| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.292

TELECOMMUNICATION (05/2002)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

Open Systems Interconnection — Conformance testing

OSI conformance testing methodology and
framework for protocol Recommendations for
ITU-T applications — The Tree and Tabular
Combined Notation (TTCN)

ITU-T Recommendation X.292

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
IP-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSINETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T RECOMMENDATION X.292

OSI conformance testing methodology and framework for protocol Recommendations for
ITU-T applications — The Tree and Tabular Combined Notation (TTCN)

Summary

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for
OSI conformance test suites, which is independent of test methods, layers and protocols, and which reflects the abstract
testing methodology defined in ITU-T Recs X.290 and X.291. This edition incorporates corrections of defects received
and is equivalent to ETSI TR 101 666, which is also known as TTCN2++.

Source

ITU-T Recommendation X.292 was prepared by ITU-T Study Group 17 (2001-2004) and approved under the WTSA
Resolution 1 procedure on 14 May 2002.

ITU-T Rec. X.292 (05/2002) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T 1is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. X.292 (05/2002)

CONTENTS

Page
N Tee] o TR
INOIMALIVE TEFEIEIICESveiiivieeiiie et ettt ettt et e e e et e e e taeeetaeeetreeeaseeetseeetseentseeeseeeeaseesaseeeaseseaseesarens 2
2.1 Identical Recommendations | International Standards...........c.ccoceverenienininininiieeiccccresee e 2
2.2 Paired Recommendations | International Standards equivalent in technical contentc..cccee.e. 2
2.3 Additional TEIETENCESccuiieiiieiiiciec ettt e e e b e e ab e e e abe e tb e e eabe e abeeeabeenareas 3
DIETINITIONS. ...t et e e e e e e e et e e e et e e e e eaae e e eeaeeeeeetaeeeeeaaeeeeeaeeeearneeeanrreeeans 3
3.1 Basic terms from ITU-T ReC. X.290.......cuuiiiiieieeeee e e 3
3.2 Terms from ITU-T ReC. X.200cmmii oottt e e e et e e e e e ennes 5
3.3 Terms from ITU-T ReC. X 210 ..oiiiiiiiiiiiiie ettt e e e et e e et e e e earee e eeaens 5
3.4 Terms from ITU-T ReC. X080coumiiiiiiiiieiiie et et e eta e e earee e e eaens 5
3.5 Terms from ITU-T ReC. X690c.umiiiieiiieee ettt et e e e earee e e eaaes 5
3.6 TTON SPECITIC tEIMIS...ueeiuiieeiieeiieeieesteeeteesteesteesteeesteessteesssaensseessaeeseeesseensesansseenseesnseesnsessnseesnseeans 5
A DDTEVIALIONSvieeevieeetieete e ettt et ee et e e e tte e et e e eteeeeteeeeteeeeteeeeteeeeseeeeteeeeaeeeteeeteeetteeeaeeeetreeeaeeeereeanreeas 10
4.1 Abbreviations defined in ITU-T ReC. X.290cciiiiiiiiiiiiiieceiccee ettt 10
4.2 Abbreviations defined in ITU-T ReC. X.291oooiuiiiiiiieiiicieeceeee ettt 10
4.3 Other ADDIEVIATIONSiiiuiiiieiiietii ettt ettt et e et e eeteeeeteeeteeeteeebeeeseeeabeeeaseeseseesaseesaseeesseestseenaneaas 10
The syntax forms 0f TTCNccooiirieiieiteieeee ettt ettt te st e st e e aeestesste st esseenseessessaesseesseesesnsesnsessnanes 11
(7070010 §E:1 1 oL PSRRI 12
COMVEILIONS ...ttt e ettt e e et e e ettt e e eete e e e e e e e e eeseeeeeeaeeeeeseeeeesseeeeesseeeeesseseeasseeeeesseeeeesesesensseeeeennes 12
7.1 INETOAUCTION. ...t et e e e et e e e etae e e et e e e e aaeeeeeaaeeeeeateeeeeaseeseeneeaas 12
7.2 SyntactiC METANOTALION.ecuietietiriieiiteit ettt ettt ettt ettt ea e et e bt et e st esbeesb e e bt enbesstesbeesbeenbeenaesaeesaeenne 12
7.3 TTCN.GR table ProfOIMESccvecviiiiieiieiieie ittt ettt steeb e b e e e ste e beesbeesbesraesaeesaeesseensesenanns 13
T.3. 1 INEEOAUCTION .eveieiiiciecceee et et e e et e et e eeteeeeteeeeteeeeteeeteseveeenneeenreeennens 13
7.3.2 Single TTCN 0DJECt tADIES.ccuieiieiieieetieitieie ettt e st sse e esaeeesesseebeesseessensaens 13
7.3.3 Multiple TTCN ODJECE tADIES ...uvievieriieiieiieie ettt ettt see b b e esbeesaessaenseas 14
7.3.4 Alternative COMPACt tADIES.cuevviiriieiieieiieeeie ettt b e nreens 14
7.3.5 Specification of Proformas...........cceeceeierieriieiieieee ettt ettt enee s 15
7.4 Free Text and Bounded FIee TeXt.......coiiiiiiiiiiiieeciie ettt e ta e e v et e e veeeveeeeneea 15
ConcurrenCy I TTONooiiiiiiieiiee ettt ettt e be e e e s seessee st esseenseassessaessaenseenseensesnsesnsesnnanes 15
8.1 TESt COMPONEILSeueieieeeiieiiestteste et eeteetteste e et enteeseeesee st e seemseeseesseesseeseeneeemeesseenseanseenseenseensesseenneennes 15
8.2 Test component CONTIGUIALIONSc.eeruieitieriieeertierte et ete et e st et e et e st e saeesee et e et e st eeteeneeeneesseenseenneenees 16
TTON tESt SUILE STIUCIUTE ... eeeieeeeetee e ettt e et e e et e e et e e e et e e e eeaeeeeeeaeeeeeeaaeeeeeaeeeeesseeeeesseeeeenneeeeesseeeeennns 17
9.1 INETOAUCTION. ...ttt e e e et e e e etae e e et e e e e aaeeeeeaaeeeeeateseeeaseeseenneeas 17
0.2 Test GTOUP RETEIENCES.eeeiiiiiiieiieciieeee ettt ettt st e e s be e s b e e saaeessbaesaeesbeensseesseensneens 17
9.3 Test Step Group REETENCES........eicviiiiiiieiieciie ettt aeesaae e ssbeessaeestaeesneens 17
9.4 Default Group REfEreNCES.ccviiuiiiiiiiiciieie sttt ettt ettt e b e e beesbesraesaeesaeesseennesananns 17
0.5 Parts 0 @ TTON ST SUILE ...cueiiiviiitieerieeteeciee et e et e eeteeeveeeteeetreeeaeeetaeestseeeaseeetseeseeeteeeeseeentseensneans 17
TESt SUIEE OVEIVIEW ..c.vviiiriieiiieetie ettt ettt ettt ettt et e e et e e eteeeeteeeetaeeeteeeetaeeeteseetaeeseeeteeeaseeenbeeesseentseeesseesaseenseeans 18
TO.T INEEOAUCTION. ...ctiietieeiiecieeeie ettt ettt ettt ettt et e et e eeteeeteseeaeeeabeeeaseesaseesaseeasseessseeesseesaseesaseesseennns 18
10.2 TSt SUILE INACK ..ouviiiiiiiiieeiie ettt ettt ettt et e et e e etaeeteeebeeeareseabeesasessesaesaseesaseesasessnseennns 18
10.3 TSt SUILE SIIUCTUIE.veeevieeitiieeiieetieeette et e eteeeveeeteeetveeebeestseessseestseessseesseasaeensesasseenseessseessseesseennns 19
10.4 TSt CaSE INAEX...cuiiiriiiiieetieeieeeiee et e ettt ete e et e e tv e e e beestbeesaae e tseesaseesseesseesseasseessesaseesasessnseennns 20
L0.5 TSt SIEP INACK 1nvieuiieiiieieeiiee ettt st ettt ettt e et e st e se e st e enseesaesseesseesseensesnsesnsesnnenns 21
10.6 Default INAEXcccuviiiiiiiiiiciie ettt ettt et e et e et e e be e e baeeabee e taeessesesaeenseeesseessesenraeeareeans 22
10.7 TSt SUILE EXPOTES .. .eitiiiieiieiieiieet ettt ettt ettt e st e ettt e st e e seesbe et e enteeneesseesneenseeneesneeeneenne 23
10.8 The IMPOTt PAIt.......ooiiiiiiie ettt sttt ettt e e st et et e e e enteebeeneeeneesneenne 24
L0280 S 618 (oY 11 o150)« RS R 24
LR 00 U111 o) USRNSSR 24

ITU-T Rec. X.292 (05/2002) il

11

iv

DECIATALIONS PATT ...eeuviieiiietieeitieectieeee et e st e et e st esteestbeessaeessseesaeessaeenseesssaeanseesnseeanseessseensseensseensseesssesnsseens
T1.1 INEEOQUCTION. ...ttt ettt b st b ettt et et e b s bt b s bt ebe e bt et e naesbeebeeaeeneene
T1.2 TTON LYPES weeeureeerieetieeitteeieesiteeaiteesteestteesateesueeessseesseesssesnseeenssesnseeenssesnseesnseessseessseesnseesnsessnseesnsesnnse
T1.2.1 INEEOAUCLION ..ottt ettt st b e st ebe bt et e s e naebesbeebeene
11.2.2 Predefined TTON LYPES ..cveeeeeierieriiereeeteeteettesteeteetesteseeesseesseeseessesnsesseesseenseensesssesseensenns
11.2.3 Test Suite Type DefiNitionscccuerieruieiieieeierierit et eee st see e seeaeseesseesseenseennenes
11.3 TTCN operators and TTCN OPETALIONSccueecveeverrieriieireeeeeesteesreesesaesseessesssesaesseesseessessesseesseenes
T 0 B 651 (0T 13 7 5 () & USROSt
11.3.2 TTICN OPETALOTSeeueeeueeeiieeieteeeteuteeteessee et eteemeesseesseeseeneeeaeeesee st enseenseeseesseenseensesnnesneesneanns
11.3.3 Predefined OPErationsccoeceeruieriiesiieieeie ettt ettt ettt sttt et e et e et eteenteeneeeneens
11.3.4 Test suite operation definitions and deSCIIPLIONSc.ccvervieveeiierierieeie et
11.4 Test suite parameter deClarationS...........cccvieecuieriiieriieeiieerieeseeereeereeeteesbeesbeesbeessaeessaeesseesseesseennne
11.5 Test case selection expression defiNItIONSccveevieieiieieeriieeeieere et eee e sreere e

11.6 Test Suite Constant Declarati
11.7 Test Suite Constant Declarati
11.8 TTCN variables.....................

OIS unttteteetettetest et e sesteseesess et e bens et e se st e s e seneesenseseesansese e s et eneebeneeaeeseneesenee
ONS DY REfEIENCEcuviiiiiieiieiicieceee e

11.8.1 Test Suite Variable Declarationscc.cocveeereiiirieeiieeiieeeee e e et eereeeeteeeereeeereeevee e
11.8.2 Binding of Test Suite Variables..........ccveciiciiriiiieiieiieieseeeee et sae e esne e
11.8.3 Test Case Variable Declarations............cceeicuiieiriiiiiieeiieiieeeee et eeiee et eereeeereeeereeeveeeveeeenes
11.8.4 Binding of Test Case VariabIescccveceiiieriiniieiieieeiesiee ettt ns

11.9 PCO Type Declaration..........
11.10 PCO declarations...................
11.11 CP declarations......................
11.12 Timer declarations

11.13 Test components and configuration declarations............ceceeeeerierienieie it

11.13.1 Test components.....

11.13.2 Test component configuration declarationscccceeeieieienieniesieresese e

11.14 ASP type definitions..............
11.14.1 Introduction

11.14.2 ASP type definitions USING tablesceeoieiieiiiiiiiiieieeeee e
11.14.3 Use of structured types within ASP type definitionsccccevveereeveicienieneeie e
11.14.4 ASP type definitions USING ASN.L.....cccieciiiiiiieiieiieieeieee ettt eee e eeseesaeseeesaeeseennenes
11.14.5 ASN.1 ASP type definitions DY referenceccevvvereerieniieiieiieiesieseee e

11.15 PDU type definitions
11.15.1 Introduction

11.15.2 PDU type definitions USING tabIES.........ccceriieriirieiieiieieeieeeee et
11.15.3 Use of Structured Types within PDU definitionsccceceeeieiieienieiieiieeee e
11.15.4 PDU type definitions USING ASN. 1c.ooiiiiiiiiiiiiieeee et
11.15.5 ASN.1 PDU type definitions by reference.ccoerueeierierieiieieeieee et
11.16 Test Suite Encoding INfOrmationccueoiiiiiiiiiiiie et
11.16.1 Encoding DefINItiONSciuiiieriiiniieiieiteteeitestcet ettt st ee ettt ettt eesbe e beebeenee

11.16.2 Encoding variations

11.16.3 Invalid field encoding definitionSccceecuirierieriieiiieieeeeseee et see s enne e
11.16.4 Application of encOdiNg rULES.........ccuevvierieriieiieieetieie ettt ee e eee e reebessaeseeesaeesseennens

11.17 CM type definitions...............
11.17.1 Introduction
11.17.2 CM type definitions
11.17.3 CM type definitions

11.18 String length specifications...

USING tADIES ...eveiieiieiieit e e s
USING ASN. Lottt ens

11.19 ASP, PDU and CM definitions for SEND €VENTSuuviiiiiiiiiiiiiieeieieeeeeee e e enneneees
11.20 ASP, PDU and CM definitions for RECEIVE €VENLS..........cooovvuuiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e

11.21 Alias definitions....................
11.21.1 Introduction
11.21.2 Expansion of aliases

ITU-T Rec. X.292 (05/2002)

12

13

14

15

Constraints part

T2. 1 INEEOAUCTION. ..cutii ettt ettt ettt ettt ettt e et e ete e eeteeeteeeetaeeabeeeaseesaseesaseeaaseessseensseeenseesaseseseennns
12.2 GENEIal PIINCIPIES ...vevviieieieietieie e ettt et et et e etestesteesteeseesseasseessessaessaesseessesssesssesseesseesseessesssesseens
12.3 Parameterization Of CONSIIAINTSccceiiiuiieiiiiiiecetie e eetee et e et e ereeereeetreeeteeeeteeeeteeereeeseeeaseeeseennns
12,4 Chaining Of CONSIIAINTScvieeuieiereiertierteeitestesteste st eteeteeeeesseeteenseessessaesseesseensesnsessnesssesseensesssesseenen
12.5 Constraints for SEND @VENLScc.eceiuiiiiiiieiiieiiiecieeereecte ettt eseeeeteeeeteeesteeeereeeseeeseessessseesareesseeanns
12.6 Constraints for RECEIVE @VENLS........c.ccoouiiiiiiiiiiiiieciie ettt seve et eeteeeteeeeaeeeveeeveesaveeseneenens
12.6.1 MAtChing VAIUCSccuieiiieiiiieiieieee ettt sttt e st e b e esaessaesseeseensesnnesneenns
12.6.2 Matching MECANISITIScvieieeeiiiieiieie et ettt eteeae e see et eteeseensesseesseenseenseensesseenseens
12.6.3 SPECITIC VAIUEC. .. .eieiiei et ettt et ettt ettt e st esaeenaeeeeenee e
12.6.4 InStead OFf VAIUCooiiieeii e e e
12.6.5 INSIAE VAIUES ..ooouviiiviietie ettt ettt et e et e et e et e eveeere e eaeeeareeeareeennens
12.6.6 AtribULes OF VAIUCSooiiiiiiiiciiie et et ettt e eane s
Specification of constraints USING taADIEScoeeiiiiiieieieeee ettt eneene
13,1 INEEOAUCION. ..ccutii ettt ettt et e ettt e et e eeteeeteseetaeeabeseaseesaseesaseenaneeseseenaseeenseesasessnseennns
13.2 Structured type constraint DECIarationsc..ccuerierieriieiiieiiesieseesieeceeeeesee e esesaeseeesseesseessesseees
13.3 ASP cONStraint deCIAratiOnSccveeeiieiiiiiieeetieeeieeeeteeeeteeereeeteeereeetreeetreeeaeeeeseeeeseeereeeseesaseeeseeanns
13.4 PDU Constraint DECIAratiOonS.c..cccueiiirieiiiieiireeeieecieeeeeeeteeeeteeeereeeereeeveeeseesveeeaseeeaseeeseeensseseseeanns
13.5 Parameterization Of CONSIIAINTS.........ccciiiiiiiiiiieiieeeieeetieeeee et e eteesveeebeestreeseaeeteeeseeereesaseesaseessseennns
13.6 Base constraints and modified CONSIIAINTScc.cceiiiiiiieiiieiiiecie ettt ere e eereeeveeeree s
13.7 Formal parameter lists in modified CONSLrAINTSc.eeciereieriieiiieie ettt
13.8 CM conStraint dECIAratiONScccvieeiieiiieiie et eeteeeeteeeetee et e eteeeveeebeesebeesaseesaseesseeenseeeseeeaseessseenans
Specification of constraints USING ASN.L.......cciiiiiiiiiiiieieeee ettt esaesseesseennes
2 O ¥ (o Yo 13 15 1o o FO ST
14.2 ASN.1 type constraint deClarations.cceecueeieiierieriiee ettt e st e eesee e seeeeesnee e
14.3 ASN.1 ASP constraint deClarationsccueeeeeueeeieieieeeeiee e e e et et eeaee e eeaee e e e e e eeaneees
14.4 ASN.1 PDU constraint deClarations.............ccueeeueeiiueeeirieeeieeeteeeeeeereeeeeeeeeeeeeeeeeeeaeeeeseeeeseeeeseeeeseeenns
14.5 Parameterized ASN.T CONSIIAINTSc.ecevuiiiirieeiieeteeereeeteeeeeeeeeeeteeeeeeeeteeeeaeeeeaeeeeaeeeeteeeeseeeseeenseeanns
14.6 Modified ASN.T CONSITAINTSocoiuiiiiieiitieetee et e et et e eeteeeteeeteeeteeeeeeeeteeeeteeeeaeeeeaeeeeseeeeseeenseeeseeanns
14.7 Formal parameter lists in modified ASN.1 CONStIAINEScceevvievviiieiierieeie et ereerees
14.8 ASP Parameter and PDU field names within ASN.1 CONSIraints.........cc.ceceeevureevreeeieeeereeeeeeereeeeneeenns
14.9 ASN.1 CM constraint deCIarationscccueeeieerieeirieeeieeereeecreeereeeereeereeeaeeereeeaseeetseeereeensseeeseennns
THE AYNAIMIC DALeeviiiieiieie ettt ettt ettt e et e et e eteesteebeesaeessesseesseeseesseesseassesssassenseesseessesnsesssenseanns
I5. 1 INETOAUCION. ...cutiiitiieiie ettt ettt ettt ettt ettt e et e et e eeteeebeseeteeeabeseaseesaseesaseeaaseeseseensseesaseesasessseennns
15.2 Test Case dynamic DERAVIOULccuieiiiiiieiie ettt ettt e eseeaesneesneesseenaesneanes
15.2.1 Specification of the Test Case Dynamic Behaviour table..........ccccoceveriiiiiiiiiiniiiincncnennns
15.2.2 The Test Case Dynamic Behaviour proforma.............cccocceeveviieciirienienieie e
15.2.3 Structure of the Test Case bERaAVIOUTc.eccvviiiiiiiiiiieeee e
15.2.4 Concurrent Test Case Behaviour desCription............cceerueeiirierieneeieeee e
15.2.5 Line numbering and CONtINUALIONccieriiriiriertieieeieeeie sttt enee e ns
15.3 Test Step dynamic DENAVIOUTcc.ciiiiiiiieieee ettt sttt ettt e e seesbeeaeeneene
15.3.1 Specification of the Test Step Dynamic Behaviour tableccccoooiriiiiiiiiiieiieeeee
15.3.2 The Test Step Dynamic Behaviour proformacccoceiireninininieieieeee e
15.4 Default dynamic DENAVIOUTciiiiiiitieiee ettt sttt sttt et esee e e e sbesbeebeeaeeneens
15.4.1 Default DENAVIOULoocvviiiiiiiii ettt ettt et eete e et eeveeereeevaeeanens
15.4.2 Specification of the Default Dynamic Behaviour tablecccoovveviieiiiiienieiceieeeeees
15.4.3 The Default Dynamic Behaviour proformaccveceeeierieiiecienienieneeie e
15.5 The behaviour AeSCIIPLION.cecuieiieiieieeiiesiteie et te st e ste st et et e e aeesaessaeseenseensesnsesseesseenseensesnnesneenes
15.6 The tre€ NMOATION .. .eeeviieiieeiieeieeeiee et e et e et e et e et e e treestaeeeteeestaeetseesaeenseeensaeeasesensaesaseesaseessseesnseennns
15.7 Tree names and Parameter LISES........ccieruirieiiieiierieie ettt ettt esee e seeseesesnaesnnesneenes
15.7.1 INETOAUCTION ..uviiiiiiciiieciieecie ettt ettt et e et e et e etaeeareeesbeeeaseesssaesaseesssaesaseesasesansens
15.7.2 Trees With PArametersccueeiieieriiertieiteeie et ettt e ste et e e te s aee st e et e teenteeneeeseesseeseeseennens
15.8 TTON STALCIMENLSuvveeeeeeiee et ceeteee e et e et e et e e e et e e eeaeeeeeeaaeeeeeateeeeeaeeeeeseeeeeennseeeesaeeeeeseeeeeenneens

ITU-T Rec. X.292 (05/2002)

16

vi

159 TTON ST EVENLS .ueeeviieiieeiieeiteeeteeeiteesiteeeteessseessaessseessaeesseeesssessseeassessseessessssessseesssesssseessseesssesnnne
15.9.1 Sending and reCEIVING SVENLSc.eevvieeierierierieerteeterteseesseesseeeesseesseesseessesseesseessesssesssessenns
15.9.2 RECEIVING CVENLS.....ccuiiiiieiieeieeiiestieteeteetesteesteessesstesseesseesseessesssesssesseessesssesssesssesseessesssesseenns
15.9.3 SENAING CVENLScviiiieiiiieieitieieeieeteetees e ste et este st e steesseesaesseesseesseesseassesssessaesseessesssessnessennns
15.9.4 Lifetime Of @VENLSeoieriieieieii ettt sttt et e sttt e e esaessaesse e seensesnnesnnenns
15.9.5 Execution of the BeRaVIOUL @ccveriieiiieiieieeieeiteie ettt eeens
15.9.6 The IMPLICIT SEND @VENL......ccieciieieiiesiieieiie e sieeie et siee st eteesessaeseaessaesseensesnnesnnenes
15.9.7 The OTHERWISE @VENLctiiiiiiiiiiiieiieiieieieet ettt ettt ettt sttt ettt e s bessesseeneeneennens
15.9.8 OTHERWISE and concurrent TTCNccocoviiiiieiiieeiiecieeeiee st ve e sveesiveeseve e
15.9.9 The TIMEOUT ©VENL.....ciiiiiiitiieiieeitieecieeeteeeteeeteeeteeeteessveesseesseessseessseessseessseesssesssseesssens
15.9.10 Concurrent TTCN events and CONSIIUCEScovererieereeririeerieenieesieesreessseessreesseensneesssesnsns
I5.10 TTON EXPIESSIONS eeuveerurieereerreeaieeereeesseeaseeasseessaeasseeessesasssesssssassessssesassseessesessssessesssssesssessssesssseesns
15.10.1 INEFOAUCTION ...oiuviiiiiiieiieie ettt ettt ettt e e e e e taeste e te e beesbeesaesreesseesseenseessesssenseensnens
15.10.2 References for ASN.1 defined data ObJECtScvevvieiieiieiiiieieeieceerece e
15.10.3 References for data objects defined using tablesc..cceveeviiriirierieiiciecee s
I5.10.4 ASSIGNIMENLS....ccuietietieieiieiteseesteeteeteeteestesseeseesseessesssesssesseesseesseessesssesseesseensesssenssenssensanns
15.10.5 QUALITIETS ..oiiiiiiiiiieiiieciie ettt ettt et e e e e et e e teeebeeebeeeabeeearaesareesaseesareesnseennnens
15.10.6 Event lines with assignments and qUAalifiersccocereierierieriieieeieee e
I5. 11 PSEUAO-CVEILSuvieueieiieieieiieie ettt ettt et et e et e sae st e sseesseesseeneeeseesseanseenseessesssessaesseesseensesnsesnsesseensennes
15.12 TimMEr MANAZEIMEIEeevieveeereeereetiertteteeteeteeesessaesseesseesseanseessesssesssenseesseessesssesnsesssesseesseensesseesseenseenes
I5.12.1 INEEOAUCTION ..uviiiiieiiiieiiie et ettt ettt et e et e et e et e esbeeeabeeebeeesbeessseessseesssaesseesssaesseessseesssens
15.12.2 The START OPEIALION ...cuveruiieuietieieeieeee ettt ettt et et eeeeesee s st e sbeentesasesneesseeneeeneeennens
15.12.3 The CANCEL OPEIAtIONc..eeruieeietieieeieeieeetieste et eteete st e st eseeeeeeeesneesseesseenseeneeeneesneenseens
15.12.4 The READTIMER OPETAtION.....ccccviiriiieirieeiieeiieeeiieeieesieesreessseesseeeseeesseessseesseessseessseensees
15.13 The ATTACH CONSLIUCE ..veeuriiiuiieriieeiiieeriteeiteeesteeteeesteeeteeesseessseeaseeesseesseesssessssessssessssessssessssesssseesns
15.13.1 INETOAUCTION ...oiuviiiiiiieiecie ettt ettt e e e e e ste e te e aeesaeesaeseeesseesseenseessesssenseensnens
15.13.2 Scope of tree attaChMENt.........cceevviiiiieiieie ettt et eeaeeeaeste e beebesssessaesaeesseenseennenns
15.13.3 Tree attaChment DASICS........ccuievvieiieieeieiieieeteetesee st ste e eeeseeesteesseesseesseessessaesseesseensenssens
15.13.4 The meaning of tree attaChment..........cc.evieiiieriiicieiieieeie ettt aaens
15.13.5 Passing parameterized CONSLIAINTSc.ccceeruierrieiereierieeieeieseeieeaeeaesseesseesesssesseesseensesnnenns
15.13.6 Recursive tree attaChment..........oc.eervieiiieiieiieciere ettt seee e ese e e
15.13.7 Tree attachment and Defaultsccceeviiiiiiiiiiei e
15.14 Labels and the GOTO CONSIIUCT........cccvieeiieiiieeieeiiiesteesveesteesteeesaeeteeessaeeseseseasseesseasssessseeasseenns
15.15 The REPEAT CONSIIUCE ...oieiuiiiiiiieiiieeiiieeeiteeiieeeiteeite e teeeteeeteeesteeessaeesbaesssaasssessnseasssesssseesssessssasansennns
15.16 The Constraints RETEIEINCEc.eecciiiiiieeiieiiieeie ettt ettt e e ste et e s eeebeeeseaeebeeesseesseeesraeenseeans
15.16.1 Purpose of the Constraints Reference columncocceeviiiiiiiniiiieiieeeeeee e
15.16.2 Passing parameters in Constraint Referencesoccoveeriiiiiiiinieniinieenececeeeeeens
15.16.3 Constraints and qualifiers and assiNMENLtSccceouerieiirrinenienieeee e
I5.17 VEIAICES .vviuiiiieiieieeiee ettt ettt ettt ettt ettt e e b e et e s teesteebe e b e esseetseessesbeesbeesbeessesssesseesseessesssesreesseenseenns
I5.17.1 INETOAUCTION ...oiuviiiiiiieiicie ettt ettt te et e e e taeste e te e beesaeesaeseeesseesseenseessesssenseessnens
15.17.2 Preliminary TESUILScccverieriieiieieeteesttett et e st et eteeaeseaesteesaeesbeessessaesseesseesseessesssenseensanns
15.17.3 FiNAL VEIAICt...eiiuiiiiiiiieiecie ettt ettt ettt et et e e esaeseaesaaesaeeseesseessesssesseenseesseensenssensaens
15.17.4 Verdicts and OTHERWISEoooiiiieieieeeee ettt nneens
15.17.5 Verdict assignment in concurrent TTCNcooiiiiiiiiiriieniieeeeee e
15.18 The meaning Of Defaults..........cccveviieeiiriiiieiee ettt s e sneese e
I5.18.1 INITOAUCHION 1..eouiieiieiieieeie ettt ettt ettt et e et e st eseeesse e seenseeneesseesseenseenseensennsenseensnens
15.18.2 Default REfErenCeS.ccviiiiieiieeieeceeee ettt ettt e e s ae e eessbeesaseesaseesneas
15.18.3 The RETURN StAt@IMENL......ccccviiiiieiiieeiieiiiesieesveeeteesveesveessveessaeessseessseessseessseessseessseensens
15.18.4 The ACTIVATE StatemMeNt.......ccccueeerieeiieiiiieeieeeiieeeiteeeteeeseeeereeeveesereesseessseessseessseessseessees
15.18.5 Defaults and tree attaChment...........cceeeuieruiiiiiiiieeie ettt eae e sreesreenne e
15.18.6 Tree Attachment, Defaults, Activate and REtUINcccoeiiviiiiiiiiiiiiiie e,
15.18.7 Defaults and CREATE...........cooiioiiiiieieceectee ettt ettt sae s ae e e saeensesnne e
15.18.8 Defaults and CIMSccvieiiiiiiieieeeieeit ettt ettt ettt eaeseae e e aeeseesseesseessesseeseesseessenssensnens

PaGE CONTIMUATIONcuiiiiiiiieii et etteeteet et et et este e beeaesaeesaeebeesseessesseeaseesseesseessasssenssesseenseessesssessaesseensennns
16.1 Page continuation 0f TTCN tabIeS........ccccueieierierieiieieeieiee ettt s se e sneesneeseenes
16.2 Page continuation of dynamic behaviour tables............cecveriieiieeienieieeee e

ITU-T Rec. X.292 (05/2002)

Annex A — Syntax and static semantics Of TTCNcciiiiiiiiiiiie ettt

Al
A2

A3

A4

A5

A6

Introduction

Conventions for the Syntax deSCIIPLION.........evuieruieriiiieriereereeie ettt esteeteeteeee e eseesseeesessaesseessenseens
SYNtACtic METANOLALION.veeiieeiietiestietieteetesteesieeaeeaeseesteesseessesseesseesseesseessensaesseessenssensaens
TTCN.MP syntaxX definitions........ccceeevereierieniieieete ettt see e seeseeaesenesneennas
The TTCN.MP syntax productions in BNFccccceiiiiiiiiiieiietec e
TTCN SPECIIICALIONeeuvieeiieiieiieiieie e ete sttt et et e st e sae et eteenaeesaesseeseenseensessnesseenseenseennes
TTON MOGUIE ...ttt ettt et et et e st e bt et e eneeeseeeseenseeneeneas

A2l
A22

A3l
A32
A33

Test suite.......

General static SEMANtICS TEQUITEIMENESeerteeeeriertiertterteeteeeeesteerteeteeeeseeesseeneeeneesseesseeseeneesseesseens

A4l
A42

A5l
AS52

Introduction ..

Uniqueness OF TAENEITIETSecuvierieiiiiesie ettt et ereetaeessaeesaeessaeeneeas
Differences between TTCN.GR and TTCN.MP........cooiiiiiiiiiiee ettt
DIfferences 1N SYIEAXcoueiiiiieiierieete ettt sttt e bttt st e e e b
Additional static semantics inthe TTCN.MPccccooviiiiiiiiiiiiiiieice e

List of BNF production NUIMDET.........cc.citeirtiieieriresieeteee ettt ettt ettt

Annex B — Operational semantics 0f TTOCNcccoiiiiiiiiiiieieeeee ettt

B.1
B.2
B.3
B.4
B.S

Annex C — TTCN modules
Introduction

C.1
C2

Introduction
Precedence

Processing Of tESt CASE CITOTSeevierierieriertieste et eteetesteesteeeeesaesseesteesseessesssesseesseenseensesssessnesennsesnnes
Converting a modularized test suite to an equivalent expanded test SUItEcceeeereerieieeneneennen.
TTCN 0perational SEMANTICSeeouieuiirtieriieiieieet et et ete et et et eteeeesaeesee e st eneesaeesseenseenseeneesneenseens

B5.1
B.5.2
B.5.3
B.54
B.5.S5
B.5.6
B.5.7
B.5.8
B.5.9
B.5.10
B.5.11
B.5.12
B.5.13
B.5.14
B.5.15
B.5.16
B.5.17
B.5.18
B.5.19
B.5.20
B.5.21
B.5.22
B.5.23
B.5.24
B.5.25
B.5.26

Introduction ..

The pseud0-coAe NOTATIONeeueiiiieiieit ettt s
EXECULION OF @ TESE SUILE ..uvvvviiiiiiiiiiiii ettt e et e e e e e e e e e e e e eaaaareeeeeeeenees
EXECULION OF @ TESE CASE wuvvvvviiiiiiiiiieieee ettt e et e e e e eeatar e e e e e e eeeaaaareeeeeesennes
Expanding a set 0f @lterMatiVesceeeieieiiiiieieeeie et
Evaluation of an EVENt LINEcooooviiiiiiiiiiiiie et
Functions fOr TTCN EVENLSoeiiiviiiiiieieeieiee et eeeee et e e et e e eeae e e s et e e s esaeeeeenneeeenaneeean
Execution of the SEND @VENT.......ccviiiiiiiiiieeiie ettt eeee e e e eeaeeeeeaeee s
JExecution of the RECEIVE €VENtc..cccuiiiiiiiiiiiiiieeiceceete ettt s
Execution of the OTHERWISE @VENLcccvviiiiiiiiieeeie e
Execution of the TIMEOUT €VENLc.ooeiiiuiiiieiiie e
Execution 0f the DONE EVENLuueiiiiiiiiiiieiiiieee ettt e e e e eeaaae e e e e e e sennes
Execution of the IMPLICIT SEND €VENT........coooiiiiiiiiiiiiiiieiieeeeeeeeeeeeee e e eeenaaes
Execution 0f @ pSEUAO-EVENT........cocuiiiiieieiieie ettt
Execution of BOOLEAN €XPIESSIONSeeiuveerireeiiieeriieeireesieesreeesseesseessseesseesssessssessssessssens
Execution 0f aSSIZNIMENTSc..eoiiiriiiiiiiiiiierieeie ettt sttt st st sbe e e
Execution of TIMER OPEIationsS..........cecuvieriieeiiieiiiieniieiieeeieesieeseeesieeesseesseeenseesseessessssens
Functions for TTCN CONMSIIUCESoevvviiiieeieeiiieeeeeieeeeeeeeeeeeeee e et e et e e eaeeesesaeeeeennaeeeennaeeeas
Execution of the ACTIVATE CONSLIUCT........cuviiieiiieieeeie et eeere e
Execution of the CREATE CONSITUCTcooiiiieirieeeeeee e
Execution of the GOTO CONSIIUCTccouvieiieeiieeeeteeee et eeeee et eeee e e e e eeaeeeeenreeeeeaneeeas
Execution of the RETURN CONSIIUCTeeiiiuiieieiirieeeeeee et eeeee e eeeee e

The verdict....

The Conformance LOgcooi ettt
Tree handling functions and Procedurescoocerierieiirieniereeeee et
Miscellaneous functions used by the pseudo-codeccocoviriiiriiiiiieieeee e

TTCN MoOAUIE OVEIVIEW PATtcoiuiiiiiiiiieeceie e ettt eaa e eenaeeeeenaeeeas

C21
C22
C23
C24
C25
C.2.6

Introduction ..

TTCN MOAUIE EXPOIESviiieiieiieiieiiettetieie ettt ettt sreesbeessesssessaessaessaessesssessnennas
TTCN MOAUIE SIIUCLUTEceviieiieeiieciee ettt ettt ettt e e tr e e etbeeeteeesabeetae e teeereeesseenreeans
TSt CaSE INACXK...eicuiieiiiiciie ettt ettt e e et e e st e e stb e e s abe e tse e aaeeeaseesnseeseeans
TS AN 1<) o 30 T 1o QUSSP

Default Index

ITU-T Rec. X.292 (05/2002)

vii

L T 01010 A o A USSR
C.3.1 INITOAUCLION «.uiniitieiieieeitet ettt et b ettt ettt et eb e bt ebees e et ente e e ebe e

C.3.2 EXEEIMAL ..eiiiiiiieieetee ettt ettt ettt bbbt ettt e e b e

(O R T 1511 o101 APPSR USRS
ANNEX D — TeSt SUILE INACK ...veuviiiiieiieiieie ettt ettt et sa e bbbt e e ae e naes
Annex E — ComPaCt PrOTOTIMASccuieiiiiiiiieriieii ettt ee st e st e et e et e s st et e e seenseessessaesseenseensesnsesseenseensennes
D B U U3 (o Ta Uo7 5 10 s PSPPSR
E.2 Compact proformas fOr CONSLIAINTSc.eeruieiiriiertieieeieeie et iese ettt sttt et teeee et e seeeteenteeneesseesneens
E.2.1 REQUITEIMENLS ...ttt ettt et ettt ettt et e e sae et et e eseess e e st enteenteeneeeseeaseenseeaseenseenees

E.2.2 Compact proformas for ASP CONSIIAINEScccueervieriieeriieiieeieerieeeieeeieeevee e esaeeseae s

E.2.3 Compact proformas for PDU CONSIAINES........cccueveuieeiieeriierieenieenieeieeeieeereesveesveeseveenenes

E.2.4 Compact proformas for Structured Type CONSIrAINScccceeeeiriririeieieieie e

E.2.5 Compact proformas for ASN.1 CONSEIAINES.......cccververierieriiiireieeieste et eeeseesreebeeseeeeens

E.3 Compact proforma for TESt CaASEScceevuirrierieriieriieieeiestiesteereesreereesteesesssessaesseesseesseessesseesseenseenns
E.3.1 REQUITEIMENTSiiiiiiieiieieeie sttt ettt teeste et e esbeesaesssessaesseesseessesssesssesseesseessenssesssenseens

E.3.2 Compact proforma for Test Case dynamic behaviours...........ccoccveveveveercienienierieeieeeeieeenns

BN 1110 Q) Dl B V41) [USSR
F.1 Examples of tabular CONSIAINTScccueeruieiiieiieieetieieeie ettt et e st e et e teentesseesteeeeeneesneens
F.1.1 ASP and PDU definitionscceiiereeiiiieiiesiee ettt ettt et sneas

F.1.2 ASP/PDU CONSIIAINES.eeitietieieeiiestiestiesteeeeetesteseeesteesteeteeseesseesseeteenseensesneesseenseeseensesnees

F.2 Examples Of ASN.T CONSIIAINESccouieriiiiieiiitieirieieeteeteeeteesteeteeeaeseaesteesaeeseesseereesssesseessesssesssessaens
F.2.1 ASP and PDU definitionsccceoiereiiiiiiiieniieeeeeesete ettt

F.2.2 ASN.1 ASP/PDU CONSLIAINES.eoutiuieuieiienieiententesteeteeiteneeeestesteseeetesseeseeneeneessessessessesseeneeneas

F.2.3 Further examples Of ASN.1 CONSEIAINTSccueevvieeiiiiiiieitietieieeee ettt ere e seeesaeesaeesae e

F.3 Base and modified CONSIIAINEScoirtiriririiieieeee ettt s
F.4 Type definition USING MACTOS.......ccuerueerreeieieertesieesteeseeseesseesseesseassesseesseessesssesssesseesseessesssesseesseesseenes
F.5 USE Of REPEAT ...ttt bbbttt et sb e bt st ea et e st e nbe e
F.6 TSt SUItE OPETALIONS ...veevvieeiieeieetieiieieetestesieesteesteeteestesseesseesseesseesseassasssessaesseessesssesssesseessesseesseenseenns
F.7 Example 0f @ TeSt SUILE OVEIVIEW ..cveeviiiiiieiiieiieteeiesteesteeteeseeetsesteeteessesssessaeseesesssesssesseesseensesnns
F.8 Example of a Test Case in TTCN.MP FOIM........ccccoiiiiiiiiiiiiiiecieeee e
F.9 Use of component reference for field value assignment in CONStraints..........coceeererererenercneenenes
F.IO MUI-PALY tESTINE ...eveieieitieiieieeiestestte ettt et e st et e e ebeeetesseesseesseensessaesseenseensesnsesseesseenseensennsenssensanns
F.11 MultipleXing/DemultipIEXiNgccoeceeierieriieiieieeieseesieetesteseeesseeaeseesseesseeseessesseesseenseensesssesseens
F.12 Splitting and re€COMDINING...........cueroieruieriieiieieetestieseesteetesteseesseeseesaesseesseesseeseensesssenseenseesesssenseens
F. I3 MuUlti-protOCOL tESE CASES ...eeuieuieuiriieetietieit ettt e it e et et e e e e et esseesbeeaeentesneeeaee et eneeeneeeneeeneanneans
F.14 Example of modular TTCNcooiiiiiiioieiee ettt ettt sttt et et esaeente e e eneeeneeeneens
FN 1T Q€ N (o4 1§ 1 LSS
L 20 B 012 (0T L o1 2 o) s HO OO OO OO PR USRS
G.2 TSt CASE SIIUCIUTR. ...cuei ittt ettt ettt ettt st h et e bt e et s atesb et en bt ee b e eb e e sbe et e ebeembesseesaeenbeeneeenee
G.3 Use of TTCN with different abstract test Methodscoooeeiriiiiiiieeeee e
L 3 T B 013 o T4 LD o1 o) KOOSO

G.3.2 TTCN and the LS test Methodccueriiriiiiiiiiiieieeee e

G.3.3 TTCN and the DS test Method..........ccceouiriiieriiiiiieeeee e e

G.3.4 TTCN and the CS test MEthOdcceeviiiiiiiiriiiiieeiieee et

G.3.5 TTCN and the RS test Method.......cc.couiviiriniiniriiiiieiecee et

G4 USE O dEfAUILS ...ttt ettt st sttt sa e e
G.5 Limiting the execution time 0f @ TEst CaSEccuvecvieierieiieieeiereeeeie et
G.0 SHIUCLUIEA LYPES cuveeureriieiiieitieite et et ette st et e e e testesaee st esseensesstesseesseanseenseansaassessaenseensesnsesnsesnnenseenseenes
G.7 ADDIEVIALIONS. ..c.veteiuieiieieierteet sttt ettt ettt ettt et et h e bt bt ea et et e b e sa e e bt s bt eut et ebeea b et enaenbenaens
L T T A 1Y T o4 (o) o SRS R
G.9 Assignments 0N SEND ©VENLScecuieiiiieiieitieie ettt ettt e etee et e bt eeteeseesseesseesseeseeneesneesseenseenes
G.10 MUIti-SEIVICE PCOS.... ittt ettt ettt e e et et et ees e s be e bt eeeenaeeneesneesaeenseenes
F N 1110 Q5 el 1T (o). QUSSR
Hol INEOAUCTION. ...ttt et et a e b e b et et e s bt e sbeenbe e et enbeemteeaeeebeeseens
H.2 TRE INAEK .ottt a et e et e bt s bt e bt e ae e st e s et e ebeebeebeeseeneeneenbetenseanenneas

viii

ITU-T Rec. X.292 (05/2002)

Introduction

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for
use in the specification of OSI abstract conformance test suites.

In constructing a standardized abstract test suite, a test notation is used to describe abstract test cases. The test notation
can be an informal notation (without formally defined semantics) or a Formal Description Technique (FDT). TTCN is
an informal notation with clearly defined, but not formally defined semantics.

TTCN is designed to meet the following objectives:
a) to provide a notation in which abstract test cases can be expressed in standardized test suites;
b) to provide a notation which is independent of test methods, layers and protocols;

¢) to provide a notation which reflects the abstract testing methodology defined in the X.290-series
Recommendations;

d) to provide a capability to use concurrency in the specification of abstract test cases, when appropriate, in
both multi-party testing and single-party testing.

In the abstract testing methodology a test suite is looked upon as a hierarchy ranging from complete test suite, through
test group, test cases and test steps, down to test events. TTCN provides a naming structure to reflect the positions of
test cases in this hierarchy. It also provides the means of structuring test cases as a hierarchy of test steps culminating in
test events. In TTCN, the basic test events are sending and receiving Abstract Service Primitives (ASPs), Protocol Data
Units (PDUs) and timer events.

Two forms of the notation are provided: a human-readable tabular form, called TTCN.GR for use in OSI conformance test
suite standards, and a machine processable form, called TTCN.MP, for use in representing TTCN in a canonical form
within computer systems and as the syntax to be used when transferring TTCN test cases between different computer
systems. The two forms are semantically equivalent.

This edition of ITU-T Rec. X.292 incorporates corrections of defects received on ITU-T Rec. X.292 (1998). It is
technically equivalent to ETSI TR 101 666 (1999-05), which is also known as TTCN2++.

TTCN2++, as defined in ITU-T Rec. X.292 (2002), serves as an intermediate definition of TTCN, between ITU-T
Recs X.292 (1998) and Z.140 (2001). It is intended to fulfil the need to maintain test suites that were created on the basis of
ITU-T Rec. X.292 (1998). However, it is recommended that new test suites make use of TTCN-3 defined in the
7.140-series of ITU-T Recommendations.

ITU-T Rec. X.292 (05/2002) ix

ITU-T RECOMMENDATION X.292

OSI conformance testing methodology and framework for protocol Recommendations for
ITU-T applications — The Tree and Tabular Combined Notation (TTCN)!

The ITU-T,

considering
a) that ITU-T Rec. X.200 defines the Reference Model of Open Systems Interconnection for ITU-T Applications;
b) that the objective of OSI will not be completely achieved until systems can be tested to determine whether they

conform to the relevant OSI protocol Recommendations;
c) that standardized test suites should be developed for each OSI protocol Recommendation as a means to:
— obtain wide acceptance and confidence in conformance test results produced by different testers;

— provide confidence in the interoperability of equipments which passed the standardized conformance
tests;

d) the need for standardizing the conformance testing process to achieve an acceptable and useful degree of
comparability of results of conformance assessments of similar products,

unanimously declares the view

that the notation in which generic and abstract test cases are written should be in accordance with this Recommendation.

1 Scope

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for
OSI conformance test suites, which is independent of test methods, layers and protocols, and which reflects the abstract
testing methodology defined in ITU-T Recs X.290 and X.291.

It also specifies requirements and provides guidance for using TTCN in the specification of system-independent
conformance test suites for one or more OSI standards. It specifies two forms of the notation: one, a human-readable
form, applicable to the production of conformance test suite standards for OSI protocols; and the other, a machine-
processable form, applicable to processing within and between computer systems.

This Recommendation applies to the specification of conformance test cases that can be expressed abstractly in terms of
control and observation of protocol data units and abstract service primitives. Nevertheless, for some protocols, test cases
may be needed which cannot be expressed in these terms. The specification of such test cases is outside the scope of this
Recommendation, although those test cases may need to be included in a conformance test suite standard.

For example, some static conformance requirements related to an application service may require testing techniques,
which are specific to that particular application.

The specification of test cases in which more than one behaviour description is to be run in parallel is dealt with by the
concurrency features (particularly involving the definition of Test Components and Test Component Configurations).

This Recommendation specifies requirements on what a test suite standard may specify about a conforming realization of
the test suite, including the operational semantics of TTCN test suites.

1 ITU-T Rec. X.292 (2002) is an update of technically aligned ITU-T Rec. X.292 (1998) and ISO/IEC 9646-3:1998, Information
technology — Open Systems Interconnection — Conformance testing methodology and framework — Part 3: The Tree and Tabular
Combined Notation (TTCN).

ITU-T Rec. X.292 (05/2002) 1

This Recommendation applies to the specification of conformance test suites for OSI protocols in OSI layers 2 to 7,
specifically including Abstract Syntax Notation One (ASN.1) based protocols. The following are outside the scope of
this Recommendation:

a) the specification of conformance test suites for Physical layer protocols;
b) the relationship between TTCN and formal description techniques;

c) the means of realization of executable test suites (ETS) from abstract test suites.

This Recommendation defines mechanisms for using concurrency in the specification of abstract test cases. Concurrency
in TTCN is applicable to the specification of test cases:

a) in a multi-party testing context;
b) which handle multiplexing and demultiplexing in either a single-party or multi-party testing context;
¢) which handle splitting and recombining in either a single-party or multi-party testing context;

d) in a single-party testing context when the complexity of the protocol or set of protocols handled by the
IUT is such that concurrency can simplify the specification of the test case.

TTCN modules are defined to allow sharing of common TTCN specifications between test suites.

2 Normative references

The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged
to investigate the possibility of applying the most recent edition of the Recommendations and other references listed
below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

2.1 Identical Recommendations | International Standards

— ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model.

— ITU-T Recommendation X.210 (1993) | ISO/IEC 10731:1994, Information technology — Open Systems
Interconnection — Basic Reference Model: Conventions for the definition of OSI services.

— ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information technology — Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information technology — ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER).

— ITU-T Recommendation X.691 (1997) | ISO/IEC 8825-2:1998, Information technology — ASN.1 encoding
rules: Specification of Packed Encoding Rules (PER).

2.2 Paired Recommendations | International Standards equivalent in technical content

— ITU-T Recommendation X.290 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — General concepts.

ISO/TEC 9646-1:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 1: General concepts.

2 ITU-T Rec. X.292 (05/2002)

ITU-T Recommendation X.291 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Abstract test suite specification.

ISO/IEC 9646-2:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 2: Abstract test suite specification.

ITU-T Recommendation X.293 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Test realization.

ISO/IEC 9646-4:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 4: Test realization.

ITU-T Recommendation X.294 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Requirements on test laboratories and clients for the
conformance assessment process.

ISO/IEC 9646-5:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 5: Requirements on test laboratories and clients for the conformance
assessment process.

ITU-T Recommendation X.295 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Protocol profile test specification.

ISO/TEC 9646-6:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 6: Protocol profile test specification.

ITU-T Recommendation X.296 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Implementation conformance statements.

ISO/IEC 9646-7:1995, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 7: Implementation conformance statements.

2.3 Additional references

ISO/TIEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange.

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane.

3 Definitions

3.1 Basic terms from ITU-T Rec. X.290

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. X.290 apply:

a)
b)
c)
d)
€)
f)
g)
h)
i)
i)
k)
)

abstract service primitive;
abstract testing methodology,
abstract test case;
abstract test method;
abstract test suite;
conformance log;
conformance test suite;
co-ordinated test method,
distributed test method;
executable test case;
executable test case error;

executable test suite;

ITU-T Rec. X.292 (05/2002) 3

ab)
ac)
ad)
ae)
af)
ag)
ah)
ai)
aj)
ak)
al)

am

~

an)
ao0)
ap)
aq)
ar)
as)
at)
au)
av)
aw)
ax)
ay)
az)

ba)

fail verdict,

idle testing state;
implementation under test;
inconclusive verdict;

invalid test event;

local test method;

lower tester;

means of testing;

pass verdict;

PICS proforma;

PIXIT proforma;

protocol implementation conformance statement;
protocol implementation extra information for testing,
point of control and observation;
remote test method;

stable testing state;

standardized abstract test suite;
Sstatic conformance requirements;
syntactically invalid test event,
system under test;

test body;

test case;

test case error,

test co-ordination procedures;
test event;

test group;

test group objective;

test laboratory;

test management protocol,;

test outcome;

(test) postamble;

(test) preamble,

test purpose;

test realization;

test realizer;

test step,

test suite;

test system,

upper tester;

(test) verdict;

testing state.

ITU-T Rec. X.292 (05/2002)

3.2 Terms from ITU-T Rec. X.200

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. X.200 apply:
a) layer (particularly for application, session and transport layers),
b) protocol-data-unit;
C) Service-access-point;
d) subnetwork;

e) transfer syntax.

3.3 Terms from ITU-T Rec. X.210

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. X.210 apply:

a) OSIl-service-provider.

3.4 Terms from I'TU-T Rec. X.680

For the purposes of this Recommendation, the terms and definitions given in ITU-T Rec. X.680 apply:
a) Dbitstring type;
b) characterstring type;
c) enumerated type;
d) external type;
e) object identifier;
f) octetstring type;
g) real type;
h) selection type;
1) sequence type;

j) sequence-of type;

k) set type;
1) set-of type,
m) subtype.

NOTE — Where there may be ambiguity with TTCN terms, these terms are prefixed with the term ASN.1.

3.5 Terms from ITU-T Rec. X.690

For the purposes of this Recommendation, the term given in ITU-T Rec. X.690 applies:

a) encoding.

3.6 TTCN specific terms
This Recommendation defines the following terms:

3.6.1 applicable encoding rules: Actual encoding rules that are to be used when sending or receiving a PDU, after
all relevant encoding defaults and overrides, if any, have been combined.

3.6.2 attach construct: TTCN statement which attaches a Test Step to a calling tree.
3.6.3 base constraint: Specifies a set of default values for each and every field in an ASP or PDU type definition.
3.64 base type: Type from which a type defined in a test suite is derived.

3.6.5 behaviour line: Entry in a dynamic behaviour table representing a test event or other TTCN statement together
with associated label, verdict, constraints reference and comment information as applicable.

ITU-T Rec. X.292 (05/2002) 5

3.6.6 behaviour tree: Specification of a set of sequences of test events, and other TTCN statements.

3.6.7 blank entry: In a modified compact constraint table a blank entry in a constraint parameter or field denotes
that a constraint value is to be inherited.

3.6.8 calling tree: Behaviour tree to which a Test Step is attached.

3.6.9 compact constraint table: Declaration of a set of constraints for an ASP, PDU or Structured Type arranged in
a single table.

3.6.10 compact test case table: Declaration of a set of Test Cases for a given Test Group arranged in a single table.
3.6.11 concurrent test case: Test case which is specified using concurrent TTCN.

3.6.12 concurrent TTCN: TTCN that uses test components and test component configurations in order to express
concurrency in the dynamic behaviour of test cases.

3.6.13 constraints part: That part of a TTCN test suite concerned with the specification of the values of ASP
parameters and PDU fields being sent to the IUT, and conditions on ASP parameters and PDU fields received from the
IUT.

3.6.14 constraints reference: Reference to a constraint, given in a behaviour line.

3.6.15 co-ordination message (CM): Item of structured information which may be transferred from one Test
Component to another at a Co-ordination Point.

3.6.16 co-ordination point (CP): Point within a testing environment, assigned to two Test Components in a Test
Component Configuration, where CMs may be exchanged asynchronously between these Test Components.

3.6.17 declarations part: That part of a TTCN test suite concerned with the definition and/or declaration of all non-
predefined objects that are used in the test suite.

3.6.18 default behaviour: Events, and other TTCN statements, which may occur at any level of the associated tree,
and which are indicated in the Default behaviour proforma.

3.6.19 default group: Named set of default behaviours.

3.6.20 default group reference: Path specifying the logical location of a Default in the Default Library.
3.6.21 default identifier: Unique name for a Default.

3.6.22 default library: Set of the Default behaviours in a test suite.

3.6.23 default reference: Reference to a Default in the Default Library from a Test Case or Test Step table.

3.6.24 derivation path: Identifier, consisting of a base constraint identifier concatenated with one or more modified
constraint identifiers, separated by dots and finishing with a dot.

3.6.25 dynamic chaining: Linking from constraint declarations of an ASP parameter or PDU field to the constraint
declaration of another PDU by means of parameterization. Which PDUs are chained is specified in the constraints
reference of a behaviour line.

3.6.26 dynamic part: That part of a TTCN test suite concerned with the specification of Test Case, Test Step and
Default dynamic behaviour descriptions.

3.6.27 expanded test suite: Test suite with all imported objects expanded. This will be a result of converting of a
modularized test suite according to the algorithm in Annex B.

3.6.28 explicit external: Named object in the External table. An object that is explicitly declared as external in a
module is to be explicitly defined or exported as an external object.

6 ITU-T Rec. X.292 (05/2002)

3.6.29 explicitly defined object: Object for which a definition or declaration exists in the module or test suite.

3.6.30 explicitly exported object: Named object in the Exports tables being available for use. If the object is an
imported object, the name of the source object is to be given.

3.6.31 explicitly imported object: Named object in the Import tables being available for explicit references.

3.6.32 exported object: Explicitly defined object or explicitly imported object in a source object, made available for
use in any other module or test suite. An exported object is either an explicitly exported object or an implicitly exported
object.

3.6.33 external object: Object being referred to by its name in a module, but neither imported nor explicitly defined.
An external object is to be declared in the External table. An external object may be either explicitly external or
implicitly external.

3.6.34 global result variable: Predefined test case variable maintained by a Main Test Component in the MPyT
context or by the test case in the SPyT context to record the accumulated effect of all the preliminary results of the test
case in order to determine the test verdict.

3.6.35 implicit external: Externally declared object in an export table which is omitted from a corresponding Import
table.

3.6.36 implicitly exported object: Explicitly defined object or explicitly imported object, which is not itself
explicitly exported but which is referred to by an explicitly exported object.

3.6.37 implicitly imported object: Object referred to by some explicitly imported object. The use of an implicitly
imported object is restricted to the explicitly imported objects (from the same source object) referring to it.

3.6.38 implicit send event: Mechanism used in Remote Test Methods for specifying that the IUT should be made to
initiate a particular PDU or ASP.

3.6.39 imported object: Object copied from some other source object, being available for use. An imported object is
either an explicitly imported object or an implicitly imported object.

3.6.40 level of indentation: Indicates the tree structure of a behaviour description. It is reflected in the behaviour
description by indentation of text.

3.6.41 local result variable: Predefined variable maintained by a Test Component to record the accumulated effect of
its preliminary results.

3.6.42 local tree: Behaviour tree defined in the same proforma as its calling tree.

3.6.43 main test component (MTC): Single Test Component in a Test Component Configuration responsible for
creating and controlling Parallel Test Components and computing and assigning the test verdict.

3.6.44 modified constraint: Constraint defined for an ASP or a PDU that already has a base constraint, and which
makes modifications on that base constraint.

3.6.45 modularized test suite: Test suite containing Import tables.

3.6.46 module: Self-contained collection of TTCN objects. All referenced objects are either explicitly defined in the
Module, are imported from other sources or are defined as external objects in the module.

3.6.47 non-concurrent test case: Test case, which is specified in TTCN but without using concurrent TTCN.

3.6.48 object: Element of one of the object categories listed in A.4.2 for TTCN objects with a globally unique
identifier and for ASN.1 identifiers which are globally unique throughout the test suite.

3.6.49 operational semantics: Semantics explaining the execution of a TTCN behaviour tree.

ITU-T Rec. X.292 (05/2002) 7

3.6.50 original source object: Module or test suite where an object is explicitly defined.

3.6.51 otherwise event: TTCN mechanism for dealing with unforeseen test events in a controlled way.

3.6.52 overview part: That part of a TTCN test suite concerned with presenting an overview of the structure of the
test suite, the structure (if any) of the Test Step Library, the structure (if any) of the Default Library and the association
of selection expressions (if any) with Test Cases and/or Test Groups. This part also provides indexes to Test Cases, Test
Steps and Defaults.

3.6.53 parallel test component (PTC): Test component created by the main test component.

3.6.54 preliminary result: Result recorded before the end of a test case indicating whether the associated part of the
test case passed, failed or was inconclusive.

3.6.55 pseudo-event: Pseudo-event is a TTCN expression or Timer operation appearing on a statement line in the
behaviour description without any associated event.

3.6.56 qualified event: Event that has an associated Boolean expression.

3.6.57 receive event: Receipt of an ASP or PDU at a named or implied PCO.

3.6.58 result variable: Predefined test case variable for storing preliminary results. In non-concurrent TTCN, there is
one result variable called R. In concurrent TTCN, there is one global result variable called R, each PTC has a local result
variable called R, and the MTC has a local result variable called MTC R.

3.6.59 root tree: Main behaviour tree of a Test Case, occurring at the level of entry into the Test Case.

3.6.60 send event: Sending of an ASP or PDU to a named or implied PCO.

3.6.61 set of alternatives: TTCN statements coded at the same level of indentation and belonging to the same
predecessor node. They represent the possible events, pseudo-events and constructs which are to be considered at the
relevant point in the execution of the Test Case.

3.6.62 single constraint table: Declaration of a constraint for a single ASP or PDU of a given type arranged in a
single table.

3.6.63 snapshot semantics: Semantic model to eliminate the effect of timing on the execution of a Test Case, defined
in terms of snapshots of the test environment, during which the environment is effectively frozen for a prescribed period.

3.6.64 source object: Module or test suite which is imported and has a corresponding Import table.

3.6.65 specific value: Value in TTCN which does not contain any matching mechanism or unbound variable.

3.6.66 static chaining: Linking from constraint declarations of an ASP parameter or PDU field to the constraint
declaration of another PDU by explicitly referencing a constraint as its value.

3.6.67 static semantics: Semantic rules that restrict the usage of the TTCN syntax.

3.6.68 structured type: Collection of one or more ASP parameters or PDU fields which may exist in one or more
ASP or PDU type definition which is defined in a separate declaration and which may be used to specify a portion of a
flat structure or a substructure within the ASP or PDU.

3.6.69 submodule: Module which is included in another module.

8 ITU-T Rec. X.292 (05/2002)

3.6.70 test case identifier: Unique name for a Test Case.

3.6.71 test case variable: One of a set of variables declared globally to the test suite, but whose value is retained only
for the execution of a single Test Case.

3.6.72 test component: Named subdivision of a concurrent test case capable of being executed in parallel with other
test components, and declared as having a fixed number of PCOs and a fixed or maximal number of CPs.

3.6.73 test component configuration: Fixed arrangement of Test Components, PCOs and CPs that is declared for use
in concurrent test cases.

3.6.74 test group reference: Path specifying the logical location of a Test Case in the ATS structure.

3.6.75 test step group: Named set of test steps.

3.6.76 test step group reference: Path specifying the logical location of a Test Step in the Test Step Library.
3.6.77 test step identifier: Unique name for a Test Step.

3.6.78 test step library: Set of the Test Step dynamic behaviour descriptions in the test suite, that are not local Test
Steps.

3.6.79 test step objective: Informal statement of what the Test Step is meant to accomplish.

3.6.80 test suite constant: One of a set of constants, not derived from the PICS or PIXIT, which will remain constant
throughout the test suite.

3.6.81 test suite parameter: One of a set of constants derived from the PICS or PIXIT which globally parameterize a
test suite.

3.6.82 test suite variable: One of a set of variables declared globally to a test suite and retains its value between Test
Cases.

3.6.83 timeout event: Event which is used within a behaviour tree to check for expiration of a specified timer.

3.6.84 tree attachment: Method of indicating that a behaviour tree specified elsewhere (either at a different point in
the current proforma, or as a Test Step in the Test Step Library) is to be included in the current behaviour tree.

3.6.85 tree header: Identifier for a local tree followed by an optional list of formal parameters for the tree.
3.6.86 tree identifier: Name identifying a local tree.

3.6.87 tree leaf: TTCN statement in a behaviour tree or Test Step which has no specified subsequent behaviour.
3.6.88 tree node: Single TTCN statement.

3.6.89 tree notation: Notation used in TTCN to represent Test Cases as trees.

3.6.90 TTCN statement: Event, a pseudo-event or construct which is specified in a behaviour description.

3.6.91 unforeseen test event: Test event which has not been identified as a test event within a foreseen test outcome
in the test suite. It is normally handled using the OTHERWISE event.

3.6.92 unqualified event: Event that does not have an associated Boolean expression.

ITU-T Rec. X.292 (05/2002) 9

4 Abbreviations

4.1 Abbreviations defined in ITU-T Rec. X.290

For the purposes of this Recommendation, the following abbreviations defined in clause 4/X.290 apply:

ASP Abstract Service Primitive

ATS Abstract Test Suite

ETS Executable Test Suite

IJT Implementation Under Test

LT Lower Tester

LTCF Lower Tester Control Function

MOT Means of Testing

PCO Point of Control and Observation

PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation Extra Information for Testing
SUT System Under Test

TMP Test Management Protocol

UT Upper Tester

UTCF Upper Tester Control Function

4.2 Abbreviations defined in ITU-T Rec. X.291

For the purposes of this Recommendation, the following abbreviations defined in clause 4/X.291 apply:

CS Co-ordinated Single-layer (test method)

DS Distributed Single-layer (test method)

LS Local Single-layer (test method)

RS Remote Single-layer (test method)

TTCN Tree and Tabular Combined Notation
4.3 Other abbreviations

This Recommendation uses the following abbreviations:

ASN.1 Abstract Syntax Notation One

BNF The extended Backus-Naur Form used in TTCN
CM Co-ordination Message

CP Co-ordination Point

FDT Formal Description Technique

FIFO First in First out

MTC Main Test Component

OSI Open Systems Interconnection

10 ITU-T Rec. X.292 (05/2002)

PDU Protocol Data Unit

PTC Parallel Test Component
SAP Service Access Point
TCP Test Co-ordination Procedures

TTCN.GR Tree and Tabular Combined Notation, Graphical Form

TTCN.MP Tree and Tabular Combined Notation, Machine Processable Form

5 The syntax forms of TTCN

TTCN is provided in two forms:
— a graphical form (TTCN.GR) suitable for human readability;

— a machine processable form (TTCN.MP) suitable for transmission of TTCN descriptions between
machines and possibly suitable for other automated processing.

TTCN.GR is defined using tabular proformas. TTCN.MP is defined using syntax productions which have special
TTCN.MP keywords as terminal symbols instead of the fixed parts of the tabular proformas (e.g., the box lines and
headers).

The syntax productions of TTCN.MP are specified in Annex A.

The text description of TTCN.GR is intended to be consistent with the underlying syntax as defined in the TTCN.MP
syntax productions, except for the differences identified in A.5 and the static semantic restrictions specified in Annex A
(which are common to both TTCN.MP and TTCN.GR).

If there is any conflict between the TTCN.GR syntax, on the one hand, and the static and operational semantics, on the
other, as described by the text and as described by Annex A, then:

a) except for the differences specified in A.5, the TTCN.MP syntax productions shall have precedence over
the text and syntax productions in the body of this Recommendation;

b) the static semantics restrictions specified in A.4 and in the static semantics comments (marked STATIC
SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid TTCN, restricting
what is allowed according to the syntax productions;

c) similarly, the operational semantics restrictions specified in the operational semantics comments (marked
OPERATIONAL SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid
TTCN at run-time, restricting what is allowed according to the syntax productions;

d) the static and operational semantics restrictions specified in Annex A shall have precedence over the text
in the body of this Recommendation.

If an ATS is specified in TTCN.GR in compliance with this Recommendation, then there is a unique corresponding
TTCN.MP representation of that ATS sharing the same underlying syntax. These two representations have identical
operational semantics. Two different representations of an ATS are equivalent if and only if they have identical
operational semantics.

NOTE - If there is a standardized ATS specified in TTCN.GR and an apparently equivalent TTCN.MP representation, but there is
a conflict in interpretation of the operational semantics of the two, then the operational semantics of the TTCN.GR takes
precedence, because it is the TTCN.GR version that is the standardized ATS.

ITU-T Rec. X.292 (05/2002) 11

6 Compliance

ATSs that comply with this Recommendation shall satisfy the requirements for either TTCN.GR or TTCN.MP.

NOTE 1- See clause 10/X.290, for an explanation of the use of the term "compliance" in ITU-T X.290-series of
Recommendations.

ATSs that comply with the requirements of TTCN.GR shall satisfy the TTCN.GR syntax requirements stated in clauses 9
through 16 and A.4.

ATSs that comply with the requirements of TTCN.MP shall satisfy the TTCN.MP syntax requirements stated in A.3.
ATSs that comply with this Recommendation shall satisfy the static semantic requirements specified in clauses 7
through 16 and Annex A and have operational semantics in accordance with the definition of the operational semantics

in Annex B together with the operational semantics restrictions specified in A.3, such that they are semantically valid.

A standardized ATS that complies with this Recommendation shall require that any realization of that test suite that
claims to conform to that standardized ATS shall:

a) have operational semantics equivalent to the operational semantics of the test suite as defined by
Annex B;

b) meet the additional operational semantics requirements specified in A.3;

c¢) comply with ITU-T Rec. X.293.

NOTE 2 - If, during execution of the executable test case that conforms to the TTCN specification of the corresponding abstract
test case, a static semantic or operational semantic error is detected, then a test laboratory complying with ITU-T Rec. X.294 will
record an abstract or executable test case error, depending on where the error is located.

7 Conventions

7.1 Introduction

The following conventions have been used when defining the TTCN.GR table proformas and the TTCN.MP grammar.

7.2 Syntactic metanotation

Table 1 defines the metanotation used to specify the extended BNF grammar for TTCN (henceforth called BNF):

Table 1/X.292 — The TTCN.MP syntactic metanotation

= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

EXAMPLE 1 — Use of the BNF metanotation:

FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"

12 ITU-T Rec. X.292 (05/2002)

The following conventions will be used for text used in table proformas:
a) Bold text (like this) shall appear verbatim in each actual table in a TTCN test suite;

b) Text in italics (/ike this) shall not appear verbatim in a TTCN test suite. This font is used to indicate that
actual text shall be substituted for the italicized symbol. Syntax requirements for the actual text can be
found in the corresponding TTCN.MP BNF production.

EXAMPLE 2 — Suiteldentifier corresponds to production 3 in Annex A.

7.3 TTCN.GR table proformas

7.3.1 Introduction
The TTCN.GR is defined using two types of table:
a) single TTCN object tables (see 7.3.2),

which are used to define, declare or describe a single TTCN object such as a PDU declaration or a Test
Case dynamic behaviour;

b) multiple TTCN object tables (see 7.3.3);

are used to define a number of TTCN objects of the same type in a single table, such as simple type
definitions or Test Case Variables.

7.3.2 Single TTCN object tables

The general layout of a table for a single TTCN object is shown in Figure 1.

A
Title of Table I Title
Object Name :
Group : (Optional way of grouping together related objects) Header
Comments : This entire comment line is optional.
Object Name ... Other Columns ... Comments v

This column

is optional Body

Footer

<+—>

Detailed Comments: This footer is optional.

Figure 1/X.292 — Generalized layout of a single declaration table

The header of the table contains general information on the object defined in the table. The first item in the header,
named Object Name, contains an identifier for the object. A second item, named Group, may be used to provide an
identifier to group together related objects in the same category. This item is optional. The last item, named Comments
contains an informal description of the object. This item is optional.

The body of the table consists of one or more columns. Each column has a title. The rightmost column, titled Comments,
contains informal descriptions of the components of the object specified in the body. It does not exist in all proformas. In
proformas containing a comments column this column can be omitted.

The footer of the table contains one item, named Detailed Comments. This footer can be used for the same purposes as
the comments column in the body of the table. The test suite specifier can use the detailed comments footer in
combination with the comments column, instead of a comments column, or not at all, in which case the footer can be
omitted.

ITU-T Rec. X.292 (05/2002) 13

7.3.3 Multiple TTCN object tables

The general layout of a table for multiple TTCN objects is shown below:

Title of Table

Group : (Optional way of grouping together related sets of objects)

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next Collective Comment or until
the end of this table.

Object Name ... Other Columns ... Comments

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next Collective Comment or until
the end of this table.

Object Name ... Other Columns ... Comments

Detailed Comments:

Figure 2/X.292 — Generalized layout of a multiple declaration table

The optional Collective Comments may be used preceding a group of related objects declared in a multiple object table,
both to indicate the grouping and to give a comment that applies to each member of the group or the group as a whole.

This type of table has only a minimal optional header section, which may contain a Group identifier and a Collective
Comment. The body of the table consists of one or more columns. Each column has a title. The leftmost column, titled
Object Name, contains identifiers of the objects defined or declared in the table. The rightmost column, titled Comments,
contains informal descriptions of the objects defined or declared in the table. It does not exist in all proformas. When it
exists its use is optional for the test suite specifier. The footer of the table is identical to the footer of the single table

type.
7.3.4 Alternative compact tables

In some cases it is allowed to display a number of single TTCN object tables in an alternative space-saving compact
format. That is, a number of single TTCN object tables may be displayed in a single compact table. The only tables that
may be presented in this format are:

— ASP constraints (tabular and ASN.1);

— PDU constraints (tabular and ASN.1);

— Structured Type constraints;

— ASN.1 Type constraints;

— Test Case dynamic behaviours.

The formats of these alternative compact proformas are defined in Annex E.

14 ITU-T Rec. X.292 (05/2002)

7.3.5 Specification of proformas

This Recommendation specifies numerous types of TTCN.GR tables and provides a graphic view of the corresponding
proformas. These proformas conform to the generalized layout of 7.3.2 and 7.3.3. When a column is shaded in a
proforma, this is a reminder that the column is optional.

7.4 Free Text and Bounded Free Text

Some table entries allow the use of free text, i.e., characters from any of the character sets defined in ISO/IEC 10646-1.
The following restrictions apply:

a) Free Text shall not contain the combination of characters "*/", unless preceded by backslash (\), as this is
used in the TTCN.MP to indicate the end of a Free Text string. This means that double backslash (\\)
means backslash.

b) The combinations of characters "/*" and "*/" which open and close BoundedFreeText strings in the

TTCN.MP shall not appear in the TTCN.GR, i.e., wherever a Bounded FreeText string appears in a table
section, as in a Full Identifier, these combinations of characters shall not be printed.

8 Concurrency in TTCN

8.1 Test components

TTCN allows the specification of test components which may be executed concurrently. This clause gives an overview
of the additional proformas and mechanisms available in concurrent TTCN. These proformas and mechanisms shall not
be used in ATSs that do not use concurrency (i.e., the use of concurrency is optional).

A tester consists of a Main Test Component (MTC) and zero or more Parallel Test Components (PTCs). In non-
concurrent TTCN, it is not necessary to declare the Main Test Component since there is only one test component and the
default is that it is the Main Test Component.

Test components are declared in the Test Component Declarations table. A test component may communicate with the
IUT via one or more Points of Control and Observation (PCOs). Test components may communicate with each other by
exchanging Co-ordination Messages (CMs) through Co-ordination Points (CPs). PTCs may also communicate with the
MTC implicitly, by means of assignments to the global result variable and by the MTC being able to check whether or
not one or more PTCs have terminated execution. The Test Component Configuration Declarations tables are used to
specify (abstract) configurations of test components. These declarations (one for each configuration) show which PCOs
and CPs are used, if any, by the test components. CMs are specified in a manner very similar to the method used to
specify ASPs. ASN.1 may be used for CM specification. CM constraints are also very similar to ASP constraints. Special
proformas are provided for the definition of CM Types and the declaration of CM constraints. CMs are sent and received
using the normal TTCN SEND and RECEIVE statements.

In summary, if concurrent TTCN is used the following proformas shall be used:
a) Test Component Declarations;
b) Test Component Configuration Declarations.
In addition, if concurrent TTCN is used the following proformas may be used:
a) CP Declarations;
b) CM Type Definitions and/or ASN.1 CM Type Definitions, provided that CP declarations are used;
¢) CM Constraints Declarations, provided that CM Type Definitions are used;

d) ASN.1 CM Constraint Declarations provided that ASN.1 CM Type Definitions are used.

ITU-T Rec. X.292 (05/2002) 15

8.2 Test component configurations

Some possible configurations of test components are shown in Figures 3 and 4. In a realization of these abstract
configurations, test components may reside in a single machine or be distributed over several machines.

It is possible to use different PTC configurations in different test cases of an Abstract Test Suite. Each Abstract Test
Case which uses concurrency shall use one of the declared Test Component Configurations.

Note the following valid but unusual cases:

a)
b)

a PTC need not have any PCOs;

a PTC need not have a CP to an MTC. In such cases the only interaction between the PTC and the MTC
will be the creation of the PTC and the implicit result reports from the PTC, i.e., the MTC has no explicit
control over the PTC after creation;

two PTCs may be connected by more than one CP;

a test case whose test component configuration refers to a PTC need not contain any CREATE statement
to start this PTC;

a test case whose test component configuration refers to a CP need not contain any SEND or RECEIVE
statements using this CP.

Items a), b) and c) are illustrated in Figures 3 and 4.

