.

– When a object’s name is ambiguously specified, the Directory should recognize that fact rather than
conclude that the name identifies one particular object. For example, where two people have the same last
name, the last name alone should be considered inadequate identification of either party.

The following subgoals follow from the goal of user-friendliness:

a) Names should not artificially remove natural ambiguities. For example, if two people share the last name
“Jones”, neither should be required to answer to “WJones” or “Jones2”. Instead, the naming convention
should provide a user-friendly means of discriminating between the entities. For example, it might require
first name and middle initial in addition to last name.

b) Names should admit common abbreviations and common variations in spelling. For example, if one is
employed by the Conway Steel Corporation and the name of one’s employer figures in one’s name, any of
the names “Conway Steel Corporation”, “Conway Steel Corp.”, “Conway Steel”, and “CSC” should
suffice to identify the organization in question.

c) In certain cases, alias names can be used: to direct the search for a particular entry, in order to be more
user-friendly, or to reduce the scope of a search. The following example demonstrates the use of an alias
name for such a purpose: As shown in Figure H.1, the branch office in Osaka can also be identified with
the name { C = Japan, L = Osaka, O = ABC, OU = Osaka-branch }.

d) If names are multi-part, both the number of mandatory parts and the number of optional parts should be
relatively small and thus easy to remember.

e) If names are multi-part, the precise order in which those parts appear should generally be immaterial.

f) User-friendly names should not involve computer addresses.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 119

TISO3420-94/d21

C = Japan

L = Osaka L = Tokyo

O = ABC O = ABC

OU = Osaka-branch

Figure H.1 – Aliasing Example

FIGURE H.1...[D21] = 7.6 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

120 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex I

Examples of various aspects of schema

(This annex does not form an integral part of this Recommendation | International Standard)

I.1 Example of an Attribute Hierarchy

Figure I.1 shows a simple hierarchy of values of a generic telephoneNumber attribute, values of which are represented as
contained in the outer set. Two specific attribute types are derived from the generic type, workTelephoneNumber and
homeTelephoneNumber. Values of these types are represented as contained in the inner sets.

A value of type homeTelephoneNumber is contained in both the inner set representing homeTelephoneNumber and the
outer set representing telephoneNumber, but not the inner set representing workTelephoneNumber values.

A DIT structure rule could be defined which permits entries to contain values of all three types shown in Figure I.1.
Another rule could be defined permitting entries to contain only values of type telephoneNumber.

T
T

T

T

T T

T

T

T

T

TISO3430-94/d22

A value having telephoneNumberSyntax

homeTelephoneNumber

workTelephoneNumber

TelephoneNumber

Figure I.1 – Hierarchy of Telephone Number Attribute Values

FIGURE I.1...[D22] = 8.27 CM

I.2 Example of a Subtree Specification

The following is an example illustrating the specification of subtrees. Consider the portion of the DIT represented in
Figure I.2.

Subtree 1 and subtree 2 are specified with respect to the administrative point having name a. The identifiers b1, c2, d3,
etc. represent local name values with respect to the administrative point a.

Subtree 1 may be specified as:

subtree1 SubtreeSpecification ::= {
specificExclusions { chopBefore b1 } }

Subtree 2 may be specified as:

subtree2 SubtreeSpecification ::= {
base b1 }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 121

Suppose that the entries identified in the figure with local names e1, e2, etc., represent organizational person entries. A
subtree refinement could be specified to include all of these entries in the administrative area as:

subtree-refinement1 SubtreeSpecification ::= {
specificationFilter

item id-oc-organizationalPerson }

This could be further refined to include only the organizational persons in subtree 2 as:

subtree2-refinement SubtreeSpecification ::= {
base b1,
specificationFilter

item id-oc-organizationalPerson }

e1 e2

e5

d1 d2 d3 d4

b1 b2 b3

d6d5 d8d7

c1 c2

a

d10 e6

e4e3

c3

d9

TISO3440-94/d23

Subtree refinement 1

Subtree 2

Subtree 1

AP

Figure I.2 – Subtree Specification Example

FIGURE I.2...[D23] = 10.08 CM

I.3 Schema Specification

I.3.1 Object Classes and Name Forms

The following object classes, defined in ITU-T Rec. X.521 | ISO/IEC 9594-7, are used within a particular subschema
administrative area:

– organization;

– organizationalUnit;

– organizationalPerson.

A name form is not required for the administrative entry, which will be the only entry in the subschema of object class
organization. The following name forms, defined in ITU-T Rec. X.521 | ISO/IEC 9594-7, are used to include entries of
class organizationalUnit and organizationalPerson:

– orgNameForm;

– orgUnitNameForm;

– orgPersonNameForm.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

122 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

I.3.2 DIT Structure Rules

The following structure rules are defined to specify a tree structure as shown in Figure I.3. Figure I.3 illustrates which
rule may be used to add entries at the various points in the DIT.

rule-0 STRUCTURE-RULE::= {
NAME FORM orgNameForm
ID 0 }

rule-1 STRUCTURE-RULE::= {
NAME FORM orgUnitNameForm
SUPERIOR RULES { rule-0 }
ID 1 }

rule-2 STRUCTURE-RULE::= {
NAME FORM orgUniNameForm
SUPERIOR RULES { rule-1 }
ID 2 }

rule-3 STRUCTURE-RULE::= {
NAME FORM orgUniNameForm
SUPERIOR RULES { rule-2 }
ID 3 }

rule-4 STRUCTURE-RULE::= {
NAME FORM orgPersonNameForm
SUPERIOR RULES { rule-1, rule-2, rule-3 }
ID 4 }

TISO3450-94/d24

Organization

Organizational
Unit

Organizational
Unit

Organizational
Person

Organizational
Person

Organizational
Person

Organizational
Unit

Rule # 1

Rule # 4

Rule # 2Rule # 4

Rule # 3

Rule # 4

Figure I.13 – Example Subschema

FIGURE I.3...[D24] = 8.93 CM

I.4 DIT content rules

The subschema administrator has the following two requirements to add supplemental information to entries in the
subschema administrative area:

– all organizationalPerson and organizationalUnit entries should have the organizationalTelephoneNumber
attribute. This attribute should be returned when the Directory is queried for telephoneNumbers;

– all organizationalPerson entries will have the new attribute manager.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 123

The following attribute types are defined to meet these requirements:

manager ATTRIBUTE ::= {
WITH SYNTAX BOOLEAN
EQUALITY MATCHING RULE booleanMatch
SINGLE VALUE TRUE
ID id-ex-managerAttribute }

organizationalTelephoneNumber ATTRIBUTE ::= {
SUBTYPE OF telephoneNumber
COLLECTIVE TRUE
ID id-ex-organizationalTelephoneNumber }

The following DIT content rules are defined to meet these requirements:

organizationRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS organization }

organizationalUnitRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS organizationalUnit
MAY CONTAIN { organizationalTelephoneNumber } }

organizationalPersonRule CONTENT-RULE ::= {
STRUCTURAL OBJECT CLASS organizationalPerson
MUST CONTAIN { manager }
MAY CONTAIN { organizationalTelephoneNumber } }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

124 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex J

Overview of Basic Access Control Permissions

(This annex does not form an integral part of this Recommendation | International Standard)

J.1 Introduction

This annex is informative and is intended to provide an overview of the meaning of various combinations of operations,
protected items, and permission categories. In cases where there is a perceived difference between this overview and the
specification provided in the body of this amendment, the normative text in the body shall be definitive.

Table J.1 relates Directory operations to the entry and attribute access controls to provide an overview of the permission
categories that must be granted in order to allow the operation to succeed.

Table J.2 provides an overview of the returnDN and discloseOnError permission categories and how grants and denials
relate to various protocol elements.

Table J.3 provides an overview of the semantics associated with grants and denials of entry access controls.

Table J.4 provides an overview of the semantics associated with grants and denials of attribute access controls.

Table J.1 – Directory information permissions required according to Directory operation

Directory
Operation Entry Protected Item Permissions Required

Attribute And Attribute Value Protected Item
Permissions Required

Compare Read Compare for attribute being compared
Compare for attribute value being compared

Read Read Read for any attribute type information returned
Read for any attribute values returned

List Browse and ReturnDN for all subordinate
entries for which an RDN is returned

none

Search Browse for entries in the search scope that
are potential candidates for selection

FilterMatch for attribute type and value information, if any,
used to evaluate a filter item as TRUE or FALSE

Read for any attribute type information returned
Read for any attribute values returned

Add Entry Add Add for all attribute types specified
Add for all attribute values specified

Remove
Entry

Remove none

Modify Entry Modify Add for all attributes being added
Add for all attribute values being added
Remove for attributes being removed
Remove for all attribute values being removed

ModifyDN Rename at the original location if only the
last RDN is changed

Export to move a subtree from the original
location

Import to relocate a subtree at the
destination location

none

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 125

Table J.2 – Permissions affecting error and name return

Table J.3 – Entry level permissions and meaning

Protocol Elements Affected Meaning

ReturnDN EntryInformation
CompareResult
ListResult
SearchResult
NameError
ContinuationReference

If granted, may return actual Distinguished Name.

If denied, prohibits return of actual Distinguished Name.
By local policy, a valid alias name may be returned instead.

DiscloseOnError NameError
UpdateError
AttributeError
SecurityError

If granted, permits return an error that may disclose that the
protected item exists.

If denied, requires the Directory to conceal the existence of the
protected item.

