

INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.413
THE INTERNATIONAL (09/92)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

DATA COMMUNICATION NETWORKS

MESSAGE HANDLING SYSTEMS �
MESSAGE STORE: ABSTRACT-SERVICE
DEFINITION

Recommendation X.413

FOREWORD

 The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent organ of the
International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff
questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide
basis.

 The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves
Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between
Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988).

 Recommendation X.413 was revised by Study Group VII and was approved under the Resolution No. 2
procedure on the 10th of September 1992.

CCITT NOTE

 In this Recommendation, the expression �Administration� is used for conciseness to indicate both a
telecommunication Administration and a recognized private operating agency.

 ITU 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

PAGE BLANCHE

 Recommendation X.413 (09/92) i

CONTENTS
Recommendation X.413 (09/92)

Page

SECTION 1 � GENERAL.. 1

1 Scope .. 1

2 Normative references ... 1
2.1 Reference model references .. 1
2.2 Presentation references ... 2
2.3 Remote Operations references .. 2
2.4 Directory references.. 2
2.5 Message Handling references ... 2

3 Definitions .. 3
3.1 Common Definitions for MHS ... 3
3.2 Message Store Definitions .. 3

4 Abbreviations ... 10

5 Conventions.. 10
5.1 Conventions for abstract-services ... 10
5.2 Conventions for attribute-types used in Table 1/X.413 of clause 11 .. 11
5.3 Conventions for attribute-types used in Table 2/X.413 of clause 11 .. 11
5.4 Font conventions for text in general ... 12
5.5 Font conventions for ASN.1 definitions ... 12
5.6 Rules for ASN.1 definitions.. 12

SECTION 2 � MESSAGE STORE ABSTRACT-SERVICE DEFINITION.. 12

6 Message Store model.. 12
6.1 Message Store object .. 13
6.2 Message Store ports .. 13

6.2.1 Retrieval Port .. 14
6.2.2 Indirect-submission Port ... 14
6.2.3 Administration Port... 14

6.3 Information model... 14
6.3.1 Information-bases ... 15
6.3.2 Entries ... 15
6.3.3 Attributes... 15
6.3.4 Main-entries, parent-entries, and child-entries.. 17

6.4 Stored-messages.. 18
6.5 Auto-actions.. 19

6.5.1 Introduction... 19
6.5.2 Auto-action-type ... 19
6.5.3 Auto-action-registration-parameter... 20
6.5.4 Auto-action-type definition and the AUTO-ACTION macro... 20

6.6 Forwarding of messages ... 20

7 Abstract-bind and abstract-unbind operations.. 21
7.1 Abstract-bind-operation .. 21

7.1.1 Abstract-bind-argument .. 21
7.1.2 Abstract-bind-result .. 23
7.1.3 Abstract-bind-errors.. 23

7.2 Abstract-unbind-operation .. 24

8 Abstract-operations.. 24
8.1 Common-data-types used in abstract-operations .. 24

8.1.1 Range .. 25
8.1.2 Filters .. 25
8.1.3 Selector ... 27

ii Recommendation X.413 (09/92)

Page

8.1.4 Entry-information-selection .. 28
8.1.5 Entry-information ... 29

8.2 Summarize abstract-operation... 29
8.2.1 Summarize-argument .. 30
8.2.2 Summarize-result .. 30
8.2.3 Summarize abstract-errors .. 31

8.3 List abstract-operation... 31
8.3.1 List-argument .. 31
8.3.2 List-result .. 32
8.3.3 List abstract-errors .. 32

8.4 Fetch abstract-operation.. 32
8.4.1 Fetch-argument ... 32
8.4.2 Fetch-result ... 33
8.4.3 Fetch abstract-errors.. 33

8.5 Delete abstract-operation .. 33
8.5.1 Delete-argument.. 34
8.5.2 Delete-result .. 34
8.5.3 Delete abstract-errors .. 34

8.6 Register-MS abstract-operation .. 34
8.6.1 Register-MS-argument.. 35
8.6.2 Register-MS-result .. 36
8.6.3 Register-MS abstract-errors .. 36

8.7 Alert abstract-operation... 36
8.7.1 Alert-argument .. 37
8.7.2 Alert-result .. 37
8.7.3 Alert abstract-errors .. 37

9 Abstract-errors ... 37
9.1 Error precedence ... 37
9.2 Attribute-error ... 37
9.3 Auto-action-request-error ... 38
9.4 Delete-error ... 39
9.5 Fetch-restriction-error ... 39
9.6 Invalid-parameters-error ... 40
9.7 Range-error ... 40
9.8 Security-error .. 40
9.9 Sequence-number-error... 40
9.10 Service-error ... 41

SECTION 3 � GENERAL-ATTRIBUTE-TYPES AND GENERAL-AUTO-ACTION-TYPES 42

10 Overview .. 42

11 General-attribute-types .. 42
11.1 General-attribute-types overview.. 42
11.2 Description of the general-attribute-types... 42

11.2.1 Child-sequence-numbers... 44
11.2.2 Content.. 44
11.2.3 Content-confidentiality-algorithm-identifier... 44
11.2.4 Content-correlator ... 44
11.2.5 Content-identifier .. 44
11.2.6 Content-integrity-check .. 44
11.2.7 Content-length... 45
11.2.8 Content-returned ... 45
11.2.9 Content-type.. 45
11.2.10 Conversion-with-loss-prohibited .. 45

 Recommendation X.413 (09/92) iii

Page

11.2.11 Converted-EITs... 45
11.2.12 Creation-time .. 46
11.2.13 Delivered-EITs.. 46
11.2.14 Delivery-flags ... 46
11.2.15 DL-expansion-history ... 46
11.2.16 Entry-status ... 46
11.2.17 Entry-type ... 47
11.2.18 Intended-recipient-name ... 47
11.2.19 Message-delivery-envelope .. 47
11.2.20 Message-delivery-identifier .. 47
11.2.21 Message-delivery-time.. 47
11.2.22 Message-origin-authentication-check ... 48
11.2.23 Message-security-label.. 48
11.2.24 Message-submission-time ... 48
11.2.25 Message-token .. 48
11.2.26 Original-EITs .. 48
11.2.27 Originator-certificate... 48
11.2.28 Originator-name.. 49
11.2.29 Other-recipient-names... 49
11.2.30 Parent-sequence-number... 49
11.2.31 Per-recipient-report-delivery-fields .. 49
11.2.32 Priority .. 49
11.2.33 Proof-of-delivery-request.. 49
11.2.34 Redirection-history ... 50
11.2.35 Report-delivery-envelope.. 50
11.2.36 Reporting-DL-name.. 50
11.2.37 Reporting-MTA-certificate ... 50
11.2.38 Report-origin-authentication-check .. 50
11.2.39 Security-classification... 50
11.2.40 Sequence-number.. 51
11.2.41 Subject-submission-identifier ... 51
11.2.42 This-recipient-name .. 51

11.3 Generation of the general-attributes.. 51
11.4 Attribute-types subscription.. 51

12 General-auto-action-types ... 54
12.1 Auto-forward .. 54
12.2 Auto-alert .. 56

SECTION 4 � PROCEDURES FOR MESSAGE STORE AND PORT REALIZATION.............................. 58

13 Overview .. 58

14 Consumption of the Message Transfer abstract-service .. 58
14.1 Consumption of the Delivery Port abstract-services... 58

14.1.1 Performance of the MessageDelivery abstract-operation ... 58
14.1.2 Performance of the ReportDelivery abstract-operation .. 59
14.1.3 Invocation of the DeliveryControl abstract-operation .. 59
14.1.4 Generation rules for general-attributes ... 59

14.2 Consumption of the Submission Port abstract-services .. 60
14.2.1 Invocation of the MessageSubmission abstract-operation .. 60
14.2.2 Invocation of the ProbeSubmission abstract-operation... 60

iv Recommendation X.413 (09/92)

Page

14.2.3 Invocation of the CancelDeferredDelivery abstract-operation ... 61
14.2.4 Performance of the SubmissionControl abstract-operation .. 61

14.3 Consumption of the Administration Port abstract-services... 61
14.3.1 Invocation of the Register abstract-operation ... 61
14.3.2 Invocation of the ChangeCredentials abstract-operation .. 62
14.3.3 Performance of the ChangeCredentials abstract-operation... 62

15 Supply of the Message Store abstract-service .. 62
15.1 Supply of the Retrieval Port abstract-services .. 62

15.1.1 Performance of the Summarize abstract-operation ... 62
15.1.2 Performance of the List abstract-operation ... 63
15.1.3 Performance of the Fetch abstract-operation .. 63
15.1.4 Performance of the Delete abstract-operation... 64
15.1.5 Performance of the Register-MS abstract-operation... 64
15.1.6 Invocation of the Alert abstract-operation .. 64

15.2 Supply of the Indirect-submission Port abstract-services ... 64
15.2.1 Performance of the MessageSubmission abstract-operation... 65
15.2.2 Performance of the ProbeSubmission abstract-operation ... 65
15.2.3 Performance of the CancelDeferredDelivery abstract-operation 65
15.2.4 Invocation of the SubmissionControl abstract-operation.. 66

15.3 Supply of the Administration Port abstract-services... 66
15.3.1 Performance of the Register abstract-operation .. 66
15.3.2 Invocation of the ChangeCredentials abstract-operation .. 67
15.3.3 Performance of the ChangeCredentials abstract-operation... 67

16 Ports realization... 67
16.1 Retrieval Port .. 67
16.2 Indirect-submission Port ... 68
16.3 Administration Port... 68

Annex A � Formal assignment of Object Identifiers... 68

Annex B � Formal definition of the Message Store abstract-service .. 70

Annex C � Formal definition of general-attribute-types ... 77

Annex D � Formal definition of general-auto-action-types .. 82

Annex E � Formal definition of MS parameter upper bounds .. 83

Annex F � Example of the Summarize abstract-operation .. 84

Annex G � Differences between CCITT Recommendation X.413 (1992) and ISO/IEC 10021-5:1990 85

 Recommendation X.413 (09/92) v

INTRODUCTION

 This Recommendation is one of a series of Recommendations defining Message Handling (MH) in a
distributed open systems environment.

 Message Handling provides for the exchange of messages between users on a store-and-forward basis. A
message submitted by one user (the originator) is transferred through the message-transfer-system (MTS) and delivered
to one or more other users (the recipients).

 This Recommendation defines the Message Store abstract-service (MS abstract-service) which supports
message-retrieval from a Message Store (MS) and indirect-message-submission through the MS in a Message Handling
System (MHS). The MS abstract-service also provides message-administration services, as defined by the Message
Transfer System (MTS) abstract-service.

 This Recommendation has been produced by joint CCITT-ISO agreement. The corresponding International
Standard is ISO/IEC 10021-5:1990, as amended by Technical Corrigenda 1, 2, 3 and 4. Annex G lists the differences
between CCITT and ISO/IEC texts.

 Recommendation X.413 (09/92) 1

Recommendation X.413
Recommendation X.413 (09/92)

MESSAGE HANDLING SYSTEMS:
MESSAGE STORE: ABSTRACT-SERVICE DEFINITION

(revised 1992)

SECTION 1 � GENERAL

1 Scope

 This Recommendation defines the Message Store abstract-service. This abstract-service is provided by the
Message Store access-protocol (specified in CCITT Rec. X.419 | ISO/IEC 10021-6) in conjunction with the MTS
abstract-service (defined in CCITT Rec. X.411 | ISO/IEC 10021-4), together with the Remote Operations Service
Element (ROSE) services (defined in CCITT Rec. X.219 | ISO/IEC 9072-1). The abstract-syntax-notation for the
application-layer protocols used in this Recommendation is defined in CCITT Rec. X.208 | ISO 8824.

 Other Recommendations define other aspects of the MHS. CCITT Rec. X.400 | ISO/IEC 10021-1 defines the
user-oriented services provided by the MHS. CCITT Rec. X.402 | ISO/IEC 10021-2 provides an architectural overview
of the MHS. CCITT Rec. X.407 | ISO/IEC 10021-3 provides a description of the abstract-service definition conventions
used in MHS. CCITT Rec. X.420 | ISO/IEC 10021-7 defines the abstract-service for interpersonal messaging and
defines the format of interpersonal-messages.

 Section 2 of this Recommendation contains the Message Store abstract-service definition. Clause 6 describes
the MS model. Clause 7 specifies the abstract-syntax-notation for the abstract-bind and the abstract-unbind-operations.
Clause 8 specifies the abstract-syntax-notation for the operations of the abstract-service. Clause 9 specifies the abstract-
syntax-notation for the errors of the abstract-service.

 Section 3 of this Recommendation defines the general-attribute-types and general-auto-action-types related to
the MS. Clause 10 contains an overview. Clause 11 specifies the abstract-syntax-notation for the general-attribute-types.
Clause 12 specifies the abstract-syntax-notation for the general-auto-action-types.

 Section 4 of this Recommendation describes the procedures for Message Store and the ports realization.
Clause 13 contains an overview. Clause 14 describes how the Message Store abstract-service is supplied. Clause 15
describes how the Message Transfer System abstract-service is consumed. Clause 16 describes how the MS ports are
realized.

 No requirement is made for conformance to this Recommendation.

2 Normative references

 The following CCITT Recommendations and International Standards contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation are encouraged to investigate the possibility of applying the most recent edition of the
Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards. The CCITT Secretariat maintains a list of the currently valid CCITT Recommendations.

2.1 Reference model references

� CCITT Recommendation X.200 (1988), Reference Model of Open Systems Interconnection for CCITT
Applications

ISO 7498:1984/Cor. 1:1988 Information processing systems � Open Systems Interconnection � Basic
Reference Model � Technical Corrigendum 1.

2 Recommendation X.413 (09/92)

2.2 Presentation references

� CCITT Recommendation X.208 (1988), Specification of Abstract Syntax Notation One (ASN.1)

ISO/IEC 8824:1990, Information technology � Open Systems Interconnection � Specification of Abstract
Syntax Notation One (ASN.1).

2.3 Remote Operations references

� CCITT Recommendation X.219 (1988), Remote Operations: Model, Notation and Service Definition

ISO/IEC 9072-1:1989, Information processing systems � Text Communication � Remote Operations �
Part 1: Model, notation and service definition.

2.4 Directory references

� CCITT Recommendation X.500 (1988), The Directory � Overview of concepts, models and services

ISO/IEC 9594-1:1990, Information technology � Open systems Interconnection � The Directory �
Part 1: Overview of concepts, models and services.

� CCITT Recommendation X.501 (1988), The Directory � Models

ISO/IEC 9594-2:1990, Information technology � Open Systems Interconnection � The Directory � Part 2:
Models.

� CCITT Recommendation X.509 (1988), The Directory � Authentication Framework

ISO. IEC 9594-8:1990, Information technology � Open Systems Interconnection � The Directory �
Part 8: Authentication framework.

� CCITT Recommendation X.511 (1988), The Directory � Abstract Service Definition

ISO/IEC 9594-3:1990, Information technology � Open Systems Interconnection � The Directory � Part 3:
Abstract Service Definition.

� CCITT Recommendation X.518 (1988), The Directory � Procedures for Distributed Operation

ISO/IEC 9594-4:1990, Information technology � Open Systems Interconnection � The Directory � Part 4:
Procedures for Distributed Operation.

� CCITT Recommendation X.519 (1988), The Directory � Protocol Specifications

ISO/IEC 9594-5:1990, Information technology � Open Systems Interconnection � The Directory � Part 5:
Protocol specifications.

� CCITT Recommendation X.520 (1988), The Directory � Selected attribute types.

ISO/IEC 9594-6:1990, Information technology � Open Systems Interconnection � The Directory � Part 6:
Selected attribute types.

� CCITT Recommendation X.521 (1988), The Directory � Selected object classes.

ISO/IEC 9594-7:1990, Information technology � Open systems Interconnection � The Directory � Part 7:
Selected Object Classes.

2.5 Message Handling references

� CCITT Recommendation X.400 (1992), Message handling services; Message handling system and
service overview

ISO/IEC 10021-1:1990, Information technology � Text Communication � Message Oriented Text
Interchange Systems (MOTIS) � Part 1: Systems and Service Overview.

� CCITT Recommendation X.402 (1992), Message handling systems: Overall architecture

ISO/IEC 10021-2:1990, Information technology � Text Communication � Message Oriented Text
Interchange Systems (Motis) � Part 2: Overall Architecture.

 Recommendation X.413 (09/92) 3

� CCITT Recommendation X.407 (1988), Message handling systems: Abstract service definition
conventions

ISO/IEC 10021-3:1990, Information technology � Text Communication � Message Oriented Text
Interchange Systems (MOTIS) � Part 3: Abstract Service Definition Conventions.

� CCITT Recommendation X.411 (1992), Message handling systems: Message transfer system: Abstract
service definition and procedures

ISO/IEC 10021-4:1990, Information technology � Text Communication � Message Oriented Text
Interchange Systems (MOTIS) � Part 4: Message Transfer System � Abstract Service Definition and
Procedures.

� CCITT Recommendation X.419 (1992), Message handling systems: Protocol specifications

ISO/IEC 10021-6:1990, Information technology � Text Communication � Message Oriented Text
Interchange Systems (MOTIS) � Part 6: Protocol Specifications.

� CCITT Recommendation X.420 (1992), Message handling systems: Interpersonal messaging system

ISO/IEC 10021-7:1990, Information technology � Text Communication � Message Oriented Text
Interchange Systems (MOTIS) � Part 7: Interpersonal Messaging System.

3 Definitions

3.1 Common Definitions for MHS

 For a list of the common definitions for MHS refer to CCITT Rec. X.402 | ISO/IEC 10021-2.

3.2 Message Store Definitions

 For the purpose of this Recommendation the following definitions apply:

3.2.1 abstract-association

 An abstract binding between two communication partners; in this Recommendation the binding between a UA
and an MS for the provision of the MS abstract-service, or between an MS and an MTA for the provision of the MTS
abstract-service.

3.2.2 abstract-bind-parameters

 Parameters defined in this Recommendation which are contained in the abstract-bind operation.

3.2.3 abstract-unbind-parameters

 Parameters defined in this Recommendation which are contained in the abstract-unbind operation.

3.2.4 administration port

 The port offering the administration (for MTS) set of abstract-service within the MS abstract-service.

3.2.5 Alert abstract-operation

 An abstract-operation which allows the MS to signal, based on selection criteria, to the UA that messages or
reports are waiting in the MS. Can only be issued on an existing abstract-association.

3.2.6 attribute

 The information of a particular type appearing in an entry in an information-base.

4 Recommendation X.413 (09/92)

3.2.7 attribute-type

 That component of an attribute which indicates the class of information given by that attribute.

3.2.8 attribute-value

 A particular instance of that class of information indicated by an attribute type.

3.2.9 attribute-value-assertion

 A proposition, which may be true, false, or undefined, concerning the values of attributes in an entry.

3.2.10 auto-action

 Actions, that can be performed automatically by the MS, based on previously registered information from the
MS-owner via the UA.

3.2.11 auto-action-type

 An auto-action-type is used to indicate the type of auto-action, e.g. alert.

3.2.12 auto-alert

 Auto-alert is the auto-action within the MS, which triggers an alert abstract-operation or another action by the
MS.

3.2.13 auto-forward

 Auto-forward is the auto-action within the MS, which triggers a message to be auto-forwarded to another
recipient (or other recipients) by the MS.

3.2.14 child-entry

 An entry, other than the main-entry in an information-base. The parent-entry for a child-entry can be either the
main-entry or another child-entry, depending on the number of entry levels in each case.

3.2.15 child-sequence-number

 A sequence-number in a parent-entry pointing to a child-entry. A parent-entry can have more than one child-
sequence-number value, depending on the number of child-entries.

3.2.16 conditional (C) component

 An ASN.1 element which shall be present in an instance of its class as dictated by this Recommendation.
See grade.

3.2.17 content-length

 An attribute which gives the length of the content of a delivered-message (or returned-content).

3.2.18 content-returned

 An attribute which signals that a delivered-report (or a delivered-message) contained a returned content.

3.2.19 converted EITs

 An attribute identifying the encoded-information-types of the message content after conversion.

 Recommendation X.413 (09/92) 5

3.2.20 creation-time

 An attribute which gives the creation-time (by the MS) of an entry.

3.2.21 Delete abstract-operation

 An abstract-operation used to delete one or more entries from an information-base.

3.2.22 delivered-EITs

 A multi-valued attribute, giving information about EITs in a delivered-message.

3.2.23 delivered-message entry

 An entry in the stored-messages information-base resulting from a delivered-message.

3.2.24 delivered-report entry

 An entry in the stored-messages information-base resulting from a delivered-report.

3.2.25 entry

 An information set in an information-base. See main-entry, parent-entry and child-entry for further
classification of entries.

3.2.26 entry-information

 A parameter, used in abstract-operations, which conveys selected information from an entry.

3.2.27 entry-information-selection

 A parameter, used in abstract-operations, which indicates what information from an entry is being requested.

3.2.28 entry-status

 An attribute giving information about the processing status of that entry. Possible values are new, listed or
processed.

3.2.29 entry-type

 An attribute which signals if an entry is associated with a delivered-message or a delivered-report.

3.2.30 Fetch abstract-operation

 An abstract-operation which allows one entry to be fetched from the stored-messages information-base.

3.2.31 fetch-restrictions

 Restrictions, imposed by the UA, on what kind of messages it is prepared to receive as a result of fetch. The
possible restrictions are on message-length, content-types and EITs.

6 Recommendation X.413 (09/92)

3.2.32 filter

 A parameter, used in abstract-operations, to test a particular entry in an information-base and is either satisfied
or not by that entry.

3.2.33 filter-item

 An assertion about the presence or value(s) of an attribute of a particular type in an entry under test. Each such
assertion is either true, false or undefined.

3.2.34 forwarding-request

 This is a parameter that may be present in a Message-submission abstract-operation, invoked by the UA, to
request that a message is forwarded from the MS.

3.2.35 general-attribute

 A set of MS attributes which are valid for all types of messages and reports, independent of content-type. Only
these MS attributes are explicitly defined in this Recommendation.

3.2.36 general-auto-action

 Auto-actions which are valid for all types of messages and reports, independent of content-type. Only these
auto-actions are explicitly defined in this Recommendation.

3.2.37 grade

 Defined in CCITT Rec. X.402 | ISO/IEC 10021-2.

3.2.38 Indirect-submission port

 The port offering the indirect-submission abstract-service within the MS abstract-service. The Indirect-
submission abstract-service offers the same services as the Message-submission abstract-service (from the MTS abstract-
service) with the added functionality of forwarding messages residing in the MS.

3.2.39 information-base

 Objects within the MS which store information relevant to the MS abstract-service, e.g. the stored-messages
information-base, which stores the messages and reports that have been delivered into the MS.

3.2.40 information-base-type

 The type of information-base, e.g. the stored-messages.

3.2.41 limit

 A component in the selector parameter which identifies the maximum number of selected entries to be returned
in the result of an abstract-operation.

3.2.42 list abstract-operation

 An abstract-operation which allows a selection of entries from an information-base and requested attribute
information to be returned for those entries.

3.2.43 listed

 An entry-status value.

 Recommendation X.413 (09/92) 7

3.2.44 macro

 See CCITT Rec. X.208 | ISO/IEC 8824.

3.2.45 main-entry

 For each successful abstract-operation which creates information-base entries, there is always one main-entry.
Further, or more detailed, information resulting from the same abstract-operation can be stored in child-entries.

3.2.46 mandatory (M) component

 An ASN.1 element which shall always be present in an instance of its class. See grade.

3.2.47 matching

 The process of comparing the value supplied in an attribute-value-assertion with the value of the indicated
attribute-type stored in the MS or deciding whether the indicated attribute-type is present.

3.2.48 Message Retrieval Service Element (MRSE)

 The application-service-element by means of which a receiving UA effects retrieval of messages from an MS,
or any of various related tasks.

3.2.49 MS

 Message Store, also used as a shorter form for �MS abstract-service-provide�.

3.2.50 MS abstract-service

 The set of capabilities that the MS offers to its users by means of its ports.

3.2.51 MS abstract-service-user

 The user of the MS abstract-service. This is the UA.

3.2.52 MS abstract-service-provider

 The MS which provides the MS abstract-service.

3.2.53 MS-user

 A shorter form for �MS abstract-service-user�.

3.2.54 Message-submission abstract-operation

 An abstract-operation which allows the UA to submit a message to the MTS via the MS, and/or to forward a
message from the MS to the MTS.

3.2.55 multi-valued attribute

 An attribute which can have several values associated with it.

3.2.56 new

 An entry-status value.

8 Recommendation X.413 (09/92)

3.2.57 optional (O) component

 An ASN.1 element which shall be present in an instance of its class at the discretion of the object (e.g. user)
supplying that instance. See grade.

3.2.58 original-EITs

 An attribute identifying the original encoded-information-types of the message content.

3.2.59 override

 A component of the selector parameter indicating that the previously registered-restrictions for this abstract-
operation should not apply for this instance of this abstract-operation.

3.2.60 parent-entry

 A parent-entry has one or more child-entries, which were created as a result of the same abstract-operation. If a
parent-entry is not a child-entry of another parent-entry, it is a main entry.

3.2.61 parent-sequence-number

 A sequence-number in a child-entry pointing to its parent-entry. There can only be one parent-sequence-
number in a child-entry.

3.2.62 partial-attribute-request

 A component of the entry-information-selection which enables the return of only selected values of a multi-
valued attribute.

3.2.63 position

 Positions are parameters used to specify a bound of a range.

3.2.64 processed

 An entry-status value.

3.2.65 range

 A parameter, used in abstract-operations, to select a contiguous sequence of entries from an information-base.

3.2.66 Register-MS abstract-operation

 An abstract-operation which allows the UA to register certain information, relevant to the UA-MS
interworking, in the MS.