MTC1
MCP1 MCP2 MCP3
P1 P2
TC1 ¢ TC2 ¢ TC3
IPCOA IPCOB PCO C I
X.292_F03
Figure 3/X.292 — Example Test Component Configuration CONFIG1
MTC2
MCP2 MCP3
CP1
TC2 TC4 TCS
CP2
I PCO B PCO D I PCO_E
v X.292_F04

Figure 4/X.292 — Example Test Component Configuration CONFIG2

16 ITU-T Rec. X.292 (05/2002)

9 TTCN test suite structure

9.1 Introduction

TTCN allows a test suite to be hierarchically structured in accordance with 8.1/X.290. The components of this structure
are:

a) Test Groups;
b) Test Cases;

c) Test Steps.
A TTCN test suite may be completely flat (i.e., have no structure) in which case there are no Test Groups.

TTCN allows the use of Test Step Groups and Default Groups, similar to the concept of Test Groups, in order to
structure Test Steps and Defaults hierarchically. This hierarchical structure is optional.

9.2 Test Group References

TTCN supports a naming structure that shows a conceptual grouping of Test Cases. Test Groups can be nested. Test
Cases can also be stand-alone (see clause 8/X.290, Figure 9). The Test Group References define the structure of the test
suite.

EXAMPLE 3 — A Transport group reference: TRANSPORT/CLASSO0/CONN_ESTAB/

9.3 Test Step Group References

Test steps may be explicitly identified in TTCN and used to structure Test Cases and other Test Steps. Alternatively Test
Steps may be implicit within the behaviour description of a Test Case. Explicit Test Steps may be specified either:

— locally within a Test Case or Test Step behaviour description; or

— globally within a Test Step Library, which may be hierarchically structured into Test Step Groups.

NOTE - For example, a preamble may consist of just a few statement lines within a behaviour description of the Test Case, in
which case it is implicit. Alternatively, a preamble may be explicitly specified with its own behaviour description. If such an
explicit preamble is only of use within one Test Case, then it may be specified locally within that Test Case, but if it is of use in
several Test Cases then it should be specified in the Test Step Library.

Local Test Steps are identified simply by a tree identifier. Global Test Steps are identified by a Test Step identifier.
Global Test Steps also have a Test Step Group Reference, which shows the position of a Test Step in the Test Step
Library. The structure of the Test Step Library is independent of the structure of the test suite.

EXAMPLE 4 — Transport Test Step Group Reference: TRANSPORT/STEP_LIBRARY/CLASSO/CONN_ESTAB/

9.4 Default Group References
Default behaviours (if any) are located in a Default Library.

A Default Group Reference specifies the location of the Default in the Default Library, which may be hierarchically
structured. The Default Library has no influence on the test suite structure itself.

EXAMPLE 5 — Transport Default Group Reference: TRANSPORT/DEFAULT LIBRAR/CLASS0/

9.5 Parts of a TTCN test suite

An ATS written in TTCN shall have the following four sections in the order indicated:
a) Suite Overview (see clause 10),

which contains the information needed for the general presentation and understanding of the test suite,
such as test references and a description of its overall purpose;

ITU-T Rec. X.292 (05/2002) 17

b) Import Part (see 10.8),

which contains the declarations of the objects used in the test suite or module that are imported from a
source object;

¢) Declarations Part (see clause 11),

which contains the definitions or declarations of all the components that comprise the test suite (e.g.,
PCOs, Timers, ASPs, PDUs, and their parameters or fields);

d) Constraints Part (see clauses 12, 13, 14),

which contains the declarations of values for the ASPs, PDUs, and their parameters used in the Dynamic
Part. The constraints shall be specified using:

1) TTCN tables; or

2) the ASN.1 value notation; or

3) both TTCN tables and the ASN.1 value notation.
e) Dynamic Part (see clause 15),

which comprises three sections that contain tables specifying test behaviour expressed mainly in terms of
the occurrence of ASPs or PDUs at PCOs. These sections are:

1) the Test Case dynamic behaviour descriptions;
2) alibrary containing Test Step dynamic behaviour descriptions (if any);

3) alibrary containing Default dynamic behaviour descriptions (if any).

10 Test Suite Overview

10.1 Introduction

The purpose of the Test Suite Overview part of the ATS is to provide information needed for general presentation and
understanding of the test suite. This includes:

a) Test Suite Index (see 10.2);

b) Test Suite Structure (see 10.3);
c) Test Case Index (see 10.4);

d) Test Step Index (see 10.5);

e) Default Index (see 10.6);

f) Test Suite Exports (see 10.7).

10.2 Test Suite Index

The purpose of the Test Suite Index is to provide information needed for all imported objects in a expanded test suite.
This information is used to easily find the definition of an object.

The Test Suite Index is a complete list of all objects in a expanded test suite and is a result of converting a modularized
test suite to an expanded test suite. This list contains information about each object (e.g., the source object/test suite
name, the original name and the page number in the very original source object).

The Test Suite Index proforma identifies all objects used in a test suite. The following information shall be supplied for
each object:

a) the name of the object:
the name with which the object is referred to (e.g., a generated name);
b) the object type:

which shall be the same as the type given when the object is defined;

18 ITU-T Rec. X.292 (05/2002)

d)

e)

the name of the source object or the test suite:

where the object is defined;

the original name of the object:

the given name when the object is explicitly defined;
an optional page number:

providing the location of the object in the original source object.

This information shall be provided in the format shown in the following proforma:

Test Suite Index

Object Name Object Type Source Name Original Object Ref Page Nr Comments

Objectldentifier ObjectType Sourceldentifier [ObjectReference] [Number] [FreeText]

Detailed Comments: /FreeText]

Proforma 0: Test Suite Index

The page number is given when the original source object is standard and the location of the object is unambiguous.

10.3 Test Suite Structure

The Test Suite Structure contains identification of the pertinent reference documents, specification of the structure of the
test suite, a brief description of its overall purpose, and references to the Test Group selection criteria.

The Test Suite Structure shall include at least the following information:

a)
b)
c)
d)
e)

f)

g)

the name of the test suite;

references to the relevant base standards;

a reference to the PICS proforma;

a reference to the partial PIXIT proforma (see 14.1/X.291 and Appendix V/X.296);

an indication of the test method or methods to which the test suite applies, plus for the Co-ordinated Test
Methods a reference to where the TMP is specified;

other information which may aid understanding of the test suite, such as its version number or how it has
been derived; this information should be included as a comment;

a list of Test Groups in the test suite (if any),

where the following information shall be supplied for each group:

1)

the Test Group Reference,

where the first identifier may be the suite name, and each successive identifier represents further
conceptual ordering of the test suite. Test Groups shall be listed in the order that their corresponding Test
Cases appear in the ATS. Furthermore, they shall be ordered such that every group within a single group
immediately follows that group. All Test Groups in the test suite shall be listed;

imported test cases may be included under any group, independently under which group they are defined
in the original source object. A new group may be listed that does not occur in the Dynamic Part. This
group shall only contain imported test cases;

ITU-T Rec. X.292 (05/2002) 19

2)

3)

4)

the groups of the Dynamic Part shall occur in the same order as they appear there, but the list may be
preceded, interrupted or followed by new groups of imported test cases. For these new groups the page
number shall not be supplied;

the Selection Ref column may contain the identifier of a selection expression applicable to the new test
groups. The new selection expression shall override the specified selection expression in the original test
group (if there is any). The absence of the selection expression identifier in this column indicates that the
specified selection expression in the original test group is omitted (if there is any);

the Test Group Objective column may contain a new informal statement of the objective of the new test
group. This new objective shall override the objective in the imported test group (if any). The absence of
the test group objective in this column indicates that the specified test group objective is omitted,

an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the
Test Cases in the group apply to specific IUTs. This column may contain the identifier of a selection
expression applicable to the Test Group. If a selection expression identifier is provided for a group, and
the referenced selection expression evaluates to FALSE, then no Test Case in that group shall be selected
for execution. If the selection expression evaluates to TRUE then Test Cases in that group shall be
selected for execution depending on the evaluation of the selection expressions relevant to subgroups of
that group and/or individual Test Cases. Omission of a selection expression identifier is equivalent to the
Boolean value TRUE;

the Test Group Objective,
which is an informal statement of the objective of the Test Group;
a page number,

providing the location of the first Test Case of the group in the ATS. The page number listed with each
Test Group Reference in the Test Suite Structure table shall be the page number of the first Test Case
behaviour description in the group.

This information shall be provided in the format shown in the following proforma:

Test Suite Structure
Suite Name : Suiteldentifier
Standards Ref : Free Text
PICS Ref s Free Text
PIXIT Ref : Free Text
Test Method(s) : FreeText
Comments s [FreeText]
Test Group Reference Selection Ref Test Group Objective Page Nr
TestGroupReference [SelectExpridentifier] FreeText Number
Detailed Comments: [FreeText]

10.4

Proforma 1: Test Suite Structure

Test Case Index

The Test Case Index contains a complete list of all Test Cases in the ATS. The following information shall be provided
for each Test Case:

20

a)

an optional Test Group Reference (if the ATS is structured into Test Groups),

which defines where in the test suite group structure the Test Case resides. Test Groups shall be listed in
the order in which they exist in the ATS;

ITU-T Rec. X.292 (05/2002)

b) the Test Case name,

which shall be the identifier provided in the Test Case dynamic behaviour table. Test Cases shall be listed
in the order in which they exist in the ATS;

¢) an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the
Test Case should be selected for execution. This column may contain the identifier of a selection
expression applicable to the Test Case. If a selection expression identifier is provided, and the referenced
selection expression evaluates to FALSE, then the Test Case shall not be selected for execution. If the
selection expression evaluates to TRUE then the Test Case shall be selected for execution depending on
the evaluation of the selection expressions for the Test Groups containing the Test Case. A Test Case is
selected if the selection expression for the Test Case, and all groups containing the Test Case, evaluate to
TRUE. Omission of a selection expression identifier is equivalent to the Boolean value TRUE;

d) adescription of the Test Case,
which is possibly a shortened form of the test purpose;
e) apage number,

providing the location of the Test Case in the ATS. The page number listed with each Test Case Identifier
in the Test Case Index table shall be the page number of the corresponding Test Case behaviour
description.

This information shall be provided in the format shown in the following proforma:

Test Case Index
Test Group Reference Test Case Id Selection Ref Description Page Nr
TestGroupReference TestCaseldentifier [SelectExpridentifier] FreeText Number

Detailed Comments: [FreeText]

Proforma 2: Test Case Index

Collective comments may be used in this table according to Figure 2.

The complete list of test cases shall include the imported test cases. Explicitly defined Test Cases shall be listed in the
order in which they exist in the ATS. Page numbers shall not be supplied for imported test cases.

The Selection Ref column has similar semantic as the one given in 10.3.

The Description column may contain a new shortened form of the Test Purpose. This new description shall override the
description in the imported test case (if any). The absence of the description in this column indicates that the specified
description is omitted.

10.5 Test Step Index

The Test Step Index contains a complete list of all Test Steps in the ATS. The following information shall be provided
for each Test Step:

a) an optional Test Step Group Reference, (if the ATS is structured into Test Step Groups),

which defines where in the Test Step Library structure the Test Step resides. If the group reference for a
Test Step is missing, then the Test Step is assumed to reside in the same group as the previous Test Step in
the index. Test Step Groups shall be listed in the order in which they exist in the ATS. An explicit Test
Step Group Reference shall be provided for the first Test Step of each group. An explicit Test Step Group
Reference shall also be provided for each Test Step that immediately follows the last Test Step of the
group; this is necessary if a Test Step Group contains both Test Step Groups and Test Steps;

ITU-T Rec. X.292 (05/2002) 21

b) the Test Step name,

which shall be the identifier provided in the Test Step dynamic behaviour table. Test Steps shall be listed
in the order in which they exist in the ATS;

¢) adescription of the Test Step,
which is possibly a shortened form of the Test Step Objective;
d) apage number,
providing the location of the Test Step in the ATS. The page number listed with each Test Step Identifier

in the Test Step Index table shall be the page number of the corresponding Test Step behaviour
description.

This information shall be provided in the format shown in the following proforma:

Test Step Index

Test Step Group Reference Test Step Id Description Page Nr

TestStepGroupReference TestStepldentifier FreeText Number

Detailed Comments: [FreeText]

Proforma 3: Test Step Index

Collective comments may be used in this table according to Figure 2.

The complete list of test steps shall include the imported test steps. Explicitly defined Test Steps shall be listed in the
order in which they exist in the ATS. Page numbers shall not be supplied for imported test steps.

The Description column may contain a new shortened form of the Test Step Objective. This new description shall
override the description in the imported test step (if any). The absence of the description in this column indicates that the
specified description is omitted.

10.6 Default Index

The Default Index contains a complete list of all Defaults in the ATS. The following information shall be provided for
each Default:

a) an optional Default Group Reference, (if the ATS is structured into Default Groups),
which defines where in the Default Library structure the Default resides. If the group reference for a
Default is missing, then the Default is assumed to reside in the same group as the previous Default in the
index. Defaults shall be listed in the order in which they exist in the ATS. An explicit Default Group
Reference shall be provided for the first Default of each group. An explicit Default Group Reference shall
also be provided for each Default that immediately follows the last Default of the group;

b) the Default name,

which shall be the identifier provided in the Default dynamic behaviour table. Defaults shall be listed in
the order in which they exist in the ATS;

¢) adescription of the Default,

which is possibly a shortened form of the Default Objective;

22 ITU-T Rec. X.292 (05/2002)

d) apage number,

providing the location of the Default in the ATS. The page number listed with each Default Identifier in
the Default Index table shall be the page number of the corresponding Default behaviour description.

This information shall be provided in the format shown in the following proforma:

Default Index
Default Group Reference Default Id Description Page Nr
DefaultGroupReference Defaultldentifier FreeText Number

Detailed Comments: [FreeText]

Proforma 4: Default Index

Collective comments may be used in this table according to Figure 2.

The complete list of defaults shall include the imported defaults. Explicitly defined Defaults shall be listed in the order in
which they exist in the ATS. Page numbers shall not be supplied for imported defaults.

The Description column may contain a new shortened form of the Default Objective. This new description shall override
the description in the imported default (if any). The absence of the description in this column indicates that the specified
description is omitted.

10.7 Test Suite Exports

The Test Suite Exports table may be used to specify explicitly which objects in the test suite are designed to be re-usable
and hence may be imported into other test suites or TTCN modules.

The Test Suite Exports proforma is used to identify the objects which may be exported.
The name of the original source object shall be given if the object is itself imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported source
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other
objects which are defined in the corresponding type are not exported as well. They are however implicitly exported and
can be referred in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the Test Suite Exports table for each of the exported objects:
a) the name of the object,

if the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to
the object name embedded in brackets;

b) the object type,
c) the name of the original source object if the object is imported, or the object directive EXTERNAL;
d) apage number,
providing the location of the object in the test suite (no page number shall be given for imported objects);

e) an optional comment.

ITU-T Rec. X.292 (05/2002) 23

This information shall be provided in the format shown in the following proforma:

Test Suite Exports
Object Name Object Type Source Name Page Nr Comments
Objectldentifier TTCN_ObjectType [Sourceldentifier | ObjectDirective] Number [FreeText]
Detailed Comments: [FreeText]
Proforma 5: Test Suite Exports
EXAMPLE 6 — Test Suite Exports:
Test Suite Exports
Object Name Object Type Source Name Page Nr Comments
String5 SimpleType Object 3
wait Timer Object Module B
INTC TTCN_PDU_Type_ Object 13
DEF1 Default_Object TestSuite 1
TC 2 TestCase_Object TestSuite 2
TC 3 TestCase_Object 33
Preamble TestStep_Object EXTERNAL
Detailed Comments:

10.8 The Import Part

10.8.1 Introduction

The purpose of the Import Part is to declare the objects used in the test suite that are imported from a source object. The
effect of the imports is equivalent to having a copy of the imported objects within the test suite.

An object may be imported only if a source object exports it. A test suite without an export table exports all objects
which have a global name. A module and a test suite with at least one export table export the objects contained in the
export tables. An object which is not itself explicitly imported is implicitly imported if an imported object references it.

10.8.2 Imports

The Imports tables identify the source object and provides information on the overall objective of the source object. The
following information shall be supplied in the Imports tables:

a)
b)

c)

d)

the name of the source object;
a description of the objective of the source object;

a full reference to the source object; which should contain a document identifier and other information,
such as version and date;

a reference to the standards to which the source applies;

other information which may aid understanding of the source object; this should be included as a
comment;

24 ITU-T Rec. X.292 (05/2002)

f) a list of the objects from the imported source object; for each object the following information shall be
provided:

1) the name of the object as used in the source object;
2) the type of the object; which shall be the same as the type given in the source object;
3) the name of the original source object if the object is imported from another source object, the object

directive OMIT or "-" if the object is to be omitted from the set of objects imported from the source
object, or the object directive EXTERNAL if the object is declared as external in the source object.

This information shall be provided in the format shown in the following proforma:

Imports
Source Name : Suiteldentifier
Group 2 [ImportsGroupReference]
Source Ref 2 [FreeText]
Standards Ref . [FreeText]
Comments ¢ [FreeText]
Object Name Object Type Source Name Comments

Objectldentifier TTCN_ObjectType [Sourceldentifier | ObjectDirective] [FreeText]

Detailed Comments: [FreeText]

Proforma 6: Imports

EXAMPLE 7 — An Imports table:

Imports

Source Name : Module A
Source Ref ¢ {ISO standard 1234}
Standards Ref : ISO 300313
Comments : Layer 2 Test Suite

Object Name Object Type Source Name Comments
String5 SimpleType_Object
Wait Timer_Object Module B 1)
R1_POSTAMBLE TestStep_Object EXTERNAL 2)
TSAP PCO_Type Object 3)
blue[ColorEnum] Enumeration_Object OMIT
a[NN_typel] NamedNumber Object 4)
Detailed Comments:
1) The original source of this timer is Module B.
2) This test step is declared as external in Module A and must be explicitly defined or imported where this module is used.
3) TSAP must be defined in the PCO Type Declaration table.
4) This Named Number is omitted from the imports and hence should be redefined explicitly in the test suite.

ITU-T Rec. X.292 (05/2002) 25

11 Declarations part

11.1 Introduction

The purpose of the declarations part of the ATS is to define and declare all the objects used in the test suite. The
following objects of an ATS referenced from the overview part, the constraints part and the dynamic part shall have been
declared in the declarations part. These objects are:

a) definitions:
1) Test Suite Types (see 11.2.3);
2) Test Suite operations (see 11.3.4);
b) parameterization and selection of Test Cases:
1) Test Suite Parameters (see 11.4);
2) Test Case Selection Expressions (see 11.5);
¢) declarations/definitions:
1) Test Suite Constants (see 11.6 and 11.7);
2) Test Suite Variables (see 11.8.1);
3) Test Case Variables (see 11.8.3);
4) PCO types (see 11.9);
5) PCOs (see 11.10);
6) CPs(see 11.11);
7) Timers (see 11.12);
8) Test Components (see 11.13.1);
9) Test Component Configurations (see 11.13.2);
10) ASP types (see 11.14);
11) PDU types (see 11.15);
12) Encoding Rules (see 11.16.1);
13) Encoding Variations (see 11.16.2);
14) Invalid Field Encodings (see 11.16.3);
15) CM types (see 11.17);
16) Aliases (see 11.21).

11.2 TTCN types

11.2.1 Introduction

TTCN supports a number of predefined types and mechanisms that allow the definition of specific Test Suite Types.
These types may be used throughout the test suite and may be referenced when Test Suite Parameters, Test Suite
Constants, Test Suite Variables, ASP parameters, PDU fields, etc., are declared.

TTCN is a weakly typed language, in that values of any two types which have the same base type are considered to be
type compatible (e.g., for the purposes of performing assignments or parameter passing).

11.2.2 Predefined TTCN types

A number of commonly used types are predefined for use in TTCN. All types defined in this clause may be referenced
even though they do not appear in a type definition in a test suite. All other types used in a test suite shall be declared in
the Test Suite Type definitions, ASP definitions or PDU definitions and referenced by name.

The following TTCN predefined types are considered to be the same as their counterparts in ASN.1:

a) INTEGER predefined type: a type with distinguished values which are the positive and negative whole
numbers, including zero.

Values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless the
value is 0; the value zero shall be represented by a single zero;

26 ITU-T Rec. X.292 (05/2002)

b)

d)

g)

h)

BOOLEAN predefined type: a type consisting of two distinguished values.
Values of the BOOLEAN type are TRUE and FALSE;

BITSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one,
or more bits.

Values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones,
preceded by a single ' and followed by the pair of characters 'B:

EXAMPLE §-'01101'B

HEXSTRING predefined type: a type whose distinguished values are the ordered sequences of zero,
one, or more HEX digits, each corresponding to an ordered sequence of four bits.

Values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the HEX digits:

0123456789ABCDEF

preceded by a single ' and followed by the pair of characters 'H; each HEX digit is used to denote the
value of a semi-octet using a hexadecimal representation:

EXAMPLE 9 —'ABO1D'H

OCTETSTRING predefined type: a type whose distinguished values are the ordered sequences of zero
or a positive even number of HEX digits (every pair of digits corresponding to an ordered sequence of
eight bits).

Values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of
the HEX digits:

0123456789 ABCDEF

preceded by a single ' and followed by the pair of characters 'O; each HEX digit is used to denote the
value of a semi-octet using a hexadecimal representation:

EXAMPLE 10 —'FF96'0

OBJECTIDENTIFIER predefined type: a type whose distinguished values are the set of all object
identifiers allocated in accordance with the rules of ITU-T Rec. X.680.

R_TYPE predefined type: a type consisting of the following distinguished values:

pass, fail, inconc and none

These values are predefined identifiers and as such, are case sensitive. This predefined type is for use with
verdicts, see 15.17.

CharacterString predefined types: types whose distinguished values are zero, one, or more characters
from some character set; the CharacterString types listed in Table 2 may be used; they are defined in
clause 31/X.680.

Table 2/X.292 — Predefined CharacterString Type

NumericString
PrintableString
TeletexString
T61String
VideotexString
VisibleString
1S0646String
145S8tring
GraphicString
GeneralString
BMPString
UniversalString

Values of CharacterString types shall be denoted by an arbitrary number (possibly zero) of characters from the character
set referenced by the CharacterString type, preceded and followed by double quote ("); if the CharacterString type
includes the character double quote, this character shall be represented by a pair of double quote in the denotation of any
value ("").

ITU-T Rec. X.292 (05/2002) 27

11.2.3 Test Suite Type Definitions

11.2.3.1 Introduction

Type definitions to be used as types for data objects and as subtypes for structured ASPs, PDUs, etc. can be introduced
using a tabular format and/or ASN.1. Wherever types are referenced within Test Suite Type definitions those references
shall not be recursive (neither directly nor indirectly).

11.2.3.2 Simple Type Definitions using tables

To define a new Simple Type, the following information shall be provided:
a) aname for the type;
b) the base type,

where the base type shall be a Predefined Type or a Simple Type. The base type is followed by the type
restriction that shall take one of the following forms:

1) alist of distinguished values of the base type; these values comprise the new type;

2) a specification of a range of values of type INTEGER; the new type comprises the values including
the lower boundary and the upper boundary specified in the range. In order to specify an infinite
range, the keyword INFINITY may be used instead of a value indicating that there is no upper
boundary or lower boundary;

3) a specification of a particular length or length range of a predefined or test suite string type; the
length value(s) shall be interpreted according to Table 5 in 11.18; only non-negative INTEGER
literals or the keyword INFINITY for the upper bound shall be used;

c) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to
specify an explicit encoding for the simple type, which overrides the encoding rules and encoding
variations applicable to any PDU in which that simple type is used; the encoding identifier, if any, shall
identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite (e.g., LD(10)); see 11.16.4.

This information shall be provided in the format shown in the following proforma:

Simple Type Definitions

Group 2 [SimpleTypeGroupReference]
Type Name Type Definition Type Encoding Comments
Simple Typeldentifier Type&Restriction [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [Freelext]

Proforma 7: Simple Type Definitions

Collective comments may be used in this table according to Figure 2.

Where a range is used in a type definition either as a value range or as a length range (for strings) it shall be stated with
the lower of the two values on the left. An integer range shall be used only with a base type of INTEGER or a type
derived from INTEGER. In the latter case, integer range shall be a subrange of the set of values defined by the base type.

Where a value list is used, the values shall be of the base type and shall be a true subset of the values defined by the base
type. Where a length restriction is used, the set of values for a type defined by this restriction shall be a true subset of the
values defined by the base type.

Values of any two simple types which have the same base type are considered to be type compatible (e.g., for the
purposes of performing assignments or parameter passing).

28 ITU-T Rec. X.292 (05/2002)

EXAMPLE 11 — Simple Test Suite Type definition:

Simple Type Definitions
Type Name Type Definition Comments
Transport_classes INTEGER(0, 1, 2, 3, 4) classes that may be used for transport layer connection
String5 1A5String[5] string of length 5
SeqNumbers INTEGER(0..127) all numbers from 0 to 127
PositiveNumbers INTEGER(1..INFINITY) all positive INTEGER numbers
String 10t020 IAS5String[10..20] string, min. length 10 characters and max. length
20 characters

11.2.3.3 Structured Type Definitions using tables

Structured Types can be defined in the tabular form to be used for declaring structured objects as subtypes within ASP
and PDU definitions and other Structured Types, etc.

The following information shall be supplied for each Structured Type:
a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU;
In order to specify explicit Encoding Variations for entire structured types, which override the Encoding
Variations applicable to any PDU in which this structured type is used, this optional entry shall reference
an entry in the relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not
used, then the applicable Encoding Variations are those applicable to each PDU within which this
structured type is used. See 11.16.4.

c) alist of the elements associated with the Structured Type,
where the following information shall be supplied for each element:

1) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

2) its type and an optional attribute,

where elements may be of a type of arbitrarily complex structure; there shall be no recursive
references (neither directly nor indirectly);

the optional element length restriction can be used in order to give the minimum and maximum
length of an element of a string type (see 11.18);

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to
specify an explicit encoding for the structured type, which overrides the encoding rules and encoding
variations applicable to any PDU in which that structured type is used; the encoding identifier, if any,
shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined
in the test suite (e.g., LD(10)); see 11.16.4.

The elements of Structured Type definitions are considered to be optional, i.e., in instances of these types whole
elements may not be present.

ITU-T Rec. X.292 (05/2002) 29

This information shall be provided in the format shown in the following proforma:

Structured Type Definition

Type Name 2 Structld&Fullld

Group 2 [StructTypeGroupReference]

Encoding Variation 2 [EncVariationCall]

Comments s [FreeText]
Element Name Type Definition Field Encoding Comments
ElemId&Fullld Type&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [Freelext]

Proforma 8: Structured Type Definition

11.2.3.4 Test suite type definitions using ASN.1

Test Suite Types can be specified using ASN.1. This shall be achieved by an ASN.1 definition using the ASN.1 syntax
as defined in ITU-T Rec. X.680. The following information shall be supplied for each ASN.1 type:

a)

b)

©)

its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses;

the Encoding Variations to be used for structures of this type within a PDU;

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding
Variations applicable to any PDU in which this ASN1_Type is used, this optional entry shall reference an
entry in the relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not
used, then the applicable Encoding Variations are those applicable to each PDU within which this
ASNI1 Type is used. See 11.16.4.

the ASN.1 type definition,

which shall follow the syntax defined in ITU-T Rec. X.680, except that there is the additional option of
specifying an Encoding Variation or Invalid Field Encoding associated with either the whole ASN1 Type
or any ASN.1 Type within the ASN1 Type. This is done by giving a specific encoding identifier followed
by any necessary actual parameter list, in order to specify explicit encodings for individual fields or other
subtypes of a PDU, which override the encoding rules and encoding variations applicable to the PDU as a
whole; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid
Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol (_) may be used
instead. The type identifier in the table header is the name of the first type defined in the table body.

Types referred to from the type definition shall be defined in other ASN.1 type definition tables, be defined by reference
in the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally
defined types shall not be used in other parts of the test suite.

ASN.1 type definitions used within TTCN shall not use external type references as defined in ITU-T Rec. X.680. ASN.1
comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

30 ITU-T Rec. X.292 (05/2002)

This information shall be provided in the following proforma:

ASN.1 Type Definition

Type Name : ASNI Typeld&Fullld

Group : [ASNI TypeGroupReference]
Encoding Variation s [EncVariationCall]
Comments s [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 9: ASN.1 Type Definition

EXAMPLE 12 — An ASN.1 Test Suite Type definition:

ASN.1 Type Definition

Type Name : DATE type
Comments : to illustrate the structure of ASN.1 type definitions
Type Definition

SEQUENCE {

day DAY type,

month MONTH_type,

year YEAR type

¥

--local DAY type --
DAY _type::= INTEGER {first(), last(31)}

-- MONTH type and YEAR type are defined in other ASN.1 Type Definitions tables --

11.2.3.5 ASN.1 Type Definitions by Reference

Types can be specified by a precise reference to an ASN.1 type defined in an OSI standard or by referencing an ASN.1
type defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each type:

a)

b)

c)

d)

its name,

where this name may be used throughout the entire test suite. This name shall be specified without a
Fullldentifier;

the type reference,
which shall follow the identifier rules stated in ITU-T Rec. X.680;
the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ITU-T Rec. X.680, and
an optional Objectldentifier; the module shall be unique within the domain of interest;

the Encoding Variations to be used for such ASN1_Types within a PDU,

in order to specify explicit Encoding Variations for entire ASN1 Types, which override the Encoding
Variations applicable to any PDU in which this ASN1_Type is used, this optional entry shall reference an
entry in the relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not
used, then the applicable Encoding Variations are those applicable to each PDU within which this
ASNI1 Type is used. See 11.16.4.

ITU-T Rec. X.292 (05/2002) 31

This information shall be provided in the following proforma:

ASN.1 Type Definitions by Reference

Group : [ASNI TypeGroupReference]
Type Name Type Reference Module Identifier Encoding Variation Comments
ASN1_Typeld&Fullld TypeReference ASN1_Moduleldentifier | [EncVariationCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 10: ASN.1 Type Definitions By Reference

Collective comments may be used in this table according to Figure 2.

Since the ASN.1 types imported from ASN.1 modules can contain identifiers, type references and value references that
follow the identifier rules in ITU-T Rec. X.680, they can contain hyphens. To be able to use the imported definitions in
TTCN it is necessary to change the hyphens in imported identifiers to underscore. This is done in the import process.

EXAMPLE 13 — The following type definition in an ASN.1 module:
module-1 DEFINITIONS BEGIN
Type-1 ::= SEQUENCE { field1 Sub-Type-1,
field2 BIT STRING ({first-bit(0), second-bit(1) } }
END

can be imported to TTCN with:

ASN.1 Type Definitions by Reference

Type Name Type Reference Module Identifier Comments
Type 1 Type-1 module-1
Sub_Type 1 Sub-Type-1 module-1

The above reference definition of Type-1 is equivalent to the following definition:

ASN.1 Type Definition

Type Name : Type 1
Comments :

Type Definition
SEQUENCE { fieldl Sub_Type 1,

field2 BIT STRING ({first_bit(0), second_bit(1) } }

11.3 TTCN operators and TTCN operations

11.3.1 Introduction

TTCN supports a number of predefined operators, operations and mechanisms that allow the definition of Test Suite
Operations. These operators and operations may be used throughout any dynamic behaviour descriptions and constraints.

32 ITU-T Rec. X.292 (05/2002)

11.3.2 TTCN operators

11.3.2.1 Introduction

The predefined operators fall into three categories:
a) arithmetic;
b) relational;

¢) Boolean.

The precedence of these operators is shown in Table 3. Parentheses may be used to group operands in expressions, a
parenthesized expression has the highest precedence for evaluation.

Within any row in Table 3, the listed operators have equal precedence. If more than one operator of equal precedence
appear in an expression, the operations are evaluated left to right.

Table 3/X.292 — Precedence of Operators

highest
()
Unary: + — NOT
* / MOD AND
Binary: {+ — OR
=< > <> o> <=
lowest

11.3.2.2 Predefined arithmetic operators
The predefined arithmetic operators are:
H_j’_"’ H_"’ "*"’ H/", MOD

They represent the operations of addition, subtraction, multiplication, division and modulo. Operands of these operators
shall be of type INTEGER (i.e., TTCN or ASN.1 predefined) or derivations of INTEGER (i.e., subrange). ASN.1 Named
Values shall not be used within arithmetic expressions as operands of operations.

The result type of arithmetic operations is INTEGER.

In the case where plus (+) or minus (—) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two INTEGER values gives the whole INTEGER value resulting
from dividing the first INTEGER by the second (i.e., fractions are discarded).

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first
INTEGER by the second.

11.3.2.3 Predefined relational operators
The predefined relational operators are:
n_n ‘ H<H | ">H | N<>H | ">:H | "<:"

They represent the relations of equality, less than, greater than, not equal to, greater than or equal to and less than or
equal to. Operands of equality (=) and not equal to (<>) may be of an arbitrary type. The two operands shall be
compatible. All other relational operators shall have operands only of type INTEGER or derivatives of INTEGER. The
result type of these operations is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CharacterStrings may contain the
wildcard characters AnyOrNone (*) and AnyOne (?). In this case the comparison is performed according to the pattern
matching rules defined in 12.6.2.

ITU-T Rec. X.292 (05/2002) 33

11.3.2.4 Predefined Boolean operators
The predefined Boolean operators are:
NOT AND OR

They represent the operations of negation, logical AND and logical OR. Their operands shall be of type BOOLEAN
(TTCN or ASN.1 or predefined). The result type of the Boolean operators is BOOLEAN.

The logical AND returns the value TRUE if both its operands are TRUE; otherwise it returns the value FALSE. The
logical OR returns the value TRUE if at least one of its operands is TRUE; it returns the value FALSE only if both
operands are FALSE. The logical NOT is the unary operator that returns the value TRUE if its operand was of value
FALSE and returns the value FALSE if the operand was of value TRUE.

11.3.3 Predefined operations

11.3.3.1 Introduction

The predefined operations fall into two categories:
a) conversion;

b) others.

Predefined operations may be used in every test suite. They do not require an explicit definition using a Test Suite
Operation Definition table. When a predefined operation is invoked:

a) the number of the actual parameters shall be the same as the number of the formal parameters; and
b) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

c) all variables appearing in the parameter list shall be bound.
Each of the predefined operations is presented in the following format:
OPERATION NAME (FORMAL PARAMETER LIST)= RESULT TYPE
11.3.3.2 Predefined conversion operations

11.3.3.2.1 Introduction

TTCN supports the following predefined operations for type conversions:
a) HEX TO INT converts HEXSTRING to INTEGER;
b) BIT TO INT converts BITSTRING to INTEGER;
c¢) INT TO HEX converts INTEGER to HEXSTRING;
d) INT TO BIT converts INTEGER to BITSTRING.

These operations provide encoding rules within the context of the operations only. It is invalid to assume these encoding
rules apply outside the domain of the operations in TTCN.

11.3.3.2.2 HEX TO_INT
HEX TO_INT(hexvalue:HEXSTRING) = INTEGER
This operation converts a single HEXSTRING value to a single INTEGER value.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The
rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent
the decimal values 0 .. 15 respectively.

11.3.3.2.3 BIT_TO_INT
BIT TO_INT(bitvalue:BITSTRING) = INTEGER
This operation converts a single BITSTRING value to a single INTEGER value.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The
rightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

34 ITU-T Rec. X.292 (05/2002)

11.3.3.2.4 INT_TO_HEX
INT TO HEX(intvalue, slength:INTEGER) = HEXSTRING

This operation converts a single INTEGER value to a single HEXSTRING value. The resulting string is slength HEX
digits long.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The
rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent

the decimal values 0 .. 15 respectively.

If the conversion yields a value with fewer HEX digits than specified in the second parameter, then the HEXSTRING
shall be padded on the left with zeros.

A test case error shall occur if the intvalue is negative or if the resulting HEXSTRING contains more HEX digits than
specified in the second parameter.

11.3.3.2.5 INT_TO_BIT

INT_TO_BIT(intvalue, slength:INTEGER) = BITSTRING

This operation converts a single INTEGER value to a single BITSTRING value. The resulting string is slength bits long.
For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The
rightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values 0

and 1 respectively.

If the conversion yields a value with fewer bits than specified in the second parameter, then the BITSTRING shall be
padded on the left with zeros.

A test case error shall occur if the intvalue is negative or if the resulting BITSTRING contains more bits than specified in
the second parameter.

11.3.3.3 Other predefined operations

11.3.3.3.1 IS_PRESENT
IS PRESENT(DataObjectReference) = BOOLEAN

As an argument the operation shall take a reference to a field within a data object only if it is defined as being
OPTIONAL or if it has a DEFAULT value. The field may be of any type. The result of applying the operation is the
BOOLEAN value TRUE if and only if the value of the field is present in the actual instance of the data object. Otherwise
the result is FALSE.

The argument of the operation shall have the format as defined in 15.10.2.
EXAMPLE 14 — Use of IS PRESENT:

if received PDU is of ASN.1 type
SEQUENCE { field 1 INTEGER OPTIONAL,
field 2 SEQUENCE OF INTEGER }
then, the operation call
IS PRESENT(received PDU. field 1)
evaluates to TRUE if field 1 in the actual instance of received PDU is present.

11.3.3.3.2 IS_CHOSEN

IS_CHOSEN(DataObjectReference) = BOOLEAN

The operation returns the BOOLEAN value TRUE if and only if the data object reference specifies the variant of the
CHOICE type that is actually selected for a given data object. Otherwise the result is FALSE. The operation shall not be

applied to data objects or fields of data objects other than those of ASN.1 type CHOICE. The argument of the operation
shall have the format as defined in 15.10.2.

ITU-T Rec. X.292 (05/2002) 35

EXAMPLE 15— Use of IS_CHOSEN:

if received PDU is of ASN.1 type
CHOICE { pl PDU typel,
p2 PDU type2,
p3 PDU type }
then, the operation call
IS_CHOSEN(received_PDU.p2)
returns TRUE if the actual instance of received PDU carries a PDU of the type PDU_type2.

11.3.3.3.3 NUMBER_OF_ELEMENTS
NUMBER _OF ELEMENTS(Value) = INTEGER

The operation returns the actual number of elements of a value that is of type ASN.1 SEQUENCE OF or SET OF. Its
result is fully compatible with that of the equivalent ASN.1 SIZE constraint applied to objects of these types. The
operation shall not be applied to values other than of ASN.1 type SEQUENCE OF or SET OF. The argument of the
operation shall have the format as defined in 15.10.2.

EXAMPLE 16 — Use of NUMBER_OF_ELEMENTS:

if received PDU is of ASN.1 type
SEQUENCE { field 1 INTEGER OPTIONAL,
field 2 SEQUENCE OF INTEGER }
then, the operation call
NUMBER_OF_ELEMENTS(received_PDU.field_2)
returns the number of elements of the SEQUENCE OF INTEGER within the actual data object received PDU.
Also, NUMBER OF ELEMENTS ({3, 0, 5}) returns 3.

11.3.3.3.4 LENGTH_OF
LENGTH_OF(Value) = INTEGER

The operation returns the actual length of a value that is of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString or of ASN.1 type BIT STRING or OCTET STRING. The units of length for each string type are defined
in Table 5in 11.18.2.

NOTE — These units of length are compatible with those used in ASN.1 SIZE constraints for objects of ASN.1 types, but not for

literal values which in this context in TTCN are considered to be of the corresponding TTCN type. Thus, an hstring such as 'F3'H
which could in ASN.1 be of type BIT STRING or OCTET STRING, will be interpreted as the TTCN type HEXSTRING.

The argument of the operation shall have the format as defined in 15.10.2.

The operation shall not be applied to values other than of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString, or of ASN.1 type BIT STRING or OCTET STRING.

EXAMPLE 17— Use of LENGTH_OF:

If S is of type BITSTRING or ASN.1 type BIT STRING and ='010'B then LENGTH_OF(S) returns 3
If S is of type HEXSTRING and ='F3'H then LENGTH_OF(S) returns 2

If S is of type OCTETSTRING and ='F2'0O then LENGTH_OF(S) returns 1

If S is of a CharacterString type and ="EXAMPLE" then LENGTH_OF(S) returns 7

If S is of ASN.1 type BIT STRING and ='F3'H then LENGTH_OF(S) returns 8

If S is of ASN.1 type OCTET STRING and ='F3'H then LENGTH_OF(S) returns 1

If S is of ASN.1 type OCTET STRING and ='01010011'B then LENGTH_OF(S) returns 1

Also, LENGTH_OF (INT_TO_HEX (26, 4)) returns 4

LENGTH_OF ('F3'H) returns 2

and, LENGTH_OF ("Length _of Example") returns 17

11.3.4 Test Suite Operation definitions and descriptions

11.3.4.1 Introduction

The ATS specifier may define operations specific to a test suite. To define a new operation, the following shall be
provided:

a) aname for the operation;
b) alist of the input parameters and their types.

This is a list of the formal parameter names and types. A colon and then the name of the parameter's type
shall follow each parameter name.

36 ITU-T Rec. X.292 (05/2002)

c)

d)

e)

When more than one parameter of the same type is used, the parameters may be specified as a parameter
sub-list. When a parameter sub-list is used, a comma shall separate the parameter names from each other.
A colon and then the name of the type of the parameter shall follow the final parameter in the list.

When more than one parameter and type pair (or parameter list and type pair) is used, semicolons shall
separate the pairs from each other.

Only predefined types and data types as defined in the Test Suite Type definitions, ASP type definitions
or PDU type definitions may be used as types for formal parameters. PCO types shall not be used as
formal parameter types. All parameters shall be passed by value, meaning that in evaluating a call of a test
suite operation, the actual parameters are assigned to the corresponding formal parameters, as if in an
assignment statement.

EXAMPLE 18 — Parameter lists:

The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one
BOOLEAN parameter:

(A:INTEGER; B:INTEGER; C:BOOLEAN)

(A, B:INTEGER; C:BOOLEAN)

the type of the result,

which shall follow the rules for the parameter types in b);
a definition of the operation,

which shall consist of one of the following:

1) a procedural definition, which when evaluated results in the evaluation of a RETURNVALUE
statement to provide the result of the operation, including explanatory comments embedded within
the procedural definition at appropriate places as text delimited by "/*" and "*/"; or

2) a description of the operation in text, possibly including a reference to a publicly available
specification of the algorithm to be applied when the operation is invoked, plus at least one example
showing an invocation and corresponding result; the explanation should begin by stating the
operation name, followed by a parenthesized list containing the parameter names of the operation;
this provides a "pattern" invocation for the operation;

optionally, further comment describing the operation, provided either in the Comments part of the table
header or in the Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations, but a
textual explanation is allowed as an alternative for backwards compatibility.

In the case of a procedural definition, this information shall be provided in the format shown in the following proforma:

Test Suite Operation Procedural Definition
Operation Name : TS Procld&ParlList
Group ¢ [TS ProcGroupReference]
Result Type : Type
Comments s [FreeText]
Definition
TS_OpProcDef
Detailed Comments: /FreeText]

Proforma 11: Test Suite Operation Procedural Definition

ITU-T Rec. X.292 (05/2002)

37

In the case of a textual description, this information shall be provided in the following proforma:

Test Suite Operation Description

Operation Name : TS Opld&ParlList
Group : [TS _OpGroupReference]
Result Type : Type
Comments s [FreeText]
Description
FreeText

Detailed Comments: [FreeText]

Proforma 12: Test Suite Operation Description

11.3.4.2 Parameters

A test suite operation may be compared to a function in an ordinary programming language. Values shall only be passed
into the operation by formal parameters. Each formal parameter shall be declared to be a Predefined Type, a Test Suite
Type Identifier, ASP Type Identifier, PDU Type Identifier, CM Type Identifier or the meta-type PDU. Test suite
variables, test case variables, test suite constants, test suite parameters and constraints shall not directly be used within
the procedural definition of a test suite operation, but if required in the test suite operation shall be passed as actual
parameters.

There shall be no side-effects, that is, the parameters to the operation shall not be altered as a result of any call of the
operation. Predefined operations and other test suite operations may be used within the procedural definition of a test
suite operation, without having to be passed as actual parameters.

When a Test Suite Operation is invoked:
a) the number of the actual parameters shall be the same as the number of the formal parameters;
b) each actual parameter shall evaluate to an element of its corresponding formal parameter's type;
c) all variables appearing in the actual parameter list shall be bound; and

d) the actual parameters shall be passed by value.

11.3.4.3 Variables and identifiers

If a procedural definition is used, it may include the declaration of local variables, placed at the head of the procedural
definition, between the keywords VAR and ENDVAR. These variables may be of any type allowed in TTCN. The scope
of these local variables is the procedural definition itself. These declarations declare lists of variable identifiers, each of a
given type and each list may either be declared to be STATIC or not. Variables, both STATIC and those not declared as
STATIC, may be given an optional initial value.

NOTE - It is recommended always to provide STATIC variables with an initial value.

The variables which are not declared to be STATIC are initialized every time the operation is invoked, with the
specified initial value, if any, and thus they shall not convey a value from one evaluation of the test suite operation to
another. Those which are declared to be STATIC are initialized with the specified initial value, if any, the first time the
operation is invoked within a given test component, or within a given test case if test components are not used, and
thereafter they retain their values from one invocation to the next within that test component or test case.

Variables which are not assigned an initial value are considered to be unbound and shall be explicitly bound to a value by
an assignment in the operation body before being used in an expression. If an unbound variable is used in an expression
then it is a test case error.

Each identifier used in the procedural definition of a test suite operation shall be one of the following:
a) locally declared variable name;

b) atype name, used in a variable declaration;

38 ITU-T Rec. X.292 (05/2002)

¢) a formal parameter name declared in a formal parameter list of the operation;

d) atest suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suite
operation. Thus, the values of all other types of identifier are not directly accessible within the procedural definition of a
test suite operation. To access such values they shall be passed as actual parameters to the test suite operation.

11.3.4.4 Procedure statements

In a procedural definition, following the declaration of local variables, if any, there shall be a procedure statement of one
of the following kinds:

a) aReturn statement;

b) an Assignment statement;
c) an If statement;

d) a While loop;

e) a Case statement;

f) a block containing a sequence of procedure statements separated by semicolons and all enclosed by the
keywords BEGIN and END.

Comments may be embedded as text within procedural statements, delimited by "/*" and "*/". Comments shall not be
embedded within other comments.

11.3.4.5 ReturnValue statements

Each evaluation of a test suite operation shall end with the evaluation of a ReturnValue statement, consisting of the
keyword RETURNVALUE followed by an expression. This statement shall return the value of the given expression as
the result of the test suite operation. The type of this result shall match the Result Type specified in the header of the test
suite operation definition table.

11.3.4.6 Assignment statements

The form of Assignment is the same as in the TTCN behaviour descriptions (see 15.10.4), except that it is not enclosed
in parentheses. The DataObjectReference on the left-hand side shall begin with a local variable. If the type of the local
variable is a structured type then the DataObjectReference may access a component of that structure (using a record
reference, array reference or bit reference, as appropriate, see 15.10.2 and 15.10.3).

11.3.4.7 If statements

There are two forms of If statement:
— IF expression THEN procedure-statement ELSE procedure-statement ENDIF;
— IF expression THEN procedure-statement ENDIF.

The expression following the keyword IF shall be evaluated first and shall evaluate to a Boolean value. If this evaluates
to TRUE then the procedure statement following the keyword THEN shall be evaluated. If the expression evaluates to
FALSE then the procedure statement following the keyword ELSE, if any, is evaluated. The use of the keyword ENDIF
to end the If statement allows the procedure statements following THEN and ELSE to be If statements without having to
be enclosed in a block.

11.3.4.8 While loop
A While loop takes the form:
— WHILE expression DO procedure-statement ENDWHILE.

The expression following the keyword WHILE shall be evaluated first and shall evaluate to a Boolean value. If it
evaluates to TRUE then the procedure statement following the keyword DO shall be evaluated and then, if no
ReturnValue statement has been evaluated, the process shall be repeated starting with the evaluation of the expression
again. As soon as the expression evaluates to FALSE the evaluation of the While loop is complete.

ITU-T Rec. X.292 (05/2002) 39

11.3.4.9 Case statement

A Case statement takes one of the two following forms:
— CASE expression OF

integer-label 1: procedure-statement 1;

integer-label 2: procedure-statement 2;

integer-label n: procedure-statement n;
ELSE

procedure-statement
ENDCASE

— CASE expression OF
integer-label 1: procedure-statement 1;

integer-label 2: procedure-statement 2;

integer-label n: procedure-statement n;

ENDCASE

The expression following the keyword CASE shall be evaluated first and shall evaluate to a positive integer which shall
match at most one of the integer labels in the body of the Case statement. The procedure statement following the
matched integer label, if any, shall be evaluated and this completes the evaluation of the Case statement. If, however, the
result of evaluating the expression does not match any of the integer labels, then the procedure statement following the
keyword ELSE, if any, shall be evaluated and this completes the Case statement. If, however, there is no match against
an integer label or an ELSE clause, then the result of the Case statement is a test case error. Thus, the Case statement is
equivalent to a nested sequence of If statements, each testing the expression "(expression) = integer-label i", possibly
followed by an ELSE clause at the innermost level of nesting.

11.3.4.10 Use of Test Suite Operations

A test suite operation together with its actual parameter list may be used wherever an expression is allowed.

Each test suite operation should include appropriate error checking. If an error (e.g., division by zero, an invalid
parameter, a type mismatch, or evaluation of an unbound variable) is detected during evaluation of a test suite operation,

it shall result in a test case error.

EXAMPLE 19 — Definition of the operation SUBSTR:

Test Suite Operation Description

Operation Name : SUBSTR (source:IA5String; start_index, length:INTEGER)
Result Type : TA5String

Description

SUBSTR(source, start_index, length) is the string of length len starting from index start_index of the source string source.

For example: SUBSTR("abcede",3,2) = "cd"
SUBSTR("abcde",1,3) = "abc"

SUBSTR(source, start_index, len) shall only be defined if

start_index >=1,
len >= 0, and
start_index + len <= (length of source) + 1.

Any attempt to evaluate SUBSTR applied to arguments on which it is not defined will result in a test case error.

40 ITU-T Rec. X.292 (05/2002)

EXAMPLE 20 — Definition of the operation NUMBER_OF INVOCATIONS:

Test Suite Operation Procedural Definition

Operation Name : NUMBER OF INVOCATIONS
Result Type : INTEGER

Definition

VAR STATIC COUNT : INTEGER : 0
ENDVAR

BEGIN

COUNT = COUNT + 1,
RETURNVALUE COUNT

END

Detailed Comments: NUMBER OF _INVOCATIONS() gives an integer value which is equal to the number of times this
operation has been invoked in the current test component, or test case if test components are not used.

11.4 Test Suite Parameter Declarations

The purpose of this part of the ATS is to declare constants derived from the PICS and/or PIXIT which are used to
globally parameterize the test suite. These constants are referred to as Test Suite Parameters, and are used as a basis for
Test Case selection and parameterization of Test Cases.

The following information relating to each Test Suite Parameter shall be provided:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its default value, if any,
which may be used to suggest suitable values for some test suite parameters such as timeout durations;
d) PICS/PIXIT entry reference,

which is a reference to an individual PICS/PIXIT proforma entry that will clearly identify where the value
to be used for this Test Suite Parameter will be found.

This information shall be provided in the format shown in the following proforma:

Test Suite Parameter Declarations

Group : [TS_ParGroupReference]
Parameter Name Type Default Value PICS/PIXIT Ref Comments
TS_Parldentifier Type [DefaultValue] FreeText [FreeText]

Detailed Comments: [FreeText]

Proforma 13: Test Suite Parameter Declarations

Collective comments may be used in this table according to Figure 2.

ITU-T Rec. X.292 (05/2002) 41

EXAMPLE 21 — Declaration of Test Suite Parameters:

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question xx
PAR2 INTEGER PICS question yy
PAR3 INTEGER PICS question zz

11.5 Test Case Selection Expression Definitions

The purpose of this part of the ATS is to define selection expressions to be used in the Test Case selection process. This
part of the ATS shall meet the requirements of ITU-T Rec. X.291.

A selection expression is associated with one or more Test Groups and/or Test Cases by placing its identifier in the Test
Case Selection Reference column of the Test Suite Structure and/or Test Case Index. An expression may be referenced
by more than one Test Group and/or Test Case.

Use of a selection expression shall be taken to mean that the Test Case is to be run if the selection expression evaluates to
TRUE.

The following information relating to each Test Case Selection Expression shall be provided:
a) its name;
b) aselection expression,

which shall evaluate to a BOOLEAN value, and which shall use only literal values, Test Suite Parameters,
Test Suite Constants and other selection expression identifiers in its terms.

This information shall be provided in the format shown in the following proforma:

Test Case Selection Expression Definitions

Group : [SelectExprGroupReference]
Expression Name Selection Expression Comments
SelectExprldentifier SelectionExpression [FreeText]

Detailed Comments: [FreeText]

Proforma 14: Test Case Selection Expression Definitions

Collective comments may be used in this table according to Figure 2.

11.6 Test Suite Constant Declarations

The purpose of this part of the ATS is to declare a set of names for values not derived from the PICS or PIXIT that will
be constant throughout the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,

where the type shall be a predefined type, a simple type or an ASN.1 Type (including PDUs, ASPs and
CMs expressed in ASN.1);

42 ITU-T Rec. X.292 (05/2002)

c) its value,

where the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the
value shall evaluate to an element of the type indicated in the type column.

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations

Group : [TS ConstGroupReference]
Constant Name Type Value Comments
TS _Constldentifier Type ConstantExpression [FreeText]

Detailed Comments: [FreeText]

Proforma 15: Test Suite Constant Declarations

Collective comments may be used in this table according to Figure 2.

EXAMPLE 22 — Declaration of Test Suite Constants:

Test Suite Constant Declarations

Constant Name Type Value Comments
TS_CONST1 BOOLEAN TRUE
TS _CONST2 [ASString "A string"

11.7 Test Suite Constant Declarations by Reference

The purpose of this part of the ATS is to declare a set of names for values not derived from the PICS or PIXIT that will
be constant throughout the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,

where the type shall be a predefined type or an ASN.1 type (including PDU, ASP or CM types expressed
in ASN.1) imported by an ASN.1 Type Definition By Reference from the ASN.1 module identified by the
specified module identifier;

c) its value reference,
where the value shall correspond to an element of the type indicated in the type column;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ITU-T Rec. X.680, and
an optional Objectldentifier; the module shall be unique within the domain of interest.

ITU-T Rec. X.292 (05/2002) 43

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations By Reference

Group ¢ [TS ConstGroupReference]
Constant Name Type Value Reference Module Identifier Comments
TS_Constldentifier Type ValueReference ASN1_Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 16: Test Suite Constant Declarations By Reference

Collective comments may be used in this table according to Figure 2.

11.8 TTCN variables

11.8.1 Test Suite Variable Declarations

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their values
throughout the test suite. These variables are referred to as Test Suite Variables.

A Test Suite Variable is used whenever it is necessary to pass information from one Test Case to another. In concurrent
TTCN, Test Suite Variables shall only be used by the MTC.

The following information shall be provided for each variable declaration:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its initial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Suite Variable
at its point of declaration; the terms in the value expression shall not contain: Test Suite Variables or Test
Case Variables; the value shall evaluate to an element of the type indicated in the type column. Specifying
an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Suite Variable Declarations

Group ¢ [TS VarGroupReference]
Variable Name Type Value Comments
TS_Varldentifier Type [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 17: Test Suite Variable Declarations
Collective comments may be used in this table according to Figure 2.
Since it is possible that any particular Test Case may be run independently of the others in the test suite, it is necessary

that the use made of Test Suite Variables does not make assumptions about the ordering of the Test Case execution.

44 ITU-T Rec. X.292 (05/2002)

EXAMPLE 23 — Declaration of Test Suite Variables:

Test Suite Variable Declarations

Variable Name Type Value Comments

state IASString "idle" Used to indicate the final
stable state of the previous
Test Case, if any, in order to
help determine which
preamble to use.

11.8.2 Binding of Test Suite Variables
Initially Test Suite Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) at the point of declaration if an initial value is specified,;

b) when the Test Suite Variable appears on the left-hand side of an assignment statement (see 15.10.4);

Once a Test Suite Variable has been bound to a value, the Test Suite Variable will retain that value until either it is
bound to a different value, or execution of the test suite terminates — whichever occurs first.

If an unbound Test Suite Variable is used in the right-hand side of an assignment, then it is a test case error.

11.8.3 Test Case Variable Declarations

A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is defined to
be local to the Test Case.

In concurrent TTCN, each test component, including the MTC, receives a fresh copy of all Test Case Variables when it
is created. These variables are referred to as Test Case Variables.

The following information shall be provided for each variable declaration:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) itsinitial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Case Variable
at its point of declaration; the terms in the value expression shall not contain: Test Suite Variables or Test
Case Variables; the value shall evaluate to an element of the type indicated in the type column. Specifying
an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Case Variable Declarations

Group : [TC VarGroupReference]
Variable Name Type Value Comments
TC_Varldentifier Type [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 18: Test Case Variable Declarations

ITU-T Rec. X.292 (05/2002) 45

Collective comments may be used in this table according to Figure 2.

NOTE — Caution should be exercised when using Test Case Variables as local variables within a Test Step, in order to avoid usage
conflicts with other Test Steps or Test Case Variables. A test suite specifier may avoid such problems by adopting a naming
convention which will result in all such variables being uniquely named within a test suite.

11.8.4 Binding of Test Case Variables

Initially Test Case Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) at the point of declaration if an initial value is specified,;

b) when the Test Case appears on the left-hand side of an assignment statement (see 15.10.4).

Once a Test Case Variable has been bound to a value, the Test Case Variable will retain that value until either it is bound
to a different value, or execution of the Test Case terminates — whichever occurs first. At termination of the Test Case,
the Test Case Variable becomes re-bound to its initial value, if one is specified, otherwise it becomes unbound.

If an unbound Test Case Variable is used in the right-hand side of an assignment, then it is a test case error.

11.9 PCO Type Declaration
This part of the ATS lists the set of service boundaries where the PCOs (Points of Control and Observation) are located.

The following information shall be provided for each PCO types used in the test suite:
a) its name,
which is used to identify the service boundary where the PCO is located;
b) itsrole,

which shall be declared either as UT or LT in the Role column or by descriptive text in the Comment
column; the predefined identifier UT indicates that the PCO is an upper tester PCO and LT specifies a
lower tester PCO.

NOTE - In a test suite using concurrency, the role of a PCO type may need to be described in terms of the nature of the test
component and underlying service provider to be coupled by PCOs of this type.

This information shall be provided in the format shown in the following proforma:

PCO Type Declarations

Group : [PCO_GroupReference]

PCO Type Role Comments

PCO_Typeldentifier [PCO_Role] [FreeText]

Detailed Comments: [FreeText]

Proforma 19: PCO Type Declarations

Collective comments may be used in this table according to Figure 2.

11.10 PCO declarations

This part of the ATS lists the set of points of control and observation (PCOs) to be used in the test suite and explains
where in the testing environment these PCOs exist.

46 ITU-T Rec. X.292 (05/2002)

NOTE 1 — The number of PCOs is, where applicable, as defined in ITU-T Recs X.290 and X.291 for the test method(s) identified
in the Test Suite Structure table. In TTCN, PCOs may also be used in ways not described in ITU-T Rec. X.291, for example to
communicate with parts of the test system or test environment not defined in the test suite (e.g., to manipulate frequencies or
simulate handovers for radio protocol testing).

NOTE 2 — TTCN behaviour statements specified for execution at the UT PCO should not place requirements beyond those
specified by ITU-T Rec. X.291.

In TTCN the PCO model is based on two First In First Out (FIFO) queues:
— one output queue for sending ASPs and/or PDUs;

— one input queue for receiving ASPs and/or PDUs.

The output queue is assumed to be located within the underlying service-provider or in the case of the UT, within
the IUT.

A SEND event at a PCO is successful when the event is passed from the LT to the service-provider, or when the event is
passed from the UT to the TUT.

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed by the
tester in the same order they were received, and without loss of any events.

NOTE 3 — The queue model is only an abstract model and is not intended to imply a specific implementation.
The following information shall be provided for each PCO used in the test suite:
a) its name,
which is used in the behaviour descriptions to specify where particular events occur;
b) its type,

as declared in the PCO Type Declaration tables, and which may if necessary be followed by information
concerned with multiplexing requirements to be met immediately below this PCO but above the service
boundary; if the activity at two or more PCOs is to be multiplexed together by the service provider (e.g.,
onto a single connection end-point) then, in the PCO declarations for these PCOs, the PCO type shall be
followed by the same MuxValue (i.e., a test suite parameter) given in parentheses; the precise meaning of
this test suite parameter shall be specified in the relevant PIXIT;

NOTE 4 — See also F.11 for further explanation of MuxValue.

EXAMPLE 24 — Use of MuxValue:

LT1 LT2

A A
PCO 1 PCO 2

N-SAP (MuxA) N-SAP(MuxA)
\ 4 A\ 4

N-ASP
N-Service plus Multiplexing Service Provider T

X.292_F11.10

c) itsrole,

which may be omitted if it is specified in the PCO type declaration tables for each of the PCO types used;
if the role is not specified in a PCO type declaration table then it shall be declared either as UT or LT in
the Role column or by descriptive text in the Comment column; the predefined identifier UT indicates that
the PCO is an upper tester PCO and LT specifies a lower tester PCO; if the Role column is used then its
contents shall be consistent with the role, if any, given in the PCO type declaration tables.

NOTE 5 — In a test suite using concurrency, the role of a PCO may need to be described in terms of the nature of
the test component and underlying service provider to be coupled by this PCO.

ITU-T Rec. X.292 (05/2002) 47

This information shall be provided in the format shown in the following proforma:

PCO Declarations
Group : [PCO_GroupReference]
PCO Name Type Role Comments
i PCO_Typeldentifier
PCO_Identifier [(MuxValue)] [PCO_Role] [FreeText]
Detailed Comments: [FreeText]

Proforma 20: PCO Declarations

Collective comments may be used in this table according to Figure 2.

EXAMPLE 25 — Declaration of PCOs:

PCO Declarations
PCO Name PCO Type Role Comments
TSAP LT Transport service access point
at the lower tester.
U SSAP UT Session service access point
at the upper tester.

Points of control and observation are usually just SAPs, but in general can be any appropriate points at which the test
events can be controlled and observed. However, it is possible to define a PCO to correspond to a set of SAPs, provided
all the SAPs (Service Access Point) comprising that PCO are:

— at the same location (i.e., in the LT or in the UT);

— SAPs of the same service.

When a PCO corresponds to several SAPs the appropriate address is used to identify the individual SAP. PCOs are
normally associated with one service access point of the (N — 1) service-provider or the IUT.

NOTE 6 — A PCO may not be related to a SAP at all. This could be the case when a layer is composed of sublayers (e.g., in the
Application layer, or in the lower layers, where a subnetwork point of attachment is not a SAP).

11.11 CP declarations

CPs are used to facilitate the exchange of CMs between test components. CPs are modelled as two queues, one for each
direction of communication (see Figure 5). In this respect they are similar to PCOs (see Figure 3). A difference between
CPs and PCOs is that CPs connect two test components, while PCOs connect a test component with the external
environment, usually either the IUT or a service provider.

X.292_F05

Figure 5/X.292 — Model of a CP

48 ITU-T Rec. X.292 (05/2002)

CPs can be realized either by local communication or by communication that spans physical boundaries.

Communication via CPs is asynchronous, that is, communication is achieved by one test component sending a CM to its
partner, and its partner receiving the CM when ready. The test component that initiated the CM, however, proceeds with
execution immediately after sending the CM. If it is required that the sending test component suspends its activity until
the CM has been received, a test suite specifier should use a handshake mechanism. An example of how such a
handshake can be specified is shown in Figure 6.

A_CPIREADY A_CP?READY
A_CP? 0K A_CP! OK

A
A4

X.292_F06

Figure 6/X.292 — Example of a simple handshake

All CPs shall be declared. The name of each CP shall be unique within the test suite.

This information shall be provided in the format shown in the following proforma:

CP Declarations

Group : [CP_GroupReference]
CP Name Comments
CP_lIdentifier [FreeText]

Detailed Comments: [Freelext]

Proforma 21: CP Declarations

Collective comments may be used in this table according to Figure 2.

11.12 Timer declarations

A test suite may make use of timers. The following information shall be provided for each timer:
a) the timer name;
b) the optional timer duration,

where the default duration of the timer shall be an expression which may be omitted if the value cannot be
established prior to execution of the test suite; the terms in the value expression shall not contain: Test
Suite Variables or Test Case Variables; the timer duration shall evaluate to a positive INTEGER value;

c) the time unit,
where the time unit shall be one of the following:
1) ps (i.e., picosecond);
2) ns (i.e., nanosecond);

3) ps (i.e, microsecond);

ITU-T Rec. X.292 (05/2002) 49

4) ms (i.e., millisecond);
5) s (i.e, second);
6) min (i.e., minute).

Different timers may use different units within the same test suite. If a PICS or PIXIT entry exists, the timer declaration
shall specify the same units included in the PICS/PIXIT entry.

This information shall be provided in the format shown in the following proforma:

Timer Declarations

Group ¢ [TimerGroupReference]
Timer Name Duration Unit Comments
Timerldentifier [ConstantExpression] TimeUnit [FreeText]

Detailed Comments: [FreeText]

Proforma 22: Timer Declarations

Collective comments may be used in this table according to Figure 2.

Each Test Component gets a fresh copy of all timers when it starts executing its behaviour.

EXAMPLE 26 — Declaration of timers:

Timer Declarations

Timer Name Duration Unit Comments
wait 15 S General-purpose wait.
no_response A min Used to wait for IUT to

connect or react to connection
establishment, longer duration
than general-purpose wait.
Gets value from PIXIT.

delay time ms Duration to be established
during execution of the test suite.

11.13 Test components and configuration declarations
11.13.1 Test components

11.13.1.1 Main Test Component

The Main Test Component is intended to fulfil the role of the Lower Tester Control Function (LTCF), as defined
in 11.5.2/X.291. Its behaviour is described in the first tree of the test case behaviour description table and all trees
attached to it. It is responsible for:

a) creating all PTCs required within the current configuration and monitoring their termination;
b) managing CPs that exist between itself and PTCs;

¢) computation and assignment of the test verdict using its knowledge of the combined effect of the
preliminary results from the PTCs.

50 ITU-T Rec. X.292 (05/2002)

In addition a Main Test Component may manage PCO(s).

Only the Main Test Component shall directly use Test Suite Variables. Variables can be passed to PTCs in the CREATE
construct. Parameters are passed by value to prevent side effects.

11.13.1.2 Parallel Test Components

Parallel Test Components are intended to fulfil the role of the Lower Testers or Upper Testers. Their behaviour is
described in the tree which is referenced in a CREATE statement in the MTC, and all trees attached to it. A PTC assigns
preliminary results but does not assign test verdicts.

A PTC shall not:
a) use Test Suite Variables;

b) create other test components.

11.13.1.3 Test Component Declarations

If concurrent TTCN is used, this section of the ATS shall declare all individual test components that are used. These test
components are later referenced from the Test Component Configurations declarations which define specific
configurations.

The following information shall be provided for each test component:
a) its name,
which shall be unique throughout the test suite;
b) itsrole,

which shall indicate whether the test component is the Main Test Component or a Parallel Test
Component, and where at least one test component shall be a Main Test Component, and at least one test
component shall be a Parallel Test Component

c¢) number of PCOs used,
where zero or more PCOs may be associated with the test component;
d) number of CPs used,

where zero or more CPs may be associated with the test component.

This information shall be provided in the format shown in the following proforma:

Test Component Declarations

Group ¢ [TcompGroupReference]
Component Name Component Role Nr of PCOs Nr of CPs Comments
Tcompldentifier TCompRole Num_PCOs Num_CPs [FreeText]

Detailed Comments: [FreeText]

Proforma 23: Test Component Declarations

Collective comments may be used in this table according to Figure 2.

EXAMPLE 27 — Declaration of test components:

This Test Component Declarations table can be used in conjunction with the Test Component Configurations
CONFIG1 and CONFIQG2, illustrated in Figures 3 and 4, and declared in Examples 28 and 29.

ITU-T Rec. X.292 (05/2002) 51

Test Component Declarations

Component Name Component Role Nr of PCOs Nr of CPs Comments

MTC1 MTC 0 3 Used in Config 1

MTC2 MTC 1 2 Used in Config 2, with a PCO
TC1 PTC 1 2 Used in Config 1
TC2 PTC 1 3 Used in Config 1 and Config 2
TC3 PTC 1 2 Used in Config 1
TC4 PTC 0 3 Used in Config 2
TC5 PTC 1 0 Used in Config 2, without a CP

11.13.2 Test component configuration declarations

Test components are used to build a logical architecture, or configuration, that facilitates concurrent execution of TTCN
dynamic behaviour trees. Each Test Component configuration that is used in an Abstract Test Case using concurrency

shall be declared.

The following information shall be provided for each Test Component Configuration:

a) its name,

which shall be unique within the test suite, and shall be referenced from a test case dynamic behaviour
table header;

b) alist of the test components belonging to the test configuration,

where the following information shall be provided for each test component:

1)

2)

3)

its name,

which shall have been declared as a test component name. Exactly one of the test components in the
configuration shall be declared as an MTC.

PCOs used,

where a list of zero or more declared PCOs is associated with each test component. The number of
PCOs in the list shall be the same as the number of PCOs declared in the relevant Test Components
Declaration. No PCO shall be used more than once in a single configuration (i.e., test components in
one configuration shall not share PCOs).

CPs used,

where a list of zero or more declared CPs is associated with each test component. The number of CPs
in the list for a PTC shall be the same as the number of CPs declared in the relevant Test
Components Declaration. The number of CPs in the list of an MTC shall not exceed the number of
CPs declared. No CP name shall appear more than once in each CP list. Each CP name in the list for
one test component shall appear in the list for exactly one other test component in the configuration.
In other words, each CP name used in the configuration will appear exactly twice in the configuration
table. These CP pairs are used to specify the connectivity of test components in the configuration.

52 ITU-T Rec. X.292 (05/2002)

This information shall be provided in the format shown in the following proforma:

Test Component Configuration Declaration

Configuration Name

: TCompConfigldentifier

Group : [TCompConfigGroupReference]
Comments ¢ [FreeText]
Components Used PCOs Used CPs Used Comments
Tcompldentifier [PCO_List] [CP_List] [FreeText]
Detailed Comments: [FreeText]
Proforma 24: Test Component Configuration Declaration
Collective comments may be used in this table according to Figure 2.
EXAMPLE 28 — Test Component Configuration declaration corresponding to Figure 3:
Test Component Configuration Declaration
Configuration Name : CONFIG 1
Components Used PCOs Used CPs Used
MTC1 MCP1, MCP2, MCP3
TC1 PCO_A MCPI, CP1
TC2 PCO_B MCP2, CP1, CP2
TC3 PCO_C MCP3, CP2
EXAMPLE 29 — Test Component Configuration declaration corresponding to Figure 4:
Test Component Configuration Declaration
Configuration Name : CONFIG 2
Components Used PCOs Used CPs Used
MTC2 PCO D MCP2, MCP3
TC2 PCO B MCP2, CP1, CP2
TC4 MCP3, CP1, CP2
TC5 PCO E

ITU-T Rec.

X.292 (05/2002)

53

11.14

ASP type definitions

11.14.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or received at the
declared PCOs. ASP type definitions may include ASN.1 type definitions, if appropriate.

11.14.2 ASP type definitions using tables

The following information shall be supplied for each ASP:

54

a)

b)

its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

the PCO type associated with the ASP,

if only a single PCO is defined within a test suite, specifying the PCO type in an ASP type definition is
optional;

a list of the parameters associated with the ASP,

where the following information shall be supplied for each parameter:

1)

2)

its name,
where either:

— the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses; or

— the macro symbol (<-) indicating that the entry in the type column identifies a set of parameters
that is to be inserted directly in the list of ASP parameters; the macro symbol shall be used only
with Structured Types defined in the Structured Types definitions;

its type and an optional attribute,

where parameters may be of a type of arbitrarily complex structure, including being specified as a
Test Suite Type (either predefined, Simple Type, Structured Type or ASN.1 type); if a parameter is
to be structured as a PDU, then its type may be stated either:

— as a PDU identifier to indicate that in the constraint for the ASP this parameter may be chained
to a PDU constraint of a specific PDU type; or

— as PDU to indicate that in the constraint for the ASP this parameter may be chained to a PDU
constraint of any PDU type; and where the optional attribute is Length;

in which case the specification may restrict the parameter to a particular length or a range according
to 11.18. The length values shall be interpreted according to Table 5 in 11.18. The boundaries shall
be specified in terms of non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants
or the keyword INFINITY.

The length specifications defined for the ASP parameter type in the Test Suite Type definitions shall
not conflict with the length specifications in the ASP type definition, i.e., the set of strings defined by
a length restriction in an ASP definition shall be a true subset of the set of strings defined by the Test
Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there
is no upper limit of length.

NOTE - It is usually unnecessary to restrict the length of ASP parameters, but in some cases this may be
necessary in order to effectively restrict the length of a corresponding PDU field in an underlying
protocol.

The parameters of ASP type definitions are considered to be optional, i.e., in instances of these types
whole parameters may not be present.

ITU-T Rec. X.292 (05/2002)

This information shall be provided in the format shown in the following proforma:

ASP Type Definition
ASP Name : ASP _ld&Fullld
Group : [ASP_GroupReference]
PCO Type ¢ [PCO_Typeldentifier]
Comments s [FreeText]
Parameter Name Parameter Type Comments

ASP_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 25: ASP Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.

EXAMPLE 30— T_CONNECTrequest Abstract Service Primitive:

The figure below shows an example from the Transport Service [ISO/IEC 8072]. This could be part of the set of ASPs
used to describe the behaviour of an abstract UT in a DS test suite for the Class 0 Transport. CDA, CGA and QoS are
Test Suite Types [ISO/IEC 8073].

ASP Type Definition

ASP Name : CONreq (T_CONNECTrequest)
PCO Type : TSAP
Comments :

Parameter Used Parameter Type Comments
Cda (Called Address) CDA ... of upper tester
Cga (Calling Address) CGA ... of lower tester
QoS (Quality of Service) QoS should ensure class 0 is used
Detailed Comments: ASP to be sent at Transport Service access point.

11.14.3 Use of structured types within ASP type definitions

There are two possible relationships between a Structured Type and ASP definitions which refer to it, as follows:

a) if a parameter name is given in the definition, then the Structured Type referenced is a substructure. This
allows definition of ASPs containing a multi-level substructure of parameters;

b) if the macro symbol (<-) is used instead of a parameter name then this is equivalent to a macro

expansion; the entry in the ASP type definition expands directly to a list of parameters without
introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simple Types, i.e., only
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

ITU-T Rec. X.292 (05/2002) 55

11.14.4 ASP type definitions using ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the
ASN.1 syntax as defined in ITU-T Rec. X.680. The following information shall be supplied for each ASN.1 ASP:

a) its name,
where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

b) the PCO type associated with the ASP,
if only a single PCO is defined within a test suite, specifying the PCO type in an ASP type definition is
optional;

c) the ASN.1 ASP type definition,
which shall follow the syntax defined in ITU-T Rec. X.680. For identifiers within that definition the
hyphen symbol (-) shall not be used. The underscore symbol (_) may be used instead. The ASP
identifier in the table header is the name of the first type defined in the table body.
Types referred to from the ASP definition shall be defined in other ASN.1 type definition tables, be
defined by reference in the ASN.1 type reference table or be defined locally in the same table, following
the first type definition. Locally defined types shall not be used in other parts of the test suite.
ASN.1 comments can be used within the table body. The comments column shall not be present in this
table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever

comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

This information shall be provided in the following proforma:

ASN.1 ASP Type Definition

Group

ASP Name

PCO Type
Comments

: ASP Id&Fullld

: [ASNIASP GroupReference]
2 [PCO_Typeldentifier]

s [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 26: ASN.1 ASP Type Definition

11.14.5 ASN.1 ASP type definitions by reference

ASPs can be specified by a precise reference to an ASN.1 ASP defined in an OSI standard or by referencing an ASN.1
type defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each ASP:

56

a)

b)

its name,
where this name may be used throughout the entire test suite;
the PCO type associated with the ASP,

if only a single PCO is defined within a test suite, specifying the PCO type in an ASP type definition is
optional;

ITU-T Rec. X.292 (05/2002)

c) the type reference,
which shall follow the identifier rules stated in ITU-T Rec. X.680;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ITU-T Rec. X.680 and
an optional Objectldentifier.