Permission Meaning

Read If granted, allows Directory Read or Compare operations on the entry, but does not, by itself, authorize
return of any attribute information from that entry.

If denied, prevents Read or Compare operations on the entry.

Browse If granted, permits the entry to participate as a candidate for selection in the scope of a List or Search
operation.

If denied, excludes that entry from the scope of any Search or List operation.

Add If granted, permits the entry itself, exclusive of its attributes, to be added. Add is only meaningful as
prescriptive ACI.

If denied, prevents addition of the entry.

Modify If granted, permits Modify operations on the entry.

If denied, prevents Modify operations on the entry.

Remove If granted, permits the entry to be removed, irrespective of any attribute considerations.

If denied, prevents removal of the entry.

Rename If granted, allows the RDN of the entry to be changed, and, optionally, an old value removed and a new
value added, irrespective of attribute or attribute value protection that might be applicable to that entry,
by means of a ModifyDN operation subject to Import and Export permissions as appropriate.

If denied, prevents the RDN of the entry from being changed.

Import If granted, allows entries, including all subordinates, to be relocated at the designated location in the
DIT in a ModifyDN operation. Import is only meaningful as prescriptive ACI.

If denied, prevents relocation of an entry with subordinates at the indicated point in the DIT using a
ModifyDN operation.

Export If granted, permits a ModifyDN operation to relocate the entry, including all subordinates, to a
designated point someplace else in the DIT. The requestor must have import permission at the target
location.

If denied, prevents relocation of the entry and its subordinates in a single ModifyDN operation.

ReturnDN If granted, permits return of the Distinguished Name of entry in an operation result.

If denied, prohibits return of distinguished name. By local policy, a valid alias name may be returned
instead

DiscloseOnError If granted, permits return of an error that may disclose existance of the entry.

If denied, requires the Directory to conceal existance of the entry. DiscloseOnError, of itself, does not
deny ability to detect the entry by other means for which the appropriate permissions are granted.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

126 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Table J.4 – Attribute level permissions and meaning

Permission
Protected

Item
Category

Meaning

Read Attribute
Type

If granted, allows information about that attribute type to be returned in a Read or Search
operation. Although a prerequisite for reading values for that attribute, it grants no rights to any
values of that attribute, of itself.
If denied, prevents return of information about that attribute type.in Read or Search operations.
In effect, this denies all values as well.

Read Attribute
Value

If granted, allows designated value(s) of an attribute type to be returned in a Read or Search
operation. It grants no rights to the attribute type itself. Read permission to the attribute type is
also required in order to read a value.
If denied, prevents return of designated values of that attribute type in Read or Search
operations. It does not, of itself, deny access to other values, or the attribute type itself.

Compare Attribute
Type

If granted, allows Compare operations to test for the attribute type. Although a prerequisite to
comparing values, it does not, of itself, permit compares for any values.
If denied, prevents Compare operations from testing that attribute. This prevents testing for all
values.

Compare Attribute
Value

If granted, allows Compare operations to test for the designated value of the designated type. It
grants no rights to the attribute type itself. Compare permission to the attribute type is also
required in order to compare a value.
If denied, prevents Compare operations from testing for the designated value.

FilterMatch Attribute
Type

If granted, permits the attribute type to be used in evaluation of a Search filter item. It is a
prerequisite for including values of that type in filter evaluations, but does not, of itself, grant
rights to any values.
If denied, prevents use of that attribute type, including any of its values, in evaluating a filter
item.

FilterMatch Attribute
Value

If granted, permits the attribute value(s) to be used in evaluation of a Search filter item.
FilterMatch is also required for the attribute type for a successful evaluation.
If denied, prevents use of the value(s) in evaluation of a filter item.

Add Attribute
Type

If granted, permits the designated attribute type to be added. Grants no rights to add any
attribute values.
If denied, prevents addition of the designated attribute type, and, as a consequence, any values.

Add Attribute
Value

If granted, permits the designated attribute values to be added. No rights to add the type itself
are granted. Conversely, no rights to add the attribute type are needed to add a value to an
existing attribute.
If denied, prevents addition of the designated attribute values.

Remove Attribute
Type

If granted, permits the designated attribute type and all of its values to be removed in a Modify
operation. Does not, of itself, grant the right to remove individual values.
If denied, prevents removal of the attribute type in a Modify operation.

Remove Attribute
Value

If granted, permits the designated attribute values to be removed in a Modify operation.
Remove permission to the attribute type is also needed to remove the last attribute value.
If denied, prevents removal of the designated attribute values in a Modify operation.

Disclose On
Error

Attribute
Type

If granted, permits return of an error that may disclose the existance of the attribute.
If denied, requires the Directory to conceal the existance of the attribute. DiscloseonError, of
itself, does not deny ability to detect the attribute type by other means for which the
appropriate permissions are granted.

Disclose On
Error

Attribute
Value

If granted, permits return of an error that may disclose the existance of the attribute value.
If denied, requires the Directory to conceal the existance of the attribute value.
DiscloseonError, of itself, does not deny ability to detect the attribute value(s) by other means
for which the appropriate permissions are granted.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 127

Annex K

Example of Basic Access Control

(This annex does not form an integral part of this Recommendation | International Standard)

K.1 Introduction

This annex is for information and tutorial purposes only. It addresses two primary topics: design principles that are
important in the architecture of the Basic Access Control mechanism; and an extended example of Basic Access
Control. Detailed information on Basic Access control is provided in clause 15 and in ITU-T Recom-mendation X.511 |
ISO/IEC 9594-3.

K.2 Design principles for Basic Access Control

This subclause presents several of the most important design principles used in the architecture of Basic Access Control.
To facilitate referencing, each principle is labeled (e.g. PR-1).

PR-1: Generally, permissions associated with UserClasses of higher specificity override permissions associated with
UserClasses of less specificity. This principle applies when the permissions have the same precedence level. Specificity,
in this principle, measures how explicitly a requestor’s name relates to a particular UserClasses specification; allUsers is
of lowest specificity while name is very specific. This principle is manifest in 15.8.4 b). It facilitates situations where
policy about default permissions (expressed in terms of less specific UserClasses) is selectively overridden by
permissions associated with a more specific UserClasses specification.

PR-2: Generally, permissions associated with ProtectedItems of higher specificity override permissions associated
with ProtectedItems of less specificity. This principle applies when the permissions have the same precedence level and
the same UserClasses specificity. Specificity, in this principle, is a measure of how explicitly the ProtectedItems
specification relates to the exact item to which access is sought. For example, when the target protected item is a specific
attribute value, allAttributeValues and allUserAttributeTypesAndValues are less specific than attributeValue. This
principle is manifest in 15.8.4 c). It facilitates situations where policy about default permissions (expressed in terms of
less specific ProtectedItems) is selectively overridden by permissions associated with a more specific ProtectedItems
specification.

PR-3: Basic Access Control is modeled as completely independent of the name resolution process except in the case
of alias dereferencing. Except for alias dereferencing, access control decisions occur only after the Directory has
successfully located a suitable DSA containing the target protected item. A corollary principle is that Basic Access
Control has no effect on how the Directory generates subrequests and it has no effect on how the Directory performs
name resolution associated with subrequests (except in the case of alias dereferencing).

PR-4: Precedence can be used to enforce the relationship between a superior and a subordinate authority such that the
superior can override controls set by the subordinate. For example: let SE1 denote a subentry of the administrative entry
for an ACSA, say ACSA-1; similarly, let SE2 denote a subentry of the administrative entry for an ACIA inside of
ACSA-1. Limits on the Precedence occurring in SE2 may be specified by the ACSA-1 authority such that
prescriptiveACI in SE2 cannot countermand prescriptive ACI in SE1. Also, limits on Precedence for entryACI (within
ACSA-1) can be specified such that entryACI cannot countermand prescriptive controls set in SE1. This principle
facilitates implementation of partial delegation of authority.

NOTE – The Directory Specification presumes that a method of limiting precedence for authorities associated with inner
areas will be implemented. However, the Directory Specification does not define (or describe) how precedence is to be limited.

PR-5: Basic Access Control never passively grants access; each decision to grant access is based on explicitly
specified access control information. A corollary principle is that granting one form of access never implies permission
to perform another form of access. These principles are consistent with a more general security design principle known
as least privilege.

PR-6: In the absence of any prescriptiveACI, entryACI or subentryACI on which to base a decision, the ACDF will
deny access. All other decision parameters being equal, denials override grants (e.g. in the situation where there are
ACIItems that grant and others that deny and where the Precedence and specificity are equal, the denial prevails).

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

128 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

K.3 Introduction to example

Figure K.1 depicts the DIT subtree of a fictitious company, Z Computer Corporation (ZCC), used throughout the
example. The naming structure in Figure K.1 follows the suggestions in ITU-T Recommendation X.521 |
ISO/IEC 9594-7 Annex B. The node with distinguished name {C=US, O=ZCC} is an administrative entry and is the
autonomous administrative point for ZCC; it therefore defines the beginning of an Autonomous Administrative Area
(AAA). The contents of an AAA is an implicitly defined subtree beginning at the autonomous administrative point and
ending at either leaf nodes or when another autonomous administrative point is encountered. Since there are no other
autonomous administrative points below {C=US, O=ZCC}, the AAA contains all the nodes below {C=US} in
Figure K.1. The structural object class for {C=US, O=ZCC} is organization; it also has an auxiliary object class of
certificationAuthority. The auxiliary object class is present to help support strong authentication where needed.

