
INTERNATIONAL TELECOMMUNICATION UNION

)454 8����
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(08/97)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATION

Message Handling Systems

#OMMON�MESSAGING�CALL�!0)

ITU-T Recommendation X.446
(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS X.1–X.199

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEM INTERCONNECTION X.200–X.299

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS X.300–X.399

General X.300–X.349

Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699

Networking X.600–X.629

Efficiency X.630–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT X.700–X.799

Systems Management framework and architecture X.700–X.709

Management Communication Service and Protocol X.710–X.719

Structure of Management Information X.720–X.729

Management functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS X.850–X.899

Commitment, Concurrency and Recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

Recommendation X.446 (08/97) i

ITU-T RECOMMENDATION X.446

COMMON MESSAGING CALL API

Summary

This Recommendation specifies a simple call interface through which messaging-reliant applications may invoke the
services of MHS across a standardized programming interface. The Recommendation was generated cooperatively with
the XAPI Association and defines the application programming interface being implemented for MHS by the world’s
major vendors and service providers.

Source

ITU-T Recommendation X.446 was prepared by ITU-T Study Group 7 (1997-2000) and was approved under the WTSC
Resolution No. 1 procedure on the 9th of August 1997.

ii Recommendation X.446 (08/97)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned
that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation X.446 (08/97) iii

CONTENTS

Page

1 Introduction .. 1

1.1 Purpose ... 1

1.2 Overview .. 1

1.3 Terminology ... 2
1.3.1 Definitions .. 2
1.3.2 Abbreviations.. 2

1.4 References .. 3
1.4.1 Identical Recommendations – International Standards... 3
1.4.2 Paired Recommendations – International Standards equivalent in technical content 3
1.4.3 Additional references .. 3

1.5 Levels.. 4

1.6 C naming conventions .. 4

2 CMC architecture ... 5

2.1 Functional model .. 5

2.2 Computational model.. 6
2.2.1 Interfaces... 6
2.2.2 Session .. 7
2.2.3 Wide character support ... 7
2.2.4 Event notification.. 7
2.2.5 Extensions... 8

2.3 Configuration model... 8
2.3.1 CMC manager... 9
2.3.2 Guidelines for platform bindings .. 10
2.3.3 Query for configuration information... 10

2.4 Object model... 10
2.4.1 Model components.. 10

3 CMC object classes .. 13

3.1 CMC API object classes ... 13
3.1.1 Address book .. 14
3.1.2 Content item.. 14
3.1.3 Distribution list ... 14
3.1.4 Message .. 14
3.1.5 Message container... 15
3.1.6 Per Recipient Information...15
3.1.7 Profile Container... 16
3.1.8 Recipient ... 16
3.1.9 Report.. 16
3.1.10 Root Container .. 17

4 Data structures.. 17

4.1 Basic data types .. 18

4.2 Array data types.. 18

4.3 Attachment.. 20

4.4 Boolean... 21

4.5 Buffer.. 21

4.6 Callback Data Structures .. 21

4.7 Counted String.. 23

4.8 Cursor Handle... 24

4.9 Cursor Restriction... 24

4.10 Cursor Sort Key .. 26

iv Recommendation X.446 (08/97)

Page

4.11 Dispatch Table .. 27

4.12 Enumerated ... 33

4.13 Events ... 33

4.14 Extension .. 33

4.15 Flags.. 34

4.16 GUID .. 35

4.17 Identifier ... 35

4.18 ISO Date and Time ... 35

4.19 Message .. 36

4.20 Message Reference ... 38

4.21 Message Summary.. 39

4.22 Name... 39

4.23 Object Handle ... 40

4.24 Object Identifier.. 40

4.25 Opaque Data ... 40

4.26 Property .. 41

4.27 Recipient ... 42

4.28 Report ... 43

4.29 Return Code.. 44

4.30 Session Id.. 44

4.31 Stream Handle .. 44

4.32 String .. 45

4.33 Time.. 45

4.34 User Interface Identifier.. 46

5 Object properties .. 46

5.1 Address book object properties .. 56
5.1.1 Child allowed .. 56
5.1.2 Comment... 56
5.1.3 Location .. 57
5.1.4 Name... 57
5.1.5 Object class ... 57
5.1.6 Parent .. 58
5.1.7 Server name .. 58
5.1.8 Shared ... 58
5.1.9 Type .. 58

5.2 Content item object properties .. 59
5.2.1 Character set.. 59
5.2.2 Content information .. 59
5.2.3 Content type .. 60
5.2.4 Create time.. 62
5.2.5 Encoding type ... 62
5.2.6 File directory... 63
5.2.7 File name... 63
5.2.8 Item number .. 64
5.2.9 Item type ... 64
5.2.10 Last modified .. 64
5.2.11 Object class ... 64
5.2.12 Render position ... 65
5.2.13 Size.. 65
5.2.14 Title... 65

5.3 Distribution list object properties ... 66
5.3.1 Address ... 66
5.3.2 Comment... 66
5.3.3 Last modification time .. 66

Recommendation X.446 (08/97) v

Page
5.3.4 Name... 66
5.3.5 Object class ... 67
5.3.6 Parent .. 67
5.3.7 Shared ... 67

5.4 Message object properties... 67
5.4.1 Application Id ... 68
5.4.2 Application message status ... 68
5.4.3 Auto-Action .. 68
5.4.4 Deferred delivery time .. 69
5.4.5 Id ... 69
5.4.6 In message status... 69
5.4.7 In reply to.. 70
5.4.8 Item count ... 70
5.4.9 NRN diagnostic... 70
5.4.10 NRN reason... 70
5.4.11 Object class ... 71
5.4.12 Out message status .. 71
5.4.13 Priority .. 72
5.4.14 Receipt requested .. 72
5.4.15 Receipt type .. 73
5.4.16 Report requested ... 73
5.4.17 Role... 73
5.4.18 Sensitivity ... 74
5.4.19 Size.. 74
5.4.20 Subject .. 75
5.4.21 Time received.. 75
5.4.22 Time sent... 75
5.4.23 Type .. 75

5.5 Message container object properties... 76
5.5.1 Child allowed .. 76
5.5.2 Comment... 76
5.5.3 Location .. 77
5.5.4 Name... 77
5.5.5 Object class ... 77
5.5.6 Parent .. 78
5.5.7 Server name .. 78
5.5.8 Shared ... 78
5.5.9 Type .. 78

5.6 Per recipient information object properties... 79
5.6.1 Comment... 79
5.6.2 Delivery time .. 79
5.6.3 Diagnostic ... 79
5.6.4 Object class ... 80
5.6.5 Reason... 80
5.6.6 Recipient address .. 80
5.6.7 Recipient name.. 80
5.6.8 Type .. 81

5.7 Profile container object properties .. 81
5.7.1 Auto-Action .. 81
5.7.2 Character Set... 82
5.7.3 Conformance... 82
5.7.4 Default Service.. 82
5.7.5 Default User .. 83
5.7.6 Line Terminator .. 83
5.7.7 Object Class .. 83
5.7.8 Object Extensions Supported .. 83
5.7.9 Objects Supported... 84
5.7.10 Properties Supported... 84
5.7.11 Property Extensions Supported... 84
5.7.12 Required Password.. 84
5.7.13 Required Service... 85

vi Recommendation X.446 (08/97)

Page
5.7.14 Required User ... 85
5.7.15 Support Counted Strings ... 85
5.7.16 Support No Mark As Read.. 85
5.7.17 User Interface Available ... 86
5.7.18 Users ... 86
5.7.19 Version of the Implementation ... 86
5.7.20 Version of the Specification.. 86

5.8 Recipient object properties ... 87
5.8.1 Address ... 87
5.8.2 Content Return Requested .. 87
5.8.3 Name... 87
5.8.4 Object Class .. 87
5.8.5 Receipt Requested... 88
5.8.6 Report Requested .. 88
5.8.7 Responsibility Flag ... 89
5.8.8 Role... 89
5.8.9 Type .. 90

5.9 Report object properties.. 90
5.9.1 Application Id ... 90
5.9.2 Id ... 90
5.9.3 Item Count .. 91
5.9.4 Messaging System Id .. 91
5.9.5 Object Class .. 91
5.9.6 Read .. 91
5.9.7 Size.. 92
5.9.8 Subject .. 92
5.9.9 Subject Message Id ... 92
5.9.10 Time Received .. 92
5.9.11 Time Sent .. 93
5.9.12 Unsent ... 93

5.10 Root container object properties ... 93
5.10.1 Child Allowed... 93
5.10.2 Comment... 93
5.10.3 Location .. 94
5.10.4 Name... 94
5.10.5 Object Class .. 94
5.10.6 Shared ... 95

6 Functional interface.. 95

6.1 Simple CMC functions ... 95
6.1.1 Sending messages ... 96
6.1.2 Receiving messages .. 100
6.1.3 Looking up names... 106
6.1.4 Administration .. 109

6.2 Full CMC functions .. 116
6.2.1 Bind functions... 117
6.2.2 Composition functions .. 119
6.2.3 Enumeration functions .. 130
6.2.4 Event notification functions .. 144
6.2.5 Messaging functions ... 149
6.2.6 Name handling functions .. 152
6.2.7 Stream functions ... 154

7 Return codes... 160

8 Conformance.. 175

Annex A – C declaration summary .. 177

A.1 C declaration summary ... 177

Recommendation X.446 (08/97) vii

Page

Annex B – CMC vendor extensions ... 220

B.1 CMC vendor extensions ... 220
B.1.1 Function extensions .. 221
B.1.2 Data extensions ... 227

B.2 Extension set C declaration summary... 229
B.2.1 X.400 extension set ... 230
B.2.2 Additional extensions for simple CMC/X400 mapping.. 231
B.2.3 Other extension sets .. 234
B.2.4 Platform-specific information including run-time bindings.. 234
B.2.5 Simple CMC usage of X.400 backbone services .. 236

Annex C – Programming examples.. 255

C.1 Programming examples .. 255
C.1.1 Query Configuration, Logon, and Logoff ... 255
C.1.2 Send and Send Documents functions.. 255
C.1.3 List, read, and delete the first unread message.. 257
C.1.4 Look up a specific recipient and get its details ... 258
C.1.5 Use of extensions .. 258
C.1.6 cmc_bind_implementation.. 259

C.2 Example of cmc_bind_implementation .. 261

C.3 Composing a message... 262

C.4 Check for new messages... 265

C.5 Filing a message ... 267

C.6 Deleting a message ... 271

C.7 Retrieving a message .. 273

Recommendation X.446 (08/97) 1

Recommendation X.446

Recommendation X.446 (08/97)

COMMON MESSAGING CALL API

(Geneva, 1997)

1 Introduction

This clause introduces the Common Messaging Call (CMC) Application Program Interface (API) and its specifications.
It indicates the purpose of the interface, provides an overview of it, details abbreviations, provides document references,
explains the level of abstraction of the interface, defines C naming conventions, and specifies conformance
requirements.

This Recommendation is an enhancement of the first version of the CMC API, published in June 1993 by the X.400 API
Association. This Recommendation extends the messaging-aware application support in the original document with
support for messaging-reliant applications.

1.1 Purpose

The purpose of this Recommendation is to specify a high-level messaging application program interface that can be
supported by most messaging services deployed today. The API is intended to enable application programmers to easily
integrate messaging, and thus communications, into their applications, creating a large body of messaging-enabled
applications.

This Recommendation is directed toward messaging service developers who might wish to support such an application
program interface. This Recommendation may also guide application developers in understanding
implementation-independent features of the Common Messaging Call API. The application developers must follow
manuals provided by the system they are using for messaging support.

1.2 Overview

The Common Messaging Call Application Program Interface provides a set of high-level functions for
messaging-enabled applications to send and receive electronic messages.

Within the range of messaging-enabled applications, there are messaging-aware applications and messaging-reliant
applications.

Messaging-aware applications are those that can function quite satisfactorily as stand-alone applications, but which
might connect to a messaging service to provide enhanced functionality. An example would be a word processing or
spreadsheet application that has the capability to send the document or file using a FILE-SEND option off of the menu.

Messaging-reliant applications are those which are inherently dependent on the existence of a messaging service to carry
out their functionality. Examples of these are Electronic Data Interchange (EDI), information distribution applications,
conferencing/collaboration applications, and possibly some distributed databases.

This interface is designed to be independent of the actual messaging protocol employed between sender and recipient.
The interface will support the creation and reception of standard message formats such as X.400 and SMTP/MIME
(RFC 822/RFC 1521) as well as proprietary message formats. This is achieved through generic definition of capabilities
common to most messaging protocols, plus a mechanism for defining extensions, which can be used to invoke
protocol-specific services.

The interface is also designed to be independent of the operating system and underlying hardware used by the messaging
service.

2 Recommendation X.446 (08/97)

Another important consideration in the design of this API is to enable simple application actions to be taken with a
minimum number of function calls while allowing more complex actions to be possible as well. To achieve these often
conflicting objectives, the CMC API has two interfaces: a Simple CMC interface and a Full CMC interface. The Simple
CMC interface provides a minimum number of function calls needed to send or receive a message by messaging-aware
applications. The Full CMC provides a more complete set of function calls in order to provide for more robust
message-reliant applications.

The CMC API is designed to be complementary to existing XAPIA-X/OPEN APIs such as the XMHS and XMS API.

The CMC interface is designed to allow a common interface over virtually any electronic messaging service. For each
CMC implementation, the view/capabilities presented by CMC must be mapped to the view/capabilities of the
underlying messaging service.

To maximize interoperability between CMC applications which use similar underlying messaging services, it is critical
that a common mapping be defined by the industry segment representing the relevant messaging protocol or interface.

To that end:

• the Recommendation defines the common mapping between Simple CMC and the X.400 message store protocol;

• standards bodies, vendors, or vendor groups representing a specific messaging protocol or interface are encouraged
to define a common mapping between CMC and the relevant messaging protocol or interface.

To maximize interoperability between CMC applications which use differing underlying messaging services, it is critical
that mapping definitions be designed with such interoperability in mind.

To that end, the following guidelines are offered:

• map message text strings to international character sets, wherever appropriate or possible;

• map message attachment types to commonly recognized attachment types, wherever appropriate or possible.

This list is not comprehensive; additional guidance may be offered in the future once implementations are deployed.

1.3 Terminology

1.3.1 Definitions

This Recommendation defines the following terms:

1.3.1.1 full CMC: A messaging-enabled API that provides the functions to support message-reliant applications.

1.3.1.2 simple CMC: A messaging-enabled API that provides the functions to support messaging-aware applications.

1.3.1.3 T.611: ITU-T PCI for use with facsimile, telex, and teletex services.

1.3.2 Abbreviations

This Recommendation uses the following abbreviations:

API Application Program Interface

CMC Common Messaging Call

XAPIA X.400 Application Program Interface Association

XMHS API X/OPEN Application Program Interface to Electronic Mail (X.400)

Recommendation X.446 (08/97) 3

XMS API X/OPEN Message Store Application Program Interface

XOM API X/OPEN OSI-Abstract-Data Manipulation API

UI User Interface

1.4 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other
references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

1.4.1 Identical Recommendations – International Standards

– ITU-T Recommendation X.402 (1995) | ISO/IEC 10021-2:1996, Information technology – Message Handling
Systems (MHS): Overall architecture.

– ITU-T Recommendation X.411 (1995) | ISO/IEC 10021-4:1997, Information technology – Message Handling
Systems (MHS): Message transfer system: Abstract service definition and procedures.

– UIT-T Recommendation X.413 (1995) | ISO/IEC 10021-5:1996, Information technology – Message Handling
Systems (MHS): Message store: Abstract service definition.

– UIT-T Recommendation X.419 (1995) | ISO/IEC 10021-6:1996, Information technology – Message Handling
Systems (MHS): Protocol specifications.

– UIT-T Recommendation X.420 (1996) | ISO/IEC 10021-7:1997, Information technology – Message Handling
Systems (MHS): Interpersonal messaging system.

1.4.2 Paired Recommendations – International Standards equivalent in technical content

– CCITT Recommendation X.208 (1988), Specification of Abstract Syntax Notation One (ASN.1).

ISO/IEC 8824:1990, Information technology – Open Systems Interconnection – Specification of Abstract Syntax
Notation One (ASN.1).

– CCITT Recommendation X.209 (1988), Specification of basic encoding rules for Abstract Syntax Notation One
(ASN.1).

ISO/IEC 8825:1990, Information technology – Open Systems Interconnection – Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1).

– ITU-T Recommendation X.400/F.400 (1996), Message Handling System and Service Overview.

ISO/IEC 10021-1:1997, Information technology – Text communication – Message-Oriented Text Interchange
Systems (MOTIS) – Part 1: System and Service Overview.

1.4.3 Additional references

– ISO 8601:1988, Data elements and interchange formats – Information interchange – Representation of dates and
times.

– ISO 9070:1991, Information technology – SGML support facilities – Registration procedures for public text owner
identifiers.

– ISO/IEC 10021-3:1990, Information technology – Text Communication – Message-oriented Text Interchange
Systems (MOTIS) – Part 3: Abstract Service Definition Conventions.

– IMAP – "Internet Message Access Protocol", Version 4, RFC 1730, December 1994.

– MIME – "MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies", RFC 1521, September 1993.

– RFC 822 – "Standard for the Format of ARPA Internet Text Messages", STD 11, RFC 822, August 1982.

– SMTP – "Simple Mail Transfer Protocol", RFC 821, August 1982.

– XMHS API – API to Electronic Mail (X.400), CAE Specification, X/Open Company Limited and X.400 API
Association, 1991.

4 Recommendation X.446 (08/97)

– XMS API – Message Store API, Preliminary Specification, X/Open Company Limited and X.400 API Association,
1991.

– XOM API – OSI-Abstract-Data Manipulation API, CAE Specification, X/Open Company Limited and X.400 API
Association, 1991.

– ANSI C – American National Standard for Information Systems – Programming Language C, X3.159-1989.

1.5 Levels

This Recommendation defines the CMC API at two levels of abstraction. It defines a "generic" interface independent of
any particular programming language, and a C language interface based on the American National Standard for the
C Programming Language. The "generic" interface is included to guide the development of other language-specific
specifications, e.g. PASCAL.

For readability, the specifications of the generic and C interfaces are combined. In clause 4, the CMC data structures are
described generically, but include a C declaration. In clause 6, the CMC functions are specified generically, but include a
synopsis written in C. For clarity, constants and error codes throughout this Recommendation are written in the C syntax
described below. Annex A gives a summary of the C declarations and constants used throughout the Recommendation.

1.6 C naming conventions

How an identifier for an element of the C interface is derived from the name of the corresponding element of the generic
interface depends on the element’s type, as specified in Table 1 below. The generic name is prefixed with the character
string in the second column of the table, alphabetic characters are converted to the case in the third column.

Table 1/X.446 – Derivation of C naming conventions

Elements with the prefix "CMCP" (any case) are reserved for internal proprietary use by implementors of the CMC
service. They are not intended for direct use by programs written using the CMC interface.

The prefixes "CMC_XS_" and "CMC_X_" (in either upper or lower case) are reserved for extensions of the interface by
vendors or groups.

Element Type Prefix Case

Data type CMC_ Lower

Data value CMC_ Upper

Function cmc_ Lower

Function argument none Lower

Function result none Lower

Constant CMC_ Upper

Error CMC_E_ Upper

Macro CMC_ Upper

Object Class CMC_OC_ Upper

Content Type CMC_CT_ Upper

Property CMC_PT_ Upper

Structure Tag CMC_TAG_ Upper

Reserved for extension sets CMC_XS_ any

Reserved for extensions CMC_X_ any

Reserved for use by implementors CMCP any

Recommendation X.446 (08/97) 5

For constant data values, there is usually an additional string appended to "CMC_" to indicate the data structure or
function to which the constant data value pertains.

2 CMC architecture

This clause describes the functional architecture underlying the CMC API. It defines the CMC functional model, the
CMC configuration model, the CMC API computational model, and CMC object model. The functional model defines
the messaging functions standardized by this Recommendation. The configuration model defines how multiple CMC
implementations may coexist within a given platform. The computational model defines common characteristics of the
CMC programming interface. The object model describes characteristics of objects defined by this Recommendation.

2.1 Functional model

The CMC interface is defined between a messaging-enabled application and a messaging service. The messaging service
in turn may support multiple messaging protocol services, each using different messaging formats and protocols,
e.g. X.400, RFC 822 and RFC 1521. All functions in this interface are designed to be independent of the messaging
protocol services. However, the API does allow protocol-specific functions to be invoked through defining
implementation-specific properties and through the use of extensions (see 2.2.5, Extensions).

The CMC interface is depicted in Figure 1 below.

T0726950-96/d01

Message Enabled Application

Messaging Service

Common

Messaging Call

Figure 1/X.446 – Positioning of the Common Messaging Call API

FIGURE 1/M.3020...[D01] = 3 CM

The functional components underlying the CMC API are shown in Figure 2.

T0726960-96/d02

Message Enabled Application

Common

Messaging Call

Address Book Message
Container

Profile Messaging
Service

Figure 2/X.446 – Model of the Common Messaging Call API

FIGURE 2/X.446...[D02] = 3 CM

6 Recommendation X.446 (08/97)

There are three functional components in the CMC API: address book, message container and profile. The address book
holds recipient and distribution list information for message addressing. The message container holds messages.
Common message containers are the inbox, outbox, and sent mailbox. The profile contains information related to the
CMC implementation and user information.

The interaction of a messaging-enabled application and these functional components is specified by the CMC
computational model.

2.2 Computational model

The CMC computational model defines the interfaces defined by the specification and common characteristics of these
interfaces. These common characteristics include the concept of a CMC session, character set support, an extension
mechanism, and event notification.

2.2.1 Interfaces

The CMC API defines two interfaces: Simple CMC and Full CMC. Simple CMC is intended to offer basic messaging
functionality for messaging-aware applications. Full CMC is designed to offer enhanced messaging functionality for
messaging-enabled applications.

2.2.1.1 Simple CMC

The Simple CMC interface is backwards compatible with the CMC 1.0 implementation. Simple CMC adds a new
message type, CMC: REPORT, to CMC 1.0, to allow delivery and non-delivery reports related to an original message to
be consolidated in a single report message, consistent with several X.400 implementations.

The Simple CMC interface supports three principle tasks: sending messages, reading messages, and looking up
addressing information. The functions of this interface are intended to provide messaging-enabled support to
messaging-aware applications. These are applications that do not depend on mail services to accomplish their basic
functions (e.g. word processor, spreadsheet, image, or document management applications). The access to mail services
permits these applications to be better utilized within an enterprise computing environment.

To send a message, the messaging-enabled application must first establish a session with the messaging service through
the cmc_logon() function or interactively by setting the LOGON_UI_ALLOWED flag in the extensions argument of the
cmc_send() function. An application submits a message to the submission messaging service through a cmc_send()
function. The messaging-enabled application is responsible for populating the CMC message structure used in the
cmc_send() function. The messaging-enabled application may also use a more limited cmc_send_documents() function
to send a message. This function is primarily intended for calling from a macro language. The closure of a session is
accomplished through the cmc_logoff() function.

To retrieve a message, the messaging-enabled application establishes a session through the cmc_logon() function. The
application can then retrieve a summary of mailbox information through the cmc_list() function. Individual messages
can be retrieved through the cmc_read() function. The cmc_act_on() function allows the user to act on a message in the
mailbox (e.g. delete it). Memory allocated by the system for structures is released by passing the returned pointer to the
cmc_free() function. The closure of a session is accomplished through the cmc_logoff() function. Simple CMC only
standardizes access to the Inbox message container. Access to other message containers through the Simple CMC
interface may be provided through vendor-specific extensions.

To look up names, the messaging-enabled application establishes a session through the cmc_logon() function or
interactively by setting the LOGON_UI_ALLOWED flag in the extensions argument of the cmc_look_up() function.
The application then uses cmc_look_up() to translate a user-friendly name into a messaging address. Memory allocated
by the system for structures is released by passing the returned pointer to the cmc_free() function. The closure of a
session is accomplished through the cmc_logoff() function. The address books searched via the cmc_look_up() function
is implementation-dependent. Searches of specific address books through the Simple CMC may be provided through
vendor-specific extensions.

Recommendation X.446 (08/97) 7

2.2.1.2 Full CMC

The Full CMC interface augments the messaging-aware functions provided by the Simple CMC interface with additional
messaging-enabled functions. The principle tasks provided for include: message composition, access and modification of
message folders, stream access to large content information, address book modification. Message-reliant applications
depend on messaging services to accomplish their basic functions (e.g. mail front end or agent and workflow
management applications). The access to mail services is a prerequisite to the functioning of these applications.

The enhanced functions of the Full CMC interface are facilitated by a number of additional data structures. The
capabilities provided for by these data structures include: an object-based data model, property model definition for
objects that permits the extensible definition of message service objects, content naming that facilitates the support for
multimedia content within messages and a robust set of message types (e.g. calendaring and scheduling, workflow, EDI,
active messages), and nested container objects to support foldering in message stores and address books.

2.2.2 Session

In both the Simple and Full CMC interfaces, CMC function calls occur within the context of a session. A session is
established with the cmc_logon() function and terminated with a cmc_logoff() function. The cmc_logon() function also
authenticates the user to the messaging service and sets session attributes. The context of a session is identified by an
opaque session id that is returned by the cmc_logon() function. Session context attributes include character set and
version number. Currently, there is no support for sharing sessions among applications.

For gateway applications, a single user, representing the gateway, may establish sessions on behalf of multiple individual
users and therefore have permissions beyond those of an individual user.

2.2.3 Wide character support

The Full CMC interface supports double-byte character strings (e.g. UNICODE). This is accomplished by defining the
constant CMC_WCHAR within an application development environment, before the xcmc.h file is included (i.e. set
CMC_WCHAR=1). If CMC_WCHAR is not defined, character sizes are single byte. The CMC_WCHAR definition
forces all character string definitions in the Full CMC interface to be two bytes per character. Double-byte character
strings are supported in Full CMC only. The xcmc.h file prototypes single- or double-byte counterpart function
definitions for each API call depending on whether CMC_WCHAR is defined.

This ensures backward compatibility to CMC 1.0 and allows for double-byte character string support in Simple and Full
CMC. Implementations export the double-byte functions in a separate DLL. Applications are not allowed to mix the two
paradigms together within the same instance of the application. Double-byte character string support is not required for
minimum conformance.

2.2.4 Event notification

The Simple CMC interface does not support the notification of events in the underlying service such as notification of
new messages. Four functions have been provided in the Full CMC interface to support this functionality. Two modes of
notification are supported: polling and callback.

In the polling mode of notification, the application registers an interest in polling for an event with the
cmc_register_event() function. The application then polls the implementation with an optional time-out period to check
whether an event has occurred with the cmc_check_event() function. If the event has occurred, the function returns
successfully. In addition, event-specific data may be returned by the function. If the application is no longer interested in
an event, it calls the cmc_unregister_event() function.

8 Recommendation X.446 (08/97)

The second mode of interaction uses callbacks to application-defined functions. In this mode, the application registers a
callback function with the implementation with the cmc_register_event() function. The application’s callback function
is then called automatically when the event occurs. The application may also want to force a callback with the
cmc_call_callbacks() function. This function is useful in environments where an implementation can only call callbacks
when the implementation’s code is executing. If the application is no longer interested in an event, it calls the
cmc_unregister_event() function.

This Recommendation: there is only one standard event to signal the arrival of a new message in a container
(CMC_EVENT_NEW_MESSAGES). Data structures associated with this event are specified in 4.6 under the heading
Callback Data Structures. When registering for the new message event, the application indicates the containers to be
checked for new messages. Multiple containers may be checked. If the application does not register a callback for the
event, the application may poll for new messages events on the set of containers specified in the cmc_check_event()
function. If the application registers a callback function, the function is called when a new message arrives in a container
specified in the cmc_register_event() function.

This event notification architecture allows new events to be added in future extensions of CMC and through vendor
extensions.

2.2.5 Extensions

In both the Simple and Full CMC interfaces, data structures and functions defined in this Recommendation can be
extended methodically through the use of extensions. Extensions are used to add additional fields to data structures and
additional parameters to a function call. A standard generic data structure has been defined for these extensions. It
consists of an item code, identifying the extension; an item data, holding the length of extension data or the data itself;
an item reference, pointing to where the extension value is stored or NULL if there is no related item storage; and flags
for the extension.

Extensions that are additional parameters to a function call may be input or output. That is, the extension may be passed
as input parameters from the application to the CMC service or passed as output parameters from CMC service to the
application. If an extension is an input parameter, the application allocates memory for the extension structure and any
other structures associated with the extension. If an extension is an output parameter, the CMC service allocates the
storage for the extension result, if necessary. In this case, the application must free the allocated storage with a call to the
cmc_free() function.

Extensions play a dual role in this Recommendation. First, they provide a mechanism whereby features not common
across all messaging services can be accommodated. Second, they provide a mechanism to extend the Recommendation
in the future, minimizing any backward-compatibility issues.

Use of extensions for the first reason, while very important, should be employed with caution. Reliance on features
specific to particular messaging-services limits application portability across messaging services; also, such features may
not survive a journey through multiple gateways in a mixed messaging network.

To minimize portability issues, implementors are encouraged to specify extensions as generically as possible, and to
contribute these extensions as proposed additions to the CMC-defined extension set. Through this process, the CMC API
set will evolve in a positive direction in a manner which continues to maximize portability.

For more information on extension registration and the extensions defined in this Recommendation, see the annexes.

2.3 Configuration model

The CMC configuration model permits multiple CMC implementations to coexist in a single environment by specifying
a CMC Manager as a broker among CMC implementations. Figure 3 shows the relationship of the CMC Manager and
CMC implementations.

Recommendation X.446 (08/97) 9

T0726970-96/d03

CMC
Manager

CMC
Implementation 1

CMC
Implementation 2

CMC
Implementation 3

Figure 3/X.446 – CMC manager and CMC implementations

FIGURE 3/X.446...[D03] = 3 CM

2.3.1 CMC manager

The CMC Manager brokers dispatch tables back to the application through the use of the cmc_bind_implementation()
function. The dispatch table represents an array of CMC function pointers whose ordinal positions must match the order
specified in the CMC header file. The application calls the appropriate CMC implementation function through the
implementation’s associated dispatch table. This implies that the application must keep copies of pointers to dispatch
tables for each CMC implementation that it wishes to bind to. The cmc_free() function is used for freeing the dispatch
table created on the cmc_bind_implementation() function call. The cmc_unbind_implementation() function is used to
clean up anything else set up by the CMC Manager or CMC implementation. CMC implementations are named as
globally unique identifiers (GUIDs). Applications obtain implementation names and GUIDs from vendor header files,
vendor supplied documentation, or by convention. The CMC Manager is responsible for mapping the implementation’s
dispatch table to the address space of the application on platforms whose applications may reside in different address
spaces. The CMC Manager may wish to create and manage local copies of any dispatch tables passing through it. They
must create and manage their own copies in the different address space case mentioned above. The flow of execution is
now defined:

1) The application calls cmc_bind_implementation() to obtain a pointer to a dispatch table for a desired CMC
implementation.

2) The CMC Manager receives the call and calls the appropriate CMC implementation’s
cmc_bind_implementation() function. The CMC Manager must supply a platform-specific means of determining
which CMC implementations exist and where they reside.

3) The CMC implementation receives the cmc_bind_implementation() call and creates and populates a dispatch table
which is sent back to the CMC Manager. The CMC Manager may at that point wish to create a local copy of the
dispatch table.

4) The CMC Manager completes its received cmc_bind_implementation() function and returns the pointer to the
dispatch table to the application unless remapping needs to be done first.

5) The application proceeds to make calls into any bound CMC implementation which now concurrently exist.

6) The application may at any point call cmc_free() to free the memory associated with the dispatch tables created by
the CMC Manager and/or the CMC implementation. The cmc_unbind_implementation() function is called by the
application to signal the CMC Manager to clean up data associated with the binding of particular CMC
implementation. The CMC Manager must then make a call to the specified CMC implementation to do the same.

7) When all CMC implementations are unbound, the application may exit or do another cmc_bind_implementation().
Bindings which are not symmetrically unbound with cmc_unbind_implementation() run the risk of memory leaks
and unpredicted resulting behavior.

If applications are using CMC 1.0, they should call the CMC implementation directly rather than through the CMC
Manager. CMC 1.0 does not support access to multiple implementations.

10 Recommendation X.446 (08/97)

2.3.2 Guidelines for platform bindings

CMC 2.0 supports a CMC Manager and multiple implementations of CMC on a single platform. The following
guidelines are needed to support the CMC Manager and multiple implementations of CMC:

• Each platform binding must specify a mechanism for implementations of CMC to register and deregister themselves
with a CMC Manager.

• The CMC Manager must support at least the CMC 2.0 functions, cmc_bind_implementation() and
cmc_unbind_implementation().

• The CMC Manager may also support any of the following:

– interworking with CMC implementations in another address space;

– interworking with CMC implementations on another machine;

– browsing for registered CMC implementations.

• Certain platforms may require the CMC implementations to modify the names to the CMC functions to support
multiple implementations. The CMC Manager will need to broker mappings to these modified function names.

2.3.3 Query for configuration information

The persistent configuration of the service is available for query by the messaging-enabled application. The application
may query the service to determine its support for different version(s) of the CMC API, extensions, and environmental
parameters that comprise the configuration. No function is defined in this API for the modification of this configuration
information. The form in which this information is stored (e.g. file format) is left undefined by this Recommendation.

Two mechanisms are provided for querying the configuration information. The Simple CMC interface includes a
cmc_query_configuration() function call. The Full CMC interface uses its enumeration functions to retrieve
configuration information from a Profile Container.

2.4 Object model

The CMC specification is based on a robust, object-oriented data model. In addition, a very general access method is
defined by a group of functions oriented at managing these objects within the message service. These generic functions
provide a very robust but simple method for creating and managing the object and object properties defined by the CMC
specification.

The object model of the CMC specification is rather transparent to the user of the Simple CMC interface. This set of
messaging-enabled functions was designed to simplify the access of message service functions. On the other hand, the
Full CMC interface provides an enhanced set of messaging-enabled functions to access the robust characteristics of a
message service and its object model.

This subclause provides an overview of the CMC objects, object classes and illustrates sample properties for each object.

2.4.1 Model components

Within the CMC specification, the object model contains objects, object classes, and properties. Figure 4 illustrates the
CMC object model components. An object is a collection of properties. Objects are classified by their type or object
class. A property is an attribute of the object.

2.4.1.1 Objects

Objects are identified by their session-specific object handle. The object handle encapsulates the session id. A handle for
a new object is returned by the cmc_open_object_handle() function. The content information, that defines the particular
messaging service object, can be added with the cmc_add_properties() function. An individual property can only exist
once within an object. So, this same function can be used to update or modify the content information associated with a
particular property. The cmc_delete_properties() function can be used to delete one or more individual properties from
an object. The properties within an object can be listed with the cmc_list_properties() function. The content
information for one or more properties can be read with the cmc_read_properties() function.

This Recommendation allows for multi-valued properties; multi-valued properties are used in conjunction with certain
objects in this Recommendation.

Recommendation X.446 (08/97) 11

T0726980-96/d04

OBJECT

Property 1

Property 2

Property 3

Figure 4/X.446 – Object model

FIGURE 4/X.446...[D04] = 3 CM

Containers are a special kind of an object. They are a collection of not only properties but also other objects.

Once the object has been defined, it must be added to a particular container and committed to the persistent storage of
that container with the cmc_copy_object() and cmc_commit_object() functions, respectively. An object can be deleted
from a container object by the cmc_delete_object() function.

Enumeration of container objects are facilitated by the container cursor. A cursor is an implementation-specific construct
that is used to sort and filter the elements of a container object. The cursor can also be used to facilitate the display of a
"thumb" on a scroll bar, depicting the relative position within a container. The cmc_open_cursor() function is used to
define a cursor. The cursor context is maintained by referencing the cursor by its opaque cursor handle. The cursor
handle, as well as the object and session ids, are allocated by the message service. They need to be freed by the
cmc_free() function when they are no longer needed. The relative position of the cursor can be read by the
cmc_read_cursor() function. The relative position can be updated by the cmc_update_cursor_position() function. The
cursor can also be updated to a position reflected by the relative position of an object within a container by the
cmc_update_cursor_position_with_seed() function. The number of objects in a container that match the filter
restrictions of a cursor can be listed by the cmc_list_number_matched() function.

A list of objects within the container associated with a cursor can be listed with the cmc_list_objects() function. The
objects are referenced by the object handles returned by this function. The cmc_copy_object_handle() function can be
used to make a copy of the reference to one of these objects.

It is possible that containers may not hold any objects such as an empty message container or an empty address book, for
example.

Support for the nesting of containers is not mandatory in the Full CMC interface. Support for message container and
address book nesting is not required. The appropriate error code for an implementation to return is
CMC_E_UNSUPPORTED_ACTION. When a message with an embedded message is received, the implementation
cannot guarantee that the embedded message will be passed on. Implementations must accept nested messages from the
application. Nesting may not be preserved as such after the handle to the nested object is freed. Message objects created
by the implementation may not use nesting. Implementations have the option to generate nested objects or not.

2.4.1.2 Object classes

Object classes are the types of objects defined by this Recommendation. Object classes in CMC contain properties and
possibly other objects. Clause 3 describes the object classes and clause 5 describes the properties of each object class.
The objects that another object class may contain are given by a containment hierarchy. This containment hierarchy is
given in Figure 5. The containment hierarchy does not illustrate the full extent of recursion of CMC objects.

There is no explicit class hierarchy defined by this Recommendation. However, properties are duplicated among some
object classes.

12 Recommendation X.446 (08/97)

T0726990-96/d05

Root
Container

Message
Container(s)

Message
Object

Recipient
Object

Content
Item Object

Content Item
Object

Message
Object

Report
Object

Recipient
Object

Message
Object

Per Recipient
Information

Object

Content
Item Object

Recipient
Object

Recipient
Object

Address
Book

Address
Book

Recipient
Object

Distribution
List

Profile
Container

Object

Recipient
Object

Figure 5/X.446 – CMC 2.0 Containment hierarchy

FIGURE 5/X.446...[D05] = 3 CM

2.4.1.3 Object properties

Properties are attributes of a particular object. Properties define the object. They are represented by a unique name, or
alternatively by an implementation specific identifier, a value type, and the value data or content information. A property
is uniquely identified by an integer and a string name based on the formal public identifier of ISO 9070.

Some implementations may provide for user-defined properties. This capability allows for customization of the
underlying service. User-defined properties are distinguished by their property name. A unique property identifier for a
user-defined property is generated by a platform-specific mechanism. The cmc_identifier_to_name() function is
provided to map between a property identifier and its associated property name. The cmc_name_to_identifier()
function is provided to map between a property name and its associated property identifier. Both property identifiers and
property names are provided by the service to permit access to the numerous properties by the most expedient method.
The property identifier number space is divided into XAPIA-defined, implementation-defined, and user-defined
numbers. User-defined numbers run the risk of possible duplication across implementations or versions.

Recommendation X.446 (08/97) 13

Some object properties consist of large amounts of content information. For example, a multimedia message might have
a megabyte of video or audio content. Stream functions have been added to the Full CMC interface to facilitate the
reading and writing of this large content information. The content information is accessed in a manner similar to normal
C Language file access. A property is opened for read or write stream operations by the cmc_open_stream() function.
This function returns a stream handle that maintains the context of that stream in the session. This handle is allocated by
the service and should be freed by the cmc_free() function when no longer needed. The cmc_read_stream() and
cmc_write_stream() functions are used to read and write streamed content information, respectively. The
cmc_seek_stream() function is used to go to a particular byte position within the stream. The stream is closed as a
by-product of calling cmc_free().

Different implementations may impart a different performance cost to read different properties. Properties with large
amounts of content information may have a major cost. Properties with a small amount of content information or
information that is readily available to the service may have a minor or no associated cost performance if read. The
relative, implementation-specific cost performance for reading each property can be determined by the
cmc_read_property_costs() function.

3 CMC object classes

3.2 CMC API object classes

The following subclauses define the CMC API object classes, provide the names of the classes, detail support
requirements for the object classes, and how objects of each class are created, added, and modified.

Table 2 summarizes the object classes. The first column provides the name of the object class. The second column states
whether the object class is mandatory or optional. The third column specifies whether or not the object class is
read-only. A "no" in this column means that the object class can be added, deleted, or committed by cmc_copy_object(),
cmc_delete_object(), or cmc_commit_object(), respectively, unless otherwise indicated by a star "*". The fourth
column specifies how many instances the object is permitted to have. The last column states the creator of the object
class as the implementation (I), the caller (C), or either (E).

The properties of each object class are given in clause 5 of this Recommendation.

Table 2/X.446 – Object Class summary

Object Class M/O Read-Only Instances Creator

Address Book O No Any E

Content Item O No Any E

Distribution List O No Any E

Message M No Any E

Message Container – Drafts O No Any C

Message Container – Filed O No Any C

Message Container – Inbox O No* Zero or More I

Message Container – Outbox O No* One I

Message Container – Sent, Deleted O No One I

Per Recipient Information O No One or More E

Profile Container M Yes One I

Recipient M No Any E

Report O No Any E

Root Container O No* One I

14 Recommendation X.446 (08/97)

3.1.1 Address book

NAME

Address Book

C DECLARATION

#define CMC_OC_ADDRESS_BOOK \
"-//XAPIA/CMC/OBJECT CLASS//NONSGML Address Book//EN"

DESCRIPTION

The address book container class includes containers to hold recipient and distribution list objects. Address book
containers may be nested, although implementations are not required to support the nesting of address book containers.
A CMC implementation is not required to support address book containers. The subtypes of address book containers
include global and personal. Address books hold recipient objects, distribution list objects, and optionally, other address
books.

3.1.2 Content item

NAME

Content Item

C DECLARATION

#define CMC_OC_CONTENT_ITEM \
"-//XAPIA/CMC/OBJECT CLASS//NONSGML Content Item//EN"

DESCRIPTION

This object class identifies objects associated with the content of a message. It is used to represent attachments and
notes, although no distinction is made between the two at the programming interface. Content item objects are typed by
globally unique identifiers. Content items objects may be nested, although nesting is optional for support in an
implementation.

Implementations may limit the number of content items per message or on the size of a content item. If a content item
exceeds the number of content items permitted, a call to add the item may generate the error
CMC_E_TOO_MANY_CONTENT_ITEMS. If the content item exceeds the size limit of the implementation, it may
generate the error CMC_E_TEXT_TOO_LARGE.

3.1.3 Distribution list

NAME

Distribution List

C DECLARATION

#define CMC_OC_DISTRIBUTION_LIST \
"-//XAPIA/CMC/OBJECT CLASS//NONSGML Distribution List//EN"

DESCRIPTION

The distribution list object class identifies objects that represent groups of recipient objects. Distribution lists contain
recipient objects and, optionally, other distribution lists. The nesting of distribution lists may not be preserved after the
handle to the distribution list has been freed. Implementations need not support distribution lists or the nesting of
distribution lists. These distribution lists are identified by Recipient objects whose Type property is "group".

The use of the CMC to construct a distribution list does not imply that the messaging system must support the access to
distribution lists whose members are administered by an address book or directory service disjoint from that supported
by the CMC implementation.

3.1.4 Message

NAME

Message

Recommendation X.446 (08/97) 15

C DECLARATION

#define CMC_OC_MESSAGE \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Message//EN"

DESCRIPTION

This object class identifies message objects that are vehicles for passing content information through a messaging
service. These message objects may be mail and receipts. Message objects may be nested by applications and
implementations must accept such messages. Nesting may not be preserved after the handle to the nested object is freed.
Implementations need not support the nesting of messages. Message objects may contain recipient objects, content item
objects, and nested message objects.

3.1.5 Message container

NAME

Message Container

C DECLARATION

#define CMC_OC_MESSAGE_CONTAINER \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Message Container//EN"

DESCRIPTION

Message containers are a collection of message container properties, message objects, and possibly, other message
containers. This container object also provides the enhancements for specialized collections such as an inbox, outbox,
deletion folder, or user-defined message folders.

The message container object class provides a folder capability to hold message objects and possibly report objects and
other message container objects. Message containers may be nested although implementations are not required to
support nesting of message container objects. The subtypes of the message containers defined by CMC include drafts,
deleted, sent, filed, inbox, and outbox.

3.1.5.1 Message container class: Drafts

The drafts message container holds messages that have been created but have not been sent. Support for the draft
message container is optional.

3.1.5.2 Message container classes: Deleted, Sent

The deleted message container holds deleted messages. The sent message container contains messages that have been
sent. Support of the sent and deleted message containers is optional.

3.1.5.3 Message container class: Filed

The sent message container contains filed messages. Support of the filed message containers is optional.

3.1.5.4 Message container class: Inbox

The message container class subtype inbox stores incoming messages. Support of an inbox is optional; there may be
more than one inbox.

3.1.5.5 Message container class: Outbox

The outbox contains messages that are to be sent. Support of an outbox is optional; only one outbox is permitted.

3.1.6 Per Recipient Information

NAME

Per Recipient Information

16 Recommendation X.446 (08/97)

C DECLARATION

#define CMC_OC_PER_RECIPIENT_INFORMATION \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Per Recipient Information//EN"

DESCRIPTION

This object class identifies objects that report the delivery or non-delivery of a message for a single recipient. Objects of
this class are contained in report objects. At least one of these objects must be present for the Report object. Support of
this class is optional in general, but mandatory for implementations that support Report objects. Per Recipient
Information objects may not be nested.

3.1.7 Profile Container

NAME

Profile Container

C DECLARATION

#define CMC_OC_PROFILE_CONTAINER \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Profile Container//EN"

DESCRIPTION

The profile container class includes session context and configuration information. There is only one profile container. It
exists underneath the root container object. The container object is created by the underlying messaging service, is
read-only, and cannot be modified by the user. The contents of the profile container object are also created by the
underlying messaging service, are read-only, and cannot be modified by the user. Support for the profile container object
is mandatory for implementations conforming to this Recommendation.

The profile container contains a recipient object corresponding to the user logged on. If the implementation supports
shared logon, then it may also contain additional recipient objects corresponding to the other logged-on users. This
provides support for bulletin board or discussion forum capabilities. Additionally, the profile container object contains
profile container attributes properties that correspond to individual session context or configuration attributes. There are
properties defined for both the Simple CMC and Full CMC configuration attributes. The profile container properties are
read-only.

3.1.8 Recipient

NAME

Recipient

C DECLARATION

#define CMC_OC_RECIPIENT \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Recipient//EN"

DESCRIPTION

The recipient object class identifies users within the messaging service. Recipient objects may include individuals and
groups. The recipient type can be an individual, a group of recipients (e.g. distribution list), or an unknown type. An
individual implementation may provide implementation specific properties for a recipient object.

3.1.9 Report

NAME

Report

C DECLARATION

#define CMC_OC_REPORT \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Report//EN"

Recommendation X.446 (08/97) 17

DESCRIPTION

The report object class identifies objects that report the delivery status of a message. The objects in this class include
delivery and non-delivery notifications. Certain message transfer systems (e.g. SMTP) may not support the generation of
reports. Report objects may contain recipient objects, per recipient information objects, content item objects, and
message objects.

3.1.10 Root Container

NAME

Root Container

C DECLARATION

#define CMC_OC_ROOT_CONTAINER \

"-//XAPIA/CMC/OBJECT CLASS//NONSGML Root Container//EN"

DESCRIPTION

The root container class includes top-level containers for a user’s messaging objects. There is only one type of root
container and only one root container per user. It must be supported by CMC implementations. The root container
contains message containers, a profile container, and optionally address book containers.

4 Data structures

This clause defines, and Table 3 lists, the data structures used in the CMC API.

Table 3/X.446 – CMC data structures

Data type name Description

Attachment Message attachment structure

Boolean A value that indicates logical true or false

Buffer Pointer to a data item

Callback Data Structures Type definitions for a callback function data values

Counted String String with an explicit length designation

Cursor Handle Opaque handle for a container cursor

Cursor Restriction Restriction for filtering the enumeration of objects within a container

Cursor Sort Key Defines the sort order for elements enumerated by a cursor within a container

Dispatch Table A structure containing pointers to the functions in a CMC implementation

Enumerated Data type containing a value from an enumeration

Events Data type for messaging service events

Extension Extension structure

Flags Container for flag bits

Guid Globally unique identifier

ISO Date And Time A date and time string value formatted in accordance with ISO 8601

Message Message structure

18 Recommendation X.446 (08/97)

Table 3/X.446 – CMC data structures (concluded)

4.1 Basic data types

Some data types are defined in terms of the following "intermediate data types", whose precise definitions in C are
system-defined:

float32 The floating point number represented in 32 bits.

float64 The floating point number represented in 64 bits.

sint16 The positive and negative integers representable in 16 bits.

sint32 The positive and negative integers representable in 32 bits.

uint8 The non-negative integers representable in 8 bits.

uint16 The non-negative integers representable in 16 bits.

uint32 The non-negative integers representable in 32 bits.

C DECLARATION

typedef system-defined, e.g. float CMC_float32;
typedef system-defined, e.g. double CMC_float64;
typedef system-defined, e.g. int CMC_sint16;
typedef system-defined, e.g. long int CMC_sint32;
typedef system-defined, e.g. unsigned char CMC_uint8;
typedef system-defined, e.g. unsigned int CMC_uint16;
typedef system-defined, e.g. unsigned long int CMC_uint32;

4.2 Array data types

This Recommendation supports multi-valued properties using arrays of basic and non-basic data types. The array data
types are defined as:

array_boolean An array of Booleans.

array_buffer An array of pointers to storage locations in memory.

array_counted_string An array of strings with an explicit length designation.

array_enum An array of enumerated data types.

Data type name Description

Message Reference Message Reference structure

Message Summary Message Summary structure

Object Handle Opaque handle for the CMC object

Object Identifier Object Identifier structure

Opaque Data A counted byte string of application specific data

Property A piece of object content information

Identifier Implementation specific, unique identifier

Name Unique name

Recipient Originator/recipient structure

Report Status message for delivery, non-delivery, receipt, etc., notifications

Return Code Return value indicating either that a function succeeded or why it failed

Session Id Opaque handle for session

Stream Handle Opaque handle for the property stream

String Character string pointer

Time Time structure

User Interface Id User interface handle

Recommendation X.446 (08/97) 19

array_extension An array of extension data types.
array_float32 An array of floating point numbers represented in 32 bits.
array_float64 An array of floating point numbers represented in 64 bits.
array_guid An array of globally unique identifiers.
array_iso_date_time An array of ISO date and time data structures.
array_object_handle An array of object handles.
array_opaque_data An array of counted byte strings of application specific data.
array_return_code An array of return codes.
array_sint16 An array of positive and negative integers representable in 16 bits.
array_sint32 An array of positive and negative integers representable in 32 bits.
array_string An array of strings.
array_time An array of time structures.
array_uint16 An array of non-negative integers representable in 16 bits.
array_uint32 An array of non-negative integers representable in 32 bits.

C DECLARATION

typedef struct CMC_TAG_ARRAY_BOOLEAN {
CMC_uint32 count;
CMC_boolean *bits;

} CMC_array_boolean;

typedef struct CMC_TAG_ARRAY_BUFFER {
CMC_uint32 count;
CMC_buffer *buffer;

} CMC_array_buffer;

typedef struct CMC_TAG_ARRAY_COUNTED_STRING {
CMC_uint32 count;
CMC_counted_string *string;

} CMC_array_counted_string;

typedef struct CMC_TAG_ARRAY_ENUM {
CMC_uint32 count;
CMC_enum *set;

} CMC_array_enum;

typedef struct CMC_TAG_ARRAY_EXTENSION {
CMC_uint32 count;
CMC_extension *extension;

} CMC_array_extension;

typedef struct CMC_TAG_ARRAY_FLOAT32 {
CMC_uint32 count;
CMC_float32 *number;

} CMC_array_float32;

typedef struct CMC_TAG_ARRAY_FLOAT64 {
CMC_uint32 count;
CMC_float64 *number;

} CMC_array_float64;

typedef struct CMC_TAG_ARRAY_GUID {
CMC_uint32 count;
CMC_guid *guid;

} CMC_array_guid;

typedef struct CMC_TAG_ARRAY_ISO_DATE_TIME {
CMC_uint32 count;
CMC_date_time *time;

} CMC_array_iso_date_time;

typedef struct CMC_TAG_ARRAY_OBJECT_HANDLE {
CMC_uint32 count;
CMC_object_handle *ohandles;

} CMC_array_object_handle;

typedef struct CMC_TAG_ARRAY_OPAQUE_DATA {
CMC_uint32 count;
CMC_opaque_data *data;

} CMC_array_opaque_data;

20 Recommendation X.446 (08/97)

typedef struct CMC_TAG_ARRAY_RETURN_CODE {
CMC_uint32 count;
CMC_return_code *code;

} CMC_array_return_code;

typedef struct CMC_TAG_ARRAY_SINT16 {
CMC_uint32 count;
CMC_sint16 *number;

} CMC_array_sint16;

typedef struct CMC_TAG_ARRAY_SINT32{
CMC_uint32 count;
CMC_sint32 *number;

} CMC_array_sint32;

typedef struct CMC_TAG_ARRAY_STRING {
CMC_uint32 count;
CMC_string *string;

} CMC_array_string;

typedef struct CMC_TAG_ARRAY_TIME {
CMC_uint32 count;
CMC_time *time;

} CMC_array_time;

typedef struct CMC_TAG_ARRAY_UINT16 {
CMC_uint32 count;
CMC_uint16 *number;

} CMC_array_uint16;

typedef struct CMC_TAG_ARRAY_UINT32 {
CMC_uint32 count;
CMC_uint32 *number;

} CMC_array_uint32;

DESCRIPTION

A data value of these types includes a length identifier for the size of the array.

Support for multivalued properties is optional for implementations.

4.3 Attachment

NAME

Attachment – Type definition for a CMC message attachment structure.

C DECLARATION

typedef struct {
CMC_string attach_title;
CMC_object_identifier attach_type;
CMC_string attach_filename;
CMC_flags attach_flags;
CMC_extension *attach_extensions;

} CMC_attachment;

DESCRIPTION

A data value of this type is an attachment. This data structure is included to provide support for CMC 1.0 and Simple
CMC implementations. An attachment has the following components:

1) attach_title: Optional title for attachment, e.g. original filename of attachment.

2) attach_type: Object identifier that specifies type of attachment. The format of the CMC_object_identifier is defined
in 4.24. A NULL value designates an undefined attachment type.

Two Object Identifiers have been predefined for use by applications and CMC implementations.

CMC_ATT_OID_BINARY Data in file should be treated as binary data. This is the default.

Recommendation X.446 (08/97) 21

CMC_ATT_OID_TEXT Data in file should be treated as a text string. It should be assumed to be
in the character set for the session on input and mapped to the character
set for the session on output if possible.

3) attach_filename: Name of file where attachment content is located. The location of the file is
implementation-dependent, but should ensure access by the calling application.

4) attach_flags: Bits for Boolean attributes. Unused bits must be clear.

a) CMC_ATT_APP_OWNS_FILE

Set: Indicates on output that the application now owns the file and is responsible for deleting it. This is
ignored on input.

Clear: Indicates on output that the CMC implementation owns the file and the application can only read the
file.

b) CMC_ATT_LAST_ELEMENT

Set: Identifies the last structure in an array of such structures.

Clear: This is not the last array element.

5) attach_extensions: Pointer to first element in array of per-attachment extensions. A value of NULL indicates that no
extensions are present.

4.4 Boolean

NAME

Boolean – Type definition for a Boolean data value.

C DECLARATION

typedef CMC_uint16 CMC_boolean;

DESCRIPTION

A data value of this data type is a Boolean, i.e. either false or true.

In the C interface, false is denoted by zero {CMC_FALSE}, and true is denoted by any other integer, although the
symbolic constant {CMC_TRUE} refers to the integer one specifically.

4.5 Buffer

NAME

Buffer – Type definition for storage space in memory of an undefined type.

C DECLARATION

typedef void * CMC_buffer;

DESCRIPTION

A data value of this data type is a pointer to a storage location in memory of an undefined type. The size of a void * is
specific to the platform.

4.6 Callback Data Structures

NAME

Callback Data Structures – Type definitions for a callback function data values.

22 Recommendation X.446 (08/97)

C DECLARATION

typedef struct CMC_TAG_NEW_MESSAGE_CB_DATA {

CMC_object_handle *available;

} CMC_new_message_callback_data;

typedef struct CMC_TAG_NEW_MESSAGE_CHECK_DATA {

CMC_uint32 number_containers;

CMC_object_handle *containers;

} CMC_new_message_check_data;

typedef CMC_new_message_check_data CMC_new_message_register_data;

typedef CMC_new_message_check_data CMC_new_message_unregister_data;

typedef void (*CMC callback) (

CMC_session_id session,

CMC_event event,

CMC_buffer callback_data,

CMC_buffer register_data,

CMC_extension *callback_extensions

);

DESCRIPTION

Callback procedures allow the service to inform applications that an event has occurred. All callback procedures are of
type cmc_callback.

Programmers writing callback procedures should consider the platform-specific method that the callback is performed
and of the performance impact of callback functions. Callbacks are invoked in an implementation specific sequence by
the service when either the specified callback activity occurs or the function cmc_call_callbacks() is called. Effectively,
the CMC application running at the time of the callback invocation will be blocked until the callback returns.
Responsiveness of the CMC application will be impacted if the callback function does not return quickly.

The callback function prototype components include the following:

– session – The opaque handle which represents a session with the messaging service.

– event – A bitmask of events. Exactly one bit will be set which indicates the event that occurred and how to interpret
the callback_data argument. The following flags are defined:

CMC_EVENT_NEW_MESSAGES

See the Event data type for the definition of this flag.

– callback_data – A pointer to the callback data structure specific to the event.

– register_data – A pointer to the data structure passed when registering the callback in the cmc_register() function
specific to the event.

– callback_extensions – A pointer to an array of CMC_extension structures for this callback function.

Each callback function returns a pointer to one of the callback data structures in its callback_data argument. The
structure that is returned depends on the context of the callback and is determined by the value of the event
argument, as described below.

The callback data structure is the mechanism that the messaging service uses to provide update operation-specific
information to the application. Application can have additional context passed to their callback functions through
the use of the register data structure. The callback data structure is allocated by the CMC implementation; the
register data structure is allocated by the application.

When a callback is unregistered, it may also specify unregistered data associated with the cmc_unregister_event()
function to provide a context for the removal of registration (e.g. to await new messages on a smaller set of
containers). The unregister data structure is allocated by the application. The valid types of arguments for each
event are provided here.

Recommendation X.446 (08/97) 23

This Recommendation, the application may also poll for events with the cmc_check_event() function. Events may have
a context through a check data structure within which the cmc_check_event() function call is made. The check data
structure is allocated by the application. The valid types of arguments for each event are provided here.

This Recommendation, the only event specified is CMC_EVENT_NEW_MESSAGES. An application may poll for new
messages using cmc_check_event() or register callbacks to be called when new messages are received. If polling is
used, it may be restricted to specific containers specified in the check data argument in the cmc_check_event() function
with the structure CMC_TAG_new_message_check_data. The data elements in this structure include:

– number_containers – The number of container handles in the containers argument. If the event is independent of
a container, this argument should be 0.

– containers – An array of handles of the containers to be checked for events. If the event is independent of a
container, this argument should be NULL.

Upon return, cmc_check_event() returns the structure CMC_TAG_new_message_callback_data. The data elements in
this data structure include:

– available – The handle of a message container (among the ones specified by the containers argument) to which the
event corresponds. If no event occurred, the value is set to CMC_NULL_HANDLE.

When a callback is registered, the structure CMC_TAG_new_message_register_data is passed by reference in the
register_data argument to the cmc_register_event() function. The data elements in this data structure are identical to the
data elements in the CMC_TAG_new_message_check_data structure.

If a callback is registered and an event occurs, the structure CMC_TAG_new_message_callback_data is passed to the
callback function. In addition, the CMC_TAG_new_message_register_data is passed to the callback function.

When a callback is unregistered, the structure CMC_TAG_new_message_unregister_data is passed by reference in the
register_data argument to the cmc_unregister function. The data elements in this data structure include:

– number_containers – The number of container handles in the containers argument. If the event is independent of
a container, this argument should be 0.

– containers – An array of handles of the containers for which the application is no longer interested in receiving
notification of new messages. This array should be a subset of the handles specified in the containers argument in
the register_data argument in the cmc_register() function. If the event is independent of a container, this argument
should be NULL.

In all cases, the order in which the callback functions are invoked by the service is implementation specific.

4.7 Counted String

NAME

Counted String – Type definition for a CMC counted string structure.

C DECLARATION

typedef struct {

CMC_uint32 length;

char string[1];

} CMC_counted_string;

DESCRIPTION

A data value of this type is a counted string where the length of the string is explicitly specified preceding the character
array. The string is not required to be null-terminated.

Support for a counted string data type is optional. Its purpose is to provide support for character sets in which embedded
nulls are allowed.

See the CMC_string type for information about determining the character set.

24 Recommendation X.446 (08/97)

The components of a counted string are:

1) length: Byte length of string that follows.

2) string: The characters that make up the string.

4.8 Cursor Handle

NAME

Cursor Handle – Type definition for a CMC cursor handle structure.

C DECLARATION

typedef system-defined, e.g. uint32 CMC_cursor_handle;

DESCRIPTION

A data value of this type is an opaque cursor handle. The CMC cursor handles are defined in an implementation-specific
manner. The handle maintains a session context with a container cursor. The cursor facilitates the enumeration of objects
within a container. It is also used to display a "thumb" on a scroll bar windowing control to illustrate the relative position
within a collection of objects. Cursor handles cannot be copied.

4.9 Cursor Restriction

NAME

Cursor Restriction – Type definition for a CMC cursor restriction data type.

C DECLARATION

typedef struct CMC_TAG_RESTRICTION_AND {
CMC_uint32 count;
struct CMC_TAG_RESTRICTION_CURSOR *restriction;

} CMC_restriction_and;

typedef struct CMC_TAG_RESTRICTION_OR {
CMC_uint32 count;
struct CMC_TAG_RESTRICTION_CURSOR *restriction;

} CMC_restriction_or;

typedef struct CMC_TAG_RESTRICTION_NOT {
CMC_uint32 count;
struct CMC_TAG_RESTRICTION_CURSOR *restriction;

} CMC_restriction_not;

typedef struct CMC_TAG_RESTRICTION_STRING {
CMC_enum exactness;
CMC_id property;
CMC_string string_constant;

} CMC_restriction_string;

typedef struct CMC_TAG_RESTRICTION_CONTENT {
CMC_enum logical;
CMC_id property;
CMC_buffer property_value;

} CMC_restriction_content;

typedef struct CMC_TAG_RESTRICTION_COMPARISON {
CMC_enum logical;
CMC_id property1;
CMC_id property2;

} CMC_restriction_comparison;

typedef struct CMC_TAG_RESTRICTION_BITTEST {
CMC_uint32 comparison;
CMC_id property;
CMC_uint32 bitmask;

} CMC_restriction_bitmask;

Recommendation X.446 (08/97) 25

typedef struct CMC_TAG_RESTRICTION_SIZE {
CMC_enum logical;
CMC_id property;
CMC_uint32 byte_size;

} CMC_restriction_size;

typedef struct CMC_TAG_RESTRICTION_EXIST {
CMC_id property;

} CMC_restriction_exist;

typedef struct CMC_TAG_RESTRICTION_CURSOR {
CMC_enum type;
union {

CMC_restriction_and restriction_and;
CMC_restriction_or restriction_or;
CMC_restriction_not restriction_not;
CMC_restriction_string restriction_string;
CMC_restriction_content restriction_content;
CMC_restriction_comparison restriction_comparison;
CMC_restriction_bitmask restriction_bittest;
CMC_restriction_size restriction_size;
CMC_restriction_exist restriction_exist;

} cr;
CMC_extension *property_extensions;

} CMC_cursor_restriction;

DESCRIPTION

A data value of this type is a CMC cursor restriction. A cursor restriction is the definition of a filter on the enumeration
of the contents of a container object. A cursor restriction has the following components:

1) type: The type of cursor restriction. The following valid restriction types are supported:

CMC_RESTRICTION_AND

CMC_RESTRICTION_OR

CMC_RESTRICTION_NOT

CMC_RESTRICTION_STRING

CMC_RESTRICTION_CONTENT

CMC_RESTRICTION_COMPARISON

CMC_RESTRICTION_BITTEST

CMC_RESTRICTION_SIZE

CMC_RESTRICTION_EXIST

CMC_RESTRICTION_AND – Filters for the subrestrictions being all true.

CMC_RESTRICTION_OR – Filters for any one or more of the subrestrictions being true.

CMC_RESTRICTION_NOT – Filters for the subrestriction(s) being all false.

CMC_RESTRICTION_STRING – Filters for exactness in a string match with a property value.

CMC_RESTRICTION_CONTENT – Filters for a logical comparison of a constant and a property value.

CMC_RESTRICTION_COMPARISON – Filters for a logical comparison of two property values.

CMC_RESTRICTION_BITTEST – Filters for a property value matching the specified bitmask test.

CMC_RESTRICTION_EXIST – Filters for a property existing in the object or not.

2) restriction: Specifies the cursor restriction value.

3) property_extensions: Pointer to first element in array of property extensions.