This information shall be provided in the following proforma:

ASN.1 ASP Type Definitions By Reference

Group : [ASNIASP GroupReference]
ASP Name PCO Type Type Reference Module Identifier Comments
ASP_Id&Fullld [PCO_Typeldentifier] TypeReference Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 27: ASN.1 ASP Type Definitions By Reference

Collective comments may be used in this table according to Figure 2.

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use imported
definitions in TTCN it is necessary to change the hyphens to underscore (see 11.2.3.5).

11.15 PDU type definitions

11.15.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of the PDUs that may be sent or received
either directly or embedded in ASPs at the declared PCOs. PDU type definitions may include ASN.1 type definitions, if
appropriate. PDU definitions define the set of PDUs exchanged with the IUT which are syntactically valid with respect
to the ATS but not necessarily valid with respect to the protocol specification.

It is required to declare all fields of the PDUs that are defined in the relevant protocol standard, either explicitly or
implicitly by referring to encoding rules (ASN.1 encoding rules, if applicable).

The encoding of PDU fields shall follow that as defined in the relevant protocol specification unless encoding
information is included in the test suite.

11.15.2 PDU type definitions using tables

The definition of PDUs is similar to that of ASPs. The following information shall be supplied for each PDU:
a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

b) the PCO type associated with the PDU,

if a PDU is sent or received only embedded in ASPs within the whole test suite, specifying the PCO type
is optional; if only a single PCO is defined within a test suite, specifying the PCO type in a PDU type
definition is optional;

ITU-T Rec. X.292 (05/2002) 57

58

d)

the encoding rules to be used for PDUs of this type,

in order to specify explicit encodings for entire PDUs, which override the default global encoding rules
for the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding
Definitions table (e.g., to change from BER to DER). If this entry is not used, then the default global
encoding rules apply. See 11.16.4;

the Encoding Variations to be used for PDUs of this type,

in order to specify explicit Encoding Variations for entire PDUs, which override the default global
Encoding Variations for the test suite as a whole, this optional entry shall reference an entry in the
relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the
default global Encoding Variations apply. See 11.16.4;

a list of the fields associated with the PDU,
where the following information shall be supplied for each field:
1) its name,

where either:

— the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses; or

— the macro symbol (<-) indicating that the entry in the type column identifies a set of fields that
is to be inserted directly in the list of PDU fields; the macro symbol shall be used only with
Structured Types defined in the Structured Type definitions;

2) its type and an optional attribute,

where fields may be of a type of arbitrarily complex structure, including being specified as a Test
Suite Type (either predefined, Simple Type, Structured Type or ASN.1 type); if a field is to be
structured as a PDU, then its type may be stated either:

— as a PDU identifier to indicate that in the constraint for the PDU this field may be chained to a
PDU constraint of a specific PDU type; or

— as PDU to indicate that in the constraint for the PDU this field may be chained to a PDU
constraint of any PDU type;

and where the optional attribute is Length;

in which case the specification may restrict the field to a particular length or a range according
to 11.18. The length values shall be interpreted according to Table 5 in 11.18. The boundaries shall
be specified in terms of non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants
or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not
conflict with the length specifications in the PDU type definition, i.e., the set of strings defined by a
length restriction in a PDU definition shall be a true subset of the set of strings defined by the Test
Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there
is no upper limit of length.

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to
specify explicit encodings for individual fields of a PDU, which override the encoding rules and
encoding variations applicable to the PDU as a whole; the encoding identifier, if any, shall identify
either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test suite
(e.g., LD(10)); see 11.16.4;

The fields of PDU type definitions are considered to be optional, i.e.,, in instances of these types
whole fields may not be present.

ITU-T Rec. X.292 (05/2002)

This information shall be provided in the format shown in the following proforma:

PDU Type Definition

PDU Name : PDU Id&Fullld
Group : [PDU_GroupReference]
PCO Type : [PCO_Typeldentifier]
Encoding Rule Name : /[EncodingRuleldentifier]
Encoding Variation s [EncVariationCall]
Comments : [FreeText]
Field Name Field Type Field Encoding Comments
PDU_FieldldOrMacro Type&Attributes [PDU_FieldEncodingCall] [FreeText]
Detailed Comments: [FreeText]
Proforma 28: PDU Type Definition
The Field Name and Field Type columns shall either be both present or both omitted.
EXAMPLE 31 — A typical PDU Type Definition:
PDU Type Definition
PDU Name 2 INTC (interrupt Confirm)
PCO Type : NSAP
Field Name Field Type Comments
GFI BITSTRING General Format Identifier
LCGN BITSTRING Logical Channel Group Number
LCN BITSTRING Local Channel Identifier
PTI OCTETSTRING Packet Type Identifier
EXTRA OCTETSTRING To create long INTC packets

11.15.3 Use of Structured Types within PDU definitions

There are two possible relationships between a Structured Type and PDU definitions which refer to it, as follows:

a) if a field name is given in the definition, then the Structured Type referenced is a substructure. This allows
definition of PDUs containing a multi-level substructure of fields;

b) if the macro symbol (<-) is used instead of a field name then this is equivalent to a macro expansion; the
entry in the PDU type definition expands directly to a list of fields without introducing an additional level

of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simple Types i.e., only

Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

ITU-T Rec. X.292 (05/2002)

11.15.4 PDU type definitions using ASN.1

Where more appropriate, PDUs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the
ASN.1 syntax as defined in ITU-T Rec. X.680. The following information shall be supplied for each ASN.1 PDU:

a)

b)

d)

e)

its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

the PCO type associated with the PDU,

if a PDU is always sent or received embedded in ASPs, then specification of the PCO type in the PDU
type definition is optional; if only a single PCO is defined within a test suite, then specification of the
PCO type in the PDU type definition is optional;

the encoding rules to be used for PDUs of this type,

in order to specify explicit encodings for entire PDUs, which override the default global encoding rules
for the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding
Definitions table (e.g., to change from BER to DER). If this entry is not used, then the default global
encoding rules apply. See 11.16.4.

the Encoding Variations to be used for PDUs of this type,

in order to specify explicit Encoding Variations for entire PDUs, which override the default global
Encoding Variations for the test suite as a whole, this optional entry shall reference an entry in the
relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the
default global Encoding Variations apply. See 11.16.4.

the ASN.1 PDU type definition,

which shall follow the syntax defined in ITU-T Rec. X.680, except that there is the additional option of
specifying an Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type
or any ASN.1 Type within the ASN1_Type. This is done by giving a specific encoding identifier followed
by any necessary actual parameter list, in order to specify explicit encodings for individual fields or other
subtypes of a PDU, which override the encoding rules and encoding variations applicable to the PDU as a
whole; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid
Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol
(_) may be used instead. The PDU identifier in the table header is the name of the first type defined in
the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be
defined by reference in the ASN.1 type reference table or be defined locally in the same table, following
the first type definition. Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments may be used within the table body. The comments column shall not be present in this
table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to
facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

This information shall be provided in the following proforma:

ASN.1 PDU Type Definition

PDU Name ¢ PDU Id&Fullld

Group : [ASNI PDU GroupReference]
PCO Type : [PCO_Typeldentifier]
Encoding Rule Name : /[EncodingRuleldentifier]
Encoding Variation s [EncVariationCall]
Comments s [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 29: ASN.1 PDU Type Definition

60 ITU-T Rec. X.292 (05/2002)

EXAMPLE 32 — An FTAM ASN.1 Definition:

ASN.1 PDU Type Definition

--etc. --

}

PDU Name : F_INIT (F_INITIALIZE response)
PCO Type :
Comments
Type Definition
SEQUENCE {

state_result State_result DEFAULT success,
action_result Action_Result DEFAULT success,

protocol_id Protocol Version,

11.15.5 ASN.1 PDU type definitions by reference

PDUs can be specified by a precise reference to an ASN.1 PDU defined in an OSI standard or by referencing an ASN.1
type defined in an ASN.1 module attached to the test suite. ASN.1 identifiers, type references and value references may
contain hyphens. In order to be able to use imported definitions in TTCN it is necessary to change the hyphens to
underscore (see 11.2.3.5).

The following information shall be supplied for each PDU:

a)

b)

d)

e)

its name,

where this name may be used throughout the entire test suite;

the PCO type associated with the PDU,

if a PDU is sent or received only embedded in ASPs within the whole test suite, specifying the PCO type
is optional; if only a single PCO is defined within a test suite, specifying the PCO type in a PDU type
definition is optional;

the type reference,

which shall follow the identifier rules stated in ITU-T Rec. X.680;

the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ITU-T Rec. X.680 and
an optional Objectldentifier;

the encoding rules to be used for PDUs of this type,

in order to specify explicit encodings for entire PDUs, which override the default global encoding rules
for the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding
Definitions table (e.g., to change from BER to DER). If this entry is not used, then the default global
encoding rules apply. See 11.16.4;

the Encoding Variations to be used for PDUs of this type,
in order to specify explicit Encoding Variations for entire PDUs, which override the default global
Encoding Variations for the test suite as a whole, this optional entry shall reference an entry in the

relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the
default global Encoding Variations apply. See 11.16.4.

ITU-T Rec. X.292 (05/2002) 61

This information shall be provided in the following proforma:

ASN.1 PDU Type Definitions By Reference

Group : [ASNI PDU GroupReference]
PDU Name PCO Type Reg‘;‘:lce Ig’i‘l’l‘t’i“f}; Enc Rule Enc Variation | Comments

PDU_Id&Fullld | [PCO_Typeldentifier] TypeReference Moduleldentifier | [EncodingRuleldentifier] [EncVariationCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 30: ASN.1 PDU Type Definitions by Reference

Collective comments may be used in this table according to Figure 2.

11.16 Test Suite Encoding Information

11.16.1 Encoding Definitions

To facilitate specification and testing of the encoding rules of an OSI protocol, if there is any allowed flexibility in the
encoding rules applicable to the protocol, then an encoding definition should be provided. If an encoding definition is
provided, a reference shall be given in the ATS to the specification in which the encoding rules are specified. The
reference may be to the protocol specification itself, or to a separate encoding rules specification. If such a reference
cannot be provided, i.e., the encoding rules of the protocol are not standardized, then the encoding rules shall not be
tested.

The following information shall be provided for each set of encoding rules relevant to the protocol:

a) the Encoding Rule Name, which is a unique identifier to be used throughout the test suite to refer to an
encoding definition;

b) the reference to the relevant standard which defines the encoding rules;

c) a Default Expression, identifying the encoding rules to be used as the default; this Default Expression
shall evaluate to a Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite
Constants in its terms;

d) optionally, further comment, provided in the Comments column, or in the Detailed Comments area of the
table.

If more than one set of encoding rules may be used for a protocol, the names of the encoding rules shall be listed in the
Encoding Rule Name column of the Encoding Definitions tables. The Encoding Rule Name associated with the Default
Expression which evaluates to TRUE shall be chosen as the default set for the test suite. If more than one Default
Expression or no Default Expression in the Encoding Definitions tables evaluates to TRUE, it shall be a test case error. If
no Default Expression is specified, it is equivalent to the value FALSE being specified.

62 ITU-T Rec. X.292 (05/2002)

The information shall be provided in the following proforma:

Encoding Definitions

Group : [EncodingGroupReference]
Encoding Rule Name Reference Default Comments
EncodingRuleldentifier EncodingReference [ConstantExpression] [FreeText]
Detailed Comments: [FreeText]
Proforma 31: Encoding Definitions
Collective comments may be used in this table according to Figure 2.
The encoding rules specified in this proforma apply to PDUs only.
EXAMPLE 33 — Encoding Definitions:
Encoding Definitions
Encoding Rule Name Reference Default Comments
BER ITU-T Rec. X.690 TRUE Basic Encoding Rules
PER ITU-T Rec. X.690 Packed Encoding Rules
DER ITU-T Rec. X.690 Distinguished Encoding Rules

Detailed Comments:

[FreeText]

11.16.2 Encoding variations

Admissible variations of each encoding definition that may be used in the test suite may be provided.

To define such Encoding Variations, the following information shall be provided:

a) an Encoding Rule Name, which is the name of the encoding rules identified in the Encoding Definition
table to which this variation applies;

b) an optional Type List, listing the types to which this Encoding Variation may be applied; an empty list
means that the Encoding Variations may be applied to any PDU field. The types may be any PDU type or
any type may occur within a PDU;

c) alist of Encoding Variations,

where the following information shall be supplied for each Encoding Variation:

1) the Encoding Variation name, which is a unique identifier referring to an allowed encoding definition
for a specific type, as contained in the relevant encoding rules specification;

ITU-T Rec. X.292 (05/2002)

63

2) a Reference, which is used to identify the section in the encoding rules specification which describes
this set of Encoding Variations;

3) a Default Expression, identifying the Encoding Variation to be used as the default; this Default
Expression shall evaluate to a Boolean value and shall use only Literal Values, Test Suite
Parameters, and Test Suite Constants in its terms;

d) optionally, further comment, provided in the Comments part of the table header, the Comments column,
or in the Detailed Comments area of the table.

The Encoding Variation associated with the expression which evaluates to TRUE shall be chosen as the default Encoding
Variation for the given list of types, if any, or otherwise for all types within the test suite. If more than one Default
Expression in the Encoding Variations tables evaluates to TRUE, it shall be a test case error. If no Default Expression is
specified for an Encoding Variation, it is equivalent to the value FALSE being specified. If no Default Expressions are
specified or if all evaluate to FALSE, the first Encoding Variation shall be taken as the default.

Encoding variations shall be provided in the format shown in the following proforma:

Encoding Variations

Group : [EncVariationGroupReference]
Encoding Rule Name : EncodingRuleldentifier
Type List ¢ [TypeList]
Comments s [FreeText]
Encoding Variation Reference Default Comments
EncVariationld&ParList VariationReference [ConstantExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 32: Encoding Variations

EXAMPLE 34 — Encoding Variations:

Encoding Variations

Encoding Rule Name : BER

Type List : Length
Comments : Length is defined to be an INTEGER type.
Encoding Variation Reference Default Comments
SD 6.3.3.1 TRUE
LD(len: INTEGER) 6.3.3.2

Detailed Comments:

64 ITU-T Rec. X.292 (05/2002)

11.16.3 Invalid field encoding definitions

In order to test encoding rules thoroughly, it may be necessary to define illegal variations of the encoding definitions
used by the protocol. Invalid field encoding definitions may be provided for any of the Types used in PDU fields in the
test suite. Once defined, an invalid field encoding definition may be used to override the normal encoding of a specific
PDU Constraint field value of the same Type (see 13.4).

The following information relative to an invalid field encoding definition shall be provided:

a) an Invalid Field Encoding Name, which is a unique identifier to be used throughout the test suite to refer
to this invalid field encoding definition, followed by an optional formal parameter list;

b) an optional Type List, to list the types to which this encoding may be applied; an empty list means that the
encoding definition may be applied to any field of a PDU;

c) an Encoding Operation Definition which contains the definition of how the values are to be encoded,
which shall consist of a procedural definition, in the same form as a procedural definition of a Test Suite
Operation (11.3.4), which when evaluated results in the evaluation of a ReturnValue statement to provide
the result of the operation, including explanatory comments embedded within the procedural definition at
appropriate places as text delimited by "/*" and "*/"; explanatory comments shall include an example
showing an invocation; the result of the Encoding Operation shall be a Bitstring with a defined order of
transmission, being the encoding of the relevant value;

d) optionally, further comment describing the operation, provided either in the Comments part of the table
header or in the Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations.

If a formal parameter list is specified, the values passed to the encoding operation are used to affect the encoding of the
PDU field. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type Identifier or a PDU Type
Identifier. For example, an integer value may be passed to an encoding operation that calculates the length of a PDU
field. The way in which parameters passed to the operation are used shall be explained in the encoding operation
definition.

One proforma shall be used for each Invalid Field Encoding Definition.

Invalid Field Encoding Operation Definitions shall be provided in the following proforma:

Invalid Field Encoding Operation Definition

Group : [InvalidFieldEncodingGroupReference]
Operation Name : InvalidFieldEncodingld&ParList
Result Type s [Typelist]
Comments ¢ [FreeText]
Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 33: Invalid Field Encoding Operation Definition

11.16.4 Application of encoding rules
Encoding rules specified in the test suite are applied to all PDUs sent or received in the Behaviour Part. Encoding rules

may be specified for the whole test suite or for type declarations or constraint declarations, as noted in Table 4. The
places in Table 4 marked v identify the allowed scope of application of each of the kinds of encoding information.

ITU-T Rec. X.292 (05/2002) 65

Table 4/X.292 — Applicability of encoding definitions

Encoding definitions
Encoding rules Encoding variations X
Invalid field
Scope of encodings
Precedence application Default Other Default Other
Lowest Test Suite v v
Type
Declarations
PDUs v v v
Structured
Types v v
or
ASN.1 Types
Simple types
or PDU v v v
fields/elements
Constraint
Declarations
PDUs v v v
Structured
Types or v v
ASN.1 Types
Highest PDU fields/
v v v
elements
Precedence within a row Lowest Highest

The encoding rules shall be applied according to the precedence values of the rows shown in the first column in Table 1,
with "(4)" having the highest priority, and "(1)" having the lowest. Within each row the precedence is from left to right,
with the rightmost entry having the highest precedence. Thus, Constraint field encoding rules have precedence over all
others, while default encoding rules applied at the test suite level may be overridden by any of the other specification
methods. The actual encoding rules to be used for a PDU after all overrides have been applied are referred to as the
applicable encoding rules.

If no encoding information is specified on a structured or ASN.1 Type Constraint, it inherits the encoding rules applied at
the PDU level. Thus, the encoding rules applied to a structured or ASN.1 Type Constraint will vary, based on the PDU in
which it is used. Conversely, if encoding information is specified on a Structured or ASN.1 Type Constraint, it will
override the encoding information of every PDU in which it is used. If such a Structured or ASN.1 Type Constraint is
used in an ASP, the encoding information is ignored.

On RECEIVE events, if no specific encoding rules apply to the incoming PDU, it can be encoded in any variation
allowed by the applicable Encoding Definition (e.g., any form of length encoding allowed by BER).

11.17 CM type definitions

11.17.1 Introduction

CM parameters may be of any type that may be specified in TTCN. Simple CMs may contain no associated parameters
or may contain just one parameter, e.g., a natural number, a preliminary result, or a character string like "suspend" or
"continue". More complex CMs may carry additional information, e.g., a whole PDU, a PDU field, or the value read
from a timer. There are no predefined CMs.

66 ITU-T Rec. X.292 (05/2002)

11.17.2 CM type definitions using tables

CM Types may be declared using TTCN tables. The following information shall be provided for each CM type:
a) its name,
where each name shall be unique within the test suite;
b) alist of parameters associated with the CM,
where the following information shall be provided for each parameter:
1) its name,
which shall be unique within the CM;
2) its type and an optional attribute,
in the same way as for PDU fields.

in which case the specification may restrict the field to a particular length or a range according
to 11.18. The length values shall be interpreted according to Table 5 in 11.18. The boundaries shall
be specified in terms of non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants
or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not
conflict with the length specifications in the PDU type definition, i.e., the set of strings defined by a
length restriction in a PDU definition shall be a true subset of the set of strings defined by the Test
Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there
is no upper limit of length.

All parameters of CMs are optional, that is they may be omitted when the CM is used.

This information shall be provided in the format shown in the following proforma:

CM Type Definition
CM Name : CM Identifier
Group : [CM_GroupReference]
Comments s [FreeText]
Parameter Name Parameter Type Comments
CM_ParldOrMacro Type&Attributes [FreeText]
Detailed Comments: [FreeText]

Proforma 34: CM Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.

11.17.3 CM type definitions using ASN.1

CM Types may be declared using ASN.1. The following information shall be provided for each ASN.1 CM type:
a) its name,

where each name shall be unique within the test suite;

ITU-T Rec. X.292 (05/2002) 67

b) the ASN.1 CM type definition,

which shall follow the syntax defined in ITU-T Rec. X.680. For identifiers within that definition the
hyphen symbol (-) shall not be used. The underscore symbol (_) may be used instead. The PDU
identifier in the table header is the name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be
defined by reference in the ASN.1 type reference table or be defined locally in the same table, following
the first type definition. Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this
table.

Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. ATS specifiers are recommended to

facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with "--".

This information shall be provided in the format shown in the following proforma:

ASN.1 CM Type Definition

CM Name : CM Identifier
Group : [ASNI_CM_GroupReference]
Comments s [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 35: ASN.1 CM Type Definition

11.18 String length specifications

TTCN permits the specification of length restrictions on string types (i.e., BITSTRING, HEXSTRING, OCTETSTRING
and all CharacterString types, plus the ASN.1 types BIT STRING and OCTET STRING) in the following instances:

a) when declaring Test Suite Types as a type restriction;

b) when declaring simple ASP parameters, PDU fields and elements of Structured Types as an attribute of
the parameter, field or element type;

c) when defining ASP/PDU or Structured Type constraints as an attribute of the constraint value.
Length specifications can have the following formats:
a) [Length]
restricting the length of the possible string values of a type to exactly Length;
b) [MinLength TO MaxLength] or [MinLength .. MaxLength]

specifying a minimum and a maximum length for the values of a particular string type.

The length boundaries: Length, MinLength and MaxLength are of different complexity depending on where they are
used. In all cases, these boundaries shall evaluate to non-negative INTEGER values. For the upper bound the keyword
INFINITY may also be used to indicate that there is no upper limit for the length. Where a range length is specified, the
lower of the two values shall be specified on the left.

In the context of constraints, length restrictions can also be specified on values of type SEQUENCE OF or SET OF, thus
limiting the number of their elements.

68 ITU-T Rec. X.292 (05/2002)

Table 5 specifies the units of length for different string types:

Table 5/X.292 — Units of length used in field length specifications

Type Units of length
BITSTRING or BIT STRING Bits
HEXSTRING Hex digits
OCTETSTRING or OCTET STRING Octets
CharacterString Characters
SEQUENCE OF Elements of its base type
SET OF Elements of its base type

Length specifications shall not conflict, i.e., a restriction on a type (set of values) that is already restricted shall specify a
subrange of values of its base type.

EXAMPLE 35 — Length specification:
Assume the following ASN.1 type definitions:
typel ::= OCTETSTRING [0 .. 25]
type2 ::=typel [15 .. 24]

the length restriction on type2 is correct since type2 comprises all OCTETSTRING values having a minimum length
of 15 and a maximum length of 24, which is a true subset of all OCTETSTRINGs of a maximum length of 25. On the
other hand:

type2 ::=typel[15 .. 30]

is invalid since it contains values not included in typel.

11.19 ASP, PDU and CM definitions for SEND events

In ASPs and/or PDUs that are sent from the tester, values for ASP parameters and/or PDU fields that are defined in the
Constraints Part (see clause 12, 13, 14) shall correspond to the parameter or field definition. This means:

a) the value shall be of the type specified for that ASP parameter or PDU field; and
b) each value shall satisfy any relevant length restrictions associated with the type;

c) PDU field values shall be encoded in accordance with applicable encoding rules.

The encoding operations defined in the test suite are performed implicitly as part of the SEND event. Defaults and
overrides are applied, as necessary. Thus, the output of the SEND event is the encoded data to be passed to the relevant
service provider.

11.20 ASP, PDU and CM definitions for RECEIVE events

For ASPs and/or PDUs received by the tester the ASP and/or PDU Type defines the class of incoming ASPs and/or
PDUs that can match an event specification of that type. An incoming ASP or PDU is considered to be of that class if
and only if:

a) the ASP parameter and/or PDU field values are of the type specified in the ASP and/or PDU definition;
and

b) the value satisfies any relevant length restrictions associated with the type;

c¢) PDU field values can be decoded in accordance with applicable encoding rules.
In all other cases an incoming ASP and/or PDU does not match an event specification of that type.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules apply to the
fields of the substructure(s) recursively.

ITU-T Rec. X.292 (05/2002) 69

11.21 Alias definitions

11.21.1 Introduction

In order to enhance the readability of TTCN behaviour descriptions, an Alias may be used to facilitate the renaming of
ASP and/or PDU identifiers in behaviour descriptions. This renaming may be done to highlight the exchange of PDUs
embedded in ASPs.

The following information shall be provided for each Alias:
a) an Alias identifier;
b) its expansion,
which is itself an identifier.

This information shall be provided in the format shown in the following proforma:

Alias Definitions

Group : [AliasGroupReference]

Alias Name Expansion Comments

Aliasldentifier Expansion [FreeText]

Detailed Comments: [FreeText]

Proforma 36: Alias Definitions

Collective comments may be used in this table according to Figure 2.

11.21.2 Expansion of aliases

The following rules shall apply:
a) an Alias is an identifier that shall follow the syntax rules for identifier defined in the TTCN.MP;

b) Aliases are not transitive — if one Alias appears as the expansion of another Alias it shall not be expanded
(i.e., it is a one pass expansion);

c) an Alias shall be used only to replace an ASP identifier or a PDU identifier within a single TTCN
statement in a behaviour tree. It shall be used only in a behaviour description column;

d) the expansion of an Alias shall follow the syntax rules for identifier as defined in the TTCN.MP.

EXAMPLE 36 — Alias definition from a Transport Test Suite:

Alias Definitions
Alias Name Expansion Comments

CR N _DATArequest Alias for the N DATArequest ASP
used to carry a CR_TPDU

DR N_DATArequest Alias for the N_DATArequest ASP
used to carry a DR_TPDU

CC N_DATAindication Alias for the N_DATAindication
ASP used to carry a CC_TPDU

NOTE — Because Aliases are treated as macro expansions, the term Aliasldentifier does not appear in the BNF for TTCN event
lines.

70 ITU-T Rec. X.292 (05/2002)

12 Constraints part

12.1 Introduction

An ATS shall specify the values of the ASP parameters and PDU fields that are to be sent or received by the test system.
The constraints part fulfils that purpose in TTCN.

The dynamic behaviour descriptions (see clause 15) shall reference constraints to construct outgoing ASPs and/or PDUs
in SEND events; and to specify the expected contents of incoming ASPs and/or PDUs in RECEIVE events.

Constraints can be specified in either of the two forms:
a) tabular constraints (see clause 13);

b) ASN.1 constraints (see clause 14).

Actual values or constraints on the values of a CM shall be declared in the same way as PDU constraints are to be
declared.

12.2 General principles

This subclause describes the general principles and defines the mechanisms of how to build constraints for SEND events
and how to match RECEIVE events. These principles are common to both the tabular and ASN.1 forms of constraints.

Constraints are detailed specifications of ASPs and/or PDUs. Normally, each constraint is defined specifically for use
with either SEND events or RECEIVE events. A constraint need not be specified if an ASP or CM has no parameters or
if PDU has no fields. Any given constraint may be used in either context, provided the operational semantic restrictions
defined in Annex B are met.

The constraint specification of an ASP and/or PDU shall have the same structure as that of the type definition of that
ASP or PDU.

If an ASP and/or PDU is substructured, then the constraints for ASPs and/or PDUs of that type shall have the same
tabular structure or a compatible ASN.1 structure (i.e., possibly with some groupings).

Structured Types expanded into an ASP or PDU definition by use of the macro symbol (<-) are not considered to be
substructures. Constraints for such ASPs or PDUs shall either have a completely flat structure (i.e., the elements of an
expanded structure are explicitly listed in the ASP or PDU constraint) or shall reference a corresponding structure
constraint for macro expansion.

Constraints specify ASP parameter and PDU field values using various combinations of literal values, data object
references, expressions, ASN.1 constructed values, special matching mechanisms and references to other constraints.
Constraints applying to the whole of or part of a PDU may also specify encoding rules to override the general encoding
rules being applied in the test suite. Such encoding rules may be specified for the whole Constraint or for a single field of
the Constraint.

Values of all TTCN or ASN.I types can be used in constraints. Expressions used in constraints shall evaluate to a
specific value when the constraint is used for sending or receiving events.

Whichever way the values are obtained, they shall correspond to the parameter or field entries in the ASP or PDU type
definitions. This means

a) the value shall be of the type specified for that parameter or field; and

b) the length shall satisfy any restriction associated with the type.

An expression in a constraint shall contain only Values (including, for example, ConstraintValue&Attributes), Test Suite
Parameters, Test Suite Constants, formal parameters, Component References and Test Suite Operations.

A constraint reference (possibly parameterized) is also allowed as a parameter or field value (static chaining).

Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed as actual parameters. In
the latter case they shall be bound to a value and are not changed by the occurrence of a SEND or a RECEIVE event.

Matching mechanisms are defined in 12.6.2.

ITU-T Rec. X.292 (05/2002) 71

12.3 Parameterization of constraints

Constraints may be parameterized. In such cases the constraint name shall be followed by a formal parameter list
enclosed in parentheses. The formal parameters shall be used to specify ASP parameter or PDU field values in the
constraint.

A colon and the name of the parameter's type shall follow each formal parameter name. If more than one parameter of
the same type is used, the parameter may be specified as a parameter sub-list. When a parameter sub-list is used, a
comma shall separate the parameter names. A colon and the name of the parameter sub-list's type shall follow the final
parameter in the sub-list. When more than one parameter and type pair (or parameter sub-list and type pair) is used,
semicolons shall separate the pairs from each other.

Literal values, Test Suite Parameters, Test Suite Constants, Test Suite Variables, Test Case Variables and PDU or Test
Suite Type constraints may be passed as actual parameters to a constraint in a constraints reference made from a
behaviour description. The parameters shall not be of PCO type or ASP type.

124 Chaining of constraints

Constraints may be chained by referencing a constraint as the value of a parameter or field in another constraint. For
example, the value of the Data parameter of an N-DATAreq (Network Data Request) ASP could be a reference to a
T-CRPDU (Transport Connect Request PDU) PDU constraint, i.e., the T-CRPDU is chained to the N-DATAreq ASP.

Constraints can be chained in one of two ways, either by:

a) static chaining, where an ASP parameter value or PDU field value in a constraint is an explicit reference
to another constraint; or

b) dynamic chaining, where an ASP parameter value or PDU field value in a constraint is a formal parameter
of the constraint. When such a constraint is referenced from a dynamic behaviour, the corresponding
actual parameter to the constraint is a reference to another constraint (see Annex F for examples of static
and dynamic chaining).

Wherever constraints are referenced within constraints declarations, those references shall not be recursive (neither
directly nor indirectly).

Chaining of constraints may only be used if the appropriate declarations have been set up to allow chaining. For
example, if an ASP parameter is to be chained to a PDU constraint, then the ASP parameter shall be declared to be of an
appropriate PDU type or the meta-type PDU. In ASN.1 PDU declarations, the PDU type might well be one defined as a
CHOICE of all valid individual PDU types, whereas in tabular PDU declarations the meta-type PDU would need to be
used to achieve a similar effect. Similarly, if a PDU field is to be chained to a Structure constraint, then the PDU field
shall be declared to be of an appropriate Structured type.

12.5 Constraints for SEND events

Constraints that are referenced for SEND events shall not include wildcards (i.e., AnyValue (?) or AnyOrOmit (*))
unless these are explicitly assigned specific values on the SEND event line in the behaviour description.

In tabular constraints, all ASP parameters and PDU fields are optional and therefore may be omitted using the Omit
symbol, to indicate that the ASP parameter or PDU field is to be absent from the event sent.

In ASN.1 constraints, only ASP parameters and PDU fields declared as OPTIONAL may be omitted. These may be
omitted either by using the Omit symbol or by simply leaving out the relevant ASP parameter or PDU field.

None of the matching mechanisms defined in 12.6.2 except SpecificValue provides a value for an ASP parameter or
PDU field on a SEND event.

In cases where ASN.1 values of type SET or SET OF are used in a constraint, the values of the elements of the set shall
be sent in the order specified by the relevant constraint.

12.6 Constraints for RECEIVE events

12.6.1 Matching values

If a constraint is to be used to construct the values of ASP parameters or PDU fields that a received ASP or PDU shall
match, it shall contain only specific values evaluated as explained in 12.6.3, or special matching mechanisms where it is
not desirable, or possible, to specify specific values. The matching mechanisms specify other ways of matching than
"equal to a specific value".

72 ITU-T Rec. X.292 (05/2002)

An incoming ASP and/or PDU matches a constraint used in a RECEIVE event if, and only if, all the following

conditions are met:

a) all the ASP parameters and/or PDU fields are of the type specified in the ASP and/or PDU definitions;

b) the value, alphabet and length satisfies any restriction associated with the type;

c) the ASP parameter and/or PDU field values correctly match those of the constraint;

d) for PDUs, the correct decoding of the PDU has taken place, taking into account applicable encoding rule
defaults and overrides; if encoding rules other than those specified for the constraint have been used to

encode the received PDU, then that received PDU will not match.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules shall apply to
the fields of the substructure(s) recursively.

NOTE - If a RECEIVE event is qualified by a Boolean expression, then a successful match means that both the incoming ASP

and/or PDU must match the constraint and that the qualifier must evaluate to TRUE.

12.6.2 Matching mechanisms

An overview of the supported matching mechanisms is shown in Table 6, including the special symbols and the scope of
their application. The left hand column of this table lists all the ASN.1 types and TTCN equivalent types to which these
matching mechanisms apply. The matching mechanisms in the horizontal headings are arranged in four groups:

a) specific values;

b) special symbols that can be used instead of values;

c) special symbols that can be used inside values;

d) special symbols which describe attributes of values.

Some of the symbols may be used in combination, as detailed in the following clauses.

The shaded area in Table 6 indicates the mechanisms that apply to both predefined TTCN and ASN.1 types.

Table 6/X.292 — TTCN matching mechanisms

VALUE INSTEAD OF VALUE INSIDE VALUE ATTRIBUTES

z E x5z 3 g £ € B
$lfgiizalyi § i g ¢

& S S < <5 & & &< < & S =

BOOLEAN ° e o o o o °
INTEGER °) . . ° ° ° °
ENUMERATED °) ° .) ° °
BITSTRING)) ° . ° ° ° ° ° °
OCTETSTRING o e o o o o ° ° ° °
HEXSTRING ° ° ° ° ° ° ° ° ° °
CHARSTRINGS °) e o o ° ° ° ° °
SEQUENCE . ° ° ° ° °
SEQUENCE OF . ° . . ° °
SET . ° ° . ° ° °
SET OF)) . ° ° ° ° ° ° ° ° °
ANY . ° ° ° ° ° °
CHOICE . . ° ° ° ° °
OBJECT ID ° e o o o o °

ITU-T Rec. X.292 (05/2002) 73

In a constraint specification, the matching mechanisms may replace values of single ASP parameters or PDU fields or
even the entire contents of an ASP or PDU.

NOTE — When these matching mechanisms are used singly or in combination, many protocol restrictions can be specified in the
constraints, thereby avoiding undesirable computation details in the behaviour part.

12.6.3 Specific value

This is the basic matching mechanism. Specific values in constraints are expressions. Unless otherwise specified, a
constraint ASP parameter or PDU field matches the corresponding incoming ASP parameter or PDU field if, and only if,
the incoming ASP parameter or PDU field has exactly the same value as the value to which the expression in the
constraint evaluates.

Two values of a tabular ASP, PDU or Structured Type, or of ASN.1 SEQUENCE or SEQUENCE OF are considered the
same if each of their parameters fields or elements match and are in the same order. For ASN.1 SET and SET OF types
two values are the same if they have the same number of elements, and each element in one value matches exactly one
element in the other value. The elements in a SET or SET OF type value need not be in the same order to match.

12.6.4 Instead of Value

12.6.4.1 Complement

Complement is an operation for matching that can be used on all values of all types. Complement is denoted by the
keyword COMPLEMENT followed by a list of constraint values. Each constraint value in the list shall be of the type
declared for the ASP parameter or PDU field in which the Complement mechanism is used.

A constraint ASP parameter or PDU field that uses Complement matches the corresponding ASP parameter or PDU field
if, and only if, the incoming ASP parameter or PDU field does not match any of the values listed in the ValueList.

EXAMPLE 37 — Constraints using Complement instead of a value, and with a value list:

Type Constraint
INTEGER COMPLEMENT(5)
INTEGER COMPLEMENT(1, 3, 5)

12.6.4.2 Omit

Omit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or PDU
field is optional.

In ASN.1 constraints, it is also possible to simply leave out an OPTIONAL ASP parameter or PDU field instead of using
OMIT explicitly.

NOTE - In tabular constraints, all parameters, fields and elements are considered to be implicitly optional, and hence may be
omitted using Omit. In ASN.1 constraints, parameters, fields and elements which are not explicitly marked as OPTIONAL in the
type definition are mandatory and cannot be omitted without violating the type definition. If such a parameter, field or element
needs to be omitted from a particular constraint, either another type needs to be defined in which that parameter, field or element is
explicitly marked as OPTIONAL (perhaps by marking everything as OPTIONAL), or an Invalid Field Encoding needs to be
applied to that parameter, field or element, with the effect of omitting it from the encoding.

In tabular constraints Omit shall be denoted by the hyphen symbol (-). In ASN.1 constraints Omit is denoted by OMIT.
An Omit symbol in a constraint is used to indicate that an optional ASP parameter or PDU field shall be absent.
EXAMPLE 38 — Constraint using Omit instead of a value, at top level:

Type Constraint
INTEGER OPTIONAL OMIT

12.6.4.3 AnyValue

AnyValue is a special symbol for matching that can be used on values of all types. In both tabular and ASN.1
constraints, AnyValue is denoted by "?".

A constraint ASP parameter or PDU field that uses AnyValue matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU field evaluates to a single element of the specified type.

EXAMPLE 39 — Constraint using Value in combination with AnyValue:

Type Constraint
SEQUENCE OF SET OF INTEGER { {1,2},

2,

{1,2,?} }

74 ITU-T Rec. X.292 (05/2002)

12.6.4.4 AnyOrOmit
AnyOrOmit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or
PDU field is declared as optional. In both tabular and ASN.1 constraints AnyOrOmit is denoted by "*".
NOTE — The symbol "*" is used for both AnyOrOmit and AnyOrNone. Ambiguity in interpretation is resolved by the
requirements in 12.6.4.4 and 12.6.5.2.

A constraint ASP parameter or PDU field that uses AnyOrOmit matches the corresponding incoming ASP parameter or
PDU field if, and only if, either the incoming ASP parameter or PDU field evaluates to any element of the specified type,
or if the incoming ASP parameter or PDU field is absent.

EXAMPLE 40 — Constraint using Value in combination with AnyOrOmit:

Type Constraint
SEQUENCE OF { idl SET OF INTEGER { 1idl {2, 5},
id2 SET OF INTEGER } id2 * }

12.6.4.5 ValueList

ValueList can be used on values of all types. In both tabular and ASN.1 constraints, ValueLists are denoted by a
parenthesized list of values separated by commas.

A constraint ASP parameter or PDU field that uses a ValueList matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU field value matches any one of the values in the
ValueList. Each value in the ValueList shall be of the type declared for the ASP parameter or PDU field in which the
ValueList mechanism is used.

EXAMPLE 41 — Constraint using ValueList instead of a specific value, for INTEGER type:

Type Constraint
INTEGER (2,4,06)

EXAMPLE 42 — Constraints using ValueList instead of a specific value, for CHOICE type:
Type Constraint

CHOICE { aINTEGER, (a2, b TRUE)
b BOOLEAN }

12.6.4.6 Range

Ranges shall be used only on values of INTEGER type. A range is denoted by two boundary values, separated by ".." or
TO, enclosed by parentheses. A boundary value shall be either:

a) INFINITY or -INFINITY;

b) an expression that evaluates to a specific INTEGER value.

The lower boundary shall be put on the left side of the or TO, the upper boundary at the right side. The lower

boundary shall be less than the upper boundary.

A constraint ASP parameter or PDU field that uses a Range matches the corresponding incoming ASP parameter or PDU
field if, and only if, the incoming ASP parameter or PDU field value is equal to one of the values in the Range.

EXAMPLE 43 — Constraint using Range instead of a value:

Type Constraint

INTEGER (1..6)
(-INFINITY .. 8)
(12 .. INFINITY)

12.6.4.7 SuperSet

SuperSet is an operation for matching that shall be used only on values of SET OF type. SuperSet shall be used only in
ASN.1 constraints. SuperSet is denoted by SUPERSET.

A constraint ASP parameter or PDU field that uses SuperSet matches the corresponding incoming ASP parameter or
PDU field if, and only if, the incoming ASP parameter or PDU ficld contains at least all of the elements defined within
the SuperSet, and may contain more. The argument of SuperSet shall be of the type declared for the ASP parameter or
PDU field in which the SuperSet mechanism is used.

EXAMPLE 44 — Constraint using SuperSet instead of a specific value:

Type Constraint
SET OF INTEGER SUPERSET({1, 2, 3})

ITU-T Rec. X.292 (05/2002) 75

12.6.4.8 SubSet

SubSet is an operation for matching that can be used only on values of SET OF type. SubSet shall be used only in ASN.1
constraints. SubSet is denoted by SUBSET.

A constraint ASP parameter or PDU field that uses SubSet matches the corresponding incoming ASP parameter or PDU
field if, and only if, the incoming ASP parameter or PDU field contains only elements defined within the SubSet, and
may contain less. The argument of SubSet shall be of the type declared for the ASP parameter or PDU field in which the
SubSet mechanism is used.

EXAMPLE 45 — Constraint using SubSet instead of a specific value:

Type Constraint
SET OF INTEGER SUBSET({2, 4, 6, 8, 10})

12.6.5 Inside Values

12.6.5.1 AnyOne

AnyOne is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF.
In both tabular and ASN.1 constraints, AnyOne is denoted by "?".

Inside a string, SEQUENCE OF or SET OF a "?" in place of a single element means that any single element will be
accepted. If the symbol "?" is needed within a CharacterString as a character, it shall be indicated by "\?". If the symbol
"\" is needed within a CharacterString as a character, it shall be indicated by "\".

EXAMPLE 46 — Constraints using AnyOne:

Type Constraint
[AS5String "a?cd"
SEQUENCE OF INTEGER {1,2,7}

NOTE — The "?" in the second example can be interpreted as an AnyValue replacing an INTEGER value, or AnyOne inside a
SEQUENCE OF INTEGER value. Since both interpretations lead to the same set of events that match the constraint, no problem
arises.

12.6.5.2 AnyOrNone

AnyOrNone is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET
OF. In both tabular and ASN.1 constraints, AnyOrNone is denoted by "*".

If a "*" appears at the highest level inside a value of string type, SEQUENCE OF or SET OF, it shall be interpreted as
AnyOrNone.

NOTE - This rule prevents the otherwise possible interpretation of "*" as AnyOrOmit that replaces an element inside the string,
SEQUENCE OF or SET OF.

Inside a string, SEQUENCE OF or SET OF a "*" in place of a single element means that either none, or any number of
consecutive elements will be accepted. The "*" symbol matches the longest sequence of elements possible, according to
the pattern as specified by the symbols surrounding the "*". If the symbol "*" is needed within a CharacterString as a
character, it shall be indicated by "*". If the symbol "\" is needed within a CharacterString as a character, it shall be
indicated by "\".

EXAMPLE 47 — Constraints using AnyOne:

Type Constraint
[AS5String "ab*z"
SEQUENCE OF INTEGER {1,2,*,10 }
SEQUENCE OF [AS5String { "ab*z",
*
llabc" }

12.6.5.3 Permutation

Permutation is an operation for matching that can be used only on values inside a value of SEQUENCE OF type.
Permutation shall be used only in ASN.1 constraints. Permutation is denoted by PERMUTATION.

Permutation in place of a single element means that any series of elements is acceptable provided it contains the same
elements as the value list in the Permutation, though possibly in a different order. If both Permutation and AnyOrNone
are used inside a value, the AnyOrNone shall be evaluated first. Each element listed in Permutation shall be of the type
declared inside the SEQUENCE OF type of the ASP parameter or PDU field.

76 ITU-T Rec. X.292 (05/2002)

EXAMPLE 48 — Constraint using Permutation:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1, 2, 3), 5}

EXAMPLE 49 — Constraints using Permutation in combination with AnyOrNone:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1,2,3), *}
{PERMUTATION (1,2,3,*)}

Note that the first constraint matches with incoming ASPs and/or PDUs that consist of a sequence of INTEGER values,
starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; or 3,2,1 and followed by any number of values of type INTEGER. The
second constraint matches any incoming ASP and/or PDU of type SEQUENCE OF INTEGER, that contains the
elements 1, 2, 3 in any order and in any position. It matches, for example; {5,2,7,1,3} and {9,3,7,2,12,1,17}.

12.6.6 Attributes of values

12.6.6.1 Length

Length is an operation for matching that can be used only as an attribute of the following mechanisms: Complement,
AnyValue, AnyOrOmit, AnyOne, AnyOrNone, Permutation, SuperSet and SubSet. It can be used in conjunction with the
IfPresent attribute.

In both tabular and ASN.1 constraints, length may be specified as an exact value or range in string values and
SEQUENCE OF or SET OF values, according to 11.18. The units of length are to be interpreted according to Table 5.
The boundaries shall be denoted by expressions which resolves to specific non-negative INTEGER values. Alternatively,
the keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of
length.

The length specifications defined for the ASP parameter or PDU field type in the Test Suite Type definitions shall not
conflict with the length specifications in the ASP or PDU constraint, i.e., the set of strings defined by a length restriction
in an ASP or PDU constraint shall be a true subset of the set of strings defined by the ASP or PDU definition.

A constraint ASP parameter or PDU field that uses Length as an attribute of a symbol matches the corresponding
incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches both the
symbol and its associated attribute. The length attribute matches if the length of the incoming ASP parameter or PDU
field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a
single length value, the length attribute matches only if the length of the received ASP parameter or PDU field is exactly
the specified value.

In the case of an omitted parameter, field or element, Length is always considered as matching. Hence, with Omit it is
redundant and with AnyOrOmit and IfPresent it places a restriction on the incoming value, if any.

EXAMPLE 50 — Constraints using Value in combination with Length:

Type Constraint
[ASString "ab*ab" [13]

12.6.6.2 IfPresent

IfPresent is a special symbol for matching that can be used as an attribute of all the matching mechanisms, provided the
type is declared as optional. In both tabular and ASN.1 constraints, IfPresent is denoted by [F PRESENT.

A constraint ASP parameter or PDU field that uses an IfPresent symbol as an attribute of another symbol matches the
corresponding incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches
the symbol, or if the incoming ASP parameter or PDU field is absent.

NOTE — The AnyOrOmit symbol (*) has exactly the same meaning as ? [F PRESENT
EXAMPLE 51 — Constraints using Value in combination with IfPresent:

Type Constraint
IAS5String OPTIONAL "abcdef" [F_ PRESENT

ITU-T Rec. X.292 (05/2002) 77

13 Specification of constraints using tables

13.1 Introduction

This clause describes the specification of tabular constraints on Structured Types, ASPs and PDUs. It describes how
single constraint tables can be used to specify constraints on flat (unstructured) ASPs or PDUs and how structured
constraints can be specified by declaring constraints on Structured Types, defined in the Test Suite Types.

In Annex C additional tables are defined which allow many single constraint declarations in a single table.

13.2 Structured type constraint declarations

If an ASP or PDU is defined using Structured Types, either as macro expansions or substructures, constraints for these
ASPs or PDUs shall be similarly substructured. The following information shall be supplied for each Structured Type

Constraint:

a)

b)

d)

the name of the constraint,

which may be followed by an optional formal parameter list;
the structured type name;

the derivation path (see 13.6);

the Encoding Variations to be used for the Constraint,

in order to specify explicit Encoding Variations for entire Structured Type Constraints, which override the
encoding rules and Encoding Variations applicable to the PDU Constraint in which this Structured Type
Constraint is used, this optional entry shall reference an entry in the relevant Encoding Variations table
(e.g., to change from SD to LD(3)). If this entry is not used, then the encoding rules and Encoding
Variations applicable to the PDU Constraint apply to this Structured Type Constraint as well. See 11.16.4;

a constraint value for each element,
where the following information shall be supplied for each element:
1) its name,

each entry in the element name column shall have been declared in the relevant Structured Type
definition. If any of the original elements is defined as having both a short name and full identifier,
the constraint shall not repeat the full identifier.

If the Structured Type definition refers to another Structured Type by macro expansion (i.e., with "<-
" in place of the element name) then in a corresponding constraint either:

— the individual elements from the Structured Type shall be included directly within the
constraints; or

— the macro symbol (<-) shall be placed in the corresponding position in the Element Name
column of the constraint and the value shall be a reference to a constraint for the Structured
Type referenced from this Structured Type's definition.

Use of Structured Constraints by macro expansion in a constraint shall not be used unless the
corresponding Structured Type definition also references the inner Structured Type by macro
expansion;

2) its value and an optional attribute;

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to
specify explicit encoding for the individual element of a Structured Type Constraint, which override
the encoding rules and Encoding Variations applicable to the whole Structured Type Constraint, and
which also override any encoding specified for this element in the Structured Type declaration; the
encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field
Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

78 ITU-T Rec. X.292 (05/2002)

The element values for structure constraints shall be provided in the format shown in the following proforma:

Structured Type Constraint Declaration
Constraint Name : Consld&ParList
Group : [StructTypeConstraintGroupReference]
Structured Type 2 Structldentifier
Derivation Path : [DerivationPath]
Encoding Variation s [EncVariationCall]
Comments s [FreeText]
Element Name Element Value Element Encoding Comments
Elemldentifier ConstraintValue&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 37: Structured Type Constraint Declaration

This proforma is used in the same way that the PDU Constraint Declaration proforma is used for PDUs (see 13.4).

If an ASP or PDU definition refers to a Structured Type as a substructure of a parameter or field (i.e., with a parameter
name or a field name specified for it), then the corresponding constraint shall have the same parameter or field name in
the corresponding position in the parameter name or field name column of the constraint and the value shall be a
reference to a constraint for that parameter or field (i.e., for that substructure in accordance with the definition of the
Structured Type). If the ASP or PDU definition refers to a parameter or field specified as being of metatype PDU then in
a corresponding constraint the value for that parameter or field shall be specified as the name of a PDU constraint, or

formal parameter.

13.3 ASP constraint declarations

The parameter values for ASP constraints shall be provided in the format shown in the following proforma:

ASP Constraint Declaration

Constraint Name : Consld&ParList
Group : [ASP_ConstraintGroupReference]
ASP Type : ASP_Identifier
Derivation Path : [DerivationPath]
Comments s [FreeText]
Parameter Name Parameter Value Comments
ASP_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 38: ASP Constraint Declaration

ITU-T Rec. X.292 (05/2002)

79

The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for ASPs in the same way that the PDU Constraint Declaration proforma is used (see 13.4) except
that encoding information is not relevant and shall not be specified.

13.4

PDU Constraint Declarations

In the tabular format a constraint is defined by specifying a value and optional attributes for each PDU field. The
following information shall be supplied for each PDU constraint:

a)

b)

d)

e)

the name of the constraint,

which may be followed by an optional formal parameter list;
the PDU type name;

the derivation path (see 13.6);

the encoding rules to be used for the Constraint,

in order to specify explicit encodings for entire PDU Constraints, which override the encoding rules
applicable to the given PDU type, this optional entry shall reference an entry in the relevant Encoding
Definitions table (e.g., to change from BER to DER). If this entry is not used, then the encoding rules
applicable to the PDU type apply. See 11.16.4;

the Encoding Variations to be used for the Constraint,

in order to specify explicit Encoding Variations for entire PDU Constraints, which override the Encoding
Variations applicable to the given PDU type, this optional entry shall reference an entry in the relevant
Encoding Variations table (e.g., to change from SD to LD(3)). If this entry is not used, then the Encoding
Variations applicable to the PDU type apply. See 11.16.4;

a constraint value for each field,
where the following information shall be supplied for each field:
1) its name,

each field entry in the field name column shall have been declared in the relevant PDU type
definition. If any of the original PDU fields is defined as having both a short name and full identifier,
the constraint shall not repeat the full identifier.

If the PDU definition refers to a Structured Type by macro expansion (i.e., with "<-" in place of the
PDU field name) then in a corresponding constraint either:

— the individual elements from the Structured Type shall be included directly within the
constraints; or

— the macro symbol (<-) shall be placed in the corresponding position in the PDU field name
column of the constraint and the value shall be a reference to a constraint for the Structured
Type referenced from the PDU definition.

Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding PDU definition also references the same Structured Type by macro expansion;

2) its value and an optional attribute;

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to
specify explicit encodings for individual fields of a PDU Constraint, which override the encoding
rules and encoding variations applicable to the PDU Constraint as a whole, and which override any
specific field encoding applicable to this field for PDUs of this PDU type; the encoding identifier, if
any, shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition
defined in the test suite (e.g., LD(10)); see 11.16.4.

The encoding mechanism shall not be used with ASP constraints.

80

ITU-T Rec. X.292 (05/2002)

This information shall be provided in the format shown in the following proforma:

PDU Constraint Declaration

Constraint Name : Consld&ParList

Group ¢ [PDU_ConstraintGroupReference]
PDU Type : PDU Identifier

Derivation Path : [DerivationPath]

Encoding Rule Name : /[EncodingRuleldentifier]
Encoding Variation : [EncVariationCall]

Comments s [FreeText]
Field Name Field Value Field Encoding Comments
PDU_FieldldOrMacro ConstraintValue &Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 39: PDU Constraint Declaration

The Field Name and Field Value columns shall either be both present or both omitted. The Field Encoding column shall
not be present as a single column on its own.

EXAMPLE 52 — A constraint, called C1, on the PDU called PDU_A:

PDU Constraint Declaration

Constraint Name : Cl1
PDU Type : PDU A
Derivation Path

Comments

Field Name Field Value Comments

FIELD1 (4 .. INFINITY)
FIELD2 TRUE
FIELD3 "A STRING"

13.5 Parameterization of constraints

Constraints may be parameterized using a formal parameter list. The actual parameters are passed to a constraint from a
constraints reference in a behaviour description.

EXAMPLE 53 — A parameterized constraint:

PDU Constraint Declaration

Constraint Name ¢ C2 (P1:INTEGER; P2:BOOLEAN)
PDU Type : PDU B
Derivation Path
Comments
Field Name Field Value Comments
FIELD1 P1
FIELD2 P2
FIELD3 "A STRING"

ITU-T Rec. X.292 (05/2002) 81

13.6 Base constraints and modified constraints

For every ASP, PDU or CM type definition at least one base constraint may be specified. In the case in which an ASP or
CM has no parameters or a PDU has no fields, constraints are irrelevant and hence base constraints are unnecessary. A
base constraint specifies a set of base, or default, values or matching symbols for each and every field defined in the
appropriate definition. There may be any number of base constraints for any particular PDU (see Annex F for examples).

When a constraint is specified as a modification of a base constraint, any fields not re-specified in the modified
constraint will default to the values or matching symbols specified in the base constraint. The name of the modified
constraint shall be a unique identifier. The name of the base constraint which is to be modified shall be indicated in the
derivation path entry in the constraint header. This entry shall be left blank for a base constraint. A modified constraint
can itself be modified. In such a case the Derivation Path indicates the concatenation of the names of the base and
previously modified constraints, separated by dots (.) A dot shall follow the last modified constraint name. The rules for
building a modified constraint from a base constraint are:

— if a parameter or field and its corresponding value or matching symbol is not specified in the modified
constraint, then the value or matching symbol in the parent constraint shall be used (i.e., the value is
inherited);

— if a parameter or field and its corresponding value or matching symbol is specified in the modified

constraint, then the specified value or matching symbol replaces the one specified in the parent constraint.

13.7 Formal parameter lists in modified constraints

If a base constraint is defined to have a formal parameter list, the following rules apply to all modified constraints
derived from that base constraint, whether or not they are derived in one or several modification steps:

a) the modified constraint shall have the same parameter list as the base constraint. In particular, there shall
be no parameters omitted from or added to this list;

b) the formal parameter list shall follow the constraint name for every modified constraint;

¢) parameterized ASP parameters or PDU in a base constraint fields shall not be modified or explicitly
omitted in a modified constraint.

13.8 CM constraint declarations

The field values for CM constraints shall be provided in the format shown in the following proforma:

CM Constraint Declaration
Constraint Name : Consld&ParList
Group : [CM_ConstraintGroupReference]
CM Type : CM Identifier
Derivation Path : [DerivationPath]
Comments s [FreeText]
Parameter Name Parameter Value Comments

CM_ParldOrMacro ConstraintValue &Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 40: CM Constraint Declaration

82 ITU-T Rec. X.292 (05/2002)

The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

14 Specification of constraints using ASN.1

14.1 Introduction

This clause describes a method of specifying Type, ASP and PDU constraints in ASN.1, in a way similar to the
definition of tabular constraints. The normal ASN.1 value declaration is extended to allow the use of the matching
mechanisms. Mechanisms to replace or omit parts of ASN.1 constraints, to be used in modified constraints, are also
defined.

In other respects, ASN.1 is used in constraints in the same way that it is used in types. In particular,

a) for identifiers within an ASN.1 constraint the hyphen symbol ("-") shall not be used; the underscore
symbol ("_") may be used instead;

b) ASN.1 constraints shall not use external value references as defined in ITU-T Rec. X.680;

c¢) ASN.l comments can be used within the table body. The comments column shall not be present in this
table. Comments in ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of
line", whichever comes first. This prevents a single ASN.1 comment from spanning several lines. ATS
specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1
comments with "--".

14.2 ASN.1 type constraint declarations

Both ASN.1 ASP constraints and ASN.1 PDU constraints can be structured by using references to ASN.1 Test Suite
Type constraints for values of complex fields. ASN.1 Test Suite Types are defined in the declarations part of the ATS.

The following information shall be supplied for each ASN.1 Type Constraint Declaration:
a) the name of the Constraint,
which may be followed by an optional formal parameter list;
b) the ASN.1 Type name;
¢) the derivation path (see 13.6 and 14.6),

in order to specify explicit Encoding Variations for entire ASN.1 Type Constraints, which override both
the Encoding Variations of the PDU Constraint that references this ASN.1 Type Constraint and the default
global Encoding Variations for the test suite, this optional entry shall reference an entry in the relevant
Encoding Variations table (e.g., to change from SD to LD(3)); if this entry is not used, then the default
Encoding Variations apply to all ASN.1 Type Constraints of this type, unless specifically overridden
within a particular Constraint;

d) the Encoding Variations to be used for the Constraint,

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the
ASN.1 constraint that is taken as the basis of this modification shall be referenced in the table in the
derivation path entry;

e) The constraint value,

where the body of the ASN.1 Type Constraint table contains the ASN.1 Constraint Declaration with
optional attributes; all constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 Type Constraint, which override all other
Encoding Variations for the specific ASN.1 Type Constraint encodings (see c) above), the keyword ENC is used after
the relevant value, followed by a specific encoding identifier and any necessary actual parameter list. The encoding
identifier shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite.

ITU-T Rec. X.292 (05/2002) 83

ASN.1 Type Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 Type Constraint Declaration

Constraint Name : Consld&ParList

Group : [ASNI TypeConstraintGroupReference]
ASN.1 Type : ASNI _Typeldentifier

Derivation Path : [DerivationPath]

Encoding Variation s [EncVariationCall]

Comments s [FreeText]

Constraint Value

ConstraintValue &AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 41: ASN.1 Type Constraint Declaration

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used
(see 14.4).

14.3 ASN.1 ASP constraint declarations

The following information shall be supplied for each ASN.1 ASP Constraint Declaration:
a) the name of the constraint,
which may be followed by an optional formal parameter list;
b) the ASP type name;
c) the derivation path (see 13.6 and 14.6),

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the
ASN.1 constraint that is taken as the basis of this modification shall be referenced in the table in the
derivation path entry;

d) The constraint value,

where the body of the ASP constraint table contains the ASN.1 Constraint Declaration with optional
attributes. All constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

ASN.1 ASP Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 ASP Constraint Declaration

Constraint Name : Consld&ParList

Group : [ASNI _ASP ConstraintGroupReference]
ASP Type 1 ASP_Identifier

Derivation Path : [DerivationPath]

Comments s [FreeText]

Constraint Value

ConstraintValue &AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 42: ASN.1 ASP Constraint Declaration

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used
(see 14.4).

84 ITU-T Rec. X.292 (05/2002)

14.4 ASN.1 PDU constraint declarations

The following information shall be supplied for each ASN.1 PDU Constraint Declaration:

a)

b)

c)
d)

the name of the Constraint,

which may be followed by an optional formal parameter list;
the PDU type name;

the derivation path (see 13.6 and 14.6);

the encoding rules to be used for the Constraint,

in order to specify explicit encodings for entire ASN.1 PDU Constraints, which override the default global
encoding rules for the test suite, this optional entry shall reference an entry in the relevant Encoding
Definitions table (e.g., to change from BER to DER); if this entry is not used, then the default encoding
rules apply to all ASN.1 PDU Type Constraints of this type, unless specifically overridden in a particular
Constraint;

the Encoding Variations to be used for the Constraint,

in order to specify explicit Encoding Variations for entire ASN.1 PDU Constraints, which override the
default global Encoding Variations for the test suite, this optional entry shall reference an entry in the
relevant Encoding Variations table (e.g., to change from SD to LD(3)); if this entry is not used, then the
default Encoding Variations apply to all ASN.1 PDU Type Constraints of this type, unless specifically
overridden in a particular Constraint;

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the
ASN.1 constraint that is taken as the basis of this modification shall be referenced in the table in the
derivation path entry;

the constraint value,

where the body of the PDU constraint table contains the ASN.1 Constraint Declaration with optional
attributes; all constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 PDU Constraint, which override the default
global encoding rules or the specific ASN.1 PDU Constraint encodings (see ¢) and d) above), the keyword ENC is used
after the relevant value, followed by a specific encoding identifier and any necessary actual parameter list. The encoding
identifier shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test

suite.

PDU Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 PDU Constraint Declaration

Constraint Name : Consld&ParlList

Group : [ASNI_PDU ConstraintGroupReference]
PDU Type : PDU Identifier

Derivation Path : [DerivationPath]

Encoding Rule Name : [EncodingRuleldentifier]

Encoding Variation s [EncVariationCall]

Comments s [FreeText]

Constraint Value

ConstraintValue &AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 43: ASN.1 PDU Constraint Declaration

14.5 Parameterized ASN.1 constraints

ASN.1 constraints may be parameterized (see 13.5).

ITU-T Rec. X.292 (05/2002) 85

14.6 Modified ASN.1 constraints

ASN.1 constraints can be specified by modifying an existing ASN.1 constraint. Portions of a constraint can be
respecified to create a new constraint by using the REPLACE/OMIT mechanism.

Particular parameters or fields of a base or a modified constraint may be identified through a list of field selectors in
order to replace their defined value by a new value, or to omit the defined value. A ReferenceList consists of the field
selector identifiers (defined in the corresponding type definition) separated by dots which uniquely identify a particular
(possibly structured) field within a PDU (or ASP). A single selector can identify first level fields, whereas nested fields
require the full path.

Replace values shall be used only when a derivation path is specified. Full ASN.1 values shall be used only when a
derivation path is not specified. Values that are REPLACEd or OMITted may be structured.

If a field belongs to a SEQUENCE, SET or CHOICE structure, the position of the field in parentheses may be used as a
replacement for the field selector identifier. This technique shall be used where the identifier is not provided in the
declaration of the field.

14.7 Formal parameter lists in modified ASN.1 constraints

The requirements of 13.7 also apply to modified ASN.1 constraints.

14.8 ASP Parameter and PDU field names within ASN.1 constraints

When specifying a constraint for an ASP or PDU in ASN.1, the parameter or field identifiers defined in the ASN.1 type
definition for SEQUENCE, SET and CHOICE types may be used in order to identify the particular ASP or PDU
parameters or fields a value stands for. In the case of CHOICE types the identifiers identifying the variant shall be used.
For SEQUENCE types, parameter or field identifiers shall be used whenever the value definition becomes ambiguous
because of omitted values for OPTIONAL parameters or fields. For SET types, parameter or field identifiers shall be
used in all cases.

EXAMPLE 54 — Field values in an ASN.1 PDU constraint:

Assume the type definition:

ASN.1 PDU Type Definition

PDU Name : XY PDU
PCO Type

Comments

Type Definition

SET { field 1 INTEGER OPTIONAL,
field 2 BOOLEAN,
field_3 INTEGER OPTIONAL,
field_4 INTEGER OPTIONAL }

Then a possible constraint is:

ASN.1 PDU Constraint Declaration

Constraint Name : CONSI1
PDU Type : XY _PDU
Derivation Path

Comments

Constraint Value

{ field 1 5,
field 2 TRUE,
field 3 3

}

-- field 4 is not specified => omitted when sending --
-- ifidentifier field 3 was not used it would be ambiguous whether 3 was the value of --
-- field 3 or field 4, since both are OPTIONAL. --

86 ITU-T Rec. X.292 (05/2002)

14.9 ASN.1 CM constraint declarations

The parameter values for CM constraints shall be provided in the format shown in the following proforma:

ASN.1 CM Constraint Declaration

Constraint Name : Consld&ParList

Group : [ASNI_CM _ConstraintGroupReference]
CM Type : CM Identifier

Derivation Path : [DerivationPath]

Comments s [FreeText]

Constraint Value

ConstraintValue &AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 44: ASN.1 CM Constraint Declaration

This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

15 The dynamic part

15.1 Introduction

The Dynamic Part contains the main body of the test suite: the Test Case, the Test Step and the Default behaviour
descriptions.

15.2 Test Case dynamic behaviour

15.2.1 Specification of the Test Case Dynamic Behaviour table
The title of the table shall be "Test Case Dynamic Behaviour".

The header shall contain the following information:
a) Test Case name,
giving a unique identifier for the Test Case described in the table;
b) Test Group Reference,

giving the full name of the lowest level to the group that contains the Test Case; that full name shall
conform to the requirements of 9.2, and end with a slash (/);

c) Test Purpose,

an informal statement of the purpose of the Test Case, as given in the relevant test suite structure and test
purposes standard (if any) or equivalent part of the test suite standard (if any);

d) Default Reference,

a list of Default behaviour description identifiers (each including an actual parameter list if necessary), if
any, which apply to the Test Case behaviour description (see 15.4).

The body of the table shall display the following columns and corresponding information:
a) an (optional) line number column (see 15.2.5),
which, if present, shall be placed at the extreme left of the table;
b) alabel column,

where labels can be placed to identify the TTCN statements to allow jumps using the GOTO construct
(see 15.14);

ITU-T Rec. X.292 (05/2002) &7

c) abehaviour description,

which describes the behaviour of the LT and/or UT in terms of TTCN statements and their parameters,
using the tree notation (see 15.6);

d) a constraints reference column,

where constraint references are placed to associate TTCN statements in a behaviour tree with a reference
to specific ASP and/or PDU values defined in the constraints part (see clause 12);

e) averdict column,

where verdict or result information is placed in association with TTCN statements in the behaviour tree
(see 15.17);

f) an (optional) comments column,

this column is used to place comments that ease understanding of TTCN statements by providing short
remarks or references to additional text in the optional detailed comments section.

The columns c), d), e) and f) shall be displayed in that order, from left to right. It is recommended that the mandatory
label column be placed at the left of the behaviour description. Alternately, the label column may be placed to the right
of the behaviour description.

An (optional) footer can contain detailed comments.

15.2.2 The Test Case Dynamic Behaviour proforma

The Test Case dynamic behaviour shall be provided in the format shown in the following proforma:

Test Case Dynamic Behaviour
Test Case Name : TestCaseldentifier
Group : TestGroupReference
Purpose : FreeText
Configuration 1 TCompConfigldentifier
Defaults : [DefaultRefList]
Comments s [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] [Verdict] [FreeText]
TreeHeader
StatementLine
n
Detailed Comments: [FreeText]

Proforma 45: Test Case Dynamic Behaviour

Column headers of this proforma can be abbreviated to: L, Cref, V and C. This enables the behaviour tree column to be
as wide as possible in cases of physical paper size limitations.

88 ITU-T Rec. X.292 (05/2002)

15.2.3 Structure of the Test Case behaviour
Each Test Case contains a precise description of sequences of (anticipated) events and related verdicts. This description

is structured as a tree, with TTCN statements as nodes in that tree and verdict assignments at its leaves. In many cases it
is more efficient to use Test Steps as a means of substructuring this tree:

Statement and verdict

Statement Statement

Statement and verdict

Test case Test case ()

Statement and verdict Statement and verdict

Statement Statement

Statement Statement

Statement and verdict Statement and verdict

X.292_F07
1: Unstructured Test Case Behaviour 2: Structured Test Case Behaviour

Figure 7/X.292 — Test Case Behaviour Structure

In TTCN this explicit modularization is expressed using Test Steps and the ATTACH construct.

15.2.4 Concurrent Test Case Behaviour description

If PTCs are used in a test case then the header shall contain the additional entry, Configuration, which shall identify a
Test Component Configuration declared in the Declaration Part.

The first tree in the Test Case Behaviour table plus all attached trees describe the behaviour of the MTC. The MTC
behaviour tree creates PTCs when required and associates each PTC with its own behaviour tree.

If a PTC behaviour is specified as a local tree in the test case behaviour, then the Defaults Reference shall be empty. This
restriction prevents a PTC from inheriting the Default Behaviour of the MTC.

A test case shall only use the Test Components that are present in the referenced Test Component Configuration. The
chosen configuration shall determine the set of PCOs and CPs that may be used in the test case. When used, the
Configuration entry in the Test Case Dynamic Behaviour Header shall be provided in the format shown in Proforma 45.

15.2.5 Line numbering and continuation

Since lines in the behaviour description, when printed, may be too long to fit on one line, it is necessary to use additional
symbols to indicate the extent of a single behaviour line. There are two available techniques:

a) indicate the beginning of a new behaviour line; an extra line column is added as the leftmost column in the
body of the table; there shall only be an entry in this column on those lines where a new behaviour line
starts; the line numbers used shall be 1, 2, 3, ... and the numbering shall not be restarted when local trees
are defined, i.e., there is a unique line number for each behaviour line of the behaviour table;

NOTE 1 — The line numbers can be used for logging purposes, to record unambiguously which behaviour line was
executed.

NOTE 2 — The line numbers can be used as references in the detailed comments section.

b) indicate the continuation of lines; if a line is to be continued within the behaviour description column a
hash (#) symbol shall be placed in the leftmost position of the behaviour column, on the line of the
continued text; it is recommended that the text of the continued part adopts the same level of indentation
as the line it is continuing.

If a line is continued in any column other than the behaviour description column, the hash symbol is not required.

ITU-T Rec. X.292 (05/2002) &9

EXAMPLE 55 — Printing long behaviour line:

Recommended style:

Nr Label Behaviour Description Constraints Ref Verdict Comments
1 This is a TTCN statement that is too long to Refl
print on a single line because the column is too
narrow.
2 This is the next statement line This is a constraint

reference that is too long
to print on one line

3 An alternative statement line Ref2

Alternative style:

Label Behaviour Description Constraints Ref Verdict Comments

This is a TTCN statement that is too long to Refl
print on a single line because the column
is too narrow.

This is the next statement line This is a constraint
reference that is too long
to print on one line

An alternative statement line Ref2

15.3 Test Step dynamic behaviour

15.3.1 Specification of the Test Step Dynamic Behaviour table

The dynamic behaviour of Test Steps is defined using the same mechanisms as for Test Cases, except that Test Steps can
be parameterized (see 15.7). Test Step dynamic behaviour tables are identical to Test Case dynamic behaviour tables,
except for the following differences:
a) the table has the title "Test Step Dynamic Behaviour";
b) the first item in the header is the Test Step name,
which is a unique identifier for the Test Step followed by an optional list of formal parameters, and their
associated types. These parameters may be used to pass PCOs, constraints or other data objects into the
root tree of the Test Step;

c) the second item in the header is the Test Step Group Reference,

which gives the full name to the lowest level of the Test Step Library group that contains the Test Step;
that full name shall conform to the requirements of (see 9.3), and end with a slash (/);

d) the third item in the header is the Test Step Objective,

which is an informal statement of the objective of the Test Step.

90 ITU-T Rec. X.292 (05/2002)

15.3.2 The Test Step Dynamic Behaviour proforma

The Test Step dynamic behaviour shall be provided in the format shown in the following proforma:

Test Step Dynamic Behaviour
Test Step Name : TestStepld&ParList
Group : TestStepGroupReference
Objective s FreeText
Defaults : [DefaultRefList]
Comments 2 [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] [Verdict] [FreeText]
TreeHeader
StatementLine
n
Detailed Comments: [FreeText]

Proforma 46: Test Step Dynamic Behaviour

Column headers of this proforma can be abbreviated to L, Cref, V and C.

154 Default dynamic behaviour

15.4.1 Default behaviour

A TTCN Test Case shall specify alternative behaviour for every possible event (including invalid ones). It often happens
that in a behaviour tree every sequence of alternatives ends in the same behaviour. This behaviour may be factored out as
default behaviour to this tree. Such Default behaviour descriptions are located in the global Default Library.

The dynamic behaviour of Defaults is defined using the same mechanisms as for Test Steps, except for the following
restrictions:

a) itis not permitted to specify Default behaviour for the Default behaviour;
b) adefault behaviour description may attach local trees (see 15.7.1) but shall not attach Test Steps;
c) iflocal trees are used in a Default behaviour description, they shall not attach Test Steps;

d) the tree(s) in the behaviour description shall not use the ACTIVATE operation (see 15.18.4).

Both PCOs and other actual parameters may be passed to Default behaviour descriptions in the same way that they may
be passed to Test Steps. The same rules on scope and textual substitution of these parameters apply as described for tree
attachment (see 15.13).

15.4.2 Specification of the Default Dynamic Behaviour table

Default dynamic behaviour tables are identical to Test Step dynamic behaviour tables, except for the following
differences:

a) the table has the title "Default Dynamic Behaviour";
b) the first item in the header is the Default name,

which is a unique identifier for the Default followed by an optional list of formal parameters, and their
associated types. These parameters may be used to pass PCOs, constraints or other data objects into the
root tree of the Default;

ITU-T Rec. X.292 (05/2002) 91

¢) the second item in the header is the Default Group Reference,

which gives the full name of the lowest level to the Default Group that contains the Default; that full name
shall conform to the requirements of (see 9.4), and end with a slash (/);

d) the third item in the header is the Default Objective,
which is an informal statement of the objective of the Default.
15.4.3 The Default Dynamic Behaviour proforma

The Default dynamic behaviour shall be provided in the format shown in the following proforma:

Default Dynamic Behaviour
Default Name ¢ Defaultld&ParList
Group : DefaultGroupReference
Objective : FreeText
Comments s [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] [Verdict] [FreeText]
TreeHeader
0 StatementLine
n
Detailed Comments: [FreeText]

Proforma 47: Default Dynamic Behaviour

Column headers of this proforma can be abbreviated to L, Cref, V and C.

15.5 The behaviour description

The behaviour description column of a dynamic behaviour table contains the specification of the combinations of TTCN
statements that are deemed possible by the test suite specifier. The set of these combinations is called the behaviour tree.
Each TTCN statement is a node in the behaviour tree.

15.6 The tree notation

Each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two
ways:

— as sequences of TTCN statements;

— as alternative TTCN statements.

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement being
indented once from left to right, with respect to its predecessor.

EXAMPLE 56 — TTCN statements in sequence:

EVENT A
CONSTRUCT B
EVENT C

92 ITU-T Rec. X.292 (05/2002)

Statements at the same level of indentation and belonging to the same predecessor node represent the possible alternative
statements which may occur at that time. Henceforth, this set of TTCN statements will be referred to as the set of
alternatives, or simply alternatives.

EXAMPLE 57 — Alternative TTCN statements:

CONSTRUCT Al
STATEMENT A2
EVENT A3

EXAMPLE 58 — Combining sequences and alternatives to build a tree:

EVENT A
CONSTRUCT B

EVENT C
STATEMENT DI

EVENT_D2

Whether a TTCN statement can be evaluated successfully or not depends on various conditions associated with the
statement line. These conditions are not necessarily mutually exclusive, i.e., it is possible that for any given moment
more than one statement line could be evaluated successfully. Since statement lines are evaluated in the order of their
appearance in the set of alternatives the first statement with a fulfilled condition will be successful. This might lead to
unreachable behaviour; in particular if statements are encoded as alternatives following statements that are always
successful.

REPEAT and GOTO are always successful. In addition, SEND, IMPLICIT SEND, assignments and timer operations are
successful provided that the accompanying qualifier, if any, evaluates to TRUE.

Graphical indentation of statement lines in the TTCN.GR form is mapped to indentation values in TTCN.MP. Statements
in the first level of alternatives having no predecessor in the root or local tree they belong to shall have the indentation
value of zero. Statements having a predecessor shall have the indentation value of the predecessor plus one as their
indentation value.