TISO3460-94/d25

CORPORATE ADMINISTRATIVE AREA
C = US

O = ZCC
(AAA, ACSA)

OU = Admin OU = R&D OU = Sales
CN = Ops

CN = Ops CN = Cauchy

CN = Ops
OU = West

(ACIA)
OU = BRC
(ACSA)

OU = EAST
(ACIA)

CN = Cayley

CN = Noether

CN = Peirce

CN = Galois

Figure K.1 – DIT branch for the Z Computer Corporation (ZCC)

FIGURE K.1...[D25] = 19.38 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 129

Below the autonomous administrative point there are three subtrees: Administration (Admin); Research and
Development (R&D); and Sales. The root of each of the subtrees is an entry with structural object class
organizationalUnit and auxiliary object class certificationAuthority. The R&D subtree contains entries of structural object
class organizationalUnit, corresponding to remote sites, under which appear leaf objects of structural class
organizationalPerson. Only a few representative objects of class organizationalPerson are shown. All objects of structural
class organizationalUnit have an auxiliary object class of certificationAuthority. All objects of structural class
organizationalPerson have an auxiliary object class of strongAuthenticationUser. These auxiliary object classes help
support strong authentication where needed.

The object with distinguished name {C=US, O=ZCC, OU=Admin, CN=Ops} is of structural object class
groupOfUniqueNames; its uniqueMember attribute values include namespace administrators. One name it contains is
{C=US, O=ZCC, OU=Admin, CN=Cauchy}. There are two other such objects: {C=US, O=ZCC, OU=R&D, CN=Ops}
has members responsible for maintaining entries in the R&D subtree; and {C=US, O=ZCC, CN=Ops} has members
responsible for entries that are immediately subordinate to {C=US, O=ZCC}. The user with distinguished name {C=US,
O=ZCC, OU=R&D, OU=West, CN=Cayley} is a member of the latter two groups.

The two trapezoids in Figure K.1 represent partial subtrees, the details of which are not important for the example.

K.4 Policy affecting the definition of specific and inner areas.

To support Basic Access Control, two types of administrative areas may be established within an AAA: Access Control
Specific Area (ACSA), and Access Control Inner Area (ACIA). An administrative area of either type is established by
assigning the appropriate value to the administrative-role attribute in the administrative entry that is to serve as the root
vertex for the area. The content of an ACSA is an implicitly defined subtree that begins at the root vertex and extends
down to leaf objects or until the root of another ACSA is encountered. Also, the boundary of an ACSA never extends
beyond the lower boundary of the enclosing AAA. In the case of an ACIA, the lower boundary will occur upon
encountering either a leaf entry or the boundary of the enclosing ACSA. Nested ACIAs have the same lower boundary
and that boundary is the same as the lower boundary for the enclosing ACSA.

ZCC has established policy that affects the number and types of administrative areas needed within the AAA. The first
such policy is that the organizational unit known as Basic Research Consortium (BRC) is delegated complete authority
for establishing prescriptive access control attributes to control entries in the subtree with root vertex {C=US, O=ZCC,
OU=R&D, OU=BRC}. To facilitate the implementation of the policy, the root {C=US, O=ZCC, OU=R&D, OU=BRC}
has been designated as an administrative entry with administrative role id-ar-accessControlSpecificArea. The lower
boundary of the resulting ACSA is implicitly defined by the occurrence of leaf entries.

NOTE – An ACSA embodies the concept of complete delegation of authority because access decisions depend on ACI
occurring inside the ACSA containing the target protected item and are unaffected by ACI occurring outside that ACSA.

Furthermore, the ACSA described above is the only instance of complete delegation of access control authority within
ZCC. However, a consequence of the Directory Administrative Model is that when there is at least one ACSA in an
AAA, each (and every) object in the AAA shall be contained in one (and only one) ACSA. This requirement can be
stated more clearly in terms of set theory where each ACSA and the associated AAA are viewed as sets of entries: the
set intersection of each pair of ACSAs is empty and the set union of all ACSAs is equal to the AAA. Therefore, in the
example, at least one additional ACSA is needed to contain the objects that are in the AAA but outside the BRC subtree.
Because there is only one instance of complete delegation within the AAA, the AAA root is also the beginning of an
ACSA that contains all the entries in the AAA except those in the BRC subtree.

The resulting ACSAs are depicted as ACSA-1 and ACSA-2 in Figure K.2. In Figure K.2, also notice that since
administrative areas are (implicitly defined) subtrees, each area includes its root vertex. The content of ACSA-1 extends
downward from its root to leaf objects or until the root vertex of another ACSA is encountered (as is the case at {C=US,
O=ZCC, OU=R&D, OU=BRC}). In this example, there are no autonomous administrative points below {C=US,
O=ZCC} and therefore the lower boundary of the AAA is defined entirely by leaf objects. The remainder of this
example will focus on access control within ACSA-1 (ACSA-2 will not be discussed further). Also for simplicity, this
example does not discuss control of the subordinates under {C=US, O=ZCC, OU=Sales}.

Another ZCC policy affecting the definition of administrative areas is that the Western R&D organizational unit is
delegated partial authority for access control operational attributes affecting the entries in the subtree with root vertex
{C=US, O=ZCC, OU=R&D, OU=West}. The policy is best implemented by making the root of the R&D West subtree
an administrative point with administrative role id-ar-accessControlInnerArea. This means prescriptive access controls
for that subtree will, in general, be a combination of controls defined in the subentries of the root of that subtree and
controls defined in the subentries of the root of the enclosing ACSA (ACSA-1). The content of the resulting ACIA is an
implicitly defined subtree with root at {C=US, O=ZCC, OU=R&D, OU=West} and extending down until leaf objects
are encountered. Since an ACIA is a subtree, its content includes the root vertex of that subtree.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

130 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

A similar policy holds for the R&D East organizational unit. The corresponding ACIA has root vertex at {C=US,
O=ZCC, OU=R&D, OU=East}. Figure K.3 depicts the two ACIAs within ACSA-1. The ACIA for R&D West is
labeled ACIA-1; the one for R&D East is labeled ACIA-2.

TISO3470-94/d26

ACSA –1
C = US

O = ZCC
(AAA, ACSA)

OU = Admin OU = R&D OU = Sales

CN = Ops

CN = Ops
CN = Cauchy

CN = Ops

OU = West
(ACIA)

OU = BRC
(ACSA)

OU = EAST
(ACIA)

CN = Cayley

CN = Noether

CN = Peirce
CN = Galois

Figure K.2 – Access Control Specific Areas

ACSA - 2

FIGURE K.2...[D26] = 19.98 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 131

TISO3480-94/d27

ACSA - 1
C = US

O = ZCC
(AAA, ACSA)

OU = Admin OU = R&D OU = Sales

CN = Ops

CN = Ops CN = Cauchy

CN = Ops
OU = West

(ACIA)
OU = EAST

(ACIA)

CN = Cayley
CN = Noether

CN = Peirce
CN = Galois

Figure K.3 – Access Control Inner Areas

ACIA - 1 ACIA - 2

FIGURE K.3...[D27] = 19.83 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

132 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

K.5 Policy affecting the definition of DACDs

Prescriptive access controls are defined in subentries (with object class accessControlSubentry) of access control
administrative entries. Each such subentry has an associated subtreeSpecification attribute that defines the set of entries
in the scope of the subentry. The entries contained in the scope may form a subtree or may form a subtree refinement. In
the context of Basic Access Control, the scope of an access control subentry is called a Directory Access Control
Domain (DACD). Security authorities using Basic Access Control should be careful not to confuse the concept of
administrative area with the concept of DACD. This subclause begins with an examination of the differences and
relationships between administrative areas and DACDs and then proceeds to discuss ZCC policy that gives rise to
individual DACDs.

The basic distinctions between administrative areas and DACDs can be summarized as follows.

– An administrative area is an implicitly defined subtree with its root at an administrative entry and
extending downward as described in K.4. Such an area is said to be implicitly defined because there is no
standardized attribute in the Directory that specifies its boundary; the DIT is logically examined to
determine the boundary of an administrative area. An administrative area is never a subtree refinement.

NOTE 1 – A consequence of the way in which administrative areas are defined is that for each entry affected by
Basic Access Control, there shall be exactly one ACSA containing the entry (even if the entry is not included in any
DACD within the ACSA).

– A DACD is a subtree or subtree refinement explicitly defined in the subtreeSpecification attribute of a
subentry with object class accessControlSubentry.

– ACSAs and ACIAs are used by the ACDF to determine which prescriptive access controls (i.e. which
access control subentries) potentially effect the outcome of a given access control decision. ACSAs are
used to implement full delegation of authority for access control. ACIAs are used to implement partial
delegation of authority for access control.

– A DACD is used to specify which entries (or potential entries) may be affected by the associated access
control subentry.

Other important aspects of administrative areas and DACDs and how they relate to each other include the following
observations.

– Each DACD is defined in a subentry of a particular administrative entry which is, in turn, the root vertex
of some administrative area. This association between a DACD, a subentry, an administrative entry, and
an administrative area allows the determination, for a given DACD, of the associated administrative area
(see K.5.1) The set of entries contained in the DACD may be a proper or improper subset of the entries
contained in the associated administrative area.

NOTE 2 – The terms proper subset and improper subset are borrowed from mathematical set theory. The set A
is a proper subset of set B if and only if every element of A is also an element of B and there is at least one element
of B that is not an element of A. The set A is an improper subset of B if and only if both sets contain exactly the same
elements.