3.2.67 registration

 Information which is registered in the MS and stored (until changed by the Register-MS abstract-operation)
between abstract-associations. See Register-MS abstract-operation.

3.2.68 registration-identifier

 An identifier for one particular set of registration-parameters for an auto-action-type.

 Recommendation X.413 (09/92) 9

3.2.69 Retrieval Port

 The port offering the retrieval set of abstract-services within the MS abstract-service.

3.2.70 returned-content entry

 An entry-type in the stored-messages information-base which contains the returned content from a previously
submitted message.

3.2.71 selector

 A parameter, used in abstract-operations, to select entries from an information-base.

3.2.72 sequence-number

 An attribute which uniquely identifies an entry. Sequence-numbers are allocated in ascending order.

3.2.73 single-valued attribute

 An attribute which can only have one value associated with it.

3.2.74 span

 A component in the Summarize abstract-operation result containing the lowest and highest sequence-numbers
of the entries that matched the selection criteria.

3.2.75 stored-messages

 The most important information-base in this Recommendation, used to store entries containing messages and
reports delivered by the MTS to the MS.

3.2.76 subscription

 A long-term agreement between the MS supplier or administrator and the MS customers (MS-owners) on the
availability and use of optional MS features such as optional services and attributes. This Recommendation, assumes that
such a mechanism is provided, but does not prescribe or offer any standardized method for how to provide this.

3.2.77 substring

 A filter-item used to specify a string of characters which appear (in the same given order) in a value of an
attribute.

3.2.78 Summarize abstract-operation

 An abstract-operation which allows a quick overview of the kind and number of entries which are currently
stored in an information-base.

3.2.79 synopsis

 A content specific attribute that may be used to show how child-entries, containing parts of the content, are
related to each other and the main-entry. The attribute has to be specified in the Recommendation, which describes the
content-type, e.g. see IPM-synopsis defined in Rec. X.420 | ISO/IEC 10021-7.

10 Recommendation X.413 (09/92)

4 Abbreviations

ASN.1 Abstract Syntax Notation One

AVA Attribute-value-assertion

C Conditional

DL Distribution-list

EIT Encoded-information-type(s)

IPMS Interpersonal messaging system

M Mandatory

M Multi-valued

MASE Message Administration Service Element

MDSE Message Delivery Service Element

MH Message Handling

MHS Message Handling System

MOTIS Message Oriented Text Interchange System

MRSE Message Retrieval Service Element

MS Message Store

MSSE Message Submission Service Element

MT Message Transfer

MTA Message Transfer Agent

MTS Message Transfer System

N No

O Optional

O/R Originator/recipient

P Present

ROS Remote Operations Service

ROSE Remote Operations Service Element

S Single-valued

UA User Agent

UTC Coordinated Universal Time

Y Yes

5 Conventions

 This Recommendation uses the descriptive conventions listed in the following four subclauses.

5.1 Conventions for abstract-services

 This Recommendation uses the following ASN.1-based descriptive conventions for the indicated purposes:

1) ASN.1 itself, to specify the abstract-syntax of information-bases and their components, and common data-
types.

2) The ASN.1 PORT macro and associated abstract-service definition conventions of CCITT
Rec. X.407 | ISO/IEC 10021-3, to specify the Retrieval Port.

 Recommendation X.413 (09/92) 11

3) The ASN.1 ABSTRACT-BIND, ABSTRACT-UNBIND, ABSTRACT-OPERATION, and ABSTRACT-
ERROR macros and associated abstract-service definition conventions of CCITT Rec. X.407 |
ISO/IEC 10021-3, to specify the MS abstract-service.

 Whenever this Recommendation describes a class of data structure having components, each component is
categorized as one of the following grades:

1) Mandatory (M:) A mandatory component shall be present in every instance of the class.

2) Optional (O): An optional component shall be present in an instance of the class at the discretion of
the object (e.g. user) supplying that instance.

3) Conditional (C): A conditional component shall be present in an instance of the class as dictated by
this Recommendation.

5.2 Conventions for attribute-types used in Table 1/X.413 of clause 11

 This Recommendation uses the conventions listed below in its definition of the attribute-types for the MS
abstract-service.

 For the column headed �Single/Multi-valued� the following values can occur:

S single-valued

M multi-valued.

 For the column headed �Support level by the MS and access UA� the following values can occur:

M mandatory

O optional

 For the columns headed �Presence in delivered message entry�, �Presence in delivered report entry�, and
�Presence in returned message entry�, the presence of each attribute-type is described by one of the following values:

P always present in the entry because:

� it is mandatory for generation by the MS; or

� it is a mandatory or defaulted parameter in the relevant abstract-operation.

C conditionally present in the entry. It would be present because:

� it is supported by the MS and subscribed to by the user and;

� it was present in an optional parameter in the relevant abstract-operation.

� always absent, otherwise.

 For the columns headed �Available for list, alert� and �Available for summarize�, the following values can
occur:

N no

Y yes

5.3 Conventions for attribute-types used in Table 2/X.413 of clause 11

 This Recommendation uses the conventions listed below in its definition of the attribute-type for the MS
abstract-service. Clause 11 includes the table that lists the attribute-types.

 For the column headed �Single/multi-valued� the following values can occur:

S single-valued

M multi-valued

12 Recommendation X.413 (09/92)

 For the column headed �Source generated by� the following values can occur:

MD MessageDelivery abstract-operation

MS MessageStore

RD ReportDelivery abstract-operation

5.4 Font conventions for text in general

 Throughout this Recommendation, terms are rendered in bold when defined, without emphasis upon all other
occasions. Terms that are proper nouns are capitalized, generic terms are not. Multi-word generic terms are hyphenated.

5.5 Font conventions for ASN.1 definitions

 Throughout this Recommendation, ASN.1 definitions are written in a different (bold) font than the rest of the
document in order to highlight the difference between normal text and ASN.1 definitions. The font used for ASN.1
definitions is also one size smaller than the ordinary text. When ASN.1 protocol elements and elements values are
described in accompanying text, their names are rendered in bold.

5.6 Rules for ASN.1 definitions

 ASN.1 definitions appears both in the body of the document to aid the exposition, and again, formally in
Annexes for reference. If differences are found between the ASN.1 used in the exposition and that formally defined in
the corresponding annex, a specified error is indicated.

SECTION 2 � MESSAGE STORE ABSTRACT-SERVICE DEFINITION

6 Message Store model

 The Message store (MS) is modelled as an atomic object, which acts as a provider of services to an
MS abstract-service-user (i.e. a User Agent), and as a user of services provided by the Message Transfer System (MTS).

 The MS serves an intermediary role between the UA and the MTS. Its primary function is to accept delivery of
messages on behalf of a single MHS end-user, and to retain them for subsequent retrieval by the end-user�s UA. The MS
also provides indirect message-submission and message-administration services to the UA, in effect, via �pass-through�
to the MTS. This enables the MS to provide additional functionality compared to submission directly to the MTA; such a
forwarding of messages residing in the MS and logging facilities.

 Like the UA, the MS acts on behalf of only a single MHS end-user; i.e. it does not provide common or shared
multi-user MS service.

 The MS is described using an abstract model in order to define the services provided by the MS � the Message
Store abstract-service. Figure 1/X.413 shows the MS abstract-service in relation to its user and to the Message Transfer
System abstract-service. In this figure, the open boxes represent the consumption of the abstract service, and the closed
boxes represent the supply of the abstract service.

 For an introduction and description of the abstract-service concept and its definition conventions, see CCITT
Rec. X.407 | ISO/IEC 10021-3.

 In secure messaging the MS is treated as a separate object with a unique identity and has separate key (or a set
of keys) to the UA.

 Recommendation X.413 (09/92) 13

T0716150-93

UA MS

MTS

MS
abstract-
service
provider

Retrieval

Indirect-
submission

Administration

Delivery

Submission

FIGURE 1/X.413
Message store abstract-service

MS
abstract-
service
user

MTS
abstract-
service
provider

Administration

6.1 Message Store object

 The MS is modelled as an atomic object. It supplies the MS Retrieval Port abstract-services to the MS abstract-
service-user. Acting as a �surrogate� MTS abstract-service-provider, the MS also supplies the MTS submission and
administration abstract-services to the MS abstract-service-user (MS-user), and acting as a UA �surrogate�, it consumes
the MTS Delivery Port, Submission Port, and Administration Port abstract-services in its role as MTS abstract-service
user.

 The formal definition for the Message Store object is as follows:

 mS OBJECT
 PORTS { retrieval[S],
 indirectSubmission[S],
 administration[S],
 delivery[C],
 submission[C],
 administration[C] }
 ::= id-ot-ms

 The MS-user is also modelled as an object. It consumes the MS Retrieval Port and Indirect-submission Port
abstract-services and the Administration Port abstract-services provided transparently by the MS.

 msUser OBJECT
 PORTS { retrieval[C],
 indirectSubmission[C],
 administration[C] }
 ::= id-ot-ms-user

6.2 Message Store ports

 An MS provides the Retrieval, Indirect-submission, and Administration Ports to the MS abstract-service
user. The collection of capabilities provided by these ports provides the MS abstract-service. The retrieval capabilities
are unique to the MS. These capabilities include obtaining information on, fetching (in whole or in part), and deleting
messages residing in the MS. Additional capabilities are provided for registering certain MS provided automatic actions
(i.e. auto-forwarding and alert).

 Note � A future version of this Recommendation may define additional message management services
performed by the MS on the UA�s behalf, for logging incoming and outgoing messages, and for auto-correlating
notifications with logging information about outgoing messages.

14 Recommendation X.413 (09/92)

 In order to provide the services described in 6.1 to an MS-user, the MS interacts, on behalf of the MS-user,
with the MTS abstract-service, and acts as a consumer of the MTS Delivery, Submission and Administration Ports. The
abstract-services provided by the MTS ports are defined in clause 8 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 By means of the abstract-bind operation, the MS authenticates an MS-user before providing it with any of the
above retrieval capabilities. Similarly, the MTS abstract-services shall authenticate the MTS abstract-service user before
extending its services to the MTS abstract-service-user.

 With the exception of the Retrieval Port provided Alert service and the Indirect-submission Port provided
Submission-control service, all the services provided by the MS abstract-service are invoked by the MS-user and
performed by the MS.

 Security-labels may be assigned to the MS in line with the security-policy in force. The security-policy may
also define how security-labels are to be used to enforce the security-policy. If security-labels are assigned to the MS,
the handling of stored messages and reports bearing message-security labels may be affected by the security-policy in
force. If security-labels are not assigned to the MS, the handling of stored-messages and reports is discretionary.

 If security-contexts are established between the UA and the MS, and between the MS and the MTA, the
security-label that is assigned to a message or probe is confined by the security-context in line with the security-policy in
force. If security-contexts are not established the assignment of a message-security-label to a message or probe is at the
discretion of the originator.

6.2.1 Retrieval Port

 The Retrieval Port is defined as follows:

 retrievalPORT
 CONSUMER INVOKES {
 Summarize,
 List,
 Fetch,
 Delete,
 Register-MS }
 SUPPLIER INVOKES {
 Alert }
 ::= id-pt-retrieval

 The details of the Retrieval Port abstract-services are described in clauses 7 to 9.

6.2.2 Indirect-submission Port

 The Indirect-submission Port is defined as follows:

 indirectSubmissionPORT ::= submission

 The Indirect-submission Port makes use of the Submission Port abstract-services defined in 8.2 of CCITT
Rec. X.411 | ISO/IEC 10021-4.

6.2.3 Administration Port

 The Administration Port is defined in 8.4 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 The Change-credentials abstract-service operates end-to-end between the MS-user and the MTS-service-
provider, and passes through the MS. The MS stores the new credentials for use when it subsequently binds with the
MTA. If the MS-user needs to update the credentials it uses when binding to the MS, then the Register-MS abstract-
operation is used (see 8.6).

6.3 Information model

 This subclause describes the information model used by the MS. It models information-bases, which consist
of entries, which consist of attributes.

 Recommendation X.413 (09/92) 15

6.3.1 Information-bases

 The MS stores and maintains information-bases. An information-base in the MS is a �data-base� containing
all the entries representing constituent objects of a particular category or categories.

 This Recommendation defines and describes the stored-messages information-base. This holds information
derived from message-deliveries and report-deliveries to the MS across the MTS Delivery Port, and is described in 6.4.

 Note � A future version of this Recommendation defines additional information-bases for logging, called inlog
and outlog.

 InformationBase ::= INTEGER {

 stored-messages (0),

 inlog (1),

 outlog (2) } (0 . . ub-information-bases)

6.3.2 Entries

 Each information-base is organized as a sequence of entries. An entry represents a single object (such as a
delivered message) within the information-base.

 Each entry is identified by means of its sequence-number, unique within an information-base, and generated
by the MS as new entries are created. Within an information-base, the MS generates the sequence-numbers in
ascending order without cycling, and they are never re-used.

 SequenceNumber ::= INTEGER (0 . . ub-messages)

 Note � For example, the MS may choose to allocate sequence-numbers by using the time to a sufficient
granularity to ensure uniqueness.

6.3.3 Attributes

6.3.3.1 Introduction

 An entry consists of a set of attributes. This is depicted in Figure 2/X.413.

 Each attribute provides a piece of information about, or derived from, the data to which the entry
corresponds. One such piece of information is the sequence-number of the entry itself, and another is the creation-
time.

 An attribute consists of an attribute-type, which identifies the class of information given by an attribute,
and the corresponding attribute-value(s), which are particular instances of that class appearing in the entry.

 Attribute ::= SEQUENCE {

 type AttributeType,

 values SEQUENCE SIZE (1 . . ub-attribute-values) OF AttributeValue }

 Note � Thus, for example, in a delivered-message-entry (described in 6.4) the attribute-type could be the
message�s priority, and a corresponding attribute-value could be urgent.

 All attributes in an entry must be of distinct attribute-types.

 For some attribute-types, an attribute may only contain a single attribute-value. Such an attribute-type is
said to be single-valued. For others, an attribute may contain one or more attribute-values, all of the same ASN.1
data-type. Such an attribute-type is said to be multi-valued. Whether an attribute-type is single-valued or multi-
valued is stated when the attribute-type is defined (see 6.3.3.2).

 Note 2 � Thus, for example, the attribute-type for the originator-name attribute (described in 11.2.28) is
single-valued, whereas that for other-recipient-names (described in 11.2.29) is multi-valued.

16 Recommendation X.413 (09/92)

. . . .

. . . .

T0716160-93

ENTRY Attribute

ATTRIBUTE

Attribute
type

Attribute
value(s)

ATTRIBUTE VALUE(S)

Attribute
value

FIGURE 2/X.413
Components of an entry

Attribute Attribute

Attribute
value

Attribute
value

6.3.3.2 Attribute-type

 Some attribute-types will be internationally standardized. Other attribute-types will be defined by national
administrative authorities and private organizations. This implies that a number of separate authorities will be
responsible for assigning types in a way that ensures that each is distinct from all other assigned types. This is
accomplished by identifying each attribute-type with an object-identifier when the attribute-type is defined.

 AttributeType ::= OBJECT IDENTIFIER

 Certain general-purpose attribute-types for the stored-messages information-base are defined in clause 11.
Such attribute-types are known as general-attribute-types and attributes of these types as general-attributes.

6.3.3.3 Attribute-values

 Defining an attribute-type also involves specifying the ASN.1 data-type to which every value in such
attributes shall conform. The data-type of an attribute-value for the attribute-type is defined through the object-
identifier for the attribute-type.

 AttributeType ::= ANY

6.3.3.4 Attribute-type definition and the ATTRIBUTE Macro

 The definition of an attribute-type involves:

a) assigning an object identifier to the attribute-type;

b) indicating the ASN.1 data-type of an attribute-value;

c) indicating whether an attribute of this attribute-type may have more than one value;

d) indicating whether an attribute of this attribute-type may be used for filtering using equality, substrings,
and/or ordering relations (see 8.1.2).

 Note � A filter may always test for the presence or absence in an entry of an attribute of a particular
attribute-type.

 Recommendation X.413 (09/92) 17

 The following ASN.1 macro is used to define an attribute-type. The formal definition of this macro is given
in CCITT Rec. X.501 | ISO/IEC 9594-2 and is documented here as an aid to the reader.

 ATTRIBUTE MACRO ::=
 BEGIN

 TYPE NOTATION ::= AttributeSyntax Multivalued | empty
 VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)

 AttributeSyntax ::= �WITH ATTRIBUTE-SYNTAX� SyntaxChoice
 SyntaxChoice ::= value (ATTRIBUTE-SYNTAX) Constraint | type MatchTypes

 Constraint ::= �(� ConstraintAlternative �)� | empty
 ConstraintAlternative ::= StringConstraint | IntegerConstraint
 StringConstraint ::= �SIZE� �(� SizeConstraint �)�
 SizeConstraint ::= SingleValue | Range
 SingleValue ::= value (INTEGER)
 Range ::= value (INTEGER) �..� value (INTEGER)
 IntegerConstraint ::= �(� Range �)�

 MatchTypes ::= �MATCHES FOR� Matches | empty
 Matches ::= Match Matches | Match
 Match ::= �EQUALITY� | �SUBSTRINGS� | �ORDERING�

 Multivalued ::= �SINGLE VALUE� | �MULTI VALUE� | empty

 END

 The correspondence between the parts of the definition, as listed above, and the various pieces of the notation
introduced by the ATTRIBUTE macro, is as follows:

a) MACRO value: The object-identifier which is used to identify an attribute.

b) Attribute-syntax: Notes which syntax-choice has been made.

c) Syntax-choice: Notes whether the attribute is defined externally or internally. The syntax of all the
attributes defined in this Recommendation is defined internally, which means using the choice
typeMatchTypes.

d) Multivalued: denotes whether the attribute is single or multi-valued.

e) Match-types: Gives the data-type of the contents of the attribute, and describes whether the attribute can
be matched (�MATCHES FOR�) for equality (�EQUALITY�), for substrings (�SUBSTRINGS�),
and for an ordering relation (�ORDERING�).

 Matching for this Recommendation is restricted as follows:

i) EQUALITY is applicable to any attribute-syntax. The presented value shall conform to the data-type of
the attribute-syntax;

ii) SUBSTRING is applicable to any attribute-syntax with a string data type. The presented value shall be a
sequence (�SEQUENCE OF�), each of whose elements conforms to the data-type; and

iii) ORDERING is applicable to any attribute-syntax for which a rule can be defined that will allow a
presented value to be described as less than or equal to, or greater than or equal to a target value. The
presented value must conform to the data-type of the attribute-syntax. MS uses this for the INTEGER and
UTCTime data types. For UTCTime, the ordering is chronological, not alphabetical.

 The remaining choices and parameters of the ATTRIBUTE macro are not used in this Recommendation.

6.3.4 Main-entries, parent-entries, and child-entries

 Although entries in a single information-base are generally independent of each other, the MS information
model allows such entries to be related to one another. One entry, a child-entry, may be the child of another, its parent-
entry, in a tree-structured relationship. An entry which is not a child-entry is termed a main-entry.

18 Recommendation X.413 (09/92)

 This relationship is recorded by means of two special general-attributes:

a) parent-sequence-number: This single-valued attribute gives the sequence-number of a child-entry�s
parent-entry. It is absent from a main-entry. Its definition is given in 11.2.30.

b) child-sequence-numbers: This multi-valued attribute gives the sequence-numbers of all the child-entries
of a parent-entry. It is absent from an entry which is not a parent-entry. Its definition is given in §
11.2.1.

 The abstract-operations of the MS abstract-service (see clause 8) act by default only on main-entries. Some
may be directed to act on all entries, both main-entries and child-entries. In particular, the argument of a Delete
abstract-operation (see 8.5) may only select main-entries, in which case the main-entry and all its children and
children�s children, etc. will also be deleted.

 Note � This concept allows, for example, those body-parts of an Interpersonal message which contain a
forwarded message (for details see 19.1 of CCITT Rec. X.420 | ISO/IEC 10021-7) to be represented by individual child-
entries. The content general-attribute of the main-entry will comprise the complete content, so the data representing
that message body-part is logically present in more than one entry.

6.4 Stored-messages

 The stored-messages information-base acts as a repository for information obtained from the
MessageDelivery and ReportDelivery abstract-operations of the Delivery Port. It contains entries for delivered messages
(delivered-message-entries), of an open-ended number of content-types, and for reports (delivered-report-entries). An
entry in the stored-message-information-base is created by the MS when a message or report is delivered to the MS.
For more details of these entries and how they are generated, see clauses 11 and 15.

 To draw information from the content of a message, the MS must know the content�s syntax and semantics, as
signaled via the content-type. In general, a particular instance of the MS has knowledge of zero or more content-types.
When an MS encounters a message of whose content-type it has insufficient knowledge, it is unable to generate any
content-type-specific attributes in the message�s entry.

 A delivered-message or an arriving notification may result in a main-entry and one or more levels of child-
entries. The one case defined by this Recommendation is when a non-delivery notification contains a returned-content
(the delivered-report entry is the main-entry and the returned-content is its child-entry, known as a returned-content
entry).

 The rules for how a message-content may be split across several entries is specific to each content-type. A
content-specific synopsis-attribute may be used to show how the main-entry and the corresponding child-entries are
related. When such an attribute is defined, it appears in the Recommendation which defines the content-type itself. The
synopsis-attribute is constructed by the MS.

 Note � For Interpersonal Messaging (CCITT Rec. X.420 | ISO/IEC 10021-7), nested IP-messages within an
IP-message are each represented by a child-entry. The ipm-synopsis attribute-type is an example of a content-specific
synopsis-attribute-type.

 An important property of an entry in the stored-messages information-base is its entry-status. It is created and
maintained by the MS. It can take the following values:

a) New: The message has neither been listed by a UA nor has it been automatically processed by the MS.

b) Listed: Information about the message has been returned to the UA in either a list abstract-operation or a
Fetch abstract-operation, but the message has not yet been completely processed.

 Recommendation X.413 (09/92) 19

c) Processed: Either a UA has �completely fetched� the message, or the MS has performed an auto-action
on it and the definition of that auto-action causes a change of entry-status. (Note that some auto-actions
result in the message being deleted). The exact definition of �completely fetched� is content-specific and
is defined in the corresponding content-specific Recommendation.

 The entry-status of a (non-)delivery-notification becomes processed when the delivered-report-envelope is
retrieved.

 The definition for entry-status is as follows:

 EntryStatus ::= INTEGER {

 new (0),

 listed (1),

 processed (2) }

 The entry-status of a child-entry is maintained according to the same rules as apply to a main-entry. A change
in the entry-status of an entry may result from operations performed on the entry�s parent or child-entry. If a child-entry
is logically present in an attribute of its parent-entry, the retrieval of the attribute is regarded as equivalent to the retrieval
of all attributes of the child-entry. If an attribute of an entry is logically present in one or more childentries, then retrieval
of all those child-entries is equivalent to retrieval of the attribute.

6.5 Auto-actions

6.5.1 Introduction

 This subclause defines a framework for the automatic actions (auto-actions) which may be registered with the
MS or controlled by subscription.

 An auto-action is an action that will occur automatically whenever the associated criteria have been satisfied.
The criteria may be conveyed to the MS by means of registration or subscription. The result of an action being invoked
is visible externally to the MS. Auto-actions are registered in the MS using the Register-MS abstract-operation (see 8.6).

 Each class of auto-action is identified by means of an auto-action-type. Associated with the registration of an
auto-action, there is a corresponding auto-action-registration-parameter, which are the parameters needed by the MS
to perform the registered auto-action automatically. The registration of an auto-action requires the use of an auto-
action-registration-identifier to identify the particular registration.

 AutoActionRegistration ::= SEQUENCE {

 type AutoActionType,

 registration-identifier [0] INTEGER (1 . . ub-per-auto-action) DEFAULT 1,

 registration-parameter [1] ANY DEFINED BY type }

 Even if an auto-action has a defined auto-action-registration-parameter, any criteria and other parameters
needed for its performance may be conveyed to the MS by means of subscription. However, some auto-actions may
require that the MS supports registration of its registration-parameter by means of the Register-MS abstract-operation
(see 8.6).

6.5.2 Auto-action-type

 Some auto-action-types will be internationally standardized. Other auto-action-types will be defined by
national administrative authorities and private organizations. This implies that a number of separate authorities will be
responsible for assigning types in a way that ensures that each is distinct from all other assigned auto-action-types. This
is accomplished by identifying each auto-action-type with an object identifier when the auto-action-type is defined.

 AutoActionType ::= OBJECT IDENTIFIER

20 Recommendation X.413 (09/92)

 Certain general-purpose auto-action-types are defined in clause 12. Such auto-action-types are known as
general-auto-action-types and auto-actions of these types as general-auto-actions.

6.5.3 Auto-action-registration-parameter

 Defining an auto-action-type also involves specifying the ASN.1 data-type to which the auto-action-
registration-parameter shall conform. The data-type of a registration-parameter is defined through the object
identifier for the auto-action-type.

6.5.4 Auto-action-type definition and the AUTO-ACTION macro

 The definition of an auto-action-type involves:

a) assigning an object identifier to the auto-action-type;

b) indicating the ASN.1 data-type of the auto-action-registration-parameter.

 The following ASN.1 macro may (but need not be) used to define an auto-action-type:

 AUTO-ACTION MACRO ::=

 BEGIN

 TYPE NOTATION ::= Registration

 VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)

 Registration ::= �REGISTRATION PARAMETER IS� type

 END

 The correspondence between the parts of the definition, as listed above, and the various pieces of the notation
introduced by the AUTO-ACTION macro, is as follows:

a) Registration: gives the data-type of the registration parameters association with an auto-action.

b) Value: the object identifier which is used to identify the auto-action.

 Note � No support is provided in the macro for defining the interaction (if any) between different registrations
of the same (or different) auto-actions.