15.7 Tree names and parameter lists

15.7.1 Introduction

Each behaviour description shall contain at least one behaviour tree. In order that trees may be unambiguously referred to
(such as in an ATTACH construct) each tree has a tree name.

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the identifier
appearing in the header of its dynamic behaviour table. That is, the tree name of the root tree of a Test Step is the Test
Step Identifier for that Test Step, and likewise for root trees in Test Case dynamic behaviours and Default dynamic
behaviours.

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. A tree header that
contains the tree name prefixes local trees.

15.7.2 Trees with parameters

All trees, except Test Case root trees, may be parameterized. The parameters may provide PCOs, constraints, variables or
other such items for use within the tree. Test Case root trees shall not be parameterized.

If a tree is parameterized, then a list of formal parameters and their types shall appear within parentheses directly
following the tree name. For example, the formal parameter list for a Test Step root tree shall appear within parentheses
immediately following the Test Step Identifier in the header of the Test Step dynamic behaviour table. Similarly, the
formal parameter list for a local tree shall appear immediately after the tree name in the tree header.

ITU-T Rec. X.292 (05/2002) 93

In constructing the formal parameter list, each formal parameter shall be followed by a colon and the name of the type of
the formal parameter. If more than one formal parameter of the same type is present, these may be combined into a sub-
list. When such a sub-list is used, a comma shall separate the formal parameters within the sub-list from each other. A
colon and the formal parameter's type shall follow the final formal parameter in the sub-list.

When there is more than one formal parameter and type pair (or more than one sub-list and type pair), the pairs shall be
separated from each other by semi-colons.

Formal parameters may be of PCO type, ASP type, PDU type, structure type or one of the other predefined or Test Suite
Types.

If a formal parameter of a tree is type PDU then specific fields in the PDU shall not be referenced in the tree. If the
formal parameter is a specific PDU identifier, then specific fields in the PDU may be referenced in the tree.

EXAMPLE 59 — Void.
EXAMPLE 60 — A Test Step using formal parameters: EXAMPLE TREE (L:TSAP; X:INTEGER; Y:INTEGER)

EXAMPLE 61— A Test Step using a formal parameters with a sub-listt EXAMPLE TREE (L:TSAP; X,
Y:INTEGER)

15.8 TTCN statements

The tree notation allows the specification of test events initiated by the Lower Tester(s) or Upper Tester(s) (SEND and
IMPLICIT SEND events), test events received by the Lower Tester(s) or Upper Tester(s) (RECEIVE, OTHERWISE,
TIMEOUT and DONE), constructs (GOTO, ATTACH, REPEAT, CREATE, RETURN and ACTIVATE) and pseudo-
events comprising combinations of qualifiers, assignments and timer operations. These are collectively known as TTCN
statements.

Qualifiers (Boolean expressions), assignments and timer operations can accompany test events. Qualifiers, assignments
and timer operations can also stand alone, in which case they are called pseudo-events.

15.9 TTCN test events

15.9.1 Sending and receiving events

TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs
at named PCOs. The PCO model is defined in 11.10 and 15.9.5.3. Concurrent TTCN supports the sending and receiving
of CMs to named CPs. The CP model is defined in 11.11.

In the simplest form, an ASP identifier or PDU identifier follows the SEND symbol (!) for events to be initiated by the
LT or UT, or a RECEIVE symbol (?) for events which it is possible for the LT or UT to accept. The optional PCO
name is not provided. This form is valid when there is only one PCO in the test suite.

EXAMPLE 62 — |CONreq or ?CONind

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the formal
parameter list of the tree, shall prefix the SEND symbol or the RECEIVE symbol. The PCO name is used to indicate the
PCO at which the test event may occur.

EXAMPLE 63 — L! CONreq or L? CONind

In the case of CPs, the CP identifier shall be used and shall prefix the SEND symbol in the case of sending a CM and
shall prefix the RECEIVE symbol in the case of receiving a CM.

EXAMPLE 64— A_CPIA_CMor A_CP?A_CM

15.9.2 Receiving events

A RECEIVE event line evaluates successfully if an incoming ASP or PDU on the specified PCO matches the event line.
A match occurs if the following conditions are fulfilled:

a) the incoming PDU can be decoded in accordance with the applicable encoding rules;

b) the incoming ASP or PDU is valid according to the ASP or PDU type definition referred to by the event
name on the event line. In particular, all parameters and/or field values shall be of the type defined, and
satisfy any length restrictions specified;

94 ITU-T Rec. X.292 (05/2002)

c) the ASP or PDU matches the constraint reference on the event line;

d) in cases where a qualifier is specified on the event line, the qualifier shall evaluate to TRUE; the qualifier
may contain references to ASP parameters and/or PDU fields.

The incoming event is removed from the PCO queue only when it successfully matches a RECEIVE event line.

In concurrent TTCN the receipt and matching of a CM at a CP is treated in the same manner as described above.

15.9.3 Sending events

A SEND event line with a qualifier is successful if the expression in the qualifier evaluates to TRUE. Unqualified SEND
events are always successful. The outgoing ASP or PDU that results from a SEND event shall be constructed as follows:

a) All ASP parameter and PDU field values shall be of the type specified in the corresponding definitions,
and will satisfy any length restrictions in the definitions;

b) the value of the ASP parameter and PDU fields shall be set as specified in the constraint referenced on the
event line (see clauses 12, 13 and 14 for an explanation of constructing ASPs or PDUs with constraints);

c) any direct assignments to ASP parameters or PDU fields on the event line will supersede the
corresponding value specified in the constraint, if any;

d) all parameters and/or fields in the outgoing ASP or PDU shall contain specific values or be explicitly
omitted prior to completion of the SEND event;

e) the fully constructed PDU shall be encoded in accordance with the applicable encoding rules.

Generation of an ASP parameter or PDU field value by either the constraints or assignments that violates the declared
type and length restrictions shall cause a test case error.

In concurrent TTCN the sending of CMs at CPs is treated in the same manner as described above.

15.9.4 Lifetime of events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used only to reference ASP
parameter and PDU field values on the statement line itself.

In the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, in appropriate assignments
on the SEND line.

EXAMPLE 65 —'A_PDU (A_PDU.FIELD:=3)
The effects of such an assignment shall not persist after the event line in which they occurred.

In the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently referenced,
either the whole ASP or PDU or a relevant part of it shall be assigned to variables on the RECEIVE line itself. These
variables may then be referenced in subsequent lines.

EXAMPLE 66 —?A_PDU (VAR:=A_PDU.FIELD)
where VAR may be used on event lines subsequent to receipt of A PDU.

The lifetime of CMs is also restricted to the relevant RECEIVE statement. Identifiers of CM fields may be accessed in a
similar manner as identifiers of PDU fields.

EXAMPLE 67 — A_CP!A_CM or A_CP?A_CM
15.9.5 Execution of the behaviour tree

15.9.5.1 Introduction

The test suite specifier shall organize the behaviour tree representing a Test Case or a Test Step according to the
following rules regarding test execution:

a) starting from the root of the tree, the LT or UT remains on the first level of indentation until an event
matches. If an event is to be initiated the LT or UT initiates it; if an event is to be received, it is said to
match only if a received real event occurs and matches the event line;

b) once an event has matched, the LT or UT moves to the next level of indentation. No return to a previous
level of indentation can be made, except by using the GOTO construct;

c) event lines at the same level of indentation and following the same predecessor event line represent the
possible alternatives which may match at that time. Alternatives shall be given in the order that the test
suite specifier requires the LT or UT to attempt either to initiate or receive them, if necessary, repeatedly,
until one matches.

ITU-T Rec. X.292 (05/2002) 95

EXAMPLE 68 — Illustration of a TTCN behaviour tree:

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection,
exchange some data, and close the connection. The events occur at the lower tester PCO L:

a) CONNECTrequest, CONNECTconfirm, DATArequet, DATAindication, DISCONNECTrequest;

The IUT or the service-provider can thwart progress at any time. This generates two more sequences:

b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTindication;
c¢) CONNECTrequest, DISCONNECTindication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of
alternatives, and only three leaves (a to c), because the SEND events L! are always successful. Execution
is to progress from left to right (sequence), and from top to bottom (alternatives). The following figure
illustrates this progression, and the principle of the TTCN behaviour tree:

Progression of time

v

|

? EXAMPLE-TREE (L:NSAP)

; |—> L!CONNECTrequest

r I——bL?CONNECTconﬁrm

2 L!DATArequest

E |——> L?DATAindication

‘e’ \—> L!DISCONNECTrequest a)
S —» L?DISCONNECTindication b)
l — L?DISCONNECTindication c)

X.292_F15.9.5

There are no lines, arrows or leaf names in TTCN. The behaviour tree of the previous example would be represented as

follows:
EXAMPLE 69 — A TTCN behaviour tree:
Test Step Dynamic Behaviour
Test Step Name : TREE EX 1 (L:NSAP)
Group : TTCN_EXAMPLES/TREE EXAMPLE 1/
Objective : To illustrate the use of trees.
Default
Comments : NOTE — This example can be simplified by using Defaults.
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 L ! CONNECTrequest CR1 Request ...
2 L ? CONNECTconfirm CC1 ...Confirm
3 L ! DATArequest DTRI1 Send Data
4 L ? DATAindication DTI1 Receive Data
5 L ! DISCONNECTrequest DSCRI1 PASS Accept
6 L ? DISCONNECTindication DSCI1 INCONC Premature
7 L ? DISCONNECTindication DSCRI1 INCONC Premature
Detailed Comments:

96

ITU-T Rec. X.292 (05/2002)

15.9.5.2 The concept of snapshot semantics

The alternative statements at the current level of indentation are processed in their order of appearance. TTCN
operational semantics (see Annex B) assume that the status of any of the events cannot change during the process of
trying to match one of a set of alternatives. This implies that snapshot semantics are used for received events and
TIMEOUTs i.e., each time around a set of alternatives a snapshot is taken of which events have been received and which
TIMEOUTS have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

15.9.5.3 Restrictions on using events

In order to avoid test case errors the following restrictions apply:

a) a Test Case or Test Step should not contain behaviour where the relative processing speed of the MOT
(Means of Testing) could impact the results. To prevent such problems, a RECEIVE, OTHERWISE or
TIMEOUT event line shall only be followed by other RECEIVE, OTHERWISE and TIMEOUT event
lines in a set of alternatives. As a consequence, Default trees shall contain only RECEIVE, OTHERWISE
and TIMEOUT event lines on the first set of alternatives.

b) Once there is an event on a PCO or CP queue or a timeout in the timeout list, it can be removed from the
queue or list only by a successful match of the related TTCN statement. In the case of a set of alternatives
that includes RECEIVE statements, the set of expected incoming events shall be fully specified. This
means that it shall be a test case error if, during execution, no match of any of the RECEIVE statements
occurs and yet execution progresses to the next level of alternatives because of a TIMEOUT which
occurred after an ASP or PDU, that was not specified in the set of RECEIVE statements, was received on
any one of the relevant PCO or CP queues. IMPLICIT SEND shall not be used with CMs.

c) Precautions should be taken when using concurrent TTCN to avoid unreliable results caused by situations
in which the order of receipt of events at different PCOs or CPs is used to determine verdict assignment.
The actual time at which PDU or CM is received, relative to the receipt of other PDUs or CMs, may not
be accurately reflected when executing parallel test components.

EXAMPLE 70 — An incomplete set of RECEIVE events:

PARTIAL_TREE PARTIAL_TREE
!'ASTARTT 'ASTARTT
?B ?B
? TIMEOUT T ? OTHERWISE
1C FAIL
7D ? TIMEOUT T
1C
D
a) b)

In a) if D is received in response to 'A the test case will assign an erroneous PASS verdict by virtue of the
TIMEOUT. This can be avoided by using the OTHERWISE statement.

d) In concurrent TTCN, the relative ordering of events at different PCOs or different CPs should not affect
the verdict assigned, since this would lead to unrepeatability of results caused by differences in processing
and transmission speeds.

15.9.5.4 Precautions when using concurrent TTCN

Precautions should be taken when using concurrent TTCN to avoid unrepeatable results caused by situations in which the
order of receipt of events at different PCOs or at different CPs is used to determine verdict assignment. The actual time
at which a PDU or CM is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected when
executing parallel test components.

15.9.6 The IMPLICIT SEND event

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means of
specifying, at a given point in the description of the behaviour of the LT, that the IUT should be made to initiate a
particular PDU or ASP (but not CM). For this purpose, the implicit send event is defined, with the following syntax:

ITU-T Rec. X.292 (05/2002) 97

There is no specification of what is done to the IUT to trigger this reaction, only a specification of the required reaction
itself; the specified ASP or PDU is to be sent by the IUT on the indicated PCO. IUT can take place of the PCO identifier
if there is no ambiguity (only one PCO exists for example).

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and at
the same level of indentation as the IMPLICIT SEND are unreachable.

An IMPLICIT SEND shall be used only where the relevant OSI standard(s) permit the IUT to send the specified ASP or
PDU at that point in its communication with the LT.

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the partial
PIXIT proforma that permits indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote Test Methods. An

IMPLICIT SEND event shall not be used unless the same effect could have been achieved using the DS test method.
NOTE - For example, when testing a connection-oriented Transport Protocol implementation, if this restriction did not exist it
would be permissible to use IMPLICIT SEND to get the IUT to initiate a CR TPDU because in the DS test method that effect
could be achieved by getting the UT to send a T-CONreq ASP. On the other hand, it would not be permissible to use IMPLICIT
SEND to get the IUT to initiate an N-RstReq ASP because that effect could not be controlled through the Transport Service
boundary. The reason for this restriction is to prevent Test Cases from requiring greater external control over an IUT than is
provided for in the relevant protocol standard.

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet the
requirements of the standard for the protocol being tested are also performed, e.g., set timer, initialize state variables.

The semantics of IMPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the initiation of the
specified ASP or PDU. The way in which the SUT is to be controlled should be specified in the PIXIT (or
documentation referenced by the PIXIT).

Neither a final verdict nor a preliminary result shall be associated with an IMPLICIT SEND event.

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU that
should, as a result, have been sent by the IUT.

EXAMPLE 71 — EXAMPLE use of IMPLICIT SEND:

Test Case Dynamic Behaviour
Test Case Name : IMPI
Group : TTCN_EXAMPLES/IMPLICIT_SEND/
Purpose ¢ A partial tree to illustrate the use of IMPLICIT SEND.
Default
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
5 <IUT ! CR> CR1
L?CR CR1
L!cc CC1
12 L ? OTHERWISE
Detailed Comments:

15.9.7 The OTHERWISE event
The predefined event OTHERWISE is the TTCN mechanism for dealing with unforeseen test events in a controlled way.

OTHERWISE is used to denote that the LT or UT shall accept any incoming event that has not previously matched one
of the alternatives to the OTHERWISE. The tester shall accept any incoming data that it has not been possible to decode
or that has not matched a previous alternative to this OTHERWISE event.

98 ITU-T Rec. X.292 (05/2002)

In non-concurrent TTCN, if more than one PCO exists in a test suite, then either a PCO name appearing in the
declarations part, or a formal parameter from the formal parameter list of the tree where that formal parameter is used to
convey a PCO name, shall prefix the OTHERWISE. The PCO name is used to indicate the PCO at which the test event
may occur. Incoming events, including OTHERWISE, are considered only in terms of the given PCO.

EXAMPLE 72 — Use of OTHERWISE with PCO identifiers:

PARTIAL TREE

PCO1?A

PCO2?B PASS
PCO1?C INCONC
PCO2 ? OTHERWISE FAIL

Assume no event is received at PCO1, then receipt of event B at PCO2 results in a PASS verdict. Receipt of any other
event at PCO2 results in a FAIL verdict.

Due to the significance of ordering of alternatives, incoming events which are alternatives following an unconditional
OTHERWISE on the same PCO will never match.

EXAMPLE 73 — Incoming events following an OTHERWISE:

PARTIAL_TREE

PCO1?A PASS
PCO1 ? OTHERWISE FAIL
PCO17?C INCONC

The OTHERWISE will match any incoming event other than A. The last alternative, ?C, can never be matched.

15.9.8 OTHERWISE and concurrent TTCN

In concurrent TTCN, OTHERWISE may be used with CPs as well as PCOs. OTHERWISE on CPs is allowed to provide
an efficient way of handling "all other CMs on this CP".

15.9.9 The TIMEOUT event

The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a Test Case. When a timer expires
(conceptually immediately before a snapshot processing of a set of alternative events), a TIMEOUT event is placed into
a timeout list. The timer becomes immediately inactive. Only one entry for any particular timer may appear in the list at
any one time. Since TIMEOUT is not associated with a PCO, a single timeout list is used.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is a timeout
event matching the timer name, that event is removed from the list, and the TIMEOUT event succeeds.

If no timer name is indicated, any TIMEOUT event in the timeout list matches. The TIMEOUT event succeeds if the list
is not empty. When this occurs, the entire timeout list is immediately emptied.

EXAMPLE 74 — Use of TIMEOUT:

? TIMEOUT T

Since TIMEOUT events are not RECEIVE events they are not rendered unreachable by previously listed OTHERWISE
alternatives.

ITU-T Rec. X.292 (05/2002) 99

15.9.10 Concurrent TTCN events and constructs

The CREATE construct and the DONE event are used in concurrent TTCN.

15.9.10.1 The CREATE construct

The Main Test Component is started at the beginning of Test Case execution. The Main Test Component starts Parallel
Test Components, as needed, by means of the CREATE construct.

This construct invokes a set of Parallel Test Components. For each PTC, there are two arguments. The first is the
identifier of the PTC that is created, which shall match the identifier of a PTC in the Test Component Configuration
referenced in the test case header. The second is a reference to a behaviour tree (i.e., Test Step or local tree), possibly
with a parameter list containing actual values (e.g., PCOs and CPs). The effect of the CREATE construct is that each
PTC listed starts executing its behaviour description in parallel with the execution of the Main Test Component.

NOTE - Passing PCO and CP identifiers to a behaviour tree as actual parameters allows the same behaviour tree to be used in
more than one test component.

The PCOs and CPs used in the execution of the behaviour description associated with a PTC by the CREATE construct
shall only be those determined by the Test Component Configuration for that Test Case.

The execution of a CREATE construct on a PTC which has already been created shall result in a Test Case error. The
execution of a CREATE by any Test Component other than the MTC shall result in a test case error.

In the CREATE construct, PCO identifiers and CP identifiers are passed to a PTC by textual substitution, as is usual in
the ATTACHment of Test Steps. All others parameters are passed by value. This is done to prevent side effects on
variables which could affect the processing of other PTCs, causing unrepeatable results.

15.9.10.2 The DONE event

When the MTC terminates, the final verdict is assigned by the MTC, as calculated up to this moment (15.17.5). The
DONE event can be used in the MTC and the PTCs to find out whether PTCs have already terminated. Test Components
can use this information to determine their own preliminary results and further actions; in particular, the MTC can avoid
terminating before all PTCs have terminated (15.17.5).

A missing argument list is interpreted as being a list of all PTCs stated in a CREATE constructs executed prior to the
execution of the DONE event. A DONE event without an argument list shall only be used by the MTC.

EXAMPLE 75 — Use of the DONE event:

PARTIAL MTC TREE
CREATE (PTC! : TREEA , PTC2 : TREEB)
2 DONE (PTC1, PTC2)

NOTE 1 - If DONE is the only alternative, it amounts to an order to wait for the specified PTCs to terminate.
NOTE 2 — DONE is not a means for the MTC to co-ordinate termination of PTCs.

15.10 TTCN expressions

15.10.1 Introduction

There are two kinds of expressions in TTCN: assignments and Boolean expressions. Both assignments and Boolean
expressions may contain explicit values and the following forms of reference to data objects:

a) Test Suite Parameters.

b) Test Suite Constants.

¢) Test suite and Test Case Variables.

d) Formal parameters of a Test Step, Default or local tree.
e) ASPsand PDUs (on event lines).

Any variables occurring in Boolean expressions and/or on the right hand side of an assignment shall be bound. If an
unbound variable is used this is a test case error.

100 ITU-T Rec. X.292 (05/2002)

15.10.2 References for ASN.1 defined data objects

15.10.2.1 Introduction

In order to permit references to components of data objects defined using ASN.1, TTCN provides three access
mechanisms: record references, array references and bit references.

15.10.2.2 Record references

A record reference may be used to reference to a component of a data object of the type SEQUENCE, SET or CHOICE.
A record reference is constructed using a dot notation, appending a dot and the name (component identifier) or number
(component position) of the desired component to the data object identifier. The component identifier, if defined, should
be used in preference to the component position. References to unnamed components are constructed by giving within
parentheses the number which is the position of the component within the type definition. By definition, the implicit
numbering of components starts with zero; hence the third component has position number 2.

ITU-T Rec. X.680 defines SET types having unordered components. This is relevant only if values of that type are
encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET type in the same way
as objects of SEQUENCE type, i.e., referring to the components with number i always means a reference to the ith field
as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with the index i will always return the same
value. There is no change of order of the elements in a SET by any operation in TTCN.

EXAMPLE 76 — Component record references:

Example_type ::= SEQUENCE {
field 1 INTEGER
field 2 BOOLEAN,
OCTET STRING }

If varl is of ASN.1 type Example_type, then the following could be written:
varl .field 1 which refers to the first INTEGER) field
varl.(3) which refers to the third (unnamed) field

EXAMPLE 77 — PDU field references:

XY_PDUtype ::= SEQUENCE {

vee s

user-data OCTET STRING,
-}

On a statement line that contains XY PDUtype, the following could be written:
L? XY _PDU (buffer ;== XY _PDUtype.user_data)

in order to load the variable buffer with the contents of the user_data field of the incoming PDU.

When a PDU or an ASN.1 type parameter, field or element is chained to an ASP, another PDU, or a CM, a record
reference may be used to identify a component of that PDU or ASN.1 type. The record reference shall identify the
relevant complete sequence of parameter, field or element names separated by dots, starting with a data object identifier
which resolves to the relevant ASP identifier, CM identifier, or (if ASPs are not used in the test suite) PDU identifier.
Beyond this initial data object identifier the sequence shall not contain any PDU identifiers or ASN.1 type identifiers, but
rather just the identifiers of the relevant parameters, fields and elements. This mechanism shall not be used if there is any
ambiguity about the identity of a PDU constraint or ASN.1 type constraint in the sequence. The following example
illustrates the use of record references when chaining of constraints is used (see 12.4).

ITU-T Rec. X.292 (05/2002) 101

EXAMPLE 78 — Record references with chaining:

ASN.1 ASP Type Definition

ASP1_type ::= SEQUENCE {
par 1 OCTET STRING,
par 2 OCTET STRING,
pdul PDUI type

ASN.1 PDU Type Definition
PDUI _type ::= SEQUENCE {
fieldl OCTET STRING,
fieldk2 OCTET STRING,
f F type
}

ASN.1 Structure Type Definition
F _type ::= SEQUENCE {
datal IASSTRING,
data2 TASSTRING
}

When using constraints of type ASP1 _type, PDU1 type and F_type, the values of datal and data2 may be referenced as
follows:

ASP1 _type.pdul.f.datal
ASP1 type.pdul.f.data2

Similarly the whole PDU field f may be referenced as:
ASP1 type.pdul.f

or the whole PDU may be referenced as:

ASP1 type.pdul

It should be noted that the declarations used in this example could apply to both static chaining and dynamic chaining, as
the differences between the two types of chaining are only visible in the constraints. Thus, the record reference is
independent of the variety of chaining used.

15.10.2.3 Array references

An array reference may be used to reference a component of a data object of the type SEQUENCE OF or SET OF. An
array reference shall be constructed using a dot notation, appending a dot and the index of the desired component to the
data object identifier. The index, giving the position of the component within the data object (when the object is viewed
as a linear array), is enclosed within square brackets. By definition within ASN.1, the indexing of components starts with
zero. The index may be an expression, in which case it shall evaluate to a non-negative INTEGER.

ITU-T Rec. X.680 defines SET OF types having unordered components. This is relevant only if values of that type are
encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET OF type in the same
way as objects of SEQUENCE OF type, i.e., referring to the components with number i always means a reference to the
ith field as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with the index i will always return the same
value. There is no change of order of the elements in a SET OF by any operation in TTCN.

EXAMPLE 79 — Component array references:

Array_type ::= SEQUENCE OF {BOOLEAN}

102 ITU-T Rec. X.292 (05/2002)

If var2 is of ASN.1 type Array_type, then the following could be written in order to refer to the first BOOLEAN in the
sequence:

var2.[0]
varl.[1-1]

15.10.2.4 Bit references

A bit reference may be used to reference particular bits within a BITSTRING type. For this purpose, data objects of
BITSTRING type are assumed to be defined as SEQUENCE OF {BOOLEAN}. Thus, a bit reference may be constructed
using the index notation as for array references. The leftmost bit has the index zero. An expression used as an index in a
bit reference shall evaluate to a non-negative INTEGER. Alternatively, if certain bits of a BITSTRING are associated
with an identifier (named bits) then this identifier may be used to refer to the bit.

EXAMPLE 80 — Bit references:

B_type ::= BIT STRING { ack(0), poll(3) }

This defines a BITSTRING type B_type where bit zero is called "ack" and bit three is called "poll".
Ifb_stris of ASN.1 type B_type, then the following could be written:

b_str.ack ;== TRUE

b_str.[2] := FALSE
Note that b_str.poll := TRUE and b_str.[3] := TRUE both assign the value TRUE to the "poll" bit.
15.10.3 References for data objects defined using tables

The same syntax as defined in 15.10.2.2 shall be used to construct record references to components of ASPs, PDUs, CMs
and Structured Types defined in tabular form. Chaining of ASPs, PDUs, CMs and Structured Types in tabular form
affects record references in exactly the same way as it does for those defined in ASN.1.

Where a parameter, field or element is defined to include an item which is a true substructure of a type defined in a
Structured Type table, a reference to the item in the substructure shall consist of the record reference to the parameter,
field or element followed by a dot and the identifier of the item within that Structure.

Where a Structure is used as a macro expansion, the elements in the Structure shall be referenced to as if it was expanded
into the Structure referring to it.

If a parameter, field or element is defined to be of meta-type PDU no reference shall be made to fields of that
substructure.

15.10.4 Assignments

15.10.4.1 Introduction

Test events may be associated with a list of assignments and/or a qualifier. Commas separate assignments and the list is
enclosed in parentheses.

During execution of an assignment the right-hand side shall evaluate to an element of the type of the left-hand side.

The effect of an assignment is to bind the Test Case or Test Suite Variable (or ASP parameter or PDU field) to the value
of the expression. The expression shall contain no unbound variables.

All assignments occur in the order in which they appear, that is left to right processing.

EXAMPLE 81 — Use of assignments with event lines:

X:=1)
Y:=2)
LIA (Y:=0, X:=Y, A.fieldl:=y)
L?B (Y:=B.field2, X:=X+1)

ITU-T Rec. X.292 (05/2002) 103

When PDU A is successfully transmitted the contents of the Test Case Variables X and Y will be zero, and field1l of
PDU A will also contain zero. Upon receipt of PDU B the Test Case Variable Y would be assigned the contents of field2
from PDU B and the Test Case Variable X would be incremented.

15.10.4.2 Assignment rules for string types

If length-restricted string types are used within an assignment the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated
on the right to the maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left-
aligned and padded with fill characters up to the maximum size of the destination string type.

Fill characters are:
" " (blank) for all CharacterStrings;
"0" (zero) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGS.

When an unbounded (i.e., arbitrary length) string type variable is used on the left-hand side of an assignment, it shall
become bound to the value of the right-hand side without padding. Padding is only necessary when the variable is of a
fixed length string type.

15.10.5 Qualifiers

An event may be qualified by placing a Boolean expression enclosed in square brackets after the event. This qualification
shall be taken to mean that the statement is executed only if both the event matches and the qualifier evaluates to TRUE.

If both a qualifier and an assignment are associated with the same event, then the qualifier shall appear first, any term in
it being evaluated with the values holding before execution of the assignment.

15.10.6 Event lines with assignments and qualifiers

An event may be associated with an assignment, a qualifier or both. If an event is associated with an assignment, the
assignment is executed only if the event matches. If an event is associated with a qualifier, the event may match only if
the qualifier evaluates to TRUE. If an event is associated with both, the event may match only if the qualifier evaluates to
TRUE, and the assignment is executed only if the event matches.

If a RECEIVE event is qualified and the event that has occurred potentially matches the specified event, then the
qualifier shall be evaluated in the context of the event that has occurred. If the qualifier contains a reference to ASP
parameters and/or PDU fields, then the values of those parameters and/or fields are taken from the event that has
occurred.

The rules for use of assignments within events are as follows:

a) on a SEND event all assignments are performed after the qualifier is evaluated and before the ASP or
PDU is transmitted;

b) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted;

c) on a RECEIVE event assignments are performed affer the event occurs and cannot be made to fields of
the ASP or PDU just received.

An assignment to a constraint ASP parameter, PDU field or structure element in the behaviour part will overwrite
constraint values on a SEND event line.

EXAMPLE 82 — Use of a qualified SEND event:

PARTIAL TREE
IA[X:=3]
'B

Processing these alternative SEND events the tester will send A only if the value of the variable X is 3. Otherwise it will
send B.

The OTHERWISE event may be used together with qualifiers and/or assignments. If a qualifier is used, this Boolean
becomes an additional condition for accepting any incoming event. If an assignment statement is used, the assignment
will take place only if all conditions for matching the OTHERWISE are satisfied.

104 ITU-T Rec. X.292 (05/2002)

EXAMPLE 83 — Using OTHERWISE, qualifiers and assignments:

PARTIAL TREE (PCO1:XSAP; PCO2:YSAP)

PCO1? A PASS
PCO2?B [X=2] INCONC
PCO1?C PASS
PCO2 ? OTHERWISE [X<>2] (Reason:="X not equal 2") FAIL
PCO2 ? OTHERWISE (Reason:="X equals 2 but event not B") FAIL

Assume that no event is received at PCO1. Receipt of event B at PCO2 when X=2 gives an inconclusive verdict. Receipt
of any other event at PCO2 when X<>2 results in a FAIL verdict and assigns a value of "X not equal 2" to the
CharacterString variable: Reason. If an event is received at PCO2 that satisfies neither of these scenarios then the final
OTHERWISE will match.

Events involving CMs occurring at CPs may also be associated with an assignment, a qualifier or both, in the same
manner as for PDUs, as described above.

EXAMPLE 84 — CMs associated with a qualifier:
A CP!A CM [X=2]

15.11 Pseudo-events

It is permitted to use assignments, qualifiers and timer operations by themselves on a statement line in a behaviour tree,
without any associated event. These stand-alone expressions are called pseudo-events.

The meaning of such a pseudo-event is as follows:

a) if only a qualifier is specified: the qualifier is evaluated and execution continues with subsequent
behaviour, if the qualifier evaluates to TRUE; if it evaluates to FALSE the next alternative is attempted. If
no alternative exists, then this is a test case error;

b) if only assignments and/or timer operations are specified: the assignments shall be executed from left to
right and/or the timer operations shall be executed from left to right;

¢) if assignments and/or timer operations are specified preceded by a qualifier: the qualifier shall be
evaluated first and the assignments and/or timer operations shall be evaluated only if the qualifier
evaluates to TRUE.

15.12 Timer management

15.12.1 Introduction

A set of operations is used to model timer management. These operations can appear in combination with events or as
stand-alone pseudo-events.

Timer operations can be applied to:
— an individual timer, which is specified by following the timer operation by the timer name;

— all timers, which is specified by omitting the timer name.

It is assumed that the timers used in a test suite are either inactive or running. All running timers are automatically
cancelled at the end of each Test Case. There are three predefined timer operations: START, CANCEL and
READTIMER. More than one timer operation may be specified on an event line if necessary. This is indicated by
separating the operations by commas.

When a timer operation appears on the same statement line as an event and/or a qualifier, the timer operation shall be
executed if, and only if, the event matches and/or the qualifier evaluates to TRUE.

15.12.2 The START operation

The START operation is used to indicate that a timer should start running.

The optional timer value parameter shall be used if no default duration is given, or if it is desired to assign an expiry time
(i.e., duration) for a timer that overrides the default value specified in the timer declarations.

ITU-T Rec. X.292 (05/2002) 105

Timer values shall be of type INTEGER. The test case writer shall ensure that the optional timer value parameter shall
evaluate to a positive non-zero INTEGER. A test case error shall result if a timer is started with a zero or negative value.

Any variables occurring in the expression specifying the optional timer value shall be bound. If an unbound variable is
used, this is a test case error.

When a timer duration is overridden, the new value applies only to the current instance of the timer: any later START
operations for this timer which do not specify a duration will use the duration stated in the timer declarations part.

EXAMPLE 85 — Uses of START timer:

the Ti are timer identifiers and the Vi are timer values:
START TO

START TO (VO0)

START T1, START T2 (V2)

The START operation may be applied to a running timer, in which case the timer is cancelled, reset and started. Any
entry in the timeout list for this timer shall be removed from the timeout list.

15.12.3 The CANCEL operation
The CANCEL operation is used to stop a running timer.

A cancelled timer becomes inactive. If a TIMEOUT event for that timer is in the timeout list, that event is removed from
the timeout list. If the timer name on the CANCEL operation is omitted, all running timers become inactive and the
timeout list is emptied.

Cancelling an inactive timer is a valid operation, although it does not have any effect.

EXAMPLE 86 — Some uses of CANCEL timer:
where the Ti are timer identifiers:

CANCEL

CANCEL TO

CANCEL T1, CANCEL T2

CANCEL T1, START T3

15.12.4 The READTIMER operation

The READTIMER operation is used to retrieve the time that has passed since the specified timer was started and to store
it into the specified Test Suite or Test Case Variable. This variable shall be of type INTEGER. The time value assigned
to the variable is interpreted as having the time unit specified for the timer in its declaration. By convention, applying the
READTIMER operation on an inactive timer will return the value zero.

EXAMPLE 87 — Using READTIMER:

START TimerName (TimerVal)

7EVENT A
+Tree A

?7EVENT B
+Tree B

?EVENT C
READTIMER TimerNAME(CurrTime)
+Tree C

?TIMEOUT TimerName

If EVENT C is received prior to expiration of the timer named by TimerName, the amount of time which has passed
since starting the timer will be stored in the Test Case or Test Suite Variable CurrTime. The behaviour contained in
Tree C may use the value of this Test Suite or Test Case Variable.

EXAMPLE 88 — READTIMER used in combination with other timer operations:
READTIMER T1 (PASSED_TIME), CANCEL T1
READTIMER T1 (V1), START NEW_TIMER (V1)

106 ITU-T Rec. X.292 (05/2002)

15.13 The ATTACH construct

15.13.1 Introduction
Trees may be attached to other trees by using the ATTACH construct.

Test suite and Test Case Variables are global to both the tree that does the attachment (the main tree) and the attached
tree, i.e., any changes made to variables in an attached tree also apply to the main tree. Tree attachment constructs shall
appear on a statement line by themselves.

15.13.2 Scope of tree attachment

Behaviour descriptions may contain more than one tree. However, only the first tree in the behaviour description is
accessible from outside the behaviour description. Any subsequent trees are considered to be Test Steps local to the
behaviour description, and thus not externally accessible.

It should be noted that only Test Cases are directly executable, while Test Steps are executed only if attached to a Test
Case, or to a Test Step whose point of attachment can be traced back to a Test Case (either directly or via other attached
Test Steps). Test Cases are not attachable.

Tree reference may be Test Step Identifiers or tree identifiers, where:

a) a Test Step Identifier denotes the attachment of a Test Step that resides in the Test Step Library; the Test
Step is referenced by its unique identifier;

b) a tree identifier shall be the name of one of the trees in the current behaviour description; this is
attachment of a local tree.

15.13.3 Tree attachment basics

Given a behaviour tree, it is possible to detach parts of this tree in the form of separate behaviour trees, i.e., Test Steps.
The points where a Test Step has been cut out of the original tree are indicated by the attach symbol (+) followed by the
name assigned to the Test Step.

EXAMPLE 89 — Partitioning a large tree into two smaller trees:

TOP_TREE TOP_TREE STEP
A A D
Al Al D11
D1 +STEP D12
D11 is equivalent to: C and
D12 Cl
C +STEP
Cl
D1
D11
D12

This operation can be performed not only on the main behaviour tree of the Test Case (the root tree) but also on the Test
Steps detached from it. The attached tree will either be a local tree or a member of the Test Step Library.

Tree attachment can be defined in a more general way than the mere re-insertion of complete Test Steps:

— An attached tree need not contain full paths down to the leaves of the tree it is attached to (its calling
tree). Rather, some subsequent behaviour common to all paths of the attached tree may be specified in the
calling tree, namely as behaviour subsequent to the attachment line.

— Some (even top level) lines of the attached Test Step may again have the form +SOME_ SUBTREE,
calling for the attachment of further Test Steps.

— Attached Test Steps may be parameterized.

ITU-T Rec. X.292 (05/2002) 107

15.13.4 The meaning of tree attachment

The following list defines the tree attachment execution semantics:

108

a)

The attachment line (e.g., +STEP) in the behaviour tree (e.g., TOP_TREE) is formally one (e.g., Ai) in an
ordered set of alternatives:

(Al, ..., Ai, ..., An)

Attaching STEP in this position means expanding the TOP_TREE by inserting the Test Step STEP's top
alternatives, e.g., (B1, ..., Bm) into this sequence, yielding a new sequence:

(Al, ..., A(i-1), BI, ..., Bm, A(i+1), ..., An)

of alternatives. Any subsequent behaviour to the Bs will be attached together with them.

EXAMPLE 90 — Expansion of a Test Step:

TOP_TREE STEP TOP_TREE
A Bl A
Al Bl11 Al
+STEP B2 Bl
A3 and is equivalent to: B11
B2
A3

b) Any behaviour subsequent to the +STEP line in the tree will become behaviour subsequent to all the

leaves of the attached STEP expanded into the tree;

EXAMPLE 91 — Subsequent behaviour to an ATTACH:

TOP_TREE STEP TOP_TREE
A DI A
+STEP D11 Dl
B D2 D11
and is equivalent to: B
D2
B

When an actual parameter list is used on an ATTACH construct, then the actual parameter shall be
substituted for each corresponding formal parameter using simple textual substitution. This substitution
shall take place according to the following scoping rules:

1) Actual parameters on the ATTACH of a local tree shall be substituted for corresponding formals only
directly within that local tree.

2) Actual parameters on the ATTACH of a root tree of a Test Step are substituted for all occurrences of
the corresponding formals within the root tree and any local trees directly within the Test Step.

3) When a parameterized tree is attached:
— the number of the actual parameters shall be the same as the number of formal parameters;

— each actual parameter shall evaluate to an element of its corresponding formal parameter type;
and

— formal and actual parameters of test steps shall be used in such a way that only valid TTCN is
created by textual substitution.

ITU-T Rec. X.292 (05/2002)

EXAMPLE 92 — Substitution of parameters:

TOP_TREE (L:NSAP; U:TSAP) STEP (PCO:TSAP; X,Y:INTEGER)
L!CONreq (M:=1) and PCO?CONind (X:=Y)
+STEP (U,M.2)

TOP_TREE (L:NSAP; U:TSAP)
is equivalent to: L!CONreq (M:=1)
U?CONind (M:=2)

EXAMPLE 93 — Scoping rules for parameter substitution:

Test Step Dynamic Behaviour

Test Step Name : TEST STEP 1 (X,Y : INTEGER)
Group : TTCN_EXAMPLES/PARAMS/STEPS/
Objective : To illustrate scoping rules for parameter substitution.
Defaults
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 ?7A Al
2 + TEST _STEP_2 (X)
+ LOCAL (5)

LOCAL (F : INTEGER)
4 'B Bl
5 (TC_VAR=F+Y) PASS

Detailed Comments: When TEST STEP 1 is attached by a calling tree, all occurrences of the formal parameters X and Y within
the entire Test Step (including within the local tree LOCAL) will be replaced with the actuals provided. Note that formals X and Y
are not automatically substituted with actuals within TEST STEP_2. However, the actual parameter value for formal X is
substituted in the ATTACH construct "+TEST_STEP_2 (X)". This results in the substitution of the actual parameter value X (in
TEST _STEP 1) for whatever formal parameter appears in the declaration of TEST STEP_2. Finally, note that actual parameter
(constant) 5 is substituted for formal "F" when the tree LOCAL is attached. This substitution takes place only within the local tree.

15.13.5 Passing parameterized constraints

Constraints may be passed as parameters to Test Steps. If the constraint has a formal parameter list then the constraint
shall be passed together with an actual parameter list. The actual parameters of the constraint shall already be bound at
the point of attachment.

ITU-T Rec. X.292 (05/2002) 109

EXAMPLE 94 — Passing a parameterized constraint:

Suppose that the constraint C1 has a single formal parameter of type INTEGER. TOP_TREE attaches STEP and
passes C1 as a parameter. Note that the constraints reference in STEP is not parameterized:

TOP_TREE STEP (PARA:A_PDU)

+ STEP (C1(3)) ! A_PDU PAR

15.13.6 Recursive tree attachment

As tree attachment works recursively (STEP may contain a +SOME_OTHER TREE line) the tree expansion semantics
may never lead to a tree free of attachment lines.

EXAMPLE 95 — A legal recursive tree attachment:

TOP_TREE STEP TOP_TREE
A C A
+ STEP + TOP_TREE one expansion C
B and D is equivalent to : + TOP_TREE
B
D
B

A tree shall not attach itself, either directly or indirectly, at its top level of indentation.

NOTE - It is unnecessary to expand either any Test Step that will not be executed, or any alternatives beyond the current level
until an alternative from the current level has been selected.

EXAMPLE 96 — An illegal recursive tree attachment:

TOP_TREE STEP TOP_TREE
A C A
+ STEP D one expansion C
B and + TOP_TREE is equivalent to : D
B
+ TOP_TREE
B

15.13.7 Tree attachment and Defaults

The expansion of Defaults in a tree shall be completed before this tree is attached anywhere (see 15.18.5).

NOTE — Special care has to be taken where both tree attachment and Defaults are used in a behaviour description.

15.14 Labels and the GOTO construct

A label may be placed in the labels column on any statement line in the behaviour tree.

NOTE 1 — Whenever an entry is executed in the behaviour tree for which a label is specified, that label should be recorded in the
conformance log in such a way that it can be associated with the record of the execution of that entry.

110 ITU-T Rec. X.292 (05/2002)

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with the first of a set of
alternatives, one of which is an ancestor node of the point from which the GOTO is to be made. A GOTO shall be used
only for jumps within one tree, i.e., within a Test Case root tree, a Test Step tree a Default tree or a local tree. As a
consequence, each label used in a GOTO construct shall be found within the same tree in which the GOTO is used. No
GOTO shall be made to the first level of alternatives of local trees, Test Steps or Defaults.

A GOTO shall not refer to a label prior to an ACTIVATE construct which is an ancestor node of the GOTO.

A GOTO shall be specified by placing an arrow (->) or the keyword GOTO, followed by the name of the label, on a
statement line of its own in the behaviour tree.

A label shall be unique within a tree. If a GOTO is executed, the Test Case shall proceed with the set of alternatives
referred to by the label.

GOTOs shall always be unconditional and therefore always execute.

NOTE 2 — A Boolean expression may be placed as the immediate ancestor of a GOTO to gain the effect of a conditional jump.

EXAMPLE 97 — Use of GOTO:

Test Case Dynamic Behaviour
Test Case Name : GOTO_EX1
Group : TTCN_EXAMPLES/GOTO_EXAMPLEL/
Purpose : To illustrate use of labels and GOTO.
Defaults
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 LA 1A Al
2 LB ?B Bl
3 LB2 + B-tree
4 LC ?7C Cl
5 LD [D=1]
6 GOTO LA
7 LE [E=1]
8 LF 'F F1 FAIL
Detailed Comments: This example shows a jump to LA. From the same position in that tree it would also be allowed to jump to
LB or LD, but it would not be allowed to jump to LB2 or LF (because the set of alternatives does not contain an ancestor node of
the point from which the jump is made) nor to LC or LE (because these are not the first of a set of alternatives).

15.15 The REPEAT construct
This clause describes a mechanism to be used in behaviour descriptions for iterating a Test Step a number of times.

The tree reference shall be a reference to either a local tree or a Test Step defined in the Test Step Library. For the rules
of attachment see 15.13. The REPEAT construct has the following meaning: first the tree, referred to by the tree
reference, is executed. Then, the qualifier is evaluated. If the qualifier evaluates to TRUE, execution of the REPEAT
construct is completed. If not, the tree is executed again, followed by evaluation of the qualifier. This process is repeated
until the qualifier evaluates to TRUE.

The REPEAT construct can always be executed and should be the last alternative of a series of TTCN statements at the
same level of indentation, as allowed by 15.9.5.3 a).

NOTE — The REPEAT construct is recommended, if applicable, instead of use of GOTO.

ITU-T Rec. X.292 (05/2002) 111

EXAMPLE 98 — Use of REPEAT:

Test Case Dynamic Behaviour
Test Case Name : RPT _EX1
Group : TTCN_EXAMPLES/REPEAT _EXAMPLE!/
Purpose : To illustrate use of REPEAT
Defaults
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 (FLAG:=FALSE)
2 1A Al
3 REPEAT STEP! UNTIL [FLAG]
4 'D D1 PASS
STEP1
5 ? B (FLAG:=TRUE) Bl
6 ? C (FLAG:=FALSE) Cl
Detailed Comments: This example describes a test that is capable of receiving an arbitrary number of C events at the lower tester
PCO, until the awaited message B is received.

15.16 The Constraints Reference

15.16.1 Purpose of the Constraints Reference column

This column allows references to be made to a specific constraint placed on an ASP, PDU or CM. Such constraints are
defined in the constraints part (see clause 12, 13 and 14). The constraints reference shall be present in conjunction with
SEND, IMPLICIT SEND and RECEIVE. A constraints reference is optional if an ASP or CM has no parameters or if a
PDU has no fields. It shall not be present with any other kind of TTCN statement.

The entry Constraints Reference column may be an actual constraint reference, the AnyValue symbol ("?"), or a formal
parameter whose actual parameter shall be a constraint reference or the AnyValue symbol. If AnyValue is used in place
of a constraint reference it means a "don't care" constraint, equivalent to a constraint with AnyOrNone ("*") in every
parameter, field or element.

EXAMPLE 99 — A constraint reference without a parameter list:

N_SAP? CR_PDU CRI

15.16.2 Passing parameters in Constraint References

A constraint reference may have an optional parameter list to allow the manipulation of specific constraint values from
the behaviour tree.

The actual parameter list shall fulfil the following:
— the number of actual parameters shall be the same as the number of formal parameters; and

— each actual parameter shall evaluate to either a value of its corresponding formal type or a matching
symbol that can match a value of that formal type.

112 ITU-T Rec. X.292 (05/2002)

If a constraint is passed as an actual parameter, and that constraint is declared with a formal parameter list, then the
constraint shall also have a (possibly nested) actual parameter list. All variables appearing in the parameter list shall be
bound when the constraint is used. If an unbound variable is used then this is a test case error.

EXAMPLE 100 — A constraints reference with a parameter list:

N_SAP? N_DATAreq DI1(P1,CR1(P2))

Where D1 is a constraint on N DATAreq with two parameters (actual parameters P1 and CR1), and CR1 is a constraint
with one parameter (actual parameter P2).

15.16.3 Constraints and qualifiers and assignments

If an event is qualified and also has a constraints reference, this shall be interpreted as: the event matches if, and only if,
both the qualifier and the constraint hold.

If an event is followed by an assignment and has a constraints reference and/or a qualifier, then this shall be interpreted
as: the assignment is performed if, and only if, the event occurs according to the definition given above.

15.17 Verdicts

15.17.1 Introduction

Entries in the verdict column in Dynamic Behaviour tables shall be either:
— apreliminary result, which shall be given in parentheses;

— or an explicit final verdict.

An entry, of either type, shall not occur on an empty line, or on the following TTCN statements:
a) an ATTACH construct;
b) aREPEAT construct;
¢) aGOTO;
d) an IMPLICIT SEND.

NOTE — During Test Case execution, whenever an entry in a behaviour tree occurs for which there is a corresponding entry in the
verdict column of the abstract Test Case, that verdict column information is intended to be recorded in the conformance log in
such a way that it is associated with the record of that entry in the behaviour tree.

15.17.2 Preliminary results

A predefined variable called R, of the predefined type R_TYPE, is available to each Test Case to store any intermediate
results. These values are predefined identifiers and as such are case sensitive.

R may be used wherever other Test Case Variables may be used, except that it shall not be used on the left-hand side of
an assignment statement. Thus, it is a read-only variable, except for the changes to its value caused by entries in the
verdict column (as specified below).

If a preliminary result is to be specified in the verdict column it shall be one of the following:
a) (P) or (PASS), meaning that some aspect of the test purpose has been achieved;

b) () or INCONC), meaning that something has occurred which makes the Test Case inconclusive for some
aspect of the test purpose;

¢) (F) or (FAIL), meaning that a protocol error has occurred or that some aspect of the test purpose has
resulted in failure.

NOTE 1 — PASS or P, FAIL or F and INCONC or I are keywords that are used in the verdicts column only. The
predefined identifiers pass, fail, inconc and none are values that represent the possible contents of the predefined
variable R. These predefined identifiers are to be used for testing the variable R in behaviour lines only.

ITU-T Rec. X.292 (05/2002) 113

Whenever a preliminary result is recorded, because the corresponding entry in the behaviour tree is executed, then the

value of the predefined Test Case Variable R shall be changed according to Table 7:

Table 7/X.292 — Calculation of the variable R

Current Entry in verdict column
value of R (PASS) (INCONC) (FAIL)
none pass inconc fail
pass pass inconc fail
inconc inconc inconc fail
fail fail fail fail

NOTE 2 — Thus, the order of precedence (lower — higher) is: N, P, I, F. Even if R has value fail it can be useful to record a
preliminary result of P or I in order to record in the conformance log that a P or I is appropriate for some aspect of the test purpose,
despite the fact that this will not change the value of R.

15.17.3 Final verdict

If an explicit final verdict is to be specified in the verdict column, it shall be one of the following:
a) P or PASS, meaning that a pass verdict is to be recorded;
b) Ior INCONC, meaning that an inconclusive verdict is to be recorded;
c) For FAIL, meaning that a fail verdict is to be recorded;

d) the predefined variable R, meaning that the value of R is to be taken as the final verdict, unless the value
of R is none in which case a test case error is recorded instead of a final verdict.

Table 8/X.292 — Calculation of the final verdict R

Current Entry in verdict column
value of R PASS INCONC FAIL R
none pass inconc fail *error™®
pass pass inconc fail pass
inconc *error* inconc fail inconc
fail *error* *error* fail fail

Whenever, during execution of a Test Case, an explicit final verdict is specified, then this terminates the Test Case. For
compliance with ITU-T Rec. X.291, an explicit final verdict should be specified only if the Test Case has returned to a
suitable stable testing state (e.g., the idle testing state).

NOTE 1 — The termination of the Test Case caused by the specification of an explicit final verdict is necessary, for example, if the
stable state is reached in an attached Test Step when subsequent behaviour is specified in the calling tree.

If the leaf of the behaviour tree is reached without an explicit final verdict being specified, then the final verdict is
determined as for case d) above (i.e., as if R had been put in the verdict column).

If an explicit final verdict other than R is to be recorded, then that verdict shall be compared with the value in R to
determine whether or not they are consistent. If R is fail then a final verdict of PASS or INCONC shall be regarded as
inconsistent; if R is inconc then a final verdict of PASS shall be regarded as inconsistent. If there is one of these
inconsistencies, then it is a test case error.

NOTE 2 - In such a case, "Test Case Error" should be recorded in the conformance log.

15.17.4 Verdicts and OTHERWISE

An OTHERWISE statement shall not lead to a PASS verdict. It should lead to a FAIL verdict, because the OTHERWISE
could match an invalid test event.

114 ITU-T Rec. X.292 (05/2002)

15.17.5 Verdict assignment in concurrent TTCN

In concurrent TTCN, the final verdict is assigned by the MTC, either explicitly in the verdict column or implicitly as a
consequence of MTC termination. Preliminary test results are maintained in the global result variable, which is
accessible to the MTC as the test case variable R. The global result variable is updated whenever a preliminary result or
verdict is recorded in the verdict column by a matched MTC behaviour line. If the MTC terminates without assigning an
explicit verdict, then the verdict shall be determined as if R had been placed in the verdict column (15.17.3 d).

In addition, each PTC shall record at least one preliminary result. This preliminary result is maintained in its local result
variable, which is accessible to the PTC as its test case variable R. When a preliminary result is assigned by a PTC, by
any entry in the verdict column of a matched PTC behaviour line (whether or not the entry is in parentheses), both its
local result variable and the global result variable are automatically updated using the algorithm specified in 15.17.2. In a
PTC, an entry in the verdict column without parentheses around it is not a final verdict, but shall cause termination of the
PTC if that behaviour line matches.

Termination of the MTC before termination of all PTCs shall result in a test case error.

When the MTC uses the R variable in a Boolean expression or an assignment, it accesses the global result variable.
When a PTC uses the R variable in a Boolean expression or an assignment, it accesses its local result variable. The MTC
may also access a local result variable of its own by using the predefined test case variable MTC R rather than R.
MTC R is of predefined type R TYPE. MTC R is updated whenever a preliminary result is recorded in the verdict
column by a matched MTC behaviour line, but is unaffected by the preliminary results of PTCs.

The value of a PTC's local result variable can be communicated to another PTC only via CMs. The value of the MTC's

local or global result variables can be communicated to a PTC only via CMs.

15.18 The meaning of Defaults

15.18.1 Introduction

In many cases Default behaviour will be used to emphasize a set of interesting paths through a test by declaring the less
interesting common alternatives (+ their subsequent behaviour) as Default behaviour.

The same effect, though less concisely, would be achieved by Test Step attachment (e.g., +DEFAULT) as an additional
general last alternative. As opposed to tree attachment, Default behaviour expands into many points of the tree it is
associated with. This property calls for a careful use of Defaults.

EXAMPLE 101 — Identifying a Default tree:

TOP_TREE TOP_TREE TOP_TREE
A A Default: COMMON
Al Al A
All All Al
C + COMMON All
D A2 A2
A2 + COMMON B
C B Bl
D Bl
B +COMMON
Bl +COMMON COMMON
C C
D COMMON D
C C
D D

No Default behaviour shall be specified to a Default behaviour, i.e., a Default may not have Default behaviour itself.
Tree attachments shall not be used in Default behaviour trees, i.e., Default behaviour trees shall not attach Test Steps.
Test Cases or Test Steps shall not be referred to as Defaults.

For the execution of a Test Case it is not necessary to expand Defaults everywhere in all the trees referring to them. This
can be seen from an operational description of the meaning of Defaults: in attempting to match a sequence of alternatives
(which may need repeated attempts), each time they all failed to match, the first level of alternatives of the Default
behaviour are attempted as well. If none of these matches either, the sequence is retried with the new states of timers and
queues at all PCOs concerned. If there is a match in the Default, the Default behaviour is pursued at that point.

ITU-T Rec. X.292 (05/2002) 115

To ensure that no subsequent behaviour will occur following the execution of a Default behaviour, the execution of a leaf
of a Default tree, other than a RETURN statement, shall cause the termination of the test case. In order to accomplish
this termination, in a Default tree, every leaf which has no verdict or preliminary result in the verdict column is implicitly
provided with a verdict column entry of "R", and every leaf which has a preliminary result in the verdict column has that
preliminary result implicitly transformed into a final verdict.

15.18.2 Default References

Test Case and Test Step behaviours reference a list of Default behaviours in the Default Library through the Default
entry in the table header.

Each reference in this list locates a Default by its unique identifier. The Defaultldentifier shall be a reference to a Default
defined in the Default Library.

Defaults can be parameterized. The actual parameter list shall fulfil the following:
a) the number of actual parameters shall be the same as the number of formal parameters;
b) each actual parameter shall evaluate to an element of its corresponding formal type; and

c) all variables appearing in the parameter list shall be bound when the constraint is invoked.

EXAMPLE 102 — Default reference:

Test Case Dynamic Behaviour
Test Case Name : DEF EX1
Group : TTCN_EXAMPLES/DEFAULT_EXAMPLEL/
Purpose : To illustrate the use of Defaults.
Defaults : DEF1 (L)
Comments : The tree of example 69 can be split into this Test Case with the Default behaviour DEF1.
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 L ! CONNECTrequest CR1 Request ...
2 L ? CONNECTconfirm CC1 ... Confirm
3 L ! DATArequest DTRI1 Send Data
4 L ? DATAindication DTI1 Receive Data
5 L ! DISCONNECTrequest DSCR1 PASS Accept
Detailed Comments:
Default Dynamic Behaviour
Default Name : DEF1 (X : XSAP)
Group : TTCN_EXAMPLES/DEFAULTS LIB/DEFAULT 1/
Objective : Illustration of a simple Default
Defaults
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 X ? DISCONNECTindication DSC2 INCONC Premature

NOTE - Syntactically, the Default behaviour of the second of the two tables in the above example attaches
X?DISCONNECTindication as an alternative to each of the L! and L? statements in the first table. However, attachment of the
Default tree as an alternative to an L! statement that always succeeds is meaningless.

116 ITU-T Rec. X.292 (05/2002)

15.18.3 The RETURN statement

The RETURN statement is an extension of the Default behaviour description capabilities. A RETURN statement shall
only be used in a Default tree.

When the Default expansion of a tree is performed, execution of a RETURN statement will cause processing to continue
at the first alternative in the set of alternatives that caused the Default behaviour to be attempted.

15.18.4 The ACTIVATE statement

The ACTIVATE statement allows the activation of one set of Default behaviours. Instead of being implicitly active for
the duration of the test case, defaults may be activated selectively by the ACTIVATE statement. Default behaviour thus
activated is attempted in the order in which it is specified by the ACTIVATE, e.g., ACTIVATE (Def 1, Def 2) will
cause Def 1 to be executed before Def 2 when default behaviour is needed.

The default behaviour specified in an ACTIVATE statement overrides any active default behaviour, including default
behaviour specified in a test case or test step header.

An ACTIVATE with an empty default reference list, i.e., ACTIVATE(), deactivates all default behaviour.

15.18.5 Defaults and tree attachment

Whenever tree attachment is used it is important to have a clear understanding of how Defaults apply both to the calling
tree and to the attached Test Step. In order to avoid hidden side-effects the Defaults that apply within an attached Test
Step are defined to be those specified in the table that defines that Test Step. Thus, if the Test Step is defined in the Test
Step Library, then the Defaults that apply are specified in header of the Test Step behaviour table. Alternatively, if the
Test Step is defined locally in the same behaviour table as the calling tree, then the same Defaults apply to both the
calling tree and the attached Test Step.

In order to avoid multiple insertions of Defaults within a set of alternatives, the Default specified for a particular tree do
not apply to the top level of alternatives of that tree unless the tree is the root tree of a Test Case.

In order to generate a correct expansion of a tree it is necessary to expand the Defaults both:
a) before the tree is expanded as an attached tree; and

b) before any of the tree's attached Test Steps are expanded.
The expansion of Defaults is thus local to a single tree and comprises the attachment of the Default tree to the bottom of
every set of alternatives within the tree (except the top set of alternatives for any tree other than the root tree of a Test
Case).

Default expansion rules hold equally in the case where a set of alternatives contains an OTHERWISE event.

EXAMPLE 103 — Locality of a Default against a Test Step:

TOP_TREE STEP TOP_TREE
A B A
+ STEP C B
D E C

STEP E
Default: STEP_DEF D
B

C

STEP_DEF
E

ITU-T Rec. X.292 (05/2002) 117

EXAMPLE 104 — Locality of a Default against a calling tree:

TOP_TREE TOP_TREE TOP_TREE
Default: TOPDEF A A
A + STEP B

+ STEP E C
E E
TOPDEF E
E

STEP

EXAMPLE 105 — A case of cyclic tree attachment:

STEP1 STEP1 STEP1
Default: DEF1 A A
A + STEP2 C

+ STEP_2 B A

B El + STEP2

B
DEF1 STEP2 El
El C D
+ STEP1 E2

STEP2 D B
Default: DEF2 E2 El
C

+ STEP1

D
DEF2
E2

NOTE — Such cyclic attachments are discouraged.

15.18.6 Tree Attachment, Defaults, Activate and Return

If the ACTIVATE operation is used within a test case, the semantics of defaults and tree attachment can only be
described dynamically rather than statically. Indeed, the operational semantics of defaults in Annex B are specified in
terms of dynamic tree expansion, one level at a time.

In this dynamic semantic model, the specification of a list of defaults in the header is equivalent to prefixing the
behaviour tree with an ACTIVATE of that list of default trees. In a test step, placing a default list in the header is
equivalent to placing an ACTIVATE of that list of default trees between each alternative in the first level of alternatives
and its subsequent behaviour. If a test step is attached which has no defaults specified in the header, then the implied
ACTIVATE operations have no parameters and hence deactivate all defaults.

Since behaviour subsequent to a tree attachment takes its defaults from the context of the calling tree rather than attached
test step, tree attachment implies the insertion of an ACTIVATE after every non-terminating leaf node (i.e., one which
does not assign a verdict) to restore the defaults to those of the context in which the attachment was made. In the case of
the leaf node being a RETURN, this implies ACTIVATE has to come before the RETURN to ensure that it takes effect
before jumping back into the outer context.

The effect of a combination of defaults and tree attachment is illustrated by the example test case shown in Example 106.

118 ITU-T Rec. X.292 (05/2002)

EXAMPLE 106 — Example test case X _Def1 to illustrate the meaning of defaults:

Test Case Dynamic Test Step Dynamic Test Step Dynamic
Behaviour Behaviour Behaviour
Test Step Name : X Defl Test Step Name: T1 Test Step Name: T2
Group : Group : Group :
Purpose Objective Objective
Defaults : D1,D2 Defaults : D3, D4 Defaults
L Behaviour Cref v L Behaviour Cref A\ L Behaviour Cref A\
Description Description Description
X A D
+T1 B E
Y C F
V4
+T2

This example test case is equivalent to the one shown in Example 107, in which the list of defaults in the test case header
has been replaced by an ACTIVATE of the same list of defaults as the first TTCN statement of the behaviour tree.

EXAMPLE 107 — Alternative specification of example test case X Def1 using ACTIVATE:

Test Case Dynamic Behaviour

Test Step Name : X Defl
Group :
Purpose

Defaults

L Behaviour Cref \4
Description

ACTIVATE(D1,D2)
X
+T1
Y

+T2

The processing of an ACTIVATE sets the current default context. Progression to the next level of alternatives attaches
the list of default trees in the current default context to the next level of alternatives.

Thus, the evaluation of the example test case shown in example 107 could progress as illustrated in Figure 8. Firstly, the
ACTIVATE(D1,D2) statement is evaluated to set the default context to D1 and D2. Then, assuming that X matches, D1
and D2 are attached at the same level of alternatives as T1. When T1 is then expanded, ACTIVATE(D3,D4) is inserted
after the first level of alternatives of that test step, and ACTIVATE(D1,D2) is inserted after the two leaf nodes in order to
restore the default context before the subsequent behaviour, Y, is reached. Assuming that A then matches, the defaults
D1 and D2 are attached redundantly at the same level of alternatives as the ACTIVATE; this is because the current
default context is always appended to the next level of alternatives, indiscriminately, even if the next level of alternatives
consists of a construct or pseudo-event which always matches. When the new ACTIVATE statement is evaluated, the
default context is changed to that applicable to test step T1. Then if B matches, the evaluation progresses to the
ACTIVATE which restores the default context back to that applicable to the root tree.

ITU-T Rec. X.292 (05/2002) 119

120

+T1 +T1
Y Y
z +D1
12 X matches +D2
+D1
+D2
Default Context = D1, D2 Default Context = D1, D2
A ACTIVATE(D3,D4)
ACTIVATE(D3,D4) B
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) v
Y C
Expand +T1 C A matches ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Y
oY D1
+D2 D2
Default Context = D1, D2 Default Context = D1, D2
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Y
Y B matches +D3
C +D4
ACTIVATE(D1,D2)
v Default Context = D3, D4
Evaluate +D3
Evaluate
ACTIVATE
CTIv +D4 ACTIVATE
Default Context = D3, D4 Y
+D1
+D2

Default Context = D1, D2

X.292_F08

Figure 8/X.292 — Possible progression of evaluation of example test case X_Defl

ITU-T Rec. X.292 (05/2002)

Example 108 gives another example test case, this one mixing defaults specified in headers with an explicit ACTIVATE
statement and tree attachment.

EXAMPLE 108 — Example test case X Def2 to illustrate the meaning of defaults and ACTIVATE:

Test Case Dynamic Behaviour Test Step Dynamic Behaviour
Test Step Name : X Def2 Test Step Name: T
Group : Group :
Purpose : Objective
Defaults : D1 Defaults : D3
L Behaviour Cref \% L Behaviour Cref \%
Description Description
X Y
ACTIVATE(D2) Z
+T
S
+T
S

The progression of the evaluation of this test case is illustrated in Figure 9. This shows the progression of the evaluation
through the two main paths of the test case, showing that the default context applicable to the first S is determined by the
ACTIVATE, whereas the default context applicable to the second S is determined by the defaults specified in the test
case header; neither of these default contexts for the S statements is affected by the preceding tree attachments.

Figure 9 begins by showing the effect of expanding the attachment of T at the first level of alternatives plus the
appending of the initial defaults. If X matches, the evaluation progresses via the ACTIVATE(D2) to the second
occurrence of the attachment of T, with the default context changed to D2 and the attachment of D2 appended at the
same level of alternatives as T. T is then expanded, remembering to insert the two ACTIVATE statement to set the test
step default context and then restore the root tree default context. These changes in the default context are then shown in
the next two stages of the evaluation, assuming that first Y matches and then Z. The result is S with an alternative of the
attachment of D2 being evaluated in default context D2.

The alternative path shown in Figure 9 starts with Y matching instead of X. This causes the progression into default
context D3, whereupon if Z matches, the default context is restored to be D1. Thus, what is reached down this path of the
progression is S with an alternative of the attachment of D1 being evaluated in default context D1.

The progression of evaluation of example test cases in Figures 8 and 9 has not shown the expansion of the default trees.
If when the default tree is expanded, it is found that the default tree or any associated local tree contains a RETURN
construct, this is equivalent to a label being placed at the head of the current set of alternatives with every RETURN
construct being replaced by an ACTIVATE, to restore the default context of the calling tree, followed by a GOTO
construct to go to that new label.

All leaf nodes, other than RETURN, of a default behaviour tree in which all local subtrees have been attached have no
subsequent behaviour and so they shall either set a verdict or result in a test case error.

To illustrate this, the example test case given in Example 109 will be used.

ITU-T Rec. X.292 (05/2002) 121

122

X
ACTIVATE(D2)

+T

S
Y

ACTIVATE(D3)
V4
ACTIVATE(D1)
S

+Dl1

Default Context = D1

Y matches
and evaluate
ACTIVATE

Z

ACTIVATE(D1)
S

+D3

Default Context = D3

Z matches
and evaluate
ACTIVATE

+D1

Default Context = D1

X matches
and evaluate
ACTIVATE

A 4

+T

+D2

Default Context = D2

Expand T

Y
ACTIVATE(D3)
z
ACTIVATE(D2)
S

+D2

Default Context = D2

Y matches
and evaluate
ACTIVATE

ACTIVATE(D2)
S
+D3

Default Context = D3

Z matches
and evaluate
ACTIVATE

+D2

Default Context = D2

X.292_F09

Figure 9/X.292 — Possible progression of evaluation of example test case X-Def2

ITU-T Rec. X.292 (05/2002)

EXAMPLE 109 — Example test case X Def3 to illustrate the meaning of defaults and RETURN:

Test Case Dynamic Behaviour Default Dynamic Behaviour
Test Step Name : X Def3 Default Name : DI
Group : Test Step Name :
Purpose : Objective
Defaults : D1
L Behaviour Cref \% L Behaviour Cref \%
Description Description
X C
Y P D
RETURN
E F

The progression of the evaluation of this example test case is illustrated in Figure 10. Firstly, the default tree D1 is
attached at the first level of alternatives of the root tree. D1 is then expanded. Since D1 contains a RETURN statement,
this is a fairly complex expansion. The top event in the level of alternatives at which the attachment occurs is labelled
with a unique label, L. Since the attached tree is a default, its own internal default context is empty because defaults do
not have their own defaults, and therefore an ACTIVATE with no arguments is inserted after the first level of
alternatives of the attached tree. In addition the RETURN statement is replaced by an ACTIVATE to restore the default
context to D1, followed at the next level by GOTO L. Now, when this expanded tree is evaluated, if C matches, it
progresses to the ACTIVATE() statement together with the redundant attachment of the default context, D1. The effect
of evaluating the ACTIVATE() is to empty the default context. Then, if D matches, the ACTIVATE(D1) is evaluated to
restore the default context to D1. This leads to the GOTO statement together with another redundant attachment of the
default context D1. The evaluation of the GOTO then returns the processing to the state in which the label L was added.
Evaluation will continue to cycle round this loop until either X, followed by Y, matches for a pass, or C, followed by E,
matches for a fail.

15.18.7 Defaults and CREATE

Default behaviour is not inherited by test steps which are used in a CREATE operation, i.e., test steps which execute
their behaviour description in parallel with the MTC. Thus, the scope of Default behaviour in concurrent TTCN is
always local to the MTC or a PTC.

In instances when a test step is used in a CREATE operation, the Default behaviour specified in the test step header shall
be applied at the first level of indentation. This use of Defaults is consistent with the application of Defaults in test cases.

15.18.8 Defaults and CMs

Default behaviour is applied to every set of alternatives, even those which receive only CMs. This may cause PDUs
which arrive prior to receipt of the executed CM, or PDUs which are already in the PCO queue but not yet received, to
be removed from the PCO queue. To prevent the removal of PDUs from the PCO queue, the Default should be
deactivated, using the ACTIVATE() construct as the event immediately preceding the set of alternatives which receive
only the CM(s).

ITU-T Rec. X.292 (05/2002) 123

X
Y
+D1

Default Context = D1

Expand D1, inserting ACTIVATE()
and replacing RETURN with a
label, ACTIVATE(D1) and a GOTO

L: X

Y

C -
ACTIVATE() Execute GOTO GOTOL
D (i.e. Retumto L) +D1
ACTIVATE(D1)
E GOTOL Default Context =D1
y
Evaluate
Default Context = D1 ACTIVATE
ACTIVATE(DI])
C matches GOTOL
. Default Context = empty
ACTIVATE() D matches
D
ACTIVATE(DI1) D
GOTOL »| ACTIVATE(DI)
+]])5 1 Evaluate GOTOL
ACTIVATE E
Default Context =D1 Default Context = empty

X.292_F10

Figure 10/X.292 — Possible progression of evaluation of example test case X Def3

124 ITU-T Rec. X.292 (05/2002)

16 Page continuation

16.1 Page continuation of TTCN tables

When any TTCN table is too long to fit on a single page, the following mechanism shall be used:
a) the words "Continued on next page" shall be printed after the table line where the split occurs;

b) the words "Continued from previous page" shall be printed before the continued table on the next page.

Tables may be split at any location, i.e., in their header, body, or footer section. In all cases, the sections title (e.g.,
column headers), shall be repeated on the next page. The complete header may or may not be repeated.

EXAMPLE 110 — A continued Test Suite Parameters table:

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question aa
PAR2 BOOLEAN PICS question bb
PAR3 IAS5String PIXIT question cc
Continued on next page pagen
Continued from previous page pagen+1

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PAR4 BOOLEAN PICS question dd
PARS HEXSTRING PICS question ee

16.2 Page continuation of dynamic behaviour tables

When it is necessary to continue a dynamic behaviour table, then either of the following two mechanisms can be used:
a) modularization,

where some part of the behaviour of the tree is specified as a library (non-local) Test Step, thereby
modularizing the tree and reducing the amount of behaviour for the current proforma to that which will fit
on a single page; or

b) page continuation mechanism,

where, in the case of a dynamic behaviour table, in order to aid alignment of indentation levels, the
following additional information shall be presented:

1) the level of indentation (enclosed in square brackets) of the last TTCN statement before the page split
occurs, shall be printed before the words "Continued on next page";

2) on the continued page, the level of indentation (enclosed in square brackets) of the first TTCN
statement in the continued table, shall be printed after the words "Continued from previous page".

It may be necessary in the case of lengthy Test Cases to indent to a different level than the stated one. In such cases the
stated level of indentation enclosed in square brackets will be aligned with the chosen indentation of the first statement
line in the continued table. To further aid alignment of indentation levels, additional indications of indentation levels may
also be given.

ITU-T Rec. X.292 (05/2002) 125

Annex A

Syntax and static semantics of TTCN

(This annex forms an integral part of this Recommendation)

A.l Introduction

This annex defines the syntax and the static semantics of TTCN. There are two forms of TTCN, a graphical form
(TTCN.GR) and a machine processable form (TTCN.MP). For the human user the graphical form of TTCN, the
TTCN.GR, takes advantage of an easily understood visual interpretation. However, TTCN.GR does not readily lend
itself to machine processing. The TTCN.MP addresses this problem and serves the following purposes:

a) to provide a formal syntax for TTCN in BNF;
b) to act as a transfer syntax;
c) to ease automated derivation of ETSs from ATSs;

d) other machine processing.

NOTE — Automated derivation of ETSs is outside the scope of this Recommendation.

This annex also defines the static semantics for both TTCN.GR and TTCN.MP.

A2 Conventions for the syntax description

A2.1 Syntactic metanotation

Table A.1 defines the metanotation used to specify the extended form of BNF grammar for TTCN (henceforth called
BNF):

Table A.1/X.292 — The TTCN.MP syntactic metanotation

= is defined to be

abc xyz abc followed by xyz

\ alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

ab the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

In the metanotation, concatenation binds more tightly than the alternative operator. Hence "abc def | ghi jk1" is equivalent
to "(abc def) | (ghi jkI)".

A2.2 TTCN.MP syntax definitions
Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$Begin KEYWORD $End_KEYWORD
EXAMPLE A.1 —TS_PARdcls ::= $Begin_TS_PARdcls {TS_PARdcl}+ $End_TS_PARdcls
Normally, these productions contain at least one mandatory component.
Both sets of lines of a table and individual lines (i.e., sets of fields in a table) are represented by productions of the kind:
SKEYWORD ceev vue weee $SEnd_ KEYWORD
Begin does not appear in the opening keyword.

EXAMPLE A.2 — TS_PARdcl ::=$TS_PARdcl TS_PARid TS_PARtype PICS_PIXIT [Comment]
$End_TS_PARdcl

Individual fields in a line are represented by:

SKEYWORD ccce cee veue e e

126 ITU-T Rec. X.292 (05/2002)

There is no closing keyword.
EXAMPLE A.3 — TS Parlid ::= $TS_Parld TS Parldentifier
EXAMPLE A.4 — TS_Parlidentifier ::= Identifier
Sets of tables, up to and including the test suite, are represented by productions of the kind:
SKEYWORD coce cuee wue $End_KEYWORD

EXAMPLE A.5 — ASP_TypeDefs ::= SASP_TypeDefs [TTCN_ASP_TypeDefs] [ASN1_ASP_ TypeDefs]
$SEnd_ASP_TypeDefs

All other productions defining non-terminal symbols have no keywords at the beginning or the end of the right-hand
expression.

EXAMPLE A.6 — Timerldentifier ::= Identifier

When parsing TTCN.MP, any symbol not allowed within an identifier may denote the end of an identifier. In some cases
it is necessary to insert one or more separators at the end of an identifier in order to separate it from another identifier or
keyword (e.g., when an identifier is followed by a keyword such as BY or OR); the separators are Space characters, Tab
characters and Carriage Return characters.