The exactness structure element has the following valid string-exactness enumerated values:

CMC_EXACTNESS_PRECISE

CMC_EXACTNESS_STARTS_WITH

CMC_EXACTNESS_MIXED_CASE

26 Recommendation X.446 (08/97)

CMC_EXACTNESS_PRECISE – Property value matches exactly with the string constant.

CMC_EXACTNESS_STARTS_WITH – Property value starts with the string constant.

CMC_EXACTNESS_MIXED_CASE – Property value matches independent of the case.

The logical structure element has the following valid logical-operator enumerated values:

CMC_LOGICAL_LT

CMC_LOGICAL_LE

CMC_LOGICAL_EQ

CMC_LOGICAL_NE

CMC_LOGICAL_GT

CMC_LOGICAL_GE

CMC_LOGICAL_LT – Less than.

CMC_LOGICAL_LE – Less than or equal to.

CMC_LOGICAL_EQ – Equal to.

CMC_LOGICAL_NE – Not equal to.

CMC_LOGICAL_GT – Greater than.

CMC_LOGICAL_GE – Greater than or equal to.

The comparison structure element has the following valid bitmask-comparison enumerated values:

CMC_COMPARISON_OR

CMC_COMPARISON_AND

CMC_COMPARISON_OR – Property value is equal to the logical OR of the bitmask.

CMC_COMPARISON_AND – Property value is equal to the logical AND of the bitmask.

4.10 Cursor Sort Key

NAME

Cursor Sort Key – Type definition for a CMC cursor sort key data type.

C DECLARATION

typedef struct CMC_TAG_CURSOR_SORT_KEY {
CMC_id property;
CMC_enum order;

} CMC_cursor_sort_key;

DESCRIPTION

A data value of this type is a CMC cursor sort key. A cursor sort key defines the order in which elements of a container
are sorted when enumerated by a cursor. An implementation may have an array of cursor sort keys. A cursor sort key has
the following components:

1) property: Specifies the property on which the enumerated elements will be sorted.

2) order: Specifies the order in which the enumerated elements will be sorted. The valid sort orders are one of the
following:

CMC_SORT_DEFAULT

CMC_SORT_ASCEND

CMC_SORT_DESCEND

CMC_SORT_DEFAULT – The elements of the container will not necessarily be sorted, but will be left in their default
order. The result of this order is implementation specific.

CMC_SORT_ASCEND – Sorts the elements of the container object in ascending order. Objects that do not have the
property listed by the sort key are placed last.

CMC_SORT_DESCEND – Sorts the elements of the container object in descending order. Objects that do not have the
property listed by the sort key are placed last.

Recommendation X.446 (08/97) 27

4.11 Dispatch Table

NAME

Dispatch Table – Type definition for a structure with pointers to the functions of a CMC implementation.

C DECLARATION

typedef struct {
CMC_extension *dispatch_table_extensions;

/* SEND */
CMC_return_code
(*cmc_send)(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

/* SEND DOCUMENT */
CMC_return_code
(*cmc_send_documents)(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string file_names,
CMC_string delimiter,
CMC_ui_id ui_id

);

/* ACT ON */
CMC_return_code
(*cmc_act_on)(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

/* LIST */
CMC_return_code
(*cmc_list)(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

/* READ */
CMC_return_code
(*cmc_read)(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

28 Recommendation X.446 (08/97)

/* LOOK UP */
CMC_return_code
(*cmc_look_up)(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

/* FREE */
CMC_return_code
(*cmc_free)(

CMC_buffer memory
);

/* LOGOFF */
CMC_return_code
(*cmc_logoff)(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

/* LOGON */
CMC_return_code
(*cmc_logon)(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

/* QUERY CONFIGURATION */
CMC_return_code
(*cmc_query_configuration)(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

/* FULL CMC */

/* COPY OBJECT */
CMC_return_code
(*cmc_copy_object)(

CMC_object_handle container,
CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_extensions

);

/* ADD PROPERTIES */
CMC_return_code
(*cmc_add_properties)(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_property *properties,
CMC_extension *add_properties_extensions

);

/* COMMIT OBJECT */
CMC_return_code
(*cmc_commit_object)(

CMC_object_handle source_object,
CMC_extension *commit_object_extensions

);

Recommendation X.446 (08/97) 29

/* COPY OBJECT HANDLE */
CMC_return_code
(*cmc_copy_object_handle)(

CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_handle_extensions

);

/* CREATE DERIVED MESSAGE OBJECT */
CMC_return_code
(*cmc_create_derived_message_object)(

CMC_object_handle original_message,
CMC_enum derived_action,
CMC_boolean inherit_contents,
CMC_object_handle *derived_message,
CMC_boolean modified_message,
CMC_extension *create_derived_object_extensions

);

/* DELETE OBJECTS */
CMC_return_code
(*cmc_delete_objects)(

CMC_uint32 number_objects,
CMC_object_handle *object,
CMC_extension *delete_objects_extensions

);

/* DELETE PROPERTIES */
CMC_return_code
(*cmc_delete_properties)(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_id *property_ids,
CMC_extension *delete_properties_extensions

);

/* GET ROOT HANDLE */
CMC_return_code
(*cmc_get_root_handle)(

CMC_session_id session,
CMC_object_handle *root_object_handle,
CMC_extension *get_root_handle_extensions

);

/* IDENTIFIER TO NAME */
CMC_return_code
(*cmc_identifier_to_name)(

CMC_id identifier,
CMC_name *name,
CMC_extension *identifier_to_name_extensions

);

/* LIST CONTAINED PROPERTIES */
CMC_return_code
(*cmc_list_contained_properties)(

CMC_cursor_handle *cursor,
CMC_sint32 *number_object,
CMC_sint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension *list_contained_properties_extensions

);

/* LIST NUMBER MATCHED */
CMC_return_code
(*cmc_list_number_matched)(

CMC_cursor_handle *cursor,
CMC_uint32 *number_matches,
CMC_extension *list_number_matched_extensions

);

30 Recommendation X.446 (08/97)

/* LIST OBJECTS */
CMC_return_code
(*cmc_list_objects)(

CMC_cursor_handle *cursor,
CMC_sint32 *number_objects,
CMC_object_handle *objects,
CMC_extension *list_objects_extensions

);

/* LIST PROPERTIES */
CMC_return_code
(*cmc_list_properties)(

CMC_object_handle *object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_extension *list_properties_extensions

);

/* NAME TO IDENTIFIER */
CMC_return_code
(*cmc_name_to_identifier)(

CMC_name name,
CMC_id *identifier,
CMC_extension *name_to_identifier_extensions

);

/* OPEN CURSOR */
CMC_return_code
(*cmc_open_cursor)(

CMC_object_handle object,
CMC_cursor_restriction *restrictions,
CMC_uint32 number_sort_orders,
CMC_cursor_sort_key *sort_keys,
CMC_cursor_handle *cursor,
CMC_extension *open_cursor_extensions

);

/* OPEN OBJECT HANDLE */
CMC_return_code
(*cmc_open_object_handle)(

CMC_session_id session,
CMC_object_handle *new_object,
CMC_id object_class,
CMC_extension *open_object_handle_extensions

);

/* READ CURSOR */
CMC_return_code
(*cmc_read_cursor)(

CMC_cursor_handle *cursor,
CMC_uint32 *position_numerator,
CMC_uint32 *position_denominator,
CMC_extension *read_cursor_extensions

);

/* READ PROPERTIES */
CMC_return_code
(*cmc_read_properties)(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension *read_properties_extensions

);

/* READ PROPERTY COSTS */
CMC_return_code
(*cmc_read_property_costs)(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_enum *costs,
CMC_extension *read_property_costs_extensions

);

Recommendation X.446 (08/97) 31

/* RESTORE OBJECT */
CMC_return_code
(*cmc_restore_object)(

CMC_object_handle container,
CMC_string file_specification,
CMC_object_handle *restored_object,
CMC_flags restore_flags,
CMC_extension *restore_object_extensions

);

/* SAVE OBJECT */
CMC_return_code
(*cmc_save_object)(

CMC_object_handle object,
CMC_string file_specification,
CMC_flags save_flags,
CMC_extension *save_object_extensions

);

/* SEND MESSAGE OBJECT */
CMC_return_code
(*cmc_send_message_object)(

CMC_object_handle message_to_send,
CMC_extension *send_message_object_extensions

);

/* UPDATE CURSOR POSITION */
CMC_return_code
(*cmc_update_cursor_position)(

CMC_cursor_handle *cursor,
CMC_uint32 position_numerator,
CMC_uint32 position_denominator,
CMC_extension *update_cursor_position_extensions

);

/* UPDATE CURSOR POSITION WITH SEED */
CMC_return_code
(*cmc_update_cursor_position_with_seed)(

CMC_cursor_handle cursor,
CMC_object_handle seed,
CMC_extension *update_cursor_position_with_seed_extensions

);

/* CHECK EVENT */
CMC_return_code
(*cmc_check_event)(

CMC_session_id session,
CMC_event event_type,
CMC_uint32 minimum_timeout,
CMC_buffer check_event_data,
CMC_buffer *callback_data,
CMC_extension *check_event_extensions

);

/* REGISTER EVENT */
CMC_return_code
(*cmc_register_event)(

CMC_session_id session,
CMC_event event_type,
CMC_callback callback,
CMC_buffer register_data,
CMC_extension *register_event_extensions

);

/* UNREGISTER EVENT */
CMC_return_code
(*cmc_unregister_event)(

CMC_session_id session,
CMC_flags event_type,
CMC_callback callback,
CMC_buffer unregister_data,
CMC_extension *unregister_event_extensions

);

32 Recommendation X.446 (08/97)

/* CALL CALLBACKS */
CMC_return_code
(*cmc_call_callbacks)(

CMC_session_id session,
CMC_event event_type,
CMC_extension *call_callbacks_extensions

);

/* EXPORT STREAM */
CMC_return_code
(*cmc_export_stream)(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 count,
CMC_flags export_flags,
CMC_extension *export_stream_extensions

);

/* IMPORT FILE TO STREAM */
CMC_return_code
(*cmc_import_file_to_stream)(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 file_offset,
CMC_extension *import_file_to_stream_extensions

);

/* OPEN STREAM */
CMC_return_code
(*cmc_open_stream)(

CMC_object_handle object,
CMC_property *property,
CMC_enum operation,
CMC_stream_handle **stream,
CMC_extension *open_stream_extensions

);

/* READ STREAM */
CMC_return_code
(*cmc_read_stream)(

CMC_stream_handle stream,
CMC_uint32 *count,
CMC_buffer content_information,
CMC_extension *read_stream_extensions

);

/* SEEK STREAM */
CMC_return_code
(*cmc_seek_stream)(

CMC_stream_handle stream,
CMC_enum operation,
CMC_uint32 *location,
CMC_extension *seek_stream_extensions

);

/* WRITE STREAM */
CMC_return_code
(*cmc_write_stream)(

CMC_stream_handle *stream,
CMC_uint32 *count,
CMC_buffer *content_information,
CMC_extension *write_stream_extensions

);

/* GET LAST ERROR */
CMC_return_code
(*cmc_get_last_error)(

CMC_session_id session,
CMC_object_handle objRef,
CMC_string **error_buffer,
CMC_extension *get_last_error_extensions

);

} CMC_dispatch_table;

Recommendation X.446 (08/97) 33

/* BIND IMPLEMENTATION */
CMC_return_code
cmc_bind_implementation (

CMC_guid implementation_name,
CMC_dispatch_table **dispatch_table,
CMC_extension *cmc_bind_extensions

);

/* UNBIND IMPLEMENTATION */
CMC_return_code
cmc_unbind_implementation (

CMC_guid implementation_name,
CMC_extension *cmc_unbind_implementation_extensions

);

DESCRIPTION

A data value of this data type is a dispatch table for a CMC implementation. The dispatch table includes an entry for
each function in a CMC implementation. Refer to the examples in C.2 (bind.c and cmc_bind.c) on the use of the dispatch
table.
Recommendation X.446 (08/97)

4.12 Enumerated

NAME

Enumerated – Type definition for an enumerated data value.

C DECLARATION

typedef CMC_sint32 CMC_enum;

DESCRIPTION

A data value of this data type contains a value selected from an enumerated list.

4.13 Events

NAME

Events – Type definition for a CMC event.

C DECLARATION

typedef CMC_uint32 CMC_event;

DESCRIPTION

A data value of this type contains 32 event bits. Undocumented events are reserved. Event bits set to zero are referred to
as "clear". Event bits set non-zero are referred to as "set". Unspecified event bits should always be clear.

Set: New messages have arrived in a message container.

Clear: No new messages have arrived in a message container.

In this Recommendation, the only valid event type is:

CMC_EVENT_NEW_MESSAGES

4.14 Extension

NAME

Extension – Type definition for a CMC extension structure.

C DECLARATION

typedef struct {
CMC_uint32 item_code;
CMC_uint32 item_data;
CMC_buffer item_reference;
CMC_flags extension_flags;

} CMC_extension;

34 Recommendation X.446 (08/97)

DESCRIPTION

A data value of this type is an extension. The same extension structure is used to specify and receive extension
information related to CMC function calls and CMC data structures.

In general, function calls and data structures may allow input and output extensions, with the direction implied by the
extension item code. Input extensions may refer to storage allocated by the application and output extensions may refer
to storage allocated by the CMC service. For example, some cmc_act_on() implementations might allow saving of
partially completed messages to the inbox for later reading and sending by using the CMC_X_COM_SAVE_MESSAGE
extension to pass in the message structure and receive back the resulting message reference. For the complete list of
common message extensions specified in this Recommendation, see 4.11 and 4.14.

For CMC extension arrays that may contain output extension storage allocated by the CMC service, callers must use
cmc_free() to free the pointer returned in the item_reference field. These structures are identified by the output flag
CMC_EXT_OUTPUT set and a non-NULL item_reference value. Callers explicitly request output function extensions
from function calls by setting the appropriate extension item_code. All substructures contained in the allocated memory
will be freed when the base structure pointer is freed.

Data extensions do not need to be freed explicitly since they are freed with the structure they are contained in. For
example, the message_extensions array resulting from cmc_read() is implicitly freed when cmc_free() is called for the
enclosing message structure.

An extension has the following components:

1) item_code: A code that uniquely identifies this extension.

2) item_data: Depending on the item_code, item_data may hold the length of the item value, the item value itself or
other information about the item. The specification of the extension describes how this field should be interpreted.

3) item_reference: Depending on the item_code, item_reference may hold a pointer to where the item value is stored
or NULL if there is no related item storage. The specification of the extension describes how this field should be
interpreted.

4) extension flags: Bits for Boolean attributes. The upper 16 bits are reserved for definition by the CMC specification.
Any unused bits of these must be clear. The lower 16 bits of flags are reserved for definition by the extension.

a) CMC_EXT_REQUIRED

Set: Return an error if this extension cannot be supported.

Clear: Allow "best effort" support, including no support, of this extension.

b) CMC_EXT_OUTPUT

Set: Indicates on output extensions that this extension contains a pointer to memory allocated by the CMC
implementation which must be freed with cmc_free().

Clear: The implementation did not allocate memory for the extension that the application needs to free. This
flag is always clear on data extensions as described above.

c) CMC_EXT_LAST_ELEMENT

Set: Identifies the last structure in an array of such structures. This must be at the end of the extension
array.

Clear: This is not the last array element.

4.15 Flags

NAME

Flags – Type definition for a CMC flag.

C DECLARATION

typedef CMC_uint32 CMC_flags;

Recommendation X.446 (08/97) 35

DESCRIPTION

A data value of this type contains 32 flag bits. The meaning of the bits depends on the context in which the flags data
value is used. Undocumented flags are reserved. Flags set to zero are referred to as "clear". Flags set non-zero are
referred to as "set". Unspecified flags should always be clear.

4.16 GUID

NAME

GUID – Type definition for a CMC globally unique identifier (GUID) structure.

C DECLARATION

typedef CMC_string CMC_guid

DESCRIPTION

A data value of this type is a globally unique identifier. The string is formatted according to the formal public identifier
text of ISO 9070 to guarantee uniqueness. The CMC GUIDs have the following format:

–//XAPIA/CMC/ name type/NONSGML name//EN

where name type is the type of name and name is the name of the object to which the GUID is being assigned. For
example, the object class CONTENT ITEM is:

–//XAPIA/CMC/OBJECT CLASS//NONSGML Content Item//EN

Some of the CMC GUID values may be defined in terms of an ISO/OSI Object Identifier (OID). The OID can be
encapsulated into an ISO 9070 formal public identifier. The FPI encapsulation is accomplished as follows:

–//XAPIA/CMC/OID//NONSGML <oid>//EN

where <oid> is the numeric form of the OSI OID as defined by the object identifier data type in 4.24.

4.17 Identifier

NAME

Identifier – Type definition for an implementation specific, unique identifier.

C DECLARATION

typedef system-defined, e.g. uint32 CMC_id;

DESCRIPTION

A data value of this type is an implementation-specific, unique identifier. This data type is used for locally unique
identifiers such as property id and object class id.

4.18 ISO Date and Time

NAME

ISO Date and Time – Type definition for an ISO 8601 formatted date and time data value.

C DECLARATION

typedef CMC_string CMC_date_time;

36 Recommendation X.446 (08/97)

DESCRIPTION

A data value of this data type is a date and time value consistent with the combined date and time of the day
representation of ISO 8601. The format of this data type supports the time of the day represented as either local time, or
the clock time in public use locally; Coordinated Universal Time (UTC), or the time scale maintained by the Bureau
International de l’Heure that forms the basis of a coordinate dissemination of standard frequencies and time signals; or
the local time difference between UTC.

The data value is a concatenation of the date and time representations. The character [T] is used as time designator to
indicate the start of the representation of time of day in the combined date and time of day string expression. If the time
is in UTC, the character [Z] is used as time-zone designator for UTC. If the time-zone designator is absent, the time is in
local time. For example, ccyymmddThhmmssZ, where [cc] is the century string, [yy] is the year string, [mm] is the
month string, [dd] is the day of the month string, [hh] is the hour string in a 24-hour format, [mm] is the minutes past the
hour string, and [ss] is the seconds past the minute string.

For local time as the difference from UTC, the date and time is represented by the string ccyymmddThhmmss+hhmm,
ccyymmddThhmmss+hh, ccyymmddThhmmss–hhmm, or ccyymmddThhmmss–hh, where [cc] is the century string, [yy]
is the year string, [mm] is the month string, [dd] is the day of the month string, [hh] is the hour string in a 24-hour
format, [mm] is the minutes past the hour string, and [ss] is the seconds past the minute string. The time-zone designator
is absent and the date and time string is concatenated with the hour and minute or hour offset from UTC. The difference
between local time and UTC is expressed in hours and minutes, or hours only independently of the precision of the local
time expression associated with it. It is expressed as positive (i.e. with the leading plus sign [+]) if the local time is ahead
of UTC and as negative (i.e. with the leading minus sign [–]) if it is behind UTC. For example, 19850414T152746+0100
would be April 14, 1985 and the time of 27 minutes 46 seconds past 15 hours locally in a location normally one hour
ahead of UTC. The string 19850414T152746–05 would be April 14, 1985 and the time of 27 minutes 46 seconds past
15 hours locally in a location normally five hours behind UTC.

1) date – The calendar date, expressed as the complete representation, basic format, as defined in ISO 8601,
clause 5.2.1.1. For example, April 14, 1985 would be represented by the string 19850414.

2) time – The time of the day, expressed as either the local time, equivalent Coordinated Universal Time (UTC), or
local time difference from UTC. The time format is the complete representation, basic format, as defined in
ISO 8601, clauses 5.3.3 and 5.3.3.1. For example, UTC time 20 minutes and 30 seconds past 23 hours would
be represented by the string 232030Z. The local time 10 minutes and 15 seconds past 12 hours would be
represented by the string 121510. The same local time as the difference from UTC would be represented by the
string 121510–06 or 121510–0600 if local time was six hours behind UTC.

4.19 Message

NAME

Message – Type definition for a CMC message structure.

C DECLARATION

typedef struct {

CMC_message_reference *message_reference;

CMC_string message_type;

CMC_string subject;

CMC_time time_sent;

CMC_string text_note;

CMC_recipient *recipients;

CMC_attachment *attachments;

CMC_flags message_flags;

CMC_extension *message_extensions;

} CMC_message;

DESCRIPTION

A data value of this type is a message. This data structure is included to provide support for CMC 1.0 and Simple CMC
implementations. A message has the following components:

1) message_reference: Identifies the message. The message reference is unique within a mailbox.

Recommendation X.446 (08/97) 37

2) message_type: String that identifies the type of the message. Three different string identifiers may be used:

a) Object Identifiers – Used for types identified by object identifiers as defined in Recommendation X.208.

b) CMC Registered Values – Used for types defined in this Recommendation.

c) Bilaterally Defined Values – Used for types that are unregistered.

NOTE – Bilaterally defined values are not ensured to be unique.

The format of each type is given below. White space can be any combination of tabs or spaces. "*" indicates one or more
of the denoted token (separated by white space) is valid. Quoted strings are case insensitive.

message_type_value ::= oid | cmc_reg | bilat_def

oid ::= "OID:" object_identifier

cmc_reg ::= "CMC:" cmc_registered_value

bilat_def ::= "BLT:" string

object_identifier ::= object_id_component*

object_id_component ::= integer

cmc_registered_value ::= "IPM" | "IP RN" | "IP NRN" | "DR" | "NDR" | "REPORT"

These registered values are defined as follows:

"CMC: IPM" Interpersonal message: An interpersonal message is a memo-like message containing a recipient
list, an optional subject, an optional text note, and zero or more attachments. The "Message"
structure is optimized to accommodate a message of type IPM.

"CMC: IP RN" Receipt notification for an interpersonal message: A receipt notification indicates that a message
has been read by the recipient.

"CMC: IP NRN" Non-receipt notification for an interpersonal message: A non-receipt notification indicates that a
message has been removed from the recipient’s mailbox without being read (for instance, the
message has been discarded by the user or the service or it has been auto-forwarded to another
recipient).

"CMC: DR" Delivery report: A delivery report indicates that the service was able to deliver a message to the
recipient.

"CMC: NDR" Non-delivery report: A non-delivery report indicates that the service was not able to deliver a
message to the recipient.

"CMC: REPORT" Both delivery and non-delivery reports when the original message is destined for multiple
recipients: This is to indicate that the underlying messaging service is able to deliver the
message to some recipients but not to the others.

The format of these message types within the structures defined depend upon the messaging protocols that have been
employed by the messaging service. Often non-IPM messages take the form of a program-generated message, which
follows a memo-like format (similar to that of an IPM) but whose purpose is to convey information about a previously
sent message.

NOTE – These message types correspond to X.400 message types; however, the types may be used with non-X.400 messaging
services. Thus, these CMC message types are meant to apply generically and not specifically to X.400.

Example valid identifiers are:

OID: 1 2 840 113556 3 2 850

CMC: IPM

BLT: my special message type

A canonical form of these types is also defined to allow an application to easily compare these strings. The CMC
implementation will always return the canonical form. In the canonical form:

1) all white space is converted to a single space, and all tokens will be separated by a white space;

2) the type identifiers (i.e. OID, CMC, BLT) are converted to upper case.

38 Recommendation X.446 (08/97)

Some CMC implementations will only support the interpersonal message type (CMC: IPM). Other types of messages
may be treated as IPM messages or may generate an error on those implementations.

It is undefined what the implementation will do with strings that are not in one of these formats.

3) subject: Message’s subject string.

4) time_sent: Date/time message was sent (submitted).

5) text_note: Message’s text note string. If the value is NULL, there is no text note. If the
CMC_TEXT_NOTE_AS_FILE flag is set, the text note is in the first attachment.

The format of the text note, regardless of whether it is passed in memory or in a file, is a sequence of paragraphs,
with the appropriate line terminator for the platform (CR for Macintosh, LF for Unix, CR/LF for DOS and
Windows, etc.) terminating each paragraph. Long lines (paragraphs) may be word wrapped by the CMC
implementation.

NOTE – There is no guaranteed fidelity (e.g. a long paragraph may be returned by the CMC read functions as a series of shorter
paragraphs).

6) recipients: Pointer to first element in array of recipients of the message.

7) attachments: Pointer to first element in array of attachments for the message.

8) message_flags: Bits for Boolean attributes. Unused bits must be clear.

a) CMC_MSG_READ

Set: Message has been read.

Clear: Message has not been read.

b) CMC_MSG_TEXT_NOTE_AS_FILE

Set: Text-note field is ignored and the text_note text is contained in the file referred to by the first
attachment.

Clear: Text_note text is contained in the text note string.

c) CMC_MSG_UNSENT

Set: Message has not been sent (i.e. it is a draft). This type of message can be created with the
CMC_X_COM_SAVE_MESSAGE extension.

Clear: Message has been sent.

d) CMC_MSG_LAST_ELEMENT

Set: Identifies the last structure in an array of such structures.

Clear: This is not the last array element.

9) message_extension: Pointer to first element in array of per-message extensions.

4.20 Message Reference

NAME

Message Reference – Type definition for a CMC message reference structure.

C DECLARATION

typedef CMC_counted_string CMC_message_reference;

DESCRIPTION

A data value of this type is a counted string that is the message handle used by the mailbox. This data structure is
included to provide support for CMC 1.0 and Simple CMC implementations. A Message Reference is only guaranteed to
be valid for the life of the session and has no guaranteed correspondence to any message identifier used by the
underlying messaging system. Within the session lifetime, it may be copied by the application program.

Recommendation X.446 (08/97) 39

4.21 Message Summary

NAME

Message Summary – Type definition for a CMC message summary structure.

C DECLARATION

typedef struct {
CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;
CMC_uint32 byte_length;
CMC_recipient *originator;
CMC_flags summary_flags;
CMC_extension *message_summary_extensions;

} CMC_message_summary;

DESCRIPTION

A data value of this type is a message summary. This data structure is included to provide support for CMC 1.0 and
Simple CMC implementations. A message summary has the following components:

1) message_reference: See definition in Message Structure.

2) message_type: See definition in Message Structure.

3) subject: See definition in Message Structure.

4) time_sent: See definition in Message Structure.

5) byte_length: Message size. The value should include all associated features of the message – attachments, envelope
and heading fields, etc. Implementations may return an approximate value or the constant
CMC_LENGTH_UNKNOWN if the length is unknown or unavailable.

6) originator: Message originator.

7) summary_flags: Bits for Boolean attributes. Unused bits must be clear.

a) CMC_SUM_READ

Set: Message has been read.

Clear: Message has not been read.

b) CMC_SUM_UNSENT

Set: Message has not been sent (i.e. it is a draft).

Clear: Message has been sent.

c) CMC_SUM_LAST_ELEMENT

Set: Identifies the last structure in an array of such structures.

Clear: This is not the last array element.

d) CMC_SUM_HAS_ATTACHMENTS

Set: Message has attachments.

Clear: Message has no attachments.

8) message_summary_extensions: Pointer to first element in array of per-message-summary extensions.

4.22 Name

NAME

Name – Type definition for a unique CMC 2.0 name.

C DECLARATION

typedef CMC_string CMC_name;

40 Recommendation X.446 (08/97)

DESCRIPTION

A data value of this type is a unique name. The string is formatted according to the formal public identifier text of
ISO 9070 to guarantee uniqueness. The CMC names have the following format:

–//XAPIA/CMC/ name type//NONSGML name//EN

where name type is the type of name and name is the name of the object. For example, the object class CONTENT
ITEM is:

–//XAPIA/CMC/OBJECT CLASS//NONSGML Content Item//EN

4.23 Object Handle

NAME

Object Handle – Type definition for a CMC object handle structure.

C DECLARATION

typedef system-defined, e.g. uint32 CMC_object_handle;

DESCRIPTION

A data value of this type is an opaque object handle. The CMC object handles are unique to the message service. The
handles are persistent for the duration of the session or until they are destroyed. The handle provides the context to a
CMC object. The handle encapsulates the session id. To copy an object handle, use the cmc_copy_object_handle()
function.

The notion of "no handle" needs to be stored in an object handle. In this case, the constant CMC_NULL_HANDLE is
used and is system-defined.

4.24 Object Identifier

NAME

Object Identifier – Type definition for a CMC object identifier structure.

C DECLARATION

typedef CMC_string CMC_object_identifier;

DESCRIPTION

A data value of this type is an object identifier as defined in Recommendation X.208. This data structure is included to
provide support for CMC 1.0 and Simple CMC implementations. It is globally unambiguous. Its syntax as used in this
Recommendation shall match the Number form in Recommendation X.208. This syntax is:

object_identifier ::= object_id_component*

object_id_component ::= integer

An example of an object identifier is:

1 2 840 113556 3 2 850

NOTE – The format of the object_identifier string is the same as the one used in the OID message type.

4.25 Opaque Data

NAME

Opaque Data – Type definition for an opaque data value.

Recommendation X.446 (08/97) 41

C DECLARATION

typedef struct CMC_TAG_OPAQUE_DATA {
CMC_size size;
CMC_byte *data;

} CMC_opaque_data;

DESCRIPTION

A data value of this data type is an opaque data value. Opaque data structure consists of the following components:

1) size – Specifies the number of 8-bit, bytes of opaque data pointed to by data.

2) data – A pointer to an array of 8-bit values. There is no explicit semantics to this data.

4.26 Property

NAME

Property – Type definition for a CMC property data type.

C DECLARATION

typedef struct CMC_TAG_PROPERTY{
CMC_id property id;
CMC_enum type;
union {

CMC_boolean CMC_pv_boolean;
CMC_byte CMC_pv_byte;
CMC_buffer CMC_pv_buffer;
CMC_counted_string CMC_pv_counted_string;
CMC_enum CMC_pv_enum;
CMC_extension CMC_pv_extension;
CMC_float32 CMC_pv_float32;
CMC_float64 CMC_pv_float64;
CMC_flags CMC_pv_flags;
CMC_guid CMC_pv_guid;
CMC_iso_date_time CMC_pv_iso_date_time;
CMC_object_handle CMC_pv_object_handle;
CMC_opaque_data CMC_pv_opaque_data;
CMC_return_code CMC_pv_return_code;
CMC_sint16 CMC_pv_sint16;
CMC_sint32 CMC_pv_sint32;
CMC_string CMC_pv_string;
CMC_time CMC_pv_time;
CMC_uint16 CMC_pv_uint16;
CMC_uint32 CMC_pv_uint32;
CMC_array_boolean CMC_pv_array_boolean;
CMC_array_buffer CMC_pv_array_buffer;
CMC_array_counted_string CMC_pv_array_counted_string;
CMC_array_enum CMC_pv_array_enum;
CMC_array_extension CMC_pv_array_extension;
CMC_array_float32 CMC_pv_array_float32;
CMC_array_float64 CMC_pv_array_float64;
CMC_array_guid CMC_pv_array_guid;
CMC_array_iso_date_time CMC_pv_array_iso_date_time;
CMC_array_object_handle CMC_pv_array_object_handle;
CMC_array_opaque_data CMC_pv_array_opaque_data;
CMC_array_return_code CMC_pv_array_return_code;
CMC_array_sint16 CMC_pv_array_sint16;
CMC_array_sint32 CMC_pv_array_sint32;
CMC_array_string CMC_pv_array_string;
CMC_array_time CMC_pv_array_time;
CMC_array_uint16 CMC_pv_array_uint16;
CMC_array_uint32 CMC_pv_array_uint32;

} value
} CMC_property;

42 Recommendation X.446 (08/97)

DESCRIPTION

A data value of this type is a CMC_array property. A property is the method for specifying CMC_array specific content
information. A property has the following components:

1) id: Uniquely identifies the property.

2) type: Specifies the data type for the property.

3) value: Defines the value for the property.

4) property_extensions: Pointer to first element in array of property extensions.

4.27 Recipient

NAME

Recipient – Type definition for originator/recipient structure.

C DECLARATION

typedef struct {

CMC_string name;

CMC_enum name_type;

CMC_string address;

CMC_enum role;

CMC_flags recip_flags;

CMC_extension *recip_extensions;

} CMC_recipient;

DESCRIPTION

A data value of this type is an originator or recipient. This data structure is included to provide support for CMC 1.0 and
Simple CMC implementations. This structure has the following components:

1) name: Recipient display name. Whether to interpret the name as an individual first, then as a group, if such an
individual is not found, or vice versa, is left up to the implementation when resolving the name to an address.

2) name_type: Recipient type, enumerated:

CMC_TYPE_UNKNOWN (= 0) Unknown recipient type.

CMC_TYPE_INDIVIDUAL Recipient is an individual.

CMC_TYPE_GROUP Name is a group of recipients.

NOTE – This is meaningful only if name is present. It is set by the implementation on output. On input it can be used as a hint to
optimize resolution of the name.

3) address: Recipient address which is acceptable to the underlying messaging service. The format of the address
string is not defined by this Recommendation. It is intended to accommodate any string notation(s) supported by a
given implementation, as configured at a given installation. End users should consult the manager of their local
service to discover what string notation(s) are supported at their installation.

4) role: Role of recipient, enumerated:

CMC_ROLE_TO TO (primary) recipient.

CMC_ROLE_CC CC recipient.

CMC_ROLE_BCC BCC recipient.

CMC_ROLE_ORIGINATOR Originator of message.

CMC_ROLE_AUTHORIZING_USER Authorizing user of message.

CMC_ROLE_REPLY_TO Recipient to receive replies.

A CC recipient may (silently) be converted to a TO recipient if the underlying messaging service cannot support
CC recipients. Services that cannot support BCCs should reject messages containing them. For the same recipient to
be present with more than one role, multiple recipient entries, differing in role, are required.

Recommendation X.446 (08/97) 43

The CMC implementation should return the recipient array in the following order on output. The originator should
be the first element in the array, followed by the REPLY TO, TO, CC, and BCC recipients grouped together in that
order. The authorizing user, if one exists, should be the final recipient in the array. There is no ordering required on
input.

5) recip_flags: Bits for Boolean attributes. Unused bits must be clear.

a) CMC_RECIP_IGNORE

Set: Ignore this recipient (useful for re-using an incoming message’s recipient list for a reply).

Clear: Do not ignore this recipient.

b) CMC_RECIP_LIST_TRUNCATED

Set: Indicates that not all recipient structures requested were returned by the system. This is only used on
the cmc_look_up() function when the complete list of recipients matching the search name could not
be returned. This flag will only be set in the last structure in the array.

Clear: The complete recipient array was returned.

c) CMC_RECIP_LAST_ELEMENT

Set: Identifies the last structure in an array of such structures.

Clear: This is not the last array element.

6) recip_extensions: Pointer to first element in array of per-recipient extensions.

4.28 Report

NAME

Report – Type definition for combination of report and non-delivery report structure.

C DECLARATION

typedef struct {

CMC_recipient *msg_recipient;

CMC_enum report_type;

CMC_time delivered_time;

CMC_uint32 reason_code;

CMC_flags report_flags;

} CMC_report;

DESCRIPTION

A data value of this type is a report, non-delivery report, or both. This data structure is included to provide support for
CMC 1.0 and Simple CMC implementations. A report has the following components:

1) report_type: Enumerated value that identifies the type of report. The report type can be:

CMC_X400_DR ((CMC_enum) 0)

CMC_X400_NDR ((CMC_enum) 1)

2) delivered_time: Date/time the original message was delivered to the recipient. It is NULL for CMC_X400_NDR, or
report delivered time for CMC_X400_DR.

3) reason_code: The reason for the non-delivery of a message. The value is ZERO for CMC_X400_DR, or, the
following value for CMC_X400_NDR:

reason_code.<higher order 16 bits> = X.411.NonDeliveryReasonCode.

reason_code.<lower order 16 bits> = X.411.NonDeliveryDiagnosticCode.

44 Recommendation X.446 (08/97)

4) report_flags: Bits for Boolean attributes. Unused bits must be clear.

– CMC_REPORT_LAST_ELEMENT

Set: Identifies the last structure in an array of such structures.

Clear: This is not the last array element.

NOTE – CMC defines specific message types for delivery reports ("CMC:DR") and non-delivery reports ("CMC:NDR") which can
be acted on independently since they are viewed as separate messages. In Recommendation X.400, both the delivery and non-delivery
information is conveyed in a generic report information base. It is possible that an X.400 report contains delivery reports for some
recipients and non-delivery reports for another recipient when a message is destined for multiple recipients of the same MTA. This
does not map well to the CMC:DR or CMC:NDR on output (X.400 to CMC) because Recommendation X.400 does not view them nor
stored them as separate information base and therefore cannot be acted on individually. Thus, a new message type "CMC: REPORT"
is added to handle the X.400 report requirements.

4.29 Return Code

NAME

Return Code – Type definition for a value returned from all CMC functions.

C DECLARATION

typedef CMC_uint32 CMC_return_code;

DESCRIPTION

A return code is defined as a 32-bit value. A non-zero value indicates an error with the error code being indicated by the
value returned. A return value of zero indicates success. Values contained within the low order 16 bits are reserved for
error codes defined in this Recommendation. Values contained within the high order 16 bits are reserved for
implementation defined error codes while the low order 16 bits should be set to an appropriate CMC error.

Errors may be resolved within the scope of a CMC call using, for example, dialogues available through the user
interface. If a dialogue is invoked to resolve the error, but the error remains unresolved after the dialogue has ended, the
bit flag defined in CMC_ERROR_UI_DISPLAYED is set in the error to indicate that the error has already been
displayed to the user.

4.30 Session Id

NAME

Session Id – Type definition for a CMC session id.

C DECLARATION

typedef system-defined, e.g. uint32CMC_session_id;

DESCRIPTION

Opaque session id. The context identified by the session id contains per-session information such as the character set in
use and handles for any open session(s) with underlying messaging service(s). The CMC_session_id is created by the
CMC Logon function and destroyed by the CMC Logoff function.

See B.2.4 for the definition for a specific platform.

4.31 Stream Handle

NAME

Stream Handle – Type definition for a CMC stream handle structure.

Recommendation X.446 (08/97) 45

C DECLARATION

typedef system-defined, e.g. uint32 CMC_stream_handle;

DESCRIPTION

A data value of this type is an opaque stream handle. The CMC stream handles are unique to the message service. The
handles are persistent for the duration of the session or until they are destroyed. The handle provides the context to a
stream of content information. The stream encapsulates the session id and object handles. Stream handles cannot be
copied.

4.32 String

NAME

String – Type definition for a CMC character string.

C DECLARATION

typedef cmc_string* CMC_string;

DESCRIPTION

A data value of this type is a string. The character array pointed to is interpreted as a null-terminated array of character
by default. All implementations must support null terminated strings. The width of a character and the corresponding
null terminating character are determined by the character set chosen.

If an application wishes to use counted strings instead of null-terminated and the CMC implementation supports it, the
application will set the CMC_COUNTED_STRING_TYPE flag when logging into the session. The data pointed to by
CMC_string will then be assumed to be in the data format of CMC_counted_string. If implicit logon is done with a
function, this flag must be set in the flags parameter.

To determine the character set of characters in the string, the CMC implementation looks at the session context. If there
is no session context created before the call, the string will be interpreted using the implementations default character
set. The implementation should always attempt to map all strings passed to the client application to the character set for
the session.

4.33 Time

NAME

Time – Type definition for a CMC time structure.

C DECLARATION

typedef struct {

CMC_sint8 second;

CMC_sint8 minute;

CMC_sint8 hour;

CMC_sint8 day;

CMC_sint8 month;

CMC_sint8 year;

CMC_sint8 isdst;

CMC_sint16 tmzone;

} CMC_time;

DESCRIPTION

A data value of this type is a time value. This data structure is included to provide support for CMC 1.0 and Simple
CMC implementations. A time value has the following components:

1) second: Seconds; range 0..59.

2) minute: Minutes; range 0..59.

46 Recommendation X.446 (08/97)

3) hour: Hours since midnight; range 0..23.

4) day: Day of the month; range 1..31.

5) month: Months since January; range 0..11.

6) year: Years since 1900.

7) isdst: Daylight savings time flag; non-zero implies daylight savings.

8) tmzone: Time zone, in minutes relative to Greenwich Mean Time. The defined value,
CMC_NO_TIMEZONE, indicates that time zone is not available.

All time values are in the appropriate local time. For example, the time_sent field in the CMC_message and
CMC_message_summary structures is in the local time of the sender.

NOTE – If the tmzone field is set to any value other than CMC_NO_TIMEZONE, then the time value can be converted into the local
time of the caller, although the actual conversion functionality falls outside the scope of CMC.

4.34 User Interface Identifier

NAME

User Interface Identifier – Type definition for a CMC user interface handle.

C DECLARATION

typedef system-defined, e.g. uint32CMC_ui_id;

DESCRIPTION

Value used for passing user interface information to CMC functions. For example, in a windows-based environment this
would be the parent-window handle for the calling application.

A value of NULL is always valid, with the appropriate default behaviour defined by the implementation.

NOTE – CMC implementations are not required to provide UI, and providing a user interface for one feature does not necessarily
imply that a user interface is available for all features of CMC.

See B.2.4 for the definition for a specific platform.

5 Object properties

This clause defines the object properties for object classes of the Common Messaging Call API. Each object is a
collection of properties. Object properties are defined herein in an effort to standardize their representation within this
Recommendation.

The object property definitions are preceded with tables summarizing the properties for each object class. The following
object property summary tables list the property name and the value type of all defined object properties in columns one
and two. The third column provides a description of the property. The fourth column lists possible values for each
property. Starred values are defaults. If no star is present, the property has no default value. The fifth column states
whether the property is mandatory (M) or optional (O). The sixth column states whether the property is read-only. A
"No" in this column means that the property can be modified, updated, or deleted by a call to cmc_update_properties(),
cmc_add_properties(), or cmc_delete_properties() respectively, unless otherwise stated. The last column specifies the
creator of the property as the implementation (I), the caller (C), or either (E).

Default values can be associated with properties. However, when an implementation creates an object, the
implementation should populate the object with explicit values for all the supported properties that have defaults. This
will simplify enumerations of properties by the application.

Recommendation X.446 (08/97) 47

Table 4/X.446 – CMC address book property summary

Address book

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Child Allowed boolean CMC_TRUE,
CMC_FALSE

O No CMC_FALSE

Comment string Any Valid String O No None

Location enum LOCAL
SERVER

UNKNOWNa)

O No UNKNOWNa)

Name string Any Valid String O No Null String

Object Class enum ADDRESS
BOOKb)

M Yes NA

Parent object_handle Any Valid Object
Handle

M, If nested No None

Server Name string Any Valid String O No None

Shared boolean CMC_TRUE,
CMC_FALSE

O No CMC_FALSE

Type enum GLOBAL,
PERSONALc)

O No PERSONALb)

a) "CMC_ADDRESS_BOOK_LOCATION_" value prefix.
b) "CMC_OBJECT_TYPE_" value prefix.
c) "CMC_ADDRESS_BOOK_TYPE_" value prefix.

48 Recommendation X.446 (08/97)

Table 5/X.446 – CMC content item property summary

Content item

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Character Set guid GUID For Any
Character Set

O No Platform –
Dependent

Content Information opaque_data Any Data O No None

Content Type guid GUID For Any
Content Type

O No None

Create Time iso_date_time Any ISO 8601 Date
and Time

O Yes None

Encoding Type guid GUID For Any
Encoding Type

O No 7-BITa)

File Directory string Any Valid File
Directory

O No None

File Name string Any Valid File
Name

O No None

Item Number uint32 Up to an
implementation-

defined maximum

M, for more than 1
content item

No None

Item Type enum NOTE
ATTACHMENT
ANNOTATIONb)

O No NOTE

Last Modified iso_date_time Any ISO 8601 Date
and Time

O Yes None

Object Class enum CONTENT ITEMc) M Yes NA

Render Position uint32 Byte position within
container

O No None

Size uint32 Byte size O No None

Title string Any Valid String O No None

a) "CMC_ADDRESS_BOOK_TYPE_" value prefix.
b) "CMC_IT_" value prefix.
c) "CMC_OBJECT_TYPE_" value prefix.

Recommendation X.446 (08/97) 49

Table 6/X.446 – CMC distribution list property summary

Table 7/X.446 – CMC message property summary

Distribution list

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Address string Any Valid Address O Yes None

Comment string Any Valid String O No None

Last Modification
Time

iso_date_time Any ISO 8601 Date
and Time

O Yes None

Name string Any Valid String M No Null String

Object Class enum DISTRIBUTION
LISTa)

M Yes NA

Parent object_handle Any Valid Object
Handle

M, If Nested No None

Shared boolean CMC_TRUE,
CMC_FALSE

O No CMC_FALSE

a) "CMC_OBJECT_TYPE_" value prefix.

Message

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Application ID string Any Valid String O No None

Application Message
Status

flags Draft O No None

Auto-Action flags CMC_AA_
DELETE

O No None

Deferred Delivery
Time

iso_date_time Any ISO 8601 Date
and Time

O No None

In Message Status flags NEW, READ,
CHANGEDa)

O Yes None

ID string Any Valid String M Yes None

In Reply To string Any Valid String O No None

Item Count uint32 Up to an
implementation

defined maximum

M Yes None

NRN Diagnostic string Any Valid String O No None

50 Recommendation X.446 (08/97)

Table 7/X.446 – CMC message property summary (end)

Message

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

NRN Reason string Any Valid String M, If Message Type
Receipt

No None

Object Class object_class MESSAGEb) M Yes NA

Out Message Status flags DELETED,
SUBMITTED,

SENTa)

O Yes None

Priority enum URGENT
NORMAL LOWc)

O No Normal

Receipt Requested boolean CMC_TRUE
CMC_FALSE

O No CMC_FALSE

Receipt Type enum RN, NRNd) O No None

Report Requested enum DR, NDR,
BOTH, NONEe)

O No None

Role enum ORIGINAL
RETURNED

FORWARDED
REPLIED

OBSOLETED
RESENTf)

O No None

Sensitivity enum PERSONAL
PRIVATE

CONFIDENTIAL
NONEg)

O No None

Size uint32 Any Valid Byte
Value

O No None

Subject string Any Valid String O No None

Time Received iso_date_time Any ISO 8601 Date
and Time

M Yes None

Time Sent iso_date_time Any ISO 8601 Date
and Time

M Yes None

Type enum IPM, REPORTh) M No IPM

a) "CMC_MESSAGE_STATUS_" value prefix.
b) "CMC_OBJECT_TYPE_" value prefix.
c) "CMC_PRIORITY_" value prefix.
d) "CMC_RECEIPT_" value prefix.
e) "CMC_REPORT_" value prefix.
f) "CMC_MESSAGE_ROLE_" value prefix.
g) "CMC_MESSAGE_SENSITIVITY_" value prefix.
h) "CMC_MT_" value prefix.

Recommendation X.446 (08/97) 51

Table 8/X.446 – CMC message container property summary

Message container

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Auto-Action flags CMC-AA_Delete O Yes Clear

Child Allowed boolean CMC_TRUE
CMC_FALSE

O No CMC_FALSE

Comment string Any Valid String O No None

Location enum LOCAL, SERVER,
UNKNOWNa)

O No None

Name string Any Valid String O No None

Object Class enum MESSAGE
CONTAINERb)

M Yes NA

Parent object_handle Any Valid Object
Handle

M, if nested No None

Server Name string Any Valid String O No None

Shared boolean CMC_TRUE
CMC_FALSE

O No CMC_FALSE

Type enum DELETED
DRAFTS INBOX
OUTBOX SENTc)

O Yes None

a) "CMC_MESSAGE_CONTAINER_" value prefix.
b) "CMC_OBJECT_TYPE_" value prefix.
c) "CMC_MCT_" value prefix.

52 Recommendation X.446 (08/97)

Table 9/X.446 – CMC per recipient information property summary

Table 10/X.446 – CMC profile container property summary

Per recipient information

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Comment string Any Valid String O No None

Delivery Time iso_date_time Any ISO 8601 Date
and Time

O No None

Diagnostic string Any Valid String O No None

Object Class enum PER RECIPIENT
INFORMATIONa)

M Yes NA

Reason string Any Valid String O No None

Recipient Address string Any Valid String M Yes NA

Recipient Name string Any Valid String M No NA

Type enum DR, NDR,
UNKNOWNb)

M Yes NA

a) "CMC_OBJECT_TYPE_" value prefix.
b) "CMC_PRI_" value prefix.

Profile container

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Auto-Action flags CMC-AA_Delete O Yes Clear

Character Set array_of_guid 1 or More GUID for
Any Character Set

M Yes NA

Comment string Any Valid String O No None

Conformance enum SIMPLE_CMC,
FULL_CMCa)

M Yes NA

Default Service string Any Valid String M Yes NA

Default User string Any Valid String M Yes NA

Line Terminator enum CRLF, LF, CRb) M Yes NA

Object Class enum Profile Containerc) M Yes NA

Recommendation X.446 (08/97) 53

Table 10/X.446 – CMC profile container property summary (end)

Profile container

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Object Extensions
Supported

array_of_guid 1 or More GUID for
CMC Objects

M Yes NA

Objects Supported array_of_guid 1 or More GUID for
CMC Objects

M Yes NA

Properties Supported array_of_guid 1 or More GUID for
CMC Properties

M Yes NA

Property Extensions
Supported

array_of_guid 1 or More GUID for
CMC Properties

M Yes NA

Required Password enum NO, OPT, YESd) M Yes NA

Required Service enum NO, OPT, YESd) M Yes NA

Required User enum NO, OPT, YESd) M Yes NA

Support Counted
Strings

boolean CMC_TRUE
CMC_FALSE

M Yes NA

Support No Mark As
Read

boolean CMC_TRUE
CMC_FALSE

M Yes NA

User Interface
Available

boolean CMC_TRUE
CMC_FALSE

M Yes NA

Users array_string Recipient Names O Yes NA

Version of the
Implementation

uint16 100 or 200 M Yes NA

Version of the
Specification

uint16 100 or 200 M Yes NA

a) "CMC_CONF_" value prefix.
b) "CMC_LINE_TERM_" value prefix.
c) "CMC_OBJECT_TYPE_" value prefix.
d) "CMC_REQUIRED_" value prefix.

54 Recommendation X.446 (08/97)

Table 11/X.446 – CMC recipient property summary

Recipient

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Address string Any Valid String M No None

Content Return
Requested

boolean CMC_TRUE
CMC_FALSE

O No None

Name string Any Valid String O No None

Object Class enum RECIPIENTa) M Yes NA

Receipt Requested enum RN, NRN, BOTH,
NONEb)

O No None

Report Requested enum DR, NDR, BOTH,
NONEc)

O No None

Responsibility Flag boolean CMC_TRUE
CMC_FALSE

M No CMC_TRUE

Role enum TO, CC, BCC,
ORIGINATOR,

AUTHORIZING_
USER, REPLY_TO,

FORWARDED,
ACTUAL,

INTENDEDd)

O No None

Type enum UNKNOWN,
INDIVIDUAL,

GROUPe)

M No INDIVIDUAL

a) "CMC_OBJECT_TYPE_" value prefix.
b) "CMC_RECEIPT_" value prefix.
c) "CMC_REPORT_" value prefix.
d) "CMC_RECIPIENT_ROLE_" value prefix.
e) "CMC_RCT_" value prefix.

Recommendation X.446 (08/97) 55

Table 12/X.446 – CMC report property summary

Report

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Application ID string Any Valid String O No None

ID guid Any Valid ISO 9070
String

M Yes NA

Item Count uint32 Any Valid Integer M Yes NA

Messaging System
ID

string Any Valid String O No None

Object Class enum REPORTa) M Yes NA

Read boolean CMC_TRUE
CMC_FALSE

O No None

Size uint32 Byte Size Of Report O No None

Subject string Any Valid String M No None

Subject Message ID string Any Valid String O No None

Time Received iso_date_time Any ISO 8601 Date
and Time

M Yes None

Time Sent iso_date_time Any ISO 8601 Date
and Time

M Yes None

Unsent boolean CMC_TRUE
CMC_FALSE

O No None

a) "CMC_OBJECT_TYPE_" value prefix.

56 Recommendation X.446 (08/97)

Table 13/X.446 – CMC root container property summary

The manual pages for these properties are given in subsequent pages.

5.1 Address book object properties

An address book is a container object composed of addresses of entities and may contain other address books. Support
for address books is not mandatory. The following subclauses define, declare, and describe address book properties.

5.1.1 Child allowed

NAME

Address Book Child Allowed

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_CHILD_ALLOWED \

"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Child Allowed//EN"

DESCRIPTION

The property which permits or denies the existence of a child of the address book.

The default value of this property is CMC_FALSE.

This is a CMC_pv_boolean type of property.

5.1.2 Comment

NAME

Address Book Comment

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_COMMENT \

"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Comment//EN"

Root container

Property name Type
(CMC_pv_)

Possible values Classification Read-only Default

Child Allowed boolean CMC_TRUE
CMC_FALSE

O No CMC_FALSE

Comment string Any Valid String O No None

Location enum LOCAL SERVER
UNKNOWNa)

O No None

Name string Any Valid String O No None

Object Class enum ROOT
CONTAINERb)

M Yes NA

Shared boolean CMC_TRUE
CMC_FALSE

O No CMC_FALSE

a) "CMC_ROOT_CONTAINER_LOCATION_" value prefix.
b) "CMC_OBJECT_TYPE_" value prefix.

Recommendation X.446 (08/97) 57

DESCRIPTION

A descriptive comment about the address book.

This is a CMC_pv_string type of property.

5.1.3 Location

NAME

Address Book Location

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_LOCATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Location//EN"

DESCRIPTION

This property specifies the location of the address book.

The valid values for this property include:

CMC_ADDRESS_BOOK_LOCATION_LOCAL
CMC_ADDRESS_BOOK_LOCATION_SERVER
CMC_ADDRESS_BOOK_LOCATION_UNKNOWN

CMC_ADDRESS_BOOK_LOCATION_LOCAL – Specifies that the location of the address book is local and not on
the messaging server.

CMC_ADDRESS_BOOK_LOCATION_SERVER – Specifies that the location of the address book is on the messaging
server.

CMC_ADDRESS_BOOK_LOCATION_UNKNOWN – Specifies that the location of the address book is unknown.
This is the default value.

This is a CMC_pv_enum type of property.

5.1.4 Name

NAME

Address Book Name

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Name//EN"

DESCRIPTION

This property specifies the name of the address book.

This is a CMC_pv_string type of property.

5.1.5 Object class

NAME

Address Book Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \
"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as address book.

This property is created by cmc_open_object_handle().

58 Recommendation X.446 (08/97)

The only valid value for this property is CMC_PT_OBJECT_CLASS_ADDRESS_BOOK which specifies that the
object’s class is an address book.

This is a CMC_pv_enum type of property.

5.1.6 Parent

NAME

Address Book Parent

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_PARENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Parent//EN"

DESCRIPTION

This property specifies the parent of the address book. If the implementation supports the nesting of address books, this
property specifies the parent address book. If the address book is the top level, this property is not present. Otherwise, it
is mandatory.

This is a CMC_pv_object_handle type of property.

5.1.7 Server name

NAME

Address Book Server Name

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_SERVER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Server Name//EN"

DESCRIPTION

This property specifies the name of the server on which the address book is located.

This is a CMC_pv_string type of property.

5.1.8 Shared

NAME

Address Book Shared

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Shared//EN"

DESCRIPTION

This property indicates whether more than one user has access to this address book.

The default value for this property is CMC_FALSE if supported.

This is a CMC_pv_boolean type of property.

5.1.9 Type

NAME

Address Book Type

C DECLARATION

#define CMC_PT_ADDRESS_BOOK_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Type//EN"

Recommendation X.446 (08/97) 59

DESCRIPTION

This property specifies the type of the address book.

The valid values for this property include:

CMC_ADDRESS_BOOK_TYPE_GLOBAL

CMC_ADDRESS_BOOK_TYPE_PERSONAL

CMC_ADDRESS_BOOK_TYPE_GLOBAL – Specifies that the address book is of a global, or enterprise-wide,
subtype. A global address book is not necessarily a shared address book.

CMC_ADDRESS_BOOK_TYPE_PERSONAL – Specifies that the address book is of a personal, locally originated and
maintained, type.

The default value for this property is CMC_ADDRESS_BOOK_TYPE_PERSONAL.

This is a CMC_pv_enum type of property.

5.2 Content item object properties

A content item in this Recommendation is an object associated with the content of a message. It is used to represent
attachments and notes, although no distinction is made between the two at the programming interface. The following
subclauses define, declare, and describe attachment object properties.

5.2.1 Character set

NAME

Content Item Character Set

C DECLARATION

#define CMC_PT_CONTENT_ITEM_CHARACTER_SET \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Character Set//EN"

DESCRIPTION

This property specifies the character set of embedded content information within the content item. In the absence of this
property, the default character set for embedded content information within the content item is the same as that of the
session context.

The property value is a string representing the formal public identifier for the character set. The formal public identifier
can be one of the following:

#define CMC_CHARSET_437 "–//XAPIA/CHARSET//NONSGML IBM 437//EN"

#define CMC_CHARSET_850 "–//XAPIA/CHARSET//NONSGML IBM 850//EN"

#define CMC_CHARSET_1252 "–//XAPIA/CHARSET//NONSGML Microsoft 1252//EN"

#define CMC_CHARSET_ISTRING "–//XAPIA/CHARSET//NONSGML Apple ISTRING//EN"

#define CMC_CHARSET_UNICODE "–//XAPIA/CHARSET//NONSGML UNICODE//EN"

#define CMC_CHARSET_T61 "–//XAPIA/CHARSET//NONSGML TSS T61//EN"

#define CMC_CHARSET_IA5 "–//XAPIA/CHARSET//NONSGML TSS IA5//EN"

#define CMC_CHARSET_ISO_10646 "–//XAPIA/CHARSET//NONSGML ISO 10646//EN"

#define CMC_CHARSET_ISO_646 "–//XAPIA/CHARSET//NONSGML ISO 646//EN"

#define CMC_CHARSET_ISO_8859_1 "–//XAPIA/CHARSET//NONSGML ISO 8859-1//EN"

Implementations may provide for other character sets.

This is a CMC_pv_guid type of property.

5.2.2 Content information

NAME

Content Item Content Information

60 Recommendation X.446 (08/97)

C DECLARATION

#define CMC_PT_CONTENT_ITEM_CONTENT_INFORMATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Content Information//EN"

DESCRIPTION

This property holds the content of a content item.

This is a CMC_pv_opaque_data type of property.

5.2.3 Content type

NAME

Content Item Content Type

C DECLARATION

#define CMC_PT_CONTENT_ITEM_CONTENT_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Content Type//EN"

DESCRIPTION

This property specifies the content type of the content item. A NULL value designates an undefined content item type.

The following GUID values are valid for the Type property of the Content Item objects.

#define CMC_CT_PLAIN_TEXT \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Plain Text//EN"

#define CMC_CT_GIF_IMAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML GIF Image//EN"

#define CMC_CT_JPEG_IMAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML JPEG Image//EN"

#define CMC_CT_BASIC_AUDIO \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Basic Audio//EN"

#define CMC_CT_MPEG_VIDEO \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML MPEG Video//EN"

#define CMC_CT_MESSAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Message//EN"

#define CMC_CT_PARTIAL_MESSAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Partial Message//EN"

#define CMC_CT_EXTERNAL_MESSAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML External Message//EN"

#define CMC_CT_APPLICATION_OCTET_STREAM \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Application Octet Stream//EN"

#define CMC_CT_APPLICATION_POSTSCRIPT \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Application PostScript//EN"

#define CMC_CT_ALTERNATIVE_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Alternative Multipart//EN"

#define CMC_CT_DIGEST_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Digest Multipart//EN"

#define CMC_CT_MIXED_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"

#define CMC_CT_OLE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML OLE//EN"

#define CMC_CT_MIXED_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"

#define CMC_CT_X400_G3_FAX \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 G3 Fax//EN"

#define CMC_CT_X400_G4_FAX \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 G4 Fax//EN"

#define CMC_CT_X400_ENCRYPTED \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Encrypted//EN"

#define CMC_CT_X400_NATIONALLY_DEFINED \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Nationally Defined//EN"

#define CMC_CT_X400_FILE_TRANSFER \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 File Transfer//EN"

#define CMC_CT_X400_VOICE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Voice//EN"

Recommendation X.446 (08/97) 61

#define CMC_CT_X400_VIDEOTEX \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Videotex//EN"

#define CMC_CT_X400_MIXED_MODE \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Mixed Mode//EN"

#define CMC_CT_X400_PRIVATELY_DEFINED_6937 \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Privately Defined 6937//EN"

#define CMC_CT_X400_EXTERNAL_TRACE \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 External Trace//EN"

#define CMC_CT_X400_INTERNAL_TRACE \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Internal Trace//EN"

#define CMC_CT_SMTP_SESSION_TRANSCRIPT \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML SMTP Session Transcript//EN"

CMC_CT_PLAIN_TEXT – Specifies plain or unformatted text content.

CMC_CT_GIF_IMAGE – Specifies image data content in the form of the Graphics Image Format used by MIME and
the World Wide Web.

CMC_CT_JPEG_IMAGE – Specifies image data content in the form of the ISO Joint Picture Encoding Group standard
used by MIME and the World Wide Web.

CMC_CT_BASIC_AUDIO – Specifies audio data content in the form of audio encoded using 8-bit ISDN mu-law or
PCM defined by Recommendation G.711 with a sample rate of 8000 Hz and with a single channel.

CMC_CT_MPEG_VIDEO – Specifies video content in the form of the ISO Motion Picture Encoding Group, ISO 11172
standard used by MIME and the World Wide Web.

CMC_CT_MESSAGE – Specifies that the content is an encapsulated message.

CMC_CT_PARTIAL_MESSAGE – Specifies that the content is a portion of another message. This content type allows
a large message to be delivered as several separate pieces to facilitate receipt.

CMC_CT_EXTERNAL_MESSAGE – Specifies that the content is external to the message. The content information
property contains a textual reference to the external content information.

CMC_CT_APPLICATION_OCTET_STREAM – Specifies that the content is an application-dependent stream of octets.

CMC_CT_APPLICATION_POSTSCRIPT – Specifies that the content is an Adobe Systems, Inc. PostScript program.

CMC_CT_ALTERNATIVE_MULTIPART – Specifies that the content is one of an alternative form of content to
another note or content item within the message object.

CMC_CT_DIGEST_MULTIPART – Specifies that the content is one of a group of related messages within the message
object. The messages may serve as a sequence of discussions captured in a thread of messages as is found on bulletin
board systems.

CMC_CT_MIXED_MULTIPART – Specifies that the content is one of an ordered sequence of messages within the
message object.

CMC_CT_PARALLEL_MULTIPART – Specifies that the content is one of a group of arbitrary ordered sequence of
messages within the message object.

CMC_CT_OLE – Specifies that the content item type is OLE (Object Linking and Embedding) object content item.

CMC_CT_X400_G3_FAX – Specifies that the content represents Group 3 facsimile images, a sequence of bit strings.
Each G3 data component encodes a single page of data as dictated by Recommendations T.4 and T.30.

CMC_CT_X400_G4_FAX – Specifies that the content represents a final-form document of the sort that is processable
by Group 4 class 1 facsimile terminals.

CMC_CT_X400_ENCRYPTED – Specifies that the content is bit strings and encoded in accordance with the basic
encoding rules of Recommendation X.209.

62 Recommendation X.446 (08/97)

CMC_CT_X400_NATIONALLY_DEFINED – Specifies the content is an information object whose semantics and
abstract syntax are nationally defined by a country whose identity is bilaterally agreed by the message’s originator and
all of its potential recipients.

CMC_CT_X400_FILE_TRANSFER – Specifies that the content information consists of relatively large amounts of
data. The content information property contains the textual reference to its semantics and abstract syntax, which are
denoted by an object identifier.

CMC_CT_X400_VOICE – Specifies that the content is the digitized speech, a bit string. Its encoding are currently not
defined in the 1988 version of Recommendation X.420.

CMC_CT_X400_VIDEOTEX – Specifies that the content represents videotex data. Its syntax is defined in
Recommendations T.100 and T.101.

CMC_CT_X400_MIXED_MODE – Specifies that the content represents a final-form document of the sort that is
processable by mixed-mode Teletex terminals and Group 4 class 2 and 3 facsimile terminals.

CMC_CT_X400_PRIVATELY_DEFINED_6937 – Specifies that the content is privately defined. The content is
encoded in accordance to ISO 6937 specified character sets and encoding rules.

CMC_CT_X400_EXTERNAL_TRACE – Specifies that the content contains X.400 external trace information for
diagnostic purpose.

CMC_CT_X400_INTERNAL_TRACE – Specifies that the content contains X.400 internal trace information for
diagnostic purpose.

CMC_CT_SMTP_SESSION_TRANSCRIPT – Specifies that the content contains SMTP session transcript information
for diagnostic purpose.

This is a CMC_pv_guid type of property.

5.2.4 Create time

NAME

Content Item Create Time

C DECLARATION

#define CMC_PT_CONTENT_ITEM_CREATE_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Create Time//EN"

DESCRIPTION

This property specifies the date and time that the content item was created.

This is a CMC_pv_iso_date_time type of property.

5.2.5 Encoding type

NAME

Content Item Encoding Type

C DECLARATION

#define CMC_PT_CONTENT ITEM_ENCODING_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Encoding Type//EN"

DESCRIPTION

This property specifies the encoding type of the content of the content item.

The default value for this property is CMC_ET_7_BIT.