6.6 Forwarding of messages

 The MS-user makes use of the message-submission abstract-operation and its parameters as defined in 8.2 of
CCITT Rec. X.411 | ISO/IEC 10021-4 to request that a message stored in the MS be explicitly forwarded to other users.

 The forwarding-request parameter is defined using the EXTENSION macro defined in clause 9 of CCITT
Rec. X.411 | ISO/IEC 10021-4 as follows:

 forwarding-request EXTENSION

 SequenceNumber

 CRITICAL FOR SUBMISSION

 ::= 36

 If the Sequence-Number supplied does not match that of an entry in the stored-messages information-base,
or matches an entry that is unsuitable for forwarding, this is reported using the Inconsistent-request abstract-error of
8.2.2.7 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 Recommendation X.413 (09/92) 21

7 Abstract-bind and abstract-unbind operations

7.1 Abstract-bind-operation

 The MS-bind abstract-bind-operation binds the Indirect-submission, Retrieval and Administration Ports of
the MS-user (consumer) to the MS (supplier). The initiator (of the MS-Bind) is the MS-user, while the responder is the
MS itself. Information exchanged in the argument and result of MS-Bind shall apply for the duration of the abstract-
association. MS-bind is defined as follows:

 MSBind ::= ABSTRACT-BIND

 TO { indirectSubmission[S], retrieval[S], administration[S] }

 BIND

 ARGUMENT MSBindArgument

 RESULT MSBindResult

 BIND-ERROR MSBindError

 Only one abstract-association may exist at any one time between the MS and the MS-user.

 Note � Mechanisms for the handling of multiple associations are for further study.

7.1.1 Abstract-bind-argument

 The abstract-bind-argument parameters are used to identify, authenticate and set the security-context for an
MS abstract-service-user. They also contain a set of restrictions for entries to be returned as result of a Fetch abstract-
operation, and finally, a request to be informed of the auto-action-types, attribute-types and content-types to which the
MS-user has subscribed.

 The definition of these parameters is as follows:

 MSBindArgument ::= SET {

 initiator-name ORAddressAndOrDirectoryName,

 initiator-credentials [2] InitiatorCredentials,

 security-context [3] IMPLICIT SecurityContext OPTIONAL,

 fetch-restriction [4] Restrictions OPTIONAL -- default is none --,

 ms-configuration-request [5] BOOLEAN DEFAULT FALSE }

1) Initiator-name (C): This argument contains the name of the initiator of the association and is supplied by
the initiator. This argument is defined further in 8.1.1.1.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) Initiator-credentials (M): This parameter contains the credentials of the initiator of the association. It
shall be generated by the initiator of the abstract-association.

The initiator-credentials may be used by the responder to authenticate the identity of the initiator
(see CCITT Rec. X.509 | ISO/IEC 9594-8).

If only simple-authentication is used, the initiator-credentials comprise a simple password. The
password is defined further in 8.5.11 of CCITT Rec. X.411 | ISO/IEC 10021-4.

If strong-authentication is used, the initiator-credentials comprise an initiator-bind-token, and,
optionally, an initiator-certificate. The initiator-bind-token and initiator-certificate are defined further
in 8.1.1.1.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4. The initiator-credentials of the MS-user may
differ from the initiator-credentials used in the MTS-bind as defined in 8.1.1.1.1.2 of CCITT Rec. X.411
| ISO/IEC 10021-4.

3) Security-context (O): This parameter identifies the security-context that the initiator of the abstract-
association proposes to operate at. It is generated by the initiator of the abstract-association. The security-
context is defined further in 8.1.1.1.1.3 of CCITT Rec. X.411 | ISO/IEC 10021-4.

22 Recommendation X.413 (09/92)

The security-context comprises one or more security-labels that define the sensitivity of interactions that
may occur between the MS abstract-service-user and the MS-abstract-service for the duration of the
abstract-association, in line with the security-policy in force. The security-context shall be one that is
allowed by the registered user-security-labels of the MS-abstract-service-user and by the security-labels
with the MS.

In the absence of this parameter, security-contexts are not established between the MS-abstract-service-
user and the MS-abstract-service, and the sensitivity of interactions that may occur between the MS
abstract-service user and the MS abstract-service is at the discretion of the invoker of the abstract-
service.

4) Fetch-restrictions (O): This contains the restrictions on entries to be returned as result of a Fetch
abstract-operation. The fetch-restrictions remain set until an abstract-unbind-operation is issued.

In the absence of this argument, the default is that no fetch-restrictions need to be performed.

This argument consists of the following components:

 Restrictions ::= SET {

 allowed-content-types [0] SET SIZE (1 . . ub-content-types) OF OBJECT IDENTIFIER

 OPTIONAL

 -- default is no restriction --,

 allowed-EITs [1] MS-EITs OPTIONAL -- default is no restriction --,

 maximum-content-length [2] ContentLength OPTIONAL -- default is no restriction -- }

a) Allowed-content-types (C): The content-types that the MS abstract-service-user is prepared to
accept as result of a Fetch abstract-operation. Any message with a content-type other than the ones
specified will not be returned, but result in an error, unless the Fetch abstract-operation has explicitly
overridden the restriction.

In the absence of this component, the default is that no fetch-restrictions on content-types need to
be performed.

b) Allowed-EITs (C): The encoded-information-types that the MS abstract-service-user is prepared to
accept as result of a Fetch abstract-operation. If a message contains encoded-information-types other
than the ones specified, a filtering will take place so that disallowed EIT parts are not returned along
with the text of the message. If the whole message consists of disallowed EITs, an error will be
reported. No filtering will take place if the Fetch abstract-operation has explicitly overridden the
restriction.

 MS-EITs ::= SET SIZE (1 . . ub-encoded-information-types) OF MS-EIT

 MS-EIT ::= OBJECT IDENTIFIER

In the absence of this component, the default is that no fetch-restrictions on encoded-information-
types need to be performed.

c) Maximum-content-length (C): The maximum content length that the MS-abstract-service-user is
prepared to accept as result of a Fetch abstract-operation. Any message with a content-length
exceeding the one specified will not be returned, but result in an error, unless the Fetch abstract-
operation has explicitly overridden the restriction.

In the absence of this component, the default is that no fetch-restrictions on content-length need to
be performed.

5) MS-configuration-request (C): This parameter specifies whether the MS is requested to return
information which identifies the auto-action types, optional attribute-types, and content-types to which the
MS-user has subscribed, and which consequently are available in the course of the abstract-association.

In the absence of this component, the default is false which indicates that no such request is being made.

 Recommendation X.413 (09/92) 23

7.1.2 Abstract-bind-result

 The abstract-bind-result parameters are as follows:

 MSBindResult ::= SET {
 responder-credentials [2] ResponderCredentials,
 available-auto-actions [3] SET SIZE (1 . . ub-auto-actions) OF AutoActionType OPTIONAL,
 available-attribute-types [4] SET SIZE (1 . . ub-attributes-supported) OF AttributeType
 OPTIONAL,
 alert-indication [5] BOOLEAN DEFAULT FALSE,
 content-types-supported [6] SET SIZE (1 . . ub-content-types) OF OBJECT IDENTIFIER
 OPTIONAL }

1) Responder-credentials (M): This parameter contains the credentials of the responder of the abstract-
association. It shall be generated by the responder of the abstract-association.

The responder-credentials may be used by the initiator to authenticate the identity of the responder (see
CCITT Rec. X.509 | ISO/IEC 9594-8).

If only simple-authentication is used, the responder-credentials comprise a simple password
associated with the responder. The password is defined further in 8.5.11 of CCITT Rec. X.411 | ISO/IEC
10021-4.

If strong-authentication is used, the responder-credentials comprise a responder-bind-token,
generated by the responder of the abstract-association. The responder-bind-token is defined further
in 8.1.1.1.2.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) Available-auto-actions (C): This identifies the set of auto-action-types to which the MS-user has
subscribed. It is present if requested in the abstract-bind-argument and at least one auto-action-type is
available; it is absent otherwise.

3) Available-attribute-types (C): This identifies the set of attribute-types to which the MS-user has
subscribed. It is present if requested in the abstract-bind-argument and at least one attribute-type is
available; it is absent otherwise.

4) Alert-indication (C): If true then an alert condition has occurred since the last successful Alert-
indication.

5) Content-types-supported (C): This identifies the set of content-types to which the MS-user has
subscribed, and for which the MS offers specific support, as defined in the relevant content-specific
Recommendation. A message whose content-type is absent from this set may still be submitted, or may be
delivered and subsequently retrieved. In the latter case, none of the content-specific attribute-types or
auto-action-types defined for that content-type will be available to the MS-user.

This parameter is present if requested in the abstract-bind-argument and at least one content-type is
supported; it is absent otherwise.

7.1.3 Abstract-bind-errors

 An MS-bind-error reports a problem in attempting to establish an abstract-association.

 The definition of the errors is:

 MSBindError ::= ENUMERATED {
 authentication-error (0),
 unacceptable-security-context (1),
 unable-to-establish-association (2) }

1) Authentication-error (C): This error reports that an abstract-association cannot be established because
the initiator�s credentials are not acceptable or are improperly specified.

The authentication-error has no parameters.

24 Recommendation X.413 (09/92)

2) Unacceptable-security-context (C): This error reports that the security-context proposed by the initiator
of the abstract-association is unacceptable to the responder.

The unacceptable-security-context error has no parameters.

3) Unable-to-establish-association (C): This error reports that the responder has rejected the initiator�s
attempt to establish an abstract-association.

The unable-to-establish-association error has no parameters.

7.2 Abstract-unbind-operation

 The MS-unbind abstract-unbind-operation closes the abstract-association. The issuing of an abstract-
unbind-operation results in the relaxation of any fetch-restrictions that were specified in the abstract-bind-operation
argument. There is no argument, result, or error associated with the abstract-unbind-operation.

 MSUnbind ::= ABSTRACT-UNBIND
 FROM { indirectSubmission[S], retrieval[S], administration[S] }

8 Abstract-operations

 This clause defines the following abstract-operations available at the Retrieval Port:

a) Summarize;

b) List;

c) Fetch;

d) Delete;

e) Register-MS;

f) Alert.

 The MS is the MS abstract-service-provider of each of these abstract-operations. For the formal definition of
the Retrieval Port, see 6.2.

 The abstract-operations may be performed asynchronously subject to the following conditions. The Delete and
Register-MS abstract-operations shall not be performed until all outstanding abstract-operations have been completed.
Additionally these abstract-operations are performed in the order in which they are invoked and are required to complete
prior to any other abstract-operations being performed. As a consequence of this and the fact that the List and Fetch
abstract-operations change the status of a message entry, the results of the Summarize, List and Fetch abstract-operations
may be non-deterministic.

8.1 Common-data-types used in abstract-operations

 This subclause defines a number of common data-types which are used in several of the abstract-operations
defined in the remainder of clause 8. Many of the abstract-operations also make use of entries and attributes as defined
in 6.3.

 The common data-types defined in this Recommendation are:

a) Range;

b) Filter;

c) Selector;

d) Entry Information Selection;

e) Entry Information.

 Recommendation X.413 (09/92) 25

8.1.1 Range

 A range parameter is used to select a contiguous sequence of entries from an information-base.

 Range ::= CHOICE {

 sequence-number-range [0] NumberRange,

 creation-time-range [1] TimeRange }

 NumberRange ::= SEQUENCE {

 from [0] SequenceNumber OPTIONAL -- omitted means no lower bound --,

 to [1] SequenceNumber OPTIONAL -- omitted means no upper bound -- }

 TimeRange ::= SEQUENCE {

 from [0] CreationTime OPTIONAL -- omitted means no lower bound --,

 to [1] CreationTime OPTIONAL -- omitted means no upper bound -- }

 CreationTime ::= UTCTime

 The components of range have the following meanings:

1) Sequence-number-range (C), and

2) Creation-time-range (C): Both of these parameters identify the contiguous sequence of entries to be
selected. The sequence-number-range is given in terms of sequence-numbers, and the creation-time-
range is given in terms of creation-times. The creation-time of an entry is the time at which the MS
generated the entry. The sequence numbers of successive entries are always in ascending order, but
several adjacent entries may have the same creation time. The parameters of both number-range and
time-range have the following meanings:

a) From (O): This is the lower bound for the range.

In the absence of this component, the default is no lower bound, and the selection starts with the
earliest message (lowest sequence-number) in the information-base.

b) To (O): This is the upper bound for the range.

In the absence of this component, the default is no upper bound, and the selection finishes with the
latest message (highest sequence-number) in the information-base.

8.1.2 Filters

8.1.2.1 Filter

 A filter parameter applies a test to a particular entry and is either satisfied or not by the entry. The filter is
expressed in terms of assertions about the presence or value(s) of certain attributes of the entry, and is satisfied if and
only if it evaluates to true. A filter may be true, false, or undefined.

 Filter ::= CHOICE {

 item [0] FilterItem,

 and [1] SET OF Filter,

 or [2] SET OF Filter,

 not [3] Filter }

26 Recommendation X.413 (09/92)

 A filter is either a filter-item, or an expression involving simpler filters composed together using the logical
operators and, or, and not.

a) A filter which is a filter-item has the value of the filter-item (i.e. true, false, or undefined).

b) A filter which is the and of a set of filters is true if the set is empty or if each filter is true; it is false if
at least one filter is false; otherwise it is undefined (i.e. at least one filter is undefined and no filters are
false).

c) A filter which is the or of a set of filters is false if the set is empty or if each filter is false; it is true if at
least one filter is true; otherwise it is undefined (i.e. at least one filter is undefined and no filters are
true).

d) A filter which is the not of a filter is true if the filter is false; false if it is true; and undefined if it is
undefined.

8.1.2.2 Filter-item

 A filter-item is an assertion about the presence or value(s) of an attribute of a particular type in the entry under
test. Each such assertion is true, false, or undefined.

 FilterItem ::= CHOICE {

 equality [0] AttributeValueAssertion,

 substrings [1] SEQUENCE {

 type AttributeType,

 strings SEQUENCE OF CHOICE {

 initial [0] AttributeValue,

 any [1] AttributeValue,

 final [2] AttributeValue } },

 greater-or-equal [2] AttributeValueAssertion,

 less-or-equal [3] AttributeValueAssertion,

 present [4] AttributeType,

 approximate-match [5] AttributeValueAssertion }

 Every filter-item includes an attribute-type which identifies the particular attribute concerned.

 Any assertion about the value of such an attribute is only defined if the attribute-type is known by the
evaluating mechanism, and the purported attribute-value(s) conforms to the attribute syntax defined for that attribute-
type. Where the conditions are not met, the filter-item is undefined.

 Assertions about the value of an attribute are evaluated using the matching rules associated with the attribute
syntax defined for that attribute-type, see 6.3.3.4. A matching rule not defined for a particular attribute syntax cannot be
used to make assertions about the attribute. Where this conditions is not met, the filter-item is undefined.

 A filter-item may be undefined, as described above. Otherwise, where the filter-item asserts:

a) equality, it is true if and only if there is a value of the attribute which is equal to that asserted;

b) substrings, it is true if and only if there is a value of the attribute in which the specified substrings
appear in the given order. The substrings must be non-overlapping, and may (but need not) be separated
from the ends of the attribute-value and from one another by zero or more string elements.

If initial is present, the substring shall match the initial substring of the attribute-value; if final is present,
the substring shall match the final substring of the attribute-value; if any is present, the substring shall
match any in the attribute-value.

 Recommendation X.413 (09/92) 27

c) greater-or-equal, it is true if and only if the relative ordering (as defined by the appropriate ordering
algorithm) places some value of the attribute after (i.e. greater than) or equal to the supplied value;

d) less-or-equal, it is true if and only if the relative ordering (as defined by the appropriate ordering
algorithm) places some value of the attribute before (i.e. less than) or equal to the supplied value after or
equal to (i.e. �greater than�) any value of the attribute;

e) present, it is true if and only if such an attribute is present in the entry;

f) approximate-match, it is true if and only if there is a value of the attribute which matches that which is
asserted by some locally-defined approximate matching algorithm (e.g. spelling variations, phonetic
match, etc.). There are no specific guide-lines for approximate matching in this version of this
Recommendation. If approximate match is not supported, this filter-item should be treated as match for
equality.

 Note � If no matching rules are given in the attribute definition, this means that only the presence of the
attribute can be tested in a filter-item.

8.1.2.3 Attribute-value-assertion

 An attribute-value-assertion (AVA) is a proposition, which may be true, false, or undefined, concerning the
values of an entry. It is evaluated using a matching rule specified for the type, and which is appropriate for the context in
which the attribute-value-assertion is evaluated. It involves an attribute-type and an attribute-value:

 AttributeValueAssertion ::= SEQUENCE {

 type AttributeType,

 value AttributeValue }

and is

a) undefined, if any of the following holds:

1) the attribute-type is unknown;

2) the attribute syntax for the type has no matching rule;

3) the value does not conform to the data type of the attribute syntax;

Note � 2) and 3) normally indicate a faulty AVA; 1) however, may occur as a local situation (e.g. a
particular MS does not support that particular attribute-type).

b) true, if the entry contains an attribute of that attribute-type, one of whose attribute-values matches that
attribute-value;

c) false, otherwise.

8.1.3 Selector

 A selector parameter is used to select entries from an information-base. The selection operates in three stages.
Firstly, the total set of entries in the information-base may be restricted to a particular contiguous set by specifying its
range. Secondly, entries from within this set may be selected by specifying a filter which the selected entry shall satisfy.
Thirdly, a limit may be placed on the number of entries thus selected; in this case, it is those entries with the lowest
sequence-numbers which are selected.

 Selector ::= SET {

 child-entries [0] BOOLEAN DEFAULT FALSE,

 range [1] Range OPTIONAL -- default is unbounded --,

 filter [2] Filter OPTIONAL -- default is all entries within the specified range --,

 limit [3] INTEGER (1 . . ub-messages) OPTIONAL,

 override [4] OverrideRestrictions OPTIONAL -- default is that any fetch-restrictions in force
 do apply -- }

28 Recommendation X.413 (09/92)

 The components of selector have the following meanings:

1) Child-entries (O): If false, only main-entries are considered for selection. If true, both main-entries and
child-entries are considered for selection.

In the absence of this component, the default is only main-entries are considered.

2) Range (O): The abstract-syntax-notation of range is given in 8.1.1.

In the absence of this component, the default is unbounded.

3) Filter (O): The abstract-syntax-notation of filter is given in 8.1.2.

In the absence of this component, the default is all entries within the specified range.

4) Limit (O): This allows the specification of an upper limit on how many entries shall be selected.

In the absence of this component, there is no limit on the number of entries selected.

Note � The primary role of the limit is to protect against huge results from an abstract-operation as a
consequence of badly formulated selections. It can also be used to give back an exact number of
information-sets to fit a particular output-device.

5) Override (O): If an override of any of the fetch-restrictions is required, the corresponding component(s)
of override-restrictions shall be present.

 OverrideRestrictions ::= BIT STRING {

 overrideContentTypesRestriction (0),

 overrideEITsRestriction (1),

 overrideContentLengthRestriction (2) } (SIZE (1 . . ub-information-bases))

The bits of override-restrictions have the following meaning:

a) Override-content-types-restriction (M): This bit must be set to 1 if the fetch-restrictions on
content-types shall be overridden.

If this bit is set to 0, the fetch-restrictions on content-types as specified in the abstract-bind-
operation will be applied.

b) Override-EITs-restriction (M): This bit shall be set to 1 if the fetch-restrictions on encoded-
information-types shall be overridden.

If this bit is set to 0, the fetch-restrictions on encoded-information-types as specified in the abstract-
bind-operation will be applied.

c) Override-content-length-restriction (M): This bit shall be set to 1 if the fetch-restrictions on
content-length shall be overridden.

If this bit is set to 0, the fetch-restrictions on content-length as specified in the abstract-bind-
operation will be applied.

In the absence of override-restrictions, the default is that all the fetch-restrictions as specified in
the abstract-bind-operation will be applied.

8.1.4 Entry-information-selection

 An entry-information-selection parameter indicates what information from an entry is being requested.

 EntryInformationSelection ::= SET SIZE (0 . . ub-per-entry) OF AttributeSelection

 Recommendation X.413 (09/92) 29

 An empty set indicates that information about the entry itself, rather than the attributes of entry, is being
requested.

 AttributeSelection ::= SET {
 type AttributeType,

 from [0] INTEGER (1 . . ub-attribute-values) OPTIONAL -- used if type is multi valued --,
 count [1] INTEGER (1 . . ub-attribute-values) OPTIONAL -- used if type is multi valued -- }

 The components of attribute-selection have the following meaning:

1) Type (M): This indicates the attribute-type of the attribute.

2) From (O): When an attribute is multi-valued, this integer gives the relative position of the first value to
be returned. If it specifies a value beyond those present in the attribute, no values are returned. This
component may only be present if the attribute-type is multi-valued. If it is omitted, values starting at the
first value are returned.

3) Count (O): When an attribute is multi-valued, this integer gives the number of values to be returned. If
there are less than count values present in the attribute, all values are returned. This component may only
be present if the attribute-type is multi-valued. If it is omitted, there is no limit as to how many values are
returned.

8.1.5 Entry-information

 An entry-information parameter conveys selected information from an entry.

 EntryInformation ::= SEQUENCE {
 sequence-number SequenceNumber,
 attributes SET SIZE (1 . . ub-per-entry) OF Attribute OPTIONAL }

The components of entry-information have the following meanings:

1) Sequence-number (M): The sequence-number identifying the entry. See § 6.3.2.2.

2) Attributes (O): The set of selected attributes from the entry. Where explicitly requested by a partial-
attribute-request, a selected attribute that is defined to be multi-valued may contain a subset of all the
attribute-values in the attribute as stored in the entry. This parameter is absent if information from the
selected messages is not requested, for example, when the MS-abstract-service-user wants only the
sequence-numbers of the selected messages.

8.2 Summarize abstract-operation

 The Summarize abstract-operation returns summary counts of selected entries in an information-base. In
addition to these summaries, a count of the entries selected, and their lowest and highest sequence-numbers are also
returned. Zero or more individual summaries may be requested.

 The summarize abstract-operation will only be successful when the information-base permits access
according to the security-context and the enforced security-policy.

 The attributes that may be used for summaries are restricted. For the general-attributes in the stored-messages
information-base, the restrictions are given in Table 1/X.413.

 Summarize ::= ABSTRACT-OPERATION
 ARGUMENT SummarizeArgument
 RESULT SummarizeResult
 ERRORS {
 AttributeError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

 Note � An example of the summarize abstract-operation is given in Annex F.

30 Recommendation X.413 (09/92)

8.2.1 Summarize-argument

 SummarizeArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 selector [1] Selector,
 summary-requests [2] SEQUENCE SIZE (1 . . ub-summaries) OF AttributeType OPTIONAL
 -- absent if no summaries are requested -- }

 The components of summarize-argument have the following meanings:

1) Information-base-type (O): This specifies which information-base is addressed by the abstract-
operation. See 6.3.1.

In the absence of the information-base-type component, the default is stored-messages.

2) Selector (M): This is a set of selection criteria to determine which entries shall be summarized. See 8.1.3.

3) Summary-requests (O): This is the sequence of attribute-types for which summaries are requested. This
parameter is only present if a summary is requested.

8.2.2 Summarize-result

 Should the request succeed, the summarize-result will be returned.

 SummarizeResult ::= SET {
 next [0] SequenceNumber OPTIONAL,
 count [1] INTEGER (0 . . ub-messages) -- of the entries selected --,
 span [2] Span OPTIONAL -- of the entries selected, omitted if count is zero --,
 summaries [3] SEQUENCE SIZE (1 . . ub-summaries) OF Summary OPTIONAL }

 The components of summarize-result have the following meanings:

1) Next (C): This is returned in the case where the number of entries selected would have been greater if it
were not for the limit specified in the selector. The component contains the sequence-number for the next
entry that would have been selected.

2) Count (M): This is an integer giving the count of entries that matched the selection criteria.

3) Span (C): This contains the lowest and highest sequence-numbers of the entries that matched the
selection criteria. It is absent if there are no such entries.

 Span ::= SEQUENCE {
 lowest [0] SequenceNumber,
 highest [1] SequenceNumber }

The components of span have the following meanings:

a) Lowest (M): This is the starting-point for the span, given as a sequence-number (see 6.3.2.2).

b) Highest (M): This is the end-point for the span given as a sequence-number (see 6.3.2.2).

4) Summaries (C): One summary is returned for each summary-request. The summaries are returned in
the order that they were requested.

 Summary ::= SET {
 absent [0] INTEGER (1 . . ub-messages) OPTIONAL -- count of entries where the attribute is

absent --,
 present [1] SET SIZE (1 . . ub-attribute-values) OF -- one for each attribute value present --
 SEQUENCE {
 type AttributeType,
 value ANY DEFINED BY type,
 count INTEGER (1 . . ub-messages) } OPTIONAL }

 Recommendation X.413 (09/92) 31

The components of summary have the following meanings:

a) Absent (C): A count of the entries that do not contain an attribute of the attribute-type specified in
the request. It is omitted if there are no such entries.

b) Present (C): A summary of the entries that contain an attribute of the attribute-type specified, broken
down by the attribute-values actually present. It is omitted if there are no such entries.

The components of present have the following meanings:

i) Type (M): The type of the attribute.

ii) Value (M): The attribute-value for which the count is given.

iii) Count (M): A count of entries with this attribute-value.

8.2.3 Summarize abstract-errors

 Should the request fail, one of the listed abstract-errors will be reported. The circumstances under which the
particular abstract-errors will be reported are defined in clause 9.

8.3 List abstract-operation

 The List-abstract-operation is used to search a selected information-base for entries of interest and to return
selected information from those entries.

 The List-abstract-operation will only be successful when the information-base permits access according to
the security-context and the enforced security policy.

 The information that may be selected for entries in an information-base may be restricted. For the general-
attributes in the stored-messages information-base, the restrictions are given in Table 1/X.413.