A3 The TTCN.MP syntax productions in BNF

A3l TTCN Specification

1 TTCN_Specification ::= TTCN_Module | Suite

A.3.2 TTCN Module

2 TTCN_Module ::= STTCN_Module TTCN_Moduleld TTCN_ModuleOverviewPart
[TTCN_ModuleImportPart] [DeclarationsPart] [ConstraintsPart] [DynamicPart] $End_TTCN_Module
TTCN_Moduleld ::=$TTCN_Moduleld TTCN_ Moduleldentifier

4 TTCN_Moduleldentifier ::= Identifier

w

A.3.2.1 TTCN Module Overview Part

5 TTCN_ModuleOverviewPart ::= STTCN_ModuleOverviewPart TTCN_ModuleExports
[TTCN_ModuleStructure] [TestCaselndex] [TestStepIndex] [Defaultindex]
$End_TTCN_ModuleOverviewPart

A.3.2.1.1 TTCN Module Exports

6 TTCN_ModuleExports ::= $Begin_ TTCN_ModuleExports TTCN_ Moduleld [TTCN_ ModuleRef]
[TTCN_ModuleObjective] [StandardsRef] [PICSref] [PIXITref] [TestMethods] [Comment] ExportedObjects [Comment]
$SEnd_TTCN_ModuleExports

7 TTCN_ModuleRef ::== STTCN_ModuleRef BoundedFreeText

8 TTCN_ModuleObjective ::= STTCN_ModuleObjective BoundedFreeText

9 ExportedObjects ::= SExportedObjects {ExportedObject} SEnd_ExportedObjects

10 ExportedObject ::= $SExportedObject Objectld ObjectType [Sourcelnfo] [Comment] $End_ExportedObject

11 Objectld ::= $Objectld Objectldentifier

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[" Identifier "]"

/* STATIC SEMANTICS — The first Identifier is a NamedNumber or an Enumeration and the Identifier contained in
brackets is the name of the corresponding type. */

14 ObjectType ::= $ObjectType TTCN_ObjectType

15 TTCN_ObjectType ::= SimpleType_Object | StructType_Object | ASN1_Type_Object | TS_Op_Object |
TS Proc_Object | TS _Par_Object | SelectExpr_Object | TS _Const_Object | TS _Var_Object | TC_Var_Object |
PCO_Type_Object | PCO_Object | CP_Object | Timer_Object | TComp_Object | TCompConfig_Object |
TTCN_ASP_Type_Object | ASN1_ASP_Type Object | TTCN_PDU_Type_Object | ASN1_PDU_Type_Object |
TTCN_CM_Type_Object | ASN1_CM_Type_Object | EncodingRule_Object | EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias_Object | StructTypeConstraint_Object | ASN1_TypeConstraint_Object |
TTCN_ASP_Constraint_Object | ASN1_ASP_Constraint_Object | TTCN_PDU_Constraint_Object |
ASN1_PDU_Constraint_Object | TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object | TestCase_Object
| TestStep_Object | Default_Object | NamedNumber_Object | Enumeration_Object

16 Sourcelnfo ::= $SourceIlnfo (Sourceldentifier | ObjectDirective)

/* STATIC SEMANTICS — The Sourceldentifier is the name of the original source object . */

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

18 ObjectDirective ::= Omit | EXTERNAL

ITU-T Rec. X.292 (05/2002) 127

A.3.2.1.2 TTCN Module Structure

19 TTCN_ModuleStructure ::= $Begin_TTCN_ModuleStructure Structure&Objectives [Comment]
$End_TTCN_ModuleStructure

A3.2.2 TTCN Module Import Part

20 TTCN_ModulelmportPart ::= $TTCN_ModuleImportPart [ExternalObjects] [ImportDeclarations]
$End_TTCN_ModuleImportPart

A.3.2.2.1 External Objects

21 ExternalObjects ::= $Begin_ExternalObjects {ExternalObject}+ [Comment] $SEnd_ExternalObjects
22 ExternalObject ::= $ExternalObject ExternalObjectld ObjectType [Comment] SEnd_ExternalObject
23 ExternalObjectld ::= $ExternalObjectld ExternalObjectldentifier

24 ExternalObjectldentifier ::= Objectldentifier | TS_Opld&ParList | Consld&ParList | TestStepld&ParList

A.3.2.2.2 Import Declarations

25 ImportDeclarations ::= $ImportDeclarations {ImportsOrGroup}+ $SEnd_ImportDeclarations

26 ImportsOrGroup ::= Imports | ImportsGroup

27 ImportsGroup ::= $SImportsGroup ImportsGroupld {ImportsOrGroup}+ $SEnd_ImportsGroup

28 ImportsGroupld ::= $ImportsGroupld ImportsGroupldentifier

29 Imports ::= $Begin_Imports Sourceld [ImportsGroupRef] [SourceRef] [StandardsRef] [Comment] ImportedObjects
[Comment] $SEnd_Imports

30 Sourceld ::= $Sourceld Sourceldentifier

31 ImportsGroupRef ::= $ImportsGroupRef ImportsGroupReference

32 ImportsGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ImportsGroupldentifier "/"}

33 ImportsGroupldentifier ::= Identifier

34 SourceRef ::= $SourceRef BoundedFreeText

35 ImportedObjects ::= $ImportedObjects {ImportedObject}+ $End_ImportedObjects

36 ImportedObject ::= $ImportedObject Objectld ObjectType [Sourcelnfo] [Comment] SEnd_ImportedObject

A3.3 Test suite

37 Suite ::= $Suite Suiteld SuiteOverviewPart [ImportPart] DeclarationsPart ConstraintsPart DynamicPart $End_Suite
/* STATIC SEMANTICS — Suiteld shall be the same as the Suiteld declared in TestSuiteStructure table (Suite Structure).
*/

38 Suiteld ::= $Suiteld Suiteldentifier

39 Suiteldentifier ::= Identifier

A.3.3.1 The Test Suite Overview

40 SuiteOverviewPart::= $SuiteOverviewPart [TestSuiteIndex] SuiteStructure TestCaselndex [TestStepIndex]
[Defaultindex] [TestSuiteExports] $SEnd_SuiteOverviewPart

A.3.3.2 Test Suite Index

41 TestSuiteIndex ::= $Begin_TestSuiteIndex {ObjectInfo} [Comment] $End_TestSuiteIndex

A.3.3.2.1 The Imported Object Info

42 ObjectInfo ::= $ObjectInfo Objectld ObjectType Sourceld OrigObjectld [PageNum] [Comment] SEnd_ObjectInfo
43 PageNum ::= $PageNum PageNumber

44 PageNumber ::= Number

45 OrigObjectld ::= $OrigObjectld Objectldentifier

A.3.3.3 Test Suite Structure

46 SuiteStructure ::= $Begin_SuiteStructure Suiteld StandardsRef PICSref PIXITref TestMethods [Comment]
Structure&Objectives [Comment] SEnd_SuiteStructure

47 StandardsRef ::= $StandardsRef BoundedFreeText

48 PICSref ::= $PICSref BoundedFreeText

49 PIXITref ::= $PIXITref BoundedFreeText

50 TestMethods ::= $TestMethods BoundedFreeText

51 Comment ::= $SComment [BoundedFreeText]

52 Structure&Objectives ::= $Structure&Objectives {Structure&Objective} $End_Structure&Objectives

53 Structure&Objective ::= $Structure&Objective TestGroupRef SelExprld Objective
$End_Structure&Objective

54 SelExprld ::= $SelectExprld [SelectExprldentifier]

128 ITU-T Rec. X.292 (05/2002)

A3.34

55
56
57

58

A335

59
60

A3.3.6

61
62

A3.3.7
63

A.3.3.8
64

A3.3.9
65

Test Case Index

TestCaselndex ::= $Begin_TestCaselndex {[CollComment] Caselndex}+ [Comment] SEnd_TestCaseIndex
CollComment ::= $CollComment [BoundedFreeText]

Caselndex ::= $CaseIndex TestGroupRef TestCaseld SelExprld Description $End_Caselndex

/* STATIC SEMANTICS — Test Cases shall be listed in the order that they exist in the dynamic part. */

/* STATIC SEMANTICS — An explicit TestGroupRef shall be provided for each TestCase which belongs to a TestGroup.
*/

Description ::= $Description BoundedFreeText

Test Step Index

TestStepIndex ::= $Begin_TestStepIndex {[CollComment] StepIndex} [Comment] $SEnd_TestStepIndex

StepIndex ::= $StepIndex TestStepRef TestStepld Description $End_StepIndex

/* STATIC SEMANTICS — TestStepld shall not include a formal parameter list. */

/* STATIC SEMANTICS — Test Steps shall be listed in the order that they exist in the dynamic part. */

/* STATIC SEMANTICS — An explicit TestStepRef shall be provided for each TestStep which belongs to a StepGroup. */

Default Index

DefaultIndex ::= $Begin_DefaultIndex {[CollComment] DefIndex} [Comment] $End_DefaultIndex

DefIndex ::= $DefIndex DefaultRef Defaultld Description $SEnd_DefIndex

/* STATIC SEMANTICS — Defaultld shall not include a formal parameter list. */

/* STATIC SEMANTICS — Defaults shall be listed in the order that they exist in the dynamic part. */

/* STATIC SEMANTICS — An explicit DefaultRef shall be provided for each Default which belongs to a DefaultGroup. */

Test Suite Exports

TestSuiteExports::= $Begin_TestSuiteExports ExportedObjects [Comment] $End_TestSuiteExports

The Import Part

ImportPart ::= $ImportPart ImportDeclarations $SEnd_ImportPart

The Declarations Part

DeclarationsPart ::= $DeclarationsPart Definitions Parameterization&Selection Declarations ComplexDefinitions
$SEnd_DeclarationsPart

A.3.3.10 Definitions

A.3.3.10.1 General

66

Definitions ::= [TS_TypeDefs] [EncodingDefs] [TS_OpDefs] [TS_ProcDefs]

A.3.3.10.2 Test Suite Type Definitions

67

TS_TypeDefs ::= $TS_TypeDefs {SimpleTypeDefsOrGroup} [StructTypeDefs] [ASN1_TypeDefs]
{ASN1_TypeRefsOrGroup} $SEnd_TS TypeDefs

A.3.3.10.3 Simple Type Definitions

68
69
70
71

72
73
74
75

76
77
78
79

80

SimpleTypeDefsOrGroup ::= SimpleTypeDefs | SimpleTypeGroup

SimpleTypeGroup ::= $SimpleTypeGroup SimpleTypeGroupld {SimpleTypeDefsOrGroup}+ $End_SimpleTypeGroup
SimpleTypeGroupld ::= $SimpleTypeGroupld SimpleTypeGroupldentifier

SimpleTypeDefs ::= $Begin_SimpleTypeDefs [SimpleTypeGroupRef] {[CollComment] SimpleTypeDef}+ [Comment]
$End_SimpleTypeDefs

SimpleTypeGroupRef ::= $SimpleTypeGroupRef SimpleTypeGroupReference

SimpleTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {SimpleTypeGroupldentifier "/"}
SimpleTypeGroupldentifier ::= Identifier

SimpleTypeDef ::= $SimpleTypeDef SimpleTypeld SimpleTypeDefinition [PDU_FieldEncoding] [Comment]
$End_SimpleTypeDef

SimpleTypeld ::= $SimpleTypeld SimpleTypeldentifier

SimpleTypeldentifier ::= Identifier

SimpleTypeDefinition ::= $SimpleTypeDefinition Type&Restriction

/* STATIC SEMANTICS — There shall be no recursive references (neither directly nor indirectly) in Type&Restriction. */
Type&Restriction ::= Type [Restriction]

/* STATIC SEMANTICS — Type shall be either PredefinedType or SimpleType. */

Restriction ::= LengthRestriction | IntegerRange | SimpleValueList

/* STATIC SEMANTICS — The set of values defined by Restriction shall be a true subset of the values of the base type. */

ITU-T Rec. X.292 (05/2002) 129

81

82
83

84

85
86
87
88

LengthRestriction ::= SingleLength | RangeLength

/* STATIC SEMANTICS — LengthRestriction shall be provided only when the base type is a string type (i.e., BITSTRING,
HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type. */

SingleLength ::="[" ConstantExpression "]"

RangeLength ::="[" LowerBound To UpperBound "]"

/* STATIC SEMANTICS — LowerBound shall evaluate to a non-negative number. */

/* STATIC SEMANTICS — LowerBound shall be less than UpperBound. */

IntegerRange ::="(" LowerBound To UpperBound ")"

/* STATIC SEMANTICS — LowerBound shall be less than UpperBound. */

LowerBound ::= ConstantExpression | Minus INFINITY

UpperBound ::= ConstantExpression | INFINITY

To:=TO|"."

SimpleValueList ::= "(" ConstantExpression {Comma ConstantExpression } ")"

/* STATIC SEMANTICS — The ConstantExpression shall be of the base type and shall be a true subset of the values
defined by the base type. */

A.3.3.10.4 Structured Type Definitions

&9
90
91
92
93

94
95
96

97
98
99
100
101
102
103
104
105
106

StructTypeDefs ::= $StructTypeDefs {StructTypeDefOrGroup}+ $End_StructTypeDefs

StructTypeDefOrGroup ::= StructTypeDef | StructTypeGroup

StructTypeGroup ::= $StructTypeGroup StructTypeGroupld {StructTypeDefOrGroup}+ $SEnd_StructTypeGroup
StructTypeGroupld ::= $StructTypeGroupld StructTypeGroupldentifier

StructTypeDef ::= $Begin_StructTypeDef Structld [StructTypeGroupRef] [EncVariationld] [Comment] ElemDcls
[Comment] $SEnd_StructTypeDef

Structld ::= $Structld Structld&Fullld

Structld&Fullld ::= Structldentifier [Fullldentifier]

Fullldentifier ::="(" BoundedFreeText ")"

/* STATIC SEMANTICS — Some TTCN objects allow names, as given in the appropriate protocol standard to be
abbreviated. If an abbreviation is used then Fullldentifier shall be given in the declaration of the object. */
Structldentifier ::= Identifier

StructTypeGroupRef ::= $StructTypeGroupRef StructTypeGroupReference

StructTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {StructTypeGroupldentifier "/"}
StructTypeGroupldentifier ::= Identifier

ElemDcls ::= $ElemDcls {ElemDcl}+ $End_ElemDcls

ElemDcl ::= $ElemDcl Elemld ElemType [PDU_FieldEncoding] [Comment] $End_ElemDcl

Elemld ::= $ElemId ElemId&Fullld

ElemId&Fullld ::= ElemlIdentifier [Fullldentifier]

Elemldentifier ::= Identifier

ElemType ::= $ElemType Type&Attributes

/* STATIC SEMANTICS — There shall be no recursive references (neither directly nor indirectly) in Type&Attributes. */
/* STATIC SEMANTICS — A structure element Type shall be a PredefinedType, TS Typeldentifier, PDU_Identifier, or
PDU. */

A.3.3.10.5 ASN.1 Type Definitions

130

107
108
109
110
111

112
113
114
115
116
117
118
119

120

ASNI1_TypeDefs ::= $ASN1_TypeDefs {ASN1_TypeDefOrGroup}+ $End_ASN1_TypeDefs
ASNI1_TypeDefOrGroup ::= ASN1_TypeDef | ASN1_TypeGroup
ASNI1_TypeGroup ::= SASN1_TypeGroup ASN1_TypeGroupld {ASN1_TypeDefOrGroup}+ $End_ASN1_TypeGroup
ASNI1_TypeGroupld ::= $ASN1_TypeGroupld ASN1_TypeGroupldentifier
ASNI1_TypeDef ::= $Begin_ASN1_TypeDef ASN1_Typeld [ASN1_TypeGroupRef] [EncVariationld] [Comment]
ASNI1_TypeDefinition [Comment] $SEnd_ASN1_TypeDef
ASNI1_Typeld ::= SASN1_Typeld ASN1_Typeld&Fullld
ASN1 Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]
ASN1_ Typeldentifier ::= Identifier
ASNI1_TypeGroupRef ::= SASN1_TypeGroupRef ASN1_TypeGroupReference
ASNI1_TypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_TypeGroupldentifier "/"}
ASNI1_TypeGroupldentifier ::= Identifier
ASNI1 _TypeDefinition ::= SASN1_TypeDefinition ASN1 Type&LocalTypes SEnd_ASN1_TypeDefinition
ASNI1_Type&LocalTypes ::= ASN1_Type {ASN1 LocalType}
/* STATIC SEMANTICS — Types referred to from the ASN1 Type definition shall be defined in other ASN.1 type
definition tables, be defined by reference in the ASN.1 type reference table or be defined locally (i.e., ASN1_LocalTypes)
in the same table, following the first type definition. */
/* STATIC SEMANTICS — ASN1_LocalTypes shall not be used in other parts of the test suite. */
ASN1 Type ::=Type
/* REFERENCE — Where Type is a non-terminal defined in ITU-T Rec. X.680
Type ::= BuiltinType | ReferencedType | ConstrainedType
For the purposes of TTCN, the production in ITU-T Rec. X.680 which states:
SubtypeElements ::= SingleValue | ConstrainedSubtype | ValueRange | Permitted Alphabet | SizeConstraint |
TypeConstraint | InnerTypeConstraint

ITU-T Rec. X.292 (05/2002)

is redefined to be:

SubtypeElements ::= SingleValue | ConstrainedSubtype | ValueRange | Permitted Alphabet | SizeConstraint |
TypeConstraint | InnerTypeConstraint | ASN1_Encoding

This means that ASN1 Encoding can be applied anywhere that a TypeConstraint can be applied: to the whole of an
ASNI1 _Type or any ASN.1 Type within the ASN1 Type or to a SET OF or SEQUENCE OF type (by placing the
ASN1 _Encoding in parentheses immediately after the keyword SET or SEQUENCE — unlike for a SizeConstraint in such a
position, the parentheses are required since there is no backwards compatibility argument for allowing their omission).

For the purpose of TTCN, the following productions in ITU-T Rec. X.680:

BuiltinType ::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDUType |
EnumeratedType |
ExternalType |
InstanceOfType |
IntegerType |
NullType |
ObjectClassFieldType |
ObjectldentifierType |
OctetStringType |
RealType |
SequenceType |
SequenceOfType |
SetType |
SetOfType |
TaggedType

ReferencedType ::=

DefinedType |
UsefulType |
SelectionType |
TypeFromObject |
ValueSetFromObjects

DefinedType ::=

Externaltypereference |
typereference |
Parameterized Type |
ParameterizedValueSetType

Elements ::=

SubtypeElements |
ObjectSetElements |
"(" ElementSetSpec ")"

are redefined to be:

BuiltinType ::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDUType |
EnumeratedType |
ExternalType |
IntegerType |
NullType |
ObjectldentifierType |
OctetStringType |
RealType |
SequenceType |
SequenceOfType |
SetType |
SetOfType |
TaggedType

ITU-T Rec. X.292 (05/2002) 131

121

ReferencedType ::=
DefinedType |
UsefulType |
SelectionType

DefinedType ::=
Externaltypereference
typereference

Elements ::=
SubtypeElements |
"(" ElementSetSpec ")" */

/* STATIC SEMANTICS — Each terminal type reference used within the Type production shall be one of the following:
ASNI1_LocalType typereference, TS_Typeldentifier or PDU_Identifier. */

/* STATIC SEMANTICS — ASN.1 type definitions used within TTCN shall not use external type references as defined in
ITU-T Rec. X.680. */

ASN1 LocalType ::= Typeassignment

/* REFERENCE — Where Typeassignment is a non-terminal defined in ITU-T Rec. X.680. */

/* STATIC SEMANTICS — ASN.1 type definitions used within TTCN shall not use external type references as defined in
ITU-T Rec. X.680. */

A.3.3.10.6 ASN.1 Type Definitions by Reference

122
123

124
125

126
127

128
129

130
131

ASNI1_TypeRefsOrGroup ::= ASN1_TypeRefs | ASN1_TypeRefsGroup

ASN1_TypeRefsGroup ::= SASN1_TypeRefsGroup ASN1_TypeRefsGroupld {ASN1_TypeRefsOrGroup}+
$End_ASN1_TypeRefsGroup

ASN1_TypeRefsGroupld ::= $ASN1_TypeRefsGroupld ASN1_TypeGroupldentifier

ASN1_TypeRefs ::= $Begin_ASN1_TypeRefs [ASN1_TypeRefsGroupRef] {{CollComment] ASN1_TypeRef}+
[Comment] $End_ASN1_TypeRefs

ASN1_TypeRefsGroupRef ::= $ASN1_TypeRefsGroupRef ASN1_TypeGroupReference

ASN1_TypeRef ::= SASN1_TypeRef ASN1_Typeld ASN1_TypeReference ASN1_Moduleld [EncVariationId]
[Comment] SEnd_ASN1_TypeRef

/* STATIC SEMANTICS — ASN1_Typeld shall not be specified with a Fullldentifier. */

ASN1_TypeReference ::= SASN1_TypeReference TypeReference

TypeReference ::= typereference

/* REFERENCE — Where typereference is a non-terminal defined in ITU-T Rec. X.680. */

/* STATIC SEMANTICS — If the ASN.1 type definition has a reference to another type in the same ASN.1 Module, the
referenced type is implicitly imported (in the same way as for a TTCN module). */

ASNI1_ Moduleld ::= $SASN1_Moduleld ASN1_ Moduleldentifier

ASNI1_Moduleldentifier ::= Moduleldentifier

/* REFERENCE — Where Moduleldentifier is a non-terminal defined in ITU-T Rec. X.680. */

/* STATIC SEMANTICS — Moduleldentifier shall be unique within the domain of interest. */

A.3.3.10.7 Test Suite Operation Definitions

132
133
134
135
136
137

138
139

140
141
142
143
144

145

TS_OpDefs ::= $TS_OpDefs {TS_OpDefOrGroup}+ $SEnd_TS_OpDefs

TS_OpDefOrGroup ::= TS _OpDef| TS_OpDefGroup

TS_OpDefGroup ::= $TS_OpDefGroup TS OpDefGroupld {TS OpDefOrGroup}+ $End_TS_OpDefGroup
TS_OpDefGroupld ::= $TS_OpDefGroupld TS_OpDefGroupldentifier

TS_OpDefGroupldentifier ::= Identifier

TS _OpDef ::= $Begin_TS OpDef TS Opld [TS_OpGroupRef] TS OpResult [Comment] TS OpDescription [Comment]
$End_TS_OpDef

TS Opld ::=$TS_Opld TS_Opld&ParList

TS_Opld&ParList ::= TS Opldentifier [FormalParList]

/* STATIC SEMANTICS — A Test Suite Operation formal parameter Type shall be a PredefinedType, TS Typeldentifier,
PDU Identifier or ASP_Identifier, or the meta-type PDU*/

TS_Opldentifier ::= Identifier

TS _OpGroupRef ::= $TS_OpGroupRef TS OpGroupReference

TS_OpGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_OpGroupldentifier "/"}

TS _OpGroupldentifier ::= Identifier

TS_OpResult ::= $TS_OpResult TypeOrPDU

/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS Typeldentifier, PDU_Identifier or ASP_Identifier,
or the meta-type PDU. */

TS_OpDescription ::= $TS_OpDescription BoundedFreeText

A.3.3.10.8 Test Suite Operation Procedural Definitions

132

146
147
148
149

TS_ProcDefs ::= $TS_ProcDefs {TS_ProcDefOrGroup}+ $SEnd_TS_ProcDefs

TS _ProcDefOrGroup ::= TS _ProcDef | TS_ProcDefGroup

TS ProcDefGroup ::= $TS_ProcDefGroup TS ProcDefGroupld {TS ProcDefOrGroup}+ $SEnd_TS ProcDefGroup
TS_ProcDefGroupld ::= $TS_ProcDefGroupld TS ProcDefGroupldentifier

ITU-T Rec. X.292 (05/2002)

150
151

152
153

154
155
156
157
158

159
160

161
162
163
164
165
166
167
168
169
170
171
172
173

A3.3.11

TS_ProcDefGroupldentifier ::= Identifier

TS_ProcDef ::= $Begin_TS_ProcDef TS_Procld [TS_ProcGroupRef] TS_ProcResult [Comment] TS_ProcDescription
[Comment] SEnd_TS_ProcDef

TS Procld ::= $TS_Procld TS Procld&ParList

TS Procld&ParList ::= TS _Procldentifier [FormalParList]

/* STATIC SEMANTICS — A procedural Test Suite Operation formal parameter Type shall be a PredefinedType,
TS_Typeldentifier, PDU_Identifier or ASP_Identifier, or the meta-type PDU*/

TS_Procldentifier ::= Identifier

TS_ProcGroupRef ::= $TS_ProcGroupRef TS_ProcGroupReference

TS _ProcGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ProcGroupldentifier "/"}
TS_ProcGroupldentifier ::= Identifier

TS_ProcResult ::= $TS_ProcResult TypeOrPDU

/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS _Typeldentifier, PDU_Identifier or ASP_Identifier,
or the meta-type PDU. */

TS_ProcDescription ::= $TS_ProcDescription TS_OpProcDef $End_TS_ProcDescription

TS_OpProcDef ::= [VarBlock] ProcStatement

/* NOTE — Comments are allowed within TS_OpProcDef, starting with "/*" and ending with "*/", but it is assumed that
these comments are removed before the syntax is parsed. Hence the BNF does not include the syntax of such embedded
comments. */

VarBlock ::= VAR VarDcls ENDVAR

VarDcls ::= {VarDcl SemiColon}

VarDcl ::= [STATIC] Varldentifiers Colon TypeOrPDU [Colon Value]

Varldentifiers ::= Varldentifier {Comma Varldentifier}

Varldentifier ::= Identifier

ProcStatement ::= ReturnValueStatement | Assignment | IfStatement | WhileLoop | CaseStatement | ProcBlock
ReturnValueStatement ::= RETURNVALUE Expression

IfStatement ::= IF Expression THEN {ProcStatement SemiColon}+ [ELSE {ProcStatement SemiColon}+] ENDIF
WhileLoop ::= WHILE Expression DO {ProcStatement SemiColon}+ ENDWHILE

CaseStatement ::= CASE Expression OF {CaseClause SemiColon}+ [ELSE {ProcStatement SemiColon}+] ENDCASE
CaseClause ::= IntegerLabel Colon ProcStatement

IntegerLabel ::= Number | TS_Parldentifier | TS Constldentifier

ProcBlock ::= BEGIN {ProcStatement SemiColon}+ END

Parameterization and Selection

A.3.3.11.1 General

174

Parameterization&Selection ::= {TS_ParDclsOrGroup} {SelectExprDefsOrGroup}

A.3.3.11.2 Test Suite Parameter Declarations

175
176
177
178
179
180
181
182
183
184
185
186

187

188

TS ParDclsOrGroup ::= TS _ParDcls | TS_ParDclsGroup

TS _ParDclsGroup ::= $TS_ParDclsGroup TS ParDclsGroupld {TS ParDclsOrGroup}+ $End_TS_ParDclsGroup
TS_ParDclsGroupld ::= $TS_ParDclsGroupld TS_ParDclsGroupldentifier

TS ParDclsGroupldentifier ::= Identifier

TS_ParDcls ::= $Begin_TS_ParDcls [TS_ParGroupRef] {[CollComment] TS ParDcl}+ [Comment] $End_TS_ParDcls
TS_ParGroupRef ::= $TS_ParGroupRef TS_ParGroupReference

TS_ParGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ParGroupldentifier "/"}
TS_ParGroupldentifier ::= Identifier

TS ParDcl ::= $TS_ParDcl TS Parld TS ParType [TS_ParDefault] PICS PIXITref [Comment] $SEnd_TS_ParDcl
TS_Parld ::= $TS_Parld TS_Parldentifier

TS_Parldentifier ::= Identifier

TS ParType ::= $TS_ParType TypeOrPDU

/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS Typeldentifier, PDU_Identifier or ASP_Identifier,
or the meta-type PDU. */

TS_ParDefault ::= $TS_ParDefault [ConstantExpression]

/* OPERATIONAL SEMANTICS — ConstantExpression shall evaluate to an element of its declared type. */
PICS_PIXITref ::= $SPICS_PIXITref BoundedFreeText

A.3.3.11.3 Test Case Selection Expression Definitions

189
190

191
192
193

194
195

SelectExprDefsOrGroup ::= SelectExprDefs | SelectExprDefsGroup

SelectExprDefsGroup ::= $SelectExprDefsGroup SelectExprDefsGroupld {SelectExprDefsOrGroup}+
SEnd_SelectExprDefsGroup

SelectExprDefsGroupld ::= $SelectExprDefsGroupld SelectExprDefsGroupldentifier
SelectExprDefsGroupldentifier ::= Identifier

SelectExprDefs ::= $Begin_SelectExprDefs [SelectExprGroupRef] {[CollComment] SelectExprDef}+ [Comment]
$SEnd_SelectExprDefs

SelectExprGroupRef ::= $SelectExprGroupRef SelectExprGroupReference

SelectExprGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {SelectExprGroupldentifier "/"}

ITU-T Rec. X.292 (05/2002) 133

196
197
198
199
200
201

SelectExprGroupldentifier ::= Identifier

SelectExprDef ::= $SelectExprDef SelectExprld SelectExpr [Comment] $SEnd_SelectExprDef

SelectExprld ::= $SelectExprld SelectExprldentifier

SelectExprldentifier ::= Identifier

SelectExpr ::= $SelectExpr SelectionExpression

SelectionExpression ::= ConstantExpression

/* OPERATIONAL SEMANTICS — SelectionExpression shall evaluate to a specific BOOLEAN value. */

/* STATIC SEMANTICS — ConstantExpression shall not recursively refer (neither directly nor indirectly) to the
SelExprldentifier being defined by that Expression. */

A.3.3.12 Declarations

A.3.3.12.1 General

202

Declarations ::= {TS_ConstDclsOrGroup} {TS ConstRefsOrGroup} {TS VarDclsOrGroup} {TC_VarDclsOrGroup}
{PCO_TypeDclsOrGroup} {PCO_DclsOrGroup} {CP_DclsOrGroup} {TimerDclsOrGroup} {TcompDclsOrGroup}
[TCompConfigDcls]

A3.3.12.2 Test Suite Constant Declarations

203
204

205
206
207

208
209
210
211
212
213
214

215

TS_ConstDclsOrGroup ::= TS _ConstDcls | TS_ConstDclsGroup

TS_ConstDclsGroup ::= $TS_ConstDclsGroup TS_ConstDclsGroupld {TS_ConstDclsOrGroup}+
$End_TS_ConstDclsGroup

TS_ConstDclsGroupld ::= $TS_ConstDclsGroupld TS_ConstDclsGroupldentifier
TS_ConstDclsGroupldentifier ::= Identifier

TS_ConstDcls ::= $Begin_TS_ConstDcls [TS_ConstGroupRef] {[CollComment] TS_ConstDcl}+ [Comment]
$End_TS_ConstDcls

TS ConstGroupRef ::= $TS_ConstGroupRef TS ConstGroupReference

TS_ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ConstGroupldentifier "/"}
TS_ConstGroupldentifier ::= Identifier

TS ConstDcl ::= $TS_ConstDcl TS Constld TS ConstType TS ConstValue [Comment] SEnd_TS_ ConstDcl
TS Constld ::= $TS_Constld TS_Constldentifier

TS_Constldentifier ::= Identifier

TS ConstType ::=$TS_ConstType Type

/* STATIC SEMANTICS — Type shall not be a structured type, PDU type, ASP type or CM type expressed in tabular form.
*/

TS_ConstValue ::= $TS_ConstValue ConstantExpression

/* OPERATIONAL SEMANTICS - ConstantExpression shall evaluate to an element of its declared type. */

A.3.3.12.3 Test Suite Constant Declarations by Reference

216
217

218
219
220

221
222

223
224

TS ConstRefsOrGroup ::= TS _ConstRefs | TS _ConstRefsGroup

TS ConstRefsGroup ::= $TS_ConstRefsGroup TS ConstRefsGroupld {TS_ ConstRefsOrGroup}+
$SEnd_TS_ConstRefsGroup

TS_ConstRefsGroupld ::= $TS_ConstRefsGroupld TS_ConstRefsGroupldentifier

TS_ConstRefsGroupldentifier ::= Identifier

TS_ConstRefs ::= $Begin_TS_ConstRefs [TS_ConstRefsGroupRef] {[CollComment] TS_ConstRef}+ [Comment]
$End_TS_ConstRefs

TS_ConstRefsGroupRef ::= $TS_ConstRefsGroupRef TS_ConstGroupReference

TS_ConstRef ::= $TS_ConstRef TS_Constld TS_ConstType ASN1_ValueReference ASN1_Moduleld [Comment]
$End_TS_ConstRef

/* STATIC SEMANTICS — Type in TS_ConstType shall be either a PredefinedType or an ASN1_Type imported by an
ASN.1 Type Definition By Reference from the module referenced by ASN1_Moduleld. */

ASNI1_ValueReference ::= SASN1_ValueReference ValueReference

ValueReference ::= valuereference

/* REFERENCE - valuereference is a non-terminal defined in ITU-T Rec. X.680. */

/* STATIC SEMANTICS — The value shall correspond to an element of the type in TS _ConstType. */

A.3.3.12.4 Test Suite Variable Declarations

134

225
226
227
228
229
230
231
232
233
234

TS_VarDclsOrGroup ::= TS_VarDcls | TS_VarDclsGroup

TS_VarDclsGroup ::= $TS_VarDclsGroup TS_VarDclsGroupld {TS_VarDclsOrGroup}+ $End_TS_VarDclsGroup
TS_VarDclsGroupld ::= $TS_VarDelsGroupld TS_VarDclsGroupldentifier

TS_VarDclsGroupldentifier ::= Identifier

TS_VarDcls ::= $Begin_TS_VarDcls [TS_VarGroupRef] {[CollComment] TS_VarDcl}+ [Comment] $SEnd_TS_VarDecls
TS_VarGroupRef ::= $TS_VarGroupRef TS VarGroupReference

TS_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_VarGroupldentifier "/"}
TS_VarGroupldentifier ::= Identifier

TS VarDcl ::= $TS_VarDel TS Varld TS VarType TS VarValue [Comment] $SEnd_TS VarDecl

TS Varld ::=$TS_Varld TS_Varldentifier

ITU-T Rec. X.292 (05/2002)

235 TS_Varldentifier ::= Identifier

236 TS_VarType ::= $TS_VarType TypeOrPDU
/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or ASP_Identifier,
or the meta-type PDU. */

237 TS_VarValue ::= $TS_VarValue [ConstantExpression]|

A.3.3.12.5 Test Case Variable Declarations

238 TC_VarDclsOrGroup ::= TC_VarDcls | TC_VarDclsGroup

239 TC_VarDclsGroup ::= $TC_VarDclsGroup TC_VarDclsGroupld {TC_VarDclsOrGroup}+ $End_TC_VarDclsGroup

240 TC_VarDclsGroupld ::= $TC_VarDclsGroupld TC_ VarDclsGroupldentifier

241 TC_VarDclsGroupldentifier ::= Identifier

242 TC_VarDcls ::= $Begin_TC_VarDcls [TC_VarGroupRef] {[CollComment] TC_VarDcl}+ [Comment]
$SEnd_TC_VarDcls

243 TC_VarGroupRef ::= $TC_VarGroupRef TC_VarGroupReference

244 TC_ VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TC_VarGroupldentifier "/"}

245 TC_VarGroupldentifier ::= Identifier

246 TC_VarDcl ::= $TC_VarDel TC_Varld TC_VarType TC_VarValue [Comment] $End_TC_VarDcl

247 TC Varld ::= $TC_Varld TC_Varldentifier

248 TC_Varldentifier ::= Identifier

249 TC VarType ::=$TC_VarType TypeOrPDU
/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS Typeldentifier, PDU_Identifier or ASP_Identifier,
or the meta-type PDU. */

250 TC_VarValue ::= $TC_VarValue [ConstantExpression]

A.3.3.12.6 PCO Type Declaration

251 PCO_TypeDclsOrGroup ::= PCO_TypeDcls | PCO_TypeDclsGroup

252 PCO_TypeDclsGroup ::= $SPCO_TypeDclsGroup PCO_TypeDclsGroupld {PCO_TypeDclsOrGroup}+
$SEnd PCO_TypeDclsGroup

253 PCO_TypeDclsGroupld ::= $SPCO_TypeDelsGroupld PCO_TypeDclsGroupldentifier

254 PCO_TypeDclsGroupldentifier ::= Identifier

255 PCO_TypeDcls ::= $Begin_PCO_TypeDcls [PCO_TypeGroupRef] {[CollComment] PCO_TypeDcl}+ [Comment]
$End_PCO_TypeDcls

256 PCO_TypeGroupRef ::= SPCO_TypeGroupRef PCO_GroupReference

257 PCO_TypeDcl ::= $PCO_TypeDcl PCO_Typeld RoleOrComment $End_PCO_TypeDcl

258 PCO_Typeld ::= $PCO_Typeld PCO_Typeldentifier

259 PCO_Typeldentifier ::= Identifier

260 RoleOrComment ::=P_Role [Comment] | Comment
/* NOTE - Since each PCO_Type in a PCO Type Declaration Table has to have a role specified in either the Role or
Comment column, at least one of P_Role or Comment is required to be present. */

A.3.3.12.7 PCO Declarations

261 PCO_DclsOrGroup ::= PCO_Dcls | PCO_DclsGroup

262 PCO_DclsGroup ::= $PCO_DeclsGroup PCO_DclsGroupld {PCO_DclsOrGroup}+ $SEnd_PCO_DclsGroup

263 PCO_DclsGroupld ::= $PCO_DclsGroupld PCO_DclsGroupldentifier

264 PCO_DclsGroupldentifier ::= Identifier

265 PCO_Dcls ::= $Begin_PCO_Decls [PCO_GroupRef] {[CollComment] PCO_Dcl}+ [Comment] $SEnd_PCO_Dcls
/* STATIC SEMANTICS — To be in accordance with ITU-T Rec. X.290 the number of PCOs shall relate to the test method
used. */

266 PCO_GroupRef ::= $PCO_GroupRef PCO_GroupReference

267 PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PCO_Groupldentifier "/"}

268 PCO_Groupldentifier ::= Identifier

269 PCO_Dcl ::= $PCO_Dcl PCO _Id PCO_Typeld&MuxValue [P_Role] [Comment] $SEnd_PCO_Dcl

270 PCO_Id ::= $PCO_Id PCO_Identifier

271 PCO_Identifier ::= Identifier

272 PCO_Typeld&MuxValue ::= $PCO_Typeld PCO_Typeldentifier ["(" MuxValue ")"]

273 MuxValue ::= TS Parldentifier

274 P_Role ::= $PCO_Role [PCO_Role]

275 PCO _Role ::=UT |LT

A.3.3.12.8 CP Declarations

276 CP_DclsOrGroup ::= CP_Dcls | CP_DclsGroup

277 CP_DclsGroup ::= $CP_DclsGroup CP_DclsGroupld {CP_DclsOrGroup}+ SEnd_CP_DclsGroup
278 CP_DclsGroupld ::= $CP_DclsGroupld CP_DclsGroupldentifier

279 CP_DclsGroupldentifier ::= Identifier

280 CP_Dcls ::= $Begin_CP_Dcls [CP_GroupRef] {[CollComment] CP_Dcl}+ [Comment] $SEnd_CP_Dcls
281 CP_GroupRef ::= $CP_GroupRef CP_GroupReference

282 CP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CP_Groupldentifier "/"}

ITU-T Rec. X.292 (05/2002) 135

283
284
285
286

CP_Groupldentifier ::= Identifier

CP_Dcl ::= $CP_Dcl CP_Id [Comment] $SEnd_CP_Dcl
CP_Id ::= $CP_Id CP_Identifier

CP_Identifier ::= Identifier

A.3.3.12.9 Timer Declarations

287
288
289
290
291
292
293
294
295
296
297
298

299
300

TimerDclsOrGroup ::= TimerDcls | TimerDclsGroup

TimerDclsGroup ::= $TimerDclsGroup TimerDclsGroupld {TimerDclsOrGroup}+ $End_TimerDclsGroup
TimerDclsGroupld ::= $TimerDeclsGroupld TimerDclsGroupldentifier

TimerDclsGroupldentifier ::= Identifier

TimerDcls ::= $Begin_TimerDcls [TimerGroupRef] {[CollComment] TimerDcl}+ [Comment] $SEnd_TimerDcls
TimerGroupRef ::= $TimerGroupRef TimerGroupReference

TimerGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TimerGroupldentifier "/"}
TimerGroupldentifier ::= Identifier

TimerDcl ::= $TimerDecl Timerld Duration Unit [Comment] $End_TimerDcl

Timerld ::= $TimerId Timerldentifier

Timerldentifier ::= Identifier

Duration ::= $Duration [ConstantExpression]

/* OPERATIONAL SEMANTICS — ConstantExpression shall evaluate to a non-zero positive INTEGER. */

Unit ::= $Unit TimeUnit

TimeUnit ::= ps | ns | us | ms | s | min

/* STATIC SEMANTICS — If a timer is derived from the PICS/PIXIT then the timer declaration shall specify the same
units as the PICS/PIXIT entry. */

A.3.3.12.10 Test Component Declarations

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

TCompDclsOrGroup ::= TCompDcls | TCompDclsGroup

TCompDclsGroup ::= $TCompDclsGroup TCompDclsGroupld {TCompDclsOrGroup}+ $End_TCompDclsGroup
TCompDclsGroupld ::= $TCompDclsGroupld TCompDclsGroupldentifier

TCompDclsGroupldentifier ::= Identifier

TCompDcls ::= $Begin_TCompDcls [TCompGroupRef] {[CollComment] TCompDcl}+ [Comment] $End_TCompDcls
TCompGroupRef ::= $STCompGroupRef TCompGroupReference

TCompGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TCompGroupldentifier "/"}
TCompGroupldentifier ::= Identifier

TCompDecl ::= $TCompDcl TCompld C_Role NumOf PCOs NumOf CPs [Comment] $SEnd_TCompDecl

TCompld ::= $TCompld TCompldentifier

TCompldentifier::= Identifier

C_Role ::= $STCompRole TCompRole

TCompRole ::= MTC | PTC

NumOf PCOs ::= $NumOf_PCOs Num_PCOs

Num_PCOs ::= Number

NumOf CPs ::= $NumOf_CPs Num_CPs

Num_CPs ::= Number

A.3.3.12.11 Test Component Configuration Declarations

136

318
319
320

321
322
323

324
325
326
327
328
329

330
331
332
333

TCompConfigDcls ::= $TCompConfigDcls {TCompConfigDclOrGroup}+ $End_TCompConfigDcls
TCompConfigDclOrGroup ::= TCompConfigDcl | TCompConfigDclGroup

TCompConfigDclGroup ::= $TCompConfigDclGroup TCompConfigDclGroupld {TCompConfigDclOrGroup}+
$End_TCompConfigDclGroup

TCompConfigDclGroupld ::= $TCompConfigDclGroupld TCompConfigDclGroupldentifier
TCompConfigDclGroupldentifier ::= Identifier

TCompConfigDcl ::= $Begin_TCompConfigDcl TCompConfigld [TCompConfigGroupRef] [Comment]
TCompConfigInfos [Comment] $SEnd_TCompConfigDcl

TCompConfigld ::= $TCompConfigld TCompConfigldentifier

TCompConfigldentifier ::= Identifier

TCompConfigGroupRef ::= $TCompConfigGroupRef TCompConfigGroupReference

TCompConfigGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TCompConfigGroupldentifier "/"}
TCompConfigGroupldentifier ::= Identifier

TCompConfiglnfos ::= $TCompConfigInfos {TCompConfiginfo}+ $End_TCompConfigInfos

/* STATIC SEMANTICS — Exactly one of the TCompConfiginfos shall be for a Test Components which has a
TCompRole which is MTC. */

TCompConfiglnfo ::= $TCompConfiginfo TCompUsed PCOs_Used CPs_Used [Comment] $End_TCompConfigInfo
TCompUsed ::= $TCompUsed TCompldentifier

PCOs_Used ::= $PCOs_Used [PCO_List]

PCO_List ::= PCO_Identifier {Comma PCO_Identifier}

/* STATIC SEMANTICS — The number of PCOs in the PCO_List shall be the same as in the Test Component declaration.
*/

/* STATIC SEMANTICS — A given PCO_Identifier shall not be used more than once in the same Test Component
Configuration. */

ITU-T Rec. X.292 (05/2002)

334
335

CPs_Used ::= $CPs_Used [CP_List]

CP_List ::= CP_Identifier {Comma CP_Identifier}

/* STATIC SEMANTICS - For a PTC, the number of CPs in the CP_List shall be the same as in the Test Component
declaration. */

/* STATIC SEMANTICS — For an MTC, the number of CPs in the CP_List shall be no more than the number in the Test
Component declaration. */

/* STATIC SEMANTICS — A given CP_Identifier shall not appear more than once in a given CP_List. */

/* STATIC SEMANTICS — Each CP_Identifier which is used in a Test Component Configuration shall appear in the
CP_List of precisely two Test Components in that Configuration. */

A.3.3.13 ASP, PDU and CM Type Definitions

A.3.3.13.1 General

336

ComplexDefinitions ::= [ASP_TypeDefs] [PDU_TypeDefs] [CM_TypeDefs] {AliasDefsOrGroup}
/* STATIC SEMANTICS — PDUs shall be optional */

A.3.3.13.2 ASP Type Definitions

337

ASP_TypeDefs ::= SASP_TypeDefs [TTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
{ASN1_ASP TypeDefsByRefOrGroup} SEnd_ASP_TypeDefs

A.3.3.13.3 Tabular ASP Type Definitions

338
339
340

341
342

343
344
345

346
347
348
349

350
351
352
353

354
355
356

TTCN_ASP_TypeDefs ::= STTCN_ASP_TypeDefs {TTCN_ASP TypeDefOrGroup}+ $SEnd_TTCN_ASP_TypeDefs
TTCN_ASP_TypeDefOrGroup ::= TTCN_ASP_TypeDef | TTCN_ASP_TypeDefGroup

TTCN_ASP_TypeDefGroup ::= STTCN_ASP_TypeDefGroup TTCN_ASP_TypeDefGroupld
{TTCN_ASP_TypeDefOrGroup}+ $SEnd_TTCN_ASP_TypeDefGroup

TTCN_ASP_TypeDefGroupld ::= STTCN_ASP_TypeDefGroupld ASP_Groupldentifier

TTCN_ASP_TypeDef ::= $Begin_ TTCN_ASP_TypeDef ASP_Id [ASP_GroupRef] PCO_Type [Comment] ASP_ParDcls
[Comment] SEnd_TTCN_ASP_TypeDef

ASP _Id ::= $SASP_Id ASP_Id&Fullld

ASP_1d&Fullld ::= ASP_Identifier [Fullldentifier]

ASP_Identifier ::= Identifier

/* STATIC SEMANTICS — Identifier may be AliasIdentifier provided that it is being used in the behaviour column of a
behaviour table (i.e., in a Behaviour Description). */

ASP_GroupRef ::= $ASP_GroupRef ASP_GroupReference

ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASP_Groupldentifier "/"}
ASP_Groupldentifier ::= Identifier

PCO_Type ::= SPCO_Type [PCO_Typeldentifier]

/* STATIC SEMANTICS — If there is no PCO_Type declaration table then, PCO_Typeldentifier shall be one of the PCO
types used in the PCO declaration table. */

/* STATIC SEMANTICS — If only a single PCO is defined within a test suite then PCO_Typeldentifier is optional. */
ASP_ParDcls ::= SASP_ParDcls {ASP_ParDcl} $SEnd_ASP_ParDcls

ASP_ParDcl ::= $ASP_ParDcl ASP_Parld ASP_ParType [Comment] $End_ASP_ParDcl

ASP_Parld ::= SASP_Parld ASP_ParldOrMacro

ASP_ParldOrMacro ::= ASP_Parld&Fullld | MacroSymbol

/* STATIC SEMANTICS — The MacroSymbol shall be used only in combination with a reference to a Structured Type. */
ASP_Parld&Fullld ::= ASP_Parldentifier [Fullldentifier]

ASP_Parldentifier ::= Identifier

ASP_ParType ::= SASP_ParType Type&Attributes

/* STATIC SEMANTICS — Type shall be a PredefinedType or TS Typeldentifier, PDU_Identifier, or PDU. */

A.3.3.13.4 ASN.1 ASP Type Definitions

357
358
359

360
361

362
363
364

ASNI1_ASP TypeDefs ::= SASN1_ASP_TypeDefs {ASN1_ASP TypeDefOrGroup} $SEnd_ASN1_ASP_TypeDefs
ASN1_ASP TypeDefOrGroup ::= ASN1_ASP_TypeDef | ASN1_ASP_TypeDefGroup

ASN1_ASP TypeDefGroup ::= SASN1_ASP_TypeDefGroup ASN1_ASP_TypeDefGroupld
{ASN1_ASP_TypeDefOrGroup}+ SEnd_ASN1_ASP_TypeDefGroup

ASNI1_ASP_TypeDefGroupld ::= $ASN1_ASP_TypeDefGroupld ASN1_ASP_Groupldentifier

ASN1_ASP TypeDef ::= $Begin_ ASN1_ASP_TypeDef ASP_Id [ASN1_ASP_GroupDef] PCO_Type [Comment]
ASN1_TypeDefinition [Comment] SEnd_ASN1_ASP_TypeDef

ASNI1_ASP_GroupRef ::= $ASN1_ASP_GroupRef ASN1_ASP_GroupReference

ASNI1_ASP_ GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_ASP_Groupldentifier "/"}
ASN1_ASP_Groupldentifier ::= Identifier

A.3.3.13.5 ASN.1 ASP Type Definitions by Reference

365
366

ASNI1_ASP TypeDefsByRefOrGroup ::= ASN1_ASP TypeDefsByRef | ASN1_ASP_TypeDefsByRefGroup
ASN1_ASP_TypeDefsByRefGroup ::= $ASN1_ASP_TypeDefsByRefGroup ASN1_ASP_TypeDefsByRefGroupld
{ASN1_ASP_TypeDefsByRefOrGroup}+ $SEnd_ASN1_ASP_TypeDefsByRefGroup

ITU-T Rec. X.292 (05/2002) 137

367
368

369
370

ASNI1_ASP_TypeDefsByRefGroupld ::= SASN1_ASP_TypeDefsByRefGroupld ASN1_ASP_Groupldentifier
ASNI1_ASP TypeDefsByRef ::= $Begin_ ASN1_ASP_TypeDefsByRef [ASN1_ASP DefsByRefGroupRef]
{[CollComment] ASN1 ASP TypeDefByRef}+ [Comment] SEnd_ASN1_ASP_TypeDefsByRef

ASN_ASP DefsByRefGroupRef ::= $ASN1_ASP_DefsByRefGroupRef ASN1 ASP GroupReference
ASN1_ASP_TypeDefByRef ::= SASN1_ASP_TypeDefByRef ASP_Id PCO_Type ASN1_TypeReference
ASN1_Moduleld [Comment] $SEnd_ASN1_ASP_TypeDefByRef

/* STATIC SEMANTICS — ASP_Id shall not be specified with a Fullldentifier. */

A.3.3.13.6 PDU Type Definitions

371

PDU_TypeDefs ::= $PDU_TypeDefs [TTCN_PDU_TypeDefs] [ASN1_PDU_TypeDefs]
{ASN1_PDU_TypeDefsByRefOrGroup} $SEnd_PDU_TypeDefs

A.3.3.13.7 Tabular PDU Type Definitions

372
373
374

375
376

377
378
379

380
381
382
383
384
385

386
387

388
389
390
391

392

TTCN_PDU_TypeDefs ::= STTCN_PDU_TypeDefs {TTCN_PDU_TypeDefOrGroup}+ $SEnd_TTCN_PDU_TypeDefs
TTCN_PDU_TypeDefOrGroup ::= TTCN_PDU_TypeDef | TTCN_PDU_TypeDefGroup

TTCN_PDU_TypeDefGroup ::= STTCN_PDU_TypeDefGroup TTCN_PDU_TypeDefGroupld
{TTCN_PDU_TypeDefOrGroup}+ $SEnd_TTCN_PDU_TypeDefGroup

TTCN_PDU_TypeDefGroupld ::= STTCN_PDU_TypeDefGroupld PDU_Groupldentifier

TTCN_PDU_TypeDef ::= $Begin_TTCN_PDU_TypeDef PDU_Id [PDU_GroupRef] PCO_Type [PDU_Encodingld]
[EncVariationId] [Comment] PDU_FieldDcls [Comment] SEnd_TTCN_PDU_TypeDef

/* STATIC SEMANTICS — If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

PDU _Id ::= $PDU_Id PDU_Id&Fullld

PDU _Id&Fullld ::= PDU_Identifier [Fullldentifier]

PDU _Identifier ::= Identifier

/* STATIC SEMANTICS — Identifier may be AliasIdentifier provided that it is being used in the behaviour column of a
behaviour table (i.e., in a Behaviour Description). */

PDU_GroupRef ::= $SPDU_GroupRef PDU_GroupReference

PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PDU_Groupldentifier "/"}
PDU_Groupldentifier ::= Identifier

PDU_Encodingld ::= $PDU_Encodingld [EncodingRuleldentifier]

PDU _FieldDcls ::= $PDU_FieldDcls {PDU_FieldDcl} $End_PDU_FieldDcls

PDU_FieldDcl ::= $PDU_FieldDcl PDU_Fieldld PDU_FieldType [PDU_FieldEncoding] [Comment]
$End_PDU_FieldDcl

PDU_Fieldld ::= $PDU_Fieldld PDU_FieldldOrMacro

PDU_FieldldOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol

/* STATIC SEMANTICS — The MacroSymbol shall be used only in combination with a reference to a Structured Type. */
MacroSymbol ::="<-"

PDU Fieldld&Fullld ::= PDU_FieldIdentifier [Fullldentifier]

PDU Fieldldentifier ::= Identifier

PDU_FieldType ::= $PDU_FieldType Type&Attributes

/* STATIC SEMANTICS — Type shall be a PredefinedType or TS Typeldentifier, PDU_Identifier, or PDU. */
Type&Attributes ::= (Type [LengthRestriction]) | PDU

/* OPERATIONAL SEMANTICS — The set of values defined by LengthRestriction shall be a true subset of the values of
the base type. */

/* STATIC SEMANTICS — LengthRestriction shall be provided only when the base type is a string type (i.e., BITSTRING,
HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type. */

A.3.3.13.8 ASN.1 PDU Type Definitions

393
394
395

396
397

398
399
400

ASN1 _PDU TypeDefs ::= SASN1_PDU_TypeDefs {ASN1 PDU TypeDefOrGroup} $End ASN1 PDU TypeDefs
ASN1_PDU_TypeDefOrGroup ::= ASN1 PDU TypeDef | ASN1 _PDU_TypeDefGroup
ASN1_PDU_TypeDefGroup ::= $SASN1_PDU_TypeDefGroup ASN1_PDU_TypeDefGroupld
{ASN1_PDU_TypeDefOrGroup}+ $End_ASN1_PDU_TypeDefGroup

ASNI1_PDU_TypeDefGroupld ::= SASN1_PDU_TypeDefGroupld ASN1_PDU_Groupldentifier
ASNI1_PDU_TypeDef ::= $Begin_ASN1_PDU_TypeDef PDU_Id [ASN1_PDU_GroupRef] PCO_Type
[PDU_Encodingld] [EncVariationld] [Comment] ASN1_TypeDefinition [Comment] $SEnd_ASN1_PDU_TypeDef
/* STATIC SEMANTICS — If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

ASN1_PDU_GroupRef ::= $ASN1_PDU_GroupRef ASN1_PDU_GroupReference

ASNI1_PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1 _PDU_Groupldentifier "/"}
ASN1 _PDU_Groupldentifier ::= Identifier

A.3.3.13.9 ASN.1 PDU Type Definitions by Reference

401
402

138

ASN1 PDU_TypeDefsByRefOrGroup ::= ASN1_PDU TypeDefsByRef | ASN1_PDU_TypeDefsByRefGroup
ASNI1_PDU_TypeDefsByRefGroup ::= SASN1_PDU_TypeDefsByRefGroup ASN1_PDU_TypeDefsByRefGroupld
{ASN1_PDU_TypeDefsByRefOrGroup}+ $End_ASN1_PDU_TypeDefsByRefGroup

ITU-T Rec. X.292 (05/2002)

403 ASN1_PDU_TypeDefsByRefGroupld ::= $SASN1_PDU_TypeDefsByRefGroupld ASN1_PDU_Groupldentifier

404 ASNI1_PDU_TypeDefsByRef ::= $Begin_ASN1_PDU_TypeDefsByRef [ASN1_PDU_DefsByRefGroupRef]
{[CollComment] ASN1 PDU_TypeDefByRef}+ [Comment] SEnd_ASN1_PDU_TypeDefsByRef

405 ASN1_PDU_DefsByRefGroupRef ::= $ASN1_PDU_DefsByRefGroupRef ASN1 PDU_GroupReference

406 ASN1_PDU_TypeDefByRef ::= $ASN1_PDU_TypeDefByRef PDU_Id PCO_Type ASN1_TypeReference
ASNI1_Moduleld [PDU_Encodingld] [EncVariationld] [Comment] $SEnd_ASN1_PDU_TypeDefByRef
/* STATIC SEMANTICS — If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */
/* STATIC SEMANTICS — PDU_Id shall not be specified with a Fullldentifier. */

A.3.3.13.10 CM Type Definitions

407 CM_TypeDefs ::= $SCM_TypeDefs [TTCN_CM_TypeDefs] [ASN1_CM_TypeDefs] $SEnd_CM_TypeDefs

A.3.3.13.11 Tabular CM Type Definition

408 TTCN_CM_TypeDefs ::= STTCN_CM_TypeDefs {TTCN_CM_TypeDetfOrGroup}+ $End_TTCN_CM_TypeDefs

409 TTCN_CM_TypeDefOrGroup ::= TTCN_CM_TypeDef | TTCN_CM_TypeDefGroup

410 TTCN_CM_TypeDefGroup ::= STTCN_CM_TypeDefGroup TTCN_CM_TypeDefGroupld
{TTCN_CM_TypeDefOrGroup}+ $End_TTCN_CM_TypeDefGroup

411 TTCN_CM_TypeDefGroupld ::= STTCN_CM_TypeDefGroupld CM_Groupldentifier

412 TTCN_CM_TypeDef ::= $Begin_TTCN_CM_TypeDef CM_Id [CM_GroupRef] [Comment] CM_ParDcls [Comment]
$End_TTCN_CM_TypeDef

413 CM_Id ::= $CM_Id CM_Identifier

414 CM_Identifier ::= Identifier

415 CM_GroupRef ::= $CM_GroupRef CM_GroupReference

416 CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CM_Groupldentifier "/"}

417 CM_Groupldentifier ::= Identifier

418 CM_ParDcls ::= $SCM_ParDecls {CM_ParDcl} $SEnd_CM_ParDcls

419 CM_ParDcl ::= $CM_ParDcl CM_Parld CM_ParType [Comment] SEnd_CM_ParDcl

420 CM_Parld ::= $CM_Parld CM_ParldOrMacro

421 CM_ParldOrMacro ::= CM_Parldentifier | MacroSymbol
/* STATIC SEMANTICS — The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

422 CM_Parldentifier ::= Identifier

423 CM_ParType ::= SCM_ParType Type&Attributes

A.3.3.13.12 ASN.1 CM Type Definitions

424 ASN1 _CM TypeDefs ::= SASN1_CM_TypeDefs {ASN1_CM_TypeDefOrGroup}+ $SEnd_ASN1_CM_TypeDefs

425 ASN1_CM_TypeDefOrGroup ::= ASN1_CM TypeDef| ASN1_CM_TypeDetfGroup

426 ASN1_CM_TypeDefGroup ::= SASN1_CM_TypeDefGroup ASN1_CM_TypeDefGroupld
{ASN1_CM_TypeDefOrGroup}+ $SEnd_ASN1_CM_TypeDefGroup

427 ASN1_CM_TypeDefGroupld ::= $SASN1_CM_TypeDefGroupld ASN1_CM_Groupldentifier

428 ASNI1_CM_TypeDef ::= $Begin_ASN1_CM_TypeDef CM_Id [ASN1_CM_GroupRef] [Comment]
ASN1_TypeDefinition [Comment] SEnd_ASN1_CM_TypeDef

429 ASN1 _CM_GroupRef ::= $ASN1_CM_GroupRef ASN1_CM_GroupReference

430 ASN1_CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_CM_Groupldentifier "/"}

431 ASN1_CM_Groupldentifier ::= Identifier

A.3.3.13.13 Varieties of Encoding Definition

432 EncodingDefs ::= $EncodingDefs {EncodingDefinitionsOrGroup} [EncodingVariations] [InvalidFieldEncodingDefs]
$End_EncodingDefs

A.3.3.13.13.1 Encoding Definitions

433 EncodingDefinitionsOrGroup ::= EncodingDefinitions | EncodingDefinitionsGroup

434 EncodingDefinitionsGroup ::= $EncodingDefinitionsGroup EncodingDefinitionsGroupld
{EncodingDefinitionsOrGroup}+ $SEnd_EncodingDefinitionsGroup

435 EncodingDefinitionsGroupld ::= $EncodingDefinitionsGroupld EncodingGroupldentifier

436 EncodingDefinitions ::= $Begin_EncodingDefinitions [EncodingGroupRef] {[CollComment] EncodingDefinition}+
[Comment] $SEnd_EncodingDefinitions

437 EncodingGroupRef ::= $EncodingGroupRef EncodingGroupReference

438 EncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {EncodingGroupldentifier "/"}

439 EncodingGroupldentifier ::= Identifier

440 EncodingDefinition ::= $EncodingDefinition EncodingRuleld EncodingRef EncodingDefault [Comment]
$End_EncodingDefinition
/* OPERATIONAL SEMANTICS — No more than one EncodingRuleldentifier shall have an EncodingDefault which

evaluates to TRUE*/

ITU-T Rec. X.292 (05/2002) 139

441
442
443
444
445

EncodingRuleld ::= $EncodingRuleld EncodingRuleldentifier
EncodingRuleldentifier ::= Identifier

EncodingRef ::= $EncodingRef EncodingReference

EncodingReference ::= BoundedFreeText

EncodingDefault ::= $EncodingDefault [ConstantExpression]

/* STATIC SEMANTICS — ConstantExpression shall evaluate to a boolean value */

A.3.3.13.13.2 Encoding Variations

446
447
448

449
450

451
452
453
454
455
456

457

458
459
460
461
462
463

EncodingVariations ::= $EncodingVariations {EncodingVariationSetOrGroup}+ $End_EncodingVariations
EncodingVariationSetOrGroup ::= EncodingVariationSet | EncodingVariationSetGroup

EncodingVariationSetGroup ::= $EncodingVariationSetGroup EncodingVariationSetGroupld
{EncodingVariationSetOrGroup}+ $End_EncodingVariationSetGroup

EncodingVariationSetGroupld ::= $EncodingVariationSetGroupld EncVariationGroupldentifier
EncodingVariationSet ::= $Begin_EncodingVariationSet EncodingRuleld [EncVariationGroupRef] Encoding_TypeList
[Comment] EncodingVariationList [Comment] $End_EncodingVariationSet

EncVariationGroupRef ::= $EncVariationGroupRef EncVariationGroupReference

EncVariationGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {EncVariationGroupldentifier "/"}
EncVariationGroupldentifier ::= Identifier

EncodingVariationList ::= $EncodingVariationList {EncodingVariation}+ $End_EncodingVariationList
Encoding_TypeList ::= $Encoding_TypeList [TypeList]

TypeList ::=Type {Comma Type}

/* STATIC SEMANTICS — Type shall not be an ASP_Identifier, PDU_Identifier or Structldentifier, since such types may
be encoded by encoding rules but not by field encodings. */

EncodingVariation ::= $EncodingVariation EncodingVariationld VariationRef VariationDefault [Comment]
$End_EncodingVariation

/* OPERATIONAL SEMANTICS — No more than one Encodingldentifier shall have a VariationDefault which evaluates to
TRUE. */

EncodingVariationld ::= $EncodingVariationld EncVariationld&ParList

EncVariationld&ParList ::= EncVariationldentifier [FormalParList]

EncVariationldentifier ::= Identifier

VariationRef ::= $VariationRef VariationReference

VariationReference ::= BoundedFreeText

VariationDefault ::= $VariationDefault [ConstantExpression]

A.3.3.13.13.3 Invalid Encoding Definitions

464

465
466

467
468

469
470
471
472
473

474
475

InvalidFieldEncodingDefs ::= $InvalidFieldEncodingDefs {InvalidFieldEncodingDefOrGroup}+
$End_InvalidFieldEncodingDefs

InvalidFieldEncodingDefOrGroup ::= InvalidFieldEncodingDef | InvalidFieldEncodingGroup

InvalidFieldEncodingGroup ::= $InvalidFieldEncodingGroup InvalidFieldEncodingGroupld
{InvalidFieldEncodingOrGroup}+ $End_InvalidFieldEncodingGroup

InvalidFieldEncodingGroupld ::= $InvalidFieldEncodingGroupld InvalidFieldEncodingGroupldentifier
InvalidFieldEncodingDef ::= $Begin_InvalidFieldEncodingDef InvalidFieldEncodingld [InvalidFieldEncodingGroupRef]
Encoding_TypeList [Comment] InvalidFieldEncodingDefinition [Comment] $End_InvalidFieldEncodingDef
InvalidFieldEncodingld ::= $InvalidFieldEncodingld InvalidFieldEncodingld&ParList

InvalidFieldEncodingld&ParList ::= InvalidFieldEncodingldentifier [FormalParList]

InvalidFieldEncodingldentifier ::= Identifier

InvalidFieldEncodingGroupRef ::= $InvalidFieldEncodingGroupRef InvalidFieldEncodingGroupReference
InvalidFieldEncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier)
"/"1{InvalidFieldEncodingGroupldentifier"/"}

InvalidFieldEncodingGroupldentifier ::= Identifier

InvalidFieldEncodingDefinition ::= $InvalidFieldEncodingDefinition TS OpProcDef
$End_InvalidFieldEncodingDefinition

/* OPERATIONAL SEMANTICS — TS_OpProcDef shall produce a BitString result, to be interpreted as the encoding to be
transmitted high order bit first. */

A.3.3.13.14 Alias Definitions

140

476
477
478
479
480
481
482
483
484

AliasDefsOrGroup ::= AliasDefs | AliasDefsGroup

AliasDefsGroup ::= $AliasDefsGroup AliasDefsGroupld {AliasDefsOrGroup}+ $End_AliasDefsGroup
AliasDefsGroupld ::= $AliasDefsGroupld AliasDefsGroupldentifier

AliasDefsGroupldentifier ::= Identifier

AliasDefs ::= $Begin_AliasDefs [AliasGroupRef] {[CollComment] AliasDef}+ [Comment] $End_AliasDefs
AliasGroupRef ::= $AliasGroupRef AliasGroupReference

AliasGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {AliasGroupldentifier "/"}
AliasGroupldentifier ::= Identifier

AliasDef ::= $AliasDef Aliasld Expandedld [Comment] $End_AliasDef

ITU-T Rec. X.292 (05/2002)

485
486

487
488

A.3.3.14

489

A3.3.15
490

A.3.3.16

491
492
493

494
495

496
497

498
499
500
501
502

503
504
505

A.3.3.17
506

507
508

509
510

511
512

513

A.3.3.18

514

Aliasld ::= $AliasId Aliasldentifier

AliasIdentifier ::= Identifier

/* STATIC SEMANTICS — An Aliasldentifier shall be used only in a statement line of a behaviour description. */

/* STATIC SEMANTICS — An Aliasldentifier shall be used only where an ASP_Identifier or PDU_Identifier is valid. */
ExpandedId ::= $ExpandedId Expansion

Expansion ::= ASP_Identifier | PDU_Identifier

The Constraints Part

ConstraintsPart ::= $ConstraintsPart [TS_TypeConstraints] [ASP_Constraints] [PDU_Constraints] [CM_Constraints]
$End_ConstraintsPart

Test Suite Type Constraint Declarations

TS_TypeConstraints ::= $TS_TypeConstraints [StructTypeConstraints] [ASN1_TypeConstraints]
$End_TS_TypeConstraints

Structured Type Constraint Declarations

StructTypeConstraints ::= $StructTypeConstraints {StructTypeConstraintOrGroup}+ $End_StructTypeConstraints
StructTypeConstraintOrGroup ::= StructTypeConstraint | StructTypeConstraintGroup

StructTypeConstraintGroup ::= $StructTypeConstraintGroup StructTypeConstraintGroupld
{StructTypeConstraintOrGroup }+ $End_StructTypeConstraintGroup

StructTypeConstraintGroupld ::= $StructTypeConstraintGroupld StructTypeConstraintGroupldentifier

StructTypeConstraint ::= $Begin_StructTypeConstraint Consld [StructTypeConstraintGroupRef] Structld DerivPath
[EncVariationld] [Comment] ElemValues [Comment] $End_StructTypeConstraint

/* STATIC SEMANTICS — The Fullldentifier that is part of Struct_Id shall not be used. */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

StructTypeConstraintGroupRef ::= $StructTypeConstraintGroupRef StructTypeConstraintGroupReference
StructTypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier)
"/"1{StructTypeConstraintGroupldentifier"/"}

StructTypeConstraintGroupldentifier ::= Identifier

EncVariationld ::= $EncVariationld [EncVariationCall]

EncVariationCall ::= EncVariationldentifier [ActualParList]

ElemValues ::= $ElemValues {ElemValue}+ SEnd_ElemValues

ElemValue ::= $ElemValue ElemlId ConsValue [PDU_FieldEncoding] [Comment] $End_ElemValue

/* STATIC SEMANTICS — The Fullldentifier that is part of ElemId shall not be used. */

/* STATIC SEMANTICS — ElemlId shall have been declared in the type related to the constraint. */

/* STATIC SEMANTICS — Parameterized Element values in a base constraint shall not be modified or explicitly omitted
in a modified constraint. */

PDU_FieldEncoding ::= $PDU_FieldEncoding [PDU_FieldEncodingCall]
PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall
InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | "(" ")")

ASN.1 Type Constraint Declarations

ASNI1_TypeConstraints ::= $SASN1_TypeConstraints {ASN1 TypeConstraintOrGroup}+
$End_ASNI1_TypeConstraints
ASN1_TypeConstraintOrGroup ::= ASN1_TypeConstraint | ASN1_TypeConstraintGroup

ASN1_TypeConstraintGroup ::= SASN1_TypeConstraintGroup ASN1_TypeConstraintGroupld
{ASN1_TypeConstraintOrGroup}+ $End_ASN1_TypeConstraintGroup

ASN1 _TypeConstraintGroupld ::= $ASN1_TypeConstraintGroupld ASN1_TypeConstraintGroupldentifier

ASNI1_TypeConstraint ::= $Begin_ ASN1_TypeConstraint Consld [ASN1_TypeConstraintGroupRef] ASN1_Typeld
DerivPath [EncVariationld] [Comment] ASN1_ConsValue [Comment] $End_ASN1_TypeConstraint

/* STATIC SEMANTICS — The Fullldentifier that is part of ASN1_Typeld shall not be used. */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

ASNI1_TypeConstraintGroupRef ::= $ASN1_TypeConstraintGroupRef ASN1_ TypeConstraintGroupReference

ASN1 TypeConstraintGroupReference::=[(Suiteldentifier |
TTCN_Moduleldentifier)"/"]{ASN1_TypeConstraintGroupldentifier"/"}

ASNI1_TypeConstraintGroupldentifier ::= Identifier

ASP Constraint Declarations

ASP_Constraints ::= SASP_Constraints [TTCN_ASP Constraints] [ASN1_ASP Constraints] $End_ASP_Constraints

ITU-T Rec. X.292 (05/2002) 141

A.3.3.19 Tabular ASP Constraint Declarations

515 TTCN_ASP_Constraints ::= $TTCN_ASP_Constraints {TTCN_ASP_ConstraintOrGroup}+
$End_TTCN_ASP_Constraints
516 TTCN_ASP_ConstraintOrGroup ::= TTCN_ASP_Constraint | TTCN_ASP_ConstraintGroup

517 TTCN_ASP_ConstraintGroup ::= STTCN_ASP_ConstraintGroup TTCN_ASP_ConstraintGroupld
{TTCN_ASP_ConstraintOrGroup}+ $End_TTCN_ASP_ConstraintGroup

518 TTCN_ASP_ConstraintGroupld ::= STTCN_ASP_ConstraintGroupld ASP_ConstraintGroupldentifier

519 TTCN_ASP_Constraint ::= $Begin_ TTCN_ASP_Constraint Consld [ASP_ConstraintGroupRef] ASP_Id DerivPath
[Comment] ASP_ParValues [Comment] SEnd_TTCN_ASP_Constraint

/* STATIC SEMANTICS — The Fullldentifier that is part of ASP_Id shall not be used. */

/* STATIC SEMANTICS — If an ASP is substructured, then the constraints for ASPs of that type shall have the same
structure*/

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

520 ASP_ConstraintGroupRef ::= $ASP_ConstraintGroupRef ASP_ConstraintGroupReference
521 ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASP_ConstraintGroupldentifier "/"}
522 ASP_ConstraintGroupldentifier ::= Identifier
523 ASP_ParValues ::= SASP_ParValues {ASP_ParValue} SEnd_ASP_ParValues
524 ASP_ParValue ::= $SASP_ParValue ASP_Parld ConsValue [Comment] SEnd_ASP_ParValue
/* STATIC SEMANTICS — The Fullldentifier that is part of ASP_Parld shall not be used. */
/* STATIC SEMANTICS — ASP_Parld shall have been declared in the type related to the constraint. */

/* STATIC SEMANTICS — If an ASP definition refers to a Structured Type as a substructure of a parameter (i.e., with a
parameter name), then the corresponding constraint shall have the same parameter name in the corresponding position in
the parameter name column of the constraint and the value shall be a reference to a constraint for that parameter (i.e., for
that substructure in accordance with the definition of the Structured Type). */

/* STATIC SEMANTICS — If an ASP definition refers to a parameter specified as being of metatype PDU then in a
corresponding constraint, the value for that parameter shall be specified as the name of a PDU constraint, or formal
parameter. */

/* STATIC SEMANTICS — Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding ASP definition also references the same Structured Type by macro expansion. */

/* STATIC SEMANTICS — Parameterized ASP parameter values in a base constraint shall not be modified or explicitly
omitted in a modified constraint. */

A.3.3.20 ASN.1 ASP Constraint Declarations

525 ASNI_ASP_Constraints ::= $ASN1_ASP_Constraints {ASN1_ASP_ConstraintOrGroup}+
$End_ASN1_ASP_Constraints
526 ASNI1_ASP_ConstraintOrGroup ::= ASN1_ASP_Constraint | ASN1_ASP_ConstraintGroup

527 ASNI1_ASP_ConstraintGroup ::= SASN1_ASP_ConstraintGroup ASN1_ASP_ConstraintGroupld
{ASN1_ASP_ConstraintOrGroup}+ SEnd_ASN1_ASP_ConstraintGroup

528 ASNI1_ASP_ConstraintGroupld ::= $SASN1_ASP_ConstraintGroupld ASN1_ASP_ConstraintGroupldentifier

529 ASNI1_ASP_Constraint ::= $Begin_ASN1_ASP_Constraint Consld [ASN1_ASP_ConstraintGroupRef] ASP_Id
DerivPath [Comment] ASN1_ConsValue [Comment] $SEnd_ASN1_ASP_Constraint

/* STATIC SEMANTICS — The Fullldentifier that is part of ASP_Id shall not be used. */

/* STATIC SEMANTICS — If an ASP is substructured, then the constraints for ASPs of that type shall have a compatible
ASN.1 structure (i.e., possibly with some groupings). */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

530 ASNI1_ASP_ConstraintGroupRef ::= SASN1_ASP_ConstraintGroupRef ASN1_ASP_ConstraintGroupReference

531 ASNI1_ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_ASP ConstraintGroupldentifier "/"}

532 ASNI1_ASP_ConstraintGroupldentifier ::= Identifier

A.3.3.21 PDU Constraint Declarations

533 PDU_Constraints ::= $PDU_Constraints [TTCN_PDU_Constraints] [ASN1_PDU_Constraints] SEnd_PDU_Constraints

A.3.3.22 Tabular PDU Constraint Declarations

534 TTCN_PDU_Constraints ::= STTCN_PDU_Constraints {TTCN_PDU_ConstraintOrGroup }+
$SEnd_TTCN_PDU_Constraints

535 TTCN_PDU_ConstraintOrGroup ::= TTCN_PDU_Constraint | TTCN_PDU_ConstraintGroup

536 TTCN_PDU_ConstraintGroup ::= $STTCN_PDU_ConstraintGroup TTCN_PDU_ConstraintGroupld
{TTCN_PDU_ConstraintOrGroup}+ $End_TTCN_PDU_ConstraintGroup

537 TTCN_PDU_ConstraintGroupld ::= STTCN_PDU_ConstraintGroupld PDU_ConstraintGroupldentifier

142 ITU-T Rec. X.292 (05/2002)

538

539
540
541
542
543
544
545
546
547

548
549

550

551

552

553

554
555

556
557
558

559

TTCN_PDU_Constraint ::= $Begin_TTCN_PDU_Constraint Consld [PDU_ConstraintGroupRef] PDU_Id DerivPath
[EncRuleld] [EncVariationld] [Comment] PDU_FieldValues [Comment] SEnd_TTCN_PDU_Constraint