– In the case where the set of entries in the DACD is an improper subset of the entries in the associated
administrative area, the DACD and the administrative area are said to be congruent. However, even when
such congruence occurs, the DACD and the administrative area continue to serve fundamentally different
purposes (areas determine which subentries are allowed to potentially effect the outcome of a specific
access control decision while each DACD specifies exactly which entries are affected by the prescriptive
controls in a given subentry).

– The DACD can never contain entries that are outside the associated administrative area.

– The ACDF is designed to be robust in the sense that even if the subtreeSpecification defining a DACD has
within its scope entries outside the associated administrative area, access control decisions regarding those
entries will be unaffected. This aspect of robustness is manifest in the ACDF procedure for determining
which subentries potentially effect a given decision [see 15.3.2 and 15.8.1 d)]

– DACDs defined in subentries of the same administrative entry may freely overlap within the common
associated administrative area.

– ACSAs never overlap; every ACIA is properly nested within an ACSA. Properly nested means the entries
in an enclosed area form a proper subset of the entries in the enclosing area. Also, an ACIA may contain
one or more properly nested ACIAs.

– Where administrative areas are nested, DACDs associated with an enclosing area may freely overlap
DACDs associated with any enclosed area. The enclosing area may be an ACSA or an ACIA, while the
enclosed area is always an ACIA.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 133

Each DACD is associated with an aspect of policy that affects one or more entries or potential entries. The entries that
are affected by a particular aspect of policy form a DACD. The DACD for a particular aspect of policy should be
associated with the administrative area controlled by the authority responsible for enforcing that aspect of policy.

In the example, there are several aspects of policy to be enforced by the authority that controls ACSA-1. There are, for
instance, “default” controls that apply to objects throughout ACSA-1. Such controls are assigned a precedence and level
of specificity that allows them to be easily overridden by other prescriptive controls or entryACI attributes. There is also
policy that applies only to immediate subordinates of {C=US, O=ZCC} (within ZCC, such entries are referred to as
administrative level entries). There is also policy that applies only to the entries that have structural object class
organizationalPerson.

All entries in ACSA-1 are included in the DACD associated with default controls. The DACD is therefore defined to be
a subtree with base vertex at {C=US, O=ZCC} and a chop specification that excludes the subtree with root at {C=US,
O=ZCC, OU=R&D, OU=BRC}. The resulting DACD is congruent to ACSA-1 and is depicted as DACD-1 in
Figure L.4.

NOTE 3 – See 15.3.2 g) for the meaning of congruent in this context.

Also within ACSA-1, the DACD to control organizationalPerson entries is a subtree refinement with base vertex at
{C=US, O=ZCC} and a specificationFilter that includes only the entries with objectClass of organizationalPerson
(see subtree-refinement1 in Annex J. This DACD is depicted as DACD-2, in Figure K.4.

A third DACD within ACSA-1 is related to controlling administrative level entries (i..e. immediate subordinates, other
than subentries, of the organizational root entry). This DACD is a (chopped) subtree with base vertex at {C=US,
O=ZCC} and a chop specification that includes only the immediate subordinates, other than subentries, of {C=US,
O=ZCC}. This DACD is depicted as DACD-5 in Figure L.4.

For ACIA-1, a DACD is required to handle an aspect of policy that has been delegated to the authority controlling the
inner area. The delegated authority affects only subordinates of {C=US, O=ZCC, OU=R&D, OU=West} and therefore
the DACD is not congruent to ACIA-1. The DACD is labeled DACD-3 in Figure L.4.

For ACIA-2, there is only one DACD required; however the delegated authority affects all entries in ACIA-2 and
therefore the DACD is congruent to ACIA-2. The DACD is labeled DACD-4 in Figure K.4.

K.5.1 Administrative area associated with each DACD

Each subentry used in the example is shown in Figure L.4. This subclause summarizes the location of each subentry and
also indicates the administrative area that is associated with each DACD.

DACD-1, DACD-2, and DACD-5 are defined in subentries to {C=US, O=ZCC} which is the administrative entry that
defines the root vertex of ACSA-1. Therefore, these three DACDs are said to be associated with ACSA-1. The name of
the subentry defining DACD-1 is {C=US, C=ZCC, CN=SE_DACD1}. The other subentries have similar names that
indicate which DACD they define.

DACD-3 is defined in a subentry to {C=US, O=ZCC, OU=R&D, OU=West} which is the administrative entry that is
the root vertex of ACIA-1. Therefore, DACD-4 is associated with ACIA-1.

DACD-4 is defined in a subentry to {C=US, O=ZCC, OU=R&D, OU=East} which is the administrative entry that
defines the root vertex of ACIA-2. Therefore, DACD-4 is associated with ACIA-2.

K.6 Policy expressed in prescriptiveACI attributes

This subclause contains a detailed description of access control policy applicable to each DACD in ACSA-1. The policy
discussed in this example should be considered a partial policy that is simplified for ease of presentation. In particular,
there is no discussion related to how passwords are controlled since, in general, passwords represent a special case of
access control; also there is no discussion of the DiscloseOnError or ReturnDN permissions.

The policy discussed in this subclause is presented in terms of policy fragments that facilitate understanding of how
prescriptiveACI attributes are used to collectively enforce the overall policy. Each fragment is given a reference label
that is used in later subclauses; the labels are of the form PF-n where n is a sequential integer. For each DACD there is
also an indication of how the applicable policy fragments could be expressed in terms of one or more subentries
(containing prescriptiveACI attributes).

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

134 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

CN = Ops

TISO3490-94/d28

C = US

O = ZCC
(AAA, ACSA)

DACD-1

DACD-5

CN = SE_DACD1
CN = SE_DACD2

CN = SE_DACD5

OU = Admin OU = R&D OU = Sales CN = Ops

CN = Ops
CN = Cauchy

DACD-4

OU = East
(ACIA)

CN = Galois

CN = Peirce
CN = Noether

CN = CayleyCN = SE_DACD3

Administrative Point

User entry in DACD-2

Subentry

CN = SE_DACD4

Figure K.4 – Directory Access Control Domains

OU = West
(ACIA)

DACD-3
CN = Ops

FIGURE K.4...[D28] = 22.55 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 135

K.6.1 prescriptiveACI for DACD-1

One of the main purposes of DACD-1 is to enforce policy fragments that are concerned with “default” access control.
Such policy fragments provide backstop controls that apply when there is no other control that is higher in precedence
or specificity. Specificity is discussed under design principles PR-1 and PR-2 in K.2.

ZCC has stated their policy with regard to public access in terms of default policy rules which may be overridden for
certain entries that need more restrictive control. The default policy is stated in PF-1 and PF-2. Note that, according to
ZCC policy, those who implement the policy are responsible for ensuring that any deviation from the default rules is
more restrictive than the default rules.

PF-1: Employees are to be distinguished from the general public. Public access rights, in general, shall be limited
according to a) and b) below; however, public access may be more restricted for specific entries (it is never less
restricted).

a) Entries may be located by common name. Search on common name is permitted to accommodate
approximate match and alternate names. In particular, search based on telephone number is not allowed to
the general public, but is permitted to those inside the organization. Search results may disclose all values
of commonName.

b) The only public attributes are commonName, telephoneNumber, components from postalAttributeSet, and
facsimileTelephoneNumber.

PF-2: General Public access may be unauthenticated, but an identity must be presented.

ZCC also uses default policy rules to express their general policy with regard to employee access. Deviations from the
default policy rules may be more restrictive or may be less restrictive. The default policy is stated in PF-3 and PF-4.

PF-3: Employees, in general, enjoy read and search access to most attributes of most entries.

PF-4: Simple authentication is required for employee access that does not modify (in any way) the contents of
ACSA-1.

There are also some policy fragments applying to DACD-1 that are not treated as defaults. Two examples of such
fragments are given in PF-5 and PF-6; they are related to administration of entries.

PF-5: {C=US, O=ZCC, CN=Cauchy} is “superuser”, authorized to access all data and perform any necessary
operations.

PF-6: Strong authentication is required to make any modification to the contents of the ACSA-1.

One or more subentries to {C=US, O=ZCC} can be used to implement the policy fragments for DACD-1. Each such
subentry would have the same subtreeSpecification with base of {C=US, O=ZCC} and a chop specification to exclude
the OU=BRC subtree. Each such subentry would also contain a prescriptiveACI attribute that implements some subset of
the policy fragments for DACD-1. For the purposes of the example, it is assumed that a single subentry is used to
capture all prescriptive controls associated with DACD-1 (there is no compelling technical reason to use more than one).
To facilitate referencing, this subentry is referred to as SE_DACD1. The prescriptiveACI attribute in SE_DACD1 has
several values; the design of each value is discussed in the remainder of this subclause.

The number of values occurring in a prescriptiveACI attribute depends partly on how the policy fragments are grouped
for convenience into itemFirst and userFirst values (either style may be used in any given situation); it also depends on
how access control for the prescriptive controls themselves is to be handled.

For example, part of implementing PF-1 requires public users (i.e. allUsers) to be granted all of the following
permissions:

a) Browse for the protected item entry;

b) FilterMatch and Read for protected item attributeType {commonName};

c) FilterMatch and Read for protected item allAttributeValues {commonName}.