 List ::= ABSTRACT-OPERATION
 ARGUMENT ListArgument
 RESULT ListResult
 ERRORS {
 AttributeError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

8.3.1 List-argument

 ListArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 selector [1] Selector,
 requested-attributes [3] EntryInformationSelection OPTIONAL }

 The components of list-argument have the following meanings:

1) Information-base-type (O): This specifies which information-base is addressed by the abstract-
operation. See 6.3.1.

In the absence of the information-base-type component, the default is stored-messages.

2) Selector (M): This is a set of selection criteria to determine which entries shall be returned. See 8.1.3.

3) Requested-attributes (O): This indicates what information from the selected entries is to be returned in
the result. See 8.1.4.

If this parameter is absent, the registered set of list-attribute-defaults is used. See 8.6.1 for more
information on these defaults.

32 Recommendation X.413 (09/92)

8.3.2 List-result

 Should the request succeed, the list-result will be returned.

 ListResult ::= SET {
 next [0] SequenceNumber OPTIONAL,
 requested [1] SEQUENCE SIZE (1 . . ub-messages) OF EntryInformation OPTIONAL

-- omitted if none found -- }

 The components of list-result have the following meanings:

1) Next (C): This is returned in the case where the number of entries selected would have been greater if it
were not for the limit specified in the selector. The component contains the sequence-number for the next
entry that would have been selected.

2) Requested (C): This conveys the requested entry-information (see 8.1.5) from each selected entry (one or
more), in ascending order of sequence-number. It is not present in the case that a search was performed
and no entry was selected.

8.3.3 List abstract-errors

 Should the request fail, one of the listed abstract-errors will be reported. The circumstances under which the
particular abstract-errors will be reported are defined in clause 9.

8.4 Fetch abstract-operation

 The Fetch-abstract-operation is used to return selected information from a specific entry in an information-
base. Alternatively, it is used to return selected information from the first entry from among several entries of interest; in
this case the sequence-numbers of the other selected entries are also returned. The Fetch abstract-operation will only
be successful when information-bases permitted by the security-context and the security-policy in force are requested.

 Information from an entry can be fetched several times, until the entry is explicitly deleted using the Delete
abstract-operation.

 Fetch ::= ABSTRACT-OPERATION
 ARGUMENT FetchArgument
 RESULT FetchResult
 ERRORS {
 AttributeError,
 FetchRestrictionError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

8.4.1 Fetch-argument

 FetchArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 item CHOICE {
 search [1] Selector,
 precise [2] SequenceNumber },
 requested-attributes [3] EntryInformationSelection OPTIONAL }

 The components of fetch-argument have the following meanings:

1) Information-base-type (O): This specifies which information-base is addressed by the abstract-
operation. See § 6.3.1.

In the absence of the information-base-type component, the default is stored-messages.

 Recommendation X.413 (09/92) 33

2) Item (M): One of the components described below must be specified in order to determine which entry to
fetch:

a) Search (C): This is a selector specifying a set of entries of which the one with the lowest sequence-
number is the entry to be fetched. See § 8.1.3.

b) Precise (C): This is the sequence-number of the entry to be fetched. See § 6.3.2.2.

3) Requested-attributes (O): This indicates what information from the selected entry is to be returned in the
result (see 8.1.4).

If this parameter is absent, the registered set of fetch-attribute-defaults is used. See 8.6.1 for more
information on these defaults.

8.4.2 Fetch-result

 Should the request succeed, the fetch-result will be returned.

 FetchResult ::= SET {

 entry-information [0] EntryInformation OPTIONAL -- if an entry was selected --,

 list [1] SEQUENCE SIZE (1 . . ub-messages) OF SequenceNumber
OPTIONAL,

 next [2] SequenceNumber OPTIONAL }

 The components of fetch-result have the following meanings:

1) Entry-information (C): This is the set of all those requested attributes that are present in the selected
entry. See 8.1.5. It is not present in the case that a search was performed and no entry was selected.

2) List (C): This is returned in the case that a search was performed and more than one entry was found that
matched the search selector. The list gives the sequence numbers, in ascending order, of these further
entries.

3) Next (C): This is returned in the case where the number of entries selected would have been greater if it
were not for the limit specified in the selector. The component contains the sequence-number for the next
entry that would have been selected.

8.4.3 Fetch abstract-errors

 Should the request fail, one of the listed abstract-errors will be reported. The circumstances under which the
particular abstract-errors will be reported are defined in clause 9.

8.5 Delete abstract-operation

 The Delete abstract-operation is used to delete selected entries from an information-base. A main-entry and
all its dependent child-entries may only be deleted together. This is achieved by specifying just the main-entry as an
argument. The Delete abstract-operation will only be successful when operating on those information-bases permitted
by the security-context and the security-policy in force.

 For specific information-bases, there may be restrictions on which entries may be deleted. In addition, content
specific actions may be taken as defined in the corresponding Recommendation which defines the content-type. For the
stored-messages, no entry may be deleted if its entry-status (see 6.4) is �new�. The entry-status of any child-entry
associated with a main-entry shall not be considered when performing the Delete abstract-operation.

34 Recommendation X.413 (09/92)

 Delete ::= ABSTRACT-OPERATION
 ARGUMENT DeleteArgument
 RESULT DeleteResult
 ERRORS {
 DeleteError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

8.5.1 Delete-argument

 DeleteArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 items CHOICE {
 selector [1] Selector,
 sequence-numbers [2] SET SIZE (1 . . ub-messages) OF SequenceNumber } }

 The components of delete-argument have the following meanings:

1) Information-base-type (O): This specifies which information-base is addressed by the abstract-
operation. See 6.3.1.

In the absence of the information-base-type component, the default is stored-messages.

2) Items (M): One of the components described below shall be specified in order to determine which entries
to delete.

a) Selector (C): See 8.1.3.

b) Sequence-numbers (C): An unordered list of sequence-numbers. See 6.3.2.2.

8.5.2 Delete-result

 Should the request succeed, the delete-result will be returned. There are no parameters.

 DeleteResult ::= NULL

8.5.3 Delete abstract-errors

 Should the request fail, one of the listed abstract-errors will be reported. The circumstances under which the
particular abstract-errors will be reported are defined in clause 9.

8.6 Register-MS abstract-operation

 The Register-MS abstract-operation is used to register or deregister various information with the MS:

a) auto-actions;

b) default list of attribute-types;

c) new credentials;

d) new set of user-security labels.

 Register-MS ::= ABSTRACT-OPERATION
 ARGUMENT Register-MSArgument
 RESULT Register-MSResult
 ERRORS {
 AtrributeError,
 AutoActionRequestError,
 InvalidParametersError,
 SecurityError,
 ServiceError }

 Recommendation X.413 (09/92) 35

8.6.1 Register-MS-argument

 Register-MS-Arguments ::= SET {

 auto-action-registrations [0] SET SIZE (1 . . ub-auto-registrations) OF AutoActionRegistration
OPTIONAL,

 auto-action-deregistrations [1] SET SIZE (1 . . ub-auto-registrations) OF AutoActionDeregistration
OPTIONAL,

 list-attribute-defaults [2] SET SIZE (1 . . ub-default-registrations) OF AttributeType
OPTIONAL,

 fetch-attribute-defaults [3] SET SIZE (1 . . ub-default-registrations) OF AttributeType
OPTIONAL,

 change-credentials [4] SEQUENCE {

 old-credentials [0] Credentials,

 new-credentials [1] Credentials } OPTIONAL

 -- same CHOICE as for old-credentials --,

 user-security-labels [5] SET SIZE (1 . . ub-labels-and-redirections) OF SecurityLabel
OPTIONAL }

 The components of register-MS-argument have the following meanings:

1) Auto-action-registrations (O): This is a set of auto-action-registration (see 6.5.1), one for each auto-
action to be registered. The new auto-action registration-parameter supersedes any previously
registered auto-action (if any) with that registration-identifier and auto-action type.

In the absence of auto-action-registrations, the default is that no new auto-actions are registered.

2) Auto-action-deregistrations (O): This is a set of auto-action-deregistration, one for each auto-action to
be deregistered. Any auto-action with registration-identifier and auto-action type matching those in an
auto-action-deregistration is deregistered.

 AutoActionDeregistration ::= SEQUENCE {

 type AutoActionType

 registration-identifier [0] INTEGER (1 . . ub-per-auto-action) DEFAULT 1 }

In the absence of auto-action-deregistrations, the default is that no registered auto-actions are
deregistered.

3) List-attribute-defaults (O): This specifies a default set of attribute-types to indicate which attributes
should be returned for any subsequent List abstract-operation if the entry-information-selection argument
is absent.

In the absence of list-attribute-defaults, the default is that there is no change to the registered default (if
any). The list-attribute-defaults are the empty set until explicitly changed by the MS-user via the
Register-MS abstract-operation.

4) Fetch-attribute-defaults (O): This specifies a default set of attribute-types to indicate which attributes
should be returned for any subsequent Fetch abstract-operation if the entry-information-selection
argument is absent.

In the absence of fetch-attribute-defaults, the default is that there is no change to the registered default
(if any). The fetch-attribute-defaults are the empty set until explicitly changed by the MS-user via the
Register-MS abstract-operation.

36 Recommendation X.413 (09/92)

5) Change-credentials (O): The old and new credentials if a change-credentials is requested.

The old-credentials are the end user�s current credentials, and the new-credentials are the credentials the
end user would like to change to.

In the absence of this argument, the default is that previously registered credentials remain unchanged.

The credentials of the MS-user may differ from the initiator-credentials detailed in 8.1.1.1.1.2 of CCITT
Rec. X.411 | ISO/IEC 10021-4.

6) User-security-labels (O): This contains the security-label(s) of the MS abstract-service-user, if they are
to be changed. It may be generated by the MS abstract-service-user.

In the absence of this argument, the user-security-labels remain unchanged.

Note that some security-policies may only permit the user-security-labels to be changed in this way if a
secure link is employed. Other local means of changing the user-security-labels in a secure manner may
be provided. User-security-labels is defined in 8.4.1.1.1.7 of CCITT Rec. X.411 | ISO/IEC 10021-4.

Security-label is defined in clause 9 of CCITT Rec. X.411 | ISO/IEC 10021-4.

8.6.2 Register-MS-result

 Should the request succeed, the register-MS-result will be returned. There are no parameters.

 Register-MSResult ::= NULL

8.6.3 Register-MS abstract-errors

 Should the request fail, one of the listed abstract-errors will be reported. The circumstances under which the
particular abstract-errors will be reported are defined in clause 9.

8.7 Alert abstract-operation

 The Alert abstract-operation enables the MS abstract-service-provider to immediately inform the MS
abstract-service-user of a new entry having been entered into the MS, whose attributes match the selection criteria of one
of the auto-alert-registrations (see 12.2) previously supplied using a Register-MS abstract-operation (see 8.6).

 The Alert abstract-operation may be invoked during an existing abstract-association initiated by the UA, and
only as a result of new entries created after the establishment of the abstract-association.

 Entries matching the selection criteria which have been created between abstract-associations will be indicated
in the result of the next abstract-bind-operation for the abstract-association. No alert abstract-operation will be
invoked for these entries. See clause 7.

 The alert abstract-operation will only be successful when the information-base permits access according to
the security-context and the enforced security-policy.

 Alert ::= ABSTRACT-OPERATION

 ARGUMENT AlertArgument

 RESULT AlertResult

 ERRORS {

 SecurityError }

 Recommendation X.413 (09/92) 37

8.7.1 Alert-argument

 AlertArgument ::= SET {

 alert-registration-identifier [0] INTEGER (1 . . ub-auto-actions),

 new-entry [2] EntryInformation OPTIONAL }

 The components of the alert-argument have the following meanings:

1) Alert-registration-identifier (M): Identifies which of the auto-alert-registrations resulted in the alert
(see 6.5 and 12.2).

2) New-entry (O): This conveys the information from the new entry which was requested in the auto-alert-
registration-parameter (see 12.2). It is absent when the MS abstract-service-user did not specify
requested-attributes in the auto-alert-registration-parameter.

8.7.2 Alert-result

 Should the request succeed, the alert-result will be returned.

 AlertResult ::= NULL

8.7.3 Alert abstract-errors

 Should the request fail, one of the listed abstract-errors will be reported. The circumstances under which the
particular abstract-errors will be reported are defined in clause 9.

9 Abstract-errors

 This clause defines the following abstract-errors associated with using the abstract-operations at the Retrieval
Port:

a) AttributeError;

b) AutoActionRequestError;

c) DeleteError;

d) FetchRestrictionError;

e) InvalidParametersError;

f) RangeError;

g) SecurityError;

h) SequenceNumberError;

i) ServiceError.

9.1 Error precedence

 The performer of an abstract-operation is not required to continue processing the message beyond the point at
which an error has been detected. This allows an implementation to choose whether to continue the processing of errors.

 Note � An implication of this rule is that the first error encountered may differ for repeated instances of the
same abstract-operation, as there is not necessarily a specific logical order in which to process it.

9.2 Attribute-error

 An attribute-error reports an attribute related problem.

38 Recommendation X.413 (09/92)

 AttributeError ::= ABSTRACT-ERROR

 PARAMETER SET {

 problems [0] SET SIZE (1 . . ub-per-entry) OF SET {

 problem [0] AttributeProblem,

 type [1] AttributeType,

 value [2] ANY DEFINED BY type OPTIONAL } }

 AttributeProblem ::= INTEGER {

 invalid-attribute-value (0),

 unavailable-attribute-type (1),

 inappropriate-matching (2),

 attribute-type-not-subscribed (3),

 inappropriate-for-operation (4) } (0 . . ub-error-reasons)

 The parameter has the following meaning:

1) Problems (M): The particular problems encountered. Any number of individual problems may be
indicated, each problem being accompanied by an indication of the attribute-type, and, if necessary to
avoid ambiguity, the value which caused the problem:

a) Invalid-attribute-value (C): A purported attribute-value specified as an argument of the abstract-
operation does not conform to the data-type defined for the attribute-type concerned.

b) Unavailable-attribute-type (C): A purported attribute-type used as an argument of the abstract-
operation is not one of those which is supported by the MS abstract-service-provider. If the MS
abstract-service-provider is able to carry out the operation anyway, it is not prohibited from doing so.

c) Inappropriate-matching (C): The filter contains a filter-item in which an attribute is matched using
an operation (equality, ordering, or substrings) that is not defined for that attribute.

d) Attribute-type-not-subscribed (C): An attribute-type used as an argument of the abstract-operation
is not one of those to which the MS abstract-service-user has subscribed.

Note � A change of the subscription is not necessarily reflected in the attributes present in an entry
created before the change.

e) Inappropriate-for-operation (C): An attribute-type used as an argument of the abstract-operation is
unsuitable for its required use.

9.3 Auto-action-request-error

 An Auto-action-request-error reports a problem related to registration of an auto-action.

 AutoActionRequestError ::= ABSTRACT-ERROR

 PARAMETER SET {

 problems [0] SET SIZE (1 . . ub-auto-registrations) OF SET {

 problem [0] AutoActionRequestProblem,

 type [1] AutoActionType } }

 AutoActionRequestProblem ::= INTEGER {

 unavailable-auto-action-type (0),

 auto-action-type-not-subscribed (1) } (0 . . ub-error-reasons)

 Recommendation X.413 (09/92) 39

 The parameter has the following meaning:

1) Problems (M): The particular problems encountered. Any numbers of individual problems may be
indicated, each problem being accompanied by an indication of the auto-action-type which caused the
problem:

a) Unavailable-auto-action-type: An auto-action-type used as an argument of the abstract-operation is
not one of those which is supported by the MS abstract-service-provider.

b) Action-type-not-subscribed: An action-type used as an argument of the abstract-operation is not
one of those to which the MS abstract-service-user has subscribed.

9.4 Delete-error

 A delete-error reports a problem in an attempt to delete one or more entries from an information-base.

 DeleteError ::= ABSTRACT-ERROR

 PARAMETER SET {

 problems [0] SET SIZE (1 . . ub-messages) OF SET {

 problem [0] DeleteProblem,

 sequence-number [1] SequenceNumber } }

 DeleteProblem ::= INTEGER {

 child-entry-specified (0),

 delete-restriction-problem (1) } (0 . . ub-error-reasons)

 The parameter has the following meaning:

1) Problems (M): The particular problems encountered. Any number of individual problems may be
indicated, each problem being accompanied by an indication of the sequence-number of the entry which
caused the problem:

a) Child-entry-specified: An attempt has been made to delete a child-entry.

b) Delete-restriction-problem: An attempt has been made to violate a restriction specified for the
Delete abstract-operation (see 8.5).

9.5 Fetch-restriction-error

 A Fetch-restriction-error reports an attempt to violate a restriction associated with the Fetch
abstract-operation.

 FetchRestrictionError ::= ABSTRACT-ERROR

 PARAMETER SET {

 problems [0] SET SIZE (1 . . ub-default-registrations) OF SET {

 problem [3] FetchRestrictionProblem,

 restriction CHOICE {

 content-type [0] OBJECT IDENTIFIER,

 eit [1] MS-EITs,

 content-length [2] ContentLength } } }

 FetchRestrictionProblem ::= INTEGER {

 content-type-problem (1),

 eit-problem (2),

 content-length-problem (3) } (0 . . ub-error-reasons)

40 Recommendation X.413 (09/92)

 The parameter has the following meaning:

1) Problems (M): The particular problems encountered. Any number of individual problems may be
indicated, each problem being accompanied by an indication of the offending content-type, encoded-
information-type or content-length which caused the problem:

a) Content-type-problem (C): The content-type of the message being fetched is disallowed by the
fetch-restrictions currently in force.

b) EIT-problem (C): The encoded-information-types requested in the Fetch abstract-operation are
disallowed by the fetch-restrictions currently in force.

c) Content-length-problem (C): The content-length of the message being fetched is longer than that
allowed by the fetch-restrictions currently in force.

9.6 Invalid-parameters-error

 An invalid-parameters-error reports a semantic problem in the set of parameters received. This error would
be used, for example, to report that an optional parameter was present in the wrong context, or to report that a value for
one of the parameters is inappropriate.

 InvalidParametersError ::= ABSTRACT-ERROR
 PARAMETER NULL

 This error has no parameters.

9.7 Range-error

 A Range-error reports a problem related to the range specified in a selector as an argument to an
abstract-operation.

 RangeError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] RangeProblem }

 RangeProblem ::= INTEGER {
 reversed (0) } (0 . . ub-error-reasons)

 The parameter has the following meaning:

1) Problems (M): The particular problems encountered:

a) Reversed (C): The upper bound indicated a sequence-number or creation-time before that indicated
by the lower bound.

9.8 Security-error

 A Security-error reports that the requested abstract-operation cannot be provided because it would violate the
security-policy in force. This error is defined in CCITT Rec. X.411 | ISO/IEC 10021-4.

9.9 Sequence-number-error

 A Sequence-number-error reports a problem related to the sequence-number specified in an argument to an
abstract-operation.

 SequenceNumberError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problems [1] SET SIZE (1 . . ub-messages) OF SET {
 problem [0] SequenceNumberProblem,
 sequence-number [1] SequenceNumber } }

 SequenceNumberProblem ::= INTEGER {
 no-such-entry (0) } (0 . . ub-error-reasons)

 Recommendation X.413 (09/92) 41

 The parameter has the following meaning:

1) Problems (M) : The particular problems encountered. Any number of individual problems may be
indicated, each problem being accompanied by an indication of the sequence-numbers which caused the
problem:

No-such-entry : The sequence-number supplied does not match that of any entry in the information-base.

9.10 Service-error

 A Service-error reports an error related to the provision of the service.

 ServiceError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] ServiceProblem }

 ServiceProblem ::= INTEGER {
 busy (0),
 unavailable (1),
 unwilling-to-perform (2) } (0 . . ub-error-reasons)

 The parameter has the following meaning:

1) Problem (M): The particular problem encountered:

a) Busy (C): The MS, or some part of it, is presently too busy to perform the requested abstract-
operation, but may be able to do so after a short while.

b) Unavailable (C): The MS, or some part of it, is presently unavailable.

c) Unwilling-to-perform (C): The MS is not prepared to execute this request, because it would lead to
excessive consumption of resources.

42 Recommendation X.413 (09/92)

SECTION 3 � GENERAL-ATTRIBUTE-TYPES AND GENERAL-AUTO-ACTION-TYPES
Recommendation X.413 (09/92)

10 Overview

 The MS information-model and the attribute and auto-action concepts were introduced in § 6.3.3 and § 6.5.
Clause 11 defines the general-attribute-types which are specified for MS. Clause 12 defines the general-auto-action-
types which are specified for MS.

11 General-attribute-types

 The general-attribute-types are valid for all message content-types. Other attribute-types, which are content-
specific, are defined in their respective Recommendation, e.g. the IPMS-specific attribute-types for MS are defined in
Annex C of CCITT Rec. X.420 | ISO/IEC 10021-7.

11.1 General-attribute-types overview

 The general-attributes that may occur in a stored-messages information-base entry are listed in
Table 1/X.413. They are constructed mainly from the parameter information from the MessageDelivery and
ReportDelivery abstract-operations of the MTS abstract-service as defined in clause 8 of CCITT Rec. X.411 |
ISO/IEC 10021-4, and such attributes are correspondingly named. Some general-attributes are generated, and some of
these also maintained, by the MS.

 Table 1/X.413 defines the various general-attributes and defines the following for each attribute-type:

� whether the attribute-type is single-valued or multi-valued;

� whether or not support by the MS and the accessing UA is mandatory or optional;

� whether the attribute-type is always present, conditionally present, or absent in a delivered-message entry,
a delivered-report entry, or a returned-content entry respectively;

� whether or not the attribute-type can be returned in a List or an Alert abstract-operation;

� whether or not the attribute-type may be used in a Summarize abstract-operation.

Note � Only for simple ASN.1 data-types.

 For a more detailed description of the classification in Table 1/X.413 refer to the conventions in § 5.2.

 An optional attribute-type is only supported by an MS if the support of that attribute-type has successfully
been subscribed to (which implies that the MS and the accessing UA supports that attribute). Subscription to optional
attribute-types can be per attribute-type per UA.

 Attribute-type defined as present in a delivered-message entry may not always be present in a child-entry. The
rules governing the presence of attribute-types in child-entries may be supplemented in the Recommendation which
defines the content-type of the child-entry.

 All attributes supported are available to the Fetch abstract-operation subject to subscription.

11.2 Description of the general-attribute-types

 The following subclauses contain a short description of each general-attribute-type together with its abstract-
syntax using the ATTRIBUTE macro described in 6.3.

 It should be noted that some general-attributes are used primarily for filtering and listing purposes while
others can contain more complex (further structured ASN.1 data-types) and potentially voluminous information. Only a
few general-attributes are suitable for summaries.