The following values are valid for the Encoding Type property of content item object:

#define CMC_ET_7_BIT \
"–//XAPIA/CMC/ENCODING TYPE//NONSGML 7 Bit//EN"

#define CMC_ET_BASE64 \
"–//XAPIA/CMC/ENCODING TYPE//NONSGML Base64//EN"

Recommendation X.446 (08/97) 63

#define CMC_ET_BINARY \
"–//XAPIA/CMC/ENCODING TYPE//NONSGML Binary//EN"

#define CMC_ET_8_BIT \
"–//XAPIA/CMC/ENCODING TYPE//NONSGML 8 Bit//EN"

#define CMC_ET_QUOTED_PRINTABLE \
"–//XAPIA/CMC/ENCODING TYPE//NONSGML Quoted Printable//EN"

CMC_ET_7_BIT – Specifies that no encoding has been performed on the content information. Additionally, it means
that the content information consists of octets of 7-bit data.

CMC_ET_BASE64 – Specifies that the content information has been encoded in the Base 64 form of RFC 1521/MIME
for arbitrary sequence of octets.

CMC_ET_BINARY – Specifies that no encoding has been performed on the content information. Additionally, it means
that the content information consists of relatively large amounts of data and that the octets may have the high-order bit
set.

CMC_ET_8_BIT – Specifies that no encoding has been performed on the content information. Additionally, it means
that the content information consists of relatively short lines of octets with the high-order bit set.

CMC_ET_QUOTED_PRINTABLE – Specifies that the content information has been encoded in the form of
RFC 1521/MIME for largely printable characters in the ASCII character set such that the resulting octets are unlikely to
be modified by mail transports.

This is a CMC_pv_guid type of property.

5.2.6 File directory

NAME

Content Item File Directory

C DECLARATION

#define CMC_PT_CONTENT_ITEM_FILE_DIRECTORY \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item File Directory//EN"

DESCRIPTION

This property specifies the file directory of the content item when it was added to the message. Where the Content Type
property is CMC_CT_EXTERNAL_MESSAGE, this property denotes the server name as well as the directory name on
a remote server. The format of this string is implementation-defined.

This is a CMC_pv_string type of property.

5.2.7 File name

NAME

Content Item File Name

C DECLARATION

#define CMC_PT_CONTENT_ITEM_FILE_NAME \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item File Name//EN"

DESCRIPTION

This property specifies the file name of the content item when it was added to the message. Where the Content Type
property is CMC_CT_EXTERNAL_MESSAGE, this property denotes the file name on a remote server. The format of
this string is implementation-defined.

This is a CMC_pv_string type of property.

64 Recommendation X.446 (08/97)

5.2.8 Item number

NAME

Content Item Item Number

C DECLARATION

#define CMC_PT_CONTENT_ITEM_ITEM_NUMBER \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Item Number/EN"

DESCRIPTION

This property specifies the sequence number of the item within its parent container, a message object or another content
item. This is a mandatory property.

No two items within a given parent container can have the same value for Item Number.

This is a CMC_pv_uint32 type of property.

5.2.9 Item type

NAME

Content Item Item Type

C DECLARATION

#define CMC_PT_CONTENT_ITEM_ITEM_TYPE \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Item Type//EN"

DESCRIPTION

This property specifies the type of the content item. Valid values for this property include:

CMC_IT_NOTE

CMC_IT_ATTACHMENT

CMC_IT_ANNOTATION

CMC_IT_NOTE – Specifies a note type.

CMC_IT_ATTACHMENT – Specifies an attachment type.

CMC_IT_ANNOTATION – Specifies an annotation on another content item object.

This is a CMC_pv_enum type of property.

5.2.10 Last modified

NAME

Content Item Last Modified

C DECLARATION

#define CMC_PT_CONTENT_ITEM_LAST_MODIFIED \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Last Modified//EN"

DESCRIPTION

This property specifies the date and time that the file from which the content item was derived was last modified.

This is a CMC_pv_iso_date_time type of property.

5.2.11 Object class

NAME

Content Item Object Class

Recommendation X.446 (08/97) 65

C DECLARATION

#define CMC_PT_OBJECT_CLASS \

"–//XAPIA/CMC/PROPERTY//NONSGML Object Class //EN"

DESCRIPTION

This property defines the class of the object as a content item. This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_CONTENT_ITEM which specifies that the
object’s class is a content item.

This is a CMC_pv_enum type of property.

5.2.12 Render position

NAME

Content Item Render Position

C DECLARATION

#define CMC_PT_CONTENT_ITEM_RENDER_POSITION \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Render Position//EN"

DESCRIPTION

This property specifies the position of the content item within its container.

This is a CMC_pv_uint32 type of property.

5.2.13 Size

NAME

Content Item Size

C DECLARATION

#define CMC_PT_CONTENT_ITEM_SIZE \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Size//EN"

DESCRIPTION

This property specifies the size of the content item.

This is a CMC_pv_uint32 type of property.

5.2.14 Title

NAME

Content Item Title

C DECLARATION

#define CMC_PT_CONTENT_ITEM_TITLE \

"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Title//EN"

DESCRIPTION

This property specifies the full description of the content item. For example, "Quarterly Financial Report" could be a
content item title.

This is a CMC_pv_string type of property.

66 Recommendation X.446 (08/97)

5.3 Distribution list object properties
Recommendation X.446 (08/97)

Distribution lists identify groups of users. A distribution list contains recipient objects. The following subclauses define,
declare, and describe distribution list properties.

5.3.1 Address

NAME

Distribution List Address

C DECLARATION

#define CMC_PT_DISTRIBUTION_LIST_ADDRESS \

"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Address//EN"

DESCRIPTION

This property provides the address for a distribution list to be used in mailing to the list. This address is often the same
value as the name of the distribution list. It is an optional property of a distribution list.

This property is generated by the messaging system.

This is a CMC_pv_string type of property.

5.3.2 Comment

NAME

Distribution List Comment

C DECLARATION

#define CMC_PT_DISTRIBUTION_LIST_COMMENT \

"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Comment//EN"

DESCRIPTION

A descriptive comment about the distribution list.

This is a CMC_pv_string type of property.

5.3.3 Last modification time

NAME

Distribution List Last Modification Time

C DECLARATION

#define CMC_PT_DISTRIBUTION_LIST_LAST_MODIFICATION_TIME \

"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Last Modification Time//EN"

DESCRIPTION

This property specifies the date and time of the last update to the distribution list.

This is a CMC_pv_iso_date_time type of property.

5.3.4 Name

NAME

Distribution List Name

C DECLARATION

#define CMC_PT_DISTRIBUTION_LIST_NAME \

"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Name//EN"

Recommendation X.446 (08/97) 67

DESCRIPTION

This property specifies the name of the distribution list. It is a mandatory property for distribution list objects.

The string may be generated by the messaging system from a directory or by the user.

This is a CMC_pv_string type of property.

5.3.5 Object class

NAME
Distribution List Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \
"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as a distribution list. This property is created by
cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_DISTRIBUTION_LIST which specifies that the
object’s class is a distribution list.

This is a CMC_pv_enum type of property.

5.3.6 Parent

NAME
Distribution List Parent

C DECLARATION

#define CMC_PT_DISTRIBUTION_LIST_PARENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Parent//EN"

DESCRIPTION

This property specifies the parent of the distribution list. If the implementation supports the nesting of distribution lists,
this property specifies the parent distribution list. If the distribution list is the top level, this property is not present.
Otherwise, it is mandatory. This property is null for the parent.

This is a CMC_pv_object_handle type of property.

5.3.7 Shared

NAME
Distribution List Shared

C DECLARATION

#define CMC_PT_DISTRIBUTION_LIST_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Shared//EN"

DESCRIPTION

This property indicates whether more than one user has access to this distribution list.

The default value for this property is CMC_FALSE if supported.

This is a CMC_pv_boolean type of property.

5.4 Message object properties

The message object is a collection of message specific object properties. The following subclauses define, declare, and
describe message object properties.

68 Recommendation X.446 (08/97)

5.4.1 Application Id

NAME

Message Application Id

C DECLARATION

#define CMC_PT_MESSAGE_APPLICATION_ID \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Application Id//EN"

DESCRIPTION

This property specifies a globally unique identifier for the message. This property is set by the application.

This is a CMC_pv_string type of property.

5.4.2 Application message status

NAME
Message Application Message Status

C DECLARATION

#define CMC_PT_MESSAGE_APPLICATION_MSG_STATUS \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Application Msg Status//EN"

DESCRIPTION

This property specifies the caller specified status for the message. This property can be used by the caller to mark
whether a message is a draft or completed message. There are no implied semantics to the messaging service; however,
the value of the property is persistent across sessions.

The valid values for this property include:

CMC_MESSAGE_STATUS_DRAFT

CMC_MESSAGE_STATUS_DRAFT – Specifies that the message is in draft mode.

This is a CMC_pv_flags type of property.

5.4.3 Auto-Action

NAME
Message Auto-Action

C DECLARATION

#define CMC_PT_MESSAGE_AUTO_ACTION \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Auto Action//EN"

DESCRIPTION

This property specifies the automatic action or disposition of the message after it is sent. Support for this property is
optional for implementations conforming to this Recommendation. In the case of newly created messages, the property is
created by a call to cmc_add_properties(). In the case of newly created messages, the property can also be modified by
a call to cmc_add_properties() or deleted by a call to cmc_delete_properties(). This property at the message object
will override the preference set in the profile container object.

The valid value for this property is:

CMC_AA_DELETE

Set: The specified message is to be deleted by the underlying messaging system after it has been
successfully submitted for transfer.

Clear: The specified message is placed in the sent folder if it exists. If not, the message is deleted.

This is a CMC_pv_flags type of property.

Recommendation X.446 (08/97) 69

5.4.4 Deferred delivery time

NAME
Message Deferred Delivery Time

C DECLARATION

#define CMC_PT_MESSAGE_DEFERRED_DELIVERY_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Deferred Delivery Time//EN"

DESCRIPTION

This property specifies the UTC (Coordinate Universal Time) date and time before which the message should not be
delivered to recipients.

This is a CMC_pv_iso_date_time type of property.

5.4.5 Id

NAME
Message Id

C DECLARATION

#define CMC_PT_MESSAGE_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Id//EN"

DESCRIPTION

This property specifies a globally unique identifier for the message. This property is set by
cmc_send_message_object(), is defined by the messaging service (established at submission), and is unique within
the domain.

In gateway applications, the Message Id may be added or updated by the caller.

This is a CMC_pv_string type of property.

5.4.6 In message status

NAME
Message In Message Status

C DECLARATION

#define CMC_PT_MESSAGE_IN_MSG_STATUS \
"–//XAPIA/CMC/PROPERTY//NONSGML Message In Msg Status//EN"

DESCRIPTION

This property specifies the messaging service specified, input or receipt status for the message. This property is used by
the underlying messaging service to record modal status information about the receipt and processing of the message.
For example, the fact that a message has just been received in an inbox, has been read, or has been changed from its
original receipt can be specified by the messaging service.

Support for this property is optional for implementations conforming to this Recommendation. The property is
read-only; it is created and modified by the underlying messaging service. The property cannot be deleted by the user.

The valid values for this property include:

CMC_MESSAGE_STATUS_NEW
CMC_MESSAGE_STATUS_READ
CMC_MESSAGE_STATUS_CHANGED

CMC_MESSAGE_STATUS_NEW – Specifies that the message has just been received by the underlying messaging
service. The flag will be reset when the session is closed, the message object is accessed, or the message container is
closed.

CMC_MESSAGE_STATUS_READ – Specifies that the message has been read. This status flag is set when a property
of one of the subordinate content item objects for the message has been read by a call to cmc_read_properties().

70 Recommendation X.446 (08/97)

CMC_MESSAGE_STATUS_CHANGED – Specifies whether the contents of a message has changed from the form it
was in when it was originally received. This status flag is set when any property contained within the message object is
added to or modified by a call to the cmc_add_properties() function or deleted by a call to the
cmc_delete_properties() function.

This is a CMC_pv_flags type of property.

5.4.7 In reply to

NAME
Message In Reply To

C DECLARATION

#define CMC_PT_MESSAGE_IN_REPLY_TO \
"–//XAPIA/CMC/PROPERTY//NONSGML Message In Reply To//EN"

DESCRIPTION

This property specifies the previous correspondence which this message answers.

The property value may be a textual reference or may be a textual approximation of the message identifier of the
previous correspondence.

This is a CMC_pv_string type of property.

5.4.8 Item count

NAME
Message Item Count

C DECLARATION

#define CMC_PT_MESSAGE_ITEM_COUNT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Item Count//EN"

DESCRIPTION

This property specifies the number of top-level content items contained in a message. This count does not include
content items nested in other content items, messages, or reports. This property is set by the implementation.

This is a CMC_pv_uint32 type of property.

5.4.9 NRN diagnostic

NAME
Message NRN Diagnostic

C DECLARATION

#define CMC_PROP_TYPE_MESSAGE_NRN_DIAGNOSTIC \
"–//XAPIA/CMC/PROPERTY//NONSGML Message NRN Diagnostic//EN"

DESCRIPTION

The property specifies the diagnostic details of the reason for the non-receipt notification. These are additional details for
the non-receipt reason. This property only pertains to messages of type CMC_MT_RECEIPT.

This is a CMC_pv_string type of property.

5.4.10 NRN reason

NAME
Message NRN Reason

C DECLARATION

#define CMC_PROP_TYPE_MESSAGE_NRN_REASON \
"–//XAPIA/CMC/PROPERTY//NONSGML Message NRN Reason//EN"

Recommendation X.446 (08/97) 71

DESCRIPTION

This property explains why the message was not received. This property only pertains to messages of type
CMC_MT_RECEIPT with the receipt type property of CMC_RECEIPT_NRN.

This is a CMC_pv_string type of property.

5.4.11 Object class

NAME

Message Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \

"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as a message.

This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_MESSAGE which specifies that the object’s class
is a message.

This is a CMC_pv_enum type of property.

5.4.12 Out message status

NAME

Message Out Message Status

C DECLARATION

#define CMC_PT_MESSAGE_OUT_MSG_STATUS \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Out Msg Status//EN"

DESCRIPTION

This property specifies the messaging service specified, output or disposition status for the message. This property is
used by the underlying messaging service to record modal status information about the disposition of the message. For
example, the fact that a message has been marked for delete, has been submitted for transfer, or is in the process of being
sent can be specified by the messaging service.

Support for this property is optional for implementations conforming to this Recommendation. The property is
read-only; it is created and modified by the underlying messaging service. The property cannot be deleted by the user.

The valid values for this property include:

CMC_MESSAGE_STATUS_DELETED
CMC_MESSAGE_STATUS_SUBMITTED
CMC_MESSAGE_STATUS_SENT

CMC_MESSAGE_STATUS_DELETED – Specifies that the message is in transition to being deleted. In some
implementation environments (e.g. disconnected user), a deletion operation on a message may not be able to be acted on
immediately. This flag indicates that even though the message appears in a message container, it has been marked for
delete.

CMC_MESSAGE_STATUS_SUBMITTED – Specifies that the message has been submitted for transfer by the
underlying messaging service by either a call to the cmc_send_message_object() function or a call to the
cmc_commit_object() function for committing a message object to an outbox type of message container. In some
implementation environments (e.g. disconnected user), a send operation on a message may not be able to be acted on
immediately. This flag indicates that even though the message appears in a message container, it has been marked for
submission to the underlying messaging service.

72 Recommendation X.446 (08/97)

CMC_MESSAGE_STATUS_SENT – Specifies that the message is in transition to being sent by the underlying
messaging service. In some implementation environments, the transfer of a message by the underlying messaging service
may not be immediate. In such cases, the message may appear in a message container even though it has been sent by the
application. This flag indicates such a state.

This is a CMC_pv_flags type of property.

5.4.13 Priority

NAME
Message Priority

C DECLARATION

#define CMC_PT_MESSAGE_PRIORITY \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Priority//EN"

DESCRIPTION

This property specifies the priority of the message. The property is defaultable. It can be set when the message is created.

The valid values for this property include:

CMC_PRIORITY_URGENT
CMC_PRIORITY_NORMAL
CMC_PRIORITY_LOW

CMC_PRIORITY_URGENT – Specifies that the message is of an urgent priority.

CMC_PRIORITY_NORMAL – Specifies that the message is of a nominal priority. This is the default value.

CMC_PRIORITY_LOW – Specifies that the message is of a low priority.

This is a CMC_pv_enum type of property.

5.4.14 Receipt requested

NAME
Message Receipt Requested

C DECLARATION

#define CMC_PT_MESSAGE_RECEIPT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Receipt Requested//EN"

DESCRIPTION

This property indicates whether a receipt for the message sent was requested.

The valid values for this property are:

CMC_RECEIPT_RN
CMC_RECEIPT_NRN
CMC_RECEIPT_BOTH
CMC_RECEIPT_NONE

CMC_RECEIPT_RN – Requests that a receipt notification is returned only when the recipient has received the subject
message.

CMC_RECEIPT_NRN – Requests that a non-receipt notification is returned only when the recipient has failed to
receive the subject message.

CMC_RECEIPT_BOTH – Requests that either a receipt notification or a non-receipt notification is returned depending
on whether the recipient has received or failed to receive the subject message.

CMC_RECEIPT_NONE – Requests that no receipt should be returned regardless of whether the recipient has received
or failed to receive the subject message.

This is a CMC_pv_enum type of property.

Recommendation X.446 (08/97) 73

5.4.15 Receipt type

NAME
Message Receipt Type

C DECLARATION

#define CMC_PT_MESSAGE_RECEIPT_TYPE \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Receipt Type//EN"

DESCRIPTION

The type of the receipt returned for the subject message. This is used to indicate whether the subject message has been
received or not received by the intended recipient.

The valid values for this property include:

CMC_RECEIPT_RN
CMC_RECEIPT_NRN

CMC_RECEIPT_RN – Specifies that this is a receipt notification.

CMC_RECEIPT_NRN – Specifies that this is a non-receipt notification.

This property pertains only if the message type property has the value of CMC_MESSAGE_TYPE_RECEIPT.

This is a CMC_pv_enum type of property.

5.4.16 Report requested

NAME
Message Report Requested

C DECLARATION

#define CMC_PT_MESSAGE_REPORT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Report Requested//EN"

DESCRIPTION

The type of the report to be returned for the subject message. This is used to indicate whether the subject message has
been delivered or not delivered by the underlying messaging transport systems.

The valid values for this property include:

CMC_REPORT_DR
CMC_REPORT_NDR
CMC_REPORT_BOTH
CMC_REPORT_NONE

CMC_REPORT_DR – Specifies that a delivery report is requested.

CMC_REPORT_NDR – Specifies that a non-delivery report is requested.

CMC_REPORT_BOTH – Specifies that either delivery report, or non-delivery report is requested, whichever applicable.

CMC_REPORT_NONE – Specifies that neither delivery report nor non-delivery report is requested.

This is a CMC_pv_enum type of property.

5.4.17 Role

NAME
Message Role

C DECLARATION

#define CMC_PT_MESSAGE_ROLE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Role//EN"

74 Recommendation X.446 (08/97)

DESCRIPTION

The role of this message.

The valid values for this property include:

CMC_MESSAGE_ROLE_ORIGINAL
CMC_MESSAGE_ROLE_RETURNED
CMC_MESSAGE_ROLE_FORWARDED
CMC_MESSAGE_ROLE_REPLIED
CMC_MESSAGE_ROLE_OBSOLETED
CMC_MESSAGE_ROLE_RESENT

CMC_MESSAGE_ROLE_ORIGINAL – Specifies that this is the original message.

CMC_MESSAGE_ROLE_RETURNED – Specifies that this is a returned message, content of another message.

CMC_MESSAGE_ROLE_FORWARDED – Specifies that this is a forwarded message, content of another message.

CMC_MESSAGE_ROLE_REPLIED – Specifies that this is a reply message to another message.

CMC_MESSAGE_ROLE_OBSOLETED – Specifies that this is an obsolete message.

CMC_MESSAGE_ROLE_RESENT – Specifies that this is a resent copy of another message, the original.

This is a CMC_pv_enum type of property.

5.4.18 Sensitivity

NAME
Message Sensitivity

C DECLARATION

#define CMC_PT_MESSAGE_SENSITIVITY \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Sensitivity//EN"

DESCRIPTION

This property specifies the sensitivity of the message.

The valid values for this property include:

CMC_MESSAGE_SENSITIVITY_PERSONAL
CMC_MESSAGE_SENSITIVITY_PRIVATE
CMC_MESSAGE_SENSITIVITY_CONFIDENTIAL
CMC_MESSAGE_SENSITIVITY_NONE

CMC_MESSAGE_SENSITIVITY_PERSONAL – Specifies that the message is personal.

CMC_MESSAGE_SENSITIVITY_PRIVATE – Specifies that the message is private.

CMC_MESSAGE_SENSITIVITY_CONFIDENTIAL – Specifies that the message is confidential.

CMC_MESSAGE_SENSITIVITY_NONE – Specifies that the message is non-sensitive.

This is a CMC_pv_enum type of property.

5.4.19 Size

NAME
Message Size

C DECLARATION

#define CMC_PT_MESSAGE_SIZE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Size//EN"

DESCRIPTION

This property specifies the size of the message.

This is a CMC_pv_uint32 type of property.

Recommendation X.446 (08/97) 75

5.4.20 Subject

NAME
Message Subject

C DECLARATION

#define CMC_PT_MESSAGE_SUBJECT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Subject//EN"

DESCRIPTION

This property states the subject of the message. This property is defaultable to a null string.

This is a CMC_pv_string type of property.

5.4.21 Time received

NAME
Message Time Received

C DECLARATION

#define CMC_PT_MESSAGE_TIME_RECEIVED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Time Received//EN"

DESCRIPTION

This property specifies the date and time that the message was received.

This is a CMC_pv_iso_date_time type of property.

5.4.22 Time sent

NAME
Message Time Sent

C DECLARATION

#define CMC_PT_MESSAGE_TIME_SENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Time Sent//EN"

DESCRIPTION

This property specifies the date and time that the message was sent.

This property is set by the service in cmc_send_message_object().

This is a CMC_pv_iso_date_time type of property.

5.4.23 Type

NAME
Message Type

C DECLARATION

#define CMC_PT_MESSAGE_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Type//EN"

DESCRIPTION

This property specifies the type of the message. Support for this property is optional for implementations conforming to
this Recommendation. In the case of received or existing messages, the property can be created by the messaging
system. In the case of newly created messages, the property is created by a call to cmc_add_properties(). In the case of
newly created messages, the property can also be modified by a call to cmc_add_properties() or deleted by a call to
cmc_delete_properties().

The valid values for this property are:

CMC_MT_IPM
CMC_MT_RECEIPT
CMC_MT_EDI

76 Recommendation X.446 (08/97)

CMC_MT_DIRECTORY
CMC_MT_DOCMGMT
CMC_MT_WORKFLOW
CMC_MT_CALSCHED

CMC_MT_IPM – Electronic mail or interpersonal message, in the parlance of Recommendation X.400.

CMC_MT_RECEIPT – A messaging receipt. This message type is used for Receipt Notification and Non-Receipt
Notification. The message type may also be useful for other message receipts also.

The following message types are reserved for the purposes specified. The values represent work-in-progress by the
XAPIA and other industry groups. These message types may be modified in future versions of this Recommendation to
reflect completion of this work.

CMC_MT_EDI – Electronic data interchange type message. The form and format of the EDI messages are not specified
by this Recommendation.

CMC_MT_DIRECTORY – Directory services type message. This message type provides for the use of the messaging
services as a transport for directory inquiry functions. The form and format of the directory messages are not specified
by this Recommendation.

CMC_MT_DOCMGMT – Document management type message. This message type provides for the access and search
of library services using the messaging service as a transport for the document management inquiry functions. The form
and format of the document management messages are not specified by this Recommendation.

CMC_MT_WORKFLOW – Workflow management type message. This message type facilitates the automated handling
of business processes by using the messaging service as a transport for the workflow functions. The form and format of
the workflow management messages are not specified by this Recommendation.

CMC_MT_CALSCHED – Calendaring and Scheduling type message. This message type provides the use of the
messaging service as a transport for calendaring and scheduling functions. The form and format of the calendaring and
scheduling messages are not specified by this Recommendation. There are other XAPIA specifications that provide for
the definition of calendaring and scheduling interoperability specification.

This is a CMC_pv_enum type of property.

5.5 Message container object properties

A message container object is a collection of container properties, message objects, and, quite possibly, other message
containers. The following subclauses define, declare, and describe message container object properties.

5.5.1 Child allowed

NAME

Message Container Child Allowed

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_CHILD_ALLOWED \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Child Allowed//EN"

DESCRIPTION

This property permits or denies the existence of a child of the message container.

This is a CMC_pv_boolean type of property.

5.5.2 Comment

NAME

Message Container Comment

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_COMMENT \

"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Comment//EN"

Recommendation X.446 (08/97) 77

DESCRIPTION

A descriptive comment about the message container.

This is a CMC_pv_string type of property.

5.5.3 Location

NAME
Message Container Location

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_LOCATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Location//EN"

DESCRIPTION

The location of the message container.

The valid values for this property include:

CMC_MESSAGE_CONTAINER_LOCATION_LOCAL
CMC_MESSAGE_CONTAINER_LOCATION_SERVER
CMC_MESSAGE_CONTAINER_LOCATION_UNKNOWN

CMC_MESSAGE_CONTAINER_LOCATION_LOCAL – Specifies that the location of the message container is local
and not on the messaging server.

CMC_MESSAGE_CONTAINER_LOCATION_SERVER – Specifies that the location of the message container is on
the messaging server.

CMC_MESSAGE_CONTAINER_LOCATION_UNKNOWN – Specifies that the location of the message container is
unknown.

This is a CMC_pv_enum type of property.

5.5.4 Name

NAME
Message Container Name

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Name//EN"

DESCRIPTION

The name of the message container.

This is a CMC_pv_string type of property.

5.5.5 Object class

NAME
Message Container Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \
"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as a message container.

This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_MESSAGE_CONTAINER which specifies that
the object’s class is a message container.

This is a CMC_pv_enum type of property.

78 Recommendation X.446 (08/97)

5.5.6 Parent

NAME
Message Container Parent

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_PARENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Parent//EN"

DESCRIPTION

The parent of the message container. If the implementation supports the nesting of message containers, this property
specifies the parent message container. If the message container is the top level, this property is not present. Otherwise, it
is mandatory.

This is a CMC_pv_object_handle type of property.

5.5.7 Server name

NAME
Message Container Server Name

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_SERVER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Server Name//EN"

DESCRIPTION

This property specifies the name of the server on which the message container is located.

This is a CMC_pv_string type of property.

5.5.8 Shared

NAME
Message Container Shared

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Shared//EN"

DESCRIPTION

This property specifies whether more than one user has access to this message container.

This is a CMC_pv_boolean type of property.

5.5.9 Type

NAME
Message Container Type

C DECLARATION

#define CMC_PT_MESSAGE_CONTAINER_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Type//EN"

DESCRIPTION

This property specifies the type of the container of the message.

The valid values for this property include:

CMC_MCT_DELETED
CMC_MCT_DRAFTS
CMC_MCT_FILED
CMC_MCT_INBOX
CMC_MCT_OUTBOX
CMC_MCT_SENT

Recommendation X.446 (08/97) 79

CMC_MCT_DELETED – Specifies that the message container is for deleted messages.

CMC_MCT_DRAFTS – Specifies that the message container is for draft messages.

CMC_MCT_FILED – Specifies that the message container is for filed messages.

CMC_MCT_INBOX – Specifies that the message container is the inbox. An implementation may have more than one
inbox.

CMC_MCT_OUTBOX – Specifies that the message container is for outgoing messages. An implementation must have
at least one outbox and it is mandatory. Objects committed to the outbox are not modifiable. Committed objects can only
be deleted or copied.

CMC_MCT_SENT – Specifies that the message container is for messages that have been sent. The sent box is optional.
An implementation will have, at the most, one sent box (0-1 sent box).

This is a CMC_pv_enum type of property.

5.6 Per recipient information object properties

Per Recipient Information objects are components of a report that is generated to reflect the delivery or non-delivery
status of a message. The following subclauses define, declare, and describe the Per Recipient Information object
properties.

5.6.1 Comment

NAME
Per Recipient Information Comment

C DECLARATION

#define CMC_PT_PRI_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Comment//EN"

DESCRIPTION

This property provides supplementary information about the status of the message.

This is a CMC_pv_string type of property.

5.6.2 Delivery time

NAME
Per Recipient Information Delivery Time

C DECLARATION

#define CMC_PT_PRI_DELIVERY_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Delivery Time//EN"

DESCRIPTION

This property specifies the date and time that the subject message was delivered.

This property is set by the service in cmc_send_message_object().

This property is mandatory if the per recipient information type is CMC_PRI_DR.

This is a CMC_pv_iso_date_time type of property.

5.6.3 Diagnostic

NAME
Per Recipient Information Diagnostic

C DECLARATION

#define CMC_PT_PRI DIAGNOSTIC \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Diagnostic//EN"

80 Recommendation X.446 (08/97)

DESCRIPTION

This property specifies the detailed diagnostic information indicating why the subject message was not delivered.

This is a CMC_pv_string type of property.

5.6.4 Object class

NAME

Per Recipient Information Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \

"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as a Per Recipient Information.

This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OC_PER_RECIPIENT_INFORMATION which specifies that the
object’s class is a Per Recipient Information.

This is a CMC_pv_enum type of property.

5.6.5 Reason

NAME

Per Recipient Information Reason

C DECLARATION

#define CMC_PT_PRI_REASON \

"–//XAPIA/CMC/PROPERTY//NONSGML PRI Reason//EN"

DESCRIPTION

This property specifies the reason indicating why the per recipient information was generated.

This property is mandatory if the per recipient information type is CMC_PRI_NDR.

This is a CMC_pv_string type of property.

5.6.6 Recipient address

NAME

Per Recipient Information Recipient Address

C DECLARATION

#define CMC_PT_PRI_RECIPIENT_ADDRESS \

"–//XAPIA/CMC/PROPERTY//NONSGML PRI Recipient Address//EN"

DESCRIPTION

This property specifies the address of the recipient intended for the subject message, who either received or was not able
to receive the message, as indicated by the per recipient information type. This is not the originator of the subject
message who would usually be the recipient of this report. The report recipient cannot reply to the report.

This is a CMC_pv_string type of property.

5.6.7 Recipient name

NAME

Per Recipient Information Recipient Name

Recommendation X.446 (08/97) 81

C DECLARATION

#define CMC_PT_PRI_RECIPIENT_NAME \

"–//XAPIA/CMC/PROPERTY//NONSGML PRI Recipient Name//EN"

DESCRIPTION

This property specifies the name of the recipient intended for the subject message, who either received or was not able to
receive the message, as indicated by the per recipient information type. This is not the originator of the subject message
who would usually be the recipient of this report. The report recipient cannot reply to the report.

This is a CMC_pv_string type of property.

5.6.8 Type

NAME

Per Recipient Information Type

C DECLARATION

#define CMC_PT_PRI_TYPE \

"–//XAPIA/CMC/PROPERTY//NONSGML PRI Type//EN"

DESCRIPTION

This property specifies the type of the per recipient information.

The valid values for this property include:

CMC_PRI_DR
CMC_PRI_NDR
CMC_PRI_UNKNOWN

CMC_PRI_DR – Specifies a delivery notice type of per recipient information.

CMC_PRI_NDR – Specifies a non-delivery notice type of per recipient information.

CMC_PRI_UNKNOWN – Specifies that the per recipient information type was not specified or not applicable.

This is a CMC_pv_enum type of property.

5.7 Profile container object properties

The profile container object identifies session context and configuration specific information. The following subclauses
define, declare, and describe profile container properties.

5.7.1 Auto-Action

NAME

Profile Container Auto-Action

C DECLARATION

#define CMC_PT_PROFILE_CONTAINER_AUTO_ACTION \

"–//NONSGML Profile Container Auto Action//EN"

DESCRIPTION

This property specifies the automatic action or disposition of the message after it is sent. Support for this property is
optional for implementations conforming to this Recommendation. In the case of newly created messages, the property is
created by a call to cmc_add_properties(). In the case of newly created messages, the property can also be modified by
a call to cmc_add_properties() or deleted by a call to cmc_delete_properties(). This value can be overridden by the
CMC_PT_MESSAGE_AUTO_ACTION property at the message object on a per message basis.

82 Recommendation X.446 (08/97)

The valid value for this property is:

CMC_AA_DELETE

Set: The specified message is to be deleted by the underlying messaging system after it has been
successfully submitted for transfer.

Clear: The specified message is placed in the sent folder if it exists. If not, the message is deleted.

This is a CMC_pv_flags type of property.

5.7.2 Character Set

NAME

Profile Container Character Set

C DECLARATION

#define CMC_PT_PROFILE_CHARACTER_SET \

"–//XAPIA/CMC/PROPERTY//NONSGML Profile Character Set//EN"

DESCRIPTION

The character set to be used for conveying string data between the user and CMC. The property value is an array of
character set object identifiers associated with the implementation. The array is a counted array. The first character set
identifier in the array is the default character set used if the caller does not specify one explicitly in the cmc_logon()
function. Refer to the platform specific clause in B.2.4 for object identifiers for common character sets.

This is a CMC_pv_array_of_guid type of property.

5.7.3 Conformance

NAME

Profile Container Conformance

C DECLARATION

#define CMC_PT_PROFILE_CONF \

"–//XAPIA/CMC/PROPERTY//NONSGML Profile Conf//EN"

DESCRIPTION

The conformance level of the implementation. The property value will be either CMC_CONF_SIMPLE_CMC if the
implementation supports only the Simple CMC, and CMC_CONF_FULL_CMC if the implementation supports a
stand-alone version of the Full CMC. A value of CMC_CONF_FULL_CMC implies that the implementation also
supports the Simple CMC interface as required by the conformance clause.

This is a CMC_pv_enum type of property.

5.7.4 Default Service

NAME

Profile Container Default Service

C DECLARATION

#define CMC_PT_PROFILE_DEFAULT_SERVICE \

"–//XAPIA/CMC/PROPERTY//NONSGML Profile Default Service//EN"

DESCRIPTION

The default service name. A pointer value of NULL will be written if no default service name is available. This property,
along with the CMC_PT_PROFILE_DEFAULT_USER, can be used as defaults for the service name and user name for
cmc_logon(). This will be returned in the implementation default character set.

This is a CMC_pv_string type of property.

Recommendation X.446 (08/97) 83

5.7.5 Default User

NAME
Profile Container Default User

C DECLARATION

#define CMC_PT_PROFILE_DEFAULT_USER \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Default User//EN"

DESCRIPTION

The default CMC user name. A pointer value of NULL will be written if no default user name is available. This
property, along with the CMC_PROFILE_DEFAULT_SERVICE, can be used as defaults for the provider name and
user name for cmc_logon(). This will be returned in the implementation default character set.

This is a CMC_pv_string type of property.

5.7.6 Line Terminator

NAME
Profile Container Line Term

C DECLARATION

#define CMC_PT_PROFILE_LINE_TERM \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Line Term//EN"

DESCRIPTION

The line terminator characters to be used to terminate lines of strings. The values for the property are
CMC_LINE_TERM_CRLF if the line delimiter is a carriage return followed by a line feed, CMC_LINE_TERM_LF if
the line delimiter is a line feed, or CMC_LINE_TERM_CR if the line delimiter is a carriage return.

This is a CMC_pv_enum type of property.

5.7.7 Object Class

NAME
Profile Container Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \
"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as address book.

The only valid value for this property is CMC_PT_OBJECT_CLASS_PROFILE, which specifies that the object’s class
is a profile container object.

This is a CMC_pv_enum type of property.

5.7.8 Object Extensions Supported

NAME
Profile Container Object Extensions Supported

C DECLARATION

#define CMC_PT_PROFILE_OBJECT_EXT \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Object Ext//EN"

DESCRIPTION

The object class extensions supported by the implementation. The property values are an array of the object class global
identifiers for the object class extensions supported by the implementation. There is not an implicit order to the object
GUIDs in the array.

This is a CMC_pv_array_guid type of property.

84 Recommendation X.446 (08/97)

5.7.9 Objects Supported

NAME
Profile Container Objects Supported

C DECLARATION

#define CMC_PT_PROFILE_OBJECT_SUP \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Object Sup//EN"

DESCRIPTION

The object classes supported by the implementation. The property values are an array of the object class global
identifiers for the object classes supported by the implementation. There is not an implicit order to the object GUIDs in
the array.

This is a CMC_pv_array_guid type of property.

5.7.10 Properties Supported

NAME
Profile Container Properties Supported

C DECLARATION

#define CMC_PT_PROFILE_PROP_SUP \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Prop Sup//EN"

DESCRIPTION

The properties supported by the implementation. The property values are an array of the property global identifiers for
the object properties supported by the implementation. There is not an implicit order to the property GUIDs in the array.

This is a CMC_pv_array_guid type of property.

5.7.11 Property Extensions Supported

NAME
Profile Container Properties Supported

C DECLARATION

#define CMC_PT_PROFILE_PROP_EXT \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Prop Ext//EN"

DESCRIPTION

The property extensions supported by the implementation. The property values are an array of the property global
identifiers for the object property extensions supported by the implementation. There is not an implicit order to the
property GUIDs in the array.

This is a CMC_pv_array_guid type of property.

5.7.12 Required Password

NAME
Profile Container Required Password

C DECLARATION

#define CMC_PT_PROFILE_REQ_PASSWORD \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Req Password//EN"

DESCRIPTION

Whether a password is required for log on to the service. The values of the property are CMC_REQUIRED_NO if the
password is not required to log on, CMC_REQUIRED_OPT if the password is optional to log on, or
CMC_REQUIRED_YES if the password is required to log on.

This is a CMC_pv_enum type of property.

Recommendation X.446 (08/97) 85

5.7.13 Required Service

NAME
Profile Container Required Service

C DECLARATION

#define CMC_PT_PROFILE_REQ_SERVICE \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Req Service//EN"

DESCRIPTION

Whether a service name is required to log on to the service. The values of the property CMC_REQUIRED_NO if the
service name is not required to log on, CMC_REQUIRED_OPT if the service name is optional to log on, or
CMC_REQUIRED_YES if the service name is required to log on.

This is a CMC_pv_enum type of property.

5.7.14 Required User

NAME
Profile Container Required User

C DECLARATION

#define CMC_PT_PROFILE_REQ_USER \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Req User//EN"

DESCRIPTION

Whether a user name is required to log on to the service. The values of the property CMC_REQUIRED_NO if the user
name is not required to log on, CMC_REQUIRED_OPT if the user name is optional to log on, or
CMC_REQUIRED_YES if the user name is required to log on.

This is a CMC_pv_enum type of property.

5.7.15 Support Counted Strings

NAME
Profile Container Support Counted Strings

C DECLARATION

#define CMC_PT_PROFILE_SUP_COUNTED_STR \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Sup Counted Str//EN"

DESCRIPTION

Whether the service supports counted strings. The property value will be set to a true value if the
CMC_COUNTED_STRING_TYPE flag is supported during log on.

This is a CMC_pv_boolean type of property.

5.7.16 Support No Mark As Read

NAME
Profile Container Support No Mark As Read

C DECLARATION

#define CMC_PT_PROFILE_SUP_NOMKMSGREAD \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Sup NoMkMsgRead//EN"

DESCRIPTION

Whether the service supports the cmc_read() CMC_DO_NOT_MARK_AS_READ operation. The property value will
be set to a true value if the CMC_DO_NOT_MARK_AS_READ flag is supported by cmc_read().

This is a CMC_pv_boolean type of property.

86 Recommendation X.446 (08/97)

5.7.17 User Interface Available

NAME
Profile Container User Interface Available

C DECLARATION

#define CMC_PT_PROFILE_UI_AVAIL \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile UI Avail//EN"

DESCRIPTION

Whether a user interface is available for parameter entry and resolution. The property value will be set to a true value if
there is UI provided by the CMC implementation.

This is a CMC_pv_boolean type of property.

5.7.18 Users

NAME
Profile Container Users

C DECLARATION

#define CMC_PT_PROFILE_USERS \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Users//EN"

DESCRIPTION

The users currently logged on to the root container. The property values are the recipient names of the users logged on to
the root container. Support for the property is optional for implementations conforming to this Recommendation.

There is no implicit order to the subsequent recipient names in the array.

This is a CMC_pv_array_string type of property.

5.7.19 Version of the Implementation

NAME
Profile Container Version of the Implementation

C DECLARATION

#define CMC_PT_PROFILE_VER_IMPLEM \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Ver Implem//EN"

DESCRIPTION

The version of the implementation. The property value will be set to the version number of the implementation,
multiplied by 100. For example, version 1.01 will return 101.

This is a CMC_pv_uint16 type of property.

5.7.20 Version of the Specification

NAME
Profile Container Version of the Specification

C DECLARATION

#define CMC_PT_PROFILE_VER_SPEC \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Ver Spec//EN"

DESCRIPTION

The version of the CMC specification supported by the implementation. The property value will be set to the version of
the CMC specification supported by the implementation, multiplied by 100. For example, version 1.00 will return 100.

This is a CMC_pv_uint16 type of property.

Recommendation X.446 (08/97) 87

5.8 Recipient object properties

Recipient objects identify individual users within a messaging service. A recipient object is not a container object. The
following subclauses define, declare, and describe recipient object properties.

5.8.1 Address

NAME

Recipient Address

C DECLARATION

#define CMC_PT_RECIPIENT_ADDRESS \

"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Address//EN"

DESCRIPTION

This property specifies the address of the recipient. The format of the string is implementation-dependent.

In gateway applications, the Address of the Recipient Object whose role is Originator may be added by the gateway.

This is a CMC_pv_string type of property.

5.8.2 Content Return Requested

NAME

Recipient Content Return Requested

C DECLARATION

#define CMC_PT_RECIPIENT_CONTENT_RETURN_REQUESTED \

"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Content Return Requested//EN"

DESCRIPTION

This property specifies whether the subject message should be returned with the non-delivery report in case of
unsuccessful delivery. If the report is not requested, the message will not be returned regardless of the indication of this
property.

This is a CMC_pv_boolean type of property.

5.8.3 Name

NAME

Recipient Name

C DECLARATION

#define CMC_PT_RECIPIENT_NAME \

"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Name//EN"

DESCRIPTION

This property specifies the display name of the recipient. The format of the string is implementation-dependent.

This is a CMC_pv_string type of property.

5.8.4 Object Class

NAME

Recipient Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \

"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

88 Recommendation X.446 (08/97)

DESCRIPTION

This property defines the class of the object as a recipient.

This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_RECIPIENT, which specifies that the object’s
class is a recipient.

This is a CMC_pv_enum type of property.

5.8.5 Receipt Requested

NAME
Recipient Receipt Requested

C DECLARATION

#define CMC_PT_RECIPIENT_RECEIPT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Receipt Requested//EN"

DESCRIPTION

The type of the receipt to be returned for the message.

If both the message object and the recipient object specify the receipt requested property, the value specified at the
recipient object will override the value specified at the message object. The implementation is not required to support
this property at the recipient object level.

The valid values for this property include:

CMC_RECEIPT_RN
CMC_RECEIPT_NRN
CMC_RECEIPT_BOTH
CMC_RECEIPT_NONE

CMC_RECEIPT_RN – Requests that a receipt notification is returned only when the recipient has received the subject
message.

CMC_RECEIPT_NRN – Requests that a non-receipt notification is returned only when the recipient has failed to
receive the subject message.

CMC_RECEIPT_BOTH – Requests that either a receipt notification or a non-receipt notification is returned when the
recipient has received or fails to receive the subject message.

CMC_RECEIPT_NONE – Requests that no receipt should be returned regardless of whether the recipient has received
or fails to receive the subject message.

This is a CMC_pv_enum type of property.

5.8.6 Report Requested

NAME
Recipient Report Requested

C DECLARATION

#define CMC_PT_RECIPIENT_REPORT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Report Requested//EN"

DESCRIPTION

The type of the report to be returned for the subject message. This is used to indicate whether the subject message has
been delivered or not-delivered by the underlying messaging transport systems.

The valid values for this property include:

CMC_REPORT_DR
CMC_REPORT_NDR
CMC_REPORT_BOTH
CMC_REPORT_NONE

Recommendation X.446 (08/97) 89

CMC_REPORT_DR – Specifies that a delivery report is requested.

CMC_REPORT_NDR – Specifies that a non-delivery report is requested.

CMC_REPORT_BOTH – Specifies that either delivery report, or non-delivery report is requested, whichever applicable.

CMC_REPORT_NONE – Specifies that neither delivery report nor non-delivery report is requested.

This is a CMC_pv_enum type of property.

5.8.7 Responsibility Flag

NAME

Recipient Responsibility Flag

C DECLARATION

#define CMC_PT_RECIPIENT_RESPONSIBILITY_FLAG \

"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Responsibility Flag//EN"

DESCRIPTION

This property specifies an indicator of whether this recipient should receive a copy of the message. It is useful in
gateways and situations where multiple versions of CMC may be accessed by an application.

The default for this property is CMC_TRUE.

This is a CMC_pv_boolean type of property.

5.8.8 Role

NAME

Recipient Role

C DECLARATION

#define CMC_PT_RECIPIENT_ROLE \

"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Role//EN"

DESCRIPTION

This property specifies the role of the recipient.

The valid values for this property include:

CMC_RECIPIENT_ROLE_TO
CMC_RECIPIENT_ROLE_CC
CMC_RECIPIENT_ROLE_BCC
CMC_RECIPIENT_ROLE_ORIGINATOR
CMC_RECIPIENT_ROLE_AUTHORIZING_USER
CMC_RECIPIENT_ROLE_REPLY_TO
CMC_RECIPIENT_ROLE_FORWARDED
CMC_RECIPIENT_ROLE_ACTUAL
CMC_RECIPIENT_ROLE_INTENDED

CMC_RECIPIENT_ROLE_TO – Specifies the primary recipient.

CMC_RECIPIENT_ROLE_CC – Specifies the carbon copy recipient.

CMC_RECIPIENT_ROLE_BCC – Specifies the blind carbon copy recipient.

CMC_RECIPIENT_ROLE_ORIGINATOR – Specifies the originator.

90 Recommendation X.446 (08/97)

CMC_RECIPIENT_ROLE_AUTHORIZING_USER – Specifies the authorizing user.

CMC_RECIPIENT_ROLE_REPLY_TO – Specifies recipient to which the reply should be directed.

CMC_RECIPIENT_ROLE_FORWARDED – Specifies the forwarded recipient.

CMC_RECIPIENT_ROLE_ACTUAL – Specifies the actual recipient.

CMC_RECIPIENT_ROLE_INTENDED – Specifies the intended recipient.

This is a CMC_pv_enum type of property.

5.8.9 Type

NAME
Recipient Type

C DECLARATION

#define CMC_PT_RECIPIENT_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Type//EN"

DESCRIPTION

This property specifies the type of the recipient.

The valid values for this property include:

CMC_RCT_UNKNOWN (=0)
CMC_RCT_INDIVIDUAL
CMC_RCT_GROUP
CMC_RCT_REPORT_RECIPIENT

CMC_RCT_UNKNOWN – Specifies an unknown recipient type.

CMC_RCT_INDIVIDUAL – Specifies the recipient as an individual.

CMC_RCT_GROUP – Specifies that the recipient is a distribution list.

CMC_RCT_REPORT_RECIPIENT – Specifies that the recipient is the recipient of a report message.

This is a CMC_pv_enum type of property.

5.9 Report object properties

The report object is a collection of report specific object properties. The following subclauses define, declare, and
describe report object properties.

5.9.1 Application Id

NAME
Report Application Id

C DECLARATION

#define CMC_PT_REPORT_APPLICATION_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Application Id//EN"

DESCRIPTION

This property specifies a globally unique identifier for the report. This property is set by the application.

This is a CMC_pv_string type of property.

5.9.2 Id

NAME
Report Id

C DECLARATION

#define CMC_PT_REPORT_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Id//EN"

Recommendation X.446 (08/97) 91

DESCRIPTION

This property specifies a globally unique identifier for the report. This property is set by cmc_send_message_object(),
is defined by the messaging service (established at submission), and is unique within the domain.

In gateway applications, the Message Id may be added or updated by the caller.

This is a CMC_pv_guid type of property.

5.9.3 Item Count

NAME
Report Item Count

C DECLARATION

#define CMC_PT_REPORT_ITEM_COUNT \

"–//XAPIA/CMC/PROPERTY//NONSGML Report Item Count//EN"

DESCRIPTION

This property specifies the number of top-level content items contained in a report. This count does not include content
items nested in other content items, or messages. This property is set by the implementation.

This is a CMC_pv_uint32 type of property.

5.9.4 Messaging System Id

NAME
Report Messaging System Id

C DECLARATION

#define CMC_PT_REPORT_MESSAGING_SYSTEM_ID \

"–//XAPIA/CMC/PROPERTY//NONSGML Report Messaging System Id//EN"

DESCRIPTION

This property specifies the underlying message transport system identifier or the gateway identifier that created this
report.

This is a CMC_pv_enum type of property.

5.9.5 Object Class

NAME
Report Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \

"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as a report.

This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_REPORT which specifies that the object’s class is
a report.

This is a CMC_pv_enum type of property.

5.9.6 Read

NAME
Report Read

92 Recommendation X.446 (08/97)

C DECLARATION

#define CMC_PT_REPORT_READ \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Read//EN"

DESCRIPTION

This property specifies whether the report has been read.

This is a CMC_pv_boolean type of property.

5.9.7 Size

NAME
Report Size

C DECLARATION

#define CMC_PT_REPORT_SIZE \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Size//EN"

DESCRIPTION

This property specifies the size of the report.

This is a CMC_pv_uint32 type of property.

5.9.8 Subject

NAME
Report Subject

C DECLARATION

#define CMC_PT_REPORT_SUBJECT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Subject//EN"

DESCRIPTION

This property states the subject of the report. This property is defaultable to a NULL string.

This is a CMC_pv_string type of property.

5.9.9 Subject Message Id

NAME
Report Subject Message Id

C DECLARATION

#define CMC_PT_REPORT_SUBJECT_MESSAGE_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Subject Message Id//EN"

DESCRIPTION

This property identifies the user message that caused this report to be generated.

The property value may be a textual reference or may be a textual approximation of the message identifier of the
previous correspondence.

This is a CMC_pv_string type of property.

5.9.10 Time Received

NAME
Report Time Received

C DECLARATION

#define CMC_PT_REPORT_TIME_RECEIVED \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Time Received//EN"

Recommendation X.446 (08/97) 93

DESCRIPTION

This property specifies the date and time that the report was received.

This is a CMC_pv_iso_date_time type of property.

5.9.11 Time Sent

NAME
Report Time Sent

C DECLARATION

#define CMC_PT_REPORT_TIME_SENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Time Sent//EN"

DESCRIPTION

This property specifies the date and time that the report was sent.

This property is set by the service in cmc_send_message_object.

This is a CMC_pv_iso_date_time type of property.

5.9.12 Unsent

NAME
Report Unsent

C DECLARATION

#define CMC_PT_REPORT_UNSENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Unsent//EN"

DESCRIPTION

This property specifies that the report has not been sent.

This is a CMC_pv_boolean type of property.

5.10 Root container object properties

The root is the essential core container object composed of various properties and other container objects. The root
container is composed of address books (containing recipients and other address books), a profile container, and
message containers. The recipient object within the root container cannot be modified.

The following subclauses define, declare, and describe root container object properties.

5.10.1 Child Allowed

NAME
Root Container Child Allowed

C DECLARATION

#define CMC_PT_ROOT_CONTAINER_CHILD_ALLOWED \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Child Allowed//EN"

DESCRIPTION

This property permits or denies the existence of a child of the root container.

This is a CMC_pv_boolean type of property.

5.10.2 Comment

NAME
Root Container Comment

94 Recommendation X.446 (08/97)

C DECLARATION

#define CMC_PT_ROOT_CONTAINER_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Comment//EN"

DESCRIPTION

This property provides a descriptive comment about the root container.

This is a CMC_pv_string type of property.

5.10.3 Location

NAME
Root Container Location

C DECLARATION

#define CMC_PT_ROOT_CONTAINER_LOCATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Location//EN"

DESCRIPTION

This property specifies the location of the root container.

The valid values for this property include:

CMC_ROOT_CONTAINER_LOCATION_LOCAL
CMC_ROOT_CONTAINER_LOCATION_SERVER
CMC_ROOT_CONTAINER_LOCATION_UNKNOWN

CMC_ROOT_CONTAINER_LOCATION_LOCAL – Specifies that the location of the root container is local and not
on the messaging server.

CMC_ROOT_CONTAINER_LOCATION_SERVER – Specifies that the location of the root container is on the
messaging server.

CMC_ROOT_CONTAINER_LOCATION_UNKNOWN – Specifies that the location of the root container is unknown.

This is a CMC_pv_enum type of property.

5.10.4 Name

NAME
Root Container Name

C DECLARATION

#define CMC_PT_ROOT_CONTAINER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Name//EN"

DESCRIPTION

This property specifies the name of the root container.

This is a CMC_pv_string type of property.

5.10.5 Object Class

NAME
Root Container Object Class

C DECLARATION

#define CMC_PT_OBJECT_CLASS \
"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as the root.

This property is created by cmc_open_object_handle().

Recommendation X.446 (08/97) 95

The only valid value for this property is CMC_PT_OBJECT_CLASS_ROOT, which specifies that the object’s class is
the root.

This is a CMC_pv_enum type of property.

5.10.6 Shared

NAME

Root Container Shared

C DECLARATION

#define CMC_PT_ROOT_CONTAINER_SHARED \

"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Shared//EN"

DESCRIPTION

This property specifies whether the root container is shared with another entity.

This is a CMC_pv_boolean type of property.

6 Functional interface

This clause defines the functions of the Common Messaging Call interface. The functions of both the generic and
C interfaces are specified. Those of the C interface are repeated in Annex A, "C declaration summary".

6.1 Simple CMC functions

Simple CMC offers a basic set of functions that are intended to provide messaging-aware capabilities for messaging-
enabled applications. These functions were previously published as CMC Version 1.0. Table 14 lists the functions of the
Simple CMC interface.
Recommendation X.446 (08/97)

Table 14/X.446 – Simple CMC Interface Functions

The manual pages for these functions are given in subsequent pages.

Function Description

Sending messages

Send Send a mail message

Send documents String-based function to send mail

Receiving messages

Act on Perform an action on a specified message

List List summary information about messages meeting specified criteria

Read Read and return a specified message

Looking up names

Look up Looks up addressing information

Administration

Free Free memory allocated by the messaging service

Log off Terminate a session with the messaging service

Log on Establish a session with the messaging service

Query configuration Determine information about the installed CMC service

96 Recommendation X.446 (08/97)

6.1.1 Sending messages

6.1.1.1 Send

NAME

Send – Send a mail message.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_send(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

DESCRIPTION

This function sends a mail message.

The caller can optionally provide a list of recipients, subject text, attachments and/or note text. If one or more recipients
are provided, the function can send the message.

The successful return of this function does not necessarily imply the validation of recipients.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, and a valid session is not created through UI, then the error
CMC_E_INVALID_SESSION_ID is returned.

Message (Message)

Message structure containing the contents of the message to be sent. If the extension argument flag
CMC_X_SEND_UI_REQUESTED is not set or supported, there must be at least one recipient of type TO,
CC, or BCC.

All other fields are optional. The time_sent and message_reference fields are ignored.

The following conditions on the message structure fields apply:

Recipients – The number of recipients per message may be limited in some services. If the limit is
exceeded, the error CMC_E_TOO_MANY_RECIPIENTS is returned. If zero recipients are specified, a
pointer value of NULL should be assigned to recipients.

The recipient descriptor can include either the recipient’s name, an address, or name/address pair. If just a
name is specified, the name is resolved to an address using implementation-defined name resolution rules.
If just an address is specified, then this address is used for delivery and for the recipient display name. If
both an address and a name are specified, a resolution of the name should not be performed. If an
implementation cannot support both names and addresses, then the name is ignored. The address is in an
implementation-defined format and is assumed to have been obtained from the implementation using
some other means. A recipient of type originator is not required for send; if present, its action is defined
by the CMC implementation.

Attachments – The number of attachments per message may be limited in some services. If the limit is
exceeded, the CMC_E_TOO_MANY_FILES is returned. A pointer value of NULL indicates no
attachments. The attachment files are read before the cmc_send() function returns, so that the files may
be freely changed or deleted without affecting the message.

Recommendation X.446 (08/97) 97

Subject – A pointer value of NULL indicates no subject text. Some implementations may truncate subject
lines which are too long or contain carriage returns/line feeds/form feeds.

Note Text – A pointer value of NULL indicates no text. Implementations may place limits on the size of
the text. If the note text exceeds the limit of the service, it may demote the body text to an attachment or
generate the error CMC_E_TEXT_TOO_LARGE.

Message Type – Pointer to a string which is the message type. The type specifies the type of message
being sent (see description of Message data structure for details). To specify an interpersonal message, the
string "CMC: IPM" is used. If a pointer value of NULL or a pointer to an empty string is given, the
value "CMC: IPM" is assumed.

Flags – The following flag may be used when sending a message:

CMC_MSG_TEXT_NOTE_AS_FILE.

All other flags will be ignored. For more information on these flags, see the description of the message
structure.

Send Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_LOGON_UI_ALLOWED

CMC_SEND_UI_REQUESTED

CMC_ERROR_UI_ALLOWED

CMC_COUNTED_STRING_TYPE

CMC_LOGON_UI_ALLOWED – Set if the function should display a dialogue box to prompt for logon if
required. If not set, the function will not display a dialogue box and will return the error
CMC_E_INVALID_SESSION_ID if the user is not logged on.

CMC_SEND_UI_REQUESTED – Set if the function should display a dialogue box to prompt for recipients,
the message fields, and other sending options. If not set, the function will not display a dialogue box, but at
least one recipient must be specified.

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_COUNTED_STRING_TYPE – Set if the string type used in the message is counted string. If not set,
the strings are assumed to be null terminated. If the session parameter is valid, this flag is ignored.

UI Identifier (UI Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which arise when the service
performs the function, in prompting the user for additional information, or in verifying or acknowledging
information which has been provided.

Ignored if UI is not supported by the CMC implementation.

Send Extensions (Extensions)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

98 Recommendation X.446 (08/97)

RESULTS

Send Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Indicates whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_ATTACHMENT_NOT_FOUND
CMC_E_ATTACHMENT_OPEN_FAILURE
CMC_E_ATTACHMENT_READ_FAILURE
CMC_E_ATTACHMENT_WRITE_FAILURE
CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_PARAMETER
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_LOGON_FAILURE
CMC_E_RECIPIENT_NOT_FOUND
CMC_E_TEXT_TOO_LARGE
CMC_E_TOO_MANY_FILES
CMC_E_TOO_MANY_RECIPIENTS
CMC_E_UNSUPPORTED_DATA_EXT
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_USER_CANCEL
CMC_E_USER_NOT_LOGGED_ON

6.1.1.2 Send Documents

NAME

Send Documents – String-based function to send mail.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_send_documents(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string attach_titles,
CMC_string delimiter,
CMC_ui_id ui_id

);

DESCRIPTION

This function sends a mail message. This function is primarily intended for calling from a "scripting" language
(e.g. spreadsheet macro) that cannot handle data structures.

This function will try to establish a session without logon UI. If this is not possible, it will prompt for logon information
to establish a session. The session is always closed on completion.

Recommendation X.446 (08/97) 99

ARGUMENTS

Recipient Addresses (String)

Pointer to a string containing the recipient addresses for the message. When multiple recipients are specified,
they should be separated by the Delimiter character. Recipients are assumed to be primary recipients unless
prefixed by "cc:" or "bcc:" for copy recipients and blind copy recipients. The prefix "to:" may also be used for
consistency. A pointer value of NULL indicates that recipients should be prompted for in a dialogue.

Subject (String)

Pointer to a string containing the subject of a message. A pointer value of NULL indicates no subject text.

Text Note (String)

Pointer to a string containing the note text to be carried with the message. A pointer value of NULL indicates
no note text.

Send Doc Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_COUNTED_STRING_TYPE

CMC_FIRST_ATTACH_AS_TEXT_NOTE

CMC_COUNTED_STRING_TYPE – Set if the string type used in the message is counted string. If not set,
the strings are assumed to be null terminated.

CMC_FIRST_ATTACH_AS_TEXT_NOTE – Set if the first attachment should be sent as the message text
note. If not set, the text note is contained in the text note field.

File Paths (String)

Pointer to a string containing the actual path names for the attachment files. When multiple path names are
specified, they should be separated by the Delimiter character.

Attach Titles (String)

Pointer to a string containing the attachment titles to be seen by the recipient. When multiple names are
specified, they should be separated by the Delimiter character.

Delimiter (String)

Pointer to a character that is used to delimit the names in the File Paths, File Names, and Recipient Addresses
strings. This character should be chosen to be one not used in operating system file names or recipient names.
This parameter cannot be NULL.

UI Identifier (UI Id)

Pointer to an identifier for a User Interface (e.g. dialogue window) for use in resolving any questions which
might otherwise result in an error and queries the user for additional information as required.

Ignored if UI is not supported by the CMC implementation.

RESULTS

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

100 Recommendation X.446 (08/97)

ERRORS

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_FLAG

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_UI_ID

CMC_E_LOGON_FAILURE

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNSUPPORTED_FLAG

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

6.1.2 Receiving messages

6.1.2.1 Act On

NAME

Act On – Perform an action on a specified message.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_act_on(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

DESCRIPTION

This function performs the action specified on the message indicated by the message_reference.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Message Reference (Message Reference)

Specifies the message reference of the message to be acted upon.

If the message reference is invalid (or no longer valid, such as after it has been deleted), then the
error CMC_E_INVALID_MESSAGE_REFERENCE is returned. NULL message reference pointers and
message references of length zero are considered invalid for operations that require this parameter.

Recommendation X.446 (08/97) 101

Operation (Enum)

The operation to perform on the message. Valid operations include:

CMC_ACT_ON_EXTENDED (= 0)

CMC_ACT_ON_DELETE

CMC_ACT_ON_EXTENDED – Look in the list of extensions for the action to carry out.

CMC_ACT_ON_DELETE – Action requested is to delete the specified message from mailbox. This operation
requires a valid message reference parameter.

Act On Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_ERROR_UI_ALLOWED

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

UI Id (UI Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which might otherwise result
in an error.

Ignored if UI is not supported by the CMC implementation.

Act On Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Act On Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_ENUM

CMC_E_INVALID_FLAG

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_UI_ID

CMC_E_MESSAGE_IN_USE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

102 Recommendation X.446 (08/97)

6.1.2.2 List

NAME

List – List summary information about messages which meet a specified criteria.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_list(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

DESCRIPTION

This function lists summary information, including a message reference, about messages which meet the specified
criteria. Using the returned message reference(s), the message(s) may be further processed using cmc_read()
and cmc_act_on().

Optional criteria include:

– the message is of a specified message type; and

– the message is as yet unread.

The search begins after a specified "seed" message reference, or at the beginning of the mailbox. A maximum number of
messages to list can be specified. The function returns the actual number of messages returned.

Optionally, each message summary returned in "result" can include only the message reference.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Message Type (String)

Information is returned only for messages of the specified type. If the type is not recognized, the
error CMC_E_UNRECOGNIZED_MESSAGE_TYPE will be returned. The format of the Message Type
string is given in 5.4.23.

A NULL indicates that information should be returned for all available messages.

List Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_ERROR_UI_ALLOWED

CMC_LIST_UNREAD_ONLY

CMC_LIST_MSG_REFS_ONLY

CMC_LIST_COUNT_ONLY

Recommendation X.446 (08/97) 103

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_LIST_UNREAD_ONLY – If set, list should include only unread messages. If not set, list may include
both read and unread messages.

CMC_LIST_MSG_REFS_ONLY – If set, only Message Reference is populated in the result structure. Values
of other fields are undefined, and should be ignored. If not set, all information in the result structure is
returned.

CMC_LIST_COUNT_ONLY – If set, the function should not return any summary structures, only the count
of messages meeting the specified criteria. If not set, summary structures will be returned.

Seed (Message Reference)

Specifies the message reference of the message after which the search should begin. If the message reference is
invalid (or no longer valid, such as after it has been deleted), then the error
CMC_E_INVALID_MESSAGE_REFERENCE is returned.

A NULL message reference seed pointer indicates that the search should start with the first message in the
mailbox.

Count (Uint32)

Specifies the maximum number of messages to return. A value of zero specifies no maximum.

UI Id (UI Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which might otherwise result
in an error.

Ignored if UI is not supported by the CMC implementation.

List Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Count (Uint32)

Specifies the number of messages actually returned. If no messages match the criteria, or if the mailbox is
empty, a value of zero is returned.

Result (Message Summary)

The "result" field is the address at which an array of CMC_message_summary structures is to be returned. This
array of structures is allocated by the service, and the entire array should be freed with a single call
to cmc_free().

The message reference field contained in each CMC_message_summary may be used to identify messages in
subsequent calls to cmc_read() and cmc_act_on().

NOTE – The message reference field may need to be copied prior to invoking cmc_free() on this structure.

If the CMC_LIST_MSG_REFS_ONLY flag has been set, the CMC_message_summary structures will return
only message references. Values of other fields are undefined, and should be ignored.