/* STATIC SEMANTICS — The Fullldentifier that is part of PDU_Id shall not be used. */

/* STATIC SEMANTICS — If a PDU is substructured, then the constraints for PDUs of that type shall have the same
structure*/

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

PDU_ConstraintGroupRef ::= SPDU_ConstraintGroupRef PDU_ConstraintGroupReference
PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PDU_ConstraintGroupldentifier "/"}
PDU_ConstraintGroupldentifier ::= Identifier

EncRuleld ::= $EncRuleld [EncodingRuleldentifier]

Consld ::= $Consld Consld&ParList

Consld&ParList ::= Constraintldentifier [FormalParList]

Constraintldentifier ::= Identifier

DerivPath ::= $DerivPath [DerivationPath]

DerivationPath ::= {ConstraintIdentifier Dot}+

/* STATIC SEMANTICS — If a constraint definition is a modification of an existing constraint, the name of the constraint
that is taken as the basis of this modification shall be referenced in the table in the derivation path entry. */

/* STATIC SEMANTICS — The first ConstraintIdentifier in DerivationPath shall be a base constraint identifier. */

/* STATIC SEMANTICS — The DerivationPath shall be the complete list of constraints in the order in which their
modifications to the base constraint are to be applied. */

/* STATIC SEMANTICS — There shall be no white space between Constraintldentifier and Dot. */

PDU _FieldValues ::= $SPDU_FieldValues {PDU_FieldValue} $End_PDU_FieldValues

PDU_FieldValue ::= $PDU_FieldValue PDU_Fieldld ConsValue [PDU_FieldEncoding] [Comment]
$End_PDU_FieldValue

/* STATIC SEMANTICS — The Fullldentifier that is part of PDU_FieldId shall not be used. */

/* STATIC SEMANTICS — PDU_Fieldld shall have been declared in the type related to the constraint. */

/* STATIC SEMANTICS — If a PDU definition refers to a Structured Type as a substructure of a field (i.e., with a field
name) then the corresponding constraint shall have the same field name in the corresponding position in the field name
column of the constraint and the value shall be a reference to a constraint for that field (i.e., for that substructure in
accordance with the definition of the Structured Type). */

/* STATIC SEMANTICS — If a PDU definition refers to a field specified as being of metatype PDU then in a
corresponding constraint, the value for that field shall be specified as the name of a PDU constraint, or formal parameter. */
/* STATIC SEMANTICS — Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding PDU definition also references the same Structured Type by macro expansion. */

/* STATIC SEMANTICS — Parameterized PDU field values in a base constraint shall not be modified or explicitly omitted
in a modified constraint. */

ConsValue ::= $ConsValue ConstraintValue&Attributes

/* OPERATIONAL SEMANTICS — ConsValue shall evaluate to an element of the type specified for the ASP parameter,
PDU field or structure element. This may include matching symbols compatible with the specified type. */
ConstraintValue&Attributes ::= ConstraintValue ValueAttributes

/* NOTE — ConstraintValue&Attributes can be reached via DefinedValue in the ASN.1 syntax. See the reference on the
production 739 for Value. */

/* STATIC SEMANTICS — ConstraintValue shall fulfil all restrictions defined for the ASP parameter, PDU field or
structure element type, including value ranges, value lists, alphabet restrictions and/or length restrictions and shall fulfil the
restrictions defined by ValueAttributes. */

/* OPERATIONAL SEMANTICS — Any length specifications defined for the ASP parameter or PDU field type in the Test
Suite Type declarations shall not conflict with the length specifications in the ASP or PDU type definition. */

/* STATIC SEMANTICS — Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed
as actual parameters. In the latter case they shall be bound to a value and shall not be changed. */

ConstraintValue ::= ConstantExpression | MatchingSymbol | ConsRef

/* OPERATIONAL SEMANTICS — ConstantExpression shall evaluate to an element of the specified type. */
MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | IntegerRange | SuperSet | SubSet |
Permutation

/* NOTE — No matching symbol is considered to be a specific value. */

Complement ::= COMPLEMENT ValueList

Omit ::= Dash | OMIT

/* STATIC SEMANTICS — In ASN.1 constraints Omit shall be used only for ASP parameters or PDU fields that are
declared OPTIONAL or DEFAULT. */

AnyValue ::="7"

AnyOrOmit ::= "*"

ValueList ::="(" ConstraintValue&Attributes {Comma ConstraintValue&Attributes} ")"

/* STATIC SEMANTICS — Each ConstraintValue&Attributes shall be of the type declared for the ASP parameter, PDU
field, or structure element in which the ValueList is used. */

SuperSet ::= SUPERSET "(" ConstraintValue&Attributes ")"
/* STATIC SEMANTICS — The argument to SuperSet, i.e., ConstraintValue&Attributes, shall be of type SET OF. */

ITU-T Rec. X.292 (05/2002) 143

560

561

562

563

A.3.3.23

564

565
566

567
568

569
570

571
572
573
574

575

A.3.3.24

576

A.3.3.25

144

577

578
579

580
581

582
583
584
585
586

SubSet ::= SUBSET "(" ConstraintValue&Attributes ")"

/* STATIC SEMANTICS — The argument to SubSet, i.e., ConstraintValue&Attributes, shall be of type SET OF. */
Permutation ::= PERMUTATION ValueList

/* STATIC SEMANTICS — The Permutation shall be used only inside a value of type SEQUENCE OF. */

/* STATIC SEMANTICS — The ValueList shall be of the type specified in the SEQUENCE OF. */
ValueAttributes ::= [LengthRestriction] [IF_PRESENT] [ASN1_Encoding]

/* STATIC SEMANTICS — In ASN.1 constraints [IF_PRESENT shall be used only for ASP parameters or PDU fields that
are declared OPTIONAL or DEFAULT. */

/* STATIC SEMANTICS — ASN1_Encoding shall only be used for ValueAttributes in ASN.1 Type Constraints and ASN.1
PDU Constraints. */

/* STATIC SEMANTICS — LengthRestriction shall be used only for ASP parameters, PDU fields or structure element that
are declared as BITSTRING, HEXSTRING, OCTETSTRING, CharacterString, SEQUENCE OF or SET OF. */

/* STATIC SEMANTICS — LengthRestriction shall be used only in combination with the following mechanisms:
Specificvalue, Complement, Omit, AnyValue, AnyOrOmit, AnyOrNone and Permutation. */

/* STATIC SEMANTICS — The set of values defined by LengthRestriction shall be a true subset of the values allowed by
the ASP parameter's, PDU field's or structure element's declared type. */

ASNI1_Encoding ::= ENC PDU_FieldEncodingCall

ASN.1 PDU Constraint Declarations

ASN1_PDU_Constraints ::= $ASN1_PDU_Constraints {ASN1_PDU_ConstraintOrGroup}+
$End_ASN1_PDU_Constraints
ASNI1_PDU_ConstraintOrGroup ::= ASN1_PDU_Constraint | ASN1_PDU_ConstraintGroup

ASN1_PDU_ConstraintGroup ::= $ASN1_PDU_ConstraintGroup ASN1_PDU_ConstraintGroupld
{ASN1_PDU_ConstraintOrGroup}+ $End_ASN1_PDU_ConstraintGroup

ASN1_PDU_ConstraintGroupld ::= SASN1_PDU_ConstraintGroupld ASN1_PDU_ConstraintGroupldentifier

ASNI1_PDU _Constraint ::= $Begin_ASN1_PDU_Constraint Consld [ASN1_PDU_ConstraintGroupRef] PDU _Id
DerivPath [EncRuleld] [EncVariationld] [Comment] ASN1 ConsValue [Comment] $End_ASN1_PDU_Constraint

/* STATIC SEMANTICS — The Fullldentifier that is part of PDU_Id shall not be used. */

/* STATIC SEMANTICS — If a PDU is substructured, then the constraints for PDUs of that type shall have a compatible
ASN.1 structure (i.e., possibly with some groupings). */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

ASNI1_PDU_ConstraintGroupRef ::= SASN1_PDU_ConstraintGroupRef ASN1_PDU_ConstraintGroupReference

ASN1 PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_PDU_ConstraintGroupldentifier "/"}

ASNI1_PDU_ConstraintGroupldentifier ::= Identifier

ASNI1_ConsValue ::= $SASN1_ConsValue ConstraintValue&AttributesOrReplace SEnd_ASN1_ConsValue
ConstraintValue&AttributesOrReplace ::= ConstraintValue& Attributes | Replacement {Comma Replacement}
Replacement ::= REPLACE ReferenceList BY ConstraintValue&Attributes | OMIT ReferenceList

/* STATIC SEMANTICS — Replacement shall be used only when DerivPath is specified. */

/* STATIC SEMANTICS — Parameterized replaced values in a base constraint shall not be modified or explicitly omitted
in a modified constraint. */

ReferenceList ::= (ArrayRef | Componentldentifier | ComponentPosition) {ComponentReference}

CM Constraint Declarations

CM_Constraints ::= $CM_Constraints [TTCN_CM_Constraints] [ASN1_CM_Constraints] SEnd_CM_Constraints

Tabular CM Constraint Declaration

TTCN_CM_Constraints ::= STTCN_CM_Constraints {TTCN_CM_ConstraintOrGroup}+
$SEnd_TTCN_CM_Constraints

TTCN_CM_ConstraintOrGroup ::= TTCN_CM_Constraint | TTCN_CM_ConstraintGroup

TTCN_CM_ConstraintGroup ::= STTCN_CM_ConstraintGroup TTCN_CM_ConstraintGroupld
{TTCN_CM_ConstraintOrGroup}+ $End_TTCN_CM_ConstraintGroup

TTCN_CM_ConstraintGroupld ::= STTCN_CM_ConstraintGroupld CM_ConstraintGroupldentifier

TTCN_CM_Constraint ::= $Begin TTCN_CM_Constraint Consld [CM_ConstraintGroupRef] CM_Id DerivPath
[Comment] CM_ParValues [Comment] $End_ TTCN_CM_Constraint

CM_ConstraintGroupRef ::= $CM_ConstraintGroupRef CM_ConstraintGroupReference

CM_ ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CM_ConstraintGroupldentifier "/"}
CM_ ConstraintGroupldentifier ::= Identifier

CM_ParValues ::= $CM_ParValues {CM_ParValue} $End_CM_ParValues

CM_ParValue ::= $CM_ParValue CM_Parld ConsValue [Comment] $SEnd_CM_ParValue

/* STATIC SEMANTICS — CM_Parld shall have been declared in the type related to the constraint. */

ITU-T Rec. X.292 (05/2002)

A.3.3.26
587

588
589

590
591

592
593

594

A.3.3.27
595

A.3.3.28

596
597
598
599
600

601
602
603
604

605
606
607
608
609

A.3.3.29

610
611
612
613
614

615
616
617
618
619

620

A.3.3.30

621
622
623
624

625
626
627
628
629

630

ASN.1 CM Constraint Declaration

ASNI1_CM_Constraints ::= SASN1_CM_Constraints {ASN1_CM_ConstraintOrGroup}+
$End_ASN1_CM_Constraints

ASNI1_CM_ConstraintOrGroup ::= ASN1_CM_Constraint | ASN1_CM_ConstraintGroup
ASNI1_CM_ConstraintGroup ::= $ASN1_CM_ConstraintGroup ASN1_CM_ConstraintGroupld
{ASN1_CM_ConstraintOrGroup}+ $End_ASN1_CM_ConstraintGroup

ASNI1_CM_ConstraintGroupld ::= SASN1_CM_ConstraintGroupld ASN1_CM_ConstraintGroupldentifier
ASN1 _CM_Constraint ::= $Begin_ ASN1_CM_Constraint Consld [ASN1_CM_ConstraintGroupRef] CM_Id DerivPath
[Comment] ASN1_ConsValue [Comment] $End_ASN1_CM_Constraint

ASN1_CM_ConstraintGroupRef ::= $ASN1_CM_ConstraintGroupRef ASN1_CM_ConstraintGroupReference
ASNI1_CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_CM_ConstraintGroupldentifier "/"}

ASN1 _CM_ConstraintGroupldentifier ::= Identifier

The Dynamic Part
DynamicPart ::= $DynamicPart [TestCases] [TestStepLibrary] [DefaultsLibrary] $End_DynamicPart

Test Cases

TestCases ::= $TestCases {TestGroup | TestCase}+ $End_TestCases

TestGroup ::= $TestGroup TestGroupld {TestGroup | TestCase}+ $End_TestGroup
TestGroupld ::= $TestGroupld TestGroupldentifier

TestGroupldentifier ::= Identifier

TestCase ::= $Begin_TestCase TestCaseld TestGroupRef TestPurpose [Configuration] DefaultsRef [Comment]
BehaviourDescription [Comment] $End_TestCase

TestCaseld ::= $TestCaseld TestCaseldentifier

TestCaseldentifier ::= Identifier

TestGroupRef ::= $TestGroupRef TestGroupReference

TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}

/* STATIC SEMANTICS — There shall be no white space on either side of the "/"s. */
TestPurpose ::= $TestPurpose BoundedFreeText

Configuration ::= $Configuration TCompConfigldentifier

DefaultsRef::= $DefaultsRef [DefaultRefList]

DefaultRefList ::= DefaultReference {Comma DefaultReference}

DefaultReference ::= Defaultldentifier [ActualParList]

Test Step Library

TestStepLibrary ::= $TestStepLibrary {TestStepGroup | TestStep}+ $End_TestStepLibrary
TestStepGroup ::= $TestStepGroup TestStepGroupld {TestStepGroup | TestStep}+ $SEnd_TestStepGroup
TestStepGroupld ::= $TestStepGroupld TestStepGroupldentifier

TestStepGroupldentifier ::= Identifier

TestStep ::= $Begin_TestStep TestStepld TestStepRef Objective DefaultsRef [Comment] BehaviourDescription
[Comment] SEnd_TestStep

TestStepld ::= $TestStepld TestStepld&ParList

TestStepld&ParList ::= TestStepldentifier [FormalParList]

TestStepldentifier ::= Identifier

TestStepRef ::= $TestStepRef TestStepGroupReference

TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}

/* STATIC SEMANTICS — There shall be no separator on either side of the "/"s. */

Objective ::= $Objective BoundedFreeText

Default Library

DefaultsLibrary ::= $DefaultsLibrary {DefaultGroup | Default}+ $SEnd_DefaultsLibrary

DefaultGroup ::= $DefaultGroup DefaultGroupld {DefaultGroup | Default}+ SEnd_DefaultGroup

DefaultGroupld ::= $DefaultGroupld DefaultGroupldentifier

Default ::= $Begin_Default Defaultld DefaultRef Objective [Comment] BehaviourDescription [Comment] $SEnd_Default
/* STATIC SEMANTICS — BehaviourDescription shall not use tree attachment except for attaching local trees (i.e.,
Default behaviour trees shall not attach Test Steps). */

DefaultRef ::= $DefaultRef DefaultGroupReference

Defaultld ::= $Defaultld Defaultld&ParList

Defaultld&ParList ::= Defaultldentifier [FormalParList]

Defaultldentifier ::= Identifier

DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}

/* STATIC SEMANTICS — There shall be no white space on either side of the "/"s. */

DefaultGroupldentifier ::= Identifier

ITU-T Rec. X.292 (05/2002) 145

A.3.3.31

631
632
633
634
635
636
637
638
639
640

A.3.3.32

641
642
643

644
645
646
647

648
649

650

651
652

653
654
655
656

A.3.3.33

146

657

658

659

660

Behaviour descriptions

BehaviourDescription ::= $BehaviourDescription RootTree {LocalTree} $SEnd_BehaviourDescription

RootTree ::= {BehaviourLine}+

LocalTree ::= Header {BehaviourLine}+

Header ::= $Header TreeHeader

TreeHeader ::= Treeldentifier [FormalParList]

Treeldentifier ::= Identifier

FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"

FormalPar&Type ::= FormalParldentifier {Comma FormalParldentifier} Colon FormalParType

FormalParldentifier ::= Identifier

FormalParType ::= Type | PCO_Typeldentifier | PDU | CP | TIMER

/* STATIC SEMANTICS — In a test suite operation or an encoding operation FormalParType shall not be a PCO type or
the keyword CP*/

/* STATIC SEMANTICS — If a formal parameter is of type PDU then that formal parameter shall not be used with a
component reference (i.e., specific fields of the PDU cannot be referenced). */

Behaviour lines

BehaviourLine ::= $BehaviourLine Labelld Line Cref Verdictld [Comment] $End_BehaviourLine

Line ::= $Line Indentation StatementLine

Indentation ::="[" Number "]"

/* STATIC SEMANTICS — Statements in the first level of alternatives in a behaviour description shall have the indentation
value zero. */

/* STATIC SEMANTICS — Statements having a predecessor shall have the indentation value of the predecessor plus one as
their indentation value. */

Labelld ::= $Labelld [Label]

Label ::= Identifier

Cref ::= $Cref [ConstraintReference]

ConstraintReference ::= ConsRef | FormalParldentifier | AnyValue

/* STATIC SEMANTICS — ConsRef shall be present in conjunction with SEND, IMPLICIT SEND and RECEIVE and
shall have a type which is consistent with (i.e., the same as or a subset of) the type of ASP, PDU or CM specified in the
SEND, IMPLICIT_SEND or RECEIVE statement. A ConstraintReference is not needed for ASPs and CMs that have no
parameters or PDUs that have no fields. It shall not be present with any other kind of TTCN statement. */

/* STATIC SEMANTICS — FormalParldentifier shall resolve to a ConsRef. */

/* STATIC SEMANTICS — ConstraintReferences on SEND events shall not include any MatchingSymbol except Omit
unless the MatchingSymbol is explicitly assigned specific values on the SEND event line. */

ConsRef ::= Constraintldentifier [ActualCrefParList]

ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"

/* STATIC SEMANTICS — See static semantics on production 699. */

ActualCrefPar ::= Value

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS Parldentifier, TS Constldentifier,
TS Varldentifier, TC Varldentifier, FormalParldentifier or ConsRef. */

Verdictld ::= $Verdictld [Verdict]

Verdict ::= Pass | Fail | Inconclusive | Result

/* STATIC SEMANTICS — Verdict shall not occur corresponding to entries in the behaviour tree which are any of the
following: empty, an ATTACH construct, a REPEAT construct, a GOTO construct, an IMPLICIT SEND or a RETURN. */
Pass :=PASS [P |"(" PASS")" |"("P ")"

Fail :=FAIL | F|"(" FAIL")"|"("F")"

Inconclusive ::= INCONC | I | "(" INCONC ")" |"("T")"

Result ::= R|MTC_R

/* STATIC SEMANTICS — R shall not be used on the LHS of an assignment. */

/* STATIC SEMANTICS — MTC R shall be used only in the MTC. */

TTCN statements

StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps])
| (AssignmentList [TimerOps]) | TimerOps | Construct | ImplicitSend

Event ::= Send | Receive | Otherwise | Timeout | Done

/* STATIC SEMANTICS — A Receive, Otherwise or Timeout event shall only be followed by other Receive, Otherwise
and Timeout events through the remainder of the set of alternatives in a fully expanded tree. As a consequence, Default
trees will contain only Receive, Otherwise and Timeout events on the first level of alternatives. */

Qualifier ::="[" Expression "]"

/* OPERATIONAL SEMANTICS — Qualifier shall evaluate to a specific BOOLEAN value. */

Send ::= [PCO_Identifier | CP_Identifier | FormalParldentifier] "!" (ASP_Identifier | PDU _Identifier | CM_Identifier)

/* STATIC SEMANTICS — PCO_Identifier, CP_Identifier or FormalParldentifier shall be present unless the test suite uses
only one PCO and no CP. */

/* STATIC SEMANTICS — FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/

/* STATIC SEMANTICS — Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs.
*/

ITU-T Rec. X.292 (05/2002)

661

662

663

664
665
666
667
668
669
670
671
672

673

674

675

676

677

ImplicitSend ::="<" (IUT | PCO_Identifier | FormalParldentifier) "!" (ASP_Identifier | PDU_Identifier) ">"

/* STATIC SEMANTICS — ImplicitSend shall not be used unless the test method being used is one of the Remote Test
Methods. */

/* STATIC SEMANTICS — FormalParldentifier shall resolve to a PCO_Identifier.*/

Receive ::= [PCO_Identifier | CP_Identifier | FormalParldentifier] "?" (ASP_Identifier | PDU_Identifier | CM_Identifier)

/* STATIC SEMANTICS — PCO_Identifier, CP_Identifier or FormalParldentifier shall be present unless the test suite uses
only one PCO and no CP. */

/* STATIC SEMANTICS — Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs.
*/

/* STATIC SEMANTICS — FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/

Otherwise ::= [PCO_Identifier | CP_Identifier | FormalParldentifier] "?" OTHERWISE

/* STATIC SEMANTICS — PCO_Identifier, CP_Identifier or FormalParldentifier shall be present unless the test suite uses
only one PCO and no CP. */

/* STATIC SEMANTICS — FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/

Timeout ::="?" TIMEOUT [Timerldentifier | FormalParldentifier]

/* STATIC SEMANTICS — FormalParldentifier shall only be of TIMER type. */

Done ::="?" DONE "(" [TComplIdList] ")"

TCompldList ::= TCompldentifier {Comma TCompldentifier}

Construct ::= GoTo | Attach | Repeat | Return | Activate | Create

Activate ::= ACTIVATE "(" [DefaultRefList] ")"

/* STATIC SEMANTICS — The ACTIVATE construct shall not be used in Default behaviour tables. */

Return ::= RETURN

/* STATIC SEMANTICS — The RETURN construct shall not be used except in Default behaviour trees (including any
local trees within Default behaviour tables). */

Create ::= CREATE "(" CreateList ")"

CreateList ::= CreateTComp {Comma CreateTComp}

CreateTComp ::= TCompldentifier Colon TreeReference [ActualParList]

/* STATIC SEMANTICS — TCompldentifier shall not be of Role MTC */

GoTo ::=("->"| GOTO) Label

/* STATIC SEMANTICS — The label column shall contain labels referenced from the GoTo. */

/* STATIC SEMANTICS — Label shall be associated with the first of a set of alternatives, one of which is an ancestor node
of the point from which the GoTo is to be made. */

/* STATIC SEMANTICS — GoTo shall be used only for jumps within one tree, i.e., within a Test Case root tree, a Test
Step tree a Default tree and a local tree; and thus, each label used in a GoTo construct shall be found within the tree in
which the GoTo is used. */

/* STATIC SEMANTICS — There shall be no ACTIVATE operation as an ancestor node of the GoTo construct on the
branch of the tree between the Label and the GoTo. */

/* STATIC SEMANTICS — No GoTo shall be made to the first level of alternatives of local trees, Test Steps or Defaults. */
Attach ::="+" TreeReference [ActualParList]

/* STATIC SEMANTICS — TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation.
*/

/* STATIC SEMANTICS — The number of the actual parameters shall be the same as the number of the formal parameters.
*/

/* STATIC SEMANTICS — Formal and actual parameters of test steps shall be used in such a way that only valid TTCN is
created by textual substitution. */

/* STATIC SEMANTICS — LiteralValue, TS Parldentifier, TS Constldentifier, TS Varldentifier, TC_ Varldentifier,
ConsRef, MatchingSymbol, FormalParldentifier, PCO_Identifier and CP_Identifier may be passed as actual parameters to
an attached tree. */

Repeat ::= REPEAT TreeReference [ActualParList] UNTIL Qualifier

/* STATIC SEMANTICS — TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation.
*/

/* STATIC SEMANTICS — The number of the actual parameters shall be the same as the number of the formal parameters.
*/

/* STATIC SEMANTICS — LiteralValue, TS Parldentifier, TS Constldentifier, TS Varldentifier, TC_ Varldentifier,
ConsRef, MatchingSymbol, FormalParldentifier, PCO_Identifier and CP_Identifier may be passed as actual parameters to
the tree in a REPEAT statement. */

TreeReference ::= TestStepldentifier | Treeldentifier

/* STATIC SEMANTICS — Treeldentifier shall be the name of one of the trees in the current behaviour description, i.e.,
local trees are not accessible outside the behaviour description in which they are specified. */

ActualParList ::="(" ActualPar {Comma ActualPar} ")"

/* STATIC SEMANTICS — The number of the actual parameters shall be the same as the number of the formal parameters.
*/

/* OPERATIONAL SEMANTICS — Each actual parameter shall resolve to a specific value compatible with the type of its
corresponding formal parameter, or in the case of predefined operations compatible with the types for which the operation
is defined. */

/* STATIC SEMANTICS — If a parameter is a parameterized constraint then the constraint shall be passed together with its
actual parameter list. */

/* STATIC SEMANTICS — The actual parameters shall be bound. */

/* STATIC SEMANTICS — If the type of the formal parameter is PDU, then the actual parameter's type shall be declared as
PDU or as a specific PDU type. */

ITU-T Rec. X.292 (05/2002) 147

678

ActualPar ::= Value | PCO_Identifier | CP_Identifier | Timerldentifier
/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS Parldentifier, TS Constldentifier,
TS Varldentifier, TC Varldentifier, FormalParldentifier or ConsRef. */

A.3.3.34 Expressions

148

679

680
681

682

683

684

685

686

687

688

689

690

ConstantExpression ::= Expression

/* STATIC SEMANTICS — ConstantExpression shall not contain TS Variables or TC_Variables and shall resolve to a
constant value */

AssignmentList ::="(" Assignment {Comma Assignment} ")"

Assignment ::= DataObjectReference ":=" Expression

/* STATIC SEMANTICS — Except within a Procedural Definition or an Encoding Definition, the LHS of Assignment shall
only resolve to: TS_Varldentifier, TC_Varldentifier, reference to the field of a variable or reference to an ASP parameter or
PDU field that is to be sent. */

/* STATIC SEMANTICS — Within a procedure definition of a TSOp or EncodingOp, the DataObject Identifier on the left-
hand side of an assignment shall be a Varldentifier. */

/* STATIC SEMANTICS — The expression shall contain no unbound variables. */

/* OPERATIONAL SEMANTICS — The Expression on the RHS of Assignment shall evaluate to an explicit value of the
type of the LHS. */

Expression ::= SimpleExpression [RelOp SimpleExpression]

/* OPERATIONAL SEMANTICS — If both SimpleExpressions and the RelOp exist then the SimpleExpressions shall
evaluate to specific values of compatible types. */

/* OPERATIONAL SEMANTICS — If RelOp is "<" | ">" | ">="| "<=" then each SimpleExpression shall evaluate to a
specific INTEGER value. */

/* STATIC SEMANTICS — ASN.1 Named Values shall not be used within arithmetic expressions as operands of
operations. */

SimpleExpression ::= Term {AddOp Term}

/* OPERATIONAL SEMANTICS — Each Term shall resolve to a specific value. If more than one Term exists and if
AddOp is "OR" then the Terms shall resolve to type BOOLEAN; if AddOp is "+" or "-" then the Terms shall resolve to
type INTEGER. */

Term ::= Factor {MultiplyOp Factor}

/* OPERATIONAL SEMANTICS — Each Factor shall resolve to a specific value. If more than one Factor exists and if
MultiplyOp is "AND" then the Factors shall resolve to type BOOLEAN; if MultiplyOp is "*" or "/" then the Factors shall
resolve to type INTEGER. */

Factor ::= [UnaryOp] Primary

/* OPERATIONAL SEMANTICS — The Primary shall resolve to a specific value. If UnaryOp exists and is "NOT" then
Primary shall resolve to type BOOLEAN; if the UnaryOp is "+" or "-" then Primary shall resolve to type INTEGER. */
Primary ::= Value | DataObjectReference | OpCall | SelectExprldentifier | "(" Expression ")"

/* STATIC SEMANTICS — SelectExprldentifier shall only be used within selection expressions. */

/¥ NOTE - Through Value, it is possible to reach MatchingSymbol, TS Parldentifier, TS Constldentifier,
TS Varldentifier, TC Varldentifier, FormalParldentifier or ConsRef. */

DataObjectReference ::= DataObjectldentifier {ComponentReference}

/* STATIC SEMANTICS — Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be
used only to reference ASP parameter and PDU field values on the statement line itself. */

/* STATIC SEMANTICS — Each ComponentReference shall only reference an ASP parameter, PDU field, structure
element or ASN.1 value explicitly declared in the object that immediately precedes in the DataObjectReference. */

/* STATIC SEMANTICS — DataObjectldentifier shall not be a Varldentifier except within a procedure definition of a
TestSuiteOperation or EncodingOperation. */

DataObjectldentifier ::= TS Parldentifier| TS Constldentifier | TS Varldentifier | TC Varldentifier |
FormalParldentifier | ASP_Identifier | PDU_Identifier | CM_Identifier | Varldentifier

ComponentReference ::= RecordRef | ArrayRef | BitRef

/* STATIC SEMANTICS — RecordRef shall be used to reference ASN.1 SEQUENCE, SET and CHOICE components. It
shall not be used to reference components of any other ASN.1 type. */

/* STATIC SEMANTICS — RecordRef shall be used to reference ASP parameters, PDU fields and structure elements in the
tabular form. */

/* STATIC SEMANTICS — ArrayRef shall be used to reference ASN.1 SEQUENCE OF and SET OF components. It shall
not be used to reference components of any other ASN.1 type. */

RecordRef ::= Dot (Componentldentifier | ComponentPosition)

/* STATIC SEMANTICS — The Componentldentifier form of RecordRef shall always be used to reference ASN.1
SEQUENCE, SET and CHOICE components when an identifier is declared for the component. */

/* STATIC SEMANTICS — The Componentldentifier form of RecordRef shall always be used to reference ASP
parameters, PDU fields and structure elements declared in the tabular form. */

/* STATIC SEMANTICS — The ComponentPosition form of RecordRef shall always be used to reference ASN.1
SEQUENCE, SET and CHOICE components when an identifier is not declared for the component. */

/* STATIC SEMANTICS — Structldentifier shall not be used if the relevant structure is used as a macro. Structldentifiers
and PDU_Identifiers shall not be included in a RecordRef when a parameter, field or element is chained to a PDU or
structure and the RecordRef is to identify a component of that PDU or structure. */

/* STATIC SEMANTICS — Where a structure is used as a macro expansion, the elements in the structure shall be referred
to as if it was expanded into the ASP or PDU referring to it. */

/* STATIC SEMANTICS — If a parameter, field or element is defined to be of metatype PDU no reference shall be made to
fields of that substructure. */

ITU-T Rec. X.292 (05/2002)

691
692

693
694
695

696
697

698

699

700
701

702

703

704

705

A.3.3.35

706
707
708
709
710

711

A.3.3.36

712
713

Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier | ASN1_Identifier
ASN1 Identifier ::= Identifier

/* NOTE — ASN1 _Identifier identifies a field within ASN.1 SEQUENCE, SET or CHOICE type. */

/* STATIC SEMANTICS — An ASN1 _Identifier associated with a NamedValue shall not be used unless the value is within
a SEQUENCE, SET or CHOICE type. */

/* STATIC SEMANTICS — An ASN1_Identifier shall be provided to identify the variant in a CHOICE type. */

/* STATIC SEMANTICS — An ASNI Identifier shall be provided whenever the value definition becomes ambiguous
because of omitted OPTIONAL values in a SEQUENCE type. */

ComponentPosition ::="(" Number ")"

ArrayRef ::= Dot "[" ComponentNumber "]"

ComponentNumber ::= Expression

/* OPERATIONAL SEMANTICS — ComponentNumber shall evaluate to a non-negative specific INTEGER value. */
BitRef ::= Dot (Bitldentifier | "[" BitNumber "]")

Bitldentifier ::= Identifier

/* NOTE — Bitldentifier identifies a particular bit within an ASN.1 BIT STRING. */

BitNumber ::= Expression

/* OPERATIONAL SEMANTICS — BitNumber shall evaluate to a non-negative specific INTEGER value. */

OpCall ::= Opldentifier (ActualParList | "(" ")")

/* STATIC SEMANTICS — See static semantics on production 699. */

Opldentifier ::= TS_Opldentifier | TS_Procldentifier | PredefinedOpldentifier

PredefinedOpldentifier ::= BIT_TO_INT | HEX_TO_INT | INT_TO_BIT | INT_TO_HEX | IS_CHOSEN |
IS_PRESENT | LENGTH_OF | NUMBER_OF_ELEMENTS

AddOp :="+"|"-"| OR

/* OPERATIONAL SEMANTICS — Operands of the "+", "-" operators shall be of type INTEGER (i.e., TTCN or ASN.1
predefined) or derivations of INTEGER (i.e., subrange). Operands of the OR operator shall be of type BOOLEAN (TTCN
or ASN.1 predefined) or derivatives of BOOLEAN. */

MultiplyOp ::="*"|"/" | MOD | AND

/* OPERATIONAL SEMANTICS — Operands of the "*", "/" and MOD operators shall be of type INTEGER (i.e., TTCN
or ASN.1 predefined) or derivations of INTEGER (i.e., subrange). Operands of the AND operator shall be of type
BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

UnaryOp == "+" | "-" | NOT

/* OPERATIONAL SEMANTICS — Operands of the "+", "-" operators shall be of type INTEGER (i.e., TTCN or ASN.1
predefined) or derivations of INTEGER (i.e., subrange). Operands of the NOT operator shall be of type BOOLEAN (TTCN
or ASN.1 predefined) or derivatives of BOOLEAN. */

RelOp m:="=" | "<" [">" | ">t =" | =

Timer operations

TimerOps ::= TimerOp {Comma TimerOp}

TimerOp ::= StartTimer | CancelTimer | ReadTimer

StartTimer ::= START (Timerldentifier | FormalParldentifier) ["(" TimerValue ")"]

/* STATIC SEMANTICS — FormalParldentifier shall only be of TIMER type. */

CancelTimer ::= CANCEL [Timerldentifier | FormalParldentifier]

/* STATIC SEMANTICS — FormalParldentifier shall only be of TIMER type. */

TimerValue ::= Expression

/* OPERATIONAL SEMANTICS — Timervalue shall evaluate to a non-zero positive INTEGER. */
ReadTimer ::= READTIMER (Timerldentifier | FormalParlIdentifier) "(" DataObjectReference ")"
/* STATIC SEMANTICS — FormalParldentifier shall only be of TIMER type. */

/* STATIC SEMANTICS — The DataObjectReference shall only resolve to TS Varldentifier, TC Varldentifier, or
reference to the field of a variable. */

/* OPERATIONAL SEMANTICS — The DataObjectReference shall resolve to type INTEGER. */

Types

TypeOrPDU ::= Type | PDU
Type ::= PredefinedType | ReferenceType

A.3.3.36.1 Predefined types

714

715

PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING | OBJECTIDENTIFIER |
R_Type | CharacterString

CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String |
GraphicString | GeneralString | T61String | ISO646String | BMPString | UniversalString

A.3.3.36.2 Referenced types

716

717

ReferenceType ::= TS_Typeldentifier | ASP_Identifier | PDU_Identifier | CM_Identifier

/* STATIC SEMANTICS — All types, other than the predefined types, used in a test suite shall be declared in the Test Suite
Type definitions, ASP type definitions, PDU type definitions or CM type definitions, and referenced by name. */
TS_Typeldentifier ::= SimpleTypeldentifier | Structldentifier | ASN1_Typeldentifier

ITU-T Rec. X.292 (05/2002) 149

A.3.3.37 Values

150

718 Value ::= LiteralValue | ASN1_Value [ASN1_Encoding]

719
720
721
722
723

/* REFERENCE — Where ASN1 Value is the non-terminal Value as defined in ITU-T Rec. X.680. For the purposes of
TTCN, the following production defined in ITU-T Rec. X.680:

DefinedValue ::= Externalvaluereference | valuereference | ParameterizedValue is redefined to be:
DefinedValue ::= ConstraintValue&Attributes | valuereference

This means that ASN.1 external references are not allowed in TTCN, but the full possibilities of
ConstraintValue&Attributes as defined in production 562 are allowed within ASN.1 values in TTCN. This means that
expressions, matching symbols, constraint references, value lengths, IF_ PRESENT, and ASN.1 field encoding operations
are all included.

For the purpose of TTCN, the following productions in ITU-T Rec. X.680:

BuiltinValue ::=

BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDUValue |
EnumeratedValue |
ExternalValue |
InstanceOfValue |
IntegerValue |
NullValue |
ObjectClassFieldValue |
ObjectldentifierValue |
OctetStringValue |
RealValue |
SequenceValue |
SequenceOfValue |
SetValue |

SetOfValue |
TaggedValue

ReferencedValue ::=

DefinedValue |
ValueFromObject

are redefined to be:

BuiltinValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDUValue |
EnumeratedValue |
ExternalValue |
IntegerValue |
NullValueValue |
ObjectldentifierValue |
OctetStringValue |
RealValue |
SequenceValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedValue

ReferencedValue ::=
DefinedValue */

/* STATIC SEMANTICS — ASN.1 Named Values shall not be used within arithmetic expressions as operands of
operations. */

LiteralValue ::= Number | BooleanValue | Bstring | Hstring | Ostring | Cstring | R_Value
Number ::= (NonZeroNum {Num}) | 0

NonZeroNum ::=1[2(3[4|5|/6|7|8]|9

Num ::= 0 | NonZeroNum

BooleanValue ::= TRUE | FALSE

ITU-T Rec. X.292 (05/2002)

724 Bstring ::="" {Bin | Wildcard} """ B

725 Bin:=0]|1

726 Hstring ::="" {Hex | Wildcard} "" H
727 Hex :=Num|A|B|C|D|E|F

728 Ostring ::="" {Oct | Wildcard} "" O
729 Oct ::= Hex Hex

730 Cstring ::=""" {Char | Wildcard | "\"} """

731 Char ::=/* REFERENCE — A character defined by the relevant CharacterString type. */

/* LEXICAL REQUIREMENT - If the CharacterString type includes the character " (double quote), this character shall be
represented by a pair of " (double quote) in the denotation of any value. */

732 Wildcard ::= AnyOne | AnyOrNone
733 AnyOne ::="?"

/* STATIC SEMANTICS — AnyOne shall be used only within values of string types, SEQUENCE OF and SET OF. */
734 AnyOrNone ::="*"

/* STATIC SEMANTICS — AnyOrNone shall be used only within values of string types, SEQUENCE OF and SET OF. */
735 R Value ::= pass | fail | inconc | none
736 Identifier ::= Alpha{AlphaNum | Underscore | DoubleColon}

/* STATIC SEMANTICS — All Identifiers referenced in a TTCN test suite shall be explicitly declared in the test suite,
explicitly declared in an ASN.1 type definition referenced by the test suite or be a TTCN predefined identifier. */

/* STATIC SEMANTICS — DoubleColon shall only be used in identifiers which are declared in an Import table. Identifiers
containing DoubleColon shall not appear in an Export table. The DoubleColon is used to separate the name of a TTCN
Module from an identifier originally specified in that TTCN Module. */

737 Alpha ::= UpperAlpha | LowerAlpha
738 AlphaNum ::= Alpha | Num
739 UpperAlpha :==A|B|C|D|E|F|G|H|I|J|K|L/M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
740 LowerAlpha::=a|b|c|d|e|f|g|h|i|j|k|l/m|n|o|p|q|r|s|t|ju|Vv|w|x|y]|z
741 ExtendedAlphaNum ::=/* REFERENCE — A character from any character set defined in ISO/IEC 10646-1 */
742 BoundedFreeText ::= "/*" FreeText "*/"
743 FreeText ::= {ExtendedAlphaNum}
/* LEXICAL REQUIREMENT - Free Text shall not contain the string "*/" unless preceded by backslash ("\"). */

A.3.3.38 Miscellaneous productions

744 Comma ::=","

745 Dot ::="."

746 Dash ::="-"

747 Minus ::="-"

748 SemiColon ::=";"

749 DoubleColon ::= Colon Colon
750 Colon ::=""

751 Underscore ::="_"

A4 General static semantics requirements

A4l Introduction

Static semantics requirements that are related to specific BNF productions are specified as comments on the relevant
productions, in the following format:

/* STATIC SEMANTICS —... */

All other static semantic requirements that are common to both TTCN.GR and TTCN.MP are specified in the remainder
of A.4. Additional static semantics in the TTCN.MP are specified in A.5.2.

A4.2 Uniqueness of identifiers

In some cases test suites may make references to items defined in other OSI standards. In particular, references to ASN.1
type definition modules according to ITU-T Rec. X.680 may be made in the type definitions. Names from those modules
(such as identifiers of subfields within structured ASN.1 type definitions) may be used throughout the test suite.

Since the rules for identifiers in ASN.1 and TTCN conflict, the following conventions apply:

ITU-T Rec. X.292 (05/2002) 151

— type references, module identifiers and value references made within the various ASN.1 type definitions
tables shall comply to the requirements for identifiers defined in ITU-T Rec. X.680;

— for identifiers used within the other parts of a test suite hyphen (-) characters shall be replaced with
underscores().

Within some TTCN tables part of the ASN.1 syntax can be used to define types. In that case, ASN.1 rules shall be
followed for identifiers, with the exception that hyphen (-) characters shall not be used. Underscores (_) may be used
instead. All other requirements defined by ITU-T Rec. X.680 (e.g., Type identifiers shall start with an upper case letter,
and field identifiers within structured ASN.1 definitions shall start with a lower case letter) apply to TTCN test suites
wherever ASN.1 is used.

All identifiers of the following TTCN objects shall be unique throughout the test suite:
a) Test Suite Types;
b) Test Suite Operations;
c) Test Suite Parameters;
d) Test Case Selection Expressions;
e) Test Suite Constants;
f) Test Suite Variables;
g) Test Case Variables;
h) PCO types;

NOTE 1 — If there is no PCO type declaration table, then PCO types are implicitly declared in the PCO declaration
table, in which case the uniqueness refers to the meaning of the PCO type — the same PCO type may occur several
times in the PCO declaration table with the same meaning.

i) PCOs;
i) CPs;
k) Timers;

1) Test Components;

m) Test Component Configurations;
n) ASP types;

o) PDU types;

p) CMtypes;

q) Structured Types;

r) Encoding Rules;

s) Encoding Variations;

t) Invalid Field Encodings;

u) Aliases;

v) ASP constraints;

w) PDU constraints;

x) CM constraints;

y) Structure constraints;

z) Test Cases;

aa) Test Steps;

ab) Defaults;

ac) Encoding Rule Names;

ad) Encoding Variation Names;

ae) Invalid Field Encoding Names.

152 ITU-T Rec. X.292 (05/2002)

All the following TTCN object references shall be unique throughout the test suite:

a)
b)

c)

TTCN reserved words are listed in Table A.2. These reserved words shall not be used as identifiers in a TTCN test suite.

Test Group References;

Test Step Group References;

Default Group References.

All TTCN reserved words and TTCN identifiers are case sensitive.

Table A.2/X.292 — TTCN reserved words

ACTIVATE
AND

BEGIN
BITSTRING
BIT_TO_INT
BOOLEAN
BY

CANCEL
CASE
COMPLEMENT
CP

CREATE

DO

DONE

ELSE

ENC

END
ENDCASE
ENDIF
ENDVAR
ENDWHILE
F

FAIL

fail

FALSE
GeneralString
GOTO
GraphicString
HEXSTRING
HEX TO INT
I

[ASString

IF
IF_PRESENT
INCONC
inconc
INFINITY
INTEGER
INT_TO_BIT
INT TO HEX
IS_CHOSEN
IS_PRESENT
IUT

LT

min

MOD

MTC

MTC_R

NOT

ns

OF

OMIT

OR

OTHERWISE

P

LENGTH_OF

none
NUMBER OF ELEMENTS
NumericString
OCTETSTRING
OBJECTIDENTIFIER
PASS

pass

PDU
PERMUTATION
PrintableString
ps

PTC

R
READTIMER
REPEAT
REPLACE
RETURN
RETURNVALUE
R Type

s

START
STATIC
SUPERSET
SUBSET
TeletexString
THEN
TIMEOUT
TIMER

TO

TRUE

UNTIL

us

UT

VAR
VideotexString
VisibleString
WHILE

The ASN.1
suite.

reserved words are listed in Table A.3. These reserved words shall not be used as identifiers in a TTCN test

ITU-T Rec. X.292 (05/2002)

Table A.3/X.292 — ASN.1 reserved words

ABSENT EXTERNAL OPTIONAL
ABSTRACT-SYNTAX FALSE PDV

ALL FROM PRESENT
APPLICATION GeneralString PRIVATE
AUTOMATIC GeneralizedTime PrintableString
BEGIN GraphicString REAL

BIT [AS5String SEQUENCE
BMPString IDENTIFIER SET
BOOLEAN IMPLICIT SIZE
CHARACTER IMPORTS STRING
CHOICE INCLUDES SYNTAX
CLASS INSTANCE T61String
COMPONENT INTEGER TRUE
COMPONENTS INTERSECTION TeletexString
CONSTRAINED 1SO646String TYPE-IDENTIFIER
DEFAULT MAX UNION
DEFINITIONS MIN UNIQUE
EMBEDDED NULL UNIVERSAL
END NumericString UniversalString
ENUMERATED OBIJECT UTCTime
EXCEPT ObjectDescriptor VideotexString
EXPLICIT OCTET VisibleString
EXPORT OF WITH

NOTE 2 — Table A.3 contains a number of keywords which at present have no support within this standard. Those keywords have
been reserved to facilitate future integration of ASN.1 1994 features into TTCN.

When ASN.1 is used in a TTCN test suite, ASN.1 identifiers from the following list shall be unique throughout the test
suite, regardless of whether the ASN.1 definition is explicit or implicit by reference:

a) Typeldentifiers of an ASN.1 Type Definition;
b) identifiers occurring in an ASN.1 ENUMERATED type as distinguished values;

c) identifiers occurring in a NamedNumberList of an ASN.1 INTEGER type.

The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU fields shall
be unique within the PDU in which they are declared. The names of CM parameters shall be unique within the CM in
which they are declared.

If a Structured Type is used as a macro expansion, then the names of the elements within the Structured Type shall be
unique within each ASP, PDU or CM where it will be expanded.

Labels used within a tree shall be unique within a tree (i.e., Test Case root tree, Test Step tree, Default tree, local tree).

The tree header identifier used for local trees shall be unique within the dynamic behaviour description in which they
appear, and shall not be the same as any identifier having a unique meaning throughout the test suite.

NOTE 3 — This means that a local tree identifier may have the same name as a local tree identifier in another behaviour
description, but not the same as another Test Step in the Test Step Library.

154 ITU-T Rec. X.292 (05/2002)

The formal parameter names which may optionally appear as part of the following shall be unique within that formal
parameter list, and shall not be the same as any identifier having a unique meaning throughout the test suite:

a) Test suite operations definition;
b) Tree header of a local tree;

c) Test Step Identifier;

d) Default Identifier;

e) Parameterized constraint declaration.

A formal parameter name contained in the formal parameter list of a local tree header shall take precedence over a formal
parameter name contained in the formal parameter list of the Test Step in which it is defined, within the scope of that
local formal parameter list.

In concurrent TTCN, PCOs and CPs used in a Test Case shall only be those determined by the Test Component
configuration for that Test Case.

Each identifier used in the procedural definition of a test suite operation shall be one of the following:
a) locally declared variable name;
b) atype name, used in a variable declaration;
¢) a formal parameter name declared in a formal parameter list of the operation;

d) atest suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suite
operation. Thus, the values of all other types of identifier are not directly accessible within the procedural definition of a
test suite operation. To access such values they shall be passed as actual parameters to the test suite operation.

The constraints for TTCN Structured Types, TTCN ASPs, TTCN PDUs and TTCN CMs shall not be specified using
ASN.1 tables (i.e., ASN.1 Type Constraints, ASN.1 ASP Constraints, ASN.1 PDU Constraints or ASN.1 CM
Constraints). Conversely, the constraints for ASN.1 Types, ASN.1 ASPs, ASN.1 PDUs and ASN.1 CMs shall not be
specified using TTCN tables (i.e., Structured Type Constraints, TTCN ASP Constraints, TTCN PDU Constraints or
TTCN CM Constraints).

NOTE 4 — However, when ASPs or PDUs are chained to other PDUs, the enclosing ASP or PDU may, for example, be specifiied
in tabular TTCN, whereas the enclosed PDU may be specified in ASN.1.

A5 Differences between TTCN.GR and TTCN.MP

AS51 Differences in syntax

The following is a list of syntax differences between TTCN.MP and TTCN.GR:
a) TTCN.MP uses keywords as delimiters between entries, while TTCN.GR uses boxes;

b) TTCN.MP uses an explicit denotation of indentation levels for test events, while indentation is indicated
visually in TTCN.GR;

¢) TTCN.MP contains an extra occurrence of the suite identifier, which is used to facilitate identification of
the ATS in an automated method;

d) in TTCN.MP the Test Case behaviour descriptions are explicitly grouped by the inclusion of appropriate
Test Group Identifiers in sequence before the Test Case behaviour descriptions belonging to each group;
this information duplicates information contained in the Test Case Index and in the Test Group References
of the Test Case behaviour descriptions;

e) the Test Suite Structure, Test Case Index, Test Step Index and Default Index tables require a page number
for each entry; since page numbers are not relevant in the machine processable form they are not reflected
in the TTCN.MP;

f) TTCN.GR supports both single and compact proformas for ASP and PDU constraints and Test Cases; the
TTCN only supports BNF for the single table format and the presentation of a number of single tables in
TTCN.GR compact format is a display issue; when mapping a compact constraints table to TTCN.MP
(i.e., single format), blank fields due to modification shall be omitted;

g) the symbols "/*" and "*/" which open and close BoundedFreeText strings in the TTCN.MP shall not
appear in the TTCN.GR;

ITU-T Rec. X.292 (05/2002) 155

h) there are two alternative positions for the labels column in behaviour description tables in TTCN.GR,
whereas there is a fixed position for the labels in TTCN.MP;

i) page and line continuation are TTCN.GR features which are not represented in the TTCN.MP;
J) page and line numbering are TTCN.GR features which are not represented in the TTCN.MP;

k) if in TTCN.GR group references are used with definitions, declarations or constraints to indicate a
hierarchical grouping of objects, then in TTCN.MP each relevant group identifier is inserted before the
syntax for the group of tables which share that group identifier and the syntax for the group identifier and
following group of tables are enclosed in the appropriate TTCN.MP keywords, relevant to the type of
object.

A5.2 Additional static semantics in the TTCN.MP

The following is a list of the additional static semantics in the TTCN.MP:

a) in the TTCN.MP, statements in the first level of alternatives having no predecessor in the root or local tree
they belong to have the indentation value of zero; statements having a predecessor shall have the
indentation value of the predecessor plus one as their indentation value;

b) in the TTCN.MP, the Test Suite Structure information is in the form of Test Group Identifiers preceding
Test Case behaviour descriptions shall be the same structure as defined by the part of the Test Suite
Structure relevant to Test Groups and that defined by the Test Case Index.

A.6 List of BNF production number
Void.

156 ITU-T Rec. X.292 (05/2002)

Annex B

Operational semantics of TTCN

(This annex forms an integral part of this Recommendation)

B.1 Introduction

Annex A describes the syntax of TTCN by means of BNF production rules and restrictions on these productions the
observance of which may be verified either statically or dynamically.

This annex defines the semantics of TTCN by describing an abstract procedure that executes syntactically valid TTCN
test suites. This procedure starts for each Test Case, an abstract "TTCN machine" that evaluates this Test Case by means
of the creation, expansion and interpretation of an "EvaluationTree", dealing with one level (ordered set of alternatives in
a certain position in the tree) at a time. In the execution of concurrent TTCN, additional TTCN machines are started, one
for each created PTC. These machines work in the same way as the principal TTCN machine, which is then executing
the main test component. The necessary PCOs and CPs, connecting TTCN machines with their environment and with
each other, are assumed to exist already and to be initially empty.

The abstract procedure (EVALUATE TEST SUITE) and the TTCN machines (EVALUATE TEST CASE,
EVALUATE TEST COMPONENT) are described in clause B.5. EvaluationTree has the form of a TTCN behaviour
tree, but enriched by additional components. In a TTCN machine it is initially set to be the indicated Test Case or Test
Step root tree, or local tree. In the course of test case execution, EvaluationTree is expanded, and "control" generally
moves down the EvaluationTree, except in the execution of GOTOs and RETURNSs, where control moves up.

The additional tree components, introduced for technical reasons, are the following: each node (alternative) has, besides
the denoted StatementLine, a Boolean value IsDefault, telling whether the node stems from a Default Behaviour Table;
each level has, besides the denoted list of StatementLines, a Boolean value IsExpanded, telling whether the level has
already been expanded.

It is not required that a real TTCN machine be built in a way that it works internally exactly as the abstract one. TTCN
operational semantics define only how a real TTCN machine should behave externally, i.e., with respect to PCO and CP
queues, timers and the timer list, and test component termination information. Implementation details are irrelevant.

B.2 Precedence

Operational semantics for TTCN are supplied in the following clauses in a mixture of pseudo-code and natural language.
Where these two notations overlap they are meant to have identical meanings. If the pseudo-code and natural language
conflict, this is an error, and should be reported back to the standards organization via a defect report. In such a case,
pending correction of the defect by the standards organization, the pseudo-code will take precedence over the natural
language text.

B.3 Processing of test case errors

Within the main body of this Recommendation, as well as within Annex A and this annex, conditions are described that
result in the detection of test case errors. The observation of a test case error shall be recorded in the conformance log
and lead to the abortion of the Test Case.

Without being explicitly mentioned in the following, a test case error is always detected dynamically if any part of an
expression does not evaluate to a defined value. Expressions are evaluated, among other occasions, in the application of
assignments, qualifiers and constraints.

B.4 Converting a modularized test suite to an equivalent expanded test suite

This algorithm does not handle error cases. It requires that the objects are unique in the scope where they are defined and
used.

In the conversion from modularized test suite to an expanded test suite, there is a need for the renaming of some
imported TTCN objects (in order to avoid name clashes). In this rename process two options are allowed:

a) the original name is retained as defined in the declaration/definition of the object;

b) the new name is constructed by concatenation of the module identifier and the original name of the object.
They shall be separated by two underscores, e.g. ModuleA _ConnectionRequest.

ITU-T Rec. X.292 (05/2002) 157

The principle of this algorithm is: for each source object, make a temporary copy of it, expand the copy, then mark each
object to be imported and finally merge each marked object into the importing suite.

In expanding imported sources all explicitly and implicitly imported objects are renamed to Module::Identifier, if they
were not already renamed at import. Every module shall have a unique identifier. In the expanded test suite all explicitly
and implicitly imported objects are clearly recognizable and because every module has to have a unique name, name
clashes are not possible.

B.5 TTCN operational semantics

B.5.1 Introduction

TTCN behaviour trees are evaluated one level of alternatives at a time. At each level, defaults are appended, attachment
constructs are expanded, and REPEAT constructs are replaced. This produces a set of alternatives that can be evaluated
to discover which one successfully matches and thereby determines which set of alternatives to proceed to next. The
requirements for what constitutes a match for a TTCN statement depend on what is coded on that behaviour line, and are
described in this semantics text.

B.5.2 The pseudo-code notation

B.5.2.1 Introduction

TTCN semantics are defined using a simple functional approach that explains the execution of a TTCN Test Case
behaviour description, involving the step-wise expansion of an evaluation tree, and the execution of nodes of this tree.
These functions are intended as an aid to understanding TTCN semantics and are not intended to be associated with any
particular execution model or high level programming language. They are not meant to be direct methods for executing
TTCN.

Keywords of pseudo-code are printed in bold font, e.g., procedure, function, begin, end, if, then, else. In the header of
their definition, procedure, process, and function names are highlighted by bold font to facilitate lookup. For the same
reason, the data type of a function is highlighted. Apart from this, data types are not dealt with explicitly.

B.5.2.2 Procedures and functions

Many statements are procedure calls. Function expressions may be used wherever a value of the associated type is
needed. They obtain their value (and are immediately terminated) by return, followed by a value expression.

Procedure and function parameters are generally "throughput parameters”, i.e., formal parameters that may be both
"read" and "written to". In particular, functions may have "side effects" and are essentially "procedures with a value".
Variables in a procedure or function body that are neither formal parameters nor any of the global ones mentioned above
are local variables of this body, without explicit declaration.

Care is taken that:
— parameters are read only when they have a defined value;

— terms are used as actual parameters only where the procedure or function does not assign a value to the
respective formal parameter, i.e., the parameter is purely an input parameter.

B.5.2.3 Processes

Processes behave like procedures, except that they are each run on a separate TTCN machine. They are not executed in a
nested fashion. In a process, global data objects may be declared, such that they are available in all procedures and
functions called in the process without being explicitly passed along as parameters. Avoiding long parameter lists makes
the pseudo-code easier to read. Of course, instances of global objects exist independently in each process (TTCN
machine). There is no relationship between global objects in different processes.

In this annex, the following objects are treated as global objects in each process:
— EvaluationTree, of the Test Case (or Main Test Component) or Parallel Test Component.
— CurrentLevel, to be expanded or matched.
— Defaults, the current default context, used in default expansion.
— Snapshot, the temporarily fixed view of the environment.

— ReturnLevel, to be considered after the execution of a RETURN statement.

158 ITU-T Rec. X.292 (05/2002)

— ReturnDefaults, the default context of the ReturnLevel.
— SendObject, the ASP, PDU, or CM to be sent next.
— ReceiveObject, the ASP, PDU, or CM received last.

Thus, each TTCN machine will have its own EvaluationTree, etc.

Other objects, however, are accessible from all processes. The relevant state of the "environment of
EVALUATE TEST SUITE", i.e., the contents of the relevant PCOs and CPs, as well as the lists of expired timers, the
values of timers, and the list of terminated parallel test components, are assumed to be globally accessible from all test
components and need not be passed explicitly as parameters. Similarly, Test Suite Parameters, Test Suite Constants, and
Test Suite Variables are assumed to be accessible from all test case or test component processes.

B.5.2.4 Natural language within pseudo-code

Some parts of pseudo-code are written in natural language, in order to limit the complexity of this annex. These parts are
enclosed by /# and #/. Such parts represent statements, for-loop details, or expressions of pseudo-code and are assumed
to be executed or evaluated, when they are encountered.

Pure comments, intended for the human reader, not to be executed or evaluated by a TTCN machine, are enclosed by
(* and *).

B.5.2.5 Levels and alternatives
A level visited in a tree denotes both a position in the tree and the ordered set of alternatives at this level.

An alternative visited in a tree determines a level position in the tree, cf. LEVEL OF in B.5.25. The alternative denotes
simultaneously a position in that level, a BehaviourLine, a StatementLine, etc.

Thus, levels and alternatives in a tree are pointers, but the unpacking of the data objects they point at is done implicitly.
B.5.3 Execution of a Test Suite

B.5.3.1 Introduction

The Test Suite is executed in the main procedure, EVALUATE TEST SUITE. Every Main Test Component (Test Case
in the non-concurrent case) is executed on an abstract TTCN machine executing EVALUATE TEST CASE. Each
Parallel Test Component is executed on an independent TTCN machine, performing
EVALUATE TEST COMPONENT.

procedure EVALUATE_TEST_SUITE(TestSuiteld)
(* This procedure introduces unique names for all TTCN trees, including local subtrees. It sets Test Suite specific data
objects and evaluates each Test Case whose selection expressions become TRUE. *)
begin
for /# every Test Case, Test Step or Default behaviour table 7able in TestSuiteld #/ do
begin
Rename all local trees of Table such that they become unique throughout the test suite and different from any Test
Case,
Test Step or Default behaviour table name in the Test Suite. #/;
/# Rename accordingly in Table all references to local trees in attachments. #/;
/# Every node in every behaviour tree gets a new Boolean component "IsDefault".
This component is set to TRUE for all nodes in Default Dynamic Behaviour Tables
and FALSE for all nodes in all other tables. #/;
end;
for /# every Default behaviour table Table in TestSuiteld #/ do
begin
I# For each leaf of the behaviour tree which does not have an entry in the verdict column assign the verdict R. #/
/# or each leaf of the behaviour table which has a preliminary result assigned, change the preliminary result to a
verdict by removing the parentheses around it. #/
end;
Evaluated := /# empty list of Test Case Identifiers #/;
/# Set values of Test Suite Parameters, Test Suite Constants, and, where to be initialized, of Test Suite Variables #/;
for /# every Test Case Identifier TCId of TestSuiteld that is not yet in Evaluated #/ do (* in any order *)
begin
SelEx := /# conjunction of the selection expressions of all test groups containing Test Case TCId (directly or via lower
groups) #/;
if EVALUATE BOOLEAN(SelEx) then
start process EVALUATE TEST CASE (TCId);
/# add TCId to the list Evaluated #/;
end
end

ITU-T Rec. X.292 (05/2002) 159

B.5.4 Execution of a Test Case

B.5.4.1 Execution of a Test Case — pseudo-code

process EVALUATE_TEST CASE(TestCaseld)

(* This process initializes the EvaluationTree by the Test Case root tree and the default context by the Defaults references
listed with the Test Case Behaviour Description. It moves control to the top level of alternatives and calls their
evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin

/# Initialize Test Case Variables, global R and MTC R, PCOs, CPs, Timers, and the Timeout List of TestCaseld. #/;

EvaluationTree := ROOT_TREE(TestCaseld);

(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test case
behaviour description and from the test step and default libraries. A component IsExpanded is added to each level. *)
CurrentLevel := FIRST LEVEL(EvaluationTree) ;
(* A level denotes both a position in a tree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel,
Defaults := DEF_REF LIST(TestCaseld);
ReturnDefaults := Defaults;
EVALUATE_LEVELS ();
(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

procedure EVALUATE_LEVELS ()

(* This procedure first expands and evaluates CurrentLevel, which is the currently active level of alternatives of
EvaluationTree. Defaults gives the currently active default context. The alternatives contained in CurrentLevel are
processed in their order of appearance, if necessary in repeated rounds. CurrentAlternative is the loop variable of the for-
loop, denoting the currently considered alternative in CurrentLevel. By the snapshot mechanism, in each round of
matching attempts through CurrentLevel, the status of the environment considered does not change, giving each such
round an instantaneous character.

Save for dynamically detected test case errors, the evaluation of CurrentLevel includes the successful evaluation of an
alternative. This is followed by the assignment of a verdict and the evaluation of the next level, and hence, by induction,
of all levels that control subsequently moves to. *)

begin
if NOT IS_EXPANDED() then
(* By this condition we avoid expanding levels repeatedly which are targets of GOTOs. *)
EXPAND CURRENT LEVEL ();
(* Now the current level is free of REPEATS and attachments, and includes the necessary defaults. *)
repeat
(* ... performing rounds through current level, trying to match an alternative.*)
TAKE_SNAPSHOT();
(* ... of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other test
components. *)
for /# every CurrentAlternative in CurrentLevel, in the given order #/ do
(* try to match the current alternative. Note that an alternative visited in a tree determines a level position in the tree
and denotes, depending on the context it is used in, a position in that level, a BehaviourLine, a StatementLine, etc. *)
begin
if EVALUATE EVENT_LINE (CurrentAlternative) then
(* In the absence of Test Case errors the Test Component or Test Case will terminate inside the
EVAL_VERDICT ENTRY or GOTO NEXT LEVEL OR_STOP WITH_VERDICT call of the innermost
recursive instance of EVALUATE LEVELS, e.g. if there is a final verdict or no next level. Then, the for-loop will
be aborted, too. *)
begin
if /# Alternative has a verdict column entry VerdictEntry #/ then
EVAL_VERDICT ENTRY (VerdictEntry);
GOTO_NEXT LEVEL _OR_STOP_WITH_VERDICT(CurrentAlternative);
EVALUATE_LEVELS();
end
end
until SNAPSHOT FIXED();
(* SNAPSHOT _FIXED returns TRUE if Snapshot cannot change any more. *)
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end

B.5.4.2 Execution of a Test Case or Test Component — natural language description

Step1 Evaluation begins at the numerically lowest (in TTCN.MP), i.e., the leftmost (in TTCN.GR), level of
indentation of the root tree.

160 ITU-T Rec. X.292 (05/2002)

Step 2 Expand current level to include all defaults explicitly, and to replace all tree attachments, as long as necessary,
as well as all REPEATS, by their expansions.

Step3 Take a snapshot of the incoming PCO and CP queue(s) and the timeout list.
NOTE 1 — The act of taking a snapshot does not remove an event from any PCO or CP.

Consider the first behaviour line at the current level of alternatives.
Step4 Evaluate the TTCN statement on the current behaviour line.

The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN
statement type.

Step 5 Ifthe TTCN statement evaluates to a successful match, then go to Step 6.

Otherwise, if there are more alternatives in the current set of alternatives, consider the next behaviour line in
the set of alternatives and go to Step 4.

If there are no more alternatives, and yet all PCO and CP queues relevant to this set of alternatives contain at
least one event, and all timers relevant to Timeout statements in the set of alternatives are in the timeout list,
then stop the Test Case and indicate test case error.

NOTE 2 — Under these conditions none of the set of alternatives can ever match.

In all other cases — i.e., there are no more alternatives and the next snapshot might show a different picture — go
to Step 3.

Step 6 If a preliminary verdict is coded, process it as in B.5.23.2.
Step 7 If a leaf node in the tree or a node with a final verdict has been reached, then go to Step 8.
Otherwise, determine and consider the next level to be evaluated and go to Step 2.

Step 8 Use final verdict, or, if not specified, the current value of the preliminary result variable R, as the final verdict
of the Test Case as in B.5.23.2 and B.5.25.

B.5.5 Expanding a set of alternatives

B.5.5.1 Introduction
This subclause defines how to expand a set of alternatives in preparation for evaluating which alternative matches.

This is done in four steps:
a) saving the Default context, if labelled level;
b) attachment of the current set of Default behaviour trees;

c) expansion of attached trees, if necessary, recursively, until there are no more attachment alternatives in the
set;

d) expansion of REPEAT constructs, replacing them by a subtree in which tree attachments and GOTO
constructs occur in lower levels only.

procedure EXPAND_CURRENT_LEVEL ()
begin
if /# CurrentLevel has a label #/ then
SAVE_DEFAULTS ();
APPEND_DEFAULTS ();
EXPAND ATTACHMENTS (EvaluationTree, CurrentLevel, Defaults);
(* CurrentLevel is now free of tree attachments. *)
EXPAND REPEATS ();
/# Component IsExpanded of CurrentLevel #/ := TRUE,;
end

B.5.5.2 Saving Defaults
procedure SAVE_DEFAULTS ()

begin
/# Replace CurrentLevel and its subsequent behaviour in the EvaluationTree by ACTIVATE (Defaults), followed by
CurrentLevel and its subsequent behaviour, with the label of the former CurrentLevel moved to the ACTIVATE line. #/;
/# Consider new ACTIVATE line as the CurrentLevel #/;

end

ITU-T Rec. X.292 (05/2002) 161

B.5.5.3 Expansion of REPEAT constructs

If RepeatedTree denotes a particular TreeReference together with its ActualParList, and Condition denotes a particular
Boolean expression, and label denotes a label not used anywhere else, then "REPEAT RepeatedTree UNTIL
[Condition]" can be replaced by:

[TRUE]
label +RepeatedTree
[NOT (Condition)]
-> label
[Condition]

Lines describing subsequent behaviour of the REPEAT construct follow after [Condition] in this expansion, with an
additional indentation of one level.

procedure EXPAND_REPEATS ()
begin
for /# every alternative 4 in CurrentLevel, in the given order #/ do
begin
if /# A is of the form REPEAT RepeatedTree UNTIL [Condition] #/ then
begin
Subsequent := SUBSEQUENT BEHAVIOUR TO (EvaluationTree,A);
Label := NEW_LABEL ();
(* Create a label which has been used neither in the (relabelled) Test Suite nor in the EvaluationTree. *)
Expansion := MAKE TREE ("[TRUE]",
MAKE TREE (Label: "+" RepeatedTree,
MAKE_TREE ("[NOT(" Condition ")]",
"->" Label,
MAKE_TREE ("[" Condition "]",
Subsequent,
)
),
);
REPLACE_ALT_TREE (EvaluationTree, CurrentLevel, A, Expansion);
end
end
end

B.5.5.4 Appending default behaviour

During evaluation of a test case, at each level of alternatives there is a current list of Default Tree References. This list
comes either from the list in the appropriate Dynamic Behaviour Table, or from the most recently evaluated ACTIVATE
construct. The appending of the Defaults is done by adding, for each entry in the current list of Defaults, the construct
"+ DefaultReference" to the end of the set of alternatives.

procedure APPEND_DEFAULTS ()

begin
for /# every D in Defaults, in the given order #/ do
begin
APPEND TO LEVEL (EvaluationTree, CurrentLevel, "+" D);
(* EvaluationTree and CurrentLevel are updated by appending the attachment of D to CurrentLevel. *)
end
end

B.5.5.5 Expanding attached trees

Attached trees are expanded by replacing the attach construct + TestStep with the tree or, where applicable, the root tree
of TestStep and subsequently, if there is behaviour specified following and indented from the Attach construct, to insert
this behaviour after and indented from each leaf in the attached tree. Since attached trees may have their own list of
default tree references in the header of the test step dynamic behaviour table, the expansion of tree attachment has to
ensure that if any event on the first level of alternatives of the attached tree matches then the defaults context is changed,
and if a leaf node of that attached tree is reached without a verdict being assigned then the defaults context of the calling
tree is restored before the subsequent behaviour is evaluated. These changes in defaults context are most easily described
in terms of the insertion of appropriate ACTIVATE constructs in the relevant places. If the attached tree is in fact a
default tree, then there will be no default references in its header, so the ACTIVATE constructs that are inserted on
entering that tree will have no parameters and thereby will deactivate all defaults within the scope of the default tree.

162 ITU-T Rec. X.292 (05/2002)

The attached trees on Level are expanded using the following procedure:

procedure EXPAND_ATTACHMENTS (Tree, Level, OuterDefaults)
begin
for /# every alternative 4 in Level in Tree, in the given order #/ do
begin
if /# A is an ATTACH construct, i.e. of the form "+" AttachedTreeld ActualParList #/ then
begin
Subsequent := SUBSEQUENT BEHAVIOUR TO (Tree,A);
AttachedTree :== ROOT TREE (AttachedTreeld);
REPLACE_PARAMETERS (AttachedTreeld, AttachedTree, ActualParList);
(* This replaces the formal parameters in AttachedTree by the actual parameters specified in ActualParList, doing so by
textual substitution *)
RELABEL(AttachedTree);
NewDefaults := DEF_REF LIST(AttachedTreeld);
NewLevel := FIRST LEVEL(AttachedTree);
EXPAND ATTACHMENTS (AttachedTree, NewLevel, NewDefaults);
EXPAND SUBTREE (AttachedTree, Subsequent, NewDefaults, OuterDefaults);
(* i.e.: Insert ACTIVATE(NewDefaults) below first level of AttachedTree & Attach ACTIVATE(OuterDefaults) and
Subsequent to each leaf node of AttachedTree *)
REPLACE ALT TREE(Tree, Level, A, AttachedTree);
end
end
end

procedure EXPAND SUBTREE (SubTree, Subsequent, InnerDefaults, OuterDefaults)
(* This procedure first inserts ACTIVATE(InnerDefaults) below the first level of SubTree and then attaches
ACTIVATE(OuterDefaults) and Subsequent to each leaf node of SubTree. *)
begin
Level := FIRST LEVEL(SubTree);
for /# every alternative 4 of Level in SubTree #/ do
begin
SubOfA := SUBSEQUENT BEHAVIOUR TO (SubTree, A);
ActTree := MAKE_TREE(A,
MAKE TREE("ACTIVATE(" InnerDefaults ")",
SubOfA,),);
REPLACE_ALT TREE(SubTree, Level, A, ActTree);
end
for /# every leaf 4 in SubTree #/ do
begin
LeafTree := MAKE TREE (A,
MAKE_TREE ("ACTIVATE(" OuterDefaults ")",
Subsequent,),);
REPLACE_ALT TREE(SubTree, LEVEL OF(SubTree, A), A, LeafTree);
end
end

The expansion of attached trees is also explained in 15.13.
B.5.6 Evaluation of an Event Line

B.5.6.1 Pseudo-code

function EVALUATE_EVENT_LINE(Alternative): BOOLEAN
(* This function calls EVALUATE EVENT, EVALUATE PSEUDO_EVENT or EVALUATE CONSTRUCT,
depending on what type of StatementLine the current alternative is *)

begin
case STATEMENT LINE TYPE OF(Alternative) of
begin
EVENT: if EVALUATE EVENT (Alternative) then return TRUE; else return FALSE;
PSEUDO_EVENT: if EVALUATE PSEUDO_EVENT (Alternative) then return TRUE; else return FALSE;
CONSTRUCT: (* Construct can now only be GoTo, Return, Activate, Create. *)
if EVALUATE CONSTRUCT (Alternative) then return TRUE,; else return FALSE;
end
end

B.5.6.2 Natural language description

Evaluate the TTCN statement on the current behaviour line, based on the statement type, i.e. whether it is an event, a
pseudo-event, or a construct. The evaluation of each type of TTCN statement is specified in the operational semantics for
that TTCN statement type in the following clauses.

ITU-T Rec. X.292 (05/2002) 163

B.5.7 Functions for TTCN events

B.5.7.1 Functions for TTCN events — pseudo-code

function EVALUATE_EVENT(Alternative): BOOLEAN
(* This function calls SEND, RECEIVE, OTHERWISE, TIMEOUT , DONE, or IMPLICIT SEND, depending on what
type of event the current alternative is *)

begin
case EVENT TYPE_ OF(Alternative) of
begin
SEND : if SEND (Alternative) then return TRUE; else return FALSE;
RECEIVE: if RECEIVE (Alternative) then return TRUE; else return FALSE;
OTHERWISE: if OTHERWISE (Alternative) then return TRUE,; else return FALSE;
TIMEOUT: if TIMEOUT (Alternative) then return TRUE; else return FALSE;
DONE: if DONE (Alternative) then return TRUE; else return FALSE;
IMPLICIT_SEND: if IMPLICIT SEND (Alternative) then return TRUE; else return FALSE;
end
end

B.5.7.2 Functions for TTCN events — natural language description

If the TTCN statement is an event, then it will be evaluated as specified in B.5.8 for a SEND event, B.5.9 for a
RECEIVE event, B.5.10 for an OTHERWISE event, B.5.11 for a TIMEOUT event, B.5.12 for a DONE event, or B.5.13
for an IMPLICIT SEND event.

B.5.8 Execution of the SEND event

B.5.8.1 Execution of the SEND event — pseudo-code

function SEND (SendLine): BOOLEAN
begin
/# ReadPCOorCPidentifier,
ASPorPDUorCMidentifier,
Qualifier,
Assignments,
TimerOperations,
ConstraintsReference from SendLine #/;
if EVALUATE BOOLEAN (Qualifier) then
begin
BUILD_SEND OBJECT (ASPorPDUorCMidentifier, ConstraintsReference);
EXECUTE_ASSIGNMENTS (Assignment);
SEND_EVENT (PCOorCPidentifier, ConstraintReference);
TIMER_OPS (TimerOperations);
LOG(PCOorCPidentifier, SendObject);
return TRUE;
end
else return FALSE;
end

procedure BUILD _SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference)
begin
SendObject := /#an instance of ASPorPDUorCMidentifier whose parameters/fields have the values specified by
ConstraintsReference #/;
end

procedure SEND_EVENT (PCOorCPidentifier, ConstraintsReference)

begin
/# Encode SendObject according to applicable encoding rules and variations, see ConstraintsReference and associated type
definitions #/;
/# Put encoded SendObject at the end of OUTPUT _Q(PCOorCPidentifier) #/;
end

B.5.8.2 Execution of the SEND event — natural language description

The contents of the ASP or PDU or CM, as specified in the named Constraints Reference entry, are to be sent. Note that
if there is a qualifier, the SEND can be executed only if that qualifier evaluates to TRUE.

Step 1 If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
e Ifthe qualifier evaluates to FALSE, the SEND cannot succeed.
e Ifthe qualifier evaluates to TRUE, then continue with Step 2.

164 ITU-T Rec. X.292 (05/2002)

Step 2

Step 3

Step 4

Step 5

Step 6

B.5.9

B.5.9.1

Create an ASP or PDU or CM as specified in the named Constraints Reference.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will
be assigned to the appropriate parameter or field of the ASP or PDU or CM to be sent.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the named
parameter or field of the ASP or PDU or CM being built for comparison. The structure defined for the
associated Constraints Reference is used for this named parameter or field.