 Recommendation X.413 (09/92) 43

TABLE 1/X.413

General-attribute-types for the Delivery Information-base

Attribute-type-name

Single/
Multi
valued

Support
level by
MS and

access UA

Presence in
delivered
message

entry

Presence in
delivered

report
entry

Presence in
returned
content
entry

Available
for list, alert

Available
for

summarize

Child-sequence-numbers M M C C C Y N
Content S M P � P N N
Content-confidentiality-algorithm-
identifier

S O C � � Y N

Content-correlator S O � C � Y N
Content-identifier S O C C � Y N
Content-integrity-check S O C � � Y N
Content-length S O P � P Y N
Content-returned S O � P � Y Y
Content-type S M P C C Y Y
Conversion-with-loss-prohibited S O C � � Y N
Converted-EITs M O C � � Y N
Creation-time S M P P P Y N
Delivered-EITs M O P � � Y N
Delivery-flags S O P � � Y N
DL-expansion-history M O C C � Y N
Entry-status S M P P P Y Y
Entry-type S M P P P Y Y
Intended-recipient-name S O C � � Y N
Message-delivery-envelope S M P � � N N
Message-delivery-identifier S O P � � Y N
Message-delivery-time S O P � � Y N
Message-origin-authentication-check S O C � � Y N
Message-security-label S O C C � Y N
Message-submission-time S O P � � Y N
Message-token S O C � � Y N
Original-EITs M O C C � Y N
Originator-certificate S O C � � Y N
Originator-name S O P � � Y N
Other-recipient-names M O C � � Y N
Parent-sequence-number S M C � P Y N
Per-recipient-report-delivery-fields M M � P � Y N
Priority S O P � � Y Y
Proof-of-delivery-request S O C � � Y N
Redirection-history M O C � � Y N
Report-delivery-envelope S M � P � N N
Reporting-DL-name S O � C � Y N
Reporting-MTA-certificate S O � C � Y N
Report-origin-authentication-check S O � C � Y N
Security-classification S O C C � Y Y
Sequence-number S M P P P Y N
Subject-submission-identifier S M � P � Y N
This-recipient-name S O P � � Y N

44 Recommendation X.413 (09/92)

11.2.1 Child-sequence-numbers

 This general-attribute, which is multi-valued, contains one or more �pointers� to the next level of child-entries,
if such exist. It is generated by the MS. It is present in a parent-entry that has one or more child-entries associated with
it. It is absent in an entry without child-entries.

 ms-child-sequence-numbers ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX-SequenceNumber
 MULTI VALUE
 ::= id-att-child-sequence-numbers

11.2.2 Content

 This general-attribute contains the complete content of a message as delivered by the MessageDelivery
abstract-operation or as a returned-content by the ReportDelivery abstract-operation. In the latter case, the content
general-attribute is created in the returned-content child-entry, and not in the delivered-report entry itself. For more
details see 8.2.1.1.1.37 and 8.3.1.2.1.14 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 ms-content ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Content
 SINGLE VALUE
 ::= id-att-content

11.2.3 Content-confidentiality-algorithm-identifier

 This general attribute contains the algorithm-identifier used by the originator of the message to encrypt the
message content. It may be generated by the originator of the message. For further details see 8.5.10 of CCITT
Rec. X.411 | ISO/IEC 10021-4.

 mt-content-confidentiality-algorithm-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Algorithmidentifier
 SINGLE VALUE
 ::= id-att-content-confidentiality-algorithm-identifier

11.2.4 Content-correlator

 This general-attribute contains information to enable correlation of the content of the message. It may be
generated by the originating UA. For more details see 8.2.1.1.1.36 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-content-correlator ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentCorrelator
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-correlator

11.2.5 Content-identifier

 This general-attribute contains an identifier for the content of the message. It may be generated by the
originating UA. For more details see 8.2.1.1.1.35 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-content-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentIdentifier
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-identifier

11.2.6 Content-integrity-check

 This general attribute provides the recipient(s) of the message with a means of validating that the message
content has not been modified. It may be generated by the originator of the message and may specify a different value
for each recipient of the message. For further details see 8.2.1.1.1.28 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-content-integrity-check ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentintegrityCheck
 SINGLE VALUE
 ::= id-att-content-integrity-check

 Recommendation X.413 (09/92) 45

11.2.7 Content-length

 This general-attribute gives the length of the content in octets of a message as delivered by the
MessageDelivery abstract-operation or of a returned-content (if any) notified by the ReportDelivery abstract- operation.
Where there is no such returned-content, this attribute is absent. It is generated by the MS.

 ms-content-length ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentLength
 MATCHES FOR ORDERING
 SINGLE VALUE
 ::= id-att-content-length

11.2.8 Content-returned

 This general-attribute indicates whether a content has been returned in the ReportDelivery abstract-operation.
It is generated by the MS.

 ms-content-returned ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX BOOLEAN
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-returned

11.2.9 Content-type

 This general-attribute is generated from the content-type in the MessageDelivery or ReportDelivery abstract-
operation. See also 8.2.1.1.1.34 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-content-type ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-type

11.2.10 Conversion-with-loss-prohibited

 This general-attribute contains information about whether conversion with loss of information was allowed or
prohibited. For further details see 8.2.1.1.1.10 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-conversion-with-loss-prohibited ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ConversionWithLossProhibited
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-conversion-with-loss-prohibited

11.2.11 Converted-EITs

 This general-attribute, which is multi-valued, identifies the encoded-information-types of the content after
conversion, as indicated by MessageDelivery abstract-operation. It is generated from the converted-encoded-
information-types from the MessageDelivery abstract-operation. It is absent if no conversion took place. For more
details see 8.3.1.1.1.8 and 8.3.1.2.1.5 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 ms-converted-EITs ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MS-EIT
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-converted-EITs

46 Recommendation X.413 (09/92)

11.2.12 Creation-time

 This general-attribute gives the time when the entry was created in the MS. It is generated by the MS

 Note � Two or more consecutive entries may have the same creation-time.

 ms-creation-time ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX CreationTime
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-creation-time

11.2.13 Delivered-EITs

 This general-attribute, which is multi-valued, identifies the encoded-information-types in the content of the
message as delivered. It is generated by the MS based on information about the original-EITs and the converted-EITs in
the MessageDelivery abstract-operation.

 ms-delivered-EITs ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MS-EIT
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-delivered-EITs

11.2.14 Delivery-flags

 This general-attribute contains information of the delivery. Presently, it is only used for indicating implicit-
conversion of the content. For more details see 8.2.1.1.1.9 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-delivery-flags ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX DeliveryFlags
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-delivery-flags

11.2.15 DL-expansion-history

 This general-attribute, which is multi-valued, is used to show the history of distribution-list expansion.
If present in a delivered-message, it contains one or more distribution-list names used during the expansion process.
It is absent if the MessageDelivery to this recipient did not involve any expansion of a distribution-list. If however
it is present in a delivered-report, it contains the originator name and one or more distribution-list names used during the
expansion process. It is absent if the subject message, upon which the ReportDelivery is based, did not involve
any expansion of a distribution-list. For more details see 8.3.1.1.1.7 and 8.3.1.2.1.3 of CCITT Rec. X.411 |
ISO/IEC 10021-4.

 mt-dl-expansion-history ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX DLExpansion
 MULTI VALUE
 ::= id-att-dl-expansion-history

11.2.16 Entry-status

 This general-attribute contains the current status of an entry in the stored-messages information-base. It is
created and maintained by he MS. For more details see 6.4.

 ms-entry-status ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX EntryStatus
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-entry-status

 Recommendation X.413 (09/92) 47

11.2.17 Entry-type

 This general-attribute contains information about whether an entry concerns a delivered message or a delivered
report. It is generated by the MS.

 ms-entry-type ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX EntryType
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-entry-type

 EntryType ::= INTEGER {
 delivered-message (0),
 delivered-report (1),
 returned-content (2) } (0 . . ub-entry-types)

11.2.18 Intended-recipient-name

 This general-attribute contains the O/R-name of the originally intended recipient if the message has been
redirected, with each value representing one redirection. For more details see 8.3.1.1.1.4 of CCITT Rec. X.411 |
ISO/IEC 10021-4.

 mt-intended-recipient-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-intended-recipient-name

11.2.19 Message-delivery-envelope

 This general-attribute contains the complete message-delivery-envelope of a message as delivered by the
MessageDelivery abstract-operation. For more details see clause 9 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-message-delivery-envelope ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageDeliveryEnvelope
 SINGLE VALUE
 ::= id-att-message-delivery-envelope

11.2.20 Message-delivery-identifier

 This general-attribute contains the message-delivery-identifier from the MessageDelivery abstract-operation.
For more details see 8.3.1.1.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-message-delivery-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageDeliveryIdentifier
 SINGLE VALUE
 ::= id-att-message-delivery-identifier

11.2.21 Message-delivery-time

 This general-attribute contains the message-delivery-time from the MessageDelivery abstract-operation. For
more details see 8.3.1.1.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 Note - There is no general-attribute corresponding to the delivery-time parameter of the ReportDelivery
abstract-operation, because in order to be useful, this delivery-time must be correlated with the name of the recipient the
message was delivered to. This information is included in the per-recipient-report-delivery-fields general-attribute.

 mt-message-delivery-time ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageDeliveryTime
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-message-delivery-time

48 Recommendation X.413 (09/92)

11.2.22 Message-origin-authentication-check

 This general attribute is computed using the algorithm identified by the message-origin-authentication-
identifier. It provides the recipient(s) of the message with a means of authenticating the origin of the message and
may be generated by the originator of the message. For further details see 8.2.1.1.1.29 of CCITT Rec. X.411 |
ISO/IEC 10021-4.

 mt-message-origin-authentication-check ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageOriginAuthenticationCheck
 SINGLE VALUE
 ::= id-att-message-origin-authentication-check

11.2.23 Message-security-label

 This general attribute comprises a set of security attributes which may include a security-policy-identifier, a
security-classification, a privacy-mark, and a set of security-categories. For further details see 8.2.1.1.1.30 of CCITT
Rec. X.411 | ISO/IEC 10021-4.

 mt-message-security-label ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageSecurityLabel
 SINGLE VALUE
 ::= id-att-message-security-label

11.2.24 Message-submission-time

 This general-attribute contains the message-submission-time from a MessageDelivery abstract-operation. For
more details see 8.2.1.1.2.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-message-submission-time ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageSubmissionTime
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-message-submission-time

11.2.25 Message-token

 This general attribute contains the token associated with the message. It is generated by the originator of the
message and may contain a different value for each recipient of the message. For further details see 8.2.1.1.1.26 of
CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-message-token ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageToken
 SINGLE VALUE
 ::= id-att-message-token

11.2.26 Original-EITs

 This general-attribute, which is multi-valued, identifies the encoded-information-types in the content of the
message as submitted. It is generated from the original encoded-information-types from the MessageDelivery or
ReportDelivery abstract-operation. For more details see 8.2.1.1.1.33 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 ms-original-EITs ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MS-EIT
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-original-EITs

11.2.27 Originator-certificate

 This general attribute, contains the certificate of the originator of the message. It is generated by a trusted
source (e.g. a certification-authority), and may be supplied by the originator of the message. For further details see
8.2.1.1.1.25 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-originator-certificate ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Originator-Certificate
 SINGLE VALUE
 ::= id-att-originator-certificate

 Recommendation X.413 (09/92) 49

11.2.28 Originator-name

 This general-attribute contains the O/R-name of the originator from the MessageDelivery abstract-operation.
For more details see 8.2.1.1.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-originator-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-originator-name

11.2.29 Other-recipient-names

 This general-attribute, which is multi-valued, contains the O/R-names of all other specified recipients, if any,
of the message from the MessageDelivery abstract-operation. For more details see 8.3.1.1.1.6 of CCITT Rec. X.411 |
ISO/IEC 10021-4.

 mt-other-recipient-names ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-other-recipient-names

11.2.30 Parent-sequence-number

 This general-attribute, points to a parent-entry. It is generated by the MS. It is always present in a child-entry
and is absent in a main-entry.

 ms-parent-sequence-number ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SequenceNumber
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-parent-sequence-number

11.2.31 Per-recipient-report-delivery-fields

 This general-attribute, which is multi-valued, contains report information on a per-recipient basis from the
ReportDelivery abstract-operation. For more details see 8.3.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-per-recipient-report-delivery-fields ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX PerRecipientReportDeliveryFields
 MUTLI VALUE
 ::= id-att-per-recipient-report-delivery-fields

11.2.32 Priority

 This general-attribute contains the relative priority of the message from the MessageDelivery abstract-
operation. If no value is supplied in the MessageDelivery abstract-operation parameter, the MS uses its default value
when generating this attribute. For more details see 8.2.1.1.1.8 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-priority ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Priority
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-priority

11.2.33 Proof-of-delivery-request

 This general attribute indicates whether or not the originator of the message requires proof-of-delivery of the
message to the recipient. It may be generated by the originator of the message and may specify a different value for each
recipient of the message. For more details see 8.2.1.1.1.32 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-proof-of-delivery-request ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ProofOfDeliveryRequest
 SINGLE VALUE
 ::= id-att-proof-of-delivery-request

50 Recommendation X.413 (09/92)

11.2.34 Redirection-history

 The general-attribute, which is multi-valued, contains the history of recipient redirection(s) with
reasons(s) from the MessageDelivery abstract-operation. For more details see 8.3.1.1.1.5 of CCITT Rec. X.411 |
ISO/IEC 10021-4.

 mt-redirection-history ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Redirection
 MULTI VALUE
 ::= id-att-redirection-history.

11.2.35 Report-delivery-envelope

 This general-attribute contains all the parameters from the ReportDelivery abstract-operation, except for the
returned-content (if present). For more details see 8.3.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-report-delivery-envelope ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportDeliveryEnvelope
 SINGLE VALUE
 ::= id-att-report-delivery-envelope

11.2.36 Reporting-DL-name

 This general-attribute contains the O/R-name of the distribution-list that forwarded the report to the owner of
this distribution-list. For more details see 8.3.1.2.1.4 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-reporting-DL-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportingDLName
 SINGLE VALUE
 ::= id-att-reporting-DL-name

11.2.37 Reporting-MTA-certificate

 This general-attribute contains the certificate of the MTA that generated the report. For more details see
8.3.1.2.1.12 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-reporting-MTA-certificate ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportingMTACertificate
 SINGLE VALUE
 ::= id-att-reporting-MTA-certificate

11.2.38 Report-origin-authentication-check

 The general-attribute provides a means of authenticating the origin of the report. For more details see
8.3.1.2.1.13 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-report-origin-authentication-check ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportOriginAuthenticationCheck
 SINGLE VALUE
 ::= id-att-report-origin-authentication-check

11.2.39 Security-classification

 This general-attribute comprises the security-classification parameter from the message-security-label.
It is defined as a separate attribute to allow its use in the Summarize abstract-operation. For more details see 8.5.9 of
CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-security-classification ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SecurityClassification
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-security-classification

 Recommendation X.413 (09/92) 51

11.2.40 Sequence-number

 This general-attribute is used to identify the entry itself. It is allocated by the MS when the entry is created. For
more details see 6.3.2.

 ms-sequence-number ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SequenceNumber
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-sequence-number

11.2.41 Subject-submission-identifier

 This general-attribute contains the message-submission-identifier or the probe-submission-identifier of the
subject of the report. For more details see 8.3.1.2.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-subject-submission-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SubjectSubmissionIdentifier
 SINGLE VALUE
 ::= id-att-subject-submission-identifier

11.2.42 This-recipient-name

 This general-attribute contains the O/R-name of this (MS) recipient from the MessageDelivery abstract-
operation. For more details see 8.3.1.1.1.3 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 mt-this-recipient-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-this-recipient-name

11.3 Generation of the general-attributes

 This subclause describes how the general-attributes are generated. The information is presented in
Table 2/X.413. For a description of the classification used, see 5.3.

11.4 Attribute-types subscription

 Attribute-type subscription is a local matter. If the attribute-type subscription is changed, then the UA may
receive all of the attributes in the original subscription for messages present in the MS at the time the subscription was
changed. The handling of these unsubscribed attributes is a local matter. Similarly, when a new attribute is subscribed to,
the UA may not receive this attribute for messages in the MS when the subscription occurred.

52 Recommendation X.413 (09/92)

TABLE 2/X.413

Generation of the General-attribute-types

Attribute-type-name

Single/
Multi
valued

Source parameter

Source
generated

by

Generation rules

Child-sequence-numbers M � MS A value is generated for each corresponding
child-entry that a parent-entry has

Content S content

returned-content

MD

RD

The attribute-value in the delivered-message
entry is the value of the source parameter
The attribute-value in the returned-content
child-entry of the delivered report entry is
the value of the source parameter

Content-confidentiality-algorithm-
identifier

S content-
confidentiality-
algorithm-identifier

MD The attribute-value is the value of the source
parameter

Content-correlator S content-
correlator

RD The attribute-value is the value of the source
parameter

Content-identifier S content-identifier MD
RD

The attribute-value is the value of the source
parameter

Content-integrity-check S content-integrity-
check

MD The attribute-value is the value of the source
parameter

Content-length S � MS The (approximate) size of the stored content in
octets based on the delivered or returned
content

Content-returned S � MS The value is set to true if returned-content is
present in a ReportDelivery and to false if not
present

Content-type S content-type MD
RD

If represented by OBJECT IDENTIFIER,
the value of the parameter. If represented by
INTEGER, converted to the corresponding
OBJECT IDENTIFIER

Conversion-with-loss-prohibited S conversion-with-
loss-prohibited

MD The attribute-value is the value of the source
parameter

Converted-EITs M converted-encoded-
information-types

MD A corresponding value is generated from each
bit that is set to 1 in the built-in-encoded-
information-types parameter and from each
ExternalEncoded InformationType present
in the external-encoded-information-type
parameter

Creation-time S � MS The time of creation of the entry

Delivered-EITs M Converted-EITs
and Original EITs
general attributes
and converted-
encoded-infor-
mation-types

MS Converted-EITs if converted-encoded-
information-types is present, else
Original-EITs

Delivery-flags S delivery-flags MD The attribute-value is the value of the source
parameter. If there are no delivery-flags in the
MD, generate a default value with no flags set

DL-expansion-history M DL-expansion-
history
originator-and-DL-
expansion-history

MD

RD

A corresponding value is generated from each
component of the SEQUENCE
A corresponding value is generated from each
component of the SEQUENCE

 Recommendation X.413 (09/92) 53

TABLE 2/X.413 (cont.)

Attribute-type-name

Single/
Multi
valued

Source parameter

Source
generated

by

Generation rules

Entry-status S � MS Generated when the entry is created with the
value �new�

Entry-type S MessageDelivery
ARGUMENT
ReportDelivery
ARGUMENT

MS

MS

The value is set to �delivered-message�.

The value is set to �delivered-report�. If a
returned-content is present, a child-entry,
which contains the returned-content is created
and given a delivered-entry-type of �returned-
content�

Intended-recipient-name S intended-recipient-
name

MD The attribute-value is the value of the source
parameter

Message-delivery-envelope S Message Delivery
Envelope

MD The attribute-value is the value of the source
parameter

Message-delivery-identifier S message-delivery-
identifier

MD The attribute-value is the value of the source
parameter

Message-delivery-time S message-delivery-
time

MD The attribute-value is the value of the source
parameter

Message-origin-authentication-check S message-origin-
authentication-check

MD The attribute-value is the value of the source
parameter

Message-security-label S message-security-
label

MD
RD

The attribute-value is the value of the source
parameter

Message-submission-time S message-submission-
time

MD The attribute-value is the value of the source
parameter

Message-token S message-token MD The attribute-value is the value of the source
parameter

Original-EITs M original-encoded-
information-types

MD
RD

A corresponding value is generated from each
bit that is set to 1 in the built-in-encoded-
information-types parameter and from each
ExternalEncoded InformationType present in
the external-encoded-information-types
parameter

Originator-certificate S originator-certificate MD The attribute-value is the value of the source
parameter

Originator-name S originator-name MD The attribute-value is the value of the source
parameter

Other-recipient-names M other-recipient-
names

MD A corresponding value is generated from each
component of the SEQUENCE

Parent-sequence-number S � MS When creating a child-entry, this attribute is
generated with the corresponding parent-
entry�s sequence-number as value

Per-recipient-report-delivery-fields M per-recipient-fields RD A corresponding value is generated from each
component of the SEQUENCE

Priority S priority MD The attribute-value is the value of the source
parameter

Proof-of-delivery-request S proof-of-delivery-
request

MD The attribute-value is the value of the source
parameter

Redirection-history M redirection-history MD A corresponding value is generated from each
component of the SEQUENCE

Report-delivery-envelope S Report Delivery
Envelope

RD The attribute-value is the value of the source
parameter

54 Recommendation X.413 (09/92)

TABLE 2/X.413 (end)

Note � When a message-delivery entry is created, there are no separate general-attributes generated for Physical Delivery and
Delivery Method Arguments, because the information in these arguments are not relevant to the MS. However, the UA can retrieve all
the information contained in these arguments by retrieving the Message-delivery-envelope general-attribute.

12 General-auto-action-types

 The general-auto-action-types are valid for all message content-types. However, their detailed effect may be
content-specific, and so the procedure descriptions given in this Recommendation may need to be supplemented in their
respective Recommendations, e.g. the IPMS-specific procedure for the auto-forward general-auto-action-type is
described in 19.4 of CCITT Rec. X.420 | ISO/IEC 10021-7. Other auto-action-types, which are content-specific, may
be defined in their respective Recommendations.

 Auto-actions are introduced in 6.5 and are registered and deregistered using the Register-MS abstract-
operation described in 8.6. Alternatively, registration information may be conveyed to the MS by means of subscription.

 The following general-auto-action-types are defined:

a) Auto-forward;

b) Auto-alert.

 The operation of auto-actions may be affected by the implementation of a security-policy.

 The following subclauses contain a short description of each general-auto-action-type together with its
abstract-syntax using the AUTO-ACTION macro defined in 6.5.

12.1 Auto-forward

 The auto-forward auto-action enables the MS abstract-service-provider to automatically forward any
message that has been delivered into the stored-messages information base. The exact definition of forwarding is
content-specific, but it always involves the submission of a new message incorporating the delivered content to the MTS
abstract-service.

 Note � In the next version of this Recommendation, the Auto-forward auto-action will be classified as IPM-
specific and moved to CCITT Rec. X.420 | ISO/IEC 10021-7.

Attribute-type-name

Single/
Multi
valued

Source parameter

Source
generated

by

Generation rules

Reporting-DL-name S reporting-DL-name RD The attribute-value is the value of the source
parameter

Reporting-MTA-certificate S reporting-MTA-
certificate

RD The attribute-value is the value of the source
parameter

Report-origin-authentication-check S report-origin-
authentication-check

RD The attribute-value is the value of the source
parameter

Security-classification S security-
classification

MD
RD

The attribute-value is the value of the source
parameter

Sequence-number S � MS When creating an entry, the MS assigns a
unique value for this attribute in ascending
order

Subject-submission-identifier S subject-submission-
identifier

RD The attribute-value is the value of the source
parameter

This-recipient-name S this-recipient-name MD The attribute-value is the value of the source
parameter

 Recommendation X.413 (09/92) 55

 The auto-forward auto-action-type allows one or more sets of auto-forward parameters to be registered
with the MS, each identified by its auto-forward-registration-identifier. Each auto-forward-registration-parameter
specifies criteria to determine whether it applies to a particular delivered message, and if so a copy of the message is
auto-forwarded using the Message-submission abstract-operation. That is to say, if a message matches more than one
set of criteria, the message is auto-forwarded that many times.

 The auto-forward-registration-parameter specifies whether the main-entry (and any associated child-
entries) corresponding to the message is to be deleted after auto-forwarding. If any of the parameters acted upon
indicates no-deletion (or if any of the submissions fail), then the entry is not deleted.

 auto-forward AUTO-ACTION
 REGISTRATION PARAMETER IS AutoForwardRegistrationParameter
 ::= id-act-auto-forward

 AutoForwardRegistrationParameter ::= SET {
 filter [0] Filter OPTIONAL,
 auto-forward-arguments [1] AutoForwardArguments,
 delete-after-auto-forwarding [2] BOOLEAN DEFAULT FALSE,
 other-parameters [3] OCTET STRING OPTIONAL },

 AutoForwardArguments ::= SET {
 COMPONENTS OF PerMessageAutoForwardFields,
 per-recipient-fields [1] IMPLICIT SEQUENCE (1..ub-recipients) OF
 PerRecipient-AutoForwardFields }

 PerMessageAutoForwardFields ::= SET {
 originator-name OriginatorName,
 content-identifier ContentIdentifier OPTIONAL,
 priority Priority OPTIONAL,
 per-message-indicators PerMessageIndicators OPTIONAL
 deferred-delivery-time [0] IMPLICIT DeferredDeliveryTime OPTIONAL,
 extensions [2] IMPLICIT PerMessageSubmissionExtensions

 DEFAULT { } }

 PerRecipientAutoForwardFields ::= SET {
 recipient-name RecipientName,
 originator-report-request [0] IMPLICIT OriginatorReportRequest,
 explicit-conversion [1] IMPLICIT ExplicitConversion OPTIONAL,
 extensions [2] IMPLICIT PerRecipientMessageSubmissionExtensions

 DEFAULT { } }

 The parameters of the auto-forward-registration-parameter have the following meanings:

1) Filter (O): This is a set of criteria which a new entry representing a delivered message must satisfy for the
MS abstract-service-provider to auto-forward it using this set of parameters.

The absence of this parameter indicates that all new entries are auto-forwarded.

2) Auto-forward-arguments (M): This is a set of arguments registered to be used for each Message-
submission abstract operation (see 8.2.1.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4). Any argument
which is not registered, not mandatory, and not specifically mentioned below, will be absent from each
Message-submission.

If conversion-with-loss-prohibited is registered with the value conversion-with-loss-allowed, either by
explicit registration of the value, or if it is not registered and thus assumes this value by default, the value
used for each Message-submission abstract-operation shall be the value of the corresponding Message-
delivery argument. If it is registered with the value conversion-with-loss-prohibited, this value shall be
used for each Message-submission abstract-operation.

If implicit-conversion-prohibited is registered with the value �zero�, indicating that implicit conversion
is allowed, or if no value is registered, the value used for each Message-submission abstract-

56 Recommendation X.413 (09/92)

operation shall be the value of the corresponding Message-delivery argument. If it is registered with the
value �one�, indicating that implicit conversion is prohibited, this value shall be used for each Message-
submission abstract-operation.

If the following arguments are not registered, their presence as Message-submission arguments depends
upon the presence of the corresponding Message-delivery arguments, their values being transformed
where appropriate: message-token, content-confidentiality-algorithm-identifier, content-integrity-
check, message-origin-authentication-check, message-security-label, and priority.

Certain Message-submission arguments shall not be registered. These are: proof-of-submission-request,
original-encoded-information-types, content-type, and content.

3) Delete-after-auto-forwarding (O): This indicates whether an entry should be deleted or not, once the
submission has succeeded.

The absence of this parameter indicates that the message should not be deleted.

4) Other-parameters (O): This content-specific parameter need not be present. When it is present, the
information it contains will be used during the auto-forwarding procedure.

Note - Thus, for example, with Interpersonal Messaging, this parameter may contain the auto-forward-
comment that is returned in the non-receipt notification, a user specified prefix and a cover-note
accompanying the IP-message being auto-forwarded. For a description of auto-forward-comment usage,
see 19.4 of CCITT Rec. X.420 | ISO/IEC 10021-7.

 Support of the auto-forward auto-action by an MS, or UA accessing an MS, requires that it supports
registration of the auto-forward-registration-parameter via the Register-MS abstract-operation.

12.2 Auto-alert

 The auto-alert auto-action enables the MS abstract-service-provider to automatically alert the user behind the
MS abstract-service-user of the delivery of any message that has been delivered into the stored-messages information-
base.

 The auto-alert auto-action-type allows one or more sets of auto-alert parameters to be registered with the
MS, each identified by its auto-alert-registration-identifier. Each auto-alert-registration-parameter specifies criteria
to determine whether it applies to a particular delivered-message or delivered-report. If a message matched the filter of
more than one auto-alert-registration, the matching registration with the lowest auto-alert-registration-identifier is
processed, and if at least one address (or the UA) has been alerted successfully, no other registrations are processed. If
none of these addresses can be successfully alerted, the auto-alert registration with the next higher identifier is
processed. This continues until either at least one or more addresses of a registration has been successfully alerted or the
list of registrations is exhausted.