104 Recommendation X.446 (08/97)

List Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_REFERENCE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_UNRECOGNIZED_MESSAGE_TYPE
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.1.2.3 Read

NAME

Read – Read and return a specified message.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_read(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

DESCRIPTION

This function returns a message structure containing the data from the message indicated by the specified message
reference. Optionally, the message structure returned can include only the message and attachment headers.

If the flag CMC_MSG_TEXT_NOTE_AS_FILE is set in the returned message structure, then the text note field is
contained in the file referred to by the first attachment.

For systems that can mark messages as read, a message will have the state "READ" after this function successfully
executes, unless the flag CMC_DO_NOT_MARK_AS_READ is set.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Message Reference (Message Reference)

Specifies the message reference of the message to be read and returned. If the message reference is
invalid (or no longer valid, such as after it has been deleted), then the error
CMC_E_INVALID_MESSAGE_REFERENCE is returned.

Recommendation X.446 (08/97) 105

A NULL message reference pointer indicates that the first message in the mailbox should be read and returned.

Read Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_ERROR_UI_ALLOWED

CMC_MSG_AND_ATT_HDRS_ONLY

CMC_DO_NOT_MARK_AS_READ

CMC_READ_FIRST_UNREAD_MESSAGE

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_MSG_AND_ATT_HDRS_ONLY – If set, the attachments[n].attach_filename fields will be undefined
when cmc_read() returns, and should be ignored. This may be useful to reduce the amount of data transferred.
If clear, the attachment_filename fields will be returned normally.

NOTE – If CMC_MSG_TEXT_NOTE_AS_FILE is set in the message to indicate that the text note is stored in the first
attachment, the attachment_filename field will be returned for that attachment regardless of the setting of this flag.

CMC_DO_NOT_MARK_AS_READ – If set, the state of the message is not changed to read when the
function is returned. This will also suppress sending of a Receipt Report. The implementation can be queried
to see if it supports this feature with the CMC_CONFIG_SUP_NOMKMSGREAD in cmc_query_config().

CMC_READ_FIRST_UNREAD_MESSAGE – This is only available when passing a NULL message
reference to receive the first message in the mailbox. If set, the first message not marked as read should be
returned. If not set, the first message in the mailbox should be returned, whether it is marked as read or not.

UI Id (UI Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which arise when the service
performs the function.

Ignored if UI is not supported by the CMC implementation.

Read Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Message (Message)

The "message" field is the address at which a pointer to a CMC_message structure is to be returned. This
structure is allocated by the service, and should be freed with cmc_free().

Attachment data will be returned in files, and the CMC_message structure will indicate the names of those
files.

If the CMC_MSG_AND_ATT_HDRS_ONLY flag has been set (see "flags"), the CMC_message structure
will not return the attachment files as described above.

Read Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

106 Recommendation X.446 (08/97)

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_ATTACHMENT_OPEN_FAILURE
CMC_E_ATTACHMENT_READ_FAILURE
CMC_E_ATTACHMENT_WRITE_FAILURE
CMC_E_DISK_FULL
CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_REFERENCE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_TOO_MANY_FILES
CMC_E_UNABLE_TO_NOT_MARK_READ
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.1.3 Looking up names

6.1.3.1 Look Up

NAME

Look Up – Look up addressing information in the directory.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_look_up(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

DESCRIPTION

This function looks up addressing information in the directory provided by the CMC messaging service. It primarily is
used to resolve a friendly name to an address.

Multiple addresses may be returned. An array of recipient descriptors is allocated and returned containing fully resolved
information about each entry.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid and a valid session is not created through UI, then the error
CMC_E_INVALID_SESSION_ID is returned.

Recipient In (Recipient)

For name resolution, the name field in the structure contains the name to be resolved. The name type can be set
to provide information on desired resolution of the name. See the recipient structure documentation for
possible types.

Recommendation X.446 (08/97) 107

For displaying recipient details, the recipient structure must contain an entry that resolves to only one recipient.
If not, the error CMC_E_AMBIGUOUS_RECIPIENT will be returned.

For displaying UI to create addressing lists, this will point to an array of recipients that is terminated with the
CMC_RECIP_LAST_ELEMENT flag. The list of recipients will be used as the defaults for displaying in the
address list UI.

For both name resolution and displaying recipient details, all recipient structures except the first will be
ignored.

Look Up Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_LOGON_UI_ALLOWED

CMC_ERROR_UI_ALLOWED

CMC_COUNTED_STRING_TYPE

CMC_LOOKUP_RESOLVE_PREFIX_SEARCH

CMC_LOOKUP_RESOLVE_IDENTITY

CMC_LOOKUP_RESOLVE_UI

CMC_LOOKUP_DETAILS_UI

CMC_LOOKUP_ADDRESSING_UI

CMC_LOGON_UI_ALLOWED – Set if the function should display a dialogue box to prompt for logon if
required. If not set, the function will not display a dialogue box and will return the error
CMC_E_INVALID_SESSION_ID if the user is not logged on.

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_COUNTED_STRING_TYPE – Set if the string type used in the call parameters is counted. If this is not
set, the strings are assumed to be null terminated. If the session parameter is valid, this flag is ignored.

CMC_LOOKUP_RESOLVE_PREFIX_SEARCH – If set, the search method should be prefix. Prefix search
means that all names matching the prefix string, beginning at the first character of the name, will be matched.
If not set, the search method should be exact match. CMC implementations are required to support simple
prefix searching. The availability of wild-card or substring searches is optional.

CMC_LOOKUP_RESOLVE_IDENTITY – If set, the function will return a recipient record for the identity of
the user in the mail system. If this cannot be uniquely determined, ambiguous name resolution will be carried
out. This allows the application to find out the address of the current user.

CMC_LOOKUP_RESOLVE_UI – Set if the CMC implementation should attempt to disambiguate names by
presenting a name resolution dialogue to the user. If this flag is not set, resolutions which do not result in a
single name will return the error CMC_E_AMBIGUOUS_RECIPIENT on services that must resolve to a
single name. Services that can return multiple names will return a list as indicated by other function
parameters. This flag is optional for implementations to support.

CMC_LOOKUP_DETAILS_UI – If set, the function will display details UI for the recipient pointed to in
recipient_in. This will only act on the first recipient in the list. If the name resolves to more than one address,
this will not be carried out and the error CMC_E_AMBIGUOUS_RECIPIENT will be returned.

CMC_LOOKUP_ADDRESSING_UI – If set, the function will display UI to allow creation of a recipient list
for addressing a message and general directory browsing. The recipient list passed to the function will be the
original recipient list for the UI. The function will return the list of recipients selected by the user. This flag is
optional for implementations to support.

108 Recommendation X.446 (08/97)

UI Id (UI Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which arise when the service
performs the function.

Ignored if UI is not supported by the CMC implementation.

Count (Uint32)

Specifies the maximum number of names to return. A value of 0 specifies no maximum. The value will be
returned in the location pointed to by this parameter. A valid pointer to a location for the returned count
information is required.

Look Up Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Recipient Out (Recipient)

Pointer to an array of one or more recipient structures allocated by cmc_look_up(). The structure may then be
used in calls to cmc_send(). The returned pointer is passed to cmc_free() to free all the recipient structures.

Count (Uint32)

Specifies the number of names actually returned. If no names match the criteria, a value of 0 is returned, and
the error CMC_E_RECIPIENT_NOT_FOUND is returned.

If fewer names are returned than are known to be available, the CMC_RECIP_LIST_TRUNCATED flag will
be set in the last recipient structure of the array along with the CMC_RECIP_LAST_ELEMENT flag.

Look Up Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_FLAG

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_UI_ID

CMC_E_LOGON_FAILURE

CMC_E_NOT_SUPPORTED

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_UNSUPPORTED_DATA_EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

Recommendation X.446 (08/97) 109

6.1.4 Administration

Administrative functions defined within this Recommendation include free, logoff, logon, and query configuration.

6.1.4.1 Free

NAME

Free – Free memory allocated by the messaging service.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_free(

CMC_buffer memory
);

DESCRIPTION

This function frees memory allocated by the messaging service. After the call, the pointer memory will be invalid and
should not be referenced again. When any CMC function allocates and returns a buffer to the application, the application
will free that memory with this call when it is finished with the memory.

When a CMC function returns a base pointer to a complex structure containing several levels of pointers, all the
application will do to free the entire structure or array of structures is call this routine with the base pointer returned by
the CMC function. The CMC functions which return structures of this form are:

cmc_copy_object()
cmc_commit_object()
cmc_copy_object_handle()
cmc_identifier_to_name()
cmc_list()
cmc_list_objects()
cmc_list_properties()
cmc_look_up()
cmc_name_to_identifier()
cmc_open_cursor()
cmc_open_stream()
cmc_query_configuration()
cmc_read()
cmc_read_stream()
cmc_read_property_costs()
cmc_read_properties()
cmc_read_cursor()

cmc_free()’s behavior is undefined when called with a pointer to a memory block not allocated by the messaging
service, a pointer to a memory block that has already been freed, or a pointer contained in a structure returned by the
CMC implementation.

In some situations, the extensions specified for a function may be a combination of input and output extensions. In this
case, the output extensions must be freed one at a time using cmc_free(). An example of this is shown in Annex C,
"Programming examples".

ARGUMENTS

Memory (Buffer)

A pointer to memory allocated by the messaging service. A value of NULL will be ignored.

RESULTS

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

110 Recommendation X.446 (08/97)

ERRORS

CMC_E_FAILURE

CMC_E_INVALID_MEMORY

6.1.4.2 Logoff

NAME

Logoff – Log off the CMC service.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_logoff(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

DESCRIPTION

This function allows the calling application to log off the CMC service. The users of the CMC service should call
cmc_free() for all memory pointers allocated by the service during this session prior to calling cmc_logoff(). Failure to
do so may result in memory leaking or undefined behavior of further access to these pointers once the session is
terminated.

NOTE – Some implementations of the CMC service may choose to free all the pointers that it created for this session when
cmc_logoff() is called. However, the support of end-of-session cleanup is optional for the CMC service.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service. It becomes invalid as a result of this
call.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

UI Id (UI Id)

An identifier for a User Interface (e.g. the parent-window handle for the calling application) for use in
resolving any questions which might otherwise result in an error.

Ignored if UI is not supported by the CMC implementation.

Logoff Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_ERROR_UI_ALLOWED

CMC_LOGOFF_UI_ALLOWED

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_LOGOFF_UI_ALLOWED – Set if the function may display UI other than for errors while logging the
user off from the session.

Logoff Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 111

RESULTS

Logoff Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_USER_NOT_LOGGED_ON

6.1.4.3 Logon

NAME

Logon – Log on to the CMC service.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_logon(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

DESCRIPTION

This function allows the calling application to log on to the CMC service.

The function returns a session id which the application may use in subsequent CMC calls.

ARGUMENTS

Service (String)

A string indicating the location of the underlying messaging service, e.g. the path to a message store or a
remote server node name. This value may be NULL if the underlying messaging service does not require a
service name. This may be necessary on some implementations and ignored on others.

The messaging service underlying a CMC implementation, or installation of an implementation, may
optionally support multiple messaging protocols simultaneously. If multiple protocols are supported by an
implementation, the particular protocol is chosen by the service, based on criteria such as:

– configuration of protocol support;
– dynamic availability of protocol support;

112 Recommendation X.446 (08/97)

– capabilities of recipient (if known);

– analysis of address format/notation used;

– other system-specific criteria.

These criteria may be applied on a per-message or a per-recipient granularity.

User (String)

A string that identifies the CMC user, e.g. a messaging service user name. This value may be NULL if the
underlying messaging service does not require a user name or if UI is allowed.

Password (String)

A string containing the password required for access to the CMC service. This value may be NULL if the
underlying messaging service does not require a password or if UI is allowed.

Character Set (Object Identifier)

An object identifier identifying the character set of strings used by the CMC caller. The possible values
available to the client are returned by the CMC implementation from cmc_query_configuration(). The client
may pass NULL in which case the character set used is determined by the CMC service.

UI Id (UI Id)

An identifier for a User Interface (e.g. the parent-window handle for the calling application) for use in
resolving any questions which might otherwise result in an error, or for use in prompting for logon if allowed
and required.

Ignored if UI is not supported by the CMC implementation.

Caller CMC Version (Uint16)

The calling application’s CMC version number, multiplied by 100. For example, version 1.01 is specified as
the integer 101. The version of this Recommendation is 2.00 and is represented as the value 200.

Logon Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_LOGON_UI_ALLOWED

CMC_ERROR_UI_ALLOWED

CMC_COUNTED_STRING_TYPE

CMC_FULL_CMC

CMC_LOGON_UI_ALLOWED – Set if the function should display a dialogue box to prompt for logon if
required. If not set, the function will not display a dialogue box and will return an error if not enough
information has been supplied.

CMC_ERROR_UI_ALLOWED – Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_COUNTED_STRING_TYPE – The CMC caller sets this if the string type that the caller uses for
CMC interactions is length first. If not set, null-terminated strings will be assumed.

CMC_FULL_CMC – Set if the application is requesting Full CMC functionality. If this flag is not set, then the
application is accessing Simple CMC. Full CMC is only available if the caller specifies a caller_cmc_version
of greater than or equal to 200.

Recommendation X.446 (08/97) 113

Logon Extensions (Extensions)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Through extensions, the application can find out which extensions are available and set which data extensions
will be active for the session. The extension to do this is CMC_X_COM_SUPPORT_EXT. Any
CMC implementation that supports extensions must support this extension. For more information on this
extension, see the common extensions in B.2.

RESULTS

Session (Session Id)

Opaque session id that represents a session with the CMC service.

Logon Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_ENUM

CMC_E_INVALID_FLAG

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_UI_ID

CMC_E_LOGON_FAILURE

CMC_E_PASSWORD_REQUIRED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_VERSION

6.1.4.4 Query Configuration

NAME

Query Configuration – Determine information about the installed CMC configuration.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_query_configuration(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

114 Recommendation X.446 (08/97)

DESCRIPTION

This function queries the underlying implementation’s configuration, and returns the information requested about it,
allocating memory when necessary.

NOTE – The configuration may not be changed through CMC, and that any underlying configuration file format is
implementation-dependent.

ARGUMENTS

Session (Session Id)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

Session may be NULL to indicate that there is no session and that session-independent information should be
returned. This will provide default logon information.

If this value is set to a valid Session Id, session-dependent configuration information will be returned.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Item (Enum)

This argument indicates which configuration information should be returned. The possible values include:

CMC_CONFIG_CHARACTER_SET

CMC_CONFIG_LINE_TERM

CMC_CONFIG_DEFAULT_SERVICE

CMC_CONFIG_DEFAULT_USER

CMC_CONFIG_REQ_PASSWORD

CMC_CONFIG_REQ_SERVICE

CMC_CONFIG_REQ_USER

CMC_CONFIG_UI_AVAIL

CMC_CONFIG_SUP_NOMKMSGREAD

CMC_CONFIG_SUP_COUNTED_STR

CMC_CONFIG_VER_IMPLEM

CMC_CONFIG_VER_SPEC

CMC_CONFIG_CHARACTER_SET – The reference argument should be a pointer to a
CMC_object_identifier array. A pointer to the array of character set object identifier strings for the
implementation will be returned here. The array will be terminated with a NULL CMC_Object_Identifier. The
first character set Object ID in the array is the default character set used if the caller does not specify one
explicitly. The platform specific clause B.2.4 contains the Object ID values defined for common character sets.
This pointer to the array should be freed using cmc_free(). This Object ID is used by the caller at logon to
specify to the implementation to use a different character set than the default.

CMC_CONFIG_LINE_TERM – The reference argument should be a pointer to a CMC_enum variable, which
will be set to a value of CMC_LINE_TERM_CRLF if the line delimiter is a carriage return followed by a line
feed, CMC_LINE_TERM_LF if the line delimiter is a line feed, or CMC_LINE_TERM_CR if the line
delimiter is a carriage return.

CMC_CONFIG_DEFAULT_SERVICE – The reference argument should be a pointer to a CMC_String, into
which a pointer to the default service name will be written, if available, followed by a null character. A pointer
value of NULL will be written if no default service name is available. This pointer should be freed using
cmc_free(). This string, along with the one returned by CMC_CONFIG_DEFAULT_USER, can be used as
defaults when asking the user for the service name, user name, and password. This will be returned in the
implementation default character set.

Recommendation X.446 (08/97) 115

CMC_CONFIG_DEFAULT_USER – The reference argument should be a pointer to a CMC_String, into
which a pointer to the default user name will be written, if available, followed by a null character. A pointer
value of NULL will be written if no default user name is available. This pointer should be freed using
cmc_free(). This string, along with the one returned by CMC_CONFIG_DEFAULT_SERVICE, can be used
as defaults when asking the user for the provider name, user name, and password. This will be returned in the
implementation default character set.

CMC_CONFIG_REQ_PASSWORD – The reference argument should be a pointer to a CMC_enum variable,
which will be set to a value of CMC_REQUIRED_NO if the password is not required to log on,
CMC_REQUIRED_OPT if the password is optional to log on, or CMC_REQUIRED_YES if the password is
required to log on.

CMC_CONFIG_REQ_SERVICE – The reference argument should be a pointer to a CMC_enum variable,
which will be set to a value of CMC_REQUIRED_NO if the service name is not required to log on,
CMC_REQUIRED_OPT if the service name is optional to log on, or CMC_REQUIRED_YES if the service
name is required to log on.

CMC_CONFIG_REQ_USER – The reference argument should be a pointer to a CMC_enum variable, which
will be set to a value of CMC_REQUIRED_NO if the user name is not required to log on,
CMC_REQUIRED_OPT if the user name is optional to log on, or CMC_REQUIRED_YES if the user name is
required to log on.

CMC_CONFIG_UI_AVAIL – The reference argument should be a pointer to a CMC_boolean variable, which
will be set to a true value if there is UI provided by the CMC implementation.

CMC_CONFIG_SUP_NOMKMSGREAD – The reference argument should be a pointer to a CMC_boolean
variable, which will be set to a true value if the CMC_DO_NOT_MARK_AS_READ flag is supported
by cmc_read().

CMC_CONFIG_SUP_COUNTED_STR – The reference argument should be a pointer to a CMC_boolean
variable, which will be set to a true value if the CMC_COUNTED_STRING_TYPE flag is supported during
logon.

CMC_CONFIG_VER_IMPLEM – The reference argument should be a pointer to a CMC_uint16 variable,
which will be set to the version number for the implementation, multiplied by 100. For example, version 1.01
will return 101.

CMC_CONFIG_VER_SPEC – The reference argument should be a pointer to a CMC_uint16 variable, which
will be set to the CMC specification version number for the implementation, multiplied by 100. For example,
version 1.00 will return 100.

Config Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Through extensions, the application can find out which extensions are available. The extension to do this is
CMC_X_COM_SUPPORT_EXT. Any CMC implementation that supports extensions must support this
extension. For more information on this extension, see the common extensions in B.2.

RESULTS

Reference (Buffer)

This argument points to the buffer in which to receive the configuration information. The number of bytes
implied by the item parameter value must be owned by the caller and modifiable. The type of the variable or
buffer depends on the item argument.

116 Recommendation X.446 (08/97)

Config Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_ENUM

CMC_E_INVALID_PARAMETER

CMC_E_NOT_SUPPORTED

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2 Full CMC functions

The Full CMC is an enhanced set of functions that are intended to provide message-reliant capabilities for
messaging-enabled applications. Table 15 lists the functions of the Full CMC interface.

Table 15/X.446 – Full CMC interface functions

Function Description

Administrative functions

Free Refer to Simple CMC for description

Logoff Refer to Simple CMC for description

Logon Refer to Simple CMC for description

Bind functions

Bind Implementation Create and return a dispatch table

Unbind Implementation Frees any data associated with a call to cmc_bind_implementation() on a
specific CMC implementation

Composition functions

Copy Object Copies a source object to a container object

Add Properties Add or modify a set of properties in an object

Commit Object Commits an object to the persistent store within a container object

Copy Object Handle Copies an object handle

Delete Objects Deletes the specified objects from a container

Delete Properties Deletes the specified properties within an object

Open Object Handle Open an object handle

Restore Object Restores object data from a file

Save Object Saves object data to a file

Enumeration functions

Get Last Error Returns a localized text error message for the last error that occurred on the
object

Get Root Handle Returns a handle to the container that is the root of the object model
hierarchy for the session

List Contained Properties Lists the properties within a container object

Recommendation X.446 (08/97) 117

Table 15/X.446 – Full CMC interface functions (concluded)

The manual pages for these functions are given in subsequent pages.

6.2.1 Bind functions

Bind functions enable an implementation to create and return a dispatch table and to subsequently free any data
associated with the bind implementation function.

6.2.1.1 Bind Implementation

NAME

Bind Implementation – Creates and returns a dispatch table.

Function Description

Enumeration functions (cont.)

List Number Matched Lists the number of objects within a container that match a criteria

List Objects Lists the objects within a container object

List Properties Lists the properties within an object

Open Cursor Open a cursor for a container object

Read Cursor Read the current fractional position of a cursor

Read Properties Read the content information of a set of properties

Read Property Costs Read the relative cost associated with reading a set of properties

Update Cursor Position Updates the current fractional position of a cursor

Update Cursor Position with Seed Updates the current position of a cursor relative to an object in the
container

Event notification functions

Check Event Checks for a messaging service event

Register Event Registers events in which the caller is interested in checking

Unregister Event Unregisters events in which the caller is no longer interested

Call Callbacks Call the callback function(s) which are registered if the event has occurred

Messaging functions

Create Derived Message Object Creates a message for forwarding or replying to a given message

Send Message Object Submits a message object to the MTA for sending

Name handling functions

Identifier to Name Converts a property identifier to a property name

Name To Identifier Converts a property name to a property identifier

Stream functions

Export Stream Exports stream data to a file

Import File to Stream Imports data from a file to a stream

Open Stream Open a property for stream read or write operations

Read Stream Read a stream of content information

Seek Stream Go to a location in a stream of content information

Write Stream Write a stream of content information

118 Recommendation X.446 (08/97)

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_bind_implementation(

CMC_guid implementation_name,

CMC_dispatch_table **dispatch_table,

CMC_extension *cmc_bind_implementation_extensions

);

DESCRIPTION

This function creates and populates a dispatch table of CMC function addresses for the caller. The function must be
supported by the CMC Manager and the CMC implementation. Local administrative tasks may be done with the
CMC Manager and/or CMC implementation at this time.

ARGUMENTS

Implementation Name (GUID)

A globally unique identifier which represents a specific CMC implementation. Different versions of the same
CMC implementation should be distinguished within this GUID so that the different versions may coexist.

Bind Implementation Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Dispatch Table (Dispatch Table)

The address of the CMC implementation’s dispatch table. This table is allocated by the CMC implementation
and should be freed with a call to cmc_free().

Bind Implementation Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_BIND_FAILURE

CMC_E_ID_NOT_FOUND

6.2.1.2 Unbind Implementation

NAME

Unbind Implementation – Frees any data associated with a call to cmc_bind_implementation() on a specific
CMC implementation.

Recommendation X.446 (08/97) 119

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_unbind_implementation(

CMC_guid implementation_name,

CMC_extension *cmc_unbind_implementation_extensions

);

DESCRIPTION

This function frees and disassociates any data associated with a binding to a specific CMC implementation. Local
administrative tasks may be done with the CMC Manager and/or CMC implementation at this time.

ARGUMENTS

Implementation Name (GUID)

A globally unique identifier which represents a specific CMC implementation being unbound from the
application or CMC Manager.

Unbind Implementation Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Unbind Implementation Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNBIND_FAILURE

CMC_E_ID_NOT_FOUND

6.2.2 Composition functions

The composition functions provide the ability to create and manipulate the CMC objects and object properties.

6.2.2.1 Add Properties

NAME

Add Properties – Adds a set of properties to an object.

120 Recommendation X.446 (08/97)

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_add_properties(

CMC_object_handle object,

CMC_uint32 number_properties,

CMC_property *properties,

CMC_extension *add_properties_extensions

);

DESCRIPTION

This function will add a set of properties to an object.

If the property already exists in the object, then the property will be replaced. If it does not exist, the property will be
added. There is no CMC-defined order of properties within an object. It is implementation-specific in what order a new
property will be added to an object (e.g. it may not be appended to the end of the object).

Properties added to an object may not be committed until after a call to cmc_commit_object().

ARGUMENTS

Object (Object Handle)

An opaque handle to an object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

The number of properties in the properties argument.

Properties (Property)

A pointer to an array of property structures that are to be added to the object.

Add Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Add Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

Recommendation X.446 (08/97) 121

6.2.2.2 Commit Object

NAME

Commit Object – Commits an object to the persistent store within a container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_commit_object(

CMC_object_handle source_object,

CMC_extension *commit_object_extensions

);

DESCRIPTION

This function will commit an object to the persistent store within a container object.

If the object is being committed to the outbox message container, the action makes the object non-modifiable. The object
can only be deleted or copied.

When a message is committed to the outbox, it becomes a candidate for submission at any time. The implementation can
send the message at the implementation’s convenience. cmc_send_message_object() can be used to expedite the
immediate sending of a message.

All of the current properties for the source object will be committed to the persistent store within a container object The
object must have been added to a container with a previous call to cmc_copy_object().

Any cursor for the container remains valid after the object is committed to the container. Any objects committed to the
container, after the cursor was opened, may not be listed in a call to cmc_list_objects() for the container. If the container
associated with the object does not support commitment of objects, then the error code
CMC_E_UNSUPPORTED_ACTION is returned.

ARGUMENTS

Source Object (Object Handle)

An opaque handle for the source object to be committed to the persistent store of the container.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Commit Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Commit Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

122 Recommendation X.446 (08/97)

ERRORS

CMC_E_UNSUPPORTED_ACTION

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_DISK_FULL

CMC_E_ACCESS_DENIED

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.3 Copy Object

NAME

Copy Object – Copies a source object to a container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_copy_object(

CMC_object_handle container,
CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_extensions

);

DESCRIPTION

This function will copy a source object to the specified container object. If the source object is a container object, copy
object performs a deep copy function in which all the properties and the contained object are copied recursively.

All of the current properties for the object will be saved with the object in the specified container object. The function
adds a new object to the specified container object that contains all of the properties of the source object. A handle to the
new object within the container is returned. The source object and its contents are left unchanged. The new object must
be committed to the container object with a call to cmc_commit_object() before it becomes persistent within the
container object.

The container cursors remain valid after objects are added to the container associated with the cursor. Any objects added
to the container, after the cursor was opened, may not be listed in a call to cmc_list_object() for the container. If the
specified container is accessible only in a read-only fashion, then the error code CMC_E_UNSUPPORTED_ACTION is
returned.

ARGUMENTS

Container (Object Handle)

An opaque handle to a container object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Source Object (Object Handle)

An opaque handle for the source object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Copy Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 123

RESULTS

New Object (Object Handle)

An opaque handle for the new object.

Copy Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_UNSUPPORTED_ACTION

CMC_E_INVALID_SOURCE_OBJECT

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

6.2.2.4 Copy Object Handle

NAME

Copy Object Handle – Copies an object handle.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_copy_object_handle(

CMC_object_handle source_handle,
CMC_object_handle *new_handle,
CMC_extension *copy_object_handle_extensions

);

DESCRIPTION

This function will copy an object handle. A copy of the object is not created. Instead, the new object handle effectively
refers to the original content information that the source object handle referred to. Cursor handles cannot be copied.

This function provides a straightforward method of copying an object handle from an array of object handles returned
from another CMC call. A call to cmc_free() with the source object handle will not free up the content information
referred to by the new object handle. The implementation will only free the related memory when the last reference to it
is removed by a call to cmc_free() with the last object handle referencing the content information.

ARGUMENTS

Source Handle (Object Handle)

An opaque handle to the source object that is to be copied.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Copy Object Handle Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

124 Recommendation X.446 (08/97)

RESULTS

New Handle (Object Handle)

A new opaque handle for the object.

Copy Object Handle Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.5 Delete Objects

NAME

Delete Objects – Deletes the specified objects.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_delete_objects(

CMC_uint32 number_objects,

CMC_object_handle *object,

CMC_extension *delete_objects_extensions

);

DESCRIPTION

This function deletes the specified objects. Delete Objects performs a deep delete function in which all specified objects
and any contained objects are deleted. The object handles are invalid upon return from the call.

ARGUMENTS

Number Objects (Object Handle)

The number of objects in the objects parameter.

Objects (Object Handle)

A pointer to an array of opaque handles to objects to be deleted.

If any of the object handles is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Delete Objects Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 125

RESULTS

Delete Objects Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_ACCESS_DENIED

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.6 Delete Properties

NAME

Delete Properties – Deletes the specified set of properties from the object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_delete_properties(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_id *property_ids,
CMC_extension *delete_properties_extensions

);

DESCRIPTION

This function deletes the specified properties from the object.

ARGUMENTS

Object (Object Handle)

The opaque handle of the object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

The number of properties in the properties argument.

Property Ids (Property Id)

A pointer to an array of the unique ids for the properties to be deleted from the object.

Delete Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

126 Recommendation X.446 (08/97)

RESULTS

Delete Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.7 Open Object Handle

NAME

Open Object Handle – Creates a new object handle.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_open_object_handle(

CMC_session_id session,

CMC_id object_class,

CMC_object_handle *new_object,

CMC_extension *open_object_handle_extensions

);

DESCRIPTION

This function will create a new object handle. The service allocates the necessary resources for a new object and returns
the handle associated with this object. This object does not exist within any container object until it is added with a call
to cmc_copy_object(). The content information for this object does not exist until properties are added to the object with
a call to cmc_add_properties().

ARGUMENTS

Session (Session id)

The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Object Class (Identifier)

Identifier of the class of the object.

Open Object Handle Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 127

RESULTS

New Object (Object Handle)

An opaque handle for the new object. The session id is encapsulated in the object handle. The object handle is
sufficient to reference the proper object within an individual session.

Open Object Handle Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_SESSION_ID

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNRECOGNIZED_IDENTIFIER

6.2.2.8 Restore Object

NAME

Restore Object – Restores object data from the file system.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_restore_object(

CMC_object_handle container,
CMC_string file_specification,
CMC_flags restore_flags,
CMC_object_handle *restored_object,
CMC_extension *restore_object_extensions

);

DESCRIPTION

This function restores an object from a file. For instance, this function provides a simple method for attaching a file to a
message. In this case, restored object represents a newly created content item object which will later be associated with a
message object under composition. Alternatively, this function provides a method for retrieving a message stored in the
file system by an earlier call to cmc_save_object(). The on-disk representation for objects stored in the file system is not
defined since it may vary from one messaging system to another. As such, applications should not, in general, rely on the
ability to import objects which have been exported using other messaging systems. However, this restriction does not
apply in the case of a message attachment object.

For a message content item object, this function has the side effect of initializing values for the following properties:

• Filename;

• Creation Date;

• Last Modification Date.

Other properties must be set by calling cmc_add_properties().

NOTE – The file content item must still be associated with a message under composition in order to complete the content item
process.

128 Recommendation X.446 (08/97)

ARGUMENTS
Recommendation X.446 (08/97)

Container (Object Handle)

A handle to the container object which will contain the restored object.

File Specification (String)

A complete file system specification for the file which contains the object data.

Restore Flags (Flags)

Bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_RESTORE_OBJECT_OVERWRITE

CMC_RESTORE_OBJECT_OVERWRITE – Set if the function should overwrite an existing object.

Restore Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Restored Object (Object Handle)

A handle to the restored object.

Restore Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_UNSUPPORTED_ACTION

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_ACCESS_DENIED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_FLAG

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.9 Save Object

NAME

Save Object – Saves object data to the file system.

Recommendation X.446 (08/97) 129

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_save_object(

CMC_object_handle object,

CMC_string file_specification,

CMC_flags save_flags,

CMC_extension*save_object_extensions

);

DESCRIPTION

This function saves object data to a file. For instance, this function provides a simple method for detaching the data from
an attachment to the file system. In this case, object represents an attachment object which will later be associated with a
message. Alternatively, this function provides a method for storing a message to the file system. The message data can
be restored from the file by a subsequent call to cmc_restore_object(). The on-disk representation for objects stored in
the file system is not defined since it may vary from one messaging system to another. As such, applications should not,
in general, rely on the ability to import objects which have been exported using other messaging systems.

ARGUMENTS

Object (Object Handle)

A handle to the object (e.g. message or attachment object) for which data is to be exported.

File Specification (String)

A complete file system specification for the file which will contain the object data.

Save Flags (Flags)

Bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_SAVE_OBJECT_OVERWRITE
CMC_SAVE_OBJECT_NOCREATE

CMC_SAVE_OBJECT_OVERWRITE – Set if the function should overwrite an existing file matching
file_specification.

CMC_SAVE_OBJECT_NOCREATE – Set if the function should not create a file matching file_specification
if the file does not already exist.

Save Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Save Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

130 Recommendation X.446 (08/97)

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_ACCESS_DENIED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_FLAG

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_DISK_FULL

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3 Enumeration functions

The enumeration functions provide the ability to list, read, and update the CMC objects and object properties.

6.2.3.1 Get Last Error

NAME

Get Last Error – Returns a localized text error message for the last error that occurred on the object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_get_last_error(

CMC_session_id session,

CMC_object_handle object,

CMC_string *error_buffer,

CMC_extension*get_last_error_extensions

);

DESCRIPTION

The cmc_get_last_error function is used by client applications to retrieve a localized string to display to the user which
corresponds to the last error returned from a function call made on this object. The implementation allocates storage for
the returned buffer and the client is responsible for freeing it. If the function returns an error (non-zero), the calling
application should not call cmc_get_last_error again for additional diagnostics. Even if the function returns zero, it is
still possible that no string is available. The return code must be (zero) for the application to make use of the descriptive
string. Implementations of cmc_get_last_error should localize error messages to the language of the system, which
requires the user to set the appropriate character set in the cmc_logon call.

If both the session and object parameters are NULL, this indicates a get last error request from cmc_logon, where the
returned error string would be in the default code page for the system. If the session id is valid and the object value is
invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned. If the session id parameter is invalid and the
object parameter is valid, then the error CMC_E_INVALID_SESSION_ID is returned.

ARGUMENTS

Session (Session Id)

Session id which represents the session with the CMC service during which the error occurred.

Object (Object Handle)

A handle to the object (e.g. message or attachment object) for which data is to be returned from.

Recommendation X.446 (08/97) 131

Get Last Error Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Error Buffer (String)

The address of the buffer where the implementation stores the descriptive error string. This buffer is allocated
by the service and should be freed with a call to cmc_free().

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_SESSION_ID

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_PARAMETER

CMC_E_FAILURE

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.2 Get Root Handle

NAME

Get Root Handle – Returns a handle to the container that is the root of the object model hierarchy.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_get_root_handle(

CMC_session session,
CMC_object_handle *root_object_handle,
CMC_extensions *get_root_handle_extensions

);

DESCRIPTION

This function returns a handle to the container that is the root of the object model hierarchy for the session. Multiple
calls to this function will return the same object handle during the lifetime of the session.

ARGUMENTS

Session (Session ID)

Opaque session handle which represents a session with the messaging service.

If the session handle is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Get Root Handle Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

132 Recommendation X.446 (08/97)

RESULTS

Root Object Handle (Object Handle)

A handle to the container that is the root of the object model hierarchy.

Get Root Handle Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_SESSION_ID
CMC_E_ACCESS_DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.3 List Contained Properties

NAME

List Contained Properties – Lists the properties of objects within a container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_list_contained_properties(

CMC_cursor_handle cursor,
CMC_sint32 *number_objects,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property ***properties,
CMC_extension*list_contained_properties_extensions

);

DESCRIPTION

This function lists the properties of objects within a container object. One of the purposes of this function is to retrieve
summary information about the objects in the container (e.g. compose an inbox message summary).

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle for the cursor to the specified container object.

Number Objects (Sint32)

A pointer to the maximum number of object handles to return. A value of zero specifies no maximum. A
negative value specifies that the handles of the specified number of objects that precede the current position of
the cursor should be returned in the same sort of order as specified by cursor. For example, if the current
position of the cursor is on the eighth object in the container, then a value of –3 will list the handles of the
fifth, sixth, and seventh objects and the cursor is updated to the fifth object. A value of 4 will list the handles
of the eighth, ninth, tenth, eleventh objects and the cursor will be updated to the twelfth object.

Number Properties (Uint32)

A pointer to the number of properties in the Property Ids argument.

Recommendation X.446 (08/97) 133

Property Ids (Property Id)

A pointer to an array of property identifiers corresponding to the properties that are to be listed.

List Contained Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Objects (Sint32)

The actual number of objects for which properties are returned.

Number Properties (Uint32)

The actual number of properties returned for each object.

Properties (Property)

The address of an array of arrays of property structures within the container object that are listed. Each array is
the set of properties associated with a single object. The number of elements in the array are given in the
Number Properties result. The number of arrays are given in the Number Objects result. This array of arrays
is allocated by the service and should be freed with a call to cmc_free().

List Contained Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_ID

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.4 List Number Matched

NAME

List Number Matched – Lists the number of elements within a container object that match the restrictions
specified by a cursor.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_list_number_matched(

CMC_cursor_handle cursor,
CMC_uint32 *number_matches,
CMC_extension*list_number_matched_extensions

);

134 Recommendation X.446 (08/97)

DESCRIPTION

This function returns the number of elements within a container that match the restrictions specified by a cursor. This
value can be used with the current fractional position of the cursor to display a "thumb" on a scroll bar.

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle to a cursor.

If the cursor handle is invalid, then the error CMC_E_INVALID_CURSOR_HANDLE is returned.

List Number Matched Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Matches (Uint32)

The number of elements within the container that match the restrictions specified by the cursor. If zero, no
elements match the restrictions specified by the cursor.

List Number Matched Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.5 List Objects

NAME

List Objects – Lists the elements within a container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_list_objects(

CMC_cursor_handle cursor,

CMC_sint32 *number_objects,

CMC_object_handle **objects,

CMC_extension*list_objects_extensions

);

Recommendation X.446 (08/97) 135

DESCRIPTION

This function returns a pointer to an array of object handles that correspond to the elements within a container object.
The container object is referenced by a cursor that has been opened by a call to the cmc_open_cursor() function. The
cursor is updated by the service so that subsequent calls to this function will return object handles to additional elements
of the container based on the updated position of the cursor.

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle to a cursor.

If the cursor handle is invalid, then the error CMC_E_INVALID_CURSOR_HANDLE is returned.

Number Objects (Sint32)

A pointer to the maximum number of object handles to return. A value of zero specifies no maximum. A
negative value specifies that the handles of the specified number of objects that precede the current position of
the cursor should be returned in the same sort of order as specified by cursor. For example, if the current
position of the cursor is on the eighth element in the container, then a value of –3 will list the handles of the
fifth, sixth, and seventh elements and the cursor is updated to the eighth element. A value of 4 will list the
handles of the eighth, ninth, tenth, eleventh elements and the cursor will be updated to the twelfth element.

List Objects Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Cursor (Cursor Handle)

The opaque handle for the cursor to the specified container object. This handle may have been updated by the
service.

Number Objects (Sint32)

The actual number of object handles returned. If no elements matched the cursor restrictions, or if the
container object was empty, a value of zero is returned.

Objects (Object Handle)

The address of an array of object handles corresponding to the elements in the container object. This array is
allocated by the service and should be freed with a call to cmc_free().

NOTE – The individual object handles within this array become invalid when the array is freed. The application can retain
handles to the objects prior to invoking cmc_free() on the array. Using a freed handle will result in an undefined
behaviour.

List Objects Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

136 Recommendation X.446 (08/97)

ERRORS

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.6 List Properties

NAME

List Properties – Lists the properties in an object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_list_properties(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id **property_ids,
CMC_extension*list_properties_extensions

);

DESCRIPTION

This function returns the unique ids of the properties within an object. A subsequent call to cmc_read_properties() will
return the property content information for the object.

ARGUMENTS

Object (Object Handle)

The opaque handle of the object to be listed.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

A pointer to the maximum number of property ids to return. A value of zero specifies all of the properties
should be listed.

List Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Properties (Uint32)

The actual number of property ids returned.

Property Ids (Identifier)

The address of an array of unique property ids corresponding to the properties in the object. This array is
allocated by the service and should be freed with a call to cmc_free().

List Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Recommendation X.446 (08/97) 137

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_NAME

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.7 Open Cursor

NAME

Open Cursor – Opens a cursor for a container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_open_cursor(

CMC_object_handle object,

CMC_cursor_restriction *restriction,

CMC_uint32 number_sort_keys,

CMC_cursor_sort_key *sort_keys,

CMC_cursor_handle *cursor,

CMC_extension*open_cursor_extensions

);

DESCRIPTION

This function returns an opaque handle of a cursor to the specified container object. The cursor can be defined to operate
on the container with specified sort-rules.

ARGUMENTS

Object (Object Handle)

The opaque handle to a container object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Restriction (Cursor Restriction)

A pointer to a cursor restriction structure to be used in the enumeration of the elements in the container.
Implementations may not support all types of restrictions.

Number Sort Keys (Uint32)

The number of elements in the sort_keys argument. If zero, the sort rules for the container are undefined.

Sort Keys (Cursor Sort Key)

A pointer to an array of cursor sort keys for sorting the container. The first element is the first sort key, the
second element is the second sort key, etc. Allowing more than one sort key may not be supported by all
implementations. Objects that do not have the property listed by the sort key are placed last.

138 Recommendation X.446 (08/97)

Open Cursor Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Cursor (Cursor Handle)

An opaque handle for the cursor to the specified container object. This handle is allocated by the service and
should be freed with a call to cmc_free().

Open Cursor Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_RESTRICTION

CMC_E_UNSUPPORTED_KEYS

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.8 Read Cursor

NAME

Read Cursor – Read, the current fractional position of the specified cursor within a container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_read_cursor(

CMC_cursor_handle cursor,
CMC_uint32 *position_numerator,
CMC_uint32 *position_denominator,
CMC_extension*read_cursor_extensions

);

DESCRIPTION

This function returns the current fractional position of the specified cursor. The values returned in position_numerator
and position_denominator are suitable for determining and drawing a "thumb" on a scroll bar. The scroll bar maximum
could be determined by a specific container object property.

ARGUMENTS

Cursor (Cursor Handle)

An opaque handle to a cursor.

If the cursor handle is invalid, then the error CMC_E_INVALID_CURSOR_HANDLE is returned.

Recommendation X.446 (08/97) 139

Read Cursor Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Position Numerator (Uint32)

The numerator component of the current cursor position fraction. The ratio of the
position_numerator/position_denominator provides an approximate fractional position of the cursor through
the elements of the container object. This storage is allocated by the caller.

Position Denominator (Uint32)

The denominator component of the current position of the cursor. The ratio of the
position_numerator/position_denominator provides an approximate fractional position of the cursor through
the elements of the container object. This storage is allocated by the caller.

Read Cursor Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_NAME
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.9 Read Properties

NAME

Read Properties – Reads the content information associated with a set of properties in an object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_read_properties(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension*read_properties_extensions

);

DESCRIPTION

This function returns the content information of the specified properties within an object.

If a specified property is not in the object, then the property type CMC_pv_return_code will be returned in the position
of that property in the properties argument with the property value of the return code
CMC_E_PROPERTY_ID_NOT_FOUND. The property identifier for this property is undefined by this
Recommendation.

140 Recommendation X.446 (08/97)

ARGUMENTS

Object (Object Handle)

The opaque handle of the object to be listed.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

A pointer to the number of property ids in the property_ids argument.

Property Ids (Identifier)

A pointer to an array of unique property ids corresponding to the properties that are to be read.

Read Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Properties (Uint32)

The actual number of properties returned. If none of the specified properties were in the object, a value of zero
is returned.

Properties (Property)

A pointer to an array of property structures that contain the content information for the properties that were
read. This array is allocated by the service and should be freed with a call to cmc_free().

Read Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_NAME

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.10 Read Property Costs

NAME

Read Property Costs – Reads the relative cost associated with reading individual properties in an object.

Recommendation X.446 (08/97) 141

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_read_property_costs(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_enum *costs,
CMC_extension*read_property_costs_extensions

);

DESCRIPTION

This function returns the relative cost associated with reading individual properties within an object.

Support for this function is not mandatory for conformance to this Recommendation. Implementations that do not
support this function shall return the error CMC_E_NOT_SUPPORTED.

The basis for determining the cost of reading the property is implementation-specific.

ARGUMENTS

Object (Object Handle)

The opaque handle of the object to be listed.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

A pointer to the number of property ids in the property_ids argument.

Property Ids (Identifier)

A pointer to an array of unique property ids corresponding to the properties that are to be read.

Read Property Costs Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Properties (Uint32)

The actual number of property costs returned. If none of the specified property costs were read, a value of zero
is returned.

Costs (Enum)

A pointer to an array of relative property costs. The individual costs correspond one-for-one to the specified
property names. The valid relative cost values include the following:

CMC_COST_UNDETERMINED
CMC_COST_NONE
CMC_COST_MINOR
CMC_COST_MAJOR

CMC_COST_UNDETERMINED – The cost of reading the property cannot be determined.

CMC_COST_NONE – There is no relative cost associated with reading the property.

CMC_COST_MINOR – There is only a relatively low cost associated with reading the property.

CMC_COST_MAJOR – There is a relatively high cost associated with reading the property.

This array is allocated by the service and should be freed with a call to cmc_free().

142 Recommendation X.446 (08/97)

Read Property Costs Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_NAME
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_NOT_SUPPORTED

6.2.3.11 Update Cursor Position

NAME

Update Cursor Position – Updates the current fractional position of the specified cursor within a container
object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_update_cursor_position(

CMC_cursor_handle cursor,
CMC_uint32 position_numerator,
CMC_uint32 position_denominator,
CMC_extension*update_cursor_position_extensions

);

DESCRIPTION

This function updates the cursor to a specified position within the elements of a container object. The position is
determined by the ratio of the position_numerator to the position_denominator.

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle to a cursor. If the cursor handle is invalid, then the error
CMC_E_INVALID_CURSOR_HANDLE is returned.

Position Numerator (Uint32)

The numerator of the desired cursor position fraction. The ratio of the position_numerator to
position_denominator provides the fractional position of the cursor through the elements of the container
object.

Position Denominator (Uint32)

The denominator of the current position of the cursor. The ratio of the position_numerator to
position_denominator provides the fractional position of the cursor through the elements of the container
object.

Update Cursor Position Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 143

RESULTS

Update Cursor Position Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.12 Update Cursor Position With Seed

NAME

Update Cursor Position With Seed – Updates the current position of the specified cursor relative to a specific
seed object within the container object.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_update_cursor_position_with_seed(

CMC_cursor_handle cursor,

CMC_object_handle seed,

CMC_extension*update_cursor_position_with_seed_extensions

);

DESCRIPTION

This function updates the cursor to a specified position within the elements of a container object. The position is
determined by the relative position of the seed object within the container.

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle to a cursor. If the cursor handle is invalid, then the error
CMC_E_INVALID_CURSOR_HANDLE is returned.

Seed (Object Handle)

The opaque handle of the object within the container relative to which cursor position should be updated.

Update Cursor Position with Seed Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

144 Recommendation X.446 (08/97)

RESULTS

Update Cursor Position with Seed Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.4 Event notification functions

Event notification functions enable an implementation to check for events, register and unregister events, and call
callbacks.

6.2.4.1 Check Event

NAME

Check Event – Checks for a messaging service event.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_check_event(

CMC_session_id session,
CMC_event event_type,
CMC_uint32 minimum_timeout,
CMC_buffer check_event_data,
CMC_buffer *callback_data,
CMC_extension*check_event_extensions

);

DESCRIPTION

This function checks for an event associated with the messaging system. It provides an alternative to registering
callbacks with the CMC implementation for those applications which prefer to poll synchronously for events or to
provide event notification from implementations which do not support callbacks.

For each event, there is a flag associated with the event. There may also be input and output parameters associated with
an event. These event data structures are given in the Callback data type.

If an event has not occurred and the minimum time-out is non-zero, the implementation waits for the event the specified
time-out before returning to the calling program. If the event occurs before that time-out is reached, the function returns
immediately. If the error does not occur before the time-out is reached, the function returns CMC_E_NO_EVENT.

Under implementation-defined circumstances, which are not considered as actual errors, this function may terminate
prematurely, before any event was detected and before the specified time-out is reached. In this case, the function returns
the code CMC_E_FUNCTION_INTERRUPTED.

NOTE – Other errors can also arise that cause this function to return prematurely. In this case,
CMC_E_FUNCTION_INTERRUPTED is not used. Instead, the appropriate CMC error code is returned.

Recommendation X.446 (08/97) 145

ARGUMENTS

Session (Session id)

The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Event Type (Event)

A bitmask of events for which the caller is interested in checking. Unspecified events should always be passed
as 0. Undocumented events are reserved. The definition of CMC events is given in the Event data type
description.

Minimum Time-out (Uint32)

The time, in seconds, after which the function returns even if the event has not occurred.

A value of zero causes the function to simply check for the event and return immediately thereafter.

The value CMC_NO_TIMEOUT indicates that the function should wait for the event without any time limit.

If a value other than CMC_NO_TIMEOUT is used, the actual minimum time spent in this function is
implementation-dependent.

Check Event Data (Buffer)

A pointer to a check data structure associated with this event. See the Callback data type for the specific
structure of check data. Whether the implementation or application allocates the buffer is event-specific and
detailed in the data type description.

Check Event Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Callback Data (Buffer)

The address of the callback data structure associated with this event. For this call, the structure is returned
directly to the application rather than being directed at a callback function. See the Callback data type for the
event description and specific structure of the callback data. Whether the implementation or application
allocates the buffer is event-specific and detailed in the data type description.

Check Event Extensions (Extensions)

If output extensions were passed to the function in the extension list, the results from the service will be
available in the extension. See the extension structure for more information.

Return Code (Return Code)

Whether the function succeeded or not and, if not, why. It may be success or one of the values listed
under ERRORS below.

146 Recommendation X.446 (08/97)

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_EVENT
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_FUNCTION_INTERRUPTED
CMC_E_INVALID_SESSION_ID
CMC_E_NO_EVENT

6.2.4.2 Register Event

NAME

Register Event – Registers events in which the caller is interested.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_register_event(

CMC_session_id session,
CMC_event event_type,
CMC_callback callback,
CMC_buffer register_data,
CMC_extension*register_event_extensions

);

DESCRIPTION

This function specifies the events within the messaging system of which the caller is interested in being alerted.

The caller can be notified by an event either through a callback function or by using the Check Event function call to
synchronously poll for events for which it has registered. CMC implementations are not required to support callbacks.

There may also be input and output parameters associated with an event. These parameters are contained in the Client
Data. The structure of client data for events is given in the Callback data type.

ARGUMENTS

Session (Session id)

The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Event Type (Event)

A bitmask of events for which the caller is interested in checking. Unspecified events should always be passed
as 0. Undocumented events are reserved. The definition of CMC events is given in the Event data type
description.

Callback (Callback)

The client procedure that should be called by the service to handle the callback activity. A NULL value
indicates that no callback function is given and that the event should be signalled through the Check Event
function. If callbacks are not supported by an implementation, the error code
CMC_E_CALLBACK_NOT_SUPPORTED is returned.

Register Data (Buffer)

A pointer to a register data structure associated with this event. See the Callback data type for the specific
structure of register data. Whether the implementation or application allocates the buffer is event-specific and
detailed in the event description.

Recommendation X.446 (08/97) 147

Register Event Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Register Event Extensions (Extensions)

If output extensions were passed to the function in the extension list, the results from the service will be
available in the extension. See the extension structure for more information.

Return Code (Return Code)

Whether the function succeeded or not and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_EVENT
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_CALLBACK_NOT_SUPPORTED
CMC_E_INVALID_SESSION_ID

6.2.4.3 Unregister Event

NAME

Unregister Event – Unregisters events for which the caller is no longer interested.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_unregister_event(

CMC_session_id session,
CMC_flags event_type,
CMC_callback callback,
CMC_buffer unregister_data,
CMC_extension*unregister_event_extensions

);

DESCRIPTION

This function specifies events within the messaging system for which the caller is interested in discontinuing
notification.

ARGUMENTS

Session (Session id)

The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Event Type (Flags)

A bitmask of events for which the caller is no longer interested in checking. Unspecified events should always
be passed as 0. Undocumented events are reserved. The definition of CMC events is given in the Event data
type description.

148 Recommendation X.446 (08/97)

Callback (Callback)

The client procedure that was registered to handle the callback activity. A NULL value indicates that no
callback function was designated. If callbacks are not supported by an implementation, the error code
CMC_E_CALLBACK_NOT_SUPPORTED is returned.

Unregister Data (Buffer)

A pointer to an unregister data structure that can be used to pass event data that will be needed by the callback
function to provide a context for discontinuing registration. The structure of Unregister Data is given in the
Callback data type description.

Unregister Event Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Unregister Event Extensions (Extensions)

If output extensions were passed to the function in the extension list, the results from the service will be
available in the extension. See the extension structure for more information.

Return Code (Return Code)

Whether the function succeeded or not and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_EVENT

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_NOT_SUPPORTED

CMC_E_INVALID_SESSION_ID

6.2.4.4 Call Callbacks

NAME

Call Callbacks – Calls the callback function(s) which are registered if the event has occurred.

SYNOPSIS

#include <xcmc.h>

CMC_return_code

cmc_call_callbacks(

CMC_session_id session,

CMC_event event_type,

CMC_extension*call_callbacks_extensions

);

Recommendation X.446 (08/97) 149

DESCRIPTION

This function causes the messaging service to call the registered callback functions associated with the specified callback
event(s). The messaging service will process each specified callback event and call the registered callback functions if
there have been changes that would trigger the callbacks of that event. The order in which callbacks are invoked is
implementation specific.

This function is useful in environments where an implementation can only call callbacks when the implementation’s code
is executing. That is, this function is useful for implementations where callbacks can only be called as a side effect of
calling any CMC function in that implementation.

Support for this function is optional for conformance to the CMC interface specification. The error
CMC_E_NOT_SUPPORTED is returned if the function is not supported.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service. If a valid session handle is
specified, the callback functions registered with that session are invoked. If the session handle is invalid, then
the error CMC_E_INVALID_SESSION_ID is returned.

Event Type (Event)

A bitmask of events. Unspecified events should always be passed as 0. Undocumented events are reserved.
The definition of CMC events is given in the Event data type description.

Call Callbacks Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Call Callbacks Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_EVENT

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_SESSION_ID

CMC_E_NOT_SUPPORTED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.5 Messaging functions

The messaging functions provide the ability to create derived messages, send messages, and wait for new messages.

150 Recommendation X.446 (08/97)

6.2.5.1 Create Derived Message Object

NAME

Create Derived Message Object – Creates a message object that is suitable for forwarding or replying.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_create_derived_message_object(

CMC_object_handle original_message,
CMC_enum derived_action,
CMC_boolean inherit_contents,
CMC_boolean modified_message,
CMC_object_handle *derived_message,
CMC_extensions *create_derived_message_object_extensions

);

DESCRIPTION

This function is used to create a message suitable for forwarding or replying to a given message. The "object" parameter
must be a message object with at least one recipient.

The derived_message may contain additional properties in addition to those in original_message. Likewise, the
properties in derived_message may not have the same values as corresponding properties in original_message. For
example, some implementations will alter the subject of a replied message from, say, "Quarterly Financial Results", to
say, "Re: Quarterly Financial Results". The implementation must define the rules to apply to this function including
which attributes get modified and what extra attributes get generated in the derived message.

An originator recipient object is needed to reply to the message.

ARGUMENTS

Original Message (Object Handle)

A handle to the message object that is to be forwarded or replied to.

Derived Action (Enum)

Indicates whether the derived message is intended to be forwarded or replied to. It can be one of the following
values:

CMC_DERIVED_ACTION_FORWARD
CMC_DERIVED_ACTION_REPLY_ORIGINATOR
CMC_DERIVED_ACTION_REPLY_ALL

CMC_DERIVED_ACTION_FORWARD – The message is intended to be forwarded.

CMC_DERIVED_ACTION_REPLY_ORIGINATOR – The message is intended to be replied to the
originator.

CMC_DERIVED_ACTION_REPLY_ALL – The message is intended to be replied to all the recipients of the
original message.

Inherit Contents (Boolean)

All the contents of the original message are either copied and included in the derived message or are ignored.
If true, the new object inherits all the contents.

Modified Message (Boolean)

Specifies whether the original message should be changed.

Create Derived Message Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 151

RESULTS

Derived Message (Object Handle)

A new handle to a message object that can be forwarded or replied to.

Create Derived Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_ACTION

CMC_E_REQUIRED_PROPS_MISSING

6.2.5.2 Send Message Object

NAME

Send Message Object – Sends a message object from the outbox.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_send_message_object(

CMC_object_handle object,
CMC_extensions *send_message_object_extensions

);

DESCRIPTION

This function is used to send a message from the outbox, if the outbox container is supported. The function will also
attempt to transfer all other committed messages in the outbox. The "object" parameter must be a message object with at
least one recipient.

ARGUMENTS

Object (Object Handle)

A handle to the message object that is to be submitted to the messaging service.

Send Message Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Send Message Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

152 Recommendation X.446 (08/97)

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_REQUIRED_PROPS_MISSING

6.2.6 Name handling functions

The name handling functions provide the ability to convert a property identifier to a property name and convert a
property name to a property identifier.

6.2.6.1 Identifier To Name

NAME

Identifier To Name – Converts an identifier into its associated unique name.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_identifier_to_name(

CMC_id identifier,
CMC_name *name,
CMC_extension*identifier_to_name_extensions

);

DESCRIPTION

This function converts an identifier into its corresponding unique name. It may be used for object class identifiers and
property identifiers.

The name is a formal public identifier, as defined by ISO 9070. The identifier is an implementation-specific, unique
identifier. The identifier is used to uniquely identify the property or object class within the CMC property structure.

ARGUMENTS

Identifier (Identifier)

The identifier to be converted into a name.

Identifier To Name Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Name (Name)

The name of the identifier string. This string is allocated by the service and should be freed with cmc_free().

Identifier To Name Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Recommendation X.446 (08/97) 153

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_PROPERTY_ID

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_PROPERTY_NAME_NOT_FOUND

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.6.2 Name To Identifier

NAME

Name To Identifier – Converts a unique name into its corresponding identifier.

SYNOPSIS

#include <xcmc.h>
CMC_return_code
cmc_name_to_identifier(

CMC_name name,
CMC_id *identifier,
CMC_extension*name_to_identifier_extensions

);

DESCRIPTION

This function converts a unique name into its corresponding identifier. It may be used for object class identifiers and
property identifiers.

The name is a formal public identifier, as defined by ISO 9070. The identifier is an implementation specific, unique
identifier. The identifier is used to uniquely identify a property or an object class.

ARGUMENTS

Name (Name)

The name to be converted into an identifier.

Name To Identifier Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Identifier (Identifier)

The identifier corresponding to the name.

Name To Identifier Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

154 Recommendation X.446 (08/97)

ERRORS

CMC_E_INVALID_PROPERTY_NAME
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_PROPERTY_ID_NOT_FOUND
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7 Stream functions

Some CMC properties may be defined in terms of large amounts of content information. These properties necessitate a
group of functions to permit the access to the content information in the form of streamed input or output.

6.2.7.1 Export Stream

NAME

Export Stream – Export stream data to the file system.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_export_stream(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 count,
CMC_flags export_flags,
CMC_extension*export_stream_extensions

);

DESCRIPTION

This function exports stream data to a file.

ARGUMENTS

Stream (Stream Handle)

A handle to the stream from which data is to be exported.

File Specification (String)

A complete file system specification for the file which will contain the stream data.

Count (Uint32)

Specifies the number of bytes to export.

Export Flags (Flags)

Bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_EXPORT_STREAM_OVERWRITE

CMC_EXPORT_STREAM_NOCREATE

CMC_EXPORT_STREAM_APPEND

CMC_EXPORT_STREAM_OVERWRITE – Set if the function should overwrite an existing file matching
file_specification.

CMC_EXPORT_STREAM_NOCREATE – Set if the function should not create a file matching
file_specification if the file does not already exist.

CMC_EXPORT_STREAM_APPEND – Set if the function should append the stream data to an existing file
matching file_specification.

Recommendation X.446 (08/97) 155

Export Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Export Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE

CMC_E_ACCESS_DENIED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_FLAG

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_DISK_FULL

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.2 Import File To Stream

NAME

Import File To Stream – Import data from the file system to a stream.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_import_file_to_stream(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 file_offset,
CMC_extension*import_file_to_stream_extensions

);

DESCRIPTION

This function imports data from a file to a stream.

ARGUMENTS

Stream (Stream Handle)

A handle to the stream to which data are to be imported.

File Specification (String)

A complete file system specification for the file from which to import data.

File Offset (Uint32)

Specifies the offset in bytes from the beginning of the file from which to begin reading data.

156 Recommendation X.446 (08/97)

Import File to Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Import File to Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE

CMC_E_ACCESS_DENIED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_FLAG

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_INVALID_FILE_OFFSET

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.3 Open Stream

NAME

Open Stream – Open a property for stream-based read or write operations.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_open_stream(

CMC_object_handle object,
CMC_property_id property_id,
CMC_enum operation,
CMC_stream_handle *stream,
CMC_extension*open_stream_extensions

);

DESCRIPTION

This function will open a stream for reading or writing large content information in a property.

ARGUMENTS

Object (Object Handle)

Opaque object handle. This handle encapsulates the session id.

Property Id (Property Id)

Property to read or write through the stream.

Recommendation X.446 (08/97) 157

Operation (Enum)

The operation the stream is to be used for. Valid operations include:

CMC_OPEN_READ
CMC_OPEN_WRITE

CMC_OPEN_READ – Open the stream for read operations.

CMC_OPEN_WRITE – Open the stream for write operations.

Open Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Stream (Stream Handle)

The stream handle allocated for accessing the specified property. The returned value is passed to cmc_free() to
free the handle and any service specific information about the stream when it is no longer used.

Open Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PROPERTY_ID
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.4 Read Stream

NAME

Read Stream – Read a stream of content information from the specified property.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_read_stream(

CMC_stream_handle stream,
CMC_uint32 *count,
CMC_buffer content_information,
CMC_extension*read_stream_extensions

);

DESCRIPTION

This function will read content information from the specified property into a user-managed buffer.

ARGUMENTS

Stream (Stream Handle)

Opaque stream handle. This handle encapsulates the session and object handles.

158 Recommendation X.446 (08/97)

Count (Uint32)

Specifies the maximum number of bytes to be read. A value of zero specifies no maximum.

Read Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Count (Uint32)

Specifies the number of bytes of content information actually read. If nothing was read, a value of zero is
returned.

Content Information (Buffer)

A buffer which contains the content information that was read. This buffer is allocated by the service and the
entire buffer should be freed with a single call to cmc_free(). This buffer is managed by the user of the API,
not by the service.

Read Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE

CMC_E_ACCESS_DENIED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.5 Seek Stream

NAME

Seek Stream – Move to the specified location with the content information of the specified property stream.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_seek_stream(

CMC_stream_handle stream,
CMC_enum operation,
CMC_uint32 *location,
CMC_extension*seek_stream_extensions

);

DESCRIPTION

This function will move to the specified location within a property stream. The location is specified as a byte offset from
either the beginning, the end, or the current position within the content information.

Recommendation X.446 (08/97) 159

ARGUMENTS

Stream (Stream Handle)

Opaque stream handle. This handle encapsulates the session and object handles.

Operation (Enum)

The seek direction. It will specify either to seek from the beginning, the end of the content information, or
from the current position in the stream. Valid operations include:

CMC_SEEK_BEGINNING

CMC_SEEK_END

CMC_SEEK_CURRENT_POSITION

CMC_SEEK_BEGINNING – Seek the specified offset from the beginning of the content information.

CMC_SEEK_END – Seek the specified offset from the end of the content information.

CMC_SEEK_CURRENT_POSITION – Seek the specified offset from the current position with the content
information.

Location (Uint32)

Pointer to the byte offset or location within the stream.

Seek Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Location (Uint32)

The actual byte offset moved to.

Seek Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE

CMC_E_ACCESS_DENIED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID_PARAMETER

CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.6 Write Stream

NAME

Write Stream – Write a stream of content information to the specified property.

160 Recommendation X.446 (08/97)

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_write_stream(

CMC_stream_handle stream,
CMC_uint32 count,
CMC_buffer content_information,
CMC_extension*write_stream_extensions

);

DESCRIPTION

This function will write content information to the specified property.

ARGUMENTS

Stream (Stream Handle)

Opaque stream handle. This handle encapsulates the session and object handles.

Count (Uint32)

Specifies the number of bytes to be written to the property.

Content Information (Buffer)

Pointer to a buffer which contains the content information to be written.

Write Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Write Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE
CMC_E_ACCESS_DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_NO_MORE_BYTES_TO_WRITE
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

7 Return codes

This clause defines the return codes of the CMC interface. The return codes of the generic interface are specified here;
the return codes of the C interface are specified in Annex A, "C declaration summary". Tables 16 to 21 list the generic
return codes and the functions to which the return codes pertain. Following the tables, each return code is defined.

The CMC implementation should only return the values that pertain to a specific function if possible. If necessary, the
implementation may return other errors in the error list that are not specifically assigned to a function. It is not
recommended that errors not in the list below be returned.