These permissions are necessary (but are not sufficient – see Note) to implement PF-1. Since there are three protected
items (entry, attributeType, and allAttributeValues) and just one user class (allUsers), it seems most natural to use a
single ACIItem of the userFirst style but the itemFirst style could be used instead.

NOTE 1 – The permissions discussed above would also be sufficient to allow search on commonName if the following
two conditions are simultaneously satisfied:

a) there are no other relevant ACIItems with higher precedence or specificity that deny any of the Browse or
FilterMatch permissions listed above; and

b) there are no other values for the prescriptiveACI attribute in SE_DACD1 that deny any of the Browse, Read, or
FilterMatch permissions listed above.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

136 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Alternatively, three separate ACIItems could be used: one for each of the protected items. This alternative allows each
ACIItem to have separate access control; each has an identificationTag that is unique (with respect to the other
identificationTags for other values in the same prescriptiveACI attribute) and which can be referenced in another
ACIItem where the protected item is attributeValue and the associated attribute value assertion specifies the
identificationTag of the value to be protected. Note that using attributeValue in this way takes advantage of the particular
equality matching rule defined for prescriptiveACI attributes (see 15.5.4). Examples of protecting ACI are discussed in
detail later in the example.

For the purpose of the example, six values for the prescriptiveACI attribute in SE_DACD1 are used to implement policy
fragments PF-1 through PF-4. The design of each of the three values is summarized below.

NOTE 2 – Each protected item in the design summaries below have a label to facilitate referencing. The label is in
parentheses and is italicized (e.g. A1, A2, B1).

NOTE 3 – The example uses four levels of precedence: 10, 20, 30 and 40.

identificationTag: “Public Access – Enable entry access for List and Search on
common name”

Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none
ProtectedItems: { (A1) entry }
grantsAndDenials: { grantBrowse }

identificationTag: “Public Access – Enable filter access for Search”
Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none
ProtectedItems: { (B1) attributeType { commonName } ,

{ (B2) allAttributeValues { commonName },
{ (B3) attributeType { objectClass } ,
{ (B4) allAttributeValues { objectClass } }

grantsAndDenials: { grantFilterMatch }

identificationTag: “Public Access – Enable entry access for Read and
Compare operations”

Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none
ProtectedItems: { (C1) entry }
grantsAndDenials: { grantRead }

identificationTag: “Public Access – Enable attribute access for interrogation operations”
Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none
ProtectedItems: { (D1) attributeType { commonName,

postalAttributeSet,
telephoneNumber,

facsimileTelephoneNumber } ,
 (D2) allAttributeValues { commonName,

postalAttributeSet,
telephoneNumber,

facsimileTelephoneNumber } }
grantsAndDenials: { grantRead, grantCompare }

identificationTag: “Employee Access – Enable attribute access for interrogation operations”
Precedence: 10
UserClasses: subtree with base { C=US, O=ZCC } and chop to

exclude O=BRC subtree
authenticationLevel: simple
ProtectedItems: { (E1) allUserAttributeTypesAndValues }
grantsAndDenials: { grantRead, grantCompare }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 137

identificationTag: “Employee Access – Enable filter access for Search”
Precedence: 10
UserClasses: subtree with base { C=US, O=ZCC } and chop to

exclude O=BRC subtree
authenticationLevel: simple
ProtectedItems: { (F1) allUserAttributeTypesAndValues }
grantsAndDenials: { grantFilterMatch }

NOTE 4 – Permissions for employees are the union of permissions for the public and permissions specific to employees.
The above ACIItem values for employee access are strongly coupled to values associated with public access. This strong coupling
could be avoided, if necessary, by repeating each of the values for public access (each repeated value would have a new UserClasses
that specifies only employees).

There are two other values of the attribute which are related to implementing policy regarding how entries are
administered (PF-5 and PF-6). For simplicity, this example assumes that access control attributes are the only
operational attributes present in the AAA. The design of the two values is summarized below.

identificationTag: “Cauchy is superuser (Part 1)”
Precedence: 40
UserClasses: user { C=US, O=ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (G1)entry }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantBrowse, grantModify,

grantRename}

identificationTag: “Cauchy is superuser (Part 2)”
Precedence: 40
UserClasses: user { C=US, O=ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (H1) allUserAttributeTypesAndValues,

 (H2) attributeType { entryACI },
 (H3) allAttributeValues { entryACI } }

grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,
grantFilterMatch }

Note that the above two values are necessary, but not sufficient, to make Cauchy a superuser. They are not sufficient
because they do not enable Cauchy’s control over subentries of the administrative point for ACSA-1; there are two
reasons why this is true. First, prescriptive ACI does not apply to the subentry in which it appears. Second, prescriptive
ACI placed in a subentry, say subentry-1, cannot be used to control subentries that are siblings of subentry-1. Therefore,
it is necessary to place subentryACI in the entry corresponding to the administrative point for ACSA-1 such that Cauchy
is allowed to administer his authority over the subentries of that administrative point. The necessary subentryACI is
discussed in K.7.

Note also that the authority granted in the above two values of prescriptive ACI allow Cauchy to administer full control
over the subentries associated with administrative points that are subordinate to the administrative point for ACSA-1.

K.6.2 prescriptiveACI for DACD-2

DACD-2 is defined in a subentry of the administrative entry for ACSA-1. DACD-2 is concerned with controlling entries
with object class organizationalPerson. The following policy fragment is relevant.

PF-7: Only members of the namespace administration group {C=US, O=ZCC, OU=Admin, CN=Ops} can add,
delete, or rename user entries. However, they are only permitted to add mandatory attributes to a new entry (an entry
containing only mandatory attributes is referred as a minimal entry).

The following two values in the prescriptiveACI attribute of SE_DACD2 implement PF-7.

NOTE – Renaming of entries, in the context of PF-7, is understood to mean renaming without changing the immediate
superior. For simplicity, this example does not address the more complicated case where renaming involves changing the immediate
superior of the renamed entry (and its subordinates); in this case, Import and Export permissions must be considered.

identificationTag: “Minimal leaf entry administration (Part 1)”
Precedence: 20
UserClasses: userGroup { C=US, O=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

138 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

ProtectedItems: { (J1) entry,
{(J2) attributeType {commonName, surname },
{(J3) allAttributeValues {commonName, surname } }

grantsAndDenials: { grantAdd, grantRemove }

identificationTag: “Minimal leaf entry administration (Part 2)”
Precedence: 20
UserClasses: userGroup { C=US, O=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (K1) entry}
grantsAndDenials: { grantRename }

K.6.3 prescriptiveACI for DACD-3

DACD-3 is defined in a subentry to the administrative entry for ACIA-1. It implements policy fragments regarding
policy that has been partially delegated to ACIA-1. An example is that the policy for ACIA-1 regarding
telephoneNumber is different from that provided in default policy within DACD-1. Within DACD-3, telephoneNumber is
not regarded to be a public access iteL. This is reflected in the following policy fragment.

PF-8: The only public attributes within ACIA-1 are commonName, components from postalAttributeSet, and
facsimileTelephoneNumber.

The following value in the prescriptiveACI attribute of the subentry {C=US, O=ZCC, OU=R&D, OU=West,
CN=SE_DACD3} implements PF-8.

identificationTag: “Delegated control of public access”
Precedence: 10
UserClasses: { allUsers }
authenticationLevel: none
ProtectedItems: { (L1)attributeType { telephoneNumber },
grantsAndDenials: { denyRead, denyCompare, denyFilterMatch }

The R&D West organization is also delegated authority to implement self–administration for entries of object class
organizationalPerson. The policy is reflected in the following fragment.

PF-9: Employees of R&D West may administer values within their own Directory entry for the following attribute
types: telephoneNumber, commonName, and facsimileNumber; however, they may not modify or remove the telephone
number value supplied by the administration.

The first part of PF-9 is reflected in the two ACIItems below. The restriction on removal of a particular value of
telephoneNumber is implemented using entryACI as described in C.8.

identificationTag: “Self Administration of R&D West employee entries (part 1)”
Precedence: 20
UserClasses: thisEntry
authenticationLevel: strong
ProtectedItems: { (M1) entry }
grantsAndDenials: { grantModify }

identificationTag: “Self Administration of R&D West employee entries (part 2)”
Precedence: 20
UserClasses: thisEntry
authenticationLevel: strong
ProtectedItems: { (N1) attributeType { commonName,

postalAttributeSet,

telephoneNumber,

facsimileTelephoneNumber } ,
{ (N2)allAttributeValues { commonName,

postalAttributeSet,

telephoneNumber,

facsimileTelephoneNumber } }
grantsAndDenials: { grantAdd, grantRemove }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 139

PF-10: The group with members identified in {C=US, O=ZCC, OU=R&D, CN=Ops} are responsible for general
maintenance of user attributes for entries in ACIA-1; however, they may not modify subentries located inside ACIA-1.

The first part of this policy is reflected in the following ACIItem:

identificationTag: “R&D general administration (part 1)”
Precedence: 20
UserClasses: userGroup { C=US, O=ZCC, OU=R&D, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (P1)entry }
grantsAndDenials: { grantModify, grantAdd, grantRemove, grantBrowse,

 grantRead, grantRename }

identificationTag: “R&D general administration (part 2)”
Precedence: 20
UserClasses: userGroup { C=US, O=ZCC, OU=R&D, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (Q1)allUserAttributeTypesAndValues }
grantsAndDenials: { grantAdd, grantRemove, grantRead, grantFilterMatch,

{ grantCompare}

The restriction with regard to subentries is handled by not including any subentryACI values in the administrative entry
for ACIA-1 that allow the access.