 The alert abstract-operation will only be invoked if the alert-addresses in the auto-alert-registration is
considered to have the UA as a member [see 2) below]. If this alert-abstract-operation succeeds, any other address
contained in the auto-alert registration will not be alerted.

 auto-alert AUTO-ACTION

 REGISTRATION PARAMETER IS AutoAlertRegistrationParameter

 ::= id-act-auto-alert

 AutoAlertRegistrationParameter ::= SET {

 filter [0] Filter OPTIONAL,

 alert-addresses [1] SEQUENCE SIZE (1..ub-alert-addresses) OF AlertAddress
OPTIONAL,

 requested-attributes [2] EntryInformationSelection OPTIONAL }

 Recommendation X.413 (09/92) 57

 The parameters of the auto-alert-registration-parameter have the following meanings:

1) Filter (O): This is a set of criteria which a new entry representing a delivered-message or delivered-report
shall satisfy for the MS abstract-service-provider to auto-alert it using this set of parameters.

The absence of this parameter indicates that auto-alert will be performed for all new delivered-message
or delivered-report entries.

2) Alert-addresses (O): This argument identifies the types of alert service to be invoked, together with any
information required to access the particular instances of those alert services, and any further information
that needs to be conveyed during those alerts.

Absence of this argument will default the Alert abstract-operation to informing the MS abstract-service-
user of the existence of an alert-condition either by using the Alert abstract-operation (see 8.7), (which is
only possible if an abstract-association already exists between the MS abstract-service-user and the MS
abstract-service-provider) or by flagging in the abstract-bind-operation next time the MS abstract-service-
user establishes an abstract-association (see clause 7). If the parameter requested-attributes is present, the
MS abstract-service-user (UA) will be considered as being among the addresses to be alerted.

Some types of alert will be internationally standardized. Others will be defined by national administrative
authorities and private organizations. This implies that a number of separate authorities will be
responsible for assigning types in a way that ensures that each is distinct from all other assigned types.
This is accomplished by identifying each type with an object-identifier when the type is defined, and
defining the ASN.1 data-type of the auxiliary addressing information.

The alert-qualifier contains any further information that needs to be conveyed during the auto-alert.
Absence of this parameter means that no additional information will be conveyed to the MS abstract-
service-user.

 AlertAddress ::= SEQUENCE {
 address EXTERNAL,
 alert-qualifier OCTET STRING OPTIONAL },

3) Requested-attributes (O): This indicates what information from the selected entries is to be included
with the auto-alert. See 8.1.4.

The absence of this parameter implies that only the alert-registration-identifier will be present in the
alert-argument.

58 Recommendation X.413 (09/92)

SECTION 4 � PROCEDURES FOR MESSAGE STORE AND PORT REALIZATION

13 Overview

 This section describes the procedures for the MS and the port realization. It contains a description of the
consumption of the MTS abstract-service in clause 14. The provision of the MS abstract-service is described in
clause 15. The port realization in the form of Service Elements is described in clause 16.

 The performance of the abstract-operations described in clauses 14 and 15 shall be subject to the requirements
of the security-policy (if one is in force), which applies to the MTS abstract-services and to the MS abstract-services.

14 Consumption of the Message Transfer abstract-service

 This clause specifies how an MS shall consume the MTS abstract-service which is defined in clause 8 of
CCITT Rec. X.411 | ISO/IEC 10021-4. Covered are its consumption of the MTS delivery, Submission, and Adminis-
tration Ports.

14.1 Consumption of the Delivery Port abstract-services

 This clause covers the performance of the MessageDelivery and ReportDelivery abstract-operations, and the
invocation of the DeliveryControl abstract-operation. The MS consumption of the DeliveryPort abstract-services
assumes that an abstract-association exists between the DeliveryPort supplier (the MTA) and the DeliveryPort consumer
(the MS). The performance of the abstract-operations is in sequential order; no parallel processing takes place. Error
cases are not described.

14.1.1 Performance of the MessageDelivery abstract-operation

 When the MS receives a MessageDelivery abstract-operation from the MTA, it performs the following steps:

1) Creates a new entry (and conditionally one or more child-entries) and sets the entry-status to new.

2) Returns a MessageDelivery result to the MTA to indicate that the delivery was successful. The
MessageDelivery result shall contain proof-of-delivery information if the delivered-message contains a
proof-of-delivery-request argument. This proof-of-delivery may be computed using the subject-MS-secret
key; for more details see 8.5.7 and 8.3.1.1.2.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

3) The next step is to examine if any auto-actions are activated. The auto-actions are partly content-specific
and are therefore also described in the content-specific Recommendation. The content-specific description
must contain rules about the order in which the auto-actions are to be performed. The performance of an
auto-action may result in changes of entry-status, alerts, submissions, new entries being created and in the
possible deletion of the delivered-message or other messages from the MS.
See 12.1.

a) If auto-forwarding criteria are registered by the Register-MS abstract-operation, the new entry is
matched against the criteria specified. The matching is made sequentially for each specified set of
selection criteria. For every �hit� a new message is generated and submitted from the MS to the
MTA using the MessageSubmission abstract-operation. See 15.2.1.

The rules for how to construct the new forwarded message are again content-specific and hence
described in the respective content-specific Recommendation. Other content-specific events may also
be performed at this stage (e.g. suppression of looping of auto-forwarded messages and the issuing
of a non-receipt-notification as described for IPMS in 19.4 of CCITT Rec. X.420 |
ISO/IEC 10021-7). Depending on the argument-values of the Register-MS abstract-operation for
auto-forwarding, a copy of the delivered-message may be retained in the MS. If the auto-forward
submission is unsuccessful, a copy is always retained.

Note - The handling of a result or error from such a submission is a local matter.

 Recommendation X.413 (09/92) 59

b) If auto-alert-registrations have been made via the register-MS abstract-operation, the new entry is
matched against the filter of each registration specified. The matching is made sequentially for each
registration. If a �hit� is found, an attempt is made to invoke an Alert abstract-operation from the MS
to the UA. This can only be done if there is an existing abstract-association between the MS and the
UA. If no abstract-association exists, the MS may have other local or non-standardized means to
invoke an alert. When attempts have been made to alert all of the addresses registered for the first
matching registration parameter, and at least one of the alerts succeeded, the Alert auto-action has
successfully completed, and no further alert registrations are processed. If there was no path found to
give the alert, the MS sets the alert-flag, which is reported to the UA when an abstract-association is
next time initiated by the UA to the MS.

Note - If the delivered-message was deleted as a result of an auto-forwarding action in a), the auto-
alert is obviously not performed.

4) Only after the above steps have been performed is the new entry made visible outside the MS over the
Retrieval Port. If the delivered-message was deleted as a result of an auto-action, any sequence-number
which was allocated in step 1) is not re-used (in order not to conflict with possible future logging
extensions).

14.1.2 Performance of the ReportDelivery abstract-operation

 When the MS receives a ReportDelivery abstract-operation from the MTA, it performs the following steps:

1) Creates a new entry (and conditionally one or more child-entries) and sets the entry-status to new.

2) Returns a ReportDelivery result to the MTA to indicate that the delivery was successful.
The ReportDelivery result has no parameters. For details see 8.3.1.2.2 of CCITT Rec. X.411 |
ISO/IEC 10021-4.

3) Next, if any auto-actions or other internal procedures are activated, they are performed. These are
either general or content-specific, the latter being described in the respective content-specific
Recommendations.

14.1.3 Invocation of the DeliveryControl abstract-operation

 If the MS wants to temporarily stop the MTA from passing messages and reports, or to alter the maximum-
content-length or lowest-priority of messages and reports from the MTA, it performs the following steps:

1) It invokes a DeliveryControl abstract-operation, containing the parameters to be changed. For details
see 8.3.1.3 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It gets a result back when the MTS abstract-service has accepted the changes. The result contains
information about whether messages and/or reports are waiting in the MTA, due to the current
restrictions. For details see 8.3.1.3.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

3) When the MS is able to accept any waiting messages and/or reports again, it should invoke a new
DeliveryControl abstract-operation to relax the restrictions. The effects of a DeliveryControl abstract-
operation are cancelled when either a new DeliveryControl abstract-operation alters the restrictions or
when the abstract-association is released.

14.1.4 Generation rules for general-attributes

 Attributes shall be generated when a message or report is delivered, and may be generated when an auto-action
is performed.

 All mandatory attributes are generated, see Table 1/X.413. Optional attributes are generated only if
implemented by the MS and subscribed by the user. The generated attributes form a new entry, or in some cases a
parent-entry and one or more child-entries, see 6.3.4. The following kinds of general-attributes may be generated:

a) general-attributes generated by the MS itself (e.g. sequence number);

60 Recommendation X.413 (09/92)

b) general-attributes generated from components of the message-delivery-envelope and report-delivery-
envelope. For components which are not present, but for which default values are defined, a general-
attribute containing the default value is generated.

 See Table 2/X.413 and 11.3 for the rules on how the general-attribute are generated. The generation rules for
content-specific attributes are described in the respective content-specific Recommendations, e.g. the IPMS-specific
attributes are described in Annex C of CCITT Rec. X.420 | ISO/IEC 10021-7).

14.2 Consumption of the Submission Port abstract-services

 This clause covers the invocation of the MessageSubmission, ProbeSubmission, and CancelDeferredDelivery
abstract-operations, and the consumption of the SubmissionControl abstract-operation. The MS abstract-service
consumption of the Submission Port abstract-services assumes that an abstract-association exists between the
Submission Port Supplier (the MTA) and the Submission Port consumer (the MS). The performance of the abstract-
operations is in sequential order, no parallel processing takes place. Error cases are not described.

14.2.1 Invocation of the MessageSubmission abstract-operation

 The initiation of a MessageSubmission abstract-association can be either from an auto-action within the MS or
because the UA invoked a MessageSubmission abstract-operation to the MS. In order to submit the message to
the MTA the MS performs the following steps:

1) If the MessageSubmission argument does not contain the forwarding-request extension (see 6.6), it
invokes a MessageSubmission abstract-operation, containing the message to be submitted and its
associated parameters. For details see 8.2.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4. Otherwise,
checks to see that the entry is a delivered-message and incorporates information from one delivered-
message entry in the stored-messages information-base, and then invokes the MessageSubmission
abstract-operation with the new content. Forwarding of entries that are not delivered-messages may be the
subject of future standardization.

Note that although this forwarding-request is generic, it is not necessarily meaningful for all content-
types. Where it is meaningful, the content-type of the referenced delivered-messages entry shall be
appropriate for incorporation into the content argument.

2) It gets a MessageSubmission result back when the MTA has accepted the submission. The
MessageSubmission result contains among others information about identification of and submission-time
for the submitted message. For details see 8.2.1.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

3) If the MessageSubmission abstract-operation was triggered by a corresponding MessageSubmission
abstract-operation to the MS from the UA, the result of the abstract-operation is passed back to the UA in
the form of a MessageSubmission result issued by the MS. This behaviour guarantees that the message
has actually been accepted by the MTA before the result is given back to the UA.

4) If the MTA has not accepted the message submission due to problems such as an invalid sequence
number or inappropriate content-type, the MS will generate an error of InconsistentRequest. Note that all
errors generated by the MTA are relayed through to the UA.

5) If a security-policy is in force, then to ensure that such a security-policy is not violated during message
submission, the message-security-label is checked against the security-context by the MS. If the message
submission is barred either by the security-policy or by temporary security restrictions, a security-error
shall be indicated.

14.2.2 Invocation of the ProbeSubmission abstract-operation

 A ProbeSubmission abstract-operation is initiated because the UA invoked a ProbeSubmission abstract-
operation to the MS. In order to submit the probe to the MTA, the MS performs the following steps:

1) It invokes a ProbeSubmission abstract-operation, containing the probe to be submitted and its associated
parameters. For details see 8.2.1.2.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It gets a ProbeSubmission result back when the MTA has accepted the submission. The result contains
among others information about identification of and submission-time for the submitted probe. For details
see 8.2.1.2.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

 Recommendation X.413 (09/92) 61

3) The result of the abstract-operation is passed back to the UA in the form of a ProbeSubmission result
issued by the MS. This behaviour guarantees that the probe has actually got accepted by the MTA before
the result is given back to the UA.

4) If a security-policy is in force, then to ensure that such a security-policy is not violated during
ProbeSubmission, the message-security-label of the Probe is checked against the security-context by the
MS. If the ProbeSubmission is barred either by the security-policy or by temporary security restrictions, a
ProbeSubmission error is generated.

14.2.3 Invocation of the CancelDeferredDelivery abstract-operation

 A CancelDeferredDelivery abstract-operation is initiated because the UA invoked a CancelDeferredDelivery
abstract-operation to the MS. In order to send the cancel to the MTA, the MS performs the following steps:

1) It invokes a CancelDeferredDelivery abstract-operation, containing the cancel to be submitted and its
associated parameters. For details see 8.2.1.3.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It gets a result back when the MTA has accepted the cancel. The result returned is empty as an indication
of success.

3) The result of the abstract-operation is passed back to the UA in the form of a CancelDeferredDelivery
result issued by the MS.

14.2.4 Performance of the SubmissionControl abstract-operation

 If the MTA wants to temporarily stop the MS from submitting messages or probes, or to alter the maximum-
content-length or lowest priority of messages from the MS it invokes a SubmissionControl abstract-operation, for details
see 8.2.1.4.1 of CCITT Rec. X.411 | ISO/IEC 10021-4, to the MS. The MS checks if there is already an existing
abstract-association between the MS and UA. If not, the MTA is informed by a Remote-bin-error that change of
submission control cannot take place at present. If there is, the MS reacts with the following steps:

1) It invokes a corresponding SubmissionControl abstract-operation from the MS to the UA.

2) It waits for the UA to send back a SubmissionControl result which contains information about whether
messages or probes are waiting in the UA, due to the current restrictions. For details see 8.2.1.4.2 of
CCITT Rec. X.411 | ISO/IEC 10021-4.

3) The MS sends back a SubmissionControl result to the MTA, containing information from the UA.

4) When the MTS is able to accept any messages or probes again, it should invoke a new SubmissionControl
abstract-operation to relax the restrictions. The effects of a SubmissionControl abstract-operation are
cancelled when either a new SubmissionControl abstract-operation alters the restrictions or when the
abstract-association is released. The MS then invokes a corresponding SubmissionControl abstract-
operation to the UA and waits for the SubmissionControl result.

14.3 Consumption of the Administration Port abstract-services

 This clause covers the performance of the register and ChangeCredentials abstract-operations. The
consumption of the Administration Port abstract-services assumes that an abstract-association exists between the
Administration Port supplier (the MTA) and the Administration Port consumer (the MS). The performance of the
abstract-operations is in sequential order; no parallel processing takes place. Error cases are not described.

 The MS use of the Administration Port is subject to the security-policy in force.

14.3.1 Invocation of the Register abstract-operation

 A register abstract-operation is initiated because the UA invoked a Register abstract-operation to the MS. In
order to send the registration to the MTA, the MS performs the following steps:

1) It invokes a Register abstract-operation, containing the new data to be registered. For details see 8.4.1.1.1
of CCITT Rec. X.411 | ISO/IEC 10021-4.

62 Recommendation X.413 (09/92)

2) It gets a result back when the MTA has accepted the registration. The result returned is empty as an
indication of success.

3) The scope of the permitted changes by the UA via the MS to the user-security-label arguments shall be
confined to the security-policy in force.

14.3.2 Invocation of the ChangeCredentials abstract-operation

 A ChangeCredentials abstract-operation is initiated because the UA invoked a ChangeCredentials abstract-
operation to the MS. In order to relay the new credentials to the MTA from the UA, the MS performs the following
steps:

1) It invokes a ChangeCredentials abstract-operation on the MTA, containing the new credentials to be
registered. For details see 8.4.1.2.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It gets a ChangeCredentials result back when the MTA has accepted the change. If successful, the MS
stores the new credentials. The ChangeCredentials result or resultant error from the MTA is relayed to the
UA and is empty as an indication of success.

14.3.3 Performance of the ChangeCredentials abstract-operation

 When the MS receives a ChangeCredentials abstract-operation and its associated arguments from the MTA, it
performs the following steps:

1) It establishes that the argument information is valid for a ChangeCredentials abstract-operation. For
details see 8.4.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It checks if there is already an existing abstract-association between the MS and the UA. If an abstract-
association between the MS and the UA does not exist, the MTA is informed by an error that change of
credentials can not take place at present and no further steps are processed.

3) If the abstract-association between the MS and UA exists, the MS invokes a ChangeCredentials abstract-
operation to the UA.

4) If the UA sends back an empty ChangeCredentials result, indicating success, the MS sends back a
corresponding ChangeCredentials result indicating success to the MTA and stores the credentials. If the
UA returns an error, this is relayed to the MTA to indicate that error. Note that the MS never sends back
an indication of success to the MTA until it has received the corresponding result back from the UA first.

15 Supply of the Message Store abstract-service

 This clause specifies how a MS supplies the MS abstract-service. Covered are its supply of the Retrieval,
Indirect-submission, and Administration Ports.

15.1 Supply of the Retrieval Port abstract-services

 This clause covers the supply of the Summarize, List, Fetch, Delete, Register-MS, and Alert abstract-
operations. The MS abstract-service supply of the Retrieval Port abstract-services assumes that an abstract-association
exists between the Retrieval Port supplier (the MS) and the Retrieval Port consumer (the UA). The performance of the
abstract-operations is in sequential order; no parallel processing takes place. Not all error cases are described.

15.1.1 Performance of the Summarize abstract-operation

 When the MS receives a Summarize abstract-operation from the UA, it performs the following steps:

1) Establishes which information-base the Summarize abstract-operation addresses.

2) Checks if there are any entries in the information-base. If it is empty, a Summarize result with zero length
is returned and no further steps are performed.

3) Checks that the supplied argument general-attributes and any content-specific attributes recognized by the
MS are valid for a Summarize abstract-operation. For details see 8.2.1.

 Recommendation X.413 (09/92) 63

4) Accumulates counts in accordance with the supplied argument general attributes and any content-specific
attributes recognized by the MS.

5) Returns the Summarize result to the UA. For details see 8.2.2.

6) If a security-policy is in force, then to ensure that such a security-policy is not violated during the
Summarize abstract-operation, the security classification of the security label is checked against the
security-context by the MS. If a summarize is barred by the security-policy, the Summarize abstract-
operation shall be abandoned and a security error shall be indicated.

15.1.2 Performance of the List abstract-operation

 When the MS receives a List abstract-operation from the UA, it performs the following steps:

1) Establishes which information-base the List abstract-operation addresses.

2) Checks that the supplied argument general-attributes and any content-specific attributes recognized by the
MS are valid for a list abstract-operation. For details see 8.3.1.

3) Identifies zero or more entries as requested in the argument of the abstract-operation, up to any supplied
limit. Child-entries to a parent-entry are excluded, unless explicitly selected in the argument.

4) If a set of requested general-attributes has been specified as arguments in the abstract-operation, these
general-attributes are returned, if present, to the UA for each selected entry. If no request has been done,
the default List abstract-operation values, as specified with a previous Register-MS abstract-operation, are
returned, if present. For more details see 8.3.2. The entry-status of each selected message is set to listed.

5) If a security-policy is in force, then to ensure that such a security-policy is not violated during the
List abstract-operation, the message-security-label is checked against the security-context by the MS. If
the list is barred either by the security-policy or by temporary security restrictions, the List abstract-
operation shall be abandoned and a security error shall be indicated.

15.1.3 Performance of the Fetch abstract-operation

 When the MS receives a Fetch abstract-operation from the UA, it performs the following steps:

1) Establishes which information-base the Fetch abstract-operation addresses.

2) Checks that the supplied argument general-attributes and any content-specific attributes recognized by the
MS are valid for a fetch abstract-operation. For details see 8.4.1.

3) Identifies zero or more entries as requested in the argument of the abstract-operation, up to any supplied
limit. Child-entries to a parent-entry are excluded, unless explicitly selected in the argument.

4) the fetch-restrictions established by the abstract-bind (unless overridden) are applied to determine whether
the entry may be returned or an error results. See 7.1.1, point 4).

5) If a set of requested attributes have been specified as arguments in the abstract-operation, these attributes
are returned, if present, to the UA for the first selected entry. If no requested attributes are specified, the
default Fetch abstract-operation values, as specified with a previous Register-MS abstract-operation, are
returned, if present. The allowed-EITs in the Fetch-restrictions on the abstract-bind may limit the
information returned. For details see 7.1.1. If several entries that match the search criteria are found, the
sequence-numbers for the second and following entries are returned in increasing order. If there were
more matching entries than in the specified limit, the next sequence number beyond the limit is also
returned. For more details see 8.4.2.

6) If a security-policy is in force, then to ensure that such a security-policy is not violated during the Fetch
abstract-operation, the message-security-label is checked against the security-context by the MS. If the
Fetch abstract-operation is barred either by the security-policy or by temporary security restriction, the
Fetch abstract-operation shall be abandoned and a security error shall be indicated.

64 Recommendation X.413 (09/92)

15.1.4 Performance of the Delete abstract-operation

 When the MS receives a Delete abstract-operation from the UA, it performs the following steps:

1) Establishes which information-base the Delete abstract-operation addresses.

2) Checks that the supplied arguments are valid for a delete abstract-operation. For details see 8.5.1.

3) Identifies the entry or list of entries requested in the argument of the abstract-operation.

4) If any of the entries has delete restrictions, see 8.5, none of the deletions takes place. Otherwise all
deletions are performed and an empty Delete result returned to the UA as indication of success.

15.1.5 Performance of the Register-MS abstract-operation

 When the MS receives a Register-MS abstract-operation from the UA, it performs the following steps:

1) Checks that the supplied arguments are valid for a Register-MS abstract-operation. For details see 8.6.1.

2) Replaces any old parameters with the corresponding new ones. Auto-actions have effect on transactions,
such as message-deliveries and report-deliveries, that occur after the initiation or deletion of auto-action
requests; there is no processing of entries that already reside in the MS at that point in time.

3) Sends back an empty Register-MS result to the UA to indicate that the abstract-operation has been
performed successfully.

4) If a security-policy is in force, then the Register-MS abstract-operation shall be subject to such a policy.
Some security-policies may only permit user-security-labels to be changed if a secure link is employed.
Other local means of changing the user-security-labels in a secure manner may be provided.

15.1.6 Invocation of the Alert abstract-operation

 The invocation of the alert abstract-operation is as a result of the consumption of the Delivery Port abstract-
service (see 14.1.1).

 If the Auto-alert auto-action is initiated by the UA, by an earlier Register-MS abstract-operation, the MS
abstract-service performs the following steps:

1) Checks if an abstract-association exists. If not, the MS will never establish an abstract-association, and no
Alert abstract-operation can be invoked.

2) If an abstract-association exists, the MS invokes the abstract-operation containing the relevant argument
information, for details see 8.7.1, and waits for a empty alert result to be returned by the UA as an
indication of success.

3) If an abstract-association does not exist, there is a possibility to use a non-standardized protocol to inform
the user. The alert signal in this case may be given on the user�s terminal, but can alternatively be given
on a telephone, a beeper or any other suitable terminal equipment associated with the user. The latter
method can also be used in cases where the Alert abstract-operation has not been implemented.

4) If a security-policy is in force, then to ensure that such a security-policy is not violated during the alert,
the message-security-label is checked against the security-context by the MS. If the alert abstract-
operation is barred either by the security-policy or by temporary security restrictions, the action taken
shall be defined by the security-policy in force.

15.2 Supply of the Indirect-submission Port abstract-services

 This clause covers the performance of the MessageSubmission, ProbeSubmission, and CancelDeferred
Delivery abstract-operations, and the invocation of the SubmissionControl abstract-operation. The MS abstract-service
supply of the Indirect-submission Port abstract-services assumes that an abstract-association exists between the Indirect-
submission Port supplier (the MS) and the Indirect-submission Port consumer (the UA). The performance of the
abstract-operations is in sequential order; no parallel processing takes place. Not all error cases are described.

 Recommendation X.413 (09/92) 65

15.2.1 Performance of the MessageSubmission abstract-operation

 When the MS receives a MessageSubmission abstract-operation and its associated arguments from the UA, it
performs the following steps:

1) It establishes that the argument information is valid for a MessageSubmission abstract-operation. For
details see 8.2.1.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It checks the arguments to establish if the message content was supplied by the UA or if it has to be
inserted by the MS (i.e., if the forwarding-request extension is present). In the latter case, if the entry is a
delivered-message entry, the corresponding message is inserted and the MS-related arguments deleted.
Forwarding of entries that are not delivered-messages may be the subject of future standardization.

3) It checks if there is already an existing abstract-association between the MS and the MTA. If not, the MS
initiates such an abstract-association. If an abstract-association cannot be established, the UA is informed
by an error that submission can not take place at present and no further steps are processed.

4) If the abstract-association between the MS and the MTA exists, the MS invokes a MessageSubmission
abstract-operation to the MTA, after any modifications mentioned in step 2).

5) If the MTA sends back a MessageSubmission result (for details see 8.2.1.1.2 of CCITT Rec. X.411 |
ISO/IEC 10021-4) indicating success, the MS sends back a corresponding MessageSubmission result
indicating success to the UA. Note that the MS never sends back an indication of success to the UA until
it has received the corresponding result back from the MTA first. This is to insure a consistent service
from a user point of view, viz., that a submission always means that the responsibility for the message has
been taken over by the MTA when the result comes back.

6) The MS may either choose to terminate the abstract-association with the MTA after a certain period of
inactivity, or when the UA terminates its corresponding abstract-association with the MS.

15.2.2 Performance of the ProbeSubmission abstract-operation

 When the MS receives a ProbeSubmission abstract-operation and its associated arguments from the UA, it
performs the following steps:

1) It establishes that the argument information is valid for a ProbeSubmission abstract-operation. For details
see 8.2.1.2.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It checks if there is already an existing abstract-association between the MS and the MTA. If not,
the MS initiates such an abstract-association. If an abstract-association cannot be established, the UA is
informed by an error that submission can not take place at present and no further steps are processed.

3) If the abstract-association between the MS and the MTA exists, the MS invokes a ProbeSubmission
abstract-operation to the MTA.