Recommendation X.446 (08/97) 161

TABLE 16/X.446 – SIMPLE CMC INTERFACE RETURN CODES

Return code Act Free List Logoff Logon Query Read Look Send SndDoc

CMC_E_ACCESS_DENIED – – – – – – – – – –

CMC_E_AMBIGUOUS_RECIPIENT – – – – – – – X – –

CMC_E_ATTACHMENT_NOT_FOUND – – – – – – – – X X

CMC_E_ATTACHMENT_OPEN_FAILURE – – – – – – X – X X

CMC_E_ATTACHMENT_READ_FAILURE – – – – – – X – X X

CMC_E_ATTACHMENT_WRITE_FAILURE – – – – – – X – X X

CMC_E_BIND_FAILURE – – – – – – – – – –

CMC_E_CALLBACK_NOT_SUPPORTED – – – – – – – – – –

CMC_E_COUNTED_STRING_UNSUPPORTED – – – – X – – – – –

CMC_E_DISK_FULL – – – – – – X – – –

CMC_E_FAILURE X X X X X X X X X X

CMC_E_FUNCTION_INTERRUPTED – – – – – – – – – –

CMC_E_ID_NOT_FOUND – – – – – – – – – –

CMC_E_INSUFFICIENT_MEMORY X – X X X X X X X X

CMC_E_INVALID_CONFIGURATION – – – – X – – – – –

CMC_E_INVALID_CONTAINER_OBJECT – – – – – – – – – –

CMC_E_INVALID_CURSOR_HANDLE – – – – – – – – – –

CMC_E_INVALID_ENUM X – – – X X – – – –

CMC_E_INVALID_EVENT – – – – – – – – – –

CMC_E_INVALID_FILE_OFFSET – – – – – – – – – –

CMC_E_INVALID_FILE_SPECIFICATION – – – – – – – – – –

CMC_E_INVALID_FLAG X – X X X – X X X –

CMC_E_INVALID_FUNCTION_EXT – – – – – – – – – –

CMC_E_INVALID_MEMORY – X – – – – – – – –

CMC_E_INVALID_MESSAGE_PARAMETER – – – – – – – – X –

CMC_E_INVALID_MESSAGE_REFERENCE X – X – – – X – – –

CMC_E_INVALID_OBJECT_HANDLE – – – – – – – – – –

CMC_E_INVALID_PARAMETER X X X X X X X X X X

CMC_E_INVALID_PROPERTY_ID – – – – – – – – – –

CMC_E_INVALID_PROPERTY_NAME – – – – – – – – – –

CMC_E_INVALID_RESTRICTION – – – – – – – – – –

CMC_E_INVALID_SESSION_ID X – X X – – X – – –

CMC_E_INVALID_SOURCE_OBJECT – – – – – – – – – –

CMC_E_INVALID_STREAM_HANDLE – – – – – – – – – –

CMC_E_INVALID_UI_ID X – X X X – X X X X

162 Recommendation X.446 (08/97)

TABLE 16/X.446 – SIMPLE CMC INTERFACE RETURN CODES (CONCLUDED)

Return code Act Free List Logoff Logon Query Read Look Send SndDoc

CMC_E_INVALID_VALUE – – – – – – – – – –

CMC_E_LOGON_FAILURE – – – – X – – X X X

CMC_E_MESSAGE_IN_USE X – – – – – – – – –

CMC_E_NAME_NOT_FOUND – – – – – – – – – –

CMC_E_NO_EVENT – – – – – – – – – –

CMC_E_NO_MORE_BYTES_TO_WRITE – – – – – – – – – –

CMC_E_NOT_SUPPORTED – – – – – X – X – –

CMC_E_PASSWORD_REQUIRED – – – – X – – – – –

CMC_E_PROPERTY_DATA_TYPE_NOT_SUPPORTED – – – – – – – – – –

CMC_E_PROPERTY_ID_NOT_FOUND – – – – – – – – – –

CMC_E_PROPERTY_NAME_NOT_FOUND – – – – – – – – – –

CMC_E_PROPERTY_PROBLEMS – – – – – – – – – –

CMC_E_RECIPIENT_NOT_FOUND – – – – – – – X X X

CMC_E_REQUIRED_PROPS_MISSING – – – – – – – – – –

CMC_E_RESTRICTION_NOT_SUPPORTED – – – – – – – – – –

CMC_E_SERVICE_UNAVAILABLE – – – – X – – – – –

CMC_E_TEXT_TOO_LARGE – – – – – – – – X X

CMC_E_TOO_MANY_CONTENT_ITEMS – – – – – – – – – –

CMC_E_TOO_MANY_FILES – – – – – – X – X X

CMC_E_TOO_MANY_RECIPIENTS – – – – – – – – X X

CMC_E_UNABLE_TO_NOT_MARK_READ – – – – – – X – – –

CMC_E_UNBIND_FAILURE – – – – – – – – – –

CMC_E_UNRECOGNIZED_IDENTIFIER – – – – – – – – – –

CMC_E_UNRECOGNIZED_MESSAGE_TYPE – – X – – – – – – –

CMC_E_UNSUPPORTED_ACTION X – – – – – – – – –

CMC_E_UNSUPPORTED_CHARACTER_SET – – – – X – – – – –

CMC_E_UNSUPPORTED_DATA_EXT – – – – – – – X X –

CMC_E_UNSUPPORTED_FLAG X – X X X – X X X –

CMC_E_UNSUPPORTED_FUNCTION_EXT X – X X X X X X X –

CMC_E_UNSUPPORTED_KEYS – – – – – – – – – –

CMC_E_UNSUPPORTED_VALUE – – – – – – – – – –

CMC_E_UNSUPPORTED_VERSION – – – – X – – – – –

CMC_E_USER_CANCEL – – – – – – – X X X

CMC_E_USER_NOT_LOGGED_ON – – – X – – – X X X

Recommendation X.446 (08/97) 163

TABLE 17/X.446 – FULL CMC ADMINISTRATIVE AND BIND FUNCTION INTERFACE
RETURN CODES

Return code Free Logoff Logon Bind Unbind

CMC_E_ACCESS_DENIED – – – – –

CMC_E_AMBIGUOUS_RECIPIENT – – – – –

CMC_E_ATTACHMENT_NOT_FOUND – – – – –

CMC_E_ATTACHMENT_OPEN_FAILURE – – – – –

CMC_E_ATTACHMENT_READ_FAILURE – – – – –

CMC_E_ATTACHMENT_WRITE_FAILURE – – – – –

CMC_E_BIND_FAILURE – – – X –

CMC_E_CALLBACK_NOT_SUPPORTED – – – – –

CMC_E_COUNTED_STRING_UNSUPPORTED – – X – –

CMC_E_DISK_FULL – – – – –

CMC_E_FAILURE X X X X X

CMC_E_FUNCTION_INTERRUPTED – – – – –

CMC_E_ID_NOT_FOUND – – – X X

CMC_E_INSUFFICIENT_MEMORY – X X X X

CMC_E_INVALID_CONFIGURATION – – X – –

CMC_E_INVALID_CONTAINER_OBJECT – – – – –

CMC_E_INVALID_CURSOR_HANDLE – – – – –

CMC_E_INVALID_ENUM – – X – –

CMC_E_INVALID_EVENT – – – – –

CMC_E_INVALID_FILE_OFFSET – – – – –

CMC_E_INVALID_FILE_SPECIFICATION – – – – –

CMC_E_INVALID_FLAG – X X – –

CMC_E_INVALID_FUNCTION_EXT – – – – –

CMC_E_INVALID_MEMORY X – – – –

CMC_E_INVALID_MESSAGE_PARAMETER – – – – –

CMC_E_INVALID_MESSAGE_REFERENCE – – – – –

CMC_E_INVALID_OBJECT_HANDLE – – – – –

CMC_E_INVALID_PARAMETER X X X X X

CMC_E_INVALID_PROPERTY_ID – – – – –

CMC_E_INVALID_PROPERTY_NAME – – – – –

CMC_E_INVALID_RESTRICTION – – – – –

CMC_E_INVALID_SESSION_ID – X – – –

CMC_E_INVALID_SOURCE_OBJECT – – – – –

CMC_E_INVALID_STREAM_HANDLE – – – – –

CMC_E_INVALID_UI_ID – X X – –

164 Recommendation X.446 (08/97)

TABLE 17/X.446 – FULL CMC ADMINISTRATIVE AND BIND FUNCTION INTERFACE
RETURN CODES (CONCLUDED)

Return code Free Logoff Logon Bind Unbind

CMC_E_INVALID_VALUE – – – – –

CMC_E_LOGON_FAILURE – – X – –

CMC_E_MESSAGE_IN_USE – – – – –

CMC_E_NAME_NOT_FOUND – – – – –

CMC_E_NO_EVENT – – – – –

CMC_E_NO_MORE_BYTES_TO_WRITE – – – – –

CMC_E_NOT_SUPPORTED – – – – –

CMC_E_PASSWORD_REQUIRED – – X – –

CMC_E_PROPERTY_DATA_TYPE_NOT_SUPPORTED – – – – –

CMC_E_PROPERTY_ID_NOT_FOUND – – – – –

CMC_E_PROPERTY_NAME_NOT_FOUND – – – – –

CMC_E_PROPERTY_PROBLEMS – – – – –

CMC_E_RECIPIENT_NOT_FOUND – – – – –

CMC_E_REQUIRED_PROPS_MISSING – – – – –

CMC_E_RESTRICTION_NOT_SUPPORTED – – – – –

CMC_E_SERVICE_UNAVAILABLE – – X – –

CMC_E_TEXT_TOO_LARGE – – – – –

CMC_E_TOO_MANY_CONTENT_ITEMS – – – – –

CMC_E_TOO_MANY_FILES – – – – –

CMC_E_TOO_MANY_RECIPIENTS – – – – –

CMC_E_UNABLE_TO_NOT_MARK_READ – – – – –

CMC_E_UNBIND_FAILURE – – – – X

CMC_E_UNRECOGNIZED_IDENTIFIER – – – X X

CMC_E_UNRECOGNIZED_MESSAGE_TYPE – – – – –

CMC_E_UNSUPPORTED_ACTION – – – – –

CMC_E_UNSUPPORTED_CHARACTER_SET – – X – –

CMC_E_UNSUPPORTED_DATA_EXT – – – – –

CMC_E_UNSUPPORTED_FLAG – X X – –

CMC_E_UNSUPPORTED_FUNCTION_EXT – X X – –

CMC_E_UNSUPPORTED_KEYS – – – – –

CMC_E_UNSUPPORTED_VALUE – – – – –

CMC_E_UNSUPPORTED_VERSION – – X – –

CMC_E_USER_CANCEL – – – – –

CMC_E_USER_NOT_LOGGED_ON – X – – –

Recommendation X.446 (08/97) 165

TABLE 18/X.446 – FULL CMC COMPOSITION FUNCTION INTERFACE RETURN
CODES

Return code
Add

Props
Comt
Obj

Copy
Obj

Copy
Obj
Hdl

Del
Objs

Del
Props

Open
Obj
Hdl

Restore
Obj

Save
Obj

CMC_E_ACCESS_DENIED – X – – X – – X X

CMC_E_AMBIGUOUS_RECIPIENT – – – – – – – – –

CMC_E_ATTACHMENT_NOT_FOUND – – – – – – – – –

CMC_E_ATTACHMENT_OPEN_FAILURE – – – – – – – – –

CMC_E_ATTACHMENT_READ_FAILURE – – – – – – – – –

CMC_E_ATTACHMENT_WRITE_FAILURE – – – – – – – – –

CMC_E_BIND_FAILURE – – – – – – – – –

CMC_E_CALLBACK_NOT_SUPPORTED – – – – – – – – –

CMC_E_COUNTED_STRING_UNSUPPORTED – – – – – – – – –

CMC_E_DISK_FULL – X – – – – – – X

CMC_E_FAILURE X X X X X X X X X

CMC_E_FUNCTION_INTERRUPTED – – – – – – – – –

CMC_E_ID_NOT_FOUND – – – – – – – – –

CMC_E_INSUFFICIENT_MEMORY X X X X X X X X X

CMC_E_INVALID_CONFIGURATION – – – – – – – – –

CMC_E_INVALID_CONTAINER_OBJECT – – X – – – – X –

CMC_E_INVALID_CURSOR_HANDLE – – – – – – – – –

CMC_E_INVALID_ENUM – – – – – – – – –

CMC_E_INVALID_EVENT – – – – – – – – –

CMC_E_INVALID_FILE_OFFSET – – – – – – – – –

CMC_E_INVALID_FILE_SPECIFICATION – – – – – – – X X

CMC_E_INVALID_FLAG – – – – – – – X X

CMC_E_INVALID_FUNCTION_EXT – – – – – – – – –

CMC_E_INVALID_MEMORY – – – – – – – – –

CMC_E_INVALID_MESSAGE_PARAMETER – – – – – – – – –

CMC_E_INVALID_MESSAGE_REFERENCE – – – – – – – – –

CMC_E_INVALID_OBJECT_HANDLE X X – X X X – X X

CMC_E_INVALID_PARAMETER X X X X X X X X X

CMC_E_INVALID_PROPERTY_ID – – – – – – – – –

CMC_E_INVALID_PROPERTY_NAME – – – – – – – – –

CMC_E_INVALID_RESTRICTION – – – – – – – – –

CMC_E_INVALID_SESSION_ID – – – – – – X – –

CMC_E_INVALID_SOURCE_OBJECT – – X – – – – – –

CMC_E_INVALID_STREAM_HANDLE – – – – – – – – –

CMC_E_INVALID_UI_ID – – – – – – – – –

166 Recommendation X.446 (08/97)

TABLE 18/X.446 – FULL CMC COMPOSITION FUNCTION INTERFACE RETURN
CODES (CONCLUDED)

Return code
Add

Props
Comt
Obj

Copy
Obj

Copy
Obj
Hdl

Del
Objs

Del
Props

Open
Obj
Hdl

Restore
Obj

Save
Obj

CMC_E_INVALID_VALUE – – – – – – – – –

CMC_E_LOGON_FAILURE – – – – – – – – –

CMC_E_MESSAGE_IN_USE – – – – – – – – –

CMC_E_NAME_NOT_FOUND – – – – – – – – –

CMC_E_NO_EVENT – – – – – – – – –

CMC_E_NO_MORE_BYTES_TO_WRITE – – – – – – – – –

CMC_E_NOT_SUPPORTED – – – – – – – – –

CMC_E_PASSWORD_REQUIRED – – – – – – – – –

CMC_E_PROPERTY_DATA_TYPE_NOT_SUPPORTED – – – – – – – – –

CMC_E_PROPERTY_ID_NOT_FOUND – – – – – – – – –

CMC_E_PROPERTY_NAME_NOT_FOUND – – – – – – – – –

CMC_E_PROPERTY_PROBLEMS – – – – – – – – –

CMC_E_RECIPIENT_NOT_FOUND – – – – – – – – –

CMC_E_REQUIRED_PROPS_MISSING – – – – – – – – –

CMC_E_RESTRICTION_NOT_SUPPORTED – – – – – – – – –

CMC_E_SERVICE_UNAVAILABLE – – – – – – – – –

CMC_E_TEXT_TOO_LARGE – – – – – – – – –

CMC_E_TOO_MANY_CONTENT_ITEMS – – – – – – – – –

CMC_E_TOO_MANY_FILES – – – – – – – – –

CMC_E_TOO_MANY_RECIPIENTS – – – – – – – – –

CMC_E_UNABLE_TO_NOT_MARK_READ – – – – – – – – –

CMC_E_UNBIND_FAILURE – – – – – – – – –

CMC_E_UNRECOGNIZED_IDENTIFIER – – – – – – X – –

CMC_E_UNRECOGNIZED_MESSAGE_TYPE – – – – – – – – –

CMC_E_UNSUPPORTED_ACTION – X X – – – – X –

CMC_E_UNSUPPORTED_CHARACTER_SET – – – – – – – – –

CMC_E_UNSUPPORTED_DATA_EXT – – – – – – – – –

CMC_E_UNSUPPORTED_FLAG – – – – – – – – –

CMC_E_UNSUPPORTED_FUNCTION_EXT X X – X X X X X X

CMC_E_UNSUPPORTED_KEYS – – – – – – – – –

CMC_E_UNSUPPORTED_VALUE – – – – – – – – –

CMC_E_UNSUPPORTED_VERSION – – – – – – – – –

CMC_E_USER_CANCEL – – – – – – – – –

CMC_E_USER_NOT_LOGGED_ON – – – – – – – – –

Recommendation X.446 (08/97) 167

TABLE 19/X.446 – FULL CMC ENUMERATION FUNCTION INTERFACE RETURN
CODES

Return code

Get
Last
Err

Get
Root
Hdle

List
Cont
Props

List No
Matched

List
Objs

List
Props

Open
Cur

Read
Cur

Read
Props

Read
Prop
Costs

Upd
Cur
Pos

Upd
Cur
Pos

w/ Sd

CMC_E_ACCESS_DENIED – X – – – – – – – – – –

CMC_E_AMBIGUOUS_RECIPIENT – – – – – – – – – – – –

CMC_E_ATTACHMENT_NOT_FOUND – – – – – – – – – – – –

CMC_E_ATTACHMENT_OPEN_FAILURE – – – – – – – – – – – –

CMC_E_ATTACHMENT_READ_FAILURE – – – – – – – – – – – –

CMC_E_ATTACHMENT_WRITE_FAILURE – – – – – – – – – – – –

CMC_E_BIND_FAILURE – – – – – – – – – – – –

CMC_E_CALLBACK_NOT_SUPPORTED – – – – – – – – – – – –

CMC_E_COUNTED_STRING_
UNSUPPORTED

– – – – – – – – – – – –

CMC_E_DISK_FULL – – – – – – – – – – – –

CMC_E_FAILURE X X X X X X X X X X X X

CMC_E_FUNCTION_INTERRUPTED – – – – – – – – – – – –

CMC_E_ID_NOT_FOUND – – – – – – – – – – – –

CMC_E_INSUFFICIENT_MEMORY X X X X X X X X X X – –

CMC_E_INVALID_CONFIGURATION – – – – – – – – – – – –

CMC_E_INVALID_CONTAINER_OBJECT – – – – – – – – – – – –

CMC_E_INVALID_CURSOR_HANDLE – – X X X – – – – – X X

CMC_E_INVALID_ENUM – – – – – – – – – – – –

CMC_E_INVALID_EVENT – – – – – – – – – – – –

CMC_E_INVALID_FILE_OFFSET – – – – – – – – – – – –

CMC_E_INVALID_FILE_SPECIFICATION – – – – – – – – – – – –

CMC_E_INVALID_FLAG – – – – – – – – – – – –

CMC_E_INVALID_FUNCTION_EXT – – – – – – – – – – – –

CMC_E_INVALID_MEMORY – – – – – – – – – – – –

CMC_E_INVALID_MESSAGE_PARAMETER – – – – – – – – – – – –

CMC_E_INVALID_MESSAGE_REFERENCE – – – – – – – – – – – –

CMC_E_INVALID_OBJECT_HANDLE X – – – – X X X X X – X

CMC_E_INVALID_PARAMETER X X X X X X X X X X X X

CMC_E_INVALID_PROPERTY_ID – – X – – – – – – – – –

CMC_E_INVALID_PROPERTY_NAME – – – – – X – X X X – –

CMC_E_INVALID_RESTRICTION – – – – – – X – – – – –

CMC_E_INVALID_SESSION_ID X X – – – – – – – – – –

CMC_E_INVALID_SOURCE_OBJECT – – – – – – – – – – – –

CMC_E_INVALID_STREAM_HANDLE – – – – – – – – – – – –

CMC_E_INVALID_UI_ID – – – – – – – – – – – –

168 Recommendation X.446 (08/97)

TABLE 19/X.446 – FULL CMC ENUMERATION FUNCTION INTERFACE RETURN
CODES (CONCLUDED)

Return code

Get
Last
Err

Get
Root
Hdle

List
Cont
Props

List No
Matched

List
Objs

List
Props

Open
Cur

Read
Cur

Read
Props

Read
Prop
Costs

Upd
Cur
Pos

Upd
Cur
Pos

w/ Sd

CMC_E_INVALID_VALUE – – – – – – – – – – – –

CMC_E_LOGON_FAILURE – – – – – – – – – – – –

CMC_E_MESSAGE_IN_USE – – – – – – – – – – – –

CMC_E_NAME_NOT_FOUND – – – – – – – – – – – –

CMC_E_NO_EVENT – – – – – – – – – – – –

CMC_E_NO_MORE_BYTES_TO_WRITE – – – – – – – – – – – –

CMC_E_NOT_SUPPORTED – – – – – – – – – – – –

CMC_E_PASSWORD_REQUIRED – – – – – – – – – – – –

CMC_E_PROPERTY_DATA_TYPE_NOT_
SUPPORTED

– – – – – – – – – – – –

CMC_E_PROPERTY_ID_NOT_FOUND – – – – – – – – – – – –

CMC_E_PROPERTY_NAME_NOT_FOUND – – – – – – – – – – – –

CMC_E_PROPERTY_PROBLEMS – – – – – – – – – – – –

CMC_E_RECIPIENT_NOT_FOUND – – – – – – – – – – – –

CMC_E_REQUIRED_PROPS_MISSING – – – – – – – – – – – –

CMC_E_RESTRICTION_NOT_SUPPORTED – – – – – – – – – – – –

CMC_E_SERVICE_UNAVAILABLE – – – – – – – – – – – –

CMC_E_TEXT_TOO_LARGE – – – – – – – – – – – –

CMC_E_TOO_MANY_CONTENT_ITEMS – – – – – – – – – – – –

CMC_E_TOO_MANY_FILES – – – – – – – – – – – –

CMC_E_TOO_MANY_RECIPIENTS – – – – – – – – – – – –

CMC_E_UNABLE_TO_NOT_MARK_READ – – – – – – – – – – – –

CMC_E_UNBIND_FAILURE – – – – – – – – – – – –

CMC_E_UNRECOGNIZED_IDENTIFIER – – – – – – – – – – – –

CMC_E_UNRECOGNIZED_MESSAGE_TYPE – – – – – – – – – – – –

CMC_E_UNSUPPORTED_ACTION – – – – – – – – – – – –

CMC_E_UNSUPPORTED_CHARACTER_SET – – – – – – – – – – – –

CMC_E_UNSUPPORTED_DATA_EXT – – – – – – – – – – – –

CMC_E_UNSUPPORTED_FLAG – – – – – – – – – – – –

CMC_E_UNSUPPORTED_FUNCTION_EXT X X X X X X X X X X X X

CMC_E_UNSUPPORTED_KEYS – – – – – – X – – – – –

CMC_E_UNSUPPORTED_VALUE – – – – – – – – – – – –

CMC_E_UNSUPPORTED_VERSION – – – – – – – – – – – –

CMC_E_USER_CANCEL – – – – – – – – – – – –

CMC_E_USER_NOT_LOGGED_ON – – – – – – – – – – – –

Recommendation X.446 (08/97) 169

TABLE 20/X.446 – FULL CMC EVENT NOTIFICATION AND MESSAGING FUNCTION
INTERFACE RETURN CODES

Return code Ck
Event

Reg
Event

Unreg
Event

Call
Clbks

Cr Der
Msg

Snd Msg
Obj

CMC_E_ACCESS_DENIED – – – – – –

CMC_E_AMBIGUOUS_RECIPIENT – – – – – –

CMC_E_ATTACHMENT_NOT_FOUND – – – – – –

CMC_E_ATTACHMENT_OPEN_FAILURE – – – – – –

CMC_E_ATTACHMENT_READ_FAILURE – – – – – –

CMC_E_ATTACHMENT_WRITE_FAILURE – – – – – –

CMC_E_BIND_FAILURE – – – – – –

CMC_E_CALLBACK_NOT_SUPPORTED – X – – – –

CMC_E_COUNTED_STRING_UNSUPPORTED – – – – – –

CMC_E_DISK_FULL – – – – – –

CMC_E_FAILURE X X X X X X

CMC_E_FUNCTION_INTERRUPTED X – – – – –

CMC_E_ID_NOT_FOUND – – – – – –

CMC_E_INSUFFICIENT_MEMORY X X X X – –

CMC_E_INVALID_CONFIGURATION – – – – – –

CMC_E_INVALID_CONTAINER_OBJECT – – – – – –

CMC_E_INVALID_CURSOR_HANDLE – – – – – –

CMC_E_INVALID_ENUM – – – – – –

CMC_E_INVALID_EVENT X X X X

CMC_E_INVALID_FILE_OFFSET – – – – – –

CMC_E_INVALID_FILE_SPECIFICATION – – – – – –

CMC_E_INVALID_FLAG – – – – – –

CMC_E_INVALID_FUNCTION_EXT X X X X – –

CMC_E_INVALID_MEMORY – – – – – –

CMC_E_INVALID_MESSAGE_PARAMETER – – – – – –

CMC_E_INVALID_MESSAGE_REFERENCE – – – – – –

CMC_E_INVALID_OBJECT_HANDLE – – – – X X

CMC_E_INVALID_PARAMETER X X X X X X

CMC_E_INVALID_PROPERTY_ID – – – – – –

CMC_E_INVALID_PROPERTY_NAME – – – – – –

CMC_E_INVALID_RESTRICTION – – – – – –

CMC_E_INVALID_SESSION_ID X X X X – –

CMC_E_INVALID_SOURCE_OBJECT – – – – – –

CMC_E_INVALID_STREAM_HANDLE – – – – – –

CMC_E_INVALID_UI_ID – – – – – –

170 Recommendation X.446 (08/97)

TABLE 20/X.446 – FULL CMC EVENT NOTIFICATION AND MESSAGING FUNCTION
INTERFACE RETURN CODES (CONCLUDED)

Return code Ck
Event

Reg
Event

Unreg
Event

Call
Clbks

Cr Der
Msg

Snd Msg
Obj

CMC_E_INVALID_VALUE – – – – – –

CMC_E_LOGON_FAILURE – – – – – –

CMC_E_MESSAGE_IN_USE – – – – – –

CMC_E_NAME_NOT_FOUND – – – – – –

CMC_E_NO_EVENT X – – – – –

CMC_E_NO_MORE_BYTES_TO_WRITE – – – – – –

CMC_E_NOT_SUPPORTED – – X X – –

CMC_E_PASSWORD_REQUIRED – – – – – –

CMC_E_PROPERTY_DATA_TYPE_NOT_ SUPPORTED – – – – – –

CMC_E_PROPERTY_ID_NOT_FOUND – – – – – –

CMC_E_PROPERTY_NAME_NOT_FOUND – – – – – –

CMC_E_PROPERTY_PROBLEMS – – – – – –

CMC_E_RECIPIENT_NOT_FOUND – – – – – –

CMC_E_REQUIRED_PROPS_MISSING – – – – X X

CMC_E_RESTRICTION_NOT_SUPPORTED – – – – – –

CMC_E_SERVICE_UNAVAILABLE – – – X – –

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS – – – – – –

CMC_E_TOO_MANY_FILES – – – – – –

CMC_E_TOO_MANY_RECIPIENTS – – – – – –

CMC_E_UNABLE_TO_NOT_MARK_READ – – – – – –

CMC_E_UNBIND_FAILURE – – – – – –

CMC_E_UNRECOGNIZED_IDENTIFIER – – – – – –

CMC_E_UNRECOGNIZED_MESSAGE_TYPE – – – – – –

CMC_E_UNSUPPORTED_ACTION – – – – X –

CMC_E_UNSUPPORTED_CHARACTER_SET – – – – – –

CMC_E_UNSUPPORTED_DATA_EXT – – – – – –

CMC_E_UNSUPPORTED_FLAG – – – X – –

CMC_E_UNSUPPORTED_FUNCTION_EXT X X X X X X

CMC_E_UNSUPPORTED_KEYS – – – – – –

CMC_E_UNSUPPORTED_VALUE – – – – – –

CMC_E_UNSUPPORTED_VERSION – – – – – –

CMC_E_USER_CANCEL – – – – – –

CMC_E_USER_NOT_LOGGED_ON – – – – – –

Recommendation X.446 (08/97) 171

TABLE 21/X.446 – FULL CMC NAME HANDLING AND STREAM FUNCTION
INTERFACE CODES

Return code Id to
Name

Name
to Id

Exp
Str

Imp
Str

Open
Str

Read
Str

Seek
Str

Wrt
Str

CMC_E_ACCESS_DENIED – – X X – X X X

CMC_E_AMBIGUOUS_RECIPIENT – – – – – – – –

CMC_E_ATTACHMENT_NOT_FOUND – – – – – – – –

CMC_E_ATTACHMENT_OPEN_FAILURE – – – – – – – –

CMC_E_ATTACHMENT_READ_FAILURE – – – – – – – –

CMC_E_ATTACHMENT_WRITE_FAILURE – – – – – – – –

CMC_E_BIND_FAILURE – – – – – – – –

CMC_E_CALLBACK_NOT_SUPPORTED – – – – – – – –

CMC_E_COUNTED_STRING_UNSUPPORTED – – – – – – – –

CMC_E_DISK_FULL – – X – – – – –

CMC_E_FAILURE X X X X X X X X

CMC_E_FUNCTION_INTERRUPTED – – – – – – – –

CMC_E_ID_NOT_FOUND – – – – – – – –

CMC_E_INSUFFICIENT_MEMORY X X X X X X X X

CMC_E_INVALID_CONFIGURATION – – – – – – – –

CMC_E_INVALID_CONTAINER_OBJECT – – – – – – – –

CMC_E_INVALID_CURSOR_HANDLE – – – – – – – –

CMC_E_INVALID_ENUM – – – – – – – –

CMC_E_INVALID_EVENT – – – – – – – –

CMC_E_INVALID_FILE_OFFSET – – – X – – – –

CMC_E_INVALID_FILE_SPECIFICATION – – X X – – – –

CMC_E_INVALID_FLAG – – X X – – – –

CMC_E_INVALID_FUNCTION_EXT – – – – – – – –

CMC_E_INVALID_MEMORY – – – – – – – –

CMC_E_INVALID_MESSAGE_PARAMETER – – – – – – – –

CMC_E_INVALID_MESSAGE_REFERENCE – – – – – – – –

CMC_E_INVALID_OBJECT_HANDLE – – – – X – – –

CMC_E_INVALID_PARAMETER X X X X – X X X

CMC_E_INVALID_PROPERTY_ID X – – – – X – – –

CMC_E_INVALID_PROPERTY_NAME – X – – – – – –

CMC_E_INVALID_RESTRICTION – – – – – – – –

CMC_E_INVALID_SESSION_ID – – – – – – – –

CMC_E_INVALID_SOURCE_OBJECT – – – – – – – –

CMC_E_INVALID_STREAM_HANDLE – – X X – X X X

CMC_E_INVALID_UI_ID – – – – – – – –

172 Recommendation X.446 (08/97)

TABLE 21/X.446 – FULL CMC NAME HANDLING AND STREAM FUNCTION
INTERFACE CODES (CONCLUDED)

Return code Id to
Name

Name
to Id

Exp
Str

Imp
Str

Open
Str

Read
Str

Seek
Str

Wrt
Str

CMC_E_INVALID_VALUE – – – – – – – –

CMC_E_LOGON_FAILURE – – – – – – – –

CMC_E_MESSAGE_IN_USE – – – – – – – –

CMC_E_NAME_NOT_FOUND – – – – – – – –

CMC_E_NO_EVENT – – – – – – – –

CMC_E_NO_MORE_BYTES_TO_WRITE – – – – – – – X

CMC_E_NOT_SUPPORTED – – – – – – – –

CMC_E_PASSWORD_REQUIRED – – – – – – – –

CMC_E_PROPERTY_DATA_TYPE_NOT_ SUPPORTED – – – – – – – –

CMC_E_PROPERTY_ID_NOT_FOUND – X – – – – – –

CMC_E_PROPERTY_NAME_NOT_FOUND X – – – – – – –

CMC_E_PROPERTY_PROBLEMS – – – – – – – –

CMC_E_RECIPIENT_NOT_FOUND – – – – – – – –

CMC_E_REQUIRED_PROPS_MISSING – – – – – – – –

CMC_E_RESTRICTION_NOT_SUPPORTED – – – – – – – –

CMC_E_SERVICE_UNAVAILABLE – – – – – – – –

CMC_E_TEXT_TOO_LARGE – – – – – – – –

CMC_E_TOO_MANY_CONTENT_ITEMS – – – – – – – –

CMC_E_TOO_MANY_FILES – – – – – – – –

CMC_E_TOO_MANY_RECIPIENTS – – – – – – – –

CMC_E_UNABLE_TO_NOT_MARK_READ – – – – – – – –

CMC_E_UNBIND_FAILURE – – – – – – – –

CMC_E_UNRECOGNIZED_IDENTIFIER – – – – – – – –

CMC_E_UNRECOGNIZED_MESSAGE_TYPE – – – – – – – –

CMC_E_UNSUPPORTED_ACTION – – – – – – – –

CMC_E_UNSUPPORTED_CHARACTER_SET – – – – – – – –

CMC_E_UNSUPPORTED_DATA_EXT – – – – – – – –

CMC_E_UNSUPPORTED_FLAG – – – – – – – –

CMC_E_UNSUPPORTED_FUNCTION_EXT X X X X X X X X

CMC_E_UNSUPPORTED_KEYS – – – – – – – –

CMC_E_UNSUPPORTED_VALUE – – – – – – – –

CMC_E_UNSUPPORTED_VERSION – – – – – – – –

CMC_E_USER_CANCEL – – – – – – – –

CMC_E_USER_NOT_LOGGED_ON – – – – – – – –

Recommendation X.446 (08/97) 173

The return codes are defined as follows:

CMC_E_ACCESS_DENIED Access has been denied.

CMC_E_AMBIGUOUS_RECIPIENT The recipient name is ambiguous; multiple matches have
been found.

CMC_E_ATTACHMENT_NOT_FOUND The specified attachment was not found as specified.

CMC_E_ATTACHMENT_OPEN_FAILURE The specified attachment was found but could not be
opened, or the attachment file could not be created.

CMC_E_ATTACHMENT_READ_FAILURE The specified attachment was found and opened, but there
was an error reading it.

CMC_E_ATTACHMENT_WRITE_FAILURE The attachment file was created successfully, but there was
an error writing it.

CMC_E_BIND_FAILURE Unable to bind application to implementation.

CMC_E_CALLBACK_NOT_SUPPORTED Specified callback not supported by implementation.

CMC_E_COUNTED_STRING_UNSUPPORTED This implementation does not support the counted string
type.

CMC_E_DISK_FULL Insufficient disk space was available to complete the
requested operation (this may refer to local or shared disk
space).

CMC_E_FAILURE There was a general failure which does not fit the
description of any other error code.

CMC_E_FUNCTION_INTERRUPTED The function has been interrupted.

CMC_E_ID_NOT_FOUND The specified id was not found.

CMC_E_INSUFFICIENT_MEMORY Insufficient memory was available to complete the
requested operation.

CMC_E_INVALID_CONFIGURATION The underlying messaging service’s configuration is
invalid, so logging on cannot be completed.

CMC_E_INVALID_CONTAINER_OBJECT An invalid container object was specified.

CMC_E_INVALID_CURSOR_HANDLE An invalid cursor handle was specified.

CMC_E_INVALID_ENUM A CMC_enum value is invalid.

CMC_E_INVALID_EVENT Invalid event specified.

CMC_E_INVALID_FILE_OFFSET An invalid file offset was specified.

CMC_E_INVALID_FILE_SPECIFICATION An invalid file was specified.

CMC_E_INVALID_FLAG A flag value in the flags parameter was invalid.

CMC_E_INVALID_FUNCTION_EXT The function extension is invalid.

CMC_E_INVALID_MEMORY Memory pointer passed is invalid.

CMC_E_INVALID_MESSAGE_PARAMETER One of the parameters in the message was invalid.

174 Recommendation X.446 (08/97)

CMC_E_INVALID_MESSAGE_REFERENCE The specified message reference is invalid or no longer
valid (e.g. it has been deleted).

CMC_E_INVALID_OBJECT_HANDLE An invalid object handle was specified.

CMC_E_INVALID_PARAMETER A function parameter was invalid.

CMC_E_INVALID_PROPERTY_ID An invalid property identifier was specified.

CMC_E_INVALID_PROPERTY_NAME The specified property name is invalid.

CMC_E_INVALID_RESTRICTION An invalid restriction was specified.

CMC_E_INVALID_SESSION_ID The specified session id is invalid or no longer valid
(e.g. after logging off).

CMC_E_INVALID_SOURCE_OBJECT An invalid source object was specified.

CMC_E_INVALID_STREAM_HANDLE An invalid stream handle was specified.

CMC_E_INVALID_UI_ID The specified user interface id is invalid or no longer valid.

CMC_E_INVALID_VALUE The value is not valid.

CMC_E_LOGON_FAILURE The service, user name, and/or password specified were
invalid, so logging on cannot be completed.

CMC_E_MESSAGE_IN_USE The requested action cannot be completed at this time
because the message is in use.

CMC_E_NAME_NOT_FOUND The specified name was not found.

CMC_E_NO_EVENT The specified event does not exist.

CMC_E_NO_MORE_BYTES_TO_WRITE There are no more bytes to write to the stream.

CMC_E_NOT_SUPPORTED The operation requested is not supported by this
implementation.

CMC_E_PASSWORD_REQUIRED A password is required on this messaging service.

CMC_E_PROPERTY_DATA_TYPE_NOT_ SUPPORTED The property data type is not supported by this
implementation.

CMC_E_PROPERTY_ID_NOT_FOUND The specified property identifier was not found.

CMC_E_PROPERTY_NAME_NOT_FOUND The specified property name was not found.

CMC_E_PROPERTY_PROBLEMS Problems exist with the properties.

CMC_E_RECIPIENT_NOT_FOUND One or more of the specified recipients were not found.

CMC_E_REQUIRED_PROPS_MISSING One or more of the specified properties are missing.

CMC_E_RESTRICTION_NOT_SUPPORTED The specified restriction is too complex and is not
supported by the implementation.

Recommendation X.446 (08/97) 175

CMC_E_SERVICE_UNAVAILABLE The service requested is unavailable.

CMC_E_TEXT_TOO_LARGE The size of the text string passed to the implementation is
too large.

CMC_E_TOO_MANY_CONTENT_ITEMS Maximum number of acceptable content items exceeded.

CMC_E_TOO_MANY_FILES The implementation cannot support the number of files
specified.

CMC_E_TOO_MANY_RECIPIENTS The implementation cannot support the number of
recipients specified.

CMC_E_UNABLE_TO_NOT_MARK_READ CMC_E_UNABLE_TO_NOT_MARK_READ flag can-
not be supported.

CMC_E_UNBIND_FAILURE Failure encountered while attempting to unbind application
from implementation.

CMC_E_UNRECOGNIZED_IDENTIFIER The specified identifier was unrecognized.

CMC_E_UNRECOGNIZED_MESSAGE_TYPE The specified message type is not supported by this
implementation.

CMC_E_UNSUPPORTED_ACTION The requested action is not supported by this
implementation.

CMC_E_UNSUPPORTED_CHARACTER_SET The character set requested is not supported.

CMC_E_UNSUPPORTED_DATA_EXT The data extension requested is not supported.

CMC_E_UNSUPPORTED_FLAG The flag requested is not supported.

CMC_E_UNSUPPORTED_FUNCTION_EXT The function extension requested is not supported.

CMC_E_UNSUPPORTED_KEYS The specified sort keys are not supported.

CMC_E_UNSUPPORTED_VALUE The value is not supported.

CMC_E_UNSUPPORTED_VERSION The version specified in the call cannot be supported by
this CMC implementation.

CMC_E_USER_CANCEL The operation was cancelled by the user.

CMC_E_USER_NOT_LOGGED_ON The user is not logged on and the
CMC_E_USER_NOT_LOGGED_ON flag is not set.

8 Conformance

In order for an implementation of the Common Messaging Call API to conform to this Recommendation it must meet the
following criteria:

• All functions and data structures must be implemented as defined. Statements elsewhere in the Recommendation
which describe features as optional or with exceptions take precedence over this criterion.

• The implementation must be able to transport at least the CMC IPM message type.

• Support for XAPIA’s CMC 1.0 applications is recommended for Simple CMC and Full CMC implementations.

• Support for Full CMC and Simple CMC is mandatory for Full CMC implementations.

176 Recommendation X.446 (08/97)

• All object classes in clause 3 must be implemented as defined. Statements elsewhere in the Recommendation which
describe features as optional or with exceptions take precedence over this criterion.

• Object properties designated as mandatory in the property characteristic tables shall be supported.

• Character set support is up to the underlying implementation. Support for an implementation-defined default
character set is required. Optionally, other character sets may be supported. Counted string support is not required.

• All extensions are optional. Vendors are encouraged to support the CMC-defined standard extension set specified
in this Recommendation. It is further encouraged that standard extension sets are developed for any proprietary or
non-proprietary messaging services for which a CMC interface is provided, to accommodate features specific to
that messaging service, and that the extension set can be registered externally.

• Minimum conformance for an extension set will be defined by the creator of the extension set.

• The CMC Manager and CMC Implementation must provide an implementation of the CMC Bind Implementation()
and CMC Unbind Implementation() calls, and must return a pointer to the dispatch table on the CMC Bind
Implementation() call. The CMC Manager, if multiple implementations are supported, could provide a means of
enumerating the known CMC implementations on a given platform (optional browsing capability), and a means of
registering the CMC implementations.

• CMC implementations must be able to support calls directly to its function as well as indirectly through the dispatch
table.

Recommendation X.446 (08/97) 177

Recommendation X.446 (08/97)

Annex A

C declaration summary

A.1 C declaration summary

This subclause lists the declarations that define the CMC interface for the C programming language. All of the
declarations, except those for symbolic constants, also appear in clause 4, Data Structures or clause 6, Functional
interface.

The declarations assembled here constitute the contents of a header file to be made accessible to application
programmers. The header file is <xcmc.h>. The symbols the declarations define are the only symbols the service makes
visible to the application.

/*BEGIN CMC 2.0 INTERFACE*/

#ifndef_XCMC_H
#define_XCMC_H

#ifdef_cplusplus
extern "C" {
#endif

/*BASIC DATA TYPES*/
#ifndef DIFFERENT_PLATFORM
typedef char CMC_sint8;
typedef short CMC_sint16;
typedef long int CMC_sint32;
typedef unsigned short int CMC_uint16;
typedef unsigned long int CMC_uint32;
typedef void * CMC_buffer;
typedef unsigned char CMC_byte;
typedef long int CMC_size;
typedef float CMC_float32;
typedef double CMC_float64;

/*CHARACTER SIZE DEFINITION*/
#ifndef CMC_WCHAR
#define CMC_CHAR char
#else
#define CMC_CHAR CMC_sint16
#endif
typedef CMC_CHAR * CMC_string;
#else
typedef CMC_CHAR char
typedef CMC_CHAR * CMC_string;
#endif

typedef CMC_uint16 CMC_boolean;
typedef CMC_sint32 CMC_enum;
typedef CMC_uint32 CMC_return_code;
typedef CMC_uint32 CMC_flags;
typedef CMC_string CMC_object_identifier;
typedef CMC_string CMC_guid;
typedef CMC_string CMC_date_time;

#define CMC_FALSE ((CMC_boolean) 0)
#define CMC_TRUE ((CMC_boolean) 1)

/*DATA STRUCTURES*/

/*COUNTED STRING*/
typedef struct {

CMC_uint32 length;
CMC_CHAR string[1];

} CMC_counted_string;

/*SESSION ID*/
typedef CMC_uint32 CMC_session_id;

178 Recommendation X.446 (08/97)

#ifndef DIFFERENT_PLATFORM
/*CURSOR HANDLE*/
typedef CMC_uint32 CMC_cursor_handle;

/*OBJECT HANDLE*/
typedef CMC_uint32 CMC_object_handle;

/*STREAM HANDLE*/
typedef CMC_uint32 CMC_stream_handle;

/*NULLHANDLE*/
#define CMC_NULL_OBJECT_HANDLE ((CMC_object_handle) 0)
#endif

/*OPAQUE DATA*/
typedef struct CMC_TAG_OPAQUE_DATA {

CMC_size size;
CMC_byte *data;

} CMC_opaque_data;

/*TIME*/
/* unusedX fields needed to align struct on 4-byte boundary */
typedef struct {

CMC_sint8 second;
CMC_sint8 minute;
CMC_sint8 hour;
CMC_sint8 day;
CMC_sint8 month;
CMC_sint8 year;
CMC_sint8 isdst;
CMC_sint8 unused1;
CMC_sint16 tmzone;
CMC_sint16 unused2;

} CMC_time, CMC_iso_date_time;

#define CMC_NO_TIMEZONE ((CMC_sint16) 0x8000)

/*UI ID*/
typedef CMC_uint32 CMC_ui_id;

/*EXTENSION*/
typedef struct {

CMC_uint32 item_code;
CMC_uint32 item_data;
CMC_buffer item_reference;
CMC_flags extension_flags;

} CMC_extension;

/*PROPERTY ID*/
typedef CMC_uint32 CMC_id;

/*PROPERTY NAME*/
typedef CMC_string CMC_name;

/*MULTIVALUED PROPERTY DEFINITIONS*/

typedef struct CMC_TAG_ARRAY_BOOLEAN {
CMC_uint32 count;
CMC_boolean *bits;

} CMC_array_boolean;

typedef struct CMC_TAG_ARRAY_BUFFER {
CMC_uint32 count;
CMC_buffer *buffer;

} CMC_array_buffer;

typedef struct CMC_TAG_ARRAY_COUNTED_STRING {
CMC_uint32 count;
CMC_counted_string *string;

} CMC_array_counted_string;

typedef struct CMC_TAG_ARRAY_ENUM {
CMC_uint32 count;
CMC_enum *set;

} CMC_array_enum;

Recommendation X.446 (08/97) 179

typedef struct CMC_TAG_ARRAY_EXTENSION {
CMC_uint32 count;
CMC_extension *extension;

} CMC_array_extension;

typedef struct CMC_TAG_ARRAY_FLOAT32 {
CMC_uint32 count;
CMC_float32 *number;

} CMC_array_float32;

typedef struct CMC_TAG_ARRAY_FLOAT64 {
CMC_uint32 count;
CMC_float64 *number;

} CMC_array_float64;

typedef struct CMC_TAG_ARRAY_GUID {
CMC_uint32 count;
CMC_guid *guid;

} CMC_array_guid;

typedef struct CMC_TAG_ARRAY_ISO_DATE_TIME {
CMC_uint32 count;
CMC_date_time *time;

} CMC_array_iso_date_time;

typedef struct CMC_TAG_ARRAY_OBJECT_HANDLE {
CMC_uint32 count;
CMC_object_handle *ohandles;

} CMC_array_object_handle;

typedef struct CMC_TAG_ARRAY_OPAQUE_DATA {
CMC_uint32 count;
CMC_opaque_data *data;

} CMC_array_opaque_data;

typedef struct CMC_TAG_ARRAY_RETURN_CODE {
CMC_uint32 count;
CMC_return_code *code;

} CMC_array_return_code;

typedef struct CMC_TAG_ARRAY_SINT16 {
CMC_uint32 count;
CMC_sint16 *number;

} CMC_array_sint16;

typedef struct CMC_TAG_ARRAY_SINT32 {
CMC_uint32 count;
CMC_sint32 *number;

} CMC_array_sint32;

typedef struct CMC_TAG_ARRAY_STRING {
CMC_uint32 count;
CMC_string *string;

} CMC_array_string;

typedef struct CMC_TAG_ARRAY_TIME {
CMC_uint32 count;
CMC_time *time;

} CMC_array_time;

typedef struct CMC_TAG_ARRAY_UINT16 {
CMC_uint32 count;
CMC_uint16 *number;

} CMC_array_uint16;

typedef struct CMC_TAG_ARRAY_UINT32 {
CMC_uint32 count;
CMC_uint32 *number;

} CMC_array_uint32;

180 Recommendation X.446 (08/97)

/*PROPERTY*/
typedef struct CMC_TAG_PROPERTY {

CMC_id property_id;
CMC_enum type;
union {

CMC_boolean CMC_pv_boolean;
CMC_byte CMC_pv_byte;
CMC_buffer CMC_pv_buffer;
CMC_counted_string CMC_pv_counted_string;
CMC_enum CMC_pv_enumerated;
CMC_extension CMC_pv_extension;
CMC_float32 CMC_pv_float32;
CMC_float64 CMC_pv_float64;
CMC_flags CMC_pv_flags;
CMC_guid CMC_pv_guid;
CMC_iso_date_time CMC_pv_iso_date_time;
CMC_object_handle CMC_pv_object_handle;
CMC_opaque_data CMC_pv_opaque_data;
CMC_return_code CMC_pv_return_code;
CMC_sint16 CMC_pv_sint16;
CMC_sint32 CMC_pv_sint32;
CMC_string CMC_pv_string;
CMC_time CMC_pv_time;
CMC_uint16 CMC_pv_uint16;
CMC_uint32 CMC_pv_uint32;
CMC_array_boolean CMC_pv_array_boolean;
CMC_array_buffer CMC_pv_array_buffer;
CMC_array_counted_string CMC_pv_array_counted_string;
CMC_array_enum CMC_pv_array_enum;
CMC_array_extension CMC_pv_array_extension;
CMC_array_float32 CMC_pv_array_float32;
CMC_array_float64 CMC_pv_array_float64;
CMC_array_guid CMC_pv_array_guid;
CMC_array_iso_date_time CMC_pv_array_iso_date_time;
CMC_array_object_handle CMC_pv_array_object_handle;
CMC_array_opaque_data CMC_pv_array_opaque_data;
CMC_array_return_code CMC_pv_array_return_code;
CMC_array_sint16 CMC_pv_array_sint16;
CMC_array_sint32 CMC_pv_array_sint32;
CMC_array_string CMC_pv_array_string;
CMC_array_time CMC_pv_array_time;
CMC_array_uint16 CMC_pv_array_uint16;
CMC_array_uint32 CMC_pv_array_uint32;

} value;
} CMC_property;

/*EVENT*/
typedef CMC_uint32 CMC_event;

/* EVENT TYPES */
#define CMC_EVENT_NEW_MESSAGES ((CMC_enum) 0)

/*CALLBACK*/

typedef struct CMC_TAG_NEW_MESSAGE_CB_DATA {
CMC_object_handle *available;

} CMC_new_message_callback_data;

typedef struct CMC_TAG_NEW_MESSAGE_CHECK_DATA {
CMC_uint32 number_containers;
CMC_object_handle *containers;

} CMC_new_message_check_data;

typedef CMC_new_message_check_data CMC_new_message_register_data;

typedef CMC_new_message_check_data CMC_new_message_unregister_data;

typedef void (*CMC_callback) (
CMC_session_id session,
CMC_event event,
CMC_buffer callback_data,
CMC_buffer register_data,
CMC_extension *callback_extensions

);
/*CURSOR RESTRICTION*/

Recommendation X.446 (08/97) 181

typedef struct CMC_TAG_RESTRICTION_AND {
CMC_uint32 count;
struct CMC_TAG_RESTRICTION_CURSOR . . . *restriction;

} CMC_restriction_and;

typedef struct CMC_TAG_RESTRICTION_OR {
CMC_uint32 count;
struct CMC_TAG_RESTRICTION_CURSOR . . . *restriction;

} CMC_restriction_or;

typedef struct CMC_TAG_RESTRICTION_NOT {
CMC_uint32 count;
struct CMC_TAG_RESTRICTION_CURSOR . . . *restriction;

} CMC_restriction_not;

typedef struct CMC_TAG_RESTRICTION_STRING {
CMC_enum exactness;
CMC_id property;
CMC_string string_constant;

} CMC_restriction_string;

typedef struct CMC_TAG_RESTRICTION_CONTENT {
CMC_enum logical;
CMC_id property;
CMC_buffer property_value;

} CMC_restriction_content;

typedef struct CMC_TAG_RESTRICTION_COMPARISON {
CMC_enum logical;
CMC_id property1;
CMC_id property2;

} CMC_restriction_comparison;

typedef struct CMC_TAG_RESTRICTION_BITTEST {
CMC_uint32 comparison;
CMC_id property;
CMC_uint32 bittest;

} CMC_restriction_bittest;

typedef struct CMC_TAG_RESTRICTION_SIZE {
CMC_enum logical;
CMC_id property;
CMC_uint32 byte_size;

} CMC_restriction_size;

typedef struct CMC_TAG_RESTRICTION_EXIST {
CMC_id property;

} CMC_restriction_exist;

typedef struct CMC_TAG_RESTRICTION_CURSOR {
CMC_enum type;
union {

CMC_restriction_and restriction_and;
CMC_restriction_or restriction_or;
CMC_restriction_not restriction_not;
CMC_restriction_string restriction_string;
CMC_restriction_content restriction_content;
CMC_restriction_comparison restriction_comparison;
CMC_restriction_bittest restriction_bittest;
CMC_restriction_size restriction_size;
CMC_restriction_exist restriction_exist;

} cr;
CMC_extension *property_extensions;

} CMC_cursor_restriction;

/* RESTRICTION TYPES AND CONSTANTS */
#define CMC_RESTRICTION_AND ((CMC_enum) 0)
#define CMC_RESTRICTION_OR ((CMC_enum) 1)
#define CMC_RESTRICTION_NOT ((CMC_enum) 2)
#define CMC_RESTRICTION_STRING ((CMC_enum) 3)
#define CMC_RESTRICTION_CONTENT ((CMC_enum) 4)
#define CMC_RESTRICTION_COMPARISON ((CMC_enum) 5)
#define CMC_RESTRICTION_BITTEST ((CMC_enum) 6)
#define CMC_RESTRICTION_SIZE ((CMC_enum) 7)
#define CMC_RESTRICTION_EXIST ((CMC_enum) 8)

182 Recommendation X.446 (08/97)

#define CMC_EXACTNESS_PRECISE ((CMC_enum) 0)
#define CMC_EXACTNESS_STARTS_WITH ((CMC_enum) 1)
#define CMC_EXACTNESS_MIXED_CASE ((CMC_enum) 2)

#define CMC_LOGICAL_LT ((CMC_enum) 0)
#define CMC_LOGICAL_LE ((CMC_enum) 1)
#define CMC_LOGICAL_EQ ((CMC_enum) 2)
#define CMC_LOGICAL_NE ((CMC_enum) 3)
#define CMC_LOGICAL_GT ((CMC_enum) 4)
#define CMC_LOGICAL_GE ((CMC_enum) 5)

#define CMC_COMPARISON_OR ((CMC_enum) 0)
#define CMC_COMPARISON_AND ((CMC_enum) 1)

/*CURSOR SORT KEY*/
typedef struct TAG_CURSOR_SORT_KEY{

CMC_id property;
CMC_enum order;

} CMC_cursor_sort_key;

/* CURSOR SORT KEY CONSTANTS */
#define CMC_SORT_DEFAULT ((CMC_enum) 0)
#define CMC_SORT_ASCEND ((CMC_enum) 1)
#define CMC_SORT_DESCEND ((CMC_enum) 2)

/*ATTACHMENT*/

typedef struct {
CMC_string attach_title;
CMC_object_identifier attach_type;
CMC_string attach_filename;
CMC_flags attach_flags;
CMC_extension *attach_extensions;

} CMC_attachment;

/* ATTACHMENT FLAGS */
#define CMC_ATT_APP_OWNS_FILE ((CMC_flags) 1)
#define CMC_ATT_LAST_ELEMENT ((CMC_flags) 0x80000000)

#define CMC_ATT_OID_BINARY "1 2 840 113658 1 1"
#define CMC_ATT_OID_TEXT "1 2 840 113658 1 1 0"

/*MESSAGE REFERENCE*/
typedef CMC_counted_string CMC_message_reference;

/*RECIPIENT*/
typedef struct {

CMC_string name;
CMC_enum name_type;
CMC_string address;
CMC_enum role;
CMC_flags recip_flags;
CMC_extension *recip_extensions;

} CMC_recipient;

/* NAME TYPES */
#define CMC_TYPE_UNKNOWN ((CMC_enum) 0)
#define CMC_TYPE_INDIVIDUAL ((CMC_enum) 1)
#define CMC_TYPE_GROUP ((CMC_enum) 2)

/* ROLES */
#define CMC_ROLE_TO ((CMC_enum) 0)
#define CMC_ROLE_CC ((CMC_enum) 1)
#define CMC_ROLE_BCC ((CMC_enum) 2)
#define CMC_ROLE_ORIGINATOR ((CMC_enum) 3)
#define CMC_ROLE_AUTHORIZING_USER ((CMC_enum) 4)
#define CMC_ROLE_REPLY_TO ((CMC_enum) 5)

/* RECIPIENT FLAGS */
#define CMC_RECIP_IGNORE ((CMC_flags) 1)
#define CMC_RECIP_LIST_TRUNCATED ((CMC_flags) 2)
#define CMC_RECIP_LAST_ELEMENT ((CMC_flags) 0x80000000)

Recommendation X.446 (08/97) 183

/*MESSAGE*/
typedef struct {

CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;
CMC_string text_note;
CMC_recipient *recipients;
CMC_attachment *attachments;
CMC_flags message_flags;
CMC_extension *message_extensions;

} CMC_message;

/* MESSAGE FLAGS */
#define CMC_MSG_READ ((CMC_flags) 1)
#define CMC_MSG_TEXT_NOTE_AS_FILE ((CMC_flags) 2)
#define CMC_MSG_UNSENT ((CMC_flags) 4)
#define CMC_MSG_DELETE_AFTER_SEND ((CMC_flags) 8)
#define CMC_MSG_LAST_ELEMENT ((CMC_flags) 0x80000000)

/* MESSAGE TYPES */
#define CMC_MESSAGE_TYPE_IPM "CMC:IPM"
#define CMC_MESSAGE_TYPE_IP_RN "CMC:IP RN"
#define CMC_MESSAGE_TYPE_IP_NRN "CMC:IP NRN"
#define CMC_MESSAGE_TYPE_DR "CMC:DR"
#define CMC_MESSAGE_TYPE_NDR "CMC:NDR"
#define CMC_MESSAGE_TYPE_REPORT "CMC:REPORT"

/*MESSAGE SUMMARY*/
typedef struct {

CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;
CMC_uint32 byte_length;
CMC_recipient *originator;
CMC_flags summary_flags;
CMC_extension *message_summary_extensions;

} CMC_message_summary;

/* MESSAGE SUMMARY FLAGS */
#define CMC_SUM_READ ((CMC_flags) 1)
#define CMC_SUM_UNSENT ((CMC_flags) 2)
#define CMC_SUM_HAS_ATTACHMENTS ((CMC_flags) 4)
#define CMC_SUM_LAST_ELEMENT ((CMC_flags) 0x80000000)

/*REPORT*/
typedef struct {

CMC_recipient *msg_recipient;
CMC_enum report_type;
CMC_time delivered_time;
CMC_uint32 reason_code;
CMC_flags report_flags;

} CMC_report;

/* REPORT FLAGS */
#define CMC_REPORT_LAST_ELEMENT ((CMC_flags) 0x00000001)

/* REPORT TYPES */
#define CMC_X400_DR ((CMC_enum) 0)
#define CMC_X400_NDR ((CMC_enum) 1)

/*CMC FUNCTIONS*/
/*CROSS FUNCTION FLAGS*/
#define CMC_ERROR_UI_ALLOWED ((CMC_flags) 0x01000000)
#define CMC_LOGON_UI_ALLOWED ((CMC_flags) 0x02000000)
#define CMC_COUNTED_STRING_TYPE ((CMC_flags) 0x04000000)

/*OBJECT CLASSES*/
#define CMC_TYPE_OC_ADDRESS_BOOK ((CMC_enum) 1)
#define CMC_TYPE_OC_CONTENT_ITEM ((CMC_enum) 2)
#define CMC_TYPE_OC_MESSAGE ((CMC_enum) 3)
#define CMC_TYPE_OC_MESSAGE_CONTAINER ((CMC_enum) 4)

184 Recommendation X.446 (08/97)

#define CMC_TYPE_OC_DISTRIBUTION_LIST ((CMC_enum) 5)
#define CMC_TYPE_OC_RECIPIENT ((CMC_enum) 6)
#define CMC_TYPE_OC_REPORT ((CMC_enum) 7)
#define CMC_TYPE_OC_ROOT_CONTAINER ((CMC_enum) 8)
#define CMC_TYPE_OC_PER_RECIPIENT_INFORMATION ((CMC_enum) 9)
#define CMC_TYPE_OC_PROFILE_CONTAINER ((CMC_enum) 10)

#define CMC_OC_MESSAGE \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Message//EN"

#define CMC_OC_CONTENT_ITEM \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Content Item//EN"

#define CMC_OC_RECIPIENT \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Recipient//EN"

#define CMC_OC_REPORT \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Report//EN"

#define CMC_OC_MESSAGE_CONTAINER \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Message Container//EN"

#define CMC_OC_ADDRESS_BOOK \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Address Book//EN"

#define CMC_OC_DISTRIBUTION_LIST \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Distribution List//EN"

#define CMC_OC_ROOT_CONTAINER \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Root Container//EN"

#define CMC_OC_PER_RECIPIENT_INFORMATION \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Per Recipient Information//EN"

#define CMC_OC_PROFILE_CONTAINER \
"–//XAPIA/CMC/OBJECT CLASS//NONSGML Profile Container//EN"

/*OBJECT PROPERTIES*/

/* Object Class. Applies to all objects. */

#define CMC_PT_OBJECT_CLASS \
"–//XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

/* Address Book */

#define CMC_PT_ADDRESS_BOOK_CHILD_ALLOWED \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Child Allowed//EN"

#define CMC_PT_ADDRESS_BOOK_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Comment//EN"

#define CMC_PT_ADDRESS_BOOK_LOCATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Location//EN"

#define CMC_PT_ADDRESS_BOOK_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Name//EN"

#define CMC_PT_ADDRESS_BOOK_PARENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Parent//EN"

#define CMC_PT_ADDRESS_BOOK_SERVER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Server Name//EN"

#define CMC_PT_ADDRESS_BOOK_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Shared//EN"

#define CMC_PT_ADDRESS_BOOK_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Address Book Type//EN"

/* Content Type */

#define CMC_PT_CONTENT_ITEM_CHARACTER_SET \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Character Set//EN"

#define CMC_PT_CONTENT_ITEM_CONTENT_INFORMATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Content Information//EN"

#define CMC_PT_CONTENT_ITEM_CREATE_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Create Time//EN"

Recommendation X.446 (08/97) 185

#define CMC_PT_CONTENT_ITEM_ENCODING_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Encoding Type//EN"

#define CMC_PT_CONTENT_ITEM_FILE_DIRECTORY \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item File Directory//EN"

#define CMC_PT_CONTENT_ITEM_FILE_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item File Name//EN"

#define CMC_PT_CONTENT_ITEM_LAST_MODIFIED \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Last Modified//EN"

#define CMC_PT_CONTENT_ITEM_RENDER_POSITION \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Render Position//EN"

#define CMC_PT_CONTENT_ITEM_SIZE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Size//EN"

#define CMC_PT_CONTENT_ITEM_TITLE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Title//EN"

#define CMC_PT_CONTENT_ITEM_CONTENT_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Content Type//EN"

#define CMC_PT_CONTENT_ITEM_ITEM_NUMBER \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Number//EN"

#define CMC_PT_CONTENT_ITEM_ITEM_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Content Item Item Type//EN"

/* Distribution List */

#define CMC_PT_DISTRIBUTION_LIST_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Name//EN"

#define CMC_PT_DISTRIBUTION_LIST_ADDRESS \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Address//EN"

#define CMC_PT_DISTRIBUTION_LIST_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Comment//EN"

#define CMC_PT_DISTRIBUTION_LIST_LAST_MODIFICATION_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Last Modification

Time//EN"

#define CMC_PT_DISTRIBUTION_LIST_PARENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Parent//EN"

#define CMC_PT_DISTRIBUTION_LIST_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Distribution List Shared//EN"

/* Message */

#define CMC_PT_MESSAGE_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Type//EN"

#define CMC_PT_MESSAGE_PRIORITY \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Priority//EN"

#define CMC_PT_MESSAGE_SIZE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Size//EN"

#define CMC_PT_MESSAGE_SUBJECT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Subject//EN"

#define CMC_PT_MESSAGE_APPLICATION_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Application Id//EN"

#define CMC_PT_MESSAGE_TIME_RECEIVED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Time Received//EN"

#define CMC_PT_MESSAGE_TIME_SENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Time Sent//EN"

#define CMC_PT_MESSAGE_DEFERRED_DELIVERY_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Deferred Delivery Time//EN"

#define CMC_PT_MESSAGE_IN_REPLY_TO \
"–//XAPIA/CMC/PROPERTY//NONSGML Message In Reply To//EN"

186 Recommendation X.446 (08/97)

#define CMC_PT_MESSAGE_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Id//EN"

#define CMC_PT_MESSAGE_RECEIPT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Receipt Requested//EN"

#define CMC_PT_MESSAGE_SENSITIVITY \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Sensitivity//EN"

#define CMC_PT_MESSAGE_ITEM_COUNT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Item Count//EN"

#define CMC_PT_MESSAGE_NRN_DIAGNOSTIC \
"–//XAPIA/CMC/PROPERTY//NONSGML Message NRN Diagnostic//EN"

#define CMC_PT_MESSAGE_NRN_REASON \
"–//XAPIA/CMC/PROPERTY//NONSGML Message NRN Reason//EN"

#define CMC_PT_MESSAGE_RECEIPT_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Receipt Type//EN"

#define CMC_PT_MESSAGE_REPORT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Report Requested//EN"