K.6.4 prescriptiveACI for DACD-4

DACD-4 is defined in a subentry to the administrative entry for ACIA-2. As such, it implements policy fragments
regarding policy that has been partially delegated to ACIA-2.

For simplicity, DACD-4 is not discussed further.

K.6.5 prescriptiveACI for DACD-5

DACD-5 is defined in a subentry to the administrative point for ACSA-1. This DACD is used to control access to all
immediate subordinates, other than subentries, of the organizational root. In particular, the following policy applies.

PF-11: The Operations Group {C=US, O=ZCC, CN=Ops} is responsible for administration of all entries that are
immediately subordinate to {C=US, O=ZCC}.

PF-11 is expressed in the following ACIItem values.

identificationTag: “Control of administrative level entries (part 1)”
Precedence: 40
UserClasses: { userGroup { C=US, O=ZCC, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (R1) entry }
grantsAndDenials: { grantRead, grantBrowse, grantRemove, grantAdd, grantRename,

{ grantModify }

identificationTag: “Control of administrative level entries (part 2)”
Precedence: 40
UserClasses: { userGroup { C=US, O=ZCC, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (S1) allUserAttributeTypesAndValues,

{ (S2) attributeType { entryACI },
{ (S3) allAttributeValues { entryACI } }

grantsAndDenials: { grantRead, grantRemove, grantAdd, grantCompare,
 grantFilterMatch }

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

140 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

K.7 Policy expressed in subentryACI attributes

K.7.1 subentryACI in the administrative entry for ACSA-1

PF-5 is manifested in a combination of prescriptiveACI and subentryACI; the associated prescriptiveACI has already been
described in K.6.1. To enable Cauchy to administer the subentries of the administrative point for ACSA-1 (and any
subentries for administrative points subordinate to the administrative point for ACSA-1), it is necessary to place the
following subentryACI values in the entry corresponding to the administrative point for ACSA-1.

identificationTag: “Cauchy is superuser (Part 3)”
Precedence: 40
UserClasses: user { C=US, O=ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (G1)entry }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantBrowse, grantModify,

{ grantRename}

identificationTag: “Cauchy is superuser (Part 4)”
Precedence: 40
UserClasses: user { C=US, O=ZCC, OU=Admin, CN=Cauchy }

uniqueIdentifier = 12345
authenticationLevel: strong
ProtectedItems: { (H1) allUserAttributeTypesAndValues,

{ (H2) attributeType { entryACI },
{ (H3) allAttributeValues { entryACI } }

grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,
{ grantFilterMatch }

K.7.2 subentryACI in the administrative entry for ACIA-1

A subentryACI attribute is placed in the root vertex of ACIA-1 to implement the following policy fragment.

PF-12: The user with common name Cayley is responsible for managing all prescriptiveACI defined in ACIA-1.

The following two values in the subentryACI attribute implement PF-12.

identificationTag: “Cayley manages subentries in ACIA-1 (part 1)”
Precedence: 20
UserClasses: user { C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley }
authenticationLevel: strong
ProtectedItems: { (T1) entry,
grantsAndDenials: { grantRead, grantBrowse, grantRemove, grantAdd,

 { grantRename, grantModify }

identificationTag: “Cayley manages subentries in ACIA-1 (part 2)”
Precedence: 20
UserClasses: user { C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley }
authenticationLevel: strong
ProtectedItems: { (U1) attributeType { prescriptiveACI },

{ (U2) allAttributeValues { prescriptiveACI } }
grantsAndDenials: { grantAdd, grantRead, grantRemove, grantCompare,

 { grantFilterMatch }

K.8 Policy expressed in entryACI attributes

PF-9 requires that each R&D West employee be allowed to manage all values of telephoneNumber in his/her Directory
entry with the restriction that they may not modify or remove a particular value supplied by administration. To enforce
the restriction, the administration adds an entryACI value to each entry at the time that the restricted telephone number is
added to the entry. The entryACI value is summarized as follows:

identificationTag: “Restrict self-administration of telephone numbers”
Precedence: 30
UserClasses: thisEntry

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 141

authenticationLevel: none
ProtectedItems: { (V1) attributeValue { telephoneNumber = value supplied by

 administration } }
grantsAndDenials: { denyRemove }

Note that since users cannot modify the entryACI attribute (it is not part of self administration as defined in PF-9), the
above control cannot be overridden by the user.

The following policy fragment is an example of using entryACI to implement a self administration for a group entry.

PF-13: The entry {C=US, O=ZCC, OU=Admin, CN=Ops} is a “self-administered” group entry; this means that each
member of the group may remove their name from the group or change their name in the group. They may not remove
or rename the group itself.

PF-13 is implemented by an entryACI attribute in the entry {C=US, O=ZCC, OU=Admin, CN=Ops} with two values as
summarized below.

identificationTag: “self-administration of the Administrative Ops group (part 1)”
Precedence: 30
UserClasses: userGroup { C=US, O=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (W1) entry }
grantsAndDenials: { grantModify }

identificationTag: “self-administration of the Administrative Ops group (part 2)”
Precedence: medium
UserClasses: userGroup { C=US, O=ZCC, OU=Admin, CN=Ops }
authenticationLevel: strong
ProtectedItems: { (X1) selfValue { uniqueMember }
grantsAndDenials: { grantRemove, grantAdd }

K.9 ACDF examples

K.9.1 Public access read

A member of the general public, with distinguished name {C=GB, O=XC, CN=Smith} attempts a read operation
requesting telephone number values for user Cayley. The access control decisions for the operation are defined in ITU-T
Recommendation X.511 | ISO/IEC 9594-3. Assuming there is no alias dereferencing involved in name resolution, the
first decision point is to determine if Read permission for the target entry is granted; this decision is based on the
following inputs to the ACDF:

– requested permission: Read;

– originator: {C=GB, O=XC, CN=Smith} with no unique identifier;

– authentication level: none;

– protected item: entry{C=US, O=ZCC, OU=R&D, OU=West, CN=Cayley};

– tuples shown in Table K.1

The protected target entry is in the scope of DACD-1, DACD-2, and DACD-3 (see Figure K.4 of this appendix). It has
no entryACI. The three DACDs contribute the tuples (applicable to the specified originator) shown in Table K.1 to the
ACDF procedure described in 15.8.

The ACDF, after discarding non–relevant rows, ends up with just two rows to consider: row 4 which grants Read on the
entry and row 13 which denies Read on the entry. The ACDF therefore denies access.

NOTE – For simplicity, this example does not address permissions and procedures associated with error conditions.
However, in the above case of denied access, the behavior of the responding DSA would be governed by 7.11.3 and would involve
using the ACDF again to determine if DiscloseOnError is granted for the target entry.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

142 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Table K.1

K.9.2 Public access search

A member of the general public, with distinguished name {C=GB, O=XC, CN=Smith} attempts a search operation
requesting all values of all attributes for all users (wholeSubtree) subordinate to base object {C=US, O=ZCC, OU=R&D,
OU=West}; the filter specifies FilterItem equality: objectClass = organizationalPerson. The access control decision points
for the operation are defined in 10.2.5 of ITU-T Recommendation X.511 | ISO/IEC 9594-3.

K.9.2.1 Check each entry in the Search scope for proper entry permission

For each entry in the search scope, assuming there is no alias dereferencing involved in name resolution, the first
decision point is to determine if Browse is granted for that entry. For the first such entry, the ACDF inputs are:

– requested permission: Browse;

– originator: {C=GB, O=XC, CN=Smith};

– unique identifier: none;

– authentication level: none;

– protected item: entry{C=US, O=ZCC, OU=R&D, OU=West};

– tuples shown in Table K.2.

Since the entry being checked is included in DACD-1 only, the initial set of tuples gathered by the ACDF is shown in
Table K.2. Note that there is no entryACI to consider.

The ACDF procedure of discarding rows from Table K.2 results in only the first row being retained; the ACDF therefore
grants the requested access.

Similarly, the ACDF will grant Browse for each entry in the scope of the Search.

User Item Permission
Grant

or
Deny

Prece-
dence

Authenti-
cation
Level

allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers

(A1)entry
(B1)commonName type
(B2)commonName values
(B3)objectClass type
(B4)objectClass values
(C1)entry
(D1)commonName type
(D1)postalAttributeSet type
(D1)telephoneNumber type
(D1)facsimileTelephoneNo. type
(D2)commonName values
(D2)postalAttributeSet values
(D2)telephoneNumber values
(D2)facsimileTelephoneNo. values
(L1)telephoneNumber type
(L1)telephoneNumber type
(L1)telephoneNumber type

Browse
FilterMatch
FilterMatch
FilterMatch
FilterMatch

Read
Read
Read
Read
Read
Read
Read
Read
Read
Read

Compare
FilterMatch

G
G
G
G
G
G
G
G
G
G
G
G
G
G
D
D
D

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

None
None
None
None

NoneS
None
None
None
None
None
None
None
None
None
None
None
None

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 143

Table K.2

K.9.2.2 Check for satisfaction of Filter

For each entry in the search scope for which Browse is granted, the next decision point is to determine if FilterMatch is
granted on the objectClass attribute. For the first such entry, the ACDF inputs are:

– requested permission: Browse;

– originator: {C=GB, O=XC, CN=Smith};

– unique identifier: none;

– authentication level: none;

– protected item: entry{C=US, O=ZCC, OU=R&D, OU=West};

– tuples shown in Table K.2.