4) If the MTA sends back a ProbeSubmission result, for details see 8.2.1.2.2 of CCITT Rec. X.411 |
ISO/IEC 10021-4, indicating success, the MS sends back a corresponding ProbeSubmission result
indicating success to the UA. Note that the MS never sends back an indication of success to the UA until
it has received the corresponding result back from the MTA first. This is to ensure a consistent service
from a user point of view, viz., that a submission always means that the responsibility for the probe has
been taken over by the MTS when the result comes back.

5) The MS may either choose to terminate the abstract-association with the MTA after a certain period of
inactivity, or when the UA terminates its corresponding abstract-association with the MS.

15.2.3 Performance of the CancelDeferredDelivery abstract-operation

 When the MS receives a CancelDeferredDelivery abstract-operation and its associated arguments from
the UA, it performs the following steps:

1) It establishes that the argument information is valid for a CancelDeferredDelivery abstract-operation. For
details see 8.2.1.3.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

66 Recommendation X.413 (09/92)

2) It checks if there is already an existing abstract-association between the MS and the MTA. If not, the MS
initiates such an abstract-association. If an abstract-association cannot be established, the UA is informed
by an error that CancelDeferredDelivery can not take place at present and no further steps are processed.

3) If the abstract-association between the MS and the MTA exists, the MS invokes a
CancelDeferredDelivery abstract-operation to the MTA.

4) If the MTA sends back a CancelDeferredDelivery result, for details, see 8.2.1.3.2 of CCITT Rec. X.411 |
ISO/IEC 10021-4, indicating success, the MS sends back a corresponding CancelDeferredDelivery result
indicating success to the UA. Note that the MS never sends back an indication of success to the UA until
it has received the corresponding result back from the MTA first. This is to insure a consistent service
from a user point of view, viz., that the responsibility for the cancel deferred delivery has been taken over
by the MTS, when the result comes back.

5) The MS may either choose to terminate the abstract-association with the MTA after a certain period of
inactivity, or when the UA terminates its corresponding abstract-association with the MS.

15.2.4 Invocation of the SubmissionControl abstract-operation

 If the MS receives a SubmissionControl abstract-operation from the MTA, or if the MS for some internal
reasons wants to temporarily stop the UA from submitting messages or probes, or to alter the maximum-length or
lowest-priority of messages from the UA, the MS performs the following steps:

1) It invokes a SubmissionControl abstract-operation to the UA. For details see 8.2.1.4.1 of CCITT
Rec. X.411 | ISO/IEC 10021-4.

2) It waits for a SubmissionControl result, for details see 8.2.1.4.2 of CCITT Rec. X.411 | ISO/IEC 10021-4,
from the UA confirming the acceptance of the SubmissionControl abstract-operation.

3) If the SubmissionControl abstract-operation had been triggered by a corresponding abstract-operation
from the MTA to the MS, the SubmissionControl result from the UA is passed on from the MS to
the MTA.

15.3 Supply of the Administration Port abstract-services

 This clause covers the performance of the Register and ChangeCredentials abstract-operations. The MS
abstract-service supply of the Administration Port abstract-services assumes that an abstract-association exists between
the Indirect-submission Port supplier (the MS) and the Indirect-submission Port consumer (the UA). The performance of
the abstract-operations is in sequential order; no parallel processing takes place. Not all error cases are described.

15.3.1 Performance of the Register abstract-operation

 When the MS receives a Register abstract-operation and its associated arguments from the UA, it performs the
following steps:

1) It establishes that the argument information is valid for a Register abstract-operation. For details
see 8.4.1.1.1 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It checks if there is already an existing abstract-association between the MS and the MTA. If not, the MS
initiates such an abstract-association. If an abstract-association cannot be established, the UA is informed
by an error that register can not take place at present and no further steps are processed.

3) If the abstract-association between the MS and the MTA exists, the MS invokes a Register abstract-
operation to the MTA.

4) If the MTA sends back a Register result, for details see 8.4.1.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4,
indicating success, the MS sends back a corresponding Register result indicating success to the UA. Note
that the MS never sends back an indication of success to the UA until it has received the corresponding
result back from the MTA first. This is to ensure a consistent service from a user point of view, viz., that
the responsibility for the register has been taken over by the MTS, when the result comes back.

 Recommendation X.413 (09/92) 67

5) The MS may either choose to terminate abstract-association with the MTA after a certain period of
inactivity, or when the UA terminates its corresponding abstract-association with the MS.

6) The scope of permitted changes by the UA via the MS to the user-security-labels shall be confined by the
security-policy in force. Some security-policies may only permit user-security-labels to be changed in this
way if a secure link is employed. Other local means of changing user-security-labels in a secure manner
may be provided.

15.3.2 Invocation of the ChangeCredentials abstract-operation

 A ChangeCredentials abstract-operation is initiated because the MTA invoked a ChangeCredentials abstract-
operation to the MS. In order to relay the new-credentials to the UA from the MTA, the MS performs the following
steps:

1) It establishes that the argument information is valid for a ChangeCredentials abstract-operation. For
details see 8.4.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4. If the old credentials are incorrect and the
new credentials are not acceptable, an error is returned and no further processing takes place.

2) It invokes a ChangeCredentials abstract-operation on the UA containing the new credentials to be
registered. For details see 8.4.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

3) It gets a ChangeCredentials result back when the UA has accepted the change and stores the new
credentials. The ChangeCredentials result or resultant error from the UA is relayed to the MTA.

15.3.3 Performance of the ChangeCredentials abstract-operation

 When the MS receives a ChangeCredentials abstract-operation and its associated arguments from the UA, it
performs the following steps:

1) It establishes that the argument information is valid for a ChangeCredentials abstract-operation. For
details see 8.4.1.2 of CCITT Rec. X.411 | ISO/IEC 10021-4.

2) It checks if there is already an existing abstract-association between the MS and the MTA. If not, the MS
initiates such an abstract-association. If an abstract-association cannot be established, the UA is informed
by an error that change of credentials can not take place at present and no further steps are processed.

3) If the abstract-association between the MS and MTA exists, the MS invokes a ChangeCredentials
abstract-operation to the MTA.

4) If the MTA sends back an empty ChangeCredentials result, indicating success, the MS sends back a
corresponding ChangeCredentials result indicating success to the UA and stores the credentials. If the
MTA returns an error, this is relayed to the UA to indicate that error. Note that the MS never sends back
an indication of success to the UA until it has received the corresponding result back from the MTA first.

5) The MS may either choose to terminate the abstract-association with the MTA after a certain period of
inactivity, or when the UA terminates its corresponding abstract-association with the MS.

16 Ports realization

 This clause describes how the retrieval, the Submission and the Administration Ports of the MS abstract-
service are provided. For a description of how the MTS abstract-service provides the delivery, the Submission and the
Administration ports, refer to clause 8 of CCITT Rec. X.411 | ISO/IEC 10021-4.

16.1 Retrieval Port

 The Retrieval Port abstract-services are realized on a one-to-one basis between abstract-operations and
real operations in the Message Retrieval Service Element (MRSE) which is documented in CCITT Rec. X.419 | ISO/IEC
10021-6.

68 Recommendation X.413 (09/92)

16.2 Indirect-submission Port

 The Indirect-submission Port abstract-services are realized on a one-to-one basis between abstract-operations
and real operations in the Message Submission Service Element (MSSE) which is documented in CCITT Rec. X.419 |
ISO/IEC 10021-6.

16.3 Administration Port

 The Administration Port abstract-services are realized on a one-to-one basis between abstract-operations and
real operations in the Message Administration Service Element (MASE) which is documented in CCITT Rec. X.419 |
ISO/IEC 10021-6.

ANNEX A

(to Recommendation X.413)

Formal assignment of Object Identifiers

(This annex forms an integral part of this Recommendation)

 All Object Identifiers this Recommendation assigns are formally assigned in the present annex using ASN.1.
The specified values are cited in the ASN.1 modules of subsequent annexes.

 This annex is definitive for all values except those for ASN.1 modules and for the whole subject matter of this
Recommendation. The definitive assignments for the former occur in the modules themselves. The latter is fixed. Other
references to the values assigned to modules appear in IMPORT clauses.

MSObjectIdentifiers { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) object-identifiers(0) }
DEFINITIONS ::=
BEGIN

-- Prologue
-- Exports everything

IMPORTS
 ID, id-ms
 FROM MHSObjectIdentifiers { joint-iso-ccitt mhs-motis(6) arch(5) modules(0) object-identifiers(0) };

-- Categories

id-mod -- modules -- ID ::= { id-ms 0 }
id-ot -- objects -- ID ::= { id-ms 1 }
id-pt -- port types -- ID ::= { id-ms 2 }
id-att -- attribute types -- ID ::= { id-ms 3 }
id-act -- auto-action types -- ID ::= { id-ms 4 }

-- Modules

id-mod-object-identifiers ID ::= { id-mod 0 } -- not definitive
id-mod-abstract-service ID ::= { id-mod 1 } -- not definitive
id-mod-attribute-types ID ::= { id-mod 2 } -- not definitive
id-mod-action-types ID ::= { id-mod 3 } -- not definitive
id-mod-upper-bounds ID ::= { id-mod 4 } -- not definitive

-- Objects

id-ot-ms ID ::= { id-ot 0 }
id-ot-ms-user ID ::= { id-ot 1 }

-- Port types

id-pt-retrieval ID ::= { id-pt 0 }

 Recommendation X.413 (09/92) 69

-- Attribute types

id-att-child-sequence-numbers ID ::= { id-att 0 }
id-att-content ID ::= { id-att 1 }
id-att-content-confidentiality-algorithm-identifier ID ::= { id-att 2 }
id-att-content-correlator ID ::= { id-att 3 }
id-att-content-identifier ID ::= { id-att 4 }
id-att-content-integrity-check ID ::= { id-att 5 }
id-att-content-length ID ::= { id-att 6 }
id-att-content-returned ID ::= { id-att 7 }
id-att-content-type ID ::= { id-att 8 }
id-att-conversion-with-loss-prohibited ID ::= { id-att 9 }
id-att-converted-EITs ID ::= { id-att 10 }
id-att-creation-time ID ::= { id-att 11 }
id-att-delivered-EITs ID ::= { id-att 12 }
id-att-delivery-flags ID ::= { id-att 13 }
id-att-dl-expansion-history ID ::= { id-att 14 }
id-att-entry-status ID ::= { id-att 15 }
id-att-entry-type ID ::= { id-att 16 }
id-att-intended-recipient-name ID ::= { id-att 17 }
id-att-message-delivery-envelope ID ::= { id-att 18 }
id-att-message-delivery-identifier ID ::= { id-att 19 }
id-att-message-delivery-time ID ::= { id-att 20 }
id-att-message-origin-authentication-check ID ::= { id-att 21 }
id-att-message-security-label ID ::= { id-att 22 }
id-att-message-submission-time ID ::= { id-att 23 }
id-att-message-token ID ::= { id-att 24 }
id-att-original-EITs ID ::= { id-att 25 }
id-att-originator-certificate ID ::= { id-att 26 }
id-att-originator-name ID ::= { id-att 27 }
id-att-other-recipient-names ID ::= { id-att 28 }
id-att-parent-sequence-number ID ::= { id-att 29 }
id-att-per-recipient-report-delivery-fields ID ::= { id-att 30 }
id-att-priority ID ::= { id-att 31 }
id-att-priority-of-delivery-request ID ::= { id-att 32 }
id-att-redirection-history ID ::= { id-att 33 }
id-att-report-delivery-envelope, ID ::= { id-att 34 }
id-att-reporting-DL-name ID ::= { id-att 35 }
id-att-reporting-MTA-certificate ID ::= { id-att 36 }
id-att-report-origin-authentication-check ID ::= { id-att 37 }
id-att-security-classification ID ::= { id-att 38 }
id-att-sequence-number ID ::= { id-att 39 }
id-att-subject-submission-identifier ID ::= { id-att 40 }
id-att-this-recipient-name ID ::= { id-att 41 }

-- Auto-action types

id-act-auto-forward ID ::= { id-act 0 }
id-act-auto-alert ID ::= { id-act 1 }

END -- of MSObjectIdentifiers

70 Recommendation X.413 (09/92)

ANNEX B

(to Recommendation X.413)

Formal definition of the Message Store abstract-service

(This annex forms an integral part of this Recommendation)

 This annex, a supplement to Section 2, formally defines the Message Store abstract-service. It employs ASN.1
and the OBJECT, PORT, ABSTRACT-BIND, ABSTRACT-UNBIND, ABSTRACT-OPERATION, and ABSTRACT-
ERROR macros of CCITT Rec. X.407 | ISO/IEC 10021-3.

 Note � The use of the ABSTRACT-BIND, ABSTRACT-UNBIND, ABSTRACT-OPERATION, and
ABSTRACT-ERROR macros, which are derived from the BIND, UNBIND, OPERATION and ERROR macros of
ROS, does not imply that the abstract-operations and abstract-errors are invoked and reported across the boundary
between open-systems in every instance. However, frequently this will be done. Just how this is accomplished is the
subject of CCITT Rec. X.419 | ISO/IEC 10021-6.

MSAbstractService { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) abstract-service(1) }
DEFINITIONS ::=

BEGIN

-- Prologue
-- Exports everything

IMPORTS

-- Abstract-services macros

ABSTRACT-BIND, ABSTRACT-ERROR, ABSTRACT-OPERATION, ABSTRACT-UNBIND, OBJECT, PORT
 FROM AbstractServiceNotation { joint-iso-ccitt mhs-motis(6) asdc(2) modules(0) notation(1) }

-- MS ports

administration, delivery, submission,

-- MTS macro

EXTENSION,

-- MTS abstract-service-data types

ContentLength, Credentials, InitiatorCredentials, ORAddressAndOrDirectoryName,
ResponderCredentials, SecurityContext, SecurityError, SecurityLabel
 FROM MTSAbstractService { joint-iso-ccitt mhs-motis(6) mts(3) modules(0) mts-abstract-service(1) }

-- MS-objects

id-ot-ms, id-ot-ms-user, id-pt-retrieval
 FROM MSObjectIdentifiers { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) object-identifiers(0) }

-- MS abstract-service upperbound

ub-attributes-supported, ub-attribute-values, ub-auto-actions, ub-auto-registrations,
ub-default-registrations, ub-error-reasons, ub-information-bases, ub-messages,
ub-nested-filters, ub-per-auto-action, ub-per-entry, ub-summaries
 FROM MSUpperBounds { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) upper-bounds(4) }

 Recommendation X.413 (09/92) 71

-- MTS abstract-service upperbound

ub-content-types, ub-encoded-information-types, ub-labels-and-redirections
 FROM MTSUpperBounds { joint-iso-ccitt mhs-motis(6) mts(3) modules(0) upper-bounds(3) };

-- MS Abstract Objects

MS OBJECT
 PORTS { retrieval[S],
 indirectSubmission[S],
 administration[S],
 delivery[C],
 submission[C],
 administration[C] }
 ::= id-ot-ms

msUser OBJECT
 PORTS { retrieval[C],
 indirectSubmission[C],
 administration[C] }
 ::= id-ot-ms-user

-- Port types

indirectSubmission PORT ::= submission

retrieval PORT
 CONSUMER INVOKES {
 Summarize,
 List,
 Fetch,
 Delete,
 Register-MS }
 SUPPLIER INVOKES {
 Alert }
 ::= id-pt-retrieval

-- Macros

AUTO-ACTION MACRO ::=
BEGIN
 TYPE NOTATION ::= Registration
 VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)
 Registration ::= �REGISTRATION PARAMETER IS� type
END

-- Common data-types related to the information model

InformationBase ::= INTEGER {
 stored-messages (0),
 inlog (1),
 outlog (2) } (0. .ub-information-bases)

SequenceNumber ::= INTEGER (0. .ub-messages)

CreationTime ::= UTCTime

Attribute ::= SEQUENCE {
 type AttributeType,
 values SEQUENCE SIZE (1. .ub-attribute-values) OF Attribute Value }

AttributeType ::= OBJECT IDENTIFIER

Attribute Value::= ANY

72 Recommendation X.413 (09/92)

AutoActionRegistration ::= SEQUENCE {
 type AutoActionType,
 registration-identifier [0] INTEGER (1. .ub-per-auto-action) DEFAULT 1,
 registration-parameter [1] ANY DEFINED BY type }

AutoActionType ::= OBJECT IDENTIFIER

EntryStatus ::= INTEGER {
 new (0),
 listed (1),
 processed (2) }

-- Abstract-bind

MSBind ::= ABSTRACT-BIND
 TO { indirectSubmission[S], retrieval[S], administration[S] }
 BIND
 ARGUMENT MSBindArgument
 RESULT MSBindResult
 BIND-ERROR MSBindError

MSUnbind ::= ABSTRACT-UNBIND
 FROM { indirectSubmission[S], retrieval[S], administration[S] }

MSBindArgument ::= SET {
 initiator-name ORAddressAndOrDirectoryName,
 initiator-credentials [2] InitiatorCredentials,
 security-context [3] IMPLICIT SecurityContext OPTIONAL,
 fetch-restrictions [4] Restrictions OPTIONAL -- default is none --,
 ms-configuration-request [5] BOOLEAN DEFAULT FALSE }

Restrictions ::= SET {
 allowed-content-types [0] SET SIZE (1. .ub-content-types) OF OBJECT IDENTIFIER OPTIONAL
 -- default is no restriction --,
 allowed-EITs [1] MS-EITs OPTIONAL -- default is no restriction --,
 maximum-content-length [2] ContentLength OPTIONAL -- default is no restriction -- }

MS-EITs ::= SET SIZE (1. .ub-encoded-information-types) OF MS-EIT

MS-EIT ::= OBJECT IDENTIFIER

MSBindResult ::= SET {
 responder-credentials [2] ResponderCredentials,
 available-auto-actions [3] SET SIZE (1. .ub-auto-actions) OF AutoActionType OPTIONAL,
 available-attribute-types [4] SET SIZE (1. .ub-attributes-supported) OF AttributeType OPTIONAL,
 alert-indication [5] BOOLEAN DEFAULT FALSE,
 content-types-supported [6] SET SIZE (1. .ub-content-types) OF OBJECT IDENTIFIER OPTIONAL }

MSBindError ::= ENUMERATED {
 authentication-error (0),
 unacceptable-security-context (1),
 unable-to-establish-association (2) }

-- Common data-types for abstract-operations

Range ::= CHOICE {
 sequence-number-range [0] NumberRange,
 creation-time-range [1] TimeRange }

NumberRange ::= SEQUENCE {
 from [0] SequenceNumber OPTIONAL -- omitted means no lower bound --,
 to [1] SequenceNumber OPTIONAL -- omitted means no upper bound -- }

 Recommendation X.413 (09/92) 73

TimeRange ::= SEQUENCE {
 from [0] CreationTime OPTIONAL -- omitted means no lower bound --,
 to [1] CreationTime OPTIONAL -- omitted means no upper bound -- }

Filter ::= CHOICE {
 item [0] FilterItem,
 and [1] SET OF Filter,
 or [2] SET OF Filter,
 not [3] Filter }

FilterItem ::= CHOICE {
 equality [0] AttributeValueAssertion,
 substrings [1] SEQUENCE {
 type AttributeType,
 strings SEQUENCE OF CHOICE {
 initial [0] AttributeValue,
 any [1] AttributeValue,
 final [2] AttributeValue } },
 greater-or-equal [2] AttributeValueAssertion,
 less-or-equal [3] AttributeValueAssertion,
 present [4] AttributeType,
 approximate-match [5] AttributeValueAssertion }

AttributeValueAssertion ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

Selector ::= SET {
 child-entries [0] BOOLEAN DEFAULT FALSE,
 range [1] Range OPTIONAL -- default is unbounded --,
 filter [2] Filter OPTIONAL -- default is all entries within the specified range --,
 limit [3] INTEGER (1. .ub-messages) OPTIONAL,
 override [4] OverrideRestrictions OPTIONAL -- default is that any fetch-restrictions in force do apply -- }

OverrideRestrictions ::= BIT STRING {
 overrideContentTypesRestriction (0),
 overrideEITsRestriction (1),
 overrideContentLengthRestriction (2) } (SIZE (1. .ub-information-bases))

EntryInformationSelection::= SET SIZE(0. .ub-per-entry) OF AttributeSelection

AttributeSelection ::= SET {
 type AttributeType,
 from [0] INTEGER (1. .ub-attribute-values) OPTIONAL -- used if type is multi valued --,
 count [1] INTEGER (1. .ub-attribute-values) OPTIONAL -- used if type is multi valued -- }

EntryInformation ::= SEQUENCE {
 sequence-number SequenceNumber,
 attributes SET SIZE (1. .ub-per-entry) OF Attribute OPTIONAL }

-- Forwarding-request parameter for indirect-submission

forwarding-request EXTENSION
 SequenceNumber
 CRITICAL FOR SUBMISSION
 ::= 36

-- Abstract-operations

Summarize ::= ABSTRACT-OPERATION
 ARGUMENT SummarizeArgument
 RESULT SummarizeResult
 ERRORS {
 AttributeError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

74 Recommendation X.413 (09/92)

SummarizeArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 selector [1] Selector,
 summary-requests [2] SEQUENCE SIZE (1. .ub-summaries) OF Attribute Type OPTIONAL
 -- absent if no summaries are requested -- }

SummarizeResult ::= SET {
 next [0] SequenceNumber OPTIONAL,
 count [1] INTEGER (0. .ub-messages) -- of the entries selected --,
 span [2] Span OPTIONAL -- of the entries selected, omitted if count is zero --,
 summaries [3] SEQUENCE SIZE (1. .ub-summaries) OF Summary OPTIONAL }

Span ::= SEQUENCE {
 lowest [0] SequenceNumber,
 highest [1] SequenceNumber }

Summary ::= SET {
 absent [0] INTEGER (1. .ub-messages) OPTIONAL -- count of entries where the attribute is absent --,
 present [1] SET SIZE (1. .ub-attribute-values) OF -- one for each attribute value present --
 SEQUENCE {
 type AttributeType,
 value ANY DEFINED BY type,
 count INTEGER (1. .ub-messages) } OPTIONAL }

List ::= ABSTRACT-OPERATION
 ARGUMENT ListArgument
 RESULT ListResult
 ERRORS {
 AttributeError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

ListArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 selector [1] Selector,
 requested-attributes [3] EntryInformationSelection OPTIONAL }

ListResult ::= SET {
 next [0] SequenceNumber OPTIONAL,
 requested [1] SEQUENCE SIZE (1. .ub-messages) OF EntryInformation OPTIONAL -- omitted if none

[1] found -- }

--

Fetch ::= ABSTRACT-OPERATION
 ARGUMENT FetchArgument
 RESULT FetchResult
 ERRORS {
 AttributeError,
 FetchRestrictionError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

FetchArgument ::= SET {
 information-base-type [0] InformationBase DEFAULT stored-messages,
 item CHOICE {
 search [1] Selector,
 precise [2] SequenceNumber },
 requested-attributes [3] EntryInformationSelection OPTIONAL }

 Recommendation X.413 (09/92) 75

FetchResult ::= SET {
 entry-information [0] EntryInformation OPTIONAL -- if an entry was selected --,
 list [1] SEQUENCE SIZE (1. .ub-messages) OF SequenceNumber OPTIONAL,
 next [2] SequenceNumber OPTIONAL }

--

Delete ::= ABSTRACT-OPERATION
 ARGUMENT DeleteArgument
 RESULT DeleteResult
 ERRORS {
 DeleteError,
 InvalidParametersError,
 RangeError,
 SecurityError,
 SequenceNumberError,
 ServiceError }

DeleteArgument ::= SET {
 information-base-type [0] InformationBaseDEFAULT stored-messages,
 items CHOICE {
 selector [1] Selector
 sequence-numbers [2] SET SIZE (1. .ub-messages) OF SequenceNumber } }

DeleteResult ::= NULL

--

Register-MS ::= ABSTRACT-OPERATION
Register-MS ::= ARGUMENT Register-MSArgument
Register-MS ::= RESULT Register-MSResult
Register-MS ::= ERRORS {
 AttributeError,
 AutoActionRequestError,
 InvalidParametersError,
 SecurityError,
 ServiceError }

Register-MSArgument ::= SET {
 auto-action-registrations [0] SET SIZE (1. .ub-auto-registrations) OF AutoActionRegistration
 [0] OPTIONAL,
 auto-action-deregistrations [1] SET SIZE (1. .ub-auto-registrations) OF AutoActionDeregistration
 [0] OPTIONAL,
 list-attribute-defaults [2] SET SIZE (1. .ub-default-registrations) OF AttributeType OPTIONAL,
 fetch-attribute-defaults [3] SET SIZE (1. .ub-default-registrations) OF AttributeType OPTIONAL,
 change-credentials [4] SEQUENCE {
 old-credentials [0] Credentials,
 new-credentials [1] Credentials } OPTIONAL
 -- same CHOICE as for old credentials --,
 user-security-labels [5] SET SIZE (1. .ub-labels-and-redirections) OF SecurityLabel OPTIONAL }

AutoActionDeregistration ::= SEQUENCE {
 type AutoActionType,
 registration-identifier [0] INTEGER (1. .ub-per-auto-action), DEFAULT 1 }

Register-MSResult ::= NULL

--

Alert ::= ABSTRACT-OPERATION
 ARGUMENT AlertArgument
 RESULT AlertResult
 ERRORS {
 SecurityError }

AlertArgument ::= SET {
 alert-registration-identifier [0] INTEGER (1. .ub-auto-actions),
 new-entry [2] EntryInformation OPTIONAL }

AlertResult ::= NULL

76 Recommendation X.413 (09/92)

-- Abstract-errors

AttributeError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problems [0] SET SIZE (1. .ub-per-entry) OF SET {
 problem [0] AttributeProblem,
 type [1] AttributeType,
 value [2] ANY DEFINED BY type OPTIONAL } }

AttributeProblem ::= INTEGER {
 invalid-attribute-value (0),
 unavailable-attribute-type (1),
 inappropriate-matching (2),
 attribute-type-not-subscribed (3),
 inappropriate-for-operation (4) } (0. .ub-error-reasons)

--

AutoActionRequestError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problems [0] SET SIZE (1. .ub-auto-registrations) OF SET {
 problem [0] AutoActionRequestProblem,
 type [1] AutoActionType } }

AutoActionRequestProblem ::= INTEGER {
 unavailable-auto-action-type (0),
 auto-action-type-not-subscribed (1) } (0. .ub-error-reasons)

--

DeleteError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problems [0] SET SIZE (1. .ub-messages) OF SET {
 problem [0] DeleteProblem,
 sequence-number [1] SequenceNumber } }

DeleteProblem ::= INTEGER {
 child-entry-specified (0),
 delete-restriction-problem (1) } (0. .ub-error-reasons)

--

FetchRestrictionError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problems [0] SET SIZE (1. .ub-default-registrations) OF SET {
 problem [3] FetchRestrictionProblem,
 restriction CHOICE {
 content-type [1] OBJECT IDENTIFIER ,
 eit [2] MS-EITs,
 content-length [3] ContentLength } } }

FetchRestrictionProblem ::= INTEGER {
 content-type-problem (1),
 eit-problem (2),
 content-length-problem (3) } (0. .ub-error-reasons)

--

InvalidParametersError ::= ABSTRACT-ERROR
 PARAMETER NULL

--

RangeError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] RangeProblem }

RangeProblem ::= INTEGER {
 reversed (0) } (0. .ub-error-reasons)

 Recommendation X.413 (09/92) 77

--

SequenceNumberError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problems [1] SET SIZE (1. .ub-messages) OF SET {
 problem [0] SequenceNumberProblem,
 sequence-number [1] SequenceNumber } }

SequenceNumberProblem ::= INTEGER {
 no-such-entry (0) } (0. .ub-error-reasons)

--

ServiceError ::= ABSTRACT-ERROR
 PARAMETER SET {
 problem [0] ServiceProblem }

ServiceProblem ::= INTEGER {
 busy (0),
 unavailable (1),
 unwilling-to-perform (2) } (0. .ub-error-reasons)

END -- of MSAbstractService

ANNEX C

(to Recommendation X.413)

Formal definition of general-attribute-types

(This annex forms an integral part of this Recommendation)

 This annex, a supplement to Section 3, formally defines the general-attribute-types applicable to all forms of
Message Handling, rather than just one. It employs ASN.1 and the ATTRIBUTE macro.