#define CMC_PT_MESSAGE_ROLE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Role//EN"

#define CMC_PT_MESSAGE_AUTO_ACTION \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Auto Action//EN"

#define CMC_PT_CLIENT_MSG_STATUS \
"–//XAPIA/CMC/PROPERTY//NONSGML Client Msg Status//EN"

#define CMC_PT_OUT_MSG_STATUS \
"–//XAPIA/CMC/PROPERTY//NONSGML Out Msg Status//EN"

#define CMC_PT_APPLICATION_MSG_STATUS \
"–//XAPIA/CMC/PROPERTY//NONSGML Application Msg Status//EN"

/* Message Container */

#define CMC_PT_MESSAGE_CONTAINER_CHILD_ALLOWED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Child Allowed//EN"

#define CMC_PT_MESSAGE_CONTAINER_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Comment//EN"

#define CMC_PT_MESSAGE_CONTAINER_LOCATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Location//EN"

#define CMC_PT_MESSAGE_CONTAINER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Name//EN"

#define CMC_PT_MESSAGE_CONTAINER_PARENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Parent//EN"

#define CMC_PT_MESSAGE_CONTAINER_SERVER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Server Name//EN"

#define CMC_PT_MESSAGE_CONTAINER_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Shared//EN"

#define CMC_PT_MESSAGE_CONTAINER_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Message Container Type//EN"

/* Recipient */

#define CMC_PT_RECIPIENT_ADDRESS \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Address//EN"

#define CMC_PROP_TYPE_RECIPIENT_CONTENT_RETURN_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Content Return Requested//EN"

#define CMC_PT_RECIPIENT_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Name//EN"

#define CMC_PT_RECIPIENT_RECEIPT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Receipt Requested//EN"

#define CMC_PT_RECIPIENT_REPORT_REQUESTED \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Report Requested//EN"

Recommendation X.446 (08/97) 187

#define CMC_PT_RECIPIENT_ROLE \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Role//EN"

#define CMC_PT_RECIPIENT_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Type//EN"

#define CMC_PT_RECIPIENT_RESPONSIBILITY_FLAG \
"–//XAPIA/CMC/PROPERTY//NONSGML Recipient Responsibility Flag//EN"

/* Report */

#define CMC_PT_REPORT_READ \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Read//EN"

#define CMC_PT_REPORT_UNSENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Unsent//EN"

#define CMC_PT_REPORT_SIZE \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Size//EN"

#define CMC_PT_REPORT_SUBJECT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Subject//EN"

#define CMC_PT_REPORT_TIME_RECEIVED \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Time Received//EN"

#define CMC_PT_REPORT_TIME_SENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Time Sent//EN"

#define CMC_PT_REPORT_APPLICATION_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Application Id//EN"

#define CMC_PT_REPORT_SUBJECT_MESSAGE_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Subject Message Id//EN"

#define CMC_PT_REPORT_ITEM_COUNT \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Item Count//EN"

#define CMC_PT_REPORT_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Id//EN"

#define CMC_PT_REPORT_MESSAGING_SYSTEM_ID \
"–//XAPIA/CMC/PROPERTY//NONSGML Report Messaging System Id//EN"

/* Root Container */

#define CMC_PT_ROOT_CONTAINER_CHILD_ALLOWED \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Child Allowed//EN"

#define CMC_PT_ROOT_CONTAINER_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Comment//EN"

#define CMC_PT_ROOT_CONTAINER_LOCATION \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Location//EN"

#define CMC_PT_ROOT_CONTAINER_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Name//EN"

#define CMC_PT_ROOT_CONTAINER_SHARED \
"–//XAPIA/CMC/PROPERTY//NONSGML Root Container Shared//EN"

/* Per Recipient Information */

#define CMC_PT_PRI_TYPE \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Type//EN"

#define CMC_PT_PRI_DELIVERY_TIME \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Delivery Time//EN"

#define CMC_PT_PRI_REASON \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Reason//EN"

#define CMC_PT_PRI_DIAGNOSTIC \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Diagnostic//EN"

#define CMC_PT_PRI_RECIPIENT_NAME \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Recipient Name//EN"

#define CMC_PT_PRI_RECIPIENT_ADDRESS \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Recipient Address//EN"

188 Recommendation X.446 (08/97)

#define CMC_PT_PRI_COMMENT \
"–//XAPIA/CMC/PROPERTY//NONSGML PRI Comment//EN"

/* Profile Container */

#define CMC_PT_PROFILE_CHARACTER_SET \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Character Set//EN"

#define CMC_PT_PROFILE_LINE_TERM \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Line Term//EN"

#define CMC_PT_PROFILE_DEFAULT_SERVICE \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Default Service//EN"

#define CMC_PT_PROFILE_DEFAULT_USER \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Default User//EN"

#define CMC_PT_PROFILE_REQ_PASSWORD \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Req Password//EN"

#define CMC_PT_PROFILE_REQ_SERVICE \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Req Service//EN"

#define CMC_PT_PROFILE_REQ_USER \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Req User//EN"

#define CMC_PT_PROFILE_UI_AVAIL \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile UI Avail//EN"

#define CMC_PT_PROFILE_SUP_NOMKMSGREAD \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Sup NoMkMsgRead//EN"

#define CMC_PT_PROFILE_SUP_COUNTED_STR \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Sup Counted Str//EN"

#define CMC_PT_PROFILE_VER_IMPLEM \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Ver Implem//EN"

#define CMC_PT_PROFILE_VER_SPEC \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Ver Spec//EN"

#define CMC_PT_PROFILE_USERS \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Users//EN"

#define CMC_PT_PROFILE_OBJECT_SUP \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Object Sup//EN"

#define CMC_PT_PROFILE_PROP_SUP \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Prop Sup//EN"

#define CMC_PT_PROFILE_CONF \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Conf//EN"

#define CMC_PT_PROFILE_OBJECT_EXT \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Object Ext//EN"

#define CMC_PT_PROFILE_PROP_EXT \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Prop Ext//EN"

#define CMC_PT_PROFILE_AUTO_ACTION \
"–//XAPIA/CMC/PROPERTY//NONSGML Profile Auto Action//EN"

/* Property Value Constants. CMC_id values. */

/* Object Class. Applies to all objects. */

#define CMC_PV_OBJECT_CLASS 0

/* Address Book */
#define CMC_PV_ADDRESS_BOOK_CHILD_ALLOWED 1
#define CMC_PV_ADDRESS_BOOK_COMMENT 2
#define CMC_PV_ADDRESS_BOOK_LOCATION 3
#define CMC_PV_ADDRESS_BOOK_NAME 4
#define CMC_PV_ADDRESS_BOOK_PARENT 5
#define CMC_PV_ADDRESS_BOOK_SERVER_NAME 6
#define CMC_PV_ADDRESS_BOOK_SHARED 7
#define CMC_PV_ADDRESS_BOOK_TYPE 8

Recommendation X.446 (08/97) 189

/* Content Item */
#define CMC_PV_CONTENT_ITEM_CHARACTER_SET 9
#define CMC_PV_CONTENT_ITEM_CONTENT_INFORMATION 10
#define CMC_PV_CONTENT_ITEM_CREATE_TIME 11
#define CMC_PV_CONTENT_ITEM_ENCODING_TYPE 12
#define CMC_PV_CONTENT_ITEM_FILE_DIRECTORY 13
#define CMC_PV_CONTENT_ITEM_FILE_NAME 14
#define CMC_PV_CONTENT_ITEM_LAST_MODIFIED 15
#define CMC_PV_CONTENT_ITEM_RENDER_POSITION 16
#define CMC_PV_CONTENT_ITEM_SIZE 17
#define CMC_PV_CONTENT_ITEM_TITLE 18
#define CMC_PV_CONTENT_ITEM_CONTENT_TYPE 19
#define CMC_PV_CONTENT_ITEM_ITEM_NUMBER 20
#define CMC_PV_CONTENT_ITEM_ITEM_TYPE 21
/* Distribution List */
#define CMC_PV_DISTRIBUTION_LIST_NAME 22
#define CMC_PV_DISTRIBUTION_LIST_ADDRESS 23
#define CMC_PV_DISTRIBUTION_LIST_COMMENT 24
#define CMC_PV_DISTRIBUTION_LIST_LAST_MODIFICATION_TIME 25
#define CMC_PV_DISTRIBUTION_LIST_PARENT 26
#define CMC_PV_DISTRIBUTION_LIST_SHARED 27
/* Message */
#define CMC_PV_MESSAGE_TYPE 28
#define CMC_PV_MESSAGE_PRIORITY 29
#define CMC_PV_MESSAGE_SIZE 30
#define CMC_PV_MESSAGE_SUBJECT 31
#define CMC_PV_MESSAGE_APPLICATION_ID 32
#define CMC_PV_MESSAGE_TIME_RECEIVED 33
#define CMC_PV_MESSAGE_TIME_SENT 34
#define CMC_PV_MESSAGE_DEFERRED_DELIVERY_TIME 35
#define CMC_PV_MESSAGE_IN_REPLY_TO 36
#define CMC_PV_MESSAGE_ID 37
#define CMC_PV_MESSAGE_RECEIPT_REQUESTED 38
#define CMC_PV_MESSAGE_SENSITIVITY 39
#define CMC_PV_MESSAGE_ITEM_COUNT 40
#define CMC_PV_MESSAGE_NRN_DIAGNOSTIC 41
#define CMC_PV_MESSAGE_NRN_REASON 42
#define CMC_PV_MESSAGE_REPORT_REQUESTED 43
#define CMC_PV_MESSAGE_ROLE 44
#define CMC_PV_MESSAGE_AUTO_ACTION 45
#define CMC_PV_MESSAGE_CLIENT_MSG_STATUS 46
#define CMC_PV_MESSAGE_OUT_MSG_STATUS 47
#define CMC_PV_MESSAGE_APPLICATION_MSG_STATUS 48
/* Message Container */
#define CMC_PV_MESSAGE_CONTAINER_CHILD_ALLOWED 49
#define CMC_PV_MESSAGE_CONTAINER_COMMENT 50
#define CMC_PV_MESSAGE_CONTAINER_LOCATION 51
#define CMC_PV_MESSAGE_CONTAINER_NAME 52
#define CMC_PV_MESSAGE_CONTAINER_PARENT 53
#define CMC_PV_MESSAGE_CONTAINER_SERVER_NAME 54
#define CMC_PV_MESSAGE_CONTAINER_SHARED 55
#define CMC_PV_MESSAGE_CONTAINER_TYPE 56
/* Recipient */
#define CMC_PV_RECIPIENT_ADDRESS 57
#define CMC_PV_RECIPIENT_CONTENT_RETURN_REQUESTED 58
#define CMC_PV_RECIPIENT_NAME 59
#define CMC_PV_RECIPIENT_RECEIPT_REQUESTED 60
#define CMC_PV_RECIPIENT_REPORT_REQUESTED 61
#define CMC_PV_RECIPIENT_ROLE 62
#define CMC_PV_RECIPIENT_TYPE 63
#define CMC_PV_RECIPIENT_RESPONSIBILITY_FLAG 64
/* Report */
#define CMC_PV_REPORT_READ 65
#define CMC_PV_REPORT_UNSENT 66
#define CMC_PV_REPORT_SIZE 67
#define CMC_PV_REPORT_SUBJECT 68
#define CMC_PV_REPORT_TIME_RECEIVED 69
#define CMC_PV_REPORT_TIME_SENT 70
#define CMC_PV_REPORT_APPLICATION_ID 71
#define CMC_PV_REPORT_SUBJECT_MESSAGE_ID 72
#define CMC_PV_REPORT_ITEM_COUNT 73
#define CMC_PV_REPORT_ID 74
#define CMC_PV_REPORT_MESSAGING_SYSTEM_ID 75

190 Recommendation X.446 (08/97)

/* Root Container */
#define CMC_PV_ROOT_CONTAINER_CHILD_ALLOWED 76
#define CMC_PV_ROOT_CONTAINER_COMMENT 77
#define CMC_PV_ROOT_CONTAINER_LOCATION 78
#define CMC_PV_ROOT_CONTAINER_NAME 79
#define CMC_PV_ROOT_CONTAINER_SHARED 80
/* Per Recipient Information */
#define CMC_PV_PRI_TYPE 81
#define CMC_PV_PRI_DELIVERY_TIME 82
#define CMC_PV_PRI_REASON 83
#define CMC_PV_PRI_DIAGNOSTIC 84
#define CMC_PV_PRI_RECIPIENT_NAME 85
#define CMC_PV_PRI_RECIPIENT_ADDRESS 86
#define CMC_PV_PRI_COMMENT 87
/* Profile */
#define CMC_PV_PROFILE_CHARACTER_SET 88
#define CMC_PV_PROFILE_LINE_TERM 89
#define CMC_PV_PROFILE_DEFAULT_SERVICE 90
#define CMC_PV_PROFILE_DEFAULT_USER 91
#define CMC_PV_PROFILE_REQ_PASSWORD 92
#define CMC_PV_PROFILE_REQ_SERVICE 93
#define CMC_PV_PROFILE_REQ_USER 94
#define CMC_PV_PROFILE_UI_AVAIL 95
#define CMC_PV_PROFILE_SUP_NOMKMSGREAD 96
#define CMC_PV_PROFILE_SUP_COUNTED_STR 97
#define CMC_PV_PROFILE_VER_IMPLEM 98
#define CMC_PV_PROFILE_VER_SPEC 99
#define CMC_PV_PROFILE_USERS 100
#define CMC_PV_PROFILE_OBJECT_SUP 101
#define CMC_PV_PROFILE_PROP_SUP 102
#define CMC_PV_PROFILE_CONF 103
#define CMC_PV_PROFILE_OBJECT_EXT 104
#define CMC_PV_PROFILE_PROP_EXT 105
#define CMC_PV_PROFILE_AUTO_ACTION 106

/*OBJECT PROPERTY CONSTANT VALUES*/

/* Address Book */
#define CMC_ADDRESS_BOOK_LOCATION_LOCAL ((CMC_enum) 0)
#define CMC_ADDRESS_BOOK_LOCATION_SERVER ((CMC_enum) 1)
#define CMC_ADDRESS_BOOK_LOCATION_UNKNOWN ((CMC_enum) 2)

#define CMC_ADDRESS_BOOK_TYPE_GLOBAL ((CMC_enum) 0)
#define CMC_ADDRESS_BOOK_TYPE_PERSONAL ((CMC_enum) 1)

/* Content Information */
#define CMC_CHARSET_437 "–//XAPIA/CHARSET//NONSGML IBM 437//EN"
#define CMC_CHARSET_850 "–//XAPIA/CHARSET//NONSGML IBM 850//EN"
#define CMC_CHARSET_1252 "–//XAPIA/CHARSET//NONSGML Microsoft 1252//EN"
#define CMC_CHARSET_ISTRING "–//XAPIA/CHARSET//NONSGML Apple ISTRING//EN"
#define CMC_CHARSET_UNICODE "–//XAPIA/CHARSET//NONSGML UNICODE//EN"
#define CMC_CHARSET_T61 "–//XAPIA/CHARSET//NONSGML TSS T61//EN"
#define CMC_CHARSET_IA5 "–//XAPIA/CHARSET//NONSGML TSS IA5//EN"
#define CMC_CHARSET_ISO_10646 "–//XAPIA/CHARSET//NONSGML ISO 10646//EN"
#define CMC_CHARSET_ISO_646 "–//XAPIA/CHARSET//NONSGML ISO 646//EN"
#define CMC_CHARSET_ISO_8859_1 "–//XAPIA/CHARSET//NONSGML ISO 8859-1//EN"

/* Encoding Type */
#define CMC_ET_7_BIT \

"–//XAPIA/CMC/ENCODING TYPE//NONSGML 7 Bit//EN"
#define CMC_ET_BASE64 \

"–//XAPIA/CMC/ENCODING TYPE//NONSGML Base64//EN"
#define CMC_ET_BINARY \

"–//XAPIA/CMC/ENCODING TYPE//NONSGML Binary//EN"
#define CMC_ET_8_BIT \

"–//XAPIA/CMC/ENCODING TYPE//NONSGML 8 Bit//EN"
#define CMC_ET_QUOTED_PRINTABLE \

"–//XAPIA/CMC/ENCODING TYPE//NONSGML Quoted Printable//EN"

/* Content Type */
#define CMC_CT_PLAIN_TEXT \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML Plain Text//EN"
#define CMC_CT_GIF_IMAGE \

"–//XAPIA/CMC/CONTENT TYPE//NONSGML GIF Image//EN"

Recommendation X.446 (08/97) 191

#define CMC_CT_JPEG_IMAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML JPEG Image//EN"

#define CMC_CT_BASIC_AUDIO \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Basic Audio//EN"

#define CMC_CT_MPEG_VIDEO \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML MPEG Video//EN"

#define CMC_CT_MESSAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Message//EN"

#define CMC_CT_PARTIAL_MESSAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Partial Message//EN"

#define CMC_CT_EXTERNAL_MESSAGE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML External Message//EN"

#define CMC_CT_APPLICATION_OCTET_STREAM \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Application Octet Stream//EN"

#define CMC_CT_APPLICATION_POSTSCRIPT \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Application PostScript//EN"

#define CMC_CT_ALTERNATIVE_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Alternative Multipart//EN"

#define CMC_CT_DIGEST_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Digest Multipart//EN"

#define CMC_CT_MIXED_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"

#define CMC_CT_OLE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML OLE//EN"

#define CMC_CT_MIXED_MULTIPART \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"

#define CMC_CT_X400_G3_FAX \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 G3 Fax//EN"

#define CMC_CT_X400_G4_FAX \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 G4 Fax//EN"

#define CMC_CT_X400_ENCRYPTED \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Encrypted//EN"

#define CMC_CT_X400_NATIONALLY_DEFINED \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Nationally Defined//EN"

#define CMC_CT_X400_FILE_TRANSFER \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 File Transfer//EN"

#define CMC_CT_X400_VOICE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Voice//EN"

#define CMC_CT_X400_VIDEOTEX \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Videotex//EN"

#define CMC_CT_X400_MIXED_MODE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Mixed Mode//EN"

#define CMC_CT_X400_PRIVATELY_DEFINED_6937 \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Privately Defined 6937//EN"

#define CMC_CT_X400_EXTERNAL_TRACE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 External Trace//EN"

#define CMC_CT_X400_INTERNAL_TRACE \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Internal Trace//EN"

#define CMC_CT_SMTP_SESSION_TRANSCRIPT \
"–//XAPIA/CMC/CONTENT TYPE//NONSGML SMTP Session Transcript//EN"

/* Content Item Type */
#define CMC_IT_NOTE ((CMC_enum) 0)
#define CMC_IT_ATTACHMENT ((CMC_enum) 1)
#define CMC_IT_ANNOTATION ((CMC_enum) 2)

/* Message Types and Message Constants */
#define CMC_MT_IPM ((CMC_enum) 0)
#define CMC_MT_RECEIPT ((CMC_enum) 1)
#define CMC_MT_EDI ((CMC_enum) 2)
#define CMC_MT_DIRECTOR ((CMC_enum) 3)
#define CMC_MT_DOCMGMT ((CMC_enum) 4)
#define CMC_MT_WORKFLOW ((CMC_enum) 5)
#define CMC_MT_CALSCHED ((CMC_enum) 6)

#define CMC_PRIORITY_NORMAL ((CMC_enum) 0)
#define CMC_PRIORITY_URGENT ((CMC_enum) 1)
#define CMC_PRIORITY_LOW ((CMC_enum) 2)

#define CMC_MESSAGE_SENSITIVITY_PERSONAL ((CMC_enum) 0)
#define CMC_MESSAGE_SENSITIVITY_PRIVATE ((CMC_enum) 1)
#define CMC_MESSAGE_SENSITIVITY_CONFIDENTIAL ((CMC_enum) 2)
#define CMC_MESSAGE_SENSITIVITY_NONE ((CMC_enum) 3)

192 Recommendation X.446 (08/97)

#define CMC_RECEIPT_RN ((CMC_enum) 0)
#define CMC_RECEIPT_NRN ((CMC_enum) 1)
#define CMC_RECEIPT_BOTH ((CMC_enum) 2)
#define CMC_RECEIPT_NONE ((CMC_enum) 3)

#define CMC_REPORT_DR ((CMC_enum) 0)
#define CMC_REPORT_NDR ((CMC_enum) 1)
#define CMC_REPORT_BOTH ((CMC_enum) 2)
#define CMC_REPORT_NONE ((CMC_enum) 3)

#define CMC_MESSAGE_ROLE_ORIGINAL ((CMC_enum) 0)
#define CMC_MESSAGE_ROLE_RETURNED ((CMC_enum) 1)
#define CMC_MESSAGE_ROLE_FORWARDED ((CMC_enum) 2)
#define CMC_MESSAGE_ROLE_REPLIED ((CMC_enum) 3)
#define CMC_MESSAGE_ROLE_OBSOLETED ((CMC_enum) 4)
#define CMC_MESSAGE_ROLE_RESENT ((CMC_enum) 5)

#define CMC_AA_DELETE ((CMC_flags) 1)

/*Client Message Status*/
#define CMC_MESSAGE_STATUS_DRAFT ((CMC_enum) 0)

/*Out Message Status*/
#define CMC_MESSAGE_STATUS_DELETED ((CMC_enum) 0)
#define CMC_MESSAGE_STATUS_SUBMITTED ((CMC_enum) 1)
#define CMC_MESSAGE_STATUS_SENT ((CMC_enum) 2)

/*In Message Status*/
#define CMC_MESSAGE_STATUS_NEW ((CMC_enum) 0)
#define CMC_MESSAGE_STATUS_READ ((CMC_enum) 1)
#define CMC_MESSAGE_STATUS_CHANGED ((CMC_enum) 2)

/* Message Container Types and Constants */

#define CMC_MESSAGE_CONTAINER_LOCATION_LOCAL ((CMC_enum) 0)
#define CMC_MESSAGE_CONTAINER_LOCATION_SERVER ((CMC_enum) 1)
#define CMC_MESSAGE_CONTAINER_LOCATION_UNKNOWN ((CMC_enum) 2)

#define CMC_MCT_INBOX ((CMC_enum) 0)
#define CMC_MCT_OUTBOX ((CMC_enum) 1)
#define CMC_MCT_DRAFTS ((CMC_enum) 2)
#define CMC_MCT_DELETED ((CMC_enum) 3)
#define CMC_MCT_FILED ((CMC_enum) 4)
#define CMC_MCT_SENT ((CMC_enum) 5)

/* Recipient */
#define CMC_RECIPIENT_ROLE_TO ((CMC_enum) 0)
#define CMC_RECIPIENT_ROLE_CC ((CMC_enum) 1)
#define CMC_RECIPIENT_ROLE_BCC ((CMC_enum) 2)
#define CMC_RECIPIENT_ROLE_ORIGINATOR ((CMC_enum) 3)
#define CMC_RECIPIENT_ROLE_AUTHORIZING_USER ((CMC_enum) 4)
#define CMC_RECIPIENT_ROLE_IN_REPLY_TO ((CMC_enum) 5)

#define CMC_RCT_UNKNOWN ((CMC_enum) 0)
#define CMC_RCT_INDIVIDUAL ((CMC_enum) 1)
#define CMC_RCT_GROUP ((CMC_enum) 2)
#define CMC_RCT_REPORT_RECIPIENT ((CMC_enum) 3)

/* Report */
#define CMC_RPT_RECEIPT_NOTICE ((CMC_enum) 0)
#define CMC_RPT_NONRECEIPT_NOTICE ((CMC_enum) 1)
#define CMC_RPT_DELIVERY_NOTICE ((CMC_enum) 2)
#define CMC_RPT_NONDELIVERY_NOTICE ((CMC_enum) 3)

/* Root Container */
#define CMC_ROOT_CONTAINER_LOCATION_LOCAL ((CMC_enum) 0)
#define CMC_ROOT_CONTAINER_LOCATION_SERVER ((CMC_enum) 1)
#define CMC_ROOT_CONTAINER_LOCATION_UNKNOWN ((CMC_enum) 2)

/* Per Recipient Information */
#define CMC_PRI_DR ((CMC_enum) 0)
#define CMC_PRI_NDR ((CMC_enum) 1)
#define CMC_PRI_UNKNOWN ((CMC_enum) 2)

/* Profile */
#define CMC_CONF_SIMPLE_CMC ((CMC_enum) 0)
#define CMC_CONF_FULL_CMC ((CMC_enum) 1)

Recommendation X.446 (08/97) 193

/* EXTENSION FLAGS */
#define CMC_EXT_REQUIRED ((CMC_flags) 0x00010000)
#define CMC_EXT_OUTPUT ((CMC_flags) 0x00020000)
#define CMC_EXT_LAST_ELEMENT ((CMC_flags) 0x80000000)
#define CMC_EXT_RSV_FLAG_MASK ((CMC_flags) 0xFFFF0000)
#define CMC_EXT_ITEM_FLAG_MASK ((CMC_flags) 0x0000FFFF)

#ifndef CMC_WCHAR

/* SEND */
CMC_return_code
cmc_send(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

/* SEND DOCUMENT */
CMC_return_code
cmc_send_documents(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string file_names,
CMC_string delimiter,
CMC_ui_id ui_id

);

/* ACT ON */
CMC_return_code
cmc_act_on(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

/* LIST */
CMC_return_code
cmc_list(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

/* READ */
CMC_return_code
cmc_read(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

194 Recommendation X.446 (08/97)

/* LOOK UP */
CMC_return_code
cmc_look_up(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

/* FREE */
CMC_return_code
cmc_free(

CMC_buffer memory
);

/* LOGOFF */
CMC_return_code
cmc_logoff(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

/* LOGON */
CMC_return_code
cmc_logon(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

/* QUERY CONFIGURATION */
CMC_return_code
cmc_query_configuration(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

/* FULL CMC */

/* COPY OBJECT */
CMC_return_code
cmc_copy_object(

CMC_object_handle container,
CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_extensions

);

/* ADD PROPERTIES */
CMC_return_code
cmc_add_properties(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_property *properties,
CMC_extension *add_properties_extensions

);

Recommendation X.446 (08/97) 195

/* COMMIT OBJECT */
CMC_return_code
cmc_commit_object(

CMC_object_handle source_object,
CMC_extension *commit_object_extensions

);

/* COPY OBJECT HANDLE */
CMC_return_code
cmc_copy_object_handle(

CMC_object_handle source_handle,
CMC_object_handle *new_handle,
CMC_extension *copy_object_handle_extensions

);

/* CREATE DERIVED MESSAGE OBJECT */
CMC_return_code
cmc_create_derived_message_object(

CMC_object_handle original_message,
CMC_enum derived_action,
CMC_boolean inherit_contents,
CMC_object_handle *derived_message,
CMC_boolean modified_message,
CMC_extension *create_derived_object_extensions

);

/* DELETE OBJECTS */
CMC_return_code
cmc_delete_objects(

CMC_uint32 number_objects,
CMC_object_handle *object,
CMC_extension *delete_objects_extensions

);

/* DELETE PROPERTIES */
CMC_return_code
cmc_delete_properties(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_id *property_ids,
CMC_extension *delete_properties_extensions

);

/* GET ROOT HANDLE */
CMC_return_code
cmc_get_root_handle(

CMC_session_id session,
CMC_object_handle *root_object_handle,
CMC_extension *get_root_handle_extensions

);

/* IDENTIFIER TO NAME */
CMC_return_code
cmc_identifier_to_name(

CMC_id identifier,
CMC_name *name,
CMC_extension *identifier_to_name_extensions

);

/* LIST CONTAINED PROPERTIES */
CMC_return_code
cmc_list_contained_properties(

CMC_cursor_handle cursor,
CMC_sint32 *number_object,
CMC_sint32 *number_properties,
CMC_id *property_ids,
CMC_property ***properties,
CMC_extension *list_contained_properties_extensions

);

196 Recommendation X.446 (08/97)

/* LIST NUMBER MATCHED */
CMC_return_code
cmc_list_number_matched(

CMC_cursor_handle *cursor,
CMC_uint32 *number_matches,
CMC_extension *list_number_matched_extensions

);

/* LIST OBJECTS */
CMC_return_code
cmc_list_objects(

CMC_cursor_handle *cursor,
CMC_sint32 *number_objects,
CMC_object_handle **objects,
CMC_extension *list_objects_extensions

);

/* LIST PROPERTIES */
CMC_return_code
cmc_list_properties(

CMC_object_handle *object,
CMC_uint32 *number_properties,
CMC_id **property_ids,
CMC_extension *list_properties_extensions

);

/* NAME TO IDENTIFIER */
CMC_return_code
cmc_name_to_identifier(

CMC_name name,
CMC_id *identifier,
CMC_extension *name_to_identifier_extensions

);

/* OPEN CURSOR */
CMC_return_code
cmc_open_cursor(

CMC_object_handle object,
CMC_cursor_restriction *restrictions,
CMC_uint32 number_sort_orders,
CMC_cursor_sort_key *sort_keys,
CMC_cursor_handle *cursor,
CMC_extension *open_cursor_extensions

);

/* OPEN OBJECT HANDLE */
CMC_return_code
cmc_open_object_handle(

CMC_session_id session,
CMC_id object_class,
CMC_object_handle *new_object,
CMC_extension *open_object_handle_extensions

);

/* READ CURSOR */
CMC_return_code
cmc_read_cursor(

CMC_cursor_handle *cursor,
CMC_uint32 *position_numerator,
CMC_uint32 *position_denominator,
CMC_extension *read_cursor_extensions

);

/* READ PROPERTIES */
CMC_return_code
cmc_read_properties(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension *read_properties_extensions

);

Recommendation X.446 (08/97) 197

/* READ PROPERTY COSTS */
CMC_return_code
cmc_read_property_costs(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_enum **costs,
CMC_extension *read_property_costs_extensions

);

/* RESTORE OBJECT */
CMC_return_code
cmc_restore_object(

CMC_object_handle container,
CMC_string file_specification,
CMC_object_handle *restored_object,
CMC_flags restore_flags,
CMC_extension *restore_object_extensions

);

/* SAVE OBJECT */
CMC_return_code
cmc_save_object(

CMC_object_handle object,
CMC_string file_specification,
CMC_flags save_flags,
CMC_extension *save_object_extensions

);

/* SEND MESSAGE OBJECT */
CMC_return_code
cmc_send_message_object(

CMC_object_handle message_to_send,
CMC_extension *send_message_object_extensions

);

/* UPDATE CURSOR POSITION */
CMC_return_code
cmc_update_cursor_position(

CMC_cursor_handle *cursor,
CMC_uint32 position_numerator,
CMC_uint32 position_denominator,
CMC_extension *update_cursor_position_extensions

);

/* UPDATE CURSOR POSITION WITH SEED */
CMC_return_code
cmc_update_cursor_position_with_seed(

CMC_cursor_handle cursor,
CMC_object_handle seed,
CMC_extension *update_cursor_position_with_seed_extensions

);

/* CHECK EVENT */
CMC_return_code
cmc_check_event(

CMC_session_id session,
CMC_event event_type,
CMC_uint32 minimum_timeout,
CMC_buffer check_event_data,
CMC_buffer *callback_data,
CMC_extension *check_event_extensions

);

/* REGISTER EVENT */
CMC_return_code
cmc_register_event(

CMC_session_id session,
CMC_event event_type,
CMC_callback callback,
CMC_buffer register_data,
CMC_extension *register_event_extensions

);

198 Recommendation X.446 (08/97)

/* UNREGISTER EVENT */
CMC_return_code
cmc_unregister_event(

CMC_session_id session,
CMC_flags event_type,
CMC_callback callback,
CMC_buffer unregister_data,
CMC_extension *unregister_event_extensions

);

/* CALL CALLBACKS */
CMC_return_code
cmc_call_callbacks(

CMC_session_id session,
CMC_event event_type,
CMC_extension *call_callbacks_extensions

);

/* EXPORT STREAM */
CMC_return_code
cmc_export_stream(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 count,
CMC_flags export_flags,
CMC_extension *export_stream_extensions

);

/* IMPORT FILE TO STREAM */
CMC_return_code
cmc_import_file_to_stream(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 file_offset,
CMC_extension *import_file_to_stream_extensions

);

/* OPEN STREAM */
CMC_return_code
cmc_open_stream(

CMC_object_handle object,
CMC_property *property,
CMC_enum operation,
CMC_stream_handle *stream,
CMC_extension *open_stream_extensions

);

/* READ STREAM */
CMC_return_code
cmc_read_stream(

CMC_stream_handle stream,
CMC_uint32 *count,
CMC_buffer content_information,
CMC_extension *read_stream_extensions

);

/* SEEK STREAM */
CMC_return_code
cmc_seek_stream(

CMC_stream_handle stream,
CMC_enum operation,
CMC_uint32 *location,
CMC_extension *seek_stream_extensions

);

/* WRITE STREAM */
CMC_return_code
cmc_write_stream(

CMC_stream_handle *stream,
CMC_uint32 *count,
CMC_buffer *content_information,
CMC_extension *write_stream_extensions

);

Recommendation X.446 (08/97) 199

/* GET LAST ERROR */
CMC_return_code
cmc_get_last_error(

CMC_session_id session,
CMC_object_handle objRef,
CMC_string *error_buffer,
CMC_extension *get_last_error_extensions

);

/* MULTIPLE IMPLEMENTATIONS DISPATCH TABLE */

typedef struct {
CMC_extension *dispatch_table_extensions;

/* SEND */
CMC_return_code
(*cmc_send)(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

/* SEND DOCUMENT */
CMC_return_code
(*cmc_send_documents)(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string file_names,
CMC_string delimiter,
CMC_ui_id ui_id

);

/* ACT ON */
CMC_return_code
(*cmc_act_on)(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

/* LIST */
CMC_return_code
(*cmc_list)(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

/* READ */
CMC_return_code
(*cmc_read)(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

200 Recommendation X.446 (08/97)

/* LOOK UP */
CMC_return_code
(*cmc_look_up)(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

/* FREE */
CMC_return_code
(*cmc_free)(

CMC_buffer memory
);

/* LOGOFF */
CMC_return_code
(*cmc_logoff)(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

/* LOGON */
CMC_return_code
(*cmc_logon)(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

/* QUERY CONFIGURATION */
CMC_return_code
(*cmc_query_configuration)(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

/* FULL CMC */

/* COPY OBJECT */
CMC_return_code
(*cmc_copy_object)(

CMC_object_handle container,
CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_extensions

);

/* ADD PROPERTIES */
CMC_return_code
(*cmc_add_properties)(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_property *properties,
CMC_extension *add_properties_extensions

);

Recommendation X.446 (08/97) 201

/* COMMIT OBJECT */
CMC_return_code
(*cmc_commit_object)(

CMC_object_handle source_object,
CMC_extension *commit_object_extensions

);

/* COPY OBJECT HANDLE */
CMC_return_code
(*cmc_copy_object_handle)(

CMC_object_handle source_handle,
CMC_object_handle *new_handle,
CMC_extension *copy_object_handle_extensions

);

/* CREATE DERIVED MESSAGE OBJECT */
CMC_return_code
(*cmc_create_derived_message_object)(

CMC_object_handle original_message,
CMC_enum derived_action,
CMC_boolean inherit_contents,
CMC_object_handle *derived_message,
CMC_boolean modified_message,
CMC_extension *create_derived_object_extensions

);

/* DELETE OBJECTS */
CMC_return_code
(*cmc_delete_objects)(

CMC_uint32 number_objects,
CMC_object_handle *object,
CMC_extension *delete_objects_extensions

);

/* DELETE PROPERTIES */
CMC_return_code
(*cmc_delete_properties)(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_id *property_ids,
CMC_extension *delete_properties_extensions

);

/* GET ROOT HANDLE */
CMC_return_code
(*cmc_get_root_handle)(

CMC_session_id session,
CMC_object_handle *root_object_handle,
CMC_extension *get_root_handle_extensions

);

/* IDENTIFIER TO NAME */
CMC_return_code
(*cmc_identifier_to_name)(

CMC_id identifier,
CMC_name *name,
CMC_extension *identifier_to_name_extensions

);

/* LIST CONTAINED PROPERTIES */
CMC_return_code
(*cmc_list_contained_properties)(

CMC_cursor_handle cursor,
CMC_sint32 *number_object,
CMC_sint32 *number_properties,
CMC_id *property_ids,
CMC_property ***properties,
CMC_extension *list_contained_properties_extensions

);

202 Recommendation X.446 (08/97)

/* LIST NUMBER MATCHED */
CMC_return_code
(*cmc_list_number_matched)(

CMC_cursor_handle *cursor,
CMC_uint32 *number_matches,
CMC_extension *list_number_matched_extensions

);

/* LIST OBJECTS */
CMC_return_code
(*cmc_list_objects)(

CMC_cursor_handle *cursor,
CMC_sint32 *number_objects,
CMC_object_handle **objects,
CMC_extension *list_objects_extensions

);

/* LIST PROPERTIES */
CMC_return_code
(*cmc_list_properties)(

CMC_object_handle *object,
CMC_uint32 *number_properties,
CMC_id **property_ids,
CMC_extension *list_properties_extensions

);

/* NAME TO IDENTIFIER */
CMC_return_code
(*cmc_name_to_identifier)(

CMC_name name,
CMC_id *identifier,
CMC_extension *name_to_identifier_extensions

);

/* OPEN CURSOR */
CMC_return_code
(*cmc_open_cursor)(

CMC_object_handle object,
CMC_cursor_restriction *restrictions,
CMC_uint32 number_sort_orders,
CMC_cursor_sort_key *sort_keys,
CMC_cursor_handle *cursor,
CMC_extension *open_cursor_extensions

);

/* OPEN OBJECT HANDLE */
CMC_return_code
(*cmc_open_object_handle)(

CMC_session_id session,
CMC_id object_class,
CMC_object_handle *new_object,
CMC_extension *open_object_handle_extensions

);

/* READ CURSOR */
CMC_return_code
(*cmc_read_cursor)(

CMC_cursor_handle *cursor,
CMC_uint32 *position_numerator,
CMC_uint32 *position_denominator,
CMC_extension *read_cursor_extensions

);

/* READ PROPERTIES */
CMC_return_code
(*cmc_read_properties)(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension *read_properties_extensions

);

Recommendation X.446 (08/97) 203

/* READ PROPERTY COSTS */
CMC_return_code
(*cmc_read_property_costs)(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_enum **costs,
CMC_extension *read_property_costs_extensions

);

/* RESTORE OBJECT */
CMC_return_code
(*cmc_restore_object)(

CMC_object_handle container,
CMC_string file_specification,
CMC_object_handle *restored_object,
CMC_flags restore_flags,
CMC_extension *restore_object_extensions

);

/* SAVE OBJECT */
CMC_return_code
(*cmc_save_object)(

CMC_object_handle object,
CMC_string file_specification,
CMC_flags save_flags,
CMC_extension *save_object_extensions

);

/* SEND MESSAGE OBJECT */
CMC_return_code
(*cmc_send_message_object)(

CMC_object_handle message_to_send,
CMC_extension *send_message_object_extensions

);

/* UPDATE CURSOR POSITION */
CMC_return_code
(*cmc_update_cursor_position)(

CMC_cursor_handle *cursor,
CMC_uint32 position_numerator,
CMC_uint32 position_denominator,
CMC_extension *update_cursor_position_extensions

);

/* UPDATE CURSOR POSITION WITH SEED */
CMC_return_code
(*cmc_update_cursor_position_with_seed)(

CMC_cursor_handle cursor,
CMC_object_handle seed,
CMC_extension *update_cursor_position_with_seed_extensions

);

/* CHECK EVENT */
CMC_return_code
(*cmc_check_event)(

CMC_session_id session,
CMC_event event_type,
CMC_uint32 minimum_timeout,
CMC_buffer check_event_data,
CMC_buffer *callback_data,
CMC_extension *check_event_extensions

);

/* REGISTER EVENT */
CMC_return_code
(*cmc_register_event)(

CMC_session_id session,
CMC_event event_type,
CMC_callback callback,
CMC_buffer register_data,
CMC_extension *register_event_extensions

);

204 Recommendation X.446 (08/97)

/* UNREGISTER EVENT */
CMC_return_code
(*cmc_unregister_event)(

CMC_session_id session,
CMC_flags event_type,
CMC_callback callback,
CMC_buffer unregister_data,
CMC_extension *unregister_event_extensions

);

/* CALL CALLBACKS */
CMC_return_code
(*cmc_call_callbacks)(

CMC_session_id session,
CMC_event event_type,
CMC_extension *call_callbacks_extensions

);

/* EXPORT STREAM */
CMC_return_code
(*cmc_export_stream)(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 count,
CMC_flags export_flags,
CMC_extension *export_stream_extensions

);

/* IMPORT FILE TO STREAM */
CMC_return_code
(*cmc_import_file_to_stream)(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 file_offset,
CMC_extension *import_file_to_stream_extensions

);

/* OPEN STREAM */
CMC_return_code
(*cmc_open_stream)(

CMC_object_handle object,
CMC_property *property,
CMC_enum operation,
CMC_stream_handle *stream,
CMC_extension *open_stream_extensions

);

/* READ STREAM */
CMC_return_code
(*cmc_read_stream)(

CMC_stream_handle stream,
CMC_uint32 *count,
CMC_buffer content_information,
CMC_extension *read_stream_extensions

);

/* SEEK STREAM */
CMC_return_code
(*cmc_seek_stream)(

CMC_stream_handle stream,
CMC_enum operation,
CMC_uint32 *location,
CMC_extension *seek_stream_extensions

);

/* WRITE STREAM */
CMC_return_code
(*cmc_write_stream)(

CMC_stream_handle *stream,
CMC_uint32 *count,
CMC_buffer *content_information,
CMC_extension *write_stream_extensions

);

Recommendation X.446 (08/97) 205

/* GET LAST ERROR */
CMC_return_code
(*cmc_get_last_error)(

CMC_session_id session,
CMC_object_handle objRef,
CMC_string *error_buffer,
CMC_extension *get_last_error_extensions

);

} CMC_dispatch_table;

/* BIND IMPLEMENTATION */
CMC_return_code
cmc_bind_implementation(

CMC_guid implementation_name,
CMC_dispatch_table **dispatch_table,
CMC_extension *cmc_bind_extensions

);

/* UNBIND IMPLEMENTATION */
CMC_return_code
cmc_unbind_implementation(

CMC_guid implementation_name,
CMC_extension *cmc_unbind_implementation_extensions

);

#else /* WCHAR / UNICODE Function Counterparts */

/* SEND */
CMC_return_code
cmc_send_W(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

/* SEND DOCUMENT */
CMC_return_code
cmc_send_documents_W(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string file_names,
CMC_string delimiter,
CMC_ui_id ui_id

);

/* ACT ON */
CMC_return_code
cmc_act_on_W(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

/* LIST */
CMC_return_code
cmc_list_W(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

206 Recommendation X.446 (08/97)

/* READ */
CMC_return_code
cmc_read_W(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

/* LOOK UP */
CMC_return_code
cmc_look_up_W(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

/* FREE */
CMC_return_code
cmc_free_W(

CMC_buffer memory
);

/* LOGOFF */
CMC_return_code
cmc_logoff_W(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

/* LOGON */
CMC_return_code
cmc_logon_W(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

/* QUERY CONFIGURATION */
CMC_return_code
cmc_query_configuration_W(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

/* FULL CMC */

/* COPY OBJECT */
CMC_return_code
cmc_copy_object_W(

CMC_object_handle container,
CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_extensions

);

Recommendation X.446 (08/97) 207

/* ADD PROPERTIES */
CMC_return_code
cmc_add_properties_W(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_property *properties,
CMC_extension *add_properties_extensions

);

/* COMMIT OBJECT */
CMC_return_code
cmc_commit_object_W(

CMC_object_handle source_object,
CMC_extension *commit_object_extensions

);

/* COPY OBJECT HANDLE */
CMC_return_code
cmc_copy_object_handle_W(

CMC_object_handle source_handle,
CMC_object_handle *new_handle,
CMC_extension *copy_object_handle_extensions

);

/* CREATE DERIVED MESSAGE OBJECT */
CMC_return_code
cmc_create_derived_message_object_W(

CMC_object_handle original_message,
CMC_enum derived_action,
CMC_boolean inherit_contents,
CMC_object_handle *derived_message,
CMC_boolean modified_message,
CMC_extension *create_derived_object_extensions

);

/* DELETE OBJECTS */
CMC_return_code
cmc_delete_objects_W(

CMC_uint32 number_objects,
CMC_object_handle *object,
CMC_extension *delete_objects_extensions

);

/* DELETE PROPERTIES */
CMC_return_code
cmc_delete_properties_W(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_id *property_ids,
CMC_extension *delete_properties_extensions

);

/* GET ROOT HANDLE */
CMC_return_code
cmc_get_root_handle_W(

CMC_session_id session,
CMC_object_handle *root_object_handle,
CMC_extension *get_root_handle_extensions

);

/* IDENTIFIER TO NAME */
CMC_return_code
cmc_identifier_to_name_W(

CMC_id identifier,
CMC_name *name,
CMC_extension *identifier_to_name_extensions

);

208 Recommendation X.446 (08/97)

/* LIST CONTAINED PROPERTIES */
CMC_return_code
cmc_list_contained_properties_W(

CMC_cursor_handle cursor,
CMC_sint32 *number_object,
CMC_sint32 *number_properties,
CMC_id *property_ids,
CMC_property ***properties,
CMC_extension *list_contained_properties_extensions

);

/* LIST NUMBER MATCHED */
CMC_return_code
cmc_list_number_matched_W(

CMC_cursor_handle *cursor,
CMC_uint32 *number_matches,
CMC_extension *list_number_matched_extensions

);

/* LIST OBJECTS */
CMC_return_code
cmc_list_objects_W(

CMC_cursor_handle *cursor,
CMC_sint32 *number_objects,
CMC_object_handle **objects,
CMC_extension *list_objects_extensions

);

/* LIST PROPERTIES */
CMC_return_code
cmc_list_properties_W(

CMC_object_handle *object,
CMC_uint32 *number_properties,
CMC_id **property_ids,
CMC_extension *list_properties_extensions

);

/* NAME TO IDENTIFIER */
CMC_return_code
cmc_name_to_identifier_W(

CMC_name property_name,
CMC_id *property_id,
CMC_extension *name_to_identifier_extensions

);

/* OPEN CURSOR */
CMC_return_code
cmc_open_cursor_W(

CMC_object_handle object,
CMC_cursor_restriction *restrictions,
CMC_uint32 number_sort_orders,
CMC_cursor_sort_key *sort_keys,
CMC_cursor_handle *cursor,
CMC_extension *open_cursor_extensions

);

/* OPEN OBJECT HANDLE */
CMC_return_code
cmc_open_object_handle_W(

CMC_session_id session,
CMC_id object_class,
CMC_object_handle *new_object,
CMC_extension *open_object_handle_extensions

);

/* READ CURSOR */
CMC_return_code
cmc_read_cursor_W(

CMC_cursor_handle *cursor,
CMC_uint32 *position_numerator,
CMC_uint32 *position_denominator,
CMC_extension *read_cursor_extensions

);

Recommendation X.446 (08/97) 209

/* READ PROPERTIES */
CMC_return_code
cmc_read_properties_W(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension *read_properties_extensions

);

/* READ PROPERTY COSTS */
CMC_return_code
cmc_read_property_costs_W(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_enum **costs,
CMC_extension *read_property_costs_extensions

);

/* RESTORE OBJECT */
CMC_return_code
cmc_restore_object_W(

CMC_object_handle container,
CMC_string file_specification,
CMC_object_handle *restored_object,
CMC_flags restore_flags,
CMC_extension *restore_object_extensions

);

/* SAVE OBJECT */
CMC_return_code
cmc_save_object_W(

CMC_object_handle object,
CMC_string file_specification,
CMC_flags save_flags,
CMC_extension *save_object_extensions

);

/* SEND MESSAGE OBJECT */
CMC_return_code
cmc_send_message_object_W(

CMC_object_handle message_to_send,
CMC_extension *send_message_object_extensions

);

/* UPDATE CURSOR POSITION */
CMC_return_code
cmc_update_cursor_position_W(

CMC_cursor_handle *cursor,
CMC_uint32 position_numerator,
CMC_uint32 position_denominator,
CMC_extension *update_cursor_position_extensions

);

/* UPDATE CURSOR POSITION WITH SEED */
CMC_return_code
cmc_update_cursor_position_with_seed_W(

CMC_cursor_handle cursor,
CMC_object_handle seed,
CMC_extension *update_cursor_position_with_seed_extensions

);

/* CHECK EVENT */
CMC_return_code
cmc_check_event_W(

CMC_session_id session,
CMC_event event_type,
CMC_uint32 minimum_timeout,
CMC_buffer check_event_data,
CMC_buffer *callback_data,
CMC_extension *check_event_extensions

);

210 Recommendation X.446 (08/97)

/* REGISTER EVENT */
CMC_return_code
cmc_register_event_W(

CMC_session_id session,
CMC_event event_type,
CMC_callback callback,
CMC_buffer register_data,
CMC_extension *register_event_extensions

);

/* UNREGISTER EVENT */
CMC_return_code
cmc_unregister_event_W(

CMC_session_id session,
CMC_flags event_type,
CMC_callback callback,
CMC_buffer unregister_data,
CMC_extension *unregister_event_extensions

);

/* CALL CALLBACKS */
CMC_return_code
cmc_call_callbacks_W(

CMC_session_id session,
CMC_event event_type,
CMC_extension *call_callbacks_extensions

);

/* EXPORT STREAM */
CMC_return_code
cmc_export_stream_W(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 count,
CMC_flags export_flags,
CMC_extension *export_stream_extensions

);

/* IMPORT FILE TO STREAM */
CMC_return_code
cmc_import_file_to_stream_W(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 file_offset,
CMC_extension *import_file_to_stream_extensions

);

/* OPEN STREAM */
CMC_return_code
cmc_open_stream_W(

CMC_object_handle object,
CMC_property *property,
CMC_enum operation,
CMC_stream_handle *stream,
CMC_extension *open_stream_extensions

);

/* READ STREAM */
CMC_return_code
cmc_read_stream_W(

CMC_stream_handle stream,
CMC_uint32 *count,
CMC_buffer content_information,
CMC_extension *read_stream_extensions

);

/* SEEK STREAM */
CMC_return_code
cmc_seek_stream_W(

CMC_stream_handle stream,
CMC_enum operation,
CMC_uint32 *location,
CMC_extension *seek_stream_extensions

);

Recommendation X.446 (08/97) 211

/* WRITE STREAM */
CMC_return_code
cmc_write_stream_W(

CMC_stream_handle *stream,
CMC_uint32 *count,
CMC_buffer *content_information,
CMC_extension *write_stream_extensions

);

/* GET LAST ERROR */
CMC_return_code
cmc_get_last_error_W(

CMC_session_id session,
CMC_object_handle objRef,
CMC_string *error_buffer,
CMC_extension *get_last_error_extensions

);

/* MULTIPLE IMPLEMENTATIONS DISPATCH TABLE UNICODE */

typedef struct {
CMC_extension *dispatch_table_extensions;
/* SEND */
CMC_return_code
(*cmc_send_W)(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

/* SEND DOCUMENT */
CMC_return_code
(*cmc_send_documents_W)(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string file_names,
CMC_string delimiter,
CMC_ui_id ui_id

);

/* ACT ON */
CMC_return_code
(*cmc_act_on_W)(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

/* LIST */
CMC_return_code
(*cmc_list_W)(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

212 Recommendation X.446 (08/97)

/* READ */
CMC_return_code
(*cmc_read_W)(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

/* LOOK UP */
CMC_return_code
(*cmc_look_up_W)(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

/* FREE */
CMC_return_code
(*cmc_free_W)(

CMC_buffer memory
);

/* LOGOFF */
CMC_return_code
(*cmc_logoff_W)(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

/* LOGON */
CMC_return_code
(*cmc_logon_W)(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

/* QUERY CONFIGURATION */
CMC_return_code
(*cmc_query_configuration_W)(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

/* FULL CMC */

/* COPY OBJECT */
CMC_return_code
(*cmc_copy_object_W)(

CMC_object_handle container,
CMC_object_handle source_object,
CMC_object_handle *new_object,
CMC_extension *copy_object_extensions

);

Recommendation X.446 (08/97) 213

/* ADD PROPERTIES */
CMC_return_code
(*cmc_add_properties_W)(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_property *properties,
CMC_extension *add_properties_extensions

);

/* COMMIT OBJECT */
CMC_return_code
(*cmc_commit_object_W)(

CMC_object_handle source_object,
CMC_extension *commit_object_extensions

);

/* COPY OBJECT HANDLE */
CMC_return_code
(*cmc_copy_object_handle_W)(

CMC_object_handle source_handle,
CMC_object_handle *new_handle,
CMC_extension *copy_object_handle_extensions

);

/* CREATE DERIVED MESSAGE OBJECT */
CMC_return_code
(*cmc_create_derived_message_object_W)(

CMC_object_handle original_message,
CMC_enum derived_action,
CMC_boolean inherit_contents,
CMC_object_handle *derived_message,
CMC_boolean modified_message,
CMC_extension *create_derived_object_extensions

);

/* DELETE OBJECTS */
CMC_return_code
(*cmc_delete_objects_W)(

CMC_uint32 number_objects,
CMC_object_handle *object,
CMC_extension *delete_objects_extensions

);

/* DELETE PROPERTIES */
CMC_return_code
(*cmc_delete_properties_W)(

CMC_object_handle object,
CMC_uint32 number_properties,
CMC_id *property_ids,
CMC_extension *delete_properties_extensions

);

/* GET ROOT HANDLE */
CMC_return_code
(*cmc_get_root_handle_W)(

CMC_session_id session,
CMC_object_handle *root_object_handle,
CMC_extension *get_root_handle_extensions

);

/* IDENTIFIER TO NAME */
CMC_return_code
(*cmc_identifier_to_name_W)(

CMC_id identifier,
CMC_name *name,
CMC_extension *identifier_to_name_extensions

);

214 Recommendation X.446 (08/97)

/* LIST CONTAINED PROPERTIES */
CMC_return_code
(*cmc_list_contained_properties_W)(

CMC_cursor_handle cursor,
CMC_sint32 *number_object,
CMC_sint32 *number_properties,
CMC_id *property_ids,
CMC_property ***properties,
CMC_extension *list_contained_properties_extensions

);

/* LIST NUMBER MATCHED */
CMC_return_code
(*cmc_list_number_matched_W)(

CMC_cursor_handle *cursor,
CMC_uint32 *number_matches,
CMC_extension *list_number_matched_extensions

);

/* LIST OBJECTS */
CMC_return_code
(*cmc_list_objects_W)(

CMC_cursor_handle *cursor,
CMC_sint32 *number_objects,
CMC_object_handle **objects,
CMC_extension *list_objects_extensions

);

/* LIST PROPERTIES */
CMC_return_code
(*cmc_list_properties_W)(

CMC_object_handle *object,
CMC_uint32 *number_properties,
CMC_id **property_ids,
CMC_extension *list_properties_extensions

);

/* NAME TO IDENTIFIER */
CMC_return_code
(*cmc_name_to_identifier_W)(

CMC_name name,
CMC_id *identifier,
CMC_extension *name_to_identifier_extensions

);

/* OPEN CURSOR */
CMC_return_code
(*cmc_open_cursor_W)(

CMC_object_handle object,
CMC_cursor_restriction *restrictions,
CMC_uint32 number_sort_orders,
CMC_cursor_sort_key *sort_keys,
CMC_cursor_handle *cursor,
CMC_extension *open_cursor_extensions

);

/* OPEN OBJECT HANDLE */
CMC_return_code
(*cmc_open_object_handle_W)(

CMC_session_id session,
CMC_id object_class,
CMC_object_handle *new_object,
CMC_extension *open_object_handle_extensions

);

/* READ CURSOR */
CMC_return_code
(*cmc_read_cursor_W)(

CMC_cursor_handle *cursor,
CMC_uint32 *position_numerator,
CMC_uint32 *position_denominator,
CMC_extension *read_cursor_extensions

);

Recommendation X.446 (08/97) 215

/* READ PROPERTIES */
CMC_return_code
(*cmc_read_properties_W)(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_property **properties,
CMC_extension *read_properties_extensions

);

/* READ PROPERTY COSTS */
CMC_return_code
(*cmc_read_property_costs_W)(

CMC_object_handle object,
CMC_uint32 *number_properties,
CMC_id *property_ids,
CMC_enum **costs,
CMC_extension *read_property_costs_extensions

);

/* RESTORE OBJECT */
CMC_return_code
(*cmc_restore_object_W)(

CMC_object_handle container,
CMC_string file_specification,
CMC_object_handle *restored_object,
CMC_flags restore_flags,
CMC_extension *restore_object_extensions

);

/* SAVE OBJECT */
CMC_return_code
(*cmc_save_object_W)(

CMC_object_handle object,
CMC_string file_specification,
CMC_flags save_flags,
CMC_extension *save_object_extensions

);

/* SEND MESSAGE OBJECT */
CMC_return_code
(*cmc_send_message_object_W)(

CMC_object_handle message_to_send,
CMC_extension *send_message_object_extensions

);

/* UPDATE CURSOR POSITION */
CMC_return_code
(*cmc_update_cursor_position_W)(

CMC_cursor_handle *cursor,
CMC_uint32 position_numerator,
CMC_uint32 position_denominator,
CMC_extension *update_cursor_position_extensions

);

/* UPDATE CURSOR POSITION WITH SEED */
CMC_return_code
(*cmc_update_cursor_position_with_seed_W)(

CMC_cursor_handle cursor,
CMC_object_handle seed,
CMC_extension *update_cursor_position_with_seed_extensions

);

/* CHECK EVENT */
CMC_return_code
(*cmc_check_event_W)(

CMC_session_id session,
CMC_event event_type,
CMC_uint32 minimum_timeout,
CMC_buffer check_event_data,
CMC_buffer *callback_data,
CMC_extension *check_event_extensions

);

216 Recommendation X.446 (08/97)

/* REGISTER EVENT */
CMC_return_code
(*cmc_register_event_W)(

CMC_session_id session,
CMC_event event_type,
CMC_callback callback,
CMC_buffer register_data,
CMC_extension *register_event_extensions

);

/* UNREGISTER EVENT */
CMC_return_code
(*cmc_unregister_event_W)(

CMC_session_id session,
CMC_flags event_type,
CMC_callback callback,
CMC_buffer unregister_data,
CMC_extension *unregister_event_extensions

);

/* CALL CALLBACKS */
CMC_return_code
(*cmc_call_callbacks_W)(

CMC_session_id session,
CMC_event event_type,
CMC_extension *call_callbacks_extensions

);

/* EXPORT STREAM */
CMC_return_code
(*cmc_export_stream_W)(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 count,
CMC_flags export_flags,
CMC_extension *export_stream_extensions

);

/* IMPORT FILE TO STREAM */
CMC_return_code
(*cmc_import_file_to_stream_W)(

CMC_stream_handle stream,
CMC_string file_specification,
CMC_uint32 file_offset,
CMC_extension *import_file_to_stream_extensions

);

/* OPEN STREAM */
CMC_return_code
(*cmc_open_stream_W)(

CMC_object_handle object,
CMC_property *property,
CMC_enum operation,
CMC_stream_handle *stream,
CMC_extension *open_stream_extensions

);

/* READ STREAM */
CMC_return_code
(*cmc_read_stream_W)(

CMC_stream_handle stream,
CMC_uint32 *count,
CMC_buffer content_information,
CMC_extension *read_stream_extensions

);

/* SEEK STREAM */
CMC_return_code
(*cmc_seek_stream_W)(

CMC_stream_handle stream,
CMC_enum operation,
CMC_uint32 *location,
CMC_extension *seek_stream_extensions

);

Recommendation X.446 (08/97) 217

/* WRITE STREAM */
CMC_return_code
(*cmc_write_stream_W)(

CMC_stream_handle *stream,
CMC_uint32 *count,
CMC_buffer *content_information,
CMC_extension *write_stream_extensions

);

/* GET LAST ERROR */
CMC_return_code
(*cmc_get_last_error_W)(

CMC_session_id session,
CMC_object_handle objRef,
CMC_string *error_buffer,
CMC_extension *get_last_error_extensions

);

} CMC_dispatch_table;

/* BIND IMPLEMENTATION */
CMC_return_code
cmc_bind_implementation_W(

CMC_guid implementation_name,
CMC_dispatch_table **dispatch_table,
CMC_extension *cmc_bind_extensions

);

/* UNBIND IMPLEMENTATION */
CMC_return_code
cmc_unbind_implementation_W(

CMC_guid implementation_name,
CMC_extension *cmc_unbind_implementation_extensions

);

#endif
typedef CMC_return_code (*CMC_P_BIND_IMPLEMENTATION)(

CMC_guid implementation_name,
CMC_dispatch_table **dispatch_table,
CMC_extension *cmc_bind_extensions

);
typedef CMC_return_code (*CMC_P_UNBIND_IMPLEMENTATION)(

CMC_guid implementation_name,
CMC_extension *cmc_unbind_extensions

);

/* Function Constants */

/* SEND */
#define CMC_SEND_UI_REQUESTED ((CMC_flags) 1)

/* SEND DOCUMENT */
#define CMC_FIRST_ATTACH_AS_TEXT_NOTE ((CMC_flags) 2)

/* ACT ON */
#define CMC_ACT_ON_EXTENDED ((CMC_enum) 0)
#define CMC_ACT_ON_DELETE ((CMC_enum) 1)

/* LIST */
#define CMC_LIST_UNREAD_ONLY ((CMC_flags) 1)
#define CMC_LIST_MSG_REFS_ONLY ((CMC_flags) 2)
#define CMC_LIST_COUNT_ONLY ((CMC_flags) 4)

#define CMC_LENGTH_UNKNOWN 0xFFFFFFFF

/* READ */
#define CMC_DO_NOT_MARK_AS_READ ((CMC_flags) 1)
#define CMC_MSG_AND_ATT_HDRS_ONLY ((CMC_flags) 2)
#define CMC_READ_FIRST_UNREAD_MESSAGE ((CMC_flags) 4)

/* LOOKUP */
#define CMC_LOOKUP_RESOLVE_PREFIX_SEARCH ((CMC_flags) 1)
#define CMC_LOOKUP_RESOLVE_IDENTITY ((CMC_flags) 2)
#define CMC_LOOKUP_RESOLVE_UI ((CMC_flags) 4)
#define CMC_LOOKUP_DETAILS_UI ((CMC_flags) 8)
#define CMC_LOOKUP_ADDRESSING_UI ((CMC_flags) 16)

218 Recommendation X.446 (08/97)

/* LOGOFF */
#define CMC_LOGOFF_UI_ALLOWED ((CMC_flags) 1)

/* LOGON */
#define CMC_VERSION ((CMC_uint16) 100)

/* QUERY CONFIGURATION ENUMS */
#define CMC_CONFIG_CHARACTER_SET ((CMC_enum) 1)
#define CMC_CONFIG_LINE_TERM ((CMC_enum) 2)
#define CMC_CONFIG_DEFAULT_SERVICE ((CMC_enum) 3)
#define CMC_CONFIG_DEFAULT_USER ((CMC_enum) 4)
#define CMC_CONFIG_REQ_PASSWORD ((CMC_enum) 5)
#define CMC_CONFIG_REQ_SERVICE ((CMC_enum) 6)
#define CMC_CONFIG_REQ_USER ((CMC_enum) 7)
#define CMC_CONFIG_UI_AVAIL ((CMC_enum) 8)
#define CMC_CONFIG_SUP_NOMKMSGREAD ((CMC_enum) 9)
#define CMC_CONFIG_SUP_COUNTED_STR ((CMC_enum) 10)
#define CMC_CONFIG_VER_IMPLEM ((CMC_enum) 11)
#define CMC_CONFIG_VER_SPEC ((CMC_enum) 12)

/* CONFIG LINE TERM ENUM */
#define CMC_LINE_TERM_CRLF ((CMC_enum) 0)
#define CMC_LINE_TERM_CR ((CMC_enum) 1)
#define CMC_LINE_TERM_LF ((CMC_enum) 2)

/* CONFIG REQUIRED LOGON PARAMETER ENUM */
#define CMC_REQUIRED_NO ((CMC_enum) 0)
#define CMC_REQUIRED_YES ((CMC_enum) 1)
#define CMC_REQUIRED_OPT ((CMC_enum) 2)

/* CREATE DERIVED MESSAGE OBJECT */
#define CMC_DERIVED_ACTION_FORWARD ((CMC_enum) 0)
#define CMC_DERIVED_ACTION_REPLY_ORIGINATOR ((CMC_enum) 1)
#define CMC_DERIVED_ACTION_REPLY_ALL ((CMC_enum) 2)

/* READ PROPERTY COSTS */
#define CMC_COST_UNDETERMINED ((CMC_enum) 0)
#define CMC_COST_NONE ((CMC_enum) 1)
#define CMC_COST_MINOR ((CMC_enum) 2)
#define CMC_COST_MAJOR ((CMC_enum) 3)

/* RESTORE OBJECT FLAGS */
#define CMC_RESTORE_OBJECT_OVERWRITE ((CMC_flags) 1)

/* SAVE OBJECT FLAGS */
#define CMC_SAVE_OBJECT_OVERWRITE ((CMC_flags) 1)
#define CMC_SAVE_OBJECT_NOCREATE ((CMC_flags) 2)

/* EXPORT STREAM */
#define CMC_EXPORT_STREAM_OVERWRITE ((CMC_flags) 1)
#define CMC_EXPORT_STREAM_NOCREATE ((CMC_flags) 2)
#define CMC_EXPORT_STREAM_APPEND ((CMC_flags) 3)

/* OPEN STREAM */
#define CMC_OPEN_READ ((CMC_enum) 0)
#define CMC_OPEN_WRITE ((CMC_enum) 1)

/* SEEK STREAM */
#define CMC_SEEK_BEGINNING ((CMC_enum) 0)
#define CMC_SEEK_END ((CMC_enum) 1)
#define CMC_SEEK_CURRENT_POSITION ((CMC_enum) 2)

/* DEFINED OBJECT ID’S FOR CHARACTER SETS */
#define CMC_CHAR_CP437 "1 2 840 113556 3 2 437"
#define CMC_CHAR_CP850 "1 2 840 113556 3 2 850"
#define CMC_CHAR_CP1252 "1 2 840 113556 3 2 1252"
#define CMC_CHAR_ISTRING "1 2 840 113556 3 2 0"
#define CMC_CHAR_UNICODE "1 2 840 113556 3 2 1"

/* RETURN CODE FLAGS */
#define CMC_ERROR_DISPLAYED ((CMC_return_code) 0x00008000)
#define CMC_ERROR_RSV_MASK ((CMC_return_code) 0x0000FFFF)
#define CMC_ERROR_IMPL_MASK ((CMC_return_code) 0xFFFF0000)

Recommendation X.446 (08/97) 219

/* RETURN CODES */
#define CMC_SUCCESS ((CMC_return_code) 0)
#define CMC_E_AMBIGUOUS_RECIPIENT ((CMC_return_code) 1)
#define CMC_E_ATTACHMENT_NOT_FOUND ((CMC_return_code) 2)
#define CMC_E_ATTACHMENT_OPEN_FAILURE ((CMC_return_code) 3)
#define CMC_E_ATTACHMENT_READ_FAILURE ((CMC_return_code) 4)
#define CMC_E_ATTACHMENT_WRITE_FAILURE ((CMC_return_code) 5)
#define CMC_E_COUNTED_STRING_UNSUPPORTED ((CMC_return_code) 6)
#define CMC_E_DISK_FULL ((CMC_return_code) 7)
#define CMC_E_FAILURE ((CMC_return_code) 8)
#define CMC_E_INSUFFICIENT_MEMORY ((CMC_return_code) 9)
#define CMC_E_INVALID_CONFIGURATION ((CMC_return_code) 10)
#define CMC_E_INVALID_ENUM ((CMC_return_code) 11)
#define CMC_E_INVALID_FLAG ((CMC_return_code) 12)
#define CMC_E_INVALID_MEMORY ((CMC_return_code) 13)
#define CMC_E_INVALID_MESSAGE_PARAMETER ((CMC_return_code) 14)
#define CMC_E_INVALID_MESSAGE_REFERENCE ((CMC_return_code) 15)
#define CMC_E_INVALID_PARAMETER ((CMC_return_code) 16)
#define CMC_E_INVALID_SESSION_ID ((CMC_return_code) 17)
#define CMC_E_INVALID_UI_ID ((CMC_return_code) 18)
#define CMC_E_LOGON_FAILURE ((CMC_return_code) 19)
#define CMC_E_MESSAGE_IN_USE ((CMC_return_code) 20)
#define CMC_E_NOT_SUPPORTED ((CMC_return_code) 21)
#define CMC_E_PASSWORD_REQUIRED ((CMC_return_code) 22)
#define CMC_E_RECIPIENT_NOT_FOUND ((CMC_return_code) 23)
#define CMC_E_SERVICE_UNAVAILABLE ((CMC_return_code) 24)
#define CMC_E_TEXT_TOO_LARGE ((CMC_return_code) 25)
#define CMC_E_TOO_MANY_FILES ((CMC_return_code) 26)
#define CMC_E_TOO_MANY_RECIPIENTS ((CMC_return_code) 27)
#define CMC_E_UNABLE_TO_NOT_MARK_AS_READ ((CMC_return_code) 28)
#define CMC_E_UNRECOGNIZED_MESSAGE_TYPE ((CMC_return_code) 29)
#define CMC_E_UNSUPPORTED_ACTION ((CMC_return_code) 30)
#define CMC_E_UNSUPPORTED_CHARACTER_SET ((CMC_return_code) 31)
#define CMC_E_UNSUPPORTED_DATA_EXT ((CMC_return_code) 32)
#define CMC_E_UNSUPPORTED_FLAG ((CMC_return_code) 33)
#define CMC_E_UNSUPPORTED_FUNCTION_EXT ((CMC_return_code) 34)
#define CMC_E_UNSUPPORTED_VERSION ((CMC_return_code) 35)
#define CMC_E_USER_CANCEL ((CMC_return_code) 36)
#define CMC_E_USER_NOT_LOGGED_ON ((CMC_return_code) 37)
#define CMC_E_INVALID_OBJECT_HANDLE ((CMC_return_code) 38)
#define CMC_E_PROPERTY_ID_NOT_FOUND ((CMC_return_code) 39)
#define CMC_E_INVALID_CURSOR_HANDLE ((CMC_return_code) 40)
#define CMC_E_REQUIRED_PROPS_MISSING ((CMC_return_code) 41)
#define CMC_E_INVALID_SOURCE_OBJECT ((CMC_return_code) 42)
#define CMC_E_INVALID_CONTAINER_OBJECT ((CMC_return_code) 43)
#define CMC_E_UNRECOGNIZED_IDENTIFIER ((CMC_return_code) 44)
#define CMC_E_INVALID_PROPERTY_NAME ((CMC_return_code) 45)
#define CMC_E_INVALID_RESTRICTION ((CMC_return_code) 46)
#define CMC_E_UNSUPPORTED_KEYS ((CMC_return_code) 47)
#define CMC_E_INVALID_STREAM_HANDLE ((CMC_return_code) 48)
#define CMC_E_INVALID_FILE_OFFSET ((CMC_return_code) 49)
#define CMC_E_INVALID_PROPERTY_ID ((CMC_return_code) 50)
#define CMC_E_NO_MORE_BYTES_TO_WRITE ((CMC_return_code) 51)
#define CMC_E_NAME_NOT_FOUND ((CMC_return_code) 52)
#define CMC_E_ID_NOT_FOUND ((CMC_return_code) 53)
#define CMC_E_TOO_MANY_CONTENT_ITEMS ((CMC_return_code) 54)
#define CMC_E_BIND_FAILURE ((CMC_return_code) 55)
#define CMC_E_UNBIND_FAILURE ((CMC_return_code) 56)
#define CMC_E_INVALID_EVENT ((CMC_return_code) 57)
#define CMC_E_CALLBACK_NOT_SUPPORTED ((CMC_return_code) 58)
#define CMC_E_ACCESS_DENIED ((CMC_return_code) 59)
#define CMC_E_INVALID_FILE_SPECIFICATION ((CMC_return_code) 60)
#define CMC_E_PROPERTY_NAME_NOT_FOUND ((CMC_return_code) 61)
#define CMC_E_INVALID_FUNCTION_EXT ((CMC_return_code) 62)
#define CMC_E_FUNCTION_INTERRUPTED ((CMC_return_code) 63)

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* _XCMC_H */

220 Recommendation X.446 (08/97)

Recommendation X.446 (08/97)

Annex B

CMC vendor extensions

B.1 CMC vendor extensions

This Recommendation enables vendor extensions in many areas. Vendors may add extensions to certain CMC data
structures and every CMC function contains a parameter to carry functional extensions. Vendors may define new CMC
object classes, extend the set of properties associated with an object class, add additional enumerated values, and
associate a CMC implementation identifier with an implementation. In addition, some of the functionality of this
Recommendation has been defined using common extensions defined in this Recommendation to preserve backwards
compatibility with XAPIA’s CMC-1.0. Further extension sets may also be defined by future versions of this
Recommendation. Because of this, it is important to have a set of guidelines for the naming and definition of extensions.
These guidelines are given below:

1) Extensions item_code ranges will be handed out to vendors or vendor groups in blocks of 256 for creating
extension sets. A vendor/vendor group may get more than one item_code range if necessary for the extension set.
The extension set identifier for all the sets item_code ranges will be the first location of the first block given out.
This extension set identifier is used to query the service for support of a particular extension set.