The ACDF will discard all rows of Table K.2 except for row 4; the access will, therefore be granted. Next, the Search
operation will check to see if any of the values of the objectClass attribute equal organizationalPerson. Since the entry
being checked is an organizational unit entry, the Filter will evaluate to FALSE.

Similarly, the Filter will evaluate to FALSE for the entry with CN = SE_DACD3.

For the other two entries in the scope of the Search (CN=Cayley, CN=Noether), the Filter will evaluate to TRUE. For
each of these entries, the next access control decision is to determine if FilterItem is granted for the attribute value that
caused the Filter to be evaluated as TRUE. Because these entries are included in both DACD-1, DACD-2, and DACD-3,
the initial set of tuples input to the ACDF is Table K.1. Row 5 of Table K.1 grants the requested access for both entries.

Hence, the Search result contains information from the entries for Cayley and Noether. Additional access control
decisions for these two entries are essentially the same as shown in the example of public Read in K.8.1.

User Item Permission
Grant

or
Deny

Prece-
dence

Authenti-
cation
Level

allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers
allUsers

(A1)entry
(B1)commonName type
(B2)commonName values
(B3)objectClass type
(B4)objectClass values
(C1)entry
(D1)commonName type
(D1)postalAttributeSet type
(D1)telephoneNumber type
(D1)facsimileTelephoneNo. type
(D2)commonName values
(D2)postalAttributeSet values
(D2)telephoneNumber values
(D2)facsimileTelephoneNo. values

Browse
FilterMatch
FilterMatch
FilterMatch
FilterMatch

Read
Read
Read
Read
Read
Read
Read
Read
Read

G
G
G
G
G
G
G
G
G
G
G
G
G
G

10
10
10
10
10
10
10
10
10
10
10
10
10
10

None
None
None
None
None
None
None
None
None
None
None
None
None
None

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

144 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex L

DSE Type Combinations
(This annex does not form an integral part of this Recommendation | International Standard)

Table L.1 specifies a number of DSE type combinations (i.e. combinations of the named bits of the dseType attribute)
that are likely to occur when applying the DSA information model to DSA in the absence of shadowing. The table is
provided to help clarify the DSA information model. Support for these (or other DSE type combinations) is not
mandated by this Directory Specification.

The first column of the table designates the DSE types which need not combine with any other DSE type to express the
function of a DSE. For example, a DSE may be found with only the entry bit set. The second through sixth columns
indicate by a tick mark (3) additional DSE type bits that may also be set in addition to the bit designated in the first
column. These bits may be set independently. For example, an entry DSE may also have the nssr bit, the admPoint and
cp bits, or several other combinations of the admPoint, cp and nssr bits set The final column describes the various DSE
type combinations indicated in its table row.

Table L.2 specifies a number of additional DSE type combinations that are likely to occur when shadowing occurs. As in
the case of the previous table, the first column of the table designates the DSE types which need not, in a shadow DSA
for the DSE, combine with any other DSE type to express the function of a DSE. The second through sixth columns
indicate by a tick mark (3) additional DSE type bits that may also be set in addition to the bit designated in the first
column. These bits may be set independently.

Table L.1 – Defined DSE Type Combinations in the Absence of Shadowing

DSE Type admPoint cp supr nssr sa Comments

Root 3 3 Root DSE for a first level DSA. First level DSA with an nssr
if nssr bit set. Root DSE for a non-first level if DSA is supr
bit set.

Glue Glue DSE.

Entry 3 3 3 Object entry DSE; also an administrative point if admPoint
bit set; context prefix if cp bit set; nssr if nssr bit set.

Alias 3 Alias entry DSE.

Subentry Subentry DSE.

subr 3 Subordinate reference DSE; subordinate reference points to
alias if sa bit is set.

immSupr 3 Immediate superior reference.

xr Cross reference DSE.

NOTE – The DSE type subr and immSupr may also occur (possibly with the additional bit admPoint), although it is not convenient
to represent it in the table. Subentry and administrative point information maintained by RHOBs are indicated by the presence of
the rhob bit.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 145

Table L.2 – Additional Defined DSE Type Combinations when Shadowing Employed

DSE Type admPoint cp supr nssr sa Comments

Root 3 Root DSE for shadow first level DSA with an nssr.

Entry 3 3 3 Object entry DSE; also an administrative point if admPoint
bit set; context prefix if cp bit set; nssr if nssr bit set.

Alias 3 Alias entry DSE.

Subentry Subentry DSE.

subr 3 Subordinate reference DSE; subordinate reference points to
alias if sa bit is set.

immSupr 3 Immediate superior reference.

admPoint 3 3 Administrative point DSE without user attributes (entry not
shadowed); also context prefix if cp bit set; also nssr if nssr
bit set.

cp 3 3 Context prefix DSE (entry not shadowed); also nssr if nssr
bit set.

nssr Nssr DSE (entry not shadowed).

NOTE – The shadow bit is set in all cases in the table (and therefore not explicitly represented). As in the case of Table G.1, the
DSE type subr, immSupr and shadow may also occur (possibly with the additional bit admPoint). Finally, for DSEs with the subr
and/or immSupr bits set, the entry and shadow bits may also occur as shadowed entry information is overlaid on knowledge
information maintained either by RHOBs or shadowing.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

146 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Annex M

Modelling of knowledge

(This annex does not form an integral part of the Recommendation | International Standard)

The following example illustrates an hypothetical DIT, its potential mapping onto three DSAs, and the information the
DSAs would have to maintain (including knowledge information) to support the mapping.

In Figures M.1 and M.2 below the following symbols are used.

TISO3500-94/d29

Object entry

Alias entry

Subentry

Extent of autonomous
administrative area

Extent of naming context

FIGURE...[D29] = 2.28 CM

Figure M.1 depicts the hypothetical DIT. It is partitioned into four autonomous administrative areas: the degenerate
cases of the single entries {C=WW} and {C=VV} and the two subtrees rooted at {C=WW, O=ABC} and {C=VV,
O=DEF}. One entry, {C=VV, O=DEF, OU=K}, is an alias of the object entry {C=WW, O=ABC, OU=I}.

TISO3510-94/d30

Root

C = WW C = VV

O = ABC

OU = G
OU = H

CN = I CN = m
CN = n

CN = AA

OU = I

CN = p
CN = o

CN = q

Autonomous
Administrative

Area AA

CN = BB

O = DEF

OU = KOU = J
Autonomous

Administrative
Area BB

Figure M.1 – Hypothetical DIT

FIGURE M.1...[D30] = 10.65 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 147

Figure M.2 depicts the partitioning of the hypothetical DIT into five naming contexts (A, B, C, D and E) and their
mapping onto three DSAs (DSA1, DSA2 and DSA 3). In the figure DSA1 holds context C, DSA2 holds contexts A, B
and E, and DSA3 holds context D.

TISO3520-94/d31

Context A

Root

Context B

C = WW C = VV

Context C Context D

O = ABC

CN = AA

OU = HOU = G

CN = l CN = m CN = n

Context E

CN = o CN = p CN = q

O = DEF

CN = BB

OU = KOU = J
Autonomous

Administrative
Area BB

Autonomous
Administrative

Area AA

DSA1 DSA2 DSA3

Figure M.2 – Hypothetical DIT Mapped onto three DSAs

FIGURE M.2...[D31] = 12.27 CM

The knowledge held by the three DSAs is as follows: DSA1 employs DSA2 as its superior reference and has a non-
specific subordinate reference to DSA2 for information subordinate to {C=WW, O=ABC}. DSA2 is a first level DSA
and maintains a subordinate reference to DSA1 for context C and an immediate superior reference to it for the context
immediately superior to context E. DSA2 maintains a subordinate reference to DSA3 for context D. DSA3 also employs
DSA2 as its superior reference and has a cross reference to DSA 2 for context E.

Figures M.3 through M.6 depict the information held in each of the DSAs (i.e. the DSA information tree of each DSA)
to support this configuration. The following symbols are employed in these figures.

TISO3530-94/d32

Entry DSE

Alias DSE

Subentry DSE

Root DSE

Glue DSE

subr DSE

xr DSE(×) Also DSE type x

FIGURE ...[D32] = 2.9 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

148 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

Figure M.3 illustrates the DSA information tree of DSA1.

Since DSA1 is not a first level DSA, its root DSE holds a superior reference, which in this example is the access point
for DSA2. This DSE is of type root + supr.

DSA1 holds one glue DSE to represent its knowledge of the name {C=WW}.

The autonomous administrative area AA is subdivided into two naming contexts C and E, with context C held in DSA1.
For the sake of simplicity in this example it is assumed that the specific administrative areas relative to access control
and subschema information coincide and that there is a single access control domain and a single subschema for the
entire autonomous administrative area. A consequence of this is that only a single (multi-purpose) subentry is required
for each of the autonomous administrative areas of the example.

For DSA1 the DSE at {C=WW, O=ABC}, representing the administrative point for AA, the context prefix for context C
and an non-specific subordinate reference to DSA2, is of type entry + cp + admPoint + nssr. The area operational
information is held in the subentry {C=WW, O=ABC, CN=AA}.

DSA1 holds the following entries contained in context C: {C=WW, O=ABC, OU=G}, {C=WW, O=ABC, OU=H},
{C=WW, O=ABC, OU=G, CN=l}, {C=WW, O=ABC, OU=G, CN=m} and {C=WW, O=ABC, OU=G, CN=n}.