MSGeneralAttributeTypes { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) general-attribute-types(2) }
DEFINITIONS ::=

BEGIN

-- Prologue
-- Exports everything

IMPORTS
 -- General-attribute-type object identifiers
 id-att-child-sequence-numbers, id-att-content, id-att-content-confidentiality-algorithm-identifier,
 id-att-content-correlator, id-att-content-identifier, id-att-content-integrity-check, id-att-content-length,
 id-att-content-returned, id-att-content-type, id-att-conversion-with-loss-prohibited, id-att-converted-EITs,
 id-att-creation-time, id-att-delivered-EITs, id-att-delivery-flags, id-att-dl-expansion-history,
 id-att-entry-status, id-att-entry-type, id-att-intended-recipient-name, id-att-message-delivery-envelope,
 id-att-message-delivery-identifier, id-att-message-delivery-time, id-att-message-origin-authentication-

check,
 id-att-message-security-label, id-att-message-submission-time, id-att-message-token, id-att-original-

EITs,
 id-att-originator-certificate, id-att-originator-name, id-att-other-recipient-names,
 id-att-parent-sequence-number, id-att-per-recipient-report-delivery-fields, id-att-priority, id-att-proof-of-

delivery-request, id-att-redirection-history,
 id-att-report-delivery-envelope, id-att-reporting-DL-name, id-att-reporting-MTA-certificate,
 id-att-report-origin-authentication-check, id-att-security-classification, id-att-sequence-number, id-att-

subject-submission-identifier,
 id-att-this-recipient-name
 FROM MSObjectIdentifiers { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) object-identifiers(0) }

78 Recommendation X.413 (09/92)

 -- Attribute macros
 ATTRIBUTE, ATTRIBUTE-SYNTAX
 FROM InformationFramework { joint-iso-ccitt ds(5) modules(1) informationFramework(1) }

 -- MS abstract-service data-types
 CreationTime, EntryStatus, MS-EIT, SequenceNumber
 FROM MSAbstractService { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) abstract-service(1) }

 -- Authentication-service data-types
 AlgorithmIdentifier
 FROM AuthenticationFramework { joint-iso-ccitt ds(5) modules(1) authentication-Framework(7) }

 -- MTS abstract-service data-types
 Content, ContentCorrelator, ContentIdentifier, ContentIntegrityCheck, ContentLength,
 ConversionWithLossProhibited, DeliveryFlags, DLExpansion, MessageDeliveryEnvelope,
 MessageDeliveryIdentifier, MessageDeliveryTime, MessageOriginAuthenticationCheck,
 MessageSecurityLabel, MessageSubmissionTime, MessageToken, OriginatorCertificate, ORName,
 PerRecipientReportDeliveryFields, Priority, ProofOfDeliveryRequest, RedirectionHistory,
 ReportDeliveryEnvelope, ReportingDLName, ReportingMTACertificate,
 ReportOriginAuthenticationCheck, SecurityClassification, subjectSubmissionIdentifier
 FROM MTSAbstractService { joint-iso-ccitt mhs-motis(6) mts(3) modules(0)
 mts-abstract-service(1) }

 -- MS abstract-service upperbound
 ub-entry-types
 FROM MSUpperBounds { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) upper-bounds(4) };

-- Attribute-types

ms-child-sequence-numbers ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SequenceNumber
 MULTI VALUE
 ::= id-att-child-sequence-numbers

ms-content ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Content
 SINGLE VALUE
 ::= id-att-content

mt-content-confidentiality-algorithm-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AlgorithmIdentifier
 SINGLE VALUE
 ::= id-att-content-confidentiality-algorithm-identifier

mt-content-correlator ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentCorrelator
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-correlator

mt-content-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentIdentifier
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-identifier

mt-content-integrity-check ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentIntegrityCheck
 SINGLE VALUE
 ::= id-att-content-integrity-check

ms-content-length ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ContentLength
 MATCHES FOR ORDERING
 SINGLE VALUE
 ::= id-att-content-length

 Recommendation X.413 (09/92) 79

ms-content-returned ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX BOOLEAN
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-returned

mt-content-type ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX OBJECT IDENTIFIER
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-content-type

mt-conversion-with-loss-prohibited ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ConversionWithLossProhibited
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-conversion-with-loss-prohibited

ms-converted-EITs ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MS-EIT
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-converted-EITs

ms-creation-time ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX CreationTime
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-creation-time

ms-delivered-EITs ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MS-EIT
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-delivered-EITs

mt-delivery-flags ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX DeliveryFlags
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-delivery-flags

mt-dl-expansion-history ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX DLExpansion
 MULTI VALUE
 ::= id-att-dl-expansion-history

ms-entry-status ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX EntryStatus
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-entry-status

ms-entry-type ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX EntryType
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-entry-type

EntryType ::= INTEGER {
 delivered-message (0),
 delivered-report (1),
 returned-content (2) (0. .ub-entry-types)

mt-intended-recipient-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-intended-recipient-name

80 Recommendation X.413 (09/92)

mt-message-delivery-envelope ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageDeliveryEnvelope
 SINGLE VALUE
 ::= id-att-message-delivery-envelope

mt-message-delivery-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageDeliveryIdentifier
 SINGLE VALUE
 ::= id-att-message-delivery-identifier

mt-message-delivery-time ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageDeliveryTime
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-message-delivery-time

mt-message-origin-authentication-check ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageOriginAuthenticationCheck
 SINGLE VALUE
 ::= id-att-message-origin-authentication-check

mt-message-security-label ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageSecurityLabel
 SINGLE VALUE
 ::= id-att-message-security-label

mt-message-submission-time ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageSubmissionTime
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-message-submission-time

mt-message-token ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MessageToken
 SINGLE VALUE
 ::= id-att-message-token

ms-original-EITs ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX MS-EIT
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-original-EITs

mt-originator-certificate ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX OriginatorCertificate
 SINGLE VALUE
 ::= id-att-originator-certificate

mt-originator-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-originator-name

mt-other-recipient-names ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 MULTI VALUE
 ::= id-att-other-recipient-names

ms-parent-sequence-number ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SequenceNumber
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-parent-sequence-number

mt-per-recipient-report-delivery-fields ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX PerRecipientReportDeliveryFields
 MULTI VALUE
 ::= id-att-per-recipient-report-delivery-fields

 Recommendation X.413 (09/92) 81

mt-priority ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX Priority
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-priority

mt-proof-of-delivery-request ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ProofOfDeliveryRequest
 SINGLE VALUE
 ::= id-att-proof-of-delivery-request

mt-redirection-history ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX RedirectionHistory
 MULTI VALUE
 ::= id-att-redirection-history

mt-report-delivery-envelope ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportDeliveryEnvelope
 SINGLE VALUE
 ::= id-att-report-delivery-envelope

mt-reporting-DL-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportingDLName
 SINGLE VALUE
 ::= id-att-reporting-DL-name

mt-reporting-MTA-certificate ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportingMTACertificate
 SINGLE VALUE
 ::= id-att-reporting-MTA-certificate

mt-report-origin-authentication-check ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ReportOriginAuthenticationCheck
 SINGLE VALUE
 ::= id-att-report-origin-authentication-check

mt-security-classification ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SecurityClassification
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-security-classification

ms-sequence-number ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SequenceNumber
 MATCHES FOR EQUALITY ORDERING
 SINGLE VALUE
 ::= id-att-sequence-number

mt-subject-submission-identifier ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX SubjectSubmissionIdentifier
 SINGLE VALUE
 ::= id-att-subject-submission-identifier

mt-this-recipient-name ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX ORName
 MATCHES FOR EQUALITY
 SINGLE VALUE
 ::= id-att-this-recipient-name

END -- of MSGeneralAttributeTypes

82 Recommendation X.413 (09/92)

ANNEX D

(to Recommendation X.413)

Formal definition of general-auto-action-types

(This annex forms an integral part of this Recommendation)

 This annex, a supplement to Section 3, formally defines the general-auto-action-types applicable to all forms
of Message Handling, rather than just one. It employs ASN.1 and the AUTO-ACTION macro.

MSGeneralAutoActionTypes { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) general-auto-action-types(3) }
DEFINITIONS ::=

BEGIN

-- Prologue

EXPORTS
 -- General-auto-action-types
 auto-forward, auto-alert;

IMPORTS
 -- General-auto-action-type object identifiers
 id-act-auto-forward, id-act-auto-alert
 FROM MSObjectIdentifiers { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) object-identifiers(0) }

 -- Auto-action macro
 AUTO-ACTION,

 -- MS abstract-service data-types
 Filter, EntryInformationSelection
 FROM MSAbstractService { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) abstract-service(1) }

 -- MTS abstract-service data-types
 ContentIdentifier, DeferredDeliveryTime, ExplicitConversion, OriginatorName, OriginatorReportRequest,

PerMessageIndicators, PerMessageSubmissionExtensions,
PerRecipientMessageSubmissionExtensions, Priority, RecipientName

 FROM MTSAbstractService { joint-iso-ccitt mhs-motis(6) mts(3) modules(0) mts-abstract-service(1) }

 -- MTS upper bounds
 ub-recipients
 --
 FROM MTSUpperBounds {joint-iso-ccitt mhs-motis(6) mts(3) modules(0) upper-bounds(3) }

 -- MS abstract-service upperbound
 ub-alert-addresses
 FROM MSUpperBounds { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) upper-bounds(4) };

 -- Action-types
 auto-forward AUTO-ACTION
 REGISTRATION PARAMETER IS AutoForwardRegistrationParameter
 ::= id-act-auto-forward

AutoForwardRegistrationParameter ::= SET {
 filter [0] Filter OPTIONAL,
 auto-forward-arguments [1] AutoForwardArguments,
 delete-after-auto-forwarding [2] BOOLEAN DEFAULT TRUE,
 other-parameters [3] OCTET STRING OPTIONAL }

AutoForwardArguments ::= SET {
 COMPONENTS OF PerMessageAutoForwardFields,
 per-recipient-fields [1] IMPLICIT SEQUENCE SIZE (1. .ub-recipients) OF PerRecipient-

[1] AutoForwardFields }

 Recommendation X.413 (09/92) 83

PerMessageAutoForwardFields ::= SET {
 originator-name OriginatorName,
 content-identifier ContentIdentifier OPTIONAL,
 priority Priority OPTIONAL,
 per-message-indicators PerMessageIndicators OPTIONAL,
 deferred-delivery-time [0] IMPLICIT DeferredDeliveryTime OPTIONAL,
 extensions [2] IMPLICIT PerMessageSubmissionExtensions DEFAULT { } }

PerRecipientAutoForwardFields ::= SET {
 recipient-name RecipientName,
 originator-report-request [0] IMPLICIT OriginatorReportRequest,
 explicit-conversion [1] IMPLICIT ExplicitConversion OPTIONAL,
 extensions [2] IMPLICIT PerRecipientMessageSubmissionExtensions DEFAULT { } }

auto-alert AUTO-ACTION
 REGISTRATION PARAMETER IS AutoAlertRegistrationParameter
 ::= id-act-auto-alert

AutoAlertRegistrationParameter ::= SET {
 filter [0] Filter OPTIONAL,
 alert-addresses [1] SEQUENCE SIZE (1. .ub-alert-addresses) OF AlertAddress
 [1] OPTIONAL,
 requested-attributes [2] EntryInformationSelection OPTIONAL }

AlertAddress ::= SEQUENCE {
 address EXTERNAL,
 alert-qualifier OCTET STRING OPTIONAL }

END -- of MSGeneralAutoActionTypes

ANNEX E

(to Recommendation X.413)

Formal definition of MS parameter upper bounds

(This annex forms an integral part of this Recommendation)

 This annex defines for reference purpose the upper bounds of various variable length data types whose abstract
syntaxes are defined in ASN.1 modules in the body of this Recommendation.

MSUpperBounds { joint-iso-ccitt mhs-motis(6) ms(4) modules(0) upper-bounds(4) }
DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- Prologue
-- Exports everything

IMPORTS -- nothing --;

-- Upper bounds
ub-alert-addresses INTEGER ::= 16
ub-attribute-values INTEGER ::= 32767 -- (215 �1) the largest integer representable in 16 bits --
ub-attributes-supported INTEGER ::= 1024
ub-auto-actions INTEGER ::= 16
ub-auto-registrations INTEGER ::= 1024
ub-default-registrations INTEGER ::= 1024
ub-entry-types INTEGER ::= 16
ub-error-reasons INTEGER ::= 16
ub-information-bases INTEGER ::= 16
ub-messages INTEGER ::= 2147483647 -- (231 �1) the largest integer representable in 32 bits --
ub-nested-filters INTEGER ::= 32
ub-per-auto-action INTEGER ::= 32767 -- (215 �1) the largest integer representable in 16 bits --
ub-per-entry INTEGER ::= 1024
ub-summaries INTEGER ::= 16

END -- of MSUpperBounds

84 Recommendation X.413 (09/92)

ANNEX F

(to Recommendation X.413)

Example of the Summarize abstract-operation

(This annex does not form an integral part of this Recommendation)

 This annex contains an example of the use of the Summarize abstract-operation.

F.1 The entries in the example MS

 Consider an MS containing the following entries, one entry per line. The columns show the values of the
indicated attribute-types. A ��� indicates that the attribute is absent from the entry.

TABLE F-1/X.413

Stored-messages in the example

Note � Even if the Priority in a MessageDeliveryEnvelope of a message is omitted and
defaulted to �normal�, the corresponding attribute is present with its value set to the default.

F.2 An example of a request for summary

 Suppose the requirement is to summarize all the �new� entries by priority. The required result is the following
list of counts. The numbers in parenthesis are sequence-numbers of the messages contributing to that count. See Table F-
2/X.413.

TABLE F-2/X.413

Expected Result from the Summarize abstract-operation

Sequence number Entry-type Entry-status Priority

03 message listed urgent

05 message listed low

08 report listed �

10 message listed normal

15 report new �

18 message new normal

20 message new urgent

22 message new normal

23 message new normal

Priority Count

� 1 (15)

urgent 1 (20)

normal 4 (15,18,22,23)

low 0

 Recommendation X.413 (09/92) 85

 The components of the summarize-argument should be set as follows:

 selector:

 filter: entry-status = new

 summary-requests attribute type = Priority

 The components of the summarize-result might be as follows:

 count: 05

 span:

 lowest: 15

 highest: 23

 summaries:

 { absent: 1

 { present: 0{ value = normal, count = 3 }

 0{ value = urgent, count = 1 } }

ANNEX G

(to Recommendation X.413)

Differences between CCITT Recommendation X.413 (1992) and ISO/IEC 10021-5:1990

(This annex does not form an integral part of this Recommendation)

 This annex identifies the known differences between CCITT Rec. X.413:1992 and ISO/IEC 10021-5:1990.

1) The CCITT text contains a restriction in 7.1 that only one abstract-association may exist at any one time
between the MS and the MS-user. This restriction is not included in the ISO/IEC text.

2) Those parts of the ASN.1 Notation which express upper bounds and are documented in Annex E, are not
considered to be an integral part of ISO/IEC 10021-5:1990, but are an integral part of CCITT
Rec. X.413 (1992).

In ISO/IEC, this level of functionality is the responsibility of the Special Group on Functional
Standardization, which publishes Internationally Standardized Profiles (ISPs), containing, e.g. upper
bounds for protocol elements.

Printed in Switzerland

Geneva, 1993

	Rec. ITU-T X.413 (09/1992) – MESSAGE HANDLING SYSTEMS – MESSAGE STORE: ABSTRACT-SERVICE DEFINITION
	FOREWORD
	CONTENTS
	INTRODUCTION
	SECTION 1 – GENERAL
	1 Scope
	2 Normative references
	2.1 Reference model references
	2.2 Presentation references
	2.3 Remote Operations references
	2.4 Directory references
	2.5 Message Handling references

	3 Definitions
	3.1 Common Definitions for MHS
	3.2 Message Store Definitions

	4 Abbreviations
	5 Conventions
	5.1 Conventions for abstract-services
	5.2 Conventions for attribute-types used in Table 1/X.413 of clause 11
	5.3 Conventions for attribute-types used in Table 2/X.413 of clause 11
	5.4 Font conventions for text in general
	5.5 Font conventions for ASN.1 definitions
	5.6 Rules for ASN.1 definitions

	SECTION 2 – MESSAGE STORE ABSTRACT-SERVICE DEFINITION
	6 Message Store model
	6.1 Message Store object
	6.2 Message Store ports
	6.2.1 Retrieval Port
	6.2.2 Indirect-submission Port
	6.2.3 Administration Port

	6.3 Information model
	6.3.1 Information-bases
	6.3.2 Entries
	6.3.3 Attributes
	6.3.4 Main-entries, parent-entries, and child-entries

	6.4 Stored-messages
	6.5 Auto-actions
	6.5.1 Introduction
	6.5.2 Auto-action-type
	6.5.3 Auto-action-registration-parameter
	6.5.4 Auto-action-type definition and the AUTO-ACTION macro

	6.6 Forwarding of messages

	7 Abstract-bind and abstract-unbind operations
	7.1 Abstract-bind-operation
	7.1.1 Abstract-bind-argument
	7.1.2 Abstract-bind-result
	7.1.3 Abstract-bind-errors

	7.2 Abstract-unbind-operation

	8 Abstract-operations
	8.1 Common-data-types used in abstract-operations
	8.1.1 Range
	8.1.2 Filters
	8.1.3 Selector
	8.1.4 Entry-information-selection
	8.1.5 Entry-information

	8.2 Summarize abstract-operation
	8.2.1 Summarize-argument
	8.2.2 Summarize-result
	8.2.3 Summarize abstract-errors

	8.3 List abstract-operation
	8.3.1 List-argument
	8.3.2 List-result
	8.3.3 List abstract-errors

	8.4 Fetch abstract-operation
	8.4.1 Fetch-argument
	8.4.2 Fetch-result
	8.4.3 Fetch abstract-errors

	8.5 Delete abstract-operation
	8.5.1 Delete-argument
	8.5.2 Delete-result
	8.5.3 Delete abstract-errors

	8.6 Register-MS abstract-operation
	8.6.1 Register-MS-argument
	8.6.2 Register-MS-result
	8.6.3 Register-MS abstract-errors

	8.7 Alert abstract-operation
	8.7.1 Alert-argument
	8.7.2 Alert-result
	8.7.3 Alert abstract-errors

	9 Abstract-errors
	9.1 Error precedence
	9.2 Attribute-error
	9.3 Auto-action-request-error
	9.4 Delete-error
	9.5 Fetch-restriction-error
	9.6 Invalid-parameters-error
	9.7 Range-error
	9.8 Security-error
	9.9 Sequence-number-error
	9.10 Service-error

	SECTION 3 – GENERAL-ATTRIBUTE-TYPES AND GENERAL-AUTO-ACTION-TYPES
	10 Overview
	11 General-attribute-types
	11.1 General-attribute-types overview
	11.2 Description of the general-attribute-types
	11.2.1 Child-sequence-numbers
	11.2.2 Content
	11.2.3 Content-confidentiality-algorithm-identifier
	11.2.4 Content-correlator
	11.2.5 Content-identifier
	11.2.6 Content-integrity-check
	11.2.7 Content-length
	11.2.8 Content-returned
	11.2.9 Content-type
	11.2.10 Conversion-with-loss-prohibited
	11.2.11 Converted-EITs
	11.2.12 Creation-time
	11.2.13 Delivered-EITs
	11.2.14 Delivery-flags
	11.2.15 DL-expansion-history
	11.2.16 Entry-status
	11.2.17 Entry-type
	11.2.18 Intended-recipient-name
	11.2.19 Message-delivery-envelope
	11.2.20 Message-delivery-identifier
	11.2.21 Message-delivery-time
	11.2.22 Message-origin-authentication-check
	11.2.23 Message-security-label
	11.2.24 Message-submission-time
	11.2.25 Message-token
	11.2.26 Original-EITs
	11.2.27 Originator-certificate
	11.2.28 Originator-name
	11.2.29 Other-recipient-names
	11.2.30 Parent-sequence-number
	11.2.31 Per-recipient-report-delivery-fields
	11.2.32 Priority
	11.2.33 Proof-of-delivery-request
	11.2.34 Redirection-history
	11.2.35 Report-delivery-envelope
	11.2.36 Reporting-DL-name
	11.2.37 Reporting-MTA-certificate
	11.2.38 Report-origin-authentication-check
	11.2.39 Security-classification
	11.2.40 Sequence-number
	11.2.41 Subject-submission-identifier
	11.2.42 This-recipient-name

	11.3 Generation of the general-attributes
	11.4 Attribute-types subscription

	12 General-auto-action-types
	12.1 Auto-forward
	12.2 Auto-alert

	SECTION 4 – PROCEDURES FOR MESSAGE STORE AND PORT REALIZATION
	13 Overview
	14 Consumption of the Message Transfer abstract-service
	14.1 Consumption of the Delivery Port abstract-services
	14.1.1 Performance of the MessageDelivery abstract-operation
	14.1.2 Performance of the ReportDelivery abstract-operation
	14.1.3 Invocation of the DeliveryControl abstract-operation
	14.1.4 Generation rules for general-attributes

	14.2 Consumption of the Submission Port abstract-services
	14.2.1 Invocation of the MessageSubmission abstract-operation
	14.2.2 Invocation of the ProbeSubmission abstract-operation
	14.2.3 Invocation of the CancelDeferredDelivery abstract-operation
	14.2.4 Performance of the SubmissionControl abstract-operation

	14.3 Consumption of the Administration Port abstract-services
	14.3.1 Invocation of the Register abstract-operation
	14.3.2 Invocation of the ChangeCredentials abstract-operation
	14.3.3 Performance of the ChangeCredentials abstract-operation

	15 Supply of the Message Store abstract-service
	15.1 Supply of the Retrieval Port abstract-services
	15.1.1 Performance of the Summarize abstract-operation
	15.1.2 Performance of the List abstract-operation
	15.1.3 Performance of the Fetch abstract-operation
	15.1.4 Performance of the Delete abstract-operation
	15.1.5 Performance of the Register-MS abstract-operation
	15.1.6 Invocation of the Alert abstract-operation

	15.2 Supply of the Indirect-submission Port abstract-services
	15.2.1 Performance of the MessageSubmission abstract-operation
	15.2.2 Performance of the ProbeSubmission abstract-operation
	15.2.3 Performance of the CancelDeferredDelivery abstract-operation
	15.2.4 Invocation of the SubmissionControl abstract-operation

	15.3 Supply of the Administration Port abstract-services
	15.3.1 Performance of the Register abstract-operation
	15.3.2 Invocation of the ChangeCredentials abstract-operation
	15.3.3 Performance of the ChangeCredentials abstract-operation

	16 Ports realization
	16.1 Retrieval Port
	16.2 Indirect-submission Port
	16.3 Administration Port

	ANNEX A – Formal assignment of Object Identifiers
	ANNEX B – Formal definition of the Message Store abstract-service
	ANNEX C – Formal definition of general-attribute-types
	ANNEX D – Formal definition of general-auto-action-types
	ANNEX E – Formal definition of MS parameter upper bounds
	ANNEX F – Example of the Summarize abstract-operation
	ANNEX G – Differences between CCITT Recommendation X.413 (1992) and ISO/IEC 10021-5:1990