For example, the extension blocks for Vendor Group X may be 0x00000400, 0x00000900, and 0x00004300 and the
extension set identifier would be 0x00000400 if that was the first block assigned to the vendor. Applications would
ask a service if it supports extension set 0x00000400, for this vendor group’s extensions.

2) An extension set will also have a specific prefix assigned to it for use in the names of all extensions in the extension
set. The format of the prefix will be:

CMC_XS_[vendor id] for the extension set identifier
CMC_X_[vendor id]_[extension name] for the item codes of extensions in the set

In the example with Vendor Group X above, if its vendor id was CX, it would define its extensions as:

#define CMC_XS_CX 0x00000400
#define CMC_X_CX_EXT1 0x00000401
#define CMC_X_CX_EXT2 0x00000402

3) Extension sets defined by this Recommendation will be allocated an extension set number and prefix from the
X.400 API Association. Implementors may also obtain an extension set prefix, and a block of extension codes, from
the X.400 API Association by requesting such a number in writing. Pre-defined extension set numbers are given in
Annex D. Support for different extension sets is indicated through the configuration of the CMC implementation
and can be queried through the function cmc_query_configuration() using the CMC_X_COM_SUPPORT_EXT
extension.

4) An extension set value of BILATERAL has also been allocated. Extensions may be defined within the
BILATERAL set by any implementation. No registration of an extension set number is required. This set is
provided so that implementors may define extensions without any formal registration. Because of this freedom,
extensions from different vendors may conflict and inhibit application portability and the co-residency of different
CMC implementations. The prefix for these extensions will be CMC_X_BLT_ and the corresponding set identifier
is CMC_XS_BLT.

5) Many objects are named using globally unique identifiers or GUIDs. GUIDs may be assigned by vendors under
vendor-specific names. With the registration for an extension set, a vendor is also assigned a branch in the GUID
name space:

–//XAPIA/CMC20/OBJECT CLASS/VENDOR [vendor id]//NONSGML [ext. name]//EN for object classes,

–//XAPIA/CMC20/PROPERTY/VENDOR [vendor id]//NONSGML [ext. name]//EN for property names,

Recommendation X.446 (08/97) 221

–//XAPIA/CMC20/CONTENT TYPE/VENDOR [vendor id]//NONSGML [ext. name]//EN for content types,

–//XAPIA/CMC20/CHARSET/VENDOR [vendor id]//NONSGML [ext. name]//EN for character sets, and

–//XAPIA/CMC20/ENCODING TYPE/VENDOR [vendor id]//NONSGML [ext. name]//EN for encoding types.

NOTE – The specification of vendor extensions does not imply that the extensions will be carried unchanged through messaging
protocols and gateways. Details of protocol and gateway limitations associated with these extensions should be specified in
vendor manuals.

6) Vendors may also extend enumerated values to this Recommendation. The enumerated values from 0 to 512 are
reserved for this Recommendation. The vendor may reuse item code values for enumerated values. For the
definition of constants associated with these values, the vendor should use the prefix CMC_X_[vendor id]_[enum],
ensuring that the constants do not conflict with extension names.

To minimize portability issues, implementors are encouraged to specify extensions as generically as possible, and to
contribute these extensions as proposed additions to the CMC-defined extension set. Through this process, the CMC API
set will evolve in a positive direction in a manner which continues to maximize portability.

B.1.1 Function extensions

B.1.1.1 CMC_X_COM_SUPPORT_EXT

This extension is used by client applications to query the CMC implementation about which extensions it supports. This
can be used before a session is established to get preliminary information about support before logging on. When this
extension is used with cmc_logon(), this extension will also indicate which data extensions the client wants added to the
data structures for the session.

NOTE – Some implementations may support different extensions based on what service the client application creates a session with,
so using this extension at logon time is recommended to verify extension support.

If any extensions are supported by a CMC implementation, this extension must be supported.

USED BY

cmc_query_config()

cmc_logon()

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

Count of items in array pointed to by item_reference.

item_reference

Pointer to first element in array of structures listing extensions the application requests be supported by the
implementation. The C declaration for this structure is below:

typedef struct {

CMC_uint32 item_code;

CMC_flags flags;

} CMC_X_COM_support;

The item_code in the structure is set to the item code of the extensions the application is querying the service
about. These can be either extension sets or individual extensions. An item code of null will be ignored. The
flags for the structures that are used on input are:

CMC_X_COM_SUP_EXCLUDE – Exclude this item when deciding whether the implementation supports an
extension set. On logon, do not attach this item to structures for this session even if other entries request that it
be attached. This flag is used only with extension sets.

222 Recommendation X.446 (08/97)

OUTPUT

extension_flags

unchanged

item_data

unchanged

item_reference

The flags in the structures are set by the implementation to indicate support for the extension. These flags will
not be set if CMC_X_COM_SUP_EXCLUDE was set on input. The possible values are listed below.

CMC_X_COM_SUPPORTED – The extension for this item_code is supported. If it is a data extension and is
passed at logon, it will be included with the structures used for this session. For extension sets, the required
function and data extensions in the set are supported.

CMC_X_COM_NOT_SUPPORTED – The item_code is not supported. For extension sets, not all required
function and data extensions for the set are supported. If this is a data extension or an extension set containing
data extensions, the data will not be attached to structures for this session.

CMC_X_COM_DATA_EXT_SUPPORTED – For extension sets only. This can be returned by the
implementation to indicate that all the required data extensions for the set are supported, but not all of the
required function extensions. As with CMC_X_COM_SUPPORTED, if this is returned on the cmc_logon()
call, the data extensions will be included with the data structures for this session.

CMC_X_COM_FUNC_EXT_SUPPORTED – For extension sets only. This can be returned by the
implementation to indicate that all the required function extensions for the set are supported, but not all of the
required data extensions. Unlike CMC_X_COM_SUPPORTED, if this is returned on the cmc_logon() call,
the data extensions available will NOT be included with the data structures for this session and will need to be
requested explicitly.

B.1.1.2 CMC_X_UI_ID_EXT

This extension is used by client applications to specify platform-specific user interface information to the CMC
functions. The user interface information may be used by the CMC implementation to present user dialogues for
resolving additional arguments to the CMC call or any other questions that arise when the service performs the function.
For example, in a windows-based environment, this would be the parent-window handle for the calling application.

NOTE – The CMC implementations are not required to provide UI, and providing a user interface for one feature does not necessarily
imply that a user interface is available for all features of the CMC.

Error codes generated as a result of the use of this function extension will be returned as error codes through the nominal
return code process.

USED BY

All Full CMC functions

INPUT

extension_flags

All CMC flags are valid. Unspecified flags should always be passed as zero (0). Additional flags used by this
function include the following:

CMC_X_ERROR_UI_ALLOWED

Recommendation X.446 (08/97) 223

CMC_X_ERROR_UI_ALLOWED – Set if the function may display UI on encountering recoverable errors. If
not set, the function may not display a UI and will return an error code. This flag is valid for all CMC
functions that support this extension.

item_data

zero

item_reference

A pointer to an identifier for a User Interface (e.g. dialogue window) for use in resolving any questions which
might otherwise result in an error and queries the user for additional information as required.

OUTPUT

extension_flags

unchanged

item_data

unchanged

item_reference

unchanged

B.1.1.3 CMC_X_COM_CONFIG_DATA

Get all values available with cmc_query_configuration() in a structure.

USED BY

cmc_query_configuration()

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

zero

item_reference

NULL

OUTPUT

extension_flags

CMC_EXT_OUTPUT will be set if a structure is successfully returned.

item_data

unchanged

item_reference

Pointer to a structure containing all the information available from the query configuration call. The
C declaration for this structure is below:

typedef struct {
CMC_uint16 ver_spec;
CMC_uint16 ver_implem;
CMC_object_identifier *character_set;
CMC_enum line_term;
CMC_string default_service;
CMC_string default_user;

224 Recommendation X.446 (08/97)

CMC_enum req_password;
CMC_enum req_service;
CMC_enum req_user;
CMC_boolean ui_avail;
CMC_boolean sup_nomkmsgread;
CMC_boolean sup_counted_str;

} CMC_X_COM_configuration;

The definition for each of the structure members corresponds to the data returned via the reference argument by
cmc_query_configuration() for the similarly named value of the item argument. This structure should be freed with one
call to cmc_free().

B.1.1.4 CMC_X_COM_PROPERTY_HINTS

This function extension provides cmc_list_objects() with a hint as to what properties the caller will need in the near
future. This hint allows implementations to optimize the retrieval of properties by getting all of the hinted at properties at
one time.

USED BY

cmc_list_objects()

INPUT

extension_flags

All CMC flags are valid. Unspecified flags should always be passed as zero (0). No additional flags are
defined.

item_data

The number of CMC property names in the array of structures pointed to by item_reference.

item_reference

A pointer to an array of CMC property names. These ids specify the properties that are being hinted at.

OUTPUT

extension_flags

unchanged

item_data

unchanged

item_reference

unchanged

B.1.1.5 CMC_X_COM_CAN_SEND_RECIP

Check if the message service is ready to send to the specified recipient.

USED BY

cmc_look_up()

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

zero

Recommendation X.446 (08/97) 225

item_reference

NULL

On input, the cmc_look_up() recipient_in parameter will contain the recipient to query the service about. The
extension will only look at the first recipient, if there is more than one passed.

OUTPUT

extension_flags

unchanged

item_data

Set to CMC_X_COM_NOT_READY if a transport is not available for this recipient type,
CMC_X_COM_READY if the recipient can be sent to immediately, and CMC_X_COM_DEFER if the
message will be accepted but deferred until a transport is ready.

item_reference

unchanged

B.1.1.6 CMC_X_COM_SAVE_MESSAGE

Save a message structure to the inbox.

USED BY

cmc_act_on()

INPUT

extension_flags

Must contain CMC_EXT_REQUIRED to indicate that the save action rather than the delete action should be
carried out. All CMC flags are valid. No further flags are defined.

item_data

zero

item_reference

Pointer to message structure to save in the inbox. This message will have the CMC_MSG_UNSENT flag set
by the CMC implementation to indicate that it has not been sent.

On input, the cmc_act_on() operation parameter must be set to CMC_ACT_ON_EXTENDED to indicate that
the operation is contained in the extensions.

OUTPUT

extension_flags

CMC_EXT_OUTPUT will be set if a message is successfully saved and the message reference returned.

item_data

unchanged

item_reference

Pointer to the message reference referring to the message saved to the inbox. This pointer must be freed by
cmc_free().

B.1.1.7 CMC_X_COM_SENT_MESSAGE

Return a message structure containing all the information for the message just sent. This is useful to obtain information
in the message structure set with UI rather than by the calling application.

226 Recommendation X.446 (08/97)

USED BY

cmc_send()

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

zero

item_reference

NULL

OUTPUT

extension_flags

CMC_EXT_OUTPUT will be set if the item_reference contains a pointer to a message.

item_data

unchanged

item_reference

Pointer to a message structure containing all the information for the message just sent. This pointer should be
freed with cmc_free().

B.1.1.8 CMC_X_COM_PROP_STATUS

This function extension indicates that the operation performed should return per-property status. An error resulting from
an attempted property modification or deletion is called a property problem. If an operation that affects multiple
properties encounters problems that prevent it from processing some of these properties, this extension allows the caller
to receive reports about the property problems.

USED BY

cmc_add_properties()

cmc_delete_properties()

INPUT

extension_flags

All CMC flags are valid. Unspecified flags should always be passed as zero (0). No additional flags are
defined.

item_data

zero

item_reference

NULL

OUTPUT

extension_flags

The CMC_EXT_OUTPUT flag is set if any property problem information is reported.

item_data

Count of items in the array pointed to by item_reference. Zero if no property problems are reported.

Recommendation X.446 (08/97) 227

item_reference

Pointer to an array of structures listing the property problems reported. The C declaration for the structure is:

typedef struct {
CMC_uint32 index;
CMC_id id;
CMC-return_code error_code;

} CMC_X_COM_prop_problem;

where:

• index specifies the index of the involved property in the input properties or property_ids array of the
function;

• id specifies the involved property;

• error_code specifies the error encountered when processing the request for that property.

The array is allocated by the service and should be freed with a call to cmc_free().

When this extension reports property problems, the function returns the error code
CMC_E_PROPERTY_PROBLEMS. In this case, any property that is not mentioned as reporting a problem
can be assumed to have been processed successfully.

ERRORS

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_ENUM

CMC_E_INVALID_MEMORY

CMC_E_REQUIRED_PROPS_MISSING

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT_TOO_LARGE

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_FLAG

B.1.2 Data extensions

B.1.2.1 CMC_X_COM_TIME_RECEIVED

Data extension for a time structure for the delivery time of the message.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the message and message summary structures during the session.

USED BY

CMC_message

CMC_message_summary

INPUT

This extension is ignored on input of message structure.

OUTPUT

extension_flags

NULL

item_data

zero

228 Recommendation X.446 (08/97)

item_reference

Pointer to a time structure indicating the receive time for the message. See the CMC_time structure for more
information.

B.1.2.2 CMC_X_COM_RECIP_ID

A data extension to add a unique opaque recipient identifier to the recipient structure. This is provided by the
implementation during recipient name resolution and can be used to avoid further name resolution during send in some
services. This is analogous to the message reference.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the recipient structure during the session.

USED BY

CMC_recipient

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

length of the recipient id

item_reference

pointer to the recipient id

OUTPUT

extension_flags

unchanged

item_data

length of the recipient id

item_reference

pointer to the recipient id

B.1.2.3 CMC_X_COM_ATTACH_CHARPOS

Data extension to support display of a graphic representation of the attachment in the message text note. The extension
holds the character position for the representation.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the attachment structure during the session.

USED BY

CMC_attachment

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

Zero-based character offset of the attachment within the text_note data.

NOTE – This is a character offset rather than a byte offset, which is an important distinction when multi-byte character sets
are in use.

item_reference

NULL

Recommendation X.446 (08/97) 229

OUTPUT

extension_flags

unchanged

item_data

Zero-based character offset of the attachment within the text_note data.

item_reference

unchanged

B.1.2.4 CMC_X_COM_PRIORITY

Data extension for message priority.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the message structure during the session.

USED BY

CMC_message
CMC_message_summary

INPUT

extension_flags

All CMC flags are valid. No further flags are defined.

item_data

Set to CMC_X_COM_URGENT, CMC_X_COM_NORMAL, or CMC_X_COM_LOW, depending on the
urgency of the message.

item_reference

NULL

OUTPUT

extension_flags

unchanged

item_data

Set to CMC_X_COM_URGENT, CMC_X_COM_NORMAL, or CMC_X_COM_LOW, depending on the
urgency of the message.

item_reference

unchanged

B.2 Extension set C declaration summary

This subclause lists the declarations that define the CMC interface for the common extensions set in the C programming
language.

The declarations assembled here constitute the contents of a header file to be made accessible to application
programmers. They are included in the header file <xcmcext.h>. The symbols the declarations define are the only
symbols the service makes visible to the application.

/* COMMON EXTENSIONS DECLARATIONS */

/* EXTENSION SET ID */

#define CMC_XS_COM ((CMC_uint32) 0)

/* FUNCTION EXTENSIONS */

/* Query for extension support in implementation */

230 Recommendation X.446 (08/97)

#define CMC_X_COM_SUPPORT_EXT ((CMC_uint32) 16)

typedef struct {
CMC_uint32 item_code;
CMC_flags flags;

} CMC_X_COM_support;

#define CMC_X_COM_SUPPORTED ((CMC_flags) 1)
#define CMC_X_COM_NOT_SUPPORTED ((CMC_flags) 2)
#define CMC_X_COM_DATA_EXT_SUPPORTED ((CMC_flags) 4)
#define CMC_X_COM_FUNC_EXT_SUPPORTED ((CMC_flags) 8)
#define CMC_X_COM_SUP_EXCLUDE ((CMC_flags) 16)

/* Get back a structure with configuration data */

#define CMC_X_COM_CONFIG_DATA ((CMC_uint32) 17)

typedef struct {
CMC_uint16 ver_spec;
CMC_uint16 ver_implem;
CMC_object_identifier character_set;
CMC_enum line_term;
CMC_string default_service;
CMC_string default_user;
CMC_enum req_password;
CMC_enum req_service;
CMC_enum req_user;
CMC_boolean ui_avail;
CMC_boolean sup_nomkmsgread;
CMC_boolean sup_counted_str;

} CMC_X_COM_configuration;

/* Check to see if a recipient can be sent */

#define CMC_X_COM_CAN_SEND_RECIP ((CMC_uint32) 18)

#define CMC_X_COM_READY ((CMC_enum) 0)
#define CMC_X_COM_NOT_READY ((CMC_enum) 1)
#define CMC_X_COM_DEFER ((CMC_enum) 2)

/* Save a message to the inbox */

#define CMC_X_COM_SAVE_MESSAGE ((CMC_uint32) 19)

/* Get back a message structure for the message just sent */

#define CMC_X_COM_SENT_MESSAGE ((CMC_uint32) 20)

/* DATA EXTENSIONS */

/* attach received data to message and message summary structures */

#define CMC_X_COM_TIME_RECEIVED ((CMC_uint32) 128)

/* attach a unique id to resolved recipient structures */

#define CMC_X_COM_RECIP_ID ((CMC_uint32) 129)

/* set character position in the message text to display an icon
 associated with a particular attachment */

#define CMC_X_COM_ATTACH_CHARPOS ((CMC_uint32) 130)

#define CMC_X_COM_PRIORITY ((CMC_uint32) 131)

#define CMC_X_COM_NORMAL ((CMC_enum) 0)
#define CMC_X_COM_LOW ((CMC_enum) 1)
#define CMC_X_COM_URGENT ((CMC_enum) 2)

B.2.1 X.400 extension set

The following extension set identifiers are being registered with XAPIA for X.400 usage:

#define CMC_XS_X400 ((CMC_uint32) 0x00000600)
#define CMC_X_X400_ERROR ((CMC_uint32) 0x00000601)
#define CMC_X_X400_MSG_PARENT ((CMC_uint32) 0x00000602)

Recommendation X.446 (08/97) 231

#define CMC_X_X400_MSG_ID ((CMC_uint32) 0x00000603)
#define CMC_X_X400_MSG_REPORT_ID ((CMC_uint32) 0x00000604)
#define CMC_X_X400_REPORT ((CMC_uint32) 0x00000605)

B.2.1.1 CMC_Report structure

The following "C" structure is being used in the CMC_X_X400_REPORT extension:

typedef struct {
CMC_recipient *msg_recipient;
CMC_enum report_type;
CMC_time delivered_time;
CMC_uint32 reason_code;
CMC_flags report_flags;

} CMC_report;

/* report_type */

#define CMC_X400_DR ((CMC_enum) 0)
#define CMC_X400_NDR ((CMC_enum) 1)

/* report_flags */

#define CMC_REPORT_LAST_ELEMENT ((CMC_flags) 0x80000000)

B.2.1.2 Error code: CMC_EX_X400_STD

A new error code is defined to further qualify that a CMC function’s failure is due to an X.400 exception/abort/error
condition. This code will be used in the higher-order 16 bits of the CMC_return_code to indicate that the error is
associated with the Recommendation X.400-X.420 (1988) messaging services.

The "C" definition of this error is:

#define CMC_EX_X400_STD ((CMC_uint16) 400)

Thus, if the CMC implementation wishes to classify an error condition that is caused by the underlying X.400 message
service and optional X.400 related CMC_extensions will be returned, the CMC_return_code can be set to the following:

CMC_return_code.<lower order 16 bits> = CMC_E_FAILURE, or the most appropriate error

CMC_return_code.<higher order 16 bits> = CMC_EX_X400_STD

B.2.2 Additional extensions for simple CMC/X400 mapping

B.2.2.1 CMC_X_X400_ERROR

If the CMC function fails because the underlying X.400 operation is not successful, the error resulted from the X.400
operations is returned to the CMC application so that it can find out the root cause of the error. This extension contains
specific errors that are defined by the Recommendation X.400-X.420 (1988). See the related document for the
explanation and value of the error.

NOTE – If the CMC application wants the CMC implementation to return this extension should an X.400 error occur, the application
must supply the storage of this extension when the CMC function is invoked; otherwise, the CMC implementation cannot return this
extension because the extension argument of each CMC function is only an address to where the buffer has been allocated by the
application. Unless the CMC V1.0 specification is modified to allow the function extension argument to be an input and output
argument, the other alternative is that the CMC implementation supplies a new ErrorInfo function for the application to obtain the
error detailed in this extension after a CMC function has been failed with an X.400 related error.

USED BY

cmc_act_on(), cmc_list(), cmc_logon(), cmc_logoff(), cmc_read(), cmc_send()

OUTPUT

item_code

CMC_X_X400_ERROR

item_data

item_data.<higher order 16 bits> = X.400 defined operation number

item_data.<lower order 16 bits> = X.400 defined return codes of the operation

232 Recommendation X.446 (08/97)

item_reference

NULL

extension_flags

All CMC flags are valid. No further flags are defined.

B.2.2.2 CMC_X_X400_MSG_PARENT

X.400 Message Store supports nested messages using the parent and child messages concept. For example, a body part
of an IPM that contains a forwarded IPM, the forwarded IPM is a child message and the forwarding IPM is the parent
message, or, the content of a report, a returned IPM is the child message and the report itself is the parent message. A
new extension will be used to allow the application to determine whether a message is a parent or a child.

Identification used to indicate whether the message_reference of the CMC_message or CMC_message_summary is an
X.413 parent message or child message. If the associated message is a parent message, this extension will not be
returned.

USED BY

CMC_message and CMC_message_summary

OUTPUT

item_code

CMC_X_X400_MSG_PARENT

item_data

X.413.parent-sequence-number for child message

item_reference

NULL

extension_flags

All CMC flags are valid. No further flags are defined.

B.2.2.3 CMC_X_X400_MSG_ID

When sending a message, X.400 creates a unique identifier for this message, an MTS identifier. This identifier is used
for message tracking and to report delivery/non delivery of a message. This identifier is returned to the CMC application
via the message ID extension when reading, listing, or sending a message. Thus the application can respond to or
reference a particular message with the appropriate action.

A unique identification of a message that is given by the underlying messaging service when the CMC application is
either reading, listing, or sending a message.

USED BY

CMC_message, CMC_message_summary, and cmc_send().

Reading and listing a message:

When a message structure (or a message summary structure) is returned to the user after a call to cmc_read()
(or cmc_list()), the message ID extension is attached to the structure. The item_data for the message ID
extension is insignificant and is hence 0. The item_reference points to a CMC_string structure allocated by the
service and contains a readable format of the unique MTS identifier.

Sending a message:

When the user sends a message using cmc_send(), the CMC service has the capability of returning to the
caller the MTS identifier allocated for that message in the send extension structure, if the caller allocates
memory for the extension template with the item_code of CMC_X_X400_MSG_ID. If this extension is
missing, the CMC service will not return the MTS identifier. The CMC service returns the MTS identifier by
allocating a CMC_string with the required data and attaching a pointer to this data to the item_reference. The

Recommendation X.446 (08/97) 233

extension_flags are set with CMC_EXT_OUTPUT on. This indicates to the caller that item_reference should
be freed using cmc_free() after making use of it.

OUTPUT

item_code

CMC_X_X400_MSG_ID

item_data

NULL

item_reference

pointer to CMC_string of MTS identifier

extension_flags

All CMC flags are valid. No further flags are defined.

B.2.2.4 CMC_X_X400_MSG_REPORT_ID

When reading a delivery or non-delivery report, the underlying messaging service returns a unique identifier for the
report (MTS identifier); this is different from the original message that the report is about.

A unique identifier of a delivery or non-delivery report that is given by the underlying messaging service when that
report is being read by the application.

USED BY

CMC_message

OUTPUT

item_code

CMC_X_X400_MSG_REPORT_ID

item_data

NULL

item_reference

pointer to cmc_string of a readable format of the unique MTS identifier

extension_flags

All CMC flags are valid. No further flags are defined.

B.2.2.5 CMC_X_X400_REPORT

This is used to convey the specific X.400 delivery or non-delivery information to the CMC application when the
information base to be returned is an X.400 report. This extension is returned as the message_extension of the
CMC_message.

Return of specific delivery or non-delivery report information that is defined by Recommendation X.411 (1988). See the
related document for the explanation and value of the reason codes and diagnostic codes.

USED BY

CMC_message

OUTPUT

item_code

CMC_X_X400_REPORT

item_data

NULL

234 Recommendation X.446 (08/97)

item_reference

pointer to the CMC_report structure

extension_flags

All CMC flags are valid. No further flags are defined.

B.2.3 Other extension sets

Other extension sets will be defined by the XAPIA and by vendor groups to support various messaging protocols.
Currently extension sets are being defined for use with G3 facsimile, G3-64 facsimile, G4 facsimile, telex and Teletex
service via Recommendation T.611. To find out what extension sets are available, contact the XAPIA.

B.2.4 Platform-specific information including run-time bindings

CMC implementors are encouraged to provide run-time binding interfaces to their CMC service implementations. In
general, these interfaces are platform- and/or operating system-dependent. This subclause provides several general
requirements and platform-specific requirements for several common platforms and operating systems.

Unless specified otherwise below, the following definitions apply to all platforms:

byte CMC_sint8

16 bit int CMC_sint16

32 bit long int CMC_sint32

16 bit unsigned int CMC_uint16

32 bit unsigned long int CMC_uint32

32 bit pointer CMC_buffer

32 bit char pointer CMC_string

CMC_uint32 CMC_ui_id

CMC_uint32 CMC_session_id

B.2.4.1 Explicit and implicit binding

All functions in the CMC API should be linkable implicitly and explicitly. Implicit linking builds the linkage of the
application and the CMC service implementation into the application. Explicit linking requires the application to contain
run-time code that links a CMC service implementation.

It is also recommended that all extension functions be loaded explicitly, since their absence on some CMC
implementations would otherwise prevent the application from loading.

Static and dynamic linking mechanisms are defined for several common platforms below.

B.2.4.2 Apple Macintosh binding

For static linking, applications should use the Pascal calling convention and 32-bit flat pointers to call an Apple
Macintosh CMC implementation.

For dynamic linking, contact Apple Computer, Inc.

The CMC implementation should always attempt to provide Apple International Strings (ISTRING).

B.2.4.3 MS-DOS binding

For static linking, applications should use "far" calls, the C calling convention, and 32-bit segmented "far" pointers to
call an MS-DOS CMC implementation. This is compatible with the Microsoft C "large" memory model. Any future
changes to this mechanism will be published by Microsoft.

The CMC implementation should always attempt to provide code page 437 or 850.

B.2.4.4 MS-Windows 3.x binding

For dynamic linking, MS-Windows 3.x CMC implementations should use Dynamic Linked Libraries and link by name
to the CMC functions.

Recommendation X.446 (08/97) 235

At run-time, to determine if a CMC service is available, applications should call GetProfileInt() to look for the CMC
variable in the [MAIL] clause of WIN.INI. If this variable is present and non-zero, it indicates that a CMC.DLL library
is available. If the CMC variable is not found or is zero, then the functions cannot be called. Any future changes to this
mechanism will be published by Microsoft.

CMC functions should be called "far", using the Pascal calling convention, and 32-bit segmented "far" pointers.

CMC structures will be aligned to every 4-byte (32-bit) boundaries. This will not apply to the byte fields in the time
structure or the counted string structure.

The CMC implementation should always attempt to provide code page 1252.

B.2.4.5 MS-Windows NT binding

For dynamic linking, MS-Windows NT CMC implementations should use Dynamic Linked Libraries and link by name
to the CMC functions.

At run-time, to determine if a CMC service is available, applications should query the registry to see if CMC is
available. The exact mechanism for this will be published by Microsoft.

CMC functions should be called using the STDCALL calling convention.

B.2.4.6 OS/2 1.x and 2.x 16-bit DLL binding

For dynamic linking, OS/2 1.x and 2.x 16-bit CMC implementations should use Dynamic Linked Libraries and link by
name to the functions.

At run-time, to determine if a CMC service is available, applications should call WinQueryProfileInt() to look for the
CMC variable in the [MAIL] clause of OS2.INI. The variable will indicate whether the DLL is 16-bit or 32-bit. If this
variable is present and non-zero, it indicates that a CMC.DLL library is available. If the CMC variable is not found or is
zero, then the functions cannot be called. Any future changes to this mechanism will be published by IBM.

CMC functions should be called "far", using the System calling convention, and 32-bit segmented "far" pointers.

The CMC implementation should always attempt to provide code page 850.

B.2.4.7 OS/2 2.0 32-bit DLL binding

For dynamic linking, OS/2 2.0 32-bit CMC implementations should use Dynamic Linked Libraries and link by name to
the functions.

At run-time, to determine if a CMC service is available, applications should call WinQueryProfileInt() to look for the
CMC variable in the [MAIL] clause of OS2.INI. The variable will indicate whether the DLL is 16-bit or 32-bit. If this
variable is present and non-zero, it indicates that a CMC.DLL library is available. If the CMC variable is not found or is
zero, then the functions cannot be called. Any future changes to this mechanism will be published by IBM.

CMC functions should be called "far", using the System calling convention, and 32-bit flat "far" pointers.

The CMC implementation should always attempt to provide code page 850.

B.2.4.8 UNIX SVR4 binding

For dynamic linking, implementations should comply with the UNIX System V Release 4.0 System V Application
Binary Interface (ABI) specification and link by name to the functions.

At run-time, to determine if a CMC service is available, applications should look for the CMC implementation on the
absolute path /usr/lib/XAPI/libCMC.so. The implementation for the system will be placed in this location. Any future
changes to this mechanism will be published by your UNIX vendor.

CMC functions and structures should use the System calling convention.

The CMC implementation should always attempt to provide code page 850.

236 Recommendation X.446 (08/97)

B.2.5 Simple CMC usage of X.400 backbone services

This subclause describes how Common Messaging Call (CMC) API version 1.0 functions are mapped to an underlying
X.400 message handling system on the Message Store (MS) boundary, and how CMC messages are mapped to the
X.400 messages. This Recommendation does not address the following:

X.500 directory (address) mapping, which can be accessed via the cmc_look_up.

The User Interface (UI) dialogue, which is an option in the cmc_send_documents() function, as this is not
basic to the interaction between the CMC (messaging-enabled application) and the X.400 messaging system.

This Recommendation assumes the reader is familiar with the Remote Operation Service Element (ROSE) and P1, P2,
P22, P3, and P7 protocols and service elements, as well as the specifications and objectives of the CMC API version 1.0.
The following Recommendations are referenced:

– Recommendations X.200-X.219 (OSI Model and Notation, Service Definition);

– Recommendations X.220-X.229 (OSI Protocol Specifications);

– Recommendations X.400-X.420 (1984 X.400 MHS);

– Recommendations X.400-X.420 (1988 X.400 MHS);

– Recommendation F.401 (1988), Annex B (Representation of O/R Addresses for human usage) or its aligned
equivalent;

– ISO/IEC 10021-2:1990/Amd.1, Annex F (Representation of O/R Addresses for Human usage);

– XAPIA CMC API version 1.0;

– XAPIA CMC API version 2.0.

The mapping between CMC version 1.0 and X.400 described in this Recommendation is done with two objectives:

• In line with the simple and high level objectives of CMC 1.0, the mapping does not utilize the full set of the X.400
features and so only a basic profile is recommended.

• Balance the major concern of interoperability between different CMC version 1.0 implementations using any of a
variety of X.400 messaging systems as a message transport.

B.2.5.1 Introduction

The Common Messaging Call Application Program Interface (CMC API) provides a set of high-level functions for
messaging-enabled applications to send and receive electronic messages. This interface requires support by messaging
services. A major messaging service is OSI’s X.400 Message Handling System (MHS). This Recommendation is
directed to those who wish to integrate the CMC API with the X.400 MHS.

For each CMC implementation, the view and capabilities presented by CMC must be mapped to the view and
capabilities of the underlying messaging service. To maximize interoperability between CMC applications that use
different underlying messaging services, XAPIA offers several guidelines. Message strings are to be mapped to
international character sets wherever possible and message attachment types are to be mapped to commonly recognized
attachment types wherever appropriate or possible.

To achieve this mapping, the characteristics of the underlying message service (MHS) must be understood and used in
the most appropriate manner. The rest of this Recommendation provides the following discussion:

• A high level overview of Recommendation X.400.

• A general discussion in using simple CMC API over the X.400 messaging service, such as options, considerations,
and possible extensions to support a richer set of functionality for messaging-enabled applications and messaging-
reliant applications.

• A basic mapping profile for simple CMC API that gives simple interoperability for sending and receiving messages
across a variety of X.400 MHS communication services.

Recommendation X.446 (08/97) 237

B.2.5.2 X.400 high-level overview

The message handling services provided by X.400 Message Handling System include an Interpersonal Messaging (IPM)
service and a message transfer service. These services enable subscribers to exchange messages on a store-and-forward
basis. The Message Handling Service defines a set of message types and capabilities that an originator can send to
recipients.

An originator prepares a message with the assistance of a User Agent (UA). The User Agent is an application that
interacts with the Message Transfer System (MTS) to submit messages. The Message Transfer System (MTS) consists
of a number of Message Transfer Agents (MTAs). Operating together, these MTAs relay the message to the intended
recipient User Agents that then make the message available to the intended recipients.

The 1988 version of X.400 included an optional Message Store (MS). A user can submit messages through the Message
Store and receive messages that have been delivered to that Message Store. The Message Store acts only on behalf of
individual users.

T0727000-96/d06

Submission and Delivery with a Message Store

Retrieval Delivery

Indirect
Submission

User
Agent

Message
Store

Message
Transfer

Agent

Submission

FIGURE 6/X.446...[D06] = 3 CM

The operations between an MS and the MTS correspond to the P3 protocol. The operations between a UA and the MS
correspond to the P7 protocol. The P7 operations are:

• Retrieval service (Summarize, List, Fetch, Delete, Register-MS with a possible asynchronous signal, and Alert).

• Indirect-submission uses the submission services of X.411 (message-submission, probe-submission, cancel-
deferred-delivery and submission-control).

• Administration services (register and change credentials).

• To connect and disconnect the MS services, the MS-Bind and MS-Unbind operations are used. The bind operation
is used to identify, authenticate, and set the security context for an MS service user.

The P7 operations are invoked by the UA using the Remote Operation Service Element (ROSE, defined in
Recommendations X.219 and X.229). The ROSE model consists of request and reply interaction. This allows the UA
application to request a P7 operation and obtain the result of that P7 operation.

B.2.5.3 General approach and considerations

This subclause presents a generic view of mapping CMC v1.0 (also known as Simple CMC v2.0) to X.400 MHS and
some of the possible considerations and options. The discussion does not address the human interface because the
messaging-enabled applications are viewed as being capable of running without human interaction although they could
be run by user commands or scripts. This means that the applications do not require a graphical user interface and can be
run as background processes.

B.2.5.3.1 CMC functions and X.400 MS operations

According to the functional models of CMC v1.0 and X.400 MS, the CMC functions map reasonably well to the MS
services. The CMC Logon and Logoff map to the MS Bind and Unbind. The CMC Send maps to the MS indirect
submission. The CMC Read maps to MS Fetch. The CMC Act On and CMC List are covered by the MS Delete,
Summarize and List.

238 Recommendation X.446 (08/97)

T0727010-96/d07

Mail-enabled
application

Application to Application CMC messaging service

CMC Service X.400 Agent CMC Service

X.400 Messaging System

CMC API CMC API

Mail-enabled
application

X.400 Agent

FIGURE 7/X.446...[D07] = 3 CM

The two purposes of the CMC API are to provide a generic set of messaging capabilities that are independent of any
operating system and to provide a minimum number of function calls needed to send or receive a message. Minimal
function calls and interoperability are key requirements. When mapping the CMC functions to the MS operations and to
implement these requirements, two approaches to a simple function call API can be used below. The choice between
these two styles determines the way the CMC calls are implemented:

– simple CMC call functions and lots of special extensions for the local environment;

– CMC call functions that hide internal complexity and support generic extensions.

B.2.5.3.2 CMC messages and X.400 messages

Much of the work in translating CMC messages to and from X.400 messages involves conversion between the CMC
message structures and X.400 message structures. Thus, the names and addresses of the CMC messaging service users
need conversion to X.400 user (originator and recipient) names and addresses that are known as O/R names (which
include O/R addresses).

Other parts of a CMC message structure that require conversion are the message_type, the time_sent, the recipients and
the attachments. A CMC message subject is simply an X.400 IPM subject (with some restrictions on length), while the
text_note may require special handling because of differences between Recommendation X.400 and CMC. The CMC
flags, extensions, and other original input parameters are basically used just for assisting the conversion. They are not
sent as part of the X.400 message so that information is in most cases lost when the delivered X.400 message is
converted back to a CMC message for the destination CMC application.

Some conversion, convention, and other choices needed for using X.400 messaging as the underlying message services
are:

Text conversions

• Character set conversion;

• Name and address conversions.

Local operating system and messaging system conventions

• Connection/disconnection conventions;

• Underlying messaging system error awareness;

• Message Store conventions and special requirement conventions.

Outbound message conventions

• Native or generic conventions such as text conversion options;

• End destination special conversions.

Recommendation X.446 (08/97) 239

Inbound message conversions

• Handling of CMC messages that cannot be handled locally;

• Handling of CMC messages that have parts that cannot be handled locally;

• Handling of bad CMC messages;

• Non-CMC message handling.

Extensions both generic and locally special

• Extensions to handle aspects of the underlying system that are not CMC generic;

• Extensions to add special X.400 features such as priority or delivery notification;

• Extensions to use specific X.400 body parts as attachments;

• Extensions that are used to match the sending and destination local systems.

B.2.5.3.3 CMC message attachments and X.400 body parts

The CMC message attachments (text and binary) are equivalent to X.400 body parts. The most appropriate body part for
a CMC message attachment is different for each "version" of Recommendation X.400 (i.e. 1984, 1988, or 1992). The
recommended equivalents are listed below.

CMC ASCII <=> IA5 text

CMC text_note as a file <=> IA5Text Body Part

CMC text attachment <=> 1984 X.400 IA5Text Body Part

CMC text attachment <=> 1988 X.400 Externally Defined Body Part

CMC text attachment <=> 1992 X.400 File Transfer Body Part

CMC binary attachment <=> 1984 X.400 Bilaterally Defined Body Part

CMC binary attachment <=> 1988 X.400 Externally Defined Body Part

CMC binary attachment <=> 1992 X.400 File Transfer Body Part

B.2.5.3.4 Input/output conventions and requirements

The common almost universal character set used within X.400 is International Alphabet Number 5 (IA5 Text) which is
similar to ASCII but not quite. Such ASCII characters as "@", "%", and "_" are not in the basic IA5 but they are in the
International Reference Version (IRV). For display and input purposes, the other (national) versions of IA5 require a
conversion convention. The NIST OIW has a conversion algorithm for the interchange of IA5 text and ASCII text and it
is recommended that this be used if the text that the local CMC messaging-enabled application deals mainly with is an
IA5 non-IRV version. A similar convention is needed for other character sets such as EBCDIC, ISO 10646, UNICODE,
etc., as well as ways to handle filenames with embedded blanks that have been passed in through CMC Counted Strings.

The X.400 names and addresses are internally arranged in Recommendation X.400 as a structured set of data objects
similar to but more complex than the CMC recipient’s structure. There is a convention for displaying one’s X.400 name
and address on name cards, etc. This convention, together with the other standard display conventions in Annex B of
Recommendation F.401 (that refers to ISO/IEC 10021-2 Annex F), should be used for CMC text string representation of
X.400 recipient addresses. The use of CMC Look Up could provide a simple way to go from a known name such as
"eowens" to either a text string (name)address illustrated below or to a CMC recipient structure.

CMC recipients (originator in CMC_message_summary or recipients in CMC_message structures) take
address strings that match those recommended in Recommendation F.401. For example, the CMC_recipient
address string with "S=Owens; G=Edward; P=ccmail; A=telemail; C=US"

240 Recommendation X.446 (08/97)

There will be a need for multiple conventions for name and address representations if a mixture of underlying messaging
systems is supported. The previous illustration assumes that there is only one underlying messaging system (X.400).
Also, with the names and addresses that are passed through the messaging system, there are conversion requirements
when the character sets used in the messaging system do not support the original name and address conventions. If
name@address cannot be passed through except by a convention such as name(a)address in IA5 display text, then the
reverse convention must be applied at the other end or the convention understood by the recipient. As an example, when
the X.400 address involves domain-defined attributes such as a DDA for an Internet address, then the name and address
could be:

DDA:RFC-882=fred(a)widget.co.uk;O=gateway;P=abc;C=gb

Word size and/or byte ordering conventions can also create problems so that some attachments are unusable, and
numbers are garbled. Normally, the solution to most of these problems is to standardize the contents and formats of what
goes on the wire. However, if what goes on the wire is dependent on the underlying message system and there could be
an unknown number of these used (although not all of them by any CMC messaging-enabled application), then a
different solution is necessary. One simplistic solution is to have the sender messaging-enabled applications be aware of
the receiving messaging-enabled application’s capabilities and tailor the message accordingly. This simplifies transfers
between systems with similar capabilities. An alternative is to send additional information with the message that tells the
receiving system about the sender’s capabilities and/or the message’s particular formatting and other special details.

If special conventions can be set up, then using CMC extensions provides a way of telling both the CMC send
implementations how to pass such information through the underlying messaging system to the CMC read
implementation such that the messaging-enabled application can choose how to read the message. At this time it is
recommended that CMC 1.0 leave this up to local implementation as the issues are best resolved when all the local
requirements are understood.

B.2.5.3.5 X.400 connecting/disconnecting and MS requirements

Connecting to or disconnecting from an X.400 underlying service is subject to local variations and also to what service
or interface. The present assumption is that the connection is to the X.413 Message Store. This service encompasses the
CMC requirements and provides additional functionality. The various features and functionality of X.413 interface
require interpretation so that the expected CMC services are provided in an understandable way.

For the X.413 Bind operation to act as a CMC Logon to an X.400 messaging system, then the arguments "user" and
"password" are required to be strings containing the messaging service user name and the password that gives the user
access to the underlying service. These in X.413 terms are the ORAddressAndOrDirectoryName and
InitiatorCredentials. Assuming only simple authentication is required by the X.413 service, then it is recommended that
"user" be the Recommendation F.401 display text version of the X.400 user name and address.

For non-simple authentication and other X.413 MS Bind input arguments that the user could require, the special CMC
extensions provide a local way to add security context, fetch restrictions and Mail Store configuration requests. Extra
CMC extensions may also be necessary to deal locally with the returned result from the MS Bind call or the returned
Bind errors. The simple choice is to ignore the MS Bind call result and to have CMC_E_FAILURE returned by the
CMC Logon function if the MS Bind returns an error. A different choice is to use an optional CMC extension to report
the associated X.400 error.

Incoming X.400 messages are stored in the Message Store and read either by explicitly requesting a particular (known
number) mail message or by requesting the next "unread" mail item. The attachments will be returned in either a
temporary directory with their attach_filenames as filenames or in temporary named files in a directory with some
indication of the sender’s title. Those parts of incoming mail messages that cannot be mapped into the CMC message
structure will be discarded.

The Message Store must have a P7 interface and implement both X.413 features for making inquires about the relevant
contained client mail messages and for delivering requested items and also "X.420" items such as the header and various
Body Parts contained in an X.420 Interpersonal Message’s contents.

Recommendation X.446 (08/97) 241

The MS Unbind closes the association between the user (or messaging-enabled application) and has no argument, result
or error. Thus a CMC Logoff has no extra complications due to the underlying X.400 messaging service.

Mail-enabled applications (or users) should be aware of a Message Store feature. The Message Store can hold child-
entries beside main-entries for the stored messages. These children are listed as well as their parents but the messaging-
enabled application (or user) can only delete child-entries by deleting their parent entry. Deleting a child-entry does not
work as expected.

B.2.5.4 Message conversion

This subclause discusses the conversion of CMC messages to X.400 messages, the conversion of X.400 messages to
CMC messages, and the conversion of non-CMC X.400 messages.

B.2.5.4.1 Converting CMC messages to X.400 messages

A CMC message structure includes a message type, a subject, recipient(s) and possibly a note and/or a set of
attachments. The X.400 equivalent of this CMC message is a user Message Protocol Data Unit (MPDU). A 1984 MPDU
has a basic structure of an envelope and content. Additional services are provided to individuals who want to
communicate with others by User Agents (UA). This service is an Interpersonal Messaging System (IPMS) with
assigned content type for those messages. IPM UAs communicate with other IPM UAs. The IPM content is divided into
header and body. So for conversion purposes the CMC message is split up into envelope, header, and body.

The X.400 envelope contains the sender’s identity (name and address), the recipients’ identities, and specific X.400
message envelope details. The IPM header contains the identity of the sender, a set of authorizing users, set of recipient
identities (primary, copy, and blind copy), a subject and other X.400 specific details. The body is a sequence of body
parts. Each body part is one of a set of different types. The most relevant types are IA5Text and Bilaterally Defined
Body Part (Type 14). More relevant types have been defined for later versions (1988 and 1992) of
Recommendation X.400.

Later body part type additions include the Externally Defined Body Part (1988) and the File Transfer Body Part (1992).
These two types are much better for CMC use as more than just the data can be conveyed (and not lost). Thus there is a
range of choices for the note and the attachments.

T0727020-96/d08

reference

type

subject

time_sent

recipients

CMC message X.400 IPM message

Envelope

Header

Body

sender

recipients

sender

recipients

subject

Content

Body part

Body part

text_note

attachments

flags

extensions

FIGURE 8/X.446...[D08] = 3 CM

242 Recommendation X.446 (08/97)

Some of the choices are listed below:

• Convert all CMC messages to X.400 (1984) with text (note and attachment) held in IA5Text body parts and
"binary" attachments held in BDBP/Unidentified(Type 14).

• Convert all CMC messages to X.400 (1988) with text_note in IA5Text and attachments held in EDBP(Type 15).

• Convert attachments depending on year (version) of Recommendation X.400.

• Convert according to a special CMC extension that indicates what X.400 body part to use in every case including
the use of other body parts.

The later versions of Recommendation X.400 have a greater range and choice of body parts. These later body parts are
more closely aligned with the CMC attachment requirements. The 1984 X.400 supported both a text style body part and
an octet string style body part. Both IA5Text and Bilaterally Defined Body parts are only able to carry text or "binary"
strings but not the extra attachment information of attach_title nor attach_filename. A convention such as using an extra
body part for the extra information is possible but not recommended.

The 1988 X.400-Series discourages the use of the Bilaterally Defined body part and recommends the use of the
Externally Defined body part. The extra capabilities of the externally defined body part permit the attach_title to be
carried with the body part. The 1992 X.400 has defined a File Transfer body part to transfer the contents of a stored file
and, optionally, its attributes. The contents portion is like the Externally Defined body part while the optional
parameter’s portion carries attributes such as the related-stored-file, contents-type, relationships, and file-attributes. Thus
the File Transfer body part is ideally suited for carrying CMC attachments.

The 1984 X.400 is the major supported X.400 messaging system; thus, a compromise is needed. A suggested basic
profile uses the 1984 X.400 body parts and requires that if the later body parts are used, then they can be downgraded to
be equivalent to the 1984 body parts. Also, those X.400 messaging-enabled applications that use the more advanced
body parts must be able to accept the basic profile set in their place. This means that attach_titles require an automated
substitution at the receiving end because they are not transferred.

X.400 Message Handling Systems require a set of mandatory attributes as part of a message submission. Among these
mandatory inputs is that of originator, the ORName of the sender. This is also required for the MS Logon so that if the
CMC message’s recipients do not include one with a role of CMC_ROLE_ORIGINATOR, then the "user" from the MS
Logon parameters shall be used as a default. A recipient name is also required and the message submission should be
rejected if one is not supplied.

The X.400 message that is sent as an Interpersonal Message (IPM) must have its content-type set to interpersonal-
messaging-198(4 or 8). Other mandatory X.400 mandatory attributes should be supplied either as a default (Priority set
as normal) or the PerMessageIndicators set with bits indicating no disclosure of recipients allowed, implicit conversion
prohibited, no alternate recipient, and no return of content. Also another mandatory input attribute should request the
OriginatorReportRequest bits set to indicate a non-delivery report.

To support the use of the most appropriate body part or to add other X.400 attributes to a message, the use of optional
CMC extensions is recommended. They are discussed in the later subclause. However, for initial and basic use of the
X.400 messaging service, the basic profile that does not require extra extensions is recommended as this leads to
interoperability but not the best interchange between two messaging-enabled systems that support each other’s
extensions.

B.2.5.4.2 Converting X.400 messages to CMC messages

X.400 messages come in a variety of types and versions. The major type and size that is appropriate for CMC is the
Interpersonal Message (IPM); however, an X.400 Message Store can hold any sort of X.400 message including damaged
ones. The major varieties are messages, probes and reports. Within messages are "P1" messages, Interpersonal Messages
(IPMs) and other "P2" messages such as X.435 EDI messages. The IPMs include notifications (IPNs) and versions based
on 1984, 1988, and 1992 standards.

Recommendation X.446 (08/97) 243

Several simple choices are easily made:

• The CMC user sees both "CMC" and other X.400 messages held in the Message Store.

• The CMC user can also partially read the other X.400 messages.

• The CMC user can delete those other messages (except when they are children of others).

The conversion of CMC messages into X.400 messages has been described in the previous subclause. Thus the
conversion back to CMC messages is fairly straightforward apart from any information that is lost in the process. For
example, the 1984 X.400 body parts used to carry attachments cannot carry the attach_name also so that is lost.

T0727030-96/d09

reference

type

time_sent

text_note

recipients

attachments

flags

extensions

CMC messageX.400 IPM message

Envelope

Header

sender

recipients

sender

recipients

Content

subject

Body

subject

Body part

Body part

FIGURE 9/X.446...[D09] = 3 CM

The reports that are generated by delivery or non-delivery of a "CMC" X.400 message appear as reports in the sender’s
Message Store. At the request of the originator, the report will contain the returned IPM that is non-deliverable. It is also
possible that an X.400 report will contain a delivery report for some recipients and non-delivery report for other
recipients depending on the point of failure. From the MS point of view, both the DRs and NDRs are part of the report
that is quite different from the point of view of CMC. These need to be converted in a suitable way so that a CMC user
can correlate that report with the message that was sent.

Other X.400 messages that are in the Message Store might be "CMC" messages sent by other CMC users that have a
different method of converting their CMC messages to X.400. Thus a whole range of possible conversions needs to be
handled. Whatever method chosen should allow the receiving user to choose to either ignore the conversion, accept part
of it, or accept all of it, as there are other facilities for conversion available.

There are additional problems surrounding the downgrading and upgrading or other X.400 conversions of X.400
messages. All this means that either there are a few straightforward imports from a "non-CMC" X.400 message into a
CMC message that would enable a CMC user to "see" that message or a complex set of rules. For simple conversions,
IA5Text body parts are either notes or text attachments. All other body parts could be classed as "binary" and the CMC
user left with "type" and perhaps "title" as clues to the attachment’s contents. All messages that are not convertible could
be indicated by text in the subject line.

Often the local X.400 version (1984, 1988, or 1992) would be the major factor in whether an X.400 message or an IPM
body part is convertible. The type of a message or a body part could be used to discard that element and replace with an
indicator to the CMC user.

244 Recommendation X.446 (08/97)

A simple convention is recommended for the basic (minimal) profile. The message sending side’s profile has the non-
delivery report request set so that reports can appear in the Message Store. As the major information contained in the
report is whether the message was delivered or not, then only this needs to be returned to the messaging-enabled
application. Thus a required conversion is the substitution of a report by a message containing the text_note of "this
message was (not) delivered" along with the recipients, etc.

Other conversions will be needed if the content-type is for a different version (X.400 year) and the body parts are not the
ones expected. For example, a Bilaterally Defined body part in place of an Externally Defined Body Part or a File
Transfer body part in place of an IA5Text body part. Although conversion from one body part to another in these cases
requires extra code, the conversion rules are simple.

B.2.5.4.3 Converting non-CMC/X.400 messages

When a messaging-enabled application or its user has an X.400 address, the X.400 Message Store will store any X.400
message such as an EDI message, IPM, or report that is sent to that address. Thus the user can send many messages that
are not CMC-originated messages or are CMC messages that use different conventions that the local CMC mail system
cannot handle. To deal with these issues, there needs to be a set of conventions on what is discarded, on what is partially
converted so that the user knows some of the message’s details and what parts can be substituted or omitted.

Simple conversion possibilities are:

• All non-CMC messages are discarded when they are "read" by a CMC application.

• All CMC messages in a different form (such as a PEM message as an X.400 P22 body part) that cannot be handled
by the local system (e.g. 1984 X.400-based) are discarded. Those body parts that the local CMC and X.400
implementation can deal with are replaced by either a simple text_note, a character string file, or a "binary" file.

• Convert all unknown body parts into a partially usable file form by using a simple display conversion of all
printable characters as is and converting all non-printable characters into a display form of "\’hex"hex’" so that a
"user" can determine if that file is salvageable.

As before, special optional CMC extensions can be used to convey extra information back to the messaging-enabled
application or to provide hints and requests to the CMC Read function on how to convert or interpret various attributes
and body parts in the received message. As well as handling strange messages, the local CMC interface should have
conventions dealing with error returns coming from the underlying messaging system. The issue is whether those
messaging system errors are passed up to the CMC messaging-enabled application or not. And, if so, then in what form:
either converted to a common CMC error convention, or left in their base form?

Underlying messaging error choices are:

• Replace with CMC_E_FAILURE on calls, else, ignore.

• If present, put raw error into a special X.400 error CMC extension.

• Convert error to a standard CMC extension for communication errors.

B.2.5.4.4 Extra CMC extensions

There are many things that could be done with extensions. The following list is a quick sample:

• extensions to select which of several underlying messaging systems to use;

• extensions to configure and set up the environment that CMC and the messaging system use;

• extensions to add extra X.400 attributes beyond the basic set used by CMC;

• extensions that determine what X.400 body parts to use based on several factors;

• extensions to tell the CMC read function how to handle non-basic incoming messages;

• extensions that are passed with the message system to tell the receiver how to process it.

Recommendation X.446 (08/97) 245

The use of extensions raises a range of issues. The first issue is that of whether they are really necessary. A basic set-up
could or should rely on no extensions but just handle the minimum defined requirements of the simple CMC calls in an
acceptable manner. The various implementations can deal specifically with local requirements and so tailor their actions
and behaviour.

There are many possible CMC_extensions and also ways to characterize those extensions. There are extensions that are
necessary for adapting the local CMC version 1.0 to its local underlying messaging system or even to select which of its
local messaging systems to use.

These extensions are characterized as local. Other extensions can be termed special as they deal with the use of non-
CMC features (at least for CMC version 1.0). Such extensions are needed for interoperability.

For Recommendation X.400, there are extensions that are required for handling X.400 messaging that are basic and thus
generic. The generic X.400 extensions would handle X.400 result and error returns. These generic extensions could be
even further generalized to encompass result and error returns from other non-X.400 messaging services.

The error returns from the X.400 calls can be returned to the messaging-enabled application that uses the CMC calls by
using a specific CMC_extension. This is essential for those CMC call clients that need to recover by finding out where
the call went astray and not be left in the dark.

Other generic X.400 CMC_extensions would deal with message priority, request non-delivery and/or delivery reports.
Other extensions could carry the user’s X.400 certificate and Message Store restrictions. The CMC_message’s
message_type carries identifiers such as Object Identifiers that allow the CMC message sender to specify any form of
X.400 message. If the CMC functions or the underlying X.400 system does not support that particular X.400 message
type (or specifically require that type not be used) then another "generic" extension would be needed to carry back to the
CMC call user that error information. Similar issues surround adding a special extension to select the X.400 body part
appropriate for the CMC_attachment’s attach_type.

Other possible extensions can be used to assist the receiving side deal with incoming messages such as which reports are
to be discarded or not read but reported in a special way. End-to-end transfer of extensions (or their information) to
assist the receiver in handling the message is too far-out for immediate consideration.

B.2.5.5 Basic mapping profile for simple CMC (CMC 1.0)

When the X.400 Message Handling System is used as the underlying messaging system, the basic message sending and
receiving must be supported by all CMC version 1.0 implementations. For this purpose, a basic profile provides that
functionality.

Each CMC implementation using the "basic profile" approach must be able to send (CMC Send) any message that
requires only the basic IPM format and uses the two recommended X.400 body parts for attachments (and text_note)
where required. Also those X.400 messaging-enabled applications that use more advanced body parts must be able to
accept the basic profile set in their place. CMC implementations receiving (CMC Read) messages delivered by
Recommendation X.400 must be able to correctly read and deal with those "basic profile" messages. All other X.400
messages may be rejected.

For the basic profile, the following rules should be applied: if the incoming message or the structure of the outgoing
message does not fit a standard pattern, then that message should be discarded and optionally a warning or error returned
to the messaging-enabled application. Similarly, when the input parameters do not match the allowable set or cannot be
handled by the underlying messaging service, then an error (or a warning if that’s not feasible) should be returned to the
messaging-enabled application.