TISO3540-94/d33

Root(supr)

C = WW

(cp + admpoint + nssr + entry)

CN = AA

OU = HOU = G

O = ABC

CN = l CN = m CN = n

Figure M.3 – DSA Information Tree for DSA1

FIGURE M.3...[D33] = 8.7 CM

Figure M.4 illustrates one potential DSA information tree for DSA2.

In this hypothetical situation, DSA2 is a first level DSA, so its root DSE does not hold a superior reference.

The two degenerate autonomous administrative areas, {C=WW} and {C=VV} are represented by DSEs of type cp +
entry + admPoint.

Subordinate knowledge of the DIT is represented by two subordinate reference DSEs, {C=WW, O=ABC} and {C=VV,
O=DEF}. In the former case this DSE is of type subr + admPoint + immSupr + rhob for reasons that will be described
next.

In Figure M.4 DSA2 is configured assuming that a single subentry holds the area operational information regarding AA.
This requires that a copy of the subentry be present at DSA2 (for reasonable performance). One way to accomplish this
is by establishing a NHOB between DSA1 and DSA2 to maintain a copy of the subentry. In this case the area
operational information is held in the DSE named {C=WW, O=ABC, CN=AA} which is of type subentry + rhob. The
administrative-role attribute held in the DSE at {C=WW, O=ABC}is provided to DSA2 from DSA1 as part of the
NHOB. For this reason the DSE is of type admPoint + rhob.

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 149

Finally the naming context E is held as the context prefix DSE {C=WW, O=ABC, OU=I) which is of type cp + entry
and the three entry DSEs {C=WW, O=ABC, OU=I, CN=o}, {C=WW, O=ABC, OU=I, CN=p} and {C=WW, O=ABC,
OU=I, CN=q}.

An alternative means of configuring DSA2 is illustrated in Figure M.5.

This differs from the configuration depicted in Figure M.4 only in the handling of the area operational information,
motivated, perhaps, by a desire to avoid having to maintain a NHOB with DSA1.

The strategy in this case is to partition AA (i.e. partition the domain access control information – and similarly the
subschema information) into two autonomous administrative areas, one coinciding with context C and the other with
context E

In this case the context prefix DSE {C=WW, O=ABC, OU=I} also becomes an administrative point, the DSE type being
cp + admPoint + entry. Instead of a shadowed subentry supplied by DSA1 as part of a NHOB, the reduced area
operational information is held in the subentry {C=WW, O=ABC, OU=I, CN=AA}.

Figure M.6 illustrates the DSA information tree of DSA3.

Like DSA1, DSA 3 is not a first level DSA. Its root DSE holds a superior reference, which in this example is the access
point for DSA2. This DSE is of type root + supr.

DSA2 holds one glue DSE to represent its knowledge of the name {C=VV}.

The autonomous administrative area BB coincides with the naming context D. For the sake of simplicity in this example
it is assumed, as in the case of the autonomous administrative area AA, that the specific administrative areas relative to
access control and subschema information coincide and that there is a single access control domain and a single
subschema for the entire autonomous administrative area. Thus only a single (multi-purpose) subentry is required for
each of the autonomous administrative areas of the example.

For DSA3 the DSE at {C=VV, O=DEF}, representing the administrative point for BB and the context prefix for context
D, is of type entry + cp + admPoint. The area operational information is held in the subentry {C=VV, O=DEF, CN=BB}.

DSA3 holds one object and one alias entry contained in context D: {C=VV, O=DEF, OU=J}, (of type entry) and
{C=VV, O=DEF, OU=K} (of type alias and containing an attribute aliasedEntryName having the value {C=WW,
O=ABC, OU=I}).

Finally, DSA3 holds a cross reference to context E, a DSE of type xr with name {C=WW, O=ABC, OU=I}.

TISO3550-94/d34

Root

C = WW C = VV
(cp + admPoint) (cp + admPoint + entry)

O = ABC
(admPoint + immSupr + rhob)

CN = AA
(rhob)

OU = l

CN = o CN = p CN = q

(cp + entry)

O = DEF

Figure M.4 – DSA Information Tree for DSA2

FIGURE M.4...[D34] = 10.53 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

150 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

TISO3560-94/d35

Root

C = WW C = VV

O = ABC

OU = l

CN = o CN = p CN = q

(cp + admPoint + entry)

O = DEF

(cp)(cp)

CN = AA

Figure M.5 – Alternative DSA Information T ree for DSA2

FIGURE M.5...[D35] = 10.82 CM

TISO3570-94/d36

Root(supr)

C = WW C = VV

O = ABC

OU = I

(cp + admPoint + entry)

OU = J OU = K

CN = BB

O = DEF

Figure M.6 – DSA Information Tree for DSA3

FIGURE M.6...[D36] = 8.6 CM

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 151

Annex N

Alphabetical index of definitions
(This annex does not form an integral part of this Recommendation | International Standard)

This annex alphabetically lists all of the terms defined in this Directory Specification together with a cross reference to
the clause in which they are defined.

A access control scheme............................clause 15
access point..clause 6
Administration Directory Management
 Domain ...clause 6
administrative area.................................clause 10
Administrative Authority.........................clause 6
administrative entryclause 10
administrative pointclause 10
administrative user.................................clause 10
alias..clause 9
alias entry...clause 7
alias dereferencing....................see dereferencing
alias name ... see alias
attribute..clause 8
attribute hierarchy....................................clause 8
attribute subtype (subtype)clause 8
attribute supertype (supertype)clause 8
attribute syntaxclause 12
attribute type ..clause 8
attribute value ..clause 8
attribute value assertionclause 8
autonomous administrative areaclause 10
auxiliary object classclause 8

B base clause 11

C category clause 18
chop ...clause 11
collective attributeclause 8
commonly usable...................................clause 18
context prefix...clause 17
cooperative stateclause 21
cross referenceclause 18

D dereferencing clause 9
direct attribute referenceclause 8
direct superclass.......................................clause 7
(the) Directory ...clause 6
Directory administrative and operational
 Information ...clause 6
Directory entry...clause 7
Directory Information Base (DIB)...........clause 7
DIB fragment...clause 17
Directory Information Tree (DIT)clause 7
Directory Management Domain (DMD) .clause 6
directory name ...clause 9
Directory operational attribute...............clause 11
directory operational frameworkclause 21
Directory Schemaclause 12
Directory Subschema.............................clause 12
Directory system schema.......................clause 11
Directory System Agent (DSA)...............clause 6

Directory user .. clause 6
Directory User Agent (DUA) clause 6
Directory user information clause 6
distinguished name clause 9
distinguished value clause 8
DIT Content Rule clause 12
DIT Domain .. clause 6
DIT Domain Administrative Authority clause 10
DIT Domain policy................................ clause 10
DIT Structure Rule clause 12
DMD Administrative Authority clause 10
DMD policy.. clause 10
DMO policy.. clause 10
DSA information tree clause 19
DSA-shared attribute clause 19
DSA-specific attribute clause 19
DSA-specific entry clause 19
DSE type... clause 19

E entry clause 11
entry collection .. clause 8
entry name ... clause 9

G Governing Structure Rule..................... clause 12

I immediate(ly) superior clause 7
immediate superior reference clause 18
indirect attribute reference....................... clause 8
inner administrative area clause 10

K knowledge (information) clause 18
knowledge reference............................. clause 18

M master knowledge.................................. clause 18
matching rule .. clause 8
matching rule assertion............................ clause 8

N naming authority clause 9
naming context clause 17
Name Form.. clause 12
non-cooperative state............................. clause 21
non-specific subordinate reference........ clause 18

O object (of interest) clause 7
object class .. clause 7
object entry .. clause 7
operational attribute................................. clause 8
operational binding................................ clause 21
operational binding type clause 21
operational binding instance.................. clause 21
operational binding establishment clause 21
operational binding modification.......... clause 21
operational binding terminiation clause 21
operational binding management........... clause 21

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

152 ITU-T Rec. X.501 (1993 E) Superseded by a more recent version

P policy clause 10
policy attribute.......................................clause 10
policy object ..clause 10
policy procedureclause 10
policy parameterclause 10
Private Directory Management Domain clause 6
protected item ..clause 15
purported name..clause 9

R reference path clause 18
relative distinguished nameclause 9

S shadow knowledgeclause 18
specific administrative areaclause 10
specific administrative point..................clause 10
structural object class...............................clause 8
Structural Object Class of an entry..........clause 7

subclass.. clause 7
subentry ... clause 11
subtype................................. see attribute subtype
subordinate .. clause 7
subordinate reference clause 18
Subschema................... see Directory Subschema
subtree ... clause 11
subtree refinement clause 11
subtree specification clause 11
superclass... clause 7
superior.. clause 7
superior reference clause 18
Superior Structure Rule clause 12
supertype see attribute supertype

U user attribute clause 8

Superseded by a more recent version ISO/IEC 9594-2 : 1995 (E)

ITU-T Rec. X.501 (1993 E) Superseded by a more recent version 153

Annex O

Amendments and corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendments:

– Amendment 1 for Access Control;

– Amendment 2 for Schema Extensions;

– Amendment 3 for Replication.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects in the
following defect reports (some parts of some of the following Technical Corrigenda may have been subsumed by the
amendments that formed this edition of this Directory Specification):

– Technical Corrigendum 1 (covering Defect Reports 006, 021).

– Technical Corrigendum 2 (covering Defect Reports 036, 037).