If there is an Assignment statement, then that assignment will be performed as in B.5.16, in particular possibly
changing the ASP or PDU or CM to be sent.

The ASP or PDU or CM is now fully filled in according to the specifications given. The LT or UT will encode
the PDUs (but not ASPs or CMs, apart from PDUs embedded in such) according to the applicable encoding
rules. The LT or UT will send the ASP with its embedded encoded PDUs, or the encoded PDU. If a PCO or CP
was stated, the ASP or PDU or CM is to be sent at that PCO or CP. If the PCO was not stated, i.e., the test uses
a single PCO — then the ASP or PDU is sent from the lower PCO, because a CP cannot be implied.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
o the PCO or CP at which the SEND occurred;
e the fully defined ASP, PDU or CM that was sent.

Execution of the RECEIVE event

Execution of the RECEIVE event — pseudo-code

function RECEIVE(ReceiveLine): BOOLEAN

begin

end

/# Read PCOorCPidentifier,
ASPorPDUorCMidentifier,

Qualifier,

Assignments,

TimerOperations,

ConstraintsReference from ReceiveLine #/;
if /# INPUT_Q (PCOorCPidentifier) is not empty #/ then

begin
if (OBJECT_MATCHES(PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference)
AND EVALUATE BOOLEAN (Qualifier)) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE OBIJECT (PCOorCPidentifier);
LOG(PCOorCPidentifier, ReceiveObject);
return TRUE;
end
else return FALSE;
end
else return FALSE;

function OBJECT_MATCHES (PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference): BOOLEAN

begin

end

ReceiveObject := /# copy of encoded object at head of INPUT_Q(PCOorCPidentifier) #/;
if /# ReceiveObject can be decoded according to applicable encoding rules and variations, as given by
ConstraintsReference and associated type definitions #/ then
begin
/# decode it, to yield new version of ReceiveObject #/;
if (/# ReceiveObject is of type ASPorPDUorCMidentifier #/
AND
/# parameters/fields of ReceiveObject have values matching the ConstraintsReference #/) then
return TRUE;
else return FALSE;
end
else return FALSE;

ITU-T Rec. X.292 (05/2002) 165

procedure REMOVE_OBJECT (PCOorCPidentifier),

begin
end

B.5.9.2
Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7
Step 8

Step 9

B.5.10

/# remove object at head of INPUT Q(PCOorCPidentifier) #/;

Execution of the RECEIVE event — natural language description

If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for
matching shows that there is #o incoming ASP or PDU or CM, then this RECEIVE cannot match.

Otherwise, continue to Step 2.

If a PCO or CP was stated, the ASP or PDU or CM shall have been received at that PCO or CP. If the PCO
was not stated, i.e., the test suite uses a single PCO, — then the ASP or PDU shall have been received at the
lower PCO. Note that a CP cannot be implied.

The incoming PDUs are decoded according to the applicable encoding rules. A copy is made of the decoded
incoming PDU or of the incoming ASP or CM with decoded nested PDUs.

If the qualifier, possibly using values from the incoming data object, evaluates to FALSE, the RECEIVE
cannot match. Otherwise, continue to step 5.

A copy of the expected ASP or PDU or CM pattern is assembled, using the structure defined in the ASP or
PDU or CM declaration plus the values, matching mechanisms and chained Constraints References specified in
the named Constraints Reference.

This copy is compaired against the incoming ASP or PDU or CM, and its decoded PDUs or the decoded PDU
to determine if the RECEIVE can match as specified. Only if the RECEIVE did match successfully, continue
to Step 6.

The incoming ASP or PDU or CM which has just matched will be removed from the incoming PCO or CP
queue and discarded.

If there are Assignment statements, then they will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
e the PCO or CP at which the RECEIVE occurred;
e the fully defined ASP, PDU or CM that was received.

Execution of the OTHERWISE event

B.5.10.1 Execution of the OTHERWISE event — pseudo-code

function OTHERWISE (OtherwiseLine): BOOLEAN

begin

end

/# Read PCOorCPidentifier,

Qualifier,
Assignments,
TimerOperations from OtherwiseLine #/;

if (/#INPUT_Q (PCOorCPidentifier) is not empty #/

AND EVALUATE_BOOLEAN (Qualifier)) then

begin

EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBIJECT (PCOorCPidentifier);
LOG(PCOidentifier, ReceivedObject);
return TRUE;

end
else return FALSE;

B.5.10.2 Execution of the OTHERWISE event — natural language description

The tester shall accept any incoming data that it has not been possible to decode or that has not matched a previous
alternative to this OTHERWISE event. Note that if there is a qualifier, the OTHERWISE can only match if that qualifier
evaluates to TRUE.

Step 1

166

If the qualifier evaluates to FALSE, the OTHERWISE cannot match. Otherwise, continue to Step 2.

ITU-T Rec. X.292 (05/2002)

Step 2

Step 3

Step 4
Step 5
Step 6

Step 7

B.5.11

If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for
matching shows that there is no incoming ASP, PDU or CM, then this OTHERWISE cannot match.

Otherwise, continue to Step 3.

If a PCO was stated, the ASP or PDU shall have been received at that PCO. If a CP was stated, the CM shall
have been received at that CP. If the PCO was not stated, i.e., the test uses a single PCO, then the ASP or PDU
shall have been received at the lower PCO, because a CP cannot be implied.

The incoming ASP, PDU or CM will be removed from the incoming PCO or CP queue and discarded.
If there are Assignment statements, then they will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
e the PCO or CP at which the OTHERWISE occurred;
e the ASP, PDU or CM that was received.

Execution of the TIMEOUT event

B.5.11.1 Execution of the TIMEQOUT event — pseudo-code

function TIMEOUT (TimeoutLine): BOOLEAN

begin

end

/# Read Timerldentifier,

Qualifier,

Assignments,

TimerOperations from TimeoutLine #/;
if EVALUATE BOOLEAN (Qualifier) then
begin

if TIMER EXPIRED (Timerldentifier) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(Timerldentifier);
return TRUE;
end
else return FALSE;
end
else return FALSE;

function TIMER_EXPIRED (TimerIdentifier): BOOLEAN

begin

end

if /# Timerldentifier is not empty #/ then
begin
if /# timeout notification from TimerlIdentifier is in copy of timeout list in Snapshot #/ then
begin
/# delete timeout notification from Timerldentifier in actual timeout list #/;
/# stop and reset the timer Timerldentifier #/;
return TRUE;
end
else return FALSE;
end
else (* Timerldentifier not specified *)
begin
if /# any timeout notification is in copy of timeout list in Snapshot #/ then
begin
/# stop and reset all timers mentioned in actual timeout list#/;
/# delete all timeout notifications in actual timeout list #/;
return TRUE;
end
else return FALSE;
end

ITU-T Rec. X.292 (05/2002) 167

B.5.11.2 Execution of the TIMEOUT event — natural language description

The tester will check to see if the named timer has expired. (If no timer name is given, the tester will check to see if any
timer has expired.) Note that if there is a qualifier, the TIMEOUT is only considered as matching if that qualifier
evaluates to TRUE.

Step 1

Step 2

Step 3

Step 4

Step 5

B.5.12

If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
e Ifthe qualifier evaluates to FALSE, the TIMEOUT cannot match.

e If'the qualifier evaluates to TRUE, then continue with Step 2.

See if any of the timers explicitly or implicitly named on the TIMEOUT event have been running, but have
expired.

e If no timer identifier is specified, then the tester shall check to see if any timer that had been running has
now expired. If so, all timers which have timed out are reset (and left stopped). The timeout entry (entries)
is (are) removed from the timeout list.

e If a timer identifier is specified, then the tester shall check to see if this timer had been running, but has
now expired. If so, the expired timer is reset (and left stopped). The timeout entry is removed from the
timeout list.

e Ifno timers have expired the TIMEOUT event can not match, i.e., the next alternative will be attempted.
If there is an Assignment statement, then that assignment will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the information specified in B.5.24, as well as the name of the timer that
expired.

Execution of the DONE event

B.5.12.1 Execution of the DONE event — pseudo-code

function DONE (DoneLine): BOOLEAN

begin

end

/# Read TCompList,

Qualifier,
Assignments,
TimerOperations from DoneLine #/;
if EVALUATE_BOOLEAN (Qualifier) AND ALL_TERMINATED(TCompList) then

begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(TCompList);
return TRUE;

end

else return FALSE;

function ALL_TERMINATED(TCompList): BOOLEAN

begin

end

168

if TCompList =/# EmptyList #/ then
TCompList := /# list of all created Parallel Test Components #/;
for /# every TComp in TCompList #/ do
begin
if /# TComp has not terminated in the Snapshot #/ then
return FALSE;
end
return TRUE;

ITU-T Rec. X.292 (05/2002)

B.5.12.2 Execution of the DONE event — natural language description

The termination status of the given list of Test Components is to be checked. If all given components have terminated (at
the time of the last SNAPSHOT) then the event matches, provided that the qualifier also evaluates to TRUE.

Step 1 If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
e Ifthe qualifier evaluates to FALSE, the DONE cannot succeed.

e Ifthe qualifier evaluates to TRUE, the continue to Step 2.

Step 2 If all test components listed in TCompList had terminated at the time of the last SNAPSHOT, then continue to
Step 3, otherwise this DONE cannot match.

Step 3 If there is an Assignment statement, then that assignment will be performed as in B.5.16.

Step4 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Step5 Record in the conformance log the information specified in B.5.24, as well as the TCompList.
B.5.13 Execution of the IMPLICIT SEND event

B.5.13.1 Execution of the IMPLICIT SEND event — pseudo-code

function IMPLICIT_SEND (Alternative): BOOLEAN

begin
/# Execute IMPLICIT SEND according to natural language description #/;
return TRUE;

end

B.5.13.2 Execution of IMPLICIT SEND — natural language description

The IUT is induced to do whatever is necessary to send the contents of the ASP or PDU, as specified in the constraints
reference entry of the alternative.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be
assigned to the appropriate parameter or field of the ASP or PDU to be sent.

IMPLICIT SENDing always succeeds.
B.5.14 Execution of a pseudo-event

B.5.14.1 Execution of a pseudo-event — pseudo-code

function EVALUATE_PSEUDO_EVENT (PseudoEventLine): BOOLEAN
begin
/# Read Qualifier,
Assignments,
TimerOperations from PseudoEventLine #/;
if EVALUATE BOOLEAN (Qualifier) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG();
return TRUE;
end
else return FALSE;
end

B.5.14.2 Execution of PSEUDO-EVENTS — natural language description

If the TTCN statement is a pseudo-event, then it will be evaluated as specified in B.5.15 for a Boolean Expression,
B.5.16 for an Assignment Statement, B.5.17 for a timer operation (START, CANCEL, or READTIMER).

After completion of the pseudo-event, record in the conformance log the information specified in B.5.24.

ITU-T Rec. X.292 (05/2002) 169

B.5.15 Execution of BOOLEAN expressions

B.5.15.1 Execution of BOOLEAN expressions — pseudo-code

function EVALUATE_BOOLEAN(Qualifier): BOOLEAN
begin
if /# Qualifier is empty #/ then
return TRUE;
else
begin
if /# Qualifier evaluates to TRUE #/ then
return TRUE;
else return FALSE;
end
end

B.5.15.2 Execution of BOOLEAN expressions — natural language description

A Boolean expression (i.e., qualifier) specifies a condition that is to be tested. This condition will either be TRUE or
FALSE. A Boolean expression may be stated as part of a statement line (i.e., on the same line with a SEND, RECEIVE,
TIMEOUT, or OTHERWISE), or as a statement line on its own (i.e., as a pseudo-event).

Step1 The Boolean expression shall be evaluated to determine if the condition specified is TRUE or FALSE. The
normal rules of Boolean Logic apply, with the precedence rules specified in 11.3.2.1.

B.5.16 Execution of assignments

B.5.16.1 Execution of assignments — pseudo-code

procedure EXECUTE_ASSIGNMENTS (AssignmentList)

begin
for /# every assignment CurrentAssignment in AssignmentList, in the given order #/ do
begin
/# Execute CurrentAssignment #/;
end
end

B.5.16.2 Execution of ASSIGNMENTS — natural language description

The assignment list is evaluated in left to right order. In each assignment, the variable on the left-hand side of that
statement is to take on the value of the expression on the right-hand side of the statement. This expression is evaluated
observing the precedence indicated in Table 3.

If the assignment is performed in a Send line, the left-hand side may denote an ASP-, PDU- or CM-component, referring
to the object to be sent. If the assignment is performed in a Receive line, the expression may refer to components of the
ASP, PDU or CM to be received.

B.5.17 Execution of TIMER operations

B.5.17.1 Execution of TIMER operations — pseudo-code

procedure TIMER_OPS (TimerOperations)

begin
for /# every TimerOperation in TimerOperations #/ do
case TIMER OP_TYPE_ OF(TimerOperation) of
begin
START TIMER: START TIMER(TimerOperation);
CANCEL TIMER: CANCEL_TIMER(TimerOperation);
READ_TIMER: READ_TIMER(TimerOperation);
end
end

procedure START_TIMER (TimerOperation)
begin

/# perform as in B.5.17.2 #/;
end

170 ITU-T Rec. X.292 (05/2002)

procedure CANCEL_TIMER (TimerOperation)
begin

/# perform as in B.5.17.3 #/;
end

procedure READ_TIMER (TimerOperation)
begin

/# perform as in B.5.17.4 #/;
end

B.5.17.2 Execution of START timer — natural language description
Step 1 If the timer is already running, cancel it and continue to Step 2. Otherwise continue directly to Step 2.

Step2 The timer is to be started with an initial value indicating no time has passed. Any entry for this timer in the
timeout list is removed from the list.

B.5.17.3 Execution of CANCEL timer — natural language description
The CANCEL timer operation specifies that a timer (or timers) is to stop ticking.
Step1 Determine the name of the timer(s) to be cancelled:

e if no timer identifier is specified, then cancel a// timers;

e ifatimer identifier is specified, then cancel the timer with this timer identifier.

Step 2 The status of the named or implied timer(s) is to be set to "not running". The amount of time elapsed for the
timer(s) is to be set to zero. If the timeout list contains an entry for the timer(s), the entry (entries) is (are)
removed from the list.

B.5.17.4 Execution of READTIMER - natural language description

The READTIMER operation specifies that the amount of time that has passed for a currently running timer is to be
stored into a variable. The timer continues to run without interruption.

Step 1 Interrogate the value of the timer having the specified name. If the amount of time passed is n of the units
declared for this timer type, store # into the named variable.

If the timer is not currently running, the named variable shall be set to zero.
B.5.18 Functions for TTCN constructs

B.5.18.1 Functions for TTCN constructs — pseudo-code

function EVALUATE_CONSTRUCT (Construct): BOOLEAN
(* As the EvaluationTree is expanded at the CurrentLevel, the REPEAT and ATTACH constructs are not encountered

here. *)
begin
case CONSTRUCT _TYPE OF(Construct) of
begin
ACTIVATE: ACTIVATE(Construct);
CREATE: CREATE (Construct);
GOTO: (* mno action here, see GOTO_NEXT LEVEL OR_STOP WITH_ VERDICT *);
RETURN: (* mno action here, see GOTO_NEXT LEVEL OR _STOP WITH_ VERDICT *);
end
return TRUE;
end

B.5.18.2 Functions for TTCN constructs — natural language description

If the TTCN statement is a TTCN construct, then it will be evaluated as specified in B.5.19 for an ACTIVATE construct,
as specified in B.5.20 for a CREATE construct, as specified in B.5.21 for a GOTO construct, or as specified in B.5.22 for
a RETURN construct. There is no need to deal with REPEATS, as they all have been replaced in the CurrentLevel.

TTCN constructs will always succeed.

ITU-T Rec. X.292 (05/2002) 171

B.5.19 Execution of the ACTIVATE construct

B.5.19.1 Execution of the ACTIVATE construct — pseudo-code
procedure ACTIVATE (ActivateLine)

begin
/# Read DefRefList from ActivateLine #/;
Defaults:=DefRefList;
LOG(DefRefList);

end

B.5.19.2 Execution of the ACTIVATE construct — natural language description
Change the current defaults context to the DefaultRefList that appears as parameter to the ACTIVATE construct.
Step1 Change default context to DefaultRefList.

Step2 Record in the conformance log the following information as well as the information specified in B.5.24:

e the DefaultRefList.
B.5.20 Execution of the CREATE construct

B.5.20.1 Execution of the CREATE event — pseudo-code

procedure CREATE (CreateLine): BOOLEAN
begin
/# Read CreateList from CreateLine #/;
for /# every (TCompldentifier, TreeReference, ActualParList) drawn from CreateList #/ do
begin
start process EVALUATE TEST COMPONENT(TCompldentifier, TreeReference, ActualParList);
(* This starts the concurrent evaluation of TreeReference. *)
LOG(TCompldentifier,TreeReference, ActualParList);
end
end

process EVALUATE_TEST_COMPONENT(TCompld, TreeReference, ActualParList)

(* This process initializes the EvaluationTree by the appropriate Test Step root tree or local tree and the default context by
the Defaults references listed with the corresponding behaviour table. It moves control to the top level of alternatives and
calls their evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin
/# Initialize the local instances of Test Case Variables, local R, Timers, and the Timeout List of TCompld. #/;
EvaluationTree := ROOT_TREE(TreeReference);
(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test case
behaviour description and from the test step and default libraries. A component IsExpanded is added to each level. *)
REPLACE_PARAMETERS (TreeReference, EvaluationTree, ActualParList);
CurrentLevel := FIRST LEVEL(EvaluationTree) ;
(* A level denotes both a position in a tree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel,
Defaults := DEF_REF LIST(TreeReference);
ReturnDefaults := Defaults;
EVALUATE_LEVELS ();
(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

B.5.20.2 Execution of the CREATE event — natural language description
The evaluation of the given Test Component is to be started.

Step1 Evaluation of TCompldentifier, bound to TreeReference, is started, with the ActualParList parameters
replacing the Formal Parameters by textual substitution in TreeReference. All Test Case Variables, the local
result variable R, timers and the local timeout list are provided afresh for the sole use by this test component.

Step2 Record in the conformance log the following information as well as the information specified in B.5.24:
e the TCompldentifier;
e the TreeReference;

e the ActualParList.

172 ITU-T Rec. X.292 (05/2002)

B.5.21 Execution of the GOTO construct

Control is transferred to the set of alternatives having the specified target label in the labels column. Execution now
continues at this new level.

In pseudo-code, the GOTO construct is performed as a part of GOTO_NEXT LEVEL OR_STOP_WITH_ VERDICT.

B.5.22 Execution of the RETURN construct

Control is transferred to the set of alternatives from which the defaults were entered the last time. Execution now
continues at this new level.

In pseudo-code, the RETURN construct is performed as a part of GOTO _NEXT LEVEL
OR_STOP_WITH_VERDICT.

B.5.23 The verdict

B.5.23.1 The verdict — pseudo-code

procedure EVAL_VERDICT_ENTRY (VerdictEntry)
begin
/# Expand VerdictEntry to full word, e.g. (P) becomes (PASS) #/;
if /# VerdictEntry is a preliminary verdict "("PrelimVerdict")" #/ then
begin
UPDATE_PRELIM (PrelimVerdict, /# local R, or MTC_R in case of Main Test Component #/);
UPDATE PRELIM (PrelimVerdict, /# global R #/);
end
else (* VerdictEntry is a final verdict. *)
begin
if /# Current process is EVALUATE TEST CASE #/ then
begin
EXCLUDE_INCOMPATIBLE ENTRY (VerdictEntry, /# global R #/);
LOG(VerdictEntry);
/# assign final verdict in main test component or test case #/;
TERMINATE TEST CASE();
end
else (* Process is EVALUATE _TEST COMPONENT *)
begin
EXCLUDE_INCOMPATIBLE _ENTRY (VerdictEntry, /# local R #/);
UPDATE PRELIM (VerdictEntry, /# global R #/);
stop process;
end
end
end

process EXCLUDE_INCOMPATIBLE_ENTRY (Entry, RVal)
begin
if ((Entry ="R" AND /# RVal = none #/) OR
(Entry = "PASS" AND /# Rval = inconc #/) OR
(Entry = "PASS" AND /# Rval = fail #/) OR
(Entry = "INCONC" AND /# Rval = fail #/)) then
begin
LOG(TestCaseError);
STOP_TEST CASE();
return FALSE;
end
else return TRUE;
end

procedure UPDATE_PRELIM (PrelimVerdict, ResultVar)
begin
if (ResultVar = none OR
(ResultVar = pass AND PrelimVerdict < PASS) OR
(ResultVar = inconc AND PrelimVerdict = FAIL)) then
begin
/# replace value of ResultVar by PrelimVerdict in lower case letters #/;
LOG("("PrelimVerdict")");
end
end

ITU-T Rec. X.292 (05/2002) 173

B.5.23.2 The VERDICT - natural language description

If a verdict is coded, process the verdict.

e If'the verdict is preliminary, i.e., enclosed in parentheses, then the local and global result variables will be
updated according to the verdict algorithm in 15.17.2. Note that in the Main Test Component the local R
is denoted by MTC_R. The stated verdict is recorded in the conformance log.

e If the verdict is R, then, in non-concurrent TTCN or in the Main Test Component, the current value of R
(the only or the global R) will be used as the verdict of the Test Case. If R is set to none, raise a test case
erTor.

e Ifthe verdict is PASS, INCONC or FAIL, then, in non-concurrent TTCN or in the Main Test Component,
the stated verdict will be used as the final verdict for the Test Case. If the final verdict is inconsistent with
local or global R, raise a TestCaseError.

e In Parallel Test Components, a final verdict R, PASS, INCONC or FAIL, is used to update the global R
like a preliminary verdict. The stated verdict is recorded in the conformance log. A final verdict
terminates the evaluation of the Test Component.

B.5.24 The Conformance Log

B.5.24.1 The LOG - pseudo-code

procedure LOG(/# any number of arguments #/)
begin

/# log the line number of the event line (if any) #/;

/# log the label associated with the event line (if any) #/;

/# log the arguments passed to LOG #/;

/# log the assignment(s) made (if any) #/;

/# log the timer operation(s) performed (if any) #/;

/# log current time #/; (* current time may be actual or relative *)
end

B.5.24.2 The conformance log — natural language description

Record the following information in the conformance log:
e the line number of the event line (if any);
e the label associated with the event line (if any);

e other arguments defined elsewhere in this annex Associated with the event line (if any), e.g., the final or
preliminary verdict, or the data object sent or received;

e the assignment(s) made (if any);
e the timer operation(s) performed (if any);

e time stamp.

B.5.25 Tree handling functions and procedures
To facilitate lookup, the procedures and functions are defined in alphabetical order.

procedure APPEND_TO_LEVEL (Tree,Level,Alternative)
begin

/# Update Level and Tree by appending Alternative as new last alternative in Level in Tree #/;
end

function FIRST_LEVEL (Tree): LEVEL
begin
return /# the set of alternatives at the first level of indentation of Tree, i.e. the numerically lowest (in TTCN.MP),
i.e. the leftmost (in TTCN.GR), level of indentation of the root tree #/;
end

procedure GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT(Alternative)
begin
(* search the next level to evaluate, if any *)
if /# Alternative is of the type "GOTO Label" or "-> Label" #/ then
CurrentLevel := /# the unique level labelled with Label #/;
else if /# Alternative is of the type "RETURN" #/ then

174 ITU-T Rec. X.292 (05/2002)

begin
CurrentLevel := ReturnLevel,
Defaults := ReturnDefaults;
end
else if /# Alternative is a leaf of EvaluationTree #/; (* but not a RETURN or GOTO *) then
EVAL VERDICT ENTRY("R"); (* This will stop the execution of the process. *)
else
CurrentLevel := /# set of alternatives at next level of indentation below Alternative #/;
(* save information for coming RETURN statements *)
if /# Component IsDefault of CurrentLevel #/ = FALSE then
begin
ReturnLevel := CurrentLevel,
ReturnDefault := Default;
end
end

function IS_EXPANDED (): BOOLEAN
begin

return /# Component IsExpanded of CurrentLevel #/;
end

function LEVEL_OF (Tree, Alternative): LEVEL
begin

return /# the level in Tree of which this Alternative is a member #/;
end

function MAKE TREE (Statement, Treel, Tree2): TREE

begin
return /# the following tree:
Statement
Treel
Tree2 #eoo
(* Treel and/or Tree2 may be empty, denoted by an empty parameter position in the call of MAKE TREE. *)
end

function NEW_LABEL (): LABEL
begin
return /# a label which has not yet been used in the execution of this Test Component, nor in the (relabelled) Test Suite #/ ;
(* This may be achieved by means of counters and test component names. *)
end

procedure RELABEL (Tree)
begin
for /# each label L originally occurring in Tree #/ do
begin
NewLabel := NEW_LABEL();
for /# each occurrence of L in Tree, in the label column or as the target of a GOTO #/ do
begin
/# replace L by NewLabel #/;
end
end
end

procedure REPLACE_ALT_TREE (Tree, Level, A, ReplacementTree)

begin
(* A is an alternative in Level, which is a level in Tree *)
/# In Tree, replace the subtree of Tree consisting of
A and SUBSEQUENT BEHAVIOUR TO (Tree, A) by ReplacementTree,
with all values of IsDefault in ReplacementTree set to the IsDefault-value of A,
and all values of IsExpanded of levels in ReplacementTree set to FALSE. #/;
end

procedure REPLACE_PARAMETERS (Treeld, Tree, ActualParList)
begin
/# Replace the formal parameters in Tree by the actual parameters specified in ActualParList,
doing so by textual substitution in Tree, using the formal parameter list accessible via Treeld. #/;
end

ITU-T Rec. X.292 (05/2002) 175

function ROOT_TREE (Treeld): TREE

begin
return /# its root tree if Treeld denotes a Test Case or Test Step or Default Behaviour Table —
otherwise the local tree with this name. Each level gets a new Boolean component
"IsExpanded", initialized with value FALSE, indicating that this level has not yet been expanded. #/;
end

function SUBSEQUENT BEHAVIOUR_TO (Tree, Alternative): TREE
begin
return /# the subtree below Alternative in Tree #/;
(* This would be Tree3 if Tree has the form:
Treel
Tree2
Alternative
Tree3
Tree4
TreeS *)
end

B.5.26 Miscellaneous functions used by the pseudo-code

function CONSTRUCT_TYPE_OF(Construct): CONSTRUCT_TYPE
begin

return /# ACTIVATE, CREATE, GOTO, or RETURN, as appropriate #/;
end

function DEF_REF _LIST(TreeReference): DEFAULT_REF_LIST

begin
return /# the default reference list in the header of the corresponding table in the case of a test step in the test step library,
or the empty list in the case of default behaviour, or in the case of a local tree attachment the current value of Defaults
(i.e., the currently active defaults in the calling tree)#/;
end

function EVENT_TYPE_OF(Alternative): EVENT_TYPE
begin

return /# SEND, RECEIVE, OTHERWISE, TIMEOUT, DONE, or IMPLICIT_SEND, as appropriate #/;
end

function INPUT_Q(PCOorCPidentifier): QUEUE

begin
if /# PCOorCPidentifier is empty #/ then
return /# default PCO input queue #/;
else return /# input queue identified by PCOorCPidentifier #/;
end

function OUTPUT_Q(PCOorCPidentifier): QUEUE

begin
if /# PCOorCPidentifier is empty #/ then
return /# default PCO output queue #/;
else return /# output queue identified by PCOorCPidentifier #/;
end

function SNAPSHOT_FIXED (): BOOLEAN

begin
if /# all relevant PCO and CP queue(s) have some event(s) on them and all relevant timers have expired #/ then
return TRUE;
else return FALSE;
end

function STATEMENT_LINE_TYPE_OF(Alternative): STATEMENT_LINE_TYPE
begin

return /# EVENT, PSEUDO_EVENT, or CONSTRUCT, as appropriate #/;
end

procedure STOP_TEST_CASE()
begin

/# stop all running processes #/;
end

176 ITU-T Rec. X.292 (05/2002)

procedure procedure TAKE SNAPSHOT()

(* A snapshot of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other test

components is taken. The act of taking a snapshot does not remove an event from any PCO, CP or timeout list.*)

begin

/# save current PCO and CP input queues in Snapshot #/;

/# save current timeout list in Snapshot #/;

/# save current list of terminated Test Components in Snapshot #/;
end

procedure TERMINATE_TEST_CASE()

begin
if /# any Parallel Test Component processes are still running #/ then
LOG(TEST_CASE_ERROR);
STOP_TEST CASE();
end

function TIMER_OP_TYPE_OF(Alternative): TIMER_OP_TYPE
begin

return /# START TIMER, CANCEL TIMER, or READ TIMER, as appropriate #/;
end

ITU-T Rec. X.292 (05/2002)

177

Annex C

TTCN modules

(This annex forms an integral part of this Recommendation)

C.1 Introduction

A TTCN Module shall contain the following sections in the order indicated:
a) TTCN Module Overview Part.
b) Import Part.
¢) Declarations Part.
d) Constraints Part.

e) Dynamic Part.

C.2 TTCN Module Overview Part

C.2.1 Introduction

The purpose of the TTCN Module Overview Part of a module is to provide information needed for the use of the module
by other modules or test suites. This includes:

a) TTCN Module Exports.
b) TTCN Module Structure.
c) Test Case Index.

d) Test Step Index.

e) Default Index.

C.2.2 TTCN Module Exports

The TTCN Module Exports table identifies the module and provides information on the overall objective of the TTCN
Module (e.g., constraints library for a particular protocol).

The name of the original source object shall be given if the object is imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported source
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other
objects which are defined in the corresponding type are not exported as well. They are however implicitly exported and
can be referred in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the TTCN Module Exports:
a) the name of the TTCN Module;
b) adescription of the objective of the module;
¢) a full reference of the TTCN module;
d) references to the relevant base standards if any;
e) areference to the PICS proforma if any;
f) areference to the PIXIT proforma if any;
g) an indication of the test method(s) if any;

h) other information which may aid understanding of the TTCN Module, this should be included as a
comment;

i) alist of exported objects,
where the following information shall be supplied for each exported object:
1) the name of the object,

if the object is of type NamedNumber or Enumeration the corresponding type shall be given as a
suffix to the object name embedded in brackets;

178 ITU-T Rec. X.292 (05/2002)

2)
3)
4)

This information sh

the object type;
the name of the original source object if the object is imported, or the object directive EXTERNAL;
a page number,

providing the location of the object in the module (no page number shall be given for imported
objects).

all be provided in the format shown in the following proforma:

TTCN Module Exports
TTCN Module Name : TTCN_Moduleldentifier
Objective s [FreeText]
TTCN Module Ref : [FreeText]
Standards Ref : [FreeText]
PICS Ref s [FreeText]
PIXIT Ref s [FreeText]
Test Method(s) . [FreeText]
Comments . [FreeText]
Object Name Object Type Source Name Page Nr Comments
. . . [Sourceldentifier|

Objectldentifier TTCN_ObjectType ObjectDirective] Number [FreeText]

Detailed Comments: [FreeText]

Proforma C.1: TTCN Module Exports

EXAMPLE C.1 — TTCN Module Exports:

TTCN Module Exports

TTCN Module Name : TTCN Module A
Objective : To illustrate the use of the TTCN Module Exports table
TTCN Module Ref
Standards Ref
PICS Ref
PIXIT Ref
Test Method(s)
Comments

Object Name Object Type Source Name Page Nr Comments
String5 SimpleType_ Object 3
wait Timer_Object Module B
INTC TTCN_PDU_Type Object 13
DEF1 Default_Object TestSuite 1
TC 2 TestCase_Object TestSuite 2
TC 3 TestCase_Object 33
Preamble TestStep Object EXTERNAL

ITU-T Rec. X.292 (05/2002) 179

C.2.3 TTCN Module Structure

The TTCN Module Structure contains a list of Test Groups in the module (if any). The following information shall be
supplied for each group:

a) the Test Group Reference,

where the first identifier may be the module name, and each successive identifier represents further
conceptual ordering of the module;

b) an optional selection expression identifier;
c) the Test Group Objective;
d) apage number (page number shall not be supplied for imported groups).

This information shall be provided in the format shown in the following proforma:

TTCN Module Structure
Test Group Reference Selection Ref Test Group Objective Page Nr
TestGroupReference [SelectExpridentifier] FreeText [Number]

Detailed Comments: [FreeText]

Proforma C.2: TTCN Module Structure

The static semantics described in the "10.3 Test Suite Structure" are applicable for TTCN Module Structure.

C.24 Test Case Index

The definition of the Test Case Index for modules is the same as the definition of Test Case Index for Test Suites.

C.2.5 Test Step Index

The definition of the Test Step Index for modules is the same as the definition of Test Step Index for Test Suites.

C.2.6 Default Index

The definition of the Default Index for modules is the same as the definition of Default Index for Test Suites.

C3 Import Part

C.3.1 Introduction

The purpose of the Import Part of a module is to declare the objects which are not explicitly defined but have been used.
These objects are either declared as external objects or are imported from other source objects. This part includes:

a) External;

b) Import.
C.3.2 External

The External Objects table lists the objects being referred to by their identifier in the TTCN module, but neither imported
nor explicitly defined. An external object lets the importer know what he has to define, when importing the TTCN
module.

The following information shall be supplied for each external object:
a) the Object identifier and parameters,
parameters are included when the object is a Test Suite Operation, a Constraint or a Test Step;
b) the object type;

c) an optional comment.

180 ITU-T Rec. X.292 (05/2002)

This information shall be provided in the format shown in the following proforma:

External Objects
Object Name Object Type Comments
Identifier | TS_Opld&ParlList | .
Consld&ParList | TestStepld&ParList TTCN_ObjectType [FreeText]
Detailed Comments: [Freelext]
Proforma C.3: External Objects
EXAMPLE C.2 — External Objects:
External Objects
Object Name Object Type Comments

CRC(P:A_PDU)
CONSTRAINT_A(acstr:t CONNECT)
TESTSTEP_A(I:INTEGER)

DEF3

TS_Op_Object
TTCN_PDU_Constraint_Object
TestStep_Object
Default_Object

C3.3 Import

The definition of the Import for modules is the same as the definition of Import for Test Suites (see 10.8).

ITU-T Rec. X.292 (05/2002)

181

Annex D

Test Suite Index

(This annex forms an integral part of this Recommendation)

Void.

182 ITU-T Rec. X.292 (05/2002)

Annex E

Compact proformas

(This annex forms an integral part of this Recommendation)

E.1 Introduction

As an option, many Constraints and/or many Test Cases can be printed in a single table. This may be useful to highlight
relations between the single constraints and/or single Test Cases. This annex states the requirements for using compact
Constraints proformas and/or compact Test Cases proformas and gives some examples. These proformas are specific and
differ from the generalized layouts given in 7.3. Since the new proformas are only another way to present the same
information, there is no TTCN.MP associated with it. The information contained in a compact Constraints and/or
compact Test Cases table can be translated in the TTCN.MP associated with the many single constraint tables and/or
many Test Case tables that have the same information contents.

E.2 Compact proformas for constraints

E.2.1 Requirements

It shall only be allowed to print many single constraint tables as a single compact constraint table if:
— the constraints have the same ASP type, PDU type, Structured Type or ASN.1 Type;

— there is no encoding information specified in any of the single constraint table headers nor in the encoding
column of any of those tables (ASN.1 encodings specified in ASN.1 Value may, however, be specified in
compact proformas); and

— there are no entries in the comments column of any single constraint table.

NOTE - If the single constraints tables only have comments in the detailed comments footer (i.e., the comments column is empty),
then it is possible to print these constraints in the compact format. In such cases the individual detailed comments from the single
proformas should be collected and printed as a single comment in the detailed comments footer of the compact proforma.

E.2.2 Compact proformas for ASP constraints

In cases where a constraint contains only a few parameters, or when there are only a small number of constraints, the
constraints may be presented in the compact version of the ASP constraints proforma:

ASP Constraints Declarations

ASP Type 1 ASP_Identifier
Constraint Derivation Field Name Comments
Name path ASP_Parldentifier; ASP_Parldentifier,
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]
&ParlList; Path,; &Attributes; &Attributes; , reetextyy
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]
&ParlList, Path, &Attributes; | &Attributes ,, reefext/z
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText],,
&ParlList,, Path,, &Attributes,, | &Attributes,, ,

Proforma E.1: (Compact) ASP Constraints Declarations

This proforma is used for ASPs and their parameters in the same way that PDU Constraints Declarations proforma is
used for PDUs and their fields (see E.2.3).

ITU-T Rec. X.292 (05/2002) 183

E.2.3 Compact proformas for PDU constraints

E.2.3.1 Introduction

In cases where a constraint contains only a few fields, or when there are only a small number of constraints, the
constraints may be presented in the compact version of the PDU constraints proforma:

PDU Constraints Declarations
PDU Type : PDU Identifier
Constraint Derivation Field Name Comments
Name path ASP_Parldentifier; ASP_Parldentifier,
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]
&ParList; Path; &Attributes; &Attributes; , 1
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]
&ParList, Path, &Attributes; &Attributes; , reefext/s
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText],,
&ParlList,, Path,, &Attributes,, | &Attributes,, ,,

Proforma E.2: (Compact) PDU Constraints Declarations

The compact constraints proforma has field names across the top of the proforma, and different instances of the PDU
constraints in rows within the proforma. If there are n fields in the PDU type definition then there shall be » field
columns in the compact constraint proforma.

The derivation path column is optional; however, it shall be used to specify the derivation path of modified constraints
(see 13.6). A compact table can collect several base constraints (as illustrated in Example C.1) or can collect a base
constraint and its modified constraints as in Example C.2. When modified constraints are declared in a compact table, the
fields not modified in the modified constraints appear as boxes left blank as the intersection of the modified constraint
row and of the field column. When mapping a compact table to TTCN.MP (i.e., single format), blank fields due to
inheritance shall be omitted. Fields not specified in modified constraints are left blank in modified constraints.

EXAMPLE E.1 — Constraints using the compact constraints proforma:

PDU Type Definition

PDU Name : PDU B
PCO Type : XSAP
Comments :

Field Name Field Type Comments
FIELDI INTEGER
FIELD2 BOOLEAN
FIELD3 [ASString

184 ITU-T Rec. X.292 (05/2002)

EXAMPLE E.1.1 — Given the declaration of PDU_B to be:

PDU Type Definition

PDU Name : PDU B
PCO Type : XSAP
Comments

Field Name Field Type Comments
FIELD1 INTEGER
FIELD2 BOOLEAN
FIELD3 IAS5String

EXAMPLE E.1.2 — The constraints on PDU_B using the compact constraints proforma could be:

PDU Constraints Declarations
PDU Type : PDU B
Constraint Name Field Name Comments
FIELD1 FIELD2 FIELD3
CN1 3 TRUE "A string"
CN2 (4,5,6) FALSE "A string"
CN3 0 ? -

The constraints reference in the dynamic part might then contain entries such as PDU_B[CN1] and PDU_B[CNZ2]

EXAMPLE E.1.3 — The inheritance mechanism using the compact constraint proforma:

PDU Constraints Declarations

PDU Type : PDU A

Constraint Name Derivation Path Field Name Comments
FIELD1 FIELD2 FIELD3 FIELD4

CNO 0 'FF'H '00'B TRUE

CNI1 CNO. 1

CN2 CNO. CN. - ?

ITU-T Rec. X.292 (05/2002)

185

E.2.3.2 Parameterized compact constraints

Compact constraints may also be parameterized. In such cases the parameter lists shall be appended to the constraint
name and occur in the constraint name column of compact constraint proformas.

EXAMPLE E.2 — A parameterized compact constraint:

PDU Constraints Declarations

PDU Type : PDU X

Constraint Name Field Name Comments

P1 P2

S1 0 0

S2 0 1

S3 1 0

S4 1 1

S5(A:INTEGER) 1 A

The invocation of the constraints on PDU X in a Test Step may be made as follows: S1, S2, S3, S4, S5(0), S5(1)
or S5(Var) where Var is a Test Case or Test Suite Variable.

E.24 Compact proformas for Structured Type constraints

Compact Structured Type constraints shall be provided in the following proforma:

Structured Type Constraints Declarations
Structured Type : Structldentifier
Constraint Derivation Field Name Comments
Name path ASP_Parldentifier; ASP_Parldentifier,,
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]
&ParlList; Path; &Attributes; &Attributes; , reefextyy
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]
&ParList, Path, &Attributes; ; &Attributes; , reefextz
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText],,
&ParList,, Path,, &Attributes,, | &Attributes,, ,

Proforma E.3: (Compact) Structured Type Constraints Declarations

EXAMPLE E.3 — Use of structured compact constraints:

The PDU_Y consists of five fields named Y1 through Y5. The fields Y1, Y2 and Y3 have been combined into the
Structured Type called A. In the following, the first table shows the constraints defined on PDU_Y. The second and third
tables convey the same information as the last table.

The second and third tables show the Structured Type A's constraint specification using the single constraint proformas,
while the last table shows A's constraint using the compact constraint proforma. Both figures also use the modification
mechanism.

186 ITU-T Rec. X.292 (05/2002)

For the following tables, it can be seen that if the constraint YY1 was used, the values for field Y1 through Y5 would
be 0, 0, 0, 0, 1 respectively, where the values for fields Y1 through Y3 are derived from the Structured Type A using
constraint Al. If the constraint YY2 was used, the values for Y1 through Y5 would be 0, 3, 0, 1, 0 respectively, where
the values for fields Y1 through Y3 are derived from the Structured Type A using constraint A2.

EXAMPLE E.3.1 — A PDU constraints table that uses a Structured Type (called A):

PDU Constraints Declarations
PDU Type : PDUY
Constraint Name Field Name Comments
A Y4 Y5
YY1 Al 0 1
YY2 A2 1 0
YY3 A2 0 1
EXAMPLE E.3.2 — Al is a base constraint of Structured Type A:
Structured Type Constraint Declaration
Constraint Name : Al
Structured Type T A
Derivation Path
Comments
Element Name Element Value Comments
Y1 0
Y2 0
Y3 0
EXAMPLE E.3.3 — The Structured Type constraint, A2, is a modified constraint derived from Al:
Structured Type Constraint Declaration
Constraint Name 0 A2
Structured Type A
Derivation Path : Al
Comments
Element Name Element Value Comments
Y2 3

ITU-T Rec. X.292 (05/2002) 187

EXAMPLE E.3.4 — Structured Type A's constraints A1 and A2 in the compact form:

Structured Type Constraint Declaration

Structured Type Name : A

Constraint Name Derivation Path Field Name Comments
Y1 Y2 Y3

Al 0 0 0

A2 Al. 3

When using Structured Types within PDU Constraint Declarations, each field name used within the Structured Type
definition shall exactly match the name (or short name, if both the short name and full name were defined) of the PDU
field which it represents from the original PDU type definition.

E.2.5 Compact proformas for ASN.1 constraints

The following proformas shall be used for compact ASN.1 ASP, ASN.1 PDU and ASN.1 Type constraints definitions
respectively:

ASN.1 ASP Constraints Declarations
ASP Type : ASP_Identifier
Constraint name ASN.1 Value
Consld&ParList; ConstraintValue&Attributes
Consld&ParList,y, ConstraintValue&Attributes,,

Proforma E.4: (Compact) ASN.1 ASP Constraints Declarations

ASN.1 PDU Constraints Declarations
PDU Type : PDU Identifier
Constraint name ASN.1 Value
Consld&ParList4 ConstraintValue&Attributes
Consld&ParList,, ConstraintValue&Attributes,,

Proforma E.5: (Compact) ASN.1 PDU Constraints Declarations

188 ITU-T Rec. X.292 (05/2002)

ASN.1 Type Constraints Declarations
Type Name : ASNI_Typeldentifier
Constraint name ASN.1 Value
Consld&ParList; ConstraintValue&Attributes
Consld&ParList,y, ConstraintValue&Attributes,,

Proforma E.6: (Compact) ASN.1 Type Constraints Declarations

E.3 Compact proforma for Test Cases

E.3.1 Requirements

It is only permitted to print many single Test Case dynamic behaviour tables as a single compact Test Case dynamic
behaviour table when the following rules apply:

a) all single Test Case dynamic behaviour tables shall belong to the same Test Group;

b) all single Test Case dynamic behaviour tables shall have either the same Default tree or no Default tree; it
is recommended that there be no Default tree;

c) the behaviour description of each single Test Case dynamic behaviour table shall consist of a single
ATTACH construct.

E.3.2 Compact proforma for Test Case dynamic behaviours

Where a series of Test Cases have essentially the same dynamic behaviour and differences occur only in the referenced
constraints (e.g., tests for parameter variations of ASPs and/or PDUs), the Test Cases may be presented in the compact
version of the Test Case dynamic behaviour proforma:

Test Case Dynamic Behaviours

Group 1 TestGroupReference
Defaults : DefaultReference
Test Case Name Purpose Test Step Attachment Comments
TestCaseldentifier FreeText Attach [FreeText]

Detailed Comments: [FreeText]

Proforma E.7: (Compact) Test Case Dynamic Behaviours

Each row in the body of this proforma describes a single Test Case. If the compact Test Case proforma is used the single
table replaces a series of Test Case dynamic behaviour tables in the behaviour part of the test suite.

The comments column contains comments pertaining to individual Test Cases against each attachment.

Test Cases within compact Test Case proforma may form a subset of their group and shall appear in the order indicated
in the Test Case Index.

ITU-T Rec. X.292 (05/2002) 189

EXAMPLE E.4 — A compact Test Case table that defines a series of tests for FTAM:

Test Case Dynamic Behaviours
Group : R/BV/PV/LM/CR/OV
Default :
Test Case Name Purpose Test Step Attachment

OVERIDE1 Omit the overide parameter, when file +OVERRIDE (FCRERQ 001, FCRERP _001)
exists.

OVERIDE2 Omit the overide parameter, when file +OVERRIDE (FCRERQ 002, FCRERP _002)
does not exist.

190 ITU-T Rec. X.292 (05/2002)

Annex F

Examples

(This annex does not form an integral part of this Recommendation)

F.1 Examples of tabular constraints

F.1.1 ASP and PDU definitions

F.1.1.1 Flat type definition

PDU Type Definition

PDU Name : T _CONNECTI1
PCO Type
Comments : Illustration of TTCN mechanisms

Field Name Field Type Comments
Source BITSTRING [4] Length is 4 bits.
Destination BITSTRING [4] Length is 4 bits.
T Class INTEGEROto4 Defined as a simple type
UserData IAS5String

F.1.1.2 Structured Type definition

PDU Type Definition

PDU Name : T CONNECT2
PCO Type
Comments : Illustration of TTCN mechanisms
Field Name Field Type Comments
T Addresses T_AddressInfo
T Class INTEGEROto4 Defined as a simple type
UserData [AS5String
Structured Type Definition

Type Name : T AddressInfo
Comments : Can be used in all Transport PDU examples

Element Name Type Definition Comments
Source BITSTRING[4] Length is 4 bits
Destination BITSTRING[4] Length is 4 bits

ITU-T Rec. X.292 (05/2002)

191

F.1.1.3 Special type PDU, in order to allow use of (static) chaining of constraints

ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP
Comments : For illustration only

Parameter Name

Parameter Type

Comments

CallingNetworkAddress
CalledNetworkAddress
Connectionldentifier
Data

HEXSTRING
HEXSTRING
HEXSTRING
PDU

To enable chaining of constraints

F.1.2 ASP/PDU constraints

F.1.2.1 Flat

PDU Constraint Declaration

Constraint Name : TCON Class4 1
PDU Type : T CONNECTI
Derivation Path
Comments

Field Name Field Value Comments
Source TS Parl
Destination TS Par2
T Class 4
UserData "testing, testing"

F.1.2.2 Structured, referring to field groups
PDU Constraint Declaration

Constraint Name : TCON Class4 2
PDU Type : T CONNECT2
Derivation Path
Comments

Field Name Field Value Comments
T Addresses WrongAddress WrongAddress is a reference to a

structured type constraint.

T Class 4
UserData "one, two, three"

192 ITU-T Rec. X.292 (05/2002)

Structured Type Constraint Declaration

Constraint Name : WrongAddress

Structured Type : T _AddressInfo
Derivation Path
Comments
Element Name Element Value Comments
Source TS Parl
Destination '0000'B

F.1.2.3 Chaining, useful for (nested) PDUs in ASPs

ASP Constraint Declaration

Constraint Name : N _DATAreq With T CON Class4 1

ASP Type : N_DATArequest
Derivation Path
Comments : TCON Class4 1 is a PDU constraint (i.e., chaining)
Parameter Name Parameter Value Comments
CallingNetworkAddress TS Par3
CalledNetworkAddress TS Par4
Connectionldentifier 'ABCDEF'H
Data TCON_Class4 1

F.1.2.4 Parameterized constraints

It is possible to parameterize flat, structured and chained constraints. The following example shows parameterization to
pass a value.

PDU Constraint Declaration

Constraint Name : TCON_1(class:INTEGER)
PDU Type : T CONNECTI
Derivation Path

Comments

Field Name Field Value Comments
Source '1000'B
Destination ?
T Class class class is a formal parameter
UserData ?

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_1(TCvariable)

ITU-T Rec. X.292 (05/2002) 193

Field values may be whole (chained) PDUs:

ASP Constraint Declaration

Constraint Name : N_DATAreq With T CON(A_Constraint:T CONNECT2)
ASP Type : N_DATArequest
Derivation Path
Comments : TCON Class4 1 is a PDU constraint (i.e., chaining)

Parameter Name Parameter Value Comments
CallingNetworkAddress TS Par3
CalledNetworkAddress TS Par4
Connectionldentifier '1234567H
Data A_Constraint A_Constraint is a formal parameter

This constraint can be called as, for example:

N_DATAreq With TCON(TCON_Class4 _2)

Since the actual parameter is a constraint name, which can itself be parameterized, it is possible to express an arbitrary
depth of nesting of PDUs.

F.1.2.5 Modified constraints

It is possible to use existing constraints and modify them to define new constraints. This can be done with flat, structured
and parameterized constraints.

PDU Constraint Declaration
Constraint Name : TCON_CLASSO 1
PDU Type : T_CONNECT1
Derivation Path : TCON Class4 1.
Comments : Class 0 is acceptable
Field Name Field Value Comments
T Class 0

Wildcards can be used for values:

PDU Constraint Declaration
Constraint Name : TCON_AnyClass
PDU Type : T CONNECT1
Derivation Path : TCON Class4 1.
Comments ¢ Any class (0..4) is acceptable
Field Name Field Value Comments
T_Class ?

This is considered to be bad style, however. It is better to use the more general constraint as a base.

194 ITU-T Rec. X.292 (05/2002)

It is also possible to delete whole fields:

PDU Constraint Declaration
Constraint Name : TCON_Erroneous NoClass
PDU Type : T CONNECTI
Derivation Path : TCON Class4 1.
Comments : No class present
Field Name Field Value Comments
T Class - T Class omitted

F.2 Examples of ASN.1 constraints
F.2.1 ASP and PDU definitions

F.2.1.1 Flat

ASN.1 PDU Type Definition

PDU Name : T CONNECTI1
PCO Type :
Comments
Type Definition
-- only to illustrate use of ASN.1 in TTCN
SEQUENCE { source BITSTRING (SIZE (4..4)),
Destination ~ BITSTRING (SIZE (4..4)),
t Class INTEGER (0..4),
userData [A5String OPTIONAL.

F.2.1.2 Structured

ASN.1 PDU Type Definition

PDU Name : T CONNECT2
PCO Type :
Comments
Type Definition
-- only to illustrate use of ASN.1 in TTCN
SEQUENCE { t Addresses T_Addressinfo,
t Class INTEGER (0..4),

userData IAS5String
H

-- expansion of T_AddressInfo can be found in a table of its own.

ITU-T Rec. X.292 (05/2002) 195

Related ASN.1 productions that are normally in one ASN.1 module may be distributed over more tables in TTCN:

ASN.1 Type Definition

Type Name : T_AddressInfo
Comments :

Type Definition
SEQUENCE { source BITSTRING (SIZE (4..4)),

destination BITSTRING (SIZE (4..4)),
}

F.2.1.3 An ASP definition

ASN.1 ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP
Comments :
Type Definition
SEQUENCE { callingNetworkAddress OCTETSTRING, -- even number of octets

calledNetworkAddress OCTETSTRING, -- even number of octets
connectionldentifier OCTETSTRING, -- even number of octets
Data T PDUS

ASN.1 Type Definition

Type Name : T PDUS
Comments :

Type Definition

CHOICE { t1 T_CONNECTI
2 T_CONNECT2

}

196 ITU-T Rec. X.292 (05/2002)

F.2.2 ASN.1 ASP/PDU constraints

F.2.2.1 Flat

ASN.1 PDU Constraint Declaration

Constraint Name

: TCON Class4 1

PDU Type : T_CONNECTI1
Derivation Path
Comments
Constraint Value
{ source TS PARI,
TS_PAR2, -- field identifier can be omitted if desired

t Class 4,

userData "testing, testing"
}

F.2.2.2 Structured

ASN.1 PDU Constraint Declaration

Constraint Name

: TCON Class4 2

PDU Type : T CONNECT2
Derivation Path
Comments
Constraint Value
{ t_Addresses WrongAddress, -- a reference to a PDU field constraint
t_Class 4,
userData "one, two, three"

ASN.1 PDU Constraint Declaration

Constraint Name
PDU Type
Derivation Path
Comments

: WrongAddress
: T_AddressInfo

Constraint Value

{ source
destination '0000'B

TS PARI,

ITU-T Rec. X.292 (05/2002)

197

F.2.2.3 Chaining a PDU constraint

ASN.1 ASP Constraint Declaration

Constraint Name : N_DATAreq With TCON Class4 1
ASP Type : N_DATArequest
Derivation Path
Comments
Constraint Value

{ callingNetworkAddress TS PAR 3,

calledNetworkAddress TS PAR 4,

connectionldentifier 'ABCDEF'H,

data tl TCON_Class4 1 -- chaining to a PDU constraint
b

F.2.2.4 Parameterized constraints

ASN.1 constraints may be parameterized like TTCN tabular constraints, for example:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_I(class:INTEGER)
PDU Type : T _CONNECTI1
Derivation Path
Comments
Constraint Value
{ source '0000'B,
destination 2, -- wildcard
t Class class, -- formal parameter
userData ?
H

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON 1(4) or TCON_1(TCvariable)

A parameter may also represent a whole chained PDU:

ASN.1 ASP Constraint Declaration
Constraint Name : N_DATAreq With TCON(a_constraint:T_CONNECT?2)
ASP Type : N_DATArequest
Derivation Path
Comments
Constraint Value

{ callingNetworkAddress TS_PAR 3,

calledNetworkAddress TS PAR 4,

connectionldentifier '1234567'H,

data t2 a_constraint

-- a_constraint is a formal parameter containing a whole PDU.

b

198 ITU-T Rec. X.292 (05/2002)

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

N_DATAreq With TCON(TCON_Class4 2)

Since the actual parameter is a constraint name, which itself can be parameterized, it is possible to express an arbitrary

depth of nesting.

F.2.2.5 Modified constraints

New constraints may be constructed by modifying already defined constraints using the REPLACE mechanism:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON Class0 1
PDU Type : T CONNECTI
Derivation Path : TCON Class4 1.
Comments

Constraint Value

REPLACE t Class BY 0

Wildcards can be used as replacements as well:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_AnyClass
PDU Type : T_CONNECTI1
Derivation Path : TCON Class4 1.
Comments

Constraint Value

REPLACE t Class BY ?

To specify fields that shall be omitted, the OMIT mechanism is used. This is only allowed if the field is declared as

OPTIONAL:
ASN.1 PDU Constraint Declaration
Constraint Name : TCON_NoUserData
PDU Type : T CONNECTI1
Derivation Path : TCON Class4 1.TCON_AnyClass.
Comments :
Constraint Value
OMIT userData

ITU-T Rec. X.292 (05/2002)

199

It is possible to modify ASN.1 parameterized constraints, but note that the parameterized fields themselves cannot be
replaced:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_2(class:INTEGER)
PDU Type : T _CONNECTI1
Derivation Path : TCON 1.

Comments

Constraint Value

REPLACE userData BY "CPS"

F.2.3 Further examples of ASN.1 constraints

Definition of an FTAM F_INITIALIZEresponse PDU, made in an ASN.1 PDU type definition table:

ASN.1 PDU Type Definition

ASP Name : F_INITIALIZEresponse

PCO Type

Comments

Type Definition

SEQUENCE {
state_result State_Result DEFAULT success,
action_result Action_Result DEFAULT success,
protocol_version Protocol Version DEFAULT { version 1},
implementation_information Implementation_Information OPTIONAL,
presentation_context management [2]IMPLICIT BOOLEAN DEFAULT FALSE,
service_class Service Class DEFAULT ({ transfer class },
functional units Functional Units,
attribute _groups Attribute_Groups DEFAULT { },
shared ASE information Shared ASE Information OPTIONAL,
ftam quality of service FTAM_Quality Of Service,
contents_type list Contents_Type List OPTIONAL,
diagnostic Diagnostic OPTIONAL,
checkpoint_ window [8] IMPLICIT INTEGER DEFAULT 1

H

The fields of the PDU (State_Result, Action_Result etc.) are declared in ASN.1 Type Definitions.

200 ITU-T Rec. X.292 (05/2002)

For example, Functional Units:

ASN.1 PDU Type Definition

Type Name : Functional Units

Comments

Type Definition

[4] IMPLICIT BITSTRING
{ read(2),

write(3),
file_access(4),
limited_file management(5),
enhanced file management(6),
grouping(7),
fadu_locking(8),
recovery(9),
restart_data_transfer(10)

A base constraint, F_INITrsp 001, on the F-INITIALIZEresponse is declared in the constraints part:

ASN.1 PDU Constraint Definition
Constraint Name : F _INITrsp 001
PDU Type : F_INITIALIZEresponse
Derivation Path
Comments
Constraint Value
{
state_result State_Result 001,
action_result Action_Result 001,
protocol_version Protocol Version 001,
implementation_information Implementation_Information 001,
presentation_context management FALSE,
service_class Service Class 001,
functional units Functional Units 001,
attribute_groups Attribute_Groups_001,
shared ASE information Shared ASE Information 001,
ftam quality of service FTAM_Quality Of Service 001,
contents_type list Contents_Type List 001,
diagnostic Diagnostic_001,
checkpoint_window 1
}

ITU-T Rec. X.292 (05/2002)

201

A constraint on Functional Units, Functional Units 001, is declared in an ASN.1 PDU field constraint declaration:

ASN.1 Type Constraint Declaration

Constraint Name : Functional Units 001
Structured Type : Functional Units
Derivation Path

Comments

Constraint Value

'001'B — Write only

A second constraint, F INITrsp 002 can be built by modifying the base constraint, F_ INIT rsp001:

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_002
Structured Type : F_INITIALIZEresponse
Derivation Path : F INITrsp 001.
Comments :

Constraint Value
OMIT implementation_information,
REPLACE presentation_context management BY TRUE,
REPLACE functional units BY Functional Units 002,
REPLACE checkpoint window BY ?

where Functional Units 002 is an ASN.1 PDU Constraint Declaration.

F.3 Base and modified constraints

Suppose that we have the following PDU type definition:

PDU Type Definition

PDU Name : PDU B
PCO Type :
Comments : This is the declaration of the protocol data unit PDU_B

Field Name Field Type Comments
FIELDI INTEGER
FIELD2 HEXSTRING
FIELD3 BITSTRING
FIELD4 BOOLEAN

202 ITU-T Rec. X.292 (05/2002)

A base constraint for PDU_B could be:

PDU Constraint Declaration

Constraint Name : CO
PDU Type : PDU B
Derivation Path
Comments

Field Name Field Value Comments
FIELD1 0
FIELD2 'FF'H
FIELD3 '00'B
FIELD4 TRUE

A modified constraint C1 to the base constraint CO could be:
PDU Constraint Declaration

Constraint Name : Cl1
PDU Type : PDU B
Derivation Path : CO
Comments

Field Name Field Value Comments
FIELD1 1 In the base CO this field value is 0.

We can further build on C1:
PDU Constraint Declaration

Constraint Name : C2
PDU Type : PDU B
Derivation Path : CO.CI.
Comments

Field Name Field Value Comments
FIELD2 - This field is omitted.
FIELD3 ? Any legal value accepted

Reference to a modified constraint in a behaviour tree is made using its name.

ITU-T Rec. X.292 (05/2002)

203

F.4 Type definition using macros

PDU type definition with macro symbol:

PDU Type Definition

PDU Name : T_CONNECT3
PCO Type
Comments : Illustration of TTCN macro mechanism

Field Name Field Type Comments
<- T AddressGroup
T Class INTEGEROto4 Defined as a simple type
UserData [AS5String

Structured Type Definition
Type Name : T AddressGroup
Comments
Element Name Type Definition Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits
PDU Constraint Declaration

Constraint Name : TCON Class4 3
PDU Type : T_CONNECT3
Derivation Path
Comments

Field Name Field Value Comments
<- GoodAddress Reference to the structured type

constraint declaration.

T Class 4
UserData "one, two, three"

204 ITU-T Rec. X.292 (05/2002)

Structured Type Constraint Declaration

Constraint Name : GoodAddress
Structured Type : T AddressGroup
Derivation Path
Comments
Element Name Element Definition Comments
Source '0101'B
Destination '1111'B

F.5 Use of REPEAT

Test Case Dynamic Behaviour

Test Case Name ¢ RPT EX2

Group : TTCN_EXAMPLES/REPEAT EXAMPLE2/

Purpose 2 To illustrate use of REPEAT and parameter passing by textual substitution.

Default

Comments

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 (FLAG:=FALSE, COUNTER:=0)
2 1A Al
3 REPEAT STEP2 (FLAG, COUNTER)

UNTIL [FLAG OR COUNTER=3]

4 [FLAG]

5 D DI PASS

6 [COUNTER=3]

7 IE El FAIL
STEP2 (F:BOOLEAN; NUMBER: INTEGER)

8 9B (F:=TRUE) Bl

9 2C (F:=FALSE, NUMBER:=NUMBER+1) Cl

Detailed Comments: This example shows how repeated execution of STEP2 can be ended either by reception of message B, or
reception of three other messages. In the lines following the REPEAT construct, Boolean expressions are used to describe that in
the case where B is received, message D is to be sent, and in the case where three other messages are received E is to be sent.

This example also illustrates the effect of parameter passing by textual substitution. This means that FL is replaced by FLAG, and
NUMBER is replaced by COUNTER, thus making it possible for FLAG and COUNTER to obtain the results of the assignments
in STEP2.

ITU-T Rec. X.292 (05/2002) 205

F.6 Test suite operations

Using a Test Suite Operation to set a checksum:

Test Suite Operation Definition

Operation Name : CRC(P:A_PDU)
Result Type : INTEGER
Comments :

Description

Calculate and return the checksum of the PDU P according to the CRC algorithm.
NOTE — In a real ATS, this operation would be described in greater detail.

PDU Constraint Declaration

Constraint Name : CONSI1
PDU Type : A PDU
Derivation Path
Comments
Field Name Field Value Comments
Checksum 9

A_PDU.Checksum := CRC(CONSI1) in the appropriate SEND event in a behaviour description will set the Checksum in the
constraint CONSI1.

F.7 Example of a Test Suite Overview

In the Test Suite Structure table shown below, a hierarchy of the groups and Test Cases in the suite is defined. Within
this structure, test selection expressions are identified which govern the selection of Test Groups and the Test Cases for
execution. For example, SELEXP 100 is referenced as the controlling expression for Feature X of the protocol. If
Feature X is not supported, none of the Test Cases in the suite which are within the Feature X group will be selected.

Test Suite Structure
Suite Name : TEST SUITE A
Standards Ref : ISO/IEC xxxx
PICS Ref : ISO/IEC aaaa
PIXIT Ref : ISO/IEC bbbb
test notation(s) : DS test method
Comments : This is an example only.

Test Group Reference Selection Ref Test Group Objective Page Nr
FEATURE X SELEXP 100 Test optional Feature X 50
FEATURE A/ATTR A Test mandatory Attribute A 50
FEATURE A/ATTR_A/NEGOTIATION SELEXP 101 Test optional Attribute A negotiation 50
FEATURE _A/ATTR_A/USAGE Test Attribute A usage 60
FEATURE _A/ATTR B Test mandatory Feature Y 80

206 ITU-T Rec. X.292 (05/2002)

To determine whether or not Feature X is supported, SELEXP 100 must be evaluated. This is done by determining
whether or not the Test Suite Parameter in SELEXP 100, i.e., TST FX, is TRUE. If it is, the processing within the group
continues. Note that tests for attribute A will be selected (no expression), but that tests for the optional negotiation
feature of Attribute A will only be selected if SELEXP 101 is TRUE.

Test Case Index
Test Group Reference Test Case Id | Selection Ref Description Page Nr
FEATURE_X/ATTR_A/NEGOTIATION FX_ANEG_1 | SELEXP_102 | Req. Attr. A, valid neg. 50
FX ANEG 2 | SELEXP 102 | Req. Attr. A, invalid neg. 52
FX ANEG 3 Rcev. Attr. A, invalid neg. 54
FX ANEG 4 Rev. Attr. A, invalid neg. 56
FEATURE X/ATTR_A/USAGE FX AUSE 1 | SELEXP 103 | Use Attr. A (VAL=0) 60
FX_AUSE 2 Rev. Attr. A 62
FX AUSE 3 Rev. Attr. A 64

If Attribute A negotiation is supported, Test Case FX ANEG 01 through FX ANEG 04 are candidates for selection.
However, Test Cases '01' and '02' will only be chosen if the additional selection expression SELEXP 102 is TRUE. Test
Case FX ANEG 01 will only be selected if the PICS indicates that a value of zero for Attribute A is supported.

The PICS and PIXIT questions used in the test selection expressions are declared as Test Suite Parameters.

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
TSP_FX BOOLEAN PICS question FX1 Q: Feature X supported?
TSP _FXA N BOOLEAN PICS question FX2 Q: Feature X neg supported?
TSP_FXA NINT BOOLEAN PICS question FX3 Q: Does IUT req. neg?
TSP_FXA MINVAL INTEGER PIXIT question FXVAL Q: Will IUT use VAL=0?

The test selection expressions are declared as Boolean expressions, as defined in 11.5.

Test Case Selection Expression Definitions

Expression Name

Selection Expression

Comments

SELEXP 100
SELEXP 101

TSP_FX
TSP FXA N

Feature X supported

Feature X negotiation

SELEXP_102
SELEXP_103

TSP_FXA_NINIT
TSP_FXA_VAL=0

Req. Feature X negotiation
Accept Feature X VAL=0

ITU-T Rec. X.292 (05/2002)

207

F.8 Example of a Test Case in TTCN.MP Form

For the sample Test Case given below:

Test Case Dynamic Behaviour
Test Case Name : PACKET/P4/PROPER/T 02
Reference : T 702
Purpose : Verify the IUT acknowledges a Clear cause code 05 while in state p4
Default
Comments
Nr Label Behaviour Description Constraints Ref Verdict Comments
0 +R1_PREAMBLE(SVC)
1 +P4D1_PREAMBLE
2 ICLEAR START TD CLR_O(LC) clear cause =5
3 L1 ?CLEARC CANCEL TD CLRC_0(LC) (PASS)
4 +R1_POSTAMBLE
5 ?CLEARC CANCEL TD CLR_LO(LC) (PASS)
6 +R1_POSTAMBLE
7 ?RESTART [RST_ON_ERR] CANCEL TD STRT_DTEA (PASS)
8 IRESTARTC STRTC
9 +R1_POSTAMBLE
10 +DIC_UNEXPECTED
11 -=>L1
12 +RSRT_UNEXPECTED
13 ?TIMEOUT TD FAIL
14 ?0THERWISE CANCEL TD FAIL

The TTCN.MP that corresponds to this table is:

$BeginTestCase

$TestCaseld T_7_02
$TestGroupRef PACKET/P4/PROPER/T_02
$TestPurpose /* Verify the [UT acknowledges a Clear cause code 05 while in state p4 */
$DefaultsRef
$BehaviourDescription
$BehaviourLine

$Label
$Line [0] +R1_PREAMBLE(SVC)
$Cref

$Verdict

$End_BehaviourLine
$BehaviourLine

$Label

$Line [1] +P4D1_PREAMBLE
$Cref

$Verdict

$End BehaviourLine
$BehaviourLine

$Label

$Line [2] !CLEAR START TD
$Cref CLR_0(LC)

$Verdict

$Comment /* clear cause =5 */

208 ITU-T Rec. X.292 (05/2002)

$End_BehaviourLine
$BehaviourLine

$Label L1

$Line [3] ?CLEARC CANCEL TD

$Cref CLRC_0(LC)

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] 2CLEAR CANCEL TD

$Cref CLR_LO(LC)

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End BehaviourLine
$BehaviourLine

$Label

$Line [3] 2RESTART [RST_ON_ERR] CANCEL TD

$Cref STRT _DTEA

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] RESTARTC

$Cref STRTC

$Verdict
$End BehaviourLine
$BehaviourLine

$Label

$Line [5] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +D1C_UNEXPECTED

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] -> L1

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +RSRT_UNEXPECTED

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?2TIMEOUT TD

$Cref

$Verdict FAIL

ITU-T Rec. X.292 (05/2002) 209

$End_BehaviourLine
$BehaviourLine
$Label
$Line [3] 20THERWISE CANCEL TD
$Cref
$Verdict FAIL
$End BehaviourLine
$End_BehaviourDescription
$End_TestCase

The layout shown here is only intended to aid readability.

F.9 Use of component reference for field value assignment in constraints

When a number of field values in a received PDU has to be assigned to the fields in several subsequent send PDUs, the
Dynamic Behaviour table can become cluttered with lengthy assignment statements using the dot notation.

TTCN allows PDU field value assignments in the constraint tables using component reference associated with a formal
parameter. Received ASPs or PDUs in the Behaviour table may be assigned to a variable and subsequently passed as an
actual parameter in the constraints reference to a formal parameter in the constraint table. The constraint table then
specifies the required field assignments using the formal parameter and its components. The following tables illustrate
these principles:

Figure F.1 illustrates possible field assignments in the behaviour specification without the use of component reference.

Test Case Dynamic Behaviour

Test Case Name ¢ STYLE1L
Group : TTCN_EXAMPLES/
Purpose : To illustrate the use of component references in the behaviour description.
Default
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
?2InASP(v:=InASP.userdata) Cinl
2 !OutASP Coutl

(OutASP.userdata.OutPDU.FieldA:=v.Field2,
OutASP.userdata.OutPDU.FieldC:=v.Field3)

Detailed Comments:

Figure F.1/X.292 — Lengthy assignment statements clutter the behaviour description

Figure F.2 illustrates the simplification of the behaviour specification resulting from the use of component reference in
constraints.

Test Case Dynamic Behaviour
Test Case Name : TTCN_EXAMPLES/STYLE1
Reference ¢ ST_EXI1
Purpose : To illustrate the use of component references in the behaviour description.
Default
Nr Label Behaviour Description Constraints Ref Verdict Comments
1 ?7InASP(v:=InASP.userdata) Cinl
2 !OutASP Cout2(v)

Figure F.2/X.292 — Lengthy assignment statements are removed form the behaviour description

210 ITU-T Rec. X.292 (05/2002)

For simplicity, the definitions of all required ASP and PDU types have been omitted.

The ASP types InASP and OutASP consist of the single parameter field userdata, which is of the type InPDU and
OutPDU respectively. InPDU contains the three fields Field1, Field2 and Field3, which all are of the type IA5String.

OutPDU contains the three fields FieldA, FieldB and FieldC, which also are of the type IAS5String.
v has to be declared as a Test Case Variable of a PDU type.

The following tables give the required ASP and PDU constraint declarations:

ASP Constraint Declaration

Constraint Name : Coutl
ASP Type : OutASP
Derivation Path
Comments

Parameter Name Parameter Value Comments
userdata CoutPDU1

ASP Constraint Declaration

Constraint Name : Cout2(p:PDU)
ASP Type : OutASP
Derivation Path
Comments

Parameter Name Parameter Value Comments
userdata CoutPDU2(p)

ASP Constraint Declaration

Constraint Name : Cinl
ASP Type : InASP
Derivation Path
Comments

Parameter Name Parameter Value Comments
userdata CinPDU

ITU-T Rec. X.292 (05/2002)

211

PDU Constraint Declaration

Constraint Name : CoutPDU1
PDU Type : OutPDU
Derivation Path
Comments

Field Name Field Value Comments
FieldA 'A
FieldB 'B'
FieldC 'C'

PDU Constraint Declaration

Constraint Name : CoutPDU2(p:InPDU)
PDU Type : OutPDU
Derivation Path
Comments

Field Name Field Value Comments
FieldA p-Field2
FieldB 'B'
FieldC p.Field3

PDU Constraint Declaration

Constraint Name : CinPDU
PDU Type : InPDU
Derivation Path
Comments

Field Name Field Value Comments
Fieldl *
Field2 *
Field3 *

F.10 Multi-party testing

Figure F.3 illustrates a test component configuration for a typical multi-party testing context. Only a single upper tester is
shown, since communication among multiple upper testers and/or Upper Tester Control Function (UTCF) is only
applicable to contexts that exclusively use the local test method.

In the example shown in Figure F.3, for simplicity, each lower tester is specified by a single PTC and the LTCF is
specified by the MTC. Another PTC is used to specify the upper tester. Co-ordination points are used between the lower
tester PTCs and the MTC.

This is a straightforward use of concurrency to meet multi-party requirements, but it should not be taken to imply that

there has to be a one-to-one relationship between lower testers and PTCs, or between the LTCF and the MTC, or
between the upper tester and a PTC.

212 ITU-T Rec. X.292 (05/2002)

MTC_LTCF

y Y 7y
PTC_UT
A4
v |
v |
PTC LT3
PTC_LT2 PCO_UT
PTC LTI
T PCO LT3 UT
T PCO_LT2
PCOILTI [
X — Service Provider(s)
X.292_FF 3

Figure F.3/X.292 — Example test component configuration for multi-party testing with a single upper tester

F.11 Multiplexing/Demultiplexing

PTC1 PTC2
CPa
MTC1 PTC1
CP1 CP2
MTC1
PCO1(MuxA) PCO2(MuxA)
I PCO1

X.292_FF 4

a) b)

Figure F.4/X.292 — Possible configurations for multiplexing/demultiplexing test cases

There are two ways of using concurrent TTCN in test cases using multiplexing/demultiplexing. These are illustrated in
Figure F.4. The first, shown in Figure F.4 a), specifies the multiplexing and demultiplexing explicitly within test
component MTC1, with PTC1 and PTC2 each handling the behaviour on one of the two multiplexed connections. This
provides for maximum flexibility in the way that the multiplexing and demultiplexing behaviour is specified, including
possibilities of invalid behaviour. However, the disadvantage of this approach is the relatively complex
multiplexer/demultiplexer has to be specified even if the test purpose concerns only the behaviour on each of the two
connections. The alternative approach is to use a separate PCO for each separate stream of events and a test suite
parameter (MuxValue) associated with each of these PCOs that are to be multiplexed and demultiplexed within the
underlying service provider, rather than within the Lower Tester. This allows the configuration shown in Figure F.4 b) to
be used. Since the multiplexing/demultiplexing is performed within the service provider, there are two PCOs in this
configuration, corresponding to the two CPs in the other configuration, but they are given a common MuxValue, MuxA,
to indicate that within the service provider they are to be multiplexed. To keep things simple, one of the two test
components is made the MTC, although a separate MTC not connected to a PCO could be used instead if preferred.

ITU-T Rec. X.292 (05/2002) 213

F.12 Splitting and recombining

In order to specify test cases involving splitting and recombining, there is no alternative to specifying explicitly the
splitting and recombining behaviour in the test case. Concurrency can be used to separate the splitting and recombining
behaviour into one test component, MTC1 in Figure F.5, from the protocol behaviour that lies above this function by
using a second test component, PTC1 in Figure F.5.

PTCl1

A
CP

MTC1

PCOaI PCObI PCOCI
X.292_FF5

Figure F.5/X.292 — Possible configuration for splitting/recombining test cases

F.13 Multi-protocol test cases

Multi-protocol test cases, including those using the embedded variants of the test methods, can use concurrent TTCN in
order to separate the behaviour associated with each protocol into a different test component, as illustrated in Figure F.6,
which shows an example configuration for testing Session embedded under FTAM.