The rest of this subclause describes the minimal basic mapping required for the simplistic usage of the X.400 messaging
services. Use of the full X.400 message services that are available can be provided by more additional/optional
extensions that have not been added in this basic profile. Thus, considerations must be made for interoperability (if
feasible) between the basic profile and that profile extended by extensions.

NOTE – A special naming convention is used when referencing the various X.400 defined fields. Each field is named using the
standard followed by the field name as it appears in the standard. If the field is defined within a field, a "." character is used to indicate
this. For example: X.420.heading.authorizing-users.

246 Recommendation X.446 (08/97)

B.2.5.5.1 Mapping of CMC_recipient

The CMC_recipient is mapped to an X.411.ORName using the textual Representation of O/R Address for Human Usage
that is defined in ISO/IEC 10021-2:1990/Amd.1, Annex F. All legal form of ORName as defined in X.411 can be used.

Specific mappings are:

CMC_recipient.name

maps to an X.411.ORName.directory-name if the implementation supports the directory name; otherwise,
it is ignored.

CMC_recipient.name_type

is assumed to be INDIVIDUAL on output from X.400 to CMC.

CMC_recipient.address

maps to X.411.ORName.ORAddress.

CMC_recipient.role

If CMC_ROLE_ORIGINATOR, maps to X.411.OriginatorName.ORAddress. It also maps to
X.420.Heading.originator when the message is an IPM or IPN.

If CMC_ROLE_TO, maps to X.411.RecipientName.ORAddress. It also maps to X.420.Heading.primary-
recipients when the message is an IPM or IPN.

If CMC_ROLE_CC, maps to X.411.RecipientName.ORAddress. It also maps to X.420 Heading.copy-
recipients when the message is an IPM or IPN.

If CMC_ROLE_BCC, maps to X.411.RecipientName.ORAddress. It also maps to X.420.Heading.blind-
copy-recipients when the message is an IPM or IPN.

If CMC_ROLE_AUTHORIZING_USER, maps to X.420.Heading.authorizing-users when the message is
an IPM or IPN.

CMC_recipient.recip_flags

are inspected for the last.

CMC_recipient.recip_extensions

are ignored.

B.2.5.5.2 Mapping of CMC_message

CMC_message_summary is mapped to the information base associated with an X.413 message submission operation or
an X.413 Fetch operation.

Specific mapping are:

CMC_message.message_reference

maps to X.413.entry-sequence-number.

CMC_message.message_type

maps to X.413.entryType; where "CMC:IPM" = delivered-message, "CMC: REPORT" = delivered-
report, and "CMC:IPM" = returned-content with the new extension CMC_X_X400_MSG_PARENT to
identify this is a nested message.

CMC_message.subject

maps to X.413.Content of X.420.heading.subject.

CMC_message.time_sent

is NULL on cmc_send(), or maps to X.413.Message-submission-time on cmc_read().

Recommendation X.446 (08/97) 247

CMC_message.text_note

is NULL, or on cmc_send() and if CMC_TEXT_NOTE_AS_FILE is set, then maps to the first body part
of X.413.Content of X.420.body.ia5text.data, or on cmc_read() maps to the first available ia5text body
part.

The X.420.body.ia5text.repertoire is ignored.

CMC_message.recipient

maps to X.411.RecipientName AND X.420.heading.originator, authorizing-users, primary-recipients,
copy-recipients, and blind-copy-recipients in accordance with the CMC_recipient.role setting.

CMC_message.attachment

maps to X.420.body.BodyPart. Each attachment is mapped to the corresponding body part. See B.2.5.5.4
"Mapping of CMC_attachment".

CMC_message.message_flags

sets according to X.413.EntryStatus for CMC_SUM_READ and CMC_SUM_UNSENT, checking for
last element for CMC_SUM_LAST_ELEMENT, and CMC_MSG_TEXT_NOTE_AS_FILE for first
attachment and first ia5text body part handling.

CMC_message.message_extensions

is NULL or optionally returns CMC_X_X400_MSG_PARENT extension.

B.2.5.5.3 Mapping of CMC_message_summary

CMC_message_summary is mapped to the parameters associated with an X.413 list or summarize operation.

Specific mappings are:

CMC_message_summary.message_reference

maps to X.413.entry-sequence-number.

CMC_message_summary.message_type

maps to X.413.entryType; where "CMC:IPM" = delivered-message, "CMC: REPORT" = delivered-
report, and "CMC:IPM" = returned-content.

CMC_message_summary.subject

maps to X.413.Content of X.420.heading.subject.

CMC_message_summary.time_sent

maps to X.413.Message-submission-time.

CMC_message_summary.byte_length

maps to X.413.Content-length.

CMC_message_summary.originator

maps to X.413.Originator-name.

CMC_message.summary_flags

sets according to X.413.EntryStatus and/or last element.

CMC_message_summary.message_summary_extensions

is NULL or optionally returns CMC_X_X400_MSG_REPORT extension.

B.2.5.5.4 Mapping of CMC_attachment

CMC_attachment maps to body parts of the message associated with an X.413 submission operation or an X.413 Fetch
operation. If the CMC_message has a text note, it is used as the first ia5text body part. Each attachment is mapped to an
X.420 body part.

Specific mappings are:

CMC_attachment.attach_title

is NULL, or maps to the
X.420.body.ExternallyDefinedBodyPart.data.dataValueDescriptor.

248 Recommendation X.446 (08/97)

CMC_attachment.attach_type

is NULL, or maps to OID of an
X.420.body.ExternallyDefinedBodyPart.data.directReference.

A CMC_ATT_TEXT type OID is mapped to the build-in type or OID of an
X.420.body.IA5TextBodyPart. The IA5TextBodyPart.data.repertoire field is not used.

A CMC_ATT_BINARY type is mapped to the build-in type or OID of an
X.420.body.BilaterallyDefinedBodyPart.

Other attach_type maps to X.420.body.ExternallyDefinedBodyPart. The fields of the EXTERNAL type
are mapped as follows:

• Parameter (optional) is not used.

• Direct Reference data maps to the specified OID.

• Indirect Reference data (optional) is not used.

• Data value descriptor (optional) is not used.

• Encoding is set to arbitrary.

CMC_attachment.attach_filename

maps to the implementation’s external file name and is not passed to X.400. The content of the file is
stored as the data of the corresponding X.400 body parts.

CMC_attachment.attach_flags

maps according to the owner of the attach_filename and the last element of an attachment.

CMC_attachment.attach_extensions

NULL.

B.2.5.6 Mapping of CMC functions

Most of the CMC functions are mapped to a ROSE operation containing an X.413 operation. The invoke Ids used within
a ROSE operation must be a unique number. The invoke Ids can be generated by the implementation. Also, linked Ids
are not used. If any extensions or message types cannot be supported in this basic profile, then an error is returned to the
CMC functions and the corresponding messages (or portion of it) will be discarded or ignored.

B.2.5.6.1 CMC Act On

cmc_act_on() maps to a ROSE envelope containing an X.413 Delete operation. The X.413 Delete operation has the
following structure:

[information-base-type, items (choice of selector or sequence-number)]

The information-base-type is X.413.store-message (default). The items are assumed to be X.413.EntrySequenceNumber
supplied by message_reference.

Parameter mapping

CMC_return_code

cmc_act_on(

CMC_session_id session, local session id

CMC_message_reference *message_reference, X.413.EntrySequenceNumber

CMC_enum operation, supports CMC_ACT_ON_DELETE
only.(due to underlying X.400
operations)

CMC_flags act_on_flags, NULL or ignored

CMC_ui_id ui_id, NULL or ignored

CMC_extension *act_on_extensions NULL or CMC_X_X400_ERROR on
output

);

Recommendation X.446 (08/97) 249

Additional comments

None.

B.2.5.6.2 CMC Free

cmc_free() does not require any mapping to X.400 calls.

Parameter mapping

CMC_return_code
cmc_free(
CMC_buffer memory
);

Additional comments

None.

B.2.5.6.3 CMC List

cmc_list() maps to a ROSE envelope with an X.413 List or Summarize operation. The X.413 List and Summarize
operations have the following structure:

[information-base-type, selector, (requested-attributes or summary-request)]

The information-base-type is X.413.store-message (default). The items are assumed to be X.413.EntrySequenceNumber
supplied by message_reference.

Parameter mapping

CMC_return_code
cmc_list(

CMC_session_id session, local session id
CMC_string message_type, list filter on entryType
CMC_flags list_flags, UNREAD, REF_ONLY, COUNT_ONLY
CMC_message_reference *seed, X.413.EntrySequenceNumber
CMC_uint32 *count, Counter
CMC_ui_id ui_id, NULL
CMC_message_summary **result, CMC:IPM or CMC: REPORT or OID
CMC_extension *list_extensions Null or CMC_X_X400_ERROR

);

Additional comments

1) Child Entries (optional) is not used.

2) If a seed is provided in the CMC call, then it can be used to specify a range: select a sequence number FROM range
and use the seed provided. The sequence TO range (optional) is not used.

3) If the CMC message type parameter is specified OR the CMC_LIST_UNREAD_ONLY flag is set, a filter is used.
When the two conditions are present, use an AND operator. If CMC_LIST_UNREAD_ONLY is set, a filter
element is set to: "Not Item Equality EntryStatus Value (processed)". If message type is specified, a filter element is
set to: "Item Equality EntryType Value (message OR report)".

4) Limit is specified if the CMC list count parameter is not zero. If so, list count maps directly to the limit integer
value.

5) Override (optional) is not used.

6) The following attributes are to be returned from the list operation:

id-att-parent-sequence-number

id-att-entry-type

id-att-originator-name

id-att-content-length

id-att-message-submission-time

id-att-subject

id-att-content-type

250 Recommendation X.446 (08/97)

B.2.5.6.4 CMC Logoff

cmc_logoff() maps to a ROSE envelope with an X.413 Unbind operation. The X.413 Unbind operation has no
argument, result, nor error.

Parameter mapping

CMC_return_code
cmc_logoff(

CMC_session_id session, local session id
CMC_ui_id ui_id, NULL
CMC_flags logoff_flags, NULL
CMC_extension *logoff_extensions NULL

);

Additional comments

None.

B.2.5.6.5 CMC Logon

cmc_logon() maps to a ROSE envelope with an X.413 MS Bind operation. The X.413 MS Bind operation has the
following structure:

[initiator-name, initiator-credentials, security-context, fetch-restrictions, ms-configuration-request]

Parameter mapping

CMC_return_code
cmc_logon(

CMC_string service, NULL, or local path service
CMC_string user, that accesses the MS textual

form of initiator-name,
see B.2.4.4.1 "Mapping of
CMC_recipient"

CMC_string password, X.411.initiator-
credentials.simple

CMC_object_identifier character_set, Password NULL or local return
from Query

CMC_ui_id ui_id, Configuration NULL
CMC_uint16 caller_cmc_version, local version number v1.0
CMC_flags logon_flags, NULL or is not used
CMC_session_id *session, local session id
CMC_extension *logon_extensions NULL, or CMC_X_X400_ERROR

);

Additional comments

The following optional elements are not used:

a) MS Security Context;

b) Fetch Restriction;

c) MS Configuration Request.

B.2.5.6.6 CMC Look Up

cmc_look_up() does not require any mapping or X.400 calls. This function is not mandatory for supporting of the X.400
messaging service.

Parameter mapping

CMC_return_code
cmc_look_up(

CMC_session_id session local session id
CMC_recipient *recipient_in see mapping of CMC_recipient
CMC_flags look_up_flags all zero, or local

implementations

Recommendation X.446 (08/97) 251

CMC_ui_id ui_id NULL

CMC_uint32 *count output from local
implementation

CMC_recipient **recipient_out see mapping of CMC_recipient

CMC_extension *look_up_extensions NULL

);

Additional comments

None.

B.2.5.6.7 CMC Read

cmc_read() maps to a ROSE envelope with an X.413 Fetch operation. The X.413 Fetch operation has the following
structure:

[information-base-type, item choice of search (set of seq#) or precise (sequence#), requested_attributes]

The information-base-type is X.413.store-message (default). The items are assumed to be X.413.EntrySequenceNumber
supplied by message_reference.

Parameter mapping

CMC_return_code

cmc_read(

CMC_session_id session, local session id

CMC_message_reference *message_reference, NULL for first UNREAD, or
X.413.EntrySequenceNumber

CMC_flags read_flags, cannot support
CMC_DO_NOT_MARK_AS_READ

CMC_message **message pointer to stored-message,
see mapping of CMC_message

CMC_ui_id ui_id NULL

CMC_extension *read_extensions NULL, or CMC_X_X400_ERROR

);

Additional comments

If the CMC message reference parameter is specified, select a precise fetch. Otherwise, select a search fetch.

Case Precise:

The supplied message reference can be used as the MS sequence number.

Case Search:

Child Entries (optional) is not used.

Select a sequence number FROM range and use the "0" sequence number.

The sequence TO range (optional) is not used.

A filter is specified if the CMC_READ_FIRST_UNREAD_ONLY flag is set. The filter item is set to
"Not Item Equality EntryStatus Value (processed)".

Limit (optional) is not used.

Override (optional) is not used.

The following attributes are to be returned:

id-att-parent-sequence-number

id-att-entry-type

id-att-message-submission-time

id-att-content-type (IPM, IPN, Externally defined, etc.)

252 Recommendation X.446 (08/97)

B.2.5.6.8 CMC Send

cmc_send() maps to a ROSE envelope with X.413 Submission operation. The X.413 Submission operation has the
following structure:

[envelope(MessageSubmissionEnvelope) with an IPM content(Content)]

Parameter mapping

CMC_return_code

cmc_send(

CMC_session_id session, local session id

CMC_message *message, see mapping of CMC_message

CMC_flags send_flags, always zero

CMC_ui_id ui_id, NULL

CMC_extension *send_extensions NULL, or CMC_X_COM_PRIORITY,
or CMC_X_X400_ERROR

);

Additional comments

X.411 MessageSubmissionEnvelope (P3 Envelope):

The Originator is filled-in with the originator ORName (see ORName mapping). If originator is not specified,
then the ORName used in cmc_logon() will be used.

Original Encoded Information type (optional) is not used.

Content type is set to Built-in and the type is IPM-84.

Content Identifier (optional) is not used.

Priority (optional) is normal (default), or is mapped from CMC_X_COM_PRIORITY if present.

Per Message Indicator (optional) is using the default values:

disclosure-of-recipient is prohibited (default);

implicit-conversion-prohibited is allowed (default);

alternate-recipient-allowed is prohibited (default);

content-return-requested is not requested (default).

Deferred Delivery Time (optional) is not used.

Extensions (optional) is not used.

All Recipients’ ORName addresses are filled-in (see mapping of CMC_recipient). After each Recipient’s
ORName is filled-in the following fields are set:

Originator Report Request is "non-delivery report" (default).

Explicit Conversion (optional) is prohibited (default).

Extensions (optional) is not used.

The content of the P3 envelope is a P2 IPM message that is a P2 envelope and one or more body parts.

X.420.IPM.heading (P2 Envelope):

The user is filled-in with the originator ORName (see mapping of CMC_recipient).

The user relative identifier is formed by appending the same invoke ID generated for the ROSE envelope to
the string "CMC:IPM".

For Primary recipients, Copy recipients, and Blind Copy recipients, Notification requests (optional) and Reply
requested (optional) are not used.

Recommendation X.446 (08/97) 253

Replied To IPM (optional) is not used.

Obsolete IPMs (optional) is not used.

Related IPMs (optional) is not used.

Message Subject maps directly to the CMC_message subject field.

Expire Time (optional) is not used.

Reply Time (optional) is not used.

Reply Recipients (optional) is not used.

Importance (optional) is normal (default).

Sensitivity (optional) is not used.

Auto-Forwarded (optional) is not used.

Extensions (optional) is not used.

X.420.IPM.body:

If the CMC_message has a text note, it is used as the first IA5Text body part. When creating an IA5Text body
part, the repertoire field (optional) is ignored.

For all other CMC attachments, a corresponding X.400 body part is created. If CMC_attachment type is
CMC_ATT_TEXT, it is mapped to an IA5Text body part. If type is CMC_ATT_BINARY, it is mapped to a
Bilaterally defined body part. For other CMC types, the supplied OID value is used and creates an externally
defined body part (EDBP).

B.2.5.6.9 CMC Send Documents

cmc_send_documents() maps to the ROSE envelopes each containing an X.413 MS Bind operation, X.413 Submission
operation, X.413 MS Unbind operation. They are the combined sequence of cmc_logon(), cmc_send(), and
cmc_logoff().

Parameter mapping

CMC_return_code

cmc_send_documents(

CMC_string recipient_addresses, X.411.envelope.recipients and
X.420 authorizing users,
primary, copy, and blind copy
recipients; see mapping of
CMC_recipient

CMC_string subject, X.420.heading.subject

CMC_string text_note, first X.420.body.IA5TextBo-
dyPart.data

CMC_flags send_doc_flags, caller-supplied flags

CMC_string file_paths, local filenames, not passed
in X.400 message

CMC_string attach_titles, X.420.EDBP.data.dataVa-
lueDescriptor

CMC_string delimiter, delimiter character

CMC_ui_id ui_id, NULL

);

Additional comments

None.

254 Recommendation X.446 (08/97)

B.2.5.6.10 CMC Query Configuration

This call does not require any mapping or X.400 calls. It simply returns the configuration of the specified item.

Parameter mapping

CMC_return_code
cmc_query_configuration(

CMC_session_id session, local session id
CMC_enum item, local implementation
CMC_buffer reference, local implementation
CMC_extension *config_extensions NULL

);

Additional comments

None.

Recommendation X.446 (08/97) 255

Recommendation X.446 (08/97)

Annex C

Programming examples

C.1 Programming examples

This Recommendation offers the following programming examples.

C.1.1 Query Configuration, Logon, and Logoff

/* local variables used */

CMC_return_code Status;
CMC_boolean UI_available;
CMC_session_id Session;

/* find out if UI is available with this implementation before starting */

Status = cmc_query_configuration(
NULL, /* No session id. */
CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
&UI_available, /* Return value. */
NULL); /* No extensions. */

/* error handling */

/* Log on to system using UI */

Status = cmc_logon(
NULL, /* Default service. */
NULL, /* Prompt for username. */
NULL, /* Prompt for password. */
NULL, /* Default Character set. */
(CMC_ui_id)NULL, /* Default UI ID. */
CMC_VERSION, /* Version 1 CMC calls. */
CMC_LOGON_UI_ALLOWED | /* Full logon UI. */
CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
&Session, /* Returned session id. */
NULL); /* No extensions. */

/* error handling */

/* Do various CMC calls */

/* Log off from the implementation */

Status = cmc_logoff(

Session, /* Session id. */
(CMC_ui_id)NULL, /* No UI will be used. */
0, /* No flags. */
NULL); /* No extensions. */

/* error handling */

C.1.2 Send and Send Documents functions

/* local variables used */

CMC_attachment Attach;
CMC_session_id Session;
CMC_message Message;
CMC_recipient Recip[2];
CMC_return_code Status;

/* Build recipient list with two recipients. Add one "To" recipient. */

Recip[0].name = "Bob Weaver"; /* Send to Bob Weaver. */
Recip[0].name_type = CMC_TYPE_INDIVIDUAL; /* Bob’s a person. */
Recip[0].address = NULL; /* Look_up Bob’s address. */

256 Recommendation X.446 (08/97)

Recip[0].role = CMC_ROLE_TO; /* He’s a "To" recipient. */

Recip[0].flags = 0; /* Not the last element. */

Recip[0].extensions = NULL; /* No recipient extensions. */

/* Add one "Cc" recipient. */

Recip[1].name = "Mary Yu"; /* Send to Mary Yu. */

Recip[1].name_type = CMC_TYPE_INDIVIDUAL; /* Mary’s a person. */

Recip[1].address = NULL; /* Look_up Mary’s address. */

Recip[1].role = CMC_ROLE_CC; /* She’s a "Cc" recipient. */

Recip[1].flags = CMC_RECIP_LAST_ELEMENT;/* Last recipient element. */

Recip[1].extensions = NULL; /* No recipient extensions. */

/* Attach a file. */

Attach.attach_title = "stock.wks"; /* Original file name. */

Attach.attach_typ = NULL; /* No specific type. */

Attach.attach_filename = "tmp22.tmp"; /* File to attach. */

Attach.attach_flags = CMC_ATT_LAST_ELEMENT; /* Last attachment. */

Attach.attach_extensions = NULL; /* No attach. extensions. */

/* Put it together in the message structure. */

Message.message_reference = NULL; /* Ignored on cmc_send calls. */

Message.message_type = NULL; /* Interpersonal message type. */

Message.subject = "Stock"; /* Message subject. */

Message.time_sent = NULL; /* Ignored on cmc_send calls. */

Message.text_note = "Time to buy"; /* Message note. */

Message.recipients = Recip; /* Message recipients. */

Message.attachments = &Attach; /* Message attachments. */

Message.message_flags = 0; /* No flags. */

Message.message_extensions = NULL; /* No message extensions. */

/* Send the message! */

Status = cmc_send(

Session, /* Session id. - set with logon call. */

&Message, /* Message structure. */

0, /* No flags. */

(CMC_ui_id)NULL, /* No UI will be used. */

NULL); /* No extensions. */

/* error handling */

/* Now do the same thing with the send documents call and UI */

Status = cmc_send_documents(

"to:Bob Weaver,cc:Mary Yu", /* Message recipients. */

"Stock", /* Message subject. */

"Time to buy", /* Message note. */

CMC_LOGON_UI_ALLOWED |

CMC_SEND_UI_REQUESTED |

CMC_ERROR_UI_ALLOWED, /* Flags (allow various UI’s). */

"stock.wks", /* File to attach. */

"tmp22.tmp", /* File name to carry on attach. */

",", /* Multi-value delimiter. */

NULL); /* Default UI ID. */

/* error handling */

Recommendation X.446 (08/97) 257

C.1.3 List, read, and delete the first unread message

/* local variables used */

CMC_message_summary *pMsgSummary;
CMC_message *pMessage;
CMC_uint32 iCount;

/* read the first unread message and delete it */

iCount = 5;

Status = cmc_list(
Session, /* Session id. */
NULL, /* List ALL message types. */
CMC_LIST_UNREAD_ONLY, /* Get only unread messages. */
NULL, /* Starting at the top. */
&iCount, /* Input/Output message count. */
(CMC_ui_id)NULL, /* No UI will be used. */
&pMsgSummary, /* Return message summary list. */
NULL); /* No extensions. */

/* error handling */

Status = cmc_read(
Session, /* Session id. */
pMsgSummary[0]->message_reference, /* Message to read. */
CMC_MSG_AND_ATT_HDRS_ONLY, /* don’t get attach files. */
&pMessage, /* Returned message. */
(CMC_ui_id)NULL, /* No UI. */
NULL); /* No extensions. */

/* error handling */

Status = cmc_act_on(
Session, /* Session id. */
pMsgSummary[0]->message_reference, /* Message to delete. */
CMC_ACT_ON_DELETE, /* Message to read. */
0, /* no flags. */
(CMC_ui_id)NULL, /* No UI. */
NULL); /* No extensions. */

/* error handling */

/* free the memory returned by the implementation */

Status = cmc_free(pMsgSummary);
Status = cmc_free(pMessage);

/* do the same thing without the list call, since the read call can get the first
unread mail message */

Status = cmc_read(
Session, /* Session id. */
NULL, /* Read the first message. */
CMC_READ_FIRST_UNREAD_MESSAGE | /* get first unread msg. */
CMC_MSG_AND_ATT_HDRS_ONLY, /* don’t get attach files. */
&pMessage, /* Returned message. */
(CMC_ui_id)NULL, /* No UI. */
NULL); /* No extensions. */

/* error handling */

Status = cmc_act_on(
Session, /* Session id. */
pMessage->message_reference, /* message to delete. */
CMC_ACT_ON_DELETE, /* Message to read. */
0, /* no flags. */
(CMC_ui_id)NULL, /* No UI. */
NULL); /* No extensions. */

/* error handling */

/* free the memory returned by the implementation */

Status = cmc_free(pMessage);

258 Recommendation X.446 (08/97)

C.1.4 Look up a specific recipient and get its details

/* local variables used */

CMC_session_id Session;
CMC_recipient *pRecipient;
CMC_recipient Recip;
CMC_return_code Status;

/* look up a name to pick correct recipient */

Recip.name = "Bob Stack"; /* Send to Bob Weaver. */
Recip.name_type = CMC_TYPE_INDIVIDUAL; /* Bob’s a person. */
Recip.address = NULL; /* Look_up Bob’s address. */
Recip.role = NULL; /* Role not used. */
Recip.recip_flags = 0; /* No flags. */
Recip.recip_extensions = NULL; /* No recipient extensions. */

Status = cmc_look_up(
Session, /* Session id. */
&Recip, /* Name to look up. */
CMC_LOOKUP_RESOLVE_UI | /* Disambiguate using UI. */
CMC_ERROR_UI_ALLOWED, /* Display errors using UI. */
(CMC_ui_id)NULL, /* Default UI ID. */
1, /* Only want 1 back. */
pRecipient, /* Returned recipient ptr. */
NULL); /* No extensions. */

/* Display details stored for this recipient */

Status = cmc_look_up(
Session, /* Session id. */
pRecipient, /* Name to get details on. */
CMC_LOOKUP_DETAILS_UI | /* Show details UI. */
CMC_ERROR_UI_ALLOWED, /* Display errors using UI. */
(CMC_ui_id)NULL, /* Default UI ID. */
0, /* No limit on return count. */
NULL, /* No records returned. */
NULL); /* No extensions. */

/* free the memory returned by the implementation */

cmc_free(pRecipient);

C.1.5 Use of extensions

/* local variables used */

CMC_return_code Status;
CMC_session_id Session;
CMC_extension Extension;
CMC_X_COM_support Supported[2];
CMC_uint16 index;

/* find out if the common extension set is supported, but I don’t need
COM_X_CONFIG_DATA support */

Supported[0].item_code = CMC_XS_COM;
Supported[0].flags = 0;

Supported[1].item_code = CMC_X_COM_CONFIG_DATA;
Supported[1].flags = CMC_X_COM_SUP_EXCLUDE;

Extension.item_code = CMC_X_COM_SUPPORT_EXT;
Extension.item_data = 2;
Extension.item_reference = Supported;
Extension.extension_flags = CMC_EXT_LAST_ELEMENT;

Recommendation X.446 (08/97) 259

Status = cmc_query_configuration(
NULL, /* No session id. */
CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
&UI_available, /* Return value. */
&Extension); /* Pass in extensions. */

/* error handling */
if (Supported[0].flags & CMC_X_COM_NOT_SUPPORTED)

return FALSE; /* common extensions I need are not available */

/* Log on to system and get the data extensions for this session */

Supported[0].item_code = CMC_XS_COM;
Supported[0].flags = 0;

Supported[1].item_code = CMC_X_COM_CONFIG_DATA;
Supported[1].flags = CMC_X_COM_SUP_EXCLUDE;

Extension.item_code = CMC_X_COM_SUPPORT_EXT;
Extension.item_data = 2;
Extension.item_reference = Supported;
Extension.extension_flags = CMC_EXT_REQUIRED | CMC_EXT_LAST_ELEMENT;

Status = cmc_logon(
NULL, /* Default service. */
NULL, /* Prompt for username. */
NULL, /* Prompt for password. */
NULL, /* Default Character set. */
(CMC_ui_id)NULL, /* Default UI ID. */
CMC_VERSION, /* Version 1 CMC calls. */
CMC_LOGON_UI_ALLOWED | /* Full logon UI. */
CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
&Session, /* Returned session id. */
&Extension); /* Logon extensions. */

/* error handling */
if (Supported[0].flags & CMC_X_COM_NOT_SUPPORTED)

return FALSE; /* common extensions I need are not available */
/* the common data extensions will be used for this session */

/* example of how to free data returned from the CMC implementation in
function output extensions. */

for (index = 0; ; index++) {
if (Extensions[index].extension_flags & CMC_EXT_OUTPUT) {

if (cmc_free(Extensions[index].item_reference) != CMC_success) {
/* Handle unexpected error here */
}
}

(Extensions[index].extension_flags & CMC_EXT_LAST_ELEMENT)
break;

}

/* Do various CMC calls */

/* Log off from the implementation */

Status = cmc_logoff(
Session, /* Session id. */
(CMC_ui_id)NULL, /* No UI will be used. */
0, /* No flags. */
NULL); /* No extensions. */

/* error handling */

C.1.6 cmc_bind_implementation

CMC_return_code Status = CMC_SUCCESS;
CMC_boolean UI_available;
CMC_session_id Session;
HINSTANCE hlibCMC = (HINSTANCE)NULL;

260 Recommendation X.446 (08/97)

CMC_P_BIND_IMPLEMENTATION lpfnCMCBindImplementation = NULL;
CMC_dispatch_table *pDispatchTable = NULL;
CMC_object_handle root_object_handle = CMC_NULL_HANDLE;
extern CMC_guid selected_implementation_name;

if (!(hlibCMC = LoadLibrary ("CMC.DLL")))
{
/* error handling */
}

if (!(lpfnCMCBindImplementation =
(CMC_P_BIND_IMPLEMENTATION)GetProcAddress (hlibCMC, "cmc_bind_implement-
 ation")))

{
/* error handling */
}

/* Call into a selected CMC Manager to bind to specific CMC implementation.*/

Status = lpfnCMCBindImplementation(selected_implementation_name,
&pDispatchTable,
NULL);

if (pDispatchTable == NULL)
{
/* error handling */
}

/* find out if UI is available with this implementation before starting.
Mixing calls, be careful. */

Status = pDispatchTable->cmc_query_configuration(
NULL, /* No session id. */
CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
&UI_available, /* Return value. */
NULL); /* No extensions. */

/* error handling */

/* Log on to system using UI */

Status = pDispatchTable->cmc_logon(
NULL, /* Default service. */
NULL, /* Prompt for username. */
NULL, /* Prompt for password. */
NULL, /* Default Character set. */
(CMC_ui_id)NULL, /* Default UI ID. */
CMC_VERSION, /* Version 1 CMC calls. */
CMC_LOGON_UI_ALLOWED | /* Full logon UI. */
CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
&Session, /* Returned session id. */
NULL); /* No extensions. */

/* error handling */

/* Make calls into specific CMC implementation. */

Status = pDispatchTable->cmc_get_root_handle(Session,
&root_object_handle,
NULL);

/* error handling */

/* Log off from the implementation */

Status = pDispatchTable->cmc_logoff(
Session, /* Session id. */
(CMC_ui_id)NULL, /* No UI will be used. */
0, /* No flags. */
NULL); /* No extensions. */

/* error handling */

Recommendation X.446 (08/97) 261

/* Let implementation free the dispatch table it gave us. */

pDispatchTable->cmc_free(pDispatchTable);

/* Unbind from the CMC implementation. Cleans up storage
created in CMC Manager and/or CMC implementation other
than the CMC_dispatch_table. */

cmc_unbind_implementation(selected_implementation_name,
NULL);

/* error handling */

/* Free the DLL instance. */

FreeLibrary (hlibCMC);

C.2 Example of cmc_bind_implementation

CMC_return_code
cmc_bind_implementation(

CMC_guid implementation_name,
CMC_dispatch_table **dispatch_table,
CMC_extension *cmc_bind_extensions

)
{
SCODE sc = SUCCESS_SUCCESS;
CMC_dispatch_table *pDispatchTable=NULL;

pDispatchTable = (CMC_dispatch_table *)(calloc(1, sizeof(CMC_dispatch_table)));
if (pDispatchTable == NULL)

return CMC_E_INSUFFICIENT_MEMORY;

else

/* Store local for later cmc_free processing. */

/* Populate the Dispatch Table. */

pDispatchTable->cmc_send = cmc_send;
pDispatchTable->cmc_send_documents = cmc_send_documents;
pDispatchTable->cmc_act_on = cmc_act_on;
pDispatchTable->cmc_list = cmc_list;
pDispatchTable->cmc_read = cmc_read;
pDispatchTable->cmc_look_up = cmc_look_up;
pDispatchTable->cmc_free = cmc_free;
pDispatchTable->cmc_logoff = cmc_logoff;
pDispatchTable->cmc_logon = cmc_logon;
pDispatchTable->cmc_query_configuration = cmc_query_configuration;
pDispatchTable->cmc_add_object = cmc_add_object;
pDispatchTable->cmc_add_properties = cmc_add_properties;
pDispatchTable->cmc_commit_object = cmc_commit_object;
pDispatchTable->cmc_copy_object_handle = cmc_copy_object_handle;
pDispatchTable->cmc_create_derived_message_object =

cmc_create_derived_message_object;
pDispatchTable->cmc_delete_objects = cmc_delete_objects;
pDispatchTable->cmc_delete_properties = cmc_delete_properties;
pDispatchTable->cmc_get_root_handle = cmc_get_root_handle;
pDispatchTable->cmc_identifier_to_name = cmc_identifier_to_name;
pDispatchTable->cmc_list_contained_properties = cmc_list_contained_properties;
pDispatchTable->cmc_list_number_matched = cmc_list_number_matched;
pDispatchTable->cmc_list_objects = cmc_list_objects;
pDispatchTable->cmc_list_properties = cmc_list_properties;
pDispatchTable->cmc_name_to_identifier = cmc_name_to_identifier;
pDispatchTable->cmc_open_cursor = cmc_open_cursor;
pDispatchTable->cmc_open_object_handle = cmc_open_object_handle;
pDispatchTable->cmc_read_cursor = cmc_read_cursor;
pDispatchTable->cmc_read_properties = cmc_read_properties;
pDispatchTable->cmc_read_property_costs = cmc_read_property_costs;
pDispatchTable->cmc_restore_object = cmc_restore_object;
pDispatchTable->cmc_save_object = cmc_save_object;
pDispatchTable->cmc_send_message_object = cmc_send_message_object;
pDispatchTable->cmc_update_cursor_position = cmc_update_cursor_position;
pDispatchTable->cmc_update_cursor_position_with_seed =

cmc_update_cursor_position_with_seed;

262 Recommendation X.446 (08/97)

pDispatchTable->cmc_check_event = cmc_check_event;
pDispatchTable->cmc_register_event = cmc_register_event;
pDispatchTable->cmc_unregister_event = cmc_unregister_event;
pDispatchTable->cmc_call_callbacks = cmc_call_callbacks;
pDispatchTable->cmc_export_stream = cmc_export_stream;
pDispatchTable->cmc_import_file_to_stream = cmc_import_file_to_stream;
pDispatchTable->cmc_open_stream = cmc_open_stream;
pDispatchTable->cmc_read_stream = cmc_read_stream;
pDispatchTable->cmc_seek_stream = cmc_seek_stream;
pDispatchTable->cmc_write_stream = cmc_write_stream;
pDispatchTable->cmc_get_last_error = cmc_get_last_error;

/* Load the output variable. */

*dispatch_table = pDispatchTable;

return CMC_SUCCESS;
}

C.3 Composing a message

#define NUM_RECIP_PROPS 4
#define NUM_MESSAGE_PROPS 4
#define NUM_CONTENT_PROPS 6

#define RECIP_NAME_INDEX 0
#define RECIP_ADDRESS_INDEX 1
#define RECIP_ROLE_INDEX 2
#define RECIP_TYPE_INDEX 3

#define MSG_TYPE_INDEX 0
#define MSG_PRIORITY_INDEX 1
#define MSG_SUBJECT_INDEX 2
#define MSG_ROLE_INDEX 3

#define CONTENT_CHARSET_INDEX 0
#define CONTENT_INFORMATION_INDEX 1
#define CONTENT_SIZE_INDEX 2
#define CONTENT_TITLE_INDEX 3
#define CONTENT_ITEMNUM_INDEX 4
#define CONTENT_ITEMTYPE_INDEX 5

CMC_return_code Status = CMC_SUCCESS;
extern CMC_session_id Session;
extern CMC_dispatch_table *pDispatchTable;
CMC_object_handle Message = CMC_NULL_HANDLE;
CMC_object_handle Recipient = CMC_NULL_HANDLE;
CMC_object_handle ContentItem = CMC_NULL_HANDLE;
CMC_string error_buf = NULL;
CMC_property RecipientProps[NUM_RECIP_PROPS];
CMC_property MessageProps[NUM_MESSAGE_PROPS];
CMC_property ContentProps[NUM_CONTENT_PROPS];
CMC_opaque_data MessageBody;
CMC_CHAR MsgBuffer[MAX_BODY_LEN];

/* Load Recipient Property Structure. */

RecipientProps[RECIP_NAME_INDEX].property_id = CMC_PV_RECIPIENT_NAME;
RecipientProps[RECIP_NAME_INDEX].type = CMC_string;
RecipientProps[RECIP_NAME_INDEX].value.CMC_pv_string =

"Pierre Peret";

RecipientProps[RECIP_ADDRESS_INDEX].property_id = CMC_PV_RECIPIENT_ADDRESS;
RecipientProps[RECIP_ADDRESS_INDEX].type = CMC_string;
RecipientProps[RECIP_ADDRESS_INDEX].value.CMC_pv_string =

"uunet!p.peret@A205.bull.com!USENET";

RecipientProps[RECIP_ROLE_INDEX].property_id = CMC_PV_RECIPIENT_ROLE;
RecipientProps[RECIP_ROLE_INDEX].type = CMC_enum;
RecipientProps[RECIP_ROLE_INDEX].value.CMC_pv_enumerated =

CMC_RECIPIENT_ROLE_TO;

RecipientProps[RECIP_TYPE_INDEX].property_id = CMC_PV_RECIPIENT_TYPE;
RecipientProps[RECIP_TYPE_INDEX].type = CMC_enum;
RecipientProps[RECIP_TYPE_INDEX].value.CMC_pv_enumerated =

CMC_RCT_INDIVIDUAL;

Recommendation X.446 (08/97) 263

/* Load Message Property Structure. */

MessageProps[MSG_TYPE_INDEX].property_id = CMC_PV_MESSAGE_TYPE;
MessageProps[MSG_TYPE_INDEX].type = CMC_enum;
MessageProps[MSG_TYPE_INDEX].value.CMC_pv_enumerated =

CMC_MT_IPM;

MessageProps[MSG_PRIORITY_INDEX].property_id = CMC_PV_MESSAGE_PRIORITY;
MessageProps[MSG_PRIORITY_INDEX].type = CMC_enum;
MessageProps[MSG_PRIORITY_INDEX].value.CMC_pv_enumerated =

CMC_PRIORITY_NORMAL;

MessageProps[MSG_SUBJECT_INDEX].property_id = CMC_PV_MESSAGE_SUBJECT;
MessageProps[MSG_SUBJECT_INDEX].type = CMC_string;
MessageProps[MSG_SUBJECT_INDEX].value.CMC_pv_string =

"Hey Pierre, don’t forget";

MessageProps[MSG_ROLE_INDEX].property_id = CMC_PV_MESSAGE_ROLE;
MessageProps[MSG_ROLE_INDEX].type = CMC_enum;
MessageProps[MSG_ROLE_INDEX].value.CMC_pv_enumerated =

CMC_MESSAGE_ROLE_ORIGINAL;

/* Load Message Content Item Property Structure. */

ContentProps[CONTENT_CHARSET_INDEX].property_id =
CMC_PV_CONTENT_ITEM_CHARACTER_SET;

ContentProps[CONTENT_CHARSET_INDEX].type = CMC_guid;
ContentProps[CONTENT_CHARSET_INDEX].value.CMC_pv_guid =

CMC_CHARSET_1252;

ContentProps[CONTENT_INFORMATION_INDEX].property_id =
CMC_PV_CONTENT_ITEM_CONTENT_INFORMATION;

ContentProps[CONTENT_INFORMATION_INDEX].type = CMC_opaque_data;

strcpy(MsgBuffer, "to FOCUS on the API");

MessageBody.size = strlen(MsgBuffer) + 1;
MessageBody.data = (CMC_byte *)calloc(1, strlen(MsgBuffer) + 1);

ContentProps[CONTENT_INFORMATION_INDEX].value.CMC_pv_opaque_data.
data = MessageBody.data;

ContentProps[CONTENT_INFORMATION_INDEX].value.CMC_pv_opaque_data.
size = MessageBody.size;

ContentProps[CONTENT_SIZE_INDEX].property_id =
CMC_PV_CONTENT_ITEM_SIZE;

ContentProps[CONTENT_SIZE_INDEX].type = CMC_uint32;
ContentProps[CONTENT_SIZE_INDEX].value.CMC_pv_uint32 =

MessageBody.size;

ContentProps[CONTENT_TITLE_INDEX].property_id =
CMC_PV_CONTENT_ITEM_TITLE;

ContentProps[CONTENT_TITLE_INDEX].type = CMC_string;
ContentProps[CONTENT_TITLE_INDEX].value.CMC_pv_string =

"Message Body";

ContentProps[CONTENT_ITEMNUM_INDEX].property_id =
CMC_PV_CONTENT_ITEM_ITEM_NUMBER;

ContentProps[CONTENT_ITEMNUM_INDEX].type = CMC_uint32;
ContentProps[CONTENT_ITEMNUM_INDEX].value.CMC_pv_uint32 = 0;

ContentProps[CONTENT_ITEMTYPE_INDEX].property_id =
CMC_PV_CONTENT_ITEM_ITEM_TYPE;

ContentProps[CONTENT_ITEMTYPE_INDEX].type = CMC_enum;
ContentProps[CONTENT_ITEMTYPE_INDEX].value.CMC_pv_enumerated =

CMC_IT_NOTE;

/* Create a Recipient Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&Recipient,
CMC_TYPE_OC_RECIPIENT,
NULL);

/* error handling */

264 Recommendation X.446 (08/97)

/* Populate the Recipient Object with some properties. */

Status = pDispatchTable->cmc_add_properties(Recipient,
NUM_RECIP_PROPS,
&RecipientProps,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Recipient,
&error_buf,
NULL);

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

/* error handling */
}

/* Create a Message Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&Message,
CMC_TYPE_OC_MESSAGE,
NULL);

/* error handling */

/* Populate the Message Object with some properties. */

Status = pDispatchTable->cmc_add_properties(Message,
NUM_MESSAGE_PROPS,
&MessageProps,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* NOTE – The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

/* error handling */
}

/* Create a Content Item Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&ContentItem,
CMC_TYPE_OC_CONTENT_ITEM,
NULL);

/* error handling */

/* Populate the Content Item Object with some properties. */

Status = pDispatchTable->cmc_add_properties(ContentItem,
NUM_CONTENT_PROPS,
&ContentProps,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

ContentItem,
&error_buf,
NULL);

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

/* error handling */
}

Recommendation X.446 (08/97) 265

/* Now move the Recipient and Content Item Objects into the
Message Object. */

Status = pDispatchTable->cmc_copy_object(Message,
Recipient,
&Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* error handling */
}

Status = pDispatchTable->cmc_copy_object(Message,
ContentItem,
&Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* error handling */
}

/* Try sending the message. */

Status = pDispatchTable->cmc_send_message_object(Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* error handling */
}

/* Cleanup. */

cfree(MessageBody.data);

pDispatchTable->cmc_free(ContentItem);
pDispatchTable->cmc_free(Recipient);
pDispatchTable->cmc_free(Message);
pDispatchTable->cmc_free(error_buf);

C.4 Check for new messages

CMC_return_code Status = CMC_SUCCESS;
extern CMC_session_id Session;
extern CMC_dispatch_table *pDispatchTable;
CMC_object_handle root_object_handle = NULL;
CMC_cursor_handle RootCursor = CMC_NULL_HANDLE;
CMC_cursor_handle FolderCursor = CMC_NULL_HANDLE;
CMC_cursor_restriction RootRestriction;
CMC_string error_buf = NULL;
CMC_enum InboxTypeFlag = CMC_MCT_INBOX;
CMC_uint32 NewMessageFlag = CMC_EVENT_NEW_MESSAGES;
CMC_uint32 MinTimeOut = 0;
CMC_new_message_check_data CheckData;
CMC_new_message_callback_data*CallbackData = NULL;
CMC_callback NewMessageCallBack;

266 Recommendation X.446 (08/97)

/* Get the Root Object Handle. */

Status = pDispatchTable->cmc_get_root_handle(
Session,
&root_object_handle,
NULL);

/* error handling */

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the Inbox Folder.
Assuming the Existence of single Inbox Folder. */

RootRestriction.type = CMC_RESTRICTION_CONTENT;
RootRestriction.cr.restriction_content.logical = CMC_LOGICAL_EQ;
RootRestriction.cr.restriction_content.property =

CMC_PV_MESSAGE_CONTAINER_TYPE;

RootRestriction.cr.restriction_content.property_value =
(CMC_buffer)&InboxTypeFlag;

RootRestriction.Property_extensions = NULL;

Status = pDispatchTable->cmc_open_cursor(
root_object_handle,
&RootRestriction,
0,
NULL,
&RootCursor,
NULL);

/* error handling */

/* Register to poll for new messages */

/* Sets Container for which new messages are checked to the Inbox */

CheckData.number_containers = 1;
CheckData.containers = &RootCursor;

Status = pDispatchTable->cmc_register(
Session,
NewMessageFlag,
NULL,
(CMC_buffer) &CheckData,
NULL);

/* error handling */

/* Check for New Messages */

Status = pDispatchTable->cmc_check_event(
Session,
NewMessageFlag,
MinTimeOut,
(CMC_buffer) &CheckData,
CallBackData,
NULL);

/* error handling */

if (CheckData != NULL) {
printf("You have new mail!\n");

}

/* Set up callback for new messages */

Status = pDispatchTable->cmc_register_event(
Session,
NewMessageFlag,
NewMessageCallBack,
(CMC_buffer) &CheckData,
NULL);

/* error handling */

/* Force callback function */

Status = pDispatchTable->cmc_call_callbacks(
Session,
NewMessageFlag,
NULL);

/* error handling */

Recommendation X.446 (08/97) 267

/* Unregister for the new messages event */

Status = pDispatchTable->cmc_unregister_event(
Session,
NewMessageFlag,
NewMessageCallBack,
(CMC_buffer) &CheckData,
NULL);

/* error handling */

/* Cleanup. */

pDispatchTable->cmc_free(RootCursor);
pDispatchTable->cmc_free(FolderCursor);
pDispatchTable->cmc_free(hFolder);
pDispatchTable->cmc_free(Inbox);

CMC_return code
(*NewMessageCallBack)(CMC_session_id session,

CMC_event event,
CMC_buffer callback_data,
CMC_buffer register_data,
CMC_extension *callback_extensions)

{

printf("You have new mail!\n");

pDispatchTable->cmc_free(callback_data);
pDispatchTable->cmc_free(register_data);

return(CMC_SUCCESS);
}

C.5 Filing a message

#define NUM_RECIP_PROPS 4
#define NUM_MESSAGE_PROPS 5
#define NUM_CONTENT_PROPS 6

#define RECIP_NAME_INDEX 0
#define RECIP_ADDRESS_INDEX 1
#define RECIP_ROLE_INDEX 2
#define RECIP_TYPE_INDEX 3

#define MSG_TYPE_INDEX 0
#define MSG_PRIORITY_INDEX 1
#define MSG_SUBJECT_INDEX 2
#define MSG_ROLE_INDEX 3
#define MSG_CLIENT_MSG_STATUS_INDEX 4

#define CONTENT_CHARSET_INDEX 0
#define CONTENT_INFORMATION_INDEX 1
#define CONTENT_SIZE_INDEX 2
#define CONTENT_TITLE_INDEX 3
#define CONTENT_ITEMNUM_INDEX 4
#define CONTENT_ITEMTYPE_INDEX 5

CMC_return_code Status = CMC_SUCCESS;
extern CMC_session_id Session;
extern CMC_dispatch_table *pDispatchTable;
CMC_object_handle root_object_handle = CMC_NULL_HANDLE;
CMC_object_handle hFolder = CMC_NULL_HANDLE;
CMC_object_handle Message = CMC_NULL_HANDLE;
CMC_object_handle Recipient = CMC_NULL_HANDLE;
CMC_object_handle ContentItem = CMC_NULL_HANDLE;
CMC_cursor_handle RootCursor = CMC_NULL_HANDLE;
CMC_cursor_restriction RootRestriction;
CMC_sint32 FolderCount = 1; /* Assume 1 Drafts Folder. */
CMC_string error_buf = NULL;
CMC_enum DraftsTypeFlag = CMC_MCT_INBOX;
CMC_property RecipientProps[NUM_RECIP_PROPS];
CMC_property MessageProps[NUM_MESSAGE_PROPS];
CMC_property ContentProps[NUM_CONTENT_PROPS];
CMC_opaque_data MessageBody;
CMC_CHAR MsgBuffer[MAX_BODY_LEN];

268 Recommendation X.446 (08/97)

/* Get the Root Object Handle. */

Status = pDispatchTable->cmc_get_root_handle(Session,
&root_object_handle,
NULL);

/* error handling */

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the Drafts Folder.
Assuming the Existence of the Drafts Folder. */

RootRestriction.type = CMC_RESTRICTION_CONTENT;
RootRestriction.cr.restriction_content.logical = CMC_LOGICAL_EQ;
RootRestriction.cr.restriction_content.property =

CMC_PV_MESSAGE_CONTAINER_TYPE;
RootRestriction.cr.restriction_content.property_value =

(CMC_buffer)&DraftsTypeFlag;
RootRestriction.Property_extensions = NULL;

Status = pDispatchTable->cmc_open_cursor(root_object_handle,
&RootRestriction,
0,
NULL,
&RootCursor,
NULL);

/* error handling */

Status = pDispatchTable->cmc_list_objects(&RootCursor,
&FolderCount,
&hFolder,
NULL);

/* error handling */

/* Create and populate a Message. */

/* Load Recipient Property Structure. */

RecipientProps[RECIP_NAME_INDEX].property_id = CMC_PV_RECIPIENT_NAME;
RecipientProps[RECIP_NAME_INDEX].type = CMC_string;
RecipientProps[RECIP_NAME_INDEX].value.CMC_pv_string =

"Pierre Peret";
RecipientProps[RECIP_ADDRESS_INDEX].property_id = CMC_PV_RECIPIENT_ADDRESS;
RecipientProps[RECIP_ADDRESS_INDEX].type = CMC_string;
RecipientProps[RECIP_ADDRESS_INDEX].value.CMC_pv_string =

"uunet!p.peret@A205.bull.com!USENET";
RecipientProps[RECIP_ROLE_INDEX].property_id = CMC_PV_RECIPIENT_ROLE;
RecipientProps[RECIP_ROLE_INDEX].type = CMC_enum;
RecipientProps[RECIP_ROLE_INDEX].value.CMC_pv_enumerated =

CMC_RECIPIENT_ROLE_TO;
RecipientProps[RECIP_TYPE_INDEX].property_id = CMC_PV_RECIPIENT_TYPE;
RecipientProps[RECIP_TYPE_INDEX].type = CMC_enum;
RecipientProps[RECIP_TYPE_INDEX].value.CMC_pv_enumerated =

CMC_RCT_INDIVIDUAL;

/* Load Message Property Structure. */

MessageProps[MSG_TYPE_INDEX].property_id = CMC_PV_MESSAGE_TYPE;
MessageProps[MSG_TYPE_INDEX].type = CMC_enum;
MessageProps[MSG_TYPE_INDEX].value.CMC_pv_enumerated =

CMC_MT_IPM;
MessageProps[MSG_PRIORITY_INDEX].property_id = CMC_PV_MESSAGE_PRIORITY;
MessageProps[MSG_PRIORITY_INDEX].type = CMC_enum;
MessageProps[MSG_PRIORITY_INDEX].value.CMC_pv_enumerated =

CMC_PRIORITY_NORMAL;
MessageProps[MSG_SUBJECT_INDEX].property_id = CMC_PV_MESSAGE_SUBJECT;
MessageProps[MSG_SUBJECT_INDEX].type = CMC_string;
MessageProps[MSG_SUBJECT_INDEX].value.CMC_pv_string =

"Lunch";
MessageProps[MSG_ROLE_INDEX].property_id = CMC_PV_MESSAGE_ROLE;
MessageProps[MSG_ROLE_INDEX].type = CMC_enum;
MessageProps[MSG_ROLE_INDEX].value.CMC_pv_enumerated =

CMC_MESSAGE_ROLE_ORIGINAL;
MessageProps[MSG_CLIENT_MSG_STATUS_INDEX].property_id =

CMC_PV_MESSAGE_CLIENT_MSG_STATUS;
MessageProps[MSG_CLIENT_MSG_STATUS_INDEX].type = CMC_enum;
MessageProps[MSG_CLIENT_MSG_STATUS_INDEX].value.CMC_pv_enumerated =

CMC_MESSAGE_STATUS_DRAFT;

Recommendation X.446 (08/97) 269

/* Load Message Content Item Property Structure. */

ContentProps[CONTENT_CHARSET_INDEX].property_id =
CMC_PV_CONTENT_ITEM_CHARACTER_SET;

ContentProps[CONTENT_CHARSET_INDEX].type = CMC_guid;
ContentProps[CONTENT_CHARSET_INDEX].value.CMC_pv_guid =

CMC_CHARSET_1252;

ContentProps[CONTENT_INFORMATION_INDEX].property_id =
CMC_PV_CONTENT_ITEM_CONTENT_INFORMATION;

ContentProps[CONTENT_INFORMATION_INDEX].type = CMC_opaque_data;

strcpy(MsgBuffer, "What time are we leaving for lunch?");

MessageBody.size = strlen(MsgBuffer) + 1;
MessageBody.data = (CMC_byte *)calloc(1, strlen(MsgBuffer) + 1);

ContentProps[CONTENT_INFORMATION_INDEX].value.CMC_pv_opaque_data.
data = MessageBody.data;

ContentProps[CONTENT_INFORMATION_INDEX].value.CMC_pv_opaque_data.
size = MessageBody.size;

ContentProps[CONTENT_SIZE_INDEX].property_id =
CMC_PV_CONTENT_ITEM_SIZE;

ContentProps[CONTENT_SIZE_INDEX].type = CMC_uint32;
ContentProps[CONTENT_SIZE_INDEX].value.CMC_pv_uint32 =

MessageBody.size;

ContentProps[CONTENT_TITLE_INDEX].property_id =
CMC_PV_CONTENT_ITEM_TITLE;

ContentProps[CONTENT_TITLE_INDEX].type = CMC_string;
ContentProps[CONTENT_TITLE_INDEX].value.CMC_pv_string =

"Message Body";

ContentProps[CONTENT_ITEMNUM_INDEX].property_id =
CMC_PV_CONTENT_ITEM_ITEM_NUMBER;

ContentProps[CONTENT_ITEMNUM_INDEX].type = CMC_uint32;
ContentProps[CONTENT_ITEMNUM_INDEX].value.CMC_pv_uint32 = 0;

ContentProps[CONTENT_ITEMTYPE_INDEX].property_id =
CMC_PV_CONTENT_ITEM_ITEM_TYPE;

ContentProps[CONTENT_ITEMTYPE_INDEX].type = CMC_enum;
ContentProps[CONTENT_ITEMTYPE_INDEX].value.CMC_pv_enumerated =

CMC_IT_NOTE;

/* Create a Recipient Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&Recipient,
CMC_TYPE_OC_RECIPIENT,
NULL);

/* error handling */

/* Populate the Recipient Object with some properties. */

Status = pDispatchTable->cmc_add_properties(Recipient,
NUM_RECIP_PROPS,
&RecipientProps,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Recipient,
&error_buf,
NULL);

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

/* error handling */
}

270 Recommendation X.446 (08/97)

/* Create a Message Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&Message,
CMC_TYPE_OC_MESSAGE,
NULL);

/* error handling */

/* Populate the Message Object with some properties. */

Status = pDispatchTable->cmc_add_properties(Message,
NUM_MESSAGE_PROPS,
&MessageProps,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

/* error handling */
}

/* Create a Content Item Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&ContentItem,
CMC_TYPE_OC_CONTENT_ITEM,
NULL);

/* error handling */

/* Populate the Message Object with some properties. */

Status = pDispatchTable->cmc_add_properties(ContentItem,
NUM_CONTENT_PROPS,
&ContentProps,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

ContentItem,
&error_buf,
NULL);

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

/* error handling */
}

/* Now move the Recipient and Content Item Objects into the
Message Object. */

Status = pDispatchTable->cmc_copy_object(Message,
Recipient,
&Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* error handling */
}

Recommendation X.446 (08/97) 271

Status = pDispatchTable->cmc_copy_object(Message,
ContentItem,
&Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* error handling */
}

/* Move message into the Drafts Folder. */

Status = pDispatchTable->cmc_copy_object(hFolder,
Message,
&Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

hFolder,
&error_buf,
NULL);

/* error handling */
}

Status = pDispatchTable->cmc_commit_object(Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

hFolder,
&error_buf,
NULL);

/* error handling */
}

/* Cleanup. */

cfree(MessageBody.data);
pDispatchTable->cmc_free(ContentItem);
pDispatchTable->cmc_free(Recipient);
pDispatchTable->cmc_free(Message);
pDispatchTable->cmc_free(hFolder);
pDispatchTable->cmc_free(RootCursor);
pDispatchTable->cmc_free(error_buf);

C.6 Deleting a message

CMC_return_code Status = CMC_SUCCESS;
extern CMC_session_id Session;
extern CMC_object_handle root_object_handle;
extern CMC_dispatch_table *pDispatchTable;
extern CMC_object_handle hFolder;
extern CMC_cursor_handle FolderCursor;
CMC_object_handle hDeletedFolder = CMC_NULL_HANDLE;
CMC_object_handle Message = CMC_NULL_HANDLE;
CMC_object_handle MessageInDeleted = CMC_NULL_HANDLE;
CMC_cursor_restriction RootRestriction;
CMC_cursor_handle RootCursor = CMC_NULL_HANDLE;
CMC_sint32 FolderCount = 1; /* Assume 1 Drafts Folder. */
CMC_sint32 MessageCount = 1; /* Assume deletion of 1 entry */
CMC_string error_buf = NULL;
CMC_enum DeletedTypeFlag = CMC_MCT_DELETED;

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the Deleted Folder.
Assuming the Existence of the Deleted Folder. */

272 Recommendation X.446 (08/97)

RootRestriction.type = CMC_RESTRICTION_CONTENT;
RootRestriction.cr.restriction_content.logical = CMC_LOGICAL_EQ;
RootRestriction.cr.restriction_content.property =

CMC_PV_MESSAGE_CONTAINER_TYPE;
RootRestriction.cr.restriction_content.property_value =

(CMC_buffer)&DeletedTypeFlag;
RootRestriction.Property_extensions = NULL;

Status = pDispatchTable->cmc_open_cursor(root_object_handle,
&RootRestriction,
0,
NULL,
&RootCursor,
NULL);

/* error handling */

Status = pDispatchTable->cmc_list_objects(&RootCursor,
&FolderCount,
&hDeletedFolder,
NULL);

/* error handling */

/* NOTE - Assuming UI code has set a FolderCursor on a Message entry
in a list box which is the message to delete. */

/* Get the message to be deleted. */

Status = pDispatchTable->cmc_list_objects(&FolderCursor,
&MessageCount,
&Message,
NULL);

/* error handling */

/* Let’s first move the message to the Deleted Folder. */

Status = pDispatchTable->cmc_copy_object(hDeletedFolder,
Message,
&MessageInDeleted,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

hFolder,
&error_buf,
NULL);

/* error handling */
}

Status = pDispatchTable->cmc_commit_object(MessageInDeleted,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

hDeletedFolder,
&error_buf,
NULL);

/* error handling */
}

/* Now let’s permanently delete the message from the source folder.
Invalidates Message handle. */

Status = pDispatchTable->cmc_delete_objects(MessageCount,
&Message,
NULL);

if (Status != CMC_SUCCESS)
{
pDispatchTable->cmc_get_last_error(Session,

Message,
&error_buf,
NULL);

/* error handling */
}

Recommendation X.446 (08/97) 273

/* Cleanup. */

pDispatchTable->cmc_free(hDeletedFolder);
pDispatchTable->cmc_free(MessageInDeleted);
pDispatchTable->cmc_free(RootCursor);
pDispatchTable->cmc_free(error_buf);

C.7 Retrieving a message

#define MAX_CACHE 25

CMC_return_code Status = CMC_SUCCESS;
extern CMC_session_id Session;
extern CMC_dispatch_table *pDispatchTable;
CMC_object_handle root_object_handle = NULL;
CMC_object_handle hFolder = NULL;
CMC_object_handle Messages = NULL;
CMC_cursor_handle RootCursor,
CMC_cursor_handle FolderCursor,
CMC_cursor_restriction RootRestriction;
CMC_sint32 FolderCount = 1;
CMC_sint32 MessageCount = MAX_CACHE;
CMC_enum InboxTypeFlag = CMC_MCT_INBOX;
CMC_enum MessageClassFlag = CMC_TYPE_OC_MESSAGE;

/* Get the Root Object Handle. */

Status = pDispatchTable->cmc_get_root_handle(Session,
&root_object_handle,
NULL);

/* error handling */

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the Inbox Folder.
Assuming the Existence of single Inbox Folder. */

RootRestriction.type = CMC_RESTRICTION_CONTENT;
RootRestriction.cr.restriction_content.logical = CMC_LOGICAL_EQ;
RootRestriction.cursor_restriction.restriction_content.property =

CMC_PV_MESSAGE_CONTAINER_TYPE;
RootRestriction.cursor_restriction.restriction_content.property_value =

(CMC_buffer)&InboxTypeFlag;
RootRestriction.Property_extensions = NULL;

Status = pDispatchTable->cmc_open_cursor(root_object_handle,
&RootRestriction,
0,
NULL,
&RootCursor,
NULL);

/* error handling */

Status = pDispatchTable->cmc_list_objects(&RootCursor,
&FolderCount,
&hFolder,
NULL);

/* error handling */

/* Build a restriction on the Folder. Fetch all messages. */

FolderRestriction.type = CMC_RESTRICTION_CONTENT;
FolderRestriction.cr.restriction_content.logical = CMC_LOGICAL_EQ;
FolderRestriction.cr.restriction_content.property =

CMC_PV_OBJECT_CLASS;
FolderRestriction.cr.restriction_content.property_value =

(CMC_buffer)&MessageClassFlag;

/* Open a cursor on the Folder. */

Status = pDispatchTable->cmc_open_cursor(hFolder,
&FolderRestriction,
0,
NULL,
&FolderCursor,
NULL);

/* error handling */

274 Recommendation X.446 (08/97)

/* Enumerate all the messages in the inbox in chunks of MAX_CACHE. */

while (MessageCount != 0)
{

Status = pDispatchTable->cmc_list_objects(&FolderCursor,
&MessageCount,
&Messages,
NULL);

/* error handling */

/* Build Property array of desired properties (see composing a
message example), call cmc_read_properties and Display in
Listbox for each Message Object returned.

NOTE - The individual object handles need to be copied by a call to
cmc_copy_object_handle() prior to invoking cmc_free() on this pointer. */

pDispatchTable->cmc_free(Messages);

}

/* Cleanup. */

pDispatchTable->cmc_free(RootCursor);
pDispatchTable->cmc_free(FolderCursor);
pDispatchTable->cmc_free(hFolder);

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside
plant

Series M TMN and network maintenance: international transmission systems, telephone
circuits, telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Z Programming languages

	ITU-T Rec. X.446 (08/97) COMMON MESSAGING CALL API
	Summary
	Source
	FOREWORD
	CONTENTS
	COMMON MESSAGING CALL API
	1 Introduction
	1.1 Purpose
	1.2 Overview
	1.3 Terminology
	1.4 References
	1.5 Levels
	1.6 C naming conventions

	2 CMC architecture
	2.1 Functional model
	2.2 Computational model
	2.3 Configuration model
	2.4 Object model

	3 CMC object classes
	3.2 CMC API object classes

	4 Data structures
	4.1 Basic data types
	4.2 Array data types
	4.3 Attachment
	4.4 Boolean
	4.5 Buffer
	4.6 Callback Data Structures
	4.7 Counted String
	4.8 Cursor Handle
	4.9 Cursor Restriction
	4.10 Cursor Sort Key
	4.11 Dispatch Table
	4.12 Enumerated
	4.13 Events
	4.14 Extension
	4.15 Flags
	4.16 GUID
	4.17 Identifier
	4.18 ISO Date and Time
	4.19 Message
	4.20 Message Reference
	4.21 Message Summary
	4.22 Name
	4.23 Object Handle
	4.24 Object Identifier
	4.25 Opaque Data
	4.26 Property
	4.27 Recipient
	4.28 Report
	4.29 Return Code
	4.30 Session Id
	4.31 Stream Handle
	4.32 String
	4.33 Time
	4.34 User Interface Identifier

	5 Object properties
	5.1 Address book object properties
	5.2 Content item object properties
	5.3 Distribution list object properties
	5.4 Message object properties
	5.5 Message container object properties
	5.6 Per recipient information object properties
	5.7 Profile container object properties
	5.8 Recipient object properties
	5.9 Report object properties
	5.10 Root container object properties

	6 Functional interface
	6.1 Simple CMC functions
	6.2 Full CMC functions

	7 Return codes
	8 Conformance
	Annex A
	C declaration summary
	A.1 C declaration summary
	Annex B
	CMC vendor extensions
	B.1 CMC vendor extensions
	B.2 Extension set C declaration summary
	Annex C
	Programming examples
	C.1 Programming examples
	C.2 Example of cmc_bind_implementation
	C.3 Composing a message
	C.4 Check for new messages
	C.5 Filing a message
	C.6 Deleting a message
	C.7 Retrieving a message