FTAM
CP_ACSE
v
ACSE <
CP_Presentation
4
Presentation <
CP_Session
4
Session

I PCO_Transport

X.292_FF .6

Figure F.6/X.292 — Possible configuration for multi-protocol testing — Session embedded under FTAM

214 ITU-T Rec. X.292 (05/2002)

F.14 Example of modular TTCN
TS M1 M2
Import Import Module Exports Module Exports
Name: M1 Name: M2 Name: Ml Name: M1
Sourceld Sourceld
TC PRE TC PRE
Test Step Test Case Test Step
Name: PRE Name: TC Name: PRE
+PRE
/ ~
TS (expanded)
Test Step Test Case Test Step
Name: PRE Name: TC Name: M2 PRE
+M2 PRE
X.292_FF.7

Figure F.7/X.292 — Example of modular TTCN

The test step PRE (which is defined in the module M2) is implicitly imported from M1 in TS.

ITU-T Rec. X.292 (05/2002)

215

Annex G

Style guide

(This annex does not form an integral part of this Recommendation)

G.1 Introduction

This annex presents some recommended style rules that can be employed when using TTCN. The aim is to provide a
basic consistency between the TTCN styles used by different test suite specifiers.

G.2 Test case structure

In order to have a better analysis of test results and to identify easily whether or not the test purpose is achieved, the
consideration of the following points on structuring Test Cases is suggested:

a) the test suite specifier should clearly identify the preamble and postamble sub-trees;

b) the postamble and the preamble should be specified through a single test tree attachment (local to the Test
Case or from the Test Step Library) in the Test Case main behaviour tree. Such test trees may attach
subsequent sub-trees;

¢) once the preamble and postamble(s) sub-trees are identified within a Test Case main behaviour tree, the
remaining events in the Test Case main behaviour tree may be considered to be related to the test body
(i.e., events related to the test purpose).

Using this mechanism the boundaries between preamble, test body and postamble within a Test Case can be easily
identified. Labels may be used to indicate the start and end of the test body in the conformance log.

EXAMPLE G.1 — Identification of preamble and postamble:

Test Case Dynamic Behaviour

Test Case Name : ST EX1
Group : TTCN_EXAMPLES/STYLEI
Purpose : To illustrate identification of preamble and postamble.
Default
Comments
Nr Label Behaviour Description Constraint Ref Verdict Comments
1 + Preamble Related to purpose
2 1A Al
3 Body 7B Bl
4 CinBody ?7C Cl1 (PASS)
5 + postamble 1 Related to purpose
6 DinBody ?D D1 (PASS)
7 + postamble 2 Related to purpose
8 ?E El INCONC
9 ? OTHERWISE FAIL

Detailed Comments:

Since final verdicts cause termination of Test Case execution, a test suite specifier cannot assign a final verdict in the
body if it is necessary to enter the postamble. Still, it is desirable to give a verdict at the point in the Test Case where the
test purpose is achieved and not hide verdicts in postambles. It is therefore recommended to state preliminary results in
the verdict column if a test purpose is achieved but a postamble should still be executed. In the definition of the
postamble, a test suite specifier may use the result variable R as a verdict assigned at the leaves of the behaviour tree, to
indicate that if no errors were encountered in the postamble the verdict is determined in the test body.

216 ITU-T Rec. X.292 (05/2002)

G.3 Use of TTCN with different abstract test methods

G.3.1 Introduction

This subclause ties the TTCN with the abstract test methods defined in ITU-T Rec. X.291. It gives the TTCN syntax
used to express the occurrence of events at PCOs, and constraint references for the various abstract test methods.

It is assumed that the ASP type definitions define the type of the UserData parameter as PDU. It is therefore possible to
use chaining of constraints (i.e., to refer to a constraint for an ASP that contains a PDU in the UserData parameter), as a

reference to an ASP constraint that has a PDU constraint as an actual parameter.

G.3.2 TTCN and the LS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (N_PDUconstraint)
LT? N_ASP N_ASPconstraint (N_PDUconstraint)
UT! T_ASP T_ASPconstraint

UT? T_ASP T ASPconstraint

G.3.3 TTCN and the DS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT!N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)
UT! T_ASP T_ASPconstraint

UT? T_ASP T_ASPconstraint

G.34 TTCN and the CS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)

Exchanging TM_PDUs between the LT and TM protocol implementation in the IUT, via the connection that is used for
testing. Note that in this case the PDU definition shall have declared its UserData field as of type PDU.

LT!N_ASP
LT? N_ASP

G.3.5 TTCN and the RS test method

N_ASPconstraint (T _PDUconstraint (TM_PDUconstraint))
N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)

Since there is no UT or TMP the IMPLICIT SEND is used to describe send events at the side of the IUT connection.

<IUT! N_ASP>
<IUT! T_PDU>

N_ASPconstraint (T_PDUconstraint)

T PDUconstraint

ITU-T Rec. X.292 (05/2002) 217

G4 Use of defaults

As a matter of style, a test suite specifier should avoid situations where the attempt of an alternative of a Default
behaviour is the normal specification of the expected behaviour of the IUT. It would be the case for instance if a Test
Step represents the behaviour of the LT or UT and the IUT, when valid test events are sent, and if the responses of the
IUT to invalid or inopportune test events sent by the LT or UT were specified in Defaults implicitly attached to that Test
Step when called by other Test Cases. Such Defaults would have to bear Pass verdicts.

This is not a recommended practice, when the attachment of a Default tree is left unspecified and carries a degree of
uncertainty. Explicitly attached trees or the main tree should be used instead.

G.5 Limiting the execution time of a Test Case

In previous versions of TTCN, an ELAPSE statement was defined, allowing the test case specifier to limit the abnormal
duration of a Test Case, if for instance a snapshot processing never ends, or if an uncontrolled recursion of tree
attachment occurs.

The ELAPSE statement is no longer part of TTCN, as the problem it was intended to solve is considered to be outside
the scope of test suite specification.

To limit the execution time of a Test Case, it is now recommended that the test realizers implement local mechanisms in
the means of testing. Explicit timers can be used together with the TIMEOUT event whenever a limit needs to be placed
on waiting for an event to occur.

G.6 Structured types

a) in pre-DIS versions of TTCN, generic fields and generic values were defined as features allowing either to
group several fields or values in a constraint table, and/or to reuse such a group in several constraint tables
of similar contents;

b) in this version, the grouping of ASP parameters and PDU (ex-data types) fields is introduced first in the
declarations part, for the sake of completeness of that part, and consistency with the use of ASN.1 in
TTCN. Refer to 11.2.3.3 for a definition of the Structured Type definition tables. Once a Structured Type
is declared, it can be used by one or more ASP type or PDU type definitions. The ASP and PDU
definition table can therefore be "flat" (no group, or a group introduced by a macro call), or structured (by
means of structure specifications for named ASP parameters or PDU fields);

¢) in the constraint part, structure elements has to be assigned values in Structured Type constraint tables.
The names of these constraints can be used in the base ASP or PDU constraint tables as values.

The ASP and PDU constraint tables can therefore also be:

— flat, i.e., assigning values to all parameters or fields individually, and only referring to the structure
constraint tables by macro call; or

— structured, i.e., replacing values of declared groups of parameters or fields by names of group
constraints.

d) ifthe declared ASP or PDU is structured by use of some ASP parameters or PDU fields being specified by
referenced to structure elements, then the constraints have to have the same structure.

Whichever form is used, ASP/PDU constraints can also be:
— modified; and

— parameterized, by means of a parameter to be bound to a field/parameter value or to a Structured
Type constraint.

e) the Structured Type constraint tables replace the generic field tables of previous versions of TTCN;
f) the concept of generic values is deleted;

g) examples are given in Annex F.

G.7 Abbreviations

In previous versions of TTCN, it was allowed to declare, in a specific table, abbreviations to be used in the behaviour
columns of the Test Cases and Test Steps. This facility proved to be confusing and has been restricted so that only the
names of ASPs and PDUs, when used in event lines, can be abbreviated. This facility is now called Alias.

218 ITU-T Rec. X.292 (05/2002)

G.8 Test descriptions

Informal behaviour descriptions, giving more detail than the test purposes, but less detail than the TTCN specification of
the Test Cases may, if desired, be included in a standardized ATS.

Such test descriptions may use text, time sequence diagrams or any other notation and be located in the comments field
of tables, an informative annex or both.

The TTCN specifications of the Test Cases always take precedence over such informal test descriptions.

G.9 Assignments on SEND events

TTCN allows for overwriting constraint values prior to a SEND event in an assignment statement on the event line. This
means that first the data to be sent is constructed from the constraint definition and then the assignments are executed.

This feature should be used with care since it may lead to confusion for the test suite reader what the actual value is that
is to be sent. In particular, it is considered to be bad style to use the same constraint for both sending and receiving.
G.10 Multi-service PCOs

Where a PCO covers more than one SAP the precise specification of such a PCO is given by the set of ASPs and PDUs
that can occur.

EXAMPLE G.2— An FTAM PCO:

PCO Declarations
PCO Name PCO Type Role Comments
L A_P_SAPs LT PCO through which we can observe all ACSE
ASPs and all Presentation ASPs except
P-CONNECT, P-RELEASE and P_ ABORT.

The PCO "L" is of type A_P_SAPs which is able to observe all ACSE and Presentation ASPs, excluding P-CONNECT,
P-RELEASE and P-ABORT. The type column shows which SAPs belong to the set to be observed by the PCO, "A" and
"P", each SAP separated by underscore (" _"). The comments column describes exactly what can be seen by the PCO.

This method is extensible to many SAPs, each of which would be separated by an underscore.

ITU-T Rec. X.292 (05/2002) 219

Annex H

Index

(This annex does not form an integral part of this Recommendation)

H.1 Introduction

This annex presents an alphabetical index of terms and acronyms used in this Recommendation. For each term or
acronym, the index gives a set of references in terms of clause, figure and table numbers, either in the main body, or in
the annexes. The significance of each reference is indicated as follows:

a) definitions of the terms and acronyms are in bold;
b) major uses of the term or acronyms are in italics;

c) other uses are in normal font.

H.2 The index

A

ABSENT: 4.4.2.5

Abstract Service Primitive: 1, 4.1

Abstract Syntax Notation One: 4.3

ABSTRACT SYNTAX: A.4.2.5

Abstract test case: 6, 8.2, 11.13.2, 15.17.1

Abstract test suite: /, 2, 4.1, 8.2

Abstract testing methodology: /

Access to behaviour description: 15.13.2

ACTIVATE procedure: B.5.19.1

ACTIVATE: 15.4.1,15.14,15.18.4, 15.18.4,15.18.6, 15.18.6,A.4.2.4, B.5.5.4,B.5.5.5, B.5.18.2, B.5.19.2
Actual parameters: 15.13.5, 15.16.2

ActualParList: B.5.5.3

Alias definition: /7.1, A.3.3.13.14

ALL: 4.4.2.5

Ancestor node: 15.14

AND: A.4.2.4

AnyOne: 12.6.5.1, 12.6.6.1

AnyOrNone: 12.6.5.2, 12.6.5.3, 12.6.6.1
AnyOrOmit: 12.6.4.4, 12.6.6.1

AnyValue: 12.6.4.3, 12.6.5.1, 12.6.6.1

APPEND DEFAULTS: B.5.5.4

APPEND_TO LEVEL: B.5.25

Applicable encoding rules: 3.6.1

APPLICATION: A.4.2.5

Arithmetic operators: 11.3.2.2

Array references: 15.10.2.3

ASN.1 ASP constraints: /4.2, 14.3, 4.4.2.15

ASN.1 ASP type definition: 11.14

ASN.1 CM constraints: 14.9, 4.4.2.15

ASN.1 CM type: 11.17.3

ASN.1 comments: 11.2.3.4,11.154, 14.1

ASN.1 compact constraints: E.2.5

ASN.1 constraint declaration: /12.6.6.1, 14, A.3.3.22, E.2.5,F.2
ASN.1 constraint: /12.6.6.2

ASN.1 constraints: /2.1, 12.6.5.2, 14.1

ASN.1 dash symbol: /4.1

ASN.1 defined data objects: 15.10.2

ASN.1 encoding rules: /1.15.1

ASN.1 identifier: 3.6.48

ASN.1 module: 11.2.3.5, 11.14.5

ASN.1 PDU constraint declaration: 14.4

ASN.1 PDU constraints: /4.2, A.4.2.15

ASN.1 PDU type definition: 11.15

ASN.1 type constraints: 7.3.4, 11.16.4,14.2, 4.4.2.15
ASN.1 type definition: /1.2.3.4,11.2.3.5,11.18.2, 14.5, 14.8, A.4.2.1, A.4.2.6
ASN.1 type: 11.2.3.4,11.2.3.5,11.8.1,11.8.3,11.14.2,11.14.5,11.154,12.6.2

220 ITU-T Rec. X.292 (05/2002)

ASN.1: 1, 2,43,8.1,95,11.2.2,11.2.34,11.6,11.7,11.14.3, 11.14.4, 11.14.5, 11.15.4, 11.15.5, 11.17.3, 12.2, 12.6.1,
12.6.4.2,15.10.2,4.4.2.1,4.4.2.5,E2.1,G.6

ASP constraint compact proforma: E.2.2

ASP constraint declaration: 3.6.62, 13.3,d), 4.5.1, E.2.5

ASP constraints: 7.3.4

ASP identifier: 711.21

ASP parameter: 3.6.66, 11.2.1, 11.14.2, 12.5, 12.6.2, 12.6.3, 12.6.4.1, 12.6.4.2, 12.6.4.3, 12.6.4.4, 12.6.4.5, 12.6.4.7,
12.6.4.8,12.6.5.1,12.6.5.3,12.6.6.2

ASP specified by reference: 11.14.5

ASP type definition: 3.6.3, 3.6.68, 11.1, 11.2.2,11.14,11.19, 11.20, A.3.3.19, A.3.3.22, G.3.1

ASP type: 11.3.4.2,14.3,15.7.2

ASP: 3.6.9, 3.6.13, 3.6.25, 3.6.38, 3.6.44, 3.6.57, 3.6.60, 3.6.68, 4.1, 8.1, 9.5, 11.2.1, 11.2.2, 11.2.3.3, 11.3.4.1, 11.3.4.2,
11.6, 11.7, 11.10, 11.14, 11.14.2, 11.14.3, 11.14.4, 11.14.5, 11.15, 11.15.1, 11.15.5, 11.16.4, 11.19, 11.20,
11.21,12.1,124,12.6.1,12.6.3,13.2,13.6, 14.5, 14.6, 14.8, 15.2.1.3, 15.9, 15.9.5.3, 15.9.6, 15.10.1, 15.10.2.2,
15.10.2.3, 15.10.3, 15.10.6, 15.16.1, A.4.2.7, A.4.2.8, B.5.2.3, B.5.8.2, B.5.9.2, B.5.10.2, B.5.11.2, B.5.12.2,
B.5.13.2,B.516.2,E2.1,G.6,G.7,G.10

ASPs specified in ASN.1: 11.14.4

Assignment rules: 15.10.4.2

Assignment: [1.3.4.3, 11.3.4.6, 11.8.2, 11.8.4, 15.6, 15.8, 15.9.3, 15.9.4, 15.10.1, 15.10.4, 15.10.5, 15.10.6, 15.11,
15.16.3,15.17.2,B.5.16, G.9

ATS: 3.6.74,4.1, 6, 10.1,10.2,10.3,10.4,10.5,11.1,11.3.4.1,b), 11.9,11.14.4,11.16.1,12.1,A.1, A.5.1

Attach construct: 3.6.2, 15.2.3,15.8,15.17.1,B.5.5.4,B.5.5.5, E.3.1

ATTACH: 15.9.10.1,15.13.1,15.13.4.1, E 3.1

Attached tree: 15.13.3

Attachment construct: B.5./

Attribute: 171.15.2,11.18.1, 13.4

Attributes of values: 12.6.6

AUTOMATIC: A.4.2.5

B

Backus-Naur Form: 4.3

Base constraint: 3.6.3, 3.6.24, 3.6.44, 13.6, 13.7,4.3.3.19, A.3.3.22, E2.3,F.3

Base type: 3.6.4, 11.18.2

BEGIN: /1.3.4.4,4.4.2.5

Behaviour description: 3.6.40, 3.6.55, 3.6.78, 3.6.90, 11.10, 11.21, 12.1, 12.3, 15.2.1, 15.2.1.3, 15.2.5, 15.5, 15.13.2, 15.15,
A4.2.10,A4.5.1,A.5.2,E.3.1,G.3,G.8

Behaviour line: 3.6.5, 3.6.14, 3.6.25, 15.2.5, B.5.1

Behaviour tree: 3.6.6, 3.6.8, 3.6.42, 3.6.49, 3.6.59, 3.6.83, 3.6.84, 3.6.85, 3.6.87, 15.2.1.3, 15.2.2, 15.4.1, 15.5, 15.9.5,
15.11,15.13.3,15.13.4.1,15.14,15.16.2,15.17,15.18.1,B.5.1,B.5.5.4,B.5.5.5, G.2

BehaviourLine: B.5.2.5

BER: /1.15.2,11.154,11.15.5,11.16.4,13.4,14.4

Binding of variables: 11.8.4

Bit reference: 15.10.2.4

BIT: 4.4.2.5

BIT _TO INT: 11.3.3.2.1,11.3.3.2.3,4.4.2.4

BITSTRING: 11.2.2, 11.18,15.10.2.4, 15.10.4.2, A.4.2.4

Blank entry: 3.6.7

BMPString: 4.4.2.5

BNF grammar for TTCN: 7.2

BNF: 4.3, 7.2, A.3

Boolean expression: 15.10.1

Boolean operators: 11.3.2.4

BOOLEAN: 11.2.2, /1.3.3.3.1,11.3.3.3.2,b), 15.10.2.4, 4.4.2.4,4.4.2.5, B.5.15

Bound variable: 11.8.2, 15.16.2, 15.18.2

Bounded free text: 7.4

BUILD SEND OBJECT: B.5.8.1

BY:4.4.2.4

C

Calling tree: 3.6.2, 3.6.8, 3.6.42, 15.13.3,15.17.3,15.18.5
CANCEL operation: 15.12.3

CANCEL: 15.12.1,15.12.3,A.4.2.4,B.5.14.2, B.5.17
CANCEL_TIMER: B.5.17.1

CASE OF ELSE: 11.3.4.9

CASE: 11.3.4.9,4.4.2.4

ITU-T Rec. X.292 (05/2002) 221

Chaining of constraints: /2.4, 15.10.2.2, 15.10.3, F.1.1.3, F.1.2.3, F.2.2.3, G.3.1

CHARACTER: 4.4.2.5

Characterstring type: 11.3.3.3.4, 11.18.1

CharacterString: 11.2.2, 12.6.5.1, 12.6.5.2, 15.10.4.2

CHOICE: 11.3.3.3.2,12.4, 14.5, 14.8, 15.10.2.2, 15.10.2.3, 4.4.2.5

CLASS: A4.4.2.5

CM constraint declarations: 13.8

CM parameters: 11.17.1

CM type: 11.17.2,11.17.3

CM: 3.6.16,4.3,8.1,11.3.4.2,11.6,11.7,11.11,11.17.1,11.17.2,12.1, 13.6, 13.8, 14.9, 15.9.2, 15.9.3, 15.9.4, 15.9.5.3,
15.9.54, 15.9.8, 15.10.2.2, 15.10.2.3, 15.10.3, 15.10.6, 15.16.1, 15.17.5, 15.18.8, A.4.2.7, A.4.2.8, B.5.2.3,
B.5.8.2,B.5.9.2,B.5.10.2,B.5.11.2,B.5.12.2,B.5.16.2

CMs and defaults: 15.18.8

Collective comment: 7.3.3, 11.2.3.2

Compact constraint table: 3.6.7, 3.6.9, 13.1, E.1, E.2

Compact proformas: Annex E

Compact test case table: 3.6.10, E. 1, E.3

Complement matching operation: 12.6.4.1

COMPLEMENT: 4.4.2.4

Complement: 12.6.4.1, 12.6.6.1

Complex CMs: 11.17.1

Compliance: 6, 15.17.3

Component of data object: 15.10.2.2, 15.10.2.3

COMPONENT: 4.4.2.5

Component: 3.6.72

Concurrent test case behaviour: 15.2.4

Concurrent test case: 3.6.11, 3.6.72

Concurrent TTCN: 3.6.11, 3.6.12, 3.6.47

Conflict between TTCN forms: 5

Conformance log: 15.17,B.3,B.5.20.2,B.5.23.2, B.5.24, B.5.24.2, G.2

Conformance test suite: /

CONSTRAINED: 4.4.2.5

Constraint declarations: 3.6.25

Constraints for RECEIVE: 12.6

Constraints part: 3.6.13, 9.5, 12, 15.2.1.3, 15.16.1, A.3.3.36.2

Constraints reference: 3.6.5, 3.6.14, 3.6.25, 12.2, 12.3, 15.2.1.3, 15.16, 15.16.1, B.1, B.5.8.2, B.5.9.2, B.5.10.2, B.5.11.2,
B.5.12.2,B.5.13.2,G.3

Construct: 3.6.61, 3.6.90, 15.2.1.3, 15.8,15.9.5, 15.17.1, 15.18.1, B.5.18

CONSTRUCT _TYPE_OF: B.5.26

Co-ordinated test method: G.3.4

Co-ordination message declarations: 8.1

Co-ordination message: 3.6.15, 4.3, 8.1

Co-ordination point declarations: 8.1

Co-ordination point model: 11.11

Co-ordination point: 3.6.15, 3.6.16, 4.3

CP: 3.6.72, 3.6.73, 43, 8.2, 11.11, 11.13.1.1, 11.13.1.3, 11.13.2, 15.2.4, 15.9.5.3, 15.9.8, 15.9.10.1, 15.10.6, A.4.2.4,
A4.2.13,B.1,B.5.4.2,F.11

CREATE and defaults: 15.18.7

Create construct: 15.9.10.1

CREATE procedure: B.5.20.1

CREATE: 8.2, 11.13.1.1,11.13.1.2,15.9.10,15.9.10.1,15.9.10.2,15.18.7,4.4.2.4, B.5.18.2, F.15

CurrentLevel: B.5.2.3

D

Data object: 2.2, 15.10.1

Declaration by reference: 11.7

Declarations part: 3.6.17,9.5, 11.1, 15.9.1, A.3.3.36.2, G.6
DEF_REF LIST: B.5.26

Default behaviour proforma: 3.6.18, B.1

Default behaviour: 3.6.18, 3.6.19, 3.6.22, 15.1, 15.2.1,15.4,15.18.1, 15.18.2, 15.18.4, B.5.5,B.5.5.4, G.4
Default duration: 71.12

Default dynamic behaviour: 3.6.26, 9.5

Default expansion: /5.718.3

Default expression: 11.16.1, 11.16.2

Default group reference: 3.6.20, 9.4, 10.6

222 ITU-T Rec. X.292 (05/2002)

Default group: 3.6.19, 9.1

Default identifier: 3.6.21, 10.6, 15.18.2, A.4.2.11

Default index: 10.1, 10.6, A.5.1

Default library: 3.6.20, 3.6.22, 3.6.23, 3.6.52, 9.4, 10.6, 15.4.1, 15.18.2
Default objective: 10.6

Default reference: 3.6.23, 15.2.1,15.18.2, B.5.5.4

Default tree: 15.10.1, 15.14,15.18.1,15.18.3,4.3.3.33,4.4.2.9, E3.1, G4
Default value: 13.6

DEFAULT: /1.3.3.3.1,15.18.1,A.4.2.5

Default: 15.4.1,15.18, 15.18.2,15.18.6, B.5.1, B.5.2.3,B.5.5.1, B.5.5.4,B.5.5.5, G.4
Defect report: B.2

Definition by reference: 11.7

DEFINITIONS: 4.4.2.5

DER: 11.152,11.154,11.15.5,13.4,14.4

Derivation path: 3.6.24, 13.4, 13.6, 14.3,d), 14.4,A.3.3.22, E.2.3
Derivation: 4.1

Detailed comments: /1.3.4.1

Distinguished value: 4.4.2.6

Distributed test method: 4.2, G.3.3

DO: 11.3.4.8,A.4.2.4

Done event: 15.9.10.2

DONE: 15.9.10, 15.9.10.2, 4.4.2.4,B.5.7.2,B.5.12.2, F.15

Dot notation: 15.10.2.2, 15.10.2.3

DS: 4.2

Dynamic behaviour: 3.6.12, 11.13.2

Dynamic chaining: 3.6.25, /2.4

Dynamic part: 3.6.26, 9.5, 11.1, 15, A.3.3.36.2

E

EBDIF: A.4.2.4

Element: 15.10.3

ELSE: 4.4.2.4

EMBEDDED: 4.4.2.5

Encoding definition: //.3.3.2.1, 11.15.2,11.15.4, 11.15.5, 11.16.1, 11.16.2,11.16.4
Encoding operation: 7/.16.3

Encoding rules precedence: 11.16.4

Encoding rules: 171.16.1,11.16.2,11.16.4
Encoding variations: /7.2.3.2,11.2.3.3,11.2.3.4,11.2.3.5,11.15.2,11.15.4,11.15.5,11.16.2,13.2,13.4, 14.2, 14.4
END: /1.3.4.4,4.4.2.4,4.4.2.5

ENDCASE: 11.3.4.9,4.4.2.4

ENDIF: 11.3.4.7

ENDVAR: /1.3.4.3,A4.4.2.4

ENDWHILE: /1.3.4.8, A.4.2.4

Enumerated type: 4.4.2.6

ENUMERATED: A.4.2.5, 4.4.2.6

Equivalence of TTCN forms: 5

ETS: 4.1

EVAL_VERDICT ENTRY: B.5.23.1
EVALUATE_BOOLEAN: B.5.15.1
EVALUATE_CONSTRUCT: B.5.18.1
EVALUATE_EVENT: B.5.7.1
EVALUATE_EVENT LINE: B.5.6.1
EVALUATE_LEVELS: B.5.4.1
EVALUATE_PSEUDO_EVENT: B.5.14.1
EVALUATE TEST CASE:B.1,B.5.3.1, B.5.4.1
EVALUATE_TEST COMPONENT: B.5.3.1
EVALUATE_TEST_COMPONENT: B./, B.5.20.1
EVALUATE_TEST SUITE: B.1, B.5.2.3, B.5.3.1
Evaluation tree: B.1, B.5.2.1, B.5.2.3

Event line: 15.9, 15.10.1, 15.10.4.1, 15.10.6, G.7, G.9
Event matching: 15.10.6

EVENT _TYPE_OF: B.5.26

Examples of tabular constraints: F.1

ITU-T Rec. X.292 (05/2002) 223

Examples: Annex F

EXCEPT: 4.4.2.5
EXCLUDE_INCOMPATIBLE ENTRY: B.5.23.1
Executable test case error: 6.5

Executable test case: 6.5

Executable test suite: 1, 4.1
EXECUTE_ASSIGNMENT: B.5.16.1

Execution of a test suite: B.5.3

EXPAND ATTACHMENTS: B.5.5.5

EXPAND _CURRENT_LEVEL: B.5.5.1
EXPAND REPEATS: B.5.5.3
EXPAND_SUBTREE: B.5.5.5

Expanded test suite: 3.6.27

Expanding a set of alternatives: B.5.5.1
Expanding modularized test suite: B.4

Expansion of aliases: 11.21

Expansion of default trees: 15.13.7

Explicit external: 3.6.28

EXPLICIT: A.4.2.5

Explicitly defined object: 3.6.29, 3.6.32, 3.6.33, 3.6.36
Explicitly exported object: 3.6.30, 3.6.32, 3.6.36
Explicitly external object: 3.6.33

Explicitly imported object: 3.6.31, 3.6.32, 3.6.36, 3.6.37, 3.6.39, 10.8.1
Explicitly imported: B./

EXPORT: 4.4.2.5

Export: 11.9

Exported object: 3.6.32

Exporting object type: 10.7

External object: 3.6.28, 3.6.33

External objects: C.3.1, C.3.2

EXTERNAL: /0.7, 10.8.2,4.4.2.5, C.2.2
Externally declared object: 3.6.35

Externally defined object: 3.6.46

F

F:15.17.2,15.17.3,4.4.2.4

FAIL: 15.17.1,15.17.2,15.17.3,15.17.4,15.18.1,4.4.2.4,B.5.23.2

Fail: 3.6.54

FALSE: 10.3, 10.4, 11.2.2, 11.3.3.3.1, 11.3.3.3.2, 11.3.4.7, 11.3.4.8, 11.16.1, 11.16.2, 15.11, A.4.2.4, A.4.2.5, B.5.8.2,
B.5.9.2,B.5.10.2,B.5.11.2,B.5.12.2, B.5.15.2

FDT: 4.3

Field encoding definition: /7.2.3.2, 11.2.3.4, 11.15.2,11.15.4,11.16.3, 13.4

Field: 15.10.3

FIFO: 4.3, 11.10

Final verdict: 15.9.10.2,15.17.1,15.17.3,15.18.1, G.2

FIRST LEVEL: B.5.25

Formal Description Technique: 4.3

Formal description technique: /

Formal parameter list: 12.3, 13.4, 13.7,d), 14.7, 14.7,15.9.1, 15.16.2, A.4.2.11, A.4.2.12

Formal parameter name precedence: 4.4.2.12

Formal parameter: A.4.2.14

Formal parameters: 3.6.85, 15.7.2, 15.13.5

Free text: 7.4

FROM: 4.4.2.5

G

GeneralizedTime: A.4.2.5

GeneralString: 4.4.2.4, A.4.2.5

Global result variable: 3.6.34

Global test steps: 9.3.2

GOTO construct: 15.14

GOTO: 15.2.1.3,15.6,15.8,15.9.5.1,15.14,15.17.1,A.4.2.4,B.1,B.5.5.1,B.5.18.2,B.5.21,B.5.21, B.5.22
GOTO NEXT LEVEL OR_STOP WITH VERDICT: B.5.21, B.5.22, B.5.25

GraphicString: 4.4.2.4, A.4.2.5

224 ITU-T Rec. X.292 (05/2002)

H

HEX TO INT: /1.3.3.2.1,11.3.3.2.2,4.4.2.4
HEXSTRING: 11.2.2, 11.18.1,11.18.2,15.10.4.2,4.4.2.4
Hyphen symbol: 71.15.4

|

1. 15.17.2,15.17.3,4.4.2.4

1A5String: A.4.2.4, A.4.2.5

IDENTIFIER: A4.4.2.5

Idle testing state: 15.17.3

IF THEN ELSE: /11.3.4.7

IF THEN: /1.3.4.7

IF: 4.4.2.4

IF_PRESENT: 4.4.2.4

IfPresent: 12.6.6.1,12.6.6.2

Illegal variations of encoding: 11.16.3

Implementation Under Test: 4./

Implicit external: 3.6.35

Implicit send event: 3.6.38, 15.9.6

IMPLICIT SEND: /5.6, 15.8,15.9.5.3,15.9.6, 15.16.1, 15.17.1,B.5.7.2, B.5.13.2, G.3.5

IMPLICIT: A.4.2.5

IMPLICIT_SEND: B.5.13.1

Implicitly exported object: 3.6.32, 3.6.36

Implicitly external object: 3.6.33

Implicitly imported object: 3.6.37, 3.6.37, 3.6.39, 10.8.1, B.1

Import part: 9.5, 10.8.1, C./

IMPORT: 4.4.2.5

Import: 10.8.2, C.3.1, C.3.3

Imported object: 3.6.27, 3.6.30, 3.6.33, 3.6.39, 10.8.1, B.4

INCLUDES: 4.4.2.5

INCONC: 15.17.1,15.17.2,15.17.3,A4.4.2.4, B.5.23.2

Inconclusive verdict: 15.17.3

Indentation: 3.6.61, 15.2.5, 15.6, 15.9.5, 15.15,4.5.1, A.5.2, B.5.5.3

Index notation: 15.10.2.4

INFINITY: /1.2.3.2,11.14.2,11.15.2,11.17.2,11.18.2,12.6.4.6, 12.6.6.1, A.4.2.4

INPUT_Q: B.5.26

Inside values: 12.6.5

INSTANCE: 4.4.2.5

INT TO BIT: /1.3.3.2.1,11.3.3.2.5,4.4.2.4

INT TO HEX: 11.3.3.2.1,11.3.3.2.4,4.4.2.4

INTEGER: 11.2.2, /1.2.3.2, 11.3.3.3.3, 11.12, 11.14.2, 11.17.2, 11.18.2, 12.6.4.6, 12.6.5.1, 12.6.5.3, 12.6.6.1, 15.10.2.3,
15.10.2.4,15.12.2,15.12.4,4.4.2.4,4.4.2.5,4.4.2.6

INTERSECTION: 4.4.2.5

Invalid field encoding definition: /4.2, 14.4

Invalid field encoding: 17.2.3.3, 11.16.3, 12.6.4.2

Invalid test event: 15.17.4

IS CHOSEN: 11.3.3.3.2,4.4.2.4

IS_EXPANDED: B.5.25

IS PRESENT: 11.3.3.3.1, 4.4.2.4

IsDefault: B./

IsExpanded: B. 1

ISO646String: A.4.2.5

IUT: 3.6.13,3.6.38,4.1, 10.3,11.10, 11.11,11.15.1,15.9.6,4.4.2.4,G.3.4, G4

L

Label: 3.6.5,15.2.1.3,15.14
Length: /7.18.2,12.6.6.1
LENGTH OF: 11.3.3.3.4,4.4.2.4
Level of indentation: 3.6.40
LEVEL OF: B.5.2.5, B.5.25
Levels of alternatives: B.5.2.5
Lifetime of events: 15.9.4

Line continuation: 15.2.5, A.5.1
Literal values: /1.16.1,11.16.2

ITU-T Rec. X.292 (05/2002) 225

Local result variable: 3.6.41, B.5.20.2

Local test method: 4.2, G.3.2

Local test steps: 9.3.2

Local tree: 3.6.42, 3.6.85, 3.6.86, 15.2.5, 15.4.1, 15.6, 15.10.1, 15.13.2, 15.13.3, 15.13.4.1, 15.15, A.4.2.9, A.4.2.10,
AA4.2.11,4.5.2

Local variables: 11.3.4.3, 11.3.4.4,11.3.4.6

Location of object: 10.7

LOG procedure: B.5.24.1

Lower Tester Control Function: 4./

Lower tester: 4.1, 11.13.1.2

LS: 4.2

LT:4.1,11.9,11.10,15.2.1.3,158,15.9.1,159.5.1,15.9.6,159.7,4.4.2.4,B.5.8.2,B.5.9.2,B.5.10.2,B.5.11.2,B.5.12.2,
G4

LTCF: 4.1

M

Macro expansion: /2.2, 13.2, 13.4,15.10.3, 15.10.3, 4.3.3.34, 4.4.2.8
Macro symbol: 11.14.3,11.15.3

Main test component: 3.6.34, 3.6.43, 3.6.53,4.3,8.1, 11.13.1.1, 11.13.1.3,15.9.10.1,B.5.2.3, B.5.3.1, B.5.23.2
MAKE_TREE: B.5.25

Matching ASP: 12.6.1

Matching attributes of values: 12.6.2

Matching inside values: 12.6.2

Matching instead of values: 12.6.2

Matching mechanism: 3.6.65, 12.2, 12.5,12.6.3, 14.1, 15.9.9
Matching mechanisms: 12.6.2

Matching PDU: 12.6.1

Matching values in constraints: 12.6.1

MAX: 4.4.2.5

Means of Testing: 4.1, G.5

MIN: 4.4.2.5

min: 4.4.2.4

MOD: 4.4.2.4

Modified ASN.1 constraints: 14.6, 14.7, 14.7

Modified constraints: 3.6.7, 3.6.24, 3.6.44, 13.6, 13.7, A.3.3.19, A.3.3.22, E2.3,E.2.4,F.1.2.5, F.2.2.5,F.3,G.6
Modular TTCN: F.14

Modularized test suite: 3.6.45

Module constraints part: C. 1

Module declarations part: C./

Module default index: C.2.1, C.2.6

Module dynamic part: C. 1

Module exports: C.2.2

Module import part: C.3

Module structure: C.2.3

Module test case index: C.2.1, C.2.4

Module test step index: C.2.1, C.2.5

Module: 3.6.28, 3.6.29, 3.6.32, 3.6.33, 3.6.46, 3.6.50, 3.6.69, 10.8.1, B.1, B.4
MOT: 4.1, 15.9.5.3

MPyT: 3.6.34

ms: A.4.2.4

MTC: 3.6.58,4.3,8.1,8.2,11.8.1,11.8.3,11.13.1.2,11.13.2,15.2.4,15.9.10.2,15.17.5,15.18.7
MTC R: 3.6.58, 15.17.5

Multi-party testing: F.10

Multiplexing/demultiplexing: F.11

Multi-protocol test cases: F.13

MuxValue: 11.10, F.11

N

NEW_LABEL: B.5.25
Non-concurrent test case: 3.6.47
none: 4.4.2.4

NOT: 4.4.2.4

ns: A.4.2.4

NULL: 4.4.2.5

226 ITU-T Rec. X.292 (05/2002)

NUMBER _OF ELEMENTS: 11.3.3.3.3, 4.4.2.4
NumericString: 4.4.2.4, A.4.2.5

(0]

Object group: 7.3.2

Object name: 7.3.2,7.3.3

OBJECT: 4.4.2.5

Object: 3.6.48, 3.6.50, 10.8.2

OBJECT _MATCHES: B.5.9.1

ObjectDescriptor: 4.4.2.5

OBJECTIDENTIFIER: 11.2.2, A.4.2.4

OCTET: A.4.2.5

OCTETSTRING: 11.2.2, /1.3.3.3.4,11.18.1,11.18.2,15.10.4.2

OF:A4.4.2.4

Omit symbol: /2.5

OMIT: 10.8.2, 14.6, A.4.2.4

Omit: 12.6.4.2

Open Systems Interconnection: 4.3

Operational semantics: /, 3.6.49, 5, 6, 15.9.5.2, Annex B, B.5

OPTIONAL: /1.3.3.3.1,11.3.3.3.3,12.5,12.6.4.2,12.6.6.2, 14.5, 14.8, A.4.2.5

OR: 4.4.2.4

Order of receipt of events: 15.9.5.4

Original source object: 3.6.50

OSI: 1,2,43,4.4.2.1

Otherwise event: 3.6.51, 15.9.7

OTHERWISE function: B.5.10.1

OTHERWISE: 3.6.91, 15.8, 15.9.5.3, 15.9.7, 15.9.8, 15.10.6, 15.17.4, 15.18.5, A.3.3.33, A.4.2.4, B.5.7.2, B.5.10.2,
B.5.15.2

OUTPUT _Q: B.5.26

Overview part: 3.6.52

P

P:15.17.2,15.17.3,A.4.2.4

Page continuation: 16, 16.1, 16.2, 4.5.1

Parallel test component: 3.6.43, 3.6.53, 4.3, 8.1, 11.13.1.2, 11.13.1.3,15.9.10.1, B.5.2.3,B.5.3.1,B.5.23.2

Parameter list: /2.3, 13.5, 13.7,14.7, 15.2.1,15.7, 15.9.1, 15.13.4.1, 15.16.2, 15.18.2, A.3.3.19, A.3.3.22, E.2.3.2

Parameter: 3.6.13, 3.6.66, 3.6.68,d), 11.15.2, 11.19,13.5, 14.5,15.9.4, 15.10.3, A.3.3.19, A.3.3.22, A.3.3.34,4.4.2.7, G.6

Parameterization: 3.6.25, 11.1, 11.4, 15.18.2, /* STATIC SEMANTICS -, A.3.3.19, A.3.3.22, A.3.3.23

Parameterized compact constraints: E.2.3.2

Parameterized constraint: 3.6.7, 12.3, 13.5, 4.4.2.11,F.1.2.4,F.1.2.5,F.2.2.4

PASS: 15.17.1,15.17.2,15.17.3,15.17.4,A.4.2.4,B.5.23.2

Pass: 3.6.54

Passing of constraints: 15.13.5

Passing parameters: 15.16.2

PCO declaration: 11.10, 71.15.2

PCO model: 15.9.1

PCO queue: 15.9.2

PCO type: 11.9, 11.15.2,12.3,15.7.2

PCO: 3.6.57, 3.6.60, 3.6.72, 3.6.73, 4.1, 8.1, 8.2, 9.5, 10.7, 11.3.4.1, 11.9, 11.10, 11.11, 11.13.1.1, 11.13.1.3, 11.13.2,
11.14.2, 11.14.4, 11.14.5, 11.15.1, 11.15.2, 11.15.4, 11.15.5, 15.2.4, 15.3.1, 15.4.1, 15.9, 15.9.1, 15.9.5.3,
15.9.54, 15.9.6, 15.9.7, 15.9.8, 15.9.10.1, 15.18.1, 15.18.8, A.4.2.13, B.1, B.5.4.2, B.5.8.2, B.5.9.2, B.5.10.2,
B5.11.2,B.5.12.2,F.11,G.10

PDU constraint compact proforma: E.2.3

PDU constraint declaration: 3.6.62, 13.2,13.4, A.5.1

PDU constraints: 7.3.4, 11.16.3, 12.6.6.1, 13.4, 14.1

PDU field value: 11.20, 12.2,12.4,12.6.4.5, 12.6.4.6, 15.9.3, 15.9.4

PDU field: 3.6.66, 11.2.1, 11.16.3, 11.17.1, 12.1, 12.5, 12.6.2, 12.6.3, 12.6.4.1, 12.6.4.2, 12.6.4.3, 12.6.4.4, 12.6.4.5,
12.6.4.7,12.6.4.8,12.6.5.1,12.6.5.3, 12.6.6.2

PDU identifier: 11.15.2, 11.21, 15.9.1

PDU specification in ASN.1: 11.15.5

PDU type definition: 3.6.3, 3.6.68, 11.15, 11.19, 11.20, /3.4, E.2.3,F.4, G.6

PDU type: 11.3.4.2,11.8.1,11.8.3,13.4,14.4,15.7.2

ITU-T Rec. X.292 (05/2002) 227

PDU: 3.6.1, 3.6.9, 3.6.13, 3.6.25, 3.6.38, 3.6.44, 3.6.57, 3.6.60, 3.6.66, 3.6.68, 4.3, 7.3.1, 9.5, 11.2.1, 11.2.2, 11.2.3.2,
11.2.3.3, 11.2.34, 11.2.3.5, 11.3.4.1, 11.3.4.2, 11.6, 11.7, 11.10, 11.14.2, 11.15.1, 11.15.2, 11.15.3, 11.15.4,
11.15.5,11.16.2,11.16.4,11.17.1,11.17.2,11.17.3,12.6.3,13.2, 13.6, 14.5, 14.6, 14.8, 15.9, 15.9.5.3, 15.9.5.4,
15.9.6,15.10.1, 15.10.2.2, 15.10.2.3, 15.10.3, 15.10.4.1, 15.10.6, 15.16.1, 15.18.8, A.3.3.19, A.3.3.22, A.3.3.34,
AA4.2.4, A4.2.5, A4.2.7, A4.2.8, B.52.3, B58.2, B5.9.2, B5.10.2, B.5.11.2, B.5.12.2, B.5.13.2, B.5.16.2,
E21,G3.1

PERMUTATION: A.4.2.4

Permutation: 12.6.5.3, 12.6.6.1

PICS proforma: /1.4

PICS: 3.6.80, 3.6.81,4.1,10.3,11.4,11.6,11.7,11.12,C.2.2

PIXIT proforma: /7.4

PIXIT: 3.6.80, 3.6.81,4.1, 10.3,11.4,11.6,11.7,11.10,11.12,15.9.6, C.2.2

Point of attachment: 75.73.5

Point of control and observation: 4.1, 8.1

Postamble: G.2

Preamble: G.2

Precautions for concurrent TTCN: 15.9.5.4

Precedence of assignments and qualifiers: 15.10.6

Precedence of operators: Table 3 -

Precedence of pseudo-events: 15.11

Precedence: 15.17.2,4.4.2.11,B.2, G.8

Predefined type: 11.3.4.2,d), 11.6, 11.7,11.8.1,11.15.2,11.16.3

Predefined variable: 3.6.41

Preliminary result variable: B.5.4.2

Preliminary result: 3.6.34, 3.6.41,3.6.54, 3.6.58, 11.13.1.1,11.13.1.2,15.9.10.2,15.17.1,15.17.2

PRESENT: 4.4.2.5

PrintableString: 4.4.2.5

PRIVATE: A.4.2.5

Procedural definition of test suite operation: 4.4.2.14

Procedural definition: /7.3.4.3

Procedure statement: /1.3.4.4

Protocol Data Unit: /, 4.3

Protocol error: 15.17.2

Protocol Implementation Conformance Statement: 4./

Protocol Implementation eXtra Information for Testing: 4./

ps: A.4.2.4

Pseudo-code keywords: B.5.2.1

Pseudo-code notation: B.5.2

Pseudo-code precedence: B.2

Pseudo-code procedures and functions: B.5.2.2

Pseudo-code process: B.5.2.3

Pseudo-code with natural language: B.5.2.4

Pseudo-code: B.5.2.3,B.5.2.4, B.5.5.4

Pseudo-event: 3.6.55, 3.6.61, 3.6.90, 15.8,15.11,B.5.1,B.5.5.4,B.5.14, B.5.14.2

PTC: 3.6.58,4.3,8.1,8.2,11.13.1.1,11.13.1.2,11.13.2,15.2.4,15.9.10.1,15.9.10.2,15.17.5,15.18.7

Q
Qualified event: 3.6.56

Qualifier evaluation: 15.10.6
Qualifier: 15.6, 15.8,15.9.2, 15.10.4.1,15.10.5, 15.11, 15.15, 15.16.3
Queue: 15.9.2

R

R:3.6.58,15.17.2,15.17.3,15.17.5,15.18.1,B.5.23.2,G.2

R TYPE:11.2.2,15.17.2,15.17.5

R Type: A.4.2.4

Range: 11.18.2,12.6.4.6, 12.6.6.1

READ_TIMER: B.5.17.1

READTIMER operation: 15.12.4

READTIMER: 15.12.1,15.12.4,4.4.2.4,B.5.14.2,B.5.17

REAL: 4.4.2.5

Receive event: 3.6.57, 11.20, 12.1,12.2,15.9.2, 15.10.4.1, A.3.3.33
RECEIVE function: B.5.9.1

RECEIVE: 8.1,8.2,11.16.4,15.9.4,159.5.3,15.9.6, 15.10.6, 15.16.1, B.5.7.2,B.5.9.2, B.5.15.2

228 ITU-T Rec. X.292 (05/2002)

ReceiveObject: B.5.2.3

Record references: 15.10.2.2

Recursive tree attachment: 15.13.6

References in chaining of constraints: 15.10.2.2

References using tables: 15.10.3

RELABEL: B.5.25

Relational operators: 11.3.2.3

Remote test method: 3.6.38, 4.2, 15.9.6, G.3.5

REMOVE_OBJECT: B.5.9.1

REPEAT construct: 15.15

REPEAT: /5.6, 15.8,15.15,15.17.1,A.4.2.4,B.5.1,B.5.5,B.5.5.1,B.5.5.3,B.5.5.5, B.5.18.2
RepeatTree: B.5.5.3

REPLACE: /4.6, A.4.2.4

REPLACE_ALT TREE: B.5.25

REPLACE_PARAMETERS: B.5.25

Restrictions on using events: 15.9.5.3

Result type: 11.3.4.5

Result variable: 3.6.58, 3.6.58

RETURN statement: 15.18.3

RETURN: /5.18.1,15.18.3,15.18.6, 15.18.6,B.1, B.5.2.3,B.5.18.2, B.5.22
ReturnDefaults: B.5.2.3

ReturnLevel: B.5.2.3

RETURNVALUE: 11.3.4.1,11.3.4.5,4.4.2.4

Root tree: 3.6.59, 15.6, 15.13.3,15.13.4.1,15.14,15.18.5,4.4.2.9,4.5.2
ROOT TREE: B.5.25

RS: 4.2

S

SAP:4.3,11.10,G.10

SAVE_DEFAULTS: B.5.5.2

Scope of tree attachment: 15.13.2

Scoping rules: 15.13.4.1

sec: A.4.2.4

Selection expression: 3.6.52, 11.5, F.7

Selection: /1.1, b), F.7

Semantics of TTCN: B.1

Send event: 3.6.60, 11.19, /2.1, 12.2,15.9.3, 15.10.4.1, B.5.8, G.9
SEND function: B.5.8.1

SEND: 8.1,8.2,11.10,12.5,15.9.4,15.10.6, B.5.7.2, B.5.15.2
SEND_EVENT: B.5.8.1

SendObject: B.5.2.3

SEQUENCE OF INTEGER: 12.6.5.1, 12.6.5.3

SEQUENCE OF: 11.3.3.3.3,11.18.2,12.6.3,12.6.5.1, 12.6.5.2, 12.6.5.3
SEQUENCE: 12.6.3, 4.5, 14.8, 15.10.2.2, 15.10.2.3, 15.10.2.4, A.4.2.5
Service Access Point: 4.3

Set of alternatives: 3.6.61, 15.6, 15.9.5.2,15.9.9, 15.13.4.1, 15.18.5, A.3.3.33, B.5.5.4, B.5.5.5
SETOF: 11.3.3.3.3,11.18.2,12.5,12.6.3,12.6.4.7,12.6.4.8, 12.6.5.1, 12.6.5.2, 12.6.6.1
SET: 12.5,12.6.3, 14.5, 14.8,15.10.2.2, 15.10.2.3,4.4.2.5

Simple CMs: 11.17.1

Simple type: 11.2.3.2, 11.6, 11.7,11.14.2, 11.14.3,11.15.2,11.15.3
Single constraint table: 3.6.62, 13.1, E.1, E.2.1, E.2.4

SIZE: A.4.2.5

Snapshot semantics: 3.6.63, 15.9.5.2

SNAPSHOT: B.5.12.2

SNAPSHOT _FIXED: B.5.26

Specific value: 3.6.65, 12.2, 12.6.3, 12.6.4.5, 12.6.6.1, 15.9.3

Splitting and Recombining: F.12

SPyT: 3.6.34

Stable testing state: 15.17.3

Standardized ATS: 6.5, G.8

START operation: 15.12.2

START: 15.12.1,15.12.2,4.4.2.4,B.5.14.2

START_TIMER: B.5.17.1

STATEMEMT LINE TYPE_OF: B.5.26

Statement line: B. [

ITU-T Rec. X.292 (05/2002)

229

StatementLine: B.5.2.5

Static chaining: 3.6.66, /2.4

Static conformance requirements: /

STATIC SEMANTICS: A4.4.1

Static semantics: 3.6.67, 5, Annex A, 390, B.1

STATIC: 11.3.4.3,4.4.2.4

Step-wise expansion: B.5.2.1

STOP_TEST CASE: B.5.26

STRING: 4.4.2.5

Structure: 15.10.3

Structured type constraint declaration: 13.2

Structured type constraints: 7.3.4, 4.4.2.15, E.2.4

Structured type: 3.6.9, 3.6.68, 11.2.3.3, /11.2.3.3, 11.14.2, 11.14.3, 11.15.2, 11.15.3, 11.18.1, 11.20, 12.6.1, 12.6.3, 13.1,
13.2,13.4,15.10.3,4.3.3.19,4.3.3.22, A.4.2.8,E2.1, E.2.4,G.6

Structured types within ASP type: 11.14.3

Style guide: Annex G

Submodule: 3.6.69

Subsequent behaviour: 75.73.3

SUBSEQUENT_BEHAVIOUR_TO: B.5.25

SUBSET: 4.4.2.4

SubSet: 12.6.4.8, 12.6.6.1

Substructure: 3.6.68, 11.20, 13.3,15.10.3, A.3.3.19, A.3.3.22, A.3.3.34

Subtree: B.5.5.4, G.4

Suite overview part: 9.5

Suite overview: 10.1

SUPERSET: 4.4.2.4

SuperSet: 12.6.4.7, 12.6.6.1

SUT: 4.1

Syntactic metanotation: A.2.1

Syntax definition: 5

Syntax forms of TTCN: 5

Syntax production: 5, A.3

SYNTAX: 4.4.2.5

System Under Test: 4./

T

T61String: A.4.2.5

Tabular ASP type definition: /3.1

Tabular PDU type definition: /3.7

TAKE_SNAPSHOT: B.5.26

TCP: 4.3

TeletexString: 4.4.2.5

TERMINATE_TEST CASE: B.5.26

Test body: G.2

Test case dynamic behaviour: 7.3.1,7.3.4,9.5,15.2, 15.18.2, A.5.1,A.5.2, E3, E3.2

Test case error processing: B.3

Test case error: 11.3.3.2.4,11.3.3.2.5,11.16.1,11.16.2,15.9.3,15.9.10.1,15.12.2,15.17.3,B.5.4.2

Test case execution pseudo-code: B.5.4.1

Test case execution, natural language: B.5.4.2

Test case identifier: 3.6.70

Test case index: 10.1, 10.4, b), A.5.2

Test case root tree: 15.7.2

Test case selection expression: 10.3

Test case selection: 1.1, d), b)

Test case termination: 11.8.4

Test case variable: 3.6.34, 3.6.58, 3.6.71, 7.3.1, 11.6, 11.7, 11.8.1, 11.8.3, 11.8.4, 11.12, 12.3, 15.10.1, 15.10.4.1, 15.13.1,
15.17.2, B.5.20.2

Test case writer: G.5

Test case: 1, 3.6.10, 3.6.11, 3.6.12, 3.6.23, 3.6.26, 3.6.34, 3.6.47, 3.6.52, 3.6.54, 3.6.59, 3.6.61, 3.6.63, 3.6.70, 3.6.71,
3.6.73,3.6.74, 3.6.82, 3.6.89, 9.1, 9.2, 9.3.1, 9.5, 10.3, 104, d), b), 11.8.3, 11.8.4, 15.1, 15.2.1, 15.3.1, 15.4.1,
15.9.5.1, 159.10.1, 15.12.1, 15.12.4, 15.13.2, 15.14, 15.17.2, 15.18.1, 15.184, A.4.2.13, B.5.2.1, B.5.2.3,
B.5.31,B54,E3.2,G2,G)5 GS8

Test component configuration declaration: 8.1

Test component configuration: 3.6.12, 3.6.16, 3.6.43,3.6.73,8.2, 11.13.1.3,11.13.2,15.2.4,4.4.2.13

Test component declaration: 8.1, 11.13.1.3

230 ITU-T Rec. X.292 (05/2002)

Test component: 3.6.12, 3.6.15, 3.6.16, 3.6.41, 3.6.43, 3.6.53,3.6.72, 3.6.73, 11.12, 15.9.10.2

Test coordination procedures: 4.3

Test event: 3.6.5, 3.6.6, 3.6.91, 15.8,15.9, 15.10.4.1, A.5.1

Test group identifier: A.5.1, A.5.2

Test group objective: 10.3, C.2.3

Test group reference: 3.6.74, 9.2, 10.3, 10.4, 15.2.1, A.5.1, C.2.3

Test group: 3.6.10, 3.6.52,9.1,9.2,10.3,10.4, A.5.2, C.2.3,E.3.1

Test laboratory: 6.5

Test management protocol: 4. /

Test method: G.3

Test outcome: 3.6.91

Test purpose: 15.2.1, G.2, G.8

Test realizer: G.5

Test result: 3.6.54

Test step dynamic behaviour: 3.6.78, 9.5, 15.3, 15.18.2

Test step group reference: 3.6.76, 9.3.2, 10.5

Test step group: 3.6.75, 9.1, 9.3.1, 10.6

Test step identifier: 3.6.77, 10.5, A.4.2.11

Test step index: 10.1, 10.5, 4.5.1

Test step library: 3.6.52, 3.6.76, 3.6.78, 3.6.84, 9.3.1,9.3.2,10.5, 15.3.1, 15.13.2, 15.13.3, 15.15, 15.18.5, A.4.2.10, G.2

Test step objective: 3.6.79, 10.5, 15.3.1

Test step root tree: 15.7.2

Test step: 3.6.2, 3.6.8, 3.6.23, 3.6.26, 3.6.75, 3.6.76, 3.6.77, 3.6.79, 3.6.84, 3.6.87, 9.1, 9.3.1, 9.3.2, 10.5, 15.1, 15.2.3,
15.3.1, 15.4.1, 15.9.5.1, 15.9.10.1, 15.13.2, 15.13.3, 15.13.4.1, 15.13.5, 15.15, 15.18.1, 15.18.5, A.4.2.12,
B.5.5.5

Test suite constant: 3.6.80, /1.2.1,b),11.6,11.6,11.7,11.14.2,11.15.2,12.3,B.5.2.3

Test suite constants: /11.16.1, 11.16.2,11.17.2, 15.10.1

Test suite exports: 10.1

Test suite index: 10.1, 10.2

Test suite operation description: 11.3.4

Test suite operation procedural definition: 11.3.4

Test suite operation, assignment: 11.3.4.6

Test suite operation, CASE: 11.3.4.9

Test suite operation, IF: 11.3.4.7

Test suite operation, parameter passing: 11.3.4.2

Test suite operation, RETURNVALUE: 11.3.4.5

Test suite operation, variables: 11.3.4.3

Test suite operation, WHILE: 11.3.4.8

Test suite operation: 11.3.4.2, 11.3.4.3,11.16.3,4.4.2.14

Test suite operations: F.6

Test suite parameter: 3.6.81, 711.2.1,11.4,b), 11.15.2,11.16.1,11.16.2,11.17.2,12.3,15.10.1, B.5.2.3, F.7

Test suite parameters: //.14.2

Test suite specifier: 15.9.5.1, G.1, G.2, G.4

Test suite structure: 9, 10.1, 10.3, 15.2.1, 4.5.1, A.5.2, F.7

Test suite type definition: 11.2, 11.15.2, 12.6.6.1

Test suite type: 11.2.3.4,11.3.4.1,11.3.4.2,11.8.1,11.8.3,11.14.2,11.16.3,11.17.2, 14.2

Test suite variable: 3.6.82, /71.2.1, 11.6, 11.7, 11.8.1, 11.8.1, 11.8.2, 11.8.3, 11.12, 11.13.1.1, 11.13.1.2, 12.3, 15.10.4.1,
15.13.1,B.5.2.3

Test suite: 3.6.4, 3.6.13, 3.6.17, 3.6.22, 3.6.26, 3.6.27, 3.6.29, 3.6.32, 3.6.45, 3.6.48, 3.6.50, 3.6.52, 3.6.71, 3.6.78, 3.6.80,
3.6.81,3.6.82,3.6.91,9.1,9.2,10.1,10.8.1,11.2.1,11.2.3.2,11.4,11.12,11.15.2,15.12.4,4.4.2.6,4.4.2.10

Test system: /2.1

Test verdict: 3.6.34, 3.6.43

Textual substitution: 15.13.4.1, B.5.20.2

THEN: A.4.2.4

Timeout event: 3.6.83, 15.9.9

TIMEOUT function: B.5.11.1

TIMEOUT: /5.8, 15.9.5.2,15.9.5.3,15.9.9, 15.12.3, A.3.3.33,A.4.2.4,B.5.7.2, B.5.11.2, B.5.15.2, G.5

Timer declaration: 11.12

Timer management: 15.12

Timer name: /5.9.9

Timer operation: 3.6.55, 15.8,15.11, 15.12.1, B.5.17

Timer value: 15.12.2

Timer: 3.6.83,15.9.9, G.5

TIMER_EXPIRED: B.5.11.1

TIMER_OP_TYPE_OF: B.5.26

ITU-T Rec. X.292 (05/2002) 231

TIMER_OPS: B.5.17.1

TMP: 4.1, 10.3

TO: 11.18.2,12.6.4.6,4.4.2.4

Transfer syntax: 4./

Transformation algorithm: B. /

Tree and Tabular Combined Notation: 4.2

Tree attach symbol: 75.713.3

Tree attachment: 3.6.84, 15.4.1, ¢), 15.13, 15.13.1, 15.13.2, 15.13.3, NOTE -, 15.18.5, 15.18.6, B.5.5.5, G.2, G.5

Tree header: 3.6.85, 4.4.2.10, 4.4.2.11

Tree identifier: 3.6.85, 3.6.86, A.4.2.10

Tree leaf: 3.6.87

Tree name: 15.7

Tree node: 3.6.88

Tree notation: 3.6.89, 15.2.1.3, 15.6

TreeReference: B.5.5.3

Trees with parameters: 15.7.2

TRUE: 10.3, 10.4, 11.2.2, 11.3.3.3.1, 11.3.3.3.2, 11.3.4.7, 11.3.4.8, b), 11.16.1, 11.16.2, 15.6, 15.10.5, 15.10.6, 15.11,
15.12.1,15.15,4.4.2.5,B.5.8.2,B.5.9.2,B.5.10.2,B.5.11.2,B.5.12.2,B.5.15.2

TTCN ASP constraints: 4.4.2.15

TTCN CM constraints: 4.4.2.15

TTCN expression: 3.6.55, 15.10

TTCN graphical form: 4.3

TTCN machine: B.1, B.5.2.3, B.5.3.1

TTCN machine-processable form: 4.3

TTCN module exports: C.2.1

TTCN module overview part: C. 1, C.2

TTCN module structure: C.2.1

TTCN object: 7.3.1, 7.3.2, 7.3.3,7.3.4

TTCN operations: 11.3

TTCN operators: 11.3

TTCN PDU constraints: 4.4.2.15

TTCN semantics: B.5.2.1

TTCN statement: 3.6.2, 3.6.6, 3.6.18, 3.6.61, 3.6.87, 3.6.88,3.6.90, 15.2.1.3,15.2.3,15.5, 15.6,15.8, 15.16.1, B.5.1

TTCN type: 11.2

TTCN.GR: 4.3, 5,6,7.1,7.3.5,7.4,15.6, 4.1, A.4.1, A.5

TTCN.MP:4.3,5,6,7.1,7.4,11.2.3.4,11.14.4,11.154,14.1,15.6,4.1,A.4.1, A5 E.1,F.8

TTCN: 4.2

Type definition using macros: F.4

Type definitions using ASN.1: 11.2.3.4

Type list: 11.16.3

Type: 11.16.3

TYPEIDENTIFIER: A4.4.2.5

U

Unbound variable: 3.6.65, 15.10.4.1
Unbound variables: /1.3.4.3
Underscore symbol: /1.14.4, 11.15.4
Unforeseen test event: 3.6.51, 3.6.91
Unforseen test events: 15.9.7
UNION: 4.4.2.5

UNIQUE: 4.4.2.5

Units of length: 11.18.2
UNIVERSAL: A4.4.2.5
UniversalString: 4.4.2.5

Unqualified event: 3.6.92

UNTIL: A.4.2.4

UPDATE_PRELIM: B.5.23.1

Upper tester: 4.1, 11.13.1.2

us: A.4.2.4

Use of REPEAT: F.5
UT:4.1,11.9,11.10,15.2.1.3,15.9.1,15.9.5.1,15.9.7,4.4.2.4,B.5.8.2,B.5.9.2,B.5.10.2,B.5.11.2, B.5.12.2, G4
UTCTime: 4.4.2.5

232 ITU-T Rec. X.292 (05/2002)

A%

Value: 11.3.4.2

ValueList: 12.6.4.5

VAR: 11.3.4.3

Variable declaration: A.4.2.14
Variable name: 4.4.2.14

Variables: 11.3.4.3

Verdict assignment: 15.17.5

Verdict: 3.6.5,11.13.1.1,15.2.1.3,15.2.3,15.17,B.5.22,B.5.23.2, G.2
VideotexString: VisibleString: 4.4.2.5
VisibleString: 4.4.2.5

w

WHILE DO: 4.4.2.4
WHILE: 4.4.2.4
Wildcards: 12.5
WITH: A.4.2.5

ITU-T Rec. X.292 (05/2002) 233

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series I

Series J

Series K
Series L

Series M

Series N
Series O
Series P

Series Q
Series R
Series S

Series T

Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

* 22903 %

Printed in Switzerland
Geneva, 2003

	ITU-T Rec. X.292 (05/2002) OSI conformance testing methodology and framework for protocol Recommendations for ITU-T ...
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Additional references

	3 Definitions
	3.1 Basic terms from ITU-T Rec. X.290
	3.2 Terms from ITU-T Rec. X.200
	3.3 Terms from ITU-T Rec. X.210
	3.4 Terms from ITU-T Rec. X.680
	3.5 Terms from ITU-T Rec. X.690
	3.6 TTCN specific terms

	4 Abbreviations
	4.1 Abbreviations defined in ITU-T Rec. X.290
	4.2 Abbreviations defined in ITU-T Rec. X.291
	4.3 Other abbreviations

	5 The syntax forms of TTCN
	6 Compliance
	7 Conventions
	7.1 Introduction
	7.2 Syntactic metanotation
	7.3 TTCN.GR table proformas
	7.3.1 Introduction
	7.3.2 Single TTCN object tables
	7.3.3 Multiple TTCN object tables
	7.3.4 Alternative compact tables
	7.3.5 Specification of proformas
	7.4 Free Text and Bounded Free Text

	8 Concurrency in TTCN
	8.1 Test components
	8.2 Test component configurations

	9 TTCN test suite structure
	9.1 Introduction
	9.2 Test Group References
	9.3 Test Step Group References
	9.4 Default Group References
	9.5 Parts of a TTCN test suite

	10 Test Suite Overview
	10.1 Introduction
	10.2 Test Suite Index
	10.3 Test Suite Structure
	10.4 Test Case Index
	10.5 Test Step Index
	10.6 Default Index
	10.7 Test Suite Exports
	10.8 The Import Part
	10.8.1 Introduction
	10.8.2 Imports

	11 Declarations part
	11.1 Introduction
	11.2 TTCN types
	11.2.1 Introduction
	11.2.2 Predefined TTCN types
	11.2.3 Test Suite Type Definitions
	11.3 TTCN operators and TTCN operations
	11.3.1 Introduction
	11.3.2 TTCN operators
	11.3.3 Predefined operations
	11.3.4 Test Suite Operation definitions and descriptions
	11.4 Test Suite Parameter Declarations
	11.5 Test Case Selection Expression Definitions
	11.6 Test Suite Constant Declarations
	11.7 Test Suite Constant Declarations by Reference
	11.8 TTCN variables
	11.8.1 Test Suite Variable Declarations
	11.8.2 Binding of Test Suite Variables
	11.8.3 Test Case Variable Declarations
	11.8.4 Binding of Test Case Variables
	11.9 PCO Type Declaration
	11.10 PCO declarations
	11.11 CP declarations
	11.12 Timer declarations
	11.13 Test components and configuration declarations
	11.13.1 Test components
	11.13.2 Test component configuration declarations
	11.14 ASP type definitions
	11.14.1 Introduction
	11.14.2 ASP type definitions using tables
	11.14.3 Use of structured types within ASP type definitions
	11.14.4 ASP type definitions using ASN.1
	11.14.5 ASN.1 ASP type definitions by reference
	11.15 PDU type definitions
	11.15.1 Introduction
	11.15.2 PDU type definitions using tables
	11.15.3 Use of Structured Types within PDU definitions
	11.15.4 PDU type definitions using ASN.1
	11.15.5 ASN.1 PDU type definitions by reference
	11.16 Test Suite Encoding Information
	11.16.1 Encoding Definitions
	11.16.2 Encoding variations
	11.16.3 Invalid field encoding definitions
	11.16.4 Application of encoding rules
	11.17 CM type definitions
	11.17.1 Introduction
	11.17.2 CM type definitions using tables
	11.17.3 CM type definitions using ASN.1
	11.18 String length specifications
	11.19 ASP, PDU and CM definitions for SEND events
	11.20 ASP, PDU and CM definitions for RECEIVE events
	11.21 Alias definitions
	11.21.1 Introduction
	11.21.2 Expansion of aliases

	12 Constraints part
	12.1 Introduction
	12.2 General principles
	12.3 Parameterization of constraints
	12.4 Chaining of constraints
	12.5 Constraints for SEND events
	12.6 Constraints for RECEIVE events
	12.6.1 Matching values
	12.6.2 Matching mechanisms
	12.6.3 Specific value
	12.6.4 Instead of Value
	12.6.5 Inside Values
	12.6.6 Attributes of values

	13 Specification of constraints using tables
	13.1 Introduction
	13.2 Structured type constraint declarations
	13.3 ASP constraint declarations
	13.4 PDU Constraint Declarations
	13.5 Parameterization of constraints
	13.6 Base constraints and modified constraints
	13.7 Formal parameter lists in modified constraints
	13.8 CM constraint declarations

	14 Specification of constraints using ASN.1
	14.1 Introduction
	14.2 ASN.1 type constraint declarations
	14.3 ASN.1 ASP constraint declarations
	14.4 ASN.1 PDU constraint declarations
	14.5 Parameterized ASN.1 constraints
	14.6 Modified ASN.1 constraints
	14.7 Formal parameter lists in modified ASN.1 constraints
	14.8 ASP Parameter and PDU field names within ASN.1 constraints
	14.9 ASN.1 CM constraint declarations

	15 The dynamic part
	15.1 Introduction
	15.2 Test Case dynamic behaviour
	15.2.1 Specification of the Test Case Dynamic Behaviour table
	15.2.2 The Test Case Dynamic Behaviour proforma
	15.2.3 Structure of the Test Case behaviour
	15.2.4 Concurrent Test Case Behaviour description
	15.2.5 Line numbering and continuation
	15.3 Test Step dynamic behaviour
	15.3.1 Specification of the Test Step Dynamic Behaviour table
	15.3.2 The Test Step Dynamic Behaviour proforma
	15.4 Default dynamic behaviour
	15.4.1 Default behaviour
	15.4.2 Specification of the Default Dynamic Behaviour table
	15.4.3 The Default Dynamic Behaviour proforma
	15.5 The behaviour description
	15.6 The tree notation
	15.7 Tree names and parameter lists
	15.7.1 Introduction
	15.7.2 Trees with parameters
	15.8 TTCN statements
	15.9 TTCN test events
	15.9.1 Sending and receiving events
	15.9.2 Receiving events
	15.9.3 Sending events
	15.9.4 Lifetime of events
	15.9.5 Execution of the behaviour tree
	15.9.6 The IMPLICIT SEND event
	15.9.7 The OTHERWISE event
	15.9.8 OTHERWISE and concurrent TTCN
	15.9.9 The TIMEOUT event
	15.9.10 Concurrent TTCN events and constructs
	15.10 TTCN expressions
	15.10.1 Introduction
	15.10.2 References for ASN.1 defined data objects
	15.10.3 References for data objects defined using tables
	15.10.4 Assignments
	15.10.5 Qualifiers
	15.10.6 Event lines with assignments and qualifiers
	15.11 Pseudo-events
	15.12 Timer management
	15.12.1 Introduction
	15.12.2 The START operation
	15.12.3 The CANCEL operation
	15.12.4 The READTIMER operation
	15.13 The ATTACH construct
	15.13.1 Introduction
	15.13.2 Scope of tree attachment
	15.13.3 Tree attachment basics
	15.13.4 The meaning of tree attachment
	15.13.5 Passing parameterized constraints
	15.13.6 Recursive tree attachment
	15.13.7 Tree attachment and Defaults
	15.14 Labels and the GOTO construct
	15.15 The REPEAT construct
	15.16 The Constraints Reference
	15.16.1 Purpose of the Constraints Reference column
	15.16.2 Passing parameters in Constraint References
	15.16.3 Constraints and qualifiers and assignments
	15.17 Verdicts
	15.17.1 Introduction
	15.17.2 Preliminary results
	15.17.3 Final verdict
	15.17.4 Verdicts and OTHERWISE
	15.17.5 Verdict assignment in concurrent TTCN
	15.18 The meaning of Defaults
	15.18.1 Introduction
	15.18.2 Default References
	15.18.3 The RETURN statement
	15.18.4 The ACTIVATE statement
	15.18.5 Defaults and tree attachment
	15.18.6 Tree Attachment, Defaults, Activate and Return
	15.18.7 Defaults and CREATE
	15.18.8 Defaults and CMs

	16 Page continuation
	16.1 Page continuation of TTCN tables
	16.2 Page continuation of dynamic behaviour tables

	Annex A - Syntax and static semantics of TTCN
	A.1 Introduction
	A.2 Conventions for the syntax description
	A.2.1 Syntactic metanotation
	A.2.2 TTCN.MP syntax definitions
	A.3 The TTCN.MP syntax productions in BNF
	A.3.1 TTCN Specification
	A.3.2 TTCN Module
	A.3.3 Test suite
	A.4 General static semantics requirements
	A.4.1 Introduction
	A.4.2 Uniqueness of identifiers
	A.5 Differences between TTCN.GR and TTCN.MP
	A.5.1 Differences in syntax
	A.5.2 Additional static semantics in the TTCN.MP
	A.6 List of BNF production number
	Annex B - Operational semantics of TTCN
	B.1 Introduction
	B.2 Precedence
	B.3 Processing of test case errors
	B.4 Converting a modularized test suite to an equivalent expanded test suite
	B.5 TTCN operational semantics
	B.5.1 Introduction
	B.5.2 The pseudo-code notation
	B.5.3 Execution of a Test Suite
	B.5.4 Execution of a Test Case
	B.5.5 Expanding a set of alternatives
	B.5.6 Evaluation of an Event Line
	B.5.7 Functions for TTCN events
	B.5.8 Execution of the SEND event
	B.5.9 Execution of the RECEIVE event
	B.5.10 Execution of the OTHERWISE event
	B.5.11 Execution of the TIMEOUT event
	B.5.12 Execution of the DONE event
	B.5.13 Execution of the IMPLICIT SEND event
	B.5.14 Execution of a pseudo-event
	B.5.15 Execution of BOOLEAN expressions
	B.5.16 Execution of assignments
	B.5.17 Execution of TIMER operations
	B.5.18 Functions for TTCN constructs
	B.5.19 Execution of the ACTIVATE construct
	B.5.20 Execution of the CREATE construct
	B.5.21 Execution of the GOTO construct
	B.5.22 Execution of the RETURN construct
	B.5.23 The verdict
	B.5.24 The Conformance Log
	B.5.25 Tree handling functions and procedures
	B.5.26 Miscellaneous functions used by the pseudo-code
	Annex C - TTCN modules
	C.1 Introduction
	C.2 TTCN Module Overview Part
	C.2.1 Introduction
	C.2.2 TTCN Module Exports
	C.2.3 TTCN Module Structure
	C.2.4 Test Case Index
	C.2.5 Test Step Index
	C.2.6 Default Index
	C.3 Import Part
	C.3.1 Introduction
	C.3.2 External
	C.3.3 Import
	Annex D - Test Suite Index
	Annex E - Compact proformas
	E.1 Introduction
	E.2 Compact proformas for constraints
	E.2.1 Requirements
	E.2.2 Compact proformas for ASP constraints
	E.2.3 Compact proformas for PDU constraints
	E.2.4 Compact proformas for Structured Type constraints
	E.2.5 Compact proformas for ASN.1 constraints
	E.3 Compact proforma for Test Cases
	E.3.1 Requirements
	E.3.2 Compact proforma for Test Case dynamic behaviours
	Annex F - Examples
	F.1 Examples of tabular constraints
	F.1.1 ASP and PDU definitions
	F.1.2 ASP/PDU constraints
	F.2 Examples of ASN.1 constraints
	F.2.1 ASP and PDU definitions
	F.2.2 ASN.1 ASP/PDU constraints
	F.2.3 Further examples of ASN.1 constraints
	F.3 Base and modified constraints
	F.4 Type definition using macros
	F.5 Use of REPEAT
	F.6 Test suite operations
	F.7 Example of a Test Suite Overview
	F.8 Example of a Test Case in TTCN.MP Form
	F.9 Use of component reference for field value assignment in constraints
	F.10 Multi-party testing
	F.11 Multiplexing/Demultiplexing
	F.12 Splitting and recombining
	F.13 Multi-protocol test cases
	F.14 Example of modular TTCN
	Annex G - Style guide
	G.1 Introduction
	G.2 Test case structure
	G.3 Use of TTCN with different abstract test methods
	G.3.1 Introduction
	G.3.2 TTCN and the LS test method
	G.3.3 TTCN and the DS test method
	G.3.4 TTCN and the CS test method
	G.3.5 TTCN and the RS test method
	G.4 Use of defaults
	G.5 Limiting the execution time of a Test Case
	G.6 Structured types
	G.7 Abbreviations
	G.8 Test descriptions
	G.9 Assignments on SEND events
	G.10 Multi-service PCOs
	Annex H - Index
	H.1 Introduction
	H.2 The index

